supervised working
This commit is contained in:
248
pina/domain/simplex.py
Normal file
248
pina/domain/simplex.py
Normal file
@@ -0,0 +1,248 @@
|
||||
import torch
|
||||
from .domain_interface import DomainInterface
|
||||
from pina.domain import CartesianDomain
|
||||
from ..label_tensor import LabelTensor
|
||||
from ..utils import check_consistency
|
||||
|
||||
|
||||
class SimplexDomain(DomainInterface):
|
||||
"""PINA implementation of a Simplex."""
|
||||
|
||||
def __init__(self, simplex_matrix, sample_surface=False):
|
||||
"""
|
||||
:param simplex_matrix: A matrix of LabelTensor objects representing
|
||||
a vertex of the simplex (a tensor), and the coordinates of the
|
||||
point (a list of labels).
|
||||
|
||||
:type simplex_matrix: list[LabelTensor]
|
||||
:param sample_surface: A variable for choosing sample strategies. If
|
||||
``sample_surface=True`` only samples on the Simplex surface
|
||||
frontier are taken. If ``sample_surface=False``, no such criteria
|
||||
is followed.
|
||||
|
||||
:type sample_surface: bool
|
||||
|
||||
.. warning::
|
||||
Sampling for dimensions greater or equal to 10 could result
|
||||
in a shrinking of the simplex, which degrades the quality
|
||||
of the samples. For dimensions higher than 10, other algorithms
|
||||
for sampling should be used.
|
||||
|
||||
:Example:
|
||||
>>> spatial_domain = SimplexDomain(
|
||||
[
|
||||
LabelTensor(torch.tensor([[0, 0]]), labels=["x", "y"]),
|
||||
LabelTensor(torch.tensor([[1, 1]]), labels=["x", "y"]),
|
||||
LabelTensor(torch.tensor([[0, 2]]), labels=["x", "y"]),
|
||||
], sample_surface = True
|
||||
)
|
||||
"""
|
||||
|
||||
# check consistency of sample_surface as bool
|
||||
check_consistency(sample_surface, bool)
|
||||
self._sample_surface = sample_surface
|
||||
|
||||
# check consistency of simplex_matrix as list or tuple
|
||||
check_consistency([simplex_matrix], (list, tuple))
|
||||
|
||||
# check everything within simplex_matrix is a LabelTensor
|
||||
check_consistency(simplex_matrix, LabelTensor)
|
||||
|
||||
# check consistency of labels
|
||||
matrix_labels = simplex_matrix[0].labels
|
||||
if not all(vertex.labels == matrix_labels for vertex in simplex_matrix):
|
||||
raise ValueError(f"Labels don't match.")
|
||||
|
||||
# check consistency dimensions
|
||||
dim_simplex = len(matrix_labels)
|
||||
if len(simplex_matrix) != dim_simplex + 1:
|
||||
raise ValueError(
|
||||
"An n-dimensional simplex is composed by n + 1 tensors of dimension n."
|
||||
)
|
||||
|
||||
# creating vertices matrix
|
||||
self._vertices_matrix = LabelTensor.vstack(simplex_matrix)
|
||||
|
||||
# creating basis vectors for simplex
|
||||
# self._vectors_shifted = (
|
||||
# (self._vertices_matrix.T)[:, :-1] - (self._vertices_matrix.T)[:, None, -1]
|
||||
# ) ### TODO: Remove after checking
|
||||
|
||||
vert = self._vertices_matrix
|
||||
self._vectors_shifted = (vert[:-1] - vert[-1]).T
|
||||
|
||||
# build cartesian_bound
|
||||
self._cartesian_bound = self._build_cartesian(self._vertices_matrix)
|
||||
|
||||
@property
|
||||
def variables(self):
|
||||
return sorted(self._vertices_matrix.labels)
|
||||
|
||||
def _build_cartesian(self, vertices):
|
||||
"""
|
||||
Build Cartesian border for Simplex domain to be used in sampling.
|
||||
:param vertex_matrix: matrix of vertices
|
||||
:type vertices: list[list]
|
||||
:return: Cartesian border for triangular domain
|
||||
:rtype: CartesianDomain
|
||||
"""
|
||||
|
||||
span_dict = {}
|
||||
|
||||
for i, coord in enumerate(self.variables):
|
||||
sorted_vertices = sorted(vertices, key=lambda vertex: vertex[i])
|
||||
# respective coord bounded by the lowest and highest values
|
||||
span_dict[coord] = [
|
||||
float(sorted_vertices[0][i]),
|
||||
float(sorted_vertices[-1][i]),
|
||||
]
|
||||
|
||||
return CartesianDomain(span_dict)
|
||||
|
||||
def is_inside(self, point, check_border=False):
|
||||
"""
|
||||
Check if a point is inside the simplex.
|
||||
Uses the algorithm described involving barycentric coordinates:
|
||||
https://en.wikipedia.org/wiki/Barycentric_coordinate_system.
|
||||
|
||||
:param point: Point to be checked.
|
||||
:type point: LabelTensor
|
||||
:param check_border: Check if the point is also on the frontier
|
||||
of the simplex, default ``False``.
|
||||
:type check_border: bool
|
||||
:return: Returning ``True`` if the point is inside, ``False`` otherwise.
|
||||
:rtype: bool
|
||||
|
||||
.. note::
|
||||
When ``sample_surface`` in the ``__init()__``
|
||||
is set to ``True``, then the method only checks
|
||||
points on the surface, and not inside the domain.
|
||||
"""
|
||||
|
||||
if not all(label in self.variables for label in point.labels):
|
||||
raise ValueError(
|
||||
"Point labels different from constructor"
|
||||
f" dictionary labels. Got {point.labels},"
|
||||
f" expected {self.variables}."
|
||||
)
|
||||
|
||||
point_shift = point - self._vertices_matrix[-1]
|
||||
point_shift = point_shift.tensor.reshape(-1, 1)
|
||||
|
||||
# compute barycentric coordinates
|
||||
lambda_ = torch.linalg.solve(
|
||||
self._vectors_shifted * 1.0, point_shift * 1.0
|
||||
)
|
||||
lambda_1 = 1.0 - torch.sum(lambda_)
|
||||
lambdas = torch.vstack([lambda_, lambda_1])
|
||||
|
||||
# perform checks
|
||||
if not check_border:
|
||||
return all(torch.gt(lambdas, 0.0)) and all(torch.lt(lambdas, 1.0))
|
||||
|
||||
return all(torch.ge(lambdas, 0)) and (
|
||||
any(torch.eq(lambdas, 0)) or any(torch.eq(lambdas, 1))
|
||||
)
|
||||
|
||||
def _sample_interior_randomly(self, n, variables):
|
||||
"""
|
||||
Randomly sample points inside a simplex of arbitrary
|
||||
dimension, without the boundary.
|
||||
:param int n: Number of points to sample in the shape.
|
||||
:param variables: pinn variable to be sampled, defaults to ``all``.
|
||||
:type variables: str or list[str], optional
|
||||
:return: Returns tensor of n sampled points.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
|
||||
# =============== For Developers ================ #
|
||||
#
|
||||
# The sampling startegy used is fairly simple.
|
||||
# First we sample a random vector from the hypercube
|
||||
# which contains the simplex. Then, if the point
|
||||
# sampled is inside the simplex, we add it as a valid
|
||||
# one.
|
||||
#
|
||||
# =============================================== #
|
||||
|
||||
sampled_points = []
|
||||
while len(sampled_points) < n:
|
||||
sampled_point = self._cartesian_bound.sample(
|
||||
n=1, mode="random", variables=variables
|
||||
)
|
||||
|
||||
if self.is_inside(sampled_point, self._sample_surface):
|
||||
sampled_points.append(sampled_point)
|
||||
return torch.cat(sampled_points, dim=0)
|
||||
|
||||
def _sample_boundary_randomly(self, n):
|
||||
"""
|
||||
Randomly sample points on the boundary of a simplex
|
||||
of arbitrary dimensions.
|
||||
:param int n: Number of points to sample in the shape.
|
||||
:return: Returns tensor of n sampled points
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
|
||||
# =============== For Developers ================ #
|
||||
#
|
||||
# The sampling startegy used is fairly simple.
|
||||
# We first sample the lambdas in [0, 1] domain,
|
||||
# we then set to zero only one lambda, and normalize.
|
||||
# Finally, we compute the matrix product between the
|
||||
# lamdas and the vertices matrix.
|
||||
#
|
||||
# =============================================== #
|
||||
|
||||
sampled_points = []
|
||||
|
||||
while len(sampled_points) < n:
|
||||
# extract number of vertices
|
||||
number_of_vertices = self._vertices_matrix.shape[0]
|
||||
# extract idx lambda to set to zero randomly
|
||||
idx_lambda = torch.randint(
|
||||
low=0, high=number_of_vertices, size=(1,)
|
||||
)
|
||||
# build lambda vector
|
||||
# 1. sampling [1, 2)
|
||||
lambdas = torch.rand((number_of_vertices, 1))
|
||||
# 2. setting lambdas[idx_lambda] to 0
|
||||
lambdas[idx_lambda] = 0
|
||||
# 3. normalize
|
||||
lambdas /= lambdas.sum()
|
||||
# 4. compute dot product
|
||||
sampled_points.append(self._vertices_matrix.T @ lambdas)
|
||||
return torch.cat(sampled_points, dim=1).T
|
||||
|
||||
def sample(self, n, mode="random", variables="all"):
|
||||
"""
|
||||
Sample n points from Simplex domain.
|
||||
|
||||
:param int n: Number of points to sample in the shape.
|
||||
:param str mode: Mode for sampling, defaults to ``random``. Available modes include: ``random``.
|
||||
:param variables: Variables to be sampled, defaults to ``all``.
|
||||
:type variables: str | list[str]
|
||||
:return: Returns ``LabelTensor`` of n sampled points.
|
||||
:rtype: LabelTensor
|
||||
|
||||
.. warning::
|
||||
When ``sample_surface = True`` in the initialization, all
|
||||
the variables are sampled, despite passing different once
|
||||
in ``variables``.
|
||||
"""
|
||||
|
||||
if variables == "all":
|
||||
variables = self.variables
|
||||
elif isinstance(variables, (list, tuple)):
|
||||
variables = sorted(variables)
|
||||
|
||||
if mode in ["random"]:
|
||||
if self._sample_surface:
|
||||
sample_pts = self._sample_boundary_randomly(n)
|
||||
else:
|
||||
sample_pts = self._sample_interior_randomly(n, variables)
|
||||
|
||||
else:
|
||||
raise NotImplementedError(f"mode={mode} is not implemented.")
|
||||
|
||||
return LabelTensor(sample_pts, labels=self.variables)
|
||||
Reference in New Issue
Block a user