From 9de4e515f4a20e8abfada1da37e75078ab485aaf Mon Sep 17 00:00:00 2001 From: Dario Coscia <93731561+dario-coscia@users.noreply.github.com> Date: Mon, 8 May 2023 16:19:59 +0200 Subject: [PATCH] Tutorial (#91) * tutorial update --- docs/source/_rst/tutorial1/tutorial.rst | 5 +- docs/source/_rst/tutorial2/tutorial.rst | 116 +++--- .../tutorial_files/tutorial_13_0.png | Bin 0 -> 23413 bytes .../tutorial_files/tutorial_18_0.png | Bin 0 -> 23403 bytes .../tutorial_files/tutorial_25_0.png | Bin 0 -> 20680 bytes .../tutorial_files/tutorial_26_0.png | Bin 0 -> 55315 bytes docs/source/_rst/tutorial3/tutorial.rst | 36 +- .../tutorial_files/tutorial_12_0.png | Bin 20608 -> 21124 bytes .../tutorial_files/tutorial_14_0.png | Bin 17833 -> 21246 bytes tutorials/tutorial1/tutorial.ipynb | 72 +--- tutorials/tutorial1/tutorial.py | 20 +- tutorials/tutorial2/tutorial.ipynb | 371 +++++------------- tutorials/tutorial2/tutorial.py | 34 +- tutorials/tutorial3/tutorial.ipynb | 94 +---- tutorials/tutorial3/tutorial.py | 24 +- 15 files changed, 244 insertions(+), 528 deletions(-) create mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_13_0.png create mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_18_0.png create mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_25_0.png create mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_26_0.png diff --git a/docs/source/_rst/tutorial1/tutorial.rst b/docs/source/_rst/tutorial1/tutorial.rst index da98aca..02c6538 100644 --- a/docs/source/_rst/tutorial1/tutorial.rst +++ b/docs/source/_rst/tutorial1/tutorial.rst @@ -136,8 +136,8 @@ Equation (1) and try to write the PINA model class: # Conditions to hold conditions = { - 'x0': Condition(Span({'x': 0.}), initial_condition), - 'D': Condition(Span({'x': [0, 1]}), ode_equation), + 'x0': Condition(location=Span({'x': 0.}), function=initial_condition), + 'D': Condition(location=Span({'x': [0, 1]}), function=ode_equation), } # defining true solution @@ -263,6 +263,7 @@ the results. [epoch 03000] 4.049759e-04 2.937766e-06 4.020381e-04 + After the training we have saved the final loss in ``final_loss``, which we can inspect. By default PINA uses mean square error loss. diff --git a/docs/source/_rst/tutorial2/tutorial.rst b/docs/source/_rst/tutorial2/tutorial.rst index 075cd23..d140875 100644 --- a/docs/source/_rst/tutorial2/tutorial.rst +++ b/docs/source/_rst/tutorial2/tutorial.rst @@ -21,7 +21,7 @@ First of all, some useful imports. .. code:: ipython3 import torch - from torch.nn import ReLU, Tanh, Softplus + from torch.nn import Softplus from pina.problem import SpatialProblem from pina.operators import nabla @@ -50,11 +50,11 @@ be compared with the predicted one. return output_.extract(['u']) - value conditions = { - 'gamma1': Condition(Span({'x': [0, 1], 'y': 1}), nil_dirichlet), - 'gamma2': Condition(Span({'x': [0, 1], 'y': 0}), nil_dirichlet), - 'gamma3': Condition(Span({'x': 1, 'y': [0, 1]}), nil_dirichlet), - 'gamma4': Condition(Span({'x': 0, 'y': [0, 1]}), nil_dirichlet), - 'D': Condition(Span({'x': [0, 1], 'y': [0, 1]}), laplace_equation), + 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1}), function=nil_dirichlet), + 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0}), function=nil_dirichlet), + 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1]}), function=nil_dirichlet), + 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1]}), function=nil_dirichlet), + 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1]}), function=laplace_equation), } def poisson_sol(self, pts): @@ -108,28 +108,28 @@ is not mandatory in the **PINA** framework. .. parsed-literal:: sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00000] 4.821361e-01 7.271265e-02 5.749976e-02 7.188050e-02 5.793815e-02 2.221050e-01 + [epoch 00000] 4.879922e-01 1.557781e-01 7.685463e-02 2.743466e-02 2.047883e-02 2.074460e-01 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00001] 3.231621e-01 2.852444e-02 1.981721e-02 2.768876e-02 2.037603e-02 2.267557e-01 + [epoch 00001] 2.610107e-01 1.067532e-03 8.390929e-03 2.391219e-02 1.467707e-02 2.129630e-01 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00100] 1.015092e-01 5.198789e-04 2.826267e-03 3.158009e-03 2.300746e-03 9.270430e-02 + [epoch 00100] 8.640952e-02 1.038323e-04 9.709063e-05 6.688796e-05 6.651071e-05 8.607519e-02 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00200] 8.891604e-02 4.115215e-04 5.373723e-04 5.063288e-04 5.177262e-04 8.694309e-02 + [epoch 00200] 2.996790e-02 4.977722e-04 6.639907e-04 5.634258e-04 7.204801e-04 2.752223e-02 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00300] 8.620024e-02 3.734426e-04 4.014817e-04 3.966301e-04 4.261272e-04 8.460256e-02 + [epoch 00300] 2.896983e-03 1.864277e-04 2.020803e-05 2.418693e-04 3.052877e-05 2.417949e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00400] 8.090379e-02 3.381128e-04 2.724089e-04 2.855197e-04 3.383889e-04 7.966936e-02 + [epoch 00400] 1.865673e-03 1.250375e-04 2.438288e-05 1.595948e-04 6.709602e-06 1.549948e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00500] 7.000037e-02 2.501736e-04 7.233566e-05 1.258494e-04 1.898462e-04 6.936217e-02 + [epoch 00500] 2.874877e-03 2.077810e-04 1.149128e-04 1.273361e-04 3.024802e-06 2.421822e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00600] 2.645028e-02 9.258305e-05 2.108825e-04 1.832870e-04 7.366277e-05 2.588986e-02 + [epoch 00600] 1.310072e-03 1.081258e-04 3.365631e-05 1.059794e-04 3.468987e-06 1.058841e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00700] 2.599242e-03 5.990163e-05 9.679930e-05 1.735135e-04 3.957247e-05 2.229455e-03 + [epoch 00700] 2.694587e-03 1.267468e-04 6.266955e-05 9.891923e-05 8.897325e-06 2.397354e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00800] 1.343722e-03 6.899313e-05 4.569854e-05 1.231751e-04 1.892484e-05 1.086931e-03 + [epoch 00800] 5.028690e-03 1.435707e-04 5.986574e-06 9.517078e-05 4.583780e-05 4.738124e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00900] 8.533830e-04 6.269138e-05 2.274475e-05 8.422977e-05 1.782445e-05 6.658927e-04 - [epoch 01000] 6.219158e-04 5.753698e-05 1.195975e-05 6.105051e-05 1.724382e-05 4.741247e-04 + [epoch 00900] 9.997603e-04 9.684711e-05 9.155992e-06 8.875966e-05 1.261154e-05 7.923861e-04 + [epoch 01000] 2.362966e-02 1.157872e-04 7.812096e-06 8.004917e-05 9.947084e-05 2.332654e-02 The neural network of course can be saved in a file. In such a way, we @@ -153,7 +153,7 @@ and the predicted solutions is showed. -.. image:: output_13_0.png +.. image:: tutorial_files/tutorial_13_0.png The problem solution with extra-features @@ -209,28 +209,28 @@ new extra feature. .. parsed-literal:: sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00000] 8.334048e-02 1.480584e-02 1.326940e-02 1.505190e-02 1.282023e-02 2.739312e-02 + [epoch 00000] 1.309440e-01 2.335824e-02 3.823499e-03 1.878588e-05 2.002613e-03 1.017409e-01 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00001] 2.369340e-02 1.785535e-03 1.441936e-03 1.978278e-03 1.193302e-03 1.729435e-02 + [epoch 00001] 5.053994e-02 6.420787e-03 6.924602e-03 4.746807e-03 1.751946e-03 3.069580e-02 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00100] 4.190661e-05 5.259407e-06 2.207154e-06 1.740728e-06 1.258537e-06 3.144078e-05 + [epoch 00100] 7.484706e-06 1.889349e-07 4.289622e-07 3.610726e-07 3.611258e-07 6.144610e-06 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00200] 2.964181e-06 3.873027e-08 3.952280e-08 6.926503e-08 4.859637e-08 2.768067e-06 + [epoch 00200] 6.941436e-06 4.738185e-07 4.590637e-07 5.098815e-07 5.365398e-07 4.962133e-06 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00300] 2.477657e-06 3.019578e-08 3.888974e-08 5.290904e-08 4.751930e-08 2.308143e-06 + [epoch 00300] 6.147081e-06 6.213511e-07 5.576677e-07 6.256337e-07 6.572442e-07 3.685184e-06 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00400] 2.054579e-06 2.595518e-08 3.504910e-08 4.605295e-08 4.163064e-08 1.905891e-06 + [epoch 00400] 6.056770e-06 7.646217e-07 6.377599e-07 7.242416e-07 7.616553e-07 3.168491e-06 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00500] 1.716277e-06 2.342572e-08 3.247192e-08 4.101565e-08 3.697489e-08 1.582388e-06 + [epoch 00500] 6.751128e-06 8.011474e-07 6.283512e-07 7.652199e-07 7.226305e-07 3.833779e-06 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00600] 1.461072e-06 2.217194e-08 3.119703e-08 3.734558e-08 3.372288e-08 1.336635e-06 + [epoch 00600] 2.839740e-05 5.422368e-06 4.058312e-06 4.664194e-06 4.984503e-06 9.268020e-06 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00700] 1.275204e-06 2.180191e-08 3.080508e-08 3.476259e-08 3.154803e-08 1.156287e-06 + [epoch 00700] 1.221099e-05 3.654685e-06 3.195583e-07 2.717753e-06 2.381476e-06 3.137519e-06 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00800] 1.141423e-06 2.190318e-08 3.084367e-08 3.297679e-08 3.010750e-08 1.025592e-06 + [epoch 00800] 5.423951e-06 6.111856e-07 4.348901e-07 5.353588e-07 5.398895e-07 3.302627e-06 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00900] 1.043816e-06 2.220373e-08 3.104670e-08 3.163695e-08 2.905372e-08 9.298745e-07 - [epoch 01000] 9.697858e-07 2.242846e-08 3.111799e-08 3.060282e-08 2.824710e-08 8.573894e-07 + [epoch 00900] 6.777007e-06 3.749606e-07 1.421852e-06 4.068826e-08 1.292241e-06 3.647265e-06 + [epoch 01000] 6.803403e-05 2.302543e-07 3.886034e-05 4.901193e-06 2.005441e-05 3.987827e-06 The predicted and exact solutions and the error between them are @@ -244,7 +244,7 @@ order of magnitude in accuracy. -.. image:: output_18_0.png +.. image:: tutorial_files/tutorial_18_0.png The problem solution with learnable extra-features @@ -296,28 +296,28 @@ need, and they are managed by ``autograd`` module! .. parsed-literal:: sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00000] 3.918677e-01 2.501913e-02 1.278682e-02 1.963722e-02 1.756839e-02 3.168561e-01 + [epoch 00000] 7.147130e-02 1.942330e-03 7.350697e-03 2.868338e-03 1.184232e-03 5.812570e-02 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00001] 1.345929e-01 1.696471e-02 9.475741e-03 1.432935e-02 1.169397e-02 8.212914e-02 + [epoch 00001] 2.814954e-01 7.300152e-03 5.510583e-04 2.262258e-03 7.287678e-04 2.706531e-01 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00100] 4.500092e-04 1.441140e-05 9.839978e-06 2.283052e-05 4.087769e-06 3.988396e-04 + [epoch 00100] 1.961870e-04 3.066778e-06 5.342949e-07 2.670689e-06 9.807675e-07 1.889345e-04 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00200] 2.102947e-04 1.462936e-05 2.168394e-06 4.655578e-06 4.340448e-07 1.884074e-04 + [epoch 00200] 1.208203e-04 3.096610e-06 1.253595e-06 2.603416e-06 1.962141e-06 1.119046e-04 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00300] 1.371512e-04 1.072066e-05 1.284032e-06 2.897264e-06 1.126986e-06 1.211222e-04 + [epoch 00300] 3.992990e-05 3.451424e-06 6.415143e-07 1.576505e-06 1.244609e-06 3.301585e-05 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00400] 9.371716e-05 7.952534e-06 1.115802e-06 2.099921e-06 1.375253e-06 8.117365e-05 + [epoch 00400] 3.466437e-04 1.722332e-06 1.461791e-05 3.052185e-06 8.755493e-06 3.184958e-04 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00500] 6.719316e-05 5.919826e-06 9.837649e-07 1.510521e-06 1.423588e-06 5.735546e-05 + [epoch 00500] 5.242374e-03 3.230991e-05 1.387528e-05 5.379211e-06 3.145076e-06 5.187664e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00600] 5.042886e-05 4.428994e-06 8.414617e-07 1.083298e-06 1.338001e-06 4.273711e-05 + [epoch 00600] 1.027368e-03 1.448758e-06 2.165510e-05 5.197179e-05 3.823021e-05 9.140619e-04 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00700] 3.907475e-05 3.327482e-06 7.004838e-07 7.866622e-07 1.162936e-06 3.309719e-05 + [epoch 00700] 1.141694e-03 6.998039e-06 2.446730e-05 3.083524e-05 1.376935e-05 1.065624e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00800] 3.086757e-05 2.501366e-06 5.700428e-07 5.815515e-07 9.500203e-07 2.626459e-05 + [epoch 00800] 3.619534e-04 3.120772e-06 1.223103e-05 2.211869e-05 9.567964e-06 3.149150e-04 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00900] 2.470110e-05 1.874311e-06 4.546698e-07 4.359081e-07 7.396913e-07 2.119652e-05 - [epoch 01000] 1.999130e-05 1.396229e-06 3.562134e-07 3.291411e-07 5.548665e-07 1.735485e-05 + [epoch 00900] 3.287693e-04 2.432459e-06 7.569996e-06 1.101516e-05 4.546776e-06 3.032049e-04 + [epoch 01000] 5.432598e-04 8.919213e-06 1.991732e-05 2.632461e-05 7.365395e-06 4.807333e-04 Umh, the final loss is not appreciabily better than previous model (with @@ -346,28 +346,28 @@ removing all the hidden layers in the ``FeedForward``, keeping only the .. parsed-literal:: sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00000] 1.974945e+00 2.002993e-03 7.012323e-02 2.755559e-02 1.584911e-02 1.859414e+00 + [epoch 00000] 1.907039e+01 5.862396e-02 5.423664e-01 4.624593e-01 7.118504e-02 1.793576e+01 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00001] 1.761779e+00 3.188374e-03 6.539153e-02 2.452723e-02 1.474262e-02 1.653930e+00 + [epoch 00001] 1.698682e+01 3.348809e-02 4.943427e-01 3.972439e-01 6.141453e-02 1.600033e+01 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00100] 4.036187e-03 1.676370e-05 2.384196e-05 1.675912e-05 2.528631e-05 3.953536e-03 + [epoch 00100] 8.010766e-02 1.765875e-04 6.100491e-04 1.604862e-04 5.841496e-04 7.857639e-02 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00200] 3.638973e-06 9.148435e-09 5.011525e-09 8.995231e-09 5.055353e-09 3.610763e-06 + [epoch 00200] 5.057434e-02 6.479959e-05 6.590948e-05 6.376287e-05 5.975253e-05 5.032011e-02 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00300] 7.258809e-11 2.040413e-13 1.323202e-13 1.966580e-13 1.385408e-13 7.191653e-11 + [epoch 00300] 1.974927e-02 3.145394e-05 1.531348e-05 3.037518e-05 1.363940e-05 1.965849e-02 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00400] 1.095777e-13 2.320287e-16 3.792855e-17 2.308433e-16 3.710536e-17 1.090398e-13 + [epoch 00400] 1.763019e-03 3.408035e-06 8.902280e-07 3.228933e-06 7.512407e-07 1.754741e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00500] 1.095686e-13 2.238822e-16 4.053546e-17 2.238880e-16 4.054121e-17 1.090398e-13 + [epoch 00500] 2.604023e-05 5.248935e-08 1.091775e-08 4.940254e-08 9.077334e-09 2.591834e-05 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00600] 1.095686e-13 2.238991e-16 4.052415e-17 2.238992e-16 4.052421e-17 1.090398e-13 + [epoch 00600] 7.279636e-08 1.490485e-10 3.004504e-11 1.392443e-10 2.490262e-11 7.245312e-08 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00700] 1.095686e-13 2.238992e-16 4.052411e-17 2.238992e-16 4.052410e-17 1.090398e-13 + [epoch 00700] 2.307051e-11 5.051121e-14 1.083412e-14 4.412749e-14 8.684963e-15 2.295635e-11 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00800] 1.095686e-13 2.238992e-16 4.052411e-17 2.238992e-16 4.052410e-17 1.090398e-13 + [epoch 00800] 9.755044e-12 1.745244e-14 3.232219e-15 1.735542e-14 3.347362e-15 9.713657e-12 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ - [epoch 00900] 1.095686e-13 2.238992e-16 4.052411e-17 2.238992e-16 4.052410e-17 1.090398e-13 - [epoch 01000] 1.095686e-13 2.238992e-16 4.052411e-17 2.238992e-16 4.052410e-17 1.090398e-13 + [epoch 00900] 5.909113e-12 1.112281e-14 2.037945e-15 1.107687e-14 2.124603e-15 5.882751e-12 + [epoch 01000] 3.220371e-12 5.622761e-15 1.002551e-15 5.519723e-15 9.455284e-16 3.207280e-12 In such a way, the model is able to reach a very high accuracy! Of @@ -388,7 +388,7 @@ features. -.. image:: output_25_0.png +.. image:: tutorial_files/tutorial_25_0.png .. code:: ipython3 @@ -406,5 +406,5 @@ features. -.. image:: output_26_0.png +.. image:: tutorial_files/tutorial_26_0.png diff --git a/docs/source/_rst/tutorial2/tutorial_files/tutorial_13_0.png b/docs/source/_rst/tutorial2/tutorial_files/tutorial_13_0.png new file mode 100644 index 0000000000000000000000000000000000000000..a0b5473b6acc6bb266f325b599857c21cc5ee177 GIT binary patch literal 23413 zcma&N2UJtt+BHfMQGp;YA}Sz)6zM7uI;emc5Ru-CC_xB;(0daF1O=oDp@@c-&;tpb zASlw24xvPP3n0C7H=h4}&-uRlpK))-V3-kiR@Pp7t>>9@KJ$6|^obh7g=-fmC@2^p zk5qIhD5&ui6qI)7&H|sPbxpVf|H!zh8oB8@LESu`x!6!>K667jIJr64S>N!madEYC zaugSp61^jQ%#Eww5Q9iLxjl>cZBsF{f z`l~l?x{v>RR)-Dm0++`%eq%nUK-BY56mMS%O!5}r1I4$lcNm6BDvd6_a6aHVFWgS` z?AdFQ@9{^4+xvE+2U1wEuJMBn6Ag{}WzYpdLo!X!VELdb!-EW^+ld7THnN>K;0;%#<`b&g-_I4J^nxyR2P zT6G%62o`p*WTYjnqBbY_Hm?r663a* z&mfNdF3UP}m8qJ0@&#YEzfpL}ukd}ww3>4#bMY{PRZO_nN6nai_eLW(h)NmDAZpYVkmKPP?oqOZM* zS1aSTGaCdJe8RA6IZVb=N2@j&UT}1>SXpX!=oUU*xIobECzM+71S&}V`=!x|b zI>~&y=Sf{T_G3Zcu!@wQxONx{(2uHOEs|4I)x-jNor`2jf|A0VY7u%|UAic*2ADhL zd~VXBa5E#`=q12LO}(#QG}lj+r#L##~vA}{I#w-diiw(Ctu# zIJvm0ICKVd_VT|Qd)VVl$e>bUW$Jola@LHl2EK35<$$hpY`GITUS>V!Y=djd-|`6D zTA9_Z=h{b%~ucK5<}bs=Kraf}nsTE5Z_ z3mdzcui|~aT}w4Dmc26(94%Ti zBi`0O!LaSFR-`Cm;o5)VKQz^qp{RO|VxVwuU+-WGZel!sQm?cRw-h8->Tb8#wwmfX z5XZ%BM@}*;X>9K&Dwe)zI1mo>`eix5eo{WiT6Q#dygrdLG}!QN&SUCP71i#2(%0~h z-Xq3LGv7oA)mWC&PTKUSa0ME9r<*cEprjt>yv4SdE;6zJoBm=6yD|5he+pz(i*k=m zq)7U?#DA87EY+t`7)Y@k9zLP;$OC8%;y=e^_CVN=gLh0^kSW4MXEa#mt ztjWb*?q%civiS)wLf4z_|A@`Q;ISjPopv3eiX+0{th(bcS6#apSH6*WI+20w%00;# z#7M0X3?KecL%cbOHXf0^Gy1S;hWR=pNdYVIwQ8n&#U|~1MF!Cmy3iP>8~^5K!NyAU zGtyk<(LLE_6bMwa)JD$%-CS^@T8(}dOic8uoH|amhy2rBN)RyiGgF+M0c9&NcgwS^lZ9Xn` zwZL0zM$tr*KHFcFIBJRJtF|5h07wG}R? zKA%QH$nhG&+dN>y6;FSA-nadC}iT&=C_ z^yOPK&t;a*y*et=zAsWzDn0rn6aEZy9<4ZgJ>3BcHOS{S$P>Z(B)Qyzy}Db^^HQUK zKsl~$4gq`r6Bh(5E0k_72zi|of5?t#n?Y3HD;ycXXi^ULn~IAsrF<^DW8y(@H)_j? zc;26gF3@jGqALAvw^5GhaH!!+LuC6TGl{qHZ)u$EFNip-9Y6@}v| znzOe})AyQjLi_^*PgD(@GWUb%$c&XMU6@}%rov&Sus7MXW`<4$d4B7<84b@T2I64Y zH@P=S52^!Lb?1Alb;`?Kq(^5-Xt;RUv+z=5W)x!mc^Is>rQBWZXTNE#7-?Jbx96QK z#oBx;(>_09-RIe{?Mfe0_Ap|U5jbfz_B-uBjh>4}tG+71eQTgfFpK#HTftlYL8vNP zj0n3=(Cncx9G8$Bnk zv>>A49JjOPd~@}6hXQF3o>{`?(YkQ3M`qX9>*6J@Rw&l)YfH>bk_$~szHlDR=w3v{ zWe>J}dsb&jp~@ykI=z*1_nJ&AXyf%|s35z0~V`n7L1saJU5t8tif zIMpsZS;%L+faOcN+Y51H@D6(971{3yhw4d3lZSlO$24yXJtk^>US=U~r!RC7Wg8P3 zB=%fO?z)M8n2sNbneJ155kb}bq7)7D2kF?^wat~BNTRFH zgSAW`O%K&YB%eu&7Cs(fIYGgi<2k3Fr-yA$vAyB)LVKVIOu$R=3+sp6tQdF@-4 z(?|9gBo5A~UoNgnFt2@MQS4HI*6MGriwM+BOq7Uirf)^3WL*r^IUkBu=bcX6ORniFsw{h+KnCf(&0+(jd=Et-bM*4tcOY7is%(D*oPd4DeR=&qE${p^0Nn;ho%kEE zN|OwV3Ytfi<9c-hCyO(6&V{II{8Eq8I_>Y&U ztdjRv#bz|l4YzmFcsy(prGQBNq|3787@E}~F*7j{$gu$IvsYPu8{Va1A~)?Fc&$Q| zJDoN>oL}9aRitm0aChl#ukeA?-rbv1yRr8NSTyU+p0-x~W$$nN$xV6`q&*ljjiV*r zZ=1EyHzkN{?Bi|B4sgMPwdM@+vIt+0v{*A36Rhw&eaD@!1KD>cnG$?&PDTwQi45>_ zxV&_p_x6TtPZBv01t1%X9gq0qRcE#UC*7C_f#zF&rnI9H(xZHzH5zb5oq~?Zlv3_m z^==ZT8EH!DUYXnZF>Z4N4&+U1*X@ns7XA(219@UQ{)#k{H0Q1;2?{CdK-YsG>W08C z@T+033>@>NOUsc=I2O-UkOUo>QpP<^vF>8pyt$DL9#73z>+>)8tIdwDM25eo4g@pG zgK1O22w#R`-|=H_T(T2rS8wxBVePMC>#A8#wYXRCKnnxpoUP=R0(fCUI{|7Y?=)W* zYawEXMA4SkYvnH<8EN$fDCz#18d&+3rM|d2erv%4VwvccgL1Wn+v0WmFX}TwR(y)d z8aApnLQNb5AIK7q2&E`BuAK;_TU*J$DbML8%l(}Ja(0)KKtmC0K`TtT%`&o{X!qcT zopra6PTY7P^Ra@yUE;S5zGYyh3fu$KL@Y5)Z^y&U^N}tvLavL<+~`5wGvwt=`tI%hyCz)vQITbp+c;QEES;4J zPtE^G*8OW;5|tEGY2sYXm+74kWmVLoyPmF>IOBerTtT!gu2SvdmglCDn_R;to;9m3zWb~fKC@7U2mV5?64jhM=( z5t?lEm8DNL$18I|ro2adwV#)E9v^`A*&Sh%R&o}mRE|HdRk)P8n=SI+&(rv=Qe{W! z`S5_-dMdp6bm$b-Em=(Ax2*41mx((2N5YW@>kASuX=a@LIpPN=jwIGLn11KP2GH+P zlM3Rl$we^_1fge%vO}}Ip;LO_*IrlWiR!!USh^#{Rbe+_bNLAx5_R+*;>_iA0uLTQKwLu0o5DPyx>DrsI_fiu#*&ch*FF zFv49Z9O3{TS+75+G5B4dIIO3@IG7Jv%pci5lcy-~dQ=qY{JZAncE?KKUlqkei8!^0 z4JTG>y+GsHRfOUGydDO(u_aWYNmt3ctG4uN+&iaX8i*X-P>+l2Q_~qR<6eO+8bBh3*hG z>O##T0ezzOHAPM-0a1Pffg$q+x_)kG4638@DcQ}pN`Rw_Nu&v;O`N? z0%^gy-sc;Hbv+1Mi!B3Z^l9m6iO{vV7y71px=j5I-`mg1jOsXs+gZOUfuwl&Da4Pb zpj(nc=h1>nVnCjG0;(9B=^CGfZKe|YBt^W2KgjP4=osjKdTE;5;d-|(vC_|7M8d{E zva5l7oz|4?`>%m(MawkV5uggyqErWi>}(q1=O-R~3R-bbK4UIaSjY@7&IS=VKmej` zghR~A3lfWhVFopPXNXl#5TUh>t^ECkBojkv0415uF@I!bu#di5|Mb@W#M`;?k^I){ zv8ndO<^UgPJVx=%;OlxYhizQOnpE{s- zQ>dYpQtCq1#6{c;quQ9J^kemUUjzEUZ1CGKUeCwlBw5F5Tf-cV8*SGllqYs<)a!REQWwBs6{&DhcUI^63^yG1S6ciZ|xK$PM9+ zrft@a`n|uBgJ9;dJxLlk1pFkhA)>$FMb905`a4hDZ@ETT-ldLayBZ^7jM@5G9Q;cco?976 zp43T(DDfj7UbAbz@Ik%eab60tl@&Bq;RB=lnTY;KJ@#Qy`no%#GJYEZ*Ur-(rOj%~ zc;CT2m|TyFYLOS0(7S65$_{VoP9NPW)UuzH8iN7 zxfnDRm-us0I!|Z{2zW`i;r;z}j#p^&+;*|W+>hz;v6m?asadK2)_r_~iXJw3QaMo` zV^L3zmhv$VhF-53dG2~_4Xn@GTN>IFZ@twBP&6<|EZlaF+x09|RNOW|$=e>yQOVu3 zHdJ9h<47f%hS#KM<2^48+C7WN?M@tFO1bDj+ke%i?ezHIo~-+u$6=l+IwwETZ|-P} zljGg1D|{kgkx^CPms&vY-MMQ>9Ss^yZ(Cv8d`1$sl0rzWVVOR-tqb1$*r$Ef!K9d@ zFFOcU(9>Gym?}v1UdsYH*cU{c7JF_|=;}XK#_kq5_uSs5%@tR~wbNlKLZS^4qs9bD zQE?`2!qwzIxMiW_c*pjZb;X2>^UiKD{uWVZ8>hZ>!233gZ?G`FZUw33zEc&U=q(Tx zoyC$1e9-MW;kS33Ei71m5%dE4`!^OneID;hu%pHgb|3ILbw^WYM5Lz?LI_Nj!w;Kg z!-uXgu|>=M&b1?s8pF@O_IE$yZs-Jmr?X%6T+=DQ5}f=PjdbxNxuC7s0h`G4W@jCe@f|k_Zzy7)P#y~uV}68YqtV5E zI4il_1%Lz*2Od=w!Fn!gW&DV5YaWCGTHl}q$XP)Vlo;_X4jdk?99wwSk>)ZbXJoi9 zuX%z(0QDM%(9Aog=~U4M8%(SQ;oVM~6(T{rY>8Og6;~+;YPNm6^7F>PB zDC0{GOZEA*1PmSuopH_;32TJEs=DrQkRq*8soYQWXDV@S zdhT7ADQ%Ag2Kpap!uuL*=8?eAWhQ8jf5D}%g{MPwkm{<;I@Cb}GWutZ^osn6q&BLV z%FxMN_;<1|&05~_+{qKCUF=NX_oXD!z*`o_aS!Ac6MK>vLQ>qW3JDFYhb^7d-q!fG zk;Ca$TyQVNc8g;cP5zML@i?Mp1+IKL)Me7xqRc52-F`geDYZ7cJVzHq+Zu2aY?5|g zFyXe0<%MU}^Ici*Eh9cA>$ha$Oy096%4?`%!b#c&Sw(hSh3Ynp+E3h9;LI~Mp_2wa zNt7dyRh@fEijMyXQq&Vvh52jn;h?Hl@Q7fK_yE(TE2YZ->4a{%Dw#z;3^iTK=Idw> zv0s7f7I`D5u0>GR@UPYlADse$p~UQ>aIQ2}gNem+IL!;?8$d*hoP3kzaJh~r#{EMG z+&|^RC0QV)`?bnH$?L3@TtZic?Ox7X+=*R0B#M66w1*IR6k?A2C&S62v2OLKwAjMr zvU=1Pp0QgCju1JX+IsZP3+Pn2_qp}lI(w2cWPfb=H&6}02Ki423GftrEKgHJTHc`j zwC@h^H?L;`8uxTDIQaSU4R=YBhnsdDEQriha(yU$Oz|B`m9RzlMmS4yfw1u{pFFX$ zQ}Ls%{VA-(YX?tuYHH_$!E)cc_1B;HM%Z8ON+77MFAFV5STV0XVuEX~KCTNfD~I!o z3EKb(5Iqpp)3h`HCM(-T0P%c#<2^wx)WKD>Se)BKwdp=7+o9h1fEM9^J0{#A+$SY} zX0zleN^yV>&RQX_4jOKm|D*cbNBJwAIiymv0J{jLyPAsA5*OlSP6hz6i6bvU(5jbe zB0o{-QdZYD^8Tbw7rU&_cl2)&A)YZAL^BXmQ(fnDOZ7=_!xdtmTrcggC;bd2x)QvZ zw@-L#nHv=dcYOv=jvsb{lZ}IQ7A%G4m%eZ5PvMLe94#SEwAUlUiynPD3>?ZsEUBAR zOFRn(q%L8bEkX3itd(iHAXQ<<3riIT_N`ASVo-we^(ye(2IIjR|Iyu4x|(zOR8P(v zoAkh$N`&TM17GPhjEShf9O&-iif&q3O4=hccQi~M78UuK*742u<{{)TpXZ)e*~?Xz zQk|Zi{(1Xc4m}To2-;^!KQ8(blM~0*M^rO!T8h587ESt<(qVSQ2!SlQS-8M(+y2Cp zGUI(XYY;!rkw`JqBiYfEa!A`N`1PrMG=wO8)%oNqLH3hnxjD5Tq^FXp#B(Gx+kE>j zEco+7daq}BE0AYQ>31b+7>exEi(5?peT={FDJSImJYbrSvPxcVyU_Udt0Pc{3~ zo50OT8mnP>a<-ALw*_afKQxWH8-=OwD=rlLV!vdC%!p1%HkJkcx3MvnA!vqC5&wz2 zQzVy-N^H+QpG13C2#JA_pMJkMQ)sy}(DUn83)CRA6BVRa=#13q_t*>Rsy)nU^+#ss zE*6CGnd$=4BZyN9CeEmZ<6C2W)zOoTkc-4IXo|?jXJ2;F-KT13XYYpUZ~jJZwb4b> z7jw&yQj9-bOBzWrD@V(@C2%~@rK?m`FYtkplfFtiMv|;x&^X~hX?7P8NZ|-rYwBx( zW=?B&@`E1*2a&H!CHFM0YaollQuqQPR^}u?QpLJdz$;}#pktJS`H?!;?k?T~MA+z@ z`le#N$_Q80RVqgQw}=m0kHuJURwhYbF30xYTaOpSSGCNH!;;_H${n z$m>S(8BO!Yf^V$kUIGim>$`UY5ZH~W$hmV6f%(qXB$`sbEBTYM^CtR>^K65Kd$Np% z$7u2tATZ_u=~tG@5#4W!1!J)Grh1<`HV)ls#`Ms5s6JB3Z1~yWh;_<`+u+njI1QTp zlyQ(@$^?-I+RAYqXFKjr;BvWI+-ZoV%H)bc2VF^kAhLTD&|m-A<6xKeI|(I}WC>9i z+Lp{pgC^EZc`8_H6sJvuqFJ_hU$G{Zf)~UdO71oby8|k3TLLlhrHPfpI=dOLrPvA= z(eSZMkEg7die6Dc8-pxu%0Yb#jo^dsNtw~a{0OcVO*)*v{@Fhl7ufYz$3GzZ0Si}G z8njf2hxQ`%`rUWQ*@9s_azlxYzdYV$7sikBXcnA`iXIhcG)@4(Y1#VDwf3dMAJ_vr zQd)lDex;a{bLi<4G)sJ7;C5i42gY9WNOBE<(4Qj!6l1Kw9ss{wIFi`>3)e7m5kLSY z4QUC$Ce(%+3wRso>%ozi9S+d!*$&W!AJ~rx)Cd#wwT4M6Q_-Xnb-fwhppj1z#TL`H zlh2mEK&l?~9L0L5R{SRM}>YKt?Pm9gLk--dvnOJZ;aoO6+e|t`ybW>)#_UzDgrlnx=FdSn%+<;za zz=>_`+#x5iyGLCCYS&>C+s^$sKM_wS6Q9>8gU?W6wnAYm^cMXz=%)dg!Uy_v$%;_9fj7Sp>gVRsB?Hq<;G zpi?V(zAAuK?6?5&1dWcfGa<1Vr+nm8r;~Czc}C1nFJ2X3Dxtl>z5Phm8;7?NfSDGP zH`vX@g^0yLOMA6b`gbM<^ojP;qlu{eMJpr*H*o7;vQFp`qwGoGh&FM0c<{pAB|l;* z`VE``=Wjz}1~6^t7wI(#|X6-5>iz_}RvotFwW2Vq>cN0!WA_}HY%&xIye5UmEpP2u**5}YaeHz%g zny0qMsLVbb`O&N;mrgv=?JLREx~fmSM4bVYeZ0mC%inah7GQNS<2Y3ncB)hM;6Wj! z)>Io?80)5w8#b_FEoR>JC)s`{Bgw8D#gHCqLiRGw_;~`;EV8UPJ~<1c!G&Mm!xfGg zw7EKJkh=9!`9wr*io(MSHmR0L{!;XZ>;&KS73A0n58_#g2)VE?^pi)qJu#Ff`+AC8 z3%?Uoq@S@OJp-osGq)8^DO3YC&<&j**)##K4w&T6FIpLf6eJt#y5+^1@&x`itbOtsS>Lz@b>_s^xpe3R3rA9nO)KqTP#|?x#8ujx zMwjWN4xa<sNNMW<>lv(i0-%$BJK*h#efI)M+#*_$DEqg3)CS>M-+`@#` zy>>OuiDT4zsSC>^8{rKR76QX8ZHBu>A35@(V52F+Fa9mhvX_jh#;zol>Gnuc@6_w| z)W%xGmN}0r+G^}S*xntBjS@XL`uHBmixprHI`bsSuEaa^)i<@fl|4!hjkV zCKZEg%tDyym+$0~8wG}m@62&mwxI>{t?-wwx7#XZYRTu%t z_D+-*w-yvW&H!qS1@k_-?r+1#^pK~uQsq1SgnuHtpQD;xcBJh8n z^B|pplXM1B}eP%1W+BB9R*(QZHhnAD&sIza&4YKmLb)g?>dmZ z!83Lt^~~rcCe9zjeAph5KXVr zWlPV;V;#4}g}(i+PM=#C6fLN}I)D}921ofk?ST_oxfson8+&2AL6EGXZ-gDH2^w|^ zoW{PjibL043N#D$fUu?B5_Xk1_@SuiT6u@W(P-bP#YYykvKL=CVuDm@GF4OHTX2Tt zK>NdWgZV=p{?YZnwslelvM?Q#4h~;PRd%XNNjAQ^zN!BOXM7hrA%8Ues?4Vo-tWp9 zX(lkN9E&mBR3F5y)tG9$pCcMz$d*)k&MlZT4wQvI0_v!C+hgD>6ayM2{C4LN#<&S- zJe946Nur487LLhj zyTlZIsiX%0aS5Y?#`ZPE@d*w7Y5E1{BQ;nuzbVJE@oFXC?Q(xVPU9!YeVsBqJei*w zsLp=xo{pa#Gnu(IIM`9KTu-UtA-})QiH&+`2Dlv(4bu^Fiz%uh7PP6i7Q}e{wR@_= z6h5GYc*g`5I&Cw2o>g7;yw|z`5y{{V#rtaKwI=io`fudTTH1dK|Ax}J8Y_PVI!8O= z9GzVLNWgzAbFR)<$F+b#2kDC(u?Yef)D*4ol|4+C!Fv~KmR<2;uD#RSOko-0=Bsiz z^-OL{^lZ&l(x#N3smV!eNB)xf!jeJ#@tGa>^B?*0w|8W`2JDz|!dgtqaY;&-mMw|L zT)~N^z|WNMr_I)N%C;%T_I}8ziQlPu2oMe@=%D$5{94*KiJuM;j9xl=T&D~Ae##r4Hd9x~bR>{F{y2It}xcqngEgV;%FrO^|gSUMYZmbkQ}?40yT1!`K0%*l~vrKr0Jf=>x(3m zpONRO1WNyag8_KaO@Bl6Od((fpKV-^S&&*i7+!eX=DqEmw>NRse*>$Yy`#!fZ|?}?%=@2!f5aB+NNoTbUL8s80)$&l!JFy-n|hlxq6|dLOQ*C!>Fy?{(Hwih>rS48 z43KjrwpE+HYcoFlCk#IXYH~SLTJ*yXpev8h!-B?!yS{7(vaSt>dr^8l=$W8mqdZNm z;#kmH@e6FM_qXYr|0Tv&9C1>LKJ6+Y>;>_cm+9H-6ZzKI?Zq`9hO7zeengkO{L_c> zHwpsB8bC%aT>Q^^=W4~#LP4P)JA$zmaTvzrY$)l}lAi<5^i6s512Bs&PCjb^|C}sR z*k11n>oih;YG7NqCn2P-Tsy00MXy%WvJ6!P9c5&B%6$5M>Yo}VDgvdaw<5`DtV(x* z8$egOz@9UlB|gI!$cmWW8UABH1+qKN3RD3#$iXoj0Y)4E?T(H-0+j%}&=9)2jc^jj zE+_=(l}z zA7;uX*x#D}$MZUT8`uvlMqtDCq7=i&xWWx<9blsag`on5nWf>B(`$_5q(}d}Nly47 z#A^uHgH8>yR{sSf1wQTZk6nq~w1e=s6Ib0JUFtqgEl%Is&p!6O`Uxlasfexm1?pCyd8@v2Pud*trdzDs{OD0C#!hD=tMn!k;#_&bZ+vWD(vEcS%vLUMcOUBy@%ku`tmFBTJ9M!|MV0eAoj|4cnK4 z_|O*9Rp8?jfnlU{Eu|b!?Dm0)u)&PN-HU-GM$X5F4^ad9-g*q&fI7tHxN^B}FW^p?F(W0J)j*8@iFVkV=7VW z$s;f;gOPtsoo9y>*4Paxl+Kx5VLD=N*a+fG*rX(#A@M>cBElKx{B@zwjlN;PS{I0} z>uiiYH9SY)X)3r6_AZdbm2s8SMq+kpC|-iiaKNLg@bQ=$yjoLRqdWH`z=7Z@`7{A+ zyILR|)DE_169ipcdPr7+TLMlmzy($uVw(o`z6q;d3et?dP64*TfB2&$IW*+{?H%}O zDLvCjaIr$7#5Afh7p1JAiH-UGW8FtNGtXL1V=PT%IDar**l0al#S7B5fz?tBxlW-O zcDU|PAR&&_q&&TL4!+UmO`K|l-%mFuE8CrZ4Qjy3e;1Z;v=o&GL~#Rd#+}nMqy4vw zoA1;H<}TI1hp5neClvkX8&JBzMMSk%e{c(1hpSbG25(u@>B(zvZ|z$|zy=KdPeuU0 znxjD`XU*;PG7gNL!2~q|c0OZe`J<66V7&HrVdK;6FmS8zT}pC!+j`iS6+R;kz>D%D zQa#zdH#=dcf9wo!>V#rWoQe_~;laR+8;$t`1-j|~%K`c?B%_aatBuLceb<4AZcYCJ z+<@k!1Qe=Y{WsqxH$E~sW5#Gk??54%RL14Idz};(+|@<2y|bo9&}aJXLlPm-@z&B} zjEN6Wz^U%&1X3cs;gp8+-wgYIYQjp~)@mxFN-r|-l%9a$x|E#$E}S*evBp@JY>BBt zS^+CAm{Ex|?tcOZx)j3`{C{J7;Ltc*(7r~Q^7=!1#4h!iU{lRB!2kyuoUCHAY9w2F z(w~N?6{rzi?cxn#By!KUfF*W?y`olz8@%K6sEWZz=0!csRq>?wuU=HvC06PQIzLtf z#gOPiBvXmP9L%JVU4BU-aoNjlJrr1nf%ES#;BA4*BZse+z>zyB-#afnE)WyL8iyXO z3m=kRYzX&S%5COR5MAgCAG*1qM|#VJ?4S&>DV8LxoQJ1S9}9AC+Z170q{GH*ERbK1 z%dPj6>*STM1Hwvm)uSZfX+N*ZNWr1rdH$_|Qbd{Exc&{{_%v9XqzYFYJo=H0-t! zlDH=m1t&go6bdCgq;&vxvxJ1bQR(pQ<1sj3u@+wXSHNWrd6%a4dZ8WKYCrPVC9Cf?5!>4xE-U(q1uJX2 zvmbZ#7}(r$WpOV%f`yrzw*hxyEMIh61a2&4h@Mq8QFNw8Msd$U3VMv zs@IgdLe{R4eWW%Y*#EQ=C6k68Yi`Ao*t)6u?ZYOk>KJmn0~jEzMxY}oSlyViEXvAs z(2w}Wg3X(pQk2y97k2Y8n*oPQM{9!6sQN!DRlCOo?}92s$;6BqnK$o^2f6gG*DN@? zSQ)a@61 zP~{=W9djMnM6{+bhSP7~jR(HXBBtfN_;21!$Wq1~-~mIw)}#=e zvOqbUbg~V=tPR}oxlx|;Ry2sWC}pPKN)azn$;LDQZ8K)A0QxuvTA3YJPYEoo{8_WJ zH84a-xY6K=aZhuwk}IuIIuL-L0a|eX*gKO77dWqrr7Z+fFaj_5Rp&^F&d-*zy3Y0yVXc|O@SzJ1X`U0^s%N<;Ejz~Z-Pnyb{%V`e&Is9CUNm$bef~}CaX;Xs zNN)Y;wDhJWb(t!kK`IZ!Gy#`YUZBI<06`$IRq7-+Xd>` zNnwrXE?Tq;fDh zojIllOn1lr1f^(z0~AsmYviqdZFi_KKB&?@sAo1x*>ZQH3Q+GEfxHJqk!hJBK!>0< zzcBjo$nWM_6c_Pb&8&lpym;|g$qS)tYE4QiDuI-_zQJF3_e{UM>aX-EF?=H0+@sc7 z?Q_4mqi^v2@c$tTnNm77#g^=XgT>QefWA?j=DnHnwreT$fYF}ElIlnPHLZFNf#%iq z7UC^ceSBoaYu#QEpLFA}-l9`uCAovCL}soo2T*!~P6O;T7m>btcG(-?0|6XfQfm@x zN6OnLOe9Y3uk}x%9JqN>dy)0Tlj7b2lg1;;!{3BZyEqr~(lAlCz4? zFwsG)|6S6Ht_AMVjLuAG;b`-6@P1bCV1U9J8-eIjmpC)sn& zKGDroW%(LDt`QExiVD)q7&sAI8wP|$EcDQR0_~7OUki`8|ImFB!gUu!E=XFY!#b%B z4M~?v5khthYj&hDrr+guL?>vXT8sZ!?$HE|ADG*MB0XjkzggIz03P*Whia6GoHIBI zXuTG@oDka)s=?KioZvuLOOx^A_!v-pEb3m1vUqbXQ(=Zr{xr2z=Q#C_RLg8*+kxQ+QL(RklHSwr_j@Wci@ z4)KSr+&fuUcx1wBC-kmv)*&zuvh%1aa=d#gqhqE1+O7vlNqygC+jfXu3i(PoYxq^i z=pX|zV|=l-nR2I_t~u}ulc%QryD(nE+=$E;&5S@(wc@P@I*GBGLaWb#u9+pr?~hbL zn%iG>2B800s#Bay!44lO-JSFfWY{gAG_i+*YpM2uEvlpe47q*`3v#XH#TwU`$GyhQ^= z{I(o{;F3-cpGT#`Us*WPt1QYNFC6(Q;@pkxH{iOkXk+F+A1Gk!dP`@)o0Y3>mJn=z zQuRC*R4IV($nRjc?upR>06lgxt0w9pTctxkQ{I~&mmYW~Ti%UV;PFn}n}Q0s{1AG` zp&XlITmmG&eEKvxeBSF^?%U- zn3w`TnA5Y9JghVW`5~(m9+W%QiMge(3Jf8D0#Imb=1HAz5t8W&1nGqBQ2~JijW>N_ zlx6cY(kms&#EMg=3LdBw%%&cs|Hb4BwDLux;=&xT*Sy?F+w6$(7;*sBE;9wBnQE09 zObJ*48v#Se3!s4_dpz*Oq~tL3R?xB&DaG?i9bQ}tjm zmij8)x0>?rOZDHD`_cG;?*A?0CVT>EXvY@PfG7h~$F_tBVce6(EiC!jFjs;|2!Ld; zzim9*M>0!(ZRaOMV}W{)E*U`blpwN&0U~lF>->F5)jUHu=CA)K)x-a@R8Lq5o~!s* zyVrc!`2V6vUE7WhsikOqcU=(Dr61S2heH~Gm+l5Z-M#nUxgF4B^(x;bP#7{}ekM+( zwnj{d5B*(=;UbPw<|mas>G_LP>Y&79uHv-&8)$`^31MQIU}b{cv=&(-5&~U{;dSvq zC97=4zkM+K8^Ad7_ePv?mLZ>o+~DUe^40-|t~-Gb!q|=E^yLUb>Br)zUeG->|GOA} z%&pCNHj$dh<8R!)jdWlvaj606bcV23=Tv>jFBkZU1xjp9azM} zjH8V5_1{%U(jp*mYwBFhPF0u7{#k~uO*S4Isi{+CbCXrgGNW-Nq-iEJcPYn;uweCi zA}+|d>oG6UC%M-;j_IFj3zxjhr>Xu02O=1Cy9xtXniXbAWlxW-3HiwV``Bgugr&kB z*`btjWEc-pv+Ebw8B{^1>t0+?YL8rhM2)@w2PgF7Z~d^^6&9Qy;CR_aI$hfVaGIDi z3(J*OdYM9%*{P`)U?g|r6T$v($1yVvO1;ZT5qeQeWy&O^SF#XRu+pArQOEvN(yS7G z&JfXzxjE!hSYRxkb;*F0JHZNInOYeo@l*8%D`jWJg#b2YE|C9m)X-zd*~X?}C<59D7d&q2`{csakdbCV%?kZYyv zUIdqiVDJl%eh+0yY>wr>bbtMr))YJGCdB(r`$bSLx^%EShIXso7I?nrb?7+-LM4Dz z76fFs^>S{Gtg>9a{zdk5)2vJ5IUxn^kgLju90=CzcT+RKn#JiGL)?KMH6m-NO6JL) z>*qLZjsNP45gGy_eEEB7M@7Xa&@D8#8}K+-ijMnYVm^nca8OFUxnUHKtL4OI3t(F3 zNMH-&=A7^@*F>&W_W}yXL~dYuF48h(PkWW0*^@o{2U2c*^Tvm;Bf>VE?`WtQQ}#9B zIQ(QjNo2*{FhO^Er{uk9g6KFD%?+ER>Eya4$f)(+UqRShXY493NJklJjPNZ4FRwDI zIe30R9q^Ll-8y2L|Jb&!RIDBiZ|`XA2j87g8)UhvlA-uKF9gmVQ87R+8^PuF<@=|h z0ElncqY(=Rjn+eYSb4|Nj{NVZZ=(`;pilcg>)7bEErK2ignqxDhbvm?>d2>KNBE{7 z*mXD=Vm|#B*VozWN~b;BcM%h3Nq0$G1i)%()AgJ;Su$R>&!nwmWN?i7@b=oCcQu*% z*c&j1A!ybt*CqIBRi0%*1XQ+(vFg6FfF&AOVwTL@+d3ZoMdup|g%1YNn>(v$I9!y* zu|1%U$*VaA{-@)oFkJfFXgqmvhl|7-^l_&~O0@}SP`FVn?t5Km_yILqxxl^YvA?+r z(As)1w|bH3{JireFV@|_#k70kdg#+pFNC0a^8ye%|E=6 zWFIbxmDr>nUk|hXnn>1G&0X~=HsAC^92U;mdPn@j|K~<`PBplTOujs6e^lwyKJcIo z3Z7aHFJbOFZo6YeJfLZ~cY=rC&4%@#lFJ{>?dZ~ZQ|F=jZvuS-gEN~q2}&wWO;QU8 z)696Pl}~rSI>t5T1N&ah2k7xjXxAR8H%L2Ip@}i@^m?@ZM3wJ1u)Y2DfQP9DQG|pz`*cfhM)b*5>ai%QxLCJ>o4G56?CpG~O%|98E7@ zcLq$cSut~hUwr5m&W_&K1Z87gipz1vfa>(7V17PGu3AtTuC7mPdNO%|`9G4<-6#Ly zA0s%D=&d-qi$)45>v$GM?;LzgPWaqZ=O_$;1!+;QMuiv6*ugw?AHQD&Jq4#Kv0~ly z?y#2I!+n*&KQH@4eu_CdO8$2S@}X0Ozx@yMSK5_yW+q?kTKdc2aUmlNg9AUdXDLEsg5l>X-D|?Qm2yCg zko5k4B`DM1yRsAz3=fc z`lSG%cyH(A+8T@wuC)}auRT~z7OGB}wbIW3Gy(P5UC%swQ^L2pK>Z%`VJWXbE<1gX z6Ft@gK;(SDi|+&jVad2xB(Orp(wgc`fVTq{W?ljRtVd;#gmP=IzT_Z|wOBp~VRH63 z?VA!Ov0@K$s)jrbFDaCjtz7J9jLADQ);FSiiSZPH@i|v?WJaug&>6Cq<6Ii)@F`if zJ&Th|bP(9H6WfOOVt}s9eimU}y0SdK>l@|IhSHLgC6)hjb&NEa<_$(q%T&y0hzt#A zm;3i`h?M}EGt@uDL~L7RVKCT}T8nx@>BY$?F!SNQJ0~8gd-t)qGF5qJhO}GH0bY)j zBgW6F>hpxPP_t%edi)A_PLYl&a%>W8p~y3#0M7w91DO@tsVgEyiNUd`BUq?*dFyd&6(#P^OHrlMeL3U9!|6? zZ7WK_0;1bvk{}WCuLuADY_Qz9+h*}WXf&#drxq0?!D$mDFZ=V@OzMb*Vk2b;GeYhF|1;4Ud|o z%AvW6e8N~w+W29`NO_hIG06vk(Pa+3AveTVRN`+Q!A@w^-ge%4Ys?SmD{L`elS;0q znElawcx4QthmZM#l`LN>iyHmR&(v@~JKCpgmXP8i&+fpM8CxgHqW}5|?Wpyhm&twE zen6waPaBJPFZ0TPh)?$ee9}leQC^4YB=sO>Lyk1;+XeLE`n^Us|6CVlDtJZ+{CRxO zAV=Wh9o6!p5ArJB9{O)aKG(0U`4L|Lg>DgZVmFv@T4*LU8;~k z>UzEoA7W=>yJ@fOe)(VT8%RxBhdthdEk z%$kyt9*s=+6kq4~`%ZIWj}f+Tt$W%UXvDZF*7B2o!HuL#sDBq8C|sBP|5S42@ldXP z-`J*7au>+2@O(FHaW-O8J3*GDA;Oud>sEK?YRH2)!wqzSes>?;OBV!?H8+8C^q^I}2 z3LdS6!HftK7kys6k}}Q}30ULha-&P0$g53yG(X|((Qi^VY_0r?C$Gr7ucJL~^>yJZ zJ~LE0fETuo^1mqe7GAXd{6FZ_xG8BXZhIRfVE6snZ&Qn`&y@jJJle*5=0Jj-DIE|i zl}P{Z8}1gIGsnzexu*i#`nwdGrIdHN^(|Cceb4TscVH7+`lL+;R(=PIWUGy&c6bw*xSC{!iH!RNiRL$0< ze8B+m+Kw?-Uu!Wa?K<`kKM!jK8~;qX_5k|?OHL)tn0*8*yQy3CMV>ILrQ(H^1|Vwl zkVDLvpJd&AeQdlFs+bg4Vq3Ec=^Qy{Q!t~vPYkT2g~mam!L`{2D)BKDB4_145j+-n z!p5s~%6y0D=7omHvNVmj|Au7W`$@=5njk_=DUy>L?#;sJvZLW%L81UlBEk!DBV=&W z-k%zyh-r(rfp0-ZTeUet_yd^qn@#v5U|Jpung#DM=)0LhFw z%^MOSTcIk|#C1bp&LX8hZRto?$z?^cQB@zOQ2x0V{KNzkEwXZ$QIvQ?Z%&AD8J zVH}z}S81kEJOZ*C=1ukmEQS1$zFMC+2!}884^1HPj__}feH&yCe{4e}e|tuS6Yaih z>aeoSLsfz@B^D{iP7jRs`D$lc53{o``sqn6H_p$z$vfZ$RNd}-qoxi44Uu-I#kQ&Z zA8MZ^yu6~C&}Yy?lT5rT{M$Z6+*)MHFkxg^Wd-sn|cyyRR_1&37i9=pzr94FVDohYy87V?aEW2%IX* zbaPeJ0x2a*#%cQ_#jhZ4Hx>=}WgXjNlsQ52{*n#1Q_dNWOhp`h8&F9MvsNDm(2zl8j zg9FJb(DlBP5LfvC7%mKVSVm_;=xbJ}PN7_IfamdOC7*}UUE^{-2Pt`r@g=$vaDGl5 z^u%Pzk=qZ;2qYwB4M}d!`|TgJBRJ(Rz;Q;02L>6JBq!D^o}VY)NyIHS^){T;V>>T4 zW4g|c*I^Eu(Fe?K4FBK&`$cX54iL;{ZCZXVAJFDYB@hT4^F+esJqaYE&V~z5)Q+d_ z=55aZtvPVKIVT@iaAZ^TZ0ip+E$SV_F8A2-+}b8aW~Ke00l~&Jozbvz=H*eSCA}@q zd(EuDk_##!qp=y|FU(YOUJ96JMQ08a9((!`Vc2tPN*Y$%^G|?!ZUMch1aW6J)ASyHfE{Umv5K_2>lDLB;va8!k11QKpCfX-`!> z225qr?RnB1^|Qc(+d=HAY(7GtmS1RKJR~{bdvv32|G-06Ki)YJT;2ZJj`)g3-6UJG z5&muBpsY9FoRbXb5l>z}SG3c(sCR}sFDdsa7)Nt-VCVNQfuM$=zG^kt=6Iu z@m3DSEsXV9=r!MWyUV!z(iR^r3Ymn-E{=P2H+&|^Y+Ka*-byiCAC12_1;o&P`Itex zBt!3t-1jpZ-Q>InK760RFI(dT3n;3W4!=QOGkOFCZVGp=1x^olf>Ed6miFA#ZPn_r zdh52DNcI)^$P^ysFIo&At=;L+R^wfx_1=ym7Enrh0d58q{AlgTvX2yLSQRM6S*Sw+ zX1*P~q;8hH6C=lOmQ9izz#H~wv{}(+0t?ktGC?6E{D6R8=6gwuj+k5N9)~t2FHn5= zqzD3K&ULk;H1${EI^a!5@Fr6%h}sSsDY;QLoS%1Tw04r$=wY0nispN}Cwt;0q4e<} z@RRaSxcsya2>WH);j&1E8j3(Z^rQ{GaXZX1dXx4-|E zEgSMFzs>vRXiG&)QF=O1UfbiWf3vsoCv@!=(A5aY*>_36}S@B_R-G)JqAVP5>(o*!uNhSaqkV7DepcAFoZo>q3FiTGG$99Kob0 zw-^<2Xal+w(1%PA`;$O(xvoTGX?@;SSJj*b`A_>?1L=DTsm^$IpplR7oo$U4!DZXV zS_mW)X24z#)%wEzf^Am*9*;7+raz(;#DW@R2P)kDDP2Zzr1#oVf?~u0?Vccz?APSn%NZhmOO{R)s9@i{#zUl5q0a)EgNc_ zr9d%-4;f4~Xxa6QY+!izr-kx87%^%rAg<-fSGNqKQm&lFLND{KM;b@ELYRPh_c)dD zs=U)dagvVD!Z+VbEQlF^NKRTaq{C&SB`&iMcwb?uq4!)=jp7%O@l}@CR5mLcW3Yd4 zf)%z_lHL21Ej*Al*m4TXMn1SMgBw-kAZ^iXsk80hR#EnlY5AGSTH$5O1bJ*$&(Mjm zN79t^mZu?Uto`Rd%h3C`(gG+0&s;JOuhwtP#oKES4m^I#RIs+7)G?Z1Rhu*4?st(#05Wlp zj^FQ z(XhnukslJGV8#__cAi_cyIs? zzt68bFbhJ1Do9SJTAQXTOYvHtx5oRTvZ%Hq81!Yw>8Yxpw3M%QYipEAJKApkrw8bT zMrG*DSU-^W^)9xY;zZF%`ds4xSM-@#?u*+n=Fk7NkJB;);h(FqdsdQB0OAbg5Y4A%-HykU z!UIi*P3pk)=oVO@M2TG9<=bg8Mn4F*ao->l7MmJ%xEp1qt~~1%!I^(AP0N*sz6&bo zU@D|hZA8G)K|2$TD!;iJ%m_n3mFtey#aB^cdn36{jt3*MnRs}s25q^n$|949MxiE^{ zq#`@E^$H@|3MGnGKetM||76iXCQ8P~b8O*v>8NvLft2_wE|QN&UX%qp*&ubGwLm>$ zB(PdvB0e*_ccQ6`5(4v`Xi|bMqfCrbSqa0xjg~{odD1wXAi!QXzL!CoROATOpKI>$ z?b*#-KgejEp15a$oWO_Vyu=)8y`MjLp1~b1(0YO7m-Ea^XA5W|hDfrI5soxV8Zp{r z_5}ZO(v3zIXnrfu$tG&MeVcPSKC@F*10m5*<|LL;eVAZpon=&8bx)LI=T@p?o!(#J zt^t#cfG*I7>w&bUFLPtF#m6eM;NL>w-z-BGLc#~^itMsK?VR(EHE>@+;; zK(^o-s`_zK7jz7EKRY%1$A?fZ15voLRZk<$d`0}LHs}<%Ka|uiq8_}Rz4T&}N!%3;M+S_MFLkp+Cb+t3fv64a_Fg(zF+Hw3x zN5NeTOt3#wNAlfXfHrMJf0WcTrLs#3k#Y0Y!G{AZ`XOZ;N)NC9BDHy1Msd1*tqzF3 z{5eNb7sD7ju}5`Y>oV5^8TE-foC|WHu`036<@tB&a_4k$V(+K z)fBcn@0q9kOO41NPsyjpcj)Cg7{b=;QGxuerY?0tH?b!+3%_hhZ@OI_Jj{|P$i5Ao z7bBr#m_xOlF%dBu(u2hN9L>)*B6rP+RQwU|TA%je9;|m$r+3L&j=p!<#@1h)+n9ne{wfZ6IWK-E#^x0An0xF5H;lhyZUr)Pkr-xO&^M8(+r^+m9 zKjm6%y7bDD7_uofcOhn^vq?`!5H2d<>&cw22KfYMRuuw-=l0HhNEE3T3(sP5-`ux? z&25-O9Rp($WmRiIj^-NXEP0>`UEdqfds5VAYx{)PRHH+{U`%W(A!nwpd3!R!86ibE zh6#?2QrU0~05)Iu@-$!Vb2DI_)#~&*B|L3#DEs0Ww%;T3=B&$FKHV5L= LdE>HQop1dMU@MlB literal 0 HcmV?d00001 diff --git a/docs/source/_rst/tutorial2/tutorial_files/tutorial_18_0.png b/docs/source/_rst/tutorial2/tutorial_files/tutorial_18_0.png new file mode 100644 index 0000000000000000000000000000000000000000..459e1344e8535b5f9889839859d3d14acffbb3bf GIT binary patch literal 23403 zcma&O2Ut_v)-_Cz1;W9uGyy^BDiS&zrD)(p6bQYF1Qil$=v75x14W7uiiIKsLJ0&2 zEeeW2DAGd+1dtwz^v<`zbI-l+{r~rSzC4eQakE)_?X}mQbIdWu^y#ge*Le<|ImE)k z!UMgbW5mM3Ucth`dj9|yaKvU&YZLfO#aq|h+t>}^?d#y_!~%2hc6W92cD;Y+tdEnY z*L^pXf}E1vC7HALyuIDMRORK7|C}J_=IJa?J9Hot804V)4GS+8mcvK){;;wnC7)tp zvFwHFTs84ao}q^>*`R~x*2kOdMGr*ytsg&fPxR%jcd?wu%5R36Upn@-yO$OqKgEV$ z24}P-)o`6Blqu(Pnbii+0CYT!zA>%iu+`E*6~IMZ(2t7U!c&7$gD>yE1~2jce!x$um{Z~yzd z>6J(uh5e6<;Q!;dlxzpH_AGG?@yY5-)8dmOF~l3B>+O?Yl{zR%I_>^35a;bL$Hls% zXOzCpNKY!ppk6QCS_!=W8R=u^j94@>vhz(!r-{?WCvQTXpI$YgC@suje-xOnL>DJvRgNinFH)Uq$ zC^A_`Hr2wSfn(IxZ?0)?!VZVOnOugaeUH-i={Eogxft0&G?;pIS}cPp1r3%A(nPtS z@?Y&m_v;l2-KvLskMLQE-QjiDs0z8$RuzXx3S*2<&rbK^{j79$F4j`_I}ZSixg{1O=Rb7KaGo$A0BEZP45JTu6gSS zTuKYxiBzhV+NqhVzA`<6Vhg!ga4%RVw-q%$dGs6dO@&tW=Z71luOKV>NOM++MjhHS!(v!MspTFGuQ^X6j5Uqi;j96_`B_LNsxrmhvQ`$G2fk;TwJ z6INcgZkw#_wf@raiq_p#dcxb~!GZf)nyZg6%3hSI{S`W4*t-gaHi-`Zay`{#d>FaQ zCi^MhDrCXo7for)bv;kPrEpMfG;?phYBifj?8+wRIkje=)@#^axAQ$XuST8ORDX=y1c%HE1Z;)=aEpvs3B$5=UWOZpQ%@>*QuK z8d8AM>TIK^PJ-=A(%~^DIgoOutsBsv0(8 z{Z3|(P_iX8ZYhDxA6_fo%qq-bd+-mw9v1%a!xJgWTWs_A`@lP~@(fcIBL_lponTFi z!oXtWnts2FSit~6_ebfz?6k1b<5bit8UYa&UqSC4oj)G~ey5Z>-~NFHY}4F;&}HW2 zV$MQldfm=!^tlv0w+jm&$!>^E*BEbhcddexeug@gZ)X;*mJqR8f2>t7opZAtltc$K zoq}2B5`6>|rlVY^)?R8i;ZK)o5C>0{xDmHbGm`IEky?MzdlIRYv7J5JTIADTiQYB! z?xD`6k3u3!pS~|m-oH8Z(2u@Y?1UNMUC8+2i@ay1+IIc4z}{~&>XCU z`0=HHk3swLA69Yd`2_aDMBrnws?2Qp{vHziW0WPIq*{W9CO4>gXT|3JXX~pj}KlkNx&)&RpPpb<12)ZLR1%mb`n)IIF&?C}= z=-TD?oKV~w*uZf73tk(4y!rk9FUV-59IODBn?fRO2@CXvx~FI*ky6F$TIRk-f#Fp1 zjym*Q?a5gxPjPc+C|ZR{a8lJ5)P+HJfEg|nt1?x8TH08TD)Q$e-}{^xu{|7V5Bz{y z0%597SRS$-Ex~&g*u1@+k7X}NOr&lVU*0>eFW{GFAb@I8*y>Z=yAN15sbKn@i=-!` zgy>n8*UE62W4Is?#2V8G8<34bB71&G1Uo8V|BhCAl7Mq7YUJJ2-p@+7&w5~|QP+%s z0UHE7v7h(WAUEr{Ln-d6Qp82I=3Iy-y-P{ z_p%iH%utUECzwPZ8fr!$x;bBhD`5C3RYnV9e%a;0JR03&H1vvQ1Fiyohn>3H%E`+(EOx}xuohk|>jH0+%+{ElXw4fof$9T%6KeO0N;9ozG1Md=cY+B`5( zXLb)C7`p$7|&f^Def#H25tL&g{DwgcJNpuL{3ym~`5 zxUV|KR&4SFl-H>y!E`x@Lir~7v4-D#*A^-=InUft6Q?WAFUF*I6rt@JqPpySf2R8= zNij1oKBf+R3f>xxD1jek(?9yi?sd}A7IuEsL>&4&3>Ur_{wA!{K=uAT!eV$AwKao$ z-isN?>29Ty%Y|y1#U^%T*6o0y^=vL-$ZaRSUnluIEOnB(tU1)r@cHtncdKnqiw$Q( zk!~ivd06(_6bz{FfY&)?RG9rV2|d>#j@LKd57Jm$)pv{ z-RAqH{HKn(CK8jHXweWX7~44r4LDq&Avzm>1@E!@Wc$&w^SP=6L9A=;Ixh}4HXp1& z!>jrPywgH|wk1Y;%;(r}7N3&^S0cW8kW*mK-k07F_ti7JUYF?D{c__jWGmdIAL75F zsDNus2hz^O+&MuGYtCe~m8%&&?D9Hw!R*fmPxH~l1+U37Z8@x!W>38Yu5d4)O;(iB zvT+K=Q;X)bZEbWV=x6Nh-Q3P=ZuM+)%3kC`_Ej?$HBS`5?@P6zzGXZdoxpmu^*RtL z|2(}-|3#L1XV+!J8f4sV!S_ptI1|Cm;}C_Jq0Wt;3r-!lct4W9{=l*=PqbIA?vszA zI7`JBD=;*lbw|43h~Kfb9=<}aI-haYP&OGh&EtI25;O9XapbJ9j>%-OcPCo?mR*OcS=G zI}rx&wYau2VvlFc@5qTlSmo0)MJ8`EC>TH0irqsDB)OH>)r-a5Tt_`6cy`l?(GBJC z?G=1~aQ`K#x2GBNR)Z@uCR(qMC7F|ag2BnK zd9%_Ct^$``ZLgSYzPUj>losEtEfww)b05iEsBvh@uiHVzq=Cjn?@W`6#L3MTZ8kdc z6Fb!OM^{9drvBBa#;c_btiH)Z9-Hdmab>Drw z&F+U@$r}tO3o)pksn-Igw%SHtS*0Dj=9ZvarxzeR&y`@K;I0<7`jf6?wZrXxvrx9g zLQ!PzS&fgfxPFZNG01}?cuwq?g%Kj-gL#!5g_==%y)#7+u72o7t5QiDEt9-Sc@8=` z&)Lq?ftbObYyIov;l%8v{0YvX`tV0#gD)|2W3F#xUp+#d5lT_}5KpEpPvJ|9tsWt5 z!Q^fUa0RSaOMBdmj0Rn5j+N;@aM5G7MeDDSOHJ=opmX znVoihbkIew@33fGCE{?;a+umn_5#JYT9icGJKFLqHGTcA0SMf$=@_4zQ0Yyh)I`1W z%^OOnU0)WvXBc5NL+HkN#$WH29ZDa7N%wK2#%Umrysn*La@lFGvc^kA+D!2R5q~}X zSO8MOA8{t-%Jg8_b}6e{%+mPMlS^qlTOKNgB7*Qxd#^U+6Vek!YzBq3RJ}GouQoqJ zbiKf8^rs2hy)C7Nq@9neP~cbT_>}HAVRL8VA!mz8fa3gVhGszRJFTO9t0v3oeJvuT z{yE&0_*u&w0r%;loZmwbNjW5NIRU4zq&hFxUzVsRb_Y}?IlZ|$u4sH;N8PYq?#Jz} z$TA`)U7U8pkd9dO2$Z@9UAG=8!Fzs(MdGSWvu;MxRUhKDQNL0{f8OFnLZqP`4^gRS zt?E3Ijy=I0+PflMz#aR3SF^mPK+0Q{Y1(|XR2^;N-;_HGxvPh8DVN}&fB1sri^h7g z_(b&dQAA1;)jO#_E0I{E_`D?(-!@ zl^7S+_buN6r31DIvU%B65;b9%M+SzAMa z75q<+w!GHGXaP&=^c>j*`Q{p2>FYb?=dq~wZMIFpT4L}WM({Dt?jaLd8GOX zr61Rt)48486i_4hSMCM;6!pSRMZx+FQV~rD*c6@-J+4Khho~O5*$dk}XG;#|QKp8^ zI{L32(Tl&H^#w)kDwW`*YYWL`e%kH-C4byAS?Y@H{KkSdMBhr2L-psZTLbZH9LSc} znb=vJ5lxu#!w_IG(!Xw~8nz>#R_AOk-PwL0vx7~q5J$!=;fJwF#Mno(BD^(sYSJ!8 z+x-0X+;nX7=X*+XPgga5DhK~))(_2%lpERhwTD_g3r>m5wB+0Jy<3}U>LV`8hUe;L z@gfVxKy>Q1*|AliGA+>%-F7}Q0vgK4*YKi2N&%C8!rS-&_7U<%-UhAsP(J*lY%o0t ze%f2mb8)c^A#DJRS^M;OvvzWxyrI- zS_hddvz#I4Mcbvurf4^D7(a$Nsp3JqCoi0q9`?EbGW;WJ)yk*XGb-m!l11tK~Ql9X_+3{Pe zf%h6DGx9eFT4ur8=0zFgZu5S&S9&s&av&N1`t`I zSvI%Db?Y`T$_k<_)*DF;yxRa`{{EvFb>9VE+%j&W$5_5K_Dw1yKXAGIincx#ZWBou zhTj%nbsxL=DKFpadx44alF#+j#~z>p%XTT~^YFvrJlZr@_7>Jx-pAb83QE2|ku$N% zAt4W!ee66QU^7(mS9`F{n;m1HHrWI_JM8Vz;FL!Z8I7UX86`Ai4AUz;>B&IY^UY6U zde2Q3xo#_xBg0ztNeKh+yNB~{3FF> zVWY2N#uRNge%1lTpkiq*4|+Kl@11(M`v+K)tz0`udCx_Bdx0(Yp@?j?G>WON zoZ)EEKzTXT6CRZ1V_!Z(l{9i!>Xwf_J-R(~=_-5~4JLJ80awk8=qU2S;b=kc(DcUl z&5~f}mGWuR;vyhkk(Mt^qgTr-AkrWkm&?3vsA%grdZyGukPV0)0Jj)bB&^@pZ`1hs zW9Xps`9Rd@C#XwD$Kyl!=t%a5B~PWRntP@SXy?G?9dJIs=K?Lv_Y~9E51Q)nxAP1X zCt8$xTgFep4t^#q09UXBCSwY&Y91}XY6Fi0MBlO=QZ%@(f3+0jUeQ*sFS4}<$pd}n za8sy<7Lx)2*sKysoMewG8i>n9c7$WCbVV$jzxA{F&mVs4=OcVNWi#Z3xyt*T5y+8{ zJeB0)%nJ%@$`f+dHa$NT38|`&;8H`L=7)wVCRQ_E+Qqz0JpTEOx#FXaYcPS%XSchj z%{vnWV5c4IA;M@*I_c5RpiXMHiF73bf&AHqg`CG9Y|NQbok+5<)!hPF-bLf1&UU50 zQp;^X&UvAGD6XoJ16RZoNr)=qy~eI9Ao_5IEnSfiabNou6Sq-bMzYd^=D+rSo*r2= zXi)F!o0{Id$C};g+ljH2oV0|l>IeMU9tYPruYkqph5K6DDHhnqXr|`X0KD2_?`l=d zwe}(Ec3e!g{3M<^o)nI3{k~BnOC5nFi?=tpytw=@>JiF+t1szgcV`aD>e_4po@;;@ zvW6W##2{kKdHUn&gOTaFjgIMe!O3lSq z=gj?!UsK=IS3P0Q?#iz^Pz&Jo6)!4z!4OeDr`7HMrf>G~ExyRYg}7g5PX5Zc-YCXH zG3v;CFslp;iV|w9Jo_&$Ot7%of*g`rh?O7t^KJ*()j z2lRSWFG6L$m%OdQST!^!Oax>h{r6dys zH}Bc>!eCNYedEK_1|73bgfz?8*zlA;Y6Ms6!hMBP)E>r3R~!HNyiZJYKpmBmeqLO* zDW|9@EKAQ70uoSj59KTntI+r_d_{KX$z^TCFT~$9vQtE2zdFVX^X9T`!0E@yO5!QU z`3zYqfYs!W5#q8<(D?QYU>mQWfy#*Jf*tT`6LR#*@zFF@0KK7WRuH;3hSbw8*t%-b2v*3?;shy{hgz}~E6Dd8qRlY^HubwVUWXS2s76D?jR9r3GQhR4Xg=}eRK7pvlv zunN;+4+(6qHWpeK4-Y&?hq=)`c z$p0|*HPNnI)&KAbl2*aO^Z8++r~1ZO7_F1AJMNd~^%#-j8j+@6a3#SII>3^h!0&Lh ziNZN@Ae{88Fn?RvhS52P|0VulFd)%8i4}&o$fX)Fk0A_(u#XehCJh zlTI&Dyx*jA983auM$?ma0hl{EXeUrM5k#-fz^<+>=!ggUwBnwfG72tBR|9zNXw34q z+V2=J2v>>Ln(CA8FzR3>x3X!mSF-d=O!D)2Shdt&3A*W=(-#C41z5eJVhJX3Ip{n7 zasO2(t^sYK5YAS?-S)rg{dQh!tN3-{A6j;r?~w^3rh0YQ`n)$w>FEH`QkL#SHWq_m z*`ox@YS?-&Wx%}1g8%@bj<|B%%<{E$cTT@j*9oWJIeywN!PSZ~J3?CBeGX7{1}9s7u}A z#wJ=|#ZUTZ0Yr72Mt5#k`G?4hY7O)4;b!P*aQP#n19Z5-{V_M-Dc`pAXhB)Y ztKHp{+SsCt%4y&2=7Qm7GX$h~>7Y4y_=4n@1{RK zrzkQ3&iSxcMO&z)`&ovu7nFq8;uUYc4)4)U%#)qkdS{{wFTD?}W1~YeqFY9itN%V1 zjmdC<0hOd$(@zs1=KH`)1B3Ex44_9_dXNv=W~9~T0RY!60OKwjQC_n=>J4F95;CqN z15v#ZKLyd4Sjn&*vYGI&0I1U;-g1O-u_PmEgyE8{KijTtGn|7u^DNbsLV5Nh{vFM1 zY%zPI$dE9vGTF@uod0XVu*ZA7+$vy8GBj1-Mf>Y737iC59F?NyV%0X|GQD`2AQV{{ zyuMsO0%9)A=)i+u&_HSMz-G{H?5KG0-5vF0s_PI!0|>Ye?$FpBEVPsMmNi&lLSni` zQ)t)~K7F?rt%!19_3huu<`}f_Ger=t6z|R151gN0>H^UMmo1Ka1?D|?$y;GJ;B$=* zdt0iCBN3kTL+f3&Clp;isA{^$-R_#vZ&M^7yuQmm!Bv@ZriH2U!Zhtx$(zK4Bi^`> z7q^Yh96=%C%}x(hLyy7}6<@Y$$wu0lNgI20SZTurDN_gDp*aRr{mm;CZ$IeinRx&& z$vNKu+cmou&EpLh~+D|~uxMf1I>982v81Jz*%`E*5OX7|#G+%0Sz4&RZ zk=j~tZg*Mr1N*9T!Rl6_(dixIg>!-85$UyrO_y`QV$*}wB9kz7T8Ow>w+*%R^_#w# z0;}*McJnt6QE&Q^Vp?Z{v;oaXIu=Lzm@!XEH(GZKmky(e-cfY7@(C4=Il*eiKF)rg z)h)r>h`6E2uw&i5Slr4=PGbkCw+29g6OLaJu>3moDP^lV-c8@G%U82Nb+i1~+TGM( zalym6tVAAx>H7?`J(O(_*2<&NttK{H%p3=3Zr|Q!k*5up)=6MNuXMYn zcC+;$O7l4fRPSI3VX}OMilQqlJ~A6THXC z+kkGZIbMBTw{C=m@7LPf_ddUKA!~k`XMYc?$RvVsfU$vD`f#oVJ$a#HXwMk+)>y>_4Hcpd*r}> zG3tPnR2F1lF+NQcnTWRlO1K|Wn!+7$8<#g2zr`|iOloYg3~ow}T`$G#U(ngH&Zl;B zD;VIRHCpr--T~vBzDe5nmmOapxP4w&f{zd_)Di3dlVyLLew=(V{JGfh&`t|qp~mKR za(ZhAzk~*anHhNb!NDL~r+~&oGpTXZTysskQcL8n(Yt2`uHyFWRZrpHLk5-aVAaC9 zVoafy+}3Yrlp31J*)iZo3ET!JW9MOC{|!yEj)jH6#)qSmI0(y0XTs&QJ?uRCU)WhD zEtQjA8-@*&78_36;5|DT7JeFQcW~=+Rm0Y|DU)6s%(3%X547O`W@{{Mlb4(lVr@Gz z9i|u~^g*d(LY3wJmZ2M4eu#_uu;#zU^aYZwn$- z&tAHKb4`I!dVWT2R74&W!nU^k-hf+{6&3HzTeagBxMJ=&dghzVq&mYeOqZM`dWVid z4jkCJG_M~pQXMMNT1caGeGLKvy3tTI-Wr*2n#A+$zj1RdE%^1oAJw<(cf0};ge_l5 ztfIjeOwXnDU5tfPlKvdaj;bh; z^{b22kv?39xNJb(l)h@#zNP2CVV2cEzt&e3Eda`+@&Xt&u5RXAPuBtiVJaeoZ-_E-9%`lB!;6M

>n5|aLitxf*c(F|X0`@W7{KZeO!e(bw|>_4_lVnz#L;#%(N6|MpIjDRxHsS5 zcsq2U`*y|>Ix^YaTLhrz@EPC7S0HAo1=v-RK7d14!{(qHAVyYrXy(UfsmYCS8$x?Y zb^i1ecLf1_+jfiW2$0X%bJV?6GcN0+$@t&=i{fRI!5^O1gb()qqiX0P?=f2E)Osb1 zaC6et&WuQUa`B|U9KLn3FLbOa`hhgGYlw9o^_SQE=%dfH&;aRL)Dd+DK(q&`tr_6V5LwWT9f7D6B^i}YzZ*uy$cvb1o ztoDPtlsap1UL}aZ8)>_4aiQVlsFufcsSI`R?uA7aT1GirnXITOd#Tgvs>pplcSU#2 z-ySC?oEz)Srx@c&SiI+G+pIAA4nCboQ&)64FdL*|f*l>_-RgD%S1m7Ot=E+|-j^*t zQ3k09mYwhBqa|~?KE>qm6@tn%Y0;Q9PoI|4I?9%X*O<`qCWz3N*Kn^y8X2n(E`jZ z@l+*%5DwntVbrkQ0EChddme@eMbOx6K6eU0v-naM)8nD|9-R;eRz5dsf^5rc*{C9-U=WAM#gh5G%dJk{u5+}4+g`Z=_Gj3M^$eJqP-Mrv2 zk@ut)^+o+LHA(6}_zlwE{04V?lPQZDSCq%W`6jXo-w)o;`JfP+c45{?R(a^gRh_L# z*Vb=FW~=VQcuI>aq#;!Uq&$%%O9rHL<@xyU4!+!mH}3*rg)B}c0ahL{V)<_gQ?Tq0 zKhP55ex{Q3`bp8@h#fHBFRyJ{%npm+z|~S)_+K~SzCbacfQ_rUAQgQyB@vDkEYNG$ zUTVp=0iB&Z1?6WgI{4`yreP=DIP{PJTfgX}9JGg9D{KZ(Al7+DSJU;@RlETMN=AJg z{o#6%_E*V;N*jagI_m7n3U}7QjECWy{Ncc?HlGSa{{j(8+GR9S(;F!i*AQze;91bq z&r3?O3yB7subxuNv=`U}Ely~dB6 zlIOMfy^$@nj~#bi6r!>ACQ%%ETmfXUU#%L^n=cYrk^EAw2nZ~Z)mJlm1}Gv%y!Ko@ zhfENsR_EObD2s)euO(b`hwYX0P6-0knhJXb)I-2zx?!+`G21?*J{L)^-hDF-&H^AU zF7kR2V^x^@j-0OaY!TmMW`VN%chY?dh&zkcZm8 zTLeOU+UUFBSepy_S4QNaVsFAOE3n+B{}+ZsOKS2eboIu@hxFPfD{42}7h?vj7K{r| zuN!IXaa-j;YGdE?L{c{b&!uQa2M3|$=14WiTRPKE_)<%;t-pHx`m)T;GDLrX!&r^W3 zr$WgQG0Ilk)qt52a+R_-c>d5!21ap9)y3e}pKOX6U zeZ$1c=661t42Ua|mEzR&WSh(4I6w-8ud?rEw{=^J2n?L~mT$GNkCRSUylYH7GDLr5#vvDPv`{#`tM*}b(BDG*JGrfTmq0>su%kCrpM8_d`-4v z1y=7;&daQvg9CeP=9jllvI@#cr_#S)6$+RoPVhxLYtN;gDWnRxGs)Y>$x-2s)@)ms z-ETtf@-mjm`34(ejEf9$s1^pJ)x4RWYYr~|>NSzq4_r?&xGNTUBHAKEz2H!p+U78d za~=kDhADRouxEL{xL>cS{(`!9e}4R721T?47Nw}(v42d2ubkMI5b_y7aFONvbuBa! zvsR8VKg}l{uEn*Z1jsRd6UgeW^8dHnn{6aq>H z$kDt1|4zdF$K!i#F2Kie+>SZnyZdLnuuBqFO-IYV`ol;`wVRD58faiWepd{9^w1N8qa{$do z=&IoiI-&e(z?$o*bB6ElEdsbVe#fx@;RBniO6{Aklq>0mKmA^4z0HdQM56L#&xyQN z0Hqx+-=?uvo}a4*5{-)Yt{C~co~!S9cl`k$wcoEkjPVM4BGR_0X&m^sg`=NeK_a|i z{6%K-Tr_N?0Q+t(?eZ_r+j~LH^m62dH2WVg)1MJ0hJ`- z1P$Q40I-p(DBxM~wQB(73EU+?kGlA#zGyAHehT#@Q888(uJrDLDFkP3uh^-`m~ zshNPwOeNCBX@7w$9Myfd3}&6Yba?|+39D+ocBON4>~@GT zyfyn^pDGR?3C5OSo$E_77Y0#hRFC@b+LqvECCqF0W{y^RpND5bJ;!vBk<{(r8$3!0|l(}I5J5_nyN=~xEuuy zZg@*DA#u{l-PitC(%2b93{?Dsy5Oc;7v;Jx!GOn*UK3SY96E9Z1rFpM-cquaO(R&b z*@b*JBHmNdrCbU5hv!vU)sPYu0%0)q;({u7u%l!KMca!!z3F={n4|1eFXz@UW;>K; z%~XfkLX{wJdbB~XFSVAe%$9dof>Cbe0zR@Tc!biI|Bq~hzS@@Htp5yy3&WkWIcN+$tQfcikd1?Zl%>e=dO``=gmee@^A)}P1)FS31%IVd?`~3_4p9(dCIQWb(U1Ff@?V`x(WB2S{<+y3o z#?JR#OK=%tWPR|uN>IxzN9wyz0r)AOFI)jfZ@k{F_NasSvf#w?Vv0|dU8M0salir| zp0_7%T@3iV+K5@p@=QWy<8u0@hMExT>jJt8H~=|VTvZ?OMeSFZY~6QPUwgkuf62mE z2x#U%vEiUFe$hL|p`p-KC@FH_*63hEyd8LpV}6tB^mO)&mu5k;_EG7FPN3T$8$u9p z%eg3_Z`Ls%&SwLg*yTCKk4xFPZb6XD$-b(@#(&*))x|Mt(}7X@wWKpCH&>(?%|R!% z^rXy{Bmy?gn^4)pOb@am!Q^KSQ~z(v$BZwG5vq^eB9(k%VTW2$y{Ldr{&&($_|HBzc@d>@**6Sd?r_sZC;~vL;u|MkPDTR%W z-Bh(I6J?u9O;hi_+G7b+l!<6)YUAv`b<^+?0N<^WPoB~sS+B|$bYF@2Pr&(`yo>Z^1Eak}JWOUfW}_u`Ms zQqRE=h>YJR3ltaS*mCW3F$>n{`|>h6j{_*_0M5qVWm2;?LD$u>jmu_ zBtUtr1)y{+dM!bt)JR}q!qxC&f!)%v(9;M-hyOjog=H~xIc zzP=6O%+}*9I6Oq=j9JmE8$9;o1}(uEk=imo-N#mzuRxG<2YN|TUY}NI%_FRhWK}J>n&{uPRX2ek*){isx-X<#8ny zNxhJKQn&t~)@woy&{IfQdj(HBGtJ1-DOqpN9Q;kdX$-V=19V|Go zW}=hZ6d#HikZF+rf#q8t)T;wSUBb}hJAjxXEH+%znuXl!A*tTSlW}=9EPmm(Y0J&f z&6^YB0|&S2!)wzH0qNZrx^bw0do6@G+mAV=<`RT2prKRKbNrAwQ%Q;qvm+}7cddf$ z4rD-X$8|Y2|KJ7aekp6#{u6xD=WJfnLw6Zm>^+q>+H=-@YUhv`%w{+cHs_pa+aLxz z*@@gi&c7>s!0^4<`{mG_l_KqGoBoq;TDQyOZ4kzre}m8Ia6`6yyBk_3`9fKN@@y+B zj9+XRA6_5etka*EHPawo_B=kMWLDxBo}%w~RNL_=4RGT_4F4n4_PPw{)e+cfRY|Vj zeqw+~xO6_YkE2pQCX&s&Q)Dn|J0!_F$mNB4&$#VBBq!wlpvQLqt5WvR^0p@xMKm^{ zmMt+tNFk#ko6$2fVNx$8nM75%dNPBnd&tg^L+-|2SyF`Kw6m${5Sx|wqjumKa@qC#c|3qlKa zUZkH4muC@jJOUh~M@J-!m(s)52S5j=itG}v(5s*abh*1NFJ5sH6$#y!GDxx<}|MC)>zYBRB z&0PI-&}6}S@dRUWDW~jiy%lQ^UzxI~klfU|xn+{FciB@U(fT)0c}pvy{MCCA%04G) zO>DJzb7mIM28^GSW}dl#yJvP3;Q%3|9=n!e(eNK4ep63nT=ClhPz4W5j47|{>IueY z*L4Rnj2y@J%W(7xeX29QV8Scd%IP;&EevSk@^Q-Yq*SCebyuv5q$j)bWr+!#JQ(>AF!7Yp)m4oSqurj2Aj&!rSoYT;8JJG(A z0f~BD%=gW1kyulczIl$W?e=M5?rzgQmlzE7b<+CS0wQuvUc12j;^m4`MD`8LyB*XP}x7U`LiyD>o5M*8x8bDWAoeS9Vj#{aX+qP5@dC*FcUoKJp?~@eR9M zbR-&!HZaqky#TH@&HTpeXp4yetI2*?FhgJ11XvSk-c&%3Pf9F#3H(AvL#W27xIT} zz&$U1sd7!b9@3r<)x0Rr!tPkfZT+h~lxL%_Oa*w+#0bycnRlPvRSo80B0sxrx|aW< zAimC*SA6~Ccwq4wfE%!TjLdkuPqCJ_F*B z!uti%`0~rOkpOua8H4syH1n zq0fL_n%D@kA*=(Y;pez&NG`!)l>x8V)4pAh+EQIW3nT8P#nm3dMJ&9QwNynQB=0!k zl9@(Do^<#!ZqwR^0C`&yV`f^WUpQqE3(-;{Ko%+FnTu9ajdKJj+GuGh*sq!goeD`BIG5PQ$xk9T(0x|jkXj0Xf&m7Ps5WRW}V%OXXZSxLR z99Eom@4PJa80?Ga)`6$0CEadem{%o zZ0s4FkrZ2N-QbL9?NKz))-vx7mUDadSuH;kzTCVaa4NSUD9R13YDbm5W-%V>Q}u;L z93PB-zY>qPkV5K4q^jn;M5i`c^^5>}4CvOum3HgxRLGgd#L;sED<7QPXIq<3W#f(y z6g|YB&%ErCpCeU;HuDtp&Xe968l)gb8&Ovqxo;zJ?l(J1#%YTG?sbWx&Zg$D zUop#bamQl7!sb3s#BBt$#$;@<;MWw`aa-T*_50!%j@`}LZ)J7yo`BQGnu^5WP5hd; zNxDHILyPFc9{Wu#P1l&m$(tahS3vja8FO|D>u-g?c{;ke8_C~0evWaCahGw5VG7NE zjyWmqcQdbGvrI#VYD%g3JZ}0-TPSb0cIuORQq}_Y!Kb{<=Z~u+z=>|dP9?cPU?Rda z-ZX;l6-}c6twFbFBU<|}le_=d1tQ4S%v;S-cK#c4rG#vD>QDuFA0-|-JGtRnvq@MM zW*-3cD|`0?)Qr+RCS8{5QEj?qTp(ef`2FS^K#Z1t$c|5hf3AJ20L$(zx%9`Zx`W4L zD=vF{%C>k32UJwt`|2KbPVBlX;cxFRH`I-lc)gD9zd9KcD+d~JkC)?hAgcOdiW1>@ z@HqOhSQ~nT58MxXY`}T_+PRFxw+Ndlv-Svlsa(iIGwn-AN(?+IpQvP6MQS$z$rgF{xVk8>x@MaBizvuQpga7bAwbBF+pPKo0(GN6S?D)%gTdrX(8m0u#qq z7-LJ;&=5`i9u@dLT|CB=6&IeLuzk1h)5OJ}IX}N-to3DFF&Stdc4$PzCjnMKlPAwj z1^uu`0N26A=I+5i-HzboS?4CF z{-Q`ed3{V9n|R#$c6mZ6M8WD0VA`HQ^N{-P_xETe$E!v{eb(2%qv1+0zF*w#EtpZY zu)|!lZXA%CD&39mH-%X>jc#bG;U~O&KabC~n4Px!!|wpl@rHg{i+Y;#HupiS$u&1) zTv;t5Zz}V0A6bSIT)AEb_z(auW;c)HO;}3TSJD%utc$sQfM!FDgL8Vn!sh1oWMNjl z;zbr*qC(uq>XiUqo7c?e`n`o)W4E6?az1^0kW@Q!7O1^!FZg@UVo2Ca@zRwa*PpWh zrk3GzR@5qh%s5%;_MleJ_^{n}<21uCZZjc!qNneuu|3!}K~*)l`_mEx_I{HHo%K z2_B#{D&^%jCL7KbMdQMI*wZ*{wVVd`;dJyb;V@p71gH8yWzn1bKavgE64**Ru-})| z8FSxCH0VoR*RtV$v~R$22OmFvvk`v?A~F#-S{^60yi=l2!vB&x7llYja&c<1b$QO+Fs4~i%H(eM+{b@w5Y#A zWJIe^@UdFgPgE~E;hCl~%ZJ>I*Pn9`5YwP)Ik-RWz`6}D>A4Rm5|uK^RuE}G@?z|4 zV9e9J2LGqnqYiNojk49{_&Ydge_V?1z}@4XC8#@NDY+3+6Vu;T;KoFNSF(c&v&wP# zu+}IS(50Y*Y^j_f@}fJJ)VljI^`~$p4yyo(v^a`9Pw{?1gqd`iI&sjC<&X%;r6|+l z%lHa4eX}QuN_k22ArZ=Nf15t(xN<;U4$f03v{U%n4b=;3-^%@08`k|0h>w3Ur@!~i zy`Uk6tNA>RyT_$Vhc|`uvPHAk>((j6w6N^xwKu5H3ZuK9&|}L`r_Bmnmq-TIkJ z0ap@mmw#rObio{oN-pdCW1_Qw`<|Zf#59lXx2UuDu++2T!b0G_zuDa0dP=U0|3-=j zO{S$#o(zyDVZ3^ED0`(pb%M0pYsu3^_2#cf%;mj?lRo4gvTGE{lWYv&G5$1_gtj?8 zUSyhwY^~4iW3i5*S96s8n>KknP-o09Iy`_;zAOqD`t*TLuba^rfYZ0VaQ|sKd`aTb zdH~h%8$}g)*G{pxnTs*(YC1*;x1nYWIIhMO2iWhHvhX6BqQ6TJueG~OE_+!KMl{Y( zGF?xMJwHt^t)|4$&y;_uaNj8+lkNb8q36CA>_q|`PM>k9Ew4mB?ia<81ckn+^tJNw*%fW9wp)l3*Ip2R3E(R3E|Bd##6%u02HQSAD)%ps?A1AThus~ZAMVI` zL6_0C?PwNZ$@KRKgvyI4T+u69&Az~omEA45L5HpHy>3j+ZG;a5 zB^mu#UMC?&?_Hb7^C~NPginMijO11s&jifG7)855grSjippuQ-cMUavdci*D2Y+l0 z%&NKX7G3blsSCyjs*xJPJ=$-ZlRh&4!1e^uhTL79^i`QB-hX;exz(J35%62>iG6^# z=;;*n+nhR7oz2;Af+HbQo>Ft=vLE+-`01|+t|Q*cDs$76!4-=py6DpUCis99u3QpqSN%74oc`%_ z;&Y+K{sc>gU~Iq**=sq+Z4{bXKl?zywUC?Vzo1@gC%)exAEsw7m}=Zr`TEYKTSpQ! z0FjoSAmzB23V~=-F9VweAJX!VI+Sw5xoq!+P9U57%Z0wUW=rEpE?r)_Ju<;y;(f0J zs2b}A=-&VS@vmSlIho2F$Hjz@)-um5U30K{DAKtZWZhNbFguMP0B8toe_V1AEmxE? z-H_e>vl_1+iK17vMk{vAZ%(Wd%Kw``yGOVlW{1HThx4*dKSxdEHhwDWIvt-R6flhn zJw2C#BQ?hd*qPnEcOejy!|qnTwb3VIG&h}8=kO_TD^+Z@@9Xt=K5tlT zf%94sq{2hsZooVvZZ7CF0*OJDWM(cqb>@ex*>}F!1)iX3X~xC#hdqW5inc0hZPDeT zdx}Ub_9x za`;E_(QixkL+5~eY~0tg*ndWm(o-q&uc_q#0x;xT7ujZ%qfO7S_lxkmr4uJfsWwA# zu3Ltcd`}aE}*T<-n|q&P?C- z9=KPaBQ<*n+URje6O3=NQqV$BP;oVuJT5oAHgN1RX`EhIZW5WpaU;_t8K2rDP%2qa z_vB(;tTp319a(uH;M ze^1xbepfJ(t9)Z}Nc9qEy^b|;;sR4TVQa4?YldMbUtlow?!)c2#oMaL8@tFgT;Z86 z)2OZceo+f7yqupMYg7f_T?KQm>qgV4po~(CtJN0kVA*wZ{Wkki#hWe156heG5Eync zDPAnx;}xGK8mRpz>5boW)f$cClYQ^h~R@w(`W?Ze)#nBvTpW{{oBP?ehuHnEPqbhWGDw(<#VU~|QP%qTgp{zO1g zse$DM*QB-g(>_$^8Sf~8X-rUiU?8ecL|AACvvh~TX=sB~0hqjd;&!-|bRBuo5|>{0 zKR`D;Wx5+msD8$VWL%cIlM0tESD+gPTJ}nO80(q_M1_s%$V(qffyxV~@Q#PhDhlJR zC%UA1TVezOo0&b-EEq~p@W!*F^G zk|WMf5186;3*zIyXRPtJRsn+Iy3Z7Jyrw^>=;52!@Mn{tsw{`+Aj_D+H-;Mk1=8dMC{t@-+KE*^6k?RuQM6v z8bAMbnf%P=A(t1M(t95V_QBu5$!%T<3D=~)yxYjC)8f8#OMTfMo?_W#sLc`}Y0PXB!{ zyKy?eHY3P-US%S%E<=41Z$aij3I%<>bNAIxq0!wB|50dUk#tSf_pq;cQ{_r#LS50L zBFB{DchjVv5mn=qt@hzmy0UHL&(ceej&qdOYvp1ed>4jmWY4QdQNN0Vi>^uONIEm*v9W(Z04wQq^|wpIFjm8 z4y#+$YT}K_u_D$tJl(lfg%^3L?gD#7C;68p0o%0rz}RT!IOM>bTW*W49VIU;%9r!3 zn_DitW&k|XyD0}De#oE_t#UH(McT-GVnS;(z4x*;DIo#Lqd)0k*QJGYMI5d|xtw)K3&_3&SP4sGM%;;WGk zi}-|oB^qD2(}E-w>&Jr(>^F%6H@t5SHr>RIR*do-xLfOE%`{d6BncC(M@g=JNs$m8 z-a&oAVCizU=56*ce%=N6?Y~_#grb4n%*es#MzY63pF9ox5m}{l)%-Zkw7Dmh3NJ0x zrpT-+O21-tvfbUu(wk@!@Rpi0apP#HwordFCGRnZTSH3F+YgBTp}cr$FaLTEA@?Nxi(%e{P@O|5ByoO(htDR%0{Pq+gz=lwA| zOzhVp9`vUJXN1Oh$828y0>m_QEKHtscl-w4tLv8h)yN1sLfYkmgY<@enJFXC#MaN= z$kymdXeQ+o4K*O4+ZWY*ZO|+J)PvEK4CXSaIv{2m0(UzZ!tX0TG-R$T{0d#+;TCgJ)#%gju?|gQ}3vhpg!pNtZ#_g zfNd1#m0bJuyLG;xs?hI@|^&Z=haD~g0~5@ z((?WCKJ`5qYoK4c-8_frMlf<$pXiaY>(^hjE+zu4% zKE8-Al!Xu#R9E@BpMCV49eM0&#S>3*_2u(HgIJu*g%AV3nVbsR=RQk>u?exHG5ua_ zg-sRAo$NihOy_%)1k94$eZW!*8ie3!G2z9;!U7d7p^bgx_dV4_;%!B~f--%eOcZN! zWxh~k!^rkSfwNFg*u@(4Z&{<`W}Y>|a|2FUGv+((t9B>1eS0}b`&PfP(HfaC}woL5jcdeLun16XGxKg%z<3a?u;94=S zcJEY0(5=|=%tS(FB{#GY>;@3@9oE;n$D%zEpM5=D!vf_dU*6NZbqXZ_YQ=W6!g-)| zeZe4ri8jmOZis|7sd2~K*F^GgDaBL1A0MB5jkQS-6~yBy&d2+~ zh5js?OyHg6L}3HTiKoZEW_7ySy9aDrzOWk+F}jaiJY&wU-{Un;X>W0A}1)T|e=9M5gEnX%eH zqn8eg9}3$CJq>N?{0d$J9DRTVRM{tx1&i+f0s@b$f3%?u(!OjJ@u$jJKx5{d`lQum zTfP9{T)a~sfVMh1zWeu^ywba2-_23oR=QCp?X?r86(+c8QTE3*U>3DuNT#A9pS6h; z0o$ph|KqQ76_xU|f8y22%)h)=wUf^&Hy6A1ZT&r{?Q z1R0i~yjP1n29SUqEYHA!%jr=rdb$hwUgU-Ykv4=Q9Q29~G(~}yu{AyK!Q3^w>bKnm z!KOS7zpGvdA6X_uY#DwnXmMuE>83DU|C47(iip|`bJbw9YQy{eppWQRBl{WN`+=at49&Ph?qBnh{ zAN0jP*f=_GMZoVKYiO&{jhGly_FmWJ&HKv_OtJVF;DF^Ext>&D7xUC$ zGQ<);Vme`=vpwQa!@2}jm!st*N_W|Y>J}{&O$OQ~NgsLYk@1?&sK}w|9RHMM?3cQn z*H?`+$A^dzt%e0n_;uQQQ#^rEj}mEN70Sq6{PXWZLc>JuzitthG+gO$8PHtT5Nkv1 zt~%HvRqvjvQEsK?PffTBgnYlroenuLw3pv)EOf=TKIgT+<{j0ZBcr?ccXxRo()$-C z*>;|VN%reVOXk9k_vL-keEYPeYeQ>_O~lcd__TI_wvcUvF*O&tY4pb{Yxu~VWo$L; z!Ob;=svWlEF+l$bj`s^uXK^OXms52tv&AA&`jxPoM<^`J!-(Jc^kHG26|7UTN^$YR23+W}W2@E)9AyjEC!QxN6D`ldp} zz@x?`r=PJsjg%}wxxKx1jzCK0wC`YrM=j(V_^Yf5qf8AVke*06rxdhT&;2x8)Y>## zRIS0=at-dM4dK+N-fR;l@b%(^I!F7K6vnzi^0}vQuhH{VI7HI9s9;?WWx?a63xT= z(*l3FPrM5M6*|utD%^se&9PaYdcd?a)Xj0$fQnv)~LXBI8Uvb4nHspMKi z0>yghO&L%3@WLtSRk&e@8>4KcQF^WdwU}D)AS3Y1D8-Cek19pyaFFX!?fKgy5q;2w zkXr!`*52Tr0S+0l%Nk@;{nYtW(+9rB#}EnG!Am~Wf_!hK$05#D(KRvam=3khk9atn zaSeIAXaFC>Skr9U{rbB0>tOcyPnxuqy2-T%x6rfKA!~;lA~|Oej()EhD`DXoX?4hs zrGa&xpw+jLh&cwVA0LT0!YFG(wTqEg5ifP8=q1Q;T<{eAwnx!2Hfc2#LDK%m#kDfn z9R%8gJ_Ts{KAg|-Y1v^x-plWhn2?a<2Y?>6 zXb=)84;$EvlSt--okdv;+Fg;7`XXNaR`g)p^;3xP=8B7;!rp{t=paQkdKv3nkCIPk zwE)Q}WW$4^-is80ktIivXM76J1|X7)8L738hUXS5iYpOq-y3sL9O*_&w+oPGuyxga zt7me9*JNi>m`WETm1i{h|1wwYY*+lfqV#4cVKJl!B-d|`Zq)6iYk{iKluEp)rnMT7 z>-{0UfhRfY!KI?bnrCSDS}n%P2HE92ZCq;m)ngoj+ly0YR;0|S8e$Ay>1GVoLBa-p z7~>GQ?C6mgy928(`dW7W&E9Zbd9xl@BJF4eSKG*B6)s4Rfn3&N&aC-<*g2*|d~?dY0dFn;)X&n)fo<(=6zQ=A~Iz8apx;MC!a zup%@uH6F1HgDlY&1P68`Cp6<2R|H?^=m`fy#1Bnot`A_fMDy#)LK7+|@} z*oi|g+gdhPB4vmVxrr>$92{l-KSd9&eH#CtU+cOxd*9Do^R*}f#@B3yr_bqE=sDi_ EFZ)uM!vFvP literal 0 HcmV?d00001 diff --git a/docs/source/_rst/tutorial2/tutorial_files/tutorial_25_0.png b/docs/source/_rst/tutorial2/tutorial_files/tutorial_25_0.png new file mode 100644 index 0000000000000000000000000000000000000000..e2b878410e279496bbcd0cdbd81f36893143cafe GIT binary patch literal 20680 zcmZ^LcQ~7E_;&EBmeOUFDr(dowc4mrJ6bzIXs8vVMvG8dqr)h*qDE+{Dm5Y~F=}^M zC1^uphAt&Syj7!>hVSvd-*0`to#)-@0O!)Xkso2nt#7dvC5g=PMjIZZUAa)j}_ggP-$j;+4Le=SL17wn|*` z%j7CyS-Kq2F`&>Ww0Znae6`1D|JREnbmlTMY=R!Yz3ns~2E(-T0apr2biG(c-@ktl zDBH4he`-Lfyh%#?uTn~a!1MrzRN7Z^?*H@L$=Hel( z+fIo{=f3k<{|wR7ONuuk8(rQhZ0|n*>8qg&Sq)N6W8W@4t*31P+3Nfy}@6 z^hc^|5Q~Rbl#yH9TJA=@rrqXbe{VHMIbPWQxvhGIA>Ch?>IECu(S{d$eXdH;Ph4_` z-F;!BxBoFnqX=W*POg??w_-NyJo0H&%M(@RcYUb`A_uL;b^+~&tJiQpX z8sVKqHVC{nb0oE`To}-o;y`X4f_S1gWRT6*kZX@OBG7YzNYC6xQ}Xvir^7tRVvq!V zFa5r!^8KWdk?`v&7@Lh>rmd_2Nr;g&-4D$?9nSiVHk5fU+i6WM=r@oz`t$eLoFwG3 zEV~T1c)2KdLkA*$AYYM`;jo>zF@YW#qU}Z8ow1?*cz49;MS|mS+se)N`tiR$S8Uil zB%OzlC**2|)k?&^#PnxY#=h~&;R$wLn>A!ITdcu~GY}DDJ*-?{LHkCd9o(% zUAWJ99D*Ft&~5j)QQf!fJs5Pt`W!=cUEsB^wQt{yEMkp$o46o(_(zAdKzXAzncX_X zH-%zxUDQq75cGSid|8DUM2g$P;@n9q-IXmfZ>!(wviFxw|_%^jw-qxHa>J#{rA(T*-duJY+SGG zHtPp5>!)Sc&+#jxonLF$*0MLun0QrYmmI78iu_@B zt5}Kg{b|#;g^DLXR+MJA8|S*}jKDXk5aJ@jl4z@hiT+Kv-A8UMkc=i*_0Q7Zx6;Kw zM)s|t5wE!`W=|Nf~G^ZX8V@k!YI{uQ2dr$;5uO3PslEcc-;pi@3WJ?=MuRQeeTR}YE^6KN67B|!KDqr9U=_NEf>QK2dk*?+xQp$q1e}NDT|~%5j<#navCwmC>+tBeX*#=ahr46P zSF`p$ed9KnFKu#y@?Q8^ePkqZufs-p?a-DhqGk2<4o1>v^lcAn_Sn#tZS#Wf?-uzP z*YGd3>*5;Uneg-9+lnQB4M5@BcJndT6EtmhY|O{$xUz=YN8FGjt*mIdxCxS>I$aKp zRDzm5dHUS~5;mH7bXy6M)u!)cn#gRkA%nH_-;ut{BA$8Je&Zhk_Ac!#y=iK`E;rJX zqK@+|=7@9xc8B%FwKhjw*Y68^8e3;|rK$b{du!*3!NK%Gaar~&jH(XtD`h6nYmsmS z9A&1Xud+Ucw$&tZL%QYY81y%$i}f^q?&Ieu$j(z-G-+A^L=WG7hm5MixsU5NEKrzT z??`IzLnVvE-!Y2~HumJ{_mR!ePP(ES_sj-LFx)Zix6x+n<$0s7 zB7KMM7?XKS48u~Zy7wd7jYoyNtU%rPD`58aM@in>QdMeY_S_(lF%&6blebJOIJOx$ zvxmCLUM?>_s`_vI4LH~vRDZOhVn1fzJJghg7mWW)?K_uBFAg8)#JFfM+$c|T5$Y9n z*dHg-L`aAzsQWco|K;w$k*C5wIZ8H0FYXkLjbCZ2Q!2yvdz%RX<2XEwk%U<|^ouuT zA{D*UcPny*>)6{=ZA(zTyuKg5Of}K#pW`msXmRForj1X9xW(9g*gU^_;Nekm)4@*) zugCtmZqSDds3)}t#(b95_pi=vSGA!e;Jn z-bt>2n$L~a8J@O2$c+{i)M$uJVV ziJ9fj4o}uw5BpEHJ^K9Gn(Qk>7(3;9Xu-Zx_d(`#WExf6^OSMNKpQ<9wRBD(SgT#n zXi+lr51ZZ}zf#HgS>QtqTrj}?n!5&VI>k#Viu`OkA-Hvt$$C&@DLPYOw|F7F5XN}vgfWAj0bCINy@uy zM)wiSgRr77i7XQxDRA(QQW>5HmegM0Nb#g1&Z`TGmw$EGln2Bm{jtUPNm9CYS)t?{ zO5hgkg{wq{3CbdJl6=WhppZYN;6Q_b4I_H;uKaMg;3u#HLBO&UEC&t_WbExN^>CEs zpaNwWAgOr4>RtutS+j~71n_R}KwFg8Vk9{eeAC6`CAcz!(AjA1a3{Qhs9)j z>mZ1LYjUN zA})&vK#Cs_*0&?Ktt@&&Bo%MY56Ol^Z==x7{so#Qylcac4H+;i`ew!7@%R()6o+3O zr1HUIbV2`Svrl$%Sp6?sVb-xV?IntIHoE!2E%JyBJLAH6$E8Yb>28mM1+q{6K}Y$r zTJ6qcB*b%6l?W&I&(h>*LCCY1DLVSQh3kMci91 z+D)J8HROJEd6xYXscZCQOZ~groKhevb#WD1D)zM)D=_1WzbN%q#c^74A?Iw?#97JP zQ@^+^+vtK??FP}k!qIDC2JUk7-PsU6w8w?NLFPjQv55Jx*|=`mR#v>0KB{@*gNG&( zYc^+dkHF`%)d9p8c^Hf^QfDaoO#nzZJJrFIoKg*jC118>G{T?2il}9m6U? zeN0k9bTy;CI5J)jFG=r%jOOQ9^#ez4>IGxYZJV16v`uBBGGrKHg6qcCub#0*?-&)cpmJpQSO`JR5w+wHa)HElqf=ir^&Kkv{!S8eKU)^!4e!?M zm^gEz7>7beC1ZvmZN}sbuAx~4`s&m%O;0)c$6)+SC2LNB{(NOEU6y9Q$p^7Hyw>e% zm>$x*lfet;8TSP?trF(_v3J3F{Rtn?7mwd~imAzq?8KEsZ-+gIowXIj+mtyul!$_F zY6|k%07wC?mKT|h!=h^=wk42J4>1U|YBP)+3Tc;R>p{9NE_Y4EsTDN7Coyvy726-B zYO|*pK3_Xj>vWxMh_^XlHik`AOTXD&t9Em{W*PNieFA}D&B%3Duf!1`Yu0oLwhsfQ~DvqC2H?o0@s&! zi!vQ}3m29+YjR1Xz*z)u^VeV4=3jpsU7FF!L)~fq@^6bW0k_1qAUr`x%%5NN%wDzh{oiS&rcN!*UEkFn{gMgsMRXR$55w5q@4*kKO~J1N*pH?f z*Pps=!_C=lTAM9+^}cd&=!5VGr-ee{6ty#qq7!3{*Q6{^cXWTv*;$@258PwF8Mxgk z>X30|%ze^lyk|!$^=NhTBj+4c{}~48TKMm`c{!9QMObCgennh|Sv^M_;te(WNZKWn zx{yeH(u&0AVz=(L?$`82{t2^+=Cr*8_q0dNXBf+usQi}HQUSy;_?k02hw_`k<9|BI zUwHTy0GGAg&(L`xi;!t4x{20|#>>fe**F@_^9(&0(jA6`Y@02wywYs2Kg~D<3LlcohC{l?+%4Mj!eNVLSn0MM=(5#t#)>MR?qLz%IdGl z8q2N)k#pcOC%6kwgW4&o94B6u@$?Tf+O*|_6{q+Gyi>V7BD+yOI;JVseR6$HnjX70 zB}XqtXVNp;S;EotOH6UQ^R306ZIQZft9^Qs18-tKR1vCo3~Z=LmQ?9%>xR(xht5K& zpYW@2*N?w$Cjj8pQrDMw>9#JRdrKkWG-XD%MvJH=8|O~uM$hTKBzZsJi3~Wy0xw}VAsjC zyl9j}(j0e2dT#hwLTT)mxXW_1Gl3O2#%x>)2H}k?@J;XZBv%iws6l|B*H4qg<3B1s z|LUBjG!Zf8?(R^d=7-2z^J}O*?JH4Ec|jjw9ESmLWcen00rz`3N;^SRaCcxjQ3qAT!zV#-T-EV*3& zW_{GB$+szBU|Hxb_X)}tR4-?n&N_yg?z&9*@1a7E-PhJJFyUIks?RqxUc4?k<>lJd zUq*kmusK8VoiW+-oSvlf$X}vLq!YNv6Gl?DPUg#><|{1_Jg(^T17sDj!E>=4zE@S5 z?vEszy}VDxfHVvmLObM%YSbK<6gRue>u?gcOf^0IbKK(wUp~s@Ncy;0zv>IynP>9g zn~`(b&yT`I!ply<^)R}@Pkg%XXxBVkTWj04lgQh=KeniN&0oY_;;#1#`QB2(zj| zj3(_o!Ky-?PI(15RjAh0)bW`jv9_n+V2SdKXK~&ZdhI;iI%WW^sv#GVVB<~ zj@jN+NMP3UOftp0sZ7GOLG7iyzj<$4iC2Q>Web;dp_&5u3D~2x(sO;ju=)QH=CtCD zp_=XaUyPh-T3wFKh@2B^fs=Kn<|nLTo!*@DhfFUp+i7tQIfyqbXq+WoArs}|EXkkY zPqnAwpzX3v0>diH(&;et3!5!`Vb5!$ zrq}TvJeoEfq2kdAo$cMPJ}n-A94Q1~{bP3g%TLn6vNi7!9yN2q;EY#$GqSW5=6v)v zj~p9|b0|$eh&#`(+X!vQq;~_!aariyc2t5VMbzjBVo5SZaAvnUM?4P}x0W5*xxIqk zuz_fGD(0#{eeC^QqdLd(3*NS+{uojU*RyU@V6o0X^aNER{z1DI%`&^(`%9cqhns+p z9zuJ_DbmB9h=L`25eBXzHD*+ffOH2qrNxDO0qu*dfb1NDXbo>H&5qAcrt^Z8`|;sH zSI1Z#k>d;KS}kHUUL+_iPgd*pQ(W~d`%bh`FtWh9&76E3;?mB_bl7%T3y74=i)@K? zf*LL}qp6$EHBL4#U40RZY?RPI*v0E#46tjK!kdc4Pmf=u9~i04lX=092;UDNJyGh0;S)`9O9O2|^`HHs5IYwIme;bTJ$df`hPr$NyAtB7 z^Zl{54$gkuL3?X)=((fo7Zjl~m-<6G@ZcNL7GlT?J7E*xuq9m}95o{)j+$KI4kDFs z?+ATenE3cD{1g=co zLOUBmZmf_AHKMr@!XMw(m`oada{QJr_`olSa$pK|| z>cvz?vGUHWAA19~t)_ zeVc~U4R9jZW;sx&nszI@6_egHIxZiDbZ$AvHIj~6_C8v*y0;_%J^&D1J~#im_9?JF zA#9O_Q(WyX+OrjlQge95`>0ajm^WVpMdol-NYm)$CYmv!XjZ|cKOhK?$q8!bcu-*N z1-{ZHwJN!qe`Yg)z4<2g(0vmfhmfT|P`21)0-vaQQea6H5P^B1Yagb2D=nQ^JHU;a zGp=2-KIR-e8S52ilLc^ru&7gxYmE!NyKat4JzO?;pYK-UJ-guY;Wo7u4=(84QQH=K zf^CY4P)2nF*TlFLm#6XT6>oK>Jf)9Ne1LVWjJH0_l__ba*t>ga_p#2Mc!#sR6i#BY zL|Iktbq1s8ug^y=*3@7=P$#&1u1(Fg$`~mQh}0zgmhDJkLVQ{BV&)?DZR={(c!hBw5aE) zsurbU_DfYaLY7`fp2X@k3IW6;#j117_)Su_0`yqT2kZnKJW(HZmpfanL7>u(cPt?V zvKgtXkaA|v^*yk+XD$^VI{-o$Q#mRx$S}+% z5T>~f!vAQzO%!-_g&Y;_c{cEN)Nci3vl&?kJ(AmaiJXLNmTvzY3NezQ|K!?+E78BA z0X{?o0(K{FE64H|9)r86ByXbKcnrOL5#QF=HlcId?7-LcA_VhA=NGOv6NLn^tITLQ z+VL+jiqM?Dz+p8F|3BdLjj2y#&)s8nTq0wcyG_BZDKz%`4;gFckg}i?(v0KiFCP+dSgT!j|kZvn~jVLdULK?mR8ceEm;{EcttWv z34QYm(=>MD_YgAv6gceC#cxdU6j}hXB(JgIQ~7q@oj=bLKD_$e@dE8p=5apWjvS@M zN^1{O|NX>R(8N#To)iNt^}@TUQX}K0uZ~fy^_y72LCXS5BzDk`A_YGOaW4@nZ2 zLp)~3<>175^IQK*Da@vYJ$9GH1|s|YdBkICaCJOE5sN@I7j&D7@_mp*Fnw_#i}TdX zK+tZZ&MAAv7$4#wZS=-=Oms=X1_Yq%F6SsYRB~3%FQ9cXQ*mfrzXCtx=#a&MZ_E@q z1l}Vh_@6@5vU#?6IQSB|J3G>;xg>v~Wkk=8cqKoCj{vik*DL?azcCI5At#_W`38Oi#1EE@PX$lzb6Q1K`L* z@CgCMmF}W>7oG3-l{fjfP;DQ!1Mfd4gl{XSsId5?pGE|i7U_qL$Zvi>JC8)_wXr55 zhMvgM-=RlP+nuJF!7jy<<%Uu!0^0YKaD}J=IL*<7wY-yN1X{Wha>dYCT2%i{ptrBEyLjjZi})OY=X?%2kG~I2<(B1z0+>( zg)5Dp-W+q5((xojXEJcuhh$X+OBzSfiz5DJK+qNcQE z$~C_sQVG>RXFpn*$iabZp;Pm|?J+9}5Wdf)rBN0By?fz*0R8X?V>1S#erU`L>P4*z z4JlOWr|W7w+k_W{FJ2cWB4NvLp2Pd&!n>`8C9fT_f?-UWNEf<7vp2pXo5x9+E@8ay zM_$^5l$4jhOuAV2`2ds?BI&X}t1fV<%G8kAqqEN(2ZF#P`G7tIc} z$`}567N0^@lPCT_#&5n+NFz5WI643#qBM$0g!%Vp*q%x3aJ9XBLJY{O$af=vpwSnR z20d(An)YewHAjF6Z7SE1`a<`dKo4>@7!MU_6Z}fQzTDF4f(oshzPlcwGx6~`G5DJ~EQckhd!q7rI+UiZ2; zKy5caie4Bf1Qk&>k~JFymYM}EVCf@O(~&=lO4f__isPI=_NOijIu@!;NA~lBmM0Ye zBp=|oYX!_=#q`8@7ycdZN5BJ7YSrt2R)9{u2O}cS+&zC~?5?#}*;N%FrN&hW5sV4I zXPTH=RAJk>JTc>z9F*~$G=Z0o_axfoEnp`TP2e@kP#^tox}axb^&yYbYYad|I<7ri zb?G)Laf@EuDoG*HO||ysca}OhK#8@3A{D@lTEGc?&np%Dx+%=(_8}+JO!o7EKA+Awlvd@VD&(yjWvnLZ#j<#rgMh^=FXpg%4%h%>lQY6Wj>6aL zrzLGdV*3Qj@JstDyVNr!zQA%Q7pU!?iBMDNPvF}}*D8ZN$I9?Ak6uPikjupZ{T$Q? zcklw=LIhXT&_$|kR*2R&c^{fI=}h_qZZj!~dZBVndWl`$y{4JM9X^oN0r3UUGyNTI z~1!}v0wmPUU&n;`K4^{*^179Ozre4l?mCscT*DJ8J`nwgMs4QZtn z**r{Q4#k&T^lgn8Uh&YH@k16Y)b1r>Xgjmhwy{|;y z`z+k|Z5O|J%4c(>-s=&`elTW~7SU)Vw0n%?q05MH1d_sxAG*1n1%}KJhb%RTK;X`f ze2U{ot7#MYr-o-_J11$Qk2m-sYZ9+mlGZy{%tLsry*%Ag3GW{7$l&jf-7R+BR=hrG zq;uM*0l#(;!e}T-my7eIF21nmwr?3m*S_EFvLF}p=3lr>R*RlrWu~KRhnZ)i_pV19 zJyDIW#!=Y%n5kmf)%?aXbUv4HjIV_CkO=Nk<(5XQSY9bSZ(n2VSagQ$D~!a8ib+a| zZP@QjmYgCh?jLZmkb)C#U>sn(`^oSkqwe9ht#<4#x$}X>q!}7HUS$%X^P+h;bI5^93IBHCUy_AA=d%8z=2KglKx+tcEjQAYT;k`# zJ_|`$V(tYyM@EAXC#2Q}z~iB_x1(;9P{EsgRDi(09yj+#`_sO1qk7Aj0&waiPzQ$$`pnVs*5nJ!xg&2}tYgzL z?5DU~Spz?$-78kgV3z_&)RV) zV|>*DBI1|eDN9ej=NFpWI6@lHAYOoo_-^N7u+?*oEhSOgYnyAIm_|(IPbT0}%93Tz zN6vz@QwgSw9u0oc4ACOk1wHH7+ff_yE|A#9Zq~a-!02M%G9-ua2Mm0TE@XGP_oSz1 z=}OT?^Ry$yQ!mh=IgLQ@X3iM}45Y}a<~FJpZ$(wNdpd5XgDl{8J{SGqD_tD`|26jQ zO}@evO_gfW3VLNrSuP|mvI~bmcb%n65DnFVRds7+0r^_-ReVV-$3%Artn-8TRc4Cy z#s08Ssx_#PA1L7N$3cr79>d^wr}t*$I+edgoZE~x$r_FLv~SwfmP!6uy;T94(3u9` z8u!fPoaF~xor%60FN8rw6Frymc6#aMdD|M#r;h;<_tGLi@EufYU^mRdWhUKZ-=$+k z`Xu@W(`SNv>+GC7 z{{jIq71WjpocPR}E?rP!U~hOlrS0)a)rH$SA%gfybCQfy)~GuWCgiC-7gppyQWWu; z{xt1E1J0iPLblJS8VF|=dz}w9>?^5+tG_j_r{=Dqa}kERxZ(#l5^yrf(mrh7I-7FjyO(<`zWI#%LIN=gnc{q@Q+x}Yy+Ifp_0MV@hg57_O6=bf)~)K?8@I z`71e2&Wpaj6*3Ce9porZ+WY7~<$rt4tclA}=@dufWh}QaT<;XH9OJ4+ z&)pU`Jb^U_vZ*vGOroxu%hK|gaW1eNOQ+MuqMqBYX5;mp5%gC!U{vzE1{pua%$^(+ z=mtS_q{eNr5{RQa3ebwj-itQ)+WQo<{*1V0&|y>RFfcvFtZ_Jj+F7F18_0UB1RY+v zs?|P0io#6!$^1tVcxb}xfpA+{?-J+qJwmmGQ<5;82jIf&MQktMhd)w<4hKKPDa&Hd z2HwZ<4F|u=UWj)gtCosSIoo6&OkTR7+I7Q*EYSkB>~+|85CF1rfUg9QF4DclG&F26 z$0$VE)$nZ^vrB>Q1}WytX9+<{&>PoYZEHEOPk>;pqeT*J02?g>izrGo&M zTL}s@T}q09xSb(>9s+|3IpHa`!j(YTqUcmPCm)E#V5R9ZXtnH(=0BXwc#FL- zEtV4`!Mw0E11}I|(&*qT@%*jD1?U5U>7r&^QF46}zFkt6c$uQVJo680ETGjc+s+L6FF^z zH1*Nigzi|&$~)GbWe&Ud+Sjy*HfXg1?X!Un5Df_?Sfs?UMjiM7&T4oOoW;)ZEd!LwWu6rxl zkxwuVLL32rYvmc=pf8pb+=NSzqvIQnTn$=QKYHI@Mia#>aodLGpUXexn5y`sqHt=p zb;!M8Oz`o|qV}}{+35K&WQDMb*80T+GL&?$Zr$>ff<cfAGno9eTGNSNs??*AOUI zlD`oZz1JT&lLgQ{z@}=<+ZOD zr|5%H8|L>_lyAT!=vK_d?1ny;)p9RzXI9A3auEsWSc%r{Hr70BEb@T~wUi5-hcfK9 zP|occrD9;kU+Tsoct zkfe!?5^n9c#_jgN&jJPUT;8l}QS~RBdaom8IFGidArV4F1N%7&gf}h~a}~n=1-=3D z2C_!&^*RySu^EemN4mE_FXVRD?7JG*-yAO#+o(RjOBQ*j6ZOuT=$(;Pb>s>jHAQ$ zr95wn`n8i@H7?bBl)&LO?kfCONfB zOcH(jO#ymhtk2dqukPWo15!4C!~wVnK-1ngEPPe8WKY`ENG1iD<5#pBtGGm1*D+D) zH&jY_p&0~a_3sl-i%TLz%fw%rXEH_YE9I5G3)sO!Zt;Wgl>8?FLk!U#iwn=<&KD?o zUn&Kg@k)+7);B~oVykYvz9rpIyFBVP2tNy(j|Wi22a6hYXz}c{yXB&EufWx`kOSTm zTRAm?5nllycDaFOte_aY(O)N!e-avR}RT7;J)S(&@3_?7H^xvEcUS z>g(^WD#ZYm@9Paf>vkDK(kMZK*u$j00ug z1Ke59m4W7*k6=LT@a_=Rw?c`0v{|d8Y$+DL)z4p-$s?am;#NtR7FCX6D%yjqW=uCb@C3jNLus6L!=wXwOuC0oM9w<->Fi3$>M`jO; z+ema6Hs8Gm+=C?1t9Gf)VWP~G$0?1@f5l(MBUsvOc>w(Q616n6W05@3Je6c49%U?l zu|_LtnP9@BBJoPYH7lUHytx*Qy6J7e`MTbF`h5D|Xl3Y0F-y;-%o&12Y|@r-r-j4rEh>?m3_Y!#C*=;(toX+ z6$4KPND8%Y|1{?bJx5S~77GjR_)OHtC{aZKxcJ~D(1MUtBHw!_lLFCPj#c5M9D;4i z+40mqah(`bk#Sv#&QN=}sdY-6dSW^)LvHm3V4B*y49zsrITLxsqB@9uw9!~om!u=} zo#0b;3h+z^1l5lS;ib1|_=cCITrQ6`Ij_j~v7tYIT@mr=1X*2*pAH)vOL$RM0Xo7G zr_-;N7IA`=EUUxgG>Y7e{+oaJ2%Pz!;F7y#uL#qM!J^xlom1=EMN{I{cO+1$UVo+W zM{G(nrjrQbncFfSPM`3l)fG(vh-HRk=!NXhxV<9FM`@0plLg<1Q;eMTmTXP?@c$2j(L>irhh4fa@ArJhD_5bAVEi*5IA{)`H}Xl3oXY-iOq%zpvb>6Q4n1O@tp z-0#<4Js8ZCS#~ix$}ejS?u+;X>=uhUF;i;k3GX4%au&7r3Kc?jgp8gezCdRdG=|M` zsq=pXLl=L@ZW|l0<-?G_qwHC?9sRaK$)oaNCbSvAhWRdC+z4w z2s_gH(L5k&Cd`m_(_@LIyGD?NRc3+#^R6P)KN3L73;H?HRa^zr1A_z^XU!`wSjc?j_Wh~2 z+JcQBhzuXamRTm|hQ;1(UTueOGagobrF#7@=LXD2Po+gf$L1p^e3qIpfAk>Qg@E{wWeir^%O+E z-#{ZNND3ul9J18&Vs2N!E~%LEuavPYF}xlQIHwmeQ_g_k^sj9>_EHqKeNA-p+0^O; zWTy>REY~?iDW&-NW#kIw;I6^$SZ8W;EcP2D%@1FsEgD>D~7oXA_#LY|oZe-Mq1#LYYD9-eMa<78lh3 z_Y;cbGkoOgt^}m}1g=!|IGC|q#Q6j;XaXH0cY#h6)fs(D0o1@>@NIW={B?A{ZL@ub z!wGCl*QEYUo2=9a0#__V6OlbnQI5nI%f+L{hrLyuQ!?=6y7UuCLDy`AtH~cFaH8OF z8<9%Q^bqT_(>446BMBH`_Sw`T^6xlk^{?ZZeteDz-IZ3HQ-)21}TR-lCiOF_y1i)zxJMgyx|sY4aH&3CDDdjPG8yzz_B?)sH(s3=HAm*OAtHJctl)A0dbY1ji>!EA)I#qFT3k zkVo5DdT;e28kL%-$#>I57<@tx4Hyg(VfwrumAcGGVOb7$X%q6nL<&j=6#!&_zU{PS{TKwnU^RLOZ zLEgSFz*7$FabwiZe1%{+(7>l!S~cSC=>qgv1RK;eeC>mtzoy+#Yv?Nh>Pfn{#4s%5i&ijB-fZprNQ>XTWr# z>khzeSbLMeio+f0nhftrQ4UZHVDvP{6a)w-EkE#Hehul5y64Rt=sjf|Ih$D4n~!n? zn_n*=?(=zx_HH_xF8IaE=e|FeH}b2ck2qclIVtyj@2tjQxQJa>&v?Fr_ih5`yPiK7 zPJ2}gXocX{0Mi^V4#^9Cv; zAk_VdaiqT%l0GPkFy0wx`>~If=|IPU<}!V^aPHGyp0`j;P4SMq9vDQ&c*ebK-V+Ce zcD@ERn?Lg)P}OsL{=`gU@GsBOkmXs?w~J>bP@&nmlL{%znuAn{M^DS@nt)CX&!Wgr zU;6hB79wceN9FtX0CngZLx`eVbvY=Y`22u;gpaa}hoUCu1G@J+ zLE>V7eQN0>eq`xYDc?Zbt(T>O#xwh}3{GQsFM}C?Dpk^PCy)aJgc*_u6DrCjmr=4m zb9kV{2oaNbwF7i2lz&ZD3)+d8Ft@3T02=+S?Wl{wS2Op!Y7#KIG|Un&HA3wFqu~h6 z?p{ZJM@Csk{l*}pGB7khBp`rx!n*S(wXvw<;)~11)E9SwK8aqXLf%tHv~E}LdvhyD z!C$lesD)E|#eP%)t=rLHPA!xbP61q%71)k^ z03uQ}l{~w8T{Z;Ws2APRV(s>wX{1D7K*zr)eXou^CaP9G>Ra5?=<&V{c%Gge5F})@ zyOT$)cK)RL30&UUX6~9m>d+gtcc}bhKpkDKPALS7E2f7S^lh9@pG86@d=r4)FB|Tm ze_O@=X{1MPGgzjOZngIj6Ro%tq~I!?Kg8|vhU;W`zk2z$*PfQx*rK*M;hk>|O2`{3 zME-Rq?@V(nvuljDCP5^{NACq~ZGS~aS-a^l>kE;BFPYddNAP5(3iH?=3x zjUT*OCMjf@>W6Y8=M^As{=WZ#HqeCF0xseSx^};EC zT3qz|#o)Zj{oe&h%SL^aW}Km_TZrnIe!QKy-D_4p0*>x3UCAw+0&L6Hf@Ly%jE80^ywjVEgKH}`t~!=O?En0~>gjtLLEns7iF z07nCc2W0eK7Y_JYi#6Gh$K$Od?n(pgK(`*k7jX(;VQ>m>9M;!T03%N3Nw4Agxu%a3 zfsY2;8b~XcWudBs@63sUR=cx&6jw{J1N>1Q({nkOUl8*x`$LofG-yR$m|Ah+l9tm!B$e{Ml@P62kG#hr zC5#n%ij704p5&n9B_!tMu^iPx=B2ji)Y75NFh<*$O2uZI%KMl-*HBM=KF|4lu7B?P zv+cfiU-$L9f4}eV`~Awwgi@Gal?w*@O2YAZP}%3M>-1OT$pRFaLFe7(Wt$F}fcw1% zdF0{zoH*$veTQ7f2D+LISX4#8W`2bLn#eFn>>V5@3Y-ZSiKjOC^@GCV>J8=ZEvR&! zDgUv{ubcT>%qdi0r_l*R$~>5zC^E3WXcJ5H1`@}r{t`!&o7`ewpy~F_rQP=|h(|ov6P{%K|4y0VhRyHqSeCelxT^#e9QTC>@9?xwa zA-a?SXiiPg(f_z;F90hXa!ECB!;z4+nNO#8j>t9zlsujCU3bSe=9Ss^<7)M5#xd(& zCn`XK+~OFSjt!7wy`#ayN}MY*R^YGH|Db=@o@4Bl`U<7HAnR5NfzHY*M8-ZBEZnOy zpJ>O;be%zHe=HdX`tYMqM@_OeWlH=VWf_l92%7L0Si~r-u3A@~8ma=hv%OI@ezaZz zp+Ck+BP!Z-nq+CJvbJ`mol=2C{uw^kx%#&PKnt|l&}x#Utjf~qN<;mKw>o|{q70=D z=qQN$s?UHtTO+;iL3fbi)1SxQfI<|)0c_V*F>h}o!q!x6^3zuNBuA0f-O?%>ppP>QkoktrbnMS)FR{a(mJ^ z?V?td%93M^+2(ZbvR{i!~bRGI8$WxuE3umU=yfotqS zm2(>)5VX@1&h~YctmUIsL62F}<;Ic9OFyfj(Rz|&d}!EBFlq5kF5W?3w4q2{%@h1) zD_4apeuG0)o5j+FO&vn69O#Ws5;vN62vO)pDqRc;xGfR7AS+m1x3>7SC6xB~9YR{R z$2{RwzO$T0`2!6ff-bcnCD0@OD3oTLxwf~_&GK6Yf?@_}g&m!azE8MzB_RNU#}*Pq z;ucrtwD6O=%UgyXc^*Y7y~j?>cac0G0AaCn4kLe3T6Yx)^nfDGL370as#XfdEEXlv zL6+)~22>1zZeh%@*@?+GqaJ{EnleRF1`?YnJ6*^=%=Z^Ut$=~g%zz2sz#QKEELd^0 zL>!T0t zlIZ8!@q$y;d1ogS^=v~q(;=DWBrb?!59ae1n=vE2PW*S z--y`ydfWowWp3dg8IaP@(+*R()Y)spVhhG+Qbf@Solvlmc^Po`EDo&(Yg1HnL~oSaAL93s!}XGi+8)LQHC z)^(XU<^6E#%`IaD!9*ref9#GUoa%BL-!o9tPTYoZU|yso+fo*gTEeD%Rdl;=>l>R| z`qdm>3Dgk0sWyoY$10px_>6ft`@gyTp7Cdr$7!F_MoCDZCjp7vIb3aazl%ij`4Le# zZx9PK&q?NE*VdO-Xg;*WIkA@b69T2-uNsLiNPk28PE0|3j~j0n>n@~AY5B#r6;nfK z0>ISX!%S~+(qipEyI7Whp7xlkEEi=@qQHZ5?FL(~s{bF+NdG};<>w8c5Wd$ufkcqq z;n_`C7qX$^#pmbxLNgZA3HxYPSt6gbfL$|aoS79VV%tA01gAOZVL*)Tuu~BS=j$A*JyrQAaZy-%eW9Y(@<_TSNRrPs2 zT3FRs8#$g^=$}d4wmF4J<2dk~0VLOifB3GAtl37+KQr?psh5kC>9OGLW5t9TB*(0l z4lJZ9c(#;4Lq5&B5px;W@+-5QJv7qF0dq;N;62gcX$Hd$@dRFXOCP%6@YQ;}%z-(M zPOizCgd(FYnWr4x<{8>k4La1*V8-MKB>D!=ZXkpgNZc;4-G%1q*AY)U4fpM zjPyLr$TEYP&Gqg5eYYq8R2c&NhnX)9PQ483mo*y+}v4EO?E+uA*T)(P;6HnMQ8opSK&bM53yNhVNt>=y?o&Hm30 zPLDmB^>5&70)5XNZr%=UFkv$Q*rk|bR~*TL3B|hl5n;nGK-vr_f*m>H>yy`k@~!!U z#^662D-Q5jCjez6;LnF=5&A;co z?>X=J|L?kfuWMk$hi9I>_geRTuX`FG9+EypLqo%nk$&?Y4Gp~%4egG}9~j^# z_nhbPz&8PB2@PjuJ5y&j14k3IcLvV()^^U;7KTq}VqjI7lg3|w9i~1Jio&|~h=eO}>2A_8q{_B2*l#F_`|GOOTFu|kYPU_wV0xlb;FnM6Um!QTw)@K|}Nny!+3W-#F_(G8isrF60_; zWdB|uUJ%V%TE|f3JFj7hEp$_ANCV8?J3!YXN9*MOJ`Zx`Stppt%KAE&&lQAD zKBX_1kO}hpM}WDlZTO7n!NEaZL4n}*p4jcx;Vfi1Ovws1@-fu?e+Sl!JrKvToEaf% zxHD6&QLI)_P+(uL!>m*HZGg2g^z7`6(jtCxtJ|FWq_4#jYxLm7Kamkm@>W(BIyl&6 zS$+3gVj@)Au317x<^g>ggc|iiYh)yAGu+Cw5 zs>X&4ZG3z@#bYyHE{Qv6tF)C;RTUi}a60Rh$Z7KM{QO+__?Pmh)u5oDt8Zo4`ym%EL-{N&9KE&jD2kq&*)*}=Fd|2$hKxmM#{ex}wTn1aZ$ z%5K9Jt7Pbtb|`)NV22-8{rOt5`+hs7W`*&C#Kgpp_AK%W3cXv$oObiVyw+1~XUOF{ z&mfZ}x&uZLB0blq2pAVkxKsb;fY=n4Hk5vQWhQ!aw)|)0#dakuDlJW3Ru*e4=iTzv zA&ma{^Dj9$bUon|1G;W=5*8MWVmHVL%}P@oMn=XI$WjnkE@MG&PVIA+Ql*v4R8?~G zBM=$?#HS1y4IN#D=@4m}$0lP%MTJJ4{WF-@tykgkJY*RMwS8GK(Nj(CT-r6(54>FG z-PiB1oAeW$?9O4ejb_W%Z&wVU@h^vRNrOi!y4~-@)wX{KbhV9@q{@`H)zBh zWZcKkpYQgBk@aG+HT`*To+jd1cYAZGS#3#ZVPT=;&`tQvM3+0>D03vRcliNxM9iz& zva)XyAw=cY)0|7o%Zv;Re^?KgR{C|-_cIUfjAh2DODOp>1Rv;2D9vv|UEg3uziKa} z^bq+EAOY|g<+4V!h3|cqv-X~n7FOm zaEd_FK|d3k*TqKeuZfAfiu(ErT3Vz?B+?pQ6Sg`KFLiYjO2WkeprfIIv=%;;Y}ewR zC3c**T*guwoFR;r@<1i8Kv1pLOLX6^?GNG1f=zE58*$a~xwdhs5C{(`VN-$1KL99G zWLOKY-^fYMD=h3Z=H#%RVn>~tp7*gT5wpfiM2j~nzM|>gQG+yiChpH}HBlsPdm1jZ zyAUPIYH+Xu9ZVI92M2SP-S@^T4YKs0CxQyr7x_F3(3`q-Uq%>uD#YgsW`L7|e-ThR$ZWq^d;lybPWHJ_Cl@o%p9;x0?-;>)xu4KfFDi zf3JG{S$xN7^H=`n=6E4)Ve?$O%qek{iR1nS%b{ljW0X-!N5^Xr2ObS1ctHSrIX?Xt zd%sxEHN=i&N}W1$h0BnVkpV>8+%UZt=*-FxTp_7Co*y|OW<5|?P#{Yv0maf5rkL8O z&C6iuw`vn8D3}i^8>Jk7k_|8W9~n457?Gcf!6N_J%!XlFRb7$6K+-1CMkAqgvp`(G zxTS-sgZV8wTHL_EK!uF_9XSh2S7I~AoFugT)0}NQ0Cl>5!@I$^n3$NC*7;eUNRMU? zmu-qiQn@7|<{^{P8|5=q5(NcXI9El@I0Xe41p5Sk)Glhc)=JNvu>=pW>b|BC33q-M z)%EZ|C#LJ}f$(2nuq#})CK4QVMdAW^Y7LTyCi1mvMuvHHu(5wO@8QP0ai`)48Tq~t zYw|BTquG3;-BfbdpDCDALx}*(o@4)2%<1FGgs_K{s;2j%|H+*wbEheAMltH2OxmO+ zl!6H*>a|o=aqXY)3zQK;Kx_?-SXgdX!aXouf~fut1wktyEW5!L$LAHysH>`078G2o zs$Q4+p3@f;ge$7L0CYcnQ<`5Mp;W%Wt9J5l6cPHr#DMl+W)NLD?VJ<>`I28)xb?Fo z-S@^F;7kI)12sOq{0hC;In?0Vzx8^@F5tL%Uao4+Kf=QLsNE>)e_Rx#8popDBSq!i zHB)UhU1oqDLd0U&h89_~Zr{B{pYHYA($X>j4nXDgM6q^ngUc2K*-b2TO}4P#RoJ^M zP~_eH@O_hHBqSSG)QE+(w6GK5;5m1ulDI1Kx6;^n^#7t4nO2``$k}25fY8M*e1#S8 zy0_p@X8QpIHef%eUJ5s~H#%%=Y!L+oFVOV7kP@gw`uYIB?&@GbXtu=n<}h6@nKul% z+>3c~-+s4#ofBZ@!Qr9%W_~VO-A)bM+`__OsVhjwVGt~6X+72L zuA-u18`bTZ)Y@?Bz;cAxa1xJIf{+`la*o_$)tG!{RTcMsBOs_wz#8>uOCh-HKV1bz zSYw^!@Jo;GsGRU^n`z9H@lIMf^Bm0Pte+Xf=*g?7x(v&{CC3aD`Bd_=>~Yf>zk8`f ztx6H~ci4nei#Fr*^GdoUd-t?|zMQ!_`=zX~TGF^{*cJFV#p?iyV(EIPb;rXYzQctt zxE01wJWejIJBxZLX=&k;TPE{O?$%Rf&z3w$llkn{(mZz;8~0kCb8$r{B_##gK(3D` z&rjfXcg|MXd}VBHStTSSigfDnR8<8ow<|RpoEe?g1{bHz(rHCRQsd%?a^5BPoUfl3*9$+TJhUd!cF zr5UbTVRa|#&$%#yQYD&^DO};QQUm?uB^SGEy^`AlkGIKh1%BKXZ6O$#^XtCK&}y@7v>Asc0Pw>E#T~4 z4k=?GriyAz@@>PJdOs|3ssmoL@;0rF-u9rJxk|nOg^`t3}~ubm9W+EdOmg`w>+ur`_4zwhwu9C-!zy-X3_h4CiY2~BtUBh z28Iu_bq-DY9azO(TmP4W`N_jwYYPiD4M@^eR9A6*&(J6JeZBh*0M-++Xmx@82#kox z{r>%_A(vy6+IU?ddzp0`VsJ&zKDOQ*ms-y^kwi1r ztYm}&i9nQz)15ewbingi>~^4{RdKIq9jcsWO{;TfX$Z+oUj6NK*c;@@+4IItSLAYp z@1U64^%v9AALzaR)4P{|)l)MvGTJTy^m3U0e2Nwo6=iO1eee5^AD_N{z4!k8dj>YP z^)Ur8951QXv^4j_HDnK&ouaNT&d(gUJ%4VhD=AF$lG(M9;^P-g-1kaKue`lQfClO6 z?X9$d^Tx61Q=WxSTleg^qN9jKLgGFUocyWsq8AK~=fjJg0m_=1B!8CL)+P@n^DQ5q z^V=_=p|tDmS+5u%bgU}cxIh-hxdEBeiSJWRn%XVF-aIbYZxwL7YVs}dWgjswuF3Fm zz3^6PgmaJ$>Tqu24U;?4-RfQ1>CGJAg`Bdj!MJV*k@dZ9$kK2Bq_y6*s}SFuGro(9 zOM)DoKMom@^jGIOm&x)E?RPIub_SwoWfQn9@PGiuCgJ=F0{ni>rU-Cl z;h_EkKpAwypOABHMo2Bwk5hA3*A? z$5wG_f7+}rLqWlbGnwGvuYBe4@j`W=4Q9H0+$e83Ls!CP@rH-bu}%lY*!HKx^ym5- z`dz$yZq{iM@CB>qcvh|I4ljkK;brk5QhI}>xi_TAP@LKISXe+4{@yT^ra>|C zy?-&Xnq&m!+}IF5orSeE4I^WIZt~-&qxIhz`bkw)b0xL(8*ro|iHz`!$VFAg+g|nN zv>mXFYo9foS^03T(WerXpeZ}%>`zSFIh-d9xZ7M>=^P+w3C4*iE<*lSlRCyc?Y1It zNQ&xvue~qeC@_UbP^wVm`Mkp`mEiOf{u8rH2jwUm& z|LZ1o(nwN?lpLD(F?7Q3#PjS4M}AuxYY*|pk!y6UX0p*k9arcsrt2%+FSlzG=iLN- zwUK;2wMTB8iP3)p8nwV?B!CP4chIb#UvnMEMTNZ@)|JzAZfSzn-mp?QS^PSQCW(g{ z9a1jGL2LKBTiEK3qGhKi%h)X8@qdRGO_YXs@Fc?$Cw+7g_oCBElqqSKe*A5$#3eCm z6J%;=q+IlaGwhG+3f-?(dh;#wm%xH@_Fo#PoId-fxT7im3^2OOM4pahu|r5?L+gU> z$VC2DKu73ih84b!ybfPK=F&HNIf`bh<%JKk_LA&rfBSa@6P5XhQ7B}XXN`5vuC>dj$@xMyMfA-1ruhVMwb3ZHc+$}5oc{NA%Gl9zaFpjJ zqgBm?GnLeRuATQN?1a}J4hunthD-oS%cbx~!fhLi$83OtSuXFT+&VgK!2i#O-hH~H z=lues`(p;fT!mfXNWVAzY%h%dDh1coyUj&kPpY}HMf-&1@1>FtK!nrMZ0~~4U;=4m zG}qvQB9YXao5f)D(n_Z#FWI92y7D|=%;D+Y+Fo|18?O2 zd2r0>YAfQyb(mRy3}cFY#{*Dv;C#dtyZT1LWy%h6R$lbnxPM^aj=@e7s7LuhfqM>B z@aaf(n}@2Z>q@+Obw}JE8^t=0tS^CnGXb{&>gEvSxZn2aWa|x2G`)f;;B^%>wHnLG z|D!^x#9KiLdjLn=#955xZ~#6^^E!}01Aue5He>|SKa`9w{1o9!^%3k|m~Nvhhr`kv zpG!F6y@p0#qFEZr)O;ALxmnMZc+? zlQ!Po|0tgGAv>S3AFj0l8-cY?A1qW~u#~>VXAya-$Af~y`k?wNMP9myd$M6pNl=A>*lSJ#&7_{p8-Tyf-2Pqh_^}z(hya7 zAFK{25%`&NGEmH~ax1oRhGY;W%$>QMPFzddaimLKxW#fKMP4$5?s(#U*j6Hcs z7$};o+}yFz(T*yMF@9i%K>PZ>=jR7Oqv;RZ&~fc2b={Ehtyg|P(Q^N!16AQWzPYZ; zy;cP^H6kEw1X0KfsK&bRoQK;`$FVl!wpRu7gFbcVMw$Gdl^Uq7e`iR{}8ul(s{? z4xj`6vSIM3?{su@7OqLmQa+7ac3W0QrKY}fcNe(6JYE04a_Ce0hYvt^q3O6zo20nS zyFc5RY4H|H=CxUhQI@~+m8aSc(el{0v$%Gi)Nrn8;WO4$nSuCI*P51=G*tLm{$jWR zWLx39@g5rk9TS%lTO(TN%fv3I(<^~wGaX90|8Zb-2?XAA0Ra-QVLX#Mo#4qH8+ME6 zWI@8HMO)$a6{BwwJ3Do$Z0>y6^ENw@_QasUS?Ipc=Gd7*R_Bf!x^kJ&7qI%RDKbhV z11sBoNue%U8wImX6qm0k&Q1PrDB^W2YDhQUO@~Q=(xq)PZ#^g3c1gYUg3v78n-`oH zDz-ks@bK_nPgH9ae{%oJ-T3kUH8$E7?cZ2SL0ZUFRiQAL*>r_T>dm`?f`h*25%x0{ zx%cCEczFQ>mnv#%LP7R|&|Fzvm9UP08h5N8-k%RB&AfI60(><_8FDu<&St(1Qf4b0B!py@$=9C~kD zTzHI*jskUP2CuPU)^8EsPlT;wX-M9lw%&4ho@{^H3nv$d>hJIW2ytng1ER2A{8D76 zY77G8qC=wuVHAas>(5`m-T);rJw2T;WE#h;+0o)nEhYc{Js$8uKkea?atE?#*DN>- z=9iYP7nZgJ*QF8W zcNu9vz*74yJ>9qOTF+^S2UT4H+{r9>p{c3abTlf9DmhbJCN$+z1!IHo={Z4CpaJ(c z0l9;ExA*_a1XGm-+(G;0zI*C~nHUVEyI9|t5rfvLUw{edS_+n1O z0+<1vp9%`D08nlIatQgFQLy>gE~_y?(50Zk<9IX8Rx;VE!IBJ1G_75KE*`1Bw}B@2 zJH6wQZ&a<(tRDW0}#6cP=GRG`Ktf-+O4H!yYq&2u3{-Vx$ z?d7hhn~nmXtRr?tY6zZ;0yRurhWRP1^Qm^Nt;x~v5#Z4qMFFD@$a>%|-Jwp!3eG4} zQgyM+I?i6@2~LoE{RinE7yhTl6N~nt7|&~Ab*bFiq(FP!4d`u0$e)p!eyPt*rrV%C zxnwEzEKKtJ=MeFrkbe zqReb?iy%(XbW(e=d2N>e8Sc$wiDitz386`=Jimi?0-p^OrZM&EL8;8HB55(>?8lap z&5>0{&e1eVIitH>8_38+^VJW!SS%$|z$N=H<41*~v?IsGoc}Tby?6{Bh8bN~3@A;2 zaQxaB-Wp;;J8*WMkv_H(H&LG%G-FDPR_Sl@y`ZeQ3Hc`?(A!mw+j0D`5aK<4lVdL3BDS1atsm)x@`G;6(OIIb835i%UTJT$TZ}p4tpaG+fjST@yT)yOR zl9t4+eQ^R=DWvXM%dua|+fK9nt1l+_Y1-O!f1&-aSnlZP;N7Y|!B|oBA>be(Xlf8A zwZo(4ja$|`9vn^`0?IryEB`B#SZh>8PDPq+)XE=am)%yMyWgY}kg2+w;nx1{6Hpu* zM2d5PXPMG@j~E-;;8feqH&B!m*1tV@gXXF>$_uDXve59IR~w7VUpxt>FP` z8=xQBa)q)SFrI07Dv!o)c;_DeVpLEXd*7)bcFl-M`Un-T0YRqj@2Zld!?~0ZOS_9i z6eI-&?{(lEZATEv6B$D*&AnQh+U|)8jGon;pM2etpSu~lt?o@w<@IhUYu2`g>&70O z{UsV4ng5Dz5^3JTxwtj1NMM?R^HNY!p#72iOesJqBD12 zMh^@$VYaLVTvvN*!KI^BURO~5fNxwv}4t7f~sK_?^lX>NnA{e>kiJ$w*N z?tF{-VXgX+apj}rY@rwBPjKW0WHWuWghf?`{f~PQHF?!zluXCp#T;=LJ4;@rI?2jO1yq7>7@+)t`bVFFM=Jl zJ>kFz1|G2(I_upWN?UEi`{@ce9dUfPhT+_S>Y%@pZyt(?IBG}g_BzmHA- z@<(p+M6oqPiIJ0xNNMpbmGn?3`T0`rDLvb5irxl8h7;Giuk3iAu9~#o3?#s?Q^mU z(@?7@LM;T%H8B%Jo=ftRc0M>N=c@@+J;GKiyY} z*fr31Q3mmcikK+Y)xQjS*-uGj-D96p3kr7CRLAc(VWfb@k)*0B4BJ!nto9J_aW8s2 z>TvvCks!an5zVslbmxpr`AVK9v?G8)hr7~KYP+(9u78Tk-|x_kXCwOh`~s{RW_3kB zPJ<%lyimd=?6rG1D#cgwdYpf&3QDkkKeb`{ zZ&T)eoBKz?v#cRv3q zptSM`O(sSR5+&3I zqaDUiycrV0z>Gbw-b*4uXA?i!i$pQ6OcPdKa-)gw|E;I(qfE71Cbpr-bfs%rY(w7V#Mq@}26e^$JOK|VlD zHR_G?3d!!;?{Ej}y`6E16>IC+Cb6(Ol3YOC@eKK!3UyKj1VluJWo>PuPyzzEoRaD8 zy*Qr-FEe|ki@-{`Z5aFrtpwaBoO_P&Su@aieL|kKzkbzzL}{ygG^IHbcp8$O!tH{6 zKl&0g?v&AL0eOu0#%WJ*AK%Hd%r7+;Yek7~%fDw=~XMuq*$?AG=9*wgp(I>T)Aw|L^1 zK8;zIKwqHScFNRz7_`dl6ptPg|6F}NfY^#)nbkDFZL$P|D>xW(822-ko=uw?N}E!P zSK;8Htf0o_tkHg-R z`wLl00)tm@^%x$0h{d$%e^eZ7#du zZIX$fu3&P$YgrLpjE%LGcY?7b=WtcHpg-GqpqDmx#7sCuIO}qyn-I1p?yEVvTG#ZV zdWbdZYT7@{z;@FF=aIi@P+fm82Ie%BSBH`+-HtW0Xue%YjNDk=k0QP#+)}rQS+p;zz%FCL+oZUKwRwB&0|j zyVLtn;>M!{Y~kxT?RS!N*wU-9gqQWsJ>T_2&Rl39O`>YsC5wX(u4i=2=6{p#UMbGn z@lh6u6?AR2Y|<5MQ$HKGI2X9HSb%J`GP4Ih!I`0~fSXTQBAh6+!*o~IcI_{5QPpb@ z0-Er8_aA+e&>zgOXsfi z8&kehpN6p6U;Oiz-ON76J%Tkc-0W_~M5{QDD)5R!_tN_rjU1nRqfAa^%WUu4;j*Qt z7YzvTg(URHy`@aJL}Q$YNwb~dfSuA(rchGlhC&}O4-5p-bB*+GdRG@ss}KAvdK0%( zuojgY&t>u91t{e5tcdQwjhv$E9n~m1EAUC;Qu}^xcfBm0vfoV7-Daq*w6wz+a8o~= zNHWyZsfl<~7=$ln!X?&^k{wN;{Ow@n{}bFZuzOG^dY*c2$|(Tlg-UDbI;ejl;3uoVxvU}W`HUhkf-+@3p4 zY!|M^a0qC~N%fv9WmPt%3+5;k!UBwG9nT%Upf(%k+ZvxJ&Y2)qbL{cgULUDFYUIl= z*rc^#zWvG@#YTbk#+l4@+I`EccWmW={brbr!Op(SF+%#6S6PW);;E0{$ai)ldqD(| zYGkyvk(&wrUNO_+ZbYqp&zTR1eDkLhY;lSNepbEuvguz%XOY(wI#(mz!j7ZQv1Q37 z#@-2;G8Ve+&&%_jUq_*5o1i@eNmNk4xz}Fm?sR;IHA(OzeG3sZ!e>gq_o#j2YN^Wr zTQ0&((ZefH(K_N61PhQSX3O5e*_n?zAqei}kfBwtx|Vx|(6*GvnkfP;Y~a{}7=~vu zvr1^YOrAWY*VLdY+#U{O&1#O!a1`q70ND*>pWz$V_oXl$9~$x^{Om{!ijE{p9ula0 z#lg0lCquE_B61+dS?aJMW{CD!7yn5t+ z>OJMIw1=C=Z+-^~k)c;s2ACZzRd}NTdAeSk8`hPJ$Kh}D(nHu+gFPu7M$yw55&}7C z6k(oI>ee3~Uhh(x);+;`6#qaIAF>lVSy#QUW~=Fl#V1$yX{%R1V&tii++25(HxKiS zR{QG!_VgRg`ycl2(M)2^M72G}5TA^~arv z-{0tYFRG*ex?-s7bGf&Gr=b`Spb@`sE@uj^LpP(lbk|n`m?xP_SDVXhZD<}%R4>?H zKAHDlCHyej#;vF8{_!2{F~FS}@34@^Z#T8rNeL>VA5k1$PCE4%a*#sS1HSyKt&<7b znnRuqu_}?8Nt<>&n;&wmmY{TFCeyHU`3V>$djf#%)Nhhz?y{v^Dsac{-?|M$<2^w@;>TvHl$9aPqU# z-RpW;=W?|=hKGV8E@Hl|wS}3QYovqm%gkYpn|`zJ|;yaba@2fxWHqQy(2 zXSof$;re5XYnjr^i6h%Q{I#|{F?BcXGP zC&>ARFIOj3^Xj6e;tmvMViy!>X5o9Xw^iY^`(#P6edxsU3%a+*S;(GE!+8zeK`O*t z-z7mXvqP)&3$>0?|1yq2z}ObTHmX+h+l%?bH-e{L#@OQ z3b(SkFep4$pLCe=a{5~9?~2$7C*L@d!t@2g(#iS$$jo5p=K{5G+sdoR%7O6B z|G@NP-r)WnV>&IFFuPW@-L5-eAuF<MqS!sfld)^xJ=*u(vs;?9E7{w~ zaSoIsCPv2NMwH*Bj!Jj~`j7Y{HgymemD3*#55?G?^eo5Aqjt2_%SLyw;m@_~739GN zo73Fc)|oRbH|20%z^mzUIlho-k}*^KM=yiPf;VrNqKAidTh?RF!_!Qn4^gV)4Ce2%3a>q~4K1uiHt6 z*Ik4ZPV2Bp?Pqj%>L1G&T6vm7lV_YlsK(ex;wPmRPx{+9b9)DdgXdS@ZXf4w7nN}d z3vGPc(vrjQH=(C+ikrl2nR=COOr}0eIh()782lQcvS_)jEKxi)-;veo11)62WoPB{ zi>-wTZCfvZytwh~=ALg^jh;N7cz#A;m+PT79 zRsaP*OSy3lx9jlwt5zn+TJoG%Yhi)Z3?a*`9@VX8MfCmK8~?GJ>KNh{glx80v@`SA zZ~Ntwiz!tLv7`Rxk9%%vN;Z3m%QvfW-~TA8Xteh*bo=>xry4WSW+>Jq8oSz9IITS=XKP9Rg$qA{n?1I?o-vDF&}S5v@^)sPn$Lj_dWK}bH!G7_;qG1^ zh%R>CURr;=^7!gtWpTvTP$l2a6?4r=d08;V;9SwXe0SMVS))GJAG2k4#4@!w8wVIt z3w|b-bAP5Rjo>FQyMFUIb7WDh>g+w+G@fAEAa0{9F4c0Wm*X=*B zyxgomX!z2j*YKl}-;POG%E`~sZzgVDWr;$fQ-j2{!w@*}6 zTYC23Nq&h8k3zf?l#Nm_K@)s-lRCfn&UPWIJ7HPzico3-C*Azc2( z?B4c*#PSqv2r+n%S#rO5&;sifc*v#-Loq)%Q({tlkAyPj8iAlM&oo~4`_AcAT=O*`**I_e(yhOl2ny+T_XH#WO z!fo*sti6EK-Q(j7D#3Eo+-6-zE+>!+e zwELs=S0{~TRGmpbi;nQ7VH)B}*lrJ!eCpN$Yx;Cp2l>@4x5p)tBLOK=L~O66R(Gce zal{{eofpFMpjk1Y+h2TFY3>Yp5*hs!mWy#OsB@=#=eRtxDblhrBv_LEvLHFn*0H>{ zAc%z)$E&`cT>WdpG)*$&Q)4bXW@8$yYh|pB2XPB#K}4g=ED4Xsk{ZFK9(upGzOq_;vnv7{C`D+%h_(CeJ+&L}`INPMMakCn zQ@+E9!(Ofoh4(7=mMe6}i{|tP#KaIj8i>iR<1|l&JwjLr{vMn4>0zv=B`WU=O>sn* zUd1NS5zFx6AG7Q}7i>LM<3SekY0(qRXd0NA`H5^U9ap}~2Dq?-&?hwDA+h)H!iK*6 zV6JAE8&zE$K&Ny3i@QFfVn=*YSykT0e&dIFsKd>*s!}OFs)mT5ybM3?J{FlHfIj{! zNon;6@8dbO%~w~;6U&peF)^JWPZerGyoomVcvmUBrm{`;A)5?uj8m^^=^zuD|1feR zu|m7<&>o1T!4A1IjkKXB6_{}MKK3EE)&C`x<4NYNy!1PndhIw>GD6u3Rk&P$ss5}53f!=H7iTwmi;N4Cni$~U5P~NvH6?6 zN_Y@mTcRZL>JJHOsgH51hvQaeQR&IEriNv^h6<|6OrMGVp=9? z)-)y|nyY^dx%i&eoNW(R_OSD?r2@cDok#4x6=FL1wIATdOX;X9@rkA|2qPe%h=vJ= z#Wux&Xu1MJipdQOY%rGC1U;x-YA_`RS35(lpZQ*Wy<|&iyRR&`Te5SQk8)dkz8r&A z)57792{uf|P+Jq7K4REFT8;Y4=(2#37vhmNY;w1BwW+to&Mh@QZf7+V3{^q)tDqYO ztMjBcH`6CCqd0ebTL9-mrOV3JZsi3sytfN&mu7Fhh>?|c!3Ch1(f5s&RZMNqT1bzZ zs8|2M_L6_;K!bFDi(&j-NnpqL@-fB9LS>d27((5AQ->Di_`TeUtBM5Yp|7YDHdeaU z@EAzPHTQA~7@@qR4hEk>OX3#24vg5dbzz9Y&hd8h(*46Ry4-N$;8oLk3g>SE&ZY2q zc@Hxr#Jg$#TGSL<-b}7_CCyg8wEKf%pL~T2L(b22<$Nm#<*}8l{@sims6@3cm>tTR z+0Dr7kguL237oWw5QXyE3Oi`z8l~o(>&~*edkDaEIl}PaP&#3X#tS#60EY=QtL&F$I;Cq8q3=SrCZ5y@iA@c{t;AVgXI|2|6-qdOk`;Y) zIZ=o@1f&#S^M&~L8+(2?pSt^~M#b{3Q*RWWoB84%@&aOvluy%Y5XwmA{Mc>YwtDQa z)W^KUEGa***O|})1u6AA8BZz%K5&TGTOD9oRXLB|nLU^hq}1V$1P`L3YO<0p`kZ!N z&LlH>YYp2#+VrjoA!QFYKffY8^p%oySZx_#SbWT^_j4;<#_ZqXBVXE7hJ3m?WY%I` zZFP4N38|@hM6sDp)cZXY(gN3<+pMH-nePrvdDC;MAhL3T(9|Am*)#=-{MfGY88{enH2Eb>5!NMY|3M;t&$H(nwmj8j zKrfb?!^p2YM=}Bj_o(K=Ky_F2!^~mgXXTV~YXI!Tr^n1wbUBUi)PAqulO$OnPV?H7 zgUOA^h^xntn>@{Ldii){VP6rk1T1t3?+~GVOLK>@rIRK5OM7$W2;y9Lh{F9Z)H=JN z!Jmh$p9&1iy-gAL_NVy=NnxPY8iW~tW)u^W7g;Ud4wH{%Uq;^JctS9W|CQE71G6fl zcPq1Inu4JI9V;n?Evc4pmv(4gLBG551yx)(8xyp@GhS}##Es8!^{^0SGRdGTZzSUd z+%=}xR#KEMOHx!qUZ{8#1iw;ZC&7M#^RS>G<8JV6EeYZM%vbFn6xkU*C=w9d{`$`F z1m^?y6ZRJmF}^(E9&0h;Hs4}MxPpTpyt9p^%cWm&+94fPROPX^nND45m{p$}6rr-i z>3VsyQunGjDuw(J@FaQX-CuzJu|qent&XQr(tYS%Qy=QX$ZMHAmm-u;1^RQ!hogWb z-^9*AtD2mF)$Bm@oa6yfljw1o)J|deU>lB< zu2pP&5D{Y9o;|o|2;B0iYx!DzX(_-X79cci3HLj?cEQxFuBH3N&x8lWt;1EB9376d z$#7s1FD5Q1HOcwXxI-nh`|Fp#3>8f&ccxNVuWh8uWf!%78rZ_3F>$xt*!}p_$9C&I z*k(LtI+d>axDOl|)Js;C(M7; z`In&30r2vhJa({`Sm?Y&W7%qAkX@6F=%1a;{Ql~|sn({;sl7L5noRPpW}a4SkCt`2 zKido^CHToH<=ZOz$LgM|T6B7{oOnpGtQq!er4Q=asgRH$b@lDsa{S}vYW}HkkU

zH5HO?x3s4ebzsj!LS~N4N4S74hO8!$43fr8FJ4=m#$l!FOsu_>JG;>3`QSWngizKY zb5;;#(eL6@=Mi)-vR9WI*Ams3?8qg9hr?LIe$=>r#p!lwsLeGbK~M{l_QzlFQq_R_?BK}uPA`+<{neJKYXBJmTl$bJFY{@vm`G1qt*5hI@gVs z1}wlY1x$t`EfQXC`$D{GHg6FpYN@96V%YiJ_lHtkMfI3NkWLS=Ij7(x5UCClvP1r01J6QRvRV?-m&) z-=}(4zc?TLs@gxc!_sm|!}@CsJ8<)crW^|N%hh$IjSBBW;`JKA(sF+~uRCAAVkASQ zGsp1%BqME27YinP=r8GV3%adSxQPI7hlI^KuAFadQc4qUc9Y7#Wp=*rII``q*;)MwWpNzst)Hn$csO6jaux07;V{ zx!OUCeD#GRUy(dO)q&0Fwph$m2r)mt5;4{;TKAzA(j;9yz%$7P(?LKGd>L5owB)Qn zeh>k2k7O8~JD>N3%+}8vU(Xro5)lLGMu!`%=|o!ii)r<_u4{ekh$jO$_m(Vq;;t8I zE^@jSPcHT^RP^*(BJM9=jM7iLPNh9L9zyi?{QLE+H%2nv3oHf!zI$ism9QMOaR23Pzyyc{D~& zwLstK*qPUh$)>ubZa6i){53qH2f0krE8j5y3Z+~3Ju6#&vqu&jDNGVdF+2qY@?mF* z1f?U{2P5aksw`g~A1+EMyw-W)bsP9+St}eJshd8uyO(aWjO@^Dx;$J?S*3C z4Q5@iWHBPw7A_%N`3^);%iss`VALX2{^Rmt{x9xEelS}Dh!dEim9D-lWVjQ{$N4}n zFVJ&gmfO#?<#j!`W3l6ET@Rg4540kvR zHATD&f_s^m%Y&(V##Cb4zK14Yun>u=GM}Ee6&9R%8H&wZP^N3F9p^)?5tDXSm*J_{ zl$>w8)>P5q`xmWDq-=D@EVfbBbZ<8)G(s^PmHm=`!?66LMkF}YhFEdsYa_rZ8FG+l z_+iTlB zvhT%A25arONm}~`BfM{lJ77H2qLrj;gPS7pNMW@JS`T`>`BtunHHa`iJOsiOFEMC>H=Topm2Iz7sL#d#*~XW~ABqB`;_+_g zc{PVVkM0??Z{x;)=#)xz$f_%t8K-A`+Yc6Ns*EhHRaac9?GUN5rw0ACDJ9$W8@8It z@;b_ZUbyY=EW1v^tw$Ihw5jB*Wjg^%)@TqvdM^JY4T|vL4!;zg>&Z=ii_AAQ_M6~FP-=wu>bA9op0$Z`XYf2NDR=?k43yF+F)?XZggc*nox({M0Hi&bFiOmg z+g$=}AEVWs!!jY^l%uvu9Zv73Sh?NuYj!BiE~~69$QM8L2hh>Gzx^gjM=zWz>9N!5 zQ3e?QK(!`8Q2Ij5p4;j8l8<4!DfsVnz6zeS%~}%6jn+M<2o<4Xg{U#lo{9+9zHFlM z^og$pE-U-qr`MouG~epr8ekY1PEb23^=0_DW_Zs>8z6g&fXc^*uSlx`{pk@uGa0^F zABMbZt^1`n;~7%#N4h89pQ1gDsEWNl(dBOVk~soq@j*Su!S4R_OB801`smXOx|43> z-&zBb)pOAG2b)&%ePI5HrZj=LvOQ2cR{#vK4l39jlk=% zrTsG%fQg*=EWk<2>Pnv0pOe%2><9QG%7$)qiDf&_e5D9^ZST>9J+SNT!bL{W(d`Ku z^D2ZWv;5oOy%u1hjC7jxEI9kG(>Pvk7-ht1{9HbE*ldlf!E*-oO^$v6&X){DC9MuV zT2Y{;vqv^^GTNb_Au**h+SVs3qw!8sZMWF;wXafIcJ~hOh&ue2Jb-6p?&zLp^<1yw zxsI?6S}*Rv%Jzc*`N6fre6PyNU|?>STiV$KoJOX7c*Zo+-(i6cdfKp0Nv5D7pPg0W z2P%3nZHMeQz3h8i@qT3CJ9HHXTd%r%+aU1@2)vXTf2_+~GTHjY*lG$}BmN`^#WsXw zJe_MrAB!GLfRTclFyGcuNej_29pO)>MLNbOkX7{FEJ2t(cCti>mHp#)cLQ^1$^{KP zuSy6`a0N`oOc2-D!v1%Lg_FSLt&&xQ0`fppg$p;@|wKLix&-{d*9^xd^I9fM!uVmeV3a5)}s99x*w)w`}gI= z4C01tio%nL{bewOkYmTGpeI@_jw~%G7+pDdZ{(%~-+uVVut(~jIAOTQe>|Jn&d5(4 zaryIko=p(!7o>HS%ga5*k0v>Pj9NiewLf`aTCFl{hX+2bSsU$*b2){mOQ&-yb23uI zHtsPQrEkF%cpz{j^IKfr>k)WoJjE$pnG)!w%=vt0ES(xH&vE=x(+6 zk!7>imPtC~ZhPt}eDz|dX?(0pf>O*+Qe5-c{I`_?T5*ED&VxZ1sc=(W{i^JgcFhOd zrM9M^R~luV!@9vf&RY-q`aG>?>3_bT9HbmPb_&4QEuV4!jl57?{1!(T01ufq|6cS8 za_9eH>MEn6?82?2bbo?$cXtU2(p}O+N)6rJodPl-A>A=_4k9HYA~_7*A>Cc~^{#c- zxdR^}+>w0+7~^caemk&#T}k=JQoe#XCnf1VM$vDRTLzGrN5cfkdQL(2Z) zQ4>MwU-(%MKMj4*)4M_lZk$#E6obg#FPMQkx>4`Kno+S=j%&6LFdu;$(tx)WA87QA zGrmj$X&)FyWCLI5Uq5j3R0(T$ysjpn{ zE)@FqQOj8j+V2+|a;55A1~&NjzYSifC0Y5Dc8?CI13)x@5~-)8{C>}2Q!E4Uq8wmf zn9F12V`2aXifP7G?AO;i9*Mb9PK^3d89isWx~-Wajn)BZ&o?z*yA>yzSZ~~H7(n^T zFt{S{;ntoYfY+Kc7rIbwDMZ2hngocNA;#UTZ*vEKCZEZtIoV{JF2{yTz)19zOtGay zK62R6sJibo>KxSoH;JC3cL?Q~-OR;P9M;Oy?uGN?XrA1^RQAx&G+cQ@&TN7#?N5Kxd*2i4MALtK z?QLxQ%86~KOh4qio#wy&+jv=$W-YXK;R{exv}eX;47(%F& z%_L~$sW{*4Oei+HmsC_Kw-jgpyD*6Q6rupkk7^%33uS68>#F;Ch;eC zHTES7lS)mcsn$yL6S;~-Oj@d=af}8;iu^38=IXS=^ktaar~tnU>2&|R64vP;?Gw}< zwJ9nv_T)*vapzMvJzy0jaXVzYaQgreOFRI$3myaEYZJSgEv5sGDvS!DK>9n{jJRZC zG)Sy<(EM@W=j+N?@D= zmh~L_*fkZ=f4CLGan)4VUZ>Z3Oj?)y2MF<@e>2~7c#25;qHyzv0klUeGcN%T1#19J zqi2|i@880;F3_mYQmiNEqrj!Z#JZHxC7x%FKq}^A?QHQ12nQxmhksfB1^ACC`6~HmOuVQ3qSw;B_}}~pzTIIztkD{DwI*kMUCQwO2f3LYS2%7( z10@iqb;j=#TTM8~{uDw`m`!P$Y=0eYS5U={TZjHD`&Wh6jP_1N@eeK8+9rrm%=1>h zi>J`!rgPtsl;@Sqi>6-HTsH0#ZC#H0YDr%ha~aN0IuRzOn+`EFLE$3>ZZaL;~NW~>1^<7D%<$F4^Kxiw{XIkl0PmV2RY*q37;Ref3B;K@I^j4 zf)k7T+RtJ?hIc!+`2J}@6AS;YJ0Q7>5PdXUtHB9ZT-)+Y@&M0h&wN*UtwcJkBS7HZ zKZrdeNqrHtCY+aHmo)q?|LFVS*8K0;E|<+^Px^@kO63)#wK2-BcGM0GOXb1s=%Qf(^#@=61n>*y8VWlvh|s3TjorP{Ff)!cu9qV}iFt0&a-XhFh` zFKv35m$Pwg0Ox>#oCh8cN%gMuHqss{UmAY+=+Ku9$#I?f~&R;H{ zjM^_#RfwpBME8t%7M?I`{N-WRv%e-}N2&R6k13@24RI`gJ{wJ90!m5#s`cY$4vW0& zP~SJdXynt>|H+vKtIIr|HdZ|TX^^f-htl(`i6L4Zc9ZePK6(uvE<)E2cATWil+#Dv z3?0n7a&GN^o!mt%eC8UCpOd52Tr7?yAU}RN3I5nIzZPe6Vjl$AmiNNnrgvfH&#On< zk)&}dl^E$LwUowJ3T2RhvFtyjzTkjolPgANIH)m=W=9(u`7#j=H$*anxGW0a^ z8_aYc?mANvqK+hwg`dN_Xc;;$^O)X5E}0$AYVjy5FkeP(1QXs;ep18>`$x9;D@@4@ zO1}%Y485C?%V!!A1}cMp<4m`S^pWVAZdct%u*`P;tn`Xjza>1DZBQ{32* zRy0q)m+N(C6rxkZ1{7yM6Gs>sxEZXa1h@rGq(&h#TTICSt-fTWa+bMl6t3BbH`Bu` zevy>z%XQdLCP!7??e#51u}`jP9O?4|?cn}IxG=$#3CfBz{Wgm!^~2&mgid+sosL)A z5Ty@V<4dxS$m>FjXAXjxNE}?yG>pXk{JwvHb!X-W4}iSj3&6Z|uXjHj*RJIhu?LHU zSRvR}@R5@3c&1L8SDN{1a#; zkuVI2gPPQESx6A9=VCi@fAT|PHTsy2g=Pl!LRN!FDey(j@anWf>t0%{yzi5uKV34q z-I?vZQymuf^OaezpRH9nzq1NndI(-vt{d;&(O2hTLO{?rZO>pq{C1DFVh-LtntDO5 z{yM!s{|{Nene=?$zd<{VIt^~<)W+7>u}c|HadIS&?a#|MPlqvKa$>FreU`xgP^^dX zCo)$SiUVA`N^f0kiv{|~T4q;{91b=xx0ThFJixR7kCqzfM1D#dD|C@Db5D2Q&7YO# zJyf;i{wGCqd}<@8^8VhAP3QI2wPT2_OscK^8}clNT#=-x|6;UHAYB;{Y;JIFPHaw} z+9?JF`HWdWUW%vwo&|07BKi>%^iK=5G^m*p6eYfg4uMau(6c1oPTL&!l7F)kT_;^& zKe5JrkZXdFVAQD%@O*$#6=YD<^KzAQwF`m<&|E`m%LAN|P znCYm(HBgGSPxMd$ zJGVDR1J%qjD#4*^<>;BmX6W0ItLFCA$Cn4^3hrc%_wQq;)>snUHKbuU<&Ru9ejY8X zXlQ*=2K|H;XpXi77S462Dtu~P88w|yH2~{a?Op`;*ACT`${2>Q~ z1O5Gg#O*|1?gc=(O9fQyxI4=K78(9QqBS!ya6wfV(8XArpM4ibG;|#Ren}BkoK(}$+s-vyiR08k?}Gi_+~b8pzKwaR_e5fCOBQQ<3w&}Amnx#ThP z1GK)g>_r;#_y{_=WdBob9EB9$+E-(IS3xum7EV>D##mYNtX7jMU!{qtpr-U?J~RFM znQ^zo!Nd=Xpw}?!#m;(KTdV8lV*`28Xmjt&qh4e{ji*k*2YvC#9KYL|5|yK=Qwr3E zAF>kBsoU+4vCDDIW!>KBoJ|5vd~JX?bv?{z;J&!x{F9xMwe_8%d|4Z}-j+^~uCTr~ z(6WT|2VYGeTWIuCd(Rw}oV=x@h7%izEJ6MNOTtm1`T=m95)~!&Rkqit~j`g5AR z>7v8vQGvdS4w^6JCoy_m*!*Kd*zlv=Fr|;mv3h+`mF5;H^s3PugciDOqr{cd3g#Q=Hb>q3XlnFFgx$DHwR!7ASS!ghm`;AVhhX$ zhxk=(W72x}!h}Cn9I8cF9v@@GYgztIpCPW6PjAGho!U2F{-mDre!0Q=y?_k4p&c+? zi45Gn>R@x`v;n-Gu7nT%>uU|hr#XJgLM%aF&Wx!2{^+~s8eNWyA3Gm5jPlXOI&RZI zK0mb5rp=WC-2&}YGy-5xXD8H{y_nT5pr%{(Z}M%)Oc>B*LwTPU5JbeT&p>wmeHP-I z;oRRHU-oM?a7%dYO~GBb^Z9Vl;F;pV4bF@tep4`J`67Hv?aiJ&Dm!Ik{UZ;zY+To>bstw!*pna=U4}DIof>o}?K_XyMypt4G@fTSAo@3+sC4k`=S_ElvkmCTb_+qBj#d^fPVcl}p&qUun0G zr$?9{`$?@kZO^j68=KP%DSj8Puf)05oFI4=C-&~N>Lcdjwdq(32jDIm z6&&~YH*+?n17#Z>(gox8MjV$_w8lCKEzD|nNBy%(0WX-L(EcGA0$e%%Ee%+tmB3J1 zW^POoPa$9wlZ;;?yaZ-HSfO)~XB)4OLo2pdCq(=g1q z-i;uky$>*;gia78`Uz!)e}TN~#Jv{Y^IUJK!Z?wh5*z^sN_@4hW9Bxq*Hr3{ol`AxK9k($>O1JB)=cxG5%N+fU;~`TI;P%RNcOT$?c3^) z6vr+uzC`TZzDX+hyXGn*V4h-cXcoCDeN(OX5#r$0l;S!(4fQKz)oabI6~r=gdKYD0 zGqAUpUX*7Ujr02QV0?;d;WODm{F-WmA;h2=iaCE4S-Mm-<{WX> z=QnXmbLl@5_nGqafV*YAuTX!Wm38Yu=HczyVdK|QilI{UfvEf_G|MP$z`P9-rYD<_ z1Rpo1JKXA4gx%%SVH#SJbA!}Atcl|k{V8V#;WFF%9Xbhqj_oBIWL@VH66E_&2}Z7F zu8IdDrG80iz@#j{HF|U>tbj6VO#7iP?BZk01>bh*ew3}LPE<2YSw^g6OOIxO?%(QI zK}-&W#zf)H{m#!~>@SS~d9S&pZ?@uz=km$_6fo~<(t8N%RK5$Z! zVxviBJ6YJ>^Yg2aQT-I+r+uI9$DXR$2AkFxh$ENHKsEQDmIgsjDJ#)}f=GPGCBOfL zB1gRTi--SaabRUt4i*}%EaEpo4-%Gshe=0-!1;uTD^k&Jx4ex05Tl0I?1^pPDu{(n zqRCtE;zb)`6q3zV!)Dh1t1$!Cv;X+^;NWL-s_L;s-fmEt0Fy12lE!Z$iU}4wz(8y% z0y3ox1o#mkg_wsUMa!{8qTnxB)L;OHlZDseDKSlN-ze>c;PmPMqlOAVTbHGWJ2C{oK7sB0GLVV&6n&sKuh{-^%4gwKFdx|&rvs)#kG z4>G1t^0BLkRRS=$JS51`LXt2?iN|knhQ5V!)+rlf=3F@UYZEA1VrZzGJm46B0(|5< zmy_r0Y-DCo>&OHC)5v{5T`@hQ;^Fd*%VA!6UnP_w(%RFjmf&J}1#Y@^TcM;@QL_lz z@`rs}el$;0^#8Al+|vi1iH$U2A;=PG^huEJWpLXZMyYGxzP$cWyKj&UHOx=WE=a?U z>U__m?dj2|l5+ISA(`~3Wb%wWr^XM7`U}oIB#Qf5RF0<44)+6G@i%5LbvZE<{rS>d zFsk#rh@Na&&#Nw}Q%%m|H!l6P177zQr%Q#GF2%!TZBZj<**mhC`%BT65Phgh^Mv`2 z@sWEB1%A~N$rIL-qSm*7FY5`-DoG@nX({Wkm!X91A_w>SNGlapcP&M%V&5aamnw{Z z&7vhcpZ`&q0nt~gS$8JPL&u2M&m@61L;?xOvQ_cG6X40a`sX=TEPjul{EyT4mRF;M z`TT|@Gu1(PwH?Vrl{!8tR=I~P?oijOf!q2VyY-fJN8WyO^?YB^I5?%%9!KM4RpxnCyuGXRl_dsjL}W za*=N#5?<&iD?@WP+ycoiD*7k8Up0`(()pqRzqKz@A$S}7Ll$-;0)UjhISGLa6t3yq z*e#8AGc)bY1q-fQcy7<0Ligtwe`iwgNuf{obwX^cpnfZm5Rr%F*qKqs8_}LFUR{{@ zq0DD6N--^J(gc0l8Ch-byPzgDN)F(MXIGdqpq)yy!SFYDXKnlX{mR=W*xtkt-~M2= zkdg@px(6Ufx4W>VKH^%AoBy7{r>bp#G-)b?QOq>sc!i(km;0nThWjaPA=+0cVuF!a zI4br3yX5X5l_OPRa5$Ize?_*k+95f=$vWe5Yjklsfyj9z~+{wk%zi57&zR zEZ$w+Q;1)f>Jl$Us%A|MVteL+6ZELp2tk2y z>F53*wK(?fsmOwUNsKp{E{hGBZiMsWipWQ4OOCOH;3|#X%tYkC__*xRC`W$O!Tp~> zawXNwAD|CNPPp;1mrW|2)G4kk)5$q#VK#sKKm5+2OojqBVDYoPR@_^wrijKy`Dle%eLX|I9RJ?ue4W;>6L018aE%`h^#ZAz_l`L-gH$~F zp8A)A<>6TTRfu}4%`sU>{%@&3CUMkuR9W=Y<4?Ua`{)QRbrt}oD~&y z41*i}8}3(oJMPVc)kGGCIe(U`s=lGXrk2t5^n$Q_vHm&RI=p+=o7xN=nFF1@eo_2m zQ@}yy-Tr@j%cvoCzeAsl-;-wYou$o zM>QKpT}?`s5q+zU;S>EzEMG~^+`5~-y5I+otUo5)UahtT+CC@y>PR+u*m_KUPZtF& zSOIT{IN>}gQl>O+TK1i_NxgcMXl6kH-5x;vT92o#@H!_y<^j@D&0I~b1dN?R*A1b}s@?0M%dPDfaLtPT> z8{r7Cz@5w#b(;2+Qnn}ZL0}oYj$en!f9Sc#hQ=}CK&rzUe8^==)BaL5Ul8w34Xdu_ z&hTwmrM|c0z0X&aw>{Nnc#w=Uze3GO>M|o3N#d_inV%JgC^ICEvOi?u?wm*CsL69d z_YodEuhJ(alAS03W9U~X{yY0mZBpRR05 z0nt5UF6D+Y*B_q*M6G_l25gHye6BMe4rAh+>xtyK3JO!=;{$YZ+qk(y!x8Ebx5hLp z6g@Pi$@T!$DxWxe!>p?5#po7(y?`F<;BDtu&W(4HWOUB`t*cL$EvEg%!eOorg4tHb zQj6Lg>v|iL;Y`|sCc$kMLE2R}iRNaCKooDpytdTIm9|Ltq&O1H#@@esemBEP=4RyC z24zCg#wn_+{s5h|KJUUcmL1awVz!9jHj$G+;MyqeQTUm47pB0jC1#)EvJf%oe@%BU zOVLM!dllN^{knZGMc0lTMK_SLywzMg#z=G9GUE(*o%r&lNF2Nq_9wDQ zvi%Ie#SPa(FnNg+`~P@Nv_AL77a4>mgy9##QnHw{>MK#^q67M)*u;d#EmZ(AkQ^bO z(i$eQzh87`G34ZVaB14PkqgKOxlbPL8|@MXffJS>qZ6Xc9W!+$9ZVl+drtbYWE{As z9n$6lQ|oSOA%J)yrwAAb%S@h&?iB`N!vdvX*B-u}4)wp2qNk`;$&1U~b3!_WE<6Iz z3Q(I$UIkG<{DyN93GbSUUN(d<8`q16jjl}S;}r50kw5X1)((J&J7;w{-g zl88v<|84Hdj`W3J$E^#5Qw60n`8uk8u;@_P+enGan2VN3LWDR6-rC-*$W5$#6Xwkp zGK$r&eX5@zQk^Y%%$GOiZ**;bUa<==$^E&15uJtD(TJhy+u&zJsKJw0Vc(!V?>={e zo089mdhkp^-2$R31tXL-Jn!Hp3~9Du&&vhz0dYd%EO4!~`dvlkEf^LjiadL~b`9$< zcvY2uC`H&6VEqDzv)H$Yo0v2Lrhbt0S(uEnTzjXUr3-)6+ zw&y*;E*%t}Dv63d_#H4UesK5&y*XLL_uH>&Yxh5Z1NhA5pN~G;C;mtxoSk8S_Cv$U zmrHrL(C?o729Y&R=&5vFRKJcj{p0`hSpw*)1t*m8rZtfzq+EhlCOQ4) zildk`Rg@#in_=0W5ri=$&{v8F#D00pHmegmD42xM&R_J&yebv)?L*=6bJ0KdMIRxE zW=So5eG1rQnw?>KM1+Mu4_@)08GE_U^;R9YKZx<4ERajc_$F{{C-B>~ z$J519J}-}efP{~5Ilfe0I1<`ypMZ+8Q4{<)aMKL~JGUgjb-KTfss3Dr)o8#v;LG2E zk4fQfq;Iz|_`Z9%;?@M?Z7;t{+>vfCySy@Th*FS!-qnQh&-$U#HLA82u;MoSg0!^4 z_I7~MbyT~k4YV6)?FWDF=^Hdxw;Dp)UomBIrXiCFUWY?C2S&e^u9Jn`9ImYkNii5K z!0j+Q336(B)5PUH#^YIcMJL=_xMBD+-(E~XW2T-7P3rPoDpB5EzROs7(^@%icJ=dB zAoZ7;=3i1Zg?TIJP3_L=cf^~C5&ER)h+SNW{+qj#h^o9#;uw2ZQSq*$O9(jY6NlOW zA_i0E5L80LIE8S8qo+-sMJA6+OC? zTkl5}&B=5-nIRGzKd)#w=jU~yD}!fpSU}MJmNX2RN&5SAH6FMLm|NwiY6QzmwW)Vx z;ObG_IF8u{He6!^e!Vh9VyRPS>Kg!uosTUbjk9O!RlHVWVgRLPr+O?)(5Q-%r=}k3 z3aXqLR`uQ!;7)0*WBxbJ@f^>5+OMreU9>F(O)`MpF<2qC5z<+3**8bl9PRL`d^6ax zDn;zPGm31AlV>f@*(1>IH#pX}#ajkuH0XVSEaxGD(_Ea;7=xgRqyo%BN=9TQ_PAQ; zUyWsRekEku56>5)Fs3X)2?A~TPEU;e zmeHcxYT1T!KYHE*@Aur5XuP|ub^rV=_)b*NNMuyAKMRgDQ@F1a)}OX%v~-7E=*HP7 z@3>iooHWK#feKv-?$=Vhvyd|4R@%D3&n8;WgAnqI0e++RzpJ}|!~Soa)SHFCGXSX| z`i-BGOMkDj?>#2)|rIdg?JIRVI5@&Y~Ozh7+xitT24sAF6N=RFGyXpVxe z(+QnL+2-&Xe83LB#;or|r|?;jH=C7%(^|J==OA?VlQ3Cp2>U>_RAjjg{sk4!c1v;# zGw71a2|AUJF}Om94_$Ls!T<_$)Usju0?i2K&uTN84HO3Y25K@UviqKENP2Rg1j;V2 zi^4zy2WIFIp3cAgM>ry93Z3el^8(qqg>+Xp)uY3u`&Nm=_sO{UEvDASAqyt~BC+-g zKx`UzslzlqsvvztRr}l;8RXm;^@BHt!bZLOWtA5q>#1}6TKZz9Z#jG~YG?c9itSB; z)$U;RvQ=@ZFe`|{a~-Zlnu|d1n>>qTtz!?z4`D<9^n$4AaewzcUu>k>uIvD;rDdVM z=;|np4uGCj%Q>O`^dDb+R_w%f^5kLM)?4X4ldiDtE1NB@O+Do9v*YD2KE|=R$m<1M zS9Yo&%}&?q@crB$(0Ck0NTefE|{-vNhKqE@Q4JJ16Whd`;8xh{^=&(|P5&!&g$ zrYqb^)-FZk%IEoBCOn0&#MD`R=7Z+-?GyG@R_=}O@6BDb#tu^lJJ@M+9ZEY^;+n2# z@kFND6r732q`6(?p(SpV zylGeHZT9#6jY`D1|H$W(AQQFqS^IE3Vz8Li+D(q<44lC=Gf4&eN3Na|zBhf#q$mMN zb+#|uI7*T`WM)x#-dqKf7~1*HQ4TX65z0}^b@2pN0)T|kGox0*#&g+0u!q-Bh=(oP z05qslk}|>U2c}p~w@JJZ`{lNh5KYcUEw{qGyI` zs;8&7BfdhgmkgZmK1GU(Q_)C0URsb-=kpAaIBgvZukS=OPMikmPRH0nD~nYP;n!Y$ zfbd@zouLu8KLBUkTbnro9Nci3`m~KZxSE@jyW}oLRA2Fh+N|uaWSX(IF@cT=AQXo38NL>URET<<@D(wWT7TTi@%Uz|E)F>y?1~^XUAcIoUBO z@4cbuA@JcN`kh*IT8lP}I)2Yors7o)Qb5mt&K=vRWd235Nfg1#^;TrK7m(sA`k$2C z;_0bGC3YW{P9oKUePFRATT#KUxZPXAsMH7|u`LeC0b7!!(vtzlEZ@q%i)A62dp&CR&67?sz0uKEb^T;yfLmp|w|Tkw#&Dk;TrIG1p=A!vbr)~=|f z7A!9SWTME0>JKk3FYYbwTAZF|zA`Qfa1Do~O#WIDgv8y;Z=cMp!{Mw0He0RZwlQ5w zi}!-yTF8=NSF*UJpVxHUb++#tEak2Lom8qddjnA=1;J&h-)y8tq~ufB#vRG>8^ery z5PVSB2FU^XO2RI3Iosl#aTfo(%W1Ro6I=YIx%MwF5t2Xq!8F?gVJz-XC+A=0e3*YM z^A`n+zW?=N$u{?IpdiF6z{8SU;myGu~VHbxGnH?;$yv8#|6<-C^$v!ytrR zJgtg-vHL#pKc`9Kw|!Qi%a6s)k!t?E_G(DA^6q!$_4@;16UYdj|Bl)Uh@s*m)kUZh zHQ6@;hO!d(`yj%(l=OSdch#h9FC@MZ3|&ljN!WB(E#Tv8kes(U6JnYPW>?E8h|%dV z=1h+#=z}8x^u0BtH>lIf94{}rxb3IYv#xb4q&aC};>z}}7u~k|21=_7+uPu5>5ZwG z2tG9;CV?jVyHWo&-6U=dKW7HpG4Hl=Lc=1}2#M0))hBUxt#C{n%RCLcSQ@~hFH?y4 z2ac!j43a*sUzgmS%lsXzMo?XtoQRsk1=hcn7y=0UspJR{O$3p-d&}ohp+0*4D@oP`l5Ah4re+7KYl4w# z9Sp(l)kF>Kc*N#YA(dV++MPN9Pv}MnTjchqj^44BN+}!Nd=lki?-bVi;*M8f-T!)@ zxk=8a>M)s8km$7Yl0K!=bk?GDmZ<72M6APih>@A4WMKeKY;oCS?H@b#?FbMbeFLkahhObIEthRw z5=4;B3$MUr7%{qR+%_*e6M{xoH_ZBfqVXO-(?f}!M-x>@gUSg`=Qn9y=)6ZRbD;_U zB7)&ohx_D9xqh3vsIf@Qb-M1m{|x=1?Pj{0fBhk(lHJ(d_3Z&dV&Fc8CGI--7#Dbb zE^_>nB;^k?PI+gB!aTd7C06mzDo2FJZ@5o+-R1%^Q+i6S(qI=<&O|E^(UqTe9rA!Dworr_$enhcSB-cPiu5=`ZDe!&3Zo(%N>@cP8jUmznYSHiCW7_TNCT_kpi8J7x!t*dKbG=$P(wLkSEH0 z`kEmBb>~+I;jA_GLBy_l{dSLAT`D9c+b-k4 z9ZTT3BbY5KF={l)5zFat=>=jaB)tK$a_PMt+3X(Ht4FjCl7zPc-7R>1{EM#=R2MD> z3&${>z6%7oo=A)etv_wM#fQZcoK{h2?pAEI6a$GXSmAd2=szfzSN(;b z*#!!U+wOW`5(&GV5(&zSY>Ja@pD16Ug#kA=;n;f>0H+Ry+!QFpP=hW1u4k135*mo(X}(*}N?+`#!UE=oQyDjtvsGgRrM4l0WI#7OrPlMIMvvIgL&W)Ezh zUxt~*iSCk%8H72ZsbsnQSqo(=KStA?w~Lo(PUo)>?Hl(JzJP{3SK`3rRk8`$y_Z#< z_gY`eMSlI-s;3}{5R`Q|kpoh)2EIR8GuY2b z7WP-J^WVoba2PSq4kMgGApEo!L9xDXXo()g4hz@e8_yaoo7SUx^lq;(_&zpAM*rB2 za#Z|X-E!#IN99F<*R00^>gsv|-`co+#g{OgPWKjm|0lFoy48rjRMGi#hVl7vP+GJM z-Yt|hcov~dyXW0A`jVlgL@3( zkvA0_*@s-OjXXzqJfWm>?{~B+C*#gnm6qc+lc|cI&Ud-^D*SgRo=$F5j-Y(0-s77@ z*tT{RD>CFU@iU>_bs(yy)?fs@0NMyKejZ9N23Z4d$~;*A*2r46^&jgZksyB`mo|A> zXoKMJ?QS{4Ni_`U5kVA(YV zOkGKQz$O6}l5Ao+S!n`MzqXbCnJGbCLh``h+M`qL89D-gZ*h{rUZ?~(XHI-yqPKiv zZ%ep$+wx{zVT`Pjx1`Y$xBja{f2!tQN6<1t0}kk#DKS@AUYe8`sP5J_&=V^3cU9vR zsASTbev&*QE!{9KK&_`il`o;ZiX2V%Z^2r#cNJr)pDuFxTjBx z9uJ#$REKT}(cMU;mHsj(+5bD}t&>4OGyEvC6y2iwM^-&j%>|9?7pN_ESY?EGn)WU$F!u6q;wZ*yu^-CrJC9U6hSo*etT7YG0*+sX|<6dChK72Y?<-@4n%kn6A z*8Q0`*(z7iR@kv1M2XWWp1t1Jh#S*^yDxC$a7kQvc$e`5FCNkB;kkn8LE&5tsj(!X zT6Aq&i{xAr_BZ!)?O^VVA&LFtxfD!CkOPkFa?$a$s3!UcX@mM0agrN~!N_mujZ+Vj&)>?kM$31&ubiZ%6F7#}2bCOwztdd~X zQX0v;b|(5FWZSX$wTZ=bl`H-WuI+iP;}j1#lOyuY<<-p2TVv;bL=e}}(As+4S^+Dc zPFv4DC-h$bdsBIQN%h^L(EKe8H>kgRMz@E_`)MWOOMlDCM2LeXa8wssVcCwoCuj{? zZjKC>-OWUD^Fk#{L-apj028I=oIMU*Ud7HGZM3$$5LN0n&zGz@V@Z`>j0m#Kvo4mn zJ#*?qxD;LLn}qo_hlkUA&F;ByIeP+oF?yljq4}(MO?rLNVyCgj^EHpNU#bG)&95nn z{OyB6TaUS{5wf&Nb)}4LayO0Ixxmlye1#5_?og!KE4KgR#SNk_?% z1e{|zLAArZ>IqV>HGMXk6YwktKlB(Zv4V_pt1Ln!`)yH%RZEqe& zs`x_AxX0PE+h&ojC#jJL z8NX+|;erBR?&5VL;6wfN(deLt`cM)}I$y_qP{k~SI+D+J+;I&VDm@kis#qY+Ycz_w z{zuW2%@jd|GO=YbveSYdhrFMH>Mt2mdnw+Fk}xCDLq=aH2o zvAh|1z-IErLsCbNL-{dGv!Ti-1XasJAc!|nTnA(7cdCqQ8D9L?|FkFw@rSZWNa+1D zr|bGAR@<0eh-F&byRr~nrC*5O+qYqo-bd~E{v==Wj!P&elp~xeFZ)#x^^=ljTev2{ z&uI*|wU&rBrcqE{rpXm;U3Nh+l$dS1rIP$k6@%G*l8966!Hc%VVDpDI9~`~Iakw{2 zK@BGE#XU9u)RG*)*k(bnlOjf~NzcMOBJs|1n}JFtGc5V6Pm75L84Y)4(5Ld-8=Njr!l>Pz}5 zuN%K_yHsmF)4TFw9timVFQAf`hmz_`i-E~DSVj#uSS0A&MY&B!bHdWQ7E!z^e(}8MAvd{NdWZ2TY|OBO1EW zjo(w~r;|BBrD@SG_V9RXo?iIO9PX6)OSq8b_>Fd@RkP3VF0XCw-N|Edej%HTiBFcf z`?Sj8q-pI_YiA|c8%fiD_Z-FD#=Of3)dJj}g)rTW8sso^)hhPD4CJ-+Yd^n#`E;p6 zr`aSQw?UuJ)~7wI`&u=*WDFgv&rAFMm>v>5A%5TK*zZ5z__H-;f{1))9#}H%LcM9M z?nxJ}Ef%;qOsh9B!?^(l4jk9#bw5zjh6E z?78de@79p6VJwEnIIgCl*enkWHF96Uj|a}!`T{i}dY>KG?qoOxh7yn(JA)2GNFRm= zJipYp*tTEMzSwd^*6d9jsn3Yh(}nZhK2ie>y40gL*GkXXDmGsr{l0yUN#s@|Bu)F%$#Qp9IGr7)P!oJIe;gi?A8wI-Ck{$VXBAUA#A!O%%agjr$ zDI@4hi)#Xa*E>P0oqBXpSjdocyiDuNDvzD`26{iwEapE^o|7_7H|bml@&WpmqfoMs zPSsNRn?FzQuru`?3At4QAXq-dW${1vjfo?Q2MCx!T^%)V72Mh|NPhr z_J-g#+XzEXRPC3a_%5uS6{&t^3hq z#aQjf^nTp-&D*-6nI)sghH?+K=&i_X7msdg?$xwfM(Z^YtTN%zW#`u&Ye#p~h^9e^k~* z=i{8hRQR=V&&d7Nq|h67P`CJ)t0+;r0AVAnbL&mVrG_+5l?f z##`tlg`)UM%PH5NFIhd3sp0E+Y}Y%p2S0NS`|- zLoSiTYCb{krTyrD`~I6K*E;Sv&@leV-0@)GX_Yw}2iGgfX9XG92Pa@Wz&^3lz!(o^ zmfRLvB&wC(Q4@CK+~_y)W55ik)y2cmpdH1Yq9nZ)MO%!Pu-u)&l_wh|)75}dKLAFB zuVOvJ%JFdG5p!*QZO=sKQGidR2pc7%LOh7%edn${l@OG}cf(WgyR4PPn`S6bb^qW z_$gN(5W$XxHcjfV2>A2Q*z9Qq#ylk|R!cnM`{qWHd4Rlt9oTkyyF7M#T=wjK-_~{x zU^=dHPyapG&8EcSkAdc>B7HPTN`prB5zi!fWg9N9sIHEw!y~|hA+y>nL~Ll1?j&nh zxdI;;$%cnx4kolqsJXNC;ZdX0Y7{a9_hA|hzXa3Xu48dC4X1@jyR4c2JoxFsw_*NZBsNCcTse%s02wW-DF_!~mIH5*|hNDgf34WK-G|k{i@@-+tq;JaV zQUx-Dt>ZVt(P_mBFkwi4vW6UN>qy4UWJADwUZ~GV9UCj(iR!fABVi*>#HpVbYLtRRtY zhTySIeVIY<+>h0VULk;#&ZM*_Qt3sVy-jYRB~1370(l)C0(;o94J}A${SiAAIVif= z#ZcncUUGseZJ2BMqXR>o?O zd(@o_()dyax=AdGyif-c_v1a&5O>ZBZc$>@SeEIvAEV(Do zZv$R1TVw4HWRt$1t7RY*0=21sjy6e{t1xxM?l^Aq2NUAY%7z5nd zDxco8uEB@ov8bqz2us5B>I`SmHIX9X96r_dL@E`xN>jDBp0{%5CCNVD&&Ye7M91e` z`p>WmxxZ7<(Sp3F97N*b`WK^7Ao}`t zuu#^{;+5zl#Fb8d;ol>X~6`S9%^pXnRfwy^n-Wc#?V0d zc4GAddQ|%DFhRDMhOWy~Cx2S#n`O;{tbb+HUqzYY92Gh+gPo>lCZ2eL6b*QQr*IA4 zhIr6;w34v_<7<|WpH>jh>-q!DrRd-MUPwJNBxcdz%t92!`*ZXozqyP#&F)OZ=`Yz? zPms!dV!GZ>WA^3%h&&Zydy!EiTF3d&%Y=!&0y21yPaB~|6&WqJY3$GqPAV!3odl~U z@gp?y;7{DALKaM(L^+>mZv5jHe`!Kr>i5Tp+?y(;fbXvtM&1wAZ@%Q4H0c&FSZHqe z{k#(M@ttnsx)0+eVO~U-fDD?wCEkkD;%H6!*wIY8vYb{HKwt$P@?49Fr}6dPXp(F_ z;`_RCAxWCjnU%l&{Mpl3#K2LNP#yu)!WIz3=yB{W+^p}uhoJAWxhIaiDy^2N&f#|UROeMJUbH4nWOr(gU8eIP!yuzevY4QDc2O{^Seq za0l&(dZ_$c zn)I2gEBfPdk@g-=q95?-)vr&Z@ukAKaJdLYI}5oi-)~L(Q3j}K{rEjq#yOGZG{N%j z2yi2>uiRJ)-2DHjl3Mwfg8*t1QVH3fT# zVY*51i$1V=e_Cd5SZWi{RjZas{8!&vGahEKT0-9#v-1p7i5A`8<3 zL6GwNrJ{_bIJjJPM;BPneW)Ktv6>v`ygl27@5;Vqg)AiWLww|S9C_Duf*3Ry#M}t;}V>v;6$me%$u1*7gz{?;9`?`LFK?NnE`kU| zv`p6zTU>)`X_naQX+_N?KS!ryL`g8ze7*Jl%mM)8n_jcY0&%JAmICZs?iREyz8c}Pt?5oXrQc!|ZK6(3#vzNR^a?3}a z(?v|q^4u`q8KQ0|8_@=77~u=lM0=kJ)5a^k+4@+SU7sY1m-&GosG_hU7P_HfojH%$ zy)^HHZZck6;F38XY+9p_WCkjOm4<_IVunYWjKZ+79DPwkZE~*p^3)=$(Xo3l^Ed)J zID8q;5JcFJTj8-M_uLoxO&KndBditk=1dp5~$JQ489TR zy@xYbe2qqy_vc+QYyTePchINbK)sY6$OT06{mGL2!`&mg)_fX2QJEFn_kL=k4ROW^ zsgS)*rc&ogn=uO(_9_Xnny0b|LGRAsQnjzlF&nhDm zc7L}(cEBbsKI=-00-s!&+}J(u0o8@rYyxbi?Ma51hs8kIKL>-3Xug$^;0{?iQz>z^ z$AhfF2VWM#RO=N&jLEc__~b$jGTrWrY~ugkiFv`=dH&d-KHd;3_>GXV_oA|}2M0_V zYmc$YIsTkq;^Mjg1)ux9IYGw3;0;9k(G~^5kN+7Vu#L+_u{I94FJ%ao)IlY~iKph~ zf8yYyDi{8Q4Ta4PR^5uERY`2EJ8GueJ``|z5Yq6;_RVET@N5%xifE;TX>7jKL)A$( z-~hAYFghR2nsm%QFfAU}l08{Hy-dX3?tmQ(xZjiykLE)PxG?O;soMaTMkis$= zf4CED@G&^@w^k915uV#q*Cs242bugJucYu^*-}5@Md<+S7neF?@X*T)kvEJDlR_Vk z=&D3W-TDhp#BEAfEJUH-^2x}0X=i45j*pjbJU1P4&Ihn205 zdsN4tZ3k?T-Iq93EP*-#B~KSCnZI~eQ!9`j``eE|sDg0XeHclq<#5@5h`n_zm7R73 zpR}BWQ+m`i#;XO803me;S=tR&wfnvH)j)z!&Y^bNW*m(`2PPbEHoMFA6BAt0-nqE+ey(OU>zWj!o$VUz#`FLasQvLBb#Cq*+LImM&wPn3;cZ+*CyRxTUcsY2`g zEwrlAz`{c;_J9`CO;yD$pQLfBtecQ=AuodO#f>`dOwiLOSua2!wfFW2@b*t=@-9`o89 zELEXmo1B_QGk*MI*TW>9M)?@nkGyPj<&3+)g9ZQ0q+y1ij z9_@9SRKa17r4RoBaK$Z^e|SLv;o~V%QeXT?b zA&$bO+_sO;o;}mtYX_mT+`i+`5g?f~S9f{mck8#Q({`=8)l%%JR9kBjJ4+72%}NV3 zprF29uk;O8Tzz`r61F1ODcM`<&>~s$6vN@H-E8{tB4n{=p3N0liPnf;I1Z2A5>9fyoQ>e_4g}L(@%589 zon1zf5PBWrxEC69m;uvpV3`hrW$PHbAVqpnNiJmjGg0a&>G|4~WI)y^X0fnZNQOoc zz)JGKh7yy_dDQE4>ETW=V}>w3sQqtF z*0U+>n6muBGOCL$!pjcc{GoU=S#+#l+-EaBoPAq228)d| z*G-QI+r=gG^T>B4@uYcMM<%M-NH%qvAz|PiKH!wf<>seq4CwcO(-Cae4jg^}8|)mv zUE@LPcT{GXos;?`bh{Lh9?p)`_LEi6F7$}cjk4+{3Uz(DZ5bGR*O6fvc29wD8;3C) zDEoKaPk3RGA7raIkm4F|&K{toc46=5TCx=n_~0!?Ah$E^2h{ab?y>|gSpzFS^AOJhbLv+D@i4|=CV{!+@s z>HXpJw_nf(o*9;g(oqQL&V;4=4(o*gC3q1-`BrLQWR*SvixHA!NM|17ShW|ojkAZQ zFlurPbuT9{Lep+5I;7?08Tt;1_pV$&xP+dYMGhM<%7o_kChN4NLrjd|p3^Y$I(ylHKmssoY&G zC|5feukUtrUK)c|?{K;&-YPQ_+Yq8(h@^<(1UQAxb8VaAN+;%OzZDx;ct$L3yWdR} zxiPe8ZXyXKx}r8fr9PCB?JF=Py@BfK8lQSh2ATH?WieA_%}d*6FDYoLzI3p>ZnPLF zMY8E7$Vs*(h^+;t(eATYl zHnfMPO+6RHRMO|wON?WdlEiqPyHox~* zSsJb1_#(2!Ji1Kit@kIpM)lfye9R7#me@anqrl#+iQ|^}FdcTFvdwQ~Plgm1IXU7Z z4@{}9PoBv6r$G_U*I`s0%K;mmVZ1CVYouaaLdEw* z@iefpqNB>xzf7;{uTKg1eQ=WckCFg15~uoj#a&`Xo6JC%e(MDe2%mYhoncyLa`vH& z@FCx_*m$E@N0ZFLB;-*qVb#cI`0dc3#Q33?)Zgg8d+Wc4rhJ!ytDM5?Zs#|x)sXA; zl1{cWSGNs%@o3yc!A0my#A_a(iB`w{Q9wG4oqqK9fh$uo#tmc=Eq{u zofW+_{BO6;udR(DlfG6AEe}%7)v$niruz@6Qss7S(ri-krnR!kb#^TFt$E8{W0_MR;v+I;J96OUou*SkTa zLK9&p4(Uyih{cbzgtCDZbF?k1;Th(Zj>kl_yqM5+Tg5rZ>(|1IRCyY_1}^GTxGg;R z%#&nmMHt(z^i}*qym3`xI>7B*Eu z?O@PM41zxQTB6BfW64z0Nu`}8(AP@Yr^?XIB{jpL4d1ebxTeKUmT2~9p-sSuZzwm% z;C5Q8CcDN8u6)uoticb@EJUtG$1FkVs6|z(n#5>wV;W8Dd1ubmC;q1I+frD;tHa!T z&nIMERqQggEhhJc;@#?yPTe90p@sK1V43)e$;XfS92nOE6;tOCx96NgrLL*q3!Qcc zXIFncgJyogLBHT!(WKdxaJ12sE|wRQ6(YDlUADsZQ-gOEc6OP|^D}zEXJTy0Jkj>V zVPhLA;#w7uPC0h!um}-jCBgZexAYvlb~)$$%~J&Qa@J;xsKV) zc{oDr*2|(?vpLW?^M1&CUmqzBA5g9BeICQwKg3QkU?^3vXJ)I~TTAAy+P-fzy?Iq^ zIw$NLBSFg>(D@{*ITY@MkU4GTuWqkHg;!NE%mR&S` z{}-}`Ir*huVLqAzpr4u0Uu;_Z-B`Ynh<)3I{XKD!-#r@dv$jtMQ=oo%u(+u;NIhoK z$7aRd74#VDw3rg7;%`sjI72I@^|9H}P@12y874BM3csh2kCYa!0FC?4xxE~$FWfD6 zGG9~MUwNQ@iEYFrb2d<5fW6K-oiI9~wQe*h6#X7*|kgy20Kx>Ix#% z_Gmj!MjQ*cjueo2z09*#&DL|C*#5O2iy7(2rWtFle}6@h1QQbsi=wFgw<1 z@&qVcZ3WUIt?4R~M=RReT0xgK&rv#ckzk`>*9m@a{to)St8Ncw$^A3o!z&ImdU?>b z!Bm%zc!@5PAX%Lse-)aESF;(EFip8J4Ds^ZxNT1MbJNy0IZcf=Cr91iheR@<_JKI8 zogeha2_>gfA*u>0O;v|P5zy5=?Bd4`Dv~oj;Ip>a1}_x|F_&-Bxp=?*Z>h7}hy!w` z2#Q8=QlVtcp2VJaE{zgPLalv&dmJ0{Hy=&7DV6I(kO$NL zDG+TX23iPzpm5j~<(|2Fc(<@qGXHF&_nMl}ko-f7Z&v=TFc(}0iuAcSpi-W~$u7+} z)x8pFJwsvC_9;aOxn5ik44%iz`feu9>|RXycmI zbrNXI$0rV{H0zp6sj`+iaR~6HxZyb1JeU}>XXx6j+`N3y*q8ij^1|_(9G~wQT@3xv zqlpcw+Rf0j?$~#k)TQ%@y&#di&EH$`?fTuE)SSOGn`ot$&w}Hyu63+^qY!QD zF^H>AE1Xa>y7*P9EdM4u`qJGUDt1ji^vzj$;DEXP$G`RJk(JL&@f@0U^SJrhgdA2N z^}@kLVOAGRR!35fORI--S{yMLD=GUmfrZx@EQdtTR!$pfT@T9{S?g~dD^98TGxti=0~MQ z)qYw{KdBXY2d3{;@WW({L%oL1YSX74Ki?Bbj%#uZG`UUbqV{O;!Kl}1Ii}TC^zVO` z_zl8Wzm2Rv;rn&AVU=0={c&$vdVP-J$Fy>Tn)bl2Q2NplqLpZxQo@nFEo_N2E)pRP zVQAjf&c0g^MlxOJr}LvO0NCo9PE7V7Vd{42FG`3Imfekl#-<+;{fu#gSUZK@&&B~Bs8~&t& z>qdXYQ+Apo8y>6Ws)av>ar0Lt4IT=x1!QYknxv~G%y|4un()@6Tr4h3m?!#R%zX2l zR<$8@#7lf$>8&MNzNyRaD=pM4E#bn}x%zb0#pIlI-^eDuHB-odwiM64=VUIwN)Fc8 zy`_z~?3PZ+xlpb*W&6RO`>_uQ3Bl5OwI3s1X>uUHt z;wDMduAc<#Vr3tEvY52$KsW!s^fs-~S#_goL2$*=KdrL%x0y~FKWms=|CauawqqJ% zaTrduK(#n^JSZvOEc_$)gStvjp^Kbv_ovStzF4|%WL99_KJ-5(t= z?kp7zU98i&wtXT5scy6z+3N1_P6?D~X**(fS7NtRygk>LJ_%=~)A#42)eT*F{r-)v zc%u;3AwvDxQ?}SA-E00h*ln|+3M%XoW*69UeZI{z^BgC2Kgh21yvC?`K+45b^`pyq zL@F?=!^BaJ3j}~=EiAEJ6S~ zvDtLW9R};*drXq<>HJc1yGchn&{1byaq+4MK3P)Dpn09%S6N6}6 zu@rr$VXFe_EB40}v~(2i-$!;SZwQr^n6%HEdEm|R<&_h^Z{0YWGdDh8x(Tqx?Gemv z6Yk!>RH-v*H+l61v;;G+B?y|&Vbg}N z=!*Cgse(j%zB-LS?rur7 zL^0Ga3h@qKq7C1xou9$SgLW|nT5zbTpyS@_aZjQin?V1nMY*N!gXKJ%zMQ4LoUVR9 zG{9rmA!+YE3;gZt{6G7*Htwyr=bkmzX15Pg1u=vYpLo->Mu*SW?)|n7L6}BD{pPMH z^Jsi)9G@u)Mmc}+?mf>J{)r?Dv*b}yD1F@+?|kwlRd7wCLaCzG?x0w^ZeB)pTYEtp z+VCS4@m9tz+aOMuutW~ZP`cZku)D*aUL>P=Vdv1E`@qP#l)t2xzO>0RiZQmt$uO4PBbN0UGSn#P9=U&s_c)7`=lCgAsC7lbW z9Mo(WCm5q%+<&7N3b7~kWL>4!tAd=oo&RY(q#wfjY#dxXqc)|Uja%%@Gxd$p4NKv= ze9WY(so3=us1bf{aC_4?jNHBm7s)KNSQ%sz{Fan?A1`@uIPZo>^|Q2{3am^Tw~cN` zae)Q@$`=8Lb}gj|3>sK!clpk+EO+a;hX9A|w(MUfM~!a=oF=Myj=4XO4EI!{@ddGK zJB6-WE?7_~;{uU#$y5JARVSC;IV|Da+Ond=trCGa(4Xfjg`40>D{C)g>Y9T*F*8qk zFE~4>UZf$af6UT8(NTQ186h>k-&6^sh)&~jRqA*RMlWB5K@d)5(i(?E8cs~t(~woz z4C7uvFId?~aeDD;T|Ti*+P(Jvx3dS4fog|DYZ6w{G;m60wDI-&Ms%LKpl-QGhN?&6 z`u$XTxF4pf%{8iwKa+}vls-hmqS6j&ZOKpmcGEK0JpHF&mK!mLq1E@97?eA8fj^#P z$H)+VN%uJEVVTqC>&{^*6$cXg$+EEBmM%PyOf}8X$SJM4K`ocLZ#R?YjOsO>m6d~r>hSkUuCQ$- zItXr*^_e&<+_G|q!TDjI(0Rx;7#p^8OpnWh2PZZB!Urn;6J(j?<&jF)>dCmuUgnL1n+xw6u4!A`1c>{&1S;9H=wq{)?A70w;EiduhhMi6xFb!buv=a%tIBb7wU)v&lc`=#W z=vyQmc^ZG=C@f&#UGl>t3*p}A6-phvUhRY-=^J+4_q;0??du4Iob+2Gzc7}$#G#UD z#Mhax>NNpeQ%%|2WhQ;ql6OnyyTE zQ)bw%$|df)rvop|z}P=75oiKc1%weJ#vYDW8OVlqf3x7JmLZF?wtDF8>FspR7}|O! zebU@lt^mp!xL;gFrB~dT7gVbFF!%m*5}x7J)m1oO?M0dK2n8;i#I1+P<*ubM|4D1b z_4;Cd_M_Fg=Ucj-LUYtEN6N`Wa)lSxxOgx!|GiRAV9S+0R!TwrEybGX6mxgmNoS7# zW$ODE^=eBHsuQ7$XYdaS3TQuY58V78xhozG*CqFLT@#=0RLrs6dLT7aYeSNrOm{fx z47D56iEICz;?Z^^P;K>8w#iT#I%|Rl$^G$mzgG0IFlv)rQLIrA*8k1EaxgD2jwI)+ z0%M{jM&I&6<7CFtE4TGpdPI9qlDTCUJcgHkpOn2;=p$8Cb<=t6<7zyYgYSxTs7TE2 zx;1i{w;R7DJbRGsurAeL!|atK{2*Pw6mP>(B3V~hV$*zeA4x_i2X2k7UXA7YVR5Rb4eShgRHm zSR=#BQa@L%6QuS?@5B$Bb?$ZBb)Gjz>DuZ}7^4;kq5SkRo4hOW)gm&$rwy;zKceU)}{~ z(SSkiY!tbeYBd;n9g6Zdx6&Wi|5o9JuL||{mnx%KCTu$eS>+Tk=b5I;6UxK%Z@_FA zqN`ekKwE`>PV@I!NQU9*reD3*5z?Kg`>vI5E+}d$yF) z^H_5WS!o^IzNjQk+oCD$X#6 zFfw!kqnUE59Iu@xhog^KtZ#o^PW;frSXv8T8+6$F-km`T@~43;VE@(C_5VY|Ja@}r zE8KT%r*^1`Yifm;ko-uAVU`{(Ijpcr@BBOM)oG@NG4AFF<>pP}7wR8rYVWpqik2Zz zuI>**3kEfmKzWB2x5kL(&ZtHE=U7h1x>d-#<||d+PfZs|vqe`+O6(aX`~?FkWlyp= z%!qh!N_16KXE1e#^W|$6qG|2E)wOtRLp>1utx&!_ZGYDNYlQiE&JD-bqtjil zlWS<0*k+57YsdzxA9oY-iP~vn;$vMFy}#frNB0%vOJFO7ifp9vcX6h|hewyGTU#Zj znzg2c2|kZTdm~5w_{q=PYKOXpW2+@p@U<}MwwB4Ld35>-b5;!%7V7`tX*DibK7P9E z!&dQCxe7R3Unn!e<*{1DKp6gvU;FJ|^Eu15x{kZVhXU}7`S%q_?(`b(NOkYQd9vT{ zuM2Y-wRXgCRbC5-0;m`grvaYQ0(-+J!{Cz}8B54wh@=*{K?^K6nayI11D-y0f~oSpxHM^xTz{gyAy!!DhKpKwbt}3x z`@m7Vs8L8)`LvU-eEY^T!O$NJWd4{g)`0jHHG%}bW2Xf+5=F-WhL-qztMkHNDasze zezw#20211fXBfM5t1Dq@pCT}YyMkrX`D6cZmVR=_NS^#*nXjC(49QN7L^xWs#)w6K z<=|?yHQL#_=-h9nE_WLIDY}nfNYUNz1BEnYRC16+&`Qbx;s%Z*AI|bSoLooLmdx2P zPSyrs=r;UXixrj>vGzhNNK*tPLM3?XFw?g2NkV|09=TgwtrS+|ga;})F&{boRX{J8@am>OQhQA$Im61j@}p+%k=mIl!xApSShQ5W{$X+! z?dZneDTv$$f5#xK4mHza)YRHC@y-hB^5SxR;g+hgP}T9W{0ftHcgq{yTDZ{S)sI=;Rxh_<-c`19yckE1n zeEHqMN2{402)qlWrtQooBj!?$`EyeRUwMLW-I;`My2B@&^$NQq0*x}MDMunhM$Ij; zNE6I_@P_~FY|G?flJoq?55SL6b5P33k5aLr{k$OaeIpTJjG06qA4^m+DKW*|g}-lz znd{=}K)cwaeW4ee?A&NP0OkdxSm=fKwo!bhpwy{h;h1iCm50C{h?k<4 zan1Q60y;WPc=HZ=eM_y{1G&q-_u)!33ndB{oq5;ea!Y*9!&HlezLrSh(iT~PR83h` z^@86yJ%ulk&8^Uv%7B3SPrQY}x)?6A0=-EqdtjDnY1RLDM7KS-x6oyx13fOzjjXS? zu)$K+?xZ68vg)fHvAy!)q^D zts%OgUFr7TX9E>;?=5C|gr*J>5E;^LY_Mc5?Rt04$*P6F>){x}MhmSn^_VUk=ISws zg1V^R`_-&44J6Ty(bRFsx=vA}3@8|jpS)X+NtY*Z1z4uo=8Ir_3x|K>F-J-P1w4WJDGcNy9@v;e7GL&u%^eK*o z8q_Q#K6984LsWtElM8CQgwmHG*0Oy+Tb1>WUB@rxHib*FAI;W2X47mN=3l~3qpIE; z^bv`IhJDQb%-;3B2>E_BETQjgcFF0yFs^PNf{{>TLB{3!ks4DOl82f1M;5nszth75qNl{3?s- zOVgA(1j2OlJ1mo$H>TLB*lf~D{3688zI0#a`{5)MgG89wev0;b*{0TA<9K(fntQqd zF%kL}6b+44I-DHO;r3Q8@m29C1RZl))>Lv1e)i6otF85?rJ#U0nDyx=*v&HT@|`oQ z?rQgp*Xbu*Yh>P?@* zMRHGWfIh!F?B|$8k-Tj=P6G6alHT@ShQaB$fQKQmF^rOH=oN;>4usSoAX3db5>aKQ ze$-d6cNwnxVU~<%4{-oSXQrTlte&0|I`s3P^fe)wGBB1VIMC_Q5U*J6v1n(EEBhG% zRjn9eAmLr%g2ExA%bfR#*y?K-KCeJb0oRp=49cu8G`Fz-B+*&Ib;0>3?MjYGn~RdyMuB z%aJs(<6|)#DnaEwmx2`sy+_DI?=JW83rMG@u(~&2v+9{CkbTlS)Oi_D1m&`&ldt0Z ziW*z8Yv`D#$wG>O&e*g}&_ZZZhBTPKS@OCY5H#e6=Aa3b>w>e%WBW9r(V0shMBctA zAKZu~yIH_NXst*b_Tz_^M&4`@*6?LpP#Q6A*sA!dYa5>0!tJvYmHi>KdWA%C@Won8P2BEBGYql<|7_HhF zh}XsZ@zRmM3ij3tv!|?l!==ki+IMZRRY2gp3OA4z`O=l_69AWA9b8C#9i@P=AezWS zoF*r_k4I+rm*4!E!kA0LOek&)QxFsTmMw`SLkVo!e$=>Xua zu%&i+^Z-M%HV+M;U~|Gg&3^_GnmgvzUkh7d(Y+D}1KTmp`H$^+F)g&Q%)^7-wF4RTJ9yWpBpKGIPWTE5AP{Y&|+Ia5Lh$T-{ zA4SVgUO2_7Ax1<+U5b(?rA|e|{#D%&d(Q34*Y1tKf>%KuXj;Pie2gZ4{N}KQr%=%l zW!|!in3$L;<2=Uuy1DO$Dcr$FANYh_xBRa*vvh%Ln92Z8BD#zec>~*eC)S}4#HC_l z+3<_1&Gzljm37}*GsFR`mhoepz{E=fP?Kq^m(l!fUo^G>@51r1Q zkqzCPY6Qs!0sR#dBYN?#o49y+tI53#S-M}<*S-qe^eoA#zxR^A6_i1>El@) z5=Mb_J7Wrp$c{VJY1{tUZt0I;Pnfo3L&67^BAa#EdQ%tx$^^I}IR8k7({j$0~z82!?Ck`VGX#|s zi)T{${igc;MEds%q4X`OudoYKksSGET5}xrVlKX&9@t z9T#XvDXw>m+%sbLVHbh${!0a=N#a_@FFHHmkOcgLQq27a?*|ExPlqe8%7K=oe)cI0 ztd2}e*17D@xK>=_F(<`#R~tG}d;}vBO(neA2B1?VXak{j&H_v8@oeoRiVB=BxF%W&AZ4(nO%wJo?4O z*WRHU5Be+NC+IUb%y+jqgqq9?3m0o~qvQi~~96 z!w=y8K&tdtLc)d}!RQ|o5}C|l_2}N0lOI8I*L=5=w=6$?^2!+tdfB(yvwDz*ib_8s z@{fEP`IQ8Vl+QK+Vy{+_R@R!j34*? z6z!V3qz@p2QP1R&gXgQ-JpTGxBz-A+Gd+!abA1b$?f)Q#PV@gJOHf*PI7X9&IVLH$ zw%MeHJXB*rUZ2mcZ8hq;pukJ@tKKXINm2G_-5_M*dq{$DG1G$*wAT*`JtyFrI}$*A zLZR~P?7_6vBBlW6HeEI8WLFN7`9Bh%pg_-Lp7CR;gjd(VpAp8-D_Il@M^ey z4P59&!zYv>vhrjt5%v>u`lk-K{McI5I`2elPEW6G*(wtQjI}(K3q{dNMmvdB`m28u zv?nfQZYnNVLehj&Lod0VQN2VtF%&ej(^>v7(ay9jiIN+QdC6;E)W|xmdF(mo*S-sZ`efXpJ%B zO`kafEFSNl#YevUdGn?QyFNwIhTPzK_84W%8c>sR#Mi(8DZ$VGxK7%@ac!Z$Nso&+ zfft2GMUM*(>go>Eu&4&_40&`T8Wy-Vp}w{aMYl)vF--#{kKq@1tf4Q?woVF*osZQoO-&K@t?l4WB+?623QN_ zEG}J0Tq<3Fah4u>`wHv*%gF)k3`xK14oBL7^))&InZ)kV9@o(PeHv=bI9ERX?_Yj* z?POUg#MwA5OyfVj@J5kx9eB-|G%_II?|;4JXxq}etl1dS*_-L4lqJvjo&D$E=S2T~ zJ}OYmJM`ScZ;uoyn0kBVRC0M~_df+GJ^lxU(e+1eBD*~2SiAhkLa`QFy|qqD>J3K4 z|DZtqUpt)DYwCt!@zS8rWT*_|HPfC8svBSKw8LR~J$1C!iPX&oygBL@{UE`qtzUrh zpZ)g>$dK6(##&PgP`5FC+j@=iYoE21woy1)yi?92V_dU;z`rVAN&wuM@C|VIfV$)G zKe*lLSSny{ZLM0Q<^ZYeKG@8Co76W4P5u`$0ycCf)8(geNA*5={(=MWhgx;pp?&I2 z`gMr6fdL%O|IjFw$-}w!1?6F@J`kxfL4$mCS&sOqa3Un+|KUvPaXt6eVA{|vd!yC~ zkj9>AtGZQa*Zc?Q(8zyajgYC50=HJK3G|)M4F0QzD>>cG{7?TxDV~V?fGG!1)qnAz z$4)tUp;J-6|2I#u{Jh1GjQE0JU@Q?u=u%l3y(p8H;v~?I2fSc-^1)LE`;vJVOV@Ba z7dQ%$z$^b?lKn)&p0p<?07e1(+p8VG!W0}<0sX`e}- z;$S&X@z8_(id>vp9A!JBZ(v$AU-jj<=b7J3X`7zw#ah=zHHhJHw0W5rq-yrdGYP_!A3 z8h!<97b@4XUm4}m)sQr2u-F#3-8;2{!UZN!1cZ5epI}2sFXZ5%;{CM;jb42rtc{_p zZlSD5iW^9v$zOn2DbUwP^_f>{>Y5D(QaQD6R#(i%Yg$p@BYLhp)AgV$p1DN;Y@Rl} z)7sJqpTx%$p+MUaPCZpF-C zkd0?($yAbO6hnO_YcBQvJ*%Irt3b_w=t!8j(4Z#&|KE51TKd0zr`UWaPd{~B z5SbwVhUGb)h4>RX{~dM?6~PUj#iqugy5uR6t@(<#qV8*;4c=h}?|cWFpISu{?fjFe z=rC^~JBq==4FzkhM?(K+jFFl;kqG$@w1}Osme_hnM#$=hbViK%X++cP7;5BGjkR1P6O=dHJ@`>s3SS4X!@E0veE3xUcK!@?@?( z`bIgv!Jb)pHlfYy=R*|KBEJ;C%6c?iG#+=aJw)mgMW6uk@O#MDAI&|$*7dN<+2(L` z44VC;3B@rQQT}H^0be9_fP5$FHOx?85rEcTum@P1t6LmksKPG-Y>Unb^~-!C(I0;A z-8yWsUXv{cahK{H*AzBlNsCb}+&w?|kf!Q(w)97M@$|gTv{eNa%ApKQ+W5|X1V)QB zxKZ|_nO&ndsuksEiF5(^Q&B{g-I z^C;rA)KZP8$N$GU<>BPY4;UzLargP|0b|6W!#jHHv=0-_QrurdXJ-?1!ddbX#Hm+D z(x|t}Gr}Xtq)z!baBvij2mW!^Pqr>A`DSqK-rr003IlYM3NzY7Q7T+S|Ht(39tOT*-KmI6%clYjzDyIk!hCinIPQ+%+Km z4TwFi?AI+d8eKS1GofuE=s%CL8G0uWsz@Mw?;dhawsS$S9ux;|_fKu0WP1GZPNtD4 zM5mIRP$ivME}~(0w48`e{Zsnxf6~ZMo=j`|TbWm}GtX6`Y4vK3d01%TitN9tn z$*b)p6kLJu?B8?t|DOL^(jp%M;Pj53?pxbWbj^nh6qx_PXTjWohP}!89NiYL7Dq-9~F+wfT+tTBB$@i;lzrsCy3-Y=_Nn2F6X1Y0MvBn5uaPu{ZbE%1QJTu# ziIQ@dzVQ{iM8Dqn=k_z$sP4h^;Tjaxy2O92|D3YJQAcRdXS@LjtV-7v0I7B|OuiODpk#a3|n4mI`5|I}FQ#Mx!b-X+J~ z)o)G84<|r|uo{N3u1;PA0b#6|7_bc1I!5;WQ-jF#^Wms_qT;U1x{U>k^N0hDRCjn{wa7?!l<_Voz zr;&mGIjqbAic9#;X^k1tV5TYj2bzcT_bx2F?)QYd4}+smaGLiw>~?_L>P=u0QEzZ~w) z-Fv`Y1X+{h6+(}HGz>Vu`z(z|N|43lUayB}fBO56_@0|Ab6`<_HfBUk*ovA;u{=7X zrc#&VtMqGg2RP3{>{UWup=OIc@3H)`NbCDGiS1M^bcncC?h)(MaNnm@vo+F}lbydm z|46@|6h7%6!dlm&{^nIY`HnSw(xipM6Zp~O^z<~J4~a+cYbJ^j{b)bMrBArNU71u5 zLfbd{sN=R_6R2RZ$f79`d|5~>U4)uFN}X7%$1TIecvZg=A~YK?;z_K{aLRsTu>x)& zK<#N!tm4x4pwU>RlOhVM_c!6@j(Ed8b`6weITj13cLNX>{2N?}Pm+EN zU7mhI1*1F^6dz_H5jh_e_2ty`<(|FAiYHDgL+QSQ0f^gdrqZX>n{0SlJdP_6Koj?1 zbM$NCdg#M_1eHAm>?4|5kF>EFAF1B2EQT;F;TNF(@iz`xpV}?Gqp%1N_EM7foFi#i zfYfoM8hFP5K6wJ4OovowLF}E^&s@PfKyF|cK8dzSeD^87{_|6;rnt;Vie2YDW*M_U zfFOa0z*e&(l>W{6C}K8$O?V+Bn+JjB55_u$RUXpf z9Ei1S-9w3i>VQ)g+-2#16Wh0{)3wjrPB`ntLs=j4hJiY`D4H=bmm|kSMw!h!;mpn5 zRe}>2Cy?pC4l$wFWhdFBUyDDSS9f4x=eAL2-P?lq0RDt- zS(@A9%W<``aBp8UI%c}u@z=`VWZzYYM@L70`iKtD_je#+1anT&y#tgzy79^3DkH$c#1eX|iDC2+?y5kx@d zhlZcCK_a{yUa>O&TFI5}d!C_w$lKC);qBu7vU!BW&tp07z<@J>_JN9eTq~9i^a=0(g+jvf5u)i>|B1DcxY8{rz+A zrZ+(5IU2}l($UjVtYgR0)Qaf-N*9)Dc~mw&>Ub~A#OXO@Lr8X6?Th9iUGKEWfG>Bm zvj8e4{pa1)0@b6JM`p883n~7R*OO}vLTi09x}!jf#(jxJ-Z5Av=v|d>zlNZ{aPb8m zkP@MUrOAAie(T%mJJ>zk4D|5%6S;M1rk4{G?&k|E6LyaH_vmPR`iSj=U*vX=HP`AodNpPeGaCdL z&|%Oa&lkr4=%PT`C$r!KLUOcc*zdtG#uJiR@1Zl}RCqE?E6vNPZ$UCa1*9IR@ZO|F z-b}DI21xTVjcWedRHOy~2sET=R8=xEBub@v=U@XI(+f5Rzj{w%e*R&VnT`FtzlwCi{U=AjTY@Ln&Q@fRi zvz6}Q*g91%6;%;MxvjOTxq{d_9o0VV)G`x$lp4pDYbh!ywY3zTXs4Fasf&0Jomxw@ z8YF|BTxtnsLZih{OUzh8sB5YFMRe|S|G)PU&jg&f)>vi1kp4oP6Vam695I5 z~k zmj*|>fxzi2YUjLl8zEfDH2iIY!@2>wON0^Gi+}QT>jqL}1^_z%xhysJYpEM=;StY} z_;_q3W6RojTcwH?5sY42>fN2;^%rUD7^ef>>2885?rIbYvLn6-D2~wYNOJ$z7v7&% z{MVHibpYG}lmJ?9&b3@erZPCw1Qr=yL$k_TPy3HjLZkZT?EoGoBR%n4o_W!Dj>yvw`}yCCRvzAn*kPg}fXH9boH%Eu-7?I>fv#P3Oym zZ16)O82lWtVHh|@qvj*pBM?t9@@-GRxf~4Yepn(<`ceUqUglE|3#8s4y@qoGKOW&l z@|zbG6I+}`g&pt)F2Se@K{0-M=g>Ww*vTB7e*#%CCblHvQK&~0Fe{8!IDET0LNR?EURYuXvyRp)y#2=J=_g8ta zvV6no<;{s+m$9Wm@B9_2OVZ?qD@$T|y2$AA8Z}#`r>w3Fz}R-Ai))NH&ztV~s>n=0 z3O4LNo%BfK)b>|)ZN-{ucbA8961&@OCmb7|$KBfa+MvDb^E@t@Ge<0=f}W>F&fY$T(~}ePx?7gwjwGk%)d$fU3anTPUb+Z*L(#oIy|o^HQP+)E5D-`;@lh-!LApP9K{& zlfGz4A9_I=cTe-G-49pbxxlEJ#ds2L;l``Nj@(H-p{MuZdOtNZr%C;yn_1VFd=Ftl zwzbvIop+pWb6SG@8XkfpSZa5g z7J6)=$qu71Fc}M1nZi{V_}wDOYA{>{vQU9O0iDX9>_H?qYeu!CVP-<19yiK^Uatqu zf5n=*sX`ZHm0Ph`7{$QMD1vqdc4*f5r!jCr09;@W7Z}+rW!*73THdAtg&o@Q^8Su| za{!f75uv;G^JizOom2%w{U~E5s=-P?V`X6~+8Fsi>E6ux?}C3J)Oj#jNz4ow4N?wb z6{+y(0@ISiEn-?yMpN5N<#2K+X)85!gI0aG1UO>jIrUA;vZYT7Z5>sj(O2+`du|*= z?h;Fsm2Kp#i*4hk?54h%@6ZT`A9{wuW6nNEwz0ry#oU_u!Nl}{SnwW6kz!t920ehX z4|EggzY?}0=2mxbIz)3EwD^ER-vJGLo42sb*)-E}0$ttxj&Z<+`A*c30!|~gkK_*C zo`=zv!ATUz`BWR$aTdRVzMa2@xMT)PCd>NBpwsd4RkS@LY&hr-6^JY0!Qr0d5bp_E ze#c0Iu9J`tdz2yVer9JLra~rMd|8vtA<&fyC6$8|Up;}Too^tfV+wK@13vfl_sMF^ z9`=#-Su(~RI9YLi)$e7u(IbcusdYl|xDEIgPDAziikns|u{PhXpj8KE?mWwC0B_b- zj8%C#K%mz?r(ZO$;Omim$<2t7uxc;Y_vyCgV4dm@BOD|v2*HjBIpmM(Zem#%GMm|P z?E~lBN+j5wDC4&0qUY8qrStOzVKJSL^|g@7aKUkh$xWT$1p`XQsEyOv zg9-1{Eo%6B{4gO)XN^^`XCJZ@?`02*2BuZHZVcQQ=Y!w%EC}n;bo;7)(J8YwXu>Mt`^j@ z#e literal 0 HcmV?d00001 diff --git a/docs/source/_rst/tutorial3/tutorial.rst b/docs/source/_rst/tutorial3/tutorial.rst index a6da1dc..19bbf02 100644 --- a/docs/source/_rst/tutorial3/tutorial.rst +++ b/docs/source/_rst/tutorial3/tutorial.rst @@ -63,12 +63,12 @@ predicted one. return output_.extract(['u']) - u_expected conditions = { - 'gamma1': Condition(Span({'x': [0, 1], 'y': 1, 't': [0, 1]}), nil_dirichlet), - 'gamma2': Condition(Span({'x': [0, 1], 'y': 0, 't': [0, 1]}), nil_dirichlet), - 'gamma3': Condition(Span({'x': 1, 'y': [0, 1], 't': [0, 1]}), nil_dirichlet), - 'gamma4': Condition(Span({'x': 0, 'y': [0, 1], 't': [0, 1]}), nil_dirichlet), - 't0': Condition(Span({'x': [0, 1], 'y': [0, 1], 't': 0}), initial_condition), - 'D': Condition(Span({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), wave_equation), + 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1, 't': [0, 1]}), function=nil_dirichlet), + 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0, 't': [0, 1]}), function=nil_dirichlet), + 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet), + 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet), + 't0': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': 0}), function=initial_condition), + 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), function=wave_equation), } def wave_sol(self, pts): @@ -142,28 +142,28 @@ approximately one minute. .. parsed-literal:: sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00000] 4.567502e-01 2.847714e-02 1.962997e-02 9.094939e-03 1.247287e-02 3.838658e-01 3.209481e-03 + [epoch 00000] 1.021557e-01 1.350026e-02 4.368403e-03 6.463497e-03 1.698729e-03 5.513944e-02 2.098533e-02 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00001] 4.184132e-01 1.914901e-02 2.436301e-02 8.384322e-03 1.077990e-02 3.530422e-01 2.694697e-03 + [epoch 00001] 8.096325e-02 7.543423e-03 2.978407e-03 7.128799e-03 2.084145e-03 3.967418e-02 2.155431e-02 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00150] 1.694410e-01 9.840883e-03 1.117415e-02 1.140828e-02 1.003646e-02 1.260622e-01 9.190784e-04 + [epoch 00150] 4.684930e-02 9.609548e-03 3.093602e-03 7.733506e-03 2.570329e-03 1.896760e-02 4.874712e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00300] 1.666860e-01 9.847926e-03 1.122043e-02 1.142906e-02 9.706282e-03 1.237589e-01 7.233715e-04 + [epoch 00300] 3.519089e-02 6.642059e-03 2.865276e-03 6.399740e-03 2.900236e-03 1.244203e-02 3.941551e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00450] 1.564735e-01 8.579318e-03 1.203290e-02 1.264551e-02 8.249855e-03 1.136869e-01 1.279038e-03 + [epoch 00450] 2.766160e-02 5.089254e-03 2.789679e-03 5.370538e-03 3.071685e-03 7.834940e-03 3.505504e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00600] 1.281068e-01 5.976059e-03 1.463099e-02 1.191054e-02 7.087692e-03 8.658079e-02 1.920737e-03 + [epoch 00600] 2.361075e-02 4.279066e-03 2.785937e-03 4.689044e-03 3.101575e-03 5.907214e-03 2.847910e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00750] 7.482838e-02 5.880896e-03 1.912235e-02 5.754319e-03 4.252454e-03 3.697925e-02 2.839110e-03 + [epoch 00750] 8.005206e-02 3.891625e-03 2.690672e-03 3.808867e-03 3.402538e-03 6.042966e-03 6.021538e-02 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00900] 3.109156e-02 2.877797e-03 5.560369e-03 3.611543e-03 3.818088e-03 1.117986e-02 4.043903e-03 + [epoch 00900] 1.892301e-02 3.592897e-03 2.639081e-03 3.797543e-03 2.988781e-03 3.860098e-03 2.044612e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 01050] 1.969596e-02 2.598281e-03 3.658714e-03 3.426491e-03 3.696677e-03 4.037755e-03 2.278043e-03 + [epoch 01050] 1.739456e-02 3.420912e-03 2.557583e-03 3.532733e-03 2.910482e-03 3.114843e-03 1.858010e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 01200] 1.625224e-02 2.496960e-03 3.069649e-03 3.198287e-03 3.420298e-03 2.728654e-03 1.338392e-03 + [epoch 01200] 1.663617e-02 3.213567e-03 2.571464e-03 3.355495e-03 2.749454e-03 3.247283e-03 1.498912e-03 sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 01350] 1.430180e-02 2.350929e-03 2.700139e-03 2.961276e-03 3.141905e-03 2.189825e-03 9.577314e-04 - [epoch 01500] 1.293717e-02 2.182199e-03 2.440975e-03 2.706538e-03 2.904802e-03 1.891113e-03 8.115429e-04 + [epoch 01350] 1.551488e-02 3.121611e-03 2.481438e-03 3.141828e-03 2.706321e-03 2.636140e-03 1.427544e-03 + [epoch 01500] 1.497287e-02 2.974171e-03 2.475442e-03 2.979754e-03 2.593079e-03 2.723322e-03 1.227099e-03 After the training is completed one can now plot some results using the diff --git a/docs/source/_rst/tutorial3/tutorial_files/tutorial_12_0.png b/docs/source/_rst/tutorial3/tutorial_files/tutorial_12_0.png index e59cd75bac8ecfe98a0a6b9274622f4efa1f380f..00a92d7b20bee6c9ecad23a87c4088154f2d221d 100644 GIT binary patch literal 21124 zcmZ_0c{r4B|2{sph=>+smo2hp%NCJkY*|ybtdniVHYl=2%HGJnXY5;=48|JShcpH; zGo%z_8Obt5_}#sq=lOh|@8>vve>iT(W$t_K>%Ono>vg`)^SnH_FgIjn=3xebK&)V+ zTUH&)z3wgoe0m15Wa?t3B-AduxY_|{FE zhlQJ@=v}9f$d$ucg3vPt;g^D^PYb^o6beulIkP`sQ=VX96p=ddhJW>f^}1uC2F|-9 ze3oHo0`HK6vWmDwaE^ZcDyU-Njz>*aidn*N%6!L_th*df*ulRzy4j-)qnN}`El|@@ zXEzE9ceD-*QPkr`|-#VA@T{&w!D7`b(#`&Cs;;n_Vo<`d)|iTdHT(@|a=F@X%}ADdXKwqDF|3 zf7s3ET{W-yIxC`*t{r`ARh)hs#Zv5j6n6aiP&*P!N-tQx(eoqQ?pJ#8L)V$bhz?}Q z%f|Ut3U6}B)!BHCsCOhmCDd0jr~*nO+4AXRWo?L@_TzVXL-h}BGdF49P=B1=H+5V` z&aFEc`WD%2w`cj1$`a+S?|iyQ`g5H4HsBqqtiYm9>qF0*ti>Jtu^nH)?>xa9nzjvx z1FfBXRIJ51tfXfKJnhrhNywe!Ky-_esl=n2FKf4r4=kEViK0%zpaqu4d0oM42x zl#{a*`JF2-ryR}ztbP=dcyK>@FPQ8^erw3fL-DcHTC9sY%3 z{9w)@@+a~3cQu3hAT#bklA!c)^n2{FL065u0{j;+rDSvM!RVc)S*1mFA$Pm_?$9sx z664NW>h|l%qz?^_>)C}-Z%+<=PxLh!^nw7RKGL$Mp*)))vqK~y=aY5+CyP`hBRN;ER0R>H!{u#JRV z2>7XtShzw4hb=nwe+^|5R+RhJ^MLoJ>g84=dvC~9Q7s{|F1W|?TN-3v5#juua+^!L zM1q{o>r3_k*41cGL&&*3Hf3HeZoR}sG#xaq7T-}8(vLO8JrE@=QBGPOCmt)b4-AAE z@nGT(MF*ccC?0kqTaDCbu-`?GULbQ!5FPg=y-~;(M5s~t9bCr)s0|aniBiqU@tW>% z2=xdOT7z5{lgWT*bu7XlITu>*dqa{%p;^09V7c76t(w+@g=WNYr5$6)Gh|OFwW;MJ zr4fkVJ)@QxFka(*m2q3W259J<*Q_*VC*~u8+qNc*$4NEnCT;-H?GI_?oIM(H^IQg! zh0k84*y2_4;`sbb^U@4SjwiUoBz&=+)%)DLi_NRX!!pb>-(%MsrH}q(giqO?(h?)@ zjiX_0d_Md!p%r)6Mc4Ro7fiS}Ynk_8UO<4I-0n{w%Idi97_8`|m% z&$OV)kdU7XzI5DA5imdigbhmOQM#K~Y{{tibnq4xd`f&Uqb2Znlgnci;lJnlN(!6bPQVDcJB zvAx&h=dZJea#-P)vR#rJ-F7)aF+NN!fg&5P%sxK-d#$v;Cwj%tD`lO)=$-H~^Z#Vz zGsepJ1&uIA_w=sEhg%?t#Ko1r}A^E|<;n<6F4t1N(=sM0;04g@llB4+ zw%$axXqsEQoo-M05=ys(*0WkIoR~FG_u>mn-mkDwmDe^1evwpZ0M$E1z|d|e^@yM+ zO@{S(Uoo{xi`zCiYLpjVrt`Yp7=j#QYG2J~FGHsSPxUqWJ^Mp<=5~7GpIaO-1%CCC zdLCwcDh8pgE9+)Mt%er7Q>oO^FmG=tdjdNnoD)+Z*ay{Jg{KV#LV9RD1B-$vgrHNn$gvyM*OP>6t&uqL)vZwnW;CTq;o4%DhE`2OsX4X-^0JL z4}H0&ucnnkRC(65=nW?OPbU=VR@)hGZAlfkuT;M{2|6Z0$2KFMbh7*P`$mYW0+SVK z(}IL{=Rs9b{E*P!8H91{@vF8Y6~&1Dw!{261qgZoOOZOhf8AH(NjmX+65Gvu?g9NY zt0qIqgh5y6=BSa}WF>}{tqd)YxT&smXi1b+L@^+4$a<$D)xfQ}bK+qqH@#6Tq7Bl= zU6wcrv93UDq+AZXyu<&B?$$SiY(YgsJR!eg;rXqzQ`;HI7ksUZUC~MJRx<5BRR~L@hvmRgdHhgF zvY1TCO82^GS4G>&G@@I$56Wk?q2m?>Uya#c=JZ<0bOWya3WhS>t9Qq%+HAnVCjjDQ`0zvvx@Zx!5 zWUFZVAxu#t>R@G3udRXRoyvXqYQ~#SzScRkn~x8g^frWZ!k=*?IsG26zMcA$#@z=i zC~q^hY#eZ>M9pZno{g|(?QS=OT7T9vcE>JL?eB)6!=@0ee>daJv+Qs1c; zE%bTc?GGRR8Hg5+KR)t=ZW?*{mesJy$tp{bk+^Ra2!Z;x@yFE2wp>j8mlHz>^vY7G z@#A-4EYVvdO3kkXYLmB*@^u4}PdC}}REJFEsR&_tob%7vD=>_{;hvxVo-|5N93)=$ zuE=YUN9l<SS==NhONz^-XdnX(`J3epGw|T*B@ai1Z~Lg(`Nu$I42o5Twa4u!d-)F|Ma%t9u|)#mL?r5?0fi|MTfR!l**)`7b72 zgzMky5tVoFdJN6@>QA)y*4#8?bL_7?x1X)OM{9DvOe#x9!?b5pIBgv2+gwwb-k_ZxH7M7sk?we9i`Jo<{5s6iFQ6HdR!dDDxMgCiD1$@9;*sK0g$FHnmH zT6P+0XYonlM)dE{YRw76PXJJ=4ymcr_*BW~!K_m=^YIhgHPi)I>l8o~ZEF zTf^KmZ~ZNo-9YAUOnBXwqrt!L%E_MZ!M?%8t8004rJFQg_9b2lXxXRm6pP2tb9Upf5h#>76)ME;QhX8a_epwv-4e=13BnYJC=uwcsL zQWaVMGS1(DCa36e?g!B!F>`e&96%Rwo6GagUbT|a@>vpnP~iki0$x4OEE#$$E{#7Z zQ+K>Z5j$}Z;m+3CJZ&O$ik?7jxfqaFoC4;6U5tKhR`%o)b9vip?WgrS*18FEQlrph zh1GKbFXGTZ#ib{dhf<2xqHY%l-5r;yF=V63`AGQlo?xP5b@fyt=h!-ax;OUE`=5Dh z8bK>#uh`H}4mML8#?4NgYGQk1)8^Z$Kxz>b2{CIdb(~!rDLi+Dtw^vvbualkI?a=r zdw^k$!{q3>47d4JG>4Nxz>DO&hR}jDW#5LVn-^b0&^ovwF()Ci5|}G*&YP~F>o)Ez@n{dRaGA`k=(~Rg ztNaX#S9xmgDXZI^-Q3k=VK&hsd(nwGs;tB}QyIa--OAq5_?(~;EuvAk)6!_JKyM=XxHlVjKQjL#LDS~9fzxI3G45OY7tEVfo6XEz!mk>W#GTz7ky*lc3Q7MP|eh z4dDTiFtQgTQ`C9wt0wPb=o{o8k`xR=TN;x9;9Kh|0ph{e*xNmrG#2}`A0qad*3-R5 zjTG5~G!b)>BeQ{LF^8Lw(C2whR(|`!VE=2VEfb6-&XaO{*E-ew63x|mmHQ`?8kX{T z7kr#Xw#3$w%xc0Aie1YPZU2jRg-=z&=Kg=C(XPV-f`-1 zarmu&99+LkrP_=tvS!?f18~WWQZ}HMYvWk>)s8{kAnW5&?V$wN58NnEa_@hHKr|GPB9)L zx~WTsor92d0{yrxdep;SA{`5Q720&Bg3h3w`nFq1gOt6eNc^LX+k(<3$>i<)m$=2# zMmMn~)Iz1->a+K_^15))5dN_1BVNS%^7wW}f^5pdE5d35+=lQ@@q4LBuYQiw@2K?c zogzhN|59h*1Cv%o#hROV56&#+a>d0IC`BtxS$g1{yt|iP0e8C&7o4ofpIPZlz1uUC zk%LKpP$;GuBKaxwTl*WPd#Zt0=(yWD`+MTjMyt$I_o3@l8TqcRbYVgvaT1#Dy+R)|B17!n8i-c= zQw&zJ)TnuGH1gIO(ZS=Vcf+4EXLRBl0tTmMAz;$7g1uNyqk}dii)fKJ`Ld!$L))Wd zq$2Ss1QB(Gd{ogvfm5dkdYa$eSu<*b>YXWyvC-QsofPI8wrng%mpy^3F5c(tUv$rv z-E=YN%0;B8urmoi%z#d0zwIY&g;FCCjgl0Ju%34$Di?ty z?M;?Wb+r#V<+eGAm3klOVa6X30rX7j{&V}=ytL1moWk6gGM^kkN4@8-t#i28e^uWL zkrf}PhKA4I*jJ&FM{aLM52V~Y@K0ApHB?+x!5j`Ih23~Z3Ihn0Efv()L_gFm+)>3? zFk<1lN5|qF|D@nWX2rusWR>VqS;xsy+aNp4mpurt0%t^dOTVNol^(RvxZ*Kf0ims4 zt1gPzTb4{rfSvmCBe$bOdCfra5QEg$gB|D$3<;tozQ%M}LH23Dhhj&zfzvSX81X1j zQNtQ%huwgOMf-H$e;L^Z4Oh3Rb}5LcmhtUC4H_{7S%(!dTSi+kwLH;HaHN$Dn%sTq zVF2wn3EV~3)rof;wwJ>cQHkSzfeJnycX1+mDg~KvEAme(@Y!qu_b%l9EO=T+#I^?2 zc;4a9AAUuGBv~0TDuQJso9m7m<-|b+hn8N|xoJ4RaM5VT69oJ7&-GrBHm9d=1>+9B ztn48gdEbo7AnxSPF)M1=;1ULo4(hJl7bin0$9^YlkWj~F_AKniG~$jiCc@F(h((cU zJ7IAzW_D($N|7<1YfRTH#Otsfe$+vmd$t_C?G>?di(ipeT+6wWF4-8G@pcePLAIp_eqyUhA1h`k>}V>VNMf!3+uq1GFK_r5lWU%nnFRXWV>SJh9Bt&Q+m zyt>9@_D=))EtS&U9Q_X4E$jU;<1o@?=DsvJ6LCXyB>AK%W0#<;DQkZ#!`IHv*MoI0 z&7P|aZ1{`2#cb#WwY~Vpoc&=W(3{&t`+755ol>fIV ze#C?e5T9ADgM@^UHAd`yAB77<8|0##<;WN?#Swn)a6#CcPz{Z}pnUOo{a10GXBGI& z)P{pW16^eXuDR9JEbZ)b=6kLZH_!d6*#p~KJ7(teVrJd)#x*FBX=&^-@CZ_LAn`)0ojaPU&rLAK42jC3_@D zH&20b1xiXDzP1MCIy+b+PB)D|i+tHFw^F1c>1H3qV3r#9em=GktvJA30(vT3I$lX3 zkD$!W8iN@g35D1`*(?hq3VyrrP2#qiH2nOlciyo-+4V7)hf8KHH=LQTUK`}}Cvx#MZ?kp_tapH{AHA(z|SVKJBzFGr_K0g?uKZGL3X-+Uuum?Pd3UOQ8yz@xmDc z$@5I6=^68l7YzLC1i~~H<9w?b7h(M8Yf+cfmj^|2$dx*4Y>WH7G$(F`tPCKRDCsNH zZ!99l+{qV|0~ZWHd)25L16IKYweho-1kJEP1g1c-<*v`_+hk+XYu~I12Xt2~r*J5$ z@e1$QDt|fJ_3fht2hMC`-lb3h1+%RJeZL}XRK)yR={V+^*QL66T5`3o68g_|1qRZ+ z>3h7fxo<<5g+SXteM_DfXi1Hf3cy0?bw;^upM%8GP4Wfv&` zaeFzxjTV+yRx{h(S9}rv+UzvHx=`ocCmscxuPAhz)xO3*yJw4S#=Z(I@C!&wT@+YS zp;HS92nv_gk+Le7X7_!)ncNi#0xe552$;p?Qq*5<8kveoG{XbUQB zwg~gAQXxM<{H;Rx7=C&8N2&__lzIP{!dp7q0nA#2R}DR(8$Ztyuk+ALaENgEK|JA< zf)7injBwa!i)FGEYf=rG*U0kxRk7esDA7%8pL2;Fc78g+g^;kq6rbJq5|5{Io7$|p zL#q=kUgXrP^yl@Lt?AD~a1V&J;e+CubsY_>vuGVV&6bmkshYAP!F!{D#z9G291|gg z!umca|4_~JMSCl5Rxr&?foHrWAAQ`;lBc2`G?$;{PL~`RH&OWfy$_qFfRcfP+HIfo zaS)39A%tNBMwNcR=CuGZ*;kHv|zy;_nnPKz|+?`v9-qby|wG^Or9G{qEaxPwZr_&i1qK9tR#~CX+xIz+ZTP^V7 zU@6+bMGaBtRV_*aBs4d#A>*wTu60QHssEe&k7`DY(N|rRAypxpPj4 znF~3d5Q+Rb2sns(gpkdGcOf-Ioz^L>T-1|id6A1)Smy2>aL;|>N+@{N_#hV91P(9h z(AI8L$O@;HPnamZ9(PCzK2L%{7VCeuai_C+bO!Or=$&nmt>-pWEWo#{BtLv_wI1XY ztAf@c4oHshMGyqSqKTvrfz+&lliL?&wO1*=CIo0Gb++wLl5)I++vDmuJXxkR1yfu1 zxT>UJhXKt;Qeh_@Qk$1}VOI-tj3A+Jk++S)3pz?<$+NY8f?TZPBb5^D6ZtGe6wC=N zu)&Ltndco|>tA<@*cy5@ItleP2aeAzIWhl9tzGdTs$&sNjKO!y*ax`JGzBF5Jj z-o5N!70bu~_=mCdD9W01Y)RB9^oq<&kjeiA}aTJP4K1GO7&NXd@!*IDni~@Lg`^QvJeZ^3)en?GMEA7Rkn17M)7kSp)HlQ6<7iu zkeu8(u>qB^>agQ70$!t?Qbmd+R1aY-{gP43X)mDoRC}&d04NEyT*t&(5^~;aDn9~L zwx=-N&{|WI><<6zw~sz!t}@C3ZKrlalQ&5}fUd7}M))PBN}O(|Y=&mD?SHylICFn0 z$lmk6@Nfpy*%h*=@^5}E+B_&)DY3|3M;Wg!B%qMK@Cry$AZW+`X1ALWVn>LM9%q~n zc%@+O!|i|*k8#X(XJeq5#9FSi(_14xdd3rm<)y6nn{40AfH9a~zkR^|g2dj4VoBNV z&R?^Oo9g?=PS?hbx9U0AtJM2%>?tq<-*!19ZQ)I|O{WxpFpH4jhb-6G@_(MTfcBoJ{(r}G!CCL-m1k{d;cKKsGMYs?6h ziS_GQL&T$cOV#|jSuq)&pee@MW7@E2;O-SQ>~V{^bC>F8PM3ND;=2*k66X$2q4zI(U&6sfYWGK!fvFkDr|%A`B+; zM@?I<$GqixRI*Oalz}Tw3O(f$IX9(XmFOSg; z1egEi4R+&};(AF~U^DW>719dE=;JuUPSze%4R?NZ(wqn0_@z2u%Nm)pMfPJ~OB20E z9)47EZHX4Fyjm_57VU^r(`$^jz|DVIA&4HKz?8Efg|eBJ^$}~fDN7CNQ<#B#3ZOLN zmpc`LSipfPeYC5m*36=O?#A+iV)8g(4{T)u5)gAaK;BuOOS1l7D)CW!ExCI!cV#xRww`*&9ZJX8N zfMR_K1i~g=gsu!#L)EX(LL=TVwf>F2y-4@FOE2`bA^q!&z&YRmBD5IzQ|=j&I-RiT zmcGNc)!Lx^J|l5ZpA64UM!;27dWrsbrypQ40h+{9e{EK8eX{$XgGyyh%_hz+g`O&_ zqMAM7umvs#2cSqwwzE1N=xtg8VSXUZ2m}&0Y}0pNEu;a(sC>Ion|HWl!m)x$Wm!^r ztzxLhQ~=Dv`|>A%wg=R2&?Kg7>^hNVsimbF-xWO6@-t!{@?U}VY;!^twFyD@V`b%> zP8bwBT7HE!0eHf(hlnk{N(%MN+UK(xL(xv=|10SMx2~Tuf7va^1oIIfk;?Xhz&Tl} z^8Z%?jqNyD$A#J%g};H%7E!vx5rgtUfT=9zidN(sv&VvQLX)*2h(_6{ZhIUd(J%Oa znQ61Y9wlWcvvZK=$U~Eym8A92C`(*FCCZMBxd_>J zQar58J95h!l$QbC5-9a9fFk_TmFeAF5B+9r3;yA9{)Xt+{JUt84W`ou_oQOz`Yl`!0uCXEQL^5) z{`#!}L0jW|MYHsN-OSAroeS{i$DYGBOK-?!&TW z!CeD;x`V|?WJ>VSRqRHao3K>gT%B0MOE~o})dalbj3T_DmbHI$4)(g(^$=ds1_e|H z-huVe6Vbf6=MeNg1o8i+mMezZEEwfP_aI=P>!pfDTH?eg$M4(z{pdc1A9(m~IwG5e zK3%>@Ic`G+KXp7QMYdFo6^KCvwz+$hmoakS0~~VGbr~%JK(~OK*MLcYh8cm!6*K%= z?_9NEl1Ql}`qDE7U_^eV*tY0KF_VtozAS+YbJ|k))6=PznyvQB#8(O_njp|qHGr9$ zG}B3B=Z>Wa5idUyHvET;e!a*F0{y(n^kETLw+S%aeRY0V2_WkOA2n3)iM1%c@hzdW zr{oepsB(LEL4pSlS2VO`t;my{WtPG}mTAX(W??uj7ZN<;nw*1d`W| zld+Kd$JVGWTq%Fa+9Ae~9cHOv0Hp!xEdH!WpZR$mB@jm7(yLA>W7SDx0{o)4;`!r^ zKGw1Q9>G&t0~-k$O9&ShrNjV&0z99MGkotZ$V+#43P~f$#BuF3S_j3{T5U^M%A4TL z5D0zqEipJs#1{J0EKX)pvk%IsJl%}!2MnqCHnV}Pp3r#nI4BR0iK@D{Tsyb}p3?x& z&EmA87-+e+=ErYACQofDu|VCbxYc9qbJ}WeX6dlJ|C%w$s`KzeQS+_8 zRi^e(Sc_%f*pO2AsAuN?2iw07jTR@LWWbj*2(rqkFz~z-`7AN=_P`=*sh&@D7(jsh zwQr#{;cJtGY`I7q>IDC6Q1Y5y00XXfSVq)Lz$W-K8fDs(yp+2cBM?kQ8K1DNZsg6) zj{6ZZqStFR+wzWTk${U+Ll1V0L|ThBWWRO5T~xf0gADl-nVY4)E~V(;qt}pZGi9Ag zgM9wNp|g6iIp6<+YK}!Rr2W6>R7CSXbm}1k*#9c0#iInI9bjc$r}U61XLAJBtr6Yo z%f}-C@f-^D{Efdk*_j8QQ5$Re5mXwHwV2``HYztLcc=Pz@LUMC4iSkJvsBMvdR1@ zurGE)7VMieb`5oYynfWDR8Rr6RWJudEJ%^51-?=s(^Pv#kc_+iwU|5Yhkz^KQqa*8 z1eMD%Hpgma6qGON%zX;*g#ZeJBaQ)Ko(X@ESES5bJe(MWK=9o>6w zxB=$tzZ`1)mg}^xyD9=3yX)~AKK$jaAb@Tmh#@F)PQ_OnBVOdmSo(|gTwRF}QjBQI zg96|zqWCk*1sxke#rr^+bBNH>bAP~>@fN_^=~VeI%tD<~OQD}A@`7!D9w20csVl&l zVT+%%IS%^V?^a*ROs=qw{0C>z?EM4Sms~?yn(m}b4#Zme(oY&S9Ofms0(q#5LCDrY z=8-uLTrmc;e%D`*-$OJiD1z1R;OrF%Ta^1X!v_4Kc{|*KrxS~8m=)PFhNBdUD z$D;Y4lQoLU0f6mH-Or9s1NBh`wIRCnaQnK=>DK>PMoSmKgVE)ku^mmTCw`EUtX*66 zh)e=%%|eDa!C20kV(-f2!*4(Rz8Wfxa$s-q^CeA56r^?f2e9+#u_4zy@x+b-ytBP#0XqMLoO~c)a=OFU0Y(w5BO8iqScH zRf4X;UV^;#Wu;E6EAo>8DN)=4n{kurUIJ?E7z_^aq??RWlLyNSjg#Y-Krr{@M2w5dmf6`7+)63n>z_SKzsW!$DOP2g1 zoV^}Fr`y^!({I+_jH#S%_PIvGW&7hs-v7xT8w1v9d2=gbM^BKp5S0gzt-P&cN>m5Z zSL{d!H!Irpfm9+m%UvlZVo(3L^pRv?oyOi*{{l8N-q=O6@(SH}0Ch;LNOAdqQLI76 zsoM*2$kiHo7ndmEefx*N_{x5#BtZC1e`7PL|4?Mf{9bA~LUHDU@0lR}W(KSG!+aS% zpO;j)_?j+g9~dX} z!{5SIjkd!i)F^1lc%HYCPpOY7Os&s!SIv21lm^ZPxO)#Ft$14uTa`l`MQFGHe54}W zeyX>!gsVsuu5V|E(>*n2Au`+^B?u}D;FHZ@?1Q?kP9l>p25_J-p|lCLmcqJ_+VU2i z(R}Bu>=+hgYJdYu#o%->a~sgfR9o{3tL|=ht3@(`6a=0OUxBs$Xq_B zut-+0@ob$f#cLeZ-Fhdqk+luMN#}wr8CKd-$ArsxW5^r#LaI4ox2gSj zgO!{#UirML+mCJS3AyFZ|3O&^!!zJL8yCqF7tF!6zq{!vWCa-=|;7-&$K zs8ZU%=2lCinmutT=KFj55;xWckT@!A?gl@)j&ywM(S@AS0!D-HJDH2J2Weo*E0lX7 zURIk7Ru`r&gx}cOtKHf2fUwM4d~pxp!Er zGhvHpap$jvVQ~7;|4OHS+L2A|hcyU5x=K5}mCiJ9SKER=B=9m`T`4I;qX^@Sk_B2J zOO>T;h6sqF^p8P4$cwlC)3Y%GEuS4Y9EJQ~1c>6nR6*M=?X{2iG&P^mKl$O2x?5hG zpQ%bMvN5u!*mPxoApH8E8@gdqL7a!xP(}^-*TTOnNzJd5U&4e=dt5osKYAj-w7t=7DA47vG9kP5W-+zLypOZe`xekmXmqK1x6JwH{rX+Ujk}5j zdrT+Li|zxP7XD#Rdd}KB{-Y<_brZMMcBq{{S5l`cwxw-GaCt9Lxf3*0I^sf@w!f#> zRX!sowZc$2_~^jHeW`{+Hz9f=kRZ?pP1bEHEG%dYow>aIuN)qx9fpTO_Fw18gi=Wm z^uHB!r4`D_UB}~B&gu*GqerNKg*Tgj&CsP#FAR($Ai|2fIW2b%{Kz5!P z>~v|wbn{VA+bOHou(@vY+m_ilriYTN2ZvWe;|V&S3T~)5E4l=QJUvHC*_hW1duXbh z$shSlfA$HOiw?HBf;Ar59F-!@9DSSHEndr27ijkV+T!Lx`^>OF__a*CmY~ZyK&n*R zj?8CfpeIu3iLzRDyB-%|*0*~3(`T8SI0?_}2qi;&w64!eomUp0^G6SJ(Bw?2rZ)EY zKUF}vWBrozNVb1^0^WxLh+PDNhJHTKRz_)zZ>T69@+xXz+M)oI`vBO)a?)6j1J(pR zlYe>3-u&bvy$P%6=qk-5-dCi@RYDSG=H!iVixI8Q-;e)X4*E}c?cv%njFA9d(Q911 zOgkeDz@9DXx zRIxJid#yJDl)(Gai7DFDK60G=gp$V1d3#fzcefo4H;Ec!dVGMh&Ll_mueF7$^}p7Z z2VO(|CI`CYpZ|}ag;9ujXL4E1f9#+L(O5#Ky2s%lWB{FRR>^weF$`=!nB2G2;OJ0J zrr`gfF;ZR}ELHdltF{JzzUHIxm)R`cfl`6?>tEF7nomq#qz*0$9Bu2^;()sb=mgk_ zm%A4gHAtkA{H?$@EUf@AYUB-VU?!#H#q)8TZrGf-RDP~^*R9qT%1F9P3uV53i!Q{= zeHY!7T;2v4ljER(x#&LIrT_b`5-3R6rFWoJG9X zhZ)Ze5e@2mBR-b^Btm_$Vv!nN@;lW!rG#+2-54T3oqz8>Q}eusPUB?K(@B$4bw8Se^Y$B>qDs7R~XX@v^8 zO3N4G32S^)fqJt_wnJ`BwhB)_st>e1q4Cl!C~u8);vFyxp$ER9xQ!LjsEnc-&5My| zMMtpaFL%Ae?mIXh1G~Da!ya!HBDI64AB+xik^Q1jps&ER-@WvE9C7>!yKfTi3{W^x zlW{grm|9;XcTHVS&fvcWR2)7fTf>?c&upt>u7<4KCE{seQ}06OEeUAOOy+SCApcEd ztP8$;i-!Mx#X&u3=a`KK<8s8Iw~K3Pgv+`&f(zah5O!#+a5ns36-hUogOOLhk#n5# zYYRt>yred7MZ7uFsvuaRlFX;;dS=r5sL<9JdDEwSh(tY%jBSGpFArV_aQ7LzqOkFpEcMr)KVQc`Rb74I ze#Gefua1ffI+IYdXaTo+8a1zjkW}&^>+jn2Ho_-bdK%RxmE~h9_F|pbZOQjFv4fIf z;q#8JY6<4j{3@l9YEAnBy38${UJlQuGgmSXM@NqW=JtI?73kM1k)6Z#DQ{T+Ykj($ z(zqECDsR2+0x&d7^Pj+my+uwA%B>Xp5mU~$V(6Hw96{^HTF?SdybAgfgOjx+F@Nqi z;@A;KyJtSw;re+$T7>-O%NIq&v1-_fa}jH*WlDK#Ig-=J`j(+=Wb-V>CTxCh{j6|U z5FVx^yl=0X%1zgJYq)4HFczG;>HU91Tvor(bYwJ{(v-O?4CY;jdDU}YOyP|dw3(i^ zpZ)$IzEmYo<-VMcXBeQ?<>w|{+Ie=5l59R5GGEGVuKjXnv4*8~!$8{s#}?K@AW^{> z103e(DN0mk$Cjk*g0#1H*LWeDh&RdL0qc2V^h`y3jD|BI`KRSo4T*JouHfD*%=w_Y zr+9E{y3@v1k8JfhSdI~<2mYwB4fc|1bkK2+CyPh@)VBAbe_z^5X*hbO<>=A#5dA&w z<)0Xf^X1u*4JN`a%X|T2r}}+2T+vsfa|&%wxAreQ(vz4em~)uE8kdvWcGLwyPh-)P zN0-y(e%zpiY5sC>F;2x}9#A(LnxBs+JY_E_aEx>0*JX%W^OR7wT94|KXtc;M?iDi~ z5P82CmxWlj6C+N5)ob97YLJYKs@G7n;Dfiw5X$kd*Nj2bR7w<}=(haG{lm#wmdP#< zO@}Q7yTpvWx@2M1*%ec>6z3`*C#l#c zmc-W&H+K~FZFDHzi`c(v@<^VfB-f{OJGeA`yGe(#+7*=p4PZv zk@(WbDYJ^6IWh?)Tc~p7sg4P0qY)T$I-pS77Rw3tTIM>{wRoNrM-Ul>n;^%MW))FDwgssX7=2wcX{Q&pGQ~ISD&)IY<}xrn0r#Zinb_vY!GOfXtSW_^llhx;>O1S z2KyCVGmx0PSc7l0eD`L8W8qW(`s4ZPGQ2)A$&yHMHN4pkU?}5?OzzB2x-#sU;&x`T zChegWd`9cK{QAuEj(2@>@po**KbtpAxQtapAFC_M+)HwA`U&(D$Z|`|`X=i$TOy^< z<|qLL?PFN4hgDuJR_Po0NB*}a>m?O&_;rKiM~t9%oKBqUE9d%Kep6qmykb+3d7WuB ztgjr>a|hL_?H1m&QW?CYQYrU2SI?1f(8SQhD4&P+RIx6CS3UYR$ic~zVX3Vbc@obzds#c5_FfOnlM(D{$!5@qd3UK0rn~M}m0l^Etp*y2= zxI9@L|$MU z-Gjqm(M>q@FdxbZ`Pf9$JY89s(Aa?=YOW4ZWR9c|!0#Uy6J?9ITFDl?>uF~?kyA_i z0DTw&IDr8jC(E@cAFZBMreOnp-uyLmyRQHem6D@HwdU{MjJ+rL{eQZOJDppnDcuf$ zg3_ADuMIh55sQrajQMZF$#&QSnWy;%!%$~Cp8)>9{It5M2LPALS=$hA*xKnGjQG#C zTJaUV!`N*8II|AN-BY(nd8cwMz5VcBIZO%FWMZ$hTzS^?CqTtnfc-Ofk8#r_FM<5+ z{3kjAxmdg$7|dy6rU7h#q$lPN*i>oQh}49{Rw#uNxDKy0zO)-Q^JWf`n%cDH)Fe80 z{t%CZeJIdXEw^@C6B?-2D?$(cH=*S{k1;otu~B6i)d@eDvB z|J{U%CSjx6jU$*^8M^D=MU*Q4OTH3qkdz(6nk%8W?C6wHcATxzk3Jv&HN;y43ySUmn=ftflb{rM;QU*Sp#l zC9r<)+6L)MviUOarrGKpuD)&=A_?00+fKgwHyXMJ*4FUoNalqK*;}&tn>v`guPKBC zUBhF(@6y4Nth2-_uilnQm~_$~)qo6EzrEJk5j}>@zWu8W@V7XFskw7(;0GoLiN7hg z+VrbF-UGUZIoH|g(gNL52Dj|B=C;V@#(HUf?kjo>q{%Xs3QLE>ksJKsLq{mhTLoA9 z&no(P{t`pLWTA?7j;eBfn=v-(PjdNzgpy%zmV8vWfHG3UTFG(L{q(w2D89Vil(hRP(8yC~UtZC( z{U_%??s5Mm2Y<*sNF3&fZ$Hok1&%$4*<*CKT#f_$Z&_}KKAy&)Dn3OF_ z$?yQc92r47O(kWL{w(uJ-pN^RywUDP+|y;9r#-6qT30QR0*@4R=>c_`Gw`iXTAoXC zDEx)hN)4<0xOT+V`shNyTAV>ej7(+O26%q%p0GaCfaS82HG?T>Ej!{5w!SW3(jwE}BvQn$@_(1}Kk`g5 z{EHOL@7OHnEkr7wOiMn!uDg{Miwd zH#-HNqoiqI6y|k={iaK>pt3usGz;f0-|Juv=Y?Ym-RnA*+)UoIzo8AtUO|ny!$B zOzbtI1a5&}m)gr;A6D=LDLL8Kd3UaO9X*`)mA6&tAES}3D#*s;a=HMJ?UOq%mZ#m_ zDG3{pY<+z+CX$H^`rWYLiWpnflI}-%xpeazu zzhk?<4Vdu!nEM$!4!ul(LLfgVw`baP^5SeUF%8zbS~AaMdG9@@^(Ve|+zmKl(wcW*H4KesCt6S3<30c&PAz zc(>pa9HQ>0J>D$!j2o}Vj|W#!g)0b$!@B{9#{d|7ljV z12Wg@4)OtXrb-V)F)NscHzM>qwd_@@RfGQaWdE z<#{~;TEaQXGGqtjy$L}rj6&)9SzFF7ACwsX&B-J!@NW|N!3^O-x}ZK4=O^KOK8ll) z-lt1$IOxO310)!eHLXQ`S_ml9Jtn zg9))P!=Wj!l(LP;Jo~1mT-aJmKbF!LhzdT>yDA`6vs_M=8Eyt49Z#CSiSpBELou5; zdW=bln+Rn^*4A@blwpw{b^vF zNIcn{?_exCW@vLvP5ji^jJ{R>}=$ zBGiz>)3>8D2*+^)AmM0Lk@IPiyibNPC=9 z>K@nDLu>t+j`WSrN%rE*kz6WK0jD9H%YXg9^w5DkbY13OJ}XS+gIGnMT)^X84mK`n zoR*Cx^~8~S{Iccjho;8#J0IO0ytzg2eORB@LpTBbN1^k9w1-+>oXq<;38f`C_U`35l&A2{w5{0{5$ANP%{12FD6dE1V^>jOaan8+Jh1jz z=(PDOO?WDV5B{4&Ys;sK;<8G|#$bl8biE-K@BSr5^NWnBO`J!?*qN2EIj#N(Ks`c; zPkO}0BMp4J8D!wyTW>ea=)2kURmjO|Yzh5YfB*0S?@uk%O*_363|Brtp2adY{i~>( ztEptYlHgxkb}u}Nk63zX^R)@~dQuQIqu!FMjba}LX%&D>)*=PCcJbdK>hc{ zjJ~kfKQcVbk(1y^MI%|qQrYsNQbkcIR!j7$>e9MJP4!i96xSf|&$naEAjIN8&Q`z~ z#MbZoO?hT>NlHrZ8#VLSN36yTE%G_XTE1p#)yxg<6|vel{y;GJ<6S$Kv;hz~{p#S_ zz6S2J8XtoQ1ER7op6)dLa)DYh6KvedS*K*&F8B7D`~#ZNXOCaJmmy=AdEr=APFZdb zjSpJrVtxajoH?>6_~GAYiik-p{Y9Jl=x<2qP+Fc@H!_0nBhD{Poe!SKyeIwd;)WlGte>Kh04Yi9 zzn!MR2)kE%*{9ITfD7`gk9rLweHF z9q0H<^9#{-1c^egHPia-VZw{BEYz3tRW`PZzaLE-RyUwS7{-FG3Mv zSU+kQDwPy|f$P_eytTFjTPtI+J1}!vaUT#}M9_)tDp6^>TieMK>)+E6 zRqDMm+HagaDFycaKWEh2*B|<CduHOKFRp&;OwQ~L z|n z=o|&1UMv{3!%C8rWmM5tKK@L+fZczMg7+Rf2{K9Qi$#mp-1fU7qqC^{}C$P!t`zElcRmYNub!pwxMSt|Pw*+RyaJ!WJkR1#&0 zF=jA^in0u&#ZolzcmYU#cO|Jh(yB9*v4uMb>U*E)5RhpAMli*I4@aYBHR9dptf_( z2ltQH)4l&W)i3p0Z2xtZUV`TSQ6cbv=l;=*@{Q9|hd43F)N5VU2|lf}(_FBs+uBq# znVA%FEUx(RWC09c@r+O0v4f>Lv?4#aqNNi>e~ZX0nsgZdNRgx2H*hp($pk_-rpZR2 zbiEoRSK;K>@zrbkt#i*9nL4d0fjFiRd@G`*fbKjLB0M#2FV-2MqP)tuGo9c@OL47;!&^&YE9dsCSemHf5%IaFvy( z1(uxefr#t9^8!FI%yl}{m61S zZ=FZJ;~c4VaHR$>z>(G9ro0-yWi%b#gdNa*cGxL&D}=B^RWTN+h#zxifKI3lc&NIp zflgcxZm0uab7e(WV#h8?$2Tm$*P*jG(P&6%*7_7)K;U-TDklU@1+P78bRmmgwdnh3s}wAj|G!M%$TUMKBi?S#dx($ z@1#l4oQ_gEcRvjs3@xXq)Ldn(EICE}7|S#{8k)Mj@w+0>_jLIqJuVYDB9Eo#H&)9Q z6IwY=h*FkiFt>^(Q&m_=1)U17<{Xb4y~4~3w_p7^I*#0_y)+^QiG0mR{iC|~vmfM? ziSZ(Y!dH$BhR{7(Crs+yvyrkatZYbM_lr(!l8W0;NB)6u`uilnKD0n^dwjU7Rq zodm2n#J0S({X#?3FrVNrYV6NP^makD2`;Cu1P^MHRa3)N#*^D`x;GbCOzE8f=y@S} zg#XI1@Nb{eqkyMY8+hr?{F~nX)r0YFU`4wXhY@@f9;-L>+XWK3)qT2^refUfvAeiG z*TSz+b=daDlQ%F|j|OBCXAgh6?eaL+BJgm|s*~2@u`gB-)yI=o=?}>Um|cq;qr%BZ z$SiuxdT50kVyd`=HVjNqA3%j96Ae8fY3zcOkK=OGu2#0y7x)F>gJN zXnJ+X(cm0Ombn{O5dCrRs>ad)CI&)^4WW&6yrvAAs4RWOWSnY+VrEp90xeEY6`h@KI_n@N<~(Unw^dcwkn7dXG>c*~vpmat8ZbjPP#FtmK>3#PlCp~cQQjENhoP5bl&VW%T37!B#B;1w0$ za=TY@6)JL4ZlqD&mex|Lrdb;4hE^MlnJYUxR;xw_Z`@^VU}D;SaXMzZHE?7l@5hP1 zWTIrU9L(MA+Udk;p8#iuT=x1eH|AC~W;gtuUvN&iYd;DWy;&t{?p~uGe&oLEWowH! zYG4rPkKzb8dDIK5HsI~)d-?beJpp><@#;gtY#p(;?S7yjobQRQFS3DYGGI0p*!fO@62D*Pd z$yr+CE%@hz`oXISU;-w*S%v)ceA)~(-o$A|FE?I#<<`ydJnfb%B!ylM`<7 zfz0k4m_oVA4apX5m>&Bs=pOnyZ`6Zd;IkMg?$$OxuJYj272s^i`A@Qq*aXdTF$>EV z2SH_>UFNIK?5ny4Y2O@m);iC9AG+rHT1-Ow4G`G}l*sS0$NZV_!k4k!-2ryTCbT_( z1Q2&)T?Ee4_UqB1(3@B0qpi4^*R+9zP=PmdqfX=0QHQGx=O$!Zia=!?iBr9gxHK>sB*8P_97;e111!tVkdxMwBrx+WD@5J|pO9J<& zE6hJV4goUDjxSkEMKba}^lcl`a^hgsabt4hY)kuwUwx2=c$o@aasH?>kcbr25`r%0 zFmlTH!jE675fHgvWCD8_pP!YAf6C=qrN}X+1y3y&hV59493)6LtQwI~BC!038FB(x zQGDROTo4;5;^<&i`EIPjyf1gC5U%CT3fxtYFt^9YCjLt}C_WMRJXshvroX!8RKpfC~tU%>LR9q;wmEJq>LQ@q&0%TGByGnx*5^COFC0jK-a zz^6Q^<@yU|Mhv^>w$#5k zm9@+#(Pr{_;~CGJ>BedjX{s)t6pId_)a$P%xvh(+<2Zc zw+@-%ZJsu3R{Y!b>sZYczd#;bU8?cJ{iQA(%oXP?%_jT)d$Mq7K}K3ujm6{hFM5T; zwLI)<5a4fW!Lt?ZKnSf7oOw~5zwpMU%{yvuj;k+nd1f?zMcj=MH|~;iitn@7K;$=q zweM*kusOoRH~outq$k)a$jH1;%Y+@=Yzja8O>z3Din^1Cp;KEl=ZR^~$tZ!e6 zVq(lseilpJUz6to9cn%rlchJ1}t?Uu*B@RN?d%n(aCd zY+BZ=I+e2J-}2;4SjB{{sR;tRUgDul;6=xC_y_N)Ii4db(?@SYqisF&n>!BpURicTjW zfNk|tOHZ;A(h)4;Up=5c&%WrsXhvI)a1|gx9i5I%e@o>M`exG+cK`eD*c2bw&B94R z9a;cvA9tDQ5ML5l12B}=D!$#Fx^}A7ePimoIrg_n%;K;`>EG9PYa8oCXFauC7^I6I z{8!J>&|6|~_o&^+h{r0AT-FsY<0%D`$A?zdhE~2UZykqk{W0HoeEOoPDH&gKfF{}4 z5qMbod;FKZnT&#l>~#@HQ(pK}Y}nAs+XubithO)Ak2&j#khLae6!5Ncrx~dL6VnuV z_PWM+TwbauRbDSN(Sur&JM*jMjoU*X?cOXRFuRVs*2Uo~>IirVc1M|2Pu#1){!)P& z-tN8@zLir~8b!lD+M5y$YI_}3_UM1$Fy#{CmcdC3xOTV8l@tJjjc??4>{Kvgs<9>G zbLHh1W{B#X&x>13a?Ur{U0{|gSAIHU2kgmPwA#wR5@PH)z560GHWhnsaOG8_)CVp6 zVb>+mqg}2}xuL+aW{@7ad76AUV*Pj$KXqguC~a)*Be!6h%96@qq3`qB%-zQY|6ntg zz~L>2U!c+hm9E{~-gL<(+C<-{Z_e_yNdM#S{1F=GZi~$6_nF9{Yp(I--f18<;RioL zwz<%;Z78~Y!Q>of_W~(unofJkn}Bf8C^5$>r3`y2Z*}Z^n@BhF;BI3@06!g1JFASc z5!8=V?sN9cH-9A{8%%p*qmkr6cdo__4_+-BU7y#1yYD?EuIaa0=UQcphJJhHRaFd9v#Mm7d4Pq`4TzhHz+txr6*_RGa>m zv!{5}Lv7VZyp0YGIR&zsOCMEO7~-r+*FEA|V~nZVQV#E}Gn}t4C3@6nZ1uef&J9l} zKKQ(WQ|@#mEj(LN^;9WwD}jboU=J%tS5~9^cn;M4_T3fYyb4SZ z_fsq|l+LGQ{&tx_;@t+F)|-&+;}CJe&TNLbek%@!I=`_srp!vit|FvAT$qnvteDGr ze<8J!|M~~0@OaCSknC_ARu2P4ZFvr^9EH%PqwBDl5CVA+WgBT$akLiRaa@_Mv7`m* z{>IF-j!=|*a0JYaTeA5&K~pTJRH{-(r%1hpPtTJ5f-M5w7|NZNq+iONV}mnSpy*_5 zY<4*E2%KuOU5_;lqETLR(MX&6eJlRMkxW-Zk3`xx0K`Dt9lW-Nr)D#4w*N?O0rkNa zYRat5yv)HpZLTBPOS%^6BhZ4+HS{oYNQ;x!n8q7Z^w9$pLv(B=c5Cp?gm_9&h3HoVfxni->{K+`aWY={d<8lJghlW%OTJteg-1dDvSkdi=TT^61kjn%$Wv4+Gx!Tk;~41Nwi+ zv_+#A+;R#qUR~!nX}Oio6Mh4Vp9KG0SC`0}hP(FH`qmj=ax8Cex@8AFf5Kiw(?Y&) z1~1TVVfx_0GN*Wun{2~S!>@@HG6%TiOfEQuAX;Z(v>M^YTsalWryvf^oY4;TY&>_6 zCTf8YlV1{=S|(@{~R9STdQxRedl9k;HkZWTz!0PQtNc{ zt`!(+poco_Tyw$1Po1;p26ofX_0Jx=-%Hh&LeU;g64~D_@PEbB%Q`zR3!=vdyMkd& zJhSA#m1n*@uFIv|ur+cRaRlQU2e!O;OY6u9-fFcOUwrR`)*_=7KVdUlZ7Lpgc)II& zDlI8tu4*owhb$CMJ~*7px`t`IwIvQQv?i@31^Y8y7f#2n_y6;^Z&HY6#~ zH%jaDbM^ESc@H;I&7Li)jSZdKE z7~&4ub~@*gZ(u0EdeGS@S*~U-hHI?b@<{tQlEs0LWw06BJ)`u_#3-4T_h`C}4v4_* zA{()p#GO&hRi!0Y9okyU(24^LKQxGsj{Q1n=F~~J9DmQ8ZfeyxdhdE5RJz4nbMuJO zCs!RUi)>tQ;pOtG+@|LblCnMR$FB1cJV{!(0c&^aI8+XUYp;OZPCC{_|O8D}2v?sM))`)nSa43-6tF{vw0KY0Y{UAZ~Wkh6-Mmo zwvyxh*1Q{hKG+MMH_OG?2b8AY<&b_*{lTmTUteD|uN&V(hf2}6etSakhbq5M$~|qQ z7$FbYa8$Gp_>fVL9~vJI4X|C-4TU**Yn5Ad5_peykgF}XUNr@IP+jam-de?a2C;YT zthXNW;h~OE4_mm5@&)IfzH2&u=~d+mkPp_Q!rWe|Xj4Kx8Hy6~Rda1P9W9wTedtz^ z0f751RnQse6@=HX+MWOjRMKToIbK?;S{2PQ{W_tY3&u&|0HmWDyL~4kH{195-Cjq6 zNMgTq3N7xWO}-o1lSb_-9$6Q-)VDtW`%dONcXDi5YUi8iAhO#Zsp8!A4wJLO zJ$TlB$grO{1B z{xH#*Cd1&pe6>H_zqGU$V~&8A-wP$d}LxPA4Fhkps+6c&k;KR4l)(R!N}vh>z4TJm zB@4{VHTo8iU~D4eu{tWOCj|`wzaR4{A=nma{{qP8NrBax^GqrvvbkDcC4jqvWwEM8 zMs^BLv`7iyz)BVZ?WAVwkkNj142rNL%j|L|-H;k@Cq#A<|1Y-Iix^C@q)%1e`B??|gHG$GUFCE3D8@LXdEuuWI%zX`Tnb!9ZCJ#t`hdX~zW1aS0~Zhk5^5*mLk zy>%e!r3oAg=Em!l8zrbGP2EUcZ`-L9MWsw!v3ncM?24eIGh?>vX@e_9FjOva)(>V4 zA)vEW8`I;?!eOz>ONi8I`61-Rp5&>3pr-@3QY)Pqoc@0$Wqcc?GN%O=i$K z8@b}QFkmvHy7UN!D#DJ{4QRIx!8S*Kn8P+zAhAzJdAL#Ijv{+~FjOnHNJUn0$+#0A zqY(Pr>(L1mw4`##v73!@4h~g($A&KPMNqmF7Wn-dDdFrTQ8lC5vX>8h?kGb=A zU+l0jjzys?eMm?>G-fhwr~4_9Qf}A65FJs4)7?VP+`iyew{hFH{&uB2nm8Cff6SJV zPuRJLX)JufEWvfl1AL+mbLT2#4e|3aLL^8h-&aKQ>+gFbTw5H`klPy34{;huD49eu z^fa?Ayn8jQKB+Q=X8DNpQB&l#esk9*xaz7z-zwwRJ*N}_ZlzuqO!-regSjeHky%U+ z!o32&DBmewX+UTx%;lTK7EkeFvDi70T8>pLem9f`WACVuA1L}FsQE_T)w)@rCetN@ zY>+_q4)4dsa4@8GerY~izR)6>Q=Qa-b z&=SLra8BLKx9!)|ng$yV6&4mBduF8o75juSIUD^_Og~xTc`oW*?gb)9L8Zka_`zp= z-R%n2KumhOv7lz9<0oAe6u;eF2hh*3kxlx}Uo80gDz@ifu2PbVm%_o~BL;DehTJM# zuNptD7krV#H2oW_tiV7zN%c2s$D5A5MpCrX>_G#N=B|F#V1 zyVN3iiCF`I*L(Qq)ye)rwn~IrvcvMxtVR>-TPZRJ+-m#o@V>@Zf~^8m*3T{d#A%NU z-d92iFf{Ie(?xVVkkEUMZE7(`PsF60d(k_>PYA`n=rcg2oJv;gf|cS#S%!(%znc{rjWo=?W?tGb_!3yM<40}(Og|WxGdwr&(cP1wo-Z#b!w`+_e0WJdh z{he`3kxQEP@qU>W>lrnPp_axtpW}*T6iccm#|E-uaw$kiZtrc3DPpaA(XZ`DsI%gN z3+)iz)S~D9>MMtxk#Am!m%@N}zTR~kWJ|qKqfzU28(4b1luO?I+sp3c(&|hXdX`c< zfCkHJA~V88g2aWNX1$$mooTDF2a6MRE|GHQ0hSc2lR+0DN`j8s7)*nSbD06*5>F?L z-tX{s*xLm+V!PnOoCZfC`~|1Fh~rP5|6onhILl6wi+V@?93Y7Md3-+$ZCAf=*$!EK z^_s7|k+Ep~SGf)PkHw>D?|5I-hEFBOtO$P~p)86%ENH79K;_mC>1&T?#MaMwi9fQC z4m&?IY*%>kK*PF-Nf@iFn(+C+_gpUqU*YGv?W}uV_k6`yVPvrm39pl}lbsJb(t_3} z6|YBXXC-4`hxp5@!Z)NO&vCu!*BWuO)thFAN_jPFUL4Gtr2ZlWa5z5{@(=6N$qfRw)UDsXCqrOTf01JNIY@DLR-3DoovJ%~OYG$Y& z5B|S!LL>7J=1B-FHV}3iketWl`UhvO!)Sv+v=1D2Yw{jh+*)~_o@P^~R6-`KHJzPu z37h+@BjG5xaaS%wXuwew$NZ79TUqff*|J7DfG9VWF{Ldl3FX#1)^&-*gSiS`@`A+r z!#);z_0s`l0YlHe+-=@XnVbB*S(hkC(|wuAiTLcXmA1jPNqfWp$m4iinx+?nBJ;Ot z8}a!NH*V*lY;YJU+^9EW_C+CffR4$ig_;lujlucY2IejYy4#Ip3cn!SN`;x6y(!=z z-e=(b@Eq0ftp(KjBT$uchrEEVkrn6vBp%9UPq5&%uGp&=n>iY+7RQ9Xpg|yw2dtB}k^-wgbAmdmve;;a9$2 zjjWOXPVnXj#fVx8f%Mgj7AGUnK&cdl3js2~ILqJwuRkof`H?cZ+m>|kFtxLFv)wK- zaDzi2>byw*5nQkd-1GDV+kF#(N=h$34$-p$&m6ZLiT?guHBZj?+GJbs5~8O^710ml zQbig@4;p+h1Izy&&;2eXoLnFagHa175#wtcZg~-n1+04o^y@I-af<@mJ0}K%^;=6| zn?5?NG1ty{-PbOp~enHvmq2(@E}2h&&wb|P4l z0LtS%Apb6z>+Dd+5#3Fr=o3$zS@tX`UTmi9RW%tL7}Le!A@754T7aVHI0H(a%gD-5 z0}_UMj70}rSa8f?L!1az54l^9SwMN`osB|&TT^Eunsf|`o&uBU5oY5x_ zJ?#5oKm>+wKt-eyLjvy1D$!X_me)e;3`3{PVW>20H)j28x}(=mO&wbODAhS_74x?7 zs;J`p4^IF^%l@6Ttwk>Jb>8a$WXnQ;%HYwiL{82jXflDRUvIcF^lb=4R77{-rD*rf zkG9((xVqTk!5G(yCYc>mdgrdhj^f0z6F8A!;WOX6B=!mKE2j%5Z>kvI{NS)wbL|%T zv`*=!#Kj+xK6;vKCkIzP=nGhR*w%-r9m0VRM<-2*avKYV<)!3_$KT4I}?p1^fz42J$??p4Igks)5Z5q z0_j1I!echJ{$NauJK_pt5iqWcu}%5w-F8zh4#+=G3Od^iEf!BY5KRd#p*IgMf^dyo ziBprIK|0TM+bK)6YwxaJ8z<;IV_b)=Wrx>b_q@6-j$rzRG3)6O0*Vvti?ki(PSPMC zjYlG{!0?lU?{2=_5rF^}n1aDgiuEx?-qN_f>w)` z?-z6U((or+=i&;&@9DHtI(9fPGnz~9mKTnqV_ywsQ2Y&lJ;1!X7OlVQQF^VZi+wQ= z69Xklf74TbP}{Hmu*1ix-0$AFari>{m5@c>XH|K{`d_yZn3>D0=mxC#@QXcth$?c@ z3gn;aLG5g`4z!ybPBE;#Ks__8@8kf7BLDb8#GOvG+L6d>i>NIikn9{q__UvRT6T-A zr*}c#44}n&+aiq9rob5%=r0NroT6VG>{En5Aa8y1)ll1LXvgPUnapNbcBj6PC}0Gz z?Y+;|{DRao`@E^CDJT5vt#_XrIm<&IgP#~iZro2E4FFAC%fMv|N{ZoDGQM`PUwXgI zyJk_Ek+v%mbQt4z6EKIB3E7{^NG;*Dk-cfj8OP?cZ5$`_NCN)x45}}N3Js%HU43Gd zucN||sxZM0itHH_1=TJoksbM39P$|&E8xSy@@ID+B%!hzgFM>5|Jc2|DwJp0T;f|G zBH&1BDZYna8~$=0@L?%rfUN_Gf;a~b#8}^A;Cb&I`y;g8(rX=ze?c% zrc}AQY4d?Byw5eD?*t&s%5&rIXLt*NcAkQLYq)U(fwU)*aJF_PFTI;F>k*Ai*ik#$O8iLJ7$#Y_vv#W zgo9LX92W8 zci+)=sAt_sp$lWas@;^7W21QbAD5eGiZ`Xyq$@?@amqh#IC8G8hfy9Q(3g|1@F?&L zgUZwpR)JvxanMCya?xR%^5cPir}y1)5`_V?4zd4)l?BN@=7=5|vAk{&2gvTAxQs2lqF{=PX+*m?1k$JFBL)0FnJcS)T4v~Y^1 zIgdok!8o?hL{7F`jYp$XBjxzizHfsc)kJ_Ph)bM511+k3_{t`~9RG3QvY3&Rh+E$4 zys=ykP_tpz@k9Q{$cr~V#J6gqt}1d};oP_Wd7nUiUp6A=$vlm}Ap#g7K&NaBh=<6N#%HC-5mZyx94r9Bo6|S+(4P1vrpUZ`w4L?OTTuB-A5UpW&v=@5gGQ9Z|&Y(;6e=0zx-erh3uILS zrf&P0f|qWLcD0Rx|mP~oJip5di?!*X#mE{vaVZ&&__{EZbb1gP|h zA&FuTF1Q_=PX)_sF7b`~eSC%_s>mt@mMzM!`>@*d!J^ivr3s|Y!nr3qUs-t1eJEumorH`SzuaN@W8fT9!rMormy})L=$L^(K z#nCi#kbkBJRn{tSpyhc$2~ed=6D9r21AsfHszA@S3=VoMF!%Lm%PEroTcGHx?>d97 zE*P>OfNh4szQOc=eewg@T;#$M)PK7qcEoy}VRI+DKPrqTC=ZIL z1K0MAdWbDy#-tF}9)%ZJU3+Y_M90jWT*{7Hl|EpiaC;=a=fHkBS4Lq|bItKKTH{0B zfSDd!l0fg(jsMT;?Q0@$RkSAf!sE;qW67ReLoBphn;=2e(jqkg9&&xT8SZ7VaZ-lNA-x)p{HY6fm(3;8gv;X3jT5v0)7J;8^2ChV(g7WsKa8PVQZXw2%@#8q zok^7c%5sz%VPmZE>9pWcKCAAgHnD{fgCpq=Kcw5^;g zoYJ+&#(Plrsa}t6zmOH!_2Z8`E?YxoGN$2B+NejBqLLn&7JQ4dIuScD%9hoIajY?y z^^$A74B|gX?-PX-(hR$KUQJTDF4xkZ}%OALAm9O$l(?* zH35!8HayWk?+OPU&fDRtP2C)e=XmqMhZjDKJGFr4&=Q7^ZH|!yg6IDye9iN|ofy|7q$KT<`KdA6K08%m-@9CP7ddkr&Xo@{LFK9R% zI64hvcHZ5`Dbq7fZx;!aZ*6q8*Qlyo{q>IM8Uj3I#n{_ElO4uj{3@_89xP8c^A8lf z`*NH$`3_JFKS)$6P8?M;3^$94&eWa9XFGHZuTScuHWl>-x>WC+Ov+|RX8Tc}UvZtG zcpD}lxCp=FzJ33^{5;*hox?fb*TKHU!E9CxFqV3>S+4drX+Y56^I%+-L+PVd+bZ;z5Kb5aGxyu z^7hBUPlPFiS&;fBZj}Eu>Ih=pL*u`*h+z`4S zAmht0LdUE02&S39Xvi;v7biT#>L+2AV5X=+RoPw~BKD6EB!d)FNkG3q#QW z>N5;sZ2&@jA~2m!+N!^8kYs)9l@*SxR2i6|tb5E0Ws^uQm)#s&Xu(05r&fKXwL&4HO3!3CccT6&QbOLeVW5jN){bc6kQQXmUVaXhRUiN|K8|@bJV( zaN`A%mibS?TTChMn;%d5z)%eZ^h>O(rhXlMLn~4`JIMufIIQm?HAJ`dj^{rZ( zk-P8s#c6*Oi73&%S$qi7Ox&Fp%{qciNHcbf1N-X}4}Lcgu*SXLqyLoiMxg zDC$69dn~}U+}TnrBpbc3Us(CKeGpJbRmD%W9#&~UZUw5mrvpQ+6%{}tld#9#iKe8y z?VG0h6eq13B)7)-8rct%S#CK~Wp>_SfhE}gh3#6q;tGtfk%S=Iq~`*XUd@QZm(07= zmtKTde1GHe@V~j0585B|*P%K)I{Qr>(XR$6`=|^}XSKjPpqMlHd!mY{!SFv3PdOd? zBGq|ujiB1Jtaos(KI*VlXN+r(NBcPv9XBurpE8h2ABkKglqd<_6^@ zFeKk@zmcXr==34&d8soF`N-S%jaW6v9+z$1E$4Fmtr(rE0W3xDb_VtrJby1A>jZc% zVVlRL(mA_*aa{fS6YqY0`r&lIIL77u zJB~*%nlkD9%F5wGj%8gaC6()JuGdbD@DHjB5Yd4P>{wqWb%VuP|m zil77c@gj=AH=OT9PnD8utmv+)O#A5?mulwZ_*Zuu0$pkZ2!Ld=qkre$z_HdHynCyTk!Edre8PMd7OMUchWeOvdXsZQbZgdVxy4r|JN4w#Mxx6nKnV1W1 zcK^{z0j`@5KzS)v)eo(GY#ZWR*IlH!M#^mg^OwBJa1i8c;zhH=d}KnZp5dVHl;7X) zxr`a`(rRkk4GH2UZHy;(@y$iq_Cu#%NK|#1+^igb6%bk+Lr0~^6`vnFqQ zalUeIhuOGgbd_t z!w@y7dIcU?oAxR1syxkCRet28RbUUKva3Qe0imE}6afY7R;K;6sHwPeTg7Qx*4kpx zT}KehFXeqW!dz1|oj1iKQ0ATxUeQ|1b#Z=(5j1WTZGapkoDfcU`Zw!2mCr(ad9c5{T4~{EAEBKat_)Hi_D9^8EmDu! zv0kF3yH>Uqbqa@{db1oEjnX^%T2!5%2YFI%*a&3y<;7IiRPvPNvNlftL_))x?%Kuq zq}P!L-Z0=w9~N-22K8a6pXGcnn>NSw$%40!34O?oZg#-E_&W00=88Ncv-7&yWpd~4 ztr<2DccyxO#DK{}GO0JY*l{NGa)?>i@4xJ3vA!9Us_-wbgv}E@@bR}FZDiOBhkWl{ z$8||$n+2N>J1%XroahWOhPXxEvVEt-nMQpXEBJs}^D0|O)*m^5kn^P+mWIX=s7WTv z%0{fXvx(d|8Be1_8f36XX>I#wk)S}r-Fu_&iyGFD7K&`!e`K7u-n_pJeV!w%B4}0EVXHnt(zYV2; z3RhPUO&@I3XkG&k}ahBFrhqpS!r4jS0VljH+H)R9$JHhhA(gP zw_7ws4fsZv^BDj&`^oDy2qTZ8U%K;v^(7(21CBH-e5vD<-8M#FyS3Gc0q2CHqS?@U zFNv|;ggf`J6+QZ`_7>X;Z<*vn@X>uf+TvN%z%ubF%0)iK%P z%Icq}$@xe2<3wC{FCkto&Ci8f@fV{(BH^wKirfdsmsz25^#RAvORRpmJO#0sK~+A3 z5MKV5=VssTOW9_JZ61Z}xmA2YhvcYs?ftkXjtCSD-~1-su9v^bt^?dD^pMUXe@k-i zc4W$#=XnJ{39LgkKJ>EOV%)N32*LaFd3jr=8BNUS2vG;E@tkN1gZ=+3@Ip3*mr13M z3zX?!nKzLW%-1#OyRL=L^CMI0*PfoU2FH>K*+3Y3FvX^^+MEWdB|92k>KVV$z*uf> zE)Vi^ldoJQf=_B|cC4K$veoSCl9KgfFaf9o|3W}hc1?_L5%WkF&!y8xrHlRwZ(Q*X z-3E>M^gK_#%5Zh{c;!%=?5Z?+qe0p{df7amaU#iN<@s_vQYO?dv%l)X$Cjot)l7{m z8lUmOQ(Scj)l&;Xf%U^v&YQ}9XI!75Yll4oj`l`QAxp4w=0~T&51ncDD`wK{Mq)(E zW~iBMN#_;U6`PHCbGF1szMTV#^MW`|jvVtO8U~#=FS_g2&=FnnuDam`I)HjG3-sto zIm_u^j_<5E6T>L=Sp2eTL+a$HO{J^@_V3<-khHwrb7w7$cvK*MJpF$|f5#BIGl_I&h@pd07TirDt za*UJ~GoZshx}wV}zEUY;#Z`2a3KjWE_xk+Pel+}A)bGU;Z?iu{o&<`7pQMGTQ;$B% ziuLRX)Jpu+|5ZrT-;jcb(M1Y0P+8w9`n_qYfGgYJ&YT?Ow6I8N_sjJ^ds3nP=fYB7 zI@#WF+K}~EF-Q29n`_cO#)wJ>NxoOJgEL+v3V=V1Y(;6|J|5ldb2P&Sann9Z#N&@! zJV_q3LByPSr=N9OHNp6XPvwMx^cyS5%MQbR(|KU4A?z_TJv@?d zx0Qjshu+c>vR$Xt*v-PqyH19RkO}L~r?ZO=Ii7fAORMese9E<`>FI*_+o`!e-R7^A zUCdB=YVjc*qrt&Oy;j<@Sw{7VUv4mz+vl<1boY7LqXLA&|nzj8AGTZ zyjCA<8hq9BVQk;K6S?8P3oGuORr?<$ggkRM0&O};cgkDmh0NxMJ0P-WWoDVo(;Fk- z=3N-c52gxq0g&a&*UH_L>THy?eYTx)(L`bCr8*U0;!>tr5tvKLP-iG$czCqDEp&09 z;n{C*Y3Y)T$#;xn`5QT7GxKjtG?y^TYj(<=sNtVYIqQ<>y_o!Tb0dT3JUfx7Xt%=) zPbr!;CVB>_xO%S13B(lvx2zs-EdG%dZkP^S@69sQ(Md-wLk+&}Zu~HPo{k?Kbsx`DiMGeuXRqt2P;-Z0!u z8J7hw5t+M}krDY=f$>?uZJ`PIr^l%_uRDZtPvGc870h3@d)mlHC21-S=qev-4c2Y_ zXd5}4TQuX+{RwDa?)oq%qq1bJ0)-N{SEY^&BQbcJZB2-{UWnoLtM`>}>}vA_YXBI3 z2onfeW#7=_w}O|F?HU+U-U$d^CCMCHxn74_4$8YY!;o_wJ4>y>I{&7UoyH4@=tn8r z2O+UcrfH4w=AEWbK-FQ5nGwT|CfU?d1Q4oM-CgUd$-ULij5mbK_EdZu&$e zPL+w(B6n_~^VcKNhqX>c>}}6=?e{I3X);*NCPKwm&xH8bQG6Yx`R20@N30qKufJ;@#KGCf{-^;&H@UpYn3tOjZ? zk87Qu3oMA7eo%#D+F^FnvG<08^09o=EO@$L>kGi%p|n(oF}Y;S{8z)aigDR!1otJq z7v4oA-Oef)GMsQCxE9?=IN#Uc$&Bg7j#YVeJCLLU^Sf)S9Tl9fF^@p;O`^3_0!FC! zvX!7-{?rQzIQ_0VRV}v~2$&X{LWp>et>=q>m>_d9M$8sP-I~(!eb0HZ^LVHMHpNN?ksV0Nml6t}9-WZA$Oa9SI&~9c7WbhoE0&vNu(iK`=X{kH(Z%e& zaUP9K4;Q7{g{36#PbDLWdXFdSO*Hl-GQ4g`VZ=P(ZFuCyOxW98Cr9^QxO>Sc2kofr+;@gEW+j|qA)Lr%afx}iOG?QOVu(?YUo z5MCsd$oS$dYuQa!)StlH_U{7Qh%GYnSHGf%40Q)q?&l9T=_e(6H|J%>!d*_59J{56hJ-~ElM0{nRKGgHu z*pSwf+go(~o_iBRi-H9Myy|hyLkamd`33+i#jeuKJ4O6cD&D*_VG7Yqh)jC8QM$2}gI=41l z@$NWz(0Dd%DnuYa;p3N7#`ez&p!997ei4NB!lm2fYg`RFqpY_ZyOniOpvh+vd4Sje zF|JDK^)(5uG{U9B_FZ-X>aL!PgO{|9NQ>L9C`uoL{(SU>bTX z5Kwd7bC5DG9O5+Hw@3sa#O|gyi?d;F*;DQ0L`jQ?B&!|qqvF_>mnQ`vFXZXjhofqR zdq>yL3xqu7g_slK-U3B3LX0rJh}pXD?a$3pM%RUttFi*RbPo1rX9C6dda(P`Zk->y zE(jb{H|A(6N?>$)q#(6GLwXFc1r~b0Fe0a5<_J&DJ}zId5Dukh(tHo zCy+D)V{N@;El>4!fp2k3wc;ztZ%=*J?3_|H?)nss>HK2}kgN)gLQ~RuIG|GB1Z7_z z0FQu9*m|(zP`&C^&Rzj&6Jw$<#Pjm&gqn_c%e!VdPqveN?m+QZL6ianaUStpiTXgp zW%CGJ2$_}K=L*~k6Vf5uo?L%uTdQ3Mc!N{GNESv?2V;WmL+>sPpnlC{# zXJMJp6TaMSOkSqp$V zNNR}t)?)v7Vb+4Vz5~0>UaWoo#J-IHj zk|FXZcBZHZe-sdAJg!q}ea07{J$hG#zna1UE8VH6k3xCmV9RoOsijU9T(O3gHL@Uf z$&|E7T&h8|^{9S)@)Q4CLEOumM4z5R7mV_n(YtZqxmB;@@`s%ip{*E`JfV>d)fiCD zb=e?(hKk8FxAU8IBYVMez9hXdxH<>f#2NZaomPVC_~zEYqjGX%ZAx0B4IkQ;vqRwH zB;5oW@j%d4IvBV3Tf_+1A>$O6nG!fDzngkrnROaYv2EdkIxvvXro;-G#do7K``B+v zs59pXWA@0Hh0l|-jIqgi4c68P+pYjV8z<~ok67}RyGfB^__;01?!3X4wG|1q!e!Rq z&b56Wnj4kKN^1$2Q%vfTj6le8Aa!OO(d*+Akq8yQ9IXF;> zoN!?W8?c%5<`92B*eO4n)gD*&ey)B7sy3#g`Ii{sK6_RycQ{aymsBe07#*+Nj%zIS zLFZ&vSLc(d>gybJhSka1Otf&&ZAGn-FSGeFr{nDFwNx4V223T;9nAML57Z>zhyD*O z^4jN_6D_)GCFVTe59)N^7Zq4_J3V00--WKr*eAjfNpn3z+L44yHq(1~v}u6!nhN4x zhAW|QZUup!zm^?POVL2tZh1dy6bidG`5(4peV>`?OGfBYxGNx4rZaRe1VtQ7o7dL; zlW9Q3WaL8Kc|2pdMi%y*gOfpxZ9(ppH6>d%BoWLKO`-5WCYm~vL2y@MU5Jc(fa8Tz zsg)G#z9WsZjn_!Q!L_8N-EC$-DsPi#ZC}rmIbK&+`N}|<6{0nw!XoW2*tr8z28tUe z;M*iv)u?w*-eU7b6Z}-u(@3VJJQ)s5AehCkzJVl^N-cqfw1{ z!-MZ;bhV;`Z*U%|E%W7csR@ygbBq8K#fJ33ty0Tqsk(iQw*d(^aK|ai#xfcw>!ROb zrU#DO{qpfvvU>#+u zvr?2uAEwf}tnWF0aZ=(LEiUU2)aRa@Q)B$JBiy&;@#O4+{2E5(32jGMo8kF(m~!)R zlSKzOyQw$VtLlvNWFn^Mpp z24+2{bl{uhbgL<8$50Pi2aSA+Gp~v054W4s{lSXrSo$yAIGkK+SxKp(Pn~rc2yIb* z7gXL7H^!uRAfFkP%*C?Z?kuXn=du^@@XUqbr+LbpU%qg;P~dwBTTY_PAB|V$VBzl{ zts2oTJ^Io1x2;={hgTyhraR zEu-3Uc|f=FL>0s}E$lwW_&Gvwzl3U0L@Kci7eCY|sd87%F4LQ9i4k75Z1L^1$2lOj`R zYj^J$>(AL$BdwKCcuw9h+ppD^4@R znoq|&m9(CUv|td+ML*%&JC0MzVy%ydnB@ea`+B4UurThn*v3n@aaO8p!mo7R!0s$w zDdP`#X0Lzqt3S4p=d}o9HawoferTGP!~iQaFZOCe;XvEry+07+92xL`Q@sZ6wI&6Q zTcM$b#bcKA=6KFM=liaMZ3S?8^YqV($l}2Ov9<#M%m!#Q5Fh5smSP&RN@6W$X+5~ z%@a@J5j1@QzNqg&-wwrA7g~NG`@2Ga;8UG}wU{YGdNY1R=do%-b*x@R#IM9C4O_M# z=+Xs^T;b1j2R&jW^p|tPcTng+AYJDNJNX_z2&7kKW4-t%`wp0Zz$^aIy8jIVaZ%W4 i_+-Pu_)mBqV@*upZ6Wn;whNtq1KiBYwA$G7>c0Wp0_sTs diff --git a/docs/source/_rst/tutorial3/tutorial_files/tutorial_14_0.png b/docs/source/_rst/tutorial3/tutorial_files/tutorial_14_0.png index f9b6870e71d10e2404931db58f220d6ae615f591..798d7b964f3d33f9673d62592cd8b2ec7a462777 100644 GIT binary patch literal 21246 zcmagGc{tQx{5P!nN~O@Ay+VqRJ-bpgWH)3PlB~lBgOH_!7E8ufWZ#!T82eIW$-d2u zZAh}sSPEkw?(^~e{_gv_pXa%*=a0EepUyd-v%J^W`*r56j+WY~6Kp5w=;%(t9^BKT zqdQVVM|a5j*irCAKy*I<{EoY==fabCVSjar)m4gq>Y&MMh5?3ju>1fA+xGjgF4-Ec7`<7ytPZ9i1K$cJGeC z^UsSU&yNOpTI=7QPbH;w#cTEFZoGPvcKN}V7LwL(b$~6 zWTDuA6Bm?qqOZO>7b&1oG};lpx?^P%x9FHCC%)sSz}(aQ*=M%f^L8|CL1u%)3VR;R zfR66%_i6N@gKuThjl$5E%abe~2TzWN6f;5(9^8J7fc`2sURgK{eK`}}I)7N!gjk4J z{QB}pqHww{A0MB(hK5`9$uc_M3l?)ln|J-2FK!F&_1gXo+IuIm7Uvc#jHo7>jABtf zjUl9$M;IJ_VEDA+`f{q=W*tV#?6u-vUP$Tr#Yj8o%_e!jYMd9(Y*XDB4!~5wk znx!0JV0wUAs@pIR#y}%MX&X#QRdPk2t!}2;06YRSsONzHqams zE;o4j#uz$_I1-WJ3yHZFi9S!?TX=3w$5HBcmIelM^{E{edwLC9UC!tpg^jsxx#htu z&4k~pTj)PO@4)&Io}|p3*S=VP7{ngnXBC@D1Yl61qX@YZzLDeiuCHk%p z$4eq(uRZ*jQZeCY+7!a8^WNQFzp7O7@_I5ojt?+UGeP39=zP3VUu70+_ zxfAvj0#*9RP7{*0`Fh7z}>^wHOM zLu9dyJ#CN<2E@X&v_Y^6N-HN{L(v;1uYy$+IK@#-9ELP1kF-1x7Qc* zf%Gm8m$uI9$v$*-b;V-Cm_mx#kEjbA#z*{5vs!bY6)T^Gd9rSW$sCO~5Gy%Q?8UdB zp~DikL*Zb*dOco~F0mB2ob{?ow(o>y*lP$qIYxLC_UXR|HU~|rs4R>Ikn|`gfE6is z*>{Hit6|Urm9deCrGHgYif5sP?!WKr_lLp`UC9zX0(Gmoy3i6p_um)?|9CvtYljL- zjy$k5(4L(vt7!)ptjkq75rV!&ssDjf59dQm_o_)b6-Li^6$1 zD66Lj>IXf)e0IwOrySF2U1|I8vqP4|J1wuL3YA<3P!5=c{}#k_tcJ<;ez3=pZ-3fQ z@jXov2dZbs@EXDJDX*A4Po_lU;OGO&uP(^8q0idA!JzxYWOtwsN#+wXq+I$(U?-9(CFrdd-L5F4Y0uop9Ty z6%LX!r+nVw>Qc<&l5Z(%i;Seb=h`mb-i->`=!HieCBObwg}1D#ZSlCD>?GJ5%~O4U zBM=%w8Hl264mpXGhyR#=A;+Y4D}Z;Ne0CN6ZAj6iE?vi~%HE{XvM6cid44_4CN6lR zv-kX22J)*fz7B{e`a)=kfMQBco{vXwrYLe>kuG zuMdUWdp}gDBP)yEyMbNRwCNb=gDd>udmw6G6>7rsYLwv>CzIQ0SFmkLId@3?zw_c} z%~VQ=SZ5BRws?bon%@Rqml}Tdz#BnttseNu@Hj1GJSNn;klt@=W{$SWZMNuvx9GY+S=_%KjK1`L?+(9zyBt zt6SUsh28$4A-Fb@Jxbkvx48Y+D0sg8t(Q71Pw5O~1nAzrjs&tww(p$u@i6U}l{sgw zw%$Hi`4Yhko48$=EH&X(zUSV2`_z1Fp;E(El~#jo(hPQVpuF*5*)69%IMH@&ZqJ`q z;4tzb)h>jtD7;XU5oPlRkGI{rkp5byva+-8iclan{+>{ex_CAMPAf$(kOWw>U((vQZXD`X^n4| zs5J4z607%8_3`ZiqAFz-abI?Id6`n=M#vRo$@5%d)L6y2Xv6X;kgW-@1I7dBZK;yo zv*56zWDqD4qM-50AjBbh-T7pe@><6L?5K_K+(1Tf40s2Dm` zT32*cTW_vyyl*8JOMF<1NYn^?OWfMOBui zg8166wYR6ZN@L*(&=GxS0Al7K{B?{_oDjL-gue?vHJ_N6wqJv~Tep6Gi(Vl2SXqY; zG^Vl|WTWPEzB(a?oSdf^rpcJ89lV3w{$7ym`i9%uJRz|A+<_nKx;Nym)AfS#_DiuK z%-oZv#5KM5p}WC9^$7l8pj99h25xMnf=8Q{qEktqg`tVinFIl|s?W37@~dqrm&a#r zYFT#9)%NpH8|77?Mh4>JEh7pwaBrJTiJ^Lw(U%1}QB>oHP}*xRCb!y7R47M?jGgPkK(G2)EU$I3_fzxsVYuF6pDm27UjZ?Y z%|v)(&I$(lvbVK&jW$EYd(#FMt7j9e@JiD7$OAo2xu)vDd9K5h8J;V%J;pD0-?`_b zKwQV%?@5ISzGQd#q%Piz-NLu@V>mwgz~rouBwu)~aIlw>*3?Y(x}>h%eYvYKM~cW`JW%1%I_@k}*ehR;i?B`3r?kcu?& zk}6l8(|&!9^xl78CreA(^0t}|w~Iaoy@2}NrjgA1#Fug1ze(fH%)Yf`& zEjh+^^pY>*8hOQu6Mi6(gLlE3us$B_k9KbuqI(_^;wO?)^RJz9{EO7)8doVrB^5;0 ziMy}5b-3?z2*OX>jhD?h)7&DtKG&o+FCRoS&~BWl5tR+AQdh^+5ENR3`UC~<_n6Dw z8OT0GDCPFgea~&2f#`aK-3mOlvz9GQEGH{KVuMD3uFXw~HH*zt9`gk8V9Ga*h`w35 z_vrOH#{*BZKr za!3z*3zwjz-DmFyrlDoMvEs^Roa=NbL@khCgJZitwVkVGQzGoYV1=OlK9k)6HTpnz zX&8(NW@_JlnzXj*84mI&@SN`W)xyR?(V6^~kN#{{=8`R+m(U7MaG#fXmE?C!F8zO& zWZmz1W_LhMKhUMc7Ke&Puv&SrTPfxb_yvp3xLI|2TXi~VBAQHg-r?3wU=xvRT}(Hn z1sp_lrXR72PVZ?%rsXF6=>n?vYw1qjT(j5=90+9pwEgc`;%pH+S4G<@>nv7cUAz zIha`Q!!@H9sSQvL=|5NcZwA^S!=H%m*F!E=RxfH5wT!9t6WDrI`NEuk?JjG`!u4WB zZQkJ4Q-ifi2#QzdPs7-xQJ)i~oJ@8MM!VZ-ckH_pFd3Fj;k{+Yk8l)Tm)do9thzS# zSF3K_)#%+er;Ju$jm%C&+gO#``F#H@9q#{k_WDjit0&RP?)Wd&ka#R^!vqJ8&BXc;R`GXBx7o~zVeXQ};GtI8+oRq9-qDztel$)A~OwlLfH=i^5G9w82It4H!h z&w3yo$Q4tcBFb}8I=SnfKn=fhW;ZQ8fvJRvdbNDyg%mkHsB=NvnHn^s~WwOp!+S^RH!p zVtd&=b!~w#s6+6z-@X^d{vjQmtk!(~P~v_>koQcw(20Lk`b1d343rI+X8f<(@Y+7`ELk!-E6HAknMm zMIFu|`$!CA6riXg1a2*>>VeGn>RI|aCPD3jVLih|RgIEAW*bXu5(35~d^d74w}Bc5 zRiL3hy}2M!`DbH+U?{%eP14*Kxj)`9(^Y&pWy5d!RL)XlOB| zIPW2Gkld80tFdueYo&7Sy_+i8!YFhg{FPXu+r;6z+M5kW1pfhzSvr7`%75p=brGRE z5Y)Pc^;>ZGc5Yc;b*;A`fgfp*e6#EMo_^PJzbcTUaq2=x5^zbi(e={Cg46;-_DQ@w zkIw@Pllc3pBy-~%+dYy~?yEOcs1w@d^J6;~?C|Tam~zg5PRa$q+Y4b_j@RI-%v2S% zHzRD3SA^bu{VR6$8_1G>VWTsgXKwF*#sil^vkQ`*S_S9;1*{Ed1QXH0u`kWz3D>-mBt?bA=wGYs2 zc$pdtn@$dVWOqk5I0|iT<+f{SIuI!{SvzZM_$l}K%{}ku33|46V*D0hV@;VOT z2=ypzov@%_$Gl$r_qM`P;e=btJ!azO3>vg;GL2EvnZ%W?aUe`g;3X~WOT+Hnn|G?b z7h7QDsKm7Vq(=o{=c|6K3I-aov(g_0(|N*XNwi!jWoO@>$smIbkz9O(f;N3E-$+S6 z#X)9Hmdji>6$HK6uKu^$4?+w(Vdw-{;R0{Cg-RGQ$Emmqp6Emb3TGpbPnsXp$LN4V`Md;KP}2G(QA4J)iKp|JIh zF7M5dPi-gQsHQg5&8p4Kz3mNrD^goGNZ9XbWUS-3g>Qj_>#D!faMrXbv#cIB=o66T z^;tNjH2+;CO4?GI@Q`B+u5IpKTj=HbwtlZSr24TVH@%9XB!inu>_Iwz`GP2bcZR&L zOL3A!Orb5*d(OLo)2<-OaveJZWp@FOKs@>g-r_DACS!Ao@+sA}D6#ja=)cIple3o6 zssJDw)w=XKKmXb^9x0N0vY7rfm+M-H?f z%KA`);Fyn7%_%7RQ{~G-g>PIB;wk`=P;RCF883X}ix}{&-boYv7Y|EeJ?OFHJ_Ym0 ztN6CAT`$ivtqz8wlK|20EuJM}82=4(&%nit@_$~gFh{Fau|fYCb_F0Esvc8n>UvF< zMi{N#0Uwjn^jq%^!fCsc;8a>3pe~YFMB-1>V9+xY6GSUUsT<$-plmoG{edwPBXG*- z^LB+TS)#ojJ^D|C89 z#@nw$!v2#kVt^if&Z@Ht)6FUN^vyt~#0~kdPd*+~_g#++d~A?*DlU{2)z*9NlO`w3 zf$b?jKNq`iT9{m0c2~q7Q#9f49vzJCdE-$9#!}9XDOPz$7$IVDL~Cnn8H9S&kgasR zgha_slz4DHP*$*Oc&GI3r}iL6M7IW|<80I-yLWeXwpSC7a6{HmoBtWcQri5I)v+3v z?-Y;u87ros5oVNJRi9g!X!UQPup1%z?&BX7y&o?fP2Aep+I~K;XBQ1Y?`Q`AHGL(h z{N)p&^jaj058nt;P?9EP*EEQ#?pN8=z9NtlB3|S`&`M^^%kY~3M5mh@Jdg*o;9_>| zG3-LoTa{{ZS3>sO%JCy>-x(6zTNIX&KWtRJAdw3P(f&tKOsnQl7{Akep+vG;gN%Q4 zQVr@=K|%fBKOxmV>$4zCTr|222Brf__$WnSudKDc?d;KMau^u2(Q2Dq?@6RknEfDE zG3sXtHN+gN2^V*ul|8zhUU&4@fG-!xz3-C3vw6{x+9Ctni5le|zun9NYYQlgPQild zS|yV<2gXagd)P=C&U=qb!dX9HM=i{AA$Wp5b8p=jT3AXHBwvlF7owcE&P;%qS{os0 zt|W(iJ&vd`wI%J;D{ieQ*EBGLroF}>qLsQlkjdj?D~mY#B%s3@y%>GRdvg0Mh!24M z;zs>D5?w;%v6-}VOR z=<2%cqQFh(RspEzkm?Y<$z)bk$lQE>tLG54RIko^bF`IgG#frx>+XXl00Hk8!j495 zlsW}f&n}9fSKX4!++x7|lozfp9LC-Pv9qj;9g)eG*($W~b9DB_qU7rpqjT)cBK=LP zQf1FgN|nxyH&u-FnAd|&bMnV(ltbAEL`=n<;|m7V)_Xaf3-D{%ak)9QTltb9cPF3K zzM$MukZ@K}i-A&+@8=qYSs28k>b!sUTdl2@s@ZkNBV_lv8F45h-BNS*JW-b23K@!Q z&Rx*>ayg5~%iETreUecO^Gd`}BTFyk*?p^2^Bwe#rNza9NDt#72yaZJx4ig99OTs? zBjhKyjen}1AJ$$=AR7JPcHH$Fi{IEh3WF4Sju*_9gBY)zd;G^KX~4= zkxX)IzMeV_*}PsD^wMefnzar$HFCX1ivujYd6H3(>1th4@88!iWChEmWVMCB8BdL`ua)GncTZGM1SV%X$7&h_ES+3mO6!g zYmM2^3=Q;7_vUv{L>^17**e<+(|+W@v-C~5RMXKd@`w-Tw-(83d3KuQw_ZRwxMt1( zL=`|l7n{joEdg`tLy-tzQ(8W%oj7sgvoQUe_`IFxMTwt@zr9{wmR<%P@bVYF|Jz>% z>Ea&Jr-Q;l$&fWVY9h{j+`ODm5RqVw9e5 zWVlG4w%$4sRB!|iwvukKbqW;4(kRiBBx;2-7naAzxnDYh!jH@ZK3LpnsW;G#h-_I+ zCMQ)i^fGI4<`r>~)P&<)s-J?+Db1IL>197XEizS%FqQr+aSvEZa_pqOI>yvOsl3Q$ zLJYpYNqA(P?JYUArR_c$$ZaYZ2-NH1SIJn&xL@`COy)NLNW_TGvV|i&QYUfnq55V zwtcZp;aF#DUc*?a!Y4m+V=;I{uoxuU-EuFpGxkuU$J z{V#VMt*90RF4(^`>Uc!fJQ?QYZEsw!RgEm>9 zd`?|;Q*{7tNJ6pb{nB$QYnmTR9@KV8}WsgxKHicJcnz zK6UPxF=D0X{`Qae$>hiO)-?@~*z}q~ja@vIhp=K!k38$Bfj8n6or=v($~Ck1+>=1; z8g_un{X7PC?`@@KYY+ma4s)eIkOh@p+aUR~0cm&4)pz!9^GJ0=naTt-XwG{ei&qPo zI6#X3bopVOylLtx|e$0abj}}o%An)#6bg)+RSp{d4G9@VpV%!p*Z?0HTn=sLt*M!7Kn2RkaNzXUd3Yk=duV$&+5}z&Wob)M@sCxCn+R=e$m769cOFL79o&BTV!YChNg= z9Ir7_5Q}4=e3pXu161U98?rD4?My-%BWE>6Ccchxh}hTRJkoLHdi`#g?g~O-86io3 zmblc0GcP4*MWgNAly3GK*R3|?LSEssunGWtNG_AQP>yxJq@Qo!ECceqjVoDdj`


rU@!}>xBI) zuhdVtY}F}Y)mhi_F@&$n;rC|{>O`D7_sswDtxD5sV01d>#qu;c`r*#B$L|Ug#2)Nd zY-%K~6TRX~y^YdmO@ju64~ocL_|L_ZNOWih0~Tk+7xN&`QyYt0@4>Y5DO{hIM>@GM zlI`Y9hg79!%Lv^#!uV4xtq`}qr`qjBGVwte8X7XT)3FHMfT3t>1*f-{H?G~_mxMts z9ktsdwkTMb<365{yx3cfnDp1$ll9>glm&2kigEl|k5#^DQ>4;6d4Ju>Kc??RZAvn9 zF?)jZMnVNV7J3bAJv-_n5c}dsjg@TN{{l-md z^3EqSD08rrq%}mel5ktjAkkA_YD&fd`uA@fLaYIA3Ta;XRc{J|MI#aXcqANpqW_wrD0AQW!QVQlvB3= z%8CBIE@r%JBPm%T2qP-hJ%p?r?2==LcT1-|)FPEOO0pUZ`o(*Yosu#P2 z%d^6k3s9wuH-KbuOKetfSXub;5Vtre>5Ry zUkoapp(8uczJbE<6EnRdJZUj6b)t&qK@`WX#g?|EqzF@zCuEEImby>WSlB`5%bc`x zucLx%A;kfiKXPKI?cOvE?9a1ffPV1AM1`j&gs}z=TyY;setYkJtNrTu8HKG$o4R6N zi=vwoh3PxilgQ1 zICsnGF=z-<>uh7^f7i^CbMKpi5^T9z6>g}lcd2gq#W#UIFb7=_pR)|eyQ?CU_Gzr~ zx2{*{tO!=I5V}EhjH$eUfzx7)8RZD>~*tQ4$SOZIG$?DaiY$@2#)Pg19@d-pfo0;rk?M z+a2aKnlN~&6Kgj!hy-&fV}?#j+RM(UZohe)sj6I56$+tuQ_QfV@C>yX=Rt99r#}7n z<#S`{-t#{Er}{t)YvR5be>P4f_Ml4N_Z?K_MVE8)Th*q0!{;JXYlPX-H~d{o3gabo zN{yEL=lv6kK)!TOaD};i)4N>t>nTx)y2Jtpv;<{Ng;ER^0z!NSg6IA+OHtkiC9Dzh z5b^S5`5-!a(=zLxD_vK8<$%I)I|M)$cK5VQFi>Ig!nj8XO3tm4uyFmLFnOQZH)lg} z0)hNpUN{@)h>!Kn#P|5`{yO2iW5Int-4U$z4R~=#OymNds?UJ@hUKS7&vNE2GIXG) zr{24F`!Y%(r^Am{oCi^dAQ|UA=-UeV@3dS!}xgz3<9$*sOaZn4e^IgDJJ%B+eJEo&Wwzg`IR z*jHg$59M%-{O(PVdZY+Ji#fz}(XhsLbB$`X<1jFO2IRNI?nYOdd$%l1&jDk~f3h9_ zI~5@b0>M-AogS+H9TgqtSI>{dH9rYa6#8GU^cob$Yb}=jzo@Me7yIOpo*G3(hUP>G zD3Bfqb|-Gu3ahVk`3+X`_*PR>O7!d4K4=^R^Zf#XLORZr)MB6E*L&N2^G#(9871E$ zCkhOTwAhDLvcndxz_wj2a%T!hu^WUXg1_Rn9;lBNl<`(%ouU*DL@cD*H&qJ?Hjhpw zXBMt5TU>{Y07=mGcLrxN19EI-hChE%eYPhsP`bElsI2F zOp&Oy4esV5Y1ne(H3DU?Zvt`tE(Yj;XgaITNo@yymFjHdgAKH1veYAx8&O*T1;?$K ziKJkgxRi93seYCNuVEX8GW~-ilv_c#9OuCa{LY-`pF=YHUBYiHe2OU$SRe9E)90Z$mOZMP+My+V5%2NG~_%6C7sH#puw}s(_p$-;LiiJvOGN&f65`JnYzrXRQ&x` z-Dq1~J(79aS>5adreJ4GeM|J8V(}KU1#Z>A9tB(g)H7v%f}Gra;zO`8#zK1|vW^<1Mn{o7$^x0a#!bvhO<9i3kCBIYFX{Aj%L8TgC z7U%+)K#&u_1m$*;E)R^dJM3@(qngjnk8oalu4STkF5h0M=7a#0hD`W625bv8vh3I>5jhzs&>0T+W%H&pH+{@4MfinAnJhhj^dw2h|JJEYTnY2+j^T}@vY_ZjjEz+@pBWy7ltLs}5z2GiQQP_wx zkQy@AnQ^Y@0S@i68t^C*8d?q*b-|9b74uVJhmHPu1%UYnkmmp&on%La6k|b8b&z7D zL+l3NB|x-f)XKb&R$$;(ou2mo8_z-4>c%bg&{n1#5}T`LQ?vl7!H%W$Oz*M4PR z+h1RE>Kb~c2z{Vr1xiy0nHyu}K#DE^spy^<{b*6&!Ydw*QuCgWCCRd0^C1jJIdA$a8+fCiT=5-dty`yraLR>h@7; zl-S7ua7YFs!cb9l0Ly^0oAMJHsVtJ+l~TL>t(>QX;P7p`P8MjGD)tav;u%QR1Ylfo z1AK!~3+_k|cZG3B=O;)SoPU{O`1|5q3@9vqieO8sH_Pmt_)0c)5nwqv&o5Hg+mY-z zU{UWEEzCyjnFp+#H`PNsTJ&@*7sKb17tzNvn%g!TJeD`l@=Wc{pjK!`lN1NPsZYvDiYoYO@0hxe^&Z)v^045}d6384Vh)8s38@KDJiGFNDHKbe(7m-+VGQm!2*l9)i$533}!j8J1*m^=ZzA&12gi zKLC8k=)_-ek34DA1@FA`9`{G+>CjrB>PfbNA$hF{3XenQg>ySiObybV-rziZ6ZMln ztTDs(3s=1>GIsb9uidcde`3{%Ji#y_M>d-hKrRBv#tVabZ^jIE$;+q3AaR@M6~;B8 zt5Z08!5Q!NzJlPeQ5{yDxicsvZcGw?K~9>~2PDdB+j~j2!O5PQ8$T!>9={B7RO_t) z6}H#-02mo@F@=Iyfk8J&yCVz=rpA;hv<0qo>uMyW&6Q*5GhDC^KyN<>^4$bm&y z{CZ%r6DB?(jXd9|kB}BoYw@BsSsD8hI;;N{mL9k%UIi5iI|l(bO(QL~9Nr2Inwvg+ zlG*;i4#q&$!}28&JP>;*rWvP%MpkEB%e6Hu*`ChGvxqxKUB=|qBlIA~C}3s+#jV(A z&C3LYu;O}pQ%<>N(OMCPCCPHxmlgH^S; zEli8FM~SFSd3RMZ11Oe!ud$ln<6aXAcFhi&2st(juw*66e5!-j+jI=yRTxWlnN+EOrZR&pv&Nz< zp{vZj55IlD^8pU!h89}^hz}tT%KLgIbU_P)P7R-Q5%S9I;<-$6@F0NL#?~YI@_2mApD8E^e&ilR*J&D>ed;ii*!`m1osO>;BW8J$to;)vg`&GIWO@r(B9g zjeoh_F+g`$x^d`S9K+h*8JfweW2)iawxCwr5xV1(P^#cllQEh}o^MiexI7mQe-8g$ z%IAbxD-)gBAdDnSmxecEf>pEbI!B?uWH?K%0+_CB#8l~H+8}R*SX6?v>&Q4rLD)dK z2q08M2j-xH^7~nLi$>uEkXu9F+59DWP}^~|lY5eu{2Z=?a7r8W#psl_?O z0UohN!m_*^8+SH|UhaoN&0j?l2i+504MQuGdS1r+0vtQ z*{oLhXzeCDB1osNm)z1bD$bd|+!94D=6U3uq6<)^wyib)uKy++r`sT$OD6Kc`I(n> zNn9t5r@61=s}ap6HR(FU; zu{cJG{6_vunlly`C*iVa?C|u<4LUm6cde67uT0t(#n?V1WF4xqmvwr|>}#O{d5L$e ziUhTUbvcB2O$mWqyK~_-Le;=PlX#7CSb67d(f;HiIy;7}mXbGIMk+|&mN-zmVD{e` zy4Lfyb^h!0p3dEHL+S6_ZyNRv1w4XWDq5D&S)pqCi*&cD2YXavd`5C2e)F)Y_1{y@8(dRQXba47XTGB z1AA*_K!1uc_{RWuyV&u$J_nN7DPl@W6#%R;7h)(uP94#h--hpqSc7C!fGbaDKzQql zq!4U4vQ_Al7@)yM?#bFBjx08VG<1q*=x^I#QYF2wZf)Kas=thOjGGe?NmF zA;IQ+P-y}~XYRuiolVu z37_~VGCZR5se8{u!wASJY&Z6ZWAM`a_v=b9)6~i`Yv8}pG)^ptPxlC)KQQ5 z;*?Q6RGjWc=+iKAROV{LQaWokXKEDy@&F?>^#>6}?H4S_{vT1Qdd~WVjar|3_hQxQ>C=as-XP|~kY7-%H8-nTvA{{! zvpMC$xU8@FM1T4Pw<(d{m26J$d|FhZS4+mkW=L3!*2j#LRZN~XO9)6{0sd&me4#7x z@tO(d?iE3!SHe}akWcy4g;rC@Ir5*1i1@@aX9mJKI^If7`nL**GPNviko7%9V%SrGjgH0k#pPAS(5CydV< z9W{6~V|3?}MUeHO^RXe^%Obgh<7p?L2m#18u*m}}So#qQz0_bE{T+E>_l`e57R5&T zzrP#60KnCwZT2l+BHzMxVCw4;f&8pIZebjn@ynz0$AZheEZzbd&9mxrWoMzgipL%2 zd$i$kWxOEYjah!kk;AVzH1_ig#7hK85~q1!hjpX=$EZ5;=$~o}>g&6P4C;coircjn zf0BN=E(+xhCj9~d%T1zSM+NsfTjJG)qi1<8bA~IuRLbT*<8kEp8INU9^4!BcjvC+p z0RxT&KkwQLZZ&~(DIU8tY?CAD=Q|#GDwwpa#d)x6>OvZgEd=E<`d1S#?Q-`W*qIk7Cx zQMTSYrStqL?9XakPJMrpHgzbR9i zI}pe#g9uNDw&Jo4+*+`R@@HqMB^_kjn&7$^pc$vF{4o?h|MJ7q3oEDhh4U_~Rc6;X zp7KOsaVLzyU6&8#D81g13lS~gj?-}Nq(X41epEE@0fy=r*MX=(KB3)wq&KEIlRw`y zSR0sw`Z0?sKj#{4lx_xZ1(JJIa* zpkVuog6*XmsY7P9QFZ^+lL(mThlocVEi7p;BXSz_1YG7#cbH02K%E zGK?Ka1};dfx?mvCan@nyN`r)r*tssa9Cf(7QPpAtT$R~g($}E=hPPI%^L#JxmCV{y z?=Nh01rBly?@N36{RDjPc0+QlKt6waqootz-T;~~1t5pptv;0LRo?MA3k1Z!SgFo} zhmfSf<%vlJaTDKU$FfUS(KD;pyJn#{P*%3&4oKGmjc>}|%iEfg=RJCrXYsG%T@u$BM@8_e2fRx1v|~=YQ^x8myn7Wly$}Nq3fz5y z;xmCulWP=Ao<)*)|GZe51K={%l`qm$N6*0078yC0d1~MrI^rcA5Q6l^vgJ~<*Emu% zxi#}`pc^EuW-|6E5T^{p^iF>^Pxag!un?A2&xHx?lnT)Q@fmdTya{3RKt z2o!78!{0rTym5lNL$fY7nkj|#%QAdFuuq+z^O4K<9$W8nPk=iH**R&N#8CI+;w9`` zY;RV5KCCiF!_;eonoI(rV`EWK+^2oQ8LozTwp^N)_`*U2uS1DQvYiE>GPT?|pIi&jmS5uHSe(eftw*YYveG2r?^t z@#G6{V<8}3fgO_htLR%LyliRswjMC4$T$#>k(1{20ix9J%LQE2jjoHs`_d&M&(tye zE0VkN*p|JoTyYwPhJ@gY3%TALWrpYXK7gA9F*{AERb$+GAaW~d4|vypMD`Kc=#KFw zaXoMv!lUS|{mvVe-7ND%zVNTBl(687d3)YN2h#_xa29|0LPRI*_c z2k|1^S6xPDIph1&;A+gA&QjBBlE6fw*aJYwoR20m&(_n&Z%o-kyuHV5?U#Tw$Kv|;`qg9LN8x&`I9;Iczuvg{+~uF=adbxl_}GtC{bmh0lvy%of7AK=!Bx{Xko51_DoFc>OM9+lqT zel6>e$bOl5l=PX$zFcuHxZ=i8`gJTuF?r|fXjgz1-#QbXApPXiFLyz}C@h>;1YERf z<{>g&a*ml~KkD*RsCEKax#LWRgR*bSD-ovuG8QNE8eiiKr4z*rHtJV{UO0^nNL|32 zg$lBiP?z=#PE=zC#RZM0j{eSZ)_UjKkAch_>7u!%ENQkcKBhy``qy(lpZr%&&$)lj z2yeoTZk>720W^c*F1W#%lOtbCMq3(#avtOm;E$Gw01F48x?Sr57GCMz!0M8*x+3KJjtj)+exik6XumhX zlX95b=wY%x{@+I}T-oazdHC^ILFvL;!m-uktF( zCsj^8;8aW6rcU_lOuzgyRnq=5mA-;^Sl0iESqn!zVNn4+;R^0mAD|<3?GOLntM^7K z^k`8D)!FXOE56Q5N@E~$wD3Ec(Big-XADeOm z$1V^kaFbD_1peqkj^B&o!6HP^^oXfhF4gB9GrNbyBTUiDs$A$2@Mv9k_!+y$xW#tm zoIY%Z>=7ttr;{D~2$1)k8u4Fbb3CE?*Xx%iHKjU6n(c1Y(H?Pt;?p#tXgJ~Ybi0Tb zfY0xMldtf`&k=xLDwL$TJ7-FGp>92;0?IkHW*>|CvpN3j1Zlg!z4CYskZ*-so+@?g z`N?Jl{Dtz0WZ%<*2jcwZT{jCl^UvJukvJ|2nw8V$c~9ukQ4yK?WKh~uQ>m7IAs<_b zIJndVZlwFI-KEuqPIWn(BX5^A>^GZ(%ta@n^Y_sR{_4t;H7y@cV^Fb!@P0YM2m_}u zM2Vg|N7i~@M-82nwFK;%wXQrIoq_zNVL`xw1-}nqzgMk*$$)-(0C*%e62At3Jq7`! zXT6sKpc;Xj%yWvlz}e^4 z(`gS@0CMtqnc*#>##BMv*^iM|*IvKQQ-UzSPYK&AX7c+)|Mmz{Lr<6%X|FP}(Lw>V z(!9}chxLTG1h7~M3yg^C-h0A`1#YGb+-ro%s`aCgi#f8b-5=IGVJKLH33AzSL6$Hg zi7AwBspO@VN&*lN5NNA1WH&~&lBI@H)kjeGicb12eyj%!Qa|_6pD260Qej>GmptS!ffwOsoDh5iBO;T&)OE47wO2vHYh_aWMN**DGc3Gbzkpc|kl1sCIHkc-`E z*DPxCQ)&l<4cx&FV{w>wJlb`U7ViE9x8VI~t4?r1%+;zBhY|jOHcUizNw=JI{OJ^a zP!Q0?0Mgw5t_YmMQ{yv;p`zk^wCp99|G8_@HVH}spu%gTUe+5Of37}GURnsIBx6-6 zwJ6l*yG-CJ^;uhS315nGyt>24??VE7=z++(%&1^bBH-NHlM1gU?p17s)q8-<4*l1K zhMpyczkAaBCDnLiK~>c}PMz)QydQE=O)|n1X>qINHw^GDS6>0%C0C|Xp(3W7@H|Px z{>549!zgrWqkg`vBpO^Rb%zy2uuCtETo{Bn-6_ZaS0m>h)x?#@aja)+r6?XDX$*o^ zf{IY+NKhakN_h<_k1Zk+UJJnojBw--P>2Cv_#!N30ErI}bs&_7sY+C&kV<8UNZrU%T9@IyHD-n2RgI>%6-&V)9$4>7q#^crwAOYU9>Z)Og zGFaUY#PKU6rlDZ-WRV?m-Z~50+?V|f5-{KbfzCxRcsCn_vJ}Zj_r7v!xsJu4Po41E z5SOBk8^nyX!}V*_;UskTYa-ycs&Uu5VKUK+1<@>4Cw@Sb1taF*9mnsq$<)QhllCQja*?pUxMj zQHjja@P(5D9KJ*#Zd0NpUvUpfD)N&`v;?}|LNv6pJ)@E_hjSibU;H{2bb=2yD!{RrWcR>9`jojTXleh| zzz6j%d`MGu(#Fe3Kz?^Iq}BTK0dKsL+y042>gpVm#>Y%OH{*v|8(y*;xx#+h_-RO+ zBhnedg&Xk%3vLV(ug#zGU>%t`6OD@_*UVD0LG_rR6@Ho1O69h5aj^y$cP7=#?iL84 zHad5Q@830u5bBz-FWqK6{kB9QKW!(3Kom&mb@9z{t-3N(o%#yIcSNY?T+5$10|5y$ z4b-MbOL&!-2z3BlH1GBXe`EiNE3%B^*kUy0l;LqQ`t$~|wAc{zqG3&&!#N&?IWatz z=_9>+e?W=ugF!j1*X8Ui6^9k2q~%V6Ubo@mEochL?BK8h(8y;qT5)8I(AkECo-;1!$@pu z5#+6ha6>WgHs*&gRk4tQR%n}e2Frm_*=;35r8( z_y`h&dK+66XY$GtN9~)}bm=x$QkA?`cB@WyM4|FQCw#3`u}hH`uS*!yfuLaA6E$@T z{Pg3|I)kWQhL2DATf`rSc9&x}&@E{9_ngKrj2Fej8f!^cK}VzCv)TP#&gvm)A9D`y z_p2=R1bDyMGzDPZ{R~aTn4)zl{1-y~kE`!A*%1^G}bpbCYFP{V^x50 z86JD1i!I@|lJHQE#BD&f1z1QUNY_7n2pcO!Fo#xG@FV9z3 zei(F3zA`}w7aN>l`M#n3p!<^VKWglFSkf)U$D56VO^*R(e@yPNQ71xOV*Nwo8dZq- z`+F>9kf$4hV&g*SBBhz~Qv$bL1@3fMGj<51R*}we!^&*Ev=0RCKtk<7aO7BtO`!QS z#gwD=d+)|fzrCAv^#NJ*Ok+eRnT~uMkkeXr-+0z&Or>~dC9wI-2{(Y&gI#<0ClQvfV^Lx!GRql!f}qz=xi@<$Yn;`NoA7@Lp-f{(x3Sdvmm{xg zWp^TxNe;4T!_??4kYIJVI8Ia<%BZ7GQ)-%vnD=Rg^!IoEX`b5)fn^<= zH?e+WPlJNy^r^D9r1#(wH!-9&f$s#kb#fv(gUhBV+*%pXj%ey+3#|wEFW7Et-^^M} zQ;v}?GZ7KULR@TN(^N5LTv8B$gu6yjTdZ>j&ebbvx7?M#gu({`vYyh?WGw?mF$|bc zhv8x!W#)v(YW;^u^5-wZu7L%cA&6BviB`QyF5*?Rcpj{f#|ve@SaaL+&~vs^le4EW zKSo8~%$XIqc#lnBVRsL$&`}?rq>&#{QDQPT`8?zM4lGkgTTiDqGA?7TBFjW-1R|Bl zFZG7x0Jxy%NrNGL-^P=>NvRZ&q|gAAO@8^KHRJE1CfVRmg1K&X!K0XTO4~+)l;Rn| MK0)5sz5aIe-#Cg&asU7T literal 17833 zcma*P2|U#8_cuPJa+7qo$Pl_KvW13($&!>cVQe8w2_aid);fB|>4sh~w!eFoi zI@(uIFc=#F2HWNE*FNygH)|d<@JGq#>J1-b4@V#0TlXDc`nP;M?|Jy#bH4r01Bd(G z&K~Y^(ify<&;E1Q$H&tfDI??d-xo-G+;@@@n}Od3i*R^qTX@4@`;S1cU9glFa2V|B zF`X;wCVnsGM*V|sqU*L6S65#Qm0e4y;Bc!p7AucCHoW`P#oZC1Z(fOip-BF$38*u# zGgq&3r|wN;EWh;QIiyec^%jHw1SqBJ0!Qhy4rj#FUu9F=ZLRO zkJb{3Rg#NcJD(prsgkj9yNJ9S5CqG-shBGby@7?k{R?aw{C$1da4+;Gj^~jC^f$BU zZyMvq5$AaJjQ(eUN`)yJDt@UcyX=T=!WtAN&-! z{Jqj~3q{-0`=?#+d<}{^`+^h`=55B`l%&sI9hKDpJ^%kgVcfESDfAP3?%U#HRWh(YU&IKkZp>qe(~t_AfdQezq7M5MHRz( zexkX@7FtLwOI!FQi^VeHMTxY+v%$Of^T&>C^C9ztroFb{^Y(_~vyTagsZ;hH#c642 zxzgKA)2wT2YeOae*yq4!QcPa8a3$>zd;jORa~*B61>0QLWvoqSP+LVaiu{+RXnlGz zl=;yb5gmo`pfa4w%8kxc1q1V&UQdN-i_Isfzt@)JLpFn?ZoIlQIy&mFqCnh)7P*xC zs}CbX`|f7FcO#|wdeI=Sbc*+<=$fe%S7zM;#=z-?*E7|vwQh!!;QZ`hyIU(Naa-zpsY64B zI2?DHR}&vT$CXrPW}v+IMA&(()<0k&aGZE?{*8u^LG`LXy)d7CB;(f;_xd$Qw2#l7 z=;;WsSnwi~!J62AXrsSI*O~*+9ol;;v1{71W@~eO`NI)|nfmqle)9&FX|YY6rNU>= z$I`VwF01@#WJ4|w7%%r|9CTip9a2(b7o-SOHHkUsS#PuXsEwk4nVVa2deBcDoj#e6 zH9d$t-CWf0Ylp}#B;zb*;`q3slT$v}S9$P8fS~VZFBUUjt@vu>G3U+{d4Cl(u%HsR zIuD?zai)h#&Ckorn_V^t`gVl1)*Vv9AT`)vFqjmC{j*?Je}+WzH9BS?Favq+$$o6iZ@7#f81QAHEL|AZ|{z zc*&~EJA6m$-QVP=}6t;^=a&2_Rq;e2Argn%`hlss1Rq#6LFt`$S^cbLUK2vGOb-X)SFeP@}BsqKA zPwc&F*m+2B$LzQtx!_)}7aZQPpv=DrO8hegc_j)G?dP8B4)`5U?z?f~w-P1!M1Xx$yZWhekKC3)c{euo%CL+JB$mX($kBxD$8 zWM)dXN~HLq9TJ{{Megr=w)sCPdL6y(^0s#+l(^$=47tEUN*zYqq`my7VCrAY&Jv1X ziMD;F|G}6mJCBNZ40K>+=Z0_Kh8C|+>CjOEi+BhrheilwSeatL8}Qpp%Qk%;9vZTs zqqy(d1*YuT)*Kio0r(d3imK}z`m5)gfn0%}#@o8$JO22niN!ujOym2N^U#upNB>Xi z=A5DLGa>3;?g-+ex?yKb*dMCJ!1w$&mJ|P6_6qv=Nh|(8KDN0V#7cObgjPA%22`Wm z2_b^t;mcul`GdF^{Mo#1u|WcUeEQjrJIXp_vh+ofYhy=(K#3pXcJ2|{z6bS(fscS} z-^!!#f2aYP;D4@3O#P4ULq8%=5j*D$v^?ATj@o?%t2gfWcroQiEk3u^{HiGXAHV+R{%@WZ`J?tg&Hu;d{s%WSb^oY4 z#AnYx+upmqDJ=d!C35SJ!-4quM}`m^-Xdsv?LT%*4G!2Ys}wKg0_`v}6f6h_CYrh9 z2Drg}Z0hpy5^jRf&*xJ92HKG1gUbEGX$`|pjf!mDKVk-M;+7pkWM#+PA+K?=Ch71W z)qe)qYPO?B+mbNdF_$0Ufh}D|e-_*e7G(P)73decKz``C+q!|(5j8~;ppS-%fH||Y zf`kfg=p$SoBKp@9g2@YgbSYAC|LU#8i(JPF|6Dzx?^*?Y4Ue5!Yh(!28+3 zn@mOuinlLOIz8LsfN8Gue&{~#_UA}KQ_@Hjq6UkQnMeQLZQns`NL3awl$%ZG1MvEI%|qUwEc~e6eP^Yipxsv%a1@-~g#a<1IdV&v=GT zwcU?h_E<^UF&&S1pQ0SeC`2>AJx;Faw=*f4yhFcOpoK_8ks!Xx(Q(=TyIWFX7Kt~V`i4^ zS!(k_kh16Zb}AVq9D@>0H}Ux*n-1P~2t{&NOC2^4 zPx<6s<*s3JaKWZ-x->lQTkF8CjBbH1Zy1U{6*YyZEfer6+-Z{QB=U@RQ1=|$>T=)< zW*F79kL|~btGej-S~X!Ec$fVtG3kikmjgQ zaPJ)QO4xc$EMf|&L)AfPXgp3hYk}7a|Hu<{MVL>@w*ImpW3-PFQ(nE%s@i#C!DX7* z?L18kbYIUOGK+o|#2Tq^->}okN11W@=d?$!(3oco9z>?y*0msRJ{dS(ITW4#W`MVn z-g73 zEv}Q^T4pnIG@3XgW0&9Qok03eWIXxxMSR9BSE7ZhM}p7N-}Ao294is$ukW6&K!Nmq zhpNEE5-s7YKEEIBwLD*3atHmJo~%y~ZzwoER;n%9Suj4mQYM!e
_@p!IY{*XCu^ z59D2;9AbU@=skHX)1FsfczL)>sCaC+(6lpccwms2FkfI9_>w*o&9FNi{n*A_{v_$0 zI?2VgHs$aSi7%u57F=BP%iQ%H4}|JUb|>TRtn@J?p4WB8G^5M!v>raNx+Usbd{~@# z<5c|ouQMw?53?6ln)g-Lvo)XcnBfwo9M>z5NvXn$P>$;th^7p5ZK_bS!`Xbp*ncVG z-l==6WFx<{2HTi_HOJ%{Oh{n(&1vQs2Ub9Qh~HSxrwr5!xk=prnQ(j;&B&}a?VD7m zrph)qVej9#CLaHq)oOfPo+MuMvHze@0-KGwXmUy6fxZmwh5gfIwDYJ5|@O8!LMITOH&_Fk4pB6Q7nfj%hc0T($`eX*-u?^)( z5P>6rhugm_@oVPltMtGeL{kfc-``q`XY-q?Ij|2~<-+>AD3#tP0WUewE6tRl6Xw*+ z_7ZL7z*@3s-m+BP5MzB}Ns-_Dt1%|m7Hrami{0mnV!`QmyY!1V2nd0m51xkV<1;GJ zkP+Cd?V&h{bjmheGe>6HoTL#RnaE$hGhL8yu0ZuyAGh0G8fBGad2X^Kkpag{xi#Mn z%C&`@#@u`)?f61Uek(eQO*QZ0VQRMP1KLB%2zio{aBtQ9wqj=XaiUKb;)qYjAxaAM z=wMv6VJp(pKDilfGKVB^`*{ZhDJS>Mk0n_K-gcP_Clo6X2Is+tY?pR{5sDy%UYrKL zo?H5r^4vU%vP+(_Po7+Vxu33)+|CL1(K7McO%8HSj@s%J_>!xRlP*LBVS zi#QR_d@gL>H#az(7-8njC$W56w=j+(6dk#sOwESc`-C2P#)O^Q ze_UI+FwOdq8{^-*TILNE=qu%QWwsZQr-%E-Ncn?giNoV^M~5ch`X&3FT`<~OIMRSo zlqs@0OSg<)LTmD!4cLHKNmdCf@cS;D+CQ|1kIc?L;$m{eiVU;9SGHHq1vMM4c*hol$*SL&Sg!sC*tIy%lr4%mgEhZ-*v%! z4ECrTbTRieAyuxp7+Yo7crYjox4Pj^!}YM) zWpIwbH6>3U%oSjb)Ycf-ZY}XkrQ77|@m_0VxC$QPre|~~n`X9!GCzNQMi1pDu&tl{ z5r56X&3&Ptn5@)A0y*EX;Ap@s#d>IMY?((@kb2Zi@sRQDch?2gsx&8v5z4L5q3HlZ z+c1<=-hf~@vLT`4_{?5|(aFc}_)jH8dL%A}xvRWSL^6sC~ zdByfNG~ewlM@prbvwjQ;tD79|CP{CMWj4+$0D|PTV_kuo}R#ZQqmVVDW zXELYXkTg3CW|t$;p6PJM7hRhL;A6uI?IxLPrn8a(=rDQhR}BFn%jVAy<b0h8 zjRd^s*09)T>N?H9|B`3jJTsXd zDN^pEk(y9D{4&gTtPs4!sR*QVKw4Kuf5Fn!`I&z`Ukx~bc=gNQAQQnIeP2gkcq}vD z^F}x0da8Wzjr4d?=lUE6(=@RD`twlk9&{F@xb-42xRd6C|t(PYy<0aR*VPB zGjDk-8DqQ^G_}niFYA34^pG0`i`92FuK>Hvexy284kF{Y{UGk#_wBX|{MlxGb+*-L z%#-WM79lei**-PL9FbV=Epwusb`mT!ukd9=cY9DyWQ^x&QD;#t)AYF|T+jE&yqPEB z@?6D0PGShK)N759u#*KPp9Z9LptEtNdoR|p2`+fC)Di+w@@0~Woq)vC<2zaXggMsS zPe(zDVWH$P{odUDX9^Rt-U300fPCtGdRD{7kdnko-@*%%lpOwJk9Ki>^uhwtNXCwX zj3wUAUX0AWevkCgmoi&4hf(IVe6^i>cF9fUtKiVdZU=lihXs5(_x=ri0h}?wq9fE2 z9-b;>2Ks#eCJs5Ty4Q7jzN$4>ebuN%fwrIWhN4UZwo>zG__f%i?fbc2pm@*Wm6Chz zMhci1ixbHgtASz>3cA_;nM*oNSpFC}eRs&Io1!qDHpWeVR%6bHOBL$X53$L16Wqv^ z22rA&Np^Nh*uyy6S<{fp2TYXlwaR@N&nQkB9dF zkT>*Zyn`WmaLlQ=PFjFFu{!QCe+iDBu%fD8OcbMg!&;)cCuUwhja{ZjXJnnIU${bf zR?C`Ik)aoP$n=sD-OOHaL(c3LAP9-#>d@5V@yF5gR&4YO5ArN4!6uu%u+m8*1!_T) zCL6OSjyd0qw^bOcvvk^`9^P0PlG-NW{Uwk(%5kk1Xnxa~n~iYM6;$Vea{$X(n&Du* zSF6*hYzWD6d8CS=uM&OceTAsjk}1jWA#K_NaviSOY|D;ql6Cq_kc7s6Z)1Ch%8vUi zXc5vpLDNy+nT4qpRa2Ge{G)P7wr|F#94$5fy!y?qiE^UkOILT>y!K#bdAiNG8T}`Cn(iaOnr6h+v?Xnj>~`MciKU2sg7{9Z&^FHhuJZUzJvwgaaMHv{6Ry1sbK zcz8(A=xogGgQj*|i-9+-z1z;KEEbkAPk5-Ax%xg}jH(4$Qa{&U1EIJW+8;df{q`dZ z?rMavSLEFSx6N|+Sz~^5_Ah_P@9I0?kycFU6bxvV3h6ghvmrEZ3tzM9H5W)pBe96e z2M-=3RL5!Dzqa^nllz{&h87RJ2DtGOHT%5u-^?La$A}{o$d=S$lE+wT26W)*B1Db1 zy+P&|a1dC!E|d-0@N$RgS+||!@urM-x?%1MW{1naeHny-oz?;>#JHYOD5{38s9&D< z*Uc+Z4W8bQoJftPRfsASl&RU!4}-LpGwb;2Di`C6`gaK zlp9B$Q@@|zrM=`YQ0MgZjtY~M&k&_bn;5%k+g5Gyr2Qsq`Am!wnLjH^P>FxRV9yl{ z3ircl0$OcOgij0R_b5wNNapVZ?mBPv*moyARw|;3>r%{YjY1`MVK3n9LHv3EIi0kx z?hV z7DtBz$%Q?Il%>^UW`UI;WL@z}hkTNhKGc(-QlBmPvi=52P83v9xb*c~@*xh2Y(2;e zW^G=zJeO-$sZwPG+`vTjY?uLKRWgNgLNB5E8Zb?b+cO^NpOwuv=4K;_#R_@J6O!aW z%bV>s9^GRVS-Ix;^WFjgPZSVpMj%~R_N2)NK6-$@%3PnWpm#YbFk%}5)op86MXb+< zyezqK-lAEbvmI_szYheo0uHfQ20ZuvY=Qe-{e#V^h{wVakFf5A-NMd^{}zh;`7XDFLOFBvz+Kw7tZuZm%vk!5>1bNWh7sy96o9-^=J8t_CK!7#9sykhO_kEAD+w^=-E#@>Zf<9@v{cB<>AW zNRdMnfuPa6J7`J(vt+$=lv&MsS0_WuA*sGJ7$@rzQ!naSp904Jc&1>gwbdTyqUUR} z93NbDz1p?JiW<8tL>1P*6OC?PuLXqnf7*!5zH~Fz)=<#4%88r) z%^CgLj5U_c5Y`dBE>f@?9^5Sdba^??zk1QFdFCMC0WLR{NgF2(n$L$^T|j2(ET}j~ zILc$k4xK182{^&vNqykjiE{_c>}6T243F`|kfA{8Lm@duwdC?rip%+|Hqys_1_%yv zr3GQ3Mj#y!746PynAj(kP;RGNe6x9mM4BDwSma6h7|{UJEkJ&u$md_{r-&L*e(Kkt zoBQ-x4NeyrP9Y)Ik@-{_27JHQoB#U~c6R=@aQXmMgAtuIlwRJ%IPP3v ziS!)4WeAA_!RcTnlm0c)m!5oJj`guWRahrJI66p3%R}}43%VpGV7%2>zVM8;-(J{1 zTEGP>;o{o7DC46TFa6`?1};6*^o*_-g(uEhkU~^e#g3tN8y>?VKp=QMGLJ%A@`$GU zN~SCmoi5Pq8*B=_;#DF4WKH(dEo>KfU7~$c(q_EafmF#Dikh>ed@j7I?|x{wjvS1fK0UaA9ko$r!C|2QHZHhg+IRJxC z&?PsjH?hgp^W}U2-^j;COMS|MnZE)yek?AhSS=8W2^P~rBd@xG#x?Vp;MCx{dy%Re>l8>5pLHmZIb`z_&bwaDJwtu^ngL2tp(<^%2P|9{VtvNn zJ>9QnLbv1=p=LD{#+jPm8PAjmf6kdX3t+`$ErTBDHHZryt-4n>|7$$}^V3(RWg3Ze z8&phF%QwpJD56eQ8}>57MU4RfmA@>dVp&PlVps)~I|f#Q5~bOxCAsP|lN7JmcdSHj zN9VA-IPPN>poRHR!GOv>rffZE2?ejBwyu<>K^q9qVmDi88KX{no%asP1=-xd zBXKg)%ca;+!L0Pg5tv=a=|kUJ(b#+3k>Y5rBd^UI`q3aP)F*Jzk4y^|uZ_78l9g;% zNy8;-q_GmM!CAa8KseBS%m6{}EAe0v*QQ^bz&EvDd~z<~ngxXOj2$=Dvb_cpG`9up zT`ec!z^dYHtYPSqgbn~mI$a6|&|2L+U>lG$@`k^>GAKOPGz0V<>8y!axnV9`g02ZD zcXx`m8KD$YLDED!;Kq8tG$O2{P9jc-hM~U=_;^|?7UNXhcERic5O07(=uZ7@Qp4)s zk2V1{YwTeh0)*fQ)`oZI&^rHViuo^7L2a4Kz_4XC zBbtmOM2sWO;ORKwfuR%B&EOBLn_5v{L;2tDl6qlD43}3IRLVjDvvdL5HI4UrMdbD? z8_(Z0Xz9kl-u;+28sOgVUi_)tN-ZepFj%-n{=GJn+u~KSMo17(*};{i=}9br)alY z5?P#Ds?n!27zGkvOx>OufMXT_LLg5zvHjYA=xZqWknQqT$sT)#vIqErg2?C$F&&T& zLm`7oeZ^HsejyF6@v7@#yvqsp{62H3dCtA%!$!+0AfGq~#k8U-<4jL9D4t*u6A~Nz zzB#t}30p{ihm(^_Gx~DPH0bqgzoYB-1n$xG-xo&9?i1&2>#V)cm@(M$uTw>qL}l}N zVCU#RQl$(^Vn=#xK|vxkOE&oy#kSTDmoVmstA9ZAiV#7uCKqgaM%;r@(ImI+DB>un zc0v;T{yGUId{T$N*)y;Y#$^p07a=xpM&^W?wOY_P2LQUNS5_RL7eFU#2EOlt8U78q zyQazW%u3M|Zo<8*Y_OK62uR9_-~?%8@Jr~_@>yKX=wl_MqZ0SQE_Fe|^EElR z<)u>kBuL0fd;PE7Fi$ZwkLt$i_a*d*{C+a=B0;ZyO93DSI8@?Z*rn^*I{x?5n9rDD zM1>T)PcpE~FI_4X>Z=<|sq*$gPgQ@n^RNarT<^0~z{Q|OyA;Q`t*a9AMB=ymA&K2E zEIQWZ5o<2Yp!fTJQAR@ZAR~Kg^~I^hJB97LVRkK0T>nDgvCH{F&J#eFE_v;#Eva9e z_ut-gH^4N=l`_WW!Z!5R;A}p;owLAM`(a{MTYke_nAM+amZi>>W4bt5|#NefSzt2omru zDDs5TC6~D_A#3k-*{g@ozS;v5vxOw1skD&Yc3T$~`qgJ}mV@=yRCF6B+-xhj9WJn9 z&IYrCgQ8g+qi1~c2I}N7GAIS3N~aNdNAN7>g1Pv|L3voHtVsgEPQ7CgQ-fVy zU8uzS+Epd2 ziKBpE1Hxbf90JV?^>)MliOh);ZO)N7=!7!}IV-N?14^bM-_e4YEy7-qhBNC&(v9?d z%Lhbu!Tt%)Oi`fb#L~YO{RVVDmVgR*xfimKnYO_{gwf3A<(RF&>zL9j(7K_SDKet{ zD3urfgpK4(ekN4V%=PuLk5~2mihuyRO67`@f$soDFzieOjS699KV_f_`}e60kCeQ% zSXZBRd&V+2#PqDWVRl$h)O5C+S@?RkAZ~8E9l_xpJli(Nv()9X4Q7?(O5q7ltQLmA zRKrf=Gx<~JnF@`dCFl}gA-CUhly7JMaN20~&%s;}h{bPT2UNiL!OX&~J(Rzo$2!mf zY*+oAaD>@cA)U6K)=VZ!qUd-S%>HknR6^4~%r~Isj?5Qn3i(D*E)U89b*mLlU7G=Z{BdiATz zdnIXvSU0z%`k#ftzPG`%4QjuO=@SpqG#YM{@T3mw0Y$gt0zRS@-8cU3JxGL6J&ZOu zsK00aUQ;OvUV9sRlsjO#O071>edWep*ik;PPj_yOko5_jDNx$hjB7=o9A$$1`hipB z*xKU;r~Fb7&V!~3gY=IFg)Ayt=4uMi-PXo~lt z((iK+HcEx}gBrSKjyKM^Cs8Ij8^RVxLj1|lmNmtIp|Cwj|-?z9H4*FI?jlKc( z37CGQQ~kYk8K93lveE?)5!87BK;mVsRMLRF0jBR>8z>(sxeIn5 zSWB#vnzzZpl}M!&ZJF_fe2B46yHfiLqB8>H<}IpB4;GCX(eDHB=cu!|0hu!iMYPOh@UeF9#bXg%6HyEvFW z6TEODN)9vuoMQoyk+~tsd$)Z)*cvk;rz;GQ5Wu2G&l7$E|6ob9wvL%yoWgC$baq3g zbi)hanV9L<6HpYrxlv+zwqy?sE(@6cSv^vGPGG=jv~R3(eEr~A>dy6^i;G8=W6B%> z%wo0N5KWSSRO`^A@;FGfuH^yDiSS%zRNM`e%vLuc_S%OdG&B6#djr}_53r^lljtOw zg|lcKa1(HZ`S%RTH2*?S6Vb+3vsN2CuRK7AK>bHee^C+DYY}@>5G9wXA$ zlGU9Ysh&X`w+@LQ>=uHsD^O#yf;^Q2wmeSM z;6i~esDOg(l)z?#7J8N42JQcoi7kyvB3-l)m$Y8V&L0+%MuB*gqo5fG2P`7s77ZAJqqLCg0@il9&KfsCs87@YRLs?m@MB|7u|x z1i___tTeDI!R%&FO7Vm;;ApKrZ80ql<7)*6za0o)-b?^|h z$ovvH;!rH*W&{hxp9VKJBZjzLTBeP1$4x!XmX6z&_g+B>HMeMhu<8=1KRU@MYbw}Q zU2>~K09@0XHDFCVYLKUE%@50bqOG_0i{hCP_2M5joNFqt%_2UmZipO@%1_GRgf;#H zZvNP8Fi>|w#T3u1;pt>8#va$b$pg!b)4sO%+?#Amu(?S+(#**55#L`P=VS2W?I8Vz z&AQnbM+t5IqCqEcC%Y|0LFlG2#7mLOhEgypV#qXD^0&~_AR!%8$l0oHOm?_1)Ud~G zXQmOK&KejBSPj=_jf*hIKO{paB_-NWxWy%R*m&0)oRRq!D1q>V(YH@g#Z1o@BFQ@7 z1t=X|2gweE;8>Pr6QLHDXNSTIVamAduFa$z=55`#4>S2k4YcIb@#F7-PQkdFroEW$ z2h(#5tUb$xY50XLeYN1*Y>{VoHNw>al?_xQilX6PIHwQ`l{KoyYyK8)m!gxWw8&0GIsVH32?+V8Ab$Eh3>6erS5)=dwi!Mq;k*&SqI z*5ghipa;OAUJ?TOxG{ZkimpISD|+6Y4V9KUH{NNmC~~O-X+zT7uye0tk~shQ(z%Cn z?b3mOgM&u;b+@hq@Vlim+?c_n8oVg+*QXU;&ZwKdD!BTwVI~atBrgY8XwV^({dWHp zaG!lSiPTh$&epy?p2;6xMhAVUPf$rV#c*Z5K$jLDy1rVYasX3KUcU`oE0RKhP&BNyVVTy2|lw3Y042ht}xT9%T?x*m z2tsC;&OBY7Kay%<+bUoV6Fc+BWtY#@!}uI}W2R|HUCD5uy~msJ^vt%JGEj(Rv&W91 zZ^uHfQ;Rvs^$E}}k$*s{u6p&UTY!r-ku{-H_bOLI<{qtQgIK{}fI1`8yi$CyFk7Ys z0@4LC*5 zdEi{mr}MGeRSAHGv{0xyi~v%Fr~P!Fp_i@nXp!a5Q=_bQy^G9Lr^-9yKDZCDmepC- z_;N?BN|2LpWZKqb4U>kVC@GjL@%%(K!hyA;%qq~z;!tebrt4N`E=xtO*reZyo6^iIB1+lQl&3Nz@8lu>3PN5Ep?eL)M)(Lbh5-;qpllV>9x}jF;hY zk5tV8!gb1l=LhmW)<_oot^Qek1~Y28rh==z&RRHP-?vK$rW>AV33KXp?_nrd|9WN* z(3?#~C}n`Rg8TD@l&(WB+v+!< zroAT7`YTJ%yG_p>ncuL{+O^P#*4h=F%CU+2oxHwB`T9y{=yRD3Bid@gy9J{jhEVys zfL_kP@DWp42bwIK{T_9)_HP^Wm|tU&;!qQ1Xv{s&B!IiTKKUTzaBJM*WOv82F{o3? zcynl&r(* zx{4A!+TP^IPsjH~%?N;Xm7_^+PmWzLj&GI+SfjbQRC>|#@$CA$mjP1Uj>dw9w-ov# zSyZ0)wZ|}c_+Nyphndw8v!g~)+iueSX)`(w2;$z+aj_6KA0P4y`+wBx&bzQS36Qs8oiN<6@O z97OeP2o|2#u4Ww9%j5pFoThccPs8s(SYKAfg-KJlGt5D=Um)|*vnBl~lrC#I27Bbv zyQh|RLN>(om~HO~fY~Y^_cSlE$zD8? zf5&~qJILFLgk<##jP&_wkZBJP*49{)J(N=%cg7AdqD4)4w6|c`CMeT^VfQt`_sT8ZJpSH8U_v>|sjf?T zX@*VpLd-Sx&!d>d*>h94`lR8&)%tXsJFdRAvzcEXcmT*4C=jTVc_8n<2r9|uY#{PY zNK7uhaVc0KA_NS381#QVpG!-(fdfeU5g6z3>1k`&X-ki06x8>TSZ!IP*JRPpP31K* zb)N=6Cm)hE;X=a^ibV-yH?})Md!tN;Kab^?Y`y_?aKd2vC-sI0Er~Yw2p1-eF<{R; z!H`%@{mL}(u9AI~6u{^s%(nNJjm1DF6vM@}AXuA72dK$*6Sks2)e|dml`BJ*;&^QW z`C{HmeG=;>#~d9;05y8>4A58V!iXxoh&R+TFd@y)T<`9UnyaDz4E1@ge^5gx$thKk zpe**8JIDrPFFvH3b{-Hnxl^){q1&zD=U!kzPQbaQoPt{DjbrsZKXF_?XSL0Z5$+Hs z>?9Lt@3Ii-3VNnTkf#E?ToZ@aZ%2r%G&IIBl2rEVIJ|SU{{H1sjnmj%qeIKIZ1V%I z(*?&`!L-H3#7_9qzN>TIcb93-N(3!_YLtsju0JDL* zHbKW}Mf%;9rNNGAKsU3aso=p0JMtY+`gy}?d!e=|@TKK&gXRHBFz8DR$mReYJk(zj z4P)N7W6yAv60x9T|5)qh6x5@#wmpV$sS6~Em(d!G;WKz~@@muTlNEm&L*){|2}@>P zAs0&(Iz6~&s9d#hZqh@ANdPA?faHBlG~%bObG9R(he1tP6U5(8cduKEXktt(=<=7s zKinu7gPRy*)1Z!%XW`B0^I1sG7TgTvU7Prv?glztDOTy7eQ5~cMxbg5?XOOz1hhD@ zI?Gad^m58q2P~Vl(L6NnxnB|?tZZ3~MIvnsM`F6(j5k>33BEjc@^6z!;V(nJI2YlV zJ0GEOhfFR$`}3t|3P9V#Y$*seRszRwoXV{j1NOaKcdNw@1?xgi=hjTPZ}zk;%5mQ@efqf5 zj0}{i!R*e0@flDF7f@#2HX5`QW*H5THMP(sk{$6Gd6*8j@_IsTGtDZGZ=u=jAGXJ z4JD|j4Ie0086F%`yGG#^QYZhr+r~FTi9k{J;E;qySkCoT;aX=8F{lWwxayQ|b^7#}2elqjd&NNKp$wMZQVqegd6M^f$Yw(2KU1OlPl{!CP$zQ3j7NL3G7R7j0pD|>E{)F(`o;6^B!>Xf%yXNqRn{Vdb+%G+yVQ6FMwp`!@~)3^c{_Esb0G(gKN zu0g|-FzyI&Q6Q2~2;ioj(Vj1M;HaPM=31JI{xjF|ECR4<2KYYRdx_nuROu5hRwCs1+P0;aj)%3J;O1u-1#1(x#(OF!@*a!nXLg_*2{ZZ z@@3Hy5CjW)+_GX`M2LN9FJh%0AV9Dc*ry>xhqoY~T#u2y!^I+q+E6y&lVT8>Ak+m= z-`I`IJi(77pdSP{)yXX&ngJZFKFwjeuNDINz`r)2RxP_hgz2XXI^_w!LA_~vpvoaS z)AEiw6#QLQIkYoy)(EB+Ba4t($z&}V| zUVHWs1=9{$NbZd6HU7P`f~l*)HT(>8Aj7u5IxFy5PKJ!%k+lFgM_UMw1K){nn;T5= zJg{n@U>D5Tb#H8o1Ph?-Q^y5NQe7U46m8GNY3>8pbh;OH1>5l0o!Dlp;!*GwNQL67 zx37R3-5AYp!6H~wHB+q&#D5JB?|DQ&_vT*jBq|Xi8FqT#jtc$9?62`sr{KwjWEBJXNn9*XMq_k=Jxq53Z_zG+u5Z?Zj!{U1}^@0BE@ z3I~T5*K4wh9=lY@HJz;-ls=0Vg!BKuX1Ig@NJ32Ve^W3uJ&58BeZMmz{+~17;7LC{ zyV|&RM!Wz6cBBE#qI&~irxCtHKscr$rkk3L$4_*q*Z_<*Q9(8 z>o4VPk*eg5MJPCReU-59;K<$J#p*Y~sqnHs_)>nyGOa1eNp|}Cb$hIg_vehNdTHOW!i> z!!}Z6n{K97ZMiljx#}%?@a^aJtgnw>OMcS^_l`#7Irg|IICfFNjMx&p;Iv1}tyc|8 z@-r0%{Psl%$D30~5=jGiC5Ld_Eh;@tY%-fjK#&c-17OO?90bx#q2l z-fCQ=tr%t|`9Vd_M7*j;ZGGEwgd;vDTF3Hkahhanyw6iVOnfRde@3zoTLwEB&|y8w zi4~SgU_O258Tn{Ec}2zcpk9h=ahj-ean5lO@uk&f9{kiDp{2(i$IE^nPznmp!*nNN z5wRlRilxl=;1QtMr4T7nTsG+bYOqOoL$gmrq{O)ce5@Q)O`h8s!*7&a0&nMnD z!jB~QROe)9z* zqq^+*m`z2k%@yBzFr`;Ict+MdQP-s{C^$T4{Dy1x;BXXvP<&(cbchCbEL&}T4l~s& z1ApExOUTC7;or=ZR2_T;SM}HnrDw7+d=(X!`sDEZMdT4Vg}LVg&(~fo-3S;rWhGvf z@UF8#HD}tg9(U`k1Ua}bbO3_wt85b^b68Y zIb)i_f=$csxn5zKlKr)8uys%`P6g9WZAIxb#sRN?*Fn0}-jUA=&oM6|kMsHT*Wve> zIoFu=onRMiI8)X)(uzm2AE>+>0|w;E2QOH-=8JFe2Mk!Q+vr5=1o%$52WF5SF8!MC z*r1)~I^sIVtz(5nXgP7Gou)Y~vLwt?MbhqJIUIs7aKDhTvHiZ_X={8?2iXlbPNn5! zBq}|-WrwZ0L=!*DYvsDWZ`6mBBY7?0>Ksj1rmyVU?*kUHgTs`;VUEFJ=i~;J6p^&& zYa2}rB9}imhIh8pG8ORNgtk>sk~30FmWh9JHm7E(u^ApN-ZW+vDVG#|ctOGBf" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], + "outputs": [], "metadata": {} }, { @@ -383,7 +343,7 @@ "metadata": { "kernelspec": { "name": "python3", - "display_name": "Python 3.9.0 64-bit" + "display_name": "Python 3.9.16 64-bit ('dl': conda)" }, "language_info": { "codemirror_mode": { @@ -395,10 +355,10 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.0" + "version": "3.9.16" }, "interpreter": { - "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" + "hash": "56be7540488f3dc66429ddf54a0fa9de50124d45fcfccfaf04c4c3886d735a3a" } }, "nbformat": 4, diff --git a/tutorials/tutorial1/tutorial.py b/tutorials/tutorial1/tutorial.py index 188e922..801f133 100644 --- a/tutorials/tutorial1/tutorial.py +++ b/tutorials/tutorial1/tutorial.py @@ -69,7 +69,7 @@ # # Once the problem class is initialized we need to write the differential equation in PINA language. For doing this we need to load the pina operators found in `pina.operators` module. Let's again consider the Equation (1) and try to write the PINA model class: -# In[14]: +# In[ ]: from pina.problem import SpatialProblem @@ -110,8 +110,8 @@ class SimpleODE(SpatialProblem): # Conditions to hold conditions = { - 'x0': Condition(Span({'x': 0.}), initial_condition), - 'D': Condition(Span({'x': [0, 1]}), ode_equation), + 'x0': Condition(location=Span({'x': 0.}), function=initial_condition), + 'D': Condition(location=Span({'x': [0, 1]}), function=ode_equation), } # defining true solution @@ -129,7 +129,7 @@ class SimpleODE(SpatialProblem): # The basics requirements for building a PINN model are a problem and a model. We have already covered the problem definition. For the model one can use the default models provided in PINA or use a custom model. We will not go into the details of model definition, Tutorial2 and Tutorial3 treat the topic in detail. -# In[31]: +# In[ ]: from pina.model import FeedForward @@ -157,7 +157,7 @@ pinn = PINN(problem, model) # Once the `pinn` object is created, we need to generate the points for starting the optimization. For doing this we use the `span_pts` method of the `PINN` class. # Let's see some methods to sample in $(0,1 )$. -# In[32]: +# In[ ]: # sampling 20 points in (0, 1) with discrite step @@ -172,7 +172,7 @@ pinn.span_pts(20, 'random', locations=['D']) # We can also use a dictionary for specific variables: -# In[33]: +# In[ ]: pinn.span_pts({'variables': ['x'], 'mode': 'grid', 'n': 20}, locations=['D']) @@ -180,7 +180,7 @@ pinn.span_pts({'variables': ['x'], 'mode': 'grid', 'n': 20}, locations=['D']) # We are going to use equispaced points for sampling. We need to sample in all the conditions domains. In our case we sample in `D` and `x0`. -# In[34]: +# In[ ]: # sampling for training @@ -192,7 +192,7 @@ pinn.span_pts(20, 'grid', locations=['D']) # # Once we have defined the PINA model, created a network and sampled points in the domain, we have everything that is necessary for training a PINN. Here we show a very short training and some method for plotting the results. -# In[35]: +# In[ ]: # simple training @@ -201,7 +201,7 @@ final_loss = pinn.train(stop=3000, frequency_print=1000) # After the training we have saved the final loss in `final_loss`, which we can inspect. By default PINA uses mean square error loss. -# In[36]: +# In[ ]: # inspecting final loss @@ -210,7 +210,7 @@ final_loss # By using the `Plotter` class from PINA we can also do some quatitative plots of the loss function. -# In[37]: +# In[ ]: from pina.plotter import Plotter diff --git a/tutorials/tutorial2/tutorial.ipynb b/tutorials/tutorial2/tutorial.ipynb index e4c804a..b5fbcd8 100644 --- a/tutorials/tutorial2/tutorial.ipynb +++ b/tutorials/tutorial2/tutorial.ipynb @@ -2,24 +2,20 @@ "cells": [ { "cell_type": "markdown", - "id": "60c55e04", - "metadata": {}, "source": [ "# Tutorial 2: resolution of Poisson problem and usage of extra-features" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "id": "11b1b539", - "metadata": {}, "source": [ "### The problem definition" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "id": "56edb356", - "metadata": {}, "source": [ "This tutorial presents how to solve with Physics-Informed Neural Networks a 2D Poisson problem with Dirichlet boundary conditions.\n", "\n", @@ -31,47 +27,42 @@ "\\end{cases}\n", "\\end{equation}\n", "where $D$ is a square domain $[0,1]^2$, and $\\Gamma_i$, with $i=1,...,4$, are the boundaries of the square." - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "id": "bd72a9f9", - "metadata": {}, "source": [ "First of all, some useful imports." - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 1, - "id": "0f54a8bc", - "metadata": {}, - "outputs": [], + "execution_count": null, "source": [ "import torch\n", - "from torch.nn import ReLU, Tanh, Softplus\n", + "from torch.nn import Softplus\n", "\n", "from pina.problem import SpatialProblem\n", "from pina.operators import nabla\n", "from pina.model import FeedForward\n", "from pina import Condition, Span, PINN, LabelTensor, Plotter" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "id": "f661caca", - "metadata": {}, "source": [ "Now, the Poisson problem is written in PINA code as a class. The equations are written as *conditions* that should be satisfied in the corresponding domains. *truth_solution*\n", "is the exact solution which will be compared with the predicted one." - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 2, - "id": "71fb35b3", - "metadata": {}, - "outputs": [], + "execution_count": null, "source": [ "class Poisson(SpatialProblem):\n", " output_variables = ['u']\n", @@ -88,11 +79,11 @@ " return output_.extract(['u']) - value\n", "\n", " conditions = {\n", - " 'gamma1': Condition(Span({'x': [0, 1], 'y': 1}), nil_dirichlet),\n", - " 'gamma2': Condition(Span({'x': [0, 1], 'y': 0}), nil_dirichlet),\n", - " 'gamma3': Condition(Span({'x': 1, 'y': [0, 1]}), nil_dirichlet),\n", - " 'gamma4': Condition(Span({'x': 0, 'y': [0, 1]}), nil_dirichlet),\n", - " 'D': Condition(Span({'x': [0, 1], 'y': [0, 1]}), laplace_equation),\n", + " 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1}), function=nil_dirichlet),\n", + " 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0}), function=nil_dirichlet),\n", + " 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1]}), function=nil_dirichlet),\n", + " 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1]}), function=nil_dirichlet),\n", + " 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1]}), function=laplace_equation),\n", " }\n", "\n", " def poisson_sol(self, pts):\n", @@ -102,66 +93,31 @@ " )/(2*torch.pi**2)\n", " \n", " truth_solution = poisson_sol" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "id": "1a959d3e", - "metadata": {}, "source": [ "### The problem solution " - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "id": "42de9096", - "metadata": {}, "source": [ "After the problem, the feed-forward neural network is defined, through the class `FeedForward`. This neural network takes as input the coordinates (in this case $x$ and $y$) and provides the unkwown field of the Poisson problem. The residual of the equations are evaluated at several sampling points (which the user can manipulate using the method `span_pts`) and the loss minimized by the neural network is the sum of the residuals.\n", "\n", "In this tutorial, the neural network is composed by two hidden layers of 10 neurons each, and it is trained for 1000 epochs with a learning rate of 0.006. These parameters can be modified as desired.\n", "The output of the cell below is the final loss of the training phase of the PINN.\n", "We highlight that the generation of the sampling points and the train is here encapsulated within the function `generate_samples_and_train`, but only for saving some lines of code in the next cells; that function is not mandatory in the **PINA** framework. " - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 3, - "id": "11b3dd75", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00000] 4.821361e-01 7.271265e-02 5.749976e-02 7.188050e-02 5.793815e-02 2.221050e-01 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00001] 3.231621e-01 2.852444e-02 1.981721e-02 2.768876e-02 2.037603e-02 2.267557e-01 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00100] 1.015092e-01 5.198789e-04 2.826267e-03 3.158009e-03 2.300746e-03 9.270430e-02 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00200] 8.891604e-02 4.115215e-04 5.373723e-04 5.063288e-04 5.177262e-04 8.694309e-02 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00300] 8.620024e-02 3.734426e-04 4.014817e-04 3.966301e-04 4.261272e-04 8.460256e-02 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00400] 8.090379e-02 3.381128e-04 2.724089e-04 2.855197e-04 3.383889e-04 7.966936e-02 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00500] 7.000037e-02 2.501736e-04 7.233566e-05 1.258494e-04 1.898462e-04 6.936217e-02 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00600] 2.645028e-02 9.258305e-05 2.108825e-04 1.832870e-04 7.366277e-05 2.588986e-02 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00700] 2.599242e-03 5.990163e-05 9.679930e-05 1.735135e-04 3.957247e-05 2.229455e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00800] 1.343722e-03 6.899313e-05 4.569854e-05 1.231751e-04 1.892484e-05 1.086931e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00900] 8.533830e-04 6.269138e-05 2.274475e-05 8.422977e-05 1.782445e-05 6.658927e-04 \n", - "[epoch 01000] 6.219158e-04 5.753698e-05 1.195975e-05 6.105051e-05 1.724382e-05 4.741247e-04 \n" - ] - } - ], + "execution_count": null, "source": [ "def generate_samples_and_train(model, problem):\n", " pinn = PINN(problem, model, lr=0.006, regularizer=1e-8)\n", @@ -179,69 +135,55 @@ ")\n", "\n", "pinn = generate_samples_and_train(model, problem)" - ] + ], + "outputs": [], + "metadata": { + "scrolled": true + } }, { "cell_type": "markdown", - "id": "b320fbd5", - "metadata": {}, "source": [ "The neural network of course can be saved in a file. In such a way, we can store it after the train, and load it just to infer the field. Here we don't store the model, but for demonstrative purposes we put in the next cell the commented line of code." - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 4, - "id": "c249817b", - "metadata": {}, - "outputs": [], + "execution_count": null, "source": [ "# pinn.save_state('pina.poisson')" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "id": "7803e6ed", - "metadata": {}, "source": [ "Now the *Plotter* class is used to plot the results.\n", "The solution predicted by the neural network is plotted on the left, the exact one is represented at the center and on the right the error between the exact and the predicted solutions is showed. " - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 5, - "id": "0900748a", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABSkAAAH/CAYAAAC7J1gyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjkUlEQVR4nOzde3gU9d3//1dCSMLBJEYgCwIGrJpQFTSUEKW9W4iEG7TyFS1YblGMUC3xQKwWKhI8tN5az4pSFQ+0UCzWWkHulBREW4mgQVpFiFbBoHQDNE3CoSSB7O8PfllZsjlssrvzmZnn47pyKbMzs5/Z03vnte+ZifH5fD4BAAAAAAAAgEVirR4AAAAAAAAAAHcjpAQAAAAAAABgKUJKAAAAAAAAAJYipAQAAAAAAABgKUJKAAAAAAAAAJYipAQAAAAAAABgKUJKAAAAAAAAAJYipAQAAAAAAABgKUJKAAAAAAAAAJYipAQAAAAAAABgqZBDyrfffluXXHKJ+vXrp5iYGL322mttLrN+/Xqdf/75SkhI0De+8Q29+OKLHRgqACBSFi5cqPT0dCUmJio7O1ubNm1qdf4VK1YoIyNDiYmJOuecc7R69Wr/bQ0NDfrpT3+qc845Rz169FC/fv00bdo07d69O9KbETJqGgA4UzjrmiT5fD7Nnz9fffv2Vbdu3ZSbm6tPP/00YJ5PPvlEl156qXr16qWkpCSNGjVKb775Zti3rTXUNQBwpnDXtVdffVVjx47VKaecopiYGG3ZsiXg9qqqKt14440666yz1K1bNw0cOFA33XSTampqwr1pAUIOKQ8ePKihQ4dq4cKF7Zp/x44dmjBhgr73ve9py5YtuuWWW3TdddfpT3/6U8iDBQCE38svv6zCwkIVFRVp8+bNGjp0qPLy8rRnz56g82/YsEFXXnml8vPz9cEHH2jixImaOHGiPvroI0nSoUOHtHnzZt15553avHmzXn31VZWXl+v73/9+NDerXahpAOA84a5rkvTAAw/o8ccf16JFi7Rx40b16NFDeXl5Onz4sH+eiy++WEeOHNG6detUVlamoUOH6uKLL5bX6434NjehrgGA80Sirh08eFCjRo3S/fffH3Qdu3fv1u7du/Xggw/qo48+0osvvqji4mLl5+dHZBv9fJ0gyfeHP/yh1Xluv/123ze/+c2AaZMnT/bl5eV15q4BAGEyYsQI36xZs/z/Pnr0qK9fv36+++67L+j8P/jBD3wTJkwImJadne370Y9+1OJ9bNq0ySfJ98UXX4Rn0BFATQMAZwh3XWtsbPR5PB7fL3/5S//t1dXVvoSEBN9vf/tbn8/n8+3du9cnyff222/756mtrfVJ8pWUlIRt20JBXQMAZ4jk/tqOHTt8knwffPBBm+P43e9+54uPj/c1NDSEtgEhiItsBCqVlpYqNzc3YFpeXp5uueWWFpepq6tTXV2d/9+NjY2qqqryt6ECgBV8Pp/279+vfv36KTa286f0PXz4sOrr68MwsuZ8Pl+zz8uEhAQlJCQETKuvr1dZWZnmzp3rnxYbG6vc3FyVlpYGXXdpaakKCwsDpuXl5bV6SFlNTY1iYmKUkpIS2oYYhpoGwEnCWddMqGlSZOrajh075PV6Az7/k5OTlZ2drdLSUk2ZMkWnnHKKzjrrLC1ZssR/6PSvfvUr9enTR1lZWR3d9IijrgFwEuraMR3ZX2uPmpoaJSUlKS4uclFixENKr9ertLS0gGlpaWmqra3Vf/7zH3Xr1q3ZMvfdd5/uuuuuSA8NADpk165d6t+/f6fWcfjwYQ0c2EN79zaGaVSBevbsqQMHDgRMKyoq0oIFCwKm7du3T0ePHg36Ob19+/ag627pc72lw9kOHz6sn/70p7ryyiuVlJQU4paYhZoGwIk6W9dMqWlSZOpa039bmycmJkZ//vOfNXHiRJ100kmKjY1Vnz59VFxcrJNPPrn9Gxtl1DUAThSOujZgYA/tc2hd64h9+/bpnnvu0cyZMzu8jvaIeEjZEXPnzg1IfWtqajRw4EDdtna0EnoYOWS/NyvPtHoIrlGxu1e75hvYb1+ER+Je30v7xOohtMvEk/4WlvUcONCo72bv1UknndTpddXX12vv3kat39hHPXuGt+vgwAGfvpu9R7t27QoIBYP9MhdpDQ0N+sEPfiCfz6enn3466vdvAjvXNADOVnfwiH45Zl2n65pbalprfD6fZs2apT59+ugvf/mLunXrpueee06XXHKJ3nvvPfXt29fqIYZNS3Ut+7/mKC4uUZJU/Y34sNzXgcHhDQh6nFYb1vUdb3T/T9ueKcKmpGy0egi2trw627L7XvflGRFZ78EvwtMg0PPzzh9FlvKPjncldvv4n+2a70hjvdZXvhCWurZvb6P+9K5HPXp2ftuPd/BAo/JGeo2va8erra3VhAkTNGTIkKBBajhFfO/I4/GosrIyYFplZaWSkpKC/jIntdzmmtAjTok9u0ZknOFQ4s1QXA+rR2F/O7/s3a75YoO/fJr58t/t+wUlvf/e9q0Qfn85cI4u8gT/9cYkxb7hujxpc9jWF85DmXr2jFHPk8Jb+KRjX+iTkpLa7Fzs1auXunTpEvRz2uPxBF2mpc/1E+dvCii/+OILrVu3zvZdlJK7ahoA9whXXbO6pkmRqWtN/62srAwIGysrKzVs2DBJ0rp167Rq1Sr9+9//9o/zqaeeUklJiV566SXNmTOnHdsafeGsa3Fxif6QsktCeELK2MTwhpRdute1PVMHJRhQ0/9wZJSuOnmD1cOwpV//+wIl9LTu/rt0j0xAFZuYGJb1dEno/Gd7XFzH19Fw7iB1++irds8frrrWo2dsBOraMVbWtVDs379f48aN00knnaQ//OEP6to1sp91kXm0j5OTk6O1a9cGTCspKVFOTk6k7zqqSrwZVg/BdnZ+2TvoH+OxF1779hYfH6+srKyAz+nGxkatXbu2xc/p9nyuNwWUn376qf785z/rlFNOicwGRJlbahoA2FUk6tqgQYPk8XgC5qmtrdXGjRv98xw6dEiSmp0DLTY2Vo2NkTlcMBwiUdf+fVZ4Akq7WVNxltVDkHQsbENoeMxgskjtr7VHbW2txo4dq/j4eL3++utKDFPo3ZqQOykPHDigf/zjH/5/79ixQ1u2bFFqaqoGDhyouXPn6quvvtKSJUskSddff72efPJJ3X777br22mu1bt06/e53v9Mbb7wRvq2ALdg18As2brouA5V4M4zvqHyl9vywdlM6SWFhoa6++moNHz5cI0aM0KOPPqqDBw9q+vTpkqRp06bp1FNP1X333SdJuvnmm/Vf//VfeuihhzRhwgQtX75c77//vp555hlJxwLKyy+/XJs3b9aqVat09OhR//lPUlNTFR9vzs4LNQ0AnCfcdS0mJka33HKL7r33Xp1xxhkaNGiQ7rzzTvXr108TJ06UdGyH8OSTT9bVV1+t+fPnq1u3bnr22We1Y8cOTZgwIWrbTl2DdCx0o6OyfUwIKE0JuFuz//RGnfRZxHvc0IJw1zVJqqqqUkVFhXbv3i1JKi8vl3SsC9Pj8fgDykOHDuk3v/mNamtrVVt77JQZvXv3VpcuXSKyrSGHlO+//76+973v+f/ddD6Sq6++Wi+++KL++c9/qqKiwn/7oEGD9MYbb2j27Nl67LHH1L9/fz333HPKy8sLw/DNQCdZy+waTLbl+O0isDyGoNK+Jk+erL1792r+/Pnyer0aNmyYiouL/SdbrqioCOgMueCCC7Rs2TLNmzdPP/vZz3TGGWfotdde09lnny1J+uqrr/T6669Lkv8wuCZvvvmmvvvd70Zlu9qDmgYAzhPuuiZJt99+uw4ePKiZM2equrpao0aNUnFxsb+rpFevXiouLtYdd9yh0aNHq6GhQd/85jf1xz/+UUOHDo3atlPXrLWm4iyNHVhu9TAkEVS2hwkBpZv8+6x4nVze8fNS/ufsU0M65NtJIlHXXn/9dX/IKUlTpkyR9PUFfDZv3qyNG4+d5/Yb3/hGwHh27Nih9PT0iGxrjM/n80VkzWFUW1ur5ORkzXt3rJHn7yKk/JpTQ8lQuD20ND2o7ExIeWB/o4Z/s1I1NTWdPr9i0+fa+1vTwn6ek3COE+Fnek0D4B6HDzTo3pFrOl0vqGnu1vT8XzhmgeLiEsN6uPf+08N7qHzPQTVhXV8wpoSUTQgqgzMpoIxkJ+WBHclhW1c4Oik7E1JKajOkPNJYrz//81dhq2t//ahfROraqLN3U9daQL9uJxFQHsP5G7/m9vNZmv6eeKX2fKuHAAAAgDaEO6B0K5PCOFOY9JjY4VBvk/zn7FOtHgIijJCyE0wPYyLN7WFce7j18XH7ewMAAMCN3HrRnOOZGDqZFMpZjccCMBshJULm1uCtM9wY6JocVNJNCQAA4D7hPPTVbn797wtcH9C5fftNwA8ZaAshZQeZHMBEittCtkjhcQQAAABgBbcGdW7cbqeG8hzy7WyElGiVGzsAo8UNj63JYT7dlAAAAIgEEw/5Pp7bAjtTt9f01wlgBULKDjA5eAknJ4dnpnFyWOmW9wsAAICbVX+DwzjtxNTgLpw4xD28wnUxq3Ac8k03pXMRUqIZJwdmpnPqY09QCQAAAJjFySGeU7cLcDpCyhA5OWxxakBmR058Lkx873DINwAAACLBTofyOinQs0vwaqfXBxBNhJQhMDFkCQcnBmJOwfMCAAAAINLsEu61xu7jR2g45NuZCCldjhDMfE4KkU0M+ummBAAAAI6xY1hpxzG7XTjOSwlnIqRsJxPDlc5wUvDlFk55zpz2XgIAAACCsfMhvXYI/uwwxmDs/LowDd2UzkNI6UJOCLrczAnPn2lBJd2UAAAA5gjXVYTReSYGgSaOCUB4EFK2g2mBSkc5pRMPPJcAAACAHTila86EYNCEMbhdOH9ACNch33RTOkuc1QNAdBBoOVPT85ref6/FIwldiTdDF3m2Wz0Mv1dqz9flSZutHgYAAABgrONDwqtO3hDV+wPgfISUbXBCFyUBpfPt/LI3QSUAAADQhgM7ktVzUI3Vw3CEEwPEcISWTg8lndJZa5r/nH2qun30ldXDQBgQUjocAaV7EFR2Ht2UAAAACLc1FWdp7MByq4cRcU4PGBF+/z4rXieX11s9DBiEc1I6FOcsdCeedwAAAACA23BuSmegk7IVdj3Um5AKduuqNKmbEgCiwZTvGHz2AkB0uKWbEi1zyqHe+09v1Emf0e+GyCCkdBgCSjQhqOwYDvkGEApTwsaO6uj4Tfi8BgAA9hfOQ77/M6Sv9M+wrAoWIaRsgR13OggocSI7X/0bAKxmx+8C0dKex4YgE0BH7D+90eohAAAsQkjpEASUaI1duirppgQQbQSRkdPaY2vCZz0ARBuHfLuXUw71jhQuoIMmhJRB2G2HhYAS7UFQCcDt7Fbfnayl54LPfwAAAPcipLQ5AkqEwi5BpQnopgTsjUDSnoI9bwSXAJyEbko4ARfPQaQQUp7ATjs1BJToCDsElXRTAgiVneo3QnPic0t9AADYCYd6tw+HfEMipLQtAkp0BhfUAWB3hJLudfxzT2AJAADgHPTn2hABJcLF5NeSCQHEK7XnWz0EAMcp8Wb4/wAp8DXB6wKwP7dc2ZvOOvfguQ7Nv8+Kt3oIsBidlMexw5dbk0Ml2JPJh39z2DcAO9RmmIMuSwAAAPuik9JGCCgRKby2WkY3JRB9dMYhHHgNATAZHXawu0h1PtNN6W50Uv7/TP8SS4iESDO1o5JuSsA9TK/FsCe6KwEAViCIBkJHJ6UNEFAiWnitAYg2uiYRTbzWAJiEEAsIjm5K9yKkBBDAxKDS6h1KDvkGwo+wCFbi9Qe424EdyVYPAQAQBCGlrA9AWmNiYATn43UHIFIIh2ASXo+AOdxyZe8T0U3pTG55XiP5vqWb0p0IKQ1GUAQrmfb6s3onkm5KoHMIg2AyXp8AAADW48I5hjItIDJNQkV4f1WpG1gf1vUhMriIDmBPhD+wi6bXKrUGQDStqThLYweWWz0MhIlbuiij4d9nxevkcvbV3cT1IaWJO04ElF8LdxgZ6v24Pbw09YrfAOzBxBoLtAdhJQAA7bP/9Ead9BkH6SI8eCXBKAkV8QF/VjtxPCaMKdpMC82tDD1e2z/UsvsG7IRDZ+EUvI6B6HDr+SiPR/cdEBznpnQX13dSmsa0QCjS7Bj6HT9mt3Ra0lEJoL0IdeA0dFUCANqLsBnoHFd3Upq2I+WWgNJJXYlO2pa2mPT6NO29C+AY3ptwMl7fACKNgAt2FeluaLop3YNOSkSN04M8N3RY0lEJIBjCG7gFF3ADALSEkBnoPFd3UprEpC61cHJTp+HxnLzdprxWCUUAM/BehNvwmgfCi/NRBiLoAoKjm9IdXBtSmvQF05TQJ5ycGtB1BI8FAKcyqZYC0cTFoQAAxzMxXO45qCaq9xeNHxwIKp2Pw70RVoRxLWt6bJxwKLgph31z2B1gHQKa8IvGj5YmfHY7CXUIQCSsqThLYweWWz0MAIg6QkqLOaWLknCy/ZwSVpoSVAKIPgLK0JhU69szFj7bQ0NQCQDuZmIXpZP9+6x4nVxu731ptMyVIaUpO1cm7bR0FOFkxzkhrDQhqGTnEIguU2qoiZxQ16XWt8Pqz3xTUYuAjuF8lC2jmxJ2tP/0Rp30WeTPKkhQ6VyuDCkRHgSU4eGEsBKAOxBQfs0pgWSogm03weUxBJUAAACdQ0hpETvv3BBORoZdw0q6KQF3cHNAaeeaHQ0nPj5W1wQAcAq6Kc3Hod7WoZvSmVx3dW8TdrLsurPDVaqjw46PsV1f0wDax4TaGW07v+zt/0Nojn/s3Pb4ufG9AnQUh3oDzhTN9zZX+3Ye14WU6Bg7Bmd2ZsdA2OodUXYMO2fhwoVKT09XYmKisrOztWnTplbnX7FihTIyMpSYmKhzzjlHq1evDrj91Vdf1dixY3XKKacoJiZGW7ZsieDoEUlueW+5OViLNLc9rm55z5gu3HXN5/Np/vz56tu3r7p166bc3Fx9+umnAfNUVVVp6tSpSkpKUkpKivLz83XgwIGwbxvchU49c/HcmIGg0lkIKaPMjl/Q7RaWOQmPPaLh5ZdfVmFhoYqKirR582YNHTpUeXl52rNnT9D5N2zYoCuvvFL5+fn64IMPNHHiRE2cOFEfffSRf56DBw9q1KhRuv/++6O1GUDI3BaemcAtjzlBpbUiUdceeOABPf7441q0aJE2btyoHj16KC8vT4cPH/bPM3XqVG3dulUlJSVatWqV3n77bc2cOTPi2wvnIwyD3dApjY5yVUjJF8bQ2LGbz4ns9DxYvdPJe7xjHn74Yc2YMUPTp0/XkCFDtGjRInXv3l3PP/980Pkfe+wxjRs3TrfddpsyMzN1zz336Pzzz9eTTz7pn+eqq67S/PnzlZubG63NQAQ49T3lhpDMDpweWDr1/WMH4a5rPp9Pjz76qObNm6dLL71U5557rpYsWaLdu3frtddekyRt27ZNxcXFeu6555Sdna1Ro0bpiSee0PLly7V79+5obTqAKCE4NgvdlM7hqpDSanb6Em6XUMxN7PKc2Ol17nS1tbUBf3V1dc3mqa+vV1lZWUCYGBsbq9zcXJWWlgZdb2lpabPwMS8vr8X5YU9OC1icHojZHc8N2tKemiZFpq7t2LFDXq83YJ7k5GRlZ2f75yktLVVKSoqGDx/unyc3N1exsbHauHFjxzbaweiyCh2hGOwm2u9zgkpn4OreaMYuYZgbJVTE2+7q39Fmtyt9v7Z/qBJ9XcO6zsMHGiSt0YABAwKmFxUVacGCBQHT9u3bp6NHjyotLS1gelpamrZvD/44er3eoPN7vd5Ojx1mcFJASfBlL8c/X064SrjdalJnWV3TpMjUtab/tjVPnz59Am6Pi4tTamoq9RFhw9W+zUBgbK7qb8RLa60eBTqDkDJK7LCTRDhpD03Pk8lh5c4vezti59Ludu3apaSkJP+/ExISLBwNEF12qLtoXdNzaPd64ragMlKoac5BFyXszG4BZc9BNTqwI9my+99/eqNO+owDeNF+rnm1OKkrJBIIKO3H9OeMgMB6SUlJAX/Bduh69eqlLl26qLKyMmB6ZWWlPB5P0PV6PJ6Q5oe92L1ectiw8zjhObX7+8oE7alpUmTqWtN/25rnxAvzHDlyRFVVVdRHhJXdQjIACIVrQkormf7F2vSwCy3juQuOncH2i4+PV1ZWltau/fq4iMbGRq1du1Y5OTlBl8nJyQmYX5JKSkpanB/2Yef3jhOCLLSO5xjtEYm6NmjQIHk8noB5amtrtXHjRv88OTk5qq6uVllZmX+edevWqbGxUdnZ2WHbPgDWISDuGLqnEQpCSpcj5LI/k59DdibtobCwUM8++6xeeuklbdu2TTfccIMOHjyo6dOnS5KmTZumuXPn+ue/+eabVVxcrIceekjbt2/XggUL9P7776ugoMA/T1VVlbZs2aKPP/5YklReXq4tW7ZwXi6EHcGV+9j1+bbzjwB2E+66FhMTo1tuuUX33nuvXn/9dX344YeaNm2a+vXrp4kTJ0qSMjMzNW7cOM2YMUObNm3SO++8o4KCAk2ZMkX9+vWL+mNgKsKK8CAsA9xn4cKFSk9PV2JiorKzs7Vp06ZW51+xYoUyMjKUmJioc845R6tXrw643efzaf78+erbt6+6deum3NxcffrppwHzfPLJJ7r00kvVq1cvJSUladSoUXrzzTfDvm3Hc0VIaeWXQpO/SJscbiE0CRXxxj6fVr0H2Blsv8mTJ+vBBx/U/PnzNWzYMG3ZskXFxcX+CwRUVFTon//8p3/+Cy64QMuWLdMzzzyjoUOH6pVXXtFrr72ms88+2z/P66+/rvPOO08TJkyQJE2ZMkXnnXeeFi1aFN2NQ7vZ7T1DOOluPP9oTSTq2u23364bb7xRM2fO1Le+9S0dOHBAxcXFSkxM9M+zdOlSZWRkaMyYMRo/frxGjRqlZ555JnobDlchqIwuHu/O4QeKznn55ZdVWFiooqIibd68WUOHDlVeXl6z04w02bBhg6688krl5+frgw8+0MSJEzVx4kR99NFH/nkeeOABPf7441q0aJE2btyoHj16KC8vT4cPH/bPc/HFF+vIkSNat26dysrKNHToUF188cURbTyJ8fl8voitPUxqa2uVnJysee+OVWLP0K8YSEjZnKmBFjrPxAvqWHXRg3BfqODwgQbdO3KNampqAk7e3xGd/VxrTTjHifCL5HPfGXYKKU2trbCOnS6uY9JFdMJVL6hp7tb0/H/zR79Ql4TEVuc1KajoOajG6iGEBVf7jg47h5RWXjjneNG4gM7RusPa+qufha2u/fWjfup5UnjHfWB/o0advTukMWZnZ+tb3/qWnnzySUnHTmMyYMAA3XjjjZozZ06z+SdPnqyDBw9q1apV/mkjR47UsGHDtGjRIvl8PvXr10+33nqrfvKTn0iSampqlJaWphdffFFTpkzRvn371Lt3b7399tv69re/LUnav3+/kpKSVFJSotzc3M4+FEG5opPSKqbuRBFQOpuJzy/dlIDZ7PJeoXsOLeF1AZjPpIASCIWdA0qT8BkQqLa2NuCvrq4u6Hz19fUqKysLCAVjY2OVm5ur0tLSoMuUlpY2CxHz8vL88+/YsUNerzdgnuTkZGVnZ/vnOeWUU3TWWWdpyZIlOnjwoI4cOaJf/epX6tOnj7Kysjq17a2Ji9iaYSQTAyyEX0JFvJEdlQDQUYRQaEvTa8T0rsoSb4ZR3ZQA7G1NxVl0U0YQAaW7La/OVsKR8B4hUHegQdIfNGDAgIDpRUVFWrBgQbP59+3bp6NHj/pPWdIkLS1N27cH/z7h9XqDzt90mHbTf1ubJyYmRn/+8581ceJEnXTSSYqNjVWfPn1UXFysk08+ud3bGyrHd1Ja1R1i4s4UAaW7mPZ8m/ieAGB+FyXdkwgVrxfAPHRQRRZBGlpj0qkN+Cz42q5du1RTU+P/O/6Cbibw+XyaNWuW+vTpo7/85S/atGmTJk6cqEsuuSTgvM7h5viQEseYFlghOkx73q3YcTQ9gAHQMsImdJTprx1qEwCYj/A3Mggqj0lKSgr4S0hICDpfr1691KVLF1VWVgZMr6yslMfjCbqMx+Npdf6m/7Y2z7p167Rq1SotX75cF154oc4//3w99dRT6tatm1566aXQN7idCCkjwLQvxqYFVYgunn8ALTE5KDGtlsJ+6MIFzEAgER0EauHF4wlTxMfHKysrS2vXrvVPa2xs1Nq1a5WTkxN0mZycnID5JamkpMQ//6BBg+TxeALmqa2t1caNG/3zHDp0SNKx818eLzY2Vo2NkftcJ6R0OAIqSGa9DuimBNAWgiWEk6mvJ2oTgHAjWINd8ONFaAoLC/Xss8/qpZde0rZt23TDDTfo4MGDmj59uiRp2rRpAYeL33zzzSouLtZDDz2k7du3a8GCBXr//fdVUFAg6dj5Jm+55Rbde++9ev311/Xhhx9q2rRp6tevnyZOnCjpWNB58skn6+qrr9bf/vY3ffLJJ7rtttu0Y8cOTZgwIWLb6ugL51jx5c+kL8ImBVOwHhfTAXA8UwMSk+oonGPnl72Nv6AO4ESmBhEmnaMv3LiQTucR9kbH/tMbddJn9M21x+TJk7V3717Nnz9fXq9Xw4YNU3Fxsf/CNxUVFQEdjxdccIGWLVumefPm6Wc/+5nOOOMMvfbaazr77LP989x+++06ePCgZs6cqerqao0aNUrFxcVKTEyUdOww8+LiYt1xxx0aPXq0Ghoa9M1vflN//OMfNXTo0Ihtq6NDSgCBTAkq2VkEcCLCSUSaibWHK30DiASCyo4joISpCgoK/J2QJ1q/fn2zaVdccYWuuOKKFtcXExOju+++W3fffXeL8wwfPlx/+tOfQh5rZxBbh5FJO1h0UaIlbn1tmNo1BljBtPeDSfXTVAkV8e3+Q8t4rQHRY2oXpVsQtuF4pnYP8zmBE9FJ6UDsoMAOTOxoARB9bg+NIlGz27tOEzrrrWBa/aGbEgDMQLBrDQ77xvEc+0owrUskWggo0R6mvE6iHU649XMBMJWbAkoTux5NG080uem1B1iB7igzELq1H4+VtfjMQBPHhpTRZsKXXTftXKDzeL0A7mRKWG9C3Ywku4Z/bgounf4aBACJ8K09eIwAcxBSAi5mws4nO4kAnMDJwZ5Tt0sypwaZ8uMBEA50RJmHEK5lbnpsTD0vZRM+OyBxTsqwMOELrhN3HNrrpC98YVnP/tNiwrIeuzHlit/Rwrm/4GamBCEm1M1wcGPtPX6bnVI7TDtHJQBEAlf8bs5NAaVdcH5KEFI6gJt2ksIVSLZ33W4JLq0OKtlBBNzD7gGlm2puW5wUWFKHgPCgE8psBJWwA4JKd3PkM29Kpwg676QvfAF/brt/RAafEYA17BxQOvVw53BxwiHhVr8+qU0AooHuwWN4HMzGDx7u5ciQMpqs/kJr552BlpgcCpo8ts6y+rVk9XsJcDqrAxA7vsedELxZgccMcKcDgwkV7MLtAZ2bt9/081Iej6DSnQgpbcxpOwB2C/+cGFg67TUFwAx2CygJ2cLDjo+j3V6rAEJnp5Amktwa1Ll1u+2KoNJ9CCk7gS+yneeUoM8J29DEyh3KaL6nrO4qA2AeO4ZqdmC3x9XK73fUJgDRtKbiLFeFdm7aVichqHQXx4WUbvlyZ6cv+8E4KdQ7nlO3C4C9WVkb7fCDnt1CNLuy0+Nsh9ctAISL08M7t4WxTkRQ6R6OCyndwC5f8INxS4hn9+10SzclgMiyw/vZzjXVruwUVgKAWzg1xHPqdnWGXU95sP/0RsJKFyCk7CA77HiZxs6hXUfZOax0ww6kWzqvATRHUGY90x9/q77rUZsAWMVpHYdO2hZ8jaDS2Qgpbcb0L/TB2DmoCxceAwBuY+qPeYSTZjH9+TD1dQwAkeSEcM8J24CWEVQ6V4dCyoULFyo9PV2JiYnKzs7Wpk2bWp3/0Ucf1VlnnaVu3bppwIABmj17tg4fPtyhAbuZyV/igyGYa85uj4lVrzl2ChFtTq5rVnRlmfoetlsddRPTw0rATpxc0xA9dg35nNYNGil2PeT7eBz+7Uwhh5Qvv/yyCgsLVVRUpM2bN2vo0KHKy8vTnj17gs6/bNkyzZkzR0VFRdq2bZsWL16sl19+WT/72c86PfgTRWtHzNSdL5PYKYizgp0eH6fvNHJYHUyuawgfp3+WOYWJzxPf+2An1LTWOSGYiSa7BX52GivCh6DSWUIOKR9++GHNmDFD06dP15AhQ7Ro0SJ1795dzz//fND5N2zYoAsvvFA//OEPlZ6errFjx+rKK69s8xc9BDLxS3swdusUtBKPVevYKUS0UNfCy7T3Lh169sPzxQ9o6DhqGiLB9LDS9PGZykmhPV2VzhFSSFlfX6+ysjLl5uZ+vYLYWOXm5qq0tDToMhdccIHKysr8he7zzz/X6tWrNX78+E4MGyYicOsYOzxu7DDCqZxe16IddJgYUMKeTAuXTXttA8E4vabBeqaFgaaNB9Y7MJig0u7iQpl53759Onr0qNLS0gKmp6Wlafv27UGX+eEPf6h9+/Zp1KhR8vl8OnLkiK6//vpWDyGoq6tTXV2d/9+1tbWhDDOirPiSatKX9JbYIWgz2Ulf+LT/tBirh9GqhIp41Q2sj+p97vyyt9L77434/ZR4M3SRJ/hnGJwtGnXN5JrmZHaonWibFbWnJdGqSUBHsa+GaGkKBscOLLf0/gE4T8Sv7r1+/Xr94he/0FNPPaXNmzfr1Vdf1RtvvKF77rmnxWXuu+8+JScn+/8GDBgQ6WGigzhkOXx4LAF7CLWuuaWmmdJpZloHHjqP5xOIHPbV0BlNnYzRCg3pnAw/Jx3yDWcIqZOyV69e6tKliyorKwOmV1ZWyuPxBF3mzjvv1FVXXaXrrrtOknTOOefo4MGDmjlzpu644w7FxjbPSefOnavCwkL/v2tra9ssfk49d4/JX8wJ1CLD5K5KJ3dTwp2iUdc6UtPQMSbXTHSOKR2V0axJdPkjVCbvq8H5jg8Pw9lhSSgJuEtIIWV8fLyysrK0du1aTZw4UZLU2NiotWvXqqCgIOgyhw4dalbcunTpIkny+YKHXAkJCUpISAhlaFFhSpeICQgoI4ugMvrYGXSnaNQ1U2taOJlQHwkonc+p9QcIF7fvq7WFjrHoaSlYbC28JIy0Ts9BNTqwI9nqYQCSQgwpJamwsFBXX321hg8frhEjRujRRx/VwYMHNX36dEnStGnTdOqpp+q+++6TJF1yySV6+OGHdd555yk7O1v/+Mc/dOedd+qSSy7xF0AEZ+oOFwFldJgcVAJO4tS65tQjDIIxtV4i/EwIKunwh8mcWtPgDASRANoSckg5efJk7d27V/Pnz5fX69WwYcNUXFzsP0FzRUVFwK9x8+bNU0xMjObNm6evvvpKvXv31iWXXKKf//zn4dsKRA0BZXSZGlRGeyeRHUJEEnWtc6zuoiSgdB8TgkrAVNQ0AB1BNyVMEeNrqY/fILW1tUpOTta8d8cqsWfXoPNEumMk2jthJu50EVBay7SwMto7iNEKKVs75PvwgQbdO3KNampqlJSU1Kn7ac/nWkeFc5wIv0g+98eLViellSGlibUS0WN1UGlCXeqscNULapq7NT3/p91/r2ITE60eTos43BtonRNCysbDh/XFT+eFra4V/PX/KSHMda3uQIOeHPUH6loLIn5172hw0yFtViGgtJ5pz0G0wwGru7UANEdACSvxGgDQXgSUQNt4n8AEjggpnca0L92mhWNuxnMBoD2c/uOdaXUS1rHytcCPZwAAAOEV8jkp4S6EYuYx6TyVTjwvGFf5BtrHqoDGrQHlSTvbV4/3p5tRH6LJibUIAAArcG5KWI2Qsh2iuSNm0s4XAaW53BpUcgEdAE7W3iCyM+twaohpVVBJXQIAOA1BJaxESImgCCjNZ1JQCcBd6KLsvHAEkuG4XyeFlk7tqKTDH+gczrMHAPbBOSkNYsrOFwElQhXN1240whGnn88PsCNTamRnnLTT5/8zxfFjMmlcHeWE1wkAAFYj3IdVbB9SRjpMcNtJ0Qko7YXnC8CJnBiy2zl4slsAaLfxmsBt3xUBAO5AUAkrcLi3Iey8AwZrmXLYt1MPswMQKNqBjB3ro1MCvuO3w06HhVOPADQhZAEAe7F9JyXCh648+3Lbc8ch3wBM5OQORLttW7TDbbopAQBORNCPaCOkhCT3hVxOZMJzaMeOJwDtRxdlcHYL8DrDTttql9dPe/DDGQDAKgSViCZCylZEa2fM6i/RJoRbCA+eSwBOYXVtbA87BXbh5uZtB2APBCtA+PB+QrQQUgIOY3VQGa1ggUPrAFiFgO5rpj8W0Qy7qUsAACcjqEQ02DqkdMKhL1Z3ilgdaAEmc8JnTHstXLhQ6enpSkxMVHZ2tjZt2tTq/CtWrFBGRoYSExN1zjnnaPXq1QG3+3w+zZ8/X3379lW3bt2Um5urTz/9NJKbAEX2NRvNAMbq2tgS0wM5K5n8uJj6eoIZqqqqNHXqVCUlJSklJUX5+fk6cOBAq8scPnxYs2bN0imnnKKePXtq0qRJqqysDJinoqJCEyZMUPfu3dWnTx/ddtttOnLkSMA8S5cu1dChQ9W9e3f17dtX1157rf71r3+FfRsBIFwIKhFptg4p0TkElM5l9XNLN6W9vPzyyyosLFRRUZE2b96soUOHKi8vT3v27Ak6/4YNG3TllVcqPz9fH3zwgSZOnKiJEyfqo48+8s/zwAMP6PHHH9eiRYu0ceNG9ejRQ3l5eTp8+HC0Ngs2ZWqgZHIIZwpCXNjR1KlTtXXrVpWUlGjVqlV6++23NXPmzFaXmT17tlauXKkVK1borbfe0u7du3XZZZf5bz969KgmTJig+vp6bdiwQS+99JJefPFFzZ8/3z/PO++8o2nTpik/P19bt27VihUrtGnTJs2YMSNi2+omBClA5PD+QiQRUrbA6eGH1SEWIo/nGO318MMPa8aMGZo+fbqGDBmiRYsWqXv37nr++eeDzv/YY49p3Lhxuu2225SZmal77rlH559/vp588klJx7ooH330Uc2bN0+XXnqpzj33XC1ZskS7d+/Wa6+9FsUtAzqP4C10Jj5e/HiGYLZt26bi4mI999xzys7O1qhRo/TEE09o+fLl2r17d9BlampqtHjxYj388MMaPXq0srKy9MILL2jDhg169913JUlr1qzRxx9/rN/85jcaNmyY/vu//1v33HOPFi5cqPr6eklSaWmp0tPTddNNN2nQoEEaNWqUfvSjH7V5JAMAmICgEpFCSGkhU7tF4BwElZ3n9EO+6+vrVVZWptzcXP+02NhY5ebmqrS0NOgypaWlAfNLUl5enn/+HTt2yOv1BsyTnJys7OzsFtcJs7nlQnInMjFsswvCXdhBaWmpUlJSNHz4cP+03NxcxcbGauPGjUGXKSsrU0NDQ0CNy8jI0MCBA/01rrS0VOecc47S0tL88+Tl5am2tlZbt26VJOXk5GjXrl1avXq1fD6fKisr9corr2j8+PGR2FRXITwBooP3GiKBkNKFCK4QDXStWK+2tjbgr66urtk8+/bt09GjRwN2pCQpLS1NXq836Hq9Xm+r8zf9N5R1AiYFlARs4WPS42jSa6wjnP6jWVvaU9NC5fV61adPn4BpcXFxSk1NbbUGxsfHKyUlJWD6iXUwWA1suk2SLrzwQi1dulSTJ09WfHy8PB6PkpOTtXDhwk5vFwBES89BNYSVCKs4qwfgVlZ9USagdJ+TvvBp/2kxVg8DLXiz8kzFHUgI6zqPHKyTtEYDBgwImF5UVKQFCxaE9b4ApzEpVHOKk3b6tD/djDqUUBGvuoH1Eb2PnV/2Vnr/vRG9D1OZUtPmzJmj+++/v9X1btu2LUwj7JiPP/5YN998s+bPn6+8vDz985//1G233abrr79eixcvtnRsABCqnoNqdGBHstXDgAPYNqR0yhVMgWiwKqiMxs4gWrZr1y4lJSX5/52Q0HzHsVevXurSpUuzq5JWVlbK4/EEXa/H42l1/qb/VlZWqm/fvgHzDBs2rEPbAutEoyaa0uFGQBk5TY+tKWEl7Kc9Na3JrbfeqmuuuabV9Q0ePFgej6fZReKOHDmiqqqqVmtgfX29qqurA7opT6yDJ55bsqluNs1z33336cILL9Rtt90mSTr33HPVo0cPffvb39a9994bUD/RfnR0AdZpev8RVqIzONzbReiihFNFOkSx6yF2SUlJAX/Bduji4+OVlZWltWvX+qc1NjZq7dq1ysnJCbrenJycgPklqaSkxD//oEGD5PF4Auapra3Vxo0bW1wnOs+ur1NTEFBGhwmPsymhOELTnprWpHfv3srIyGj1Lz4+Xjk5OaqurlZZWZl/2XXr1qmxsVHZ2dlB152VlaWuXbsG1Ljy8nJVVFT4a1xOTo4+/PDDgAC0pKRESUlJGjJkiCTp0KFDio0N3BXr0qWLpGMXoAMAu+LHAnQGIaUF+HIMK1gVUvN6N19hYaGeffZZvfTSS9q2bZtuuOEGHTx4UNOnT5ckTZs2TXPnzvXPf/PNN6u4uFgPPfSQtm/frgULFuj9999XQUGBJCkmJka33HKL7r33Xr3++uv68MMPNW3aNPXr108TJ060YhNhMBM+I0wIztzEDY83R+XYQ2ZmpsaNG6cZM2Zo06ZNeuedd1RQUKApU6aoX79+kqSvvvpKGRkZ/s7I5ORk5efnq7CwUG+++abKyso0ffp05eTkaOTIkZKksWPHasiQIbrqqqv0t7/9TX/60580b948zZo1yx+uXnLJJXr11Vf19NNP6/PPP9c777yjm266SSNGjPDfN0JDMAKYg3NVoqNse7g3QuOGLsrkzzp/AvWa08N7HiXTcH5KBDN58mTt3btX8+fPl9fr1bBhw1RcXOw/yX9FRUVAt8cFF1ygZcuWad68efrZz36mM844Q6+99prOPvts/zy33367Dh48qJkzZ6q6ulqjRo1ScXGxEhMTo759QGvcEJiZyOrzVHI6EjRZunSpCgoKNGbMGMXGxmrSpEl6/PHH/bc3NDSovLxchw4d8k975JFH/PPW1dUpLy9PTz31lP/2Ll26aNWqVbrhhhuUk5OjHj166Oqrr9bdd9/tn+eaa67R/v379eSTT+rWW29VSkqKRo8e3ea5NAHATjgEHKEipDyBE3/5dmpAGY5Qsq11Oj20jBYnXKigxJuhb/f8MGLrt1pBQYG/E/JE69evbzbtiiuu0BVXXNHi+mJiYnT33XcH7JDBfiJdE63uoiSgtJbVQSUgSampqVq2bFmLt6enpzc7/DoxMVELFy5s9Urcp512mlavXt3qfd9444268cYbQxswgqJjCzDb8e9RAku0hsO9o8zqHTK7S/6szv/nxPuLBqeG1gAQCgJKM1j5PET6O1kkQn7OPQs0R0AJ2EvToeC8dxGMLTsp+YLWfk4IpEwJCJvGQXclAHSelT/aEVCahY5KAADciQ5LnIhOShjL1A5GU8cVCivC62gEEk48XQNgFae+nwgozWTV88IRLoC90YkFOMfxHZa8t93Llp2UdhXtL8J27aK0SwBo985KLqITujcrz5S0xuphALZnVTBEQGk2OioBAECT1oJKui6di5DyOE7tGrETuwSUx7N7WBlNXE0ViAxOg9I2Akp7sCKojGRtivRF3QA3o9MKcK+W3v9HD9kvT0AgQkqHslsXpR3DyRPZMaykmxJAtFnRRUlACQDOQkAJAM7EOSmjhHMetcwJAeXxnLY9dkNHNNB5TnofEVDajxXPGd/TAPsgoATgRgsXLlR6eroSExOVnZ2tTZs2tTr/ihUrlJGRocTERJ1zzjlavXp1wO0+n0/z589X37591a1bN+Xm5urTTz8Nuq66ujoNGzZMMTEx2rJlS7g2KShCSgeySxelEy5A0xI7bVu0Xy/sCAIA2kK4DAAAcMzLL7+swsJCFRUVafPmzRo6dKjy8vK0Z8+eoPNv2LBBV155pfLz8/XBBx9o4sSJmjhxoj766CP/PA888IAef/xxLVq0SBs3blSPHj2Ul5enw4cPN1vf7bffrn79+kVs+45nu5AyUufdclLXiB3YJcDrLLdsJwC0R9QvIEfQZWtOef7C/R2Tc9DCzeiiBOBGDz/8sGbMmKHp06dryJAhWrRokbp3767nn38+6PyPPfaYxo0bp9tuu02ZmZm65557dP755+vJJ5+UdKyL8tFHH9W8efN06aWX6txzz9WSJUu0e/duvfbaawHr+r//+z+tWbNGDz74YKQ3U5INQ0o7iuZOmR26KN0W3Nlhe+3wugkFPzoAcErAheih0x8wGwElACepra0N+KurC54b1NfXq6ysTLm5uf5psbGxys3NVWlpadBlSktLA+aXpLy8PP/8O3bskNfrDZgnOTlZ2dnZAeusrKzUjBkz9Otf/1rdu3fv8LaGggvnIGrsENZFih0vqhNJXOUbcJ+o/mBHQOkYVlztG4B5CCgBWGHdl2eoS/fw7sM3XYF8wIABAdOLioq0YMGCZvPv27dPR48eVVpaWsD0tLQ0bd++Peh9eL3eoPN7vV7/7U3TWprH5/Ppmmuu0fXXX6/hw4dr586d7dvATiKkdBCTu+HcHFAeL/mzOmODSq70DUCiExnmiWZQyY9ogHkIKAE40a5du5SUlOT/d0KCWTnBE088of3792vu3LlRvV8O90bEEVAG4vE4JtJdVQQtgDvRRelMPK+AOxFQAnCqpKSkgL+WQspevXqpS5cuqqysDJheWVkpj8cTdBmPx9Pq/E3/bW2edevWqbS0VAkJCYqLi9M3vvENSdLw4cN19dVXh7i17UdIqciGGW4/vxGBXHCmPi4md+MCCM4OF9GIVi10WpCV/Hldp/9gBn44A0JHQAkAUnx8vLKysrR27Vr/tMbGRq1du1Y5OTlBl8nJyQmYX5JKSkr88w8aNEgejydgntraWm3cuNE/z+OPP66//e1v2rJli7Zs2aLVq1dLOnal8Z///Odh3cbjcbi3Q5gYLpkaxJnC5EO/AQDRF4lQ8cR11gy2b92J1mHfHPINWI+AEgC+VlhYqKuvvlrDhw/XiBEj9Oijj+rgwYOaPn26JGnatGk69dRTdd9990mSbr75Zv3Xf/2XHnroIU2YMEHLly/X+++/r2eeeUaSFBMTo1tuuUX33nuvzjjjDA0aNEh33nmn+vXrp4kTJ0qSBg4cGDCGnj17SpJOP/109e/fP2LbSkiJiCCgbB8Tg8ponpuSHUHALHbu9rJrF2W0ux2Pvz87B5YAnIuAEgACTZ48WXv37tX8+fPl9Xo1bNgwFRcX+y98U1FRodjYrw+UvuCCC7Rs2TLNmzdPP/vZz3TGGWfotdde09lnn+2f5/bbb9fBgwc1c+ZMVVdXa9SoUSouLlZiYmLUt+94tgop36w8U3E9rB6FeUzroiSgDI2JQaVT7Pyyt9L777V6GICruf20J8GYchh20zjsFFZytW/AuQgnAaBlBQUFKigoCHrb+vXrm0274oordMUVV7S4vpiYGN199926++6723X/6enp8vkinz1xTsoIYscM7WVasGta8A0ArbFLF6Wp54m02zkso/F88x0OiC4CSgCAREhpe6aFSaaFbXbi1seOHUEAnWGHgNJOAaBdxmlH4Tydgh0umAW0FwElAKCJrQ73jgQ7n3/LNG4N2ZwqmuemBOBMbv8Rwq6Bnx0OA+ewb8D+CCcBACeikzJC3LZjRkAZHjyO4ccPEUD72PG9YnIXpV0DyuPZqQM0Etz2XQ6Ilp6DaggoAQBBEVLamCmHehOshZdJj2e0XmPsCAJwCicGe6Zuj8khNYDmCCcBAG1x/eHegIm44jcAu4v0jw8mBlSmhnnhYIdDwAGYiWASANBedFKiU0zq+nMaHtvwseNhrADsxckB5fFM204Tw+rWUI/gJnROAgBC5epOSjt/UTThUG9CNHfgAjqAudx6hV+TginTQrtoSP68zjUdlQkV8aobWG/1MADbIJQEAHQGnZQR4Ibz6xFQRoebHmc3vG8At3DL+9mNAWUTk7bdpNAacLMep9VaPQQAgM0RUgKGMyGoNKFzF0Dk2OnIAlMCKZNCOqvwGAAAACCcCCltyOrAyITQDAiVnUIYAGYjnPuaKY9FJMNrt3QGAwAAWI2QErABtwTD7AgCaI0JXZSmhHIm4TEBAABAOBBShpnTQxa3hGUmsvqxt7qDF4A9OLkOEsa1jMem/ejsBwAACI6Q0masDIqsDskAALAKIVzbrH6MTOi0BQAAQMe5NqTkV2zYkdVBsd27KXnfA/ZlZQBldfhmJ059rEzsEC7xZlg9BAAAgLBybUiJ0FgdjuFrTn8uTNwRBAC0n5VBJd2UAAAA9kVIaSN272IDAJgnnB3GkfqRgS5K++FxAwAAQKgIKcPIqR1gTu/csyMrnxPCcgBuQdAGAAAARA8hJQDjODXwB2AfBJSdZ9VjGKnOW2oTAABAZBFS2oRV3Wt0UZqL56ZjuHgOYC+cY9DeCHuDoxYBAAA058qQki+GQOdwyDcAJyNYCy8rHk/CbQAAAPtxZUiJ9qFTz3w8RwBM4ZRDYQkoAQAAAGsQUoaJU3bOAFPwngJaV+LNsHoIEUc3nHMQ/gIAAKAthJQ2YMWhtXTo2YdVz5WdD/nmlA/AMbwXAhGkRVa0H99IhNz8gAYAABA5hJQAAMD1CCgBAAAAaxFSohm6KO2H5wyAlSLRXcah3s5EGAwAAICWEFICMBaH1QGIBoIzAAAA+xvd/1Orh4BOIqQMg0gGKXY+7x+iy4puSl6fAIBQRTMUpiMXAADnGzuwXGMHlls9DISB60JKLhLQOg4bhlvwWQCYK5rBEl2UCFW4fpymDgEA0HmEk84SZ/UAAIRP8md1qjk9wephAADQquTP61QzmHoFAAA6hnDSmVzXSYmW0UWJjoj0Id+cl9IsVVVVmjp1qpKSkpSSkqL8/HwdOHCg1WUOHz6sWbNm6ZRTTlHPnj01adIkVVZWBsxz0003KSsrSwkJCRo2bFgEtwD4Gl2U7sAh32iNlXXN5/PpwQcf1JlnnqmEhASdeuqp+vnPfx6uTQMAxyKgdC5CSoNxvj8Appk6daq2bt2qkpISrVq1Sm+//bZmzpzZ6jKzZ8/WypUrtWLFCr311lvavXu3LrvssmbzXXvttZo8eXKkho4I4YcEdBQhceeVeDOsHoLtWVnXbr75Zj333HN68MEHtX37dr3++usaMWJEp7cJAJyKc086H4d7Aw7DId/tt/PL3krvv9fqYdjGtm3bVFxcrPfee0/Dhw+XJD3xxBMaP368HnzwQfXr16/ZMjU1NVq8eLGWLVum0aNHS5JeeOEFZWZm6t1339XIkSMlSY8//rgkae/evfr73/8epS1yN1PPhxetrjcCMgBW1rVt27bp6aef1kcffaSzzjpLkjRo0KCIbCcAOAHhpDvQSdlJTukg4VBvAG0pLS1VSkqKf0dOknJzcxUbG6uNGzcGXaasrEwNDQ3Kzc31T8vIyNDAgQNVWloa8TEDMBthMaxkZV1buXKlBg8erFWrVmnQoEFKT0/Xddddp6qqqo5vEAA4FAGle9BJCThQtLspT/rCp/2nxUTt/tA+tbW1Af9OSEhQQkLHXxder1d9+vQJmBYXF6fU1FR5vd4Wl4mPj1dKSkrA9LS0tBaXASKNYMx9Ttrp0/708NWphIp41Q2sD9v60LZw1zTJ2rr2+eef64svvtCKFSu0ZMkSHT16VLNnz9bll1+udevWhbwtAOBEhJPuQ0hpKM5HCXzNyTuDFbt7KbZbYljX2fifw5KkAQMGBEwvKirSggULms0/Z84c3X///a2uc9u2bWEbHwAcjyt9O4cJNU2yR11rbGxUXV2dlixZojPPPFOStHjxYmVlZam8vNx/CDgAuBUBpTu5KqQ09fxbVuNQb8CZdu3apaSkJP+/W+o4ufXWW3XNNde0uq7BgwfL4/Foz549AdOPHDmiqqoqeTyeoMt5PB7V19eruro6oOuksrKyxWXgXtE4HyVdlIA9tbemSfaoa3379lVcXJw/oJSkzMxMSVJFRQUhJQBXI6B0L1eFlICbcMh3+zj54jlJSUkBO3Qt6d27t3r3bvtHnJycHFVXV6usrExZWVmSpHXr1qmxsVHZ2dlBl8nKylLXrl21du1aTZo0SZJUXl6uiooK5eTkhLA1MJFTzssM69FNiba0t6ZJ9qhrF154oY4cOaLPPvtMp59+uiTpk08+kSSddtpp7V4PADgJ4SS4cA4AoF0yMzM1btw4zZgxQ5s2bdI777yjgoICTZkyxX8F1K+++koZGRnatGmTJCk5OVn5+fkqLCzUm2++qbKyMk2fPl05OTn+K6BK0j/+8Q9t2bJFXq9X//nPf7RlyxZt2bJF9fXOPMwfQPRF68rxoeAoH2tZWddyc3N1/vnn69prr9UHH3ygsrIy/ehHP9JFF10U0F0JAG5BQAmJTkrXc+qh3vHbvwxp/vqM/hEaCcLFyeeltJOlS5eqoKBAY8aMUWxsrCZNmqTHH3/cf3tDQ4PKy8t16NAh/7RHHnnEP29dXZ3y8vL01FNPBaz3uuuu01tvveX/93nnnSdJ2rFjh9LT0yO7UXANDvUGcCKr6lpsbKxWrlypG2+8Ud/5znfUo0cP/fd//7ceeuihCG8xAJiHgBJNCCk7gcPczBNqOHnick4LK6N9yDecLzU1VcuWLWvx9vT0dPl8gd1KiYmJWrhwoRYuXNjicuvXrw/XEGFTJna5Ibo45BtWsLKu9evXT7///e/bPVYAcCICShyPkNJAXNk7dB0NJ1taj9PCSgBwO7ooEW50+AMA0DkElDhRh85JuXDhQqWnpysxMVHZ2dn+c7S0pLq6WrNmzVLfvn2VkJCgM888U6tXr+7QgBE+TjjUO377l2ELKKOxXqcjYIdd2a2ulXgzonZfAAB7sVtNA+BOBJQIJuSQ8uWXX1ZhYaGKioq0efNmDR06VHl5edqzZ0/Q+evr63XRRRdp586deuWVV1ReXq5nn31Wp556aqcHD3eLRojohKDSCWF0pHHhAnejrgHmiHTHK6cVgNNR0wDYAQElWhLy4d4PP/ywZsyYoenTp0uSFi1apDfeeEPPP/+85syZ02z+559/XlVVVdqwYYO6du0qSVwEAZ0S7eCQQ8ABZ3NjXXNbMM+h3gDcwo01DYB9EE6iLSF1UtbX16usrEy5ublfryA2Vrm5uSotLQ26zOuvv66cnBzNmjVLaWlpOvvss/WLX/xCR48ebfF+6urqVFtbG/DXWW7bIXMqKzsbndBVaXdcrArhFo26FomaZoJwvh/pbmuf+G272vwD4F523lcD4HwElGiPkELKffv26ejRo0pLSwuYnpaWJq/XG3SZzz//XK+88oqOHj2q1atX684779RDDz2ke++9t8X7ue+++5ScnOz/GzBgQCjDtLVondPPjocAmxASmjCGjojm8815KWEn0ahrbq5p6LxQA0gnBJZ0vgIdw74aAFMRUKK9OnThnFA0NjaqT58+euaZZ5SVlaXJkyfrjjvu0KJFi1pcZu7cuaqpqfH/7dpl3hdtOrqiy6Rw0KSxAIi+UOuaHWoazBOOoNHuYSWAyHPqvhoAcxBQIhQhnZOyV69e6tKliyorKwOmV1ZWyuPxBF2mb9++6tq1q7p06eKflpmZKa/Xq/r6esXHNw/7EhISlJCQEMrQ4GAmhoLx27/kHJUOs/PL3krvv9fqYSDKolHXqGnWsltXXiRCxaZ11mfS7SQdO73A/vQYq4cBhB37agBMQ0CJUIXUSRkfH6+srCytXbvWP62xsVFr165VTk5O0GUuvPBC/eMf/1BjY6N/2ieffKK+ffsGLXqAXZgYngIIDXUNJol016OduirtEi5zZA1MQk0DANhdyId7FxYW6tlnn9VLL72kbdu26YYbbtDBgwf9V5CbNm2a5s6d65//hhtuUFVVlW6++WZ98skneuONN/SLX/xCs2bNCt9WICR2Oh8lQWD42Ol5bw07hAg36hqsFs3Dsu0UVAIIHTUNgCnookRHhHS4tyRNnjxZe/fu1fz58+X1ejVs2DAVFxf7T9BcUVGh2Nivs88BAwboT3/6k2bPnq1zzz1Xp556qm6++Wb99Kc/Dd9WwJHsEFBy2HdwJ33h0/7TOJQO9kBds1Ykr+xth248K0LD+G27OPTbIJxuBOFETQNgAgJKdFTIIaUkFRQUqKCgIOht69evbzYtJydH7777bkfuylW4KvLX7BBQNiGoBOyPugYrWNnVSFAJOBc1DYCVCCjRGRG/ujfgBnYKVQEA1jPhsGsTxtAaO3TCAgCArxFQorMIKWEcAr/Iccp5KSNl55e9rR4CYAucG7ZzTAoHTRoLAACwLwJKhIMrQkqCh68RUkUO4SoAmIMuvPZzY1AZyXOhAgDgNgSUkbdw4UKlp6crMTFR2dnZ2rRpU6vzr1ixQhkZGUpMTNQ555yj1atXB9zu8/k0f/589e3bV926dVNubq4+/fTTgHmqqqo0depUJSUlKSUlRfn5+Tpw4EDYt+14rggpw40Oksgh6EN78B4EYFemBoKmjgsAAJiNgDLyXn75ZRUWFqqoqEibN2/W0KFDlZeXpz179gSdf8OGDbryyiuVn5+vDz74QBMnTtTEiRP10Ucf+ed54IEH9Pjjj2vRokXauHGjevTooby8PB0+fNg/z9SpU7V161aVlJRo1apVevvttzVz5syIbishJYzhhIDSCdsQLlwICgACEQSGjo5YAADgdg8//LBmzJih6dOna8iQIVq0aJG6d++u559/Puj8jz32mMaNG6fbbrtNmZmZuueee3T++efrySeflHSsi/LRRx/VvHnzdOmll+rcc8/VkiVLtHv3br322muSpG3btqm4uFjPPfecsrOzNWrUKD3xxBNavny5du/eHbFtJaQEXIZD/gGYwk2H3NohoLTDGNFciTfD6iEAAFyKLsqOq62tDfirqwu+n15fX6+ysjLl5ub6p8XGxio3N1elpaVBlyktLQ2YX5Ly8vL88+/YsUNerzdgnuTkZGVnZ/vnKS0tVUpKioYPH+6fJzc3V7Gxsdq4cWPHNrod4iK2ZiAETupAjN/+peoz+ls9DAAAQha/bZfqMwdYPQxbSaiIV93AequHAQBAVLkhoDz4RZJiExPDus7G//9w6gEDAr9vFRUVacGCBc3m37dvn44ePaq0tLSA6Wlpadq+fXvQ+/B6vUHn93q9/tubprU2T58+fQJuj4uLU2pqqn+eSCCkNEQ0Do2lgw5o284veyu9/16rhwFEjBsuJmfaIcJ0KAIAACdxQ0AZabt27VJSUpL/3wkJCRaOxhwc7g1EgJM6QwEA7kKoCgAAEFlJSUkBfy2FlL169VKXLl1UWVkZML2yslIejyfoMh6Pp9X5m/7b1jwnXpjnyJEjqqqqavF+w4GQEpYj0ENHcIVvAHZA4Nd5keqMddM5UQEACBe6KKMrPj5eWVlZWrt2rX9aY2Oj1q5dq5ycnKDL5OTkBMwvSSUlJf75Bw0aJI/HEzBPbW2tNm7c6J8nJydH1dXVKisr88+zbt06NTY2Kjs7O2zbdyJCSiBCTA5fo3XoP1f4BgB7IlwFAAAnIqC0RmFhoZ599lm99NJL2rZtm2644QYdPHhQ06dPlyRNmzZNc+fO9c9/8803q7i4WA899JC2b9+uBQsW6P3331dBQYEkKSYmRrfccovuvfdevf766/rwww81bdo09evXTxMnTpQkZWZmaty4cZoxY4Y2bdqkd955RwUFBZoyZYr69esXsW3lnJSwlMlBHgAAnUHQBwAAgM6aPHmy9u7dq/nz58vr9WrYsGEqLi72X/imoqJCsbFf9yBecMEFWrZsmebNm6ef/exnOuOMM/Taa6/p7LPP9s9z++236+DBg5o5c6aqq6s1atQoFRcXK/G4CwUtXbpUBQUFGjNmjGJjYzVp0iQ9/vjjEd1WQkoAAOAYpl00x8640jcAAGhCF6W1CgoK/J2QJ1q/fn2zaVdccYWuuOKKFtcXExOju+++W3fffXeL86SmpmrZsmUhj7UzONwbiCA6Re3JDVc/BjqK88G2D12UAADAKQgoES2ODynDHTbYdecsWucgDAUBHgC4FxctsQfCVgAAAESL40NKAAAAAAAAhI4uSkQTISUQYXSMAoC70H0YfpxrFAAAwPkIKQ1w0hcc8oboi9YpACL5+rbr6RcAwE4IXQEAcCe6KBFthJSwBN2FAAAAAAAAaEJICUQBoSwAuANdh+iIcF/oEQCAzqKLElYgpASAINhhBOyH8xZGjlPDV64yDwBAcwSUsAohJQAAAAAAAABLEVICAACEgVO7DQEAgHvQRQkrEVK6QLSu4txenJ8RAAA4SUJFvNVDAAAAsD1CSiBKCGcBAAAAAKaiixJWI6QEXMy0LlsAgLmsPpydCyMBAAA4GyElgIg76YvIXT2VQ+wAAAAAAFNSNlo9BHQSISUAAEAnWd1lCAAA0Bl2P9T7qpM3WD0EhAEhJQC0YOeXva0eAgAAAAAAruDokJKAAQAAAAAAoGV0UcIUjg4pw41z33UeV7gGAAAAAADAiQgpgSgipAUA6aSdkbuYFiKLc28CAAAgUggpAQAAAAAAXIhDvWESQkoAAGB7yZ/XWT0EAAAAAJ1ASAkAAAAAAOAydFHCNISUFjvpC87LBcA+qqqqNHXqVCUlJSklJUX5+fk6cOBAq8scPnxYs2bN0imnnKKePXtq0qRJqqys9N/+t7/9TVdeeaUGDBigbt26KTMzU4899likNwUAACPq2jvvvKO4uDgNGzYsXJsFAIAtEVICsL2EiviIrXvnl70jtm47mjp1qrZu3aqSkhKtWrVKb7/9tmbOnNnqMrNnz9bKlSu1YsUKvfXWW9q9e7cuu+wy/+1lZWXq06ePfvOb32jr1q264447NHfuXD355JOR3hwAgMtZXdeqq6s1bdo0jRkzJuzbBgBORhelM8VZPQAAgD1s27ZNxcXFeu+99zR8+HBJ0hNPPKHx48frwQcfVL9+/ZotU1NTo8WLF2vZsmUaPXq0JOmFF15QZmam3n33XY0cOVLXXnttwDKDBw9WaWmpXn31VRUUFER+wwAArmRCXbv++uv1wx/+UF26dNFrr70WmQ0FgCDsfqg3nIlOSgBwqNra2oC/urrOXViktLRUKSkp/h05ScrNzVVsbKw2btwYdJmysjI1NDQoNzfXPy0jI0MDBw5UaWlpi/dVU1Oj1NTUTo0XAOAc4a5pkvV17YUXXtDnn3+uoqKiTm4JAADOQCclAFgofle8uiSG93D1o4cbJUkDBgwImF5UVKQFCxZ0eL1er1d9+vQJmBYXF6fU1FR5vd4Wl4mPj1dKSkrA9LS0tBaX2bBhg15++WW98cYbHR4rACD67FTTJGvr2qeffqo5c+boL3/5i+Li2CUDgFBwqLdzUREBwKF27dqlpKQk/78TEhKCzjdnzhzdf//9ra5r27ZtYR1bSz766CNdeumlKioq0tixY6NynwAA87W3pknm17WjR4/qhz/8oe666y6deeaZURkHAByPQ71hKkJKAHCopKSkgB26ltx666265pprWp1n8ODB8ng82rNnT8D0I0eOqKqqSh6PJ+hyHo9H9fX1qq6uDug6qaysbLbMxx9/rDFjxmjmzJmaN29em+MGALhHe2uaZH5d279/v95//3198MEH/nNUNjY2yufzKS4uTmvWrPGf7xIAADchpAQAl+vdu7d69277KuY5OTmqrq5WWVmZsrKyJEnr1q1TY2OjsrOzgy6TlZWlrl27au3atZo0aZIkqby8XBUVFcrJyfHPt3XrVo0ePVpXX321fv7zn4dhqwAAbmV6XUtKStKHH34YMO2pp57SunXr9Morr2jQoEEhbS8AuAmHejsbISUAoF0yMzM1btw4zZgxQ4sWLVJDQ4MKCgo0ZcoU/xVQv/rqK40ZM0ZLlizRiBEjlJycrPz8fBUWFio1NVVJSUm68cYblZOTo5EjR0o6dijc6NGjlZeXp8LCQv85vbp06dKunUwAADrCqroWGxurs88+O2Asffr0UWJiYrPpAAC4CVf3RlTVZ/S3egiWcvP2n/SFz+ohIAyWLl2qjIwMjRkzRuPHj9eoUaP0zDPP+G9vaGhQeXm5Dh065J/2yCOP6OKLL9akSZP0ne98Rx6PR6+++qr/9ldeeUV79+7Vb37zG/Xt29f/961vfSuq2wYAcB/qGgC34XyUMBmdlADQhp1f9lZ6/71WD8MIqampWrZsWYu3p6eny+cLDKQTExO1cOFCLVy4MOgyCxYs6PQVWoGawQlK/rzO6mEAsBlT6hq1EADaxqHezkcnJQAAAAAAAABLEVICAAAAAAAAsBQhJQAAiKr96TFWDwEdVJ85wOohAAAAF+JQb3cgpAQAAAAAAHA4LpoD0xFSAgAAAAAAALAUIaXF9p/mvkPe6jP6Wz0EAADCisOgAQAAgM4hpASihHAWAAAAAIDQcD5K9yCkBAAAAAAAAGApQkoAAAC0yepD2msGJ1h6/wAA2BkXzYEdODak3Pllb6uHYIya0/lSD+dLqIi3eggAAJeqG1hv9RAAAHAkDvV2F8eGlDCb287P6LbtDcbuF4nihw8AbbG60xAAAACwM0JKAAAAAECnjO7/qdVDAADYHCElAAAAWuXULtH96fbu8gcAAHASQkpYhkOgrcf5SgE4CRdWgV2l999r9RAAAAAsR0gJRBhhLAC4h1M7DgGgPbh6MIBw4qI57kNICQAAAAAAAMBShJSwlNO7DJ2+fQAA56M7FAAAANFASAkAABBGhHrhx/lGAfvgkG/APLwvYReElC7BBVIAACbhqsr2QOAKAACAaCGkhOWceki0U7cLgLvVDay3eggAAABwOC6a406ElAAAwDFMOSyYDkQAAAAgNISUMILTug7tsD2cAgAA0BqCVgAdxfnvAAAdQUhpgP2ncV4uAACchpAPAAAA0VJVVaWpU6cqKSlJKSkpys/P14EDB1pd5vDhw5o1a5ZOOeUU9ezZU5MmTVJlZWXAPBUVFZowYYK6d++uPn366LbbbtORI0eCru+dd95RXFychg0b1qFtIKSEMezQfdgeTtkONFexu5fVQwCAqDApYI3UIfxcvAkAADjJ1KlTtXXrVpWUlGjVqlV6++23NXPmzFaXmT17tlauXKkVK1borbfe0u7du3XZZZf5bz969KgmTJig+vp6bdiwQS+99JJefPFFzZ8/v9m6qqurNW3aNI0ZM6bD20BI6SIc3gsAQHSZFPYBAADAmbZt26bi4mI999xzys7O1qhRo/TEE09o+fLl2r17d9BlampqtHjxYj388MMaPXq0srKy9MILL2jDhg169913JUlr1qzRxx9/rN/85jcaNmyY/vu//1v33HOPFi5cqPr6wAtqXn/99frhD3+onJycDm8HISWMYvcuRLuPHwAAglUAAIDIqq2tDfirq6vr1PpKS0uVkpKi4cOH+6fl5uYqNjZWGzduDLpMWVmZGhoalJub65+WkZGhgQMHqrS01L/ec845R2lpaf558vLyVFtbq61bt/qnvfDCC/r8889VVFTUqe2I69TSLlM3sF4JFfFWD8Px6jP6K377l1YPI2QElADsIL3/Xu38srfVw4iomsEJSv68c1/0wqk+c4Dit+2yehjtQkAZurqB9W3PBLjQ2IHlWlNxltXDAGBDV528weohSJJ6fh6rLgnh7e07WndsfQMGBH7nKioq0oIFCzq8Xq/Xqz59+gRMi4uLU2pqqrxeb4vLxMfHKyUlJWB6Wlqafxmv1xsQUDbd3nSbJH366aeaM2eO/vKXvygurnMxI52UgAtF+9B/Lg4FIBg3nROQ8A+RcpFnu9VDAAAAIdq1a5dqamr8f3Pnzg0635w5cxQTE9Pq3/bt1n0XOHr0qH74wx/qrrvu0plnntnp9dFJCSPZrZuSLkrr0ckCAJ1jYpAaqYvmAAAAWCkpKUlJSUltznfrrbfqmmuuaXWewYMHy+PxaM+ePQHTjxw5oqqqKnk8nqDLeTwe1dfXq7q6OqCbsrKy0r+Mx+PRpk2bApZruvq3x+PR/v379f777+uDDz5QQUGBJKmxsVE+n09xcXFas2aNRo8e3eZ2NiGkdJma0xOU/Jk5h8C1xi5BJQElAKA9TD7s28SAEgAAwO169+6t3r3bPlVTTk6OqqurVVZWpqysLEnSunXr1NjYqOzs7KDLZGVlqWvXrlq7dq0mTZokSSovL1dFRYX/4jc5OTn6+c9/rj179vgPJy8pKVFSUpKGDBmirl276sMPPwxY71NPPaV169bplVde0aBBg0LaXkJKGM30oJKAEgDMZNp5KZuYHFQCAADAnjIzMzVu3DjNmDFDixYtUkNDgwoKCjRlyhT169dPkvTVV19pzJgxWrJkiUaMGKHk5GTl5+ersLBQqampSkpK0o033qicnByNHDlSkjR27FgNGTJEV111lR544AF5vV7NmzdPs2bNUkLCsSNezj777ICx9OnTR4mJic2mtwfnpITxTA0CTR1XW6J9PkoAQCDTuhZNG080uOl8qAAAwB2WLl2qjIwMjRkzRuPHj9eoUaP0zDPP+G9vaGhQeXm5Dh065J/2yCOP6OKLL9akSZP0ne98Rx6PR6+++qr/9i5dumjVqlXq0qWLcnJy9D//8z+aNm2a7r777ohsA52Uhth/WoxO+sJn9TCMZVpHpV0DSgAIh7qB9UqoiLd6GLZmSkelGwNKANHDFb4BIHpSU1O1bNmyFm9PT0+XzxeYOyUmJmrhwoVauHBhi8uddtppWr16dbvHsWDBgg5fqZxOSheyayedKcGgKeMAANib1QGh1fffFi6aAwAA4C6ElLAVqwNCq+8fAJwmkofd2iHksiooND2gBAAAgPt0KKRcuHCh0tPTlZiYqOzs7GaXI2/J8uXLFRMTo4kTJ3bkbgFJ1gWFTggoreii3X8a5/2C+ahrsFK0A0MCSrOk999r9RDgMNQ0AIBdhRxSvvzyyyosLFRRUZE2b96soUOHKi8vT3v27Gl1uZ07d+onP/mJvv3tb3d4sECTaAaG9Rn9HRFQAgiOugYTRCM4rM8cYJuA0g5dsICJqGkAADsLOaR8+OGHNWPGDE2fPl1DhgzRokWL1L17dz3//PMtLnP06FFNnTpVd911lwYPHtypASM87HpeyuNFIzwknAScj7oGU0QyRLRLOBkN4TzFQN3A+rCtCwgHahoAu7vq5A1WDwEWCimkrK+vV1lZmXJzc79eQWyscnNzVVpa2uJyd999t/r06aP8/Px23U9dXZ1qa2sD/oCWRCKspHsScIdo1DVqmrXs2JEXzrDSTt2TADqHfTUALVlTcZbVQwDaJS6Umfft26ejR48qLS0tYHpaWpq2b98edJm//vWvWrx4sbZs2dLu+7nvvvt01113hTI0R9h/WoxO+sLX9owI6vhQMX77l51a3omc0D0LhFs06ppbaxo6rylcjN+2q8PLAnAP9tUAAHYXUkgZqv379+uqq67Ss88+q169erV7ublz56qwsND/79raWg0YwJdttN+JgWOw0NLpoSSA8OtIXaOmtW1/eoxO2smPdC05MXA8MbR0WiBpx+5XwI7YVwMAmCakkLJXr17q0qWLKisrA6ZXVlbK4/E0m/+zzz7Tzp07dckll/inNTY2HrvjuDiVl5fr9NNPb7ZcQkKCEhLM/IJaN7BeCRXxVg8jLGpOT1DyZ3VWDyMqCCStwZW9Ybpo1DWTa1pn2Kke1gxOUPLnzql3TgslAYQH+2oAALsL6ZyU8fHxysrK0tq1a/3TGhsbtXbtWuXk5DSbPyMjQx9++KG2bNni//v+97+v733ve9qyZUtEf3FL7783YusG7IZDvYHg7FTXwokaCQDOY2pNGzuwPCzrAQA4X8iHexcWFurqq6/W8OHDNWLECD366KM6ePCgpk+fLkmaNm2aTj31VN13331KTEzU2WefHbB8SkqKJDWbDgCAFexY1y7ybFeJNyNq9wdES6QP9Q7nlb0BE9mxpgEA0CTkkHLy5Mnau3ev5s+fL6/Xq2HDhqm4uNh/guaKigrFxobUoInjRPviOW465BsAgqGuuYPTDvkGgGCoaQAAO+vQhXMKCgpUUFAQ9Lb169e3uuyLL77YkbsE0EFuONS7bmC91UOAzVHXrMfFc2A31B6YipoGALArfkYDAACA5biqNwAAgLsRUsIVnXZuZeVzy5W9namqqkpTp05VUlKSUlJSlJ+frwMHDrS6zOHDhzVr1iydcsop6tmzpyZNmhRw5dF//etfGjdunPr166eEhAQNGDBABQUFqq2tjfTmwGUIwdyN81EiGKvq2quvvqqLLrpIvXv3VlJSknJycvSnP/0pYtsJAIAdEFICANpt6tSp2rp1q0pKSrRq1Sq9/fbbmjlzZqvLzJ49WytXrtSKFSv01ltvaffu3brsssv8t8fGxurSSy/V66+/rk8++UQvvvii/vznP+v666+P9OagkzjcFeHi1gA5vf9eq4fgelbVtbffflsXXXSRVq9erbKyMn3ve9/TJZdcog8++CBi2wrA3dZUnGX1EIA2deiclIisaF88R+ICOgDatm3bNhUXF+u9997T8OHDJUlPPPGExo8frwcffFD9+vVrtkxNTY0WL16sZcuWafTo0ZKkF154QZmZmXr33Xc1cuRInXzyybrhhhv8y5x22mn68Y9/rF/+8pfR2TC4ChfQAdDEyrr26KOPBqz3F7/4hf74xz9q5cqVOu+88yKwtQAAmI9Oyg6gcwR2wGH8qK2tDfirq+tcMFNaWqqUlBT/jpwk5ebmKjY2Vhs3bgy6TFlZmRoaGpSbm+uflpGRoYEDB6q0tDToMrt379arr76q//qv/+rUeGE/HI4LoCXhrmmSWXWtsbFR+/fvV2pqage3BgAA+6OTEkDYcT7K9jtpl09d4sPbOX20/tj6BgwYEDC9qKhICxYs6PB6vV6v+vTpEzAtLi5Oqamp8nq9LS4THx+vlJSUgOlpaWnNlrnyyiv1xz/+Uf/5z390ySWX6LnnnuvwWAHYh1sP9XaikyrsU9Mks+ragw8+qAMHDugHP/hBxzYGAAAHoJMSfnTeOQfPJSRp165dqqmp8f/NnTs36Hxz5sxRTExMq3/bt2+P+HgfeeQRbd68WX/84x/12WefqbCwMOL3CXciFHOfcHfpclRN9LW3pkn2q2vLli3TXXfdpd/97nfNQlMAANyETkoAcKikpCQlJSW1Od+tt96qa665ptV5Bg8eLI/Hoz179gRMP3LkiKqqquTxeIIu5/F4VF9fr+rq6oCuk8rKymbLeDweeTweZWRkKDU1Vd/+9rd15513qm/fvm1uA0KX3n+vdn7Z2+phwOUIjNFe7a1pkr3q2vLly3XddddpxYoVAYeQAwDgRoSUhrLi4jkSF9BxArd1UdLN0nm9e/dW795th1U5OTmqrq5WWVmZsrKyJEnr1q1TY2OjsrOzgy6TlZWlrl27au3atZo0aZIkqby8XBUVFcrJyWnxvhobGyUpLOccg73sT4/RSTsjX/+4gA7gXHapa7/97W917bXXavny5ZowYUK7tw8AOmpNxVkaO7Dc6mEALSKkBBBWnI/SuTIzMzVu3DjNmDFDixYtUkNDgwoKCjRlyhT/FVC/+uorjRkzRkuWLNGIESOUnJys/Px8FRYWKjU1VUlJSbrxxhuVk5OjkSNHSpJWr16tyspKfetb31LPnj21detW3XbbbbrwwguVnp5u4RajPeoG1iuhIt7qYcCGotVF6eQLMl3kifwhy05mZV1btmyZrr76aj322GPKzs72n8+yW7duSk5OtuTxAADAapyTEs24rRPPSXjuEGlLly5VRkaGxowZo/Hjx2vUqFF65pln/Lc3NDSovLxchw4d8k975JFHdPHFF2vSpEn6zne+I4/Ho1dffdV/e7du3fTss89q1KhRyszM1OzZs/X9739fq1atiuq2wX041BiAVXXtmWee0ZEjRzRr1iz17dvX/3fzzTdHZ8MBADAQnZQAgHZLTU3VsmXLWrw9PT1dPl/gobqJiYlauHChFi5cGHSZ733ve9qwYUNYxwl7i9Yh37COnQNiTjPiLFbVtfXr14c8VgAAnI5Oyg6KxhdUKw+bpSPPfnjOACB0dg7LYG/p/fdaPQQAAIzz639fYPUQYCFCSgBhw/koAQBtiWYw7OTzUQIA0BFrKs6yeghAiwgp0SI68+yD5wqAlex++CvdlAAAAID1CCkNR2ca2uLmgNLuwQiAlkW7A46gMjp4nAEAANASQkq0ys0BGEJDoA7YD+fEQzRFO6DkUG8AAAB7IaREmwgqzcVzAwDhQ5cf2kIHPwAAQOQ4OqSMdIcIX1RhJQJKwN0u8my3eggRRyeccxAAAwBgDi6eA1M5OqR0ChMOoyUQQ2tMeI0CsJZTfrgjTAs/Kx5TAm7AHIQhAID2IqQEbIjQ2DmBCIDWWRE2EVQi0jgfLAAAQHOElGg3gjEz8DwAQOQRVIaHkx5HfhwDAACILEJKmzDlcFoCMpzIlNcmAMAsVgWUHOoNAEDbOBUDTERIiZARVFqHxx6AySLVaWZV6OSkLsBo47EDAAAd9et/X2D1EGARQspO4tAfRIuJASVdlID9cW681hG22QtdlAAAAPZFSGkjJgVCJgZmTsbjHYgfBwBEE0FlaHi8AAAA0BGElOgwgrPo4HEGAOs75Aje2sepj5OJP45d5Nlu9RAAADbHeSlhGkJKmzGpm1IiQIs0kx9f016LAMxgYpgTLk4N4MLF6sfH6iC7vTjFAgAAQHCElOg0k4M0O+NxBYBAJoRQVgdxpuJxAQAAQGcRUoaBk7tG2otALbxMfzyt7KLk/QbAagRygUx4PCIZYFN3gI7jUFLAfLxPYRJCShsy9TBb04M1u+BxBBBtdjr81IRuSsmMYM4EPA4AACASfv3vC6weAizg+JDSTjteTkDA1jl2ePxMDckBmMMtnWduD+hM2X5TgmsAAAB0juNDSqcyOSiyQ9BmIh438w3st8/qIQAB3Hp1X5NCKVOCumhz63YDAOBEHPINUxBSholbukbai8AtNHZ5vKwOx3mfATCRmwK7msEJrtrecNcdjvABAABoGSElIsYuwZvVeJwAwP7cENyZuI0mddUCAACgcwgpbczqrrb2IIBrnZ0eHzu83gCYI9KdzyaGU07uMjRxu0x8DQAAAKDjCCkRcXYK4qKl5vQEHpcQcag3EFl2PAzV1JDKxECvo5wcvLaFugN0Due4A+zFxPcsV/h2H0LKMLLiy6xdutsI5b5mx8fBLq8zADCF3cM908dvakANAACAjiOkRFTZMaALF4JaAG4TjR/vTA+rTA/7grHbeN3oIs92q4cAAAAQdoSUDmC3Ljc3hnV23l67vb4AwER2CCvtMEYpOsF0JAJ2O55SAQDgLiYe8g13cUVIyZdCM9k5uGsvuweypgSUnBcMQGtM76Y8nmlBYNN4TBoTAAAA3MkVIWU0WRWmmBImhcruIV5LnLpdbsaPHXCDSLzO+ZEhOKvDQbsGk3YKpAE3oxsLsC/T3r9cPMddCCkdxK5BpeScUM8p2yHZ+/UEwH3sHF5FI7A8/j7sGE5K0XuOCdYBAIAdVVVVaerUqUpKSlJKSory8/N14MCBVpc5fPiwZs2apVNOOUU9e/bUpEmTVFlZGTBPRUWFJkyYoO7du6tPnz667bbbdOTIkYB5li5dqqFDh6p79+7q27evrr32Wv3rX/8KeRsIKWEUu4Z8dh13S0wKKNlZBNBedg4qm5wYJnYkUAzHOgAAAGAvU6dO1datW1VSUqJVq1bp7bff1syZM1tdZvbs2Vq5cqVWrFiht956S7t379Zll13mv/3o0aOaMGGC6uvrtWHDBr300kt68cUXNX/+fP8877zzjqZNm6b8/Hxt3bpVK1as0KZNmzRjxoyQtyEu5CXQprqB9UqoiLfkvvefFqOTvvBZct/hdHzgl/xZnYUjaZmTQkkA9nWRZ7tKvBlWD6NVVtZFJyBktH8AzSlDAAB2sqbiLI0dWG71MBCCbdu2qbi4WO+9956GDx8uSXriiSc0fvx4Pfjgg+rXr1+zZWpqarR48WItW7ZMo0ePliS98MILyszM1LvvvquRI0dqzZo1+vjjj/XnP/9ZaWlpGjZsmO655x799Kc/1YIFCxQfH6/S0lKlp6frpptukiQNGjRIP/rRj3T//feHvB10UsJ4JnUpNo3FlPFEAl2UAOzM7mEWrEXdAQDAPE48L2VtbW3AX11d55qzSktLlZKS4g8oJSk3N1exsbHauHFj0GXKysrU0NCg3Nxc/7SMjAwNHDhQpaWl/vWec845SktL88+Tl5en2tpabd26VZKUk5OjXbt2afXq1fL5fKqsrNQrr7yi8ePHh7wddFI6kFO6KU90YjAYrQ5LJweSJzIpoARgjfT+e7Xzy95hX280uyn3p8fopJ3Oq4NuRfAM2ItpF90AgI5K+Ue94uLC29t35MixH0QHDBgQML2oqEgLFizo8Hq9Xq/69OkTMC0uLk6pqanyer0tLhMfH6+UlJSA6Wlpaf5lvF5vQEDZdHvTbZJ04YUXaunSpZo8ebIOHz6sI0eO6JJLLtHChQtD3g7XdFJG+zAbq3+Jd0PYdHxXYzi6G4Otz00BJQAApiGgBADAGvzgEFm7du1STU2N/2/u3LlB55szZ45iYmJa/du+fXuURx/o448/1s0336z58+errKxMxcXF2rlzp66//vqQ10UnJRyFULHjTAu2rQ76j8e5xAD7oZvS/qIdUEaq7oS7hlzksXZHBAAAdF5SUpKSkpLanO/WW2/VNddc0+o8gwcPlsfj0Z49ewKmHzlyRFVVVfJ4PEGX83g8qq+vV3V1dUA3ZWVlpX8Zj8ejTZs2BSzXdPXvpnnuu+8+XXjhhbrtttskSeeee6569Oihb3/727r33nvVt2/fNreziWs6Kd3ItNAJ5uK1AiAaov3jA114AAAAHWdSN6UTz0vZHr1791ZGRkarf/Hx8crJyVF1dbXKysr8y65bt06NjY3Kzs4Ouu6srCx17dpVa9eu9U8rLy9XRUWFcnJyJB073+SHH34YEICWlJQoKSlJQ4YMkSQdOnRIsbGB8WKXLl0kST5faE0DhJQRZEInGOET2mLia8SE9w7gZk7qHiaotCendFECbmNSoAEAbpKZmalx48ZpxowZ2rRpk9555x0VFBRoypQp/it7f/XVV8rIyPB3RiYnJys/P1+FhYV68803VVZWpunTpysnJ0cjR46UJI0dO1ZDhgzRVVddpb/97W/605/+pHnz5mnWrFlKSDh2JOsll1yiV199VU8//bQ+//xzvfPOO7rppps0YsSIoFcVbw2HewMAgKiJ5gV0YE8EywAAAKFbunSpCgoKNGbMGMXGxmrSpEl6/PHH/bc3NDSovLxchw4d8k975JFH/PPW1dUpLy9PTz31lP/2Ll26aNWqVbrhhhuUk5OjHj166Oqrr9bdd9/tn+eaa67R/v379eSTT+rWW29VSkqKRo8erfvvvz/kbSCkdAGnXu0bnUcXJQA34PyU9mFFQBnJuuOkrmQAgDutqThLYweWWz0MSccO+b7q5A1WD8NYqampWrZsWYu3p6enNzv8OjExUQsXLmz1StynnXaaVq9e3ep933jjjbrxxhtDG3AQHO4dYaYELiaGUbAWr4n2YQcTdmC3C2lYURvpzjMfzxEAAIC7uSqkJGwAjjE1oDQl1AfgzJpJCGYunhvA/tZ9eYbVQwAQIZxvFtHiqpDSKqYEL6YGU4guXgcA3IwwDMcz5TsaAAAACCldh4DK3Ux+/tlRBNzFyvc8QaVZnPp8OLEbGQAAq/363xdYPQREECGlC5kcVCFyeN4B4GtODcbsxsrnwY4/jtnt/LMAAOfgkG9EAyFllJj2RZjAyl1Mf75Ne380oQumuaqqKk2dOlVJSUlKSUlRfn6+Dhw40Ooyhw8f1qxZs3TKKaeoZ8+emjRpkiorK4PO+69//Uv9+/dXTEyMqqurI7AFCEWk3wNWv/cJKq2zPz2Gxx9GsLKurV+/Xueff74SEhL0jW98Qy+++GKYtgoAAHtyXUhJ6PA104MrhAfPM8Jp6tSp2rp1q0pKSrRq1Sq9/fbbmjlzZqvLzJ49WytXrtSKFSv01ltvaffu3brsssuCzpufn69zzz03EkMHgiIoiz4THnOrA3KYw6q6tmPHDk2YMEHf+973tGXLFt1yyy267rrr9Kc//Sks2wUAkWBKNyWHfDuX60JKK5n4hZgAy9ns8Pya+L5AcNu2bVNxcbGee+45ZWdna9SoUXriiSe0fPly7d69O+gyNTU1Wrx4sR5++GGNHj1aWVlZeuGFF7Rhwwa9++67AfM+/fTTqq6u1k9+8pNobA4MYcJngAmhmVuY8FhH4zXHj+L2YGVdW7RokQYNGqSHHnpImZmZKigo0OWXX65HHnkkItsKAIAdEFLCFkEWQsfzinArLS1VSkqKhg8f7p+Wm5ur2NhYbdy4MegyZWVlamhoUG5urn9aRkaGBg4cqNLSUv+0jz/+WHfffbeWLFmi2FhKU0dE6lx10QhbCCrdgccYprGyrpWWlgasQ5Ly8vIC1gEAJjKlmxLOxJ5glJmwIxYMgZaz2OX5NPX9IDmjC6a2tjbgr66urlPr83q96tOnT8C0uLg4paamyuv1trhMfHy8UlJSAqanpaX5l6mrq9OVV16pX/7ylxo4cGCnxgh0BudJjBxTHleT6w5aF+6aJllb17xer9LS0pqto7a2Vv/5z386uEUA4B4c8u1McVYPAObYf1qMTvrCZ/Uw0Al2CSfxtaQddYqLC+/zduTIsR23AQMGBEwvKirSggULms0/Z84c3X///a2uc9u2bWEb34nmzp2rzMxM/c///E/E7gPmqxtYr4SKeKuHIelYoHbSTuphuJgSUEaLE37k6qikndbXNIm6BgCRtqbiLI0dWG71MOBArgwp0/vv1c4ve1t2/ybtiJ2IoNK+7BZQ0s0Sebt27VJSUpL/3wkJCUHnu/XWW3XNNde0uq7BgwfL4/Foz549AdOPHDmiqqoqeTyeoMt5PB7V19eruro6oOuksrLSv8y6dev04Ycf6pVXXpEk+XzHPoN69eqlO+64Q3fddVerY0PkWV03rUBQ2XmmhZN2rzuROqWDXbS3pkn2qGsej6fZFcErKyuVlJSkbt26tTp2AACcypUhJVpHUGk/BJTh5ZQumKSkpIAdupb07t1bvXu3HUDl5OSourpaZWVlysrKknRsR6yxsVHZ2dlBl8nKylLXrl21du1aTZo0SZJUXl6uiooK5eTkSJJ+//vfBxza9t577+naa6/VX/7yF51++ultjgvOYdqPeE0hG2Fl6EwLKGF/7a1pkj3qWk5OjlavXh2w7pKSEv86AMB0JnRT/vrfF+iqkzdYOgaEFyGlRUzbETsRQaV92C2ghH1lZmZq3LhxmjFjhhYtWqSGhgYVFBRoypQp6tevnyTpq6++0pgxY7RkyRKNGDFCycnJys/PV2FhoVJTU5WUlKQbb7xROTk5GjlypCQ1CyL37dvnv78Tz/kF5zOxPtJV2X6mhpPR+nHMKT9yuYWVde3666/Xk08+qdtvv13XXnut1q1bp9/97nd64403ovcAAABgGC6cgxYRfplt/2kxtnyOTO+iROuWLl2qjIwMjRkzRuPHj9eoUaP0zDPP+G9vaGhQeXm5Dh065J/2yCOP6OKLL9akSZP0ne98Rx6PR6+++qoVw3e8SB4O6vbwhYvqtM3Ux4e6g9ZYVdcGDRqkN954QyUlJRo6dKgeeughPffcc8rLywvbtgFApHGlb4SbazspTTi/londIidqCsHoqjSLHcNJyR47im4PYtqSmpqqZcuWtXh7enq6/9xbTRITE7Vw4UItXLiwXffx3e9+t9k64C4m10cOAW/O1HASaA8r69p3v/tdffDBB6ENGAAQgEO+nYVOSrSLXUMxp7Fr9yQAhMr0HzUI5uzRXRrN1xE/cgEA3IhuSoQTIaXFTN8JOx7hmLXs/vjb6bUOIDhCmEB2COkiwS7b7aS64/YrewMA0Jpf//sCq4eAMCGkREjo5Is+JzzmdtlRJIABzGKXz46m0M4OwV1nuGEbO4r6AQBwM7opES6uDilN+UJpl52w4zkhODOdUx5jO76+AZjDbp8hTgvy7BrA2u11AwAAAJeHlCax65dpJ4RopnFKOCnZ93UN2FmkDws15Qc+09k13Gti57FTewAAiD6ruyk55NsZXHt1b4QPVwAPD6cEk3ZF8AKYy+SrfbfH8WGfqVcFt2sgeSIrAkrqBwAAQHjQSWkQu//y76QOwGhy6uNm99czgJZZEco45TPl+A5Lq4NBU8YRLk55jQAAYFdWd1Mur8629P7Rea7vpEzvv1c7v+xt9TD87N4tItFZ2V5ODCab2G1HkS4YwB6cUCNPFCwgDHe3pVNCSBNFo35wZW8AAOAWrg8pETmElc05OZhsYreAEkDHWPUjnxODyhMRKoaO2gMAgBnWVJylsQPLrR4GbIrDvQ3ktC/aTYczuyGga4lbtt9pr13ArpzeecVnDY5n1euBLnwAsNaBHcn+PwDOQCelzDvkW3Jup8jxQZ3TOyzdEEoez66hATuZgD05tU4iNHatPQCA5joTNoa6bM9BNR2+L7SNbkp0FCElLOO0wNJtoeTx2EkE3MnqH/kIKt2N2gMA9mRC52OwMRBcAtYjpDSYm3a+7BhYujmUPJ6ddxLpogTsz021El+zuvZEq344/dQNAJzPhECyvU4cK6Fl59BNiY7o0DkpFy5cqPT0dCUmJio7O1ubNm1qcd5nn31W3/72t3XyySfr5JNPVm5ubqvzW8XUsMLqL+FWOP4clqacy9HEMZnAja9POJMT61q0mFA/+SxyF55voHXUNFjp+PNE2imgDMZJ22KVNRVnWT0E2EzIIeXLL7+swsJCFRUVafPmzRo6dKjy8vK0Z8+eoPOvX79eV155pd58802VlpZqwIABGjt2rL766qtOD94t+DIePCQMd1gYjftwEru/Lk0IVmAGp9Y1t3Vg2f0zCe1jwvNM/YDJnFrTYDa3BHlu2U7ASiGHlA8//LBmzJih6dOna8iQIVq0aJG6d++u559/Puj8S5cu1Y9//GMNGzZMGRkZeu6559TY2Ki1a9d2evBuYsKXclO1Fi6G8of2s/vrkR1MHI+61nmmvKfs/tmE1pnw/JryWgdaQk1DNNBhKFdve6jopkQoQgop6+vrVVZWptzc3K9XEBur3NxclZaWtmsdhw4dUkNDg1JTU1ucp66uTrW1tQF/0WD6F08TvpwDvA7hJNGoa1bVtGgzpYbyGeVMbnxe3dYNjc5z+r4arOX2ULIlPC5AeIUUUu7bt09Hjx5VWlpawPS0tDR5vd52reOnP/2p+vXrF1A8T3TfffcpOTnZ/zdgwIBQhgkgQpywk2hKkAIzRKOuUdOizwmfVTimbmC9Mc8n9QOmY18NkUAA1348Vi2jmxLt1aEL53TU//7v/2r58uX6wx/+oMTExBbnmzt3rmpqavx/u3btitoYTf8CasoXdbiLSTuJgEnaU9esrGnR7sQyqYbymWV/PIdAdNlhXw3RQXdg5/DYBUdQifaIC2XmXr16qUuXLqqsrAyYXllZKY/H0+qyDz74oP73f/9Xf/7zn3Xuuee2Om9CQoISEhJCGZqr1A2sV0JFvNXDgEs4aSfRpAAFZohGXaOmWafp84uaaT+m1R7qB+yAfTV0FsFaeDU9nj0H1Vg8EsA+QuqkjI+PV1ZWVsCJlJtOrJyTk9Picg888IDuueceFRcXa/jw4R0fLfxM+/IOZ3LS64wdTARDXQs/E99rTvosczo694/hfJToCGoaOorOv8ji8f0a3ZRoS0idlJJUWFioq6++WsOHD9eIESP06KOP6uDBg5o+fbokadq0aTr11FN13333SZLuv/9+zZ8/X8uWLVN6err/fCg9e/ZUz549w7gp4ZPef692ftnb6mG0iY5KRBI7iXALN9S1aDOxjtJVaT5T646JwTvQEmoa2ovQLProrATaFnJIOXnyZO3du1fz58+X1+vVsGHDVFxc7D9Bc0VFhWJjv27QfPrpp1VfX6/LL788YD1FRUVasGBB50YPdroQdqbuJHYGO5hojdPr2kWe7SrxZlg9DGPwA595TK471A/YjdNrGjqPcNJ6bg8r11ScpbEDy60eBgwVckgpSQUFBSooKAh62/r16wP+vXPnzo7cheVM7AJpDTtdCAeTdxQ7ih1MtIcb6lq0mVxH+YHPHE6sO4DVqGkIhnDSPG4OKwkq0ZKoXt0bkcUXfXQU5wADEAmm/0jA55517FB3rHr9cj5KAOHE+RDNx/MDfI2QshWm71wFY/oXfpjHya8ZO76HgUgg9GiZHcIyJ7HL4039AOAEhF/24cYwmYvoIBhCSgeyw5d/WM8uO4odxQ4mYAa7vBed/ploNR5fAIgeNwZeTuG2546gEicipGyDXXauTsTOAFrihteGXd+3gFPZ6T3phs/IaLLj42nl65WuZwCd4baAy8l4HuFWhJQOZ7cdA0SWG14PdgpDgGiyOvyw23vTjuGaSez6+NntdQoAEuGkU7nleaWbEscjpGwHu39hteuOAsKH1wAAdEzT5yefoe1j58fK7t/3ALiTG0Ist3PDc0xQiSZxVg8A0VM3sF4JFfFWDwNRZNcdxY5iBxMwW3r/vdr5ZW+rh9Fhx3+mUk+/5oRaY0L9sLrbGYC9uCG4wteanu+eg2osHgkQWXRStpMJX17Dwc4dDmg/Nz7PTnmPApFkQgjilPeqGz9nj+ekDlOnvCYBuAcBpXs5+bmnmxISnZSuRVelMzlhZ7Ej2MEE7MXuHZXHO/Fz18m11a01BgBM4eSACu3n5K7KNRVnaezAcquHAQsRUobASTtV0tc7G07eoXIDt+80ElAC9uS0mtrESaGlG+qLKTXEhC5nAGYjoMSJDuxIdmRQCXfjcO8QmfJlNpyccriW2/C8OfP9CESaSWGIG97Dxx8WbfLntl3GGU5ueP0BsD+3XOEZHePE1waHfbsbnZTwo7PSHtyw49ge7FwCzuDUjsrWtPQ5Hun6S/34mkk1xKQfDgCYxYkBFMLPiYd/c9i3exFSdoDTd6gIK83DjmUgk3YuAXSe0+tqe/FZHx3UEAB2QECJUHH4N5yAw707yA1fcN10yJeJePybS++/1xXvPSDSTOzc4r2NaOB1BsB0HN6NznDSa4fDvt2JkBLtQlgWHQSTLWPHEnA+3ueIFFN/5DLxBwMA1nFSwATrOCnoJqh0H0LKTjDxy26kEaKFH49p29z4XgMizdRwhPc7wo3XFADTOSlUgjl4TblPVVWVpk6dqqSkJKWkpCg/P18HDhxodZnDhw9r1qxZOuWUU9SzZ09NmjRJlZWVAfPcdNNNysrKUkJCgoYNG9ZsHevXr9ell16qvn37qkePHho2bJiWLl3aoW0gpOwkN3/xJVzrGLddPbWz3PweA9yK9z3CxeTXkqk/FACILoIkRJITXl90U7bf1KlTtXXrVpWUlGjVqlV6++23NXPmzFaXmT17tlauXKkVK1borbfe0u7du3XZZZc1m+/aa6/V5MmTg65jw4YNOvfcc/X73/9ef//73zV9+nRNmzZNq1atCnkbuHBOGHDC/+Yn++eiO18jiOwYk3csAae4yLNdJd4Mq4cRVNNngNvrKzqOOgLAdE4IkGA+J1z9m6t9t23btm0qLi7We++9p+HDh0uSnnjiCY0fP14PPvig+vXr12yZmpoaLV68WMuWLdPo0aMlSS+88IIyMzP17rvvauTIkZKkxx9/XJK0d+9e/f3vf2+2np/97GcB/7755pu1Zs0avfrqq7r44otD2g46KRERbu0WPHG73bTt4cSOJYAmfB4gVKaef/J4dFEC7sbh3bCC3V9zTuuorK2tDfirq6vr1PpKS0uVkpLiDyglKTc3V7Gxsdq4cWPQZcrKytTQ0KDc3Fz/tIyMDA0cOFClpaWdGk9NTY1SU1NDXo5OyjChm7J1wcI6u3dbEkBGhuk7loDTmNxN2YQai/aihgAwnd2DItjbgR3Jtu6ojLZuH/9TcbHhzS2ONB7LEQYMGBAwvaioSAsWLOjwer1er/r06RMwLS4uTqmpqfJ6vS0uEx8fr5SUlIDpaWlpLS7THr/73e/03nvv6Ve/+lXIyxJShhE7UaFpKeQzJbwkhIwudiwBtIbDv9EWu9QRuigB9yKghAnsHFQ66bDvXbt2KSkpyf/vhISEoPPNmTNH999/f6vr2rZtW1jH1hlvvvmmpk+frmeffVbf/OY3Q16ekDLMCCo7j3DQfeyyYwk4lR26KZsQVuJE1BAAdkBACZPY+TyVTgkqk5KSAkLKltx666265pprWp1n8ODB8ng82rNnT8D0I0eOqKqqSh6PJ+hyHo9H9fX1qq6uDuimrKysbHGZ1rz11lu65JJL9Mgjj2jatGkhLy8RUkYEQSXQPuxYAugoai3sWEPoogTch3ASJrNrV6VTgsr26N27t3r3bvs7b05Ojqqrq1VWVqasrCxJ0rp169TY2Kjs7Oygy2RlZalr165au3atJk2aJEkqLy9XRUWFcnJyQhrn+vXrdfHFF+v+++9v84rireHCORFixy/OQLTY4aIGCK6qqkpTp05VUlKSUlJSlJ+frwMHDrS6zOHDhzVr1iydcsop6tmzpyZNmqTKysqAeWJiYpr9LV++PJKbghPYMTzhs8S97Pi82/E95gaRqmtN/vWvf6l///6KiYlRdXV1wG1Lly7V0KFD1b17d/Xt21fXXnut/vWvf4Vr02AAAkrYAa9TZ8jMzNS4ceM0Y8YMbdq0Se+8844KCgo0ZcoU/5W9v/rqK2VkZGjTpk2SpOTkZOXn56uwsFBvvvmmysrKNH36dOXk5Piv7C1J//jHP7RlyxZ5vV795z//0ZYtW7RlyxbV1x87CvbNN9/UhAkTdNNNN2nSpEnyer3yer2qqqoKeTsIKSPIjl+ggUjjfWFvU6dO1datW1VSUqJVq1bp7bffbvOXstmzZ2vlypVasWKF3nrrLe3evVuXXXZZs/leeOEF/fOf//T/TZw4MUJbgZbYNUQhrHQPnmuEWyTrmiTl5+fr3HPPbTb9nXfe0bRp05Sfn6+tW7dqxYoV2rRpk2bMmBGW7YL1CH5gJ3a84rzTrvYdDkuXLlVGRobGjBmj8ePHa9SoUXrmmWf8tzc0NKi8vFyHDh3yT3vkkUd08cUXa9KkSfrOd74jj8ejV199NWC91113nc477zz96le/0ieffKLzzjtP5513nnbv3i1Jeumll3To0CHdd9996tu3r/+vpdrYGg73jjAORwOOYafS/rZt26bi4mK99957Gj58uCTpiSee0Pjx4/Xggw/6f6E7Xk1NjRYvXqxly5Zp9OjRko6FkZmZmXr33XcDfqFLSUnp0LlPgCacr9K57F5D7PoDgNNFuq49/fTTqq6u1vz58/V///d/AespLS1Venq6brrpJknSoEGD9KMf/ajNiyPAfHYLeoDj2e3wbzcd9t0eqampWrZsWYu3p6eny+fzBUxLTEzUwoULtXDhwhaXW79+fav3++KLL+rFF18MZagtopMyCuz+xRroDLpenKO0tFQpKSn+HTlJys3NVWxsrDZu3Bh0mbKyMjU0NCg3N9c/LSMjQwMHDlRpaWnAvLNmzVKvXr00YsQIPf/8880KKKLDCWEKnzvOwXOJSIpkXfv444919913a8mSJYqNbb7LlZOTo127dmn16tXy+XyqrKzUK6+8ovHjx4dxCxFtBJRwAru9jumodBZCyijhCzbchh1L69XW1gb81dXVdWp9Xq9Xffr0CZgWFxen1NRUeb3eFpeJj48PuFqcJKWlpQUsc/fdd+t3v/udSkpKNGnSJP34xz/WE0880anxouOcEFRKfA7ZmZOeO6e8n6wW7pomRa6u1dXV6corr9Qvf/lLDRw4MOh6LrzwQi1dulSTJ09WfHy8PB6PkpOTW+1kgdnsFuwArbHb65mg0jk43DuKOAwNbuCUncpoif9kt+Ji48O6ztjGYycwHjBgQMD0oqIiLViwoNn8c+bMafPwsm3btoVtfMHceeed/v8/77zzdPDgQf3yl7/0HwYHdAb11x6cWD/cFlDGl39leU2TrK9rc+fOVWZmpv7nf/6nxXk+/vhj3XzzzZo/f77y8vL0z3/+U7fddpuuv/56LV68OGJjQ/jZLcwB2stuh37DGQgpLcB5KuFETty5tLtdu3YpKSnJ/++EhISg891666265pprWl3X4MGD5fF4tGfPnoDpR44cUVVVVYvnkvR4PKqvr1d1dXVA10llZWWr55/Mzs7WPffco7q6uhbHjci6yLNdJd4Mq4cRVsd/TlGHzeHU+uG2gDLS2lvTJOvr2rp16/Thhx/qlVdekST/6Ut69eqlO+64Q3fddZfuu+8+XXjhhbrtttskSeeee6569Oihb3/727r33nvVt2/fVscPMxBQwumaXuN2CCvXVJyl/0r9yOphoJMIKS1CUAmncOrOpRMkJSUF7NC1pHfv3urdu+3Po5ycHFVXV6usrExZWVmSju2INTY2Kjs7O+gyWVlZ6tq1q9auXatJkyZJksrLy1VRUaGcnJwW72vLli06+eSTCSgt5sSgsgmBpbWoHQhVe2uaZH1d+/3vf6///Oc//mXee+89XXvttfrLX/6i008/XZJ06NAhxcUF7op16dJFkjgns00QUMJN7NJVue7LM6weAjqJkNJCHH4GO2MH030yMzM1btw4zZgxQ4sWLVJDQ4MKCgo0ZcoU/xVQv/rqK40ZM0ZLlizRiBEjlJycrPz8fBUWFio1NVVJSUm68cYblZOT478C6sqVK1VZWamRI0cqMTFRJSUl+sUvfqGf/OQnVm4u/n9ODiqbEFhGh5vqBl2U9hCputYURDbZt2+f//6aui8vueQSzZgxQ08//bT/cO9bbrlFI0aMCHpVcZiFgBJuZJegEvZGSGkAuiphF27awURwS5cuVUFBgcaMGaPY2FhNmjRJjz/+uP/2hoYGlZeX69ChQ/5pjzzyiH/euro65eXl6amnnvLf3rVrVy1cuFCzZ8+Wz+fTN77xDT388MOaMWNGVLcNLXNDUNmEwDJ83FozCCjtJRJ1rT2uueYa7d+/X08++aRuvfVWpaSkaPTo0W2eSxPWIpyE2xFUItIIKQ1BVyVM5tYdTTSXmpqqZcuWtXh7enp6s8PUEhMTtXDhwhavWDpu3DiNGzcurOMEwuHEzz5qdOuoFQSUdhSJunai7373u0EP4b7xxht14403hjZgWIaAEjjGTuephP0QUhqGrkqYgp1NAMdzUzdlS4J9Lrq5ZlMnAhFQAs5EOAkER1clIoGQ0kB0VcIq7HACaA1BZXNuCC6pDW0joASciYASaB1BJcKNkNJghJWIBnY+AYSCoLJtbX2umljXqQUdR0AJOBMBJdA+BJUIJ0JKGyCsRLixMwqgMwgqO6czn8EtfRfgc90aBJSA8xBOAqHjPJUIF0JKGyGsRGewAwsgnJrCGcLK6OKz3BwElIDzEFACnUNXJTqLkNKGCCvRXuzMAog0uirhRgSUgLMQTgLhQ1CJziCktLHjAygCS0iEkgCsQVAJNyGgBJyFgBIIP4JKdBQhpUPQXelOhJIATEFQCacjnASchXASiCyCSnQEIaXD0F3pbISSAEzGeSrhVASUgHMQTgLRwwV1ECpCSgcjsLQ3AkkAdkVXJZyCcBJwFgJKwBp0VaK9CCld4sTAi9DSPISSAJyErkrYHQEl4ByEk4D1CCrRHoSULkVoaR3CSABuQlcl7IZwEnAWAkrAHASVaAshJSQRWkYCYSQAHENXJeyAcBJwFsJJwEycpxKtIaREUC0FbISXXyOEBIDQEFbCRISTgLMQTgL2QFclgiGkREjaCuacEmISQAJA5BBWwgSEk4CzEE4C9kNQiRMRUiKsQg33Ih1qEjYCgLkIK2EFwknAWQgnAXsjqMTxCClhKUJEAMDxoRGBJSKFcBJwHgJKwBk4TyWaEFICAABj0F2JcCKYBJyJcBJwJroqQUgJAACMQ3clOopgEnAuwknA+Qgq3Y2QEgAAGI3AEm0hmAScjXAScBeCSvcipAQAALZxYhhFaOleBJOA8xFOAu5FUOlOhJQAAMC2CC3dg1AScA/CSQASF9RxI0JKAADgGISWzkAgCbgT4SSAYOiqdA9CSgAA4FjBwi6CS7MQSAIgnATQFoJKdyCkBAAArtJSKEZ4GVmEkQCORzAJIFQElc5HSAkAAKC2QzRCzLYRRAJoC+EkgM7gPJXORkgJAADQDu0N4JwWZhI8AggHwkkA4URXpTMRUgIAAIQRoR4AfI1wEkCkEFQ6DyElAMcJZ0DgtI4oAACAaCCcBBANBJXOQkgJwHhWdiUdf9+HDzToHctGAgAAYD7CSQDRRlDpHISUACzHoZEAAAD2dvCLJMUmJlo9DAAudWBHshoPH7Z6GOgkW4WU30v7RH85cI7VwwAQIkJIAAAAAADQGluFlNLXYQfniQPMQQgJAAAAAAA6w3YhZZOLPNsJKoEoIYQEAAAAAACRZNuQUqKrEggXQkgAAAAAAGAlW4eUTQgrgbYRRAIAAACAOU76LDYs69l/emNY1gNYzREhZRPCSrgVASQAAAAAmCdcQWRH74MAE3biqJCyCWElnIYQEgAAAADMF41QMhTBxkNwCVM5MqRscnywQ2AJUxFAAgAAAIB9mRZMtuXE8RJawhSODimPd2IQRGiJaCCABAAAAADnsVsw2RpCS5jCNSHliQgt0RmEjwAAAADgLk4KJltz/HYSWCKaXBtSnihY6ERw6S4EjwAAAACAE7klnAyGLktEEyFlK1oKrQgv7YHQEQAAAADQUW4OJ1tClyUiiZCyA9oKvwgxw4uwEQAAAAAQLYST7dP0OBFWIlwIKSOgI6GaE4NNwkUAAAAAgF0QTnYM3ZUIF0JKQxDoAQAAAAAQfYST4UNgic7gnQgAAAAAAFyJgDJyTvoslscXIenQq2XhwoVKT09XYmKisrOztWnTplbnX7FihTIyMpSYmKhzzjlHq1ev7tBgAQDWqqqq0tSpU5WUlKSUlBTl5+frwIEDrS5z+PBhzZo1S6eccop69uypSZMmqbKystl8L774os4991wlJiaqT58+mjVrVqQ2oxnqGgC4U6TqWkxMTLO/5cuXB8xTV1enO+64Q6eddpoSEhKUnp6u559/vtPbRE0D2ocALXp4rKMjUjXtpptuUlZWlhISEjRs2LCg6/H5fHrwwQd15plnKiEhQaeeeqp+/vOfh7wNIb9KXn75ZRUWFqqoqEibN2/W0KFDlZeXpz179gSdf8OGDbryyiuVn5+vDz74QBMnTtTEiRP10UcfhTxYAIC1pk6dqq1bt6qkpESrVq3S22+/rZkzZ7a6zOzZs7Vy5UqtWLFCb731lnbv3q3LLrssYJ6HH35Yd9xxh+bMmaOtW7fqz3/+s/Ly8iK5KX7UNQBwr0jVNUl64YUX9M9//tP/N3HixIDbf/CDH2jt2rVavHixysvL9dvf/lZnnXVWp7aHmga0D4GZNZrCSh7/yIhkTbv22ms1efLkFtdz880367nnntODDz6o7du36/XXX9eIESNC3oYYn8/nC2WB7Oxsfetb39KTTz4pSWpsbNSAAQN04403as6cOc3mnzx5sg4ePKhVq1b5p40cOVLDhg3TokWL2nWftbW1Sk5O1rx3xyqxZ9dQhgsAYXP4QIPuHblGNTU1SkpK6tS6mj7Xcvtcp7jY+DCN8JgjjfX6857nwjLO423btk1DhgzRe++9p+HDh0uSiouLNX78eH355Zfq169fs2VqamrUu3dvLVu2TJdffrkkafv27crMzFRpaalGjhypf//73zr11FO1cuVKjRkzJmzjba9o1zVqGgBThKuu+Wta7/zI1LS9i8Ne06TI1TXpWCflH/7wh2bBZJPi4mJNmTJFn3/+uVJTU8O2TVbuq512/72KTUwMz4YAEUI4Zp5wnrey8fBhffHTeeGra31/FJm69s9f2WZf7XgLFizQa6+9pi1btjS773PPPVcfffRRp39sC+nCOfX19SorK9PcuXP902JjY5Wbm6vS0tKgy5SWlqqwsDBgWl5enl577bUW76eurk51dXX+f9fU1BybfvBIKMMFgLBq+gwK8bedVh3x1UthPp/0EV+9pGPF9XgJCQlKSEjo8HpLS0uVkpLiL3qSlJubq9jYWG3cuFH/7//9v2bLlJWVqaGhQbm5uf5pGRkZGjhwoL/wlZSUqLGxUV999ZUyMzO1f/9+XXDBBXrooYc0YMCADo+3PaJR16hpAEwV7rpmp5omRa6uNZk1a5auu+46DR48WNdff72mT5+umJgYSdLrr7+u4cOH64EHHtCvf/1r9ejRQ9///vd1zz33qFu3bh3aHqv31RoPH+7QuIFo6fl5rI5aPQg00/3jY/89MLjzBaTpc8iNdS3SNa01K1eu1ODBg7Vq1SqNGzdOPp9Pubm5euCBB0L+IS6kkHLfvn06evSo0tLSAqanpaVp+/bgV6f2er1B5/d6vS3ez3333ae77rqr2fRfjlkXynABICL+9a9/KTk5uVPriI+Pl8fj0XrvkjCNKlDPnj2bBXxFRUVasGBBh9fp9XrVp0+fgGlxcXFKTU1t8TPd6/UqPj5eKSkpAdOPrwOff/65Ghsb9Ytf/EKPPfbYsS7DefN00UUX6e9//7vi48P76+XxolHXqGkATNfZuvZ1Tft1GEf1tUjUNClydU2S7r77bo0ePVrdu3fXmjVr9OMf/1gHDhzQTTfdJOlY7fvrX/+qxMRE/eEPf9C+ffv04x//WP/617/0wgsvdGh7rN5X21V0bwdGDQDhF7661rHP47bYaV+tPT7//HN98cUXWrFihZYsWaKjR49q9uzZuvzyy7VuXWj7PCGFlNEyd+7cgF/0qqurddppp6mioqLTwYDJamtrNWDAAO3atSvsh7OYxC3bKblnW92ynTU1NRo4cGBYDstKTEzUjh07VF9fH4aRNefz+fzdGk1a+mVuzpw5uv/++1td37Zt28I2thM1NjaqoaFBjz/+uMaOHStJ+u1vfyuPx6M333wzauemjBS31jTJPZ8NbKfzuGVbw1XXTKppkvV1TZLuvPNO//+fd955OnjwoH75y1/6Q8rGxkbFxMRo6dKl/lrw8MMP6/LLL9dTTz3V4W7KaHBrXXPL54Lknm1lO53HiXXNhJrWlsbGRtXV1WnJkiU688wzJUmLFy9WVlaWysvLQzoEPKSQslevXurSpUuzK/1UVlbK4/EEXcbj8YQ0v9Rym2tycrLj31SSlJSUxHY6jFu21S3bGRsbnnPZJCYmKtGAczfdeuutuuaaa1qdZ/DgwfJ4PM1OvH/kyBFVVVW1WgPq6+tVXV0d8Avd8XWgb9++kqQhQ4b4b+/du7d69eqlioqKDmxR+0Wjrrm9pknu+WxgO53HLdsajrpmSk2TrK9rwWRnZ+uee+5RXV2dEhIS1LdvX5166qkBoV5mZqZ8Pp++/PJLnXHGGW1v6AnYV4sOt3wuSO7ZVrbTeZxU10ysaSfq27ev4uLi/AGldKymSVJFRUVIIWVIz1x8fLyysrK0du1a/7TGxkatXbtWOTk5QZfJyckJmF+SSkpKWpwfABBdvXv3VkZGRqt/8fHxysnJUXV1tcrKyvzLrlu3To2NjcrOzg667qysLHXt2jWgDpSXl6uiosJfBy688EL/9CZVVVXat2+fTjvttEhssh91DQCcx+q6FsyWLVt08skn+8O9Cy+8ULt379aBAwf883zyySeKjY1V//79O7Td1DQAcB4Ta9qJLrzwQh05ckSfffaZf9onn3wiSaHvz/lCtHz5cl9CQoLvxRdf9H388ce+mTNn+lJSUnxer9fn8/l8V111lW/OnDn++d955x1fXFyc78EHH/Rt27bNV1RU5Ovatavvww8/bPd91tTU+CT5ampqQh2urbCdzuOWbWU73WPcuHG+8847z7dx40bfX//6V98ZZ5zhu/LKK/23f/nll76zzjrLt3HjRv+066+/3jdw4EDfunXrfO+//74vJyfHl5OTE7DeSy+91PfNb37T98477/g+/PBD38UXX+wbMmSIr76+PuLbFO265qbXkVu2le10Hrdsq1u2szWRqGuvv/6679lnn/V9+OGHvk8//dT31FNP+bp37+6bP3++f579+/f7+vfv77v88st9W7du9b311lu+M844w3fdddd1anvYV4sct2ynz+eebWU7ncdN2xpMpPbVPv30U98HH3zg+9GPfuQ788wzfR988IHvgw8+8NXV1fl8Pp/v6NGjvvPPP9/3ne98x7d582bf+++/78vOzvZddNFF/197dxtTZf3HcfyLwDlAYOAcCIU1aGQjy6WDoTlWY3OzWdkDXTaG3VmDnshWuaidlmXMudbGKJfd2AMXs6atBdGNyZqmazPYWJDNDuVqwqbrhoXE3ef/yLM/eiCvA+dc55zr/dp44MV19PsVPO/xEz2Od3B8SClJLS0tWrp0qXw+nyoqKnTy5MnQ+6qrq1VXVzft/oMHD6qsrEw+n0/l5eVqb2939OuNjo4qEAhodHQ0knETBnsmH6/syp7eceHCBT344IPKzs7WwoUL9fDDD2t4eDj0/oGBAZmZjh49Grp28eJF1dfXKy8vT1lZWdq4caPOnTs37ef966+/9Mgjjyg3N1eLFi3Sxo0bdfbs2VitFdOueenzyCu7smfy8cquXtlzNtHo2meffaYVK1YoOztb11xzjW6//Xbt3btXk5OT037t/v5+1dTUKDMzU9dff70aGxs1MjIy5534Wi06vLKn5J1d2TP5eGnXcKL1tVp1dbXM7Iq3gYGB0D2///67HnjgAWVnZ6ugoEBbt27VhQsXHO+QIs3Ta7MDAAAAAAAAQATm59UfAAAAAAAAACBCHFICAAAAAAAAcBWHlAAAAAAAAABcxSElAAAAAAAAAFfFzSFla2ur3XjjjZaRkWGVlZX23XffzXr/hx9+aMuWLbOMjAxbvny5dXR0xGjSuXGy5759+2zt2rWWl5dneXl5VlNT85+/L/HC6cfzkra2NktJSbH7778/ugPOI6e7/vnnn9bQ0GCFhYXm9/utrKwsIT5/ne75+uuv280332yZmZlWXFxs27dvt9HR0RhNG5lvvvnGNmzYYEVFRZaSkmIff/zxfz6mq6vL7rjjDvP7/XbTTTfZ/v37oz4n4p9XmmZG1/5LonXNK00zo2szoWsIxytd80rTzOjaTBK1azQtPJqWgBy/HngUtLW1yefz6d1339UPP/ygxx9/XLm5uRoaGgp7//Hjx5Wamqrdu3err69Pzz//vNLT09Xb2xvjyZ1xuueWLVvU2tqq7u5u9ff3a+vWrbr22mv122+/xXhyZ5zuecnAwICuu+46rV27Vvfdd19shp0jp7v++++/WrVqldavX69jx45pYGBAXV1d6unpifHkzjjd88CBA/L7/Tpw4IAGBgb0+eefq7CwUNu3b4/x5M50dHSoqalJhw4dkpnp8OHDs94fDAaVlZWlxsZG9fX1qaWlRampqers7IzNwIhLXmmaRNeSrWteaZpE12ZC1xCOV7rmlaZJdC3ZukbTwqNpiSkuDikrKirU0NAQ+vHk5KSKior06quvhr1/06ZNuueee6Zdq6ys1BNPPBHVOefK6Z6Xm5iYUE5Ojt5///1ojTgvItlzYmJCq1ev1ttvv626urqEiJ7kfNc333xTJSUlGhsbi9WI88Lpng0NDbr77runXWtsbNSaNWuiOud8uprwPfPMMyovL592bfPmzVq3bl0UJ0O880rTJLqWbF3zStMkujYTuoZwvNI1rzRNomvJ1jWaFh5NS0yu/3PvsbExO3XqlNXU1ISuLViwwGpqauzEiRNhH3PixIlp95uZrVu3bsb740Eke15uZGTExsfHbdGiRdEac84i3fOll16y/Px8e/TRR2Mx5ryIZNdPPvnEqqqqrKGhwQoKCuzWW2+1Xbt22eTkZKzGdiySPVevXm2nTp0K/TODYDBoHR0dtn79+pjMHCuJ+FyE6PJK08zoWrJ1zStNM6Nrs0nU5yNEj1e65pWmmdG1ZOsaTZtZIj4XwSzN7QHOnz9vk5OTVlBQMO16QUGB/fjjj2EfMzg4GPb+wcHBqM05V5Hseblnn33WioqKrviDFk8i2fPYsWP2zjvvWE9PTwwmnD+R7BoMBu3rr7+2hx56yDo6OuzMmTNWX19v4+PjFggEYjG2Y5HsuWXLFjt//rzdeeedJskmJibsySeftOeeey4WI8fMTM9Ff//9t128eNEyMzNdmgxu8UrTzOhasnXNK00zo2uzoWu4nFe65pWmmdG1ZOsaTZsZTUtMrn8nJa5Oc3OztbW12eHDhy0jI8PtcebN8PCw1dbW2r59+2zx4sVujxN1U1NTlp+fb2+99ZatXLnSNm/ebE1NTbZ37163R5tXXV1dtmvXLnvjjTfs+++/t0OHDll7e7vt3LnT7dEAxAm6lvi80jQzugZgdsnaNDO6loxdo2mIZ65/J+XixYstNTXVhoaGpl0fGhqyJUuWhH3MkiVLHN0fDyLZ85I9e/ZYc3OzffXVV3bbbbdFc8w5c7rnzz//bL/88ott2LAhdG1qasrMzNLS0uz06dNWWloa3aEjFMnHtLCw0NLT0y01NTV07ZZbbrHBwUEbGxszn88X1ZkjEcmeL7zwgtXW1tpjjz1mZmbLly+3f/75x7Zt22ZNTU22YEFy/P3ITM9FCxcu5G/mPMorTTOja8nWNa80zYyuzYau4XJe6ZpXmmZG15KtazRtZjQtMbn+2efz+WzlypV25MiR0LWpqSk7cuSIVVVVhX1MVVXVtPvNzL788ssZ748HkexpZrZ7927buXOndXZ22qpVq2Ix6pw43XPZsmXW29trPT09obd7773X7rrrLuvp6bHi4uJYju9IJB/TNWvW2JkzZ0JhNzP76aefrLCwMC6jZxbZniMjI1fE7VLsJUVv2BhLxOciRJdXmmZG15Kta15pmhldm02iPh8herzSNa80zYyuJVvXaNrMEvG5CGZx8erebW1t8vv92r9/v/r6+rRt2zbl5uZqcHBQklRbW6sdO3aE7j9+/LjS0tK0Z88e9ff3KxAIKD09Xb29vW6tcFWc7tnc3Cyfz6ePPvpI586dC70NDw+7tcJVcbrn5RLl1eIk57uePXtWOTk5euqpp3T69Gl9+umnys/P18svv+zWClfF6Z6BQEA5OTn64IMPFAwG9cUXX6i0tFSbNm1ya4WrMjw8rO7ubnV3d8vM9Nprr6m7u1u//vqrJGnHjh2qra0N3R8MBpWVlaWnn35a/f39am1tVWpqqjo7O91aAXHAK02T6Fqydc0rTZPoGl2DE17pmleaJtG1ZOsaTaNpySQuDiklqaWlRUuXLpXP51NFRYVOnjwZel91dbXq6uqm3X/w4EGVlZXJ5/OpvLxc7e3tMZ44Mk72vOGGG2RmV7wFAoHYD+6Q04/n/0uU6F3idNdvv/1WlZWV8vv9Kikp0SuvvKKJiYkYT+2ckz3Hx8f14osvqrS0VBkZGSouLlZ9fb3++OOP2A/uwNGjR8P+mbu0W11dnaqrq694zIoVK+Tz+VRSUqL33nsv5nMj/nilaRJdk5Kra15pmkTXJLqGq+eVrnmlaRJdk5KrazSNpiWLFCmJvp8XAAAAAAAAQMJx/f+kBAAAAAAAAOBtHFICAAAAAAAAcBWHlAAAAAAAAABcxSElAAAAAAAAAFdxSAkAAAAAAADAVRxSAgAAAAAAAHAVh5QAAAAAAAAAXMUhJQAAAAAAAABXcUgJAAAAAAAAwFUcUgIAAAAAAABwFYeUAAAAAAAAAFzFISUAAAAAAAAAV/0PkHQlh8H/IVwAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, "source": [ "plotter = Plotter()\n", "plotter.plot(pinn)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "id": "7e6fe021", - "metadata": {}, "source": [ "### The problem solution with extra-features" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "id": "f39c0033", - "metadata": {}, "source": [ "Now, the same problem is solved in a different way.\n", "A new neural network is now defined, with an additional input variable, named extra-feature, which coincides with the forcing term in the Laplace equation. \n", @@ -257,44 +199,12 @@ "**NB**: `extra_features` always needs a `list` as input, you you have one feature just encapsulated it in a class, as in the next cell.\n", "\n", "Finally, we perform the same training as before: the problem is `Poisson`, the network is composed by the same number of neurons and optimizer parameters are equal to previous test, the only change is the new extra feature." - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 6, - "id": "80a4a3b8", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00000] 8.334048e-02 1.480584e-02 1.326940e-02 1.505190e-02 1.282023e-02 2.739312e-02 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00001] 2.369340e-02 1.785535e-03 1.441936e-03 1.978278e-03 1.193302e-03 1.729435e-02 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00100] 4.190661e-05 5.259407e-06 2.207154e-06 1.740728e-06 1.258537e-06 3.144078e-05 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00200] 2.964181e-06 3.873027e-08 3.952280e-08 6.926503e-08 4.859637e-08 2.768067e-06 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00300] 2.477657e-06 3.019578e-08 3.888974e-08 5.290904e-08 4.751930e-08 2.308143e-06 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00400] 2.054579e-06 2.595518e-08 3.504910e-08 4.605295e-08 4.163064e-08 1.905891e-06 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00500] 1.716277e-06 2.342572e-08 3.247192e-08 4.101565e-08 3.697489e-08 1.582388e-06 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00600] 1.461072e-06 2.217194e-08 3.119703e-08 3.734558e-08 3.372288e-08 1.336635e-06 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00700] 1.275204e-06 2.180191e-08 3.080508e-08 3.476259e-08 3.154803e-08 1.156287e-06 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00800] 1.141423e-06 2.190318e-08 3.084367e-08 3.297679e-08 3.010750e-08 1.025592e-06 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00900] 1.043816e-06 2.220373e-08 3.104670e-08 3.163695e-08 2.905372e-08 9.298745e-07 \n", - "[epoch 01000] 9.697858e-07 2.242846e-08 3.111799e-08 3.060282e-08 2.824710e-08 8.573894e-07 \n" - ] - } - ], + "execution_count": null, "source": [ "class SinSin(torch.nn.Module):\n", " \"\"\"Feature: sin(x)*sin(y)\"\"\"\n", @@ -315,50 +225,36 @@ " )\n", "\n", "pinn_feat = generate_samples_and_train(model_feat, problem)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "id": "568b88a1", - "metadata": {}, "source": [ "The predicted and exact solutions and the error between them are represented below.\n", "We can easily note that now our network, having almost the same condition as before, is able to reach an additional order of magnitude in accuracy." - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 7, - "id": "9826e8e1", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABToAAAH/CAYAAAB3vmLZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACkBklEQVR4nOzde3gU9d3//1cSSMIpQQQSEDBQDwFFUKgxivZWI7FQKhUvUakoIlQLVok3CoqAh5Z6PlSUWzyg32JFrFIFGk1BpEoEjdIqAlaFgtIEkCYBNAfI/v7gl5Ulp91kdufzmXk+rourdTO7OzM7O+99v+YzM3GBQCAgAAAAAAAAALBYvNszAAAAAAAAAAAtRdAJAAAAAAAAwHoEnQAAAAAAAACsR9AJAAAAAAAAwHoEnQAAAAAAAACsR9AJAAAAAAAAwHoEnQAAAAAAAACsR9AJAAAAAAAAwHoEnQAAAAAAAACsR9AJAAAAAAAAwHoRB52rV6/WiBEj1L17d8XFxWnJkiVNPmfVqlU67bTTlJSUpOOOO04LFixoxqwCAKJl7ty5ysjIUHJysrKysrRu3bpGp1+8eLEyMzOVnJys/v37a/ny5SF/DwQCmjlzprp166Y2bdooJydH//rXv0Km+fzzz3XRRRepc+fOSklJ0ZAhQ/T22287vmyNoaYBgDdR16hrAOAlbtS1PXv2aMyYMUpJSVHHjh01fvx47du3L/j3zZs369xzz1VaWpqSk5PVp08fzZgxQ9XV1cFp5s+fr7PPPltHHXWUjjrqKOXk5DQ57y0VcdC5f/9+DRgwQHPnzg1r+i1btmj48OE699xztX79et1000269tpr9eabb0Y8swAA5y1atEh5eXmaNWuWPvroIw0YMEC5ubnauXNnvdOvWbNGl19+ucaPH6+PP/5YI0eO1MiRI/Xpp58Gp7nvvvv02GOPad68eVq7dq3atWun3NxcVVRUBKf52c9+pgMHDmjlypUqKirSgAED9LOf/UzFxcVRX+Za1DQA8B7qGnUNALzErbo2ZswYbdiwQQUFBVq6dKlWr16tiRMnBv/eunVrjR07Vm+99ZY2b96sRx55RPPnz9esWbOC06xatUqXX3653n77bRUWFqpnz54aOnSovvnmmyisqf9foAUkBV577bVGp7nlllsCJ510Ushjo0ePDuTm5rbkrQEADjn99NMDkyZNCv73wYMHA927dw/MmTOn3ukvvfTSwPDhw0Mey8rKCvzqV78KBAKBQE1NTSA9PT1w//33B/9eWloaSEpKCvzpT38KBAKBwK5duwKSAqtXrw5OU15eHpAUKCgocGzZIkFNAwBvoK4dQl0DAG9wo6599tlnAUmBDz74IDjNX//610BcXFzgm2++aXBep0yZEhgyZEiDfz9w4ECgQ4cOgeeff76RJW6ZVtGLUA8pLCxUTk5OyGO5ubm66aabGnxOZWWlKisrg/9dU1OjPXv26Oijj1ZcXFy0ZhUAGhUIBLR37151795d8fEtv8RxRUWFqqqqHJizugKBQJ39ZVJSkpKSkkIeq6qqUlFRkaZPnx58LD4+Xjk5OSosLKz3tQsLC5WXlxfyWG5ubvD0uC1btqi4uDhk35+amqqsrCwVFhbqsssu09FHH60TTzxRL7zwQvB0uf/7v/9T165dNWjQoJYselRR0wB4iZN1zYSaJlHXIkVdA+Al1LVDnKhrhYWF6tixowYPHhycJicnR/Hx8Vq7dq1+8Ytf1HnfL774Qvn5+br44osbXPbvvvtO1dXV6tSpU4PTtFTUg87i4mKlpaWFPJaWlqby8nJ9//33atOmTZ3nzJkzR3feeWe0Zw0AmmX79u3q0aNHi16joqJCvXq1065dNQ7NVaj27duHXD9FkmbNmqXZs2eHPLZ7924dPHiw3v30pk2b6n3thvbrtafm1f5vY9PExcXpb3/7m0aOHKkOHTooPj5eXbt2VX5+vo466qjIFjaGqGkAvKildc2UmiZR1yJFXQPgRdS1lte14uJide3aNeTvrVq1UqdOnepckuXMM8/URx99pMrKSk2cOFF33XVXvfMlSbfeequ6d+9e5yCbk6IedDbH9OnTQ9LnsrIy9erVS1NXnKekdkbOMoD/38gO/3B7FqJm374a/U/WLnXo0KHFr1VVVaVdu2q0am1XtW/v7OiHffsC+p+sndq+fbtSUlKCj9d3hNAtgUBAkyZNUteuXfX3v/9dbdq00dNPP60RI0bogw8+ULdu3dyeRcdQ0wCYqnL/Ad1//soW1zW/1zSJutarVy8d89A0xbdJVuL2RFfmq8P2gCvv21IpX1U0PRF8rbxPstuz4Lq9PcOrLTWVFdry4F3UtRhbtGiR9u7dq3/84x+aOnWqHnjgAd1yyy11pvv973+vl156SatWrVJycvS266h3WOnp6SopKQl5rKSkRCkpKfUeIZQaHrKb1K6Vktu3jsp8AnBGfmBw0xMZ4pKUj5r1PCdPy2rfPk7tO7T8NPhQh448pqSkhBTP+nTu3FkJCQn17qfT09PrfU5D+/Xa6Wv/t6SkJKSxKykp0cCBAyVJK1eu1NKlS/Xf//43OI9PPPGECgoK9Pzzz2vatGlhLmtsUdMAeJFTdc3tmiZR1yLlZF2Lb5Os+DbJSkh2J+j87nipw7/tCzv3Zx5q9lO/IPBEqLLjDm0bCS7Ph5v2HnuoPkW6DqhrLa9r6enpdW52dODAAe3Zs6fO+/bs2VOS1K9fPx08eFATJ07UzTffrISEHz65Bx54QL///e/1t7/9TaecckqTy90STn9idWRnZ2vFihUhjxUUFCg7Ozvabw0AjXql/LR6//lJYmKiBg0aFLKfrqmp0YoVKxrcTze1X+/du7fS09NDpikvL9fatWuD03z33XeSVOfaOfHx8aqpic4pIk6gpgGA2ahrkYlGXavsFZ1r2nldbagFlB2X7PvtYe+xccGQ0+/cqmvZ2dkqLS1VUVFRcJqVK1eqpqZGWVlZDc5vTU2NqqurQ2rffffdp7vvvlv5+fkh1/yMlohHdO7bt09ffPFF8L+3bNmi9evXq1OnTurVq5emT5+ub775Ri+88IIk6brrrtPjjz+uW265Rddcc41Wrlypl19+WcuWLXNuKQDAQbVhZ3NHfNomLy9PV111lQYPHqzTTz9djzzyiPbv369x48ZJksaOHatjjjlGc+bMkSTdeOON+slPfqIHH3xQw4cP10svvaQPP/xQTz31lKRDR1Bvuukm3XPPPTr++OPVu3dv3XHHHerevbtGjhwp6VDhPOqoo3TVVVdp5syZatOmjebPn68tW7Zo+PDhMVt2ahoAeA91zf26VtmrSknbYj+yc++xcVaO6qxVG24xutOf/B5u1iLgrMuNuta3b19deOGFmjBhgubNm6fq6mpNnjxZl112mbp37y5JWrhwoVq3bq3+/fsrKSlJH374oaZPn67Ro0erdetDZ67de++9mjlzpl588UVlZGQEr+/Zvn17tW/fPirrK+Kg88MPP9S5554b/O/a67NcddVVWrBggf7zn/9o27Ztwb/37t1by5Yt05QpU/Too4+qR48eevrpp5Wbm+vA7ANA9Pgl8Bw9erR27dqlmTNnqri4WAMHDlR+fn7w4tTbtm0LGaFy5pln6sUXX9SMGTN022236fjjj9eSJUt08sknB6e55ZZbtH//fk2cOFGlpaUaMmSI8vPzg9di6dy5s/Lz83X77bfrvPPOU3V1tU466ST95S9/0YABA2K27NQ0APAe6pq/65rtYad0KPAi7PQPAs5DCDgb5kZdkw4FmZMnT9b555+v+Ph4jRo1So899ljw761atdK9996rzz//XIFAQMcee6wmT56sKVOmBKd58sknVVVVpUsuuSRkmRq6+ZIT4gKBgPFVoLy8XKmpqZrx/lCuZwYg5mqDzn17azT4pBKVlZWFdT2VxtTu1z7ckOb4dV+cnE84j5oGwBQV+6p1zxlvtbheUNP8rfbz7/nkbMW3CQ1s3BjVWcv2sFNiZKeXEW7+wMmA82BFhb783W3UNZ+L+jU6AcB2frtuJwAAgBPcvF6nF0aHca1G7+EzDeWF7ynMQ9AJAAAAAPAcr4QoBGP2I+AMxc2GEE0EnQAQBkZ1AgAARI67sDuDoMxOfG6hCDgRCxHfjAgAAAAAgHC5dRd2yRs3Jzocd2Y3H8Fm/Qg4ESuM6AQAAAAAeJYXAxbCNPMwerN+jOJErDGiEwAAAAAQVW6O6pS8N7JTYnSnKQg360e4CbcwohMAAAAAEHVuX6/Tq8ELQVvs1Y7eZN3Xz6vfNdiBEZ0AAAAAAF/w4shOidGdsUKw2TgCTpiAoBMAAAAAEBNun8LudQSeziPcbBoBJ0zCqesAAAAAgJjhFPbo47TqlmMdhscP3yfYhRGdABCmJXsHSHrL7dkAAABAC3n1FPYjMcIzMgSb4SPghKkY0QkAAAAAiCm3R3VK/gpqGJ3YONZPZPz03YF9GNEJAAAAAIg5E67X6ZeRnbUY4fkDgs3IEXDCBgSdAAAAAADf8lvYKfk38CTcbD5CTtiCoBMAAAAA4AoTRnX62eHBn1dDT8LNliHghG0IOgEAAAAArjEh7PTjqM4jeWmUJ+FmyxFwwlYEnQAAAAAA3yPsPMTGUZ4Em84i5ITNCDoBAABirKA40+1ZkCRdkL7J7VkAAElmjOqUCDuPdGSAaErwSbAZHQSc8AKCThjBlIbPCTSNAOAfttev5s4/tQ6AlxF2Nqy+gDHa4SehZmwQcsIrCDoRVbY3gM0RyTLTKAKAufxYw8IVzrqhxgGIlCmjOhGZcILI+sJQAkxzEHLCSwg60SI0gS3T1PqjSQSA6KKORU9j65b6BqAhpoSdjOp0FqGmmQg44UUEnQgLjaA7GlrvNIgAEDlqmTmobwBsQNgJL/NayFnZq0o131e5PRswAEEnQtAE2qG+z4nmEAB+QD2zE/UNgGTOqE6JsBPe47WAUzq0zwBqEXT6HI2gdxz5WdIYAvAT6pl3Ud8AfyLsBJxHyAk/IOj0GRpB/6AxBOBl1DP/Ovyzp7YBiBXCTtiMgBN+QtDpAzSDkAg+AdiPeoYjUdsAbzNpVCdgK0JO+A1BpwfRCCIcjIgBYANqGiJBbQO8x6Swk1GdsA0hJ/yIoNNDaAbRXDSGAExCPYMTarcj6hoAJxF2wgYEnPAzgk7L0QzCaTSGANxCTUM0cDAPsJ9Jozolwk6YjZATfkfQaSmaQUQbjSGAWKCeIZY4mAfAKYSdMA0BJ3AIQadFaAbhFhpDAE6jpsFN1DXAPqaN6gRMQsgJ/ICg0wI0gzAFjSGAlqKmwSTUNcAupoWdjOqECQg5gVAEnQajGYSpaAwBRIqaBpNR1wA0F2En3OLFgFMi5ETLxbs9A6gfDSFsUFCcybYKoEnsJ2AL6hpgPhNDEK8GTjCXF7e5yl5VRn6/YR9GdBqGH9ewUUFxJqNgANRBTYOtGOEJIFKM7ESseDXkBJxC0GkImkHYjqYQQC1qGryCA3lA+Hp1362v/9sjJu9l2rU6gVgh5ASaxqnrBqAhhJewPQP+xj4AXsPp7ICZTAxHvBhCwQx7j43z5PZl4vcY9iPodBE/nOFVbNuAP/G9h5exfQNNy+ixy+1ZcJ0Xwyi4y4vbFNfjRDQRdLqEH8vwA7ZzwB84uAG/YDsHzGJqUOLFYAru8OK2ZOr3Ft5B0OkCfiTDT9jeAW/jOw6/YZsHGhfrUZ2mhiZeDKgQO5yqDjQfQWeM8eMYfsRoL8Cb+F7Dr6hrAMLhxaAK0efV7YaQE7HCXddjiB/EsbX16y5NTsN1hGKLu9cC3kFNc144daulqHvOoq4B9cvosSsm+7Ra3IUdXkHICbQcQWcM0Ay2TDR/JLXktWkWm4emELAfdS0ysWz2m8JBQOdR1wA0Zu+xcerw74DbswELEHICziDojDKawaaZ1ABGorH5pklsHE0hYC/qWsNsrWdHor5FjroG1MWozh8QdqIxBJyAswg6o4hmsC6vNIFNqW85aQ5D0RQC9qGu/cAv9exI1LeGUdcANIawE/Uh5AScR9CJqPFrE9gQmsO6aAoBe/g55KSeNe7I9eP32gbgB4zqDEXYicMRcgLRQdAZJX5sCGkEI0dzSNgJ2ICahkj4ubZR0wD3EXbCBoScQPTEuz0DXuSnhnDr112C/9ByrE+4Ze7cucrIyFBycrKysrK0bt26RqdfvHixMjMzlZycrP79+2v58uUhfw8EApo5c6a6deumNm3aKCcnR//6179CptmzZ4/GjBmjlJQUdezYUePHj9e+ffscXza0jF9q2uH7X/bBzvLbevXLd8Z01DVz+OlgB9CUvcfGEXKiWUysa6tWrdJFF12kbt26qV27dho4cKAWLlzY4Dy99NJLiouL08iRIyNfAREg6HSYH37c+q1hcYuf1rMfvjcmW7RokfLy8jRr1ix99NFHGjBggHJzc7Vz5856p1+zZo0uv/xyjR8/Xh9//LFGjhypkSNH6tNPPw1Oc9999+mxxx7TvHnztHbtWrVr1065ubmqqKgITjNmzBht2LBBBQUFWrp0qVavXq2JEydGfXmBWn7az5rCL+ucuuYu6hpMD1y8GnShcV7+3E3/ztnO1Lq2Zs0anXLKKfrzn/+sf/7znxo3bpzGjh2rpUuX1pmnrVu36n//93919tlnO7hm6hcXCASMHzdfXl6u1NRUzXh/qJLbt3Z7dhrk5R+1Xm9IbOLlo+Kmn+5Xsa9a95zxlsrKypSSktKi16rdr324IU3tOzh7zGnf3hoNPqkk7PnMysrSj3/8Yz3++OOSpJqaGvXs2VM33HCDpk2bVmf60aNHa//+/SEF7IwzztDAgQM1b948BQIBde/eXTfffLP+93//V5JUVlamtLQ0LViwQJdddpk2btyofv366YMPPtDgwYMlSfn5+Ro2bJi+/vprde/e3YlVYSRbaprk3bpGTTOPV2ubX+qaSTVNoq7FWu3nf9ZfJqtVu6QGp4v1vtfk09drcQq7fxByxkbN9xXafv1s6pqLdW348OFKS0vTs88+G3zs4MGDOuecc3TNNdfo73//u0pLS7VkyZKwlr05GNHpEC83gzSEZvHyaBivfo/cUl5eHvKvsrKyzjRVVVUqKipSTk5O8LH4+Hjl5OSosLCw3tctLCwMmV6ScnNzg9Nv2bJFxcXFIdOkpqYqKysrOE1hYaE6duwYLJqSlJOTo/j4eK1du7b5Cw3HeO376OV9pxfw2aAp4dQ0ibqGH5gUvjTEy+EXfuDlz9mG75mpvFrXysrK1KlTp5DH7rrrLnXt2lXjx49v8HlO4mZEqINGwx61n5WXRsL47UYOS/YOUHLA2VF9FfuqJb2lnj17hjw+a9YszZ49O+Sx3bt36+DBg0pLSwt5PC0tTZs21f85FBcX1zt9cXFx8O+1jzU2TdeuXUP+3qpVK3Xq1Ck4DdzjpZCTmmaXwz8vL9Q2alrLRVLTJOqayWJ9B3ZbcHMibyPktBt1LbK69vLLL+uDDz7Q//3f/wUfe/fdd/XMM89o/fr19T4nGgg6HeCVhpAfHvbyYuCJltu+fXvI6RBJSQ2fTgZ4DTXNfl6pbX4LO6OFmobmMP0O7LUIO73HywGn5I+QM9q8VtfefvttjRs3TvPnz9dJJ50kSdq7d6+uvPJKzZ8/X507d47ZvBB0tpAXQk6aQe/wykgYmkJnpKSkNHndl86dOyshIUElJSUhj5eUlCg9Pb3e56Snpzc6fe3/lpSUqFu3biHTDBw4MDjNkRfPPnDggPbs2dPg+yI2bK9r1DTv8ULgSV1ruXBqmkRdM50bozoJOxFrhJwIh5fq2jvvvKMRI0bo4Ycf1tixY4OPf/nll9q6datGjBgRfKympkbSodGhmzdv1o9+9KMm10GkuEanj3E9LG+z/bO1PWyxRWJiogYNGqQVK1YEH6upqdGKFSuUnZ1d73Oys7NDppekgoKC4PS9e/dWenp6yDTl5eVau3ZtcJrs7GyVlpaqqKgoOM3KlStVU1OjrKwsx5YPkbH5e0dN8z4+Y4SDugbATYSccJrpdW3VqlUaPny47r333pA7sktSZmamPvnkE61fvz747+c//7nOPfdcrV+/vs7p+05hRGcL2NoQ0iT4hxdGwSD68vLydNVVV2nw4ME6/fTT9cgjj2j//v0aN26cJGns2LE65phjNGfOHEnSjTfeqJ/85Cd68MEHNXz4cL300kv68MMP9dRTT0mS4uLidNNNN+mee+7R8ccfr969e+uOO+5Q9+7dNXLkSElS3759deGFF2rChAmaN2+eqqurNXnyZF122WWevjMtnEdN85+tX3exsq4xqjN2qGtmY1RnwxjVaTdCTkSLqXXt7bff1s9+9jPdeOONGjVqVPDanYmJierUqZOSk5N18sknhyxLx44dJanO404i6GwmG0NOmkH/sjXwpCmMjdGjR2vXrl2aOXOmiouLNXDgQOXn5wcvTr1t2zbFx/9wAsCZZ56pF198UTNmzNBtt92m448/XkuWLAkpVrfccov279+viRMnqrS0VEOGDFF+fr6Sk5OD0yxcuFCTJ0/W+eefr/j4eI0aNUqPPfZY7BYcIWyra9Q0f7O1riE2qGuwGWGnnQg5EU2m1rXnn39e3333nebMmRMMWSXpJz/5iVatWhXFNdK4uEAgYPxetLy8XKmpqZrx/lAlt3f2jlfNRUMIm9nUGJoUdFbsq9Y9Z7ylsrKysK6n0pho7tecnE84z8SaJtlV16hpOBJ1rXmcqhfUNH+r/fzP+stktWoX/s003NiX2zCqsxZhpx28HnBKdoWcNd9XaPv1s6lrPsc1OpvBtmaQhhBHsmmbsOn7BtjKlu8ZNQ0NYbsA4DV+CNBs54fPyKaQE6hF0Olh/OhHYwgMANiE/RWaYktds+XAAhBtbozEti208UOQZis/fDa2fV8kqVf33W7PAgxA0BkhG36c2vJDH2awYVux4XsH2Mr07xc1DZFiewHQGNvCGz8Earbxw2di2/dEsusyNogugk6P4cc9moPtBoCJ2DehuUzfdkw/wADALH4I1mzhh8+CkBO2I+iMgOk/Sk3/UQ+zmT5qyvTvH2Ajk79XJu+PYAfT6xoA98IJG4McPwRsJtt7bJwvPgMbvxuEnDgSQacH8EMeTmJbAuA29kNwkqnbk8kHGgCYyQ9Bm4n8st4JOeEVBJ1hMvXHqKk/3mE3U7crU7+HgI1M/T6Zuv+B3diuAHMxqjMyfgndTOGX9W3j94GQEw0h6LQYP9oRTWxfAGKJsxMQbSZuX6YecABgNr+Eb27zy3om5ITXEHRaysQf6/AeE7czmkKg5Uz7Hpm4rzFN0rbEsP+hYWxrgJkY1Rk5v4RwbvDL9TglO78DhJxoSiu3Z8AGNIRmilUzZ+PO30lbv+5CMQEQNX6vadGoZeG+pl/rm2l1raA4Uxekb3J7NgBYaO+xcerw74Dbs+Epfgk4bWVS/Ya5CDot47eG0ISRKQ3Ng58aRNOaQgDe4KeaZkI9O1J98+SX2kZdA8yT0WOXK3WhsleVkfvocBF2OsdvIadtNZ+6jXARdDbBpNGcfmgIbfqR4bcG0aSmkNEvQPOZUte8XtNsqmeH81NtM6muAUBLEHa2HCGn2ajXiATX6LSEVxtCr11XzGvLcySvbocA0FJe3v97dbkkc+qaKQcgALdxrc7m81tQ5xQ/XY+zlm3bOyEnIkXQaQFTfoQ7wcuNYH28uKymbI80hUDkTPnemLIfaSkv7uOb4sVl9sr2CKBlbAt/6uO3wK6l/Li+bNvOCTnRHJy63ggTGkKv/Pj2UkPUXIevA9sKzJE43Q9Ac9le16hnP6CuAYB5OI09PIScgHcxotNgXmgGvTbqwyleWC+2b58AYs/m/YYX9tvR5IWa7/b2acIBdsAEbh508EoQ5McQL1x+PFVdsnPb5gAkmougE46zvdGJJdsbQ5pCwB5uf1/c3l80h+37aLewzgDAfX4M85rCOrEHISdagqCzATSEkaEZbDnWHwCvsrWmoWVsXI+2bauAVzGq0xl+Hb14JL+vB9u2aUJOtBRBp4Fs+pFtYxNjOtvWqU3bKwA0xrb9ry1sW69u1jW3D7QD8CY/h3x+XnaJkBP+RNBpGFtCI9uaFhvZtI5pCgGzufk9saGu2bS/tZlN69mG7RbwOkZ1OstvgZ/fR3FK9m3HhJxwCkFnPQhOGmdLk+IVtjSGNIUAjmTDfsGG/avX2FLXAMBr/BL8+WU5G2NbyAk4iaDTIKY3hDQm7mLdA4BzqGnuM339u/W7jAPugBm8GhR5eaSjl5fN6xjNCScRdBrC5JCTZtAcpn8WNIUAapla10zfj/qN6Z+Hqdsx4BeEH9HjtUDQa8vTEraF9HzP4bRmBZ1z585VRkaGkpOTlZWVpXXr1jU6/SOPPKITTzxRbdq0Uc+ePTVlyhRVVFQ0a4ajjcAklMnNh5+Z3BjSFMJG1DVnmbofMHW/CbPrGmAbL9e0WLMtMIqUF0ZAemEZnGTbNkvIiWiIOOhctGiR8vLyNGvWLH300UcaMGCAcnNztXPnznqnf/HFFzVt2jTNmjVLGzdu1DPPPKNFixbptttua/HMe4WJDSENhx34jICWo675A/tLO5j4OZn4Ow1oiBdrGkFI9NkYFto4z9FmW8gJREvEQedDDz2kCRMmaNy4cerXr5/mzZuntm3b6tlnn613+jVr1uiss87SFVdcoYyMDA0dOlSXX355k0cW/cLEH88mNhlomImfl4nbNdAQ6pqzTPv+c+DOPnxenGGE5qOmOc9P4ZENwSEBZ/1s3E45iIFoiSjorKqqUlFRkXJycn54gfh45eTkqLCwsN7nnHnmmSoqKgoWy6+++krLly/XsGHDWjDbiBaaCzvRyNMUonm8Xtdi/b0wMeSEnUyra6Zt20B9vFzTCERix9Qg0dT5QvPwnUY0tYpk4t27d+vgwYNKS0sLeTwtLU2bNm2q9zlXXHGFdu/erSFDhigQCOjAgQO67rrrGj0dorKyUpWVlcH/Li8vj2Q2m83PDaFJzQSaL2lbojFH87Z+3YUCBuPFoq65VdP8jrrmDdQ1IHxe79XcVNmrynd15fBQscO/A0bMB+pnSp0MF7UU0Rb1u66vWrVKv/vd7/TEE0/oo48+0quvvqply5bp7rvvbvA5c+bMUWpqavBfz549oz2bvua3ou11Jn2eJoX5gFMirWt+qWmmfN9NGwmIluPzBKKHXg3hiPVoytr3I+Rsmm0hJxALEQWdnTt3VkJCgkpKSkIeLykpUXp6er3PueOOO3TllVfq2muvVf/+/fWLX/xCv/vd7zRnzhzV1NTU+5zp06errKws+G/79u2RzKYVTGoI4T18rkB4YlHX/FDTTMG+z7tM+Wxj+fuNS7IgUl7v1dweBUagFL0A8vDXJdz0Nre/x/CHiILOxMREDRo0SCtWrAg+VlNToxUrVig7O7ve53z33XeKjw99m4SEBElSIFD/EPikpCSlpKSE/IPzTGkaEB2mjGqiKYTJYlHX/FDTTDh4Z8L+DtHFZww0jl4NsXRkOBluSNmc56B+toXvhJyIlYiu0SlJeXl5uuqqqzR48GCdfvrpeuSRR7R//36NGzdOkjR27Fgdc8wxmjNnjiRpxIgReuihh3TqqacqKytLX3zxhe644w6NGDEiWERNEMuAhIYQsWTS9c0AE1HX7EdN8w8TahrX6oTJvFrTamX02OVqL+XHa3VGiuAyNtyuhZGibiKWIg46R48erV27dmnmzJkqLi7WwIEDlZ+fH7zo9bZt20KOCs6YMUNxcXGaMWOGvvnmG3Xp0kUjRozQb3/7W+eWAhGhOPuP240hTSFMRl1rGbcP3lHT/MftmgaYjJoGeB81EGhcXKChcxIMUl5ertTUVM14f6iS27eOynvEauQLDSHc5GZRjFXQeUF6/XcVdULFvmrdc8ZbKisra/FpWtHcrzk5n3BeLGqa5I+6Rk3zN7cbPeraD6hp/nb45//3ff2j/n5u91MS9Qfucrv+RSqWA14O7K/Uexc9Tl3zuajfdR3moCDDzW3AhB+lAJxFyAk3sQ0A/sRZQvAzQk6gaQSdMURDCBN4fVvw03UJgYZ4/Xvg9f0YwscBPABusC1sgjew3QHhifganV5EQwjEBtfqBLzDrZDHrzWtw9bwrjS0N8N/N4Hgmp2AOS5I3xST3srtmxIBsWZjnaPvg1sIOmOEhjB6wm3+IuXlZpGmEADM40Q9a+o1vFrb3KprHMAD/Is7sAMNozbCTQSdHubFwhutUDPc9/JSg0hTCKC5OHjXcrGsZ429L3XNfAXFmVG9IRGA5iPsRCx4sbYB0UTQGQNuNIReKbhuNYIN8VqD6NWmEID3eKGumVbTJOoaAOdx+jrgHBtrGoNa4DZuRgTjdNgaCP4znU3z2hAvhAdH8vp1d4HGeHH7t3k/ZVudsG1+TUDQAvibjUEUAHiZ70d00hCawQsNVe0y2DgaJtYjYDh9HbBXrEMdapp7Dl8Om2obozoBAF5gYy2jx4MJGNEZZTSEjfPiqBFGwwCAP3l532/bssX69xCjOoFQsbqurCmhio2BFMxm4zZlyvcRIOj0EFtCTj8FgTYtJ00hgKZw8K5+Nu3rW8qmZbVl+wmHF89AAgAAiAaCzigiyAllU3PkNFuW3UtNIQC72bA/smXfHg1+XnYAZjFlFJmNI/BgJhu3JVO+h4BE0OkZpjeENEOH0BjGDqNfAEQL+/IfmL4uYvn7iAPcQKhYnb4OeImNISdgGoJODzA55DS9AXKLyeuEphCN2bNnj8aMGaOUlBR17NhR48eP1759+xp9TkVFhSZNmqSjjz5a7du316hRo1RSUhIyzbZt2zR8+HC1bdtWXbt21dSpU3XgwIGQaRYuXKgBAwaobdu26tatm6655hp9++23ji+jzaIZ8Mfy+2pqXaOmNczk9WLq9gQzUNfgJEIq+BGjOWNj7ty5ysjIUHJysrKysrRu3bpGp1+8eLEyMzOVnJys/v37a/ny5SF/DwQCmjlzprp166Y2bdooJydH//rXv0KmaapGVlRU6Oqrr1b//v3VqlUrjRw5st55qays1O23365jjz1WSUlJysjI0LPPPtu8FREGXwedXmkITUQz2DST1xFNIRoyZswYbdiwQQUFBVq6dKlWr16tiRMnNvqcKVOm6I033tDixYv1zjvvaMeOHbr44ouDfz948KCGDx+uqqoqrVmzRs8//7wWLFigmTNnBqd57733NHbsWI0fP14bNmzQ4sWLtW7dOk2YMCFqywp3mLr/MXV/bRKT6xrQEOqaNxC0wAtsDMr57sXGokWLlJeXp1mzZumjjz7SgAEDlJubq507d9Y7/Zo1a3T55Zdr/Pjx+vjjjzVy5EiNHDlSn376aXCa++67T4899pjmzZuntWvXql27dsrNzVVFRUVwmqZq5MGDB9WmTRv95je/UU5OToPzf+mll2rFihV65plntHnzZv3pT3/SiSee6MCaqZ+vg04vMLEhpMmJDI0hbLFx40bl5+fr6aefVlZWloYMGaI//OEPeumll7Rjx456n1NWVqZnnnlGDz30kM477zwNGjRIzz33nNasWaP3339fkvTWW2/ps88+0x//+EcNHDhQP/3pT3X33Xdr7ty5qqo69IOvsLBQGRkZ+s1vfqPevXtryJAh+tWvftXkkUygpdhHR87E9RWr30t+P9BtG+pa9Pnx9HUbwyoAZnvooYc0YcIEjRs3Tv369dO8efPUtm3bBkdFPvroo7rwwgs1depU9e3bV3fffbdOO+00Pf7445IOjeZ85JFHNGPGDF100UU65ZRT9MILL2jHjh1asmSJpPBqZLt27fTkk09qwoQJSk9Pr3de8vPz9c4772j58uXKyclRRkaGsrOzddZZZzm/ov5/BJ0WMy3kpBlsGdPWHU0hjlRYWKiOHTtq8ODBwcdycnIUHx+vtWvX1vucoqIiVVdXhxzhy8zMVK9evVRYWBh83f79+ystLS04TW5ursrLy7VhwwZJUnZ2trZv367ly5crEAiopKREr7zyioYNGxaNRcURYvU9NbGuoXn4TQAbUNcAmMLGgJzRnLFRVVWloqKikLoTHx+vnJycYN05UmFhYZ0Rlrm5ucHpt2zZouLi4pBpUlNTlZWVFVLLIq2R9Xn99dc1ePBg3XfffTrmmGN0wgkn6H//93/1/fffh/0akSLojAI/Bjc0M85gPcJJ5eXlIf8qKytb9HrFxcXq2rVryGOtWrVSp06dVFxc3OBzEhMT1bFjx5DH09LSgs8pLi4OaQZr/177N0k666yztHDhQo0ePVqJiYlKT09Xamqq5s6d26JlgjlMCjkJ6Zxj0no0aRtrDr/fZM/pmiZR17zGpNDFxtAK7mF7cc65aZ+7PQthC7eu7d69WwcPHqy3rjRWqxqbvvZ/m5om0hpZn6+++krvvvuuPv30U7322mt65JFH9Morr+jXv/512K8RqVZRe2VElUk/1k1qYrygdn3uzYhzeU4ObWcU3uh6u+QEtdqX5OhrHthfKekt9ezZM+TxWbNmafbs2XWmnzZtmu69995GX3Pjxo0OzmHkPvvsM914442aOXOmcnNz9Z///EdTp07Vddddp2eeecbVeYO3UNOc12FrwIiaJsWmrm39uotRgUssmVDTJOoaAESbiXXugvRNqmj8XnIRM6Wu2aympkZxcXFauHChUlNTJR06Ff+SSy7RE088oTZt2jj+ngSdaDaawegypTG0uSksKM705bWham3fvl0pKSnB/05Kqr9I33zzzbr66qsbfa0+ffooPT29zgWvDxw4oD179jR4TZb09HRVVVWptLQ0ZPRLSUlJ8Dnp6el1rklWe/fa2mnmzJmjs846S1OnTpUknXLKKWrXrp3OPvts3XPPPerWrVuj84/mi8VZCqYcvKOuRY9JB/Fgp3BrmkRdM80F6ZtiNiI5o8cuY86uq+xVZUx9g7kYVOJf4da1zp07KyEhIVhHah1ed46Unp7e6PS1/1tSUhJSb0pKSjRw4MDgNJHWyPp069ZNxxxzTDDklKS+ffsqEAjo66+/1vHHHx/2a4XLt6euR6vY+qUhpBmMDdYzWiIlJSXkX0PFs0uXLsrMzGz0X2JiorKzs1VaWqqioqLgc1euXKmamhplZWXV+9qDBg1S69attWLFiuBjmzdv1rZt25SdnS3p0HXKPvnkk5BCWlBQoJSUFPXr10+S9N133yk+PrRkJSQkSDp0MW1wWmtLsb+NDRPWswm/oxC5cGuaRF0DYAdbQ05TR3PaJty6lpiYqEGDBoXUnZqaGq1YsSJYd46UnZ0dMr10qA7VTt+7d2+lp6eHTFNeXq61a9eG1LJIa2R9zjrrLO3YsUP79v0w3Pbzzz9XfHy8evToEfbrRMK3QSeaz4QmxU9MWN80hZAOHXm78MILNWHCBK1bt07vvfeeJk+erMsuu0zdu3eXJH3zzTfKzMwMjmRJTU3V+PHjlZeXp7fffltFRUUaN26csrOzdcYZZ0iShg4dqn79+unKK6/UP/7xD7355puaMWOGJk2aFCz4I0aM0Kuvvqonn3xSX331ld577z395je/0emnnx58b9jJhP2LCftZP/HD+jZlRBkaR11DtNkaZAEwS15enubPn6/nn39eGzdu1PXXX6/9+/dr3LhxkqSxY8dq+vTpwelvvPFG5efn68EHH9SmTZs0e/Zsffjhh5o8ebIkKS4uTjfddJPuuecevf766/rkk080duxYde/eXSNHjpQUXo2UDl2KZf369dqzZ4/Kysq0fv16rV+/Pvj3K664QkcffbTGjRunzz77TKtXr9bUqVN1zTXXROW0dYlT163jdkPoh+bERKacxh5Nfr6mmU0WLlyoyZMn6/zzz1d8fLxGjRqlxx57LPj36upqbd68Wd99913wsYcffjg4bWVlpXJzc/XEE08E/56QkKClS5fq+uuvV3Z2ttq1a6errrpKd911V3Caq6++Wnv37tXjjz+um2++WR07dtR5553X5DXYgKZQ19zhdl3jGtSoRV2LDb+evg40xNYaZGK/ZuNozkiNHj1au3bt0syZM1VcXKyBAwcqPz8/eDOhbdu2hZwlcOaZZ+rFF1/UjBkzdNttt+n444/XkiVLdPLJJwenueWWW7R//35NnDhRpaWlGjJkiPLz85WcnBycpqkaKUnDhg3Tv//97+B/n3rqqZJ+ODuhffv2Kigo0A033KDBgwfr6KOP1qWXXqp77rnH+RX1/4sLWHBuRHl5uVJTUzXj/aFKbt/akdeMRqH1+mnrNIPuczvsjHZBjkbhdLLwVeyr1j1nvKWysrKQ66k0R+1+7ay/TFards5f4Pq9ix53ZD7hvGjUNMnOusbBO7hZ1/xe0yTn6ho1zd/CrWuxvMSKaUGn2/UOZrE15JTMCzqPrIvUNUicum4VQk7wOQCAM9ifmsHNzyHav6uiEbRwLV4AgFtMCzmBhhB0okk0g2bxclMIwD84eIdafB6AP8Ty9FLTAhmbR/DBWbZuC6Z9pyR/nLKO5iHotIRbDSHNh5m8+rkw+gUwh2mn/TnFq/tP27n1uXAADwAAwFsIOh3ixYaQZtBsNIUAbMXBO9SHzweAl9k6kg/OsXUbYDQnbOPLoNO2EV5uNIQ0G3bgcwIg2VfX3MD+0g5ufE7R/J3lxQPhgC1MDGfgX7aGnICNfBl0Al7itaYQgLdx8A4A/Mvvo7AIu4CW8/t+BE0j6DQcDSHC4aXPjNEvgPu89D300v7RLziABwDwEpsDbkZGw0YEnQ6gIQQAAHAOv0cAOMHEkMbm0AtwG6M5EQ6CToPFenQBTYXdYv35MfoFQKSoa4iEVz4/pw+Ic01e2I6gAn5ic7Bt4oECIBwEnZDknWbC7/gcAeAQ9oeIFAfwAMSKzeEX4BYOkiBcBJ2Ax8SyuY9WU+ily0EAOCSWIRIhp3fwWQJoKUalwS02B9p8b2Azgs4WilYgQ0MIOIfT/IDwcaABpvHCATwAOJLNIRiaxucLuIeg0+cIOb2JzxWAX7H/8yY+V8BbOAUVMJeJoznZZyASrdyegVhjZJe3pX5V2eznlvVJcnBO3Ndha0B7M+Ki/j5J2xI5Ygm4yIa6FqtRcl4Lw1pS02p5rbbZauvXXYxsHAG/yOixy8gzFip7VTGS3IPojQB3+S7otAENYficaAIbey0aRABArDhZ0xp6TZvrGgfwAACILhMPyjGaE5Ei6PQpm0POaDSC4byXjc1hrJrCaGD0CxB7Jo52CZetdS2WNe3I97OxrgGA1zCq01s4UAa4j2t0tkA0GkKKXP1Sv6oM/nN7HlAX2y2AhrB/qMuEmnb4fNjE1kAbQF2xHqXFAXTAPozmRHMwotOHbGoSTGzAbBsNY/OoTgAIhy11zcSaJlHX6sPp6wBiiVGd3mB73eBgALyCEZ0wki2jTGyZT1tCAACIlA37N1tqhWRuGOsFTp4JZMNNyABExvaQzO/4/JzHaE40F0GnQWJxFM/0htCmZvBwNs6z0zgKDeBIft8v2FzTTJ9v03/PADATI9aA+vHdgJcQdMIINjRVTTF9GWxsCm2+MQpgGxu/bybv10yuB+Eyva5Fm9+DeiAWGLEVilGBduJzA8xC0NlMNITO8VoT5bXlAQCEz4vhoKnLY+rvGgAA0DIcBEFLEHTCVaY2Ty1laqMb7abQ5NEvXM8MiK1o7w9MDLlM3O87xdS6BgCRMv0UXUYH2sULn5fp3wkgUgSdhvBbQ+iXhskPywgA8M/+3rTlNO33TVNsPCMIAIBYYjQnWspXQScjusxgWpMUbaYtr21NIYCG+bWumbQf88uBu8P5aXlNPlMB8ApCjbq8MErQD7zwOTGaE17kq6DTr0xrCP3IT42w000ho18A+/glHPLLfr0+Ji27Sb9zANiBcAct5YWQE/Aqgk4D0BD6hynrgKYQwOFsOqBgyv7LlP25m1gHABA9BGnwI0Z4wwkEnc1AQxg5mqEfsC4AwG7sx39gyrqI5u8dvxyQBgCExyshNCOb4VUEnYg6U5ogk7BOACByJhy8Y/9dF+sEQEu5MYrLhpDHK4EaAMQSQaeH0RCaze11w+gXANHg5e+/2/ttk7FuwmfTmUEAgFCEz9HDaetwCkGny2gI/Y11BAB2YH/dNLfXkQkHeAHAaQRriAYbRjQDzUXQiahwu9lBeGgKAdjCzf0VNS18Xl1XJh6YLijOdHsWAMQIYacZ+BwAOxB0ehQNoT1YX03jND8AsIebdY0DeIC9uE4n4F+ctg4nEXTCUYR2zePFptDE0S8A6nLyQEK0vvccvLMP6w0AnMVoQnd5af0T8MPrCDojREPYMJqalmH9AYBZ2C8DAAAAdiHoBAxCUx1dXM8MQLjYH7ecW+uQMxUARMKm0W1eGlVoE9Z7dHHaOpxG0AlH0BDajWuaATAV+ye78fugflx7GgDs4LWQ06ZgH2gugk6PcaMhpIlxlpfWJ6NfANjIS/thE7ixPgnIATsxsqtpXgveAMBpBJ0uIQBCY2iyAdjGK3WN/S8A+I9to9wIO2OD9Rx9HNxANPgm6OTafNFBQ+gdpo9+4TQ/IJQf6prp+yWEj98LAAC4y7ZAH2gu3wSdfhDrhpCmJbpYvwCijQMIodjvRles1280fhd5ZeQyAPsx2jC6WL+AvQg6I0BDiFij6QaA2GB/CwAAANiPoBPNQkPoTYx+AdAc0fiec9q6N/H7AUBT3Lpmn42n9TLqMDq8uF5N3L65PieihaDTBTSEiARNIQBEF/tZAAAAwBsIOhExGkIAANBcsfwdwYFgAF7nxdGHbmJ9AvYj6ERECDndQVMIwE9iuR+iriFSTp2Zw7XfAfOYeHpvOAjnYBtOW0c0EXR6AMEUAACwCQEzAMA0Xg2MbQ3wgeYi6ETYaErcZfP654ZE3rFnzx6NGTNGKSkp6tixo8aPH699+/Y1+pyKigpNmjRJRx99tNq3b69Ro0appKQkZJrf/OY3GjRokJKSkjRw4MB6XycQCOiBBx7QCSecoKSkJB1zzDH67W9/69SiwYds3q8ifBwQRmOoa2ZitFfkvBrSxQrrD6abO3euMjIylJycrKysLK1bt67R6RcvXqzMzEwlJyerf//+Wr58ecjfA4GAZs6cqW7duqlNmzbKycnRv/71r5BpwqmR//znP3X22WcrOTlZPXv21H333VdnXh555BGdeOKJatOmjXr27KkpU6aooqKimWuiaQSdAKzBaX7uGzNmjDZs2KCCggItXbpUq1ev1sSJExt9zpQpU/TGG29o8eLFeuedd7Rjxw5dfPHFdaa75pprNHr06AZf58Ybb9TTTz+tBx54QJs2bdLrr7+u008/vcXLhJbhQAaai6C55QqKM92eBetR1wAAplu0aJHy8vI0a9YsffTRRxowYIByc3O1c+fOeqdfs2aNLr/8co0fP14ff/yxRo4cqZEjR+rTTz8NTnPffffpscce07x587R27Vq1a9dOubm5IQFkUzWyvLxcQ4cO1bHHHquioiLdf//9mj17tp566qngNC+++KKmTZumWbNmaePGjXrmmWe0aNEi3XbbbVFYU4e0itoro162NoQ0I2ZI/apSZX2Sov4+HbYGtDcjLurvA7ts3LhR+fn5+uCDDzR48GBJ0h/+8AcNGzZMDzzwgLp3717nOWVlZXrmmWf04osv6rzzzpMkPffcc+rbt6/ef/99nXHGGZKkxx57TJK0a9cu/fOf/6z3vZ988kl9+umnOvHEEyVJvXv3jspy+oWpBw5iNfqOugaAuob6ZPTYZWyNbEplrypr+003MZozthixHbmHHnpIEyZM0Lhx4yRJ8+bN07Jly/Tss89q2rRpdaZ/9NFHdeGFF2rq1KmSpLvvvlsFBQV6/PHHNW/ePAUCAT3yyCOaMWOGLrroIknSCy+8oLS0NC1ZskSXXXZZWDVy4cKFqqqq0rPPPqvExESddNJJWr9+vR566KFgILpmzRqdddZZuuKKKyRJGRkZuvzyy7V27dqorS9GdIbJ1GLH6VgAYqWwsFAdO3YMFjpJysnJUXx8fIOFqqioSNXV1crJyQk+lpmZqV69eqmwsDDs937jjTfUp08fLV26VL1791ZGRoauvfZa7dmzp/kLBMB1BM5wE3UNXkRoh8NxfU77VVVVqaioKKTuxMfHKycnp8G6U1hYGDK9JOXm5gan37Jli4qLi0OmSU1NVVZWVnCacGpkYWGhzjnnHCUmJoa8z+bNm/Xf//5XknTmmWeqqKgoeKr9V199peXLl2vYsGHNXidNYUQnYJlYjeqE/crLy0P+OykpSUlJzd92iouL1bVr15DHWrVqpU6dOqm4uLjB5yQmJqpjx44hj6elpTX4nPp89dVX+ve//63FixfrhRde0MGDBzVlyhRdcsklWrlyZcTLAn8jXPMfp89USNqWSJgQY07XNIm6BoBgGO4Jt67t3r1bBw8eVFpaWsjjaWlp2rSp/tGxxcXF9U5fW6dq/7epaZqqkcXFxXXORqh9zeLiYh111FG64oortHv3bg0ZMkSBQEAHDhzQddddx6nrcBcNIRA923Z0VnybZEdfs+b7Q9dV6dmzZ8jjs2bN0uzZs+tMP23aNN17772NvubGjRsdm7/mqKmpUWVlpV544QWdcMIJkqRnnnlGgwYN0ubNm4On/QGwDwfwvMOEmiZR17zigvRNXIe2mTiFHXCGKXXNZqtWrdLvfvc7PfHEE8rKytIXX3yhG2+8UXfffbfuuOOOqLwnQSdgoVg0hVyn037bt29XSkpK8L8bGvly88036+qrr270tfr06aP09PQ6F7w+cOCA9uzZo/T09Hqfl56erqqqKpWWloaMfikpKWnwOfXp1q2bWrVqFWwGJalv376SpG3bttEQekQsLsfCwTvATuHWNIm6hpaz+TqdtQg7m8ZoTrgp3LrWuXNnJSQkqKSkJOTxxupOenp6o9PX/m9JSYm6desWMs3AgQOD0zRVIxt6n8Pf44477tCVV16pa6+9VpLUv39/7d+/XxMnTtTtt9+u+Hjnr6jJNTotRkMIm5jyQ8tPIwNSUlJC/jVUPLt06aLMzMxG/yUmJio7O1ulpaUqKioKPnflypWqqalRVlZWva89aNAgtW7dWitWrAg+tnnzZm3btk3Z2dlhL8tZZ52lAwcO6Msvvww+9vnnn0uSjj322LBfB84y5XsN+/F7A00Jt6ZJ1DUATfNDyGni9Tm5EdEPwq1riYmJGjRoUEjdqamp0YoVKxqsO9nZ2SHTS1JBQUFw+t69eys9PT1kmvLycq1duzY4TTg1Mjs7W6tXr1Z1dXXI+5x44ok66qijJEnfffddnTAzISFBkhQIRCfTIuiMIRpCADbr27evLrzwQk2YMEHr1q3Te++9p8mTJ+uyyy4L3pn2m2++UWZmZvBi06mpqRo/frzy8vL09ttvq6ioSOPGjVN2dnbwzrSS9MUXX2j9+vUqLi7W999/r/Xr12v9+vWqqjr0IzQnJ0ennXaarrnmGn388ccqKirSr371K11wwQUho2EAoCEm3sDR9hFjtqOuwev8EOYBfpCXl6f58+fr+eef18aNG3X99ddr//79wbuwjx07VtOnTw9Of+ONNyo/P18PPvigNm3apNmzZ+vDDz/U5MmTJUlxcXG66aabdM899+j111/XJ598orFjx6p79+4aOXKkpPBq5BVXXKHExESNHz9eGzZs0KJFi/Too48qLy8vOC8jRozQk08+qZdeeklbtmxRQUGB7rjjDo0YMSIYeDqNU9cBS3FNM7hh4cKFmjx5ss4//3zFx8dr1KhReuyxx4J/r66u1ubNm/Xdd98FH3v44YeD01ZWVio3N1dPPPFEyOtee+21euedd4L/feqpp0o6dEfAjIwMxcfH64033tANN9ygc845R+3atdNPf/pTPfjgg1FeYngJowYBHIm6Bq/jFPa6CIBhm9GjR2vXrl2aOXOmiouLNXDgQOXn5wdv/LNt27aQUZNnnnmmXnzxRc2YMUO33Xabjj/+eC1ZskQnn3xycJpbbrkleAp5aWmphgwZovz8fCUn/3BN0qZqZGpqqt566y1NmjRJgwYNUufOnTVz5kxNnDgxOM2MGTMUFxenGTNm6JtvvlGXLl00YsQI/fa3v43a+ooLRGusqIPKy8uVmpqqGe8PVXL71s16jZaerurEEXenC0y0RybQEJovFkGnk9fpdOJHhROnYDT3lImKfdW654y3VFZWFnI9leao3a/1fHJ2VC5wvf362Y7MJ5znRE2TvFfXuBwLpOjXNdNqmtTyutaS0wCdqmvUNH9zqq7Vx+1LDnll1DVBZyi/BJ1+PHWdugaJU9etZeLpV4g9mnYACA/7SziN4ACIPq7n5wy/BHvh8Mu6MDHkBGKlWUHn3LlzlZGRoeTkZGVlZQWvWdOQ0tJSTZo0Sd26dVNSUpJOOOEELV++vFkz3BxuHwm0EQ0hTOWVI+swC3UNAOAVttU0xIZfAj6YiwMXiJWIg85FixYpLy9Ps2bN0kcffaQBAwYoNze3zm3na1VVVemCCy7Q1q1b9corr2jz5s2aP3++jjnmmBbPPAAALUVdA8wR7QOtnBEDr6OmOYtRcd5C2Av4Q8Q3I3rooYc0YcKE4N2d5s2bp2XLlunZZ5/VtGnT6kz/7LPPas+ePVqzZo1atz50zZaMjIyWzTWAIJtuSpS0LZEfGDCOH+ua30ZGc5YCAL/wY01D+Px8YyJ6EMA/IhrRWVVVpaKiIuXk5PzwAvHxysnJUWFhYb3Pef3115Wdna1JkyYpLS1NJ598sn73u9/p4MGDDb5PZWWlysvLQ/65iYbQXokbtzf6D01j9Au8LBZ1zbSa5hTbbkTkBU3VNOoa4G9+7dUQGQI/AF4X0YjO3bt36+DBg8Fb2NdKS0vTpk31X2/hq6++0sqVKzVmzBgtX75cX3zxhX7961+rurpas2bNqvc5c+bM0Z133hnJrBnPr0fOYi3SJu/w6av69nR6dgAYLhZ1zYs1DbHjx7pm05kKgEno1YD6+S3c5ZIL8Luo33W9pqZGXbt21VNPPaVBgwZp9OjRuv322zVv3rwGnzN9+nSVlZUF/23fzgiFwzHypS4nRrIwGgZAOCKta9Q0NAd1DUAs2NCruX0DEy+GRn4L/uA+t7/H8JeIRnR27txZCQkJKikpCXm8pKRE6enp9T6nW7duat26tRISEoKP9e3bV8XFxaqqqlJiYt2RjklJSUpK4kg+wuN0E1f7ejaNhGH0C9A8sahr1DR32XY5lmgEkzbWtWjqsDWgvRlxbs8G4Dh6NUTCL9frJNQF/CeiEZ2JiYkaNGiQVqxYEXyspqZGK1asUHZ2dr3POeuss/TFF1+opqYm+Njnn3+ubt261Vs44S6bGsJoj1RhFAzgfdQ1mCTadcemumbL7xE/hASwBzUNCEXICfhTxKeu5+Xlaf78+Xr++ee1ceNGXX/99dq/f3/wzn5jx47V9OnTg9Nff/312rNnj2688UZ9/vnnWrZsmX73u99p0qRJzi0FfCdWzRqn/QHeR12D22JZa6hpgLdR0xAJgkAAXhTRqeuSNHr0aO3atUszZ85UcXGxBg4cqPz8/OBFr7dt26b4+B/y0549e+rNN9/UlClTdMopp+iYY47RjTfeqFtvvdW5pYCvuNGkJW7cbvwpf9E8fZ3T/OBl1DV3RfO60zaMCqSmYevXXTx5DUC4g5qGSHn1FHa/hrjUE6AZQackTZ48WZMnT673b6tWrarzWHZ2tt5///3mvBViiIaw6femMQS8iboGN1DTAEQDNc15GT12aevXXdyejajxatgJwJ+iftd1OMvPd1w34XQ7E+bBdvyIAgAz6okJ89AYGw7AAgDM49fRnKbijuuINYJOWMGkZsykeQEAN3DAomVMqiMmzQsANISgJPq8Eg56ZTkANB9BZwzQELYMTVj4GP0CAIewPwyfH+usn8+QAYCGEBIC8AKCTkgytyE0tfkydb4AAGYztX6YOl8AYAq/3OTF5rDT5nkH4ByCThjL9KbL9PnzMi9fDB6Ad1E3ImfqgVgA8DIbA0Mb5xlAdBB0AggLp/kBcJqf9is2hJw2zCPqKijOdHsWAMBVhJyH+GXUMdAUgk4YyZZmy5b5BAAgHNS1yHEtdgBeRHgIwFYEnRbx08gXm5jWFHKaH4DG+OHSD6btB02rEwAAhMOGsNOGefSzC9I3uT0L8CGCzibQEMYeDSEAAO6hDgNA/fx4arDJQaLJ8wbAPQSdMIqtzZWt8w0AiC7qQ8tF64AsZ8oAdmFkmHsIFGGLkR3+4fYswAAEnQAAAAhBQAsAOJxpYadp8wPAHASdMIbtTZXt8w8AcBZ1AQDgJaaEi6bMBwAzEXQCHmTadVePxB1qAUSL6fs/mxDUAkBdfrxO5+HcDhndfn8A5iPoBBxEUwjA6zhQER7qAQDAq9wKGwk5G+b3AB44HEGnz5ky8oWG0A7cuAGAU9if2IH6DACoT6xDR0JONOWSlI/cngUYgqAzyhj5AgAAAADwmliFj4ScACJB0GkJRr7Yg9EvAOBv1AHnmXIGCgAgVGWvqqgGkYScACJF0AnX0RACAGAu6jQAoCnRCCQJOQE0B0EnAAAAAMB4F6RvcnsWJHHjl4Y4Nboz2qNEERumfF/hPwSdQBQw+gUA/In9P5pj69dd3J4FAHBMS0JKAk4ALUXQCVfREEYP1zNrWEFxptuzACAK2O9Fj1frNddAB4DoqB2VGU5wGcm0ANCUVm7PAAAAAAAA8CYCTACxxIhOH2PkCwAAzvHqqEcAAADAFgSdQJTQ8AIA4A9J2xLdngUAMcYNiQBzXJLykduzAIMQdMI1BIEAAAAAAABwCkEnAAAAmuT2AUouuQMAAICmEHQCAAAAAAAAsB5BJwAAQAu5PdoRAAAAAEEnEFU0vgAAAAAAALFB0AlXEADaq8PWgNuzAAAAAACQlNFjl9uzABiFoBMAAAAAgAgRMAGAeQg6AQBATDEy3F6ckQEAAACTEXQCAAAAAAAAsB5BJ+BhqV9Vuj0LABAT7O8AwB8uSN/k9iwAAAxG0AkAAAAAAADAegSdAICw7dmzR2PGjFFKSoo6duyo8ePHa9++fY0+p6KiQpMmTdLRRx+t9u3ba9SoUSopKQn+/R//+Icuv/xy9ezZU23atFHfvn316KOPNvh67733nlq1aqWBAwc6tVgAAJ+irgEAbDB37lxlZGQoOTlZWVlZWrduXaPTL168WJmZmUpOTlb//v21fPnykL8HAgHNnDlT3bp1U5s2bZSTk6N//etfIdOEUyP/+c9/6uyzz1ZycrJ69uyp++67L+J5cRpBJwAgbGPGjNGGDRtUUFCgpUuXavXq1Zo4cWKjz5kyZYreeOMNLV68WO+884527Nihiy++OPj3oqIide3aVX/84x+1YcMG3X777Zo+fboef/zxOq9VWlqqsWPH6vzzz3d82QAA/kNdAwCYbtGiRcrLy9OsWbP00UcfacCAAcrNzdXOnTvrnX7NmjW6/PLLNX78eH388ccaOXKkRo4cqU8//TQ4zX333afHHntM8+bN09q1a9WuXTvl5uaqoqIiOE1TNbK8vFxDhw7Vscceq6KiIt1///2aPXu2nnrqqYjmxWmtovbKAABP2bhxo/Lz8/XBBx9o8ODBkqQ//OEPGjZsmB544AF17969znPKysr0zDPP6MUXX9R5550nSXruuefUt29fvf/++zrjjDN0zTXXhDynT58+Kiws1KuvvqrJkyeH/O26667TFVdcoYSEBC1ZsiQ6CwoA8AXqGgDY75KUj9yehah76KGHNGHCBI0bN06SNG/ePC1btkzPPvuspk2bVmf6Rx99VBdeeKGmTp0qSbr77rtVUFCgxx9/XPPmzVMgENAjjzyiGTNm6KKLLpIkvfDCC0pLS9OSJUt02WWXhVUjFy5cqKqqKj377LNKTEzUSSedpPXr1+uhhx4KBqJNzUs0MKITADyqvLw85F9lZctu1lJYWKiOHTsGC50k5eTkKD4+XmvXrq33OUVFRaqurlZOTk7wsczMTPXq1UuFhYUNvldZWZk6deoU8thzzz2nr776SrNmzWrRcgAA7ON0TZOoa3BGRo9dbs8CfG7r113cngU0Q7h1raqqSkVFRSF1Jz4+Xjk5OQ3WncLCwpDpJSk3Nzc4/ZYtW1RcXBwyTWpqqrKysoLThFMjCwsLdc455ygxMTHkfTZv3qz//ve/Yc1LNDCiEwBclLg9UQnJiU1PGIGDFTWSpJ49e4Y8PmvWLM2ePbvZr1tcXKyuXbuGPNaqVSt16tRJxcXFDT4nMTFRHTt2DHk8LS2tweesWbNGixYt0rJly4KP/etf/9K0adP097//Xa1aUboAwEQ21TSJugYAaJwJdW337t06ePCg0tLSQh5PS0vTpk2b6n2P4uLieqevrVO1/9vUNE3VyOLiYvXu3bvOa9T+7aijjmpyXqKBqgoAHrV9+3alpKQE/zspKane6aZNm6Z777230dfauHGjo/PWkE8//VQXXXSRZs2apaFDh0qSDh48qCuuuEJ33nmnTjjhhJjMBwDALOHWNIm6BgAwXyR1DZEh6AQAj0pJSQkpng25+eabdfXVVzc6TZ8+fZSenl7ngtcHDhzQnj17lJ6eXu/z0tPTVVVVpdLS0pDRLyUlJXWe89lnn+n888/XxIkTNWPGjODje/fu1YcffqiPP/44eG2zmpoaBQIBtWrVSm+99VbwOmkAAG8Kt6ZJ1DUAgPnCrWudO3dWQkKCSkpKQh6vr+7USk9Pb3T62v8tKSlRt27dQqYZOHBgcJqmamRD73P4ezQ1L9HANToBwOe6dOmizMzMRv8lJiYqOztbpaWlKioqCj535cqVqqmpUVZWVr2vPWjQILVu3VorVqwIPrZ582Zt27ZN2dnZwcc2bNigc889V1dddZV++9vfhrxGSkqKPvnkE61fvz7477rrrtOJJ56o9evXN/jeAAB/oq4BALwiMTFRgwYNCqk7NTU1WrFiRUjdOVx2dnbI9JJUUFAQnL53795KT08Pmaa8vFxr164NThNOjczOztbq1atVXV0d8j4nnniijjrqqLDmJRoY0QkACEvfvn114YUXasKECZo3b56qq6s1efJkXXbZZcE7037zzTc6//zz9cILL+j0009Xamqqxo8fr7y8PHXq1EkpKSm64YYblJ2drTPOOEPSodP6zjvvPOXm5iovLy94vZaEhAR16dJF8fHxOvnkk0PmpWvXrkpOTq7zOAAA4aKuAQBskJeXp6uuukqDBw/W6aefrkceeUT79+8P3oV97NixOuaYYzRnzhxJ0o033qif/OQnevDBBzV8+HC99NJL+vDDD/XUU09JkuLi4nTTTTfpnnvu0fHHH6/evXvrjjvuUPfu3TVy5EhJ4dXI2suwjB8/Xrfeeqs+/fRTPfroo3r44YeD897UvEQDQScAIGwLFy7U5MmTdf755ys+Pl6jRo3SY489Fvx7dXW1Nm/erO+++y742MMPPxyctrKyUrm5uXriiSeCf3/llVe0a9cu/fGPf9Qf//jH4OPHHnustm7dGpPlAgD4E3UNAGC60aNHa9euXZo5c6aKi4s1cOBA5efnB2/ys23bNsXH/3DC9plnnqkXX3xRM2bM0G233abjjz9eS5YsCTmYdsstt2j//v2aOHGiSktLNWTIEOXn5ys5OTk4TVM1MjU1VW+99ZYmTZqkQYMGqXPnzpo5c6YmTpwY0bw4LS4QCASi9uoOKS8vV2pqqma8P1TJ7VtH/PyC4sxmv/fWr7s0+7mSlLTNmTt0ddjq/MeU+lWl468ZrsSN211771ir6tuz6YmiqKyP8xc13psR1+LXqOxV1aLnZ/TY1aLnX5Be/x3qGlOxr1r3nPGWysrKwr5OWENq92s/uu13SjismDjhYEWFvvzdbY7MJ5zX0pom2V/XolHTJOparLhZ10ytaZK7da05NU1yrq5R0/zNiboWqZbUwWhoaW0FWqqlvVE0NLc2ReqSlI+C/3/f3hoNPqmEuuZzXKMT8LBoNIQAAAAAAAAmIugEAAAAAAAAYD2CTgAAEFNOnSqM2HP7ciwAAABAYwg64QoaJQAAAAAAADiJoBNARBiJBQAAAAAATETQCUQRI1cBwB/Y3wOAf5l4x2sA8CuCTgAAAAAAAADWI+gEAAAAAAAAYD2CTgAAADTJ7dPzy/okufr+AACYauvXXdyeBcAYBJ1wjdsNEwAAgBMqe1W5PQsAAAAQQScQNQS5AOAv7PcBAAAAdxF0+hingAEAAAAAAMArCDoBAADQKK+OVt2bEef2LAAAAMBBBJ1wlVcbJxMwYrdhF6RvcnsWAEQB+z3YKqPHLrdnAQAAwBMIOoEoIMAFAH9i/w8AAAC4h6ATAAAAAGCFguJMt2cBAGAwgk64jtEvAACYizoNAID5tn7dxe1ZCMFBCbiFoDPKKntVOfI6XCzfHjSEAOBv1AHncf1VAAAAhIOgEwAAxBwH8OxAaAsAAACbEHT6nCkjJLzSSHllORpCMAHAqTMVAAAAAMBpBJ2AB5kSYANArJmy//P6gS8AAADARASdMAZNoX8wIgwAzEddBgAAgG0IOgGH0BACAA5HXQAAfzDtbtfwL7ZFgKAThqEpBADAfSbV42hdjoDrTgMAAHgPQSfgAJMaQgCAOagPAAAA0fNK+WluzwIMQ9DZhIweu9yehagz5cYNtWxrCm2bXwAAGkNdAwAAgK0IOi3CKVYIh2nBNQCzcAAv9mwKDm2aV1Nwgz0AAABzEHTCSLY0WrbMJwCYyE8H8KgXiJYL0je5PQsAAIOYdEOiguJMt2cBPkTQCWPRFJrFT4EEAPiRiXXXtNG5ANxFaAIAaApBJyTRSDSHiQ2hX/jh1FsA3mNy3TB53gAAAIBwEXTCaKY2XqbOF4E1ABxi6v7Q1PoBAAAAeAFBZwxwkfqWMa0pNG1+AAB2Ma2OmDY/scDlWAAAALyJoBNWMKUJM2U+AMBNHMBrOVPqiSnzAQAAnGPSDYmAWCPotIyfRyC43Yy5/f5eQUACAIe4XVfcfv+mmHr5AQA4HIESAJiFoBNBNjQUbjVlpjeDkh2fHwAcKZoH8GzYL1LXAAAAAOc0K+icO3euMjIylJycrKysLK1bty6s57300kuKi4vTyJEjm/O2gKTYN2c0g/4eSQx/oK7BTdQ1f8voscvtWYDHUNMAAH4WcdC5aNEi5eXladasWfroo480YMAA5ebmaufOnY0+b+vWrfrf//1fnX322c2eWaBWrJo0mkHA+6hrMEEs6k1V357W1DUbRuMCJvJyTSsoznR7FgCrmHJZBb67iLWIg86HHnpIEyZM0Lhx49SvXz/NmzdPbdu21bPPPtvgcw4ePKgxY8bozjvvVJ8+fVo0w4gumxqLaDZsNjWDAFqGugZTRLuu4RAnz1LgutMwDTUNAOB3EQWdVVVVKioqUk5Ozg8vEB+vnJwcFRYWNvi8u+66S127dtX48ePDep/KykqVl5eH/AMa4mRjaGvAaVNADZgkFnWNmuYuG/eP1DUAzUGvBgBAhEHn7t27dfDgQaWlpYU8npaWpuLi4nqf8+677+qZZ57R/Pnzw36fOXPmKDU1NfivZ09+oB+O6yXWryXNHI0g4E+xqGvUNDQXdQ1AJOjVAPjVK+WnuT0LMEhU77q+d+9eXXnllZo/f746d+4c9vOmT5+usrKy4L/t27dHcS5jg1ObYqe2uWusyQtnGhxCsA78oDl1zYs1zWnsZxrXVM068u+21zUbR+ECNqJXazlTroEIAPhBq0gm7ty5sxISElRSUhLyeElJidLT0+tM/+WXX2rr1q0aMWJE8LGamppDb9yqlTZv3qwf/ehHdZ6XlJSkpCRzfuRm9NjlqyJW1idJqV9Vuj0bjrG94WsKDSHQfLGoa6bVNKdU9qpS0rZEt2cjLNQ1AH7g114NQMO2ft1FGT12uT0bQExFNKIzMTFRgwYN0ooVK4KP1dTUaMWKFcrOzq4zfWZmpj755BOtX78++O/nP/+5zj33XK1fv57THACfYWQzTOPXusYPXgDwHi/XNO7aDAAIV0QjOiUpLy9PV111lQYPHqzTTz9djzzyiPbv369x48ZJksaOHatjjjlGc+bMUXJysk4++eSQ53fs2FGS6jweTRekb6I4AgDqRV0DzBHtsxS4TAK8zsaaBsD7CoozdUH6JrdnAz4RcdA5evRo7dq1SzNnzlRxcbEGDhyo/Pz84EWvt23bpvj4qF76Ezr0Q73D1kDUXt9rp/l5lR9PW2ckGpxGXfMH6hoAP6CmATgSp6/DbyIOOiVp8uTJmjx5cr1/W7VqVaPPXbBgQXPeEoALGPkCv6CuuS/aB/AAp3E5FpiKmgabhHu9b/a5AMLVrKAT/sDoFwAAECt+PEsBgL38dLNapzXnZoaHP4fQE0BjOG8hhtghw0k0hHDDnj17NGbMGKWkpKhjx44aP3689u3b1+hzKioqNGnSJB199NFq3769Ro0aFXJH2G+//VYXXnihunfvrqSkJPXs2VOTJ09WeXl5cJpXX31VF1xwgbp06aKUlBRlZ2frzTffjNpywpvYb/obZymgPtQ1ILaaE3LW9xpOvA7gNdGoadKhy54MHz5cbdu2VdeuXTV16lQdOHAgZJpVq1bptNNOU1JSko477rh6zxCYO3euMjIylJycrKysLK1bty7k78XFxbryyiuVnp6udu3a6bTTTtOf//zniNcDQScAIGxjxozRhg0bVFBQoKVLl2r16tWaOHFio8+ZMmWK3njjDS1evFjvvPOOduzYoYsvvjj49/j4eF100UV6/fXX9fnnn2vBggX629/+puuuuy44zerVq3XBBRdo+fLlKioq0rnnnqsRI0bo448/jtqyomkcwINT/BpCc80091HXzMfN97whGuEkgWf4GIHsD9GoaQcPHtTw4cNVVVWlNWvW6Pnnn9eCBQs0c+bM4DRbtmzR8OHDde6552r9+vW66aabdO2114YcwFu0aJHy8vI0a9YsffTRRxowYIByc3O1c+fO4DRjx47V5s2b9frrr+uTTz7RxRdfrEsvvTTi2hgXCASMvyBWeXm5UlNTNeP9oUpu37pZr9HSAunUjsHpHXEsrmfG6evmiVVD6OToF6cCkZY2hS2521/Fvmrdc8ZbKisrU0pKSovmo3a/9qPbfqeE5OQWvdaRDlZU6Mvf3ebIfB5u48aN6tevnz744AMNHjxYkpSfn69hw4bp66+/Vvfu3es8p6ysTF26dNGLL76oSy65RJK0adMm9e3bV4WFhTrjjDPqfa/HHntM999/v7Zv397g/Jx00kkaPXp0SJG1gRM1TfJmXYvVNTqpa+aJRV1zekSnE3XNiaDThLpmY02TqGtOcaquNcTUoJPgKDyxDCI5ANs4Ew6uRfvO6xfGfajBJ5X4sq5Fq6b99a9/1c9+9jPt2LEjeGO7efPm6dZbb9WuXbuUmJioW2+9VcuWLdOnn34afO3LLrtMpaWlys/PlyRlZWXpxz/+sR5//HFJUk1NjXr27KkbbrhB06ZNkyS1b99eTz75pK688srg6xx99NG69957de2114a9LhjRCaBenOJnv/Ly8pB/lZUtC3cKCwvVsWPHYOGUpJycHMXHx2vt2rX1PqeoqEjV1dXKyckJPpaZmalevXqpsLCw3ufs2LFDr776qn7yk580OC81NTXau3evOnXq1MylgYnY7wBoiNM1TaKuofkIOcMT69GWjPCETWzp1QoLC9W/f/9gyClJubm5Ki8v14YNG4LTHP4atdPUvkZVVZWKiopCpomPj1dOTk5I7TzzzDO1aNEi7dmzRzU1NXrppZdUUVGh//mf/4loXXAzIjSJmxIB0dNhW0AJic6OYjtYdej1evbsGfL4rFmzNHv27Ga/bnFxsbp27RryWKtWrdSpUycVFxc3+JzExER17Ngx5PG0tLQ6z7n88sv1l7/8Rd9//71GjBihp59+usF5eeCBB7Rv3z5deumlzVsYAMbw62nrXmRTTZOoa0A0uRk4Jm1LZHQnHNFhuz11LVo1rbi4OCTkrP177d8am6a8vFzff/+9/vvf/+rgwYP1TrNp0w+jfF9++WWNHj1aRx99tFq1aqW2bdvqtdde03HHHRfmWjiEEZ2AZWgIEa7t27errKws+G/69On1Tjdt2jTFxcU1+u/wAhQtDz/8sD766CP95S9/0Zdffqm8vLx6p3vxxRd155136uWXX65TzIFwsB/1HxNPW0dkwq1pEnUNcJMpoypNmAfTMBLZLLb1arFwxx13qLS0VH/729/04YcfKi8vT5deeqk++eSTiF6HEZ1hyuixy8gdw96MuJhc04xRnYB9UlJSwrruy80336yrr7660Wn69Omj9PT0kItFS9KBAwe0Z88epaen1/u89PR0VVVVqbS0NORIYUlJSZ3npKenKz09XZmZmerUqZPOPvts3XHHHerWrVtwmpdeeknXXnutFi9eXOf0CETG1LoGfyF0RrjCrWkSdc1LTL0+J+pnWrhYOz8cnIKJbOnV0tPT69wdvfau7IdPc+Sd2ktKSpSSkqI2bdooISFBCQkJ9U5T+xpffvmlHn/8cX366ac66aSTJEkDBgzQ3//+d82dO1fz5s1rdB0cjqAzxip7VRlXAGAPG29CBPN16dJFXbo0HXhlZ2ertLRURUVFGjRokCRp5cqVqqmpUVZWVr3PGTRokFq3bq0VK1Zo1KhRkqTNmzdr27Ztys7ObvC9ampqJCnkWjV/+tOfdM011+ill17S8OHDw14+2IUDeABairoGxJ7JPS6nssNmbte07Oxs/fa3v9XOnTuDZx0UFBQoJSVF/fr1C06zfPnykNcuKCgIvkZiYqIGDRqkFStWaOTIkZIO1cUVK1Zo8uTJkqTvvvtO0qFrdx4uISEhWEPDxanrCBujLtBcptxxHS3Tt29fXXjhhZowYYLWrVun9957T5MnT9Zll10WvIvfN998o8zMzOBRv9TUVI0fP155eXl6++23VVRUpHHjxik7Ozt4Z9rly5frueee06effqqtW7dq2bJluu6663TWWWcpIyND0qHT+saOHasHH3xQWVlZKi4uVnFxscrKylxZF/gBjQOai4N3LRftu9d6HXUNzcHZEHWZHHLWsmEeY8Ht7ZdR2tETrZo2dOhQ9evXT1deeaX+8Y9/6M0339SMGTM0adIkJSUd+i133XXX6auvvtItt9yiTZs26YknntDLL7+sKVOmBOcvLy9P8+fP1/PPP6+NGzfq+uuv1/79+zVu3DhJh26CdNxxx+lXv/qV1q1bpy+//FIPPvigCgoKguFouAg6PcDLP+DxA4JmmGDhwoXKzMzU+eefr2HDhmnIkCF66qmngn+vrq7W5s2bg0fkpEPXKPvZz36mUaNG6ZxzzlF6erpeffXV4N/btGmj+fPna8iQIerbt6+mTJmin//851q6dGlwmqeeekoHDhzQpEmT1K1bt+C/G2+8MTYLDk9ivwqAuga0jE0Bok3ziuZZsneA27PgqmjUtISEBC1dulQJCQnKzs7WL3/5S40dO1Z33XVXcJrevXtr2bJlKigo0IABA/Tggw/q6aefVm5ubnCa0aNH64EHHtDMmTM1cOBArV+/Xvn5+cEbFLVu3VrLly9Xly5dNGLECJ1yyil64YUX9Pzzz2vYsGERrYe4QCAQ/fPDWqi8vFypqama8f5QJbdv3azXcOLIgVNHP6Kxg43FaX61ONXPHTaPfDFpRGdLRr9U7KvWPWe8pbKysrCvE9aQ2v3awF/+VgmJyS16rSMdrKrQ+j/e7sh8wnlO1DSJuuYUapo7Yhkym3wjopbWtZaO6HSqrlHT/M2pulYfE0d/uT0iziQ2B4d+PiPF7bPkonk2guN17coo1bX/R12LJkZ0AhZg1BEARAf7V7jF7UYTMB0hp9lsDjkl++e/JdiO4XUEnS6w/egRTWFssb4BAF5i82hOAIB3QkKvLAeAUASdHsEPeTjB5NPWAZjL9u85B5QAAAiP18JBry0PAIJONBNNYWywngH4VawP4LG/jQ3WMwDYy6uhoFeXy1QmXpYC3kLQGQGupQQA8BLqGmIp1iEnZ7sA9jIxCPH7dQ29HgZ6ffmO5PftGd5G0OkhjH7xFtZvKAIZANHGfhdNsf0yDQDQHH4JAf2ynIDX+SbovCB9k9uzEMIrP5RpCqPDjfXKyBfALqbVtWhgv+Qd/F4AADv5Lfzz2/ICXuSboBNA7Hkl0AfQNK983wnknMfBOwC28+tpvn4N/fyy3H7druF9BJ0e48YPe5pCZ9EQAsAPqGvwIi7HAjTMxOtzwn/8Ena6he85oomgE46gKXQG6zG6/HCqLwBnsD92hpfWo1dGLQNAOAj6WAeArQg64RgvNTMAAKBl3PpdwFkKAJzkx9N7Cfh+4PV14cftG95H0BkhJ081itbIAH7g24mGEIDtvFbXOIDXfKw7AM3B6azu83qw1xysE8AuBJ1wFI1N83hxvXGKH2AHrhXYOC/un72Mg3cA0HwEeg1j3QD2IOj0KDd/6NMURob11TSCGABuYj8dGdYXAK/w02m9BHlN8+o6cms7ZwQ3ooWgE1FBkxMet9cTI18A2MLt/ZXb+2tbeHU9mXiWAjfYA+AUrwZ40cC6AsxH0OkyE384O8WrzY5TWD8AvIi65l9urx+3w/BwcZYCUD9Gd7mD4C5yrDPAbASdHmbCD363mx5TmbBeorl9eDnoAOAe6pq5WC8AvMZPp60jcl4LO9ne4SUEnYg6mp9QrA8AsBv78VAmrA8O3gFA5LwW1sUa66/lGMmNaCDobAabTjkyYfSLZEYTZAJT1oMp2wUAM1DXImfK/txtrAcATjAt7PDD6DZCOmewHgHzEHQawC8jBfzeDPll+Z3enm0KYAAcQl3zB1OW35TwGwBsQTjnLK+sTz8E/PAHXwWdfr07pUkNgClNUayZtNwmbQ8AWoa65j6T9u+x5NflBgDbeSWUMw3rFTCHr4JOmKGsT5KvGiQ/LSsA+JGf9vN+q+GcpQBEH6etxw5hHAA/IOg0RLRP8zNp9EstrzdKJjaDJm4HAOAFpu3vo8HEZaSuAUB4CDmjzwvr2I2g37SDHbAfQSdcZWLT5ASvLldTTL4un19P8QXc4tcDeF7d/5u4XCZuAwDs5uXRnIgNL4SdgO0IOpvJxlOPTG0IvNQYmrwspn7+AMxAXXOOqXWgOUyua9Fm8sE7AIgE4Vtssb4BdxF0GsTvP6htb6ZsnndT2Ri8AIDkjZpm8vybGnIDiAynrEYfoZs7bF7vjGyG7Qg6fcaGxsDkxqo+pjeDUmw+d78H9QDqisV+wfS6ZkONOJJt8+tHXI4FcJ4Xwx2bwzYvYP2Hj4MecBJBJ4xkQ2NowzwCAMxgQ82wYR4lew/ecZYCgFgiZDODrZ+DF4N/+Ecrt2cAoSp7VUV9Z7g3I04dtgai+h5OObzhSv2q0sU5OcSGBvBIpo92AoCWsrGumVDTJDvrGgBvMGkEl9dCHVvDNQBwAiM6W8DmI/M2hl+1I03caMpsGeVypFh9zpy2DnhDNOoa+4f6uVnTDn9/29j4+wUAYomQ0zx8JkBsMaITVor2SE8bmz+vsflAAoDYs2lU55FicfaCF+oaB+8A72A0J/wmaVuidfVl69ddYtqTFRRncg1qOMJ3QecF6ZuMKqz1icXp65LdTeHhGmrewmkWvdD4NYRRLwD8xgt1rb66FGn46eXaBgBoGCMHzWZj2AnYyHdBJ0J5oSlsCI1ebFCsAXdxAM/7qGf2H7zjLAUA0UadtQNhJxB9XKMT8CDbG0IAaC72f2gJmk8g+kw6OOeV09YJOREtXvmOwF8IOlsoWkfoY/lDm6bQW2L5eUZrO3X6e8W1XoDwUddgGj5PAGgYIad9+MwaZtKBENiLoBOSaCK8gs8RAOAl1DUA0eKFkWoEZvbiswOih6DTYJw+BQBA8xCQ2S/WnyFnKQDRx2gt4Ae2hJ1eOCgAfyHoRBBNod280hAC8K5Y7zeoawCA+nghuLElJAOAWCPodICX7qRJU2gnPjcATqKuwW0cvAOAhhFyegefZV2M/EZLEXQazo0f3jSFdnHj84rmdumlgAVAXQRKaAq/QwBvMiW8sH00J8GY99jwmdr+vYG/EHSiXjQZduBzAoCmsa+0BwfvAKBhNgRiaB4+W8A5vgw6bbuIu1ujX2gMUR9GYwHmoa41jZpmPj4jwLsYzdlyBGFwm83fH/iLL4POaOCIPWLNiw1hNL5HtgVAgCm8WNe8uN/0Cj4bAIDfEWb/wJSDI7ATQaclGNWJw7n1uTCaE4DtqGs4HHUN8A+bR6MRgPkHnzXQcgSdaBJNoVn4PAB4gZsBE/tRs3j18/DiqGigORiZ1TIEXzCJzQcM4B8EnQ6K9g9amkK4+Tkw6gWAl1DXzEBdiwyXYwGax9ZwhpDTn/jcD+EgCZqLoBNhoyl0l9fXPyNf7LBnzx6NGTNGKSkp6tixo8aPH699+/Y1+pyKigpNmjRJRx99tNq3b69Ro0appKSk3mm//fZb9ejRQ3FxcSotLQ3526pVq3TaaacpKSlJxx13nBYsWODQUqEhXj6AJ3l/v2qyvRlxrH8YgboGUxF2+RufP5ojWjVt27ZtGj58uNq2bauuXbtq6tSpOnDgQMg0TdW01atXa8SIEerevbvi4uK0ZMmSeudn48aN+vnPf67U1FS1a9dOP/7xj7Vt27aI1gNBp2VMaAppTGLP7XXu9nYHc4wZM0YbNmxQQUGBli5dqtWrV2vixImNPmfKlCl64403tHjxYr3zzjvasWOHLr744nqnHT9+vE455ZQ6j2/ZskXDhw/Xueeeq/Xr1+umm27StddeqzfffNOR5YJ/ub1/9SMT1jl1DbWoa9FlwogsG0dzEnJBMnc7sPE75RfRqGkHDx7U8OHDVVVVpTVr1uj555/XggULNHPmzOA04dS0/fv3a8CAAZo7d26D8/Lll19qyJAhyszM1KpVq/TPf/5Td9xxh5KTkyNaD60imtpDLkjfZEThtdXejDh12BpwezY8z4RmEKi1ceNG5efn64MPPtDgwYMlSX/4wx80bNgwPfDAA+revXud55SVlemZZ57Riy++qPPOO0+S9Nxzz6lv3756//33dcYZZwSnffLJJ1VaWqqZM2fqr3/9a8jrzJs3T71799aDDz4oSerbt6/effddPfzww8rNzY3WIiMGKntVuf5DnpoWOybUtViEnJylYAfqGgDAK6JV09566y199tln+tvf/qa0tDQNHDhQd999t2699VbNnj1biYmJYdW0n/70p/rpT3/a6DLcfvvtGjZsmO67777gYz/60Y8iXheM6HRYLH7YmjIKwYRmxctMWb80hKhVWFiojh07BgunJOXk5Cg+Pl5r166t9zlFRUWqrq5WTk5O8LHMzEz16tVLhYWFwcc+++wz3XXXXXrhhRcUH1+3NBUWFoa8hiTl5uaGvIbfRevafX6pa6bsc72MdQzTUNeiy4RBJTaOPHP74B/M4vftwYT9iC2iVdMKCwvVv39/paWlBafJzc1VeXm5NmzYEJympTWtpqZGy5Yt0wknnKDc3Fx17dpVWVlZDZ7i3hiCTrQITUt0sF6d4febNpSXl4f8q6ysbNHrFRcXq2vXriGPtWrVSp06dVJxcXGDz0lMTFTHjh1DHk9LSws+p7KyUpdffrnuv/9+9erVq8HXOby41r5GeXm5vv/++2YuERCKy7NEjynr1YRQHc3jdE2TqGswj99DLdTPxO3CxoMIprGlV2uoXtX+rbFpIqlpO3fu1L59+/T73/9eF154od566y394he/0MUXX6x33nknrNeo5dtT121nwql+tTjlz1mmNIMSDWEspGytVKtWzn7mBw4cKpI9e/YMeXzWrFmaPXt2nemnTZume++9t9HX3Lhxo2Pzd6Tp06erb9+++uUvfxm194D5qGveZVJdiwU/n6VgQk2TqGs4xLYgxpQaCOAHKV9VqJXDqdmBAxWS7OnVYqWmpkaSdNFFF2nKlCmSpIEDB2rNmjWaN2+efvKTn4T9WgSdUZDRY1dMCqtpTaEkGsMW8FsjWMvPDWG0bd++XSkpKcH/TkpKqne6m2++WVdffXWjr9WnTx+lp6dr586dIY8fOHBAe/bsUXp6er3PS09PV1VVlUpLS0OOFJaUlASfs3LlSn3yySd65ZVXJEmBwKH9SOfOnXX77bfrzjvvVHp6ep27/5WUlCglJUVt2rRpdN7RcrGqayYh7Gw50+qa7Qfv/H6WQrg1TaKumYDTTSNjSk8HcyVtSzSujm39uktMermC4kxP1kBberX09HStW7cu5Hm19evwaVpa0zp37qxWrVqpX79+IY/XXu8zEgSdcBSNYfOY1gxK9jeEkFJSUkKKZ0O6dOmiLl2aDrGys7NVWlqqoqIiDRo0SNKhZq6mpkZZWVn1PmfQoEFq3bq1VqxYoVGjRkmSNm/erG3btik7O1uS9Oc//znklIYPPvhA11xzjf7+978HLz6dnZ2t5cuXh7x2QUFB8DXgDSYdwJM4iNcSJtY12C3cmiZR12DXaE6T6h7MZmLYieazpVfLzs7Wb3/7W+3cuTN4anxBQYFSUlKCoaQTNS0xMVE//vGPtXnz5pDHP//8cx177LFhv45E0Gk905pCicYwEqY2ghRQ1Kdv37668MILNWHCBM2bN0/V1dWaPHmyLrvssuBd/L755hudf/75euGFF3T66acrNTVV48ePV15enjp16qSUlBTdcMMNys7ODt6Z9sg76e3evTv4frVHFq+77jo9/vjjuuWWW3TNNddo5cqVevnll7Vs2bLYrQDEhKl1jZoWHr/XNc5SsAt1LToYzQkAsRetmjZ06FD169dPV155pe677z4VFxdrxowZmjRpUnAUajg1bd++ffriiy+C/71lyxatX79enTp1Cl7PeurUqRo9erTOOeccnXvuucrPz9cbb7yhVatWRbQufH0zomgOf+aHLjd1aArrhu+JjRYuXKjMzEydf/75GjZsmIYMGaKnnnoq+Pfq6mpt3rxZ3333XfCxhx9+WD/72c80atQonXPOOUpPT9err74a0fv27t1by5YtU0FBgQYMGKAHH3xQTz/9tHJzcx1bNi+grkUPNa1ppq4fDt6hMdQ172E0J7zMtG0mVt83DqCEJxo1LSEhQUuXLlVCQoKys7P1y1/+UmPHjtVdd90VnCacmvbhhx/q1FNP1amnnipJysvL06mnnqqZM2cGp/nFL36hefPm6b777lP//v319NNP689//rOGDBkS0XqIC9ReNMZg5eXlSk1N1Yz3hyq5fWtHXzuaX5hYFlnTdnhHYiTMD0xtBGvFsiGMZnASjcCnYl+17jnjLZWVlYV9+lxDavdr5wyZqVatkh2aw0MOHKjQ6nfvcmQ+4bxo1jSJuhYr1LUfUNd+4Ne6Rk3zt8Pr2t/39Xd7dqwJOk2vczCbSQfxYnUwPJw66HhdO+uO6NS19+6mrkWRr0d0eolJO7r6MBLGjnVg+nYEwD9M3x+Zvj+PBepaKL+PegZMQMgJACDojKJY/+A1vSmU7GiKnObHZQ4HDSFgH763ofy6f7dluW34XRQuL95tFvArQk44waTtyJYDDPAPgk64orZJsqFRai7bls9LDSEAb7Blv+SHmibZV9diiYMAgPR2yQmuvr8NYYtJ4RRgG67TiXARdEYZozqb5qXGydZm18btBoA/2LZ/srEGNIa6BsAGNoScgNNMCs75DsIkvg86vXgqkK0/7m1tpmyd71pubC+MfAGiJ9p1je9veGyvDTbPu62/gwB4m0mhFLyD7Qqoq5XbM4DoqOxVZfVO7/DmysQ729ra/PmFFw9gAH5GTYs+r9Q1Dt4B/mPDSDKbaxhgkoLiTHo9NImgMwYyeuyyogCb6sjmy40m0SsN4JFoCAE0hxt1zfaws5YJNa2W12obIzkBmMgLtQtmS9qWaEQN3Pp1F3o9GIGg08O80hQeqbHGrKUNo9eavsaYUAwBIBJerGv11R2nw08/1bZYi0VDx8gVoGGmDybxWs2CuUwJOwETEHTGiFujOr3YFDaGZi48bhVBjvAB3kFdix5qWeRo7gCYxuu1CqhPLEZ1cvo6muL7mxFJ3j9Szo9/HI7tAfA+6hr8hIN3gD+ZPpoTiDXCdeAQgs4YcvMHMU0hJHe3g1ht/14PeAAcQl2DxHYAwEwETgDgHoJOH6EZ8Dc+fwBOc3tEG/s1f+PzB/zL5NGchJxwkwnbXyy+nwXFmVF/D9iLoDPGaArhBrc/d7e3ewDe5fb+De5w+3PnLAXAPYScQOPYDuF3zQo6586dq4yMDCUnJysrK0vr1q1rcNr58+fr7LPP1lFHHaWjjjpKOTk5jU7vFj/9kHS7OUBs8XkDTfNiXYsVEw5ksJ/zFz5voHHUNHcQLgE/MPmABLwv4qBz0aJFysvL06xZs/TRRx9pwIABys3N1c6dO+udftWqVbr88sv19ttvq7CwUD179tTQoUP1zTfftHjmbUVTiFgx4XM2YXsHGuPVuuanA3iSGfs7RJ8JnzN1DSbzak2rRXgChMcPwTunr6MhEQedDz30kCZMmKBx48apX79+mjdvntq2batnn3223ukXLlyoX//61xo4cKAyMzP19NNPq6amRitWrGjxzKNlTGgWED1+/Hz9FuzAGdS1ljMl+PHjfs9PTPh8TdnWgYZQ09zhh1DJaR3+HXDkHwAcKaKgs6qqSkVFRcrJyfnhBeLjlZOTo8LCwrBe47vvvlN1dbU6derU4DSVlZUqLy8P+ec1pvxQruxVZUTjAGeZ8pmasp0DDYlFXfNDTZPM+b6bsv+Ds/z4uXLwDpHyeq9m6mhOQs7GRTugJPxsmNvbpqnfWXhfREHn7t27dfDgQaWlpYU8npaWpuLi4rBe49Zbb1X37t1DCvCR5syZo9TU1OC/nj17RjKbaAY/NhBeRHANRCYWdY2aFnvsB73DpLpmSpgPNIReLfbcDpJM5XboSPD5A69vo5y+jvrE9K7rv//97/XSSy/ptddeU3JycoPTTZ8+XWVlZcF/27dvj8n8xfrIuWk/mE1pJNA8pn1+pm3fQDSEU9fcqmmSv+uaaftERI7PEIgtk3s1E0eGeT1AioTpwaLJ8+Z1Jn534X2tIpm4c+fOSkhIUElJScjjJSUlSk9Pb/S5DzzwgH7/+9/rb3/7m0455ZRGp01KSlJSUlIks2atjB67jPryV/aqomhbiGaQU/zQPLGoa36qaaap3TdS1+xjWl0zKcQHGkKvFjvUFVkbGh4+33uPjXNxTmInaVuicXXVSQXFmfSCCBHRiM7ExEQNGjQo5OLUtRerzs7ObvB59913n+6++27l5+dr8ODBzZ9bxIRJp4mhcaZ+VjSEsAV1zXkmfv9N3E+ifqbWtVijYUNzeLWmmTQoBPLUyEgvLQuAH0R86npeXp7mz5+v559/Xhs3btT111+v/fv3a9y4cZKksWPHavr06cHp7733Xt1xxx169tlnlZGRoeLiYhUXF2vfvn3OLYWD3PhhaWJTKNEYms7Uz8fU7RloiNfrmhtM3A8QoJnP1M/HxO0ZaIjXapqJIacfR3N6/dRvLy9bLTe3WxO/x/C2iE5dl6TRo0dr165dmjlzpoqLizVw4EDl5+cHL3q9bds2xcf/kJ8++eSTqqqq0iWXXBLyOrNmzdLs2bNbNvceYtop7LU47c88pjaCbmLkC1rC63XtgvRNXKj9MFyixTwm1zVCTtjG6zXNbX6rH14P/45Uu7x+OaXdSzh9HYeLOOiUpMmTJ2vy5Mn1/m3VqlUh/71169bmvAUMQ+BpBpObQYmGEPairjnP1AN4EjXNJKbXNcBGXqlpptUQP9UMvwWcR/Jq4OnmtTq3ft2FXhExE9O7rqNxNnzxaUjcYcMplzZsvwBiy/T9gun7VS+jrjWMESmAefwScvrhFO5IeHFd+GVbhr8RdNbDzR+YpjeFkh3NiVewrgE4geCkYexnY8uW9W3D7zHAy0wbzel1BJwNY93Yg0s1oRZBJ5rNlmbFRratWzcbQgIcwGy2BEa27Xdtw/oFYCsvj4AjxAufl9aVW9s0BzAQKwSdBrKlKaxF8+IcG9elbdsrgNizaT9h437YZDauTw7eAe4yKQzxasjppdAu1lhvZnu75AS3ZwEGIOhsgNs/NG1qCmvVNjO2NTQmsHW92bidAn5FXYuMrftlU9i6/mzbTgGvIeSMPoK6lvNCUMyoTnhZs+66jtgw+Y61TeGOtk2zsQE8nAnNoNvBDQDvO3xfTU1rms21zYS6BsAMXtzf2x7MmajDvwOeuzM74AWM6DSc7T+6GeUZivUBwM+oad7khfViwrbJwTv4na0DPEznhdGHJrN53TKqE15F0NkIU35wmvDj2wleaISaw4vL7ZVtEvAbE+qaV/YfXtuvR8pLtc0r2yQAZ3hpNKfNIZxNCJMBs3DqOlzh9VMBvdD4NcSUhtCEwAZA89h8aZYjHbm/92JNq+Xl2gbAXabUBK/swwnd3GHjqexJ2xKp7/Acgk5LeKkpPFJ9O1bbfmT4pTiYEnICsJ9X65qXgk8/1DZT6hoH7wD32by/Phwhp7sIO8Oz9esuxtRgeA9BZxMuSN+kguJMt2dDknebwvqYGn76oelriEmFiIYQaD7qWmyZWs+O5Mf6ZlJdA/zMhDpg4n45UgSc5rAx7AS8hKDTMn5oChvSVBPmxA8UPzZ64aAZBBAtfqxrDdWaaDfa1LgfmFTXOHgHP/Pb/j9aCDnNY1vYyahOeAlBZxhMGv0i+bMpDAcNXHRQfABEG3XtEOpYbFDXABzO5tGcBJxmsy3sBLyCu65bKqPHLn6oI+pM3MYY+QK0nInfIxP3N/AetjPAHCYc4CLkRLTZ9Dm58X0wYT8A7yHoDJOJTaHED3ZEB0E6ADew30G0mFrXTP19CfiBrSFnh38HrArPwGcGxBpBpweY+MMd9jJ5e6IhBJxj6vfJ5H0Q7MQ2BZiHUVzNQ1hmNxs+P0Z1wgsIOiNgalMo8SMezmA7AmAC9kVwisnbksm/KwGvs3E0pw0hGZrG5whEH0Gnh5j8Yx7mM337oSEEnGfy98rUU41hD7YfwExuj96yLeTktGfvMf3ztO07AhyJoDNCJjeFEo0hIsc2A8Bk7J8QKRvqmum/JwGvsi3AMT0QQ/OZ/tnG+rvi9gEQeAtBp0eZ/gMfZrBlO6EhBKLHhu+XLfsquI9tBTCbm2EGISdMw2cMRAdBZzPY0BRKdoxogDvYNgDYhv0WmmLL9mHL70jAaYzYCg+nqsMUjOqErQg6fcCWH/6IDdu2BxpCIPps+p4ReOJIbBMAmmLLaE4CTv/hMwecR9DZTDY1hRJNANgGAHgL+zPYWNds+/0IOIVT1ptG4OVfJn/2jOqEjQg6fcbGpgAtY/NnTkNonj179mjMmDFKSUlRx44dNX78eO3bt6/R51RUVGjSpEk6+uij1b59e40aNUolJSX1Tvvtt9+qR48eiouLU2lpacjfFi5cqAEDBqht27bq1q2brrnmGn377bdOLZrv2fh9s3n/hpax8XO38TvmB9Q1byPkhC3YBuCEaNW0bdu2afjw4Wrbtq26du2qqVOn6sCBAyHTrFq1SqeddpqSkpJ03HHHacGCBSF/nzNnjn784x+rQ4cO6tq1q0aOHKnNmzfXO0+BQEA//elPFRcXpyVLlkS8Hgg6W8DmH6w0h95n+2ds8/fLy8aMGaMNGzaooKBAS5cu1erVqzVx4sRGnzNlyhS98cYbWrx4sd555x3t2LFDF198cb3Tjh8/Xqecckqdx9977z2NHTtW48eP14YNG7R48WKtW7dOEyZMcGS5cIit3zvb93cIH581nEZdiz5GaDWM63HicKZuC4zqtEc0atrBgwc1fPhwVVVVac2aNXr++ee1YMECzZw5MzjNli1bNHz4cJ177rlav369brrpJl177bV68803g9O88847mjRpkt5//30VFBSourpaQ4cO1f79++vM0yOPPKK4uLhmr4dWzX4mJB1qCguKM92ejWarbRbYmXgHDSCiZePGjcrPz9cHH3ygwYMHS5L+8Ic/aNiwYXrggQfUvXv3Os8pKyvTM888oxdffFHnnXeeJOm5555T37599f777+uMM84ITvvkk0+qtLRUM2fO1F//+teQ1yksLFRGRoZ+85vfSJJ69+6tX/3qV7r33nujtbiwEDXNu2yvbbYeRPA66pq3mT6a09RQC+7q8O+A9h7b/IAH/hWtmvbWW2/ps88+09/+9jelpaVp4MCBuvvuu3Xrrbdq9uzZSkxM1Lx589S7d289+OCDkqS+ffvq3Xff1cMPP6zc3FxJUn5+fsh7L1iwQF27dlVRUZHOOeec4OPr16/Xgw8+qA8//FDdunVr1rpgRCckMULCC7z0GdIQmqmwsFAdO3YMFk5JysnJUXx8vNauXVvvc4qKilRdXa2cnJzgY5mZmerVq5cKCwuDj3322We666679MILLyg+vm5pys7O1vbt27V8+XIFAgGVlJTolVde0bBhwxxcQkje+P55aX/od3yWiCbqWvS5deCJkBM2M3H7YFSn+aJV0woLC9W/f3+lpaUFp8nNzVV5ebk2bNgQnObw16id5vC6eKSysjJJUqdOnYKPfffdd7riiis0d+5cpaenh7vodRB0OsALTWEtGgr7eO0z89L3yW3l5eUh/yorK1v0esXFxeratWvIY61atVKnTp1UXFzc4HMSExPVsWPHkMfT0tKCz6msrNTll1+u+++/X7169ar3dc466ywtXLhQo0ePVmJiotLT05Wamqq5c+e2aJlQP698D722f/QTL312Xvk+uc3pmiZR16KNkLN+JoZYMA/biffZ0qsVFxeHhJy1f6/9W2PTlJeX6/vvv6/zvjU1Nbrpppt01lln6eSTTw4+PmXKFJ155pm66KKLwljihnHqukNsP4X9SIc3FxxNMY9Xmr8j+bEZTNz8jVrFO/uDPL6mSpLUs2fPkMdnzZql2bNn15l+2rRpTZ4qt3HjRsfm70jTp09X37599ctf/rLBaT777DPdeOONmjlzpnJzc/Wf//xHU6dO1XXXXadnnnkmavMGb+CUdjt4sbb5ra6ZUNMk6hrMRXiFSJh2GnvStkRV9qqK2ftt/bqL678NEj/f4Xpdc7umRcOkSZP06aef6t133w0+9vrrr2vlypX6+OOPW/z6BJ0O8lrYWYsG0Rxu7+hhl+3btyslJSX430lJSfVOd/PNN+vqq69u9LX69Omj9PR07dy5M+TxAwcOaM+ePQ2eWpCenq6qqiqVlpaGHCksKSkJPmflypX65JNP9Morr0g6dJc9SercubNuv/123XnnnZozZ47OOussTZ06VZJ0yimnqF27djr77LN1zz33NPv6LWiYF2saB/HM5NXa5reQM9rCrWkSdc0EjOasi5ATXhDrsNPLbOnV0tPTtW7dupDn1d6V/fBpjrxTe0lJiVJSUtSmTZuQxydPnhy8UVKPHj2Cj69cuVJffvllndGlo0aN0tlnn61Vq1Y1ug4OR9CJsNEgusOrDeCRaAidl5KSElI8G9KlSxd16dL0dzo7O1ulpaUqKirSoEGDJB0qSDU1NcrKyqr3OYMGDVLr1q21YsUKjRo1SpK0efNmbdu2TdnZ2ZKkP//5zyGnNHzwwQe65ppr9Pe//10/+tGPJB26XkurVqElKyEhQdIPDSSc58WwsxY1zV1+qW1wTrg1TaKu+ZWpIScBJ1rCtFGdsWbCqM5osaVXy87O1m9/+1vt3LkzeGp8QUGBUlJS1K9fv+A0y5cvD3ntgoKC4GtIh2rbDTfcoNdee02rVq1S7969Q6afNm2arr322pDH+vfvr4cfflgjRoxocvkPR9DpMC83hYc7cmdDk+gsr+7MG0LIaYe+ffvqwgsv1IQJEzRv3jxVV1dr8uTJuuyyy4J38fvmm290/vnn64UXXtDpp5+u1NRUjR8/Xnl5eerUqZNSUlJ0ww03KDs7O3hn2tqmr9bu3buD71d7RG/EiBGaMGGCnnzyyeApfjfddJNOP/30eu8gCOf4oa4ResaGn2obdc0O1LXocGM/SsgJLzMt7GRUp5miVdOGDh2qfv366corr9R9992n4uJizZgxQ5MmTQqOQr3uuuv0+OOP65ZbbtE111yjlStX6uWXX9ayZcuC8zdp0iS9+OKL+stf/qIOHToEr++ZmpqqNm3aKD09vd6Rp7169aoTijaFoDMK/NAUHokmsWX81PwdiWbQLgsXLtTkyZN1/vnnKz4+XqNGjdJjjz0W/Ht1dbU2b96s7777LvjYww8/HJy2srJSubm5euKJJyJ636uvvlp79+7V448/rptvvlkdO3bUeeed1+T1auAMP9U16plz/FrbqGt2oa4hWgg54STTws5Y8vKoTqdFo6YlJCRo6dKluv7665Wdna127drpqquu0l133RWcpnfv3lq2bJmmTJmiRx99VD169NDTTz+t3Nzc4DRPPvmkJOl//ud/Qub5ueeea/LU/EjFBSw4N6K8vFypqama8f5QJbdv7fbshM0vTWE4aBZDsaM+xLZmsGJfte454y2VlZWFffpcQ2r3azldxjt+gesDNVX6265nHJlPOI+aZi9qWeOobf6ta9Q0f6v9/M/6y2R9/d8eTT/BYSaO5iTkRLSYFHbGclRnuL8xDuyv1HsXPU5d8zlGdEaRn0bANKW+HZNfGkYav/rZ1gwCfkdN83ctqw/1LRR1DYg9Qk7AHxjViUgQdEYZjWHDGtpR2dg0stONDM0gYCdqWl1+CD+pcU2jrgHSth2dFd+m6emcQsgJPzLpFHau1QlTEXTGAI1hZMJpqGLZRNLgOYtmELAbNa1pTdUNE4NQal3zUdcASISciB2Tws5YYlQnwkXQGSM0hs5iB2cnmkHAG6hpLdOSGtZQSEpddAd1DXCHaaM5CTkRa6aEnYzqhIkIOmOIxhB+RjMIeEvtd5q6FlsEmuagrgHuMCnkJOAEYht2MqoT4SDojDHCTvgRzSDgXdQ1+BF1DXAHIaedUr+oaNbzyo5LdnhOvMWUUZ2AaQg6XcAoGPgJzSDgfYSd8BPqGgBCzrqaG2Y29zUJQQ8xJexkVCdMQtDpIhpDeBmNIOAv1DR4HXUNcJcpozkJOQ+JRrDZkvf3c/BpStgJmIKg02WM7oQX0QwC/kRNg1dR1wB3EXK6z+1gsymHz5+fQ083MaoTpiDoNAQjYeAFNIIAJGoavIO6BriPkNMdpgebjfFj6MmoTuAHBJ0GYSQMbEYzCOBw1DTYjroGoJZfQk6bw82G+Cn0NCHsZFQnTBDv9gygLn5YwyYXpG9imwXQIPYPsA11DTCHCaM5/RBypn5R4cmQ80h+WE4TttdYfm+3ft0lZu8FezCi01CMhIHpaAIBhIuaBhtQ1wCzEHJGl9cDv8bULrvXR3gCfkXQaTiaQ5iGRhBAc1HTYCLqGoD6eDXk9HPAeSSvBp6cwg6/I+i0xOE/wmkQ4QYaQQBOIfCECahrgLncHs3ptZCTcLNxXgw8TQg7AbcQdFqIBhGxRCMIIFqoZ3ADdQ0wGyGncwg4I+O1wNPtsJNRnXALQafFaBARLTSBAGKJsxYQC9Q2AE3xSshJwNkyqV9UeCbsdFssw06gFkGnB9Agwgk0gABMwEE8OInaBtjFzdGcXgg5CTid45XRnW6P6oylrV93UY+jvnZ7NmAAgk6PIfREJGgAAZiKeobmorYBdiLkbD4CzujxwuhOt8POWI7q3Lajc0zeB2Yj6PQwmkTUhwYQgG2oZ2gKtQ1Ac9kcchJwxoZXRncCfkHQ6RNHNgA0iv5B8wfAS6hnqEV9A7zDrdGctoacBJzusHl0p59GdQIEnT5Fo+hdNH4A/IR65h/UN8CbCDnDR8DpPptHdxJ2wi8IOiGp/uaBZtF8NH0AEIrg0xuobwCiiZATLWXr6E63w04gFgg60aCGmgyaRnfQ9AFA5DiQZz7qG+BfbozmtC3kJOA0l61hp5sY1YlYIOhExBprSGgeW4ZmDwCijwN57qDGATgcIWfjCDjtYOOp7G6P6iTsRLQRdMJR4TQxfm0kafAAwGxN7af9Wr8iQa0DYCpCTkSTbaM73Q47gWgi6ETMtaQJcrvJpIEDAP8Ktwa4XaucRu0D4DS3bkBkOgJOu9kWdrqJUZ2IJoJOWIVmCwBgOmoVADSMU9brIuD0DpvCTkZ1wqvi3Z4BAAAAAACigZATsWbTZ+rm94OR3YgWgk4AAAAAQNTFOtgwOeRM/aLCqkAMkbHpsyXshNcQdAIAAAAAPMX0kBPex+cMuIOgEwAAAAAQVbEcuWVqyMkoTv+x5TNnVCe8hKATAAAAABA1hJyM7vM7Gz5/wk54BUEnAAAAAMB6hJwwGdsBEBsEnQAAAACAqIjVSC0TQ05bTltG7Ji+PTCqE15A0AkAAAAAgINMD7TgHtO3DcJO2I6gEwAAAADgOD+O5mQUJ8Jh+jZi0ncKiBRBJwAAAADAUX4NOYFwsb3Uj1GdaCmCTgAAAACAdQg5YTuTtxtOYYetCDoBAAAAAI6JRUhhSsjJqepoKZO3H1O+Z0AkCDoBAAAAANYwJXwxOaCCXUzeltz6vjGqE81F0AkAAAAAcIRfwgmTgynYiW2qLr/sT+Asgk4AAAAAgBVMGM1JIIVoMXXb4nqdsEkrt2cAAAAAAGC/aAcSboecpoZQQCx0+HdAe4+Nc3s2gCYxohMAAAAA0CKJ2wk5ASeYvK1xvU7YgKATAAAAAGAsQk74DdtcXYSdCBdBJwAAAAAA9SBwgltM3fa4XidM16ygc+7cucrIyFBycrKysrK0bt26RqdfvHixMjMzlZycrP79+2v58uXNmlkAgLv27NmjMWPGKCUlRR07dtT48eO1b9++Rp9TUVGhSZMm6eijj1b79u01atQolZSUhEwTFxdX599LL70UMk1lZaVuv/12HXvssUpKSlJGRoaeffZZR5aLugYA/uTFuua1muZWqJL6RYWxQZPbEjd93ex/iIyp26Dbo6xRv2jVtG3btmn48OFq27atunbtqqlTp+rAgQMh06xatUqnnXaakpKSdNxxx2nBggUhf3/yySd1yimnKCUlRSkpKcrOztZf//rXkHm/4YYbdOKJJ6pNmzbq1auXfvOb36isrCzi9RBx0Llo0SLl5eVp1qxZ+uijjzRgwADl5uZq586d9U6/Zs0aXX755Ro/frw+/vhjjRw5UiNHjtSnn34a8cyO7PCPiJ8DAHDOmDFjtGHDBhUUFGjp0qVavXq1Jk6c2OhzpkyZojfeeEOLFy/WO++8ox07dujiiy+uM91zzz2n//znP8F/I0eODPn7pZdeqhUrVuiZZ57R5s2b9ac//Uknnnhii5fJzboGAHCX1+qa12qamyGnn0UzrCQEjZyp2yPX6zRPNGrawYMHNXz4cFVVVWnNmjV6/vnntWDBAs2cOTM4zZYtWzR8+HCde+65Wr9+vW666SZde+21evPNN4PT9OjRQ7///e9VVFSkDz/8UOedd54uuugibdiwQZK0Y8cO7dixQw888IA+/fRTLViwQPn5+Ro/fnzE6yEuEAhEtHVmZWXpxz/+sR5//HFJUk1NjXr27KkbbrhB06ZNqzP96NGjtX//fi1dujT42BlnnKGBAwdq3rx5Yb1neXm5UlNT9eGGNLXvUH82+0r5aZEsBgBErGJfte454y2VlZUpJSWlRa9Vu1/L6TJereKdLdYHaqr0t13PODKfh9u4caP69eunDz74QIMHD5Yk5efna9iwYfr666/VvXv3Os8pKytTly5d9OKLL+qSSy6RJG3atEl9+/ZVYWGhzjjjDEmHRr689tprdZrAWvn5+brsssv01VdfqVOnTo4tkxT7ulb72c94f6iS27d2bkEAIEJO1TUba5rkzbrmZq/2o9t+p4TkZGcWRIScsWJywFiV2cPtWTBK2XHOfb+c4uZd2Ct7VdV5rOb7Cm2/frYv61q0atpf//pX/exnP9OOHTuUlpYmSZo3b55uvfVW7dq1S4mJibr11lu1bNmykINkl112mUpLS5Wfn9/gPHfq1En3339/g2Hm4sWL9ctf/lL79+9Xq1atwl4X4U8pqaqqSkVFRZo+fXrwsfj4eOXk5KiwsLDe5xQWFiovLy/ksdzcXC1ZsqTB96msrFRlZWXwv2uHqu7bV9Pgcy6M+zCcRQCAsCzZO6DOY5X7Dw3Pj/D4UKMOBKqkhndtzX9NHSrQh0tKSlJSUlKzX7ewsFAdO3YMFk5JysnJUXx8vNauXatf/OIXdZ5TVFSk6upq5eTkBB/LzMxUr169QhpCSZo0aZKuvfZa9enTR9ddd53GjRunuLhDP55ef/11DR48WPfdd5/+3//7f2rXrp1+/vOf6+6771abNm2avUyxqGsN1bTa7QkA3OJ0XbOppkneq2tu92o1lc4GhAerYh90pnxVIa9X58TPd4T8t8nLG//ZVyH/XXVC3aDGT9ptqlB5H7PCzrb/kvb2dCfsbPW5VNUzNOys+f7QfsiPdS1aNa2wsFD9+/cPhpzSoTpx/fXXa8OGDTr11FNVWFgY8hq109x00031zuvBgwe1ePFi7d+/X9nZ2Q0uU20YHEnIKUUYdO7evVsHDx4MWUBJSktL06ZNm+p9TnFxcb3TFxcXN/g+c+bM0Z133lnn8f/J2hXJ7AJAC7zV4F++/fZbpaamtujVExMTlZ6erlXF/69Fr9OQ9u3bq2fPniGPzZo1S7Nnz272axYXF6tr164hj7Vq1UqdOnVqcJ9eXFysxMREdezYMeTxI+vAXXfdpfPOO09t27bVW2+9pV//+tfat2+ffvOb30iSvvrqK7377rtKTk7Wa6+9pt27d+vXv/61vv32Wz333HPNXqZY1LWGatr9569s5lwDgLNaWtdsrGmS9+qa273algfvasZcAxEgDpDec3sG7ODHuhatmtZQnaj9W2PTlJeX6/vvvw8ewPvkk0+UnZ2tiooKtW/fXq+99pr69etX77zt3r1bd999d5On3tcnslg0RqZPnx5yZLG0tFTHHnustm3b1uJwwWTl5eXq2bOntm/f7vipOSbxy3JK/llWvyxnWVmZevXq5cgpZsnJydqyZYuqquqecuGEQCAQHDVSq6EjhNOmTdO9997b6Ott3LjRsXmrzx133BH8/6eeeqr279+v+++/P9gQ1tTUKC4uTgsXLgzWgYceekiXXHKJnnjiiRaN6ow2v9Y0yT/7BpbTe/yyrE7VNZNqmkRdiza/1jW/7Bck/ywry+k9XqxrJtQ0p5x44olav369ysrK9Morr+iqq67SO++8UyfsLC8v1/Dhw9WvX79mhb8RBZ2dO3dWQkJCnTswlZSUKD09vd7npKenRzS91PCQ3dTUVM9/MSUF70LldX5ZTsk/y+qX5YyPj/g+bvVKTk5WsoPXsmqum2++WVdffXWj0/Tp00fp6el1bmZw4MAB7dmzp9EaUFVVpdLS0pAjhU3VgaysLN19992qrKxUUlKSunXrpmOOOSakgerbt68CgYC+/vprHX/88U0vaD1iUdf8XtMk/+wbWE7v8cuyOlHXTKlpkn/rGr1abPhlvyD5Z1lZTu/xUl1zu6alp6dr3bp1Ic+rrRuHT1NfLUlJSQk5cJeYmKjjjjtOkjRo0CB98MEHevTRR/V///d/wWn27t2rCy+8UB06dNBrr72m1q0jv6dBRJ9+YmKiBg0apBUrVgQfq6mp0YoVKxo8rz47OztkekkqKCho9Dx8AEDsdOnSRZmZmY3+S0xMVHZ2tkpLS1VUVBR87sqVK1VTU6OsrKx6X3vQoEFq3bp1SB3YvHmztm3b1mgdWL9+vY466qhgI3XWWWdpx44d2rdvX3Cazz//XPHx8erRo/kXqqeuAYD3+LWuUdMAwHvcrmnZ2dn65JNPQkLUgoICpaSkBEdiNreW1NTUhFzzuby8XEOHDlViYqJef/315gfNgQi99NJLgaSkpMCCBQsCn332WWDixImBjh07BoqLiwOBQCBw5ZVXBqZNmxac/r333gu0atUq8MADDwQ2btwYmDVrVqB169aBTz75JOz3LCsrC0gKlJWVRTq7VmE5vccvy8py+seFF14YOPXUUwNr164NvPvuu4Hjjz8+cPnllwf//vXXXwdOPPHEwNq1a4OPXXfddYFevXoFVq5cGfjwww8D2dnZgezs7ODfX3/99cD8+fMDn3zySeBf//pX4Iknngi0bds2MHPmzOA0e/fuDfTo0SNwySWXBDZs2BB45513Ascff3zg2muvbfEyxbqu+Wk78suyspze45dl9ctyNsZrdY1eLXr8spyBgH+WleX0Hj8ta32iUdMOHDgQOPnkkwNDhw4NrF+/PpCfnx/o0qVLYPr06cFpvvrqq0Dbtm0DU6dODWzcuDEwd+7cQEJCQiA/Pz84zbRp0wLvvPNOYMuWLYF//vOfgWnTpgXi4uICb731ViAQOPTZZWVlBfr37x/44osvAv/5z3+C/w4cOBDReog46AwEAoE//OEPgV69egUSExMDp59+euD9998P/u0nP/lJ4KqrrgqZ/uWXXw6ccMIJgcTExMBJJ50UWLZsWUTvV1FREZg1a1agoqKiObNrDZbTe/yyrCynf3z77beByy+/PNC+fftASkpKYNy4cYG9e/cG/75ly5aApMDbb78dfOz7778P/PrXvw4cddRRgbZt2wZ+8YtfBP7zn/8E//7Xv/41MHDgwED79u0D7dq1CwwYMCAwb968wMGDB0Pee+PGjYGcnJxAmzZtAj169Ajk5eUFvvvuO0eWK5Z1zU/bkV+WleX0Hr8sq1+WszFerGv0atHhl+UMBPyzrCyn9/hpWesTjZoWCAQCW7duDfz0pz8NtGnTJtC5c+fAzTffHKiurg6Z5u233w4MHDgwkJiYGOjTp0/gueeeC/n7NddcEzj22GMDiYmJgS5dugTOP//8YMhZ+3xJ9f7bsmVLROshLhAIBJo3FhQAAAAAAAAAzODMHTUAAAAAAAAAwEUEnQAAAAAAAACsR9AJAAAAAAAAwHoEnQAAAAAAAACsZ0zQOXfuXGVkZCg5OVlZWVlat25do9MvXrxYmZmZSk5OVv/+/bV8+fIYzWnLRLKc8+fP19lnn62jjjpKRx11lHJycppcL6aI9POs9dJLLykuLk4jR46M7gw6KNJlLS0t1aRJk9StWzclJSXphBNOsGL7jXQ5H3nkEZ144olq06aNevbsqSlTpqiioiJGc9s8q1ev1ogRI9S9e3fFxcVpyZIlTT5n1apVOu2005SUlKTjjjtOCxYsiPp8wnx+qWkSda0pttU1v9Q0ibrWEOoa6uOXuuaXmiZR1xpia12jptWPmuZTEd2jPUpeeumlQGJiYuDZZ58NbNiwITBhwoRAx44dAyUlJfVO/9577wUSEhIC9913X+Czzz4LzJgxI9C6devAJ598EuM5j0yky3nFFVcE5s6dG/j4448DGzduDFx99dWB1NTUwNdffx3jOY9MpMtZa8uWLYFjjjkmcPbZZwcuuuii2MxsC0W6rJWVlYHBgwcHhg0bFnj33XcDW7ZsCaxatSqwfv36GM95ZCJdzoULFwaSkpICCxcuDGzZsiXw5ptvBrp16xaYMmVKjOc8MsuXLw/cfvvtgVdffTUgKfDaa681Ov1XX30VaNu2bSAvLy/w2WefBf7whz8EEhISAvn5+bGZYRjJLzUtEKCuea2u+aWmBQLUtYZQ11Afv9Q1v9S0QIC65rW6Rk2rHzXNv4wIOk8//fTApEmTgv998ODBQPfu3QNz5sypd/pLL700MHz48JDHsrKyAr/61a+iOp8tFelyHunAgQOBDh06BJ5//vlozaIjmrOcBw4cCJx55pmBp59+OnDVVVdZUTgDgciX9cknnwz06dMnUFVVFatZdESkyzlp0qTAeeedF/JYXl5e4KyzzorqfDopnOJ5yy23BE466aSQx0aPHh3Izc2N4pzBdH6paYEAdc1rdc0vNS0QoK41hLqG+vilrvmlpgUC1DWv1TVqWv2oaf7l+qnrVVVVKioqUk5OTvCx+Ph45eTkqLCwsN7nFBYWhkyv/6+9+wtpsn/jOP55num0wIiQTQMLHETRHwKjWAXSURDUYUExPCgkrNNIklhkyQjpJIooos6SiIJIkcrqoKKT2kDIDBvVSROEoJFB012/I/d7NBU33Z979/sFO1n34LpY3m/5ulLS3r1757y+FOSy50zj4+NKpVJatWpVvsZctFz3PH/+vHw+n44ePVqIMZdELrs+evRIwWBQJ06ckN/v16ZNm9TV1aXJyclCjZ21XPbcuXOn3r17l/knE/F4XH19fdq3b19BZi4UJ96LkF9uaZpE18qta25pmkTX5uPU+xHyxy1dc0vTJLpWbl2jaXNz4r0IS6Oi2AOMjY1pcnJSfr9/2vN+v18fP36c9TWJRGLW6xOJRN7mXKxc9pzp9OnTWr169V9frKUklz1fvXqlW7duKRaLFWDCpZPLrvF4XM+fP9eRI0fU19enkZERtbW1KZVKKRwOF2LsrOWy5+HDhzU2Nqbdu3fLzDQxMaHjx4/rzJkzhRi5YOa6F/38+VO/f//WsmXLijQZisUtTZPoWrl1zS1Nk+jafOgaZnJL19zSNImulVvXaNrcaJp7Ff0TnViYSCSinp4ePXz4UNXV1cUeZ8kkk0mFQiHdvHlTtbW1xR4n79LptHw+n27cuKGmpiYdOnRIHR0dun79erFHW1IvX75UV1eXrl27pvfv3+vBgwfq7e1VZ2dnsUcDUCLomvO5pWkSXQMwv3JtmkTXyrFrNA3lruif6KytrZXH49Ho6Oi050dHR1VXVzfra+rq6rK6vhTksueU7u5uRSIRPXv2TFu2bMnnmIuW7Z6fP3/Wly9ftH///sxz6XRaklRRUaHh4WEFAoH8Dp2jXN7T+vp6VVZWyuPxZJ7bsGGDEomE/vz5I6/Xm9eZc5HLnmfPnlUoFNKxY8ckSZs3b9avX7/U2tqqjo4O/ftvefyMZa570YoVK/gJoUu5pWkSXSu3rrmlaRJdmw9dw0xu6ZpbmibRtXLrGk2bG01zr6L/DfZ6vWpqatLAwEDmuXQ6rYGBAQWDwVlfEwwGp10vSU+fPp3z+lKQy56SdOnSJXV2dqq/v1/btm0rxKiLku2e69ev1+DgoGKxWOZx4MAB7dmzR7FYTA0NDYUcPyu5vKe7du3SyMhI5psDSfr06ZPq6+tLMpxSbnuOj4//FcipbxjMLH/DFpgT70XIL7c0TaJr5dY1tzRNomvzcer9CPnjlq65pWkSXSu3rtG0uTnxXoQlUszfhDSlp6fHqqqq7M6dO/bhwwdrbW21lStXWiKRMDOzUChk7e3tmetfv35tFRUV1t3dbUNDQxYOh62ystIGBweLtcKCZLtnJBIxr9dr9+/ft+/fv2ceyWSyWCssSLZ7zuSU3+Jnlv2u3759s5qaGjt58qQNDw/b48ePzefz2YULF4q1woJku2c4HLaamhq7e/euxeNxe/LkiQUCATt48GCxVliQZDJp0WjUotGoSbLLly9bNBq1r1+/mplZe3u7hUKhzPXxeNyWL19up06dsqGhIbt69ap5PB7r7+8v1gooAW5pmhldK7euuaVpZnSNriEbbumaW5pmRtfKrWs0jaZhupI46DQzu3Lliq1Zs8a8Xq9t377d3r59m/mz5uZma2lpmXb9vXv3bN26deb1em3jxo3W29tb4Ilzk82ea9euNUl/PcLhcOEHz1K27+d/OSWcU7Ld9c2bN7Zjxw6rqqqyxsZGu3jxok1MTBR46uxls2cqlbJz585ZIBCw6upqa2hosLa2Nvvx40fhB8/CixcvZv2am9qtpaXFmpub/3rN1q1bzev1WmNjo92+fbvgc6P0uKVpZnTNrLy65pammdE1M7qGhXNL19zSNDO6ZlZeXaNpNA3/949ZGX02GQAAAAAAAIArFf3/6AQAAAAAAACAxeKgEwAAAAAAAIDjcdAJAAAAAAAAwPE46AQAAAAAAADgeBx0AgAAAAAAAHA8DjoBAAAAAAAAOB4HnQAAAAAAAAAcj4NOAAAAAAAAAI7HQScAAAAAAAAAx+OgEwAAAAAAAIDjcdAJAAAAAAAAwPE46AQAAAAAAADgeP8DgKiIKKWQCFYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, "source": [ "plotter.plot(pinn_feat)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "id": "c5f03a63", - "metadata": {}, "source": [ "### The problem solution with learnable extra-features" - ] + ], + "metadata": {} }, { "cell_type": "markdown", - "id": "2d2f1bf1", - "metadata": {}, "source": [ "We can still do better!\n", "\n", @@ -371,44 +267,12 @@ "\n", "where $\\alpha$ and $\\beta$ are the abovementioned parameters.\n", "Their implementation is quite trivial: by using the class `torch.nn.Parameter` we cam define all the learnable parameters we need, and they are managed by `autograd` module!" - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 8, - "id": "005c3958", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00000] 3.918677e-01 2.501913e-02 1.278682e-02 1.963722e-02 1.756839e-02 3.168561e-01 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00001] 1.345929e-01 1.696471e-02 9.475741e-03 1.432935e-02 1.169397e-02 8.212914e-02 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00100] 4.500092e-04 1.441140e-05 9.839978e-06 2.283052e-05 4.087769e-06 3.988396e-04 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00200] 2.102947e-04 1.462936e-05 2.168394e-06 4.655578e-06 4.340448e-07 1.884074e-04 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00300] 1.371512e-04 1.072066e-05 1.284032e-06 2.897264e-06 1.126986e-06 1.211222e-04 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00400] 9.371716e-05 7.952534e-06 1.115802e-06 2.099921e-06 1.375253e-06 8.117365e-05 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00500] 6.719316e-05 5.919826e-06 9.837649e-07 1.510521e-06 1.423588e-06 5.735546e-05 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00600] 5.042886e-05 4.428994e-06 8.414617e-07 1.083298e-06 1.338001e-06 4.273711e-05 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00700] 3.907475e-05 3.327482e-06 7.004838e-07 7.866622e-07 1.162936e-06 3.309719e-05 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00800] 3.086757e-05 2.501366e-06 5.700428e-07 5.815515e-07 9.500203e-07 2.626459e-05 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00900] 2.470110e-05 1.874311e-06 4.546698e-07 4.359081e-07 7.396913e-07 2.119652e-05 \n", - "[epoch 01000] 1.999130e-05 1.396229e-06 3.562134e-07 3.291411e-07 5.548665e-07 1.735485e-05 \n" - ] - } - ], + "execution_count": null, "source": [ "class SinSinAB(torch.nn.Module):\n", " \"\"\" \"\"\"\n", @@ -434,52 +298,20 @@ ")\n", "\n", "pinn_learn = generate_samples_and_train(model_learn, problem)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "id": "8dae2a05", - "metadata": {}, "source": [ "Umh, the final loss is not appreciabily better than previous model (with static extra features), despite the usage of learnable parameters. This is mainly due to the over-parametrization of the network: there are many parameter to optimize during the training, and the model in unable to understand automatically that only the parameters of the extra feature (and not the weights/bias of the FFN) should be tuned in order to fit our problem. A longer training can be helpful, but in this case the faster way to reach machine precision for solving the Poisson problem is removing all the hidden layers in the `FeedForward`, keeping only the $\\alpha$ and $\\beta$ parameters of the extra feature." - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 9, - "id": "afa18873", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00000] 1.974945e+00 2.002993e-03 7.012323e-02 2.755559e-02 1.584911e-02 1.859414e+00 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00001] 1.761779e+00 3.188374e-03 6.539153e-02 2.452723e-02 1.474262e-02 1.653930e+00 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00100] 4.036187e-03 1.676370e-05 2.384196e-05 1.675912e-05 2.528631e-05 3.953536e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00200] 3.638973e-06 9.148435e-09 5.011525e-09 8.995231e-09 5.055353e-09 3.610763e-06 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00300] 7.258809e-11 2.040413e-13 1.323202e-13 1.966580e-13 1.385408e-13 7.191653e-11 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00400] 1.095777e-13 2.320287e-16 3.792855e-17 2.308433e-16 3.710536e-17 1.090398e-13 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00500] 1.095686e-13 2.238822e-16 4.053546e-17 2.238880e-16 4.054121e-17 1.090398e-13 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00600] 1.095686e-13 2.238991e-16 4.052415e-17 2.238992e-16 4.052421e-17 1.090398e-13 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00700] 1.095686e-13 2.238992e-16 4.052411e-17 2.238992e-16 4.052410e-17 1.090398e-13 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00800] 1.095686e-13 2.238992e-16 4.052411e-17 2.238992e-16 4.052410e-17 1.090398e-13 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di Dlaplace_equ \n", - "[epoch 00900] 1.095686e-13 2.238992e-16 4.052411e-17 2.238992e-16 4.052410e-17 1.090398e-13 \n", - "[epoch 01000] 1.095686e-13 2.238992e-16 4.052411e-17 2.238992e-16 4.052410e-17 1.090398e-13 \n" - ] - } - ], + "execution_count": null, "source": [ "model_learn = FeedForward(\n", " layers=[],\n", @@ -489,57 +321,32 @@ ")\n", "\n", "pinn_learn = generate_samples_and_train(model_learn, problem)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "markdown", - "id": "02801614", - "metadata": {}, "source": [ "In such a way, the model is able to reach a very high accuracy!\n", "Of course, this is a toy problem for understanding the usage of extra features: similar precision could be obtained if the extra features are very similar to the true solution. The analyzed Poisson problem shows a forcing term very close to the solution, resulting in a perfect problem to address with such an approach.\n", "\n", "We conclude here by showing the graphical comparison of the unknown field and the loss trend for all the test cases presented here: the standard PINN, PINN with extra features, and PINN with learnable extra features." - ] + ], + "metadata": {} }, { "cell_type": "code", - "execution_count": 10, - "id": "81c94c8f", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABRcAAAIICAYAAAD0YtmFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADUwElEQVR4nOz9e5xVVeE//r9mwJlBYQaRy4BcBikbLIWCxBEtL6OYRvqWCpV3KCKmQRmYBamgZZlFaibKN/P6eEuappaXN0Ugaoqio/Q2AkwQB7UZMH4MF2UGmPn9wWcf9tmzL2vtvfbea+39ej4e84A5Z1/WOXPOXme9zrqUdHR0dICIiIiIiIiIiIhIUmnaBSAiIiIiIiIiIiIzMVwkIiIiIiIiIiKiUBguEhERERERERERUSgMF4mIiIiIiIiIiCgUhotEREREREREREQUCsNFIiIiIiIiIiIiCoXhIhEREREREREREYXCcJGIiIiIiIiIiIhCYbhIREREREREREREoTBcJCIiIiIiIiIiolAYLhIRERERERERUSY9//zzGD9+PAYMGICSkhI88cQTsZ5v3759uPbaazF06FB069YNw4YNw49//GN0dHTEet40dU27AERERERERERERHHYtWsXRowYgYsvvhjnnntu7Oe76aabcOedd+L+++/Hpz/9abz22muYMmUKqqqq8J3vfCf286eB4SIREREREREREWXSl770JXzpS1/yvL+1tRVXX301fve732Hbtm34zGc+g5tuugknnXRSqPO99NJLOPvss3HWWWcBAGpqavC73/0OK1euDHU8E3BYNBERERERERER5dKMGTOwYsUKPPTQQ/i///s/fO1rX8MZZ5yBf/3rX6GOd/zxx2Pp0qV46623AAB///vf8be//c034DQdey4SEREREREREVHuNDY24t5770VjYyMGDBgAAPje976HxYsX495778VPf/pT6WPOnj0b27dvR21tLbp06YJ9+/bhJz/5CSZNmqS6+Npgz0UiIiIiIiIiIsqdN998E/v27cORRx6J7t27F36ee+45rF+/HgCwdu1alJSU+P7Mnj27cMzf//73ePDBB7Fo0SK8/vrruP/++zF//nzcf//9aT3M2LHnIhERERERERER5c7OnTvRpUsXNDQ0oEuXLkX3de/eHQBwxBFHYM2aNb7HOeywwwr/v+qqqzB79mycd955AICjjz4a7777Lm688UZceOGFih+BHhguEhERERERERFR7nz2s5/Fvn37sHnzZpx44omu25SVlaG2tlb4mB999BFKS4sHCnfp0gXt7e2RyqozhotERERERERERJRJO3fuxNtvv134/Z133sGqVavQq1cvHHnkkZg0aRImT56MX/7yl/jsZz+LLVu2YOnSpTjmmGMKKz7LGD9+PH7yk59g8ODB+PSnP4033ngDN998My6++GKVD0srJR0dHR1pF4KIiIiIiIiIiEi15cuX4+STT+50+4UXXoj77rsPe/bswQ033IAHHngA77//Pnr37o3jjjsO119/PY4++mjp8+3YsQPXXnstHn/8cWzevBkDBgzA+eefj7lz56KsrEzFQ9KO9IIuzz//PMaPH48BAwagpKQETzzxROA+y5cvx+c+9zmUl5fjE5/4BO67774QRSUiorgsWLAANTU1qKiowJgxY7By5Urf7R955BHU1taioqICRx99NJ555pmi+zs6OjB37lz0798f3bp1Q319Pf71r38VbfPWW2/h7LPPRu/evVFZWYkTTjgBzz77rPLH5od1GhFRNrFeY71GRGQ56aST0NHR0enHut4ddNBBuP766/HOO++gra0NH3zwAR577LFQwSIA9OjRA7feeiveffddfPzxx1i/fj1uuOGGUMHinXfeiWOOOQaVlZWorKxEXV0d/vd//9dz+7vuugsnnngiDj30UBx66KGor68PrANVkA4Xd+3ahREjRmDBggVC27/zzjs466yzcPLJJ2PVqlX47ne/i0suuQR//vOfpQtLRETqPfzww5g1axbmzZuH119/HSNGjMC4ceOwefNm1+1feuklnH/++Zg6dSreeOMNnHPOOTjnnHPwj3/8o7DNz3/+c9x2221YuHAhXnnlFRxyyCEYN24cdu/eXdjmy1/+Mvbu3Ytly5ahoaEBI0aMwJe//GU0NTXF/pgtrNOIiLKH9RrrNSKirBg4cCB+9rOfoaGhAa+99hpOOeUUnH322Vi9erXr9suXL8f555+PZ599FitWrMCgQYNw+umn4/3334+1nJGGRZeUlODxxx/HOeec47nND37wAzz99NNFlfN5552Hbdu2YfHixa77tLa2orW1tfB7e3s7tm7disMOOwwlJSVhi0tEFElHRwd27NiBAQMGdJqgN4zdu3ejra1NQck66+jo6HS9LC8vR3l5eadtx4wZg89//vO4/fbbAey/5g4aNAjf/va3MXv27E7bT5w4Ebt27cJTTz1VuO24447DyJEjsXDhQnR0dGDAgAG48sor8b3vfQ8A0NLSgn79+uG+++7Deeedhw8//BB9+vTB888/X5g4eceOHaisrMSSJUtQX1+v7LkQxTqNiPJGZb2mS50GsF6zsF4jorzJar3m1KtXL/ziF7/A1KlTA7fdt28fDj30UNx+++2YPHlyqPIK6YgAQMfjjz/uu82JJ57YccUVVxTdds8993RUVlZ67jNv3rwOAPzhD3/4o+XPpk2bolw6Ozo6Ojo+/vjjjj59SmMrY/fu3TvdNm/evE7laG1t7ejSpUuna/nkyZM7vvKVr7iWfdCgQR233HJL0W1z587tOOaYYzo6Ojo61q9f3wGg44033ija5gtf+ELHd77znY6Ojo6O9vb2jk996lMdl1xyScfOnTs79uzZ0/GLX/yio2/fvh1bt24N9ZxGBbBO4w9/+JPPn6j1mi51WkcH6zU7gPUaf/jDn3z+ZKles9u7d2/H7373u46ysrKO1atXCz2W7du3d1RUVHQ8+eSTkZ6TILGvFt3U1IR+/foV3davXz9s374dH3/8Mbp169Zpnzlz5mDWrFmF31taWjB48GBctfQUlB/CBa6JKB2tu/biF6cuQ48ePSIfq62tDVu2tGP5K33Rvbvab/l37uzASWM2Y9OmTaisrCzc7vZN2Icffoh9+/a5XqfXrl3renyv67o17Mv612+bkpIS/PWvf8U555yDHj16oLS0FH379sXixYtx6KGHSj7i5LBOI6IsUVWv6VKnAazXZKms18b87lJ0PVh8PrHGD3qHL7iEsk3pLJ7QY1NHKuelZO0YlGxv3bZB6nvSDR7wodLjndzvLSXHOafH36X32bmzHSeN2ZKpeg0A3nzzTdTV1WH37t3o3r07Hn/8cRx11FFC5/vBD36AAQMGxN6DXstWjVd30PJDuqKi+0EplIiI6ACVQ366dy9B9x7Rh1gXaweAwqS/Ouro6MD06dPRt29fvPDCC+jWrRt++9vfYvz48Xj11VfRv3//tIuoDOs0ItKdqnotr3UawHoNALoeXIauh4gN6QOA0m4VKovlqUtFOuFilzKGi3nQsxnYMSS5gLG0m+prLPDe/28gagZuUXa8F3YejdOq3b/MkbG4YzS+Wvl6qH2zVq996lOfwqpVq9DS0oJHH30UF154IZ577rnAgPFnP/sZHnroISxfvhwVFfFec9W/Mh2qq6vR3NxcdFtzczMqKytdvwkjIqLk9O7dG126dHG9TldXV7vu43Vdt7a3/vXbZtmyZXjqqafw0EMPYezYsfjc5z6HO+64A926dcP999+v5LHFgXUaEZHeWK/JYb1GZJbyxnTCckpXWVkZPvGJT2DUqFG48cYbMWLECPzqV7/y3Wf+/Pn42c9+hr/85S845phjYi9j7OFiXV0dli5dWnTbkiVLUFdXF/epiYgoQFlZGUaNGlV0nW5vb8fSpUs9r9NB1/WhQ4eiurq6aJvt27fjlVdeKWzz0UcfAUCniZZLS0vR3t4e/YHFhHUaEZHeWK/JYb1GFF2PdzvQ412ze6pufK+P0uMtaarFkqbayMd5dPvnFJQme9rb24sW1nL6+c9/jh//+MdYvHgxRo8enUiZpMPFnTt3YtWqVVi1ahUA4J133sGqVavQ2NgIYP8cHPYVaC677DJs2LAB3//+97F27Vrccccd+P3vf4+ZM2eqeQRERBTJrFmzcNddd+H+++/HmjVrcPnll2PXrl2YMmUKAGDy5MmYM2dOYfsrrrgCixcvxi9/+UusXbsW1113HV577TXMmDEDwP5hCN/97ndxww034E9/+hPefPNNTJ48GQMGDCisWFlXV4dDDz0UF154If7+97/jrbfewlVXXYV33nkHZ511VmKPnXUaEVH2sF5jvWZhL690Va33Dj+yKKmAsbyxLFev7bwHjHPmzMHzzz+PjRs34s0338ScOXOwfPlyTJo0CUDnOu2mm27Ctddei3vuuQc1NTVoampCU1MTdu7cGWs5pedcfO2113DyyScXfrcm873wwgtx33334d///neh8gL2f9P39NNPY+bMmfjVr36FgQMH4re//S3GjRunoPhERBTVxIkTsWXLFsydOxdNTU0YOXIkFi9eXJjgvbGxsagnxvHHH49FixbhmmuuwQ9/+EN88pOfxBNPPIHPfOYzhW2+//3vY9euXbj00kuxbds2nHDCCVi8eHFhro/evXtj8eLFuPrqq3HKKadgz549+PSnP40//vGPGDFiRGKPnXUaEVH2sF5jvZY203uxqVS1vhUtw8Tn4qT0WL0XVc6/uKSpVsn8i49u/1zo+RdNt3nzZkyePBn//ve/UVVVhWOOOQZ//vOfcdpppwHoXKfdeeedaGtrw1e/+tWi48ybNw/XXXddbOUs6ejo0P7Kt337dlRVVeGal0/n5PdElJrdO/fghuP+gpaWlsiTylvXtddW91M+SfDOHe0Y/elmJeUk9VinEZEuVNVrrNPyzfr7j/3jDKkFXVQPw3STVu8uhov72Xsu5ilgTGqBl9bB6leOtqgMGFWEi5aggFFVncF6TZ6Wq0UTERERERFR9sQZKiYVJuoWHpow/Fi3MsYZdoq8PlQEkEGv9yjho/19GjVotM+9qDJoJL0wXCQiIiIiIqLYqQ4W4woTkwoPdQvc8kTlcx8mqJR5jYUNIv3eHzLBo9v7NmzgGDVotM+/mNdh0rpiuEhERERERESxswIJVSGjX0ASJXgME+aECSTTHCpscrBpPW/WYzBpyHXcQ6bjGCqt6xBp0gvDRSIiIiIiIsqU1sFtic656AyNdBs67SQTyDnnTnQLJp2Bn8z5wy76YkKomNT8i4D6YFFlqEjZp3ZmSiIiIiIiIqIc0z1YVKFlWHkh3AsK+fzuN7kHJREdwJ6LRERERERElClprBRtaqjo1XPQLfizbrPfZ+3vFRT6HcdvG4t1bBN6Kjr1eLej0HvR/v84lDeWKe29aE1foLIH45KmWg6NziiGi0RERERERBQ7UxZ0AZINCnXovRe1DHE+BrdAUyf2IeFuAaj9tRTldSUSTIq+J6Iu6AKoWdQFCD8P46PbP8dFXTTCcJGIiIiIiIhiVzNwi9KA0R6QqA4avYKcOEJH0R559gVMdA3aTBa1Z6SKnpVx9mxU1atRp7kYGTDqg+EiERERERERJUJ1wGhxC07i6NkoEv7E1evRHl7FNURYdIi0c0EWUc4hzn6Lw2SRiatFA/EEihwenS1c0IWIiIiIiIhIkSRXCFYty8EeEcWH4SIRERERERERSZMdns3h3GRxzr0Y1qPbP6fkOBQNw0UiIiIiIiIiRUxdNdqL12rPUYJCv/2t++zbRD1fXsS9SrrqKQ1UBYyUPoaLRERERERElIg45lt0E3fI4iZroSKgR09Dexl0KE8USb1GyhvLlL4HNr7XJ7b3rhUwRgka2XsxfQwXiYiIiIiIKFPiWtgiq7x6J5J50gjWo1LRg5EBY7oYLhIRERERERHlmNdCLi3DyrVa5EWnsoSVxR6uunhix4i0i5BbDBeJiIiIiIiIIrJWiTZ5tWg7e5DnDPWs0NH+I3Ic575B5/E7jqmSen2w9y4lqWvaBSASpctkr6dVr027CEREZDjWaUREZDJryLRI4OccXl21vhUtw8qLFmvx2pbCK28sY8BIiWG4SInTpUEVVtjyswFHRJQ9rNOIiPSU1oIuO4aUGDPs1Qr5vG5z/t/rGFHP7TyGPXh0O5db+UTPpQP76yOpXowqg8aN7/VBzcAtSo7ltKSplp8xDMVwkZQyvZEVJ5HnhhdSIiJ9sE7zxjqNiMKIe6XopAJFv/AwrWAxSsjnd1ucPQnDBpZhyieynT2AdAs/4wgo/V4vKoJH+3vC/v+oQaPXe1lF6Gh9xuDnCLMwXCRpbGzFx+u55YWViCgerNPi4/fcsl4jypc4QsU4g8SkAkKThgCXrdnke3/b8EFC26lgncs6n/33KNyGb/v9HpZoSBnmdSgaSLq9f1oHtxVuDxs+ur3XwwaO7MVoFoaL5IkNLn0wdCQiio71mj5YrxHlixUuqAwZvcIPFaGjSECjIoBMaqiuilBMNMBTFfSJCns+r16KTkkPqba/9qxh9nHwev+oGjod17Bp0hfDRQLABpep3P5ubJgREbFeMxXrNaJsqxm4Jfah0fZwJM7ejX6hj25zLqoIx4ICSq95EuPiFw7KBoK6rlCtOlhUvbiL25cGKkNF1v9mYbiYU2x0ZZfzb8uLMhHlAeu17GK9RpQdcQeLujBpURcRoqFhUgFj0kFm3KwQMe7XTBKrR6tc7IXDos3CcDEn2OjKLzbKiCiLWK/ll/1vzzqNiCif7AGjs3ehTitD6ybqnIp2XkFiXKtJM2zUG8PFDGPDi9ywUUZEpmK9Rk78Ao3ILEkMi9ZFlnovugV5fj0H3cI9+/5uKzG77efcx69cpoprTsUkJDGvIgNFczBczBg2vEgGg0Yi0h3rNZLBeo1Ib3kJFgH95l0MEnXhkjD7Rw0GTQ8WgXgXbYmbXw/FuOZhJH0xXMwANrxIBTbIiEgXrNdIBet1xDqNKJ/iXMwlK9wWQgH8eyf6BXrWfWG38drPebvb714LuriFnkmvAB3EtCDaLokvDPi50AwMFw3GNxnFhQ0yIkoD6zWKA788I8qftINFE8KiLPT6swsKNO1hok7BIlFWMFw0EBtflBQ2yIgobqzTKEn88oyI4mBCmOjkN1+hFca59Wq07+92exLCnFu33ooiTB4yTfnDcNEQbHxR2tggIyKVWK9RmlinEWVb6+C2RHsvWgGQFQaZGDY6mRDG+S30InKb7uIMFssby5SsGC0irtWjSS+laReA/C1pqmUDjLTC1yQRRcFrCOmEr0ciUskKg0zpbeYcKmz97uy1KHqMuMomci4Tw0M3SQXTSQWLqrHO1hfDRY3xjUM6Y4OMiGTwmkE64+uTKHtMDU90Yu8V6BXehR0WHRQGyh7Xvr1IuekAZy/fOHr9ql74hXW2fhguaogfcMkkfK0SURBeJ8gU/AxGRCQu6nyLYYO/qOfN2mI2ecN6Wk+cc1EjfJOQqTh3FRG5Yb1GpmK9RmS+NFeMNnHORdG5C63b0w74vMpr3W7CnJF+4l7MJck5Fy2q515c0lTLeloj7LmoCTbAKAv4OiYigL2/KDv4OiaivDO5l18cZU/i+UgqnC5vLEs8hFc9PJr0wXAxZWyAUdbwNU2Ub3z/U9awXiNSI+lQIY05F03ssSiian2r55yGFufiMHGVQ/b4ImGgyQGqiRgwZhOHRaeIH1Qpy9hNnSh/WK9RlrFeIwoviTAhyR5YVohoH7Zq3aZLwGgfFhxlcZQw+8Qd1nkd3++8zvvcfpcd7u0ceh0m/PTj9lqyXnPOYdOqhlEn9T5yGyKtetg0JYvhYkrYAKM8YEOMKB9Yp1FesF4jkqc6WEwi/BANCMMEiUn2kpM5V9maTYX/tw0f1Om2LGgbPghlazYVHp+T6PMVFKRG+RvbA2G3kNL+mnO+/mTCSCeRFaNbB7e5ztUYdv5GFdcG1sv6YLiYMDbAKG84KT5RtrFeo7xhQ4ZITs3ALUoDRrcQQ3XgGNQDLErvxCi92kQXKXH2oBMJu9wCN68QzmRxPCbn8+wVEMosMhP2deL12g3Tq9HtvSZ6m6wo1wnWy3pguJggNsAoz3jRJ8oe1muUV/zijEiO6oDRKYnA0S7O8NFP2GBKdD97OBYmoNRdUK9AEX77Bj3vKoZLe732VAyLtnomWv+PG4dAZwvDxYSwAaZeEnO38IKnFgNGouxgvaYe6zXzsF4jEsMFHPQXdc5E2fkKg47lV44ogaff3ItxLURD7lTOscj6OH0MFxPABpgcnT58iJaFjTVxvPATmY/1mhzT6jXWaXJYrxHpyd4LK2k7hpQU9V50/q4rKyB0Cwr97tORWzndAlT74/Jivz/LAWQa7xcu4pIdDBdjxgaYN50aW1F5PRZeKN2xIUZkLtZr3rJSr/k9DtZr7livEZEXa6iq7gGjMzxzC9FUBmwivQ+DzuMVggadQ3a4sgmBooqVotMK5FUFjEuaanFi9zcVlIjCYLgYIzbADshKg0uW2+Nmw2w/NsSIzMN67QDWawewXtuP9RoROakIfLLAOYejcyiy6uHUptM9iNbZs81HAvhL2sXIJYaLMcl7AyyvjS4Rzucmz40yNsSIzJHneo11mj/Wa0RE+eQcThzUk9DvtqDjB82NGHZVZtIDP2uZj+FiDPLYAOPFILy8N8oYMBLpj/UaychzvcY6jYhM51wl2k/SAV5c8z1mIYy0ejpG6S1rHxJd3liWyIrRlB2laReAzLXxvT6FH1Inj89rHoML3SxYsAA1NTWoqKjAmDFjsHLlSt/tH3nkEdTW1qKiogJHH300nnnmmaL7Ozo6MHfuXPTv3x/dunVDfX09/vWvfxVts3XrVkyaNAmVlZXo2bMnpk6dip07dyp/bBRNXt6f9mtvnq6/Scjb85qX94zuWK+RDnq821H0oyOvsK5qfatwkOfXq9B5HOt3+4/fua3/u833GLSatP33sOGh36IwcfF7rcT5OvIKE9NaGIn2u/HGG/H5z38ePXr0QN++fXHOOedg3bp1wvs/9NBDKCkpwTnnnBNfIcFwUbmsf6DMWwMhbXy+KQkPP/wwZs2ahXnz5uH111/HiBEjMG7cOGzevNl1+5deegnnn38+pk6dijfeeAPnnHMOzjnnHPzjH/8obPPzn/8ct912GxYuXIhXXnkFhxxyCMaNG4fdu3cXtpk0aRJWr16NJUuW4KmnnsLzzz+PSy+9NPbHS2ThNTZ5eXnOs/55UHes10gXO4aUFP3oyN4b0C84c1tp2X4Mr/uc96uk6rimrIBtp2tYHVXWPx+E8dxzz2H69Ol4+eWXsWTJEuzZswenn346du3aFbjvxo0b8b3vfQ8nnnhi7OUs6ejo0P5VuX37dlRVVeGal09HRfeD0i6Op6x+kOQbXD9ZHWKm+1Cy3Tv34Ibj/oKWlhZUVlZGOpZ1XXttdT9076H2e56dO9ox+tPNwuUcM2YMPv/5z+P2228HALS3t2PQoEH49re/jdmzZ3fafuLEidi1axeeeuqpwm3HHXccRo4ciYULF6KjowMDBgzAlVdeie9973sAgJaWFvTr1w/33XcfzjvvPKxZswZHHXUUXn31VYwePRoAsHjxYpx55pl47733MGDAABVPhZZMqdMA1muUHNZr6VBVr+lUpwGs15Jm/f3H/nEGuh7iHfbocu3VtRdW2LDICi2zGjbljfPvaQ+le7zboTSktnoqOodApz0kOspngr27WvHi2bdnrl6z27JlC/r27YvnnnsOX/jCFzy327dvH77whS/g4osvxgsvvIBt27bhiSeeiFByf5xzUZEsNsB0+QBAndn/NllqkHGuKrW2b99e9Ht5eTnKy4s/9Le1taGhoQFz5swp3FZaWor6+nqsWLHC9bgrVqzArFmzim4bN25cobJ655130NTUhPr6+sL9VVVVGDNmDFasWIHzzjsPK1asQM+ePQsNMACor69HaWkpXnnlFfzXf/1XqMdM6mStXmOdpjfr75OlOo3UEqnTANZrOrO/v9O8JsuEJl4hSxwBZdTQKOr+VnDlFWDZw0u/wMtru6BzeIVpdkH72I/vtr3Xeby4PRaZgC9KGOi2X5hjuQWIzte18zVuarBoGtF6zamlpQUA0KtXL9/tfvSjH6Fv376YOnUqXnjhhfAFFcRwkYqw8WWerDXI8hYwPrFjBCo61PZe271zD4C/YNCgQUW3z5s3D9ddd13RbR9++CH27duHfv36Fd3er18/rF3r/ndoampy3b6pqalwv3Wb3zZ9+/Ytur9r167o1atXYRtKT5aCRdZrZsnal2es06KTqdMA1mumqBm4xYjrs1fIklTgmCQruPIKsERv9wvA/M4RJkzzOrdIGUREDfjSGAovEgzquFCLrtcEHeo1u/b2dnz3u9/F2LFj8ZnPfMZzu7/97W+4++67sWrVqugFFsRwUYEsNMJ0fCOTnKyFjBTdpk2birrai3wTRpQVrNfMl5V6LW8BY1xYpxFRGlQPRSayhKnXpk+fjn/84x/429/+5rnNjh078I1vfAN33XUXevfuraSsIhguRmR6sMjGV/ZkoTHGhpgalZWVgfN49O7dG126dEFzc3PR7c3Nzaiurnbdp7q62nd769/m5mb079+/aJuRI0cWtnFOrL93715s3brV87yUDNZrpBvWawSI1WkA6zXSV+vgNuN7N2aBbFjoHMbNsDEeefz8JlqvWWbMmFFYLGzgwIGe261fvx4bN27E+PHjC7e1t7cD2N+jft26dRg2bFj4gnvgatE5lYeVGvOOf2MSUVZWhlGjRmHp0qWF29rb27F06VLU1dW57lNXV1e0PQAsWbKksP3QoUNRXV1dtM327dvxyiuvFLapq6vDtm3b0NDQUNhm2bJlaG9vx5gxY5Q9PpJjcrDIa1728W9MIlivURrsoaHbkFMdh6GawD7nYdoL1vR4tyP1MiRFJgRX/cWfXz2f188AHR0dmDFjBh5//HEsW7YMQ4cO9d2+trYWb775JlatWlX4+cpXvoKTTz4Zq1at6jQcWxX2XIzAxEZYXt+QeWZqjw/28kjOrFmzcOGFF2L06NE49thjceutt2LXrl2YMmUKAGDy5Mk4/PDDceONNwIArrjiCnzxi1/EL3/5S5x11ll46KGH8Nprr+E3v/kNAKCkpATf/e53ccMNN+CTn/wkhg4dimuvvRYDBgzAOeecAwAYPnw4zjjjDEybNg0LFy7Enj17MGPGDJx33nmZXlGT1GO9lj8b3+tjXJ0GsF5LEus1/WXh2i2zom7aq+9G4Reo+fXgC+rhF7Twi9f/3RZ88ds/qGx+5QgisziM87xxsV5rVkDoNT+oqtdjHO9lU+v5uEyfPh2LFi3CH//4R/To0aMwj29VVRW6desGoLheq6io6DQfY8+ePQHAd57GqBgu5kgWKnEKz8SLNBtiyZg4cSK2bNmCuXPnoqmpCSNHjsTixYsLE9c3NjaitPRAR/fjjz8eixYtwjXXXIMf/vCH+OQnP4knnniiqLL6/ve/j127duHSSy/Ftm3bcMIJJ2Dx4sWoqKgobPPggw9ixowZOPXUU1FaWooJEybgtttuS+6BUxHTvjBjnZZvpn5xRslgvaaftK/ZcQ1Hdjuu17ncbvcKuYLYV0ROk0iIp+I4QduGeS6iHMe5XdTy2zlfD2GCS/trTeT/QPGq0jrI2gJvUdx5550AgJNOOqno9nvvvRcXXXQRgM71WhpKOjo60r8qBdi+fTuqqqpwzcuno6K72pV6wjKpEZZ2ZU76MekCrVO4uHvnHtxw3F/Q0tIiNT+GmzivayrLSerpWKcBrNfIbKzXwlFVX7BOyzfr7z/2jzPQ9RD/BQmsL7tNvI7be3vpEsBE5RV0uc0vKBqKObcNE56G4XX+oO1Fe1CK7C9zn5uk53O0v57tPRl16mlrr99FOsvs3dWKF8++nfVaCthzMQQ2wMh0JvX4YO9FoviZUq+xTiMvJvbOJ8oj631qYsBoD1tEghcTAsigIMt+v+wiKLLnUilqWe33uQ3FFn1eZB+zqufIbVi0X2CoS5DoxHrdLFzQJaM46TmJ4GuEiEzB6xUFMeWzjylhPhERJRuKqqRrYCjDhDqdDmC4KMmED4R8E5IME14vJrzviEyl+/vLlMCI9MHXCxEREVGyOCw6Y/iBmsIwaZg0EeUH6zQKS/dh0pzyg/JIl2u66HxybqvtmjDUWUbYBWX8JDXHYprnDTuno9f99gV6VPSUFF3ExU7X+UR1uW5QMPZclKBz7w727CAVdH4N6fz+IzKVzu8rna9HZAZ+NiLSg47vRdHAxWuftNiDKuf/7T9B9zu3UxnIqT6e7uf1ElQer/u9/sZB93ndJsrv9R30filvLCv8yBw3DOtaouN1Je/YczED+KYilXTv7UFE2cd6jVTStV5j70XKC6/3X1rXemevRdFFLmTmsIsriPRaSCRoARXd5w109qCULW/cqyzH0bvQSWQRHJm/ucVtQRe/1aHti8E4j+H8v99tIvdRtrDnouHYAKM46Pq60rmXFZFpdH0/6Xr9IbPxdUVEpC+TglAicsdwUZCOjTB+UKY48fVFREni8BaKm46vLx0/XxJROPbeXuytJS/ssOYkei3a/3W7z+t3HekwvJ+yicOiDaXjB2SdyFw0Wfl703EoGYeREUWnW6DBOi0Y6zU1dKzXiPIkK9d7r2uyNbw0iwGO3+IvznDPfr9I8OecS9C+j31IstfQZK997Me27ytSrqCg0Ct0DDp30j0z/RZ3cfu8EPa167YAkt95osjKdSRrGC4KYCNMH3FU1KLHzGtjjQ0xIopTnus0gPVaGnSr1/ilGWWdLtd5mWtjlGtz2H1FArK0eZUjaOGSqOfxWqQGAKrWt6JlWHlgL8IovQytc1Stb/1/t5SHKr/oeZ1BqPM+v+PIhJd+C7V4zbsYtIq636Iuef3ckRcMFw2jS+WcBN2+8fMqTx4ukro1xIgoG1inpcutTHmo0wDWa0RJ0eU6L3MNVn29dguB3HriuW2bZKhoBWh+99tZ21q3F4dv3tsF3e7HOoeznDLHCDq+13G9/m8vl9dx7Pv5PccWFWGts6ekzPBxt23dwkfZzwxBUweEOSbrc30wXAygU69FXSrnOOjY6BLlt5pWluh04WYvD6LwdKnXslynAebWa3kKHHWq14iyqmbgFi2u9269rJw9seLiFehYt8sOz3XbXkUIGRR6ed1vv93vGCL7i3BuL7t/lHMB3gGhSDlEthHprWoPp7229VtpWrQMdl4rTYeR1c8Vecdw0RA6VMqqmdrwCpLlsJENMSIid1mt04BsL1KgS73GL80oy7zeY2m1b5zXMZXXNfuci15hjNs21u1unEGP27BtrrCcjB7vdqBlWLlrb0DZeSaDBB3Da4Vtr+HLbvOBBr1G7b8797GzHzfo9e8na58x8oarRRsgK8FieWNZ0U9eZO0xZ+X1SJRH7LWoVtau7yKy+Jiz8nokMo0Owb5qVjgiEpJECTkZwqTDrzegaE/UpHi9RloHtxV+grYVvd9+XNHtKXsYLvrQoRGWhQ+8WWuERJGVRpkOr0sd3p9EJE+H60cUWbmOq5Cl58L01yWRifL+vgtaQMNvvyxcd00hO/9h2ovvWK8N57/W/91ePypeT/bjJv35IO/XEl0wXNSYyW+SLDU44mL682Py65OI0mHydcP0a3bcslDvp/365JdmlAfW+yzt95sKzlFZXj/Oba3f3W7PElWL07itFO283+1cbrfLntd5brfFd7zK5yxD1PKIlNciEh56veaCtg16raax0jqQjWuK6TjnIimVxYoxbs75MEyiy1xVRBQs7eDCxA99rNPCMbleIyK13K79OtUHzrnk3Oals9+XtqAVf91WoE5TUgGj332qnguZVb39fg8qT9CCLn6rP8usCA34h4YyvRvDBo6qPydsfK8PBh76ntJjkjiGix7YCJOjQ2VruixPmB8XToBPZAbWaflkYsjIL82I1LJWi7beV7rVB17zHnotWmHnXLQiCaKLfMQ1759oeOW2wrXfqtdei6F4HSdolWSRQNF5HregLi5B53Zu41YmVX9jt8VY7PcB6l7rSXweaPygd+znIHcMFzWkW6Xrhw2weJjUIGNDjIiygnVaPEyq04B06zV+aUZZZH8/WWFjFsgsiGFxq2eSDiijEA20RMOyoPuCjiOznx+Z8sr2Dgxz7jDbhimT22vYbSVzr33stwW9fk35DEDhcc5FzZhS2WZ1bhDdmPIcm/K6JcqrNHvjm3B9YJ2WDJOeZxNet0QmytN7K45FMyicqHMvJnEek/G1TQDDRVdpD4nWmUkNg6ww5TlP68Mi369E+jKhEWnC9TVrTKnXiEiNje/1MaI+iCrsgi15uSaGXWQlaJ+g46oI/GSObS+Ps1xxh48qjh/Xgi15eI3nHYdFa0TnSpcXg/SZNqyMiEhnrNfS5zfsSgdpDY/m0GjKEnv7Rue2jhvnNcrvd5nVdE0lOi+i6LGCFi7xO3+YbbzmfHQ+Lut359yNIv8XObfbY3ee13mf275Bj0+E83XrfH377Rem/nZbKImyg+GiJnSubLNaQZpK58YY518kIouu9RrrNL3o/sUZ6zWi8HSuB8Jcc9zmlUu6TpGZ788rwPNaXEUkfLMfO6q0hxAHPa44yyezirbbtn4haBQyK0KraJPKvn90bgcTw0XywQaYvnRujKXREGMvDyJvaUwdoHODkvSkc71GROHYF2/RabVo0euM34rRadUnYRf/cO4ns4BJ2MVLglZgtoeXQSsj2/fx6/Xo1gPQ71iiZfUqh9tjcbtf9NxBq0Hbt3X+fVUEjDKrRauor91WYCdzhZpzccGCBaipqUFFRQXGjBmDlStX+m5/66234lOf+hS6deuGQYMGYebMmdi9e3eoAseNjbD9+MY2A/9ORGpkuV6j/Xi9NIOOfycdP6cR+WGdFj9+ERIsysrS1u1Bx1C5anOSxw5LlzLx9U9upMPFhx9+GLNmzcK8efPw+uuvY8SIERg3bhw2b97suv2iRYswe/ZszJs3D2vWrMHdd9+Nhx9+GD/84Q8jFz4LdPzAquMHe/Km4yTQOr6uibywXlNLt/e/jtdI8se/Fxcro/B0q9PsPRZ1qx8oOfaFTWR6CFrbRwnVRHr0qQ7tZOeRDLPQTRawvs8W6XDx5ptvxrRp0zBlyhQcddRRWLhwIQ4++GDcc889rtu/9NJLGDt2LC644ALU1NTg9NNPx/nnnx/4DRoljw0ws/FvRxROluu1pAMK3RqOvC6aS7fPJLq9tom86Fan8b2jr7CrN3sdx+24bsd3C9SC9pEpi1e5vMrttZ3sPIgyZRbdXmZuRlOJrKhOZpCac7GtrQ0NDQ2YM2dO4bbS0lLU19djxYoVrvscf/zx+J//+R+sXLkSxx57LDZs2IBnnnkG3/jGNzzP09raitbW1sLv27dvlymmMXSqbPlmzgadJrlNeu5FzrtIYSRRr+WlTtMN67VsyHO9RiRLp7aaTu0cJ5FVoC0mzwknsyKzyAIvIudTyS/wiyNk0y2483qssr0iZXplWq9v67XjtQp6nO8Dnep9kiMVLn744YfYt28f+vXrV3R7v379sHate6P+ggsuwIcffogTTjgBHR0d2Lt3Ly677DLfrvY33ngjrr/+epmiKZHXISgmVZIUTKcLMhtipLsk6rW06rSk6dKQZJ2WPTrVa0Q6y3pbTRXn9STod9H77AtdeAWUSdZRfgu6yO4fJ9HFVlQEoG7n8AvhvI4fFNqKLOjityCMfZughWe8yhrm72e9dq19/RZ0cd5PFGpBFxnLly/HT3/6U9xxxx14/fXX8dhjj+Hpp5/Gj3/8Y8995syZg5aWlsLPpk2b4i5m4tgIozixazlRfGTrtTzUabrgdS+7dPnbJvn5La9felOy4mqr1QzcUvjJi9bBbYWwxfq/THAZ9Zxh7teBNaei/cd5v9t2Xvu63ee1v/12v7LJbOf1uPwej/M+0d9F7wvD9NcVJU+q52Lv3r3RpUsXNDc3F93e3NyM6upq132uvfZafOMb38All1wCADj66KOxa9cuXHrppbj66qtRWto53ywvL0d5eblM0SgEXT6oU3x06O3B3ouksyTqtTzUaTp8YcY6Lft0qNOIdKZjW02H+kEncdVV7EEWzK/XXxR+xxSdV1FVuXRZTZrySarnYllZGUaNGoWlS5cWbmtvb8fSpUtRV1fnus9HH33UqVLq0qULAKCjQ695DZKSdiXLXm35kqe/NXt5kKws12t5ej/k6TqXdzr8rdP+HEfkJct1mimsa1Ra1yp+AeMvzDBq1Ss6+x1Hp3kfdahvySxSPRcBYNasWbjwwgsxevRoHHvssbj11luxa9cuTJkyBQAwefJkHH744bjxxhsBAOPHj8fNN9+Mz372sxgzZgzefvttXHvttRg/fnyh4tJBXhphvEjkU9q9Pdh7kXSW1XotKWkHLazX8iftOo1IZ7rUaWnXDSrY51D0u9/r9iTqp6BzyJQhaM4+nYIvEXEGeM5VqcOcQ8UxnPMxOm9zHi+oZ6MOC7o4j8/63hzS4eLEiROxZcsWzJ07F01NTRg5ciQWL15cmDi4sbGx6Nuva665BiUlJbjmmmvw/vvvo0+fPhg/fjx+8pOfqHsUBkmzomUDLN/YGCNyx3rNXKzX8ivtOi2pL82WNNXitGr3hTiI3OhQp+kcLIostOJckMVtm7h5BUFhh9DaF0URXQgl6TCxav3+Fchbhpk9lUzV+tbEHoPf30jmtRLXkHEV0q7vSVxJhwH93bdv346qqipc8/LpqOh+UCznSKrnIsNFSluaF+ckGmJxNsJ279yDG477C1paWlBZWRnpWHFe11SWk9RLok4DkqnXWKdR2rJepwFm1Gus0/LN+vuP/eMMdD1kf6iic8CYtjjnXTSxbgxakdnaJmiVZNHtw5TP69jOc7utAO0spxt74Bu23Coes99ryG3laEucrzvnlwBB9X77x7ux6fLrWK+lIPbVoukANsJIB3wtEGVf1qf64HWMLGm+FhieEJEu7KtU54lpQ7XjpGvPQ8oP6WHRZJ68NsJ6bBSYp6KGF+Gs4RAyomSkFaywTvOXx3qNQ6aIiA7QuQejW+86t2HaYXohOo8R1OMwzDGdvIaYi5wnjjAwzuHNzjkXk6p3Wcebg+Eisj10TNeKRQXRhlaUY2S1kZbWRZoLuxAReWO9Fh7rNSJ9sFevNx0WeVElbK9Bv6HEXseOci63RU/cjuk3F6Vzrsqg8gQt1iJyDL9yqDpemPOkIcuZRpYwXMywLL0JVTS4VJ03Kw0zfgtERGHxC7PodKnXslKnAdmt19gjn0xiQrDoXAXabZGXtOqboFDH63638rrNDagTe5msxVyAzgu6WAukOP9129epZVi58GMXDQzdFmxRHeypvl+0h6XM6965repFiETPn8V631QMFxOQRiWbhQZYWg2vIPZymd4oS6Mhxl4eRBQG67V4ZC1szGrASETh+NUdaa8IbXHrFefV287tfud9fr+rFrQysnMFaJGVlO3bWPt7/StSPktQOZ1lFDmH2+Pz+l1kNewkV5r2EuU1k0SInYXPg1nFcDGDTH7D6djw8pOFoJENMaJsyeJiLqzXkpOFei1p/NKMSF+in3H9VsCNuzejFRSKzM0X1AvMbYViv6DSvk+YYCgoCHPeLxucOUM+v56LooFgUDmt/3sFokGBpduxRMunKlj0Wn1axarUfue007G3LMWL4SKlzrSGlxc2yMTF3RDjEDKi+CTdG9/EYJH1Wrr4pRkRyXK7ZjhvU3FdiVqnyQZCbounRD2230Ip1u8yZevxbodrqHbgmP4BpVeYF3ROZ6jq9RjczucVyMqGrUFldCtXUK9VkbDabwEdv7knZeg8JJ/ikftwMe4eHmyEectK48uN9dhMaYyxIUZEFB3rNX0kXa+x9yIRibBWcrZfn1S037x6V8bR6zIosAwTgPqFXV7buoVwfkGWM0DzO5db0OgVlon2DHU7lnWb13Mg+ryICHrMYem8OjklK/fhYpaY8qbOcuPLyaTGGANGIgrCL8zcsV7TU5bqNfbIJ8oOvx6RXkOx7b/7BZOqQ8ukyPSo9PrdbwGbMGGa/RgiQ9at34N6dnqVPyjk1FFW6lhSozTtAmSZCaulJanHxo5cNcDsTHnsSX4I4fuDiPyY0Cgy5doehzw/diJy1/hB77SLQOQr7iG6Xgvq+J2Xw4YpK9hzMSN0boSx8XGAST0+iIjIHeu1A3Sv15Lsvcih0UTZ59ZTUOS2qOex/y6zyrXb7bJhlklz57mVcf8iKuWd/i/zuGRX4Xa73y9ojOO5lR3OHaaXpP31FXbuTbsw5cjSKAXTsediBjBYNI/OPT50fj0Rkb845xFOsrexrtchna/dadP5edH19URE5mkd3Gbk0GN7sOU3xNc+RNf+u9f2otIc3utcRMW5YnNQ2Zzbh12ROi6yf4ek/hZJnsuU92HWMVyMSd6HfLIBJkbX5yipC3Sc75O4F2vKq61bt2LSpEmorKxEz549MXXqVOzcudN3n927d2P69Ok47LDD0L17d0yYMAHNzc1F2zQ2NuKss87CwQcfjL59++Kqq67C3r17i7Z58MEHMWLECBx88MHo378/Lr74YvznP/9R/hgpXbp+QNT1eq0T1v1kItZrFIY9YLQCR3vw6LzNGUomzTmvnz08dIZAQfMLeoWQfj/O4wSd329f53Ze5XTTMqzcc8Vmt8dn7eM8RtTg1S+8FTm2299TpgxRF+EROSap8/zzz2P8+PEYMGAASkpK8MQTTwTu09raiquvvhpDhgxBeXk5ampqcM8998RaToaLhtOtEcaGhTw+Z2SSSZMmYfXq1ViyZAmeeuopPP/887j00kt995k5cyaefPJJPPLII3juuefwwQcf4Nxzzy3cv2/fPpx11lloa2vDSy+9hPvvvx/33Xcf5s6dW9jmxRdfxOTJkzF16lSsXr0ajzzyCFauXIlp06bF9liJAF6jw9Dx+crCl2YUD9ZrpIrIdSbt4ZtpD22WDaC8FlVRPVTbL6ST2T9JIueMa4VoStauXbswYsQILFiwQHifr3/961i6dCnuvvturFu3Dr/73e/wqU99KsZS5nzORdN7NukYLFJ4PTZ2aDVnFeevIKc1a9Zg8eLFePXVVzF69GgAwK9//WuceeaZmD9/PgYMGNBpn5aWFtx9991YtGgRTjnlFADAvffei+HDh+Pll1/Gcccdh7/85S/45z//ib/+9a/o168fRo4ciR//+Mf4wQ9+gOuuuw5lZWVYsWIFampq8J3vfAcAMHToUHzzm9/ETTfdlNwTkGNJBSas17JD97kYiQDWaxSebvVVkLRDRSe/+fnchm6LBmlJzfNn7RfmvqjCltfvGHEcM2lZbrt+6Utfwpe+9CXh7RcvXoznnnsOGzZsQK9evQAANTU1MZXuAPZcjEEev7VmA0yNPD6PeXy/JGX79u1FP62t0eaIWbFiBXr27FlogAFAfX09SktL8corr7ju09DQgD179qC+vr5wW21tLQYPHowVK1YUjnv00UejX79+hW3GjRuH7du3Y/Xq1QCAuro6bNq0Cc888ww6OjrQ3NyMRx99FGeeeWakx0T60Kmhxt6K6uj0POr0GgvD9C/Fo1JdpwGs10hOeWNZ4cftduc2zkVY3PaNk+hCJdaPzHGdYaDXIiVuC6HY538U3ddtW5mVmd3mSfQqi8jzIbvAi9e5RZ+3oG1k/x8XkddFnEyr5+Oo1wDgT3/6E0aPHo2f//znOPzww3HkkUfie9/7Hj7++GMlx/eS656LJtPljaNToyErdOrtkeVvgHTxbPOR6LrTfe6XsPbuagXwFwwaNKjo9nnz5uG6664Lfdympib07du36LauXbuiV69eaGpq8tynrKwMPXv2LLq9X79+hX2ampqKGmDW/dZ9ADB27Fg8+OCDmDhxInbv3o29e/di/PjxUsMDiESwXlNPp575SdRreV412qQ6DWC9RsHs14wwq0Cn0WYLCpSsHmZ+AZl92LHXEGTRgC3OlZCB/cGh1zyKbmS3l9k/6rFl+fUW9FrEJ2hxH7/XjF85gva3uL22dGZavQYAGzZswN/+9jdUVFTg8ccfx4cffohvfetb+M9//oN777038vG9MFyk0NgAi5cujTEGjObatGkTKisrC7+Xl7tXjLNnzw4chrVmzRqlZZP1z3/+E1dccQXmzp2LcePG4d///jeuuuoqXHbZZbj77rtTLVvWJdG7mF+YZZ9OX5yRmUTrNID1Gqnj/Azs9ZnYXo+JhJDWccLWf37nCAqBnMGiX9gTZc4+r/kSg7b3Gi5t3ee8zW+BFmtb+zZ+4Z/fuUX2lwkWvYZxy8wnaZ8r0vn8Wbe5/U2DVg13e97DPBa/c8YVLJZt0uMzpQiZek1Ge3s7SkpK8OCDD6KqqgoAcPPNN+OrX/0q7rjjDnTr1k3JeZwYLiqWl0YYG2DJ0CVgjFuee3nEqbKysqjC8nLllVfioosu8t3miCOOQHV1NTZv3lx0+969e7F161ZUV1e77lddXY22tjZs27atqJdHc3NzYZ/q6mqsXLmyaD9r1U1rmxtvvBFjx47FVVddBQA45phjcMghh+DEE0/EDTfcgP79+wc+zqzL+5DJqFivJUOHeo1fmplJtE4DWK9R8txCSNFrTdSgUUbY1YWjnCvqMdxCR+d9IvuLnCto37DzOqoon30fQC58VLWd6HHcerya0EsxaTL1moz+/fvj8MMPLwSLADB8+HB0dHTgvffewyc/+Unl5wQ45yKFwAZYsnR4vnUItMNg2CKmT58+qK2t9f0pKytDXV0dtm3bhoaGhsK+y5YtQ3t7O8aMGeN67FGjRuGggw7C0qVLC7etW7cOjY2NqKurA7B/3qk333yzqIG3ZMkSVFZW4qijjgIAfPTRRygtLa6yunTpAgDo6Ej/PULh6XB90eE6myd5eL45n3C6WK+RDmS/xGgd3Fb0o+q4JrDCqKDefM7fnT3hnD0P3cJB+77OfYLO6xd0+pUlSFAZVAW1IudTgUFiusaOHYsPPvgAO3fuLNz21ltvobS0FAMHDoztvAwXDZN2IywPDQId8XknHQwfPhxnnHEGpk2bhpUrV+LFF1/EjBkzcN555xVW1Hz//fdRW1tb6LFRVVWFqVOnYtasWXj22WfR0NCAKVOmoK6uDscddxwA4PTTT8dRRx2Fb3zjG/j73/+OP//5z7jmmmswffr0wvCA8ePH47HHHsOdd96JDRs24MUXX8R3vvMdHHvssa6reRKJ4vU1HWk/72l/niI9sF4jXfEatV/Si5CYcNywdCsPidu5cydWrVqFVatWAQDeeecdrFq1Co2NjQCAOXPmYPLkyYXtL7jgAhx22GGYMmUK/vnPf+L555/HVVddhYsvvji2IdFAjodFs0eTvLQbAnmX9lCyuIeRcWi0GR588EHMmDEDp556KkpLSzFhwgTcdttthfv37NmDdevW4aOPPircdssttxS2bW1txbhx43DHHXcU7u/SpQueeuopXH755airq8MhhxyCCy+8ED/60Y8K21x00UXYsWMHbr/9dlx55ZXo2bMnTjnllMA5tSiauHtfpd14Yr2WrrTrNSKA9RrFx+uzs/N23RaJUbXQhsrhsCKLj4iuji17DtnjuN0ftICOzIIocawArfpvTmq99tprOPnkkwu/z5o1CwBw4YUX4r777sO///3vQtAIAN27d8eSJUvw7W9/G6NHj8Zhhx2Gr3/967jhhhtiLWdJhwH97rdv346qqipc8/LpqOh+kJJjxhEuZrkRxgaYPtJsiMU9DCOOcPG06rXKjrV75x7ccNxf0NLSEnl+DOu6NvaPM9D1EPUrkL149u1KyknqxVGnAazXZLFe0wfrNTk61mus0/LN+vsPuvM6lHarSLs4ifGqw+yLrdjnU3T+P+k6MOzcfm77iyx8klVRVoROYjVp59/Gax5Er+2CfncLIsO8BrzCYpEFifzs270b63/6Q9ZrKchtz0USxwaYXtLs6cFJ8IlIFQaLZGEPRiJKijP0i3IMkftF/p+EMOFPUC8/XXgFdlXrW333s+8jegznNtb91u1uvzvv86MifHSuCO7VY1KkN2icnGG1Tq8pCofhoiHSaoSxAaYnNsSIKG5ZXZCC9Zqe0qrX+KUZUb6oeL+rCia9hkzHQaTHmlvPxKjDZYN6vNm3cyuv3zYWrzBOJqSTOYb9Nuf9fr+LlEc2WPT72/ktRuP8Wzj/7/f3iDp82mt/Bozm44Iu5IkNML2l9feJM+jOaphBRMX4hRm54d+HiLLOChS9Akrn7UErR8vyWnXZ+r/bqseqzieyIrLI6s1uP17lDyqb2/Yiq0eLrBYtekzn/V5lcj5OWUmuFk35xHBRkThDkTQaYfyAbwb+nYgI4CJlIni9NEMafyd+aUZEugjq2Zhnor0eRfV4t6Pw43YOlUOGdeiRF2cZGFYSwHCRXLABZhb+vfwxdCHSC78wIyKiPFBZ3+kQNKYVkImeN47yqVo9OokypEnm8esQtFI8OOei5tKc8J7MkfRcVZyjiijbstTbisGiedKYf5H1GlG+RH3P2xeGcbbX7Ld5teVE2nhu24SdA9Ft8QznXIgioY99W5mefVHn01MRMNoXVPGa29C+v/V/5yIr+4/Tef8e73YUtrXvaz+f14ItxduXu97nV0a/svn9nbxWkvYTdR5O5zmcrw0Vx6d05LLnInsyeWMjjNKWpVCDiIjC4ecRIopT1C8T7Pub8MWEV8DkXFFYJNTxCp+sUEh2vsGktAwrL/yIssJBkZWenfuI3m4XdaXooP1FQtqkV5BmT8bsYM9FBbIShvCDvNnYe5GIdJd0b3zWa2ZLawVp1Ta+1wc1A7coO96SplqcVr1W2fGIKBy/gNHrM7Lz87NfD0g3UYI6t/kE3XqJhT1H0HyFUXpc+u3rtcq12/ndjud3mz2ss/Z3C/AO7FvuuW3LsPJCwOh2Lq/H4OzZJ/K733PgPL8slWFx0N+BzJLLnoumSLIRxgZYNvDvSES0H6+HJItT0RBR3LyCRfKnQ+82FfMKWmGj22IyMnTtHUr5xnCRKGPYoCYiHfELMwqDf0siovjoHkq59WzzC+SizM0ocny3csmeOwzVfyfZsur+OiE9cFi0ptgIIxPENTRa9RAyIhKXlak+KDuSHB7NKT+ISBW3IdBuw5+TvO44h0H7hUxBAZro/IzO7dwWExEVJWD0WxglaF/RY3kt2CIjqJyyvwcdX+R+twWAVHBbTIgLupiLPRcjMr0RxmAxm/h3JaK84vUvm/h3JSKV7AFf2E4dzmO4HdPrdr9j+ZEJv6L2pHMeQzbEch7H7Xg6DHcOUrW+tdNP0PZu/3f73es2ldwW7nH+P01eYaYu5SNx7LlImVG1IfqFueWIaN806SSpnh7s5UGUriVNtWkXIVBSvfGzFkCxXssO9sgn0ouK1Z5lF3SxbpNdxMVOtEeX13ZR5upz9ngU2TdqDzTnoib2f+33h+HsMedFpieic1uRfb0WiPEqW5gFX6ztw/Y+DFqsR7U4eklS/BguaoiNMDEqGl1Bx2SjjIiIksJ6zR+/NCOirAkTMOogqcDHLWRzBl1+qz2HPX7Q/kHbeN3vFzb6hYQqwlRRoqFrEhgsmoXDonPK1GCxakNr4SeL51PN1L+zaib07CLSgclTfZh6vWO9RkSUT84h07rTJXCy8+vdZ/04b/ciE+D5BZ5+x/AbAu037NxvmHDY4eoy0vjb6/h6I3/suUja06UBZC+HyT0/4hBHLw8OISPKBpMaTknRrV4zqU5LcnEXIqIkOIdL55VbD0S7ML3YTA2oTC23Knl//KbKXc9FlT2Y4ujhkUSlYkrvDp17VuhcNidT/t5ERGGZcp3Tte4wrTdjEn/vvDfyiSh5uk/HEGa4bNwhkVfg6NXTz21BExVDjt32dSubyByMbj0unefyW7U7TAgbNKScw5NJRO7CRdKfSQ0ck8pKRJRFJgSLJtUVppTTRCq/lOZ0H0TmCRoGnUgnk4AATXSVXvvqwzIr+4oO7fU6j9v/w5Rfdnu/FaD9ju13nKhl8jqP374ioWvQOZLsVchVo83CYdE5o3sjzNRGje5Dy5IYRsYJ8InIKe+9v1inxYfDo4koirg+t4ap90T2CbtqbtjFToICKrdt7Ks5i+zn1WNQ5Nz2/1etb0XLsPJIIZR1DOdtXr/b/2/fz+v2oHPZ95VZnVpkf7+/hyk9ErPwGPKA4aJG8twIM7UB5lS1oVXbxhgbYkTkx8TFXHT+wiwL9ZoJIWOc+KUZUXbFFSx6zZ8YdV7FsAGKzJBZt6G2QSsiO7cRXUFZZSAUNowLOoZIOOgMIEXK4rdNlMfSMqxcuFdlFrBHo34YLuaIro2wLDTA7PLeGFOJi7oQkWmyVqcB+n5xxi/NiEgn9sCydXBbIUj0ul03boGf2yrIURZcETmHkzP0dJbB7Xf7cd3297pflj0MFJmTUiRYDDO3pd8xZB+n2/l16B0Y5XmhZHDOxZBM7OGhG5PmoApDx8cWd8Cs64clIkpe3NcDHb8w0/G6r0rW62wioiS1Dm4r/JjEKxyMK3yyB2Si5xDtnama7NyNUY4jwitcNRWDRf0xXNRE3hpheWmg5OVxEhHlXV6u97o9Tt0+3wThl9NElAdRVpX2mtMxC4KGPVvhoz0E1CEQzOLfgtRjuEiJ061hEjfdHq9pDTEi8pbXFWN1uo7lsUdfnh4ve+QTkRfR64N9O+v/zn91ILNisPW732rRMqsWW0NevYZdBy364laWoJWGw6wUHXSfqjkPo67OHHZV6DiongeSQae+GC7mgG6NsDzKY+OTiPJLp8ZSnPJ8Xdfpsev0OYeI8kNmSHN5Y1mnulHXujKp8Ea2R14ci8GIsC+U4haU6b6ISpjnWffHxIBRTwwXKTE6NUTSkofnQNcPSnnt4UUkwqShmroESXm4ngfhc0BE5M8+t6J9jkVnMOkVVAbd7nVMt/uDWCGU6IIt1jyIbvMhBi0iIrr4S9DxRcsuc14ZLcPKlaxWbT+eijkso+y/Y0hJp8cU5Xgqnx/SG8NFDcQZxujQCGOvvWI6PBc6vC5EmRR6EFE+6HAd14Uuz0Wc9ZquX5oRkZmcYaBIgOh3v9c2Ji4W4xdiBYWeouFomKDMCsiCgjJ7L0c3uvcIJIqia9oFMBHDDnG6NDp0U7WhFS1H8FscIiIZOnwxwnqtM9ZpRESdRQn3/PYNc1/r4LbEvyhJeyGSKL0Y7XM/OntfWr0LwwzNtcJJ+7mDjuN2Lvttzvv9yhbUo9SL11yYIqrWt7L3Yk7kKlzM27BIHRph5C3txliPjR3YUZP+6mNElC1Z7uXFYNFb2nWaSTa+1wc1A7ekXQwiill5Y1nogDHsvlYdbIWJ1jFiHSkXsAiLSCjlDMeCbne7X+Y+ke28bt/f+zBcfWcFbTLlDrNYTpj7ZLaJC4NIs+UqXNQRG2H5ltXGWJQPU0REOmKdFiztOo1fmhGRbuxhn/13mX3dbg/qiRh2NWq/QDBsMCUbEMqGfXEKGsbsDMOcC7/IBmVhwjXrefE6p0zImnZvUzIb51ykWLARZgb2biUiU6R5vWKdJi6rz5WOXwbnbUQOkUr293TY97fzGEFhn19YKFsGldekHu92FH7st8keI87t4+B8zGG5BZBWwCcyx2LV+lbhVahVz9no9RyYNDekDq8l2o/hYkaxEWYOPl9ERJQladZr/NKMiEQELYYS5nhei6qIrNgsWwaVI4TcVmSWWc05aHv7dm49I9329VrcRcVKyjKirAYts5/btqK3ud0n8xxlobciA0Y9cFg0KcWgLJy0h5IRUX6pXKQsrt5d/MLMPKzXiCjrZANDr6HM9lWhRerRoFWkg45h38+5bZTVmsPuL3psv9v9hvS6BZrO7b22sXNbCdoZ9omsJu13m7VYjNv5Rdj3t/gdLwvBIumDPRczKK1GGBtg0aT1/MX1elEZMnCFdiJKA+s1IqL8cVtwSdUiTCKBpNtPmPNE2T8JSZXNrbejV69Ir9+tAFC2J6Potn49MoPKGraXoshzQiSD4aIkE3p4kLnYkCUi0gOvx9HxSzMiMo3qYLFm4JZO+4cNC6Nsq2vA6EU2GI0ajEXtOSlbBvtQ9KCeilYvS+cQ9KBh6bKPyc4ZipoQPHJodPoYLpISbISZjXNUEZGueH0yGz8fuGOPfCI9pfHeFPniIm9fbujyeONeuTrOQIxhGyWNcy5mTBqNMDYc1OI8VURE6WK9plYa9VqPjR3YUaN/Twsi0o8zYIwSOLrt6xac+c3FKMt+LOsYKlbH9uM156H9dvu8hvv/718Oq5x+8ym6nUN0zkKv7dxur1rf6jrE2ZqDsWVYOXq829FpO+t3+1yN1rb28jsfj3N/r+3dyup3PPvvfs9r1fpW7BhSUbSPKb0Xt/VLuxT5xZ6LRBrKSsNWl28diSh+WXm/Z+X6S0RE8ZKp98obywo/UfdxBoXO+50LtsRdP4uEf4D/wiJ+klz52KuMVmBYtb61U1DoDB2di744f5cRdqVqL37PfVZ6OvbYlI3HYSKGiylhI4x0w6GHRGZZ0lSbdhFix+tSdvDzAhFlTdR5EEX3c1t12u9++zZB+6sQtAq0cxER60dVmCU6t6DXoilu8xZ6HVMk7HOu/mz/EeG3uEuY+4O2t29nLzeRLIaLGZJ0I4wNhXjx+SWiuHHet2K87sYr6ec3js9FWflymIiSVd5YJrVISVBoKCIodPQ7TxKSGGbrXDTFfltQWbxCOb/gLSiUkwnt4nh+RFeZjtLbkvKL4SKRxtjQVSsPPb2IKBxeb4mISFdRA8CgoNK01aTT4BfMifYO9NrHhPkMiYJwQRcKhY0wStrG9/qgZuCWtItBRC5imRyeQ6IziYuWEVGeOOdHbB3cJrw6tHPuRLfb3Y7ttoiLW3l04ZyTMcpx/OZ1dFtYxlkGkXLu79V3YA5G+4Ir9gVe7PdbnAvAuJ0/qCzObZ3Pm+i8ijIL5YiWLW5eC+uQHhguStB5+BgbYdmVZEMsjtU1vT4EERHpgl+YERGRLL/PuF4hnuyCLn7n9VroJa4A0W1VZefKxVHCJ79juR3b7TaZBUtEyxq0UrTXPiLbBZ0r6HfAGXp2HnrtFyJ6rbTtPLbb/0XCYKtMXmWjbGG4mAIdvzGSwUYYERERhWX6l2ZERID/UGLRHooy53D2gvS7Pw5+i6H4bWPnFUo5g0TZ8zmP6xUc2gNJv33t23kFYi3Dyj2DQ7+ei0EBm71c9m33317u+jjs2/r10PQ6l9d2bs+RTIBsPUcMFfMhN3Mucq41NRgspoPPOxHlSZK98Xl9JVmqGvA6j4ghIrWcC6dEXUhFdBXpNBdscRMUPooGYUH3ia4K7fe7yIrRbqFZlCBNdl/O1Ug6yU24SERiOMSeiIjixlCXiLLOuTKz9X/RsM9ru6Aek1FXmU5DmAVRRI8pujq07LHdOHsPqlwdWmZeRpHjRb2fyInhYgYkFQaxIZAuPv9ERGrxupoP/NKMiNIQdUEVt2HQKstC4XmFe9Yw6TBzT1r79Hi3Q8nCKTILw4S5n8iJ4SIREQnbunUrJk2ahMrKSvTs2RNTp07Fzp07fffZvXs3pk+fjsMOOwzdu3fHhAkT0NzcXLTNd77zHYwaNQrl5eUYOXKk63E6Ojowf/58HHnkkSgvL8fhhx+On/zkJ6oeGoXEBguFxXA3Ok77Ex3rNYqTfeVm+4Ir9t9lBS3cEvfCLnFTHWrJHs8K95IK12QWfHFyK2NSZWf4mLwFCxagpqYGFRUVGDNmDFauXOm7/a233opPfepT6NatGwYNGoSZM2di9+7dsZWP4SIJYQNAD6b+HUz9cEOdTZo0CatXr8aSJUvw1FNP4fnnn8ell17qu8/MmTPx5JNP4pFHHsFzzz2HDz74AOeee26n7S6++GJMnDjR8zhXXHEFfvvb32L+/PlYu3Yt/vSnP+HYY4+N/JjyStf53tgbn4iSxHqNdOYVQvp9tla1mEyS4g4Ug4YUuy0o4yVKGKhifyfnatFe96vEIdPJe/jhhzFr1izMmzcPr7/+OkaMGIFx48Zh8+bNrtsvWrQIs2fPxrx587BmzRrcfffdePjhh/HDH/4wtjJyteiEqb7Qc6gPxYGra5KbNWvWYPHixXj11VcxevRoAMCvf/1rnHnmmZg/fz4GDBjQaZ+WlhbcfffdWLRoEU455RQAwL333ovhw4fj5ZdfxnHHHQcAuO222wAAW7Zswf/93/+5nvvOO+/EP/7xD3zqU58CAAwdOjSWx0lEyUly5WgiJ9ZrFCfnXIuA+yrPFtF2osj8ic6A0f67233O87vdpoLXatFJhFVe51bJb47FoJWlLWFWZbafw+t4sjgno15uvvlmTJs2DVOmTAEALFy4EE8//TTuuecezJ49u9P2L730EsaOHYsLLrgAAFBTU4Pzzz8fr7zySmxlZM9FIsPkubeNrj2tdLV9+/ain9bWaK+dFStWoGfPnoUGGADU19ejtLTUs6JqaGjAnj17UF9fX7ittrYWgwcPxooVK4TP/eSTT+KII47AU089haFDh6KmpgaXXHIJtm7dGv4BUW7l+TqaV6q/jDWtV1AWqK7TANZreVczcEvi5/Rb0EU0NJQ5l9dtaS3wIhJIqQit7MewL+oiGjD6bdMyrDzUAjRRVpGW5VU+5/NC6RKt19ra2tDQ0FBU75SWlqK+vt6z3jn++OPR0NBQGDq9YcMGPPPMMzjzzDPVP5D/hz0XKRAbYUTxafygN0q7VSg9ZvvH++fSGDRoUNHt8+bNw3XXXRf6uE1NTejbt2/RbV27dkWvXr3Q1NTkuU9ZWRl69uxZdHu/fv0893GzYcMGvPvuu3jkkUfwwAMPYN++fZg5cya++tWvYtmyZdKPhYj0wd6L2WFSnQawXqP9AaPzy2vnbVYIafqX3GFWqbb/P+yXKip7QVq9LsMe0ytQ8wvirB6EVjgpeh6vbWVDRtHzOleqdv5f9ni0nw712ocffoh9+/ahX79+Rbf369cPa9eudT3HBRdcgA8//BAnnHACOjo6sHfvXlx22WUcFq0D0ysTIsqfTZs2obKysvB7ebn7h5nZs2fjpptu8j3WmjVrlJZNVnt7O1pbW/HAAw/gyCOPBADcfffdGDVqFNatW1cYUkZmS2KqD35hRmQm0ToNYL1GYtwCRPvvWW//yfZedA6tttjDPuv3oP3DSLPXpRXS+QVz9vuCwju/47j1rrQHnVFCT1FJ9rLMM5l6Tdby5cvx05/+FHfccQfGjBmDt99+G1dccQV+/OMf49prr1V2HjuGi+SLjTA9JdHLg/Mumq+ysrKowvJy5ZVX4qKLLvLd5ogjjkB1dXWnSYP37t2LrVu3orq62nW/6upqtLW1Ydu2bUW9PJqbmz33cdO/f3907dq10AADgOHDhwMAGhsb2QhLCYeGkirsvUhBROs0gPUaxSONwNHeQy+tocwUTHSIsQmhHXs2Jke0Xuvduze6dOmC5ubmotv96p1rr70W3/jGN3DJJZcAAI4++mjs2rULl156Ka6++mqUlqqfIZFzLhqMi7mQSRhC6KtPnz6ora31/SkrK0NdXR22bduGhoaGwr7Lli1De3s7xowZ43rsUaNG4aCDDsLSpUsLt61btw6NjY2oq6sTLuPYsWOxd+9erF+/vnDbW2+9BQAYMmSI7EMmohzS8XNT1ntGpYX1GqlQM3BLovMyOgNEr//HReYcbou/yOwjez63/ZPk1SNRZpg1cGBRF7+5H8PMhei1T5iQkMGifsrKyjBq1Kiieqe9vR1Lly71rHc++uijTgFily5dAAAdHfH8jRkuEhmKvUopacOHD8cZZ5yBadOmYeXKlXjxxRcxY8YMnHfeeYUVNd9//33U1tYWJg+uqqrC1KlTMWvWLDz77LNoaGjAlClTUFdXV1hREwDefvttrFq1Ck1NTfj444+xatUqrFq1Cm1t+z941tfX43Of+xwuvvhivPHGG2hoaMA3v/lNnHbaaUW9Poj88LpJRHas10gnzmG/bmFa3AGbbMAoUx6/BWbCSCps9Av7ZIM4E3oukp5mzZqFu+66C/fffz/WrFmDyy+/HLt27SqsHj158mTMmTOnsP348eNx55134qGHHsI777yDJUuW4Nprr8X48eMLIaNqHBadINN6brERRkRODz74IGbMmIFTTz0VpaWlmDBhAm677bbC/Xv27MG6devw0UcfFW675ZZbCtu2trZi3LhxuOOOO4qOe8kll+C5554r/P7Zz34WAPDOO++gpqYGpaWlePLJJ/Htb38bX/jCF3DIIYfgS1/6En75y1/G/IgpKTr2KqNkcWg0pYH1Grnxm48xKaYOg446t6Ifq3dnGu1qq7ehqp599uPEMRRZdGVsN1XrW7FjiPciJqLHtnpqUnQTJ07Eli1bMHfuXDQ1NWHkyJFYvHhxYZGXxsbGop6K11xzDUpKSnDNNdfg/fffR58+fTB+/Hj85Cc/ia2MDBeJyBPnXSSnXr16YdGiRZ7319TUdOpqX1FRgQULFmDBggWe+y1fvjzw3AMGDMAf/vAH4bIS2fELM1KNc6BlA+s1AvaHifYQ0Wt+xaysHK1S0tdCEzrsyAaF9u39FnpJCntY6mnGjBmYMWOG633OOqdr166YN28e5s2bl0DJ9gs1LHrBggWoqalBRUUFxowZUxgm4GXbtm2YPn06+vfvj/Lychx55JF45plnQhWY9ou7hwcbYWbg34lIDdPqtSVNtYmdi4iIzGJanRaFynkR0w4MrdAsa19c2B8X7SfTo7DHux2hg8W4AsmwPSIp26TDxYcffhizZs3CvHnz8Prrr2PEiBEYN25cp5XWLG1tbTjttNOwceNGPProo1i3bh3uuusuHH744ZELT0REFBXrNSJ9xP2lGYffU9blsU5LKhSM4zzOwM0rgJOd3zAOfucPKpvX/JFpPyY/Vqgn0qswzLHT4rU4jV3QcGa3ff324fDofJAOF2+++WZMmzYNU6ZMwVFHHYWFCxfi4IMPxj333OO6/T333IOtW7fiiSeewNixY1FTU4MvfvGLGDFiROTCExERRZXHei3t3hlJYy9vIsqLvNVpquuzoONtfK9P5HOKBoqm0bWHYtggT7Z3nnMOxTBEQzjnYxINQOMMNVuGlaNqfWvhx7rNwoAx+6TCxba2NjQ0NKC+vv7AAUpLUV9fjxUrVrju86c//Ql1dXWYPn06+vXrh8985jP46U9/in379nmep7W1Fdu3by/6oeRkpRFWtmZT4E8WZOXvRZSGJOq1rNZpKhsP7E0mJi/1GhGFw7aaWnEt5OI25NlepzrvjzusU9GDsHVwm+dQbr/7khBlCO+OISWFnzjPYxGZ69BaTMU6nzMw9CuHfb84hja3DCsv/LjdTtkmtaDLhx9+iH379hVWpLH069cPa9eudd1nw4YNWLZsGSZNmoRnnnkGb7/9Nr71rW9hz549npNL3njjjbj++utlikYEANINK/v2bcMHqS5OJqhc1EXFHDLOCbdlLWmqxWnV7tcryp8k6jXWaRRFHus1rhpNFE4e22peC6x4Lcgieryg+6xju90mQ+RzsX0b2RBQZAGasJ/N/cJEt3I6b7f2VxGeJhHIeq3oHEdIJ7N6dNiQkUi1UAu6yGhvb0ffvn3xm9/8BqNGjcLEiRNx9dVXY+HChZ77zJkzBy0tLYWfTZv4Tbwde3h0pqLHBnt9EJEI2XqNdRqFwXqNiJKQxbaaFajJfhnt3F7HKUTS7AFo9UAU6YnoFzwmIa7zBIVyXr0cnbc7e0SGDQLjCjaDehkynCQ3Uj0Xe/fujS5duqC5ubno9ubmZlRXV7vu079/fxx00EHo0qVL4bbhw4ejqakJbW1tKCtzmdy1vBzl5dn6xlq3uSeyIo5Gk3VMk3p8sJcHUThJ1GtZrNNMYtrUEazX4qeyRz6RTthWU0fHYNFUWVv92o81ZFlme6KskOq5WFZWhlGjRmHp0qWF29rb27F06VLU1dW57jN27Fi8/fbbaG9vL9z21ltvoX///q6VlY7yVLmY1AiLuzcGe3sQZV9e6zXSE+u1A0z5PMIvj0knea3TnG0163fZNpzI9l4LuuShvWjNzWj/8dtW5nYVZZM9T5jA0y0MdFtcJeg2v1WonUOivc4pEkx6beO3f493O0KtFu1kX9jF/n/KLulh0bNmzcJdd92F+++/H2vWrMHll1+OXbt2YcqUKQCAyZMnY86cOYXtL7/8cmzduhVXXHEF3nrrLTz99NP46U9/iunTp6t7FJQ7STWQOKSMKPtYr1HakqxrWKcRZVve6jSvUC9s2Oe3n1eomGSwKBvOqSqfX1goEjqqWDRGpIyy5xENGEVCRREiAZvMca1tw+wT59BmBon5JDUsGgAmTpyILVu2YO7cuWhqasLIkSOxePHiwsTBjY2NKC09kFkOGjQIf/7znzFz5kwcc8wxOPzww3HFFVfgBz/4gbpHQbmSRsOobM0mDicjyijWa+mKcx5hE3q/sU6jqAuVEdmxTovOrSck36OdxblAi2685lH0CvVkFmSxq1rfqmxV5ShDrmVWrVZB5eOm9EiHiwAwY8YMzJgxw/W+5cuXd7qtrq4OL7/8cphTUYJ0b4Sl3dtC98ZYnPMucn4qyjrWa5SGNOs13es0IgqPdVo0zpWm7cGiyOrLcdExtLMCRnsPQK/Vok2mKkiLI0AL02vRz44hJRi4bDd2DKkI3M6NV69FhofZF/tq0TpY0lSbdhEoI9IOOImIKBt0qE90KIMf3b/0JCJKUtorRetQDtXSCkFVD0m2jmcP9oLOoXoxGb95FYOCRfv9HFJtrlyEi1kS5/AxnenUANKpLEREachaj4Sk6VSP6FQWIiJdeA2DTnqORTvZuld1Xd06uK0QLKoIGJOYhzHo/EFEF06R5TxmlLDRPgS7ZVi58DyMXufs8W5HqF6Gfvs4A0MGiNnEcJG0x4ZPtjCUIKIksNebuDzWs3n9spaIoktr/kXZQC+JHoaiqzJnqbej7sLO96hCy7Byz5CRgWL2MVwkrena4NG1XGxMExHpTdf6Q9dyERGlwat3ohUsxhUw6vAlvN/K0E5eoaHb7SYGjKI9CoN6ODqP4/zd3vNQthejta/MkGj7fm6iBoHOgNH63Ro6zfkXs4nhIgHQM5TSvaGje/mIiEgvrDfk6fj5hIj0JRP+1Qzc4rmdKb0TkyyDqtv9zpvk41d1rh1DSmKbQ1FGkoGdivKxJ2P2MFxMgA7fQBEREekmT0NTTQgWTSgjdcaFCynP7AGh178qjm39bvVoTGveRR3CRxl+PRitMNEZKoqEjKqCSJFj+AVp9vtkAzfR7VUGl/Yg1Ou4O4aUKA8qrSDR3oPRC3s1movhImnJlAaOKeVUIU8hABFRXuWpXlOFXyIT6SFq4CcbRqbVu9FkMoGgyLZJhq1uw4hl5jYMGxImPX+iqvMxJMwfhotEEbEhRkQmSau3RZJ0G0rLeoKIKB5RV2+29rUHhUHHtN/HgFGc/YsY03pgqh72HFcZqta3praYSxD7fIt+C7+QuRguGiQvPcfYCItGt0Y1ERGZhfUwEZnKHvyJhI5WOBgmoIwabCYtyV7WQYu/uN1f3limZU/woMVavPYJewyvbYP2tw819tvWui/OBV1EjpHEOShZDBdJqzDK1AaNqeUmIqJ4sX6ILq7PKXn50pYob8IGfs5ejGHDwzh7M0YN36LsLxP+efVMFAkVrd9FzpVkGOnWc3DHkBJtewq6ibusVu9E0dDPvr21DwNDczFcJCLjmPQtMRGRiRiKEpGpooR7sqtNqzy3iKjDiaPsH2YRFWf4Z1/MJYqkezmKLuoSdnvn/UH7ixwjLUFDnu1Bon2ItLUPh0ubi+EiacP0hozp5SciIrVYLxARJcu5unPYfb32F9kmzLmToOs8h2mXK+j8sitCu63G7Lcys+hxRcqXdjCX9vkpXQwXiYiIKDN0murDdAxHicg0snMuWmRCwqjDpvPK3ttQx7kVw3KbX1Fme5F9nNvat5ddsTqJXo0c2pxPDBeJFNKlIcbGNRHFJUsNgjjpUh8QEeWNczXnJHsRWudm6LifTK9EmWHXYYZok74YRmYDw0XSAhthRET5wsU0zMD6mYjywC0M9OqZyOAwPK85F+2/O4ND3YNE2Z6A9u3D9GKM0vMwzMrXssIGhQwYzcdwMUDWKw/2cCMiIiIiojwT6d0o2i502y7pHpSikhyNIBoQWmVKKlBMa0SGV8gXNjxsGVYeS0AnGkaqPjfDRvMwXCRSLMu9PFT1NOKwSiLKsizXA2nhl6FEJMM+PNkvFAwzL6OOIWEQ3T57u5XHmpPRGSomvTK0H9mehm5Boereg2muDG0XZrVnvwCRi8OYh+EipY6NMCIiIn2xniairAoTFJo4si2tYcVxhYJpBY6yQZ4VIoYJE73O5bWAjD2os25TETyKHsN+fhXBYFDPRfZs1A/DRUNwbioiIiIiIqJkyKwgHXQMZyDpPIZsyBm0vejx4g4dvY4vs3CL1+1R52JUFVCGCfCsVZvDhn9R9lMROMqGpV5ho/125zbsuWgehotEMWAvDyKifOL1n8IwsScUkc7cwjX7vIf2+/2CONmA0W1uRWfA6CxD2GAxqGxRh2/rNk+kbKAYtG1aC8W4hXt+oZ/o7S3DyqUCuSgho9u+oudWFRoyfNRP17QLkHW6zA+hKzbCiIhIFc7LF5+yNZvQNnxQ2sVQrsfGDuyo0WO+KiJSq2bglliD+6BQ0n5urx6MIsdP48uHNELFqL0c4yiDW1teJpQLWhnaj337HUNKPIc6W787tw9r/77xBnd+i89UrW9lcGgo9lwkyig2somIiIgob7yCMZUhXdCxvO4XDe38tvM7tj3UjPJ4Te9NHSaQjDvEjBL4+S0k41wgRrcFXkRZYSODRXMxXCQiIiJSgL3xiYj04RaQid4mcp/IPrLnkzmH6nLLniMNznkSRUYJeoWGYedcjNIDMU6iC5wkVZ4gIiEiF20xC4dF5xh7tsUrq0PIiIiIqFh5Y1lqq7ESUTFVgZhI70SRocte2/n1MIwaaprGGfK5XU+t66wVCvpdc8OEhmGu4z3e7RDqKWgP9Oz7iKwm7ddr0Wl/GFdedHyvodleZe/xbgeq1rdix5AK3zK57Wsf0mwPBr3+D3QOGUWHRTN41A97LlJq2MODiIiIiIiyxLlYjNsQ56hBYJqLrcicV8X6A84w0R4Apv2lThpDkEV7Hrptl1R5ZYI/v7kXZY9F6WK4SERERESB0v5SkCMuiChJYQI80ZWc4xZ3+Oi2InaU88kGhm7byK4mHQevVZ/tt9vvt26XWS3aua31u7VatPM+r+PJrk4twupx6NbzUGYuRQaKZmK4SERERERERLkRtudg1B6HSQ5djvNczmPHdS6vno9ut6vqJRmFs7dgUC9DazEW56IsYY4hK465F/16GzIwzD6Gi0REREQRpd2rj4iIwvMKx5y3B/XO85pHMY7wLe4FXWSP7Xa7il6EVm9EK/jzmxsx7CItbscIexxnaOc2v6JMmOjXq9Gpan1rp3kVnccWCStFuG3XMqxceYjI1aPNwXCRKEZsbBIRERERJUtmiK7fkN4wQ31lwreg8/uVSWSfMMOVVfQADCNoSLPbnIv2sqY9/6Il6ryGQcOW/QQNixYJKkXO63ccmTDQGspN2cBwkYiIiIiIiChFaS3Q4qRLSCfDLXhMg1uY57Wd29yJKs4Z934iGBjmE8NFSgV79BERERERUVrcehKKDieWCQJFj6l6u7DS6rkYhX3IdJqcw46DhiH7DWEOc0znsOigssrcLrON6NBozsOYLQwXiYiIKFE9NqqfRJySwS8HicgEMkGd9QMcCA3tt8VdjjDnEt1H1eOIKkqvTL/g0GuItG6SWHBFNKhTtZCLquMEldt5PwNJfTFcJCIiIiIiIq2pHjZsn4/QeWzRhVu8jmsy1UOLozwfVllEg8OgeRvjJjos2nm/23Z+x7L/v8e7HdgxpKQwf2GUc1pEhjU797eHfn77O+8LOpfs9pQehotERERkvKoN/CabiChvvBYsSSvgk1lsxb6PbHnt5zE9zAxiBYZpz6cowm115rzyCgHZ8zC7GC4SERERERGR1uIY3hu2B6Lq4dMywgSYaYr7OfJbPVpFIBk1IHQu3iK7kIq1r1UOtx6NMvM8xsUKE1WHhxwWbQ6Gi0RERERERJQ5eejZ5yZPPRudQ6aTmHtRdS/KuMLAuI7rFpAy9COGi0REJGzr1q2YNGkSKisr0bNnT0ydOhU7d+703Wf37t2YPn06DjvsMHTv3h0TJkxAc3Nz4f6///3vOP/88zFo0CB069YNw4cPx69+9SvP47344ovo2rUrRo4cqephERFRTrFeM5tXrzjZVZ/DLKgiyyvkU92rL86ejTovmgK4h35Rg0Bnz0CZ48r0UvTa1uqJaN2fRK/EsEGhtV/V+tZIYaM1f6T9uAwvgQULFqCmpgYVFRUYM2YMVq5c6bv9I488gtraWlRUVODoo4/GM888E2v5GC4SEZGwSZMmYfXq1ViyZAmeeuopPP/887j00kt995k5cyaefPJJPPLII3juuefwwQcf4Nxzzy3c39DQgL59++J//ud/sHr1alx99dWYM2cObr/99k7H2rZtGyZPnoxTTz1V+WMjIqL8Yb1mNmfPPNlAzR7sxTl0N8oCMV7beu2jw+rQYZQ3lkmHl85h0PZ/3baxS2IeR9EgUCSEdA59dspS+OYXJuZ1QZeHH34Ys2bNwrx58/D6669jxIgRGDduHDZv3uy6/UsvvYTzzz8fU6dOxRtvvIFzzjkH55xzDv7xj3/EVsausR2ZiIhStX379qLfy8vLUV4evkJes2YNFi9ejFdffRWjR48GAPz617/GmWeeifnz52PAgAGd9mlpacHdd9+NRYsW4ZRTTgEA3HvvvRg+fDhefvllHHfccbj44ouL9jniiCOwYsUKPPbYY5gxY0bRfZdddhkuuOACdOnSBU888UTox0JERGZRXacBrNeyxi3A8wva0gjhagZuSey8poaMXsobyzzDQNmQ0L596+A24VDTCvWi9OC090IU4eyx6NWTUobsvI8UD5l67eabb8a0adMwZcoUAMDChQvx9NNP45577sHs2bM7bf+rX/0KZ5xxBq666ioAwI9//GMsWbIEt99+OxYuXKj4kezHnotERCkq21RW+KZW1U/Zpv0feAYNGoSqqqrCz4033hiprCtWrEDPnj0LDTAAqK+vR2lpKV555RXXfRoaGrBnzx7U19cXbqutrcXgwYOxYsUKz3O1tLSgV69eRbfde++92LBhA+bNmxfpcRARUTxMqtMA1mukni7BYVaCxSjzKYbpCRmHPK8YLUL3Hpc61GttbW1oaGgoqndKS0tRX1/vWe+sWLGiaHsAGDdunG89FRV7LhIRZdSmTZtQWVlZ+D1qD4+mpib07du36LauXbuiV69eaGpq8tynrKwMPXv2LLq9X79+nvu89NJLePjhh/H0008XbvvXv/6F2bNn44UXXkDXrqy6iIjyRnWdBrBeywO/noJu9218r4+SuQrjDveCekBa94edU1IXzh6JMj0UrW3TDhh17CUo23uS4iFar3344YfYt28f+vXrV3R7v379sHbtWtd9mpqaXLf3qqdUYM9FIqKMqqysLPrxqrBmz56NkpIS3x+viku1f/zjHzj77LMxb948nH766QCAffv24YILLsD111+PI488MpFyEBGRXkTrNID1Wl75hYhenPfFvbKyipAvaMGWOBd0AeIL64LmQPS7L+xcjXH3bnQL8GRDPbcFXbIeDPrNq5ilxV1k6jUT8GsyIqKcu/LKK3HRRRf5bnPEEUegurq606TBe/fuxdatW1FdXe26X3V1Ndra2rBt27aiXh7Nzc2d9vnnP/+JU089FZdeeimuueaawu07duzAa6+9hjfeeKMwV1V7ezs6OjrQtWtX/OUvfynMe0VERMR6Lb+s8C7M3IYyYZzf8WVXrzatd2Hci6DIsM+XGGUxmLSpCAxFFjqJO5hsGVaeSPCX1Hl00bt3b3Tp0gXNzc1Ft7vVO5bq6mqp7VVguEhElHN9+vRBnz7BH2jr6uqwbds2NDQ0YNSoUQCAZcuWob29HWPGjHHdZ9SoUTjooIOwdOlSTJgwAQCwbt06NDY2oq6urrDd6tWrccopp+DCCy/ET37yk6JjVFZW4s033yy67Y477sCyZcvw6KOPYujQoVKPl4iIso31GgFioZ09jHS7L+6ejHGwyh1H+XUKFi1WwGgvm0hw6DZs2m1xlyhzJoqGeX6LtLgt6BKW6GIwQUGl2+NSuYpznoJDEWVlZRg1ahSWLl2Kc845B8D+L6SWLl3aaZEwS11dHZYuXYrvfve7hduWLFlSVE+pxnCRiIiEDB8+HGeccQamTZuGhQsXYs+ePZgxYwbOO++8woqa77//Pk499VQ88MADOPbYY1FVVYWpU6di1qxZ6NWrFyorK/Htb38bdXV1OO644wDsHzJ2yimnYNy4cZg1a1ZhLpAuXbqgT58+KC0txWc+85misvTt2xcVFRWdbiciIhLFei2b7IFaUG/AKKs3e4WXzmMmEVDayxJ0PpHQ1f4YVPSsdHueVfbYjBJ6OgNF5+/2EM0rnLP2cQZu1vbW7VGGSQcFkPb7nOeVEXU16jh6FVrBZZ5Dx1mzZuHCCy/E6NGjceyxx+LWW2/Frl27CqtHT548GYcffnhhUZgrrrgCX/ziF/HLX/4SZ511Fh566CG89tpr+M1vfhNbGTnnIhERCXvwwQdRW1uLU089FWeeeSZOOOGEokpqz549WLduHT766KPCbbfccgu+/OUvY8KECfjCF76A6upqPPbYY4X7H330UWzZsgX/8z//g/79+xd+Pv/5zyf62MhsLUeYPU8NEaWD9Vq2pNHTUNU5VRzHfoyox9Ppccmyh42iwWPYgNLaT5denX5BZlJkejEGbauyR6TJJk6ciPnz52Pu3LkYOXIkVq1ahcWLFxcWbWlsbMS///3vwvbHH388Fi1ahN/85jcYMWIEHn30UTzxxBOxfoHFnotERCSsV69eWLRokef9NTU16Ogo/razoqICCxYswIIFC1z3ue6663DddddJlSPMPkRERE6s10gXKnrwqRwKbcockM4h0W73qziOm/09/Mpch1OrEmWeRLd9o/ZMVC2oN2LV+tZOAWNeezDOmDHDcxj08uXLO932ta99DV/72tdiLtUB7LlIRERERERExtn4Xh/XeRPtt4vsa/3f/rvIud22DfpdpoxhiDwGkedGdFtZ9uHQqo7tDPasVaBFAj/7NmFWj+7xbkfRPn7BnbXys/M2QLynodvxw4SFXvtEDR5VrObsFibmNVA0CXsuEhERUaJ21JSgx0Z9vjUncW3DB6VdBCIiV86FTOy9+LxCLK9efiK9/6LM1+i2n6p5Ca19nEOkZYJTt+OFEdeQaPvz4tbbUHZxlyjcegZ6/R52DkS/32X2Fd0nKGD0O66KORfd9s/bCtEmYs9FSgUbJ0REREREpJI9UDRxpWcTyyxK5XyQMoLCxyhzJaqe1zDNeRLTwjkVs4M9F4lixBCViIiIiCgdosN/vcIulXMYiohr3sUox1W9r6rHKMqt56J9fsW4ezY6+c2hmMQKz3HNt2jNjSjbu1B0e/Za1B97LhIRERFFxC+TiIj0EhRAOedolD2eTMDlN4ehc75Ht/v8jhs0p6PKOROTDuJE5k70uj/M/IlB3OZLtN8WFNzJBHthQsCq9a2+5RE5ZpRtGADmG8NFIiIiIiIiyoSo8xN6HSdqD8Y4V1+2HzvOnpYyQ4hVhHutg9sKP37Hsu63tgl73qDHJ9KrMMp8haK8zqFqiDFDQgqD4SIRERERERFlhn24cxxhm19Q6Hc+Z7mils++v9ciMc7jhzln2DL6hXWyx/Q6lnW7FUK6betXDuc+snMwyiy4omoxlrjnZuQ8iBQGw0UiIiIiCpT20O+WI9jYISJvYUKzsCFh2POFPZfI/s6QUdUCKnEGi37Hjvr82ns9htlXRJoLsHidO2qZRPZ326ZlWHnhRwaDzOxguJhjaX9IT7uRQkRERKRClNVGiUg90VBKJECMcvwonL0bZc6peq5FlWoGbkmlbFm8TgcFgW69KoP2UbHgS9yBIQNJPTFcJIoJw1MionzhdZ+IKH32XnGiIVuYsEt1gCfb09BrGLTI8WXEEQT6DeW2n1f1uf2GPtvnaQw7Z2PQqs3OBWCiiHqcNHtdUjYxXCQiIiIiIqJMsAIp2WDKb0XnsMeR2Ub0/EErRIc5ZhAVIZ89sEuyZ6VMaCi7CI3faswqg8Q46Fy2IFxwRk8MF4kyKu1h70RElB1Z7ZW5o4Y9N4iyQkVg5RfOOalYPVo0KJRdudp+v9s50hwyHfdiO0DnENEZGnr9P46h084QL2yPQb/juAWFXreJhIoM7yiMrmkXIOtaB7eF7ladB23DB6Fszaa0i6FcVhthREQ6azmiHFUb+IGYzJPE/G1E5M7t/Re04EiYcM5rKLDIvI5u//crt/P/zkVe0pj3MMk5D+3ncmuPu5UlTPlUDC0WPYbfkOug4djOc/V4t0P5sOiq9a2cCzHn2HPREPxmnYiISH/8comISH8qVmdWvb2q1Z1lxdmDUBcywWHQtjJhYFRRjqEyPBQ5ll+wyNAxHxguEhEREREREUlQHcrJzLkYtI0bZ1mzHii6Ee2xqKqXZdDQZR2pCCWdw6q9hlkzdMwWhouUOvbyICIi0hfraSIylQm98uxzIrrNleg1jFrmcSXxHMieI8lFXQB1gaFsSGiFdaqHIYddMEankJNzO2YLw0UixbLcCFM1PD/JOVeIiJKW5XogLVykjIhEhQnfZIVdiVpkP79yR3lMXou6uJVJNpTVPcC1y3s7xD7vopse73Z06lEoE0gyMMwvhosBTLpQhsEP60RElAbOJWwGBqVEpDO3ECzOFZ7djuP8v1cwZy+XX3i38b0+RceJo8xBZfXax36b2/5x9xRNsm0edoGXOOdJdN4f9lyqe1HaxT3UuWVYOYdTa4rhImkhK40XXR4HQ2Miikvev/EnIiIzefVoTHrVZL+AzAoW06Cyp2LSjyFqECvz2SbOYE6GbDmSDCadAaBIGOjcngGieRguEhERUWbo8uWKLl82ERHlkciCKGkJOn9aZU/7eYki7CI3YYSds1CnuQ6B+B+HfXi031Bp6z4OpzYfw0XShukNMdPLT0REZMd6jYh057coiHNBFOf/VZzbYvWYkzl+3EGYaBnChJlBt8f12KIEr+WNZUX/ut0XdFsQZ/AWdtGVuOlYJlFV61sZRGqK4SIRERFRDBjOERHpT+UiKar2EwnRgo4hsvK01/lEtnU7Zs3ALVr3gPQKDFsHtxXdFyZYFOUX7MmGfjLbO7f1G96sW3jHYdJmYLhIWmFDjERkfaElIqK06VQfxzXUnYsKEWVXUp8VReYe1O1za1DQmGVBcytGDRV3DCkpCvGizouoenuT6BZwUjCGi6TN/FQm06kRRkRE+mD9QEREYXiFf14L05A/K1h09lIEkEivRZEgUIfhyjuGlETuJRg1GGSwaCaGiwbJyzfspjXEdCsvw2IiIopCt3qNiChOqudfdDteGkFgUDhp/11V+UzsDWmFifbwUWb16Kh0CBRlmVhmih/DRSISkpdwmyjr8tDTQbcvWUwK60wqqy6SbIQSkZikQy6RgC5M/Rtl+LLb+fx6PUYJGU0KFZ09E+1houz13G0BlzipOn7cw6ndej569YYU6SXJRVzMwHCRtGRK48aUchIR6ShPX1qwvqC4nFa9Nu0iEOWWzGrLUQK4JOZIdC7M4hU0et2eRMCospdlEsOf3cJAt2DP2k4m9MtC70Eu0pItDBcTwG+0w9G9IaZ7+YiIiGToWK/p1guViMiNPfxLaoRAmDDPbaXpMAFo2qMgVJzf3kYvbywLNe+iLmFgmFWmvfbp8W5HLL0E2fMw+xguEgB+eCciIoqbjuGdReeyERHpytmTzi30iqvXoaohzGGHa6vmDPiCqA447WGjys5BIgGktU3YADLMMGe/fXTsUWgvk47lI4aLpDldGzu6lsuEkJg9eYkoCbpeD3WtP4iISFxQQGef2zCtXn5eZfQqk/02kUBUl8clI66h0JYdQ0qKAkJ7gBc1QHQeL4q451ykfGK4SNrTrSGmW3mIiMgsutUjupUnCXma75OIvJm0EEkUbgu5OMNBtzDSqyem1zHiFvbv5ewV6ezsELbzQ5igMEqwl8Q8i6qCR5FFXWSGStu35RBrPTFcNExePwzr0vDRpRxERGliD+TodKlPdCkHEZEqooHXxvf6hO5ZGLSoiXVs+/ZuvRvjDOeiPK6gsqdNdqi5fUVomX3cuPVG9LpfhEyPxqBz68wKFkWGN7cMK+fQZwPlIlzkKnpidB1CZkm7AZT2+dOU11CbiChOadcraZ8/iO6fS4hIP27hWNznkrkvrvKdVr02cptXpmwy5feal9J5e5gAMOhcTjp/ORo1LAzaP2gVa5XnCuIWHrqFj37bk35yES5SdqTVENK9AQawEUZEZorzywsTrous14iISIRuvQdlBS18Q8lJo9dj2KHMIsOrSQ8MF8k4STeI2AAjIqI4sV7LNzayidSRHS4bZc5Fv3MF3S573qDrxJKmWixpqvXdJuicMmWzHnuYbeNaPdvv2LIrUfuJ2uvPub/1e9zzKao8fo93OwKP5xYmVq1vLfpx297rftJfqHBxwYIFqKmpQUVFBcaMGYOVK1cK7ffQQw+hpKQE55xzTpjTEhW0DR+USOOIDTCifGC9RmlLqk4zpV4zodcpka5Yp4lREez7HcMvQLP2Ew3Z4grjnOWIch7ZYeJRQkZr+LPM39AaEi06NNorjIyj159bUCd6m8h9gPpyO48XZcEVmZ6I7LWoL+lw8eGHH8asWbMwb948vP766xgxYgTGjRuHzZs3++63ceNGfO9738OJJ54YurBpydM3yqZ9mI+rkWRSA4yIosljvUZ6irPuYZ12gMqh+DrP30X5xDpNTs3ALZECLufvqucrVEm0bEHzRfrd57aN6nkmwxwnzLXabw7IKNd+Zyi3Y0hJ4Ud237S4lcNvoRbnnIl+cy4G3Ub6kg4Xb775ZkybNg1TpkzBUUcdhYULF+Lggw/GPffc47nPvn37MGnSJFx//fU44ogjAs/R2tqK7du3F/2YTuWHTy6uUUxlY8zUUNG0UJhIJ3HXa1ms00xi4vWR9RoRhcW22n4ygaHKsC/MUGkvzqDPub/q3oyiz0NQiBq0krbocbx4Pe4wvRmjiPvLJV2CxDgE9WzkAi5mkgoX29ra0NDQgPr6+gMHKC1FfX09VqxY4bnfj370I/Tt2xdTp04VOs+NN96Iqqqqws+gQfxQTMGiNKDY+PKWtTCbq8eTXRL1Gus0Cov1GhHJYFstGlVhndcQYOf/RYZNy55HR3EN6Y772BalnYQyEBiKPgav3okMDbOrq8zGH374Ifbt24d+/foV3d6vXz+sXeveYP/b3/6Gu+++G6tWrRI+z5w5czBr1qzC79u3b89MpWWCliPKUbXB3AlU3RpTZWs2BW5D8VNROZvyQYrMkES9xjot2I6aEvTYGO9E5iZz1llZr9NM7G1KpAO21cLZ+F4fZT3e/IYUuwWMUVjlVnEc2e389nG7T3UIGPUc5Y1lkedeDKPHux1SAaNze9n94+BXhqr1rYXw0GvBFsouqXBR1o4dO/CNb3wDd911F3r37i28X3l5OcrL+cGS1Mlaw8uOjTCi5ISp17Jap7UOblP6gTtOpn9p5pTlOo2IkpP3tlrUwMsv3HObyzHK/I6quJVZNqBUFR6K7mN91lDVg1BVsOh1n8oA0BksRmEvVxwhpT1YdLtPZnsyk1S42Lt3b3Tp0gXNzc1Ftzc3N6O6urrT9uvXr8fGjRsxfvz4wm3t7e37T9y1K9atW4dhw4aFKTcREVFkea3XdGjgEBGRWnmt01RQ0QtQ5BheoaO1v+yxZKleVMVeZq/5IWVXxnZSPbehiuP5hY6yoZ1o0LdjSEmkgNF+DtkyhgkiW4aVF4WK9iDRrxejfT+Gj2aRmnOxrKwMo0aNwtKlSwu3tbe3Y+nSpairq+u0fW1tLd58802sWrWq8POVr3wFJ598MlatWmV09/m0xT0PHnvDEVEemFqvce5Qyqq4P39kbR5hIjtT6zRdhFlwxb5vGlP3WAvIJPGFIacmil/aQ56jUBkEMlQ0k/Sw6FmzZuHCCy/E6NGjceyxx+LWW2/Frl27MGXKFADA5MmTcfjhh+PGG29ERUUFPvOZzxTt37NnTwDodDsRyWMjjCg61mv5kLWh0UREblinRRM2JBTdJ875CMOU3asXZdC2Mo8jreA1KtVTv4j0OvSbY1HlsOgk9hWZc9FvaLTVg5FBozmkw8WJEydiy5YtmDt3LpqamjBy5EgsXry4MHFwY2MjSkulOkQSERGlhvWaHrioC5lG9VA9IhVYp4kPw7Vv5zU02b5dVLIhon2hGZlFV6KU1+08MitXh90/aSLzLlr3qwoZwwxrdg5ljhowpsVtqLNz8ReGiOYLtaDLjBkzMGPGDNf7li9f7rvvfffdF+aUmWDS5PcAe3nojkPXidRhvUaUPtZrRGrkqU5zhlr2ICvM/MJRFzsJOrZbOdOeA1kmjHWGl349H3Vc0MYi8+VQ3G14lYu/xBU+hp1zEYDn/In2353zM7ptQ/rL9tdWRKQN9vDIhq1bt2LSpEmorKxEz549MXXqVOzcudN3n927d2P69Ok47LDD0L17d0yYMKFosvn//Oc/OOOMMzBgwACUl5dj0KBBmDFjBrZv317Y5rHHHsNpp52GPn36oLKyEnV1dfjzn/8c2+OkbGJ4lW+c6oPcsF4zm3O+waChu2nSuWwWZzjrFhaGLXuY/XTomKNDGdw4g0RTezWSWmHqtKamJnzjG99AdXU1DjnkEHzuc5/DH/7wB+lzM1w0GD8kE1HSJk2ahNWrV2PJkiV46qmn8Pzzz+PSSy/13WfmzJl48skn8cgjj+C5557DBx98gHPPPbdwf2lpKc4++2z86U9/wltvvYX77rsPf/3rX3HZZZcVtnn++edx2mmn4ZlnnkFDQwNOPvlkjB8/Hm+88UZsj5WC8UsDUiWvwa+OwwXzhvVa9ogucGLfzmthFJlATGZbqxeffehzUBmd5wnaN6h8Xr0OvUJFv3L5PY9RglSRzxki4V/YgNBrvzCff8KEf3EFhrLHVVWOqvWtRT/224O2ITFh6rTJkydj3bp1+NOf/oQ333wT5557Lr7+9a9L10ehhkVTfnBotJ6SaIQxvCanNWvWYPHixXj11VcxevRoAMCvf/1rnHnmmZg/fz4GDBjQaZ+WlhbcfffdWLRoEU455RQAwL333ovhw4fj5ZdfxnHHHYdDDz0Ul19+eWGfIUOG4Fvf+hZ+8YtfFG679dZbi47705/+FH/84x/x5JNP4rOf/WwMj5ayivUaEVlYr2WXyBBct+HAYYdVi8x16BxWLLK9s3xu94uKMuQ7aC7FoEDX+Rwn3XMzji9DZYdLew0tjrLQSlJUlc9v+DOHRUcXpk4DgJdeegl33nknjj32WADANddcg1tuuQUNDQ1S9RF7LgriN8tEZJrt27cX/bS2RgtUVqxYgZ49exYqKwCor69HaWkpXnnlFdd9GhoasGfPHtTX1xduq62txeDBg7FixQrXfT744AM89thj+OIXv+hZlvb2duzYsQO9evUK+WhIR/xSg4i8qK7TANZrWeQMB0W2E9le5rxhzyF6fq/jyvRilOF2XJnH5rW/qvKaPorCuWiLDFU9CpMMN1uGlRd+nLc7twk6jul0aKsBwPHHH4+HH34YW7duRXt7Ox566CHs3r0bJ510ktT52XORArGXh17yOnQsq3o0dqBLmdohD/va9h9v0KBBRbfPmzcP1113XejjNjU1oW/fvkW3de3aFb169UJTU5PnPmVlZejZs2fR7f369eu0z/nnn48//vGP+PjjjzF+/Hj89re/9SzL/PnzsXPnTnz9618P92CISBus17LDpDoNYL2WNc4egUE96USDSJX8VqBW3Zsv6srRTvYeh17Pn8wQ7Sx13lG9srQXZwiYldWk7XQLDXtsMqdeC1OnAcDvf/97TJw4EYcddhi6du2Kgw8+GI8//jg+8YlPSJ2fPRcTpvqbFfbyoDzJ0oeQJGzatAktLS2Fnzlz5rhuN3v2bJSUlPj+rF27Nvby3nLLLXj99dfxxz/+EevXr8esWbNct1u0aBGuv/56/P73v+9UgRKJYJiVP6o/L5neU8ZEonUawHqNDoj62THNz57OIDLqMGYV+8oMhfbaV9fFbJx0W8hFJDgU7YEYpaei7kO4TaJLW+3aa6/Ftm3b8Ne//hWvvfYaZs2aha9//et48803pY7DnoskhL0X84WhdTZUVlaisrIycLsrr7wSF110ke82RxxxBKqrq7F58+ai2/fu3YutW7eiurradb/q6mq0tbVh27ZtRb08mpubO+1TXV2N6upq1NbWolevXjjxxBNx7bXXon///oVtHnroIVxyySV45JFHioakkbw05jwicmLQS6JE6zSA9VpeefWGE6nv3PZV3bvOuciJ11BjkfkN/coVtW5PIlBlhwExQUGec75GE+ZvpAN0aKutX78et99+O/7xj3/g05/+NABgxIgReOGFF7BgwQIsXLhQ7MGA4SKRUUxthLGHh9769OmDPn2CP4jW1dVh27ZtaGhowKhRowAAy5YtQ3t7O8aMGeO6z6hRo3DQQQdh6dKlmDBhAgBg3bp1aGxsRF1dnee52tvbAaBo7pHf/e53uPjii/HQQw/hrLPOEn58ZJYdNSXosTH+YT380owou1iv5ZdOw23tZfFacRmIHrQl+UWh7OrZfqtg6/J38iKzYIvodm7hn/22oLDQ+bvzvrB0CiWr1rdqNzQ6bXHWaR999BEAoLS0eFBzly5dCvWWKIaLJIwNMaJ8Gz58OM444wxMmzYNCxcuxJ49ezBjxgycd955hdXH3n//fZx66ql44IEHcOyxx6KqqgpTp07FrFmz0KtXL1RWVuLb3/426urqcNxxxwEAnnnmGTQ3N+Pzn/88unfvjtWrV+Oqq67C2LFjUVNTA2D/kLELL7wQv/rVrzBmzJjCvCHdunVDVVVVKs8H7Se7WiKRJakvzLLcG/+06viH9mYZ67VscgZXoqsYy/ZeFAnIZMM4v9tEH5PfsYN6PDpXtBY9tt9zFFSmOJQ3lmnTuUEkuJMJBtOeV1GnIJKKhanTamtr8YlPfALf/OY3MX/+fBx22GF44oknsGTJEjz11FNS5+ecixmQ5Q/NdICpvRYpWx588EHU1tbi1FNPxZlnnokTTjgBv/nNbwr379mzB+vWrSt8Cwbsn3Pqy1/+MiZMmIAvfOELqK6uxmOPPVa4v1u3brjrrrtwwgknYPjw4Zg5cya+8pWvFFVov/nNb7B3715Mnz4d/fv3L/xcccUVyTxwyiReV4mI9Vo22Rce8RNmURdrrsGg7b1WSHb+P+gYcc5V6BZeBoWYso/BecykeiyWN5ZF/vLTK6AMe2yvUG7HkJLAwC5oVWmZ/aNgsKg32TrtoIMOwjPPPIM+ffpg/PjxOOaYY/DAAw/g/vvvx5lnnil1bvZcJCnsvZh9DKvJT69evbBo0SLP+2tqatDRUfyNakVFBRYsWIAFCxa47nPyySfjpZde8j3v8uXLpctK5kpqaDSlx+RgV5feMKQG6zUC5AIv2W2TGrZsDyHjOq/o4jJeoaWzB2Wcz40u12qVoV9QwJgFHBIdTZg67ZOf/CT+8Ic/RD53bnou6jRsRJcLHZnD5EYYEZHOeH2ltOg+3xiRyXR6fzl7+MVRNrfju53HGebJ9r4UITKUW9V8k16y0t52m5+RSFe5CRdV0KmSckqytxkbYsky/fnOSuVORERqJFmvsTc+Uf6I9q5zbu92e5rtv6By2X9EjxXH4jFeq16LlEeFsEOfRZ87qy1jb9O0Dm4rut3Z3nG7TURavRGz2guSksVwkYgK2AgjojBM/xLB9C9xiIhoPx06g8iMmEtyLkIVx5cJbP3mnPS73RmaBoWAUT+DhA0YVZfDeSxVx1N5LN1wCLVeGC5SKGyIJYPP8wEqPhDpND0CEflL+ssOXm+TweeZiOKiQ7AYRtCiKiqOmxaZMqTdU1QXfkEgexiSzhguUmhsIBARmY0f4ilJSX9uYG98onyxVnFO25KmWul9rLKLrnIdhg7PjV8ZnH8/+3MRtexRV40Oc5yw51RVVvvxVB+TyA3DxZTE0TWZH6KzhY0wIqJk8UszCpLVoWVEeZHml2puIZm1srNfrz37NjJkVnQWIbq914IuMsfyut9t+LSI1sFtngFbUFnSCOYYCJKJGC5SJGyIxSMrzysbYUTxycMwf37pkR1ZqdeIyFwqhxxHOb/fbXGWMczCK2G299vO7/G5zbPotQq26HyOdmHbJc6FXES3j3K+oH2dC8pY3IZNZ3nORdILw8WMSaMhxgYDERFl5YMr6zT10nhOGUwT5VfYXnE6UD0s2m2YcdLC9HiU3TbOx6ZrD0Jdy0X5xXCRSDNshBERHcAvzSiLON8pUby8hiAnGUq5lcnvNr/yqgwbnfM7qjquyP1uj8drnkW3+/zKHdff0j6k2i3Qc94WNfQTGRJt3W//YrfHux3o8W5HqOMRqcBwURI/DLpjQ0wNPo9ERHrg9ViNLD2PWemdS0QHRGnbyQaVIsOiZc4nUy6/QE5F0Oj2OKzjWkOW/YJSv4DR63xJL+DjFdC51Q1JBXrOc3A1aUoTw8UUxfUhNa1eaFlqQKSBzx8REWVJWvUae+MTURB7GBY2pAo7h2FQaOb8XXYxF7dFT8IuhBKW9Rjd5kyMQvXxnH8Lr2PKzlvo3F523zCsYJFfhFFaGC4S5VxcjTCVFRt7DBOZgV+akYXPHRHpxitUSyJsEzmX32ImKs/v9n+gc9B2WvXaop+w53He7rVQi9t2IseMwmvBGC/OzzlxLfAis61bD0nRYJOLvZBKDBdJKTYmwuHzRkRpYXjvj9dns7DXIhEFMbXei1puvxBPp+ckbC/NMPtnXdSVq1VoGcbPUXnBcDGj0vxwzYaYnDSfLzbCiIiCsV6Tw+eLiHTjHAadBtnef05Ryy2yv3ObJU21WNJUG+p8YUM+exnc/m5+xxXpfSh73qi4mArlBcPFlGW1GzIbFmL4PBERiUn7yxBer8Vk9XnS8fNa1KCCKI/SChZFBM39aAVeYR6DyD7O49tDxbABo6g0elCqWBAmSnCow5Bk58IzaZeHzMZwMcPYENNblp8fVkxE+ZXl93+Wr9sqpP38pP25RxSH7BElL+mVhd0EBXQi4WGcAVzaz48laE5KP6pWv1b9XIQJ8VR8nmKvSUpSrsJFVd/w8kOhuLQbGrrS4XkxpRFGRGTR4bqlw/VbR3xeiIiKyQZU9u2TDPp0CF69eJVLVYiYFoZ+lEW5ChcpHWxwFOPzIYdhPhHphtfxYjo8H3EGz1nujUuUV2HmH0yaW9goUyaZOQSdw5JVPHbRY9iDQueP2/Hi/LsEBZYqQ0Fnb0bnOcKeK0oZRfbt8W5H6ONTtjFc1ECcH1p16OUB6NHw0IEuz4Mur4skcW4qIm8mhfi6XL90uZ6njc8DEWVVHKszu7EHWvaQz75/zcAt0qGa6PnjXHFZdK5H52O13+Z2v8h+sucV4ZwnMa52fFo9G0Uez44henwOI/0wXKTE5L0BkpfHzx4eRJSX60BerutedHn8ugTORGQOXb5UkwkMo5Q5iV5/TrLlDQr73AJGHcXxGUhm8RdrO+vfJIJKBo4EMFzMBZ0+dOvSEEmaTo9bp9cDEUWT1x65Ol3HdLq+Jymvj5uIsiHtIc9hmFhmJ7/HEDQk2R6Q6vxcxBHmyRzTbVh13AEjh0oTAHRNuwC0X+vgttxM7Go1SKo2tKZckmSwAUZElG0tR5SzTsso1T1QdO5tQ5RH9uHIKvdzhl9xvPc3vtenMFza7fhetzu3cSuj83a/czj3de4vso9zfkn7MHCvhW685mQUJbN9eWNZUXvd2SvQra5Q3bY3NSuoWt+KlmH5+uyQVwwXQwoz70WadtSUoMdGvb5RyHpjTMcGWNy9ffIyFJKIyCnrdRqQz3qNiLLLLdBSeUy/2/1CyaB2ptdCL7KLsYiGc86Qz+08skFm0O2q29luwZxou0VkgRXnfWGDwB7vdoQeYmzf19QgkszGcJFSldXGmI4NMBOxhweRueLuka/rl2ZANnvm61ivMVgkIpWcAZlMr0a3nn7OfcOGfn7sQZ9MSBclvPMKGb2C0bQ75AQFi169D4M+w8TxGSfq3IVRwkmAoSRFwzkXc0TXD+EtR5Rr2WgJQ+fHouvfn4j0YGKYr+t1Tdd6IAyd67W4sTc+UT6EWTXYub19BWO3+5Pkt2qybPmCjuN2vjgfe5hjW4uh2H/c7peRVAgnUzYuqkJpY89FjeRp3kU3pvdizGvjy8JGGBHRAab3YtS9TtM1WCai/AobqskOZ86KvD1eoqxjz8Wc0f3DuIk9JEwos+5/dyLKpiS+dND9+mZCHeFkWnnzKK8rxRPFIczqw7LDjd2GCse16IvbQijO88oM0Q4abu08ZpyhYZRj2+dOdJsjUWZ15Tg/3ziHbOe58xGZheFiDuneEAPMaIyZUEYiItKDCXWGCWUEkvkcE0fD0cSpB4jyzm0VZLdgzbm9PWiLa65Ft6HJzmO5DWtWfS2yn8PtvG5lTYN1XfebW1EmyEsqYDQdV4rOj9yFiyq/6Y3jwpilC4kKVkNHp8aObuUJYmojjIhIlAlfmll0q0N0rGeJiHQQNNegnVswaJ+L0G1ewrDDof3aoDJzKaoWNOeiyoAx6v72tovbfIxR2zZsG1Eecc7FnNJxlc0gac5fZWqjy6QGtxN7eBAlz22Vx6jyPp+wF3u9wnpNnMn1GhFlg8hn1DRDPp14rZat4rNGHJ9ZVErj8w8XdaE05a7nIpnP3ssizsYRe3NkB+emIso+k0OnpOs0U+u1pP7G7HFCFE7ZJn6RJENlj0XZYwZtF7Z3pO6Bn6gwoaDKuoNfypKJ2HNRQ0l9y2Fi70U3bo0k2V4gpja0/LARRkR5k4V6jXUaEVF6Nr7XRzjEi7o6tBXEuQ0nFl3sxVkOkXBPNFgMOpbbXJNeZVXda1E3aQWL1nkZRpIOGC5GZPq3M1loiLlhw4qI8uK06rVY0lSbdjF8cWh0NKzTzO6ZCmR/6CNRlniFZmG3i5PXvJAqV252mxtStA1sX+BFVXmSkObnFgaGZCoOi9YUe4NRFGyEEVFemX79o3Tx8xdRNAxEDvAK0py3uwWBQatUB50zymdp61xevSdlVsCOWhY/aQeV1ms97nrDudiMWxnygitP643hIrEhljFJ/j3ZCCPKnrgaAUleL1ivZQv/nkSUpDALtsiGf/b/+62ubF9VWrRsQWQWmxHd1uuxB83PKPt4VD8XYQWFeuWNZaGGN8dRlqDzOlfOThPDQ7MxXCQA/OCeFfw7EhFRlrBeIzJP3npTyfALx1RMtxU0/Nhtfke/7axjyfZWzIKkgjbrPF7ns95PfF+R7hguaiztbw6IiIhMxVDKfEn/DeP63KW6d81p1WuVHo+IDnDrkZiUMPMkuoV+1iIvbj0f7UTnk1TF3lPTlCmQvOoFr2HKYYiEhkkEi8weKCqGiwqYcnEMwoaY2bLSCCOi7Er6usF6jYiI4uCcH1GmPRim7ejVI9FrQRcvcYalInNMipbXb3XsoPOF4RfeJfHZxW0YtUltrR1D+HmLchoumvSNLxtiJCJLf7eshPVEJsvS+zBL18c84RdmRJQFbgGY7NyMbveFDdZk6vcw57EPobbvH6a8MkO3o/KrA0TmV3Q7HusVyptchovkjw0xs6Tx9zKpsjTpywSiPDDp+kHp4OcQIkqL1zBjJ7c5Cf2O6fx/mODOa75GkV5+abL37BQpk8lfcDJUpDxjuEiu+MGeiIiygnWaObL2hZnJjWSivHJbaCVo+6AVn53HijLvoMxqz84QU2RYddpEQ1FdwlOgeNEVkxZesZfVpHKTnhguKhLnhTmtbz/YGNNf1hphRBSOaT1007iOsE7TH/9GRGQK++Ikbrf7BV9R2o2y+7qFmG4Bo99xVS3AYu+9GDR3okxv0LiJfmZxhnP233VuP7mFipxDkcJguEhkqCw2wnT89pQor7L4fszidTMr+Lchypas94LyCtzsPRNFj+MXpIWds9FvuyzW77oRCRZ1HkLd492OtItABmK4aAj2XiS7tP4uulaARESiWK+RHes1IhIlO09imF6GzvPJrgYd5fwmUdWbMqwkhz+zniJTMFykQGyI6YV/DyLKgjQ/LPM6qpes/j2y3LAnyjPnSshRjwUke73QYa7CJIeGRxUmRLR/xvHaPyigLG8sKxyHASOZgOGiQnFf6NgQozT/DnG//tgII6IksV7TQ5brtTiYNr8qEXVmD/fS+vwrEpBavQPTClLT7p1oCVtX+AWMIsdUVUfpPPyasiW34SI/nMljQyxdfP6JKGlZ/tIM4HU1TTtqSvj8E1FmyS7oErR4icw8i27bRh2iHYW9TCqGdIssmhO3KJ9fZHoj2lehVnFu0fPZF3RJ+7MamSO34aKp0n5zsyGQjrSf97Rfd2HxSwT1tm7dikmTJqGyshI9e/bE1KlTsXPnTt99du/ejenTp+Owww5D9+7dMWHCBDQ3N7tu+5///AcDBw5ESUkJtm3bVnTf8uXL8bnPfQ7l5eX4xCc+gfvuu0/Ro6I8S/v6mkc6POem1mukHus1iots+BW0AIuKkDFqWZISdP60yweoqUeCjuG3GEwcrONaC7qwrjTPT37yExx//PE4+OCD0bNnT+H91qxZg6985SuoqqrCIYccgs9//vNobGyUOjfDRcV06LodN/Y2SBafa9LJpEmTsHr1aixZsgRPPfUUnn/+eVx66aW++8ycORNPPvkkHnnkETz33HP44IMPcO6557puO3XqVBxzzDGdbn/nnXdw1lln4eSTT8aqVavw3e9+F5dccgn+/Oc/K3lclB4dPrjyOpscHZ7rJF5zefg8mBWs18iN/T0sGtTZ9xG9Bsj2cIzCuZK1PbR0O6f1uK3hyUHl8bvfeS7nOd1+7Ns5b0/yGmv15ouy6nPUocl++zrvc54raM5IlfM62ns8Ujra2trwta99DZdffrnwPuvXr8cJJ5yA2tpaLF++HP/3f/+Ha6+9FhUVFVLn7ipbWEpf6+C2xFan8rOjpgQ9NnKZ+rjo0AAD2AijA9asWYPFixfj1VdfxejRowEAv/71r3HmmWdi/vz5GDBgQKd9WlpacPfdd2PRokU45ZRTAAD33nsvhg8fjpdffhnHHXdcYds777wT27Ztw9y5c/G///u/RcdZuHAhhg4dil/+8pcAgOHDh+Nvf/sbbrnlFowbNy6uh2yU06rXYklTrfLjWvMtxUmHeo11Wvx0qdeILKzXyCISjNmpqhfjCBBFAkv7v/YQUaR81j72ANAt9HMbCi0bDvqVya0cbtuJ/q38njt7AOf1ecW6zy3sU8F5bvtx3crlVR5VZbP2dQ6l3jGkpNDzkZJ3/fXXA4BUT/irr74aZ555Jn7+858Xbhs2bJj0udlzkSJhQyEefF5Jhe3btxf9tLa2RjreihUr0LNnz0IDDADq6+tRWlqKV155xXWfhoYG7NmzB/X19YXbamtrMXjwYKxYsaJw2z//+U/86Ec/wgMPPIDS0s5V04oVK4qOAQDjxo0rOgZRVOyZHx9dnlcdespSOKrrNID1GplFxXyFItuL7B8mFI27M0FcK1CrrDfcjuUMCeOUVB3IHoxi4qjXZLW3t+Ppp5/GkUceiXHjxqFv374YM2YMnnjiCeljsediDPLSy8PC3h5q6dIAA9gIS0LlxlZ07ar2b7537/6KadCgQUW3z5s3D9ddd13o4zY1NaFv375Ft3Xt2hW9evVCU1OT5z5lZWWd5vzo169fYZ/W1lacf/75+MUvfoHBgwdjw4YNrsfp169fp2Ns374dH3/8Mbp16xb6cZEeWK9ll071WhLy3BvfpDoNYL1GB4gsOOLWvpNdqMRt/zjCPLf2aFBZrbKoXBla5vwyx3b2kIxa7qC/Q1APQEvQNm7HsX/2ET2PiKAelnHKUs/FynfMqtdkbd68GTt37sTPfvYz3HDDDbjpppuwePFinHvuuXj22WfxxS9+UfhYDBcNpltDDAAbYxHlrQEG5LsRFrdNmzahsrKy8Ht5ebnrdrNnz8ZNN93ke6w1a9YoLZvdnDlzMHz4cPz3f/93bOegaJL40kw3DBij061OM/0Ls7wvUiZapwGs13QSNF+dbkTDPrf9ALHPtW7hmMUtNAsrTN3tFkj6zZfotZ/oMYP2lTmmTJlEjunGGQR6beP2erev/CyzUrTXtvbjqMgEvIJPv/Pb9Xi3g0OiJaluq9XWyk+P1N7eDgA4++yzMXPmTADAyJEj8dJLL2HhwoUMF0XFNT9VnrExFo5uDTDAnA+B5K2ysrKowvJy5ZVX4qKLLvLd5ogjjkB1dTU2b95cdPvevXuxdetWVFdXu+5XXV2NtrY2bNu2raiXR3Nzc2GfZcuW4c0338Sjjz4KAOjo2H8N6d27N66++mpcf/31qK6u7rQSZ3NzMyorK9m7I0N0+tIM4BdnUehYr5HZROs0gPWaLnS6nuvKLwBM+gv4oMBP5ReNUYPTNLjNaRhmP1F+PRxlzi9TFrf7RcvPodDyVLfVwujduze6du2Ko446quh2ax5gGbkOF+OUVC8P3RpiABtjsnRsgGUhWMx7Dw8Zffr0QZ8+wderuro6bNu2DQ0NDRg1ahSA/Q2o9vZ2jBkzxnWfUaNG4aCDDsLSpUsxYcIEAMC6devQ2NiIuro6AMAf/vAHfPzxx4V9Xn31VVx88cV44YUXCpMJ19XV4Zlnnik69pIlSwrHoOzQtV5jnSZGxzoNSK5eM62xnFWs1ygtuoVmIj0E0xqZYF+JWnQxFlNHUnh9tnEu0BIliIz62UlVL0h7yMhejGqI1mlhlJWV4fOf/zzWrVtXdPtbb72FIUOGSB2LC7pkgK5BkK4NDF1w4QA2wkwzfPhwnHHGGZg2bRpWrlyJF198ETNmzMB5551XWFHz/fffR21tLVauXAkAqKqqwtSpUzFr1iw8++yzaGhowJQpU1BXV1dYUXPYsGH4zGc+U/gZOnRo4XzWXFiXXXYZNmzYgO9///tYu3Yt7rjjDvz+978vdN+n/eIM1fP+fuU1O5iuz4+un5MofazXyItXz724z+M39DiqoPJbq0anHd55ldPUzyH2labt/3rdZmcfSh32vGEk2QuRPR7VamxsxKpVq9DY2Ih9+/Zh1apVWLVqFXbu3FnYpra2Fo8//njh96uuugoPP/ww7rrrLrz99tu4/fbb8eSTT+Jb3/qW1LnZc5FixV6Mnena+LKwEUZ+HnzwQcyYMQOnnnoqSktLMWHCBNx2222F+/fs2YN169bho48+Ktx2yy23FLZtbW3FuHHjcMcdd0idd+jQoXj66acxc+ZM/OpXv8LAgQPx29/+FuPGjVP22EgfOvZetLBe60z3eo3ID+s1coorXAsa/hw2WJTpLWn1/PPqGRh0Hvsx8ka0jaS6LZXG5yFr/kS7OD6bMVhUb+7cubj//vsLv3/2s58FADz77LM46aSTAOzvbd/S0lLY5r/+67+wcOFC3HjjjfjOd76DT33qU/jDH/6AE044QercDBdjlOSFV+eGGMDGGGBG44vBIgXp1asXFi1a5Hl/TU1NYW4pS0VFBRYsWIAFCxYIneOkk07qdAzr9jfeeEOuwGQsE+q1PNdpAOs1J1N71eQd6zUSJdqu81rcJahtaL9f5noSdiVpa0iyndfCKCKPRTawDHvNtJc/Shlk2uph6xIVK0zb75f5XCT7Gcq+eMuOISWu55X5bOY2JDrMkGlrn6Dtre327db/s0mc7rvvPtx3332+27jVRxdffDEuvvjiSOfmsOgMMSEYyuOwsjw+ZhFshBGZh+/bYnm9vpvyuE34XCSK8wgTJSeorrPfbwV09p+gfZ37y5xbFdGhx16PyR6Cijwmv8dlDzpFnw/rdq/zyvTk1Imz3opSj7nt2zq4zfOYquvMHUNKCoGf/f/2+9229dtGZl9KXu7DRX5YS4cpDZMoTHuMWWqEEVE2mHJdsq73Jl3zw8jDYwxLtwYqEYnxCsbc3tMi4aHXvrJlUuW06rXS7d245jzkdZJEWGGhV2DIIFFfuQ8X45b0RdSUhpgliw0VEx9T0q+buN8X/NKAKDtYr6XL1ODUtNcNEaXDuYCJ37yHYeZCTNuSplosaaqV2idoVemwj8tvvzRXrNaZztPDROE3xLnHux2FHzIL51zMIN3nqXJjb7SYOIeVaY0uOzbAiLLltOq10g0JGXmdyF0W67X0sF4joii8VnAW2dZtDsOgIcFOafbwc875GFTf2+/32icorAzaTvT8Joa/TvZ5D4O2Aw7Ud6a1/YPsGFLCcNFA7LmYgDQqCJM/WJvSS8KUchIRmc7kOg0wo76wl1HncgZJ47XCoX5EFIZo6GYX9/UmaP5EP3GHdVF7TjqJDnNXSVUd5Zw70e24VuCoY/DoN7TZPk8jmYU9F0lrzgZOmr0/TG5seWEjjIjCSKP3oom98t2wXouP6SE0EenJ3iMvqCeimzArQJsqqYCRglmfm7JaN7J3o37YcxHZnZ8tixcSZ8+KuHpYJHGOtGXx9UFE2ZbF61ZadVoW67U0JBEWZPVzKuVLeWNZJr4gAsLNHWi/VkQJG2XCtajDjC1+K2Gn0fsva6K8L4L2jfK5SbRcWfxsRuGw52JC0pqjKis9PYKwkSQnrUqAHz6IsoP1WnxYp8lj44aIdKGibrT3kAzTWzLKOUXPl8QQbatcOvHrDZh0T0HZc6n+/MS6l+zYczEH+KYnu6y/HtjDgyj774OsX8dIDr8wIyJT6XQd0aksIqKEjlEeq1+dE1QfuYV7YeswkaDQuU3QPI1EUTBcTFCaF2xePAhI93Vg2gcWItIb6zUC+DogIjM4FyNxrrIcx8IpKj57u63G7LUittfwaZVDp0UWm7Fu9ztvXL0h4xhZEeWYUepI1q8ki8OicyQPQ8nIGysIIlItraHRFtZr+cZ6jYiSoKqecx5HZu7FpOpa55Bot6BQpExBwZ/bed22021INOA/9DmoXgpTb6lcYdr6V8VnJx3qYK4orRf2XPx/khpClnbvLR0uApS8tP/uab/uiSi70r6+UTrS/rsnVa9lfYoDyh8TvhBK6v0dtkdfnOWTPbaqXolePR+jLHpjre6tmr3+kX09y26vsq6L671nwnuakhEqXFywYAFqampQUVGBMWPGYOXKlZ7b3nXXXTjxxBNx6KGH4tBDD0V9fb3v9hS/tD+QU7Ly9PdmI4zCYr0Wng5fHuTpOkf8exMFYZ2mXpx1nVcI5rw9ShlUhGz20QpprRId5+I2YY7rVh8lGbalFexx7kZyIx0uPvzww5g1axbmzZuH119/HSNGjMC4ceOwefNm1+2XL1+O888/H88++yxWrFiBQYMG4fTTT8f7778fufCmYkOMkqLD31mH1zuRn6zWa3kL23W43lH8dPg7s14jnWW1TktT3MFiUmVQFTCKnstrqLPK84fpaRm3pOY5jKs+1KGeJTNJh4s333wzpk2bhilTpuCoo47CwoULcfDBB+Oee+5x3f7BBx/Et771LYwcORK1tbX47W9/i/b2dixdujRy4SkaXjiyjX9fIjGs16LTJWzhdS/bdPj76vJaJ/JiSp1W3lim7XDKJOc39JNW70AV0ip32POa+jxb9aKu7yXKF6lwsa2tDQ0NDaivrz9wgNJS1NfXY8WKFULH+Oijj7Bnzx706tXLc5vW1lZs37696CdrdLmA6fBBndTT5e+qy+ucyEsS9Voe6jRAn/e7Ltc/UiuPf9e89T6m6NhWo7jptsCK27DxKPM0qpBG0CdSR+axHqVkSYWLH374Ifbt24d+/foV3d6vXz80NTUJHeMHP/gBBgwYUFTpOd14442oqqoq/AwaNEimmKHl9UNc6+A2XmwyJK9/y7y+fymaJOq1tOq0PMvrdTCLdPqMokuATuQl6221rArqoajLtce+UEocx/W6TeVz41d2VY/Lr85Ksj7zCzl1qVcpWxJdLfpnP/sZHnroITz++OOoqKjw3G7OnDloaWkp/GzatCnBUiZHl4rCwouM2XRqgAH6vb6J4iBSr6VZpyUduuv0vtfpekjh8G9IlKyk2mpW6GHKezyp3no61aFeog7Vdnsu3Y7nNreizHllejFGXZ06STrMyQhwGDa56yqzce/evdGlSxc0NzcX3d7c3Izq6mrffefPn4+f/exn+Otf/4pjjjnGd9vy8nKUl5fLFM1Y9lW3dNA6uI0XCwOZ8uGMSDdJ1Gt5qtN0w7mIzKVbvaZ7g5MIMKetptv728nZPnMLquyrJttvc14r7NuJ9MazblfdPoxjMZUw28dxLQ16Lq3n3v7c+i0M4/Z3NkGUdnzQe9J5v8x7eMeQklBlIvNI9VwsKyvDqFGjiib4tSb8raur89zv5z//OX784x9j8eLFGD16dPjSUiJ06wFH/nT8W7ERRqZgvaaeju9/Ha+T5I6fQfbjVB8UBus0dYLqMtG6zq3HnVcAKXJ8HetYE5jUOzGKJOrPOM8RFEQyqNSb9LDoWbNm4a677sL999+PNWvW4PLLL8euXbswZcoUAMDkyZMxZ86cwvY33XQTrr32Wtxzzz2oqalBU1MTmpqasHPnTnWPQqE0PszpeoHjh3u96doAS+P1zEYYRZH1ei0NOtZrul4z6QBd/z46vp6JvLBOUyOox5rX/c55CYPmEwTcrzFBxyd/zufJ/rvI38RUSYzUSHM0SI93O1I7NwWTGhYNABMnTsSWLVswd+5cNDU1YeTIkVi8eHFh4uDGxkaUlh7ILO+88060tbXhq1/9atFx5s2bh+uuuy5a6TNEt+HRFg6T1pOuDTAiE2W9Xjutei2WNNWmXQxtsF7Tj851GoNFMo0JdVp5Y1nRtVi3a4BfMBW0rf020YBRdCh0lLai1zBu5/lVXvOcx3Mrg+hx/PYTfV6cAaNbD9K4hqUnwfnZRub9Zb0nw96vSo93O3x7J7Lnot6kw0UAmDFjBmbMmOF63/Lly4t+37hxY5hTkEY4Z5U+dPvw5cRGGJmK9Zp6un5pBrBe04nu9RqRiUyo03j9PUCkrlRVn9oDNKuetm5THSzGySsIdQsHRUNb59BpXT/DiDKxfmV4aLZEV4s2RVpDLHUPZjikLD0mPPe6v36JKHm6Xxd0v65mGes1b5zqg4iSFleQpuq4QfNWqjw2EYXDcFEzJlzcTGgQZAmfa39shBEF4/vEG+u0ZJnyfJvweYwoC0y4HpgqzZ53MgvSBJUz7PXY6pXpd7/X76b3WnTD3sIUt1DDookADiuLm0kfttgIIyIvpgwtYp0WL5PqNCKKn0nz3/rNw+d2n73eEwnTROb5C/NZ222Yb5w9AP3O73euqGXw299tPkmR1blNnXvRr64Ne5/zftbn5IXhooc0J8A3pSFmYYNMLdMu2AwWiSiISfUa6zS1TKvTgHTrNfYypjywrgu6Xh+86qygEMsrYPQ7jsg2quT5M7szaNVdmM9Nur6fKD84LFpTJlz0nEwZ6qQj67kz7flL+3XKRhiRuLTfL2lfL2SZeE3WianPn2mvUyLTmfRFjspFVZI6l0mSesx5fG6JksCeixozqaeHHXt9iDOx4UVElCf26zTrtWAm12sMFomSofu1NOpcfM7t3XoqihzTa0XksIKO5+x5GSevYcpuZYzyPIg8t35D2NMSNgMobywzuh4ms7Hnoo+0e3kAel3kZJnaGy9uWXleTH5tElE6TL9uZOX6rVoWnhcdXps6fO4kIvWCFhaJ6xhuczvaw02/Y6ro4OJ2DJHh5l5zUvqdxy2srRm4RerabmKnHiKdMFykRGSh4RFF1h4/G2FEZtLhfaPD9UOFLF3Tw8hSvZaV1ySR6ew9GnXv3ShL1YrHogGY31yOSYZoskGhCqLnkF1NWnfstUhp47BoA5g6PNpLXoaYZfXizkYYEUWVpXrNea1nvUZEJMcrVMxSWJJ0neesZ2XP77XKtUxw53V7UE/FsOf1G84uK66/V9yv6Sy9Z8g8DBcDpLlqtF2WGmJ2WWqU5eFCzmCRiFRhvaY/1mvJ0aFXMRGZwWu+QiDcNU2mLvY6n30oclDI5zbvZNB5uNhLsNbBbb6fOfyCR4aSpALDRYNktSFm53ZR07FhlseLry4NMICNMKIodPnSDGC9phPWa0REZhBdlCWKMIu7WNvloW7Pmjx+BiD1GC4aJo8Xa7+LXdwNNF5o92MDjIjiwnrtANZpydGpXuMXZkQUlr3noPP/zoDQuSpymLrX69rpvF2kbg9TDuu4bitw2+/T9XNF3PWw3/H5GYDixnBRgE69PIB8NsS88CIZP50aYAAbYURZxHptP9ZpydCtXiMiisp+XbP3IPTaxu13vyHPsisvW/s7A0378UT2t5fL63G53ecMIfkZgyh+XC3aUPxgTEng64wom3QM6Xm9oSTwdUZEpksjKItyTrdehnE9BtlekKwTiNRhuCiIDTHKGx1fXzq+D4lIHR2vO5QNujYiWa8RUVh+q0FvfK+P6/1u/zq39TtGlMVfZImcz/k4/P5PRPHisGjDsas3xUHHBhgRqaXblB8WDpEm1VinEZnLmouW00YU8woD/epQr4BRxbmB4Po76grQ9sdn4nU9KysyZ+VxkHoMFyXo2hAD2BgjNUysqIkoe1inkSo612vstUgUzBliMNgoFhTYJVmXBoWaKs+h4phJf87I8uu2dXBb7IvSkf44LDpDdP4ATfrT/fXDRhiRejq/r3Qdxkrm4OuHKJsYYnTmrDP96tA4ro1p1Nlu5+R1P35ZDkkpGoaLknRuiAG8oFI4fN0Qka54fSJZJgTTun+eJNIZww1votc/FddI3a+zRJQshosZZMKHatKDKa8VNsKI4mPC+8uE6xTpga8VomxjsOjOazGToO2j4vz/RGRhuBiCCQ0xgB+wyR9fH0RkElO+DKH0mPL6MOVzJJEOyhvLOAxakN/q0V7bqT5/ktdht5WgGXISpYcLumQcv00iJ1MaXxY2wojip/OCZU6s18jJtHqNiMLj6tH6cNbDvBYT5Rt7LoZkWuDBHh8EmFfpm/Y+I6LkmHY9I/VM/GzDeo0omtbBbQwWNee2yEoS12rT6gOd8T1GYTBczBledPPJxAYYESXLxNCD17b8MvHvbuJ7jEgXHBqtRlbrTesxZfGxEZmC4WIEpn5IzGqlQp2Z/Lc29f2VdVu3bsWkSZNQWVmJnj17YurUqdi5c6fvPrt378b06dNx2GGHoXv37pgwYQKam5tdt/3Pf/6DgQMHoqSkBNu2bSu678EHH8SIESNw8MEHo3///rj44ovxn//8R9VDI5j7vjP5Wkdy+Lcm1VivUZ4kMaVIGtOWiCxiQ9ll9WhuHdyGtkH57XW5ceNGTJ06FUOHDkW3bt0wbNgwzJs3D21tYs9JR0cHvvSlL6GkpARPPPGE9PkZLkZkakMM4Af0LOPfluIyadIkrF69GkuWLMFTTz2F559/HpdeeqnvPjNnzsSTTz6JRx55BM899xw++OADnHvuua7bTp06Fcccc0yn21988UVMnjwZU6dOxerVq/HII49g5cqVmDZtmpLHRdnAa192mf63NfnzYtaxXjOHtbgLezHqyW2BFb/b4zg/qRH2PSY7nFp0mgO/bTiE+4C1a9eivb0d/9//9/9h9erVuOWWW7Bw4UL88Ic/FNr/1ltvRUlJSejzc0EX4uT4GWJyw8uOjTA9rVmzBosXL8arr76K0aNHAwB+/etf48wzz8T8+fMxYMCATvu0tLTg7rvvxqJFi3DKKacAAO69914MHz4cL7/8Mo477rjCtnfeeSe2bduGuXPn4n//93+LjrNixQrU1NTgO9/5DgBg6NCh+OY3v4mbbroproebWyYt7uKF9Vp2ZKVeIz2xXtOfFRzYww6GCcHcrp321Zy97vfa360+dda1Qddr+/mdK0t7LQ7jVY+77eu8ze0YNQO3dNre7dx5//wQ5j1m7WPf12sBJmd46Xyfu52/dXAbyhvLXK8JtN8ZZ5yBM844o/D7EUccgXXr1uHOO+/E/PnzffddtWoVfvnLX+K1115D//79Q52fPRcVyEoQYnqvgDzL0t8uK+8nHWzfvr3op7W1NdLxVqxYgZ49exYaYABQX1+P0tJSvPLKK677NDQ0YM+ePaivry/cVltbi8GDB2PFihWF2/75z3/iRz/6ER544AGUlnaumurq6rBp0yY888wz6OjoQHNzMx599FGceeaZkR4TucvK+zBL18a8ydLfLivvp7SprtMA1mtEolRcj+3HUH19d1tEJmgbv+Nkpf7Jsix8yRBHvebU0tKCXr16+W7z0Ucf4YILLsCCBQtQXV0d+lzsuahIFnp6WPy+RSJ9sNLLhrJ176Nrqdpv3krb91e2gwYNKrp93rx5uO6660Ift6mpCX379i26rWvXrujVqxeampo89ykrK0PPnj2Lbu/Xr19hn9bWVpx//vn4xS9+gcGDB2PDhg2djjN27Fg8+OCDmDhxInbv3o29e/di/PjxWLBgQejHQ/nBnoxmyGK9lrdg0aQ6DWC9Zip77yVy59Wb0K3HoN+1N+h+mW29ei56DaW2vmTyq7vtcy3K9JwM2oafF9Kj23vbtHrN7u2338avf/3rwF6LM2fOxPHHH4+zzz470vkYLpIvNsj0k8XGlyVvjbC4bdq0CZWVlYXfy8vLXbebPXt24DCsNWvWKC2b3Zw5czB8+HD893//t+c2//znP3HFFVdg7ty5GDduHP7973/jqquuwmWXXYa77747trLlWZa+NLPwyzM9ZbVeY52mlmidBrBeyxKvoY8MGMWEretE9vMKBd2oblP6BZKi+3mVhZ8P1LGGMrvdrur4JlPdVqutPfC5/f3338cZZ5yBr33ta75z+f7pT3/CsmXL8MYbb0iWvjOGiwplsSFmYYMsXVlteNmxEaZeZWVlUYXl5corr8RFF13ku80RRxyB6upqbN68uej2vXv3YuvWrZ5d6Kurq9HW1oZt27YV9fJobm4u7LNs2TK8+eabePTRRwHsX6kMAHr37o2rr74a119/PW688UaMHTsWV111FQDgmGOOwSGHHIITTzwRN9xwQ+i5Qcgf6zWKSx7qNVJLtE4DWK8RqSTTe9FNUG/GMPf57WP1PGQ9Q7pT3VazfPDBBzj55JNx/PHH4ze/+Y3vfsuWLcP69es79cafMGECTjzxRCxfvjywfBaGi4pluSFmYYMsGXmqEBkspqtPnz7o0yf4vVxXV4dt27ahoaEBo0aNArC/Qmpvb8eYMWNc9xk1ahQOOuggLF26FBMmTAAArFu3Do2NjairqwMA/OEPf8DHH39c2OfVV1/FxRdfjBdeeAHDhg0DsH8ukK5di6usLl26ADjQaKN4sF4jVVivUVJYrxF5C1pMxWufOMoRB9bjlDWidRqwv8fiySefjFGjRuHee+91nfPXbvbs2bjkkkuKbjv66KNxyy23YPz48VLlZLgYgzw0xCwiK4mRuDw1vCxsgJlj+PDhOOOMMzBt2jQsXLgQe/bswYwZM3DeeecVVtR8//33ceqpp+KBBx7Asccei6qqKkydOhWzZs1Cr169UFlZiW9/+9uoq6srrKhpNbQsH374YeF81rdo48ePx7Rp03DnnXcWho9997vfxbHHHuu6miepldd6jXVaNHms0wDWayZhvWY2Do2OJmodx+mziPTy/vvv46STTsKQIUMwf/58bNly4HOY1bPeWadVV1e79tQfPHgwhg4dKnV+hosxyVNDzI5ho5y8NrwsbICZ58EHH8SMGTNw6qmnorS0FBMmTMBtt91WuH/Pnj1Yt24dPvroo8Jtt9xyS2Hb1tZWjBs3DnfccYfUeS+66CLs2LEDt99+O6688kr07NkTp5xySuD8I0RRsE6Tk/c6DWC9ZiLWa2az5nNjyOjOKwBMoz7zWijFWcakQkuGo5Q1S5Yswdtvv423334bAwcOLLrP6hHvVqepUtJhQL/77du3o6qqCte8fDoquh+UdnGk5DFg9JPnizcbXZ2Z1gjbvXMPbjjuL2hpaRGe98mLdV2r7zNV+Qpke9vb8NctdyspJ6nHOi1bWK+RxbQ6DVBXr7FOyzfr7z/shz9Fl4qKVMrAcNGdLgGa36gAr7qE4WI2yPQwDtpW5FjtH+/GpsuvY72WAvZcjFleezB6SavySBobXMFMbIQR5R3rtM7crves0/KHdRpRujhE2p1u9ZG9PEF1i1dPRzIL35f5wXAxAWyMBQu7ilha2NCKho0wInOxTgsWVEewXssW1mlERP50rPfs2IvRDAwq9cZwMSFsjIUXtcHjVUmwIZU8NsCIsoF1WjRR6h/WaXphvUakD/ZeNJMOgZ4OZSAyHcPFBLExlg42uPTABhhRtljvadZryWKdpg/Wa0RE4aUd6KV9fuqMXw6YrTTtAuQNP4hSHvF1T5RdfH9THvF1T6Qna/Vot9u97iMiougYLqaAH0gpT/h6J8o+vs8pT/h6J9KbW4jYOrgNrYPbGDASEcWE4WJKTqteyw+nlHl8jRPlB9/vlHX87EZkFq+QkYiI1GO4mDJ+SKUsYgOMKJ/43qes4uuayCx+PRTZe5GISD2GixrgB1bKEr6eiYjXAcoKBuZE2cJgkYgoHlwtWhNcdZNMx8YXEdmxXiPTsV4jMpfX8GcOi6YgNQO3cCVpohDYc1Ez/IacTMTXLBF54fWBTMPPYkRmY4Col5qBW1AzcIvw7aL3x1Uu6z4iksOei5o6rXote3uQ9tj4IiIR7MVIJmCdRpQN5Y1lhZWhGTSmz6sXYFDvwCR6D7qdg70WicJhuKgxNsZIV2yAEVEYrNdIR6zTiLLHObeiPWhk6EgAQ0Qi1RguGoCNMdIFG2BEpALrNdIB6zSibLIHh1zAJZusYctRAkIVxyCiAxguGsT+IZgNMkoSG2BEFAeGjJQG1mlEREREajFcNBQbZBQ3Nr6IKCn88oySwHqNKB+8eivab+cwabOp6G3IHotEajFcNBwbZKQaG19ElCZ+eUYqsU4jIi9eYSMREcljuJghbJBRWGx8EZFu+OUZhcU6jYjCYMBIRBQew8UMcn6oZqOM3LDxRUSmYNBIQVinEVFUDBaJiMJjuJgDbJQRwIYXEWUDv0AjC+s1IlKFwSIRUTQMF3OGjbL8YKOLiPKA9Vp+sF4jIiIi0hPDxZxjoyw72OgiImK9lhWs04iIiIjMwXCRirh9mGfDTD9sdBERiWG9pj/WaURERERmY7hIgfw+9LOBFi82uIiI1PO6trJOixfrNCIiIqJsYrhIkTB4jIYNLSIifQRdk1mvBWO9RkRERJQ/DBcpNjINjCw12NiwIiLKJtHre5bqNID1GhFlX3ljGQCuGk1EFBbDRdICGy5ERJQVrNOIiMxU3liG1sFthbARYOBIRCSiNO0CEBEREREREenAHiy6/e51GxFRnjFcJCIiIiIiIkLnnopuPRfZm5GyqGbglkT2oWzisGgiIiIiIiIiB4aIlCU1A7dg43t9PO/zum3je32K/u+1fdpqBm7B3l2t2JR2QXKK4SIRERERERHlnhUmMlSkPHAGhm73+e2nA53KknccFk1ERERERES5Z82lWN5YxnkVKXOcIaJXL0ad1QzcwkBRU+y5SERERERERORgrR5NlFVBAWPaAaQ9SLSXhQGjfhguEhEREREREUFstWgLg0ci9RgcmonhIhEREREREZEke/DIoJFMY59z0b5oi3ObuHovOs/nVQav7UkvDBeJiIiIiIiIQmKwSKYTDe6iBHwMB7ONC7oQERERERERhcTFXyjLgkJBkftFgkWGj2Zjz0UiIiIiIiKiCKyAsXVwGxeCodzxCgbTXhCGksOei0REREREREQKWCEjezMSsTdinjBcJCIiIiIiIlKsvLGs8ENkAoaBFBbDRSIiIiIiIqIYMWSkNNjnO3T+374NUVQMF4mIiIiIiIgSwICRdMewkcJguEhERERERESUIIaMFAeRlZkZHlIcGC4SERERERERJYSLvhBR1nRNuwBEREREREREeeQMGFsHt6VUEsqCje/1ce2ZyN6KFDeGi0REREREREQaKG8sY8BIobkt2EKUBA6LJiIiIiIiItIEh0sTkWlChYsLFixATU0NKioq/v/t3XtQlOXbB/AvArsLKaCiHBT01VDQPIWKaI4/zUlHR6NyNDXUBjODdEYckzJd0zIzxppBzck8NO+YJCWNKZGGp8FjKUyoiCmoObg0qAiCctrr/eM37tvCgjwLuwv7fD8z90zcez/sdQk83/bmYR9ERETg3Llzja5PSUlBaGgodDodBgwYgLS0NKuKJSIix7p37x5mz54NLy8v+Pj4ICYmBg8fPmz0mMePHyMuLg6dO3dG+/bt8dprr6GoqMhsjYuLS72RnJxstqayshIrVqxAjx49oNVq0bNnT+zYsaNF+mKuERGpkzPmGjPNOXCDkZTi1Yo0depUBAcHQ6fTISAgANHR0SgsLGxw/b1797Bo0SL07dsXHh4eCA4OxuLFi/HgwQPFz614c/H7779HfHw89Ho9Lly4gEGDBmHChAn4559/LK4/deoUZs6ciZiYGGRlZSEqKgpRUVG4ePGi4mKJiMixZs+ejUuXLuHw4cM4cOAATpw4gQULFjR6zJIlS/Dzzz8jJSUFx48fR2FhIV599dV663bu3Ik7d+6YRlRUlNnj06dPR0ZGBrZv3468vDzs2bMHffv2bXZPzDUiIvVytlxjpjkX7S0NNxmpUU/uDs2NRQKAsWPHYu/evcjLy8OPP/6I69evY9q0aQ2uLywsRGFhIRITE3Hx4kXs2rUL6enpiImJUfzcLiIiSg6IiIjAsGHDsGnTJgCA0WhEUFAQFi1ahISEhHrrZ8yYgfLychw4cMA0N2LECAwePBhbt261+ByVlZWorKw0ffzgwQMEBwdjWcY4aJ/h20QSkWNUltfg8xePoKSkBN7e3s36XKWlpfD29sZ/fKPh5tKy/9NYI1U4Vvy/+Pvvv+Hl5WWa12q10Gq1Vn/e3Nxc9OvXD7///juGDh0KAEhPT8ekSZNw+/ZtBAYG1jvmwYMH6NKlC7777jtTsF25cgVhYWE4ffo0RowYAeC/V3ikpqbWe+H1RHp6Ol5//XXk5+ejU6dOVvdgia1zjZlGRK1VS+VaW8w0wDlzzZGv1f5n6Sq00+parBeqryqI78VI/y84sNjRJbQ6NRVVODvza9XmWl379+9HVFQUKisr4e7u3qRjUlJS8MYbb6C8vBxubgpeq4gClZWV4urqKqmpqWbzc+bMkalTp1o8JigoSL744guzuVWrVsnAgQMbfB69Xi8AODg4OFrluH79upJTp0WPHj0Sf39/m9XYvn37enN6vb5ZNW/fvl18fHzM5qqrq8XV1VX27dtn8ZiMjAwBIPfv3zebDw4Olo0bN5o+BiCBgYHSuXNnGTZsmGzfvl2MRqPp8XfeeUdefPFFWb58uQQGBkpISIgsXbpUKioqmtWTPXKNmcbBwdHaR3NzrS1mmojz5Rpfq3FwcHD8d6g11/7t7t27Mn36dBk1apSi47Zt2ya+vr6Kn0/RJRPFxcWora2Fn5+f2byfnx+uXLli8RiDwWBxvcFgaPB53n//fcTHx5s+LikpQY8ePXDr1q1mXy3UmpWWliIoKKjeDrazUUufgHp6VUufT34z3xJXGOh0OhQUFKCqyja/gRYRuLi4mM019zdhBoMBXbt2NZtzc3NDp06dGjynGwwGaDQa+Pj4mM3XzYE1a9Zg3Lhx8PT0xKFDhxAbG4uHDx9i8eLFAID8/HxkZmZCp9MhNTUVxcXFiI2Nxd27d7Fz506re7JHrqk10wD1nBvYp/NRS68tlWttMdMA58s1vlazLbWcFwD19Mo+nY/acw0Ali9fjk2bNqGiogIjRowwuzL9aYqLi7F27dqnvj2IJa3y77EauhzU29vb6X8YAMDLy4t9Ohm19KqWPtu1s+peWPXodDrodI7/86GEhAR89tlnja7Jzc21aQ0rV640/feQIUNQXl6Ozz//3PQizGg0wsXFBbt37za9cNm4cSOmTZuGLVu2wMPDw6b1NYfaMw1Qz7mBfToftfTaErnWWjINYK7ZmtpzTS3nBUA9vbJP5+NMudbUTAsNDQUALFu2DDExMbh58yY++ugjzJkzBwcOHKi3mVlXaWkpJk+ejH79+mH16tWK61S0uejr6wtXV9d6d0MrKiqCv7+/xWP8/f0VrSciIvtaunQp5s2b1+iaXr16wd/fv94bwtfU1ODevXuNZkBVVRVKSkrMrvJ4Wg5ERERg7dq1qKyshFarRUBAALp162Z2RURYWBhEBLdv30ZISMjTG7WAuUZE5HzUmmvMNCIi59PUTHvC19cXvr6+6NOnD8LCwhAUFIQzZ84gMjKywePLysowceJEdOjQAampqU1+f8Z/U7Sdq9FoEB4ejoyMDNOc0WhERkZGg4VGRkaarQeAw4cPN9oYERHZT5cuXRAaGtro0Gg0iIyMRElJCc6fP2869siRIzAajYiIiLD4ucPDw+Hu7m6WA3l5ebh161ajOZCdnY2OHTuarowYNWoUCgsL8fDhQ9Oaq1evol27dujevbvVvTPXiIicj1pzjZlGROR8mppplhiNRgAwuwlXXaWlpXjppZeg0Wiwf/9+66/WVPomjcnJyaLVamXXrl1y+fJlWbBggfj4+IjBYBARkejoaElISDCtP3nypLi5uUliYqLk5uaKXq8Xd3d3ycnJafJzPn78WPR6vTx+/FhpuW0K+3Q+aumVfarHxIkTZciQIXL27FnJzMyUkJAQmTlzpunx27dvS9++feXs2bOmuYULF0pwcLAcOXJE/vjjD4mMjJTIyEjT4/v375dt27ZJTk6O/PXXX7Jlyxbx9PSUVatWmdaUlZVJ9+7dZdq0aXLp0iU5fvy4hISEyPz585vdk71zTU3fR2rplX06H7X0qpY+G+NsucbXarajlj5F1NMr+3Q+auq1rjNnzkhSUpJkZWXJjRs3JCMjQ0aOHCm9e/c2/XvUzbQHDx5IRESEDBgwQK5duyZ37twxjZqaGkXPr3hzUUQkKSlJgoODRaPRyPDhw+XMmTOmx8aMGSNz5841W793717p06ePaDQa6d+/vxw8eNCapyUiIge7e/euzJw5U9q3by9eXl7y5ptvSllZmenxgoICASBHjx41zT169EhiY2OlY8eO4unpKa+88orcuXPH9Pgvv/wigwcPlvbt28szzzwjgwYNkq1bt0ptba3Zc+fm5sr48ePFw8NDunfvLvHx8c2+W/QTzDUiInVyxlxjphERqc+ff/4pY8eOlU6dOolWq5WePXvKwoUL5fbt26Y1dTPt6NGjDd7RuqCgQNHzu4iIWHfNIxEREREREREREalZy9zylIiIiIiIiIiIiFSHm4tERERERERERERkFW4uEhERERERERERkVW4uUhERERERERERERWaTWbi5s3b0bPnj2h0+kQERGBc+fONbo+JSUFoaGh0Ol0GDBgANLS0uxUafMo6XPbtm0YPXo0OnbsiI4dO2L8+PFP/XdpLZR+PZ9ITk6Gi4sLoqKibFtgC1Laa0lJCeLi4hAQEACtVos+ffq0ie9fpX1++eWX6Nu3Lzw8PBAUFIQlS5bg8ePHdqrWOidOnMCUKVMQGBgIFxcX/PTTT0895tixY3j++eeh1Wrx7LPPYteuXTavk1o/tWQawFx7mraWa2rJNIC51hDmGlmillxTS6YBzLWGtNVcY6ZZxkyzoxa773UzJCcni0ajkR07dsilS5fkrbfeEh8fHykqKrK4/uTJk+Lq6iobNmyQy5cvy4cffiju7u6Sk5Nj58qVUdrnrFmzZPPmzZKVlSW5ubkyb9488fb2NruVeGuktM8nCgoKpFu3bjJ69Gh5+eWX7VNsMynttbKyUoYOHSqTJk2SzMxMKSgokGPHjkl2dradK1dGaZ+7d+8WrVYru3fvloKCAvn1118lICBAlixZYufKlUlLS5MVK1bIvn37BICkpqY2uj4/P188PT0lPj5eLl++LElJSeLq6irp6en2KZhaJbVkmghzzdlyTS2ZJsJcawhzjSxRS66pJdNEmGvOlmvMNMuYafbVKjYXhw8fLnFxcaaPa2trJTAwUD799FOL66dPny6TJ082m4uIiJC3337bpnU2l9I+66qpqZEOHTrIt99+a6sSW4Q1fdbU1MjIkSPlm2++kblz57aJsBJR3utXX30lvXr1kqqqKnuV2CKU9hkXFyfjxo0zm4uPj5dRo0bZtM6W1JTAeu+996R///5mczNmzJAJEybYsDJq7dSSaSLMNWfLNbVkmghzrSHMNbJELbmmlkwTYa45W64x0yxjptmXw/8suqqqCufPn8f48eNNc+3atcP48eNx+vRpi8ecPn3abD0ATJgwocH1rYE1fdZVUVGB6upqdOrUyVZlNpu1fa5ZswZdu3ZFTEyMPcpsEdb0un//fkRGRiIuLg5+fn547rnnsG7dOtTW1tqrbMWs6XPkyJE4f/686XL8/Px8pKWlYdKkSXap2V7a4rmIbEstmQYw15wt19SSaQBzrTFt9XxEtqOWXFNLpgHMNWfLNWZaw9riuagtc3N0AcXFxaitrYWfn5/ZvJ+fH65cuWLxGIPBYHG9wWCwWZ3NZU2fdS1fvhyBgYH1fkBaE2v6zMzMxPbt25GdnW2HCluONb3m5+fjyJEjmD17NtLS0nDt2jXExsaiuroaer3eHmUrZk2fs2bNQnFxMV544QWICGpqarBw4UJ88MEH9ijZbho6F5WWluLRo0fw8PBwUGXkKGrJNIC55my5ppZMA5hrjWGuUV1qyTW1ZBrAXHO2XGOmNYyZZl8Ov3KRmmb9+vVITk5GamoqdDqdo8tpMWVlZYiOjsa2bdvg6+vr6HJszmg0omvXrvj6668RHh6OGTNmYMWKFdi6daujS2tRx44dw7p167BlyxZcuHAB+/btw8GDB7F27VpHl0ZErQRzre1TS6YBzDUiapyzZhrAXHPGXGOmkS04/MpFX19fuLq6oqioyGy+qKgI/v7+Fo/x9/dXtL41sKbPJxITE7F+/Xr89ttvGDhwoC3LbDalfV6/fh03btzAlClTTHNGoxEA4Obmhry8PPTu3du2RVvJmq9pQEAA3N3d4erqapoLCwuDwWBAVVUVNBqNTWu2hjV9rly5EtHR0Zg/fz4AYMCAASgvL8eCBQuwYsUKtGvnHL/XaOhc5OXlxd+EqZRaMg1grjlbrqkl0wDmWmOYa1SXWnJNLZkGMNecLdeYaQ1jptmXw79rNBoNwsPDkZGRYZozGo3IyMhAZGSkxWMiIyPN1gPA4cOHG1zfGljTJwBs2LABa9euRXp6OoYOHWqPUptFaZ+hoaHIyclBdna2aUydOhVjx45FdnY2goKC7Fm+ItZ8TUeNGoVr166ZAhkArl69ioCAgFYZVoB1fVZUVNQLpSchLSK2K9bO2uK5iGxLLZkGMNecLdfUkmkAc60xbfV8RLajllxTS6YBzDVnyzVmWsPa4rmoTXPk3WSeSE5OFq1WK7t27ZLLly/LggULxMfHRwwGg4iIREdHS0JCgmn9yZMnxc3NTRITEyU3N1f0er24u7tLTk6Oo1poEqV9rl+/XjQajfzwww9y584d0ygrK3NUC02itM+62srdx0SU93rr1i3p0KGDvPvuu5KXlycHDhyQrl27yscff+yoFppEaZ96vV46dOgge/bskfz8fDl06JD07t1bpk+f7qgWmqSsrEyysrIkKytLAMjGjRslKytLbt68KSIiCQkJEh0dbVqfn58vnp6esmzZMsnNzZXNmzeLq6urpKenO6oFagXUkmkizDVnyzW1ZJoIc425RkqoJdfUkmkizDVnyzVmGjOtNWgVm4siIklJSRIcHCwajUaGDx8uZ86cMT02ZswYmTt3rtn6vXv3Sp8+fUSj0Uj//v3l4MGDdq7YOkr67NGjhwCoN/R6vf0LV0jp1/Pf2kpYPaG011OnTklERIRotVrp1auXfPLJJ1JTU2PnqpVT0md1dbWsXr1aevfuLTqdToKCgiQ2Nlbu379v/8IVOHr0qMWfuSe9zZ07V8aMGVPvmMGDB4tGo5FevXrJzp077V43tT5qyTQR5pqIc+WaWjJNhLkmwlyjplNLrqkl00SYayLOlWvMNGaao7mIONF1r0RERERERERERGQ3Dn/PRSIiIiIiIiIiImqbuLlIREREREREREREVuHmIhEREREREREREVmFm4tERERERERERERkFW4uEhERERERERERkVW4uUhERERERERERERW4eYiERERERERERERWYWbi0RERERERERERGQVbi4SERERERERERGRVbi5SERERERERERERFbh5iIRERERERERERFZ5f8AwxtQjNlRnSEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, "source": [ "plotter.plot(pinn_learn)" - ] + ], + "outputs": [], + "metadata": {} }, { "cell_type": "code", - "execution_count": 11, - "id": "55497e4e", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABR0AAAH5CAYAAAAMZpltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADGCklEQVR4nOzdd5hU1f3H8fedvr2zy8LSe+/YEEEQRbHHGmuCxm5QE00ithRjif6MRg0RsUaj2AtSLAgqCLoI0mHp25ftZWZn5vfH3ZmdrSywsLB8Xs+zz8zccu65k71EPnzPOYbf7/cjIiIiIiIiIiIi0kosbd0BERERERERERERaV8UOoqIiIiIiIiIiEirUugoIiIiIiIiIiIirUqho4iIiIiIiIiIiLQqhY4iIiIiIiIiIiLSqhQ6ioiIiIiIiIiISKtS6CgiIiIiIiIiIiKtytbWHThcfD4fe/bsISoqCsMw2ro7IiIiIiIiIiIiRxW/309JSQmpqalYLM3XMh4zoeOePXtIS0tr626IiIiIiIiIiIgc1Xbu3Ennzp2bPeaYCR2joqIA80uJjo5u494cGh6Ph/nz53Paaadht9vbujsixxw9gyJtT8+hSNvSMyjStvQMirS99v4cFhcXk5aWFszZmnPMhI6BIdXR0dHtOnQMDw8nOjq6Xf5iixzp9AyKtD09hyJtS8+gSNvSMyjS9o6V57AlUxdqIRkRERERERERERFpVQodRUREREREREREpFUpdBQREREREREREZFWdczM6SgiIiIiIiIicih4vV48Hk9bd0OOAB6PB5vNRmVlJV6vt627c0AcDgcWy8HXKSp0FBERERERERE5AH6/n6ysLAoLC9u6K3KE8Pv9pKSksHPnzhYttnIkslgsdO/eHYfDcVDtKHQUERERERERETkAgcCxQ4cOhIeHH7Uhk7Qen89HaWkpkZGRrVIteLj5fD727NlDZmYmXbp0OajfaYWOIiIiIiIiIiL7yev1BgPHhISEtu6OHCF8Ph9utxuXy3VUho4ASUlJ7Nmzh+rqaux2+wG3c3TevYiIiIiIiIhIGwrM4RgeHt7GPRFpXYFh1Qc7J6VCRxERERERERGRA6Qh1dLetNbv9FEVOp533nnExcVx4YUXtnVXREREREREREREpAlHVeh422238fLLL7d1N0RERERERERERKQZR1XoeMoppxAVFdXW3RARERERERERkVaybds2DMMgPT39qGpbmtdqoePixYuZNm0aqampGIbBe++91+CYZ555hm7duuFyuRg7dizLly9vrcuLiIiIiIiIiEgL5ebmcsMNN9ClSxecTicpKSlMmTKFpUuXAjSZ7Yi0lK21GiorK2Po0KFce+21nH/++Q32v/nmm8yYMYPnnnuOsWPH8uSTTzJlyhQ2bNhAhw4dABg2bBjV1dUNzp0/fz6pqan71Z+qqiqqqqqCn4uLiwFzdanAClPtTeC+2uv9iRzp9AyKtD09hyJtS8+gSNvSM3h4eTwe/H4/Pp8Pn8/X1t3ZbxdccAFut5sXX3yRHj16kJ2dzeeff05ubm7wfg7XvbXG9dxud3DV5dZue3/4/f7g69H4ewHmd+X3+/F4PFit1jr79ufPl1YLHc844wzOOOOMJvf/4x//YPr06VxzzTUAPPfcc3z88cfMnj2bu+++G6BVS13/9re/8cADDzTYPn/+/Ha/nP2CBQvaugsixzQ9gyJtT8+hSNvSMyjStvQMHh42m42UlBRKS0txu92AGTRVetomaHLZLS1edbioqIivv/6ajz76iJEjRwIQFxdHv379AOjWrRtgBpMAaWlp/PTTT2RkZPDHP/6RFStWUF5eTp8+fZg5cyannHJKsO0hQ4Zw1VVXkZGRwfvvv09MTAx33nknV199dfCYlStX8tvf/paNGzfSv39/7rjjDsAsaCsuLsbr9XL77bezePFicnJy6Ny5M7/61a/4zW9+E2zjxhtvpKioiOHDh/PCCy/gcDhYtWrVPts+XEpKSg7btVqb2+2moqKCxYsXNygOLC8vb3E7rRY6NsftdrNy5Uruueee4DaLxcKkSZP49ttvD8k177nnHmbMmBH8XFxcTFpaGqeddhrR0dGH5JptzePxsGDBAiZPnozdbm/r7ogcc/QMirQ9PYcibUvPoEjb0jN4eFVWVrJz504iIyNxuVwAlLurGf73tgl919w/mXBHy2Ke8PBwIiMjWbBgARMnTsTpdNbZ//3335OSksILL7zA6aefjtVqDWYp06ZN4+GHH8bpdPLKK69w6aWXsm7dOrp06QKYec+//vUvHnzwQWbOnMncuXO54447mDJlCn379qW0tJRLL72USZMm8dprr5GRkcFvf/tbACIiIoiOjsbj8dC9e3duueUWEhIS+Oabb/jNb35Dt27duOiiiwCw2+0sXryY+Ph45s+fH7z2vto+1Px+PyUlJURFRbU4BD7SVFZWEhYWxsknnxz83Q7Yn+D2sISOeXl5eL1ekpOT62xPTk5m/fr1LW5n0qRJrFq1irKyMjp37sxbb73F8ccf3+ixTqezwUMD5i9le//D91i4R5EjmZ5Bkban51CkbekZFGlbegYPD6/Xi2EYWCwWLBZzyYzAa1sI7ce+OBwO5syZw/Tp03n++ecZMWIE48eP55JLLmHIkCHB/CY+Pr7OdHfDhw9n+PDhwc9//vOfee+99/joo4+4+eabg9unTp3KTTfdBMDdd9/Nk08+yVdffUX//v1544038Pl8zJ49G5fLxeDBg9mzZw833HBD8B6cTicPPvhgsL2ePXuybNky3n77bS655BLAnHMyIiIiWOUI8O9//3ufbR9qgSHVgd+No5HFYlbNNvZnyf782XJYQsfWsnDhwrbuwhHro5/2MGdpBgleC1PbujMiIiIiIiIix6Awu5W1D05ps2vvjwsuuIAzzzyTr7/+mu+++45PP/2URx55hP/85z91hkKHKi0t5f777+fjjz8mMzOT6upqKioq2LFjR53jhgwZEnxvGAYpKSnk5OQAsG7dOoYMGVKngq6xgrJnnnmG2bNns2PHDioqKnC73QwbNqzOMYMHD64zj2NL25bD47CEjomJiVitVrKzs+tsz87OJiUl5XB0od0rLPewYnshg+PauiciIiIiIiIixybDMFo8xPlI4HK5mDx5MpMnT+bee+/l17/+Nffdd1+ToeOdd97JggULeOyxx+jVqxdhYWFceOGFwTktA+pXwxmGsV+LqrzxxhvceeedPP744xx//PFERUXx6KOPsmzZsjrHRUREtLhNOfwOS52nw+Fg5MiRLFq0KLjN5/OxaNEiJc6tJCnKHEpe7Dk65wsQERERERERkbY1YMAAysrKADM49Hq9dfYvXbqUq6++mvPOO4/BgweTkpLCtm3b9usa/fv356effqKysjK47bvvvmtwnRNOOIEbb7yR4cOH06tXL7Zs2dIqbcvh02qhY2lpKenp6cEVqDMyMkhPTw+W2M6YMYNZs2bx0ksvsW7dOm644QbKysqCq1nLwekQCB3d+zhQRERERERERI5p+fn5TJw4kVdffTW4KvVbb73FI488wjnnnAOYK1gvWrSIrKws9u7dC0Dv3r155513SE9PZ9WqVVx22WX7VcEIcNlll2EYBtOnT2ft2rV88sknPPbYY3WO6d27NytWrOCzzz5j48aN3HvvvXz//fet0rYcPq0WOq5YsaLOhKIzZsxg+PDhzJw5E4CLL76Yxx57jJkzZzJs2DDS09OZN29eg8Vl5MB0iDbnKyj2mCsliYiIiIiIiIg0JjIykrFjx/LEE09w8sknM2jQIO69916mT5/O008/DcDjjz/OggULSEtLC2Y9//jHP4iLi+OEE05g2rRpTJkyhREjRuz3tT/88ENWr17N8OHD+eMf/8jf//73Osdcf/31nH/++Vx88cWMHTuW/Px8brzxxlZpWw4fw3+MJFTFxcXExMRQVFR0WJZIP9yqqr30/dM8AJbfcwodYjSvgcjh5vF4+OSTT5g6dapWCxRpI3oORdqWnkGRtqVn8PCqrKwkIyOD7t2711m4RI5tPp+P4uJioqOjj9rVq5v73d6ffO3ovHtpwGmzEhtm/p9KXonGWIuIiIiIiIiISNtR6NiOJEaay8TnlFa1cU9ERERERERERORYptCxHQksJpNXotBRRERERERERETajkLHdiSpJnRUpaOIiIiIiIiIiLQlhY7tSGB4da7mdBQRERERERERkTak0LEdCQyvztXwahERERERERERaUMKHduRwPDqXA2vFhERERERERGRNqTQsR2JCzeHVxeVe9q4JyIiIiIiIiIicixT6NiORDitAJRWVbdxT0RERERERERETHPmzCE2NratuyGHmULHdiTSaQOgzO1t456IiIiIiIiIyJEqNzeXG264gS5duuB0OklJSWHKlCksXbo0eIxhGLz33nv73Xa3bt148skn62y7+OKL2bhx4wH3d86cORiG0eDnP//5zwG3GWrbtm0YhkF6enqrtCcmW1t3QFpPIHQsrarG7/djGEYb90hEREREREREjjQXXHABbrebl156iR49epCdnc2iRYvIz88/JNcLCwsjLCzsoNqIjo5mw4YNdbbFxMQcVJuHgtvtbusuHDFU6diOBEJHj9dPVbWvjXsjIiIiIiIiIkeawsJCvv76a/7+978zYcIEunbtypgxY7jnnns4++yzAbNaEeC8887DMIzg5y1btnDOOeeQnJxMZGQko0ePZuHChcG2TznlFLZv385vf/vbYDUiND68+sMPP2T06NG4XC4SExM577zzmu23YRikpKTU+QkEmWvWrOGMM84gMjKS5ORkrrjiCvLy8oLnzps3j5NOOonY2FgSEhI466yz2LJlS3B/9+7dARg+fDiGYXDKKacE7+f222+v049zzz2Xq6++Ovi5W7duPPTQQ1x55ZVER0dz/fXXA7BkyRLGjRtHWFgYaWlp3HrrrZSVlQXP+9e//kXv3r1xuVwkJydz4YUXNnv/RyOFju1IhMMafK95HUVEREREREQOM78f3GVt8+P3t6iLkZGRREZG8t5771FVVdXoMd9//z0AL774IpmZmcHPpaWlTJ06lUWLFvHjjz9y+umnM23aNHbs2AHAO++8Q+fOnXnwwQfJzMwkMzOz0fY//vhjzjvvPKZOncqPP/7IokWLGDNmzP5+24AZok6cOJHhw4ezYsUK5s2bR3Z2NhdddFHwmLKyMmbMmMGKFStYtGgRFouF8847D5/PLNhavnw5AAsXLiQzM5N33nlnv/rw2GOPMXToUH788Uf+9Kc/kZGRwdSpU7ngggv46aefePPNN1myZAk333wzACtWrODWW2/lwQcfZMOGDcybN4+TTz75gO7/SKbh1e2IxWLgtPip8hmUVVWTGOls6y6JiIiIiIiIHDs85fDX1La59h/2gCNin4fZbDbmzJnD9OnTee655xgxYgTjx4/nkksuYciQIQAkJSUBEBsbS0pKSvDcoUOHMnTo0ODnhx56iHfffZcPPviAm2++mfj4eKxWK1FRUXXOq+8vf/kLl1xyCQ888ECdtptTVFREZGRk8HNkZCRZWVk8/fTTDB8+nL/+9a/BfbNnzyYtLY2NGzfSp08fLrjggjptzZ49m6SkJNauXcugQYOC95uQkNBsv5syceJE7rjjDgB8Ph9XX301l112WbBKsnfv3jz11FOMHz+eZ599lh07dhAREcFZZ51FVFQUXbt2Zfjw4ft93SOdKh3bix9fw/bMKO6zvQRASaUqHUVERERERESkoQsuuIA9e/bwwQcfcPrpp/Pll18yYsQI5syZ0+x5paWl3HnnnfTv35/Y2FgiIyNZt25dsNKxpdLT0zn11FP365yoqCjS09ODP9988w0Aq1at4osvvghWcEZGRtKvXz+A4BDqTZs2cemll9KjRw+io6ODw8X3t99NGTVqVJ3Pa9as4aWXXqrTpylTpuDz+cjIyGDy5Ml07dqVHj16cMUVV/Daa69RXl7eKn05kqjSsb3wlGMUbqOjxUznQ4dXf7Ehh5e+2cZD5wwiLT68rXooIiIiIiIi0r7Zw82Kw7a69n5wuVxMnjyZyZMnc++99/LrX/+a++67r858hfXdeeedLFiwgMcee4xevXoRFhbGhRdeuN+LpxzIojIWi4VevXo12F5aWsq0adP4+9//3mBfx44dAZg2bRpdu3Zl1qxZpKam4vP5GDRo0D77bbFY8Ncbtu7xeBocFxFRt8K0rKyM6667jttuu63BsV26dMHhcPDDDz/w5ZdfMn/+fGbOnMn999/P999/32Duy6OZQsf2oqaEOtww52Moral03FNYwTUvmnMvPPrZBp66tP2V64qIiIiIiIgcEQyjRUOcj0QDBgzgvffeC3622+14vd46xyxdupSrr746uOhLaWkp27Ztq3OMw+FocF59Q4YMYdGiRVxzzTUH3e8RI0Ywd+5cunXrhs3WMObKz89nw4YNzJo1i3HjxgHmIi/1+ww06HdSUlKdeSm9Xi9r1qxhwoQJzfZpyJAhrFu3rtGQNMBmszFp0iQmTZrEfffdR2xsLJ9//jnnn39+8zd8FNHw6vai5l80wqkEoMxtho5/+3R98JB5P2dRVNEwkRcRERERERGRY0N+fj4TJ07k1Vdf5aeffiIjI4O33nqLRx55hHPOOSd4XLdu3Vi0aBFZWVns3bsXMOcmfOedd0hPT2fVqlVcdtllwcVYQs9bvHgxu3fvrrOCdKj77ruP//73v9x3332sW7eO1atXN1qp2BI33XQTBQUFXHrppXz//fds2bKFzz77jGuuuQav10tcXBwJCQn8+9//ZvPmzXz++efMmDGjThsdOnQgLCwsuAhNUVERYM7V+PHHH/Pxxx+zfv16brjhBgoLC/fZp9tuu41vvvmGm2++mfT0dDZt2sT7778fXEjmo48+4qmnniI9PZ3t27fz8ssv4/P56Nu37wF9B0cqhY7tRaDSEbPSMTCnY/rOvcFD3NU+Pkjfffj7JiIiIiIiIiJHhMjISMaOHcsTTzzBySefzKBBg7j33nuZPn06Tz/9dPC4xx9/nAULFpCWlhZc5OQf//gHcXFxnHDCCUybNo0pU6YwYsSIOu0/+OCDbNu2jZ49ewYXaKnvlFNO4a233uKDDz5g2LBhTJw4MbiC9P5KTU1l6dKleL1eTjvtNAYPHsztt99ObGwsFosFi8XCG2+8wcqVKxk0aBC//e1vefTRR+u0YbPZeOqpp3j++edJTU0Nhq/XXnstV111FVdeeSXjx4+nR48e+6xyBBg0aBBffPEFGzduZNy4cQwfPpyZM2eSmmouMhQbG8s777zDxIkT6d+/P8899xz//e9/GThw4AF9B0cqw19/cHo7VVxcTExMDEVFRURHR7d1d1rftqUwZyp7jBROqPgHd5/Rj+njetD3T59S7fNz2dguvL5sB+cOS+XJSzTEWuRQ8Hg8fPLJJ0ydOhW73d7W3RE5Juk5FGlbegZF2paewcOrsrKSjIwMunfvjsvlauvuyBHC5/NRXFxMdHQ0FsvRWevX3O/2/uRrR+fdS0MOc3i1i9o5HXNKKqn2+bFaDE7unQjA5tzSJpuo9HhZujkPj9fX5DEiIiIiIiIiIiL7ooVk2gu7ObzaGQgdq6rZvbcCgJRoF32SowDYnFOKz+fHYjHqnL41t5Rfv7yCrbllnDWkI09fVrc8WkREREREREREpKVU6dhe1FQ6Ov0hoWOhGTp2igujS3w4DquFSo8vuD3UXz9Zx9bcMgA++imTT1ZnNjhGRERERERERESkJVTp2F7UrF5tw4uNakora0PHzrFh2KwWuidGsCG7hM25paTFm8f7/X627N3B0uxPcabsIDG2lL3uHP60Ap7dHEFiWCK943ozKHEQp6SdQrSjHc6HKSIiIiIiIiIirUqhY3tRs3o1mCtYhw6v7hQXBkCvDpFsyC5hS04pPTpW8PHWj/k041O2FW/DlmyeWwxYneABthXnsq14GyuyV5iXsDgYnzae6YOn0z+h/+G8OxEREREREREROYoodGwvrA78hgXD7yMsEDoGhlfHmqFjz6QIrBEbeG376/zf1p+CpxpYqS7vTP+4ofxy5Cge/zSXPXurueO0nqR1qGJjwUaW7F7ClqItLNi+gIXbFzKt5zRuH3E7SeFJbXK7IiIiIiIiIiJy5FLo2F4YhjnE2l1KmGGGjmVV1QCkxrr4etfXfFb4BOFdNpHnBQODEzqdwJndz+SfHzrZmOXhN+NHMbl3MqvW/cycPdvYk5XKTccPhp5wx6g7WF+wnhd/fpFPMz7lgy0fsGT3Eh45+RHGdhzbxjcvIiIiIiIiIiJHEi0k057UzOsYThWlldXkl7kx7AXM2vgHblx0I3sqNuH3OYiqmsjH53/Mc5Oe46weZ7GrwAdAjyRziPZJvRIBWJZREGzaMAz6J/TnkZMf4fWpr9M3ri8FlQVct+A6Xlj9An6//zDfrIiIiIiIiIiIHKkUOrYnNfM6hlFFuaeatLDXiOnxGOn5y3BYHEztcgllm3+HP/9s0qLSAMgrdVPu9mIY0Llm7scBqeZiMdvyyvB4fQ0uMzhpMK9OfZVze52Lz+/jyR+e5J8//lPBo4iIiIiIiIiIAAod25eaSscwoxJr3H/ZmrQSr8XHsOg+vHPOO9wy7Lf4vZHkl7qDAeGOgjIAUmPCcNqsAHSMcRHusFLt87M9v7zRS7lsLh468SHuHHUnALNWz+LJH55U8CgiIiIiIiIih8yXX36JYRgUFhY2ecycOXOIjY09bH2Sxil0bEf8NaFjQcIqqmNWYvH7uTN/L88kTaFrdFcSIpwAuL0+SmvmewyEil3iw4PtGIZBz6RIALbkljZ7zasGXsXdY+4GYPaa2by67tXWvSkRERERERERaVVXX3015557blt344h2//33YxhGg5+FCxe2SvstCU+Pdgod2xNHOJvsdnYmrgVgZl4BVxWX4Mo3P4c5rIQ7zGrGgjI3UBs6dk0Ir9NUrw5m6Lg5p/nQEeDy/pdzx8g7AHhsxWMs3b20FW5GRERERERERNoLj8fT1l3YbwMHDiQzM7POz8knn9zW3WrgSP1uFTq2J/Zw/htthoUTy8q5oNQcOm3LWR08JD7CAUB+Tei4s8AMHdPi64aOPWsWldlXpWPAVQOv4rxe5+Hz+7jrq7vIKMo4iBsRERERERERkbayZs0azjjjDCIjI0lOTuaKK64gLy8vuH/evHmcdNJJxMbGkpCQwFlnncWWLVuC+7dt24ZhGLz55puMHz8el8vFa6+9FqywfOyxx+jYsSMJCQncdNNNdUKzV155hVGjRhEVFUVKSgqXXXYZOTk5Dfq4dOlShgwZgsvl4rjjjmPNmjXN3tP777/PiBEjcLlc9OjRgwceeIDq6upmz7HZbKSkpNT5cTjMXGXJkiWMGzeOsLAw0tLSuPXWWykrK2vRfWzbto0JEyYAEBcXh2EYXH311QB069aNJ598sk4/hg0bxv333x/8bBgGzz77LGeffTYRERH85S9/2ec9+v1+7r//frp06YLT6SQ1NZVbb7212fs/WAod25Fim4OPIs2w8JfFJcHtRs5a8HkBSAiEjqU1lY4FzVc6bmlBpSOYv/B/Ou5PjOgwghJPCb9f/Hs83iMzaRcRERERERE5FPx+P+We8jb5aa01FgoLC5k4cSLDhw9nxYoVzJs3j+zsbC666KLgMWVlZcyYMYMVK1awaNEiLBYL5513Hj5f3cVo7777bm677TbWrVvHlClTAPjiiy/YsmULX3zxBS+99BJz5sxhzpw5wXM8Hg8PPfQQq1at4r333mPbtm3BQC7UXXfdxeOPP873339PUlIS06ZNa7Li7+uvv+bKK6/ktttuY+3atTz//PPMmTMnGNbtry1btnD66adzwQUX8NNPP/Hmm2+yZMkSbr755hbdR1paGnPnzgVgw4YNZGZm8n//93/71Yf777+f8847j9WrV3Pttdfu8x7nzp3LE088wfPPP8+mTZt47733GDx48AHdf0vZDmnrclh9SyUVFgtJbhujKqso9buw4CfcUw75myGpLwmRTuxU02/xTbC9J5kFpwKQFle/0tEMHbfmljW4TlMcVgePjn+U8z84n3UF63gm/RluH3l7q92fiIiIiIiIyJGsorqCsa+PbZNrL7tsGeH28H0fuA9PP/00w4cP569//Wtw2+zZs0lLS2Pjxo306dOHCy64oM45s2fPJikpibVr1zJo0KDg9ttvv53zzz+/zrFxcXE8/fTTWK1W+vXrx5lnnsmiRYuYPn06ANdee23w2B49evDUU08xevRoSktLiYyMDO677777mDx5MgAvvfQSnTt35t13360TjgY88MAD3H333Vx11VXBdh966CF+97vfcd999zX5XaxevbrONQcMGMDy5cv529/+xuWXX87tt98OQO/evXnqqacYP348zzzzTPA+LBZLk/cRHx8PQIcOHQ5o0ZvLLruMa665Jvj52muvbfYed+zYQUpKCpMmTcJut9OlSxfGjBmz39fdH6p0bEfWUQVAvwoLBlBCOJvpbO7M2wSYw6vHWX4iLWsBLHuO31TNDm4P1TE2DICSqmrK3c2XG4fqEN6B+4+/HzAXlvk+6/uDuCMREREREREROZxWrVrFF198QWRkZPCnX79+AMEh1Js2beLSSy+lR48eREdH061bNwB27NhRp61Ro0Y1aH/gwIFYrdbg544dO9YZPr1y5UqmTZtGly5diIqKYvz48Y22ffzxxwffx8fH07dvX9atW9fkPT344IN17mn69OlkZmZSXl7e5HfRt29f0tPTgz+B6sRVq1YxZ86cOu1NmTIFn89HRkbGft3Hgar/3e7rHn/xi19QUVFBjx49mD59Ou++++4+h5cfLFU6tiPrvOZQ6AFuc+h0ud9JkSXa3FlZCJjDq0dZVgTPudLyKf9kGlGuur8KEQ4rYXYrFR4vuSVVdE1o+a/KpK6TOLfXuby3+T1mLp3Ju+e8i8vmOog7ExERERERETnyhdnCWHbZsja7dmsoLS1l2rRp/P3vf2+wr2PHjgBMmzaNrl27MmvWLFJTU/H5fAwaNAh3TR4REBER0aANu91e57NhGMFh2WVlZUyZMoUpU6bw2muvkZSUxI4dO5gyZUqDtvf3nh544IEGVZcALlfTeYXD4aBXr16Ntnf99dc3Oidi586dyc/P54wzzjig+7BYLA2Gyjc2bLz+d7uve0xLS2PDhg0sXLiQBQsWcOONN/Loo4/y1VdfNfjfpLUodGwn/H4/66uLABjuNsPHMlyUGZHgByr2ApAQbmWS9Yc65w60ZBDprPurYBgGSVFOdhSU14SODf+gaM7vR/+eb/Z8w67SXfz7p39z64hDOzmpiIiIiIiISFszDKNVhji3pREjRjB37ly6deuGzdYwNsrPz2fDhg3MmjWLcePGAeaiKq1h/fr15Ofn8/DDD5OWlgbAihUrGj32u+++o0uXLgDs3buXjRs30r9//0aPHTFiBBs2bGg0QDwQI0aMYO3atY225/P52LRp0z7vI7AgjdfrrbM9KSmJzMzM4Ofi4uJg9eS++rSvewwLC2PatGlMmzaNm266iX79+rF69WpGjBixz/YPhIZXtxNZZVkU+qqw+f2M8hQAUOYPo9QSZR5QUQhAr+rNJBrFlBmRlPU+G4Dhtu3YrA1/FTpEOQHIKana7/5EOiL5w5g/APDizy+yee/m/W5DRERERERERA6NoqKiOkOH09PT2blzJzfddBMFBQVceumlfP/992zZsoXPPvuMa665Bq/XS1xcHAkJCfz73/9m8+bNfP7558yYMaNV+tSlSxccDgf//Oc/2bp1Kx988AEPPfRQo8c++OCDLFq0iDVr1nD11VeTmJjIueee2+ixM2fO5OWXX+aBBx7g559/Zt26dbzxxhv86U9/OqB+/v73v+ebb77h5ptvJj09nU2bNvH+++8HF5Lp3LnzPu+ja9euGIbBRx99RG5uLqWlZgHZxIkTeeWVV/j6669ZvXo1V111VZ3h6E3Z1z3OmTOHF154gTVr1rB161ZeffVVwsLC6Nq16wF9By2h0LGdWFdgzlvQ0+3BWVOFW4aTckvNhKc1w6uTvWZavtXanaL4YQAMtW5rtM2kmtAx9wBCR4CJXSZyStopVPuqeei7h1ptJS0REREREREROThffvklw4cPr/PzwAMPkJqaytKlS/F6vZx22mkMHjyY22+/ndjYWCwWCxaLhTfeeIOVK1cyaNAgfvvb3/Loo4+2Sp+SkpKYM2cOb731FgMGDODhhx/msccea/TYhx9+mNtuu42RI0eSlZXFhx9+GKwerG/KlCl89NFHzJ8/n9GjR3PcccfxxBNPHHDgNmTIEL766is2btzIuHHjGD58ODNnziQ1NRWAxMREZs+e3ex9dOrUKbjATXJycjCwvOeeexg/fjxnnXUWZ555Jueeey49e/bcZ5/2dY+xsbHMmjWLE088kSFDhrBw4UI+/PBDEhISDug7aAnDf4wkQcXFxcTExFBUVER0dHRbd6fVPZP+DM+teo5zSkr5c55Z6fiB93j2RAzgN5UvwKAL4MLZbPvwEbqt/Atf2MaRNOFGBi24lGwjieT7GlYi3vf+Gl76djs3TejJXVP6HVC/MkszOef9c6ioruCvJ/2VaT2nHdR9ihzJPB4Pn3zyCVOnTj1kc2KISPP0HIq0LT2DIm1Lz+DhVVlZSUZGBt27d292XkA5tvh8PoqLi4mOjg6uXn20ae53e3/ytaPz7qWBawZew4v9rueKopLgtjK/i3JrzS9AzfBqlzsPgBziyAzvA0CyPxfK8hu0ebCVjgB4Y7l2oLns/eMrHqe0Zr5JERERERERERFpvxQ6thPh9nCGJQ2jb8iKRuW4qLLVzOlYM7zaVVkTOvpiKPQ62elLMvfnN6x07BBlptkHMqcjwPKMAsY/8iWzPkojOSyN/Mp8nl317AG1JSIiIiIiIiIiR4+jJnQsLCxk1KhRDBs2jEGDBjFr1qy27tIRxx8eX+dzGU6qbIFKR3P1akdlLgBZvhiKK6vJIbbm4JwG7TVV6ZhZVMHl//mO2UsympynsdLj5fdzf8Lt9ZFf6iV76+kAvLbuNS0qIyIiIiIiIiLSzh01oWNUVBSLFy8mPT2dZcuW8de//pX8/IZDgo9pYXVDx3K/i0p73eHVtvKa0NEbRUmlh1x/rLm/NLtBc02Fji8u3cbSzfk8+NFaHv50faNd+WR1Jhl5ZcSE2YkLt1NS2JMBMSfg9Xt5ePnDWlRGRERERERERKQdO2pCR6vVSnh4OABVVVX4/X4FV/W5YvFjBD+W4cITCB0ri8DvD4aOe7wxFFdUk+uPMfeXNqx07FATOuaVVuH1md+11+fn/fTdwWNe/W471V5fg3OXZ5iL2VwyJo1Lx3Qxu1d8Lk6rk2VZy5i/ff5B3qyIiIiIiIhI21M2Ie1Na/1Ot1rouHjxYqZNm0ZqaiqGYfDee+81OOaZZ56hW7duuFwuxo4dy/Lly/frGoWFhQwdOpTOnTtz1113kZiY2Eq9bycsVtzWiODHcr+LakdNqOj3QsVejAqzOjTHF0NBWVWzlY7xEeZS8z4/7C13A/DNljyyi6uIdtlw2S2Uub2szyppcO6K7eZw7lFd4zlzSEcAvt0IV/S/BoBHv3+Uck/5wd+ziIiIiIiISBsIrBBeXq6/20r74nabGZDVaj2odmyt0RmAsrIyhg4dyrXXXsv555/fYP+bb77JjBkzeO655xg7dixPPvkkU6ZMYcOGDXTo0AGAYcOGUV1d3eDc+fPnk5qaSmxsLKtWrSI7O5vzzz+fCy+8kOTk5Na6hXbBbYvC6TVXiC7FhcseBjYXVFdC3iYM/FT7LewlirxSN2E0Xelos1oId1gpd3spq6omMdLJN1vM0PKMQR3JLqnkyw25rNhWwKBOMcHzCsrcbM4x+zCyaxxx4XaSo51kF1cxOvZ8Po38kN2lu5m1eha3jbjtEH8jh8fmnBI+XZ1FYYWHvilRnDYgmdhwR1t3S0RERERERA4Rq9VKbGwsOTnm36fDw8MxDGMfZ0l75/P5cLvdVFZWYrEcNQOMg3w+H7m5uYSHh2OzHVxs2Gqh4xlnnMEZZ5zR5P5//OMfTJ8+nWuuMSvdnnvuOT7++GNmz57N3XffDUB6enqLrpWcnMzQoUP5+uuvufDCCxs9pqqqiqqq2rkIi4uLAfB4PHhCVnhuTzweD25bJNTcdjkuIi3gd8VglFZSnb0WG5BPND4s5JZU4qqpdPQVZ+Jt5HuJqAkdi8qq8EQ72JFfBkCPxDA6xTr5ckMuyzPyuXxM5+A5y7fk1hwTQZTDoLq6mn7JUWQXV7Exs5w7RtzBjMUzmPPzHM7seiZdo7se0u/lUPJ4ffzt0w28unwnodXH9zusXDSyE9ee2I2OMa6266AcVoE/W9rrnzEiRwM9hyJtS8+gSNvSM3j4JSQk4PV6yc5uOHpQjk1+v5/KykpcLtdRG0JbLBZSU1MbLQzcnz9fWi10bI7b7WblypXcc889wW0Wi4VJkybx7bfftqiN7OxswsPDiYqKoqioiMWLF3PDDTc0efzf/vY3HnjggQbb58+fH5wbsj0aY4sKvi/zu8jcvYuSahvRwLbl8+gFwSHVuwtKcNXM6ViZt50Fn3xSpy2HpxhndTjgYuFXX5MRDT9nWAGD7K3riLD7ARtLN2TxySe18zx+utMCWEg0Svikpk17mblt/vK1XNTDS29bbzZVb+J3837HlRFXHpUPotcPL2yw8PNe818uBsb5SHTBxiKDzHIvc77dwcvfbWdUop+TU3x0CCM446ZhgP3o+wcPaaEFCxa0dRdEjnl6DkXalp5BkbalZ/DwMwzjoIeiihwJ/H4/Xq+XDRs2NLp/f6YTOCyhY15eHl6vt8FQ6OTkZNavb3z14/q2b9/OddddF1xA5pZbbmHw4MFNHn/PPfcwY8aM4Ofi4mLS0tI47bTTiI6OPrAbOcJ5PB5yX3gh+LkcF4O6dyMyrzPs2k2P6GrIhb2WOABKPQa5xAIQ5i1h6hlnmGlYVQnWt6/Csm0xvaw9mcyDDBkxmvF9kvjz6i8BN9MmnkjXeBf//PkLijwGp0w6jXCH+eu0+N01sGsPJw7pw9RTegDg+ymThW+tptwZx5lnjmVQ8SB+8ckv2FS9icihkYzvPP4wflMHz+/3c+8Ha/l5725cdgtP/mIIp/bvENy3ZHM+//46g+8y9rI812B5bsOEsUdiBJeO6cwVY7tgtRx9oas05PF4WLBgAZMnTw7O7yIih5eeQ5G2pWdQpG3pGRRpe+39OQyMJG6JwxI6toYxY8a0ePg1gNPpxOl0Nthut9vb5f/oAW5rZPB9GU7CHDYs4fEAWEqzAKg0aof75tXM6Wj4PNirSyE8HjYvhW2LAejt3UJnI49KL3ixkFtqTibaw5ZLzHNTed7Zm+urbiG/3EtMRBgAWcXm+O60hIjgdz04zQw6N2aXYrXa6JXQi6sGXMULa17gsR8e46S0k3DZjp5hyM98sZk3V+zGMOCpS4Zz2sCUOvsnDujIxAEdSd9ZyHNfbuHrTbmUub11jtmaV8ZfPtnA5+vzmH31aMIc+lex9qK9/zkjcjTQcyjStvQMirQtPYMiba+9Pof7c0+HJXRMTEzEarU2mOMgOzublJSUJs6SA+G21YaO5X4XdqsFHDUrWlcUAuCz1P6CuLHjc8ZiqSo0F5MJj4ecutWnI40NlFedyu7CCsCc5zF66V+gPJ8pRj5nWMaSWXQcPZLMa+8prAQgNTYs2Ea3hAgcNgvlbi/bC8rpnhjBdUOu48Ot5qIyL655kRuGNT1c/kjyfvpuHv3MLDO+f9rABoFjqGFpsTx3xUj8fn8wdDSASo+Xj1dn8vdP1/Pt1nxufG0l/7lqtCoeRURERERERKRdOCyzyjkcDkaOHMmiRYuC23w+H4sWLeL4448/HF04ZngttSsml+HCYbOAtWabx1wExmfUTaX9keawYEprQuHcdXX2j7RsorSqml17zdDxlOg9GOs+CO7/g+11MmsCSb/fHwwnO4WEjjarhZ41oWRGnrmydbg9nLtG3QXAv1f/m9W5qw/splvRtrwyZr6/hukvr+D+D37m2y35eH21K8S8n76bu976CYBfn9Sdq07o1qJ2DcMg0mkj0mkjwmkjIdLJlcd34+VfjcFlt/DFhlxmL8k4FLckIiIiIiIiInLYtVqlY2lpKZs3bw5+zsjIID09nfj4eLp06cKMGTO46qqrGDVqFGPGjOHJJ5+krKwsuJq1tA5vSKBYiaMmdKzZ5jZDR7+lbuhoCU+AfKCiwNwQqHQcdjmkv8Yoy0YWVVWza685Weh4e00o2XMi3i1fkWbJZWHONiCN/DI37mofhgHJ0XWHS3eKdbEuszhYCQkwpdsU5m+fz4LtC7jzqzt5/czXSQhLaJXvYn8t3pjLr19agdvrC26b8802EiMdjOudxO7CCpZnmN/RWUM68oep/Q/6miO7xnP/tIHc/c5qHp2/gckDkumWGHHQ7R6osqpqVu0sJH1XIVtyyiiq8FBWVU2Uy0Z8hIPOcWH0TIqkV4dIutZUr4qIiIiIiIiI1NdqoeOKFSuYMGFC8HNgEZerrrqKOXPmcPHFF5Obm8vMmTPJyspi2LBhzJs3r8HiMnJwfHUCRcMcXh2odPSa8zH6rbXHhNmtGI6a1bw9leCthvxN5ucRV0H6a/Q1dvBJRQm7POZxPS17zP2dx1CQuYOk8s1Yc9YA49hTU+XYIcrZIJDqGGNWPmYWVdT20DB44IQH2FCwgR0lO7j181uZddoswu2Hd4XxzTml3PDqStxeH8f1iOfMIams3lXI/LXZ5JW6efdHc3Vum8Xg+vE9uGNyXyytNBT64tFpfPRTJks25/GPBRt56tLhrdJuS1W4vXy4ag+frslk6eb8OqFrc6wWg67x4fSoCSH7JEfSJzmKXh0icdk1P6WIiIiIiIjIsazVQsdTTjkFv9/f7DE333wzN998c2tdUhqRHT0En2El3dsdoO7w6hqhlY4RThvYa4ZBe8phb4YZTtrDofNoqqwROL1lWMuy2GOkApBavcs8PrE3pXH9SSrfTNTetQDB0DF0PseAjrFm5WNmSKUjQJQjiqdPfZpffvJLfsr7iRsW3sA/T/0n0Y7Ds8q43+/ngQ9/psztZWz3eF66dgxOmxXoyl+8Pr7bms8P2wuJDrNx2sCUOsPGW4NhGNx9Rj/O+ucSPli1h9+M78mA1EN/70XlHv799RZeW7aDwnJPcHtqjIvhXeLo3zGK+AgnEU4rJZXV5Je62V5QxpbcMrbklFJaVc3WvDK25pWxcF3tfK0WA7rEh9MnOcr8SYmib3IU3RNVGSkiIiIiIiJyrDhqVq+WlvHYonhr4tf84eMtADitIcOrA0JCyCiXzQwYATwVkFMzdDqxD1gsVDricVaUYSvPpcxmzv0YV7695pjeeDsMht0f0qF8IwC7G1lEJiC1ptJxT0ilY0D3mO48N+k5rltwHT/k/MDlH1/OY+Mfo2983wP7IvbDVxtz+XpTHnarwSMXDqkJHE12q4VxvZMY1zvpkPZhUKcYzhrSkY9+yuTx+Rt44erRh/R6X6zP4a63V5FXsxp5WnwYF49KY8rAFHp1iMQwmq/i9Pv95JRUsTmnlC25pWzKLmVjdgkbs0vYW+5hW3452/LLmb+2Noy0WQy6J0YEw8juSRF0inXRKTacpCinFtERERERERERaUcUOrZDFlckXszgzG4zGgkda/9nj3BaQyodK2oXk4lNA6DKlQgVO7FX5FHm8BJHMS7PXvOYhF4404bCj9DNY4acgUrHzo1VOsbUVDoWVTbYBzA4aTCzp8zmls9vYVvxNi75+BIu7H0h1w66lo6RHff/i2ihf31h9v3K47vRNaHt5lOcMbkPn67JYtH6HFZuL2Bk1/hDcp2XvtnG/R/+jN8PvTpEcudpfZk8IHm/Qj/DMEiOdpEc7eLEXonB7X6/n7xSN5uyS9hQE0JuzC5lY1YJJVXVbMopZVNOKR+vzqzTns1ikBLjIjU2jKRIJ3ERduIjnMSH24mPdBIbZifcYSXcYat5tRJW81lhpYiIiIiIiMiRR6FjO+SwWkLeWxsMrw79HOEIrXQsB0tNlZ8zBoBqlxkoudz5lFFND6MmLIpJA0cEMT1GAtCJXMqLCygoMyvnEiOdDfoVqH7MLKrE7/c3Wk3XP6E/b5z1Bg99+xCf7/ycNza8wdsb32Z82ngmpE3gxE4nkhiW2OC8A7VqZyHLtxVgtxpcd3KPVmv3QPRIiuQXIzvzxvc7eWLBJl799dhWv8ab3+/gvg9+BuDSMV24/+wBdSo7D5ZhGCRFOUmKcnJCvTAyq7iSDVklbMouZUN2CTsKytm9t4Ks4kqqfX527a0IrpC+P6wWA6thYLGAxQi8N7AY5j6LYRD6q1Z/Foj6k0I0nCXC3+x+f519ftxuK/ev+qLF7YdOS7GPS5uM0Hs2X60W8x7rb7dYDKwWsBoGRs1xge8q8N0Etpn7G2631P9+Q/cH35v79rW9tr80cmztq81S97rWkGMbv37T51gC++rdk4iIiIiIiBxaCh3bIXto6GhrOLzaCAkdI+vM6RgS+DgjAfCGm8OKw9wFlPmrGWqpCR0TegEQHZvEXn8kcUYpxdnbKK7wAjXDtutJjnZhGOCu9pFf5m40mARIDEvkyQlPsjxrObN+msWyrGUs2rGIRTsWAdAxoiMDEwYyMHEggxMHMzBhIJGOyJZ+PXX8Z0kGANOGpDZYbbst3DShF2+v3MWSzXmtXu24cnsBf3x3DQDXn9yDu8/ot89h1K3FMAw6xoTRMSaMU/p2qLPP6/OTU1LJnsIKdhdWUlBaRUGZm/wyN3vL3eSXuimq8FDu9lLu9lLhrqbc4w2Gd16fHy9+8B6WW2kBg7Jqz74PkzYVDDGDgSd1gsxgiNlIwFsboNIgBG3s+LrBZyPn1AtlA682a93wttH+NQh0Az80CFobnGPUHmu1WOoE0vs6x2Jw2P78EBERERGRo5NCx3bIYav9i6DdajRf6eisV+nor0lunFEA+CPM0DHCU0CZz0uakWPuj+8ebKPAiCOOUqoKMympNEOy6LB6Q7oxA9DESCe5JVVkFlY2GTqC+ZfZsR3HMrbjWNYXrGfBtoW8u2E+ue5tZJZlklmWycIdC81jMegR04MxHccwIW0Co1JGYbc0vH59uwsr+KRmmO+vxnXfx9GHR1p8OBfWVDs+uXATr/yqdaodiys93Pz6j1T7/Jw5pONhDRz3xWqpDSRHdm3ZOX6/n6pqH+VuLx6vzwwefX78fvD6/fj8fnw+v/neBz6/v061o0Hde6//VTT4vK/ja1491dV8vXgxJ598Mna7rZEjmj/f3Gc0uQ/Me/H5/Xh9ZuBa+7nhdm/Nd+BvZHtwf8j3Vn97oL2636e/5ljqtFVne71jff6abQ3aCOmPr7YPda9f7xxvI9f3+amud9w+1jULXkMOXJ3KWaM2pLXVCSdDw1KwWSx1KnDrB62W+tWxRu3n+vsMo6aNevvAz45tFtI/3YDdZq13XG2bDdsIuV4giN7HPqN+P5vY1+C4kO+tsTZsFgO71YLdar46rBZV6IqIiIjIUUehYzsUukJwY6tXW2y1gVykq16lo9ccHh0IHS1RZlVatHcv5d5qoik394fVVuAVWuPAuxNvcSbFleZ5jVU6grkycm5JFXuKKhjcOaZF99Mrpg9/+bGIrZu6g6WS284IIy4uh9V5q1mTt4Y9ZXvYUrSFLUVb+O/6/xLnjOcXfS7kor4XkRyR3GS7Ly7JwOvzc0LPBAamtqwvh0Og2vHrTXms3L6XkV3jDrrNv32yjsyiSrolhPP3C4YcMYHjgTIMA5fdisveekPDW4PH42FTuDlXpt2+7+BbDh1/SGAZDDF9jYerjYWh9YPXlpzj8/up9oacE9jvq9uX+qFsdWBbSJAa2F/tazykrW2zYaBb3Wh4HHoMzYS5ocF089/xkVdlHMrCV1nb27oTrcpqMYIhZP1A0m61YLfV7nNYLdgC+20WwuxW88dh/rlpfrYEP7tC9ocFPjusRDisRDpt2EJGUIiIiIiItJRCx3YodE5H534Nry4PacQcrmyLNkO7WN9eyjxeoi01x7hqQ7piWwJ4wVecRUmlOS9ilKvxwKVDtAsoIrekKrit3F3Npf/+DqfdysvXjmkQJH25wVxdGgCfi/8ssLDk95dx9SDzPvIq8liVs4rPMr5g3tZF7K0q4N+r/83sn1/kiv6/ZPqQ6UQ5ouq0mVlUwSvfmX8hnT6ubedyrC8tPpzzR3Tifyt28X+LNvHytWMOqr2V2/fy3+U7AXjkwqHm/+Yi7ZxRMzxZv+0Hzl9TpVrt89UNbJsMZ2sD1wbnNFWVWr+i1u9vUGHr84fsqwla/SHBaOhxXr+f6movGzdvpkePHhiGpe5xIec1aMNfW/nra2RfoGI39DhvC/b5/SFVySH9DHy/je1rrBI3sK3S4zvsvwvhNeFjlMtGpMtOtMsW/BzlsgffR4fZiQ93EBdhJy7cQXyEg2iXXVWaIiIiIsco/X2sHQqd09FubazSsXZYc92FZCrAVzMXnTMaAEdMCgBxvkLcXh/RljJzf0joWGpPhCqgNIfiSvP86CYqHRMizL7srVlwBuD5r7ayalcRAE8t2sTvTu9X55z5a7MA+OVxXVieUcDG7FIWrsvmF6PMFbYTwxI5JW0iz34SRvH2Mdii1mKPXwrh23jx5xd5f8v73DPmHk7vfnqwzcc+20hVtY/R3eI4pW9So31tSzdP6M3cH3azeGMuP+7Yy/AuB1bt6Pf7+esn6wC4aFRnxnQ/NCtii0j7YxiBeSuPrIriffF4PHzi3sjU0/oc1RXHPp8fj8+Hx+vHU+3D4/Xh9tZ89vpw12zzeP1U19tXu99PVbWXSo+PCo+XSo+XCnfNq6f2tcLtpcLjoyrw2WPOoeuuNgPOwJy6OSH/YNhSFgPiwh3ERTiID3cQG24nIdJBUpSL5GgnHWpek6NdJEQ4VFUpIiIi0o4odGyH9jm82h46p6O17vDq6krzfc3wamesGTomGkWAnxijJnQMiw22UeFIAMBalk1pVTXQdKVjXE3oWFBuho75pVU8v3hLcP/zi7dy9QndaioiodrrY+E6cx7JqYM6khjpZGP2JhasrQ0dARZvzGXF9r1EOp38+5Jf8/u5Y9iT9yMJXeZRUJnFXYvv4uvdX3PPmHt4/8d85v6wC4C7z+h/RA417pIQznnDO/H2SrPacc41B1btOG9NFiu37yXMbuWO0/q2ci9FRORQsVgMnBYrThvQ9BTIh5TH66O0spqSympKqjzma2U1pSHvzR8PpVXVFFV42FvuYW+Zm71lbkqqqvH5Ib9mcbB9sRiQEOmsE0Z2ig0jLT6cznFhdI4LJynSqcpJERERkaOEQsd2yNGg0rFuAFhnTsfQhWSqK6Cq1HxfEzqG1YSOYYabCCqJMRoOr3aHmfM+2spzgos3NDWnY3x43UrHldv3Uunx0atDJDaLwfqsEr7ftpczh3QE4MedhRSUuYkJszOmezwx4XaeXLiJxZtyqXB7CXOYFTiBEPEXozpzQs9Enr18JOc+U0nOut6cevwqVhS9zQdbPuDzjO/J2nQZkMSMyX1aZb7EQ+XmCb1498fdfLkhl1U7CxmaFrtf57urffx93noApo/rfkSszi0iIkcPu9VCXIQj+A+G+8td7aOw3E1BuZu9ZR72lrspKHOTX+omp6SS7OIqckoqySmuIre0Cq/PT25JVc0ULMWNtumwWegcG0anuNowsntCBD2SIumaEH7EzfUrIiIicixT6NgO1al0tFqg3krO1tDh1c56C8lUlZjvneacjhZXFOV+J+FGFYlGUaOhY3W4GTo6KvOC12/qP/oDf3Fxl+TB/D+RUzUegCGdYohw2lifVcIPO2pDx1U7CwE4rkc8NquFAR2j6RQbxu7CCr7bms+Efh0oqvAwf202ABeM6AzAoE4x3H1GP/788ToWfTuC/t26sNM+i1JbJhHdnmFC3B3cMrFXC7/RttEtMYJzhqXyzg+7+efnm/jPVaP36/y3Vu5kW345iZEOrhvf8xD1UkREpHEOm4UO0a7g6IXmeH1+8suqyKkJIrOLq8gqqmR3YQU7C8rZtbeCzKIK3NU+tuaVsTWvrEEbhgGd48LokRhJjyQziOyZGEHflCgSItuoXFRERETkGKbQsR2yW2uHHTkbGV5tDRleba5eHZjTsRzcdSsdAQqNaMLJJY5SomgYOvoizcVmojxm6NjUfI4A8RFmAHpR7tOw+0sm2d/jQf5Mn5QoUqJdvPLddlZu3xs8fl2mGYIO6GhezzAMTuqVyJsrdvJdhhk6frE+B3e1WS05MDU6eO6vTurO3nI3z3yxhXXbEjGsNxPX43U8tgyWlPydTzKiOLPHmc18k23v5gm9eO/H3Sxcl8Oa3UUM6tSyVba9Pj+zFm8F4IZTemnxGBEROaJZLQYdolx0iHIBjf9/ncfrI6uokp17zRBy114zkNyaV8bWnFJKqqrZWVDBzoIKvtqYW+fcDlFO+nWMpn9KFP06RtEvJZqeSZF1/qFWRERERFqXkoh2KPQ/oBsbXm211/5rf53Vq6tKQ0LH2vCu2uIEH0QYFYRTM+ejKza434g0Kx3D/eW4qCLaFdFk3+IjnAwwtnGK+0sAUjw7ud76IX1TTqBXklld+fOeIio9Xlx2K+syzeFV/TrWhqBjusfz5oqdLNtaABD8i8XkAcl15mc0DIO7pvTj/BGd+WH7Xnp1iKRfx3O579uZfJrxKfd8fQ/F7mIu7Xdpk/1taz2SIjl7aCrvpe/hqUWb+PeVo1p03oK1WWzLLycmzM4lo9P2fYKIiMgRzm61kBYfTlp8eIN9fr+f3NIqtuaW1fyUsjWvjM05pewoKCenpIqcklwWh4SRNotBrw6RDO0cy9C0WIZ0jqFvSlSdBflERERE5MApdGyHwuxWAnOsu+zWBpWOttCFZBw2sNcMe6ooqD0opNLRZzVDx0SKQvbXhpLOiDgq/A7CDDdJRiFRrg5N9i0+3MEl1i8A8EelYpTsYZr1W6JqKh2TopzkllTx854ihnSOZXOOGYL2T6m93tge5grMa3YXUVpVHfwLxMm9G1+FumdSJD1rAk2Ah8c9TKwzlv+u/y9/XfZXCqsK+c2Q3xyRC8oA3DyxN++v2sP8tdlszimhV4eofZ7z75oqxyuO62oOoRcREWnHDKO2UvK4Hgl19pVWVbMxu4T1mSWszypmfWYJ67KKKamsZn1WCeuzSnhzxU7AHCEyqFMMQzvHMrxLLGO6x2tOZBEREZEDpDSiHXLZrdw3bSB+v99caKVB6OgEzIVc6iwkE2CxQ8i8j4bNBR7oYBSaGxxRYK391YkMs5Prj6GLkUsSRYQ3sXI1QFyEnb4W8z/sd/e7hs7f/4Welj1YXF4Mw2BgajRfbshlQ1YpkU47bq+PSKeNznFhwTY6x4UH53V8+dtt5Je5iXBYW7wojMWwcM+Ye4h1xvLsqmf5V/q/KKoq4nejf4fFOPKqG3p1iGRS/2QWrM3mtWU7uG/awGaPX7GtgB92FOKwWbjqhG6Hp5MiIiJHqEinjRFd4hjRpfa/E/x+P3uKKlmzu4ifdhWyamcRq3YVUlJZzcrte82pXpaax3ZLCGdM93jGdk9gTPd4OseFHbH/UCkiIiJyJFHo2E7VCZvqr15tdxAIHSOcVrCF1dkfWuVoHu+CCkgyaiodXXXnWopy2SjDbCPcqCI6rOlfq0injV7GHgCWMQC7P5ZkoxCyf4YuY+ndIZIvN+SyKafE7BvQNyUKi6Xuf9wH5nV8cuEmAE7olbhf8zIZhsGNw24kxhnDw8sf5rV1r1FYVchDJz6E3dJ0aNpWfnlcVxaszWbuyl38bkq/4KrdjZm9NAOAC0Z0IilKE+eLiIjUZxgGnWLD6BQbxpSBKQD4fH4y8sv4aVch6TsKWbF9L2szi9mWX862/HL+t2IXAKkxLo7vmcj4vkmM65V4wKt7i4iIiLR3Ch2PBfUqHatD/mePcNrAUq/SsV7oaHWYwVViU6Gj00YZ5tCjCCqJcjYd2hkVe0kwzHkavy2MJ9bXnWTrj5C5qiZ0NK+9KbsUp80M1vp3bDic+KoTuvHmip24q32AuWjMgbi8/+VEO6KZuXQmH2/9mKKqIh4f/zjh9as/29i4XomkxYexs6CC+WuzOGdYp0aPyyutYkHNSt6qchQREWk5i8UITsly3vDOABRXeli5bS/LMgpYlpHP6l1F7CmqZO4Pu5j7wy4MA4Z0jmV8nyTG90liWFosVouqIEVERERAoeOxoV6lo8df+z+702YBwwoWG/iqazbWDfnsTrOKMYlCc0ODSkc72X4zmAyjiqhmVq8mdwMAu/yJpGd7SPN351R+hMx0AHonm3MvbsopCf5He7+Q+RwDBqRGM75PEl9tzGVc78QG8zftj2k9pxHjjOGOL+9gye4lXLfgOp459RlinC1bKfpwsFgMzh3WiX9+vpmPfspsMnR894fdeLx+hnaOafR7ExERkZaLdtmZ0K8DE/qZ81WXu83h10s25fHVxlzWZ5Wwamchq3YW8tSiTSRGOpkyMJnTB6VwXI8ELUojIiIixzSFjseCeqFjt+RYIA+gdk4iezhUmRWIDUNHs+qvqeHVkS4bGYFKR6OS6LBmhifnbQRgiy+VzTmlrLF0M7dnrgLM+QsBsourKK5Z2KZ/x8bDsz+fO4hZX2/lupN7NH29Fjq588nMOm0WNy26iVW5q7jq06t4bvJzpESkHHTbreXMIR355+eb+WpDLiWVHqIamTvz7ZXm0K+LtGK1iIhIqwt32BjXO4lxvZO4Z2p/sooqWbwpl682mitj55VW8dqyHby2bAcxYXZO7d+BqYM6cnKfpP2aBqatVHq87CgoJ7OokuIKD6VV5j9IWwwzgE2IdJIQ6SAl2qWF6kRERGSf9F8Lx4J6w6tT4qL56JaT6s5BZA9rMnR0hQVCx0JzQ1hsnf2RThvl1Kt0LNgKL06FUb+C8XfVHhwIHf2pAGz211Ts7d0OmFWTHWNcZBZVUuHxAuacjo1Jiw/nwXMGNX/v+2FYh2G8dPpLXL/werYUbeGKT6/g6YlP0ze+b6td42D0TY6iZ1IEW3LLWLguOzj0K2BTdgkbskuwWw3OGpzaRr0UERE5dqTEuLhoVBoXjUrDXe3j2635zFuTxYK1WeSVunnnh92888Nu4sLtTBuaynnDOzEsLfaIWYgmI6+MLzfk8MMOs1pzR0F5i8/tFBtGn+RI+qREMaJLHKO7xROv+S1FREQkhELHY0G90BGrg0Gd6g0dtocsJlMvdHS6zNAxwSgxN9SvdHTaKK8ZXh1BJdEuO6ycBSWZ8MWfYfjlEF0TguVvBmpDx2x/zUqS7hKoKgFnFH2So8gsqgSgS3y4ucJ2qDVzIWMxnPbnBn09WL3ievHKGa9w/YLr2Va8jSs/vZJHTn6E8WnjW/U6B8IwDKYONqsdF67NaRA6frw6E4BxvZOICT/yFsMRERFpzxw2S3Buxz+fO4iV2/fy6ZpMPvopk9ySKl7+djsvf7udHokRnDu8E+cN70Ra/OGfQ3rN7iI+XLWHheuy2ZJb1mB/lNNGp7gwYsLsNVPmGPj8fooqPOSXVpFf6qakqprdhRXsLqzgiw25wXN7JkVwXPd4IosNJnq82O367xEREZFjmULHY0G94dVYG/mfPXThFEdknV2GzVX32Hqho9ViUF4zvDrMqOK4ngmwdUftAd88Daf/1XxfZg7rzvWbbZTjwueIwuIugZIscEZx5fFd+Wqj+R+wDVaE3PolvH1tbT8mP9jIDR+c1MhUXp36Knd8eQfLspZxy+e3cMeoO7hywJVtXpkwqX+yOcR6Yy5V1d7gYjsAH/9kho5nDu7YVt0TERERzP82GtM9njHd4/nj1P4s3ZLPuz/s4rOfs9maV8Y/FmzkHws2MrZ7PBeM7MzUwR0b/iNrKyqp9PDBqj28sXwnq3cXBbfbLAZje8RzfI8EhqXF0b9jFPERjn3+987eMjcbs0vYmFPK2j3FrNhWwKacUrbkltUEmVZe+tsXnNgzkQn9OjCpfzIpMa5m2xQREZH2R6HjsaCRSscGQisdY7vU3Wdz1v3cSHVhYHh1l0gfnWLDggvDALD+w9rQsbIQgCK/GWxaDDCiO0JeCRTvgcTenNo/mSkDk/ns52ymDQkJ0Px+eP+W2s/fPQujroW4bg3v5yDFOGN4dvKz/HXZX3l749s8tuIxMooy+OPYP2KvH+IeRoM7xdAhyklOSRXLthZwcp8kADZklbAppxSH1cLkgclt1j8RERGpy2atrYAsrarmszVZvPPjLr7Zkl+zKnYB973/M6cPSuGCEZ05vmdCq6yA7ff7+XFnIW8s38GHqzKD09YE/lvhjEEpnNwnyRyhsp/iIhyM7ZHA2JCF/ArK3Hy/rYAv1mczb9VOCt0+Fq3PYdH6HP703hoGd4phUv9kJg3owICO0W3+D7kiIiJy6Cl0PBZY6lc6NhI6hm7rMaHuvvqVjo6IBqf3TUuBTBjfPQIqi8w5HQNKsszA0DCgYi8AhZht+PxgRHU053osyQqe8vRlI/h+WwGjusbXtlO0E4p2mCttpwyBPT/Amndg3Iym7/0g2C12Zh43kx4xPXhsxWPM3TSXrUVbeWz8Y3QI73BIrrkvFovBqf2T+e/yHSxclx0MHT/+aQ/AAf/lQURERA69SKeNC0Z25oKRndldWMF7P+5m7spdbM0r490fd/Puj7vpGOPivOGduGBkZ3omRe670XrySqt494fd/G/FTjbllAa390yK4NIxXTh/ROdDMvdifISDKQNTmNgngeOs2+gxYhxfbylg0bpsftxZyOrdRazeXcQTCzfSKTaMSf07MGlAMmO7JxwVi+yIiIjI/lPoeCywWMygzlcNGGCxNjwmd33t+9RhdffVr3S0NwwdzxjREz4253Qka7W5MTIZSrPB6zbDxrA4qCgEoMgf0kZUTTVjyZ7aS1gtnNAzse5Fdq80X5MHwcBzzdBxzw+N3nJrMQyDKwZcQdforvx+8e/5MedHfvHhL3hs/GOMThl9SK/dlMkDOpih49psHjh7IAAf1czneNYQDa0WERE5GnSKDeOmCb248ZSe/LizkLkrd/Hhqj1kFlXyry+38K8vt9AvJYrxfZM4oWcigzvFNBoWerw+tuaWsXRzHl9syOHbLflU+/wAuOwWpg7qyKVjuzCqa9xhqy40DOjfMYohXeK5aUIvckuq+GJ9DgvWZfP1plx2F1bw0rfbeenb7UQ4rIzqFs9xPRI4rkc8A1Kj60wfI8cOv99Ptc9PVbUPd81PVbW35tX88XjNn2qv33z1+Wu2+an2+vD4zNdqrx+Pz4en2k+1r3Z/7fGBY8ztPr8fn9/sg9dnvvf5/fj91Hw23/v8frwhx/r8fry+2vc1j15Q4IkLffQMaj809kiGPqf1zzcMsBgGhmFgMcBqGDWfze0Wi3lOfp6Fd/J/wGaxYBgGVkvN/ppjrZZ659VsC7QbODawz2KpPdZas82ot99S7zrmNcx9gX5aLLXXqj3ObMtac47RYH+9a9TcZ519wfch1wi+N88xLNS9RkifROTQUeh4rLA6zNCxsSpHCFYgAg1DyQaVjo1Meh4IIt1ltaFj59GwfanZdmm2GXz6zaE944b05q2fChiaFgvRgdAxq2G7oQKhY6eRkDqiZtuPzZ/TSk7ufDJvnPUGM76cwca9G5k+fzq3jbiNqwdefdiHB53QM5Ewu5U9RZWszSzGXW3+ZcNpszBpgIZWi4iIHE0Mw2BElzhGdInj3rMGsGhdDnN/2MVXG3NZn1XC+qwSnv/KHEHSIcpJYqSTmDA7VdVeiiur2ZFfjtvrq9PmsLRYLhqVxllDOx4RIyCSopxcNDqNi0anUenxsmRTHgvXZbNwXQ55pVV8tTE3OJ+33WrQu0MUA1Oj6ZsSRbeECLomhJMWH47L3rphZKXHy95yN3vLPBSWu9lb7mFvuTv4vrDc3F5V7cPrM8Mor7820A2z2wh3WAl3WIkNd5AU5SQx0nxNinSSFGX+b3U0DiX3+/24vT4q3T7KPdVUuL1UeLxUerxUuH2Uu6tDPnup8PioqNlW4fFS5fHh9vqCgWH9ADE0SHRXe3F7zfd+/777Ji1hYV1hXlt34qjRaHgZGpiGBJlGzTGNhZehoWvDcLU2UK1th9pz6we4zYS0TYarIX0KhMjWOqFw3VDZamnq3mqD4ECYHXqdxu6tYcDc8PusvV7gOwj9Pjgq/6yUfVPoeKyw2sFD06HjuDvh68fgrCca7qtf6djI8OrgNnd5cLEYojtBZIoZOpZk1R5jdXLveSPpnrqDs4emwsY15vbiPQ3bDbW7pqqx08iaakwDindBaQ5EHvrhzl2ju/Lq1Fd56NuH+HDrh/xj5T/4MedHHjzhQWJdsYf8+gEuu5VxvROZvzabz37OJqfYXOn7zCGHdhJ6ERERObRcditnDunImUM6UlDm5utNuXy1IZcfdxaSkVdGTkkVOSVVDc6LcFgZ0jmWif06MLF/hwMaln24uOxWJg1IZtKAZHw+P+uyivluawHLtuazfFsBheUe1mYWszazuMG5UU4bCZEOEiKdxEc4iHLZcNqsuOwWXHYrDqslWC3n9fvxev1UeLyUVFZTUumhuOa1pLKaveVuKj2+RnrYuhw2Cx2inCRHu4KvSSGfO0Q7iXbZiXTZiHTY9rvqyldTGVjurqbc7aWs5rW8KvC+mrIqb53XcrfXPLYq5Jwqb224WBMw1q/aO9xsFgOnzYLDZsFps+KwWbBbDexWC3arBZvVwG4xX21WCw6rga3ms91qwWYxsNss2C3m/tDjzTbM4+3WumGKUS/caVj9F1JVGBrMGIBRW8noJ+QLbPxtnZA19Hh/E8f7/H4IVFz6Qisuqam09OPxVPPjqlUMHjwEw2IJ2Ve3kjO0OtPr89drx/zd8jVS1WlWfda9ps+HWQFac443sM9Xt3K0tt+15wT65K1faeoLVJX6a9/7Qtup22agKjW0zZb+Dnt9frwNvm053GqfrUZC2MYCTwsNqmibr3ptIixtNoQlJMBtLIxuPBj2+3xszTSY2tZf6hFACcWxIjCvY1OLoEz4Awy5GBJ7N9xXv9KxkeHVwepHd5n5A2bIGNkBcteZlY7hNfMzhsUSHebgxlN6mZ+Dw6szm+6/zwt70s33nUaai9kk9TWHhe/+Afqe3vS5rSjMFsZfTvoLwzoM4+HlD/PFzi+44IMLeOikhzgh9YTD0geAqYM7Mn9tNk8t2hTcdsnoLs2cISIiIkeT+AgH5wzrxDnDOgHmCtTb8srJL6uiqMKDy24l0mkjLS6cznFhR+UQQYvFYGBqDANTY/jVSd3x+/3sLqxgze5i1u4pYktuGdsLytieV05JVXXwZ1t+eav1wWYxiA23ExvuIC7kNS7cQWy4g9hwO2F2a7CyyVJTiVPp8daEd2Zwt7fcTV6pm9ySSnJLqsgrdVNU4cFd7WPX3gp27a1oUX8inTacNkvwL7XmX4LNvxRXe/3B6kF3zVDj6sOQDNqtBi67lTC7lTBHvVe7FZfDSnjINqfditNmCfkxA0NHzefQEDHw2WG14LRbcFqtOO3m56Pxd/pI4PF4sO9JZ+qITtjtbV/p3NbqhpchQ+R9dQNXb73wsn64GdwXfF83UA09p24IWy9cDWmn6WCWumFrIyGsr5F+1ga4jd1H3TDZG/o+JGCu+32EBsH1rhlyb6Ht1P2Oau+zJVXMge+gzf/Fo5WEWS080tadOAIodDxWBCocmwodLVZI6tP4vgaVjo0Mr3bU/Iu6pwzcJeZ7ZyREpZjvS7Jqw8WwuLrnRrVgeHVJltm2xVYbjKaOMEPHPT/uO3SsKoH5f4K47nDcDQ3vaT8YhsFFfS9iYOJA7l58N9uKt3H9guv5Zf9fctuI23DVD2kPgWlDU/nPkq2s2W1WAQzoGM3obnH7OEtERESOVlEuO4M7x7R1Nw4pwzDoHBdO57hwTh+UEtzu9/sprqgmr6yK/FI3BWVmqFdWVU2lxxy2W+nx4fZ6g9UngcDOZbcS5bIR7bITHWYjymUnymUjNsxBbISdKKftkA3pq/R4yS2pIqekkpziKrKLK8kpqSK7uHZbbmkVxRWeYHhYWlVNacNi1hYJs1uJcJrhX4TDHPod4ax5ddgId1oJd9T9HHpcWM1Q8dAwMcxuxW7VQj9y9LJYDCwowG5r9UPaYNgZGgQ3UjXbMFxtrKq18ZC2sUC1sWB33+Fpw8ra4H0Eq3DrBsyeah/Zu3e29dd+RFDoeKwIhI1NDa9uTgtWr8YeUulYVbNSoiPKXEwGzErHwLyR9YciR4dUOvr9jc+oHAgkI1Nq55wMhI+F2/d9D9/8E1bOMd9v/RKufG/f5+zDwISB/G/a/3h8xeO8ueFNXl33Kkv3LOXPJ/6ZIUlDDrr95lgtBn87bwi/fGEZAzpG89SlwzUHhoiIiLRLhmEQE24nJtxOz6S27k3LuexW0uLN+Sib4/ebQ6RLq6opqaymqtob/Mt46F96zSHEFhw2A4e1tnrQYbMEqzFFRI5EhmFgsx47f0Z5PB4++aQFOcUxQKHjsWJflY7NadHw6pA5HUOHV4dWOlYWmu/rVzqG1Qy79lWb5zobmYcosLJ1VO2/ehOTZr4W7uNfECoK4bvnaj9v/QJyNzZd2bkfwmxh/Om4P3Fy55O575v7yCjK4IpPr+DaQddyw9AbcBxIyNtCgzvHsOJPk/SvzyIiIiJHMcMwKzJddiuJkQc+GkdERORIo7TiWBEMHQ+k0rElw6sDoWOp+QNmeNhYpWNYbN1z7WFg1FQvVpU03odApWOgKhIgtiZ0LNpH6Pjzu1BVBEn9oMcEc9v6D5s/Zz+d3Plk3jvnPc7scSY+v4//rP4PF390MT/n/9yq16lPgaOIiIiIiIiIHImUWBwrAhWOltaodGwmdMQPZbm120IrHSsKzff1Kx0Nw1wYBqCq4UqF5vk1i8xEhYSOMZ3N1+Ld5kIzTdm90nztdxYMPNd8v651Q0eAGGcMD497mCdPeZJ4VzybCzdz+ceX8/SPT+Pxelr9eiIiIiIiIiIiRyqFjseKgxpeHVLpaAurnVMxVGgQWZpjvjqizDkYofk5HQGc0eZrU5WOxYHQMWR4dWSKWSHpqzbbb0rmKvO141Doe6b5fs+PUJbf9DkH4dSup/LeOe8xpdsUvH4vz//0PJd+fCkbCjYckuuJiIiIiIiIiBxpFDoeKw5qeHVIpWNjQ6vBDCJtYeb7QLWiM7J2KLW7FMprQr76lY6wH5WOqbXbrDaI7mS+L9rV+HnVVZCzznyfOgwik8wVrAGy1zR+TiuIc8Xx2PjHeHT8o8Q6Y9mwdwOXfHQJr617Db/ff8iuKyIiIiIiIiJyJFDoeKyw1qwZdLCVjo2tXB3cVy+QdETUPTdQjVh/TkcA1z4qHQNzOoZWOkLtEOvCHY2fl7MWfB4z6AwsPJM8sHbfIXZ6t9N595x3ObXLqVT7q3l4+cPcs+QeKqorDvm1RURERERERETaikLHY0VrDa9ubOXqgPqBpCOqtvoRoCQQOjZT6Vi5H3M6QshiMk1UOoYOrTYM830gdGxJpaOnErLXwkFUJyaGJfLEKU/wu9G/w2pY+Xjrx1w771ryKw7N8G4RERERERERkbam0PFY0VqrVzcXWtYPJJ2RZoVlYGXq8rya7VENzw0Or26k0tFTAZWF5vumKh2bWsE6Z735mjyodlswdNzHytJVpfDCJHj2eFhw70EFj4ZhcMWAK/jPaf8h1hnLmvw1/PKTX7K9ePsBtykiIiIiIiIicqRS6HisCISFB1TpGDKno8XW9HGhlY4WW23AGTjfU96wvYDmQsdAlaM9HFwxdfdF18zxGBh+XV/xbvM1tkvttkAAmbOu+VWvP54BWavN99/8E9Jfb/rYFhqVMopXzniFTpGd2FW6iys+uYJVuasOul0RERERERERkSOJQsdjxcFUOlpDKh0bW7k6wBlZ+94RWTucObRSEsAeRgPB1asbGV5dXrPqdXhCbZsB4Qk1xxQ03qdA6BgdsgBNXDczwKyuhIKtjZ9XWQxr5prv+08zX1shdAToFtONV6e+ysCEgeyt2suvP/s1S3cvbZW2RURERERERESOBAodjxWBCkfLAVQ6WkJ+TYxmQsfQlaVDh1DXr2xstNKxmYVk3DXbHJEN94XFm6/lTcyPWLzHfA2scg1mcBrfw3y/d1vj5239EnzVkNALpvzV3LZ9adMVlfspMSyR2VNmc2KnE6n0VnLz5zfz2bbPWqVtEREREREREZG2ptDxWHEwC8mEam54dVzX2vehQ61bVOkYGF7dSKWju6zmmEZCx0ClY0UjlY5eT21IGJj7MSAw3LqwiTkVN803X3ufZh7beTTgh7XvN378AQi3h/PPCf/k9G6nU+2r5neLf8fcjXNbrX0RERERERERkbai0PFYcTDDq0NZmvmVCZ03MbQqsX7IuL9zOlaV1rTZyMrZ4YFKx4KGC72UZAF+s7ozPLFeX2sC0r2NhI5+P2xeZL7vPdl8DQyx3vpVw+MPgt1q5+FxD3Nhnwvx+X3c/+39zFkzp1WvISIiIiIiIiJyuCl0PFYczEIyoZobXh0aOoZWJbak0tF1kMOr/V6oLKq7L3Q+x/phabDScUfDNkuyoGSPea9djje3dR5jvu5ecVCrWDfGarEy87iZXDvoWgAeX/k4T/3wFP5Wvo6IiIiIiIiIyOFyVIWO3bp1Y8iQIQwbNowJEya0dXeOLj1OgYgk6HGQ31tzw6tDQ0d7eO370MpGw9p48NlcpWNweHVUw312F9hrKiDrz+sYDB070UBzoWPOWvM1oWdtQNpxqNn30uzadluRYRj8duRvuX3E7QDMWj2Lvyz7Cz6/r9WvJSIiIiIiIiJyqDWTIB2ZvvnmGyIjG6l4k+b1mgR3bmq4+vP+am716tCFZNylte9DKx0bq3KE2kCxspE5HZsbXg3mEOuiMqjYW3d7YBGZmEZCx8D8k42GjuvM1w79a7c5wiF5IGT9BLtXNpwjMiBvE7x/EyT2gfG/h9i0xo9rwq8G/4ooRxR//u7PvLnhTUrcJfz5pD9jP5AFgERERERERERE2shRVekoB+lgA0dovtLRGrKvPCQADK10rD/UOqDZ1atrKh0bG14Nded1DFUUMry6vkClY3lebagZEAwdB9Td3mmk+bprReP9qCqFNy6Hncvgx1fg5bPBW934sc24qO9F/P3kv2MzbHyS8Qm3f3E7ldWV+92OiIiIiIiIiEhbabXQcfHixUybNo3U1FQMw+C9995rcMwzzzxDt27dcLlcjB07luXLl+/XNQzDYPz48YwePZrXXnutlXou+yWhV8uOCx3qHBo02pqqdAyEjsUN50xsbk5HqJ3Xsf7w6pJM8zWqkdDRFQOuWPN90c66+3J+Nl+bCh33/Nh4P5Y9C3kbaj8XbIWf32382H04o/sZ/N/E/8NpdbJ412J+s/A3lLpL932iiIiIiIiIiMgRoNWGV5eVlTF06FCuvfZazj///Ab733zzTWbMmMFzzz3H2LFjefLJJ5kyZQobNmygQ4cOAAwbNozq6oaVYfPnzyc1NZUlS5bQqVMnMjMzmTRpEoMHD2bIkCGN9qeqqoqqqqrg5+Jic9iux+PB4/G0xi0fcQL3dSjuz7j8XYx17+M74XZopn1bdGeM4l34up6At+Y4q9UZTLf9NifVjZ1vdWEOIPbjKS+sEzBaK0uwAF5bGL5GzrW6Ys39pbl19lvLC7AA1c5o/I2cZ4tJw6gspDpvK/64mjDV78OWsx4D8MT3rnuvSQOwA/6s1VS73Q0qR22r52IA1Wf+H0ZpFtav/oZ/yZNU9z+3ye+rOccnH88zE57h9q9uZ2X2Sq6Zdw2Pn/w4HSM6HlB7cugdymdQRFpGz6FI29IzKNK29AyKtL32/hzuz30Z/kOwRK5hGLz77ruce+65wW1jx45l9OjRPP300wD4fD7S0tK45ZZbuPvuu/f7GnfddRcDBw7k6quvbnT//fffzwMPPNBg++uvv054eHgjZ0hrCHPnkVawhIzEU/HYzHkah+6YTbf8LwEoCuvCl/3+3PBEv59p6ddgwcdnA5+k0hEf3DV2y+OkFK/ixy6/YkfC+AanDt75Mj3yFrIxeRrrUn8R3D5+/b3EVmzn2x53kBMztMF5Y7Y+QceiH0lPu5rtiRMBCK/KZfLaO/Aadj4aOguM2mJgi8/Dmauuw4KXzwY+QaUjIbgvqmI3E9ffg8+wMm/Q04Cf09fcgsXvZeGARylzJu/X9xhqT/UeXip7iTJ/GeFGOL8I/wW97b0PuD0RERERERERkQNRXl7OZZddRlFREdHR0c0ee1gWknG73axcuZJ77rknuM1isTBp0iS+/fbbFrVRVlaGz+cjKiqK0tJSPv/8cy666KImj7/nnnuYMWNG8HNxcTFpaWmcdtpp+/xSjlYej4cFCxYwefJk7Pa2XHjkSkIHYVs++xpqQseo+A5MnTq10bOMdZFQVczEcWMhoTZUs77yLBTD4JHHM2hAw3Mti1fD1wvpmRpP95C2bVv/BBUw+uTT8AeGRoeeN+9LWPkjg7skMPAU8zwj4ytYC5aE7kw986yGfdzzGOSu49SBHfD3nlLb1tePwnqg50Qmn10TfBa/DtuXMKGzF9/oxu+5paaWTuWuJXexrmAdL5e9zPWDr+fXg36NxdC0rEeSI+cZFDl26TkUaVt6BkXalp5BkbbX3p/DwEjiljgsoWNeXh5er5fk5LrVXsnJyaxfv75FbWRnZ3PeeecB4PV6mT59OqNHj27yeKfTidPZcNESu93eLv9HD3XE3aOjdh5Hiz0MS1N9s4dBVTF2fzWEHuMpB8AWHlt3e0CkOTzfWrkXa+j+ykLzvMjExs+LNVegtpZl1Z5XsgsAI65b499hymDIXYctbx0MCAklt31t3l//abX313sybF+CNeMLrCfc0Pg9t1DXuK68MvUVHl7+MG9vfJvnVj/HipwVPHjig6RF7d8K2XLoHXHPoMgxSM+hSNvSMyjStvQMirS99voc7s89HTVlUj169GDVqlWsWrWKNWvWcNttt7V1l6SlQlevtjexkEzovvorNQdWl3ZENH5eYPXqipAVs73V5qI0AGFxjZ8X3cl8Ld5du23vNvM1rlvj56QMMl+z1tRu81TA7poVrbudVLu91yTzNWMxeA5+9Wmn1cl9x9/Hn0/8M2G2MFZkr+CCDy7gfxv+xyGYJUFERERERERE5IAdltAxMTERq9VKdnZ2ne3Z2dmkpKQcji5IW6qzerWrmeNqQseaysYgd5n52tTq1YFVqCsKa7dVFoXsj2n8vKiaBVmK99Ru22foONh8zQ4JHXevBK8bIlMgvkft9uSBEJkM1RXmMY3xeWHJE/Dp3VBe0Pgx9ZzT6xzmnj2XUcmjqKiu4KHvHmL6/OnsLN6575NFRERERERERA6DwxI6OhwORo4cyaJFi4LbfD4fixYt4vjjjz8cXZC2tL+VjvWrAt37qHR01oSR7pLabTVDq3FGg7WJWQQClY5FuyFQKbh3u/ka27Xxc5JrQsf8LbVh6PZvzNeuJ9Rd0dowzG2hx4Ty+eCNy2Dh/bDsWXj2RCjObPy69aRFpfHClBe4e8zduKwulmUt47wPzuOF1S/g8bXPFbJERERERERE5OjRaqFjaWkp6enppKenA5CRkUF6ejo7duwAYMaMGcyaNYuXXnqJdevWccMNN1BWVsY111zTWl2QI5U9JHRsrtIxOLy6onabz1cb7jmjGj8vUAEZGIYNtUOtA1WQjYmuqXT0lNUOxd5XpWNkklm9iB9y1pnbti0xXwMBY6iuJ5qv25c23LfhY9g4z/xOYrpAyR745qmm+1uPxbBwef/LeefsdxjbcSxV3iqe/OFJLv3oUn7O+7nF7YiIiIiIiIiItLZWCx1XrFjB8OHDGT58OGCGjMOHD2fmzJkAXHzxxTz22GPMnDmTYcOGkZ6ezrx58xosLiPtUEsrHQPHeSpg/cfwn8mw41ugpgqxqeHVwUrHRkLHsNimr+eIqB16XbwHKouhomaIc1wTlY4AyYF5HX+CajfsXG5+Dp3PMSAQRO5cDt6QCkS/3xxWDXD8TTCt5v3KOVCW3/S1G5EWncasybP484l/JsYZw4a9G7jsk8t45PtHKK8/VF1ERERERERE5DBotdDxlFNOwe/3N/iZM2dO8Jibb76Z7du3U1VVxbJlyxg7dmxrXV6OZLb9rHTc8rk57HjXclj+vLnNsDQdWDpqKiCrK80FZKB2fsemFpEJCC4mswcKa4ZWhyc0XVUJdReTyVxlVmaGxUNi34bHJvU3++ApM48N2LXCnOfR5oKxN0DPUyFliDmf5U9vNN/nRhiGwTm9zuH9c97nzB5n4vP7eGXtK5z3/nks2b1kv9sTERERERERETkYR83q1XIUa+lCMoFQcfVbtdsCVX+OyLrzJYZyhlRABqodW1LpCBCdar4W74aCreb7uO7Nn5McsphMYNh01xPA0sjjZLFAl8C8jiFDrNe8bb4OOMccsm0YMOwyc9v6T5q/fjMSwhJ4eNzDPDvpWVIjUtlTtocbFt7A7xf/nvyK/augFBERERERERE5UAod5dCrM7y6udWrG9lXWrPieVOLyIAZalrs5vtA6BhYSGZflY4xnc3Xwh3m4jAACT2bPyewgnXWatj4mfk+MHdjY+ovJuPzws/vmu8HXVh7XN+p5uuOb1q8knVTTup0Eu+e8y5XDrgSi2Hhk4xPOP+D81m6u5G5JUVEREREREREWplCRzn06lQ6Nrd6dXjDbcV7zNem5nMMcNZbTKYlC8kAJPQyX/M314aO8fsIHRP7QEJvcyj0jpogscf4po8Pho7fmoFjxmIzTA2Lgx6n1B4X19WcL9Lvqw0zD0K4PZy7Rt/F61Nfp3dcbwoqC/jNwt/wjxX/wOPVCtciIiIiIiIicugodJRDLzRobK7SsbF9nsDK1fsIHQPzOgaHVxear/uqdAwNHQtaWOloscDxN9Z+7n82JA9s+viUIWb/qoog+2f48VVz+8Dzweaoe2yf083XzQua78N+GJg4kP+e+V8u6XsJAC/+/CJXzbuK3aW7W+0aIiIiIiIiIiKhFDrKodfSSsfm9jmjm79GsNKxxHxt6ZyOwdBxqxk8wr5DR4Ahl0B0ZzNMPO3PzR9rtUHX48333z4D6z4034+4ouGxvU41X7d+CT5fw/2bF8F/JsH/DTNX+G4hp9XJH4/7I0+e8iTRjmhW563mFx/+gi93ftniNkREREREREREWkqhoxx6LZ3TsanVqcFcUbo5geHX9ReS2dfw6tiu5srYnjIoyzW37Wt4NYAjHK5fDLesMIdF78txN5ivP70B3ipzXsiOwxoe13m0eS/l+ZD1U919uRvgzStg1/ewNwPevhZ2/7Dva4c4teupvD3tbYYkDqHEXcItn9/CP1b+g2pf9X61IyIiIiIiIiLSHIWOcui1eE7Hgwgd68/pGKh4dMXso28OM3gMiEgC1z6qKoPHJkBUSsuO7TEButRUOxpWOPX+xlfjttqh2zjz/ZbPa7f7/fDejWY42vVE6DgUqith3j0tu36IjpEdmXP6HH7Z/5cAvLjmRX712a/IKc/Z77ZERERERERERBqj0FEOvbaodAy87msBGoD4HrXvA8OtW5thwPn/hpNmwI3fQu9JTR8bGGIdupjM5kWwe4W52M6Fs+Gy/4HFBju/gz3p+90du9XO78f8nsfHP06EPYIfcn7gFx/+gm/3fLvfbYmIiIiIiIiI1KfQUQ691pjTMTy++Ws4axaSCVQ4BkPHiH33L7FP7fthl+/7+AMV2wUm3QdJfZs/rt+Z5uvO76A406xyXPyIuW3UtWZ1ZVQKDDjX3LZ81gF36bRup/G/s/5H37i+FFQWcP2C63l21bN4fd4DblNERERERERERKGjHHr2A1i92hkD1pCVnfe70rGFq14DjLgSep8GF7/a+OIuh1t0KnQeY75f/xFkLIady8DqhBNuqT1u9K/M13UfQHXVAV+uS3QXXp36Khf0vgA/fv6V/i9uXHQjBZUFB3ETIiIiIiIiInIsU+goh15oeNjSOR2dkbXVi9CCSseQOR291eZ8h9Cy4dXJA+Dyt6D/tH0fe7gMOMd8/fYZmP8n8/3Iq+vOIZl2HER1hKpic7Xrg+Cyubj/hPv5y0l/IcwWxjd7vuEXH/6CH3N+PKh2RUREREREROTYpNBRDj3DgMhkcwGV5sLD0EDSEQnOkAVdwvYROoZWOgaqHUO3H22GXgoRHcxVqrN+MqscT7yt7jEWC/Q7y3y/9oNWuezZPc/m9amv0z2mOznlOVwz7xqeW/WcVrcWERERERERkf2i0FEOj8vehF++3XzoWGd4dWTdVaT3uXp1yJyOgdDRYjdXpz4aRSSYC8ZY7BAWB5e8BjGdGh434GzzdcPH4PW0yqV7xfXijTPfYGr3qXj9Xp5Jf4YrPrmCrUVbW6V9EREREREREWn/FDrK4ZE6HHpObP4Ye3jte0ckGCG/nvszp+P+zOd4JOs+Dm5Lh9tWQe/JjR/T5QTzu6nYC9uW1N3nrYbvnoVZE2HeH8BT0eJLh9vDeXjcw/xt3N+IckSxJn8NF314Ea+sfQWf33fg9yQiIiIiIiIixwSFjnLksIVWOkaZoVmAI7zh8aFC53QMrlx9lIeOADGdwRXT9H6rrXaI9bp6Q6w/vQvm3Q27V8J3z8Ar54Ov5YGhYRic1eMs3j37XU5MPZEqbxWPfP8Iv57/a3aX7j6AmxERERERERGRY4VCRzly1Kl0jID9mUcwtNKxKhA6RrRe345kgSHW6z6qHWL901uwYjZgwEkzwBEFO76B1f/b7+aTI5J5dtKz3HvcvYTZwvg+63su+OAC3tn0Dn6/v/XuQ0RERERERETaDYWOcuQIndPRagfffsxRGJzTMWR4dXuodGyJ7uMhIgnKcmDNXCjLg09/Z+4b/3uYdB+Mm2F+XvQgVLv3+xKGYXBR34uYO20uIzqMoMxTxn3f3Metn99KXkVeK96MiIiIiIiIiLQHCh3lyBG6erXFBt79CMcCoaM7ZCGZY6XS0WqH424033/+Z3hxKlQUQPIgOPlOc/txN5griBfvNhedOUBp0WnMnjKbO0begd1i58tdX3L+++ezaPuiVrgREREREREREWkvFDrKkcNqr31vsUGnkeZ7owW/poHQsbLYXME6dNuxYPSvzLkfi3ZC3gZzqPo5T9d+p/YwGH6F+X7lnIO6lNVi5epBV/PGWW/QN64ve6v2cvuXt/OnJX+iNBD4ioiIiIiIiMgxTaGjHDkMI+S9FaY+BmN/A9d/ve9zndHmq99rDi+GY6fSEczA8ZfvQrdxEN0JfjnXXDE81IgrAQO2fgn5Ww76kn3i+vD6ma9z7aBrMTB4f8v7XPDBBXyf9f1Bty0iIiIiIiIiRzeFjnJkslghIhHO+DukDNr38Y4IM6gEcwgxHDtzOgZ0HglXfwQz1kLXExruj+sKvU413//wUqtc0mF18NuRv2XO6XPoFNmJPWV7+NVnv+LxFY9T5a1qlWuIiIiIiIiIyNFHoaMcmSzW/TveMGqHU5dkmq/HUqVjS428xnz98bUDWlCmKSOSRzD37Llc0PsC/PiZ8/McLv34UrYWbm21a4iIiIiIiIjI0UOhoxyZHAcwH6OrZoh18Z6aNo6xSseW6HM6RHWE8jxY/1HdfZsWwru/gU9+B6W5+910hD2C+0+4n6cmPEW8K55NezdxyceX8P7m91up8yIiIiIiIiJytFDoKEeWU2dCyhAYe/3+n+uMMV8DoaNToWMDVlvIgjIv1m5fPgteuwBW/ReWPw/PngBFuw7oEhO6TGDu2XM5ruNxVFRX8Kelf+KPS/5Iuae8FW5ARERERERERI4GCh3lyDLuDvjN1xAWu//nBiodKwrMVw2vbtyIKwADMhZD7kb44RX45E5z39BLIbEPlOXAp78/4EskhiXy3KTnuGX4LVgMCx9s+YBLPr6EjXs3ts49iIiIiIiIiMgRTaGjtB+BFawDNLy6cbFdoPdp5vtnRsMHN5vvj7sRzn0WfjHHXJRn/Uew9asDvozVYuW6Idcxe8psOoR3IKMog8s+vox3Nr1z8PcgIiIiIiIiIkc0hY7SfrgUOrbY1Ecgvkft5zHXwZS/mgvyJA+EkVeb25c9f9CXGpk8krenvc1JnU6iylvFfd/cx/3f3I/b23oL2YiIiIiIiIjIkUWho7Qf9SsdNadj0+K6wa8XwRmPwg3fwtRHzcAxIDCn5sZPoXDnwV/OFcczpz7DrcNvxcBg7qa5XD3varLKsg66bRERERERERE58ih0lPajQaWj5nRsVng8jL0Okgc03JfUF7qfDH4frJjdKpezGBamD5nOs5OeJcYZw+q81Vz80cV8n/V9q7QvIiIiIiIiIkcOhY7SftSvdIxIapt+tBdjrjNff3gJPJWt1uyJnU7kjTPfoF98PwoqC5g+fzov/fwSfr+/1a4hIiIiIiIiIm1LoaO0H6GVjvZwiEptu760B33OgOjOUJ4Pa99r1aY7R3Xm5TNeZlqPaXj9Xh5b8Ri/W/w7yj3lrXodEREREREREWkbCh2l/QitdIzvCRb9eh8Uqw1GXWO+//px8HnN914PLJgJTwyG/xsGa98/oObDbGH85aS/8Iexf8Bm2Ji3bR5XfnolmaWZrdN/EREREREREWkzSmWk/XDF1L5P7NV2/WhPxlwHYXGQtxF+eBlKc+Cls2Hp/0HRDtibAf+7EtJfP6DmDcPg0n6X8sKUF4h3xbNh7wYu/fhS0nPSW/c+REREREREROSwUugo7UdopWOCQsdW4YqGk35rvv/odnisN+z4xvyuz/9P7byP8+42A8kDNCJ5BP8987/0ietDfmU+v/rsV3y45cOD77+IiIiIiIiItAmFjtJ+uBQ6HhLH3QjDLq/9nNQPpn8OQ34BU/4GKUOgsgi++MtBXSY1MpVXzniFiWkTcfvc/GHJH3hy5ZP4/L6DvAEREREREREROdwUOkr7oUrHQ8Nqh3OegSvehV8tgBu+gcTeNftscMbfzffpr0NJ1kFdKtwezhMTnuDXg38NwAtrXuD2L27XAjMiIiIiIiIiRxmFjtJ+hMXWvo/r3mbdaJcMA3pOhLQxYLHW3dfleOg8BrxuWPbcQV/KYli4bcRt/PWkv+KwOPhi5xdc8ekVZJUdXKApIiIiIiIiIoePQkdpPxwRcN7zcN6/ISKhrXtz7DAMOOl28/33s6GyuFWandZzGrNPn02CK4GNezdy+ceXs75gfau0LSIiIiIiIiKHlkJHaV+GXgJDL27rXhx7+pwBiX2hqghWzmm1ZocmDeX1M1+nZ0xPcipyuOrTq1i6e2mrtS8iIiIiIiIih4ZCRxE5eBYLnHir+X7pk1CWb773euCHl+H1S+C9myDzp/1uOjUylZenvsyYlDGUV5dz06KbmLtxbuv1XURERERERERanUJHEWkdgy+CDgOgPB8+vBW2LYFZE+GDW2Djp5D+KsyeApsX7XfT0Y5onpv0HNN6TMPr93L/t/fz1A9P4ff7D8GNiIiIiIiIiMjBUugoIq3D5oBpTwEGrP8I5pwJWT9BWBxM+BP0OAU85TD3V1Cas9/N2612/nLSX/jN0N8AMGv1LO7++m7cXnfr3oeIiIiIiIiIHDSFjiLSetJGw2X/g8Q+4IyGIZfAjd/B+LvgsrcgZTBU7IVPf39AzRuGwU3DbuLBEx7EZtj4JOMTrl9wPUVVRa18IyIiIiIiIiJyMBQ6ikjr6nMa3Pw93L0Dzn8eolLM7TYHnP00GBb4+R3YduALwpzX+zyemfQMEfYIVmSv4MpPrySzNLOVbkBEREREREREDtZREzpu2LCBYcOGBX/CwsJ477332rpbItIUw2i4LXUYjLjKfP/ZH8DnO+DmT0g9gZdOf4kO4R3YWrSVKz69gi2FWw64PRERERERERFpPUdN6Ni3b1/S09NJT09nyZIlREREMHny5Lbulojsrwl/NIdeZ6bDT28cVFN94/vy2tTX6BHTg+zybK789ErSc9JbpZsiIiIiIiIicuCOmtAx1AcffMCpp55KREREW3dFRPZXZBKcfKf5fuEDUJJlvi/Jgq8fh7m/hsWPQkl2i5pLiUjhpdNfYkjiEIrdxUyfP52vd319iDovIiIiIiIiIi3RaqHj4sWLmTZtGqmpqRiG0ejQ52eeeYZu3brhcrkYO3Ysy5cvP6Br/e9//+Piiy8+yB6LSJsZ+xtI6AWlWTD7dHjravi/obDoQVj9Fnz+Z3juRMha06LmYl2xzDptFid2OpFKbyW3fn4rH2758NDeg4iIiIiIiIg0ydZaDZWVlTF06FCuvfZazj///Ab733zzTWbMmMFzzz3H2LFjefLJJ5kyZQobNmygQ4cOAAwbNozq6uoG586fP5/U1FQAiouL+eabb3jjjeaHZVZVVVFVVRX8XFxcDIDH48Hj8RzwfR7JAvfVXu9P2hMLXPwGtlfOxtibAXszAPB1Go2/1yQsP7+DkbcB/0vTqP71lxCdus8W7dj5x7h/cP939/Pptk/5w5I/kFeexy/7/fIQ30stPYMibU/PoUjb0jMo0rb0DIq0vfb+HO7PfRl+v9/f2h0wDIN3332Xc889N7ht7NixjB49mqeffhoAn89HWloat9xyC3fffXeL237llVf47LPPePXVV5s97v777+eBBx5osP31118nPDy8xdcTkUPH4SkmtWgFTk8hOdFD2RveAwwDW3UZJ25+mNiK7eRH9GFp73vwG9YWtenz+5hXOY9vqr4B4GTnyUx2TcZobGEbEREREREREWmx8vJyLrvsMoqKioiOjm722MMSOrrdbsLDw3n77bfrBJFXXXUVhYWFvP/++y1ue9q0aVx33XVMmzat2eMaq3RMS0sjLy9vn1/K0crj8bBgwQImT56M3W5v6+6IHJy9Gdj+MwHDXYr3hN/im/DHFp/q9/t5ad1LPJX+FACX9rmUO0feeciDRz2DIm1Pz6FI29IzKNK29AyKtL32/hwWFxeTmJjYotCx1YZXNycvLw+v10tycnKd7cnJyaxfv77F7RQVFbF8+XLmzp27z2OdTidOp7PBdrvd3i7/Rw91LNyjHAM69IGz/wlvX4P1myexJveHoTVzubrLYce34KuGjkMhKqXB6dOHTifGFcND3z3Efzf+Fw8e7j3uXizGoV8/S8+gSNvTcyjStvQMirQtPYMiba+9Pof7c0+HJXRsLTExMWRnt2xFWxFpBwadDzuXw7Jn4d3r4ed3wVsF27+B6krzGKvDXJhm4r1gc9Q5/aK+F+G0Opn5zUze3vg2bq+bB054AJvlqPqjT0REREREROSoc+hLfoDExESsVmuDwDA7O5uUlIYVSiIiQVP+CqN/Dfhh46ew5XMzcIzuDEn9wOuGb56C1y6EisIGp5/T6xweHvcwVsPKB1s+4O6v78bja58T+oqIiIiIiIgcKQ5L6OhwOBg5ciSLFi0KbvP5fCxatIjjjz/+cHRBRI5WFguc+Tj8Zgmceh+c+Q+44Rv47Rq48Tu4+FWwR0DGVzD7dCjc2aCJM7qfwePjH8dmsfHZts+448s7cHvdbXAzIiIiIiIiIseGVhtjWFpayubNm4OfMzIySE9PJz4+ni5dujBjxgyuuuoqRo0axZgxY3jyyScpKyvjmmuuaa0uiEh7ljLY/Kmv/zS4tgu8dhHkroP/nAqTHoCYzpCzFnZ9D6U5nBoez/91PZ/fbn+PL3Z+wW1f3MYTpzyBy+Y6/PciIiIiIiIi0s61Wui4YsUKJkyYEPw8Y8YMwFyhes6cOVx88cXk5uYyc+ZMsrKyGDZsGPPmzWuwuIyIyH7rOBR+vRBev8gMGt/7TaOHnfwzPN2hB7dG2Vmyewm3fH4LT018ijBb2GHusIiIiIiIiEj71mqh4ymnnILf72/2mJtvvpmbb765tS4pIlIrNg2u/QyWPQ/r3gdPBcR1h86jIb475G+B7//D8Tlbea7IyY2pKXyX+R23fjadp4bcQlhZPhTvBncZJPaGbieBK6at70pERERERETkqKQlXEWk/XBFw/i7zJ/GHH8TfP04I7/7F8/uyeKGlCS+y1vFrR9fzlPZeYSF/sOJxW4Gj/3OhL5nmMO1Afx+cJeaoWZYPFj1x6iIiIiIiIhIffrbsogcO1zRMPkBGHUNI775J89mLOCGCB/fhYVxa5cePOXqS5g9HDJXQf4m2PqF+fPJnRCeCH4vVBabrwCGBRJ6Q8chkDIYI3EAkZWZkLseDD/4PODzQkQiRKWCXfNHioiIiIiIyLFBoaOIHHviusGZjzMCeDb7B25YeAPfVZdza0Jk7RyPeZthw8ew/hPYuQzK8xq24/dB3gbzZ/Vb2IBTAdY1cd2IDhDfA6JSwB4GVrvZhs9nvtpd4IwCR5T56oysea3ZZnOCzQU2B9jDze32cDCMQ/VNiYiIiIiIiBwQhY4ickwbkTyCZyc9awaPmd9x6+e3msFjYi9IvA1OvA3KC6Aky6xsdMWYPzYnlGZD9s+Q9RNk/oQ/cxWe4mzsznAMiw2sDjCA0lyoroCyHPOnNRkWcESaP1a7+WOxm8O+rQ7zx+YyQ06bqza0tDprjq85ps57WxPb7TXn1dtuczQ83mIHi6V171VERERERESOGgodReSY12TwGFjVOjze/KkvOtX86T0ZgGqPh08/+YSpU6dit9trj/P7oWIv7N0GezPMENJbBV63GRoGfjyVUFVszhlZVQJVNa/uEvO1uqr2x1MO+M0Kyapi8+dIEwheg0FoE+FmICS12OsFp/ZGttlC2go5p8G1mjqupe0pNBURERERETkYCh1FRGhB8HgwDKM2uOw04uDbAzPI9JTXhpPuUv6/vTsPj6o83D5+z0wmkz0sIQkJO6LIFvYYcQGNIFpqQa21Vql1aVEUm/6sUF9BbQUr1qUFpVIVrVWpVnFHA4iAIsgS9l1kCSSsSchCMst5/wgZE7KQZZKTzHw/15UL5jnPnLlP6FPI7VnkdpbeR9Lt/PH33qKyqLTUdBWd2V5S+uU686u7WHK7zry/pNyccnOrfF+5sbJ7XZbxuEq/nL455CZnsdWx7Az68ctml6y2M+Vl2VjZdvtZr8vGbNXsJ6gB+y6bU37fZ97PZfkAAAAAGhGlIwCc0ajFo69ZLFJweOlXpNlhzvC4SwtOj7O0wKyqrPQWo2eKy7KS1OP6cV7Z+88uUOs9z1Vum6vq93qqaEYNt+RySzrd5N/KJnF2mVltyVmLQtNqKy1prbbSMYu14pj3V2u5OWeNVTk3qOr3V5gbVHpW6pkxi8dQ64JdsmSuk4KDz8plqzC34q/Wcvsrv41yFgAAAKgPSkcAKKdFFY/NjdUmBYeZnaJ+DKOGcrKWJabHVVq8ls0ve3q593W5r7PH3Gfmet/nOlOKumq5b3e59zkrvva4qj7mmra1YEGSLpOknb7ao6XqUrTa0rKmOVXMrVcZWt3c2uaqrhiuKpcPi2EAAAAEFEpHADgLxWMAslh+vNejvzGMBhaa5ypLXWeewu4uPTu0bH8Vxsr/6vkxz9ljZ8+t6f3VzDU8LhXm5yss1CFLpVyeKvbnPtc38Ew565LONRU1q1cBa5VkKXf/W1UxZjlrrNyvlcZqOa/a/ddlXk2fWX6sNsdk/XGftTr2MyXvOY+9irznzOH9Ay2Xx/LjmNutqKL90pGtUlBQ9fMqjakW8yxVzDvXmBrw3mpylmWrkLuK3wciw2jC99XjPfXN12Sf5YPvn8spq6dEcp1WzX9xlXtPhaxG9WN1Ha/ue9DQzzvn3Lrkrccx1DZTjZ9Rz9z13VbpMKr7LB9sa8j351yfWavtqn57g/ddu+0Wt1txuRmSrjk7TMChdASAKlRVPM66cpYcNofZ0YC6sVjOPLQnSFKI2Wkancvp1KKqHuhUk/JlpE/L0OqKzqpKWnf1pajHc1auauZWmauquTUUsFV+L2o4hvK5zvXDsuGW3DS3/s4uaYQkbTc5SLPjo2KyKUsztEh2SWMkaYPJQYAAFiRpoC1M0p/MjmI6SkcAqMbZxWPa0jQ9N/w52f3xbDggkFmtkqz+eaZrUyo7q7bKgtJVvzLUMErfrzO/Gp7S7qTSWFXzjDMFTW3mec4cQ23mGT/+3mfzyuWtNOZpRvM8P/5Zlx1f6YB3zDAMFRcXy+EIlqWGeT92YOXGKu27jmPNWk1n2gCoWVWlfXVFvqX6sXrPrWGs/Nnf1c6pzX5qeVwN2Vbpv3fU9B9DGrittt/nqo67Np9b5Vtq+j7U9zPqt91jGMrJK1Lryp8YcCgdAaAGA+MGataVs3TPonu07OAy/XHZHzXz8pkKsvJ/nwBQQdlZtfzzMqC5nE59XtezjX3JqKmclCoWn3Udq+KzyuZWGqtu/KyxOp/1WI+zJBv7M5rlMTTF/pvn98npdOqLL77QyJEja7EGa1FwNWi8ju8J9NsTwG+4nU6t/PRTLq4W/yoEgHMaEj9Ez494XhOXTNSi/Yv0pxV/0oxLZshmtZkdDQAAlOe99yUQoKxOuWyhkiNSMqP4B4ByeJQgANTCxYkX65nhzyjIEqTP9n6mR1c+Kk/ZZWYAAAAAAKACSkcAqKXhHYfrycuelNVi1YLdCzR91XQZ3JcJAAAAAIBKKB0BoA5GdRmlvwz7iyyyaP6O+Xp23bNmRwIAAAAAoNmhdASAOhrTfYympUyTJL26+VW9tuU1kxMBAAAAANC8UDoCQD1cf/71mjRwkiTp6TVP66M9H5mcCAAAAACA5oOnVwNAPd3R5w4dLzquN7a9oalfT1VkUKTZkQAAAAAAaBY40xEA6slisejBIQ/q2m7XymW49ODyB3XAdcDsWAAAAAAAmI7SEQAawGqx6s8X/1nDEobptPu0/l3wb+3P2292LAAAAAAATEXpCAANZLfZ9czwZ9S7TW8VGoW6/6v7lXM6x+xYAAAAAACYhtIRAHwgzB6mZy9/Vq0srbT/1H5N+nKSStwlZscCAAAAAMAUlI4A4CMxoTG6NeJWRdgjtO7IOk37ZpoMwzA7FgAAAAAATY7SEQB8KM4Wp5mXzlSQJUgff/+x5myYY3YkAAAAAACaHKUjAPhYcnyy/t9F/0+S9MKGF/TRno9MTgQAAAAAQNOidASARnD9+dfrN31+I0ma9s00rclaY3IiAAAAAACaDqUjADSSSQMn6arOV8npcer3S3+vg6cOmh0JAAAAAIAmQekIAI3EarFq+iXT1bttb+UU5+i+JfepwFlgdiwAAAAAABodpSMANKKQoBA9P+J5xYTGaHfObv1p+Z/kMTxmxwIAAAAAoFFROgJAI4sLj9PzI55XsDVYSw4s0eyM2WZHAgAAAACgUVE6AkAT6Neun6ZdPE2S9NLGl7Rw70KTEwEAAAAA0HgoHQGgify0+0/1696/liQ98vUj2np8q7mBAAAAAABoJJSOANCEHhj4gIYlDtNp92ndv+R+HSs6ZnYkAAAAAAB8jtIRAJqQzWrTU5c9pS5RXZRdmK0HvnxAJe4Ss2MBAAAAAOBTlI4A0MSigqP0jyv+oUh7pDYc3aDpq6abHQkAAAAAAJ+idAQAE3SJ7qKZl8+URRb9b9f/9N6u98yOBAAAAACAz1A6AoBJhiUO073975UkPfHtE9pyfIvJiQAAAAAA8A1KRwAw0V397tLlHS5XiadEf1j6B+WczjE7EgAAAAAADUbpCAAmslqsmn7pdHWM7KjM/ExNXj5Zbo/b7FgAAAAAADQIpSMAmCwqOErPDn9WIbYQfX3oa83ZOMfsSAAAAAAANAilIwA0Axe0uUBTU6ZKkuZsmKOvDnxlciIAAAAAAOqP0hEAmokx3cfo5p43S5KmrJiizPxMkxMBAAAAAFA/Lap0fPrpp9W7d2/16dNHb7zxhtlxAMDnHhz8oPq166dTJaf00LKH5PK4zI4EAAAAAECdtZjScdOmTXrzzTe1du1afffdd5o1a5ZycnLMjgUAPmW32fXUZU8pwh6hDUc36MUNL5odCQAAAACAOmsxpeO2bduUkpKikJAQhYaGKikpSQsXLjQ7FgD4XGJEoqalTJMkzd04V6sPrzY5EQAAAAAAdeOz0nHZsmUaM2aMEhISZLFYtGDBgkpzZs+erS5duigkJETJyclavbr2P0j36dNHS5cuVU5Ojk6ePKmlS5cqM5P7nQHwT1d3vVrjeoyTIUNTlk/RydMnzY4EAAAAAECt+ax0LCgoUFJSkmbPnl3l9vnz5ystLU3Tpk3TunXrlJSUpFGjRunIkSPeOf3791efPn0qfR06dEi9evXS/fffryuuuELjxo3TRRddJJvN5qv4ANDsPDTkIXWN7qojRUc09eupMgzD7EgAAAAAANRKkK92NHr0aI0ePbra7c8884zuuusu3X777ZKkOXPm6JNPPtErr7yiyZMnS5IyMjJq/Izf/va3+u1vfytJuvPOO9WjR49q5xYXF6u4uNj7Oi8vT5LkdDrldDprdUwtTdlx+evxAc2dr9egXXbNuHiGbv38Vi09uFRvbHlDv7jgFz7ZN+Cv+LsQMBdrEDAXaxAwn7+vw7ocl8VohFNnLBaL3n//ff3sZz+TJJWUlCgsLEzvvvuud0ySxo8fr5ycHH3wwQe12u+RI0cUGxurHTt26MYbb9S6desUFFR1b/roo4/qscceqzT+5ptvKiwsrM7HBABmWVm8Up8UfSK77Lo38l7F2GLMjgQAAAAACECFhYX65S9/qdzcXEVFRdU412dnOtbk2LFjcrvdiouLqzAeFxen7du313o/1113nXJzcxUeHq5XX3212sJRkqZMmaK0tDTv67y8PHXs2FEjR4485zelpXI6nUpPT9dVV10lu91udhwg4DTWGrzauFpHlxzV6uzVWuJYopdTX5bNyu0lgKrwdyFgLtYgYC7WIGA+f1+HZVcS10aTlI6+snLlylrPdTgccjgclcbtdrtf/qGXFwjHCDRnjbEG/3LJXzT2w7HaeGyj3tr1lm7vc7tP9w/4G/4uBMzFGgTMxRoEzOev67Aux+SzB8nUJCYmRjabTdnZ2RXGs7OzFR8f3xQRAKBFax/RXn8c8kdJ0qz1s7QnZ4/JiQAAAAAAqF6TlI7BwcEaNGiQFi9e7B3zeDxavHixUlJSmiICALR4Y88bq0sTL1WJp0QPr3hYLo/L7EgAAAAAAFTJZ6Vjfn6+MjIyvE+g3rt3rzIyMrR//35JUlpamubOnavXXntN27Zt04QJE1RQUOB9mjUAoGYWi0WPXvyoIoMjteX4Fv1n23/MjgQAAAAAQJV8VjquWbNGAwYM0IABAySVlowDBgzQ1KlTJUk33XSTnn76aU2dOlX9+/dXRkaGFi5cWOnhMgCA6sWGxeoPg/4gSZqdMVuZ+ZkmJwIAAAAAoDKflY7Dhw+XYRiVvubNm+edM3HiRO3bt0/FxcVatWqVkpOTffXxABAwxvYYq4GxA1XkKtIT3z4hwzDMjgQAAAAAQAVNck9HAIDvWC1WTUuZJrvVruWZy/X5vs/NjgQAAAAAQAWUjgDQAnVr1U139b1LkvTkqieVW5xrciIAAAAAAH5E6QgALdQdfe9Q1+iuOn76uGatn2V2HAAAAAAAvCgdAaCFCrYF65GLHpEk/Xfnf7X9xHaTEwEAAAAAUIrSEQBasCHxQ3R1l6vlMTyavmo6D5UBAAAAADQLlI4A0ML9YfAfFBoUqvVH1uvj7z82Ow4AAAAAAJSOANDSxYfH6+5+d0uSnln7jPJL8k1OBAAAAAAIdJSOAOAHbut1mzpHddaxomN6ccOLZscBAAAAAAQ4SkcA8APBtmA9NOQhSdKb29/U/rz9JicCAAAAAAQySkcA8BOXdrhUwxKHyeVx6dm1z5odBwAAAAAQwCgdAcCP/N+g/5PVYtWi/Yu0JmuN2XEAAAAAAAGK0hEA/Mh5rc/T9T2ulyQ9veZpeQyPyYkAAAAAAIGI0hEA/Mw9/e9RuD1cW45v0Sfff2J2HAAAAABAAKJ0BAA/ExMaozv73ilJen7d8zrtOm1yIgAAAABAoKF0BAA/dGuvW9U+vL2yC7P11va3zI4DAAAAAAgwlI4A4IccNofu6X+PJOnlzS/rVMkpkxMBAAAAAAIJpSMA+Kkx3caoW3Q35Rbnat6WeWbHAQAAAAAEEEpHAPBTNqtN9w24T5L0763/1rGiYyYnAgAAAAAECkpHAPBjV3a6Un3a9lGRq0j/2vQvs+MAAAAAAAIEpSMA+DGLxaJJgyZJkv674786lH/I5EQAAAAAgEBA6QgAfu6i9hcpuX2ynB6n/rnxn2bHAQAAAAAEAEpHAAgAZfd2/HD3h8rMzzQ5DQAAAADA31E6AkAASGqXpJT2KXIZLu7tCAAAAABodJSOABAgJvSfIElasHuBDucfNjkNAAAAAMCfUToCQIAYEDtAyfHJcnlcennzy2bHAQAAAAD4MUpHAAggv0v6nSTpvV3vKasgy+Q0AAAAAAB/RekIAAFkcPxgDY4bLKfHqVc2v2J2HAAAAACAn6J0BIAAU3a24/92/k/Hi46bnAYAAAAA4I8oHQEgwAyNH6q+MX1V4inR/B3zzY4DAAAAAPBDlI4AEGAsFovG9x4vSXp7+9sqchWZnAgAAAAA4G8oHQEgAF3Z6UolRiTqZPFJfbTnI7PjAAAAAAD8DKUjAASgIGuQbu11qyTp9a2vy2N4TE4EAAAAAPAnlI4AEKDGnjdWkcGR2pe3T0sPLDU7DgAAAADAj1A6AkCACrOH6aYLbpIkvbblNZPTAAAAAAD8CaUjAASwm3verCBrkNYdWaeNRzeaHQcAAAAA4CcoHQEggMWGxeqartdIkubvmG9yGgAAAACAv6B0BIAA9/MLfi5J+vyHz5VbnGtyGgAAAACAP6B0BIAA1y+mn3q26alid7E+2P2B2XEAAAAAAH6A0hEAApzFYvGe7fjOzndkGIbJiQAAAAAALR2lIwBA13a9VuH2cP2Q94NWZa0yOw4AAAAAoIWjdAQAKMwepp90+4kk6X87/2dyGgAAAABAS0fpCACQJI3tMVaS9OWBL3Wq5JTJaQAAAAAALRmlIwBAktSrTS91j+6uYnex0velmx0HAAAAANCCUToCACSVPlDmJ91LL7H+cM+HJqcBAAAAALRkzbJ0HDt2rFq3bq0bbrihTtsAAA3zk24/kUUWrc1eq4OnDpodBwAAAADQQjXL0nHSpEl6/fXX67wNANAw8eHxGtp+qCTp4+8/NjkNAAAAAKClapal4/DhwxUZGVnnbQCAhvtp959Kkj75/hMZhmFyGgAAAABAS1Tn0nHZsmUaM2aMEhISZLFYtGDBgkpzZs+erS5duigkJETJyclavXq1L7ICAJrAFR2vkN1q1w95P2hPzh6z4wAAAAAAWqCgur6hoKBASUlJ+s1vfqNx48ZV2j5//nylpaVpzpw5Sk5O1nPPPadRo0Zpx44dio2NlST1799fLper0nu/+OILJSQk1OMwKisuLlZxcbH3dV5eniTJ6XTK6XT65DOam7Lj8tfjA5o7f1mDDotDyfHJWnFohb7Y+4U6R3Q2OxJQa/6yDoGWijUImIs1CJjP39dhXY6rzqXj6NGjNXr06Gq3P/PMM7rrrrt0++23S5LmzJmjTz75RK+88oomT54sScrIyKjrx9bZjBkz9Nhjj1Ua/+KLLxQWFtbon2+m9PR0syMAAc0f1mC74naSpAVbFyjxQKLJaYC684d1CLRkrEHAXKxBwHz+ug4LCwtrPbfOpWNNSkpKtHbtWk2ZMsU7ZrValZqaqpUrV/ryo85pypQpSktL877Oy8tTx44dNXLkSEVFRTVplqbidDqVnp6uq666Sna73ew4QMDxpzWYcjpFH77/oQ67D6vfZf3UIaKD2ZGAWvGndQi0RKxBwFysQcB8/r4Oy64krg2flo7Hjh2T2+1WXFxchfG4uDht37691vtJTU3Vhg0bVFBQoA4dOuidd95RSkrKObeV53A45HA4Ko3b7Xa//EMvLxCOEWjO/GENxtpjNThusFZlrdKyQ8s0vvd4syMBdeIP6xBoyViDgLlYg4D5/HUd1uWYfFo6+sqiRYvqtQ0A4DtXdr5Sq7JWKX1fOqUjAAAAAKBO6vz06prExMTIZrMpOzu7wnh2drbi4+N9+VEAgEZ2ZacrJUkbjm7QsaJjJqcBAAAAALQkPi0dg4ODNWjQIC1evNg75vF4tHjx4iovgQYANF+xYbHq1baXJGnloaa9Ly8AAAAAoGWrc+mYn5+vjIwM7xOo9+7dq4yMDO3fv1+SlJaWprlz5+q1117Ttm3bNGHCBBUUFHifZg0AaDkuTrhYkvT1oa9NTgIAAAAAaEnqfE/HNWvWaMSIEd7XZU+IHj9+vObNm6ebbrpJR48e1dSpU5WVlaX+/ftr4cKFlR4uAwBo/i5OuFj/2vQvrTy0Uh7DI6vFpyfIAwAAAAD8VJ1Lx+HDh8swjBrnTJw4URMnTqx3KABA89C/XX+FBoXqxOkT2nFihy5se6HZkQAAAAAALQCnrAAAqmW32TU0fqgk6ZtD35icBgAAAADQUlA6AgBqVHZfR0pHAAAAAEBtUToCAGpUVjquO7JOhc5Ck9MAAAAAAFoCSkcAQI06R3VWYkSiXB6X1mSvMTsOAAAAAKAFoHQEANTIYrEouX2yJFE6AgAAAABqhdIRAHBOA2MHSpLWZq81OQkAAAAAoCWgdAQAnNOguEGSpK3HtqrIVWRyGgAAAABAc0fpCAA4p8SIRMWFxclluLTx6Eaz4wAAAAAAmjlKRwDAOVksFg2MK73Eet2RdSanAQAAAAA0d5SOAIBaSWqXJEnadHSTyUkAAAAAAM0dpSMAoFb6xfSTJG06tkmGYZicBgAAAADQnFE6AgBqpWebngq2BiunOEcHTh0wOw4AAAAAoBmjdAQA1IrdZlfPtj0lSRuP8TAZAAAAAED1KB0BALXmvcSa+zoCAAAAAGpA6QgAqLVebXtJkrad2GZyEgAAAABAc0bpCACotQvbXChJ2nFihzyGx+Q0AAAAAIDmitIRAFBrXaK7yGFzqNBVqP15+82OAwAAAABopigdAQC1FmQN0vmtz5ckbT+53eQ0AAAAAIDmKsjsAACAlqVnm57adGyTth/frqu7XO3TfRc6C7Xx2Ebtzd2rw/mHFRIUosjgSJ3f+nwltUtSSFCITz8PAAAAANA4KB0BAHXSs01PSdL2E74703HHiR16e8fb+vT7T1XoKqxyTrA1WEPbD9WN59+oyzpcpiArf4UBAAAAQHPFT2wAgDopu7x6T+6eBu/rtOu0nl37rN7a/pYMGZKkhPAEXdDmAiVGJKrEXaKTxSeVcSRDR4uOakXmCq3IXKH24e11Z987NbbHWNmt9gbnAAAAAAD4FqUjAKBOukZ3lSRlFWQpvyRfEcER9dpPdkG2Ji6Z6D1j8qrOV+nmnjdrcNxgWSyWCnMNw9D3ud/rg90f6P3d7+twwWH9+ds/69XNryptcJpSO6VWeg8AAAAAwDw8SAYAUCfRjmi1C20nSdqbu7de+8jMz9T4heO1/cR2tXa01pzUOXpm+DMaEj+kyvLQYrGoe6vuShucpkU3LtLkoZPVJqSNDuYfVNrSNE1YNEH78vY16LgAAAAAAL5D6QgAqLNurbpJqt8l1jmnc/S79N8pMz9TnSI76e2fvK1hicNq/X6HzaFbLrxFn437THf3u1t2q11fH/paYz8Yq9kZs+X0OOucCQAAAADgW5SOAIA66x7dXZL0fc73dXqfx/Doj8v+qB/yflB8eLxeGfWKEiIS6pUhzB6m+wbcp/eve1/DEofJ6XFqzoY5uuWTW7Qnp+H3mwQAAAAA1B+lIwCgzrq3Ki0dd+fsrtP7Xt38qlYeXqkQW4hmXzlbceFxDc7SOaqzXrzyRc28fKaiHdHadmKbbvr4Ji3YvaDB+wYAAAAA1A+lIwCgzsoeJvN9bu3PdMzMz9SLG16UJE1JnuJ9CrYvWCwWXd3lar3/0/c1LGGYit3FeuTrR/ToN4+q2F3ss88BAAAAANQOpSMAoM46RXaSVPoE69reQ/Fva/6mYnexhsYP1djzxjZKrnZh7fRC6gua2H+iLLLof7v+p1s/vVUHTx1slM8DAAAAAFSN0hEAUGftwtopxBYit+HW4fzD55y/++Rupe9Ll0UWTR46uconVPuK1WLVb5N+qzmpc9TK0cp7ufU3md802mcCAAAAACqidAQA1JnVYlWHyA6SpAOnDpxz/subX5YkpXZOVY/WPRo1W5mLEy/Wf3/yX/WN6au8kjzdu/hefbjnwyb5bAAAAAAIdJSOAIB6qW3peKzomBbuXShJuqPvHY2eq7z2Ee017+p5urbbtXIZLj284mH9a9O/ZBhGk+YAAAAAgEBD6QgAqJeOkR0lnbt0/GjPR3IZLvVr10+92/ZuimgVBNuCNf2S6bq99+2SpOfXPa8Zq2fIY3iaPAsAAAAABApKRwBAvdSmdDQMQ+/tek+SdH2P65skV1WsFqvSBqfpoSEPySKL3tr+lqavms4ZjwAAAADQSCgdAQD1UpvScefJnfoh7weF2EI0qsuopopWrV/1+pX+cslfZJFF83fM18w1MykeAQAAAKARUDoCAOqlrHTMzM+strhbnrlcknRR+4sUbg9vsmw1+Wn3n+rRix+VJP1767/1/LrnKR4BAAAAwMcoHQEA9RIfHi9JKnIVKa8kr8o5yw+Wlo6Xdri0yXLVxrge4/Rw8sOSSp+s/eqWV01OBAAAAAD+hdIRAFAvDptDbULaSJKyCrIqbc8tzlXG0QxJ0iWJlzRltFr5Rc9f6P8G/58k6bm1z2nxvsUmJwIAAAAA/0HpCACot9iwWElSdmF2pW3rj6yXx/Coa3RXJUQkNHW0Wrmt1236xQW/kCFDk5dP1pbjW8yOBAAAAAB+gdIRAFBvcWFxkqouHTce3ShJSmqX1KSZ6sJiseihoQ9pWOIwnXaf1n2L76vyrE0AAAAAQN1QOgIA6q2sdDxSeKTSto3HSkvHfu36NWmmugqyBmnmZTN1XqvzdLToqO5fcr+K3cVmxwIAAACAFo3SEQBQb3HhZ850LKh4pqPb49bmY5slSf1imnfpKEmRwZGadeUstXa01rYT2zR91XSzIwEAAABAi0bpCACot+ru6bg3d68KnAUKDQpV91bdzYhWZ4kRifrrZX+VRRa9t+s9vbfrPbMjAQAAAECLRekIAKg37z0dzzrTceuJrZKkC9tcqCBrUJPnqq+UhBRNHDBRkvTEt09o6/GtJicCAAAAgJapWZaOY8eOVevWrXXDDTdUGM/JydHgwYPVv39/9enTR3PnzjUpIQBA+vHy6rPv6bgnZ48kqUfrHk2eqaHu7HunhncYrhJPidKWpim3ONfsSAAAAADQ4jTL0nHSpEl6/fXXK41HRkZq2bJlysjI0KpVqzR9+nQdP37chIQAAOnHMx1POU+pwFngHf8+53tJajGXVpdntVj1xKVPqENEB2XmZ2rK8inyGB6zYwEAAABAi9IsS8fhw4crMjKy0rjNZlNYWJgkqbi4WIZhyDCMpo4HADgj3B6ucHu4JOlo4VHv+J7c0jMdu0e3vNJRkqKCo/TsiGflsDm0PHO5Xsh4wexIAAAAANCi1Ll0XLZsmcaMGaOEhARZLBYtWLCg0pzZs2erS5cuCgkJUXJyslavXu2LrJJKL7FOSkpShw4d9OCDDyomJsZn+wYA1F1rR2tJ0snik5Kk067TOnjqoCSpW6tupuVqqJ5tempayjRJ0j83/lOL9i0yOREAAAAAtBx1Lh0LCgqUlJSk2bNnV7l9/vz5SktL07Rp07Ru3TolJSVp1KhROnLkx/t9ld2T8eyvQ4cOnfPzW7VqpQ0bNmjv3r168803lZ2dfc73AAAaT5uQNpKkE6dPSJJ+yPtBhgxFO6LVNqStmdEabEz3MfrVhb+SJP1pxZ+06+QukxMBAAAAQMtQ50eKjh49WqNHj652+zPPPKO77rpLt99+uyRpzpw5+uSTT/TKK69o8uTJkqSMjIz6pS0nLi5OSUlJWr58eaUHzkill18XFxd7X+fl5UmSnE6nnE5ngz+/OSo7Ln89PqC5C9Q12MrRSpJ0tOConE6ndh7fKUnqGtVVLpfLxGS+cX/S/dpxYoe+y/5O9y+5X29c/YaigqPMjoVqBOo6BJoL1iBgLtYgYD5/X4d1Oa46l441KSkp0dq1azVlyhTvmNVqVWpqqlauXNng/WdnZyssLEyRkZHKzc3VsmXLNGHChCrnzpgxQ4899lil8S+++MJ7X0h/lZ6ebnYEIKAF2hrML8yXJK3auEqhO0O15PQSSZIt16ZPP/3UzGg+k+pJ1S7LLh3MP6jfLvitfhX+K1ksFrNjoQaBtg6B5oY1CJiLNQiYz1/XYWFhYa3n+rR0PHbsmNxut+Li4iqMx8XFafv27bXeT2pqqjZs2KCCggJ16NBB77zzjlJSUrRv3z7dfffd3gfI3Hffferbt2+V+5gyZYrS0tK8r/Py8tSxY0eNHDlSUVH+eYaK0+lUenq6rrrqKtntdrPjAAEnUNfg7ozdWrd1ndp1bqdrBl2jtavWSnukIRcM0TV9rzE7ns/0O9lPt31+m3a4dqj4gmKNO2+c2ZFQhUBdh0BzwRoEzMUaBMzn7+uw7Eri2vBp6egrixZVfbP+oUOH1vrSbIfDIYfDUWncbrf75R96eYFwjEBzFmhrMCas9IFeOSU5stvtOnK69B6+CZEJfvV96BPbR5MGTtLTa57W39b9TRcnXqyOUR3NjoVqBNo6BJob1iBgLtYgYD5/XYd1OaY6P0imJjExMbLZbJUe7pKdna34+HhffhQAoJkoe5DMydOlT6/OLij9OyAuLK7a97RUt/a6VYPjBqvIVaQpK6bI5Wn596wEAAAAgMbg09IxODhYgwYN0uLFi71jHo9HixcvVkpKii8/CgDQTLQOaS2pXOlYeKZ0DPe/0tFqseqJS55QhD1CG45u0KubXzU7EgAAAAA0S3UuHfPz85WRkeG9zHnv3r3KyMjQ/v37JUlpaWmaO3euXnvtNW3btk0TJkxQQUGB92nWAAD/Unam44nTJ1ToLNSpklOS/PNMR0lKiEjQlOTSB6a9kPGCth7fanIiAAAAAGh+6nxPxzVr1mjEiBHe12UPaxk/frzmzZunm266SUePHtXUqVOVlZWl/v37a+HChZUeLgMA8A/lL6/OKsySJIXbwxURHGFmrEY1ptsYLT2wVOn70jVl+RTN/8l8hQSFmB0LAAAAAJqNOpeOw4cPl2EYNc6ZOHGiJk6cWO9QAICWo+zyapfh0u6TuyX571mOZSwWix656BGtP7Je3+d+r5c2vqT7B95vdiwAAAAAaDZ8ek9HAEDgcdgcCreHS5K2n9guyf9LR6m0bP1/yf9PkvTq5le148QOkxMBAAAAQPNB6QgAaLDWjtKzHbed2CZJig2LNTNOk7my85VK7ZQql+HSo988KrfHbXYkAAAAAGgWKB0BAA1W9qTqjUc3VngdCKYkT1GkPVKbj2/W2zveNjsOAAAAADQLlI4AgAZrH95ekpRXkidJSoxINDNOk4oNi9UDgx6QJM1aP0vHio6ZGwgAAAAAmgFKRwBAg5WVjmU6RHQwKYk5ru9xvS5sc6HynfmanTHb7DgAAAAAYDpKRwBAg7WPqFg6JkYGzpmOkmSz2vTQ0IckSQt2LVBmfqbJiQAAAADAXJSOAIAGK3+mo81iC4inV59tUNwgXdT+IrkMl17IeMHsOAAAAABgKkpHAECDlS8d48PjFWQNMjGNeSYOmChJ+nDPh1p6YKmpWQAAAADATJSOAIAGK186dogMrPs5lpfULkm39bpNkvT4ysdV6Cw0OREAAAAAmIPSEQDQYGH2MEU7oiUF3kNkznb/wPvVMbKjjhYd1cubXzY7DgAAAACYgtIRAOATZWc7JkYE1kNkzuawOfSHwX+QJM3bPE+7Tu4yOREAAAAAND1KRwCAT/Rq20uS1Dumt8lJzHdFxyt0WYfLVOIp0eTlk+X0OM2OBAAAAABNitIRAOATU4ZO0btj3lVK+xSzo5jOYrHosYsfU2tHa+08uVPv7XzP7EgAAAAA0KQoHQEAPhESFKIL2lwgi8VidpRmISY0Rr9L+p0kac7GOTxUBgAAAEBAoXQEAKCR3Hj+jeoQ0UHHio7p8W8fl2EYZkcCAAAAgCZB6QgAQCOx2+x64pInZLPY9Mn3n+jzfZ+bHQkAAAAAmgSlIwAAjWhg3EDd0fcOSdJLG1+Sx/CYnAgAAAAAGh+lIwAAjey2Xrcp3B6uXSd3adnBZWbHAQAAAIBGR+kIAEAji3ZE66YLbpIkzd04l3s7AgAAAPB7lI4AADSBW3vdKofNoY3HNmp11mqz4wAAAABAo6J0BACgCcSExmhcj3GSpCdXP6nTrtMmJwIAAACAxkPpCABAE/ltv9+qbUhb7c7Zrb+v/7vZcQAAAACg0VA6AgDQRNqGttXjwx6XJL27813ll+SbnAgAAAAAGgelIwAATejSxEvVLbqbilxF+nTvp2bHAQAAAIBGQekIAEATslgs3ns7vr3jbbk9bpMTAQAAAIDvUToCANDErut+nSLtkdp1cpfe2v6W2XEAAAAAwOcoHQEAaGKtQlrp94N/L0n6x/p/qNBZaHIiAAAAAPAtSkcAAExwfY/r1SGigwpdhVqWuczsOAAAAADgU5SOAACYwGqxamSXkZKkL374wuQ0AAAAAOBblI4AAJhkZOfS0nH5weUqcBaYnAYAAAAAfIfSEQAAk/Rq20tdorrotPu03tz2ptlxAAAAAMBnKB0BADCJxWLR75J+J0l6dfOryi3ONTkRAAAAAPgGpSMAACYa3XW0zmt1nk45T2nRvkVmxwEAAAAAn6B0BADARFaLVaO6jJIkLTvIU6wBAAAA+AdKRwAATHZZh8skSSsPr1SJu8TkNAAAAADQcJSOAACY7MI2Fyo2NFZFriKtyVpjdhwAAAAAaDBKRwAATGaxWHRph0slSV8d/MrkNAAAAADQcJSOAAA0A2WXWH918CsZhmFyGgAAAABoGEpHAACagYvaXyS71a7M/Eztzd1rdhwAAAAAaBBKRwAAmoEwe5iGxg+VJC09uNTcMAAAAADQQJSOAAA0E1d0ukKS9OHuD7nEGgAAAECLRukIAEAzMbrraIXYQrQnd482HttodhwAAAAAqDdKRwAAmonI4Ehd1fkqSdKC3QvMDQMAAAAADUDpCABAMzKm+xhJ0uJ9i+XyuExOAwAAAAD10yxLx7Fjx6p169a64YYbKm3r0qWL+vXrp/79+2vEiBEmpAMAoPEMjh+saEe0Thaf1Poj682OAwAAAAD10ixLx0mTJun111+vdvs333yjjIwMffnll02YCgCAxme32jWiY+l/VEvfl25yGgAAAACon2ZZOg4fPlyRkZFmxwAAwBSpnVIlSV8e+JKnWAMAAABokepcOi5btkxjxoxRQkKCLBaLFixYUGnO7Nmz1aVLF4WEhCg5OVmrV6/2RVZJksVi0eWXX64hQ4boP//5j8/2CwBAczG0/VA5bA5lFWRpd85us+MAAAAAQJ0F1fUNBQUFSkpK0m9+8xuNGzeu0vb58+crLS1Nc+bMUXJysp577jmNGjVKO3bsUGxsrCSpf//+crkq3xz/iy++UEJCQo2fv2LFCiUmJurw4cNKTU1V37591a9fv0rziouLVVxc7H2dl5cnSXI6nXI6nXU65pai7Lj89fiA5o41CF8JUpCGxA3RikMrtHT/UnWJ6GJ2pBaDdQiYizUImIs1CJjP39dhXY7LYjTgui2LxaL3339fP/vZz7xjycnJGjJkiGbNmiVJ8ng86tixo+677z5Nnjy51vteunSpZs2apXfffbfaOQ8++KB69+6tX//615W2Pfroo3rssccqjb/55psKCwurdQ4AAMzwbfG3+rjoY3W2ddZdkXdVO6/IU6QgS5DsFnsTpgMAAAAQiAoLC/XLX/5Subm5ioqKqnFunc90rElJSYnWrl2rKVOmeMesVqtSU1O1cuXKBu+/oKBAHo9HkZGRys/P15IlS/Tzn/+8yrlTpkxRWlqa93VeXp46duyokSNHnvOb0lI5nU6lp6frqquukt3OD59AU2MNwpf6F/TXJx98on3ufeo5rKe6RXerNOfdXe/qb+v+psjgSP0l5S8aGj/UhKTNC+sQMBdrEDAXaxAwn7+vw7IriWvDp6XjsWPH5Ha7FRcXV2E8Li5O27dvr/V+UlNTtWHDBhUUFKhDhw565513lJKSouzsbI0dO1aS5Ha7ddddd2nIkCFV7sPhcMjhcFQat9vtfvmHXl4gHCPQnLEG4QudW3XWiI4jtOTAEr218y09evGjFbZ/k/mNpn83XZJUXFSs+5fer4/GfqSEiJpvUxIoWIeAuViDgLlYg4D5/HUd1uWYfFo6+sqiRYuqHO/WrZs2bNjQxGkAADDHr/v8WksOLNFHez7SlOQpcth+/I9pb2x7Q5J0XffrtP/Ufq0/sl5zN83VtJRpZsUFAAAAAK86P726JjExMbLZbMrOzq4wnp2drfj4eF9+FAAAfq9/u/4KCwpTiadEh/IPeccPnDqgFZkrJEl39btLkwZOkiQt2LVA2QXZVe4LAAAAAJqST0vH4OBgDRo0SIsXL/aOeTweLV68WCkpKb78KAAA/J7FYlFiZKIkKTM/0zu+aN8iGTKU0j5FnaM6a1DcICW1S5LLcGnR/qqvFgAAAACAplTn0jE/P18ZGRnKyMiQJO3du1cZGRnav3+/JCktLU1z587Va6+9pm3btmnChAkqKCjQ7bff7tPgAAAEgsTw0tKx/JmO646skyQNSxzmHRvZeaQkKX1fehOmAwAAAICq1fmejmvWrNGIESO8r8ueED1+/HjNmzdPN910k44ePaqpU6cqKytL/fv318KFCys9XAYAAJxb2YNhys50NAxDG46U3t+4f2x/77zUzqmauWam1mWv07GiY4oJjWnyrAAAAABQps6l4/Dhw2UYRo1zJk6cqIkTJ9Y7FAAAKJUYUfHy6h/yftDJ4pNy2Bzq1aaXd15CRIJ6te2lrce3avnB5RrbY6wpeQEAAABA8vE9HQEAgG+VlY5ll1dnHMmQJPVu21t2m73C3GEJpZdbr85aXe/PO3n6pGasmqGxH4zVPYvu0aajm+q9LwAAAACBi9IRAIBm7OzLq7cc3yJJSopNqjR3aPuhkqTVh1ef86qEquSV5OnWz27Vm9vf1O6c3VqeuVy3LbxNn+39rL7xAQAAAAQoSkcAAJqxstLxxOkTKnIVadfJXZKk81ufX2lu/3b9FWwN1pGiI9qbt7dOn2MYhh5e/rD25e1TfHi8Zl4+U1d1vkouj0uPfP2Ith3f1vCDAQAAABAwKB0BAGjGoh3RirRHSpIOnjqo3Tm7JUk9WvWoNDckKMT7cJnVh+t2ifXa7LVaenCp7Fa7nh/xvK7ucrWevvxpXZp4qYrdxZqyfIqcHmfDDgYAAABAwKB0BACgmesS3UVS6b0a80ryZLPYvGNnS26f7J1bF//a9C9J0tjzxqpX29IH1FgtVs24dIbahLTRntw9emPrG/U7AAAAAAABh9IRAIBmrlt0N0nS5z98LknqFNVJDpujyrlD48/c1zFrtTyGp1b733Jsi74+9LVsFptu73N7hW3RjmilDUqTJL244UVlFWTV6xgAAAAABBZKRwAAmrnurbpLktYfWS9JOq/VedXO7RPTR+H2cOUW52rHiR212n/ZWY7XdL1GHSI7VNr+0+4/1cDYgSpyFemp756qa3wAAAAAAYjSEQCAZq6sdCxT1f0cywRZgzQobpAk6dvD355z33ty9mjR/kWSpDv63lHlHIvFoocvelg2i03p+9K1/ODy2kb3cnvc2nlyp77J/EbfZX2n7ILsOu8DAAAAQMsRZHYAAABQs7LLq8ukJKTUOH9YwjAtO7hMn//weaXLpc/28qaXJUmpnVIrlZvlnd/6fN1y4S16fevrmr5qut6JfUcRwRHnzL7r5C7N3zFfn37/qU45T1XYlhiRqIGxAzUkfogGxQ1SYkSibFZbtfsyDEPF7mLlleQptzhXucW53t8XuYoUZA2S1bBqS8kWhRwIUVRIlMLt4Qq3hyssKExh9jCFBYVJlvI7lTzyyO1xy2245TE8cnlc8hgeuY0zYx6PZJGCLEEKspZ+2ay2Cq+tFv47LgAAAFAepSMAAM1cQkSC9/ehQaFKapdU4/yru16tmd/N1JbjW7QnZ0+1ZeKBvAP6dO+nkqQ7+915zhz39L9Hn//wuQ7mH9Qfl/1Rz414TsG24ErzXB6Xluxfore2v6U12Wu84+H2cCVGJKrEXaIDpw4oMz9TmfmZ+uj7jySVlnrtwtpVuF+l0+NUkatIRa4inXadliHjnDkl6d3l79Zqnq9YLVbZLLbSEtJSWkqWZTWMM7/KUFl877YqjsdSrhUt//sKZWkZ4+yXRs2vjdp9/xpLbf/80HIZhiG3262/zP+LLJaq/kcLoDGxBgHzGYYhu8eua3SN2VFMR+kIAEAzZ7VYlRiRqMz8TN3d7+5z/hDRJqSNLulwiZYeWKpXN7+qa7tdq4+//1iZ+ZmKD4/X9T2u18DYgZr6zVS5DbeGJQxT77a9z5kj3B6u50Y8p18v/LWWZy7XzZ/crBvOv0HtQtsptzhXRwqPaNOxTVp/ZL3ynfmSJJvFphEdR+jnF/xcQ+OHes9kLHAWaMPRDVqTtUZrstdo07FNcnlcOlxwuFbfj+jgaEU5ory/hgaFyu1xq8RdosNHDiu8VbgKXYUqchWpwFmgAmeBnB7nub/ZZ1hkkc1qk81i857F6PK45PK4qizOPIZHHsNTp88A/JnTzVoAzMQaBExG5y9Jshhm/yfvJpKXl6fo6Gjl5uYqKirK7DiNwul06tNPP9U111wju91udhwg4LAG0Zh2n9ytjKMZGtdjXK0u5V2RuUITFk2odntkcKROlZxSaFCo3h3zrjpFdap1lm8yv9Hk5ZN1svhktXPahLTRDeffoBvPv1Hx4fHn3Kfb49bRoqPKKsiS0+OURRZZLBbZLDaFBoUqLChMofZQhdhCFGYPq/Z7UNM6dLqdKnIXVTrbr+wsRZvV5v19Td/jskuwXR6XXEbpr26Pu9Jri8Xy45mKltIis+x1+W3lz2YsX2hW+H25syUtZ/0r9uwSutL2s//Va/I/givlMSMDZ/80GpfTpS+//FIjRoxQkJ3zG4CmxhoEzOdyurR06VL98ie/9MufC+vSr/H/QgAAtADntT5P57Wu/qnVZ7sk8RI9fvHjevzbxxUWFKbRXUdrUNwgrclao4++/8hbOD4+7PE6FY6SdHHixXrvuve0YPcCrcleo/ySfEU7ohUTGqPu0d01OH6wLmh9QY33ZzybzWpTfHh8rQrK+rLb7LLbGv4PP6vFqmBbcJWXlgOBzul0qrWttRIiEvzyBy2guWMNAuZzOp1qZW1ldoxmgdIRAAA/NbbHWF3R6QqFBoV6C7LRXUdr0qBJ2nlip3q17aUwe1i99h0TGqM7+96pO/ue+16QAAAAAAIPpSMAAH4s2hFdaSwqOEqD4webkAYAAABAoDj3TaEAAAAAAAAAoA4oHQEAAAAAAAD4FKUjAAAAAAAAAJ+idAQAAAAAAADgU5SOAAAAAAAAAHyK0hEAAAAAAACAT1E6AgAAAAAAAPApSkcAAAAAAAAAPkXpCAAAAAAAAMCnKB0BAAAAAAAA+BSlIwAAAAAAAACfonQEAAAAAAAA4FOUjgAAAAAAAAB8itIRAAAAAAAAgE9ROgIAAAAAAADwKUpHAAAAAAAAAD5F6QgAAAAAAADAp4LMDtBUDMOQJOXl5ZmcpPE4nU4VFhYqLy9Pdrvd7DhAwGENAuZjHQLmYg0C5mINAubz93VY1quV9Ww1CZjS8dSpU5Kkjh07mpwEAAAAAAAAaLlOnTql6OjoGudYjNpUk37A4/Ho0KFDioyMlMViMTtOo8jLy1PHjh114MABRUVFmR0HCDisQcB8rEPAXKxBwFysQcB8/r4ODcPQqVOnlJCQIKu15rs2BsyZjlarVR06dDA7RpOIioryy/9hAy0FaxAwH+sQMBdrEDAXaxAwnz+vw3Od4ViGB8kAAAAAAAAA8ClKRwAAAAAAAAA+RenoRxwOh6ZNmyaHw2F2FCAgsQYB87EOAXOxBgFzsQYB87EOfxQwD5IBAAAAAAAA0DQ40xEAAAAAAACAT1E6AgAAAAAAAPApSkcAAAAAAAAAPkXpCAAAAAAAAMCnKB0BAAAAAAAA+BSlo5+YPXu2unTpopCQECUnJ2v16tVmRwL8wowZMzRkyBBFRkYqNjZWP/vZz7Rjx44Kc06fPq17771Xbdu2VUREhK6//nplZ2dXmLN//35de+21CgsLU2xsrB588EG5XK6mPBTALzz55JOyWCx64IEHvGOsQaDxZWZm6le/+pXatm2r0NBQ9e3bV2vWrPFuNwxDU6dOVfv27RUaGqrU1FTt2rWrwj5OnDihW265RVFRUWrVqpXuuOMO5efnN/WhAC2O2+3WI488oq5duyo0NFTdu3fXn//8ZxmG4Z3DGgR8a9myZRozZowSEhJksVi0YMGCCtt9teY2btyoSy+9VCEhIerYsaOeeuqpxj60JkXp6Afmz5+vtLQ0TZs2TevWrVNSUpJGjRqlI0eOmB0NaPG++uor3Xvvvfr222+Vnp4up9OpkSNHqqCgwDvn97//vT766CO98847+uqrr3To0CGNGzfOu93tduvaa69VSUmJvvnmG7322muaN2+epk6dasYhAS3Wd999p3/+85/q169fhXHWINC4Tp48qWHDhslut+uzzz7T1q1b9be//U2tW7f2znnqqaf097//XXPmzNGqVasUHh6uUaNG6fTp0945t9xyi7Zs2aL09HR9/PHHWrZsme6++24zDgloUf7617/qxRdf1KxZs7Rt2zb99a9/1VNPPaV//OMf3jmsQcC3CgoKlJSUpNmzZ1e53RdrLi8vTyNHjlTnzp21du1azZw5U48++qheeumlRj++JmOgxRs6dKhx7733el+73W4jISHBmDFjhompAP905MgRQ5Lx1VdfGYZhGDk5OYbdbjfeeecd75xt27YZkoyVK1cahmEYn376qWG1Wo2srCzvnBdffNGIiooyiouLm/YAgBbq1KlTRo8ePYz09HTj8ssvNyZNmmQYBmsQaAoPPfSQcckll1S73ePxGPHx8cbMmTO9Yzk5OYbD4TDeeustwzAMY+vWrYYk47vvvvPO+eyzzwyLxWJkZmY2XnjAD1x77bXGb37zmwpj48aNM2655RbDMFiDQGOTZLz//vve175acy+88ILRunXrCv8efeihh4wLLrigkY+o6XCmYwtXUlKitWvXKjU11TtmtVqVmpqqlStXmpgM8E+5ubmSpDZt2kiS1q5dK6fTWWEN9uzZU506dfKuwZUrV6pv376Ki4vzzhk1apTy8vK0ZcuWJkwPtFz33nuvrr322gprTWINAk3hww8/1ODBg3XjjTcqNjZWAwYM0Ny5c73b9+7dq6ysrArrMDo6WsnJyRXWYatWrTR48GDvnNTUVFmtVq1atarpDgZogS6++GItXrxYO3fulCRt2LBBK1as0OjRoyWxBoGm5qs1t3LlSl122WUKDg72zhk1apR27NihkydPNtHRNK4gswOgYY4dOya3213hBylJiouL0/bt201KBfgnj8ejBx54QMOGDVOfPn0kSVlZWQoODlarVq0qzI2Li1NWVpZ3TlVrtGwbgJq9/fbbWrdunb777rtK21iDQOP7/vvv9eKLLyotLU1/+tOf9N133+n+++9XcHCwxo8f711HVa2z8uswNja2wvagoCC1adOGdQicw+TJk5WXl6eePXvKZrPJ7XbriSee0C233CJJrEGgiflqzWVlZalr166V9lG2rfxtTFoqSkcAqKV7771Xmzdv1ooVK8yOAgSMAwcOaNKkSUpPT1dISIjZcYCA5PF4NHjwYE2fPl2SNGDAAG3evFlz5szR+PHjTU4H+L///ve/+s9//qM333xTvXv3VkZGhh544AElJCSwBgE0a1xe3cLFxMTIZrNVekpndna24uPjTUoF+J+JEyfq448/1pdffqkOHTp4x+Pj41VSUqKcnJwK88uvwfj4+CrXaNk2ANVbu3atjhw5ooEDByooKEhBQUH66quv9Pe//11BQUGKi4tjDQKNrH379urVq1eFsQsvvFD79++X9OM6qunfo/Hx8ZUecuhyuXTixAnWIXAODz74oCZPnqxf/OIX6tu3r2699Vb9/ve/14wZMySxBoGm5qs1Fwj/RqV0bOGCg4M1aNAgLV682Dvm8Xi0ePFipaSkmJgM8A+GYWjixIl6//33tWTJkkqnvw8aNEh2u73CGtyxY4f279/vXYMpKSnatGlThb900tPTFRUVVemHOAAVXXnlldq0aZMyMjK8X4MHD9Ytt9zi/T1rEGhcw4YN044dOyqM7dy5U507d5Ykde3aVfHx8RXWYV5enlatWlVhHebk5Gjt2rXeOUuWLJHH41FycnITHAXQchUWFspqrfiju81mk8fjkcQaBJqar9ZcSkqKli1bJqfT6Z2Tnp6uCy64wC8urZbE06v9wdtvv204HA5j3rx5xtatW427777baNWqVYWndAKonwkTJhjR0dHG0qVLjcOHD3u/CgsLvXN+97vfGZ06dTKWLFlirFmzxkhJSTFSUlK8210ul9GnTx9j5MiRRkZGhrFw4UKjXbt2xpQpU8w4JKDFK//0asNgDQKNbfXq1UZQUJDxxBNPGLt27TL+85//GGFhYcYbb7zhnfPkk08arVq1Mj744ANj48aNxnXXXWd07drVKCoq8s65+uqrjQEDBhirVq0yVqxYYfTo0cO4+eabzTgkoEUZP368kZiYaHz88cfG3r17jffee8+IiYkx/vjHP3rnsAYB3zp16pSxfv16Y/369YYk45lnnjHWr19v7Nu3zzAM36y5nJwcIy4uzrj11luNzZs3G2+//bYRFhZm/POf/2zy420slI5+4h//+IfRqVMnIzg42Bg6dKjx7bffmh0J8AuSqvx69dVXvXOKioqMe+65x2jdurURFhZmjB071jh8+HCF/fzwww/G6NGjjdDQUCMmJsb4wx/+YDidziY+GsA/nF06sgaBxvfRRx8Zffr0MRwOh9GzZ0/jpZdeqrDd4/EYjzzyiBEXF2c4HA7jyiuvNHbs2FFhzvHjx42bb77ZiIiIMKKioozbb7/dOHXqVFMeBtAi5eXlGZMmTTI6depkhISEGN26dTMefvhho7i42DuHNQj41pdfflnlz4Hjx483DMN3a27Dhg3GJZdcYjgcDiMxMdF48sknm+oQm4TFMAzDnHMsAQAAAAAAAPgj7ukIAAAAAAAAwKcoHQEAAAAAAAD4FKUjAAAAAAAAAJ+idAQAAAAAAADgU5SOAAAAAAAAAHyK0hEAAAAAAACAT1E6AgAAAAAAAPApSkcAAAAAAAAAPkXpCAAAAAAAAMCnKB0BAAAAAAAA+BSlIwAAAAAAAACf+v8S4De+3tR7mgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -551,14 +358,15 @@ "plt.grid()\n", "plt.legend()\n", "plt.show()" - ] + ], + "outputs": [], + "metadata": {} } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" + "name": "python3", + "display_name": "Python 3.9.16 64-bit ('dl': conda)" }, "language_info": { "codemirror_mode": { @@ -570,9 +378,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.15" + "version": "3.9.16" + }, + "interpreter": { + "hash": "56be7540488f3dc66429ddf54a0fa9de50124d45fcfccfaf04c4c3886d735a3a" } }, "nbformat": 4, "nbformat_minor": 5 -} +} \ No newline at end of file diff --git a/tutorials/tutorial2/tutorial.py b/tutorials/tutorial2/tutorial.py index ecf5942..8c51f3e 100644 --- a/tutorials/tutorial2/tutorial.py +++ b/tutorials/tutorial2/tutorial.py @@ -18,11 +18,11 @@ # First of all, some useful imports. -# In[1]: +# In[ ]: import torch -from torch.nn import ReLU, Tanh, Softplus +from torch.nn import Softplus from pina.problem import SpatialProblem from pina.operators import nabla @@ -33,7 +33,7 @@ from pina import Condition, Span, PINN, LabelTensor, Plotter # Now, the Poisson problem is written in PINA code as a class. The equations are written as *conditions* that should be satisfied in the corresponding domains. *truth_solution* # is the exact solution which will be compared with the predicted one. -# In[2]: +# In[ ]: class Poisson(SpatialProblem): @@ -51,11 +51,11 @@ class Poisson(SpatialProblem): return output_.extract(['u']) - value conditions = { - 'gamma1': Condition(Span({'x': [0, 1], 'y': 1}), nil_dirichlet), - 'gamma2': Condition(Span({'x': [0, 1], 'y': 0}), nil_dirichlet), - 'gamma3': Condition(Span({'x': 1, 'y': [0, 1]}), nil_dirichlet), - 'gamma4': Condition(Span({'x': 0, 'y': [0, 1]}), nil_dirichlet), - 'D': Condition(Span({'x': [0, 1], 'y': [0, 1]}), laplace_equation), + 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1}), function=nil_dirichlet), + 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0}), function=nil_dirichlet), + 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1]}), function=nil_dirichlet), + 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1]}), function=nil_dirichlet), + 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1]}), function=laplace_equation), } def poisson_sol(self, pts): @@ -75,7 +75,7 @@ class Poisson(SpatialProblem): # The output of the cell below is the final loss of the training phase of the PINN. # We highlight that the generation of the sampling points and the train is here encapsulated within the function `generate_samples_and_train`, but only for saving some lines of code in the next cells; that function is not mandatory in the **PINA** framework. -# In[3]: +# In[ ]: def generate_samples_and_train(model, problem): @@ -98,7 +98,7 @@ pinn = generate_samples_and_train(model, problem) # The neural network of course can be saved in a file. In such a way, we can store it after the train, and load it just to infer the field. Here we don't store the model, but for demonstrative purposes we put in the next cell the commented line of code. -# In[4]: +# In[ ]: # pinn.save_state('pina.poisson') @@ -107,7 +107,7 @@ pinn = generate_samples_and_train(model, problem) # Now the *Plotter* class is used to plot the results. # The solution predicted by the neural network is plotted on the left, the exact one is represented at the center and on the right the error between the exact and the predicted solutions is showed. -# In[5]: +# In[ ]: plotter = Plotter() @@ -131,7 +131,7 @@ plotter.plot(pinn) # # Finally, we perform the same training as before: the problem is `Poisson`, the network is composed by the same number of neurons and optimizer parameters are equal to previous test, the only change is the new extra feature. -# In[6]: +# In[ ]: class SinSin(torch.nn.Module): @@ -158,7 +158,7 @@ pinn_feat = generate_samples_and_train(model_feat, problem) # The predicted and exact solutions and the error between them are represented below. # We can easily note that now our network, having almost the same condition as before, is able to reach an additional order of magnitude in accuracy. -# In[7]: +# In[ ]: plotter.plot(pinn_feat) @@ -178,7 +178,7 @@ plotter.plot(pinn_feat) # where $\alpha$ and $\beta$ are the abovementioned parameters. # Their implementation is quite trivial: by using the class `torch.nn.Parameter` we cam define all the learnable parameters we need, and they are managed by `autograd` module! -# In[8]: +# In[ ]: class SinSinAB(torch.nn.Module): @@ -209,7 +209,7 @@ pinn_learn = generate_samples_and_train(model_learn, problem) # Umh, the final loss is not appreciabily better than previous model (with static extra features), despite the usage of learnable parameters. This is mainly due to the over-parametrization of the network: there are many parameter to optimize during the training, and the model in unable to understand automatically that only the parameters of the extra feature (and not the weights/bias of the FFN) should be tuned in order to fit our problem. A longer training can be helpful, but in this case the faster way to reach machine precision for solving the Poisson problem is removing all the hidden layers in the `FeedForward`, keeping only the $\alpha$ and $\beta$ parameters of the extra feature. -# In[9]: +# In[ ]: model_learn = FeedForward( @@ -227,13 +227,13 @@ pinn_learn = generate_samples_and_train(model_learn, problem) # # We conclude here by showing the graphical comparison of the unknown field and the loss trend for all the test cases presented here: the standard PINN, PINN with extra features, and PINN with learnable extra features. -# In[10]: +# In[ ]: plotter.plot(pinn_learn) -# In[11]: +# In[ ]: import matplotlib.pyplot as plt diff --git a/tutorials/tutorial3/tutorial.ipynb b/tutorials/tutorial3/tutorial.ipynb index 6e9a0fb..fef4a17 100644 --- a/tutorials/tutorial3/tutorial.ipynb +++ b/tutorials/tutorial3/tutorial.ipynb @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "source": [ "import torch\n", "\n", @@ -63,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "source": [ "class Wave(TimeDependentProblem, SpatialProblem):\n", " output_variables = ['u']\n", @@ -86,12 +86,12 @@ " return output_.extract(['u']) - u_expected\n", "\n", " conditions = {\n", - " 'gamma1': Condition(Span({'x': [0, 1], 'y': 1, 't': [0, 1]}), nil_dirichlet),\n", - " 'gamma2': Condition(Span({'x': [0, 1], 'y': 0, 't': [0, 1]}), nil_dirichlet),\n", - " 'gamma3': Condition(Span({'x': 1, 'y': [0, 1], 't': [0, 1]}), nil_dirichlet),\n", - " 'gamma4': Condition(Span({'x': 0, 'y': [0, 1], 't': [0, 1]}), nil_dirichlet),\n", - " 't0': Condition(Span({'x': [0, 1], 'y': [0, 1], 't': 0}), initial_condition),\n", - " 'D': Condition(Span({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), wave_equation),\n", + " 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1, 't': [0, 1]}), function=nil_dirichlet),\n", + " 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0, 't': [0, 1]}), function=nil_dirichlet),\n", + " 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet),\n", + " 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet),\n", + " 't0': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': 0}), function=initial_condition),\n", + " 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), function=wave_equation),\n", " }\n", "\n", " def wave_sol(self, pts):\n", @@ -117,7 +117,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "source": [ "class TorchNet(torch.nn.Module):\n", " \n", @@ -154,7 +154,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "source": [ "def generate_samples_and_train(model, problem):\n", " # generate pinn object\n", @@ -167,37 +167,7 @@ "\n", "pinn = generate_samples_and_train(model, problem)" ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 00000] 4.567502e-01 2.847714e-02 1.962997e-02 9.094939e-03 1.247287e-02 3.838658e-01 3.209481e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 00001] 4.184132e-01 1.914901e-02 2.436301e-02 8.384322e-03 1.077990e-02 3.530422e-01 2.694697e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 00150] 1.694410e-01 9.840883e-03 1.117415e-02 1.140828e-02 1.003646e-02 1.260622e-01 9.190784e-04 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 00300] 1.666860e-01 9.847926e-03 1.122043e-02 1.142906e-02 9.706282e-03 1.237589e-01 7.233715e-04 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 00450] 1.564735e-01 8.579318e-03 1.203290e-02 1.264551e-02 8.249855e-03 1.136869e-01 1.279038e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 00600] 1.281068e-01 5.976059e-03 1.463099e-02 1.191054e-02 7.087692e-03 8.658079e-02 1.920737e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 00750] 7.482838e-02 5.880896e-03 1.912235e-02 5.754319e-03 4.252454e-03 3.697925e-02 2.839110e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 00900] 3.109156e-02 2.877797e-03 5.560369e-03 3.611543e-03 3.818088e-03 1.117986e-02 4.043903e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 01050] 1.969596e-02 2.598281e-03 3.658714e-03 3.426491e-03 3.696677e-03 4.037755e-03 2.278043e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 01200] 1.625224e-02 2.496960e-03 3.069649e-03 3.198287e-03 3.420298e-03 2.728654e-03 1.338392e-03 \n", - " sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati \n", - "[epoch 01350] 1.430180e-02 2.350929e-03 2.700139e-03 2.961276e-03 3.141905e-03 2.189825e-03 9.577314e-04 \n", - "[epoch 01500] 1.293717e-02 2.182199e-03 2.440975e-03 2.706538e-03 2.904802e-03 1.891113e-03 8.115429e-04 \n" - ] - } - ], + "outputs": [], "metadata": {} }, { @@ -209,27 +179,14 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "source": [ "plotter = Plotter()\n", "\n", "# plotting at fixed time t = 0.6\n", "plotter.plot(pinn, fixed_variables={'t': 0.6})\n" ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAFpCAYAAACoDbRLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAABP7UlEQVR4nO3df/QkdX3n+9ebGQdxQRzAIDuATBBng8SLcRYNuWaNIKJJwHNisrCR4D0Y4yZustc1J3i8R3NRz9F4jbvummQnSkROFAj54WyCAUSN3hCUSUQZ8E4YwMCMKAG+jhCBEXjfP7oaanq6v13d9an6/Kjn45zv+X67u7r70/XtftfnVZ9PVZu7CwAAAACAXB0QuwEAAAAAALRBsAUAAAAAZI1gCwAAAADIGsEWAAAAAJA1gi0AAAAAIGsEWwAAAABA1uYGWzO72MzuNbPtM243M/uwme00s6+b2Y+FbyaAnJjZmWa2o6oLF065/SfN7B/M7DEze93EbY+b2U3Vz9Ye20ytA7CQHGtd9dzUOwCNNah1B5rZ5dXtXzaz46rrjzOzh2u17g9q93mxmd1c3efDZmZt29lkxPbjks5c5fZXSzqh+nmTpN9v2ygA+TKzNZI+olFtOFHSuWZ24sRid0l6g6RPTnmIh9395OrnrE4bu6+Pi1oHoKGMa51EvQPQUMNad4GkFXd/nqQPSXp/7bbba7XuzbXrf1/SL+upWrNaTWpkbrB19y9KemCVRc6W9AkfuUHSs8zsqLYNA5CtUyTtdPc73H2vpMs0qhNPcvdvuvvXJT0Ro4HTUOsALCjLWidR7wAsZG6tqy5fUv19paTTVhuBrerJM939Bnd3SZ+Q9Nq2DQ1xjO0GSXfXLu+qrgMwTG1rwtPNbJuZ3WBmrw3asnaodQDqSq11EvUOwFOa1IMnl3H3xyTtkXR4ddtGM/uqmf2Nmb2stvyuOY+5sLVtH2ARZvYmjaa06KBn2Is3Ht/r06Mw9z9+cCePe/iahzp53C7cevMP7nP3Zy9yn594+dP9uw+0Gzy49eYf3CLpkdpVW9x9S6sHfcpz3X23mf2wpM+Z2c3ufnugx+5FvdY97aA1Lz5s4zMjtwjI23duXaHWJahe6+zpT3vx048+InKL+vX4o2tiN6GVNQc+HrsJRVvm/bH37l2l1bp7JB3r7veb2Ysl/YWZvSDA404VIlnulnRM7fLR1XX7qVbQFkl6wQvX+Sf/8sgAT4+SXLpyauwmzHTe+utjN2E/Jz931z8tep/vPvCE2n72Tn7urkfcffOMmxvXhGncfXf1+w4z+4KkF0lKobO3VK17zgsO89d/8pXdtw4o2AdPvoJa169Gr61e655xwr/25/3uG/tpXUQP3Xlo7CZ05uCNe2I3oSjLvFfu/I235VrrxsvsMrO1kg6VdH81zfhRSXL3vzez2yU9v1r+6DmPubAQwXarpLeY2WWSXiJpj7vfE+BxUZiUQ2sTk+1PMegm4kZJJ5jZRo2K1DmS/kOTO5rZeknfd/dHzewIST8h6Xc6a+liqHUA6kqtdRL1bh8lh9m6yddJ0EWlSa3bKul8SX8n6XWSPufubmbPlvSAuz9ezU45QdId7v6AmX3PzF4q6cuSfknSf2/b0LnB1sw+Jenlko4ws12S3iXpaZLk7n8g6SpJr5G0U9L3Jf0fbRuF/OQeWpdRf82E3Ke4+2Nm9hZJV0taI+lid7/FzC6StM3dt5rZv5X055LWS/pZM/u/3f0Fkn5E0v80syc0OgfA+9z91j7aTa0DsIhca51EvWtqKIF2FoIupGa1TtLHJF1qZjs1OjHdOdXdf1LSRWb2A41Oovdmdx+fuO5XNTpD+0GSPlP9tDI32Lr7uXNud0m/1rYhIcQIV6UHmiEG1mWM11Pp74em3P0qjTpG9eveWfv7Ru07BWV8/fWSfrTzBk6RU60DkIYca131/NS7GYYeZldTXzeE3GFpUOsekfTzU+73p5L+dMZjbpN0Ush2Zn32phRCV6g2dBWIUlhHQ8IoLgAA+SHQLobRXKQoy2BbYlgr8TUN3aUrpxJuAQBIHKG2PYIuUpBVsCX8ITdMUQYAIE0E2u4wbRkxZBFsCbTIHaO3AACkIcVAe8jtBwR5nAePb/d9pl1gNBd9ST7YEmpRCkZvAQCIK4VQGyrELvLYKQVegi66knSwJdSiRIzeAgDQr5iBtssg26YNqYTdaf8bwi6WkWywJdSiZIRbAAD6ESvUphBoVzPZvlSCrsSoLpaTZLAl1GIICLcAAHSr71CbephdTb3tKYVciVFdNJNksAWGgnALAEB4BNp2Uh7NHZv1PybwDldywZbRWgwN4RYAgHD6DLWlBdpZUh7NnUTgHa6kgi2hFkNFuAUAoL2+Qu1QAu00OYzmTjPvvUHwzV9SwRYYMsItAADLI9TGkdNo7mqavH8Iv2lLJtgyWgsAAIBl9BFqCbTzlRJyZ1nkfUYI7l8ywRYAo7ZAU9fctSl2E6Y649gdsZsAoAOE2sWVHnKRHoItkBjCLYYu1dDaRNO2E4CBcLoerSXUtkfIRR+SCLZMQwaAYck5vIYw6/UTeIHFdBlqCbTdIOSiK0kEWwD7YtQWJRl6iF3EtHVF2AWmKz3Urt+xt/VjrGxaF6Al3SHkIiSCLQAgKIJsWJPrk6ALdCtWqA0RZJs+ZoqBl5CLtqIHW6YhA9MxaoucEGb7Q9AFuhut7TvUdhFml3ne1IIuIRfLiB5sAQB5Isymof5/IORiCHIPtbHC7GpSDrrj/wsBF/MQbIGEMWqL1BBm0zb+/xBwgcX0EWpTDLSz1NuaSshlFBfzEGwBAHMRaPPCKC5K1cVoLaF2dSmHXAIu6qIGW46vBeZj1BYxEWjzxyguMFvXoTbnQDtNaiGXgIs6RmwHKJWOKp0sIF2p1AmEQ8BF7rr8ep8ulBZqJ6UUcgm4kAi2RcmtI7pae+l4AXHkVkewuGvu2kSNBdTdaG3pgXaaVEIuAXfYCLYZGVKHc9prHXJHjOnI6NqQ6gsYvUV+Qo/WEmq7M14HBFz0jWCbIDqY0/HdjUA3qDnDRcDFEBFq+5HCKC4Bd1gItgmgU7kczvoJtEf9gcT0ZKQth2NrCbWriz2Ke8jtBxBuB4BgGwEdyfCGEHKZjoyQqEOYRLjFEHQxWkuobS7mKG7fo7cP3XmoDt64p5fnwki0YHv/4wfHeure0YHsF1PrgNVRkzAL4RbLeua6R2I3YS5CbVpijeIyelsuRmw7QscxPgIusD9qE+Yh3CIlKU9DJtSGESPgEm7LRLANjE5jekoKuExHRhtDqU9dd4SHMLWMcIvShB6tJdSG13fA5cRS5SHYBjCUzmLuSgq4wKJKq1MxR3FWe+6SQi/hFos649gdQWtNqM85oTYvMQIu4bYMBNsWSusoDgWdNQxN7rUq5amIk6a1NeewS70E9kWo7U+fAZdwWwaC7ZJy7ygOHaO3GIoca1VOQbaJydeTW9Al3CJnXX1nLfqzfsfeaF8ThLwQbBeUYycRs9FhQ8lyqlelhdnV1F9rLiGXWom+pVgTUhutPWj77taP8fBJGwK0pHt9jN4yaps/gm1DOXUQsZjcOmycQAqlSLHj2recQm5utRIIOVqbSqgNEWZXe7zUg27XAZdwmzeCbQOE2vIxNRmlSbluEWinyynkAuhX6EDb9HlSDbpdTk8m3OaLAw/mSLlziPD4f4dhZmea2Q4z22lmF065/UAzu7y6/ctmdlzttrdX1+8ws1f12vBCpPg+fujOQ5/8wXyprqsU31sxUevSVcpo7UHbd/cWald7/phtmCWVUfQhWLbWmdkrzezvzezm6vcravf5QvWYN1U/P9S2nQTbGa65axMb8IHi/96Oma2R9BFJr5Z0oqRzzezEicUukLTi7s+T9CFJ76/ue6KkcyS9QNKZkn6vejxkKtWAlosU1x81coRa152U3vOxwlOKYTLFkLt+x95O/kecdOwpbWqdpPsk/ay7/6ik8yVdOnG/X3T3k6ufe9u2lf/aFGy0wXuglVMk7XT3O9x9r6TLJJ09sczZki6p/r5S0mlmZtX1l7n7o+5+p6Sd1eOhoVTeuykGspyxPpNErUtU7qEkpeA4S2ohl3DbqaVrnbt/1d2/VV1/i6SDzOzArhrKMbYTUukUIr5ST5Ry/+MH69KVU1s+yhVHmNm22hVb3H1L9fcGSXfXbtsl6SUTD/DkMu7+mJntkXR4df0NE/dN8wCfBKVSvwhg3Rmv29jH4OZQH6l1aCvGaG0qQXER4zbHPh53qF8LlHitu6+2zM9J+gd3f7R23R+Z2eOS/lTSe9zd27wKgm1NKp1CpCOHzlsk97n75tiNQFoItP156M5DCbf9oNb1bMh1JMdQW5dCwA0dbtueSCqFWt1Qp7XOzF6g0fTkM2pX/6K77zazQzQKtudJ+kSb52GMvUKoRU7a75nr1G5Jx9QuH11dN3UZM1sr6VBJ9ze8L6aIWcOYJhsH6z06al2CQk0f7Xu0NvdQWxd7ijInlQquTa2TmR0t6c8l/ZK73z6+g7vvrn4/KOmTCnA4BsFWhFqsjvfHwm6UdIKZbTSzdRqdIGXrxDJbNTqJgCS9TtLnquknWyWdU51db6OkEyR9pad2YwkEq/hi/g8GXh+pdQiipFBbFzPghgy3HGu7fK0zs2dJ+itJF7r7344XNrO1ZnZE9ffTJP2MpO1tG8pU5IHoo+OTyVSLpQxkyl0Q1bEVb5F0taQ1ki5291vM7CJJ29x9q6SPSbrUzHZKekCjIqlquSsk3SrpMUm/5u6PR3khGYkVLgi16Ujl2NshodalJ9fR2tLFmqI81GNuQ2tT6yS9RdLzJL3TzN5ZXXeGpH+RdHUVatdI+qykP2zb1sEH29L2NsfsaM567lI6WoTb5tz9KklXTVz3ztrfj0j6+Rn3fa+k93baQLRCoE1XjOO5hlwbqXVhDbG2lDpaO02MgBsq3LY91jZ3y9Y6d3+PpPfMeNgXh2yjNPBgW0KozWEjMNnGUoIukIK+61gONWfoMjpZCZCcPkdrhxRq6/oOuIzcDsdgJ43nGmrHJwvJ+aQhObc/1/cNEEKOn9mh4n+FoeE4yPz0GexD7LDgPZY+/kMZyDkIzpPjayPcYohy+oxipM//GXURwDJin0EZZRnkVOQcNsBD7ERy8hNgMX3VslLq0aJ720s4noppychFCnWGacjxHLR9d+dTk5mSXL5BBtuUpVDYY8sh4A75ZCkYltxqUsipYqs9Vk6ht69wS11ELEwRLUMfx962DbdDP4lU6gYXbFMdrc2t89iH1AMunTiULoe6FKtDO+15U+7sMHILIBddj94ycluuQQXbFENtDh3H2FIPuEAMXdezVGtTyiMz9balGHIJt8BsfHdtWvqYmtwXam9/0u0hFC63EyalIMV1luLOEqA0h9x+wJM/uUi1zV3XUGoi+pbaZwzhdHliqTY7MnjPpWsw/5mUNraphbPcsP5GLl05NXYTUKhUPmMpBsNlpPY6Uvn/AmO8J7GaFMMt0tRoS2tmZ5rZDjPbaWYXTrn9WDP7vJl91cy+bmavCd/U/KU44pirlNZlSjtN0E4uta7L91wKn6vUgmAoqY7iYnhyqXV9IeCkj7NIo4m5W1czWyPpI5JeLelESeea2YkTi/1fkq5w9xdJOkfS74VuaO5S6CyWiPWKUKh18T9PQwp9sV9rl/9rdvalraRaN5R6gZEuwu2yOzV476WpyX/lFEk73f0Od98r6TJJZ08s45KeWf19qKRvhWtiezE3simNLJaK9YtAsq91uYod8mIqNdwiadQ6ZIuRW6ymyRZ1g6S7a5d3VdfV/bak15vZLklXSfpPQVqXOToN/Ym9rhmhKEIWta6r91qMz9CQA20d6wE9S6rWxd5+Iz+hwy1T0csRakt6rqSPu/vRkl4j6VIz2++xzexNZrbNzLZ9f+XRQE+9uliBg0LdP0bH0YNka10bsUIt9hUj4FIzMUORtW6aWKGmlK+yiYWRW0zTZAu6W9IxtctHV9fVXSDpCkly97+T9HRJR0w+kLtvcffN7r75GesPXK7FGaCjEFes9c+obfaodT1gdHK+EsIt9TBpRdQ66ghChttldnDwHkxPk//IjZJOMLONZrZOo5MIbJ1Y5i5Jp0mSmf2IRgXwn0M2NBeE2jTwf8ASBlnr+vys0AlojnWFDnVW69ihsRhGbYGw5m453f0xSW+RdLWkb2h0lrxbzOwiMzurWuy/SPplM/uapE9JeoO7e1eNbqrvAkuYSgv/Dywih1qXc6eRoLa4Pke3qZfDkUOtA5qKPWrbFDW2H2ubLOTuV2l08oD6de+s/X2rpJ8I27S88IZN00N3HqqDN+7p7fmuuWuTzjh2R2/Ph7CGVuv6qluE2nYOuf0APXj8E7GbgYKkUuuWrUEl1ZSHT9rA8aItHbR9d7TRb+pzWsqpDBERagFgfxxPG04f6zH0tiznGQZAn5iS3F6onQOcITlvjUZsc9TXBjW3UBuic5Tbnqm+R22BHHRduwi04TEyAISVUohh5BZoj55HC6mH2vFoSf0n5cftUp//K0Yp0IWc3lc51IRcdb1uU9+uASVj5LYddgwgWu/j8DUPxXrqIFLc+McMmzmE3BT/Z0AMXX4WUq4BpWAdI0Xf2/v0Xp6n9Pc/4badEOF20ZH80t+TOSnyP5HTyEYIqQXKHEIugPD4zPeny3XNTkD0gffZbA+ftIGA2wIjt8NFL2QJKRTjXMJjam3s6383tJ0ryEcK9QthpFRbZ6EWAssj3MaT0vHXaC79rWJiYncKUwuKTaUUxGP/D4ESpfDZHqKu1jt1EkgDo7fLYdR2mIo9K3JpSuo0cmZPYDGhRr26Ciu51KdF98CvbFrXUUsAYDGcNTl/fEtH94oLtl1Oe4qxBzuXDuOixq8rVsCluABhpFqjQkwjm/YYKYZddhZiKFKtN30Zj9wScJs5aPvuVqPd63fsbVzzqcNpGHaFWAChthsxpyd3/T/l2DKULrUatX7H3id/+niOlI7B6uJ/wXRkdIX3VjtMT26OnQDDUtyIbQlS6yz2gT1dQLdK7UjGDpfj509hJJc6CgwLI7jAvoaXoJbQZ4dwiKF2LMbobamdfaBrsWtVaiOmKY7ipoLZK0C3GL1dXZvgT03Py3BTVIJidxRTwXoA0hbzM5pDeIzZxtD/G3b+IRX0DVbH9OT4eI/GV9R/oIu9wn1s1FP5GpyU9Lk+6LghZSHqWgnv8RwC7aRSwi0QUgn1KGUE3OmYrj0MbP0iowMyWwnrhil4KE3fn8scA21d7u0HSpbCsfFdIeCGQw3PR/7JoUNd71UsIbh1ra91xB5kID0ldSb6Drghayf1EcgX4fYpKYzaUk+7RbKKhFDbHOsKWF7IjWifn8WSQm1dqa8LQLoYvcVQkBhm6HKPCkFtcX2ss9z2op23/vrYTQCCG8LU3b5eX0rbGg7LQBtdvpdLno48iXC7/Kht07qdUt0domLWfi4bTd7wy2PdAfH08fkrPdDW5fZac9vxhzTxPoqP0VuUjKQwRVeFl2DWXo7rMJedLn0xs8PM7Fozu636vX7Gcn9tZt81s7+cuP7jZnanmd1U/ZzcS8MzFKqWEWq70cdrzrFmloJah5QNOdymcKxtbszsTDPbYWY7zezCKbcfaGaXV7d/2cyOq9329ur6HWb2qqaPuQy2eD2hcxFOl+uSvcm9uFDSde5+gqTrqsvTfEDSeTNu+013P7n6uamDNqJHQwy1Y0N+7QNArcvEkKYj1zF6u5ih1mszWyPpI5JeLelESeea2YkTi10gacXdnyfpQ5LeX933REnnSHqBpDMl/Z6ZrWn4mAsjbQHo29mSLqn+vkTSa6ct5O7XSXqwpzYlaQij/UPtKNR1vQ7YsRoNtS4jQw230rBHb9HIKZJ2uvsd7r5X0mUa1be6er27UtJpZmbV9Ze5+6PufqekndXjNXnMhUXd2qV48psuRuzoVITHqG3WjnT3e6q/vy3pyCUe471m9nUz+5CZHRiwbZjQ5WeNUPuUHNYFtXFh1LqaZd8/ffahCLfD0eV05AL7/Rsk3V27vKu6buoy7v6YpD2SDl/lvk0ec2Fr2z4AVpfqm7tpJyrlIn/I7QfoweOfiN2M7Hxv79NDjAQeYWbbape3uPuW8QUz+6yk50y53zvqF9zdzcwXfO63a9RJXCdpi6TfknTRgo9RvNRDSA5Brm/rd+ztrOYOsV5S67CMlU3rBlufHj5pA8ef9uChOw/VwRv3BHu8PmpdLgi2NaE7gimF2mWL9LT7pRR2h9hZS8R97r551o3ufvqs28zsO2Z2lLvfY2ZHSbp3kSeujYA8amZ/JOlti9wfzXVVw4baaWyiy3CLpVDrBmj8GRxirRqP3A4h4B60fffCI9UF1+jVat1uScfULh9dXTdtmV1mtlbSoZLun3PfeY+5sHSSVwtDOA5tUePvguziOyG7etyUpD7albmtks6v/j5f0qcXuXPVQVR17MZrJW0P2Th0q+S6EUpX6yilna0DQa3L3MqmdaWGmLmGNjUZq7pR0glmttHM1ml0MqitE8vU693rJH3O3b26/pzqrMkbJZ0g6SsNH3NhbOU6EqsD0XfgTCHg5tBZY+fLPt4n6ZVmdpuk06vLMrPNZvbR8UJm9iVJf6LRCQh21U4R/8dmdrOkmyUdIek9vbZ+IHL4XJUsdl2dpc1OvwHWQWpdIcYBd2ghl3AL6cljZt8i6WpJ35B0hbvfYmYXmdlZ1WIfk3S4me2U9FZVZ4F391skXSHpVkl/LenX3P3xWY/Ztq1MRa6EHKGL0SGM3QmqP3+Mws+U5Hy4+/2STpty/TZJb6xdftmM+7+iu9ahS7HrFNAnat1TcjhxVFOr9XFKrHGlH3e7zHTkJkrrl7r7VZKumrjunbW/H5H08zPu+15J723ymG0RbDOXYhEt5fiD0Af3A31JcSp9irUqdV3U0tI6W0BKmnxec6yFpYfbRZXSzy0RwTawvvYupl4Yx+3r84NPhw0II8VRkqGiAwWUJdcR35LDbVejtugfvRelObqxmpQL36Sc2gqkpKTjEakD7aS2/nLbZgK5qB/Lm+IOLcIfUkewDaiPUY7UOjhN9HmCKUaagLTkWLNKR51En9gRsrwUgy7hNgw+F91g65aJFM4+3FaO7afwYGgIPWnKsX4CbVCL9pdKyC0x3C46zZqanCaqRiBdFuCSPjx9vBY2hhiylHbGlFS7ACAlsUNuieE2NPqj/ct+jbc9Di2lTuA0JXYMS3xNAPJz0Pbd+/ykLmTtpMMFlCOFUVwgBZwVOYCuOgglB8Cuz/SZ4hmSr7lrk844dkfsZgAzhaxlqdWvJsF11jKMTADLSX3woDTjflVf9be0MyVzduT8scs2Ual1CruQy2tkwwzkKdRobEojuqnUTeoikK4+R3CHHARTqcd4CsG2pS5Ga4f0QenytTLVDogjdg3rKojmNG25iRg1sqSvsUJ32H6HQbjF0Ay6cqS4xzl2hzCGIb5moAttaloJHck+Q2fMcEvNBNBUX6O3pYTbUnZcDlX+PZmIQncEh9xZGfJrB0oS47McaxS1pNFbAGXjBFNxrJYVUhxgyx3BFsnookMcaucDxQdIUwrBMkYb2BmI1LHdTFOX4baUUdtFUIvTQrBNBB8MLOK89dfHbgKwn77rWAqhdizX0dsSpqADWAzhdnU51nKMRN+i5dpBL/lrMWJKedQWKFWOn5FUOx59tiv2toMROXQhx3qUI6Ymo0SDrR6pbJBjd0xSxDrB0OV45tg+P7ephtqx1NsHAGNdhNsSRm2Rp8EG2zbYmwgAceQSGnNpJ9CFVAYP0AzhFqUgoUXEyORsodcNOyNQuiF0JHMLi320N0StpD4CYFryvhap3/PqMDW2P1mv6Ryn6yFfQwgOwDL62EmXW6gdy7XdAIYndLhl1BZ9Wxu7AbkJtdeF0dr51u/Yyx5EoGM57EkmHALDkEM9WsaDxz/ReNnY62Bl0zr6qD166M5DdfDGPbGbUYwyK8gcsUfeKBjNsa6AYSsh1Hb9GqiTSEnsPlZsDx7/xH4/be+/6GO0FXJQIedR2xK2P0PDiO3ATfvQ5lyEVnPI7Qf0vnEAStdlqCqpU3HQ9t3F1lZgyPrqV9Sfp49R3ZAjtw+ftKGoeo50EWwXEKKQxNyz3rSoTC4XuzNW0pTka+7apDOO3RG7GQAiSDncLrvjj2l0GKLYO8n7CrlMS26upL5qzgY5FXloDtq+u9WesvH92dsGoC/Um8XQ+QS6F2Na8DxdtylUWEt1p15fYh87PRSs5R713fHoIozGCripdNqGfuwQytJ2Q5vK5zInBHaUrM02MtWOf6zjXBeVQxtzRM3OS5pVBK30ET5z/aCnuuEE8JRc6wua4av6kINcg2IX7WbUFrkYXC9/2b2JuYxs9NkhZHoykIaSZhIMoaZ09RoZQQfCyDHQTko13AJdGlywLVXMkNnX89JpA1CKFAM8M1rQxuOProndhNZyHaWdJfTrCRFuSx61pZ8aH1uxAqTQQUqhDQD608UGnDoCIIbSAu2kkl9bH7reNpU06yq2RsHWzM40sx1mttPMLpyxzC+Y2a1mdouZfTJsM/M2lO957KMtIdYloxKYhVoHYAiodU8ZSugL9ToZtUXK5vbwzWyNpI9IerWkEyWda2YnTixzgqS3S/oJd3+BpP8cvqnxpBqEUgq1Yym2CWhiaLUutbo2xNrRxWtmKhzmSbHWxahHpY/SThPqNXO87XJS2+6WqMkaPkXSTne/w933SrpM0tkTy/yypI+4+4okufu9YZuZr646GSl3AlNuG7AKah2AIRh8rRtaoJ009NePcjUJthsk3V27vKu6ru75kp5vZn9rZjeY2ZnTHsjM3mRm28xs28oDfKiWlUNw7LKNjEigI53Uuu+vPNpRc+PhMxhODvV8Ho4Py04nte7xh/6lo+aGRagbabse2o7aMh0ZXQg1Jr5W0gmSXi7pXEl/aGbPmlzI3be4+2Z337z+sP6H49n49quEDts0vI8GbeFa94z1B/bbwgyVWiuAjC1c69Yc/K/6beESCLX7ih1uc9J0O8WO37iapMvdko6pXT66uq5ul6St7v4Dd79T0j9qVBCz12Y+PGcNTRfHOWCKQdc6xENdR88GWesItdPFXC+M2iK0Jr37GyWdYGYbzWydpHMkbZ1Y5i802qsnMztCoyksd4RrJqQ8Oz9dtXnIe8TOW3997CaUKolad81dm0I+HAaoTX1kp98gJFHrxvp4zxFqV9dm/Qxp1BbpWztvAXd/zMzeIulqSWskXezut5jZRZK2ufvW6rYzzOxWSY9L+k13v7/Lhg+t85djqB07aPtu9soheanWutLlXNuAHA2t1qUQag/euKfV/TkECmhmbrCVJHe/StJVE9e9s/a3S3pr9QMNe0QRyBW1bj5qWzfYAYg+DaXWxQy1bcPsao/VRdB98Pgnlh49X9m0bultw8MnbchmByd1On3MOcpALh/41ZTwGhCGmR1mZtea2W3V7/VTlnmumf2Dmd1kZreY2Ztrt73YzG42s51m9mEzs35fQVqW6eAw3RToHrUurhih9uCNe5786eN5QkthdLt0s7a/OY/KN6l11XLnV8vcZmbnV9c9w8z+ysz+v6oGvq+2/BvM7J+r+niTmb1xXlvo3SBbjBxl60JJ17n7CZKuqy5PukfSj7v7yZJeIulCM/vX1W2/r9F3LJ5Q/Uz9Ggqkjx1eKBy1LpK+A1ofYbav51123bU51pZR0OzNrXVmdpikd2lU506R9K5aAP5/3P3fSHqRpJ8ws1fX7nq5u59c/Xx0XkMItqtYdlQjZOAqqeOX2mth1CqasyVdUv19iaTXTi7g7nvdffwFsAeqqlVmdpSkZ7r7DdVUuU9Muz8AJIBaF0GfoTZWoE21HRgZ4MDL3Fon6VWSrnX3B9x9RdK1ks509++7++elUT2U9A8anal9KY2OsQVQjscfXRNiyssRZratdnmLu29peN8j3f2e6u9vSzpy2kJmdoykv5L0PI1OXPItM9us0ddQjO2SxK5eFCHk8Vvrd+wd/NlKqXXpC72Due9Qm5qDN+4JMqV12eNt2xxri+VlUus2SLq7dnm/mlZ9V/bPSvpvtat/zsx+UqOvHPs/3b3+GPsh2CYstRHOEDjwvhj3ufvmWTea2WclPWfKTe+oX3B3NzOf9hhV8XphNS3vL8zsyjYNRlpKrG8oErUuE32F2hQDbd24fW2DTpuTSS0jp5NIFarzWrcaM1sr6VOSPuzu468W+1+SPuXuj5rZr2g0GvyK1R4niWB73vrrdenKqZ0+R84HZWM2RiXS5O6nz7rNzL5jZke5+z3VdLt75zzWt8xsu6SXSfpb7TtF5WhJbAkBREGtSwOhdn8hRm+XCbelj9oOdYAmQK3breq7sStHS/pC7fIWSbe5+3+tPWf9K8Y+Kul35rWTgwwDC/VhLnmvVcmvDY1slXR+9ff5kj49uYCZHW1mB1V/r5f0v0vaUU11+Z6ZvbQ6Q+gvTbs/ulFyZwXoALWuB4Ta2XJsM7I0t9bpqe/GXl/VujOq62Rm75F0qKT/XL9DFZLHzpL0jXkNIdgC6Nv7JL3SzG6TdHp1WWa22czGZ7z7EUlfNrOvSfobjc6Yd3N1269qtOdup6TbJX2mz8YDXUphxx8n1guGWleInANi27Yvs+OAmXSDM7fWufsDkt4t6cbq5yJ3f8DMjtZoOvOJksZffTb+Wp9fr74C6GuSfl3SG+Y1JImpyCmKuWFPoWOD1T1056FZb+hiqqaWnDbl+m2S3lj9fa2kF864/zZJJ3XZRgBoi1rXva5Ha0vZzoc6qVTXOM42T01qXXX5YkkXTyyzS9LU7+h297dLevsibWG3LKKgcAHDxecfQFuE2sW0eT2M2i6OQ3fiINgGFOJNTIcPAABgNkLtckp9XbnhcI/usGaRvTY7FCguAErFiAGwuNLD37Kvr6+TdOVwxuGuBqFymC6eOnr1iIbRaQDYX461kQ4ZFrXsjuW+AlbJ+grvQ5+OjP4RbBOSY2cGAACgD0xBjoudCkgdZ0UGgAFh+j2AHJUYas84dsd+111z16ZenjuXMyUDiyDYAgB6w8wUAKnpI9ROC7FNl+sq7C4Tbh88/omFdpCubFq38PH+fO0PlkWwnWKZEQ1O0rGcg7bvzuJEAQAAII4uR2u7DrVNA23Tx+hrRBfIEcE2EeyZApAydt4BiCHX4zpDBNrVHjdUwO1j1BboyyDelRxDAAAAkI4UAmsXo7VnHLujs1A7+TyhdD1qzdmR0ZdBBFuUj9EkAADKktMU5L4CbeznHOt6x0QJh6nRN+0fwRYAAABJSWFEt6lY4TLk8/NVR4vhEMI0EWwTwIcDAABgJKev9okdasdSaccsTEdGHwi2iI5gDwD7oi5iqAi1y2vbnkXXTU6j6qnh5FvdYK0GwBx6AACAxUwGo5yCUmqhdizVdi2jhONs0S+CLQAAAKJ48PgnnvzpWqjR2tTDY5v2cawtckawBQAAABpIPdSO9dXORXZIcJwtukawBQAAQNFCjETmEmrbYtQWuSLYRsYJQrCI89ZfH7sJAAAMTo6hNsc2A20QbCdwljIAAIBytB2BzDkgLtv2RdZZl8dHcwIpLIIUBwAAABQqpWDOcbboEsEWAAAARRryaC0wNARbAAASw/Q7IL6SQu0yr4WTSCE3BFsAAAAUh2DWnz6+hxiYh2ALAAAA1JQ0WjuW62tiBguaItgCAACgKG1Ga3MNgF3oYtSbE0ihK2tjNwAAAAAYmmnfTX/pyqmdPucZx+7QNXdt6vQ5gFgItgCAuVY2rdP6HXtjNwMA5kp1tHZakF1tma5DbmgPHv+EDrmdyaCIh2DbEh09AAAAzNIk0K52v9wCLhALu1UAAL3hJCAAupTaaO2yoTb0Y9Qt+jo5uzRywYgtAAAAEFDoMFra6O2ih7c8fNIGHbR9d4ctQgkYsQWAAeG7BgGUKpXR2tChtovH5szPKBHBFgCAhOQ4XZupisBIl6G2z+dYFjtPEVOWwZbTlAMAsDq+KxJoJtToZcqBsy12XiEHWQZbAAAAYCx28Oo71JYcooFlEWwBAAAwSDkfa9o23Ob82oFpCLYoQt9T7mLvGQZyluMxpADSFXubzOhpP9h2YB6CbUscw9QehQoAAPQtxIhl7FAb+/nboA+N0Ai2AHplZoeZ2bVmdlv1e/0qyz7TzHaZ2f+oXfcFM9thZjdVPz/UT8tBJ6R7Kezo46ymYVDrUJqmI+PUkGFpWuvM7PxqmdvM7Pza9VNrnZkdaGaXm9lOM/uymR03ry0EW6BHHM8iSbpQ0nXufoKk66rLs7xb0henXP+L7n5y9XNvF40EgJaodT2IOQ05ldHSNu2gX4IA5tY6MztM0rskvUTSKZLeNRGAp9W6CyStuPvzJH1I0vvnNYRgi0Fjr2IUZ0u6pPr7EkmvnbaQmb1Y0pGSrumnWehTCiOTQMeodQlrG+hSCbVAAprUuldJutbdH3D3FUnXSjpzgce9UtJpZmar3WFt0xYDKMOaR6VDbm+9T+sIM9tWu7zF3bc0vO+R7n5P9fe3NerQ7cPMDpD0QUmvl3T6lMf4IzN7XNKfSnqPu3vzpgMYAmpd+WKfNCol562/XpeunBq7GYOR0s7ZHGqdpA2S7q5d3lVdNzat1j15H3d/zMz2SDpc0n2zGkKwRVQpFQYs5D533zzrRjP7rKTnTLnpHfUL7u5mNq2j9quSrnL3XVN2zv2iu+82s0M0KoDnSfrEQq0HEhSyHnI8dDDUOuyH0VoUqOtat5pgtY5gCyA4d5828iBJMrPvmNlR7n6PmR0ladpxYz8u6WVm9quSDpa0zswecvcL3X139RwPmtknNTpWg84egN5R6/LEcaX5evikDTpo++7YzRicALVut6SX1y4fLekL1WPPqnW7JR0jaZeZrZV0qKT7V2snx9hGxohle4xMZGerpPHZ8M6X9OnJBdz9F939WHc/TtLbJH3C3S80s7VmdoQkmdnTJP2MpO39NDtNy0zFS+XYcuofCket6xDTkMMh6KOlubVO0tWSzjCz9dVJo86QdPWcWld/3NdJ+ty8wzEItgD69j5JrzSz2zQ6pux9kmRmm83so3Pue6BGhfDrkm7SaG/eH3bYVkxgR1I3CPlFotYlqOSTRqXcNhRtbq1z9wc0Ovv7jdXPRdV1q9W6j0k63Mx2SnqrVj+zvKREpiJzsPsw0ZEbJne/X9JpU67fJumNU67/uKSPV3//i6QXd9tCAGiPWtcdRmvLsbJpndbv2Bu7GWihaa1z94slXTyxzMxa5+6PSPr5RdrSaMTWzM6svjh3p5nNTMtm9nNm5mY28+BjAEhVCrVuaFPC2MEVHqPqmCeFWpcjRkTZqYC0zQ22ZrZG0kckvVrSiZLONbMTpyx3iKTfkPTl0I3sUyrHngHo19BqHdKRUrhnG1i+3Gtdm2A1tB2H6EZKNRv7ajJie4qkne5+h7vvlXSZRl+YO+ndkt4v6ZGA7RsEPiBx0IHDBGodgCGg1gEoUpNgO+8LdWVmPybpGHf/q9UeyMzeZGbbzGzbygPlhAqmfS0uVJiPse6ZhlOsTmrd91ceDd/SyEJ/7ti5lzdqYnY6qXWPP/Qv4VuakFymIafSzi4HD3LZZpAP+tf6rMhmdoCk35X0X+Yt6+5b3H2zu29efxgnZAaQj2Vr3TPWH9h945CtXDpoGI5la92ag/9V521jJwqA1TRJl+Mvxx07urpu7BBJJ0n6gpl9U9JLJW3lRAOYhY4cEjWoWpfaVHzqQhiMEKCBQdW6MY6vBcrXJNjeKOkEM9toZusknaPRF+ZKktx9j7sf4e7HVV8wfoOks6pTPKMhOnVAdNQ69Iq6j0iyrHUxR2tTmd6L+KjbaZsbbN39MUlvkXS1pG9IusLdbzGzi8zsrK4bCMzCyARCotbFR4cB6B61DkCp1jZZyN2vknTVxHXvnLHsy9s3C6VKpeOa2jRMpIFa19zKpnVav2Nv7GZkK5VaWEddHI7cal3b0VqmISM11NtucAanhKTY0QGQvpJOqEIdXB6zWAAMBdsKTEOwDYQOxXwUIQCgFgKLiL3jjuNrMUbtTh/BNjF8aJphRwLQXtupUF19DqmDZWNaKACgCwTbKZj3Hh4dVQCLKLVmlPq6gC6EGK1lRwpiYAAmDoItsIDYU6IA5KvLUBurE0VNBDAE7JTMQ5bBNtW9b6E6FqV9eEK/nrbrmRF5IA+l1cKUUReRGnaaYB62EZiUZbBdFMUxHorOU1LdIQO00fVIYSk1pJTXAeSk7XY3xxNHXbpyauwmANEMItjmiE4QAJSh63rOsVwoDQMSSAl98nwQbBOW+wepi/bTgQPCymEKas61MOe2AzEQatP20J2Hxm4CMBPBNjCC10iqnbkcOvHAMmJ2Bvuoe6nWlNXk2GYAQDtkgXgItomjYwQAIznVw77aGqIDxQ4/pCLkDjrOa9HcNXdtCv6Yh9zeT8ToutbmtN0BwXamlDb0uX2oumpv7D1gTI8CZuvr85lDPcyhjUBoaw58vNX92cZiKFLKGKUh2CIoOnRAe32PNOS2kU25zvTZNnb2ITXLvid4L4WR6xmRY9eyWVLe1mA6gm0HuviA5vDh6rKNTLcDUJdiTUyxTUDfFg2phFq0Re3FGME2Iyl/cFNuG4B+9L3X/eGTNiRTe1Jpx6LY4YcuNA2rXYVajq9FW8vW9FRHn4eCYJuZFDtPfEcjgJhi1sVY4Zq6iNQdvHHPzOC62m1AbCn2tdEMwXYVbfZkd9npSOUDl9JoyTyMSmAI2nQUQ31GYgWuvutRTvUPiGkcYus/CG/Z42u7OCNyDNRjSAMKtqUV0tgf4Jy+yiKE0t4/QKm6DpwpBNpU6iKAYXnozkNjN6Fzses72hlMsI2h685HrA4WH3oAq0kheIWujykE2tBizGTh2EcAXWlbo9veP4Vt39Ctjd2AXE9NnpKHT9qgg7bv7uV5+kSBANDWZN1qWitTDbGp1EVmsSBVQ9x5Ql86Hxwa163owTZ1Dx7/hA65Pf2B7XEnrIuAm2oHr6kUisgQN7TIT8h6t7Jpndbv2BvksULKvZ4BAGZbdrCHbUMZCLYd67tzFyrgxv6ApzIqAQCpCFkXU9jhB6C9NqO1pZw4atKi4TZ2nxfhEGwLtcz0u1Q+2Kl13lKacnfpyqk6b/31sZuBhB28cU8yJ/hIddQ2R+zsA5CLHGY6SmH7vSFqdEr9zVwRbHuQQuculdAKIG2hD79Iof4BGIahHfbT57G1Xe4w7WIbMW8GI/3iMhFsG8jlONsSMCoBjJxx7I5ip4lhMaHrYtuZLIwqAPkbyvaFADssg0prMTfGBLb5Uuu8AQiD+rc81h2AaTgTcjqa1mn6pd0bVLCNjQ5KfhiZwBB1sfGl/gEAgC4RbJEERmuBcNghU4YudgZQG1GqLo6vTXVUtG27Fp2GnMoJCYF5CLYNheoMMGqxP9bJsJjZYWZ2rZndVv1eP2O5Y83sGjP7hpndambHVddvNLMvm9lOM7vczHgDdYBR27hYV/mj1gHlo1YvVOvOr5a5zczOr647xMxuqv3cZ2b/tbrtDWb2z7Xb3jivLQTbCPgQPGUIIxJDO0tjAxdKus7dT5B0XXV5mk9I+oC7/4ikUyTdW13/fkkfcvfnSVqRdEHH7UVA1L94Yn/92QBrIbUOwaU6ijzGyVYHaW6tM7PDJL1L0ks0qnPvMrP17v6gu588/pH0T5L+rHbXy2u3f3ReQ3j3IZrUO7hM5+zM2ZIuqf6+RNJrJxcwsxMlrXX3ayXJ3R9y9++bmUl6haQrV7s/0pb6Zz821k8xqHUIKkSoHcrZkFOT2qBLYHNrnaRXSbrW3R9w9xVJ10o6s76AmT1f0g9J+tKyDRlcsG0TVkK+Kem4dKPwwlGKI939nurvb0s6csoyz5f0XTP7MzP7qpl9wMzWSDpc0nfd/bFquV2SOJf/FCF2zHT5eaIGTsd6KQq1rgCpjJDGagfH185GvX5Sk1q3QdLdtcvTato5Go3Qeu26nzOzr5vZlWZ2zLyGZPs9tiV8x+PKpnWdfCl1DigG8ax5xEO8744ws221y1vcfcv4gpl9VtJzptzvHfUL7u5m5lOWWyvpZZJeJOkuSZdLeoOkT7dsNxIy5Bo4TZd1cYg7/ah1w1H6NPdQoTb3fjOmy6TWNXGOpPNql/+XpE+5+6Nm9isajQa/YrUHyDbYxvLg8U8EPX5giB27rjpvITtuTEOe6z533zzrRnc/fdZtZvYdMzvK3e8xs6P01PFkdbsk3eTud1T3+QtJL5V0saRnmdnaaiTjaEm7W7wOzBG65mG6HHb2DbQuUuugS1dO1Xnrr4/dDCQkdM1OoL52Xet2S3p57fLRkr5Qe4z/TaPDMv6+9pz315b/qKTfmfci6K0kIIcOTQgrm9YN5rViVVslnV/9fb6mj0zcqFGn7tnV5VdIurWanvJ5Sa+bc/8ilD4KIVEXpO63AUMcrU0EtQ6txZwKzTRkNNSk1l0t6QwzW1+dNfmM6rqxcyV9qn6HKiSPnSXpG/MaMshgm8Bekf2U3rGj44aa90l6pZndJun06rLMbLOZfVSS3P1xSW+TdJ2Z3SzJJP1hdf/fkvRWM9up0XFoH+u5/dkIVev6+HyVXgNnGerrHghqXUH6DpiXrpwa9Dn7mIY8lNk9i9btAfRRm9S6ByS9W6OdeTdKuqi6buwXNBFsJf26md1iZl+T9OsaHaaxKqYiL6GrqXmlTkvOreOW4o6PklRTS06bcv02SW+sXb5W0gunLHeHRqeKR2FKrYGz9FEbB9ChSha1rh8lzmxJ5YRVQBML1LqLNTrMYtpj/PCU694u6e2LtGUYu1YyklsInGfoHbcSN7gYpr4+Z6XVwGlynH7ddocftRAl6CNwdvEcy4zWMg15utxq99AQbJfE12Csrq+OW8qhFkhBjjMQSqiBs/T52qiPQHhdhttUQi3CoQ73a7DBNvXOXs4du5zbnvr7Aoipzw10jqOa8xBqgTKEDqChj6eNYQjH15a2TSpR1GNsc/8Qd/01GOMPUC7HnPX9gafjBvSv76//KeG429w7Q+zwQ6piTnEf92HbfA1Q1/3gZUdrmYaMXHHyqJb66OSl3rGL0Wkj1GIozjh2x+CnkuW2k28sVqClPgL9WTTg5j6oM1Rd1nN2HoZDsM1Eih273EchJlFYUKqDN+4Juge+71HbsRTr4Cyl1UcAq0stsA59h2gK2MnYv6wnxLedgpLTdzyOpXDcWew25FIoOAso0I3YNWiWcbtKqo/s8AOGZZmdoKUfX5vi9gbTMWKbqfqHrI/Ri1Q+1F2FWjpvKF0po7Z1qYzgll4f22InH9AvRmvDSaW+oxmCbSAxO3ldhNwUP8ipdtqAoUoh3Er97+ibfE4A/WOHyXRtQi0njQqHPmscgw+2IUcxUujkzets1Tt9OXXMuiwQjNYCy0uh7tVNq2shwm7q9bKLGkltBDBkqdd97G/wwXZocvyQstcLQxfqzMihpyPnIse6twhqJAApzmhtiB2bKX77R+nbjVKls5u9EHQwwup6fXY1IsEUKQwJdS8ezjsAQOK42pDahtpF6jK1NiyCrcK/qejkhcF6BMLraiPK57V/OaxzdvKhC7yv9tU21A5xJg/KlH2wTbW45dDhSFkf64+9ZEBY1L3+cN4BAAiPKch5yz7YhtLFhpxO3nJYb0C++PwCQH9ijtamdOLAEEKEWraBcZX1jkwQb/DF9LW+GJFAbkLOTun6/U/d6xbrF0OW6ky9GDiuNhxGastAsO0BnZD5Hjz+iWLWExtdgLrXhT7qJDv9gDyECLUcWzsSKtQuWp+pt+ERbGu6fIPRyZut73VDIQH6+RxQ98LJcV2ykw/oRgojtaVMQ2aktixlvCszkWPHpEsxRmkJtUC/qHvtcYgGgLFQoTa10doYATPkc7KtS0OjYGtmZ5rZDjPbaWYXTrn9rWZ2q5l93cyuM7Pnhm/qbBx7lp9S1wMjFHlLvdaF1leQKfXz3gdCLbqQa60b+jY2hZHaUjBSW6a5wdbM1kj6iKRXSzpR0rlmduLEYl+VtNndXyjpSkm/E7qhfeoj3A61oxfztdNxw2pyqHVddOr6DLdDrXvLYn2hCznUOuwvZKhtO1qb8zTklU3rgodaanU6mrwzT5G0093vcPe9ki6TdHZ9AXf/vLt/v7p4g6SjwzazTEP6IMTu1BJq0QC1rgdDqnvL6rtedlEfhz6yljhqXWaGMlLb9ShqSqO09Eu70STYbpB0d+3yruq6WS6Q9Jk2jUoBoxhhpPD6KB5oaJC1Tur/M5JCXUgV6wU9GGyty1HoUJvasbV96SrUUrPTsjbkg5nZ6yVtlvTvZtz+JklvkqSjNqwJ+dQ649gdWe/RGn8wcp7eUZfKB73PDjsjFMOxSK075Khn9NiyvDx4/BPF1Ly2OEQDKVqk1j3t2d0GpiFuY1MMtV3X7JVN67R+x96gj4fhaPLu3C3pmNrlo6vr9mFmp0t6h6Sz3P3RaQ/k7lvcfbO7b15/WPqdmRgb/NxHMlJqPx02LKiTWveM9QcGbWRXnbtYn5eUakYMnHcAEXRS69Yeyk68kHIerGkrRBjt4ljaSUPedqWqSbq8UdIJZrbRzNZJOkfS1voCZvYiSf9To+J3b5Mnvv/xgxdtaxR09uYbtzWX9gIzdFLrchIz6AyxhpT6eoc4spaZTmrdM9c9EryhQ9VFqM1tCvKyobSPQNsWOxW7M3cqsrs/ZmZvkXS1pDWSLnb3W8zsIknb3H2rpA9IOljSn5iZJN3l7md12O7BqHd8Upqyl3qHrO+iQUcuf9S6kYM37onaASrtsIxJqdROOlbD1WWt6+qwsKFsY1Mfpe27Li8yLbnvMJtKLce+Gh1j6+5XSbpq4rp31v4+PXC7ltJVQY3d0Rub/BD1WWBy+gDTYcOyhl7rUlJawE2phlIj0WWtG0J96kKX6yyFPuyy6oF1HHJjj8imVM+xr6AnjypZKuG2btoHq20nMOcPa6zO2lD2JGM4Uqp3qc5aaSLFetp1naQeQiLcLopQ20zsQBsCOxa7RbBdQEqdvVlS7Ej1gUIBhJVivcsh5A61BgOTQoXbkneW5BT+U625faPGp624d2nXBZAAlZ6h/U8uXTk1dhOQgD46eyl/tuonrYvZ0UilHU2k/P8EhqaPUJvazsncpV7jwYjtUlIcyRiq2B21kvckA1I+9W5WhyPkKEPOnZo+aiX1EJPajtqW+J7qa5Q2h7qdkxD1P3afdQgItkvKpbNXKooD0J+c613OYTQU6iViGofTnKbddiXXdcA0ZOSiyHdqX3v46CzEkcp6L3FPMvLS53swlc8dFsP/DakY8jbzmrs29Rpqc90RmSp2kOajyGDbJzoN/Tl44x7WNxARn7+89Pn/GnJoQXOLvE9KeE/1HWglQm1ooUIt289+FBtsGckoS2rruIQNLsrQ93sxtc8i9sdOQKRsCNvPGIG2K0OehsxIbX44xjaQcSeCPWVhpdg5G8JGGVhNzsfcli5GzaQmYlHzjrvN9T0VO8xSl8MJGWpT7MuWimAbGB2+MCgCQHOhvi9yEdS69FA3kZsSTiyVStupx+EwUpuvoucXxNrjxzSw5aW+7nLdi5wSMzvMzK41s9uq3+unLPNTZnZT7ecRM3ttddvHzezO2m0n9/0aMJL653VIYv0fqImzUeuaO+PYHVm9l8ZTjUsPtUOchkyoXVyTWlct99dm9l0z+8uJ6zea2ZfNbKeZXW5m66rrD6wu76xuP25eW4p/x8YslHT4mqODPCgXSrrO3U+QdF11eR/u/nl3P9ndT5b0Cknfl3RNbZHfHN/u7jf10ObkUeuGidqZNGpdQVILswivi1A7kPo8t9ZVPiDpvCnXv1/Sh9z9eZJWJF1QXX+BpJXq+g9Vy62q+GAbG52O2cbrJpf1k9Pe5MSdLemS6u9LJL12zvKvk/QZd/9+l41COzl9lksRe31TE+ei1i2oPjU5doCsB9nYbVkNU5DDYKS2lUa1zt2vk/Rg/TozM4126l055f71x71S0mnV8jMN4hjbGMefTap3QIZehGJ3xpZRUgfugId/oIO27277MEeY2bba5S3uvqXhfY9093uqv78t6cg5y58j6Xcnrnuvmb1T1Z5Bd3+04XMXLaVaN/Q616Uca2gM1Lr8TNavyctdbYtj181ldVlnhzQNuatQ21etzrDW1R0u6bvu/lh1eZekDdXfGyTdLUnu/piZ7amWv2/Wgw0i2KZmaB2/3DthJYXagO5z982zbjSzz0p6zpSb3lG/4O5uZr7K4xwl6UclXV27+u0aFc51krZI+i1JFzVvOvrAyaXCS6mWDqguUusSkmsA7QL1NQxGap/US63r2mCCbQojGZNKHsVNqQPWxoA6b0G5++mzbjOz75jZUe5+T9WZu3eVh/oFSX/u7j+oPfZ4r+CjZvZHkt4WpNGFSKnWDW0nXldSq6fUxadQ68JJpW5hOLoMtanV7bYC1rpJ90t6lpmtrUZtj5Y0Hn7eLekYSbvMbK2kQ6vlZxrOPAOlvTHO7XjTSfX25/oaJqX8fsncVknnV3+fL+nTqyx7rqRP1a+oiub4uIzXStoevol5S+29W1pt6AvrLHvUuoYItYthZ2F7hNqgFql1+3B3l/R5jc4xMHn/+uO+TtLnquVnGsyIbU4mPxCpFbAhfGBTCwaFeZ+kK8zsAkn/pNFIhcxss6Q3u/sbq8vHabSn7m8m7v/HZvZsSSbpJklv7qfZCIFR3NWlXl+pjQuh1jVAqF1MH7Wz5ONrmXrciaa17kuS/o2kg81sl6QL3P1qjQ6zuMzM3iPpq5I+Vj3uxyRdamY7JT2g0XkIVjW4YJvSNL2mZnV0uixuqXeuukTHrVvufr+k06Zcv03SG2uXv6mnTiBQX+4VXbavFKnXupIPxVhGDjWX2rgYat18KdcolKePUJtDLQ9tgVr3shn3v0PSKVOuf0TSzy/SlsEFWyn9Dl9TQ/zwdI2OG0qSS60basilhmPIcqhNqRlSfQyNUDsMgwy2Uj4dPvSHUIsS5VbrSg65OXd6qI8IKaealIrS6mFfmHo8LIMNtlJ+HT50h04bSpZrrZsWBHPq3OUcZOuojwglxzqEfPUZakup97kbdLCV8u3wIQw6bBiKUmpdjHMOzFNyh4YaibZKqDux5bRDLxWE2mGKFmwPX/NQrKfeTykdPiyGDhuGpuRat0jHYl4nkU7KCDUSi/je3qcXW19iItQupu+px2wv0jL4Eduxkjt82FfunbXz1l8fuwnIGLWOjkgTuddJoASE2uZiHEvLtiQ95X5R1RLOOHYHG/OC8f8FRvgcYDW8PwDkhFCLMUZsp2BEoyx00oD9UecwiVoJpIPR2vlinfGYUJsuRmxnYHQvf/wPgdXx+cAY7wUAY6l/Rc6Dxz9BqMVUjNjOMd7YM7KRBzpnwGKocaBuAmlhtHa62IGbUJs+gm1DdP7SRscMaIepycND3QTSQ6jdX+xAKxFqc0GwXRABNw10yIDwqG/DQP0EMM+Dxz+hQ26Pe8RiCoFWItTmhGC7JDqA/aMzBvSD+lYu6iiQrtRGa2OFWwItlhU12J63/npdunJqzCa0Vu8k0AkMh84XEB8BtxzUVADL6CvcphJmxwi1eWLENiBC7nLocAFpI+DmidoK5CO10dq6rsJtamF2jFCbL4JtRyY7FHQI6WQBuWPnXR6otQBCq4fQZUNuqkF2jECbP4JtT2Z1NErrHNKhAoaBUdy0UHsB9GVWQD3k9gOSD6+zEGrLQLCNbLXOSEodRjpNAKZhdko81GWgDClPQ15EjqGWQFuW6MG2hBNIdYVOC4DcEHS7wzYBAMIh1JYnerAF0Nx566+P3QRgIQTd5RBiAaAbBNpyEWwBAL0ZyvkGFkGIBYarlGnIOSDQlo9gCwCIbl64yzn4ElwBIC5C7TAkEWw5zhYAsJplwmHoMExABYC8EGiHJYlgCwBAaARRABgmAu0wLfcNyx3gpDgAAAAAlnXwxj2E2gFjxBbIBDt/AAAA9keYhZTQiK1Exx0AAABAM4zQoi6pYAsAAAAMBaFsOQRaTJNcsGXUFtgfnwsAADB0BFqsJrlgK9GJBwAAADBCoEUTSQZbiXALAACA8hHYphuHWdYPmko22EqEW0DicwAAQOkIb08hzGJZSQdbiU49AAAAyjfkMMfoLELI4ntsx+H20pVTI7cE6Bc7dgAAGI6DN+7RQ3ceGrsZvSDEIrQsgu0YARdDQqgFAGB4xoGvxIBLmEWXsgq2Y5MdfoIuAAAASlJKwCXMoi9ZBttJBF2UhtFaAAAg5RdwCbKIpVGwNbMzJf03SWskfdTd3zdx+4GSPiHpxZLul/Tv3f2bYZva3KKhIOcgXGIAyvn/0VaJ/89JZnaYpMslHSfpm5J+wd1Xpiz3fkk/XV18t7tfXl2/UdJlkg6X9PeSznP3vYHallWtA5Auah1CqwfGVEJu6SH2jGN37HfdNXdtitCSdC1Q6/5a0ksl/b/u/jO16/9Y0mZJP5D0FUm/4u4/MLOXS/q0pDurRf/M3S9arS1zg62ZrZH0EUmvlLRL0o1mttXdb60tdoGkFXd/npmdI+n9kv79vMdOxRDCRE7a/D9yDsUDeh9eKOk6d3+fmV1YXf6t+gJm9tOSfkzSyZIOlPQFM/uMu39Po/ryIXe/zMz+QKP68/ttGzWEWgegV9Q6dGZaoOwq7A4xvC6yPEF3fq2rfEDSMyT9ysT1fyzp9dXfn5T0Rj1V675UD8HzNBmxPUXSTne/Q5LM7DJJZ0uqF8CzJf129feVkv6HmZm7e9OGACE0DYcpBeABBdqxsyW9vPr7Eklf0P4F8ERJX3T3xyQ9ZmZfl3Smmf2JpFdI+g+1+/+2AnT2RK0DEBa1Dr0qPYCGsmiQbfp4Aw64TWqd3P26ahR28vqrxn+b2VckHb1sQ5oE2w2S7q5d3iXpJbOWcffHzGyPRlNn7lu2YUCX5oXJPoLvAAPt2JHufk/197clHTllma9JepeZfVCjvXs/pVGn63BJ3606gdKoHm0I1C5qHYCQqHVAIkKHWeyjSa2by8yeJuk8Sb9Ru/rHzexrkr4l6W3ufstqj9HryaPM7E2S3lRdfPTk5+7a3ufzL+kI5VHIaWdQV3Tezg+GeZiFdw9+7wf3Xv3Xu//7ES2f9+lmtq12eYu7bxlfMLPPSnrOlPu9o37B3d3M9hsBcPdrzOzfSrpe0j9L+jtJj7dsc28ma90HT76CWhcO7Qwrl3ZS6xI0WetuPuvd1LpwaGdAN2fSThVa6xr6PY1msHypuvwPkp7r7g+Z2Wsk/YWkE1Z7gCbBdrekY2qXj66um7bMLjNbK+lQjU42sI9qBW2RJDPb5u6bGzx/VLQzLNoZ1kQRasTdz+yiLRPPcfqs28zsO2Z2lLvfY2ZHSbp3xmO8V9J7q/t8UtI/alRXnmVma6uRjGn1aFnUOtoZDO0Mi1pHrQuFdoZFO8MqudatxszeJenZqh1/W51rYPz3VWb2e2Z2hLvP3EFxQIPnulHSCWa20czWSTpH0taJZbZKOr/6+3WSPsdxGABmqNeL8zU6490+zGyNmR1e/f1CSS+UdE1VVz6vUZ2Zef8lUesAhEStAzAEc2vdaszsjZJeJelcd3+idv1zzMyqv0/RKLfut4Otbm6wrfYUvkXS1ZK+IekKd7/FzC4ys7OqxT4m6XAz2ynprRqdDQsApnmfpFea2W2STq8uy8w2m9lHq2WeJulLZnarRqMBr68da/Zbkt5a1ZvDNao/rVHrAARGrQMwBE1qnczsS5L+RNJpZrbLzF5V3fQHGh2X+3dmdpOZvbO6/nWStlfH2H5Y0jnzdrBZrB1wZvam+tztVNHOsGhnWLm0c8hy+R/RzrBoZ1i5tHPIcvkf0c6waGdYubQzVdGCLQAAAAAAITQ5xhYAAAAAgGR1HmzN7Ewz22FmO81sv2M0zOxAM7u8uv3LZnZc122apkE732pmt5rZ183sOjN7bortrC33c2bmZhblDHBN2mlmv1Ct01uqM0H2rsH//Vgz+7yZfbX6378mQhsvNrN7zWzq1yjYyIer1/B1M/uxvtsIal3f7awtR61rgFqHUKh1/bazthy1roEcal3VDupdF9y9sx9JayTdLumHJa3T6IvIT5xY5lcl/UH19zmSLu+yTS3a+VOSnlH9/R9TbWe13CGSvijpBkmbU2ynRt9D9VVJ66vLP5RoO7dI+o/V3ydK+maEdv6kpB+TtH3G7a+R9BlJJumlkr7cdxuH/kOt67+d1XLUunDtpNbxE+q9RK0L2M5qOWpduHZGr3XVc1PvOvjpesT2FEk73f0Od98r6TJJZ08sc7akS6q/r9ToTFnWcbsmzW2nu3/e3b9fXbxBo+9961uT9SlJ75b0fkmP9Nm4mibt/GVJH3H3FUly94W/8yqAJu10Sc+s/j5U0rd6bN+oAe5flPTAKoucLekTPnKDRt99eFQ/rUOFWhcWtS4sah1CodaFRa0LK4taJ1HvutJ1sN0g6e7a5V3VdVOX8dEp6PdodFr7PjVpZ90FGu1F6dvcdlZTFY5x97/qs2ETmqzP50t6vpn9rZndYGadf7n0FE3a+duSXm9muyRdJek/9dO0hSz6/kV41LqwqHVhUesQCrUuLGpdWKXUOol6t5S1sRuQGzN7vaTNkv5d7LZMMrMDJP2upDdEbkoTazWatvJyjfaSftHMftTdvxuzUVOcK+nj7v5BM/txSZea2Ule+wJpoETUumCodUDCqHXBUOsQXdcjtrslHVO7fHR13dRlzGytRtMC7u+4XZOatFNmdrqkd0g6y90f7altdfPaeYikkyR9wcy+qdGc/K0RTjTQZH3ukrTV3X/g7ndK+keNCmKfmrTzAklXSJK7/52kp0s6opfWNdfo/YtOUevCotaFRa1DKNS6sKh1YZVS6yTq3XK6PIBXo703d0jaqKcO4n7BxDK/pn1PMnBFl21q0c4XaXRA+gl9t2+Rdk4s/wXFOclAk/V5pqRLqr+P0Gi6xeEJtvMzkt5Q/f0jGh2LYRHW6XGafYKBn9a+Jxj4St/tG/oPta7/dk4sT61r305qHT+h3kvUuoDtnFieWte+nUnUuur5qXeh12kP/7TXaLTX5nZJ76iuu0ijvWPSaE/Jn0jaKekrkn44yoqY387PSvqOpJuqn60ptnNi2SgFsOH6NI2m19wq6WZJ5yTazhMl/W1VHG+SdEaENn5K0j2SfqDRHtELJL1Z0ptr6/Ij1Wu4Odb/fOg/1Lp+2zmxLLWufTupdfyEei9R6wK2c2JZal37dkavdVU7qHcd/Fi18gAAAAAAyFLXx9gCAAAAANApgi0AAAAAIGsEWwAAAABA1gi2AAAAAICsEWwBAAAAAFkj2AIAAAAAskawBQAAAABkjWALAAAAAMja/w8Byp/MmJZZ1AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], + "outputs": [], "metadata": {} }, { @@ -241,7 +198,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "source": [ "import matplotlib.pyplot as plt\n", "\n", @@ -252,20 +209,7 @@ "plt.legend()\n", "plt.show()" ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6oAAAFlCAYAAADiXRVWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAABFFklEQVR4nO3deXxcdb3/8ff3nNmzTJa2CW26Uyi0lBbaAiI7AoqAuLAp4NUr8rt6vVe9V0G9btcFl+v1ongVETe8iiIoCIIIlEUppaXQspTShbbpmqXZM/v398dMpqFrOktmkryej0cekzkzk/k0p5PkPZ/vYqy1AgAAAACgXDilLgAAAAAAgMEIqgAAAACAskJQBQAAAACUFYIqAAAAAKCsEFQBAAAAAGWFoAoAAAAAKCueUhdwMOPGjbPTpk0rdRkH1Nvbq4qKilKXgSHifI08nLORhfM1snC+RhbO18jC+Rp5OGelsWLFilZr7fj93VbWQXXatGlavnx5qcs4oCVLlujMM88sdRkYIs7XyMM5G1k4XyML52tk4XyNLJyvkYdzVhrGmE0Huo2hvwAAAACAskJQBQAAAACUFYIqAAAAAKCslPUcVQAAAAAY7eLxuJqbmxWJREpdSlEEAgE1NTXJ6/UO+TEEVQAAAAAooebmZlVVVWnatGkyxpS6nIKy1qqtrU3Nzc2aPn36kB/H0F8AAAAAKKFIJKL6+vpRF1IlyRij+vr6w+4WE1QBAAAAoMRGY0gdkMu/rSyDqjHmImPMrZ2dnaUuBQAAAABGvcrKylKX8AZlGVSttfdZa68Lh8OlLgUAAAAAMMzKMqgCAAAAAErr+eef18knn6x58+bp0ksv1e7duyVJN998s4499ljNmzdPV1xxhSTp8ccf1/z58zV//nwtWLBA3d3deT03q/4CAAAAQJn40n0v6eVtXQX9msdOrNYXLppz2I+75ppr9L3vfU9nnHGGPv/5z+tLX/qSvvvd7+qmm27Sxo0b5ff71dHRIUn69re/rVtuuUWnnnqqenp6FAgE8qqZjmqO1u7s1sttyVKXAQAAAAAF19nZqY6ODp1xxhmSpGuvvVZPPPGEJGnevHl673vfqzvuuEMeT7r3eeqpp+oTn/iEbr75ZnV0dGSP54qOao5+8fTr+uMLEf3Tu0pdCQAAAIDRIpfO53C7//779cQTT+i+++7TV7/6Va1evVo33HCDLrzwQj3wwAM69dRT9dBDD2n27Nk5Pwcd1Ry5xihlS10FAAAAABReOBxWbW2tnnzySUnSL3/5S51xxhlKpVLasmWLzjrrLH3jG99QZ2enenp6tH79eh133HH69Kc/rUWLFmnNmjV5PT8d1Rw5DkEVAAAAwOjQ19enpqam7PVPfOIT+vnPf67rr79efX19mjFjhn76058qmUzqfe97nzo7O2Wt1cc+9jHV1NToP/7jP/TYY4/JcRzNmTNHb33rW/Oqh6CaIw9BFQAAAMAokUql9nt86dKl+xx76qmn9jn2ve99r6D1MPQ3R45jlCSoAgAAAEDBEVRz5BojS1AFAAAAgIIjqObIZegvAAAAABQFQTVHrmNkJaVIqwAAAADyZEfxcM1c/m0E1Ry5xkiSkqP4PxQAAACA4gsEAmpraxuVYdVaq7a2NgUCgcN6HKv+5shxMkE1ZeV1S1wMAAAAgBGrqalJzc3NamlpKXUpRREIBN6w9c1QEFRz5MkE1dQofNcDAAAAwPDxer2aPn16qcsoKwz9zZGbCaoJ5qgCAAAAQEERVHPkZOaospgSAAAAABQWQTVH7qA5qgAAAACAwiGo5igbVJmjCgAAAAAFRVDNER1VAAAAACgOgmqOsvuoElQBAAAAoKAIqjka6KimUiUuBAAAAABGGYJqjvZsT0NSBQAAAIBCIqjmyBnoqLKYEgAAAAAUFEE1R3vmqJa4EAAAAAAYZQiqOWLVXwAAAAAoDoJqjgiqAAAAAFAcBNUcuZnvXJI5qgAAAABQUATVHLlO+ltHRxUAAAAACougmqM9iykRVAEAAACgkAiqOXIGhv4SVAEAAACgoAiqORroqLKPKgAAAAAUFkE1Rx6Xob8AAAAAUAwE1Rw5zFEFAAAAgKIgqOaIfVQBAAAAoDgIqjnKBlXmqAIAAABAQRFUc0RHFQAAAACKg6CaI/ZRBQAAAIDiIKjmyHHYngYAAAAAioGgmiMPQ38BAAAAoCjKMqgaYy4yxtza2dlZ6lIOaGB7mgRBFQAAAAAKqiyDqrX2PmvtdeFwuNSlHNDAYkopgioAAAAAFFRZBtWRwMP2NAAAAABQFATVHDnMUQUAAACAoiCo5ojtaQAAAACgOAiqOaKjCgAAAADFQVDNkYd9VAEAAACgKAiqORpY9ZftaQAAAACgsAiqORrYR5XtaQAAAACgsAiqOcpuT5MqcSEAAAAAMMoQVHO0ZzElkioAAAAAFBJBNQ+OkZIspgQAAAAABUVQzYMjhv4CAAAAQKERVPPgOAz9BQAAAIBCI6jmgY4qAAAAABQeQTUPjpFSzFEFAAAAgIIiqObBNVKSfVQBAAAAoKAIqnkwxihBUAUAAACAgiKo5sExUoqgCgAAAAAFRVDNA/uoAgAAAEDhEVTzwBxVAAAAACg8gmoeHIIqAAAAABQcQTUPhqG/AAAAAFBwBNU8uCymBAAAAAAFR1DNg8P2NAAAAABQcATVPLA9DQAAAAAUHkE1D46YowoAAAAAhUZQzQOr/gIAAABA4RFU80BQBQAAAIDCI6jmgaAKAAAAAIVHUM2DY6QUc1QBAAAAoKAIqnlwjNieBgAAAAAKjKCaB8cYtqcBAAAAgAIjqObBMWxPAwAAAACFRlDNg2OkRJKgCgAAAACFRFDNA4spAQAAAEDhEVTzwPY0AAAAAFB4BNU8uEYipwIAAABAYRFU82CMlEilSl0GAAAAAIwqBNU8ODIipwIAAABAYRFU88AcVQAAAAAoPIJqHlwjJQiqAAAAAFBQBNU8sD0NAAAAABQeQTUPhqG/AAAAAFBwBNU8uEZKEVQBAAAAoKAIqnlwmKMKAAAAAAVHUM2DY4ySzFEFAAAAgIIiqObBYegvAAAAABQcQTUPDP0FAAAAgMIjqObBMelLy/BfAAAAACgYgmoeMjmVLWoAAAAAoIAIqnkY6KiyoBIAAAAAFA5BNQ8DQTWVKm0dAAAAADCaEFTz4Jh0UqWjCgAAAACFQ1DNQ7ajSlAFAAAAgIIhqOZhYDEl9lIFAAAAgMIhqOYhu5gSQRUAAAAACoagmgdW/QUAAACAwiOo5oFVfwEAAACg8AiqecjOUaWjCgAAAAAFQ1DNA3NUAQAAAKDwCKp5YHsaAAAAACg8gmoejEknVTqqAAAAAFA4BNU87OmolrYOAAAAABhNCKp5GPjmMfQXAAAAAArHM1xPZIx5h6QLJVVL+om19i/D9dzFYspsMSVrrW57cqN+/vTrmlIX0pcunqNZDVWlLgsAAAAADsuQOqrGmNuNMbuMMS/udfwCY8yrxph1xpgbDvY1rLV/sNZ+SNL1ki7PveTyUW6r/t793FZ99YFXNKkmqLU7u/XO//27/r6+tdRlAQAAAMBhGerQ359JumDwAWOMK+kWSW+VdKykK40xxxpjjjPG/GmvjwmDHvq5zONGvHJa9Xd3b0xffeAVnTi1Vr/+0Mn640ffrMbqgN7/02d1z8pm2TKoEQAAAACGYkhDf621Txhjpu11eLGkddbaDZJkjPmNpEustV+X9Pa9v4ZJL5F7k6Q/W2ufy6vqMlFOiyn99G8btbsvpl+94yQ5jtGkmqB+++FT9KFfLNfH73xBP/3b6zp91njNmVitM44er5Bv2EZ9F0wimVIkkVIknlR04DKeUiSRzB6LDrotEk8pmthzuW5DVA/vXr3nsYmU4snUAZ/PHOC46zjyOEYe18jjGLmOI69r5Domc3zP7QP39Xuc9IfXVcDryO9xM8cGXfem7xPw7rnN73HkOAeqBAAAABid8kkrkyRtGXS9WdJJB7n/P0s6V1LYGHOktfaH+7uTMeY6SddJUkNDg5YsWZJHicUVjUQkGS1fvkId693S1ZG0uv3JPs0f72rnq89p56t7bvun2VaPhnz627Zu/WBJp1JWCnmky4/26fQmT3aLnWJKWav+hNQbt9mPnrjUF7fqyVzviyv7eX9CiietYqn0ZTwlxVL5vSHgGMnrWPm2b5bXMfI5ktc18hjtP5Ee4Lms0nUkrVXSZj5PScnMscHX0/fLveYBXkcKuJLfY9KXrlHAIwU8Jv35fm7zu0ZBj1ThNQp5jSo8Ushr5HNHVujt6ekp658BeCPO18jC+RpZOF8jC+dr5OGclZ9ha6tZa2+WdPMQ7nerpFslaeHChfbMM88scmW5e/GuRyRFdPyCBVo0ra5kdfzqmU3qib+oG96xSCfNqN/n9rMzl5F4Us9v6dDNj7ymn77UpkTVEfrixXPkFqBjF00k9drOHq3e2qlVzZ3a1Narlu6oWnui6uiP62Ajj4NeVzUhr8JBr2prvJoS8Crg3dNZDAzqQg6+zHYeva4CmY5k9tLrKpC9zZHHdbRkyRIN9/8na60SKatYIpXu+Cb2dIGj8T3HBrq+A8cib+gMJ9UbS6gvmrmMJdUbTagnmtTO/j3Xo4kDd4cH+DyOwkFv9qM64Ml+XlfhV32lT+MqfRpX6Vd9Zfp6lX943tDYn1KcM+SO8zWycL5GFs7XyML5Gnk4Z+Unn6C6VdLkQdebMsfGjHJYTCmVsvrJUxs1rymsxdMPHpYDXlcnz6jXoml1+saDa3TrExvU3hvTdy4/Xn7P0DvCvdGElm5o05od3Vq7s1trtndrfUuPEpnvQ3XAoyMnVGrm+EqdNKNOdSGfqoNe1YR8qgl6FQ55s5fhoPewnnukMcbI6xp5XUcV/uI+VyKZUl88qb5oUj3RhHqiCXX2x9XZH1fXoMuuSDx7vLUnpvUtvdnr++PzOBpX4VN9pV/jKn1qDAd0RDioI8IBTawJqjEc0MRwUEHf6D2PAAAAGF75BNVnJc0yxkxXOqBeIemqglQ1QmTnqJYwqD740g5taOnV969aMOSul+sYfeZtx2h8pV9ffeAV7e6L6RvvmqfJdaEDPqY7Eteja3bpgdXbteTVlmz3bmI4oKMbq3TOMRN0zBHVmtcU1pS6UMk6cGOZx3VU7TqqDnhzenw8mdLu3phae2Jq7YmqrTeq1u6YWnujassc29Ud1eqtnWrtie3z+JqQV43VATXVBjW1vkLT6kOZywpNrAnI47JtMwAAAIZmSEHVGPNrSWdKGmeMaZb0BWvtT4wxH5X0kCRX0u3W2peKVmkZKvViSqmU1S2PrdOM8RV669wjDvvxHzp9huoqfLrx7tU6/VuPaVJNUAGvK2vtnimaVoomUtre2a+UlRqq/bpy8RSdd2yD5jaFcw5FKD9e19GE6oAmVAcOed9IPKmdXRFt64hoR1e/tnVEtL2zXzs6I9rS3q+n1rUqEt8zFNnjGE2uC2lqfUhHjq/UUY1VOrqhSrMaKkfkwl4AAAAorqGu+nvlAY4/IOmBglY0ggz0DJMl2vrlt8u36KVtXfrOZcfnPM/0XSc26U1H1uuu5c1a39Kj+MDqP2bPv8/nOppcF9Jps8bphCm1rEILBbyuptZXaGp9xX5vt9ZqV3dUr7f2alNbn15v69Xrbb3a2Nqnp9e3ZTvyxkiTa0M6qqFKsxurdOzEdFd+Uk2QrjwAAMAYRisjD6Uc+tu8u09f//MaLZ5ep0sXTMrrax0RDuqfz5lVoMqA9NzchuqAGqoD+yzwlUxZbW7v06uZOc6v7uzW2h3deuzVXdn53vUVPh3XFFY4EVNiwk4dP7lG46uKPMkXAAAAZYOgmodSLabUHYnrgz9brpS1uumdx9F5wojiOkbTx1Vo+rgKXTC3MXs8mkjq1R3deqG5U6u2dGhVc6ce3xnXH9cvlyRNH1ehxdPqtHh6+qOplq4rAADAaEVQzUM2qA7j0N9kyupff/O81rX06Of/sFgzxlcO23MDxeT3uJrXVKN5TTXSyVMlSQ/99THVHXm8ntu0W8++3q4HX9qhO5ent2+eGA5o0fQ6nTpznE4/arwaw4eeWwsAAICRgaCaByfTzbHDGFTvWLpJj6zZpS9fMkdvnjVu2J4XKAW/x2jRtDotmlanD58xU6mU1dpd3Vq2sV3LNrbr7+vb9Mfnt0mSjm6o0ulHjdMZR03Qwmm1CnjZLgcAAGCkKsugaoy5SNJFRx55ZKlLOajsYkqpg96tYGKJlL736DqdPKNOV2c6TsBY4jhGsxurNbuxWtecMk3WWr26s1tPrG3R42tb9PO/b9KPn9yogNfRabPG6/w5jTr3mAmqCflKXToAAAAOQ1kGVWvtfZLuW7hw4YdKXcvBDPfQ37+8vEOtPVF9+z3zmJsHKL1o00Bwve70meqLJbR0Q5uWvNqih1/eqYdf3inXMTppep3On9Oo8+Y06IhwsNRlAwAA4BDKMqiOFMO96u+DL+7QuEqfTps1flieDxhpQj6Pzp7doLNnN+hLF8/RquZOPfTSDj300g594d6X9IV7X9LCqbW6ZMEkXXjcEaqroNMKAABQjgiqeRjOVX+TKavH17borXMbc94zFRhLjDE6fnKNjp9co09dMFvrdvXowRe3694Xtuk//vCivnTvSzr9qPG6ZP5EnXdso4I+5rQCAACUC4JqHgbiYmoYhv6+uqNb3ZGETplZf+g7A9jHkRMq9dGzZ+kjZx2pV7Z364/Pb9Ufn9+mR9fsUsjn6u3zjtDli6bohCk1DK0HAAAoMYJqHrJDf4chqK7Y1C5JWjStrujPBYxmxhgdO7Fax06s1qcvmK1nNrbrnpXN+tOq7frt8mYd1VCpKxZN0aULJqmWocEAAAAlQVDNw56hv8V/rpe3d6k25NWkGhaCAQrFcYxOmVmvU2bW6/MXzdF9L2zTb57doi//6WXd9Oc1umBuo65cPEUnz6ijywoAADCMCKp5MMO46u+aHd06qqGKP5aBIqn0e3Tl4im6cvEUvbK9S3c+u0V3P9ese1/YptmNVXr/m6bpkvmTmMsKAAAwDJxSFzCSOZnQaIscVFMpq7U7ujW7saqozwMg7ZgjqvXFi+do2WfP1Tffnd4O6oa7V+uUmx7RTX9eo20d/aUuEQAAYFSjo5qHgZRf7FV/t3b0qzeW1NGN1UV9HgBvFPC6umzhZL3nxCYt29iun/39dd36xHr9+MkNOn9Og/7xtBk6YUptqcsEAAAYdQiqeTDDtD3Nmh3dkqSj6agCJWGM0Ukz6nXSjHo17+7TL5du0m+WbdEDq3fo5Bl1+n9nHqnTZ41jaD4AAECBMPQ3D8O16u/anemgelRDZVGfB8ChNdWGdONbj9Hfbzhbn7vwGL3e2qdrb1+mC29+Sve+sE2J4VhdDQAAYJQry6BqjLnIGHNrZ2dnqUs5qOFa9XdDS68aqv2qCniL+0QAhqzC79E/njZDT3zqLH3z3fMUSST1sV+v1Nn/9bh+9cwmxRIEVgAAgFyVZVC11t5nrb0uHA6XupSDGq6O6pb2Pk2tqyjqcwDIjc/j6LKFk/XXj5+hH77vRNWGvPrsPS/qrG8v0a+XbVacDisAAMBhK8ugOlIMzEZLFXmO6qb2Xk2pDxX1OQDkx3GMLpjbqD985FT97B8WaVyVXzfevVpn/9cS/fbZLQRWAACAw0BQzYMzDPuoRuJJ7eyKakodQRUYCYwxOvPoCfrDP71Jt79/oWqCPn3q96t07nce110rmpnDCgAAMAQE1TwM7KNazI7qlvY+SdJUOqrAiGKM0dmzG3TvR0/VbdcsVKXfo3/73Qt6y38/oXtWNhd9tXAAAICRjKCaJ9cxRe2obmpLB9XJdFSBEckYo3OPbdCf/vnN+tHVJyrgdfXxO1/Q+d99Qn9ata3oUwcAAABGIoJqnlxjVMy/MzcPdFQJqsCIZozR+XMadf8/v1k/eO8JMpI++n8r9babn9SDL+6QLfKibAAAACMJQTVPxhR36O/m9j5V+j2qq/AV7TkADB/HMXrbcUfowX89Xf9zxXzFEildf8cKXfT9p/Tomp0EVgAAABFU8+Y6pqhzzTa392lyXUjGmEPfGcCI4TpGl8yfpL98/HR9+z3Hq7M/rg/8bLku/cHf9cTaFgIrAAAY0wiqeXJNseeo9jLsFxjFPK6jd5/YpEc/eaa+/s7jtKsromtuX6bLfvS0nl7fVuryAAAASoKgmifHMUUb+ptKWW3Z3c8eqsAY4HUdXbl4ih779zP15UvmaFNbn6788VJd9eOlWv56e6nLAwAAGFYE1Ty5TvEWU9rZHVEskWIPVWAM8XtcXXPKND3xqbP0H28/Vmt3duvdP3xa19y+TM9v6Sh1eQAAAMOCoJonx6hoQ38HtqZhD1Vg7Al4XX3wzdP1xKfO0g1vna3VzR16xy1/01U/XqrHmcMKAABGubIMqsaYi4wxt3Z2dpa6lENyTPGG/g5sTUNHFRi7Qj6Prj9jpp789Nn6zNtma31Lj669fZne+j9P6p6VzYonU6UuEQAAoODKMqhaa++z1l4XDodLXcohFXPV381tfXIdo4k1waJ8fQAjR6Xfo+tOn6knP3W2vvXueUqmrD5+5ws645uP6bYnN6izP17qEgEAAAqmLIPqSOLkuervru6I3nHL3/TTv23c57bN7X2aWBOQ1+U0AUjzeRy9Z+FkPfSvp+sn1y5UU21IX7n/FZ38tUd0492r9PK2rlKXCAAAkDdPqQsY6RxHymeq2O9XbNXzWzr0/JYOvXNBk8Ihb/a2ja29mlZfUYAqAYw2jmN0zjENOueYBr24tVO/ePp13f3cVv162RYtmlarq0+ZpgvmNMrn4Y0uAAAw8vAXTJ5ck9/Q38fW7Mp+/vArO7OfW2u1vqVHM8dX5lUfgNFv7qSwvvnu4/XMZ87RZ942Wzu7ovrYr1fqTTc9oq//+RVtaOkpdYkAAACHhaCaJ8fJb+jv+pYeXbawSbUhr57Z0JY9vqMror5YUjMnEFQBDE1NyKfrTp+pJf92pn76/kVaMKVWtz25UWf/1+O67IdP6/crmtUfS5a6TAAAgENi6G+e3DxW/e3si6utN6aZ4yu1e1pcy15vz962oaVXkjRzHEN/ARwexzE6a/YEnTV7gnZ1RfT757bqzmc365O/e0FfvPclXTR/oq5YNFnHTQrLGFPqcgEAAPZBUM2T6xilcuyobmhND8ebMb5SjjF6+OWd2tUV0YTqgNZnhurRUQWQjwnVAf2/M2fq+jNmaNnGdt357Bbd/Vyz/u+ZzTrmiGpdvrBJ71gwSTUhX6lLBQAAyGLob56MMcp1G8PtnRFJUlNtUIum10lStqu6flePKnyuJlT5C1IngLHNGKOTZtTrO5fP1zOfOVf/+Y658jhGX7zvZS3+2iP6l9+s1LKN7bL5rA4HAABQIHRU8+Q6yrmj2tIdlSSNr/IrHPQq6HX17MZ2vX3eRK1v6dXMCZUMywNQcOGgV1efPFVXnzxVL23r1J3PbtE9K7fqj89v01ENlXrvSVN16QmTVB3wHvqLAQAAFAEd1Tzls+pva09UjpFqQz55XUcnTK3Rstd3y1qrF7d1anZjVYGrBYA3mjMxrC9fMlfPfOYcffNd8xT0uvrCvS/ppK8+ok/ftUqrmztLXSIAABiD6KjmycljjmpLd1T1lX65Trprumhanf7nkde0qrlTHX1xLZhSW8hSAeCAQj6PLls0WZctmqzVzZ36v2Wb9IeV23Tn8i2a1xTWe0+aoouOn6iQb+z+2ognU2rvjam+wiePy/u8AAAU09j9i6NAXJNfUB1fuWcO6uJpdbJW+t6j6yRJJ04lqAIYfsc1hfX1pnm68W3H6A8rt+qOpZv06d+v1lfuf0XvOqFJ7z1pimY1jN4RH6lUeh/rFZt2a82Obq1v6dH6XT3a3hWRtVLI5+rEqbWaPq5C85pqNKHKr8XT6xTwuqUuHQCAUYOgmicnz6G/4wYtlrRgSq1cx+ivr+zUzPEVmsWKvwBKqDrg1TWnTNPVJ0/V8k27dcfSTfq/ZzbrZ39/XYun1+l9J0/VBXMa5fOM7O5iJJ7UquZOLd/UrhWv79aKzbvV0ReXlA6lM8dX6qQZ9ZpSF9K4Sp/Wt/Tq4Zd36pkN7frF05skSZV+j3weR28+cpzqK31638lTNakmSHgFACBHBNU8OY6UynHV3919cU0btE9q0Ofqn86cqR8sWa9/PfcoFlICUBaMMVo0rU6LptXp82+P6ncrmvWrZzbpY79eqXGVPr1n4WRdtXhKqcscsq5IXCte361lr7fr2Y3tWtXcqVhm+fYZ4yt0/rGNOnFarRZmuqb7+1n8xYvnKJZI6al1LdrZFdVTr7WqL5bQo2t2qSea0E//9rqCXlfvWDBR8yfX6JL5kwitAAAchrIMqsaYiyRddOSRR5a6lENyHaN4jvvTdPbHFQ6+cVXNT553tD58xkxV+svy1AAY4+or/br+jJm67rQZeuK1Ft2xdLN+9Ph6/fDx9Zpb76qtqlnnHtuwz8+2UonEk3p1R7dWb+3Ui1s79UJzp9bs6JK1kscxmjsprPefOk0Lp9Zq4bQ61VUMfT9Zn8fR2bMbJElXDgrqW9r79PDLO7V8U7vufX6bfr1siz79+9WaUhfS3EnVmjMxrKMaqjRrQqUm14Wy6xQAAIA9yjINWWvvk3TfwoULP1TqWg4l16G/qZRVV2TfoCqJkAqg7DmO0ZlHT9CZR0/Q1o5+3blss+74+3p98ncvyOc6Om3WOJ0/p1GnzKzX5LpQ0euJJ1Pa1Nan9S09WrerR+tberRme7fW7uxWIvMzuibk1XGTwvqXc2Zp8bQ6zZ9SU5TFoSbXhfSBN0/XB948XdZaLdvYridfa9XG1l6t3tqpB1bvyN7X53E0c3yljm6o1IIptTpxaq1mN1axWBMAYMwjEeXJdYxsDospdUcTslZl03UAgFxNqgnqE+cdrfnebaqZOV/3r9quP6/erkfW7JIkNdUGddL0eh1zRJVmN1ZrxvgKja/yyzuEMJZMWXX2x9XeG1NHX0ytPVFt74xoR2cke7mts187OiPZQCpJjdUBzWqo1HVHz9Bxk8KaOymsptrgsE+pMMbopBn1OmlGffZYVySudbt6tG5nj17b1a3XdvXo6Q1t+sPz2yRJQa+r4yeHdeLUdHBdOK2OPW0BAGMOQTVPjjFK5hBUu/rTC3VUE1QBjBKOMTphSq1OmFKrz77tmHQAW9+qpRva9fjaXfr9c83Z+xoj1Vf4VR1IL0IU8LoyRorGU4olU4omkuqOJNTZH9f+fsT6XEeN4YAawwEtnFqriTVBHTmhUjPHV2rG+ApVlXGwqw54s9+nAdZabeuMaMWm3Xpu026t2LRbP3x8g5IpK49jdMrMel18/ESdP7eR0AoAGBMIqnlKD/09/Md1ZoIqHVUAo5HjGB3dWKWjG6v0/lOnS0qvdP7qjm5tauvTjq6IdnVF1BNNKJpIKZpIyVqr+gpHPo8jn+uoKuBVbYVPtSGv6ip8qgn5VF/h0xHhgOoqfKNqwTljjCbVBDWpJqiLj58oSeqLJfT8lg49vrZF96/arn+/a5U++4cX9ZZjGnTtm6Zp0bTaUfU9AABgMIJqnlwnPd/0cHURVAGMMeMq/Rp3pF+nlv86eWUh5PPoTTPH6U0zx+mGC2Zr5ZYO3fv8Nt2zcqvuX71dcyZW6wOnTtcl8ycypxUAMOrwmy1PrpPb0F86qgCAoTKZYdVfvHiOlt54jr526XGKJVL65O9e0NtuflKPr20pdYkAABQUQTVPjjFK5bKYUiQhSaoK0NQGAAxd0OfqqpOm6C8fP10/fN8JiiZSuvb2Zbr29mVau7O71OUBAFAQBNU8OcbkNPS3J5oOqmxFAwDIhTFGF8w9Qn/5+On63IXH6LnNu/W2/3lS//3wWsUSue3vDQBAuSCo5inXob+9maBaQVAFAOTB73H1j6fN0OP/fpYuOn6i/ueR13Tx95/S+paeUpcGAEDOCKp5SndUD/9xPbGEfB5nSPsIAgBwKHUVPv335fN12zULtas7qku+/zc99NKOUpcFAEBOSEl5cp30hvSHqzeaYNgvAKDgzj22Qff985s1Y3yFPvzLFfrWQ2ty+j0FAEApEVTzlOtiSj2RhCr8bhEqAgCMdZNqgvrth0/R5Qsn65bH1uuj//ecIvFkqcsCAGDICKp5cpwcg2o0qQofHVUAQHEEvK6+8e55+tyFx+jPL+7QtbcvU1ckXuqyAAAYEoJqnlxjGPoLAChb/3jaDH338vlasWm33nfbM+rsI6wCAMofQTVPrpNjUI0lWPEXADAs3rFgkn509Ylas71b7/3JUnX0xUpdEgAAB0VQzZNjjHIY+aseOqoAgGF0zjEN+tHVJ2rtzh5dc/syRRIssAQAKF8E1Tw5Rjnvo8piSgCA4XTW7An6wVUn6KVtXfr+yqhiiRz2VwMAYBgQVPOU69Df/lhSIRZTAgAMs3OPbdDXLp2rF9uS+vTvVynF1jUAgDJUlkHVGHORMebWzs7OUpdySLmu+huJpxTw0lEFAAy/yxdN0TtneXXPyq266cE1pS4HAIB9lGVQtdbeZ629LhwOl7qUQ8pl1d9EMqVYMqUgQRUAUCIXzfDq6pOn6tYnNugPK7eWuhwAAN6gLIPqSJLuqB7eYyKZOUFBH99+AEBpGGP0+YuO1eJpdbrx7tV6ZXtXqUsCACCLpJQnx6QvD2eOT38sKUl0VAEAJeV1HX3/qgWqCnj0vtueUUt3tNQlAQAgiaCaN9ekk+rhrPwbiaeDKnNUAQClNqE6oF9+8CR19Mf1kf97Tn2xRKlLAgCAoJovJ9NSPZx5qv2ZoBr0EVQBAKV3dGOVPnfhMVq2sV23PLau1OUAAEBQzZebCaqHs/IvQ38BAOXm/W+apvmTa3TLY+v18Ms7S10OAGCMI6jmaWDo7+EsqJTtqBJUAQBlwhijX3xwsWpCXn33r2vVFYmXuiQAwBhGUM1TJqfmNPQ3wNBfAEAZqQ549Y13zdPand268talau+NlbokAMAYRVDNU3bo72EE1QhDfwEAZer8OY265aoT9NK2Lp37nce1qytS6pIAAGMQQTVPHufwV/1l6C8AoJydN6dRt79/oXqiCb33tme0ua2v1CUBAMYYgmqeWPUXADAanT27QT/7h0Xa1R3Vv9y58rBGDgEAkC+Cap48uQTVGPuoAgDK35tmjtOnLjhaKzd36OO/fb7U5QAAxhCCap4cc/hBNcLQXwDACHHV4in68Bkz9Mfnt+nxtS2lLgcAMEYQVPPkcdNBNXGYQ39dx8ibeSwAAOXKGKNPvOUoTasP6UO/WK4Vm9pLXRIAYAwgqObJddLfwsMb+ptS0OvKGIIqAKD8+T2ufvnBkxQOevW5P7ykbvZYBQAUGUE1T24OQ3/740nmpwIARpTJdSHd9M7jtHZnt975g79np7EAAFAMBNU8uTksphSJJxX08a0HAIws5xzToFuvPlGv7erRh3+5QrFEqtQlAQBGKdJSnnIJqv2xJAspAQBGpHOOadCXL5mjx9e26Nt/ebXU5QAARilPqQsY6Qa2p0mkhv6ucn+coAoAGLmuOWWa1u7s1q1PbNDRDVV614lNpS4JADDK0FHN00BHNWWZowoAGDs+//Y5WjytTv95/8va0RkpdTkAgFGGoJqngaCaSB7uHFWCKgBg5PJ5HH3pkjmKJ1L6wM+eVTzJfFUAQOGUZVA1xlxkjLm1s7Oz1KUcUnaO6uF0VJmjCgAYBY45olrfuXy+Xt7epe/+da3sYfwuBADgYMoyqFpr77PWXhcOh0tdyiF5cllMiTmqAIBR4vw5jXrngkm65bH1+u3yLaUuBwAwSpRlUB1JnOxiSoc39DfA0F8AwCjxrfccrxOn1uo///SKntu8u9TlAABGAYJqngY6qim2pwEAjFGuY3TzlQtUV+HTdb9Yoe2d/aUuCQAwwhFU8+SYHDqqiZQCXr71AIDRY1JNULddu1D9sYQ+/MsVisSTpS4JADCCkZby5HEPr6OaSKaUTFkFPHRUAQCjy1ENVfrvy+drVXOnbrx7NYsrAQByRlDNk2c/c1QP9os5mkgv3++nowoAGIXOm9Ooj597lO5ZuVUPrN5R6nIAACMUaSlPA0N/kymrSDyps/9ria788dID3j8bVOmoAgBGqY+cNVNzJlbrhrtX6bWd3aUuBwAwAhFU8+Rx0t/CZMrqxa2d2tDSq6Ub2g84FDiaSM/Z8Xv41gMARieP6+hHV5+ogNfVh36xXF2ReKlLAgCMMKSlPGVyqpIpq13d0ezx1p7ofu8fjTP0FwAw+jXVhvT9Kxdoy+5+XX3bM0okU6UuCQAwgpCW8pTtqFqrXV2R7PHmjv0vzc/QXwDAWHHSjHp957Lj9UJzp/79rlUsrgQAGDKCap7cQYsp7RzUUd3S3rff+w8s18/QXwDAWHDx8RP1kbNm6p6VW/W/j68vdTkAgBGCtJSngaCaTKa0qyuqkC/dKW3tie33/nRUAQBjiTFGn3jL0XrLsQ365oOv6q8v7yx1SQCAEYCgmqdsULXpeakzxldIkrr6979wRHYxJeaoAgDGCNcxuvmKBZoxrkLX37FCL27tLHVJAIAyR1rKUzaoplLqiSYUDnpVFfAccIXD7GJKDP0FAIwhQZ+r311/iqoCHl3146Xa2Npb6pIAAGWMtJQnTzaoSr3RhEI+j6oDXnUesKPK0F8AwNhUX+nXr687WSkrXfajp7WpjbAKANg/gmqeBndU+2JJVfo9qg561dWf2O/9B4b+Bhj6CwAYg2Y3VutHV5+ozr64zvr2Er26o7vUJQEAyhBpKU+u2bPqb7qj6ioc9BxkjiodVQDA2HbqkeP0pUvmKGWl87/7hFZu3l3qkgAAZYagmifHMTJGSqWsemMJVfjTQ38PPEeV7WkAALhy8RR95KyZkqRLf/B3LX+9vcQVAQDKCWmpAFxjFE2mFImnVOHzKBz0HrqjytBfAMAY9+/nz9Y/vnm6JOndP3xam9v2vwc5AGDsIS0VgOsYdUfSc1Ir/K6qAl51RQ40RzUdVH0u33oAAD791tl6/5umSZIu/cHf9OCL22WtLW1RAICSIy0VgMcx2Q5qyOdRpd9Vbyyx31+00URSHsfIQ1AFAEBe19FnLzxGN1+5QG29MV1/x3P61F2rFE+mSl0aAKCESEsF4Dgm20Gt8LsK+T2yVorE9/0lG42nmJ8KAMAgXtfRxcdP1L0fPVWS9LsVzfrxkxtKXBUAoJRITAUwuKNa4fMo5Euv6Nsb23f4bzSRkt/Lir8AAOxtXlONHv746aoKePTNB1/VNx5cU+qSAAAlQlAtANcx2VV+K/wehXweSVJ/LLnPfaOJJB1VAAAOYFZDlZ761Nl694lN+t8l67XwK3/Vrq5IqcsCAAwzElMBuI5RV/+eob8Vh+qoElQBADigcMirr116nE6bNU6tPVEt/tojWrOjq9RlAQCGEYmpADyOo87+mKT0YkrBgaAa3U9HNZ6S38PQXwAADsbncfTLD56kT11wtCTpku//TT9+YgOLLAHAGEFQLQC/11E8mV7ht9LvUYU/PfS3b78d1SR7qAIAMET/dOaReuLfz9IpM+v11Qde0WnfeIz9VgFgDCjLxGSMucgYc2tnZ2epSxmSwKAOacjvZhdT6tvvHFWG/gIAcDim1Id0y1Un6LRZ47SjK6LTv/WYHnxxR6nLAgAUUVkmJmvtfdba68LhcKlLGZKBob6SFPK62cWU9t9RZegvAACHq8Lv0c//YbFueOtsGSNdf8cK3Xj3au3qZqElABiNyjKojjSBzFDegNeRx3X2LKa0vzmqrPoLAEBOHMfo+jNmatUXztPVJ0/VXSu26MxvLdHtT21UT3TfN4cBACMXiakABob+VmQ6qaGDzVGNp5ijCgBAHqoCXv3nO+bqN9edrJDPoy//6WXN/cJD+tUzm9Sd2S4OADCykZgKIODNBNVMQA16D9ZRTb1hTisAAMjNiVPr9NdPnK55TempQp+950Ud98W/6IePry9xZQCAfBFUC2AgqA4souQ6Rj6Po0hi36AaibPqLwAAhVIT8unej75ZP//A4uyxm/68RtNuuF9/W9dawsoAAPkgMRXAwBzVgY6qJAU8jqLxffd6YzElAAAK74yjxmvj19+mm955nLyukSS997ZndOWtS3XH0k3a2tFf4goBAIfDc+i74FD27qhK6ZWA+/e7PQ2LKQEAUAzGGF2xeIquWDxFL23r1F9e2qkfPr5eT29ok5R+Y/nfzjtal8yfpPFV/hJXCwA4GBJTAQx0VOsqfIOOufsM/bXWso8qAADDYM7EsD7+lqP0/OfP0zsXTJIkReIpfeX+V7Toq3/Vlbcu1Ta6rABQtuioFsDA4ki1oT1BNejdt6MaT1pZK/m9DP0FAGA4BH2uvnP5fH3l0rn63qPr9L9L0gstPb2hTW+66VH5PI5mjq/U5QubdNbsCZpaX1HiigEAEkG1IOLJ9FzUcNCbPeb3uook3jhHNZrpsNJRBQBgeIV8Hn36gtn65FuO0sbWXq1v6dGLW7v0/cfW6ZXtXfrifS/ri/e9LEn66FlH6pL5EzWlPsS6EgBQIgTVAujsT+/ZVj0oqAa9jiJ7dVSjmeBKUAUAoDQ8rqNZDVWa1VClC+YeoU+ed5Tufm6rfrBknda39EqSvv/YOn3/sXXZxwS9ro5qrFJTbVDzJoX17hObVF/JHFcAKCaCagF0RRKSpOrAoFV/va7ae2NvuN+eoMq7swAAlANjjN51YpPedWKTIvGkOvvj2tLepw0tvbr3hW16al2r+uNJvbClQy9s6dD9q7br639eoyPCAU2tD6mjL66Z4yu1eHqdTps1TpPrQnKMkbVWjjFyHJNTXVva+yRJk+tChfznAsCIQVAtgIuOP0L3rNyqk2fUZ4/tb45qNJ4Z+ss+qgAAlJ2A11XA66qhOqCF0+p02aLJ6o8l9dzm3frLSzv0m2e3ZN90jsSTWrqhXZK0Zke37l+9/aBfu6Har9mN1Zp9RJUaqwOqDfkU9LmqDnhlrVXKSm29UW1p79Mvnt6kXd1RSdLnLjxGdz67RWET0a6KLVq1tUMnTa/Xto5+NYYDisSTmlZfoWTKqqM/rqn1ISVTVrUhn6KJlII+V6mUVSJlFfA6coxRMmUV8LryuiZ93Vr5PY68TvrvE2PSAR4ASomgWgBnz27Q6zdd+IZjQa+r/jhDfwEAGMmCPlenHjlOpx45Tl+6ZK5SKZsNch19Mb20rUvPbdqtja29qgx4FA56tb6lRw+/vFPxpM1+nZ1dUe3satHja1sO6/m/cv8r2c+X/36VJOmOpZsL84/bizGSY4xS1mYXivS4RiGfK4/jyOdx5HVN9vOQz1UwE+79XkcB78B1RwGPmwn+jvyZ+wQ8TvbNgJAv/VHp96jC71HQ6x60+xxLpNTaE1UyZekyA2MEQbVI/F5Xkfjeiykx9BcAgJFscJiqCfmyIXZ/EsmUEpluZiyRUiKZkowUjacUTSQViafUFYkrnrTq6Itpa0e/Vjd36q+v7Am58yfXSJK88W4dM71J61t6tGByrTr6Y2qsDmhnV1ThoFeVAY/6Y0kFfa5298bUGA6osz+eDZmxZEohn6u+WFIhn6veaFLxZEpe11HKWiVTVvFkSvGklccxisSTMia9Y0F/LKl4Kn1bIplSPJlSNJFSfyypjr64IomkovGUIvFk+iORUjJl9/s9ORiPY1QT8mbDrMcx6o4ktHWvbYQWTq2VxzVat6tXVy2erJDfo75oQoun18t1jMJBr5rqgjJSpnNMgwAYiQiqRRL0uors3VGNs+ovAABjhcd1lH1v+jDXXrI2HXAHQtaSJUt05plzC1tgEcWTA8E1fTkQzAeO9ceT6o0m1BNNqDeaUH88qWgipY6+uPpiCXX1x9XeG1PrXnvSS9LyTbuzn9/86LpBt6zb575+j6O6Cp+CXlf1lT4FfR5V+l01VgfTHWGfqwlVfoV8HlUHPaoOeFWV6YxXB72EXKCECKpFEvA6+wbVgY4qc1QBAMBBGGPkdUfuPFGv68jrOqoK5P+1Uimrzv642nqjiietGqoD2t0XU3tvTB7HqCuS0M7OiPxeR5vb+hTPdHN7IukA3B2Jq6Mvrv54Ui3dUb22M6bO/hZF4kkdqvHr9ziq9HtUGfCoJuRTbcirqoBXlX5X1UGvaoI+hYNe1YS8Cgf3fPTFray1zPUF8kBQLZKg11UiM4xm4N04hv4CAAAcHscxqq3wqbbClz1WV+HTzPH5fd3s8Ov+uLoicXVmwmx3JKHO/rg6++PZrm93JKGO/rjaemLa1Nan7ki66xtLpg749Z1HH3hDeA2H0qG2NuRVbSb01lb4VFfhS1+v8Kkus8gWAIJq0QS86R8ykXhyUFBNZm6jowoAAFBKfo8rv8dVOOjN6fHWWkXiKXX2x9XRH1NHXzwbcFesXqPxE6dkbttzfHNbrzr60x3eAwl4HdWFfKoJZUJshU91Ie8brg+E3boKn5Ipq9aeqDa396k/ltRxTWHNmRiWtel2MV1djFQE1SIJZN4N648nVRVI/wCMxumoAgAAjAbGGAUz81wbw28c4zyhZ73OPPPoAz42kUwH3N198eww5o6+mNp7976eXmRrd1/soOF2b43VAfXHk/I4Rm86cpx8rqMKv6sZ4yrk87hqqParMRxQ0OvqiHCQLi7KEkG1SIKZjmp00Mq/bE8DAAAAj+uovtKv+sqhr7K1J9zGtLsvvdjU7t6YOvrjaumOqq0nqt5YUs9v6dDRjVXa3N6nrv64nl7fqtae2EG/dsiXXmyqNuRTfYVPdRV+hYNe1VV4s0OSayvSt9VW+FQT9MrDQlMoMoJqkQwM7x28l+rA0F86qgAAADgcuYRbKT1E2VopkkiqtTum9r6Y+qIJ7eqOqrM/rq7+uFp7omrrjak7klBLT1Sv7uhOz9GN7bvq8oB0kE0PQx6YZ5sdqjwo3A58XhXwHHSvXGBvBNUiCQ6aozqAVX8BAAAwnIwxMkYK+TyaUu/RlPrQkB8bTaT3ym3riWWHJGcve2Nq74trd29M2zoienFrl9r7Yool9r/AlOuYPQtJZcJrXeXgQLtn3u3AZcjnMsd2DCOoFsnAYkr9g96JGhgG7GOoBAAAAMqc3+OqodpVQ/XQ9hmy1qovlnxjoM3MvW3vjabn4Pamu7rrW3q0fFN6GHPyAPsE+TzphaXqMp3Z+kqfxlX6s5fjstf9qq/wZf/+xuhAUC2SbFDda+ivz3UY9gAAAIBRxxijCr9HFX6PJtcNrXObSll1RxJq74vtE2Z39+4Ju609MW1u71NrT1R9BxiSXOX3aFxVOrQeKNCOq/SpvtKv6oCHbm2ZI6gWycAc1cheiymxkBIAAACQ5jhG4ZBX4ZBX08dVDOkxfbGE2npiau2JqrUnpraeaPbz1szn61t69MzGqHYfYLVkn8fRuApfNrzGe6Ja2r9GDdV+BbyueqMJNe/u1/gqv95zYpMmDLGrjMIhqBbJ/uaoRuJJ+QiqAAAAQM5CPo9CdUPr2iaSKbX3xrIhtq03qtbumFozl229UbX0RLWtLalndmxQPLnvMORvPfSqGqsD6osldFRDleZOCssxRg3Vfh07sVrjq/waV+lXbcgnl5GTBUNQLZKB/ajeGFRTjJ0HAAAAhonHdTShOnDIjuiSJUt0xhlnaHtnRK090eyiUK/t6tH6XT1q7YmqvS+ubR39+s2zmxVLpLT31FrHSHUV6Q7t+Cp/+qMyfVmX6d6Or/RrXJVP9RV+Qu0hEFSLJODZd45qJJFkxV8AAACgDBljNLEmqIk1weyxhdPq9nvfWCKltt6oNrf1vWHIcWtPVC3dUbX0xLShpVctg0LvYAOhdiDQZsNtpX+fkBsOesfkfFqCapHs6agOmqMaT2YDLAAAAICRyedxdEQ4qCPCwYPez1qrrkgiM/w4qtbu9FDjgcuW7vTH+l09aumOKpbcN9R6XZPpxO4VZDNDjgeH2gr/6Il3o+dfUmYGFk3q32foLx1VAAAAYCwwxigc9CocPPRiUdZadfUn1NIT0a7u9OJQA0G2pTvdrd3eGdGqrZ1q64nuM/RYSq+TM7gje8HcRr1jwaQi/euKi6BaJMYYBbyOonstpsQcVQAAAAB7M2bPCshHTqg66H2TKavdffsG2ZZBndoNrT3a1tk/TNUXHkG1iAJed585qtVBbwkrAgAAADDSuY7J7BHr1zFHlLqa4mAcahEFve5+Vv3lWw4AAAAAB0NqKqJ0R3XPhOgIiykBAAAAwCERVIso4HXVH3tjR9XPHFUAAAAAOCiCahEFvY6iiT1BNRpPMvQXAAAAAA6B1FRE+3RUE6z6CwAAAACHQlAtoqDXVSTTUU2mrOJJyxxVAAAAADgEgmoRDe6oDqz+y9BfAAAAADi4skxNxpiLjDG3dnZ2lrqUvAS8riKZVX/3BFU6qgAAAABwMGUZVK2191lrrwuHw6UuJS8Br5MNqJFEKnsMAAAAAHBgpKYiCnrdPUGVjioAAAAADAlBtYiCPlf98aSstdmg6mcxJQAAAAA4KIJqEQW8rlJWiidtdq4qQ38BAAAA4OBITUU0MMy3P55UNMHQXwAAAAAYCoJqEQ10TyPxpKLZjipBFQAAAAAOhqBaRMFMKI3Ek+yjCgAAAABDRGoqosFDfyMDQ39ZTAkAAAAADoqgWkR7OqqpQYspEVQBAAAA4GAIqkXkzwzz7Y8x9BcAAAAAhorUVETZjmoiSUcVAAAAAIaIoFpEQV8mqA7qqPo9fMsBAAAA4GBITUU0sHBSJJFeTMnvcWSMKXFVAAAAAFDeCKpFNNBR7Y+lFI2nGPYLAAAAAENAUC2ibEc1s48qCykBAAAAwKGRnIoo4Mus+psNqnRUAQAAAOBQCKpF5HMdGTPQUU1lO6wAAAAAgAMjqBaRMUZBr6tIPKneWEIVfoIqAAAAABwKQbXIgl5X/fGkuiMJVQa8pS4HAAAAAMoeQbXIAl5XkXhKPdGEqvyeUpcDAAAAAGWPoFpkQZ+rvlhCPRGG/gIAAADAUBBUi6w64FFXf0K90YQq/Qz9BQAAAIBDIagWWXXQq47+mHpiCVUGGPoLAAAAAIdCUC2ycNCrHZ0RWSvmqAIAAADAEBBUi6w64FVrT0yS6KgCAAAAwBAQVIssHNwzL7WSjioAAAAAHBJBtciqg3vCKR1VAAAAADg0gmqRDe6oNlYHSlgJAAAAAIwMBNUiGxxUm2qDJawEAAAAAEYGgmqRzW6szn5eFWAfVQAAAAA4FIJqkU2tD5W6BAAAAAAYUVjdp8iMMfrmu+bJ6zGlLgUAAAAARgSC6jC4bNHkUpcAAAAAACMGQ38BAAAAAGWFoAoAAAAAKCsEVQAAAABAWSGoAgAAAADKCkEVAAAAAFBWCKoAAAAAgLJCUAUAAAAAlBWCKgAAAACgrBBUAQAAAABlhaAKAAAAACgrBFUAAAAAQFkhqAIAAAAAygpBFQAAAABQVoy1ttQ1HJAxpkXSplLXcRDjJLWWuggMGedr5OGcjSycr5GF8zWycL5GFs7XyMM5K42p1trx+7uhrINquTPGLLfWLix1HRgaztfIwzkbWThfIwvna2ThfI0snK+Rh3NWfhj6CwAAAAAoKwRVAAAAAEBZIajm59ZSF4DDwvkaeThnIwvna2ThfI0snK+RhfM18nDOygxzVAEAAAAAZYWOKgAAAACgrBBUc2SMucAY86oxZp0x5oZS1wPJGDPZGPOYMeZlY8xLxph/yRyvM8Y8bIx5LXNZmzlujDE3Z87hKmPMCaX9F4xNxhjXGLPSGPOnzPXpxphnMuflTmOML3Pcn7m+LnP7tJIWPgYZY2qMMXcZY9YYY14xxpzC66t8GWM+nvlZ+KIx5tfGmACvr/JijLndGLPLGPPioGOH/Zoyxlybuf9rxphrS/FvGQsOcL6+lfmZuMoYc48xpmbQbTdmzterxpjzBx3nb8hhsL/zNei2TxpjrDFmXOY6r68yRFDNgTHGlXSLpLdKOlbSlcaYY0tbFSQlJH3SWnuspJMlfSRzXm6Q9Ii1dpakRzLXpfT5m5X5uE7S/w5/yZD0L5JeGXT9G5L+21p7pKTdkj6YOf5BSbszx/87cz8Mr/+R9KC1drak45U+b7y+ypAxZpKkj0laaK2dK8mVdIV4fZWbn0m6YK9jh/WaMsbUSfqCpJMkLZb0hYFwi4L7mfY9Xw9LmmutnSdpraQbJSnz98cVkuZkHvODzBuz/A05fH6mfc+XjDGTJZ0nafOgw7y+yhBBNTeLJa2z1m6w1sYk/UbSJSWuacyz1m631j6X+bxb6T+iJyl9bn6eudvPJb0j8/klkn5h05ZKqjHGHDG8VY9txpgmSRdKui1z3Ug6W9Jdmbvsfb4GzuNdks7J3B/DwBgTlnS6pJ9IkrU2Zq3tEK+vcuaRFDTGeCSFJG0Xr6+yYq19QlL7XocP9zV1vqSHrbXt1trdSgenff44R/72d76stX+x1iYyV5dKasp8fomk31hro9bajZLWKf33I39DDpMDvL6k9Jtxn5I0eKEeXl9liKCam0mStgy63pw5hjKRGba2QNIzkhqstdszN+2Q1JD5nPNYet9V+pdFKnO9XlLHoF/6g89J9nxlbu/M3B/DY7qkFkk/Nemh2rcZYyrE66ssWWu3Svq20h2D7Uq/XlaI19dIcLivKV5r5eMDkv6c+ZzzVYaMMZdI2mqtfWGvmzhfZYigilHHGFMp6feS/tVa2zX4Npte5pqlrsuAMebtknZZa1eUuhYMiUfSCZL+11q7QFKv9gxJlMTrq5xkhqZdovQbDBMlVYguwIjDa2rkMMZ8VukpSL8qdS3YP2NMSNJnJH2+1LVgaAiqudkqafKg602ZYygxY4xX6ZD6K2vt3ZnDOweGHGYud2WOcx5L61RJFxtjXld66NPZSs+BrMkMVZTeeE6y5ytze1hS23AWPMY1S2q21j6TuX6X0sGV11d5OlfSRmtti7U2LulupV9zvL7K3+G+pnitlZgx5v2S3i7pvXbPvo+cr/IzU+k3717I/O3RJOk5Y0yjOF9liaCam2clzcqsnuhTerL8vSWuaczLzKf6iaRXrLXfGXTTvZIGVmm7VtIfBx2/JrPS28mSOgcNt0KRWWtvtNY2WWunKf0aetRa+15Jj0l6d+Zue5+vgfP47sz96TQME2vtDklbjDFHZw6dI+ll8foqV5slnWyMCWV+Ng6cL15f5e9wX1MPSTrPGFOb6aSflzmGYWCMuUDpKSwXW2v7Bt10r6QrTHpF7elKL9KzTPwNWTLW2tXW2gnW2mmZvz2aJZ2Q+f3G66sMeQ59F+zNWpswxnxU6f+orqTbrbUvlbgspLsFV0tabYx5PnPsM5JukvRbY8wHJW2SdFnmtgckvU3pBQ76JP3DsFaLA/m0pN8YY74iaaUyi/dkLn9pjFmn9OIIV5SovrHsnyX9KvPH1QalXzOOeH2VHWvtM8aYuyQ9p/RwxJWSbpV0v3h9lQ1jzK8lnSlpnDGmWenVRQ/rd5a1tt0Y859KByBJ+rK1dn8LyCBPBzhfN0ryS3o4s/7YUmvt9dbal4wxv1X6DaKEpI9Ya5OZr8PfkMNgf+fLWvuTA9yd11cZMrxhCgAAAAAoJwz9BQAAAACUFYIqAAAAAKCsEFQBAAAAAGWFoAoAAAAAKCsEVQAAAABAWSGoAgAAAADKCkEVAAAAAFBWCKoAAAAAgLLy/wGcz6fnG/mPQgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], + "outputs": [], "metadata": {} }, { @@ -279,7 +223,7 @@ "metadata": { "kernelspec": { "name": "python3", - "display_name": "Python 3.9.0 64-bit" + "display_name": "Python 3.9.16 64-bit ('dl': conda)" }, "language_info": { "codemirror_mode": { @@ -291,12 +235,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.0" + "version": "3.9.16" }, "interpreter": { - "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" + "hash": "56be7540488f3dc66429ddf54a0fa9de50124d45fcfccfaf04c4c3886d735a3a" } }, "nbformat": 4, "nbformat_minor": 5 -} +} \ No newline at end of file diff --git a/tutorials/tutorial3/tutorial.py b/tutorials/tutorial3/tutorial.py index 1696a00..53e3df6 100644 --- a/tutorials/tutorial3/tutorial.py +++ b/tutorials/tutorial3/tutorial.py @@ -21,7 +21,7 @@ # First of all, some useful imports. -# In[2]: +# In[1]: import torch @@ -34,7 +34,7 @@ from pina import Condition, Span, PINN, Plotter # Now, the wave problem is written in PINA code as a class, inheriting from `SpatialProblem` and `TimeDependentProblem` since we deal with spatial, and time dependent variables. The equations are written as `conditions` that should be satisfied in the corresponding domains. `truth_solution` is the exact solution which will be compared with the predicted one. -# In[3]: +# In[2]: class Wave(TimeDependentProblem, SpatialProblem): @@ -58,12 +58,12 @@ class Wave(TimeDependentProblem, SpatialProblem): return output_.extract(['u']) - u_expected conditions = { - 'gamma1': Condition(Span({'x': [0, 1], 'y': 1, 't': [0, 1]}), nil_dirichlet), - 'gamma2': Condition(Span({'x': [0, 1], 'y': 0, 't': [0, 1]}), nil_dirichlet), - 'gamma3': Condition(Span({'x': 1, 'y': [0, 1], 't': [0, 1]}), nil_dirichlet), - 'gamma4': Condition(Span({'x': 0, 'y': [0, 1], 't': [0, 1]}), nil_dirichlet), - 't0': Condition(Span({'x': [0, 1], 'y': [0, 1], 't': 0}), initial_condition), - 'D': Condition(Span({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), wave_equation), + 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1, 't': [0, 1]}), function=nil_dirichlet), + 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0, 't': [0, 1]}), function=nil_dirichlet), + 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet), + 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet), + 't0': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': 0}), function=initial_condition), + 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), function=wave_equation), } def wave_sol(self, pts): @@ -80,7 +80,7 @@ problem = Wave() # # This neural network takes as input the coordinates (in this case $x$, $y$ and $t$) and provides the unkwown field of the Wave problem. The residual of the equations are evaluated at several sampling points (which the user can manipulate using the method `span_pts`) and the loss minimized by the neural network is the sum of the residuals. -# In[4]: +# In[3]: class TorchNet(torch.nn.Module): @@ -109,7 +109,7 @@ model = Network(model = TorchNet(), # In this tutorial, the neural network is trained for 2000 epochs with a learning rate of 0.001. These parameters can be modified as desired. # We highlight that the generation of the sampling points and the train is here encapsulated within the function `generate_samples_and_train`, but only for saving some lines of code in the next cells; that function is not mandatory in the **PINA** framework. The training takes approximately one minute. -# In[5]: +# In[7]: def generate_samples_and_train(model, problem): @@ -126,7 +126,7 @@ pinn = generate_samples_and_train(model, problem) # After the training is completed one can now plot some results using the `Plotter` class of **PINA**. -# In[11]: +# In[8]: plotter = Plotter() @@ -137,7 +137,7 @@ plotter.plot(pinn, fixed_variables={'t': 0.6}) # We can also plot the pinn loss during the training to see the decrease. -# In[12]: +# In[9]: import matplotlib.pyplot as plt