add exhaustive doc for condition module (#629)
This commit is contained in:
@@ -1,100 +1,91 @@
|
||||
"""Module for the Condition class."""
|
||||
|
||||
import warnings
|
||||
from .data_condition import DataCondition
|
||||
from .domain_equation_condition import DomainEquationCondition
|
||||
from .input_equation_condition import InputEquationCondition
|
||||
from .input_target_condition import InputTargetCondition
|
||||
from ..utils import custom_warning_format
|
||||
|
||||
# Set the custom format for warnings
|
||||
warnings.formatwarning = custom_warning_format
|
||||
warnings.filterwarnings("always", category=DeprecationWarning)
|
||||
|
||||
|
||||
def warning_function(new, old):
|
||||
"""Handle the deprecation warning.
|
||||
|
||||
:param new: Object to use instead of the old one.
|
||||
:type new: str
|
||||
:param old: Object to deprecate.
|
||||
:type old: str
|
||||
"""
|
||||
warnings.warn(
|
||||
f"'{old}' is deprecated and will be removed "
|
||||
f"in future versions. Please use '{new}' instead.",
|
||||
DeprecationWarning,
|
||||
)
|
||||
|
||||
|
||||
class Condition:
|
||||
"""
|
||||
Represents constraints (such as physical equations, boundary conditions,
|
||||
etc.) that must be satisfied in a given problem. Condition objects are used
|
||||
to formulate the PINA
|
||||
:class:`~pina.problem.abstract_problem.AbstractProblem` object.
|
||||
The :class:`Condition` class is a core component of the PINA framework that
|
||||
provides a unified interface to define heterogeneous constraints that must
|
||||
be satisfied by a :class:`~pina.problem.abstract_problem.AbstractProblem`.
|
||||
|
||||
There are different types of conditions:
|
||||
It encapsulates all types of constraints - physical, boundary, initial, or
|
||||
data-driven - that the solver must satisfy during training. The specific
|
||||
behavior is inferred from the arguments passed to the constructor.
|
||||
|
||||
Multiple types of conditions can be used within the same problem, allowing
|
||||
for a high degree of flexibility in defining complex problems.
|
||||
|
||||
The :class:`Condition` class behavior specializes internally based on the
|
||||
arguments provided during instantiation. Depending on the specified keyword
|
||||
arguments, the class automatically selects the appropriate internal
|
||||
implementation.
|
||||
|
||||
|
||||
Available `Condition` types:
|
||||
|
||||
- :class:`~pina.condition.input_target_condition.InputTargetCondition`:
|
||||
Defined by specifying both the input and the target of the condition. In
|
||||
this case, the model is trained to produce the target given the input. The
|
||||
input and output data must be one of the :class:`torch.Tensor`,
|
||||
:class:`~pina.label_tensor.LabelTensor`,
|
||||
:class:`~torch_geometric.data.Data`, or :class:`~pina.graph.Graph`.
|
||||
Different implementations exist depending on the type of input and target.
|
||||
For more details, see
|
||||
:class:`~pina.condition.input_target_condition.InputTargetCondition`.
|
||||
represents a supervised condition defined by both ``input`` and ``target``
|
||||
data. The model is trained to reproduce the ``target`` values given the
|
||||
``input``. Supported data types include :class:`torch.Tensor`,
|
||||
:class:`~pina.label_tensor.LabelTensor`, :class:`~pina.graph.Graph`, or
|
||||
:class:`~torch_geometric.data.Data`.
|
||||
The class automatically selects the appropriate implementation based on
|
||||
the types of ``input`` and ``target``.
|
||||
|
||||
- :class:`~pina.condition.domain_equation_condition.DomainEquationCondition`
|
||||
: Defined by specifying both the domain and the equation of the condition.
|
||||
Here, the model is trained to minimize the equation residual by evaluating
|
||||
it at sampled points within the domain.
|
||||
: represents a general physics-informed condition defined by a ``domain``
|
||||
and an ``equation``. The model learns to minimize the equation residual
|
||||
through evaluations performed at points sampled from the specified domain.
|
||||
|
||||
- :class:`~pina.condition.input_equation_condition.InputEquationCondition`:
|
||||
Defined by specifying the input and the equation of the condition. In this
|
||||
case, the model is trained to minimize the equation residual by evaluating
|
||||
it at the provided input. The input must be either a
|
||||
:class:`~pina.label_tensor.LabelTensor` or a :class:`~pina.graph.Graph`.
|
||||
Different implementations exist depending on the type of input. For more
|
||||
details, see
|
||||
:class:`~pina.condition.input_equation_condition.InputEquationCondition`.
|
||||
represents a general physics-informed condition defined by ``input``
|
||||
points and an ``equation``. The model learns to minimize the equation
|
||||
residual through evaluations performed at the provided ``input``.
|
||||
Supported data types for the ``input`` include
|
||||
:class:`~pina.label_tensor.LabelTensor` or :class:`~pina.graph.Graph`.
|
||||
The class automatically selects the appropriate implementation based on
|
||||
the types of the ``input``.
|
||||
|
||||
- :class:`~pina.condition.data_condition.DataCondition`:
|
||||
Defined by specifying only the input. In this case, the model is trained
|
||||
with an unsupervised custom loss while using the provided data during
|
||||
training. The input data must be one of :class:`torch.Tensor`,
|
||||
:class:`~pina.label_tensor.LabelTensor`,
|
||||
:class:`~torch_geometric.data.Data`, or :class:`~pina.graph.Graph`.
|
||||
Additionally, conditional variables can be provided when the model
|
||||
depends on extra parameters. These conditional variables must be either
|
||||
:class:`torch.Tensor` or :class:`~pina.label_tensor.LabelTensor`.
|
||||
Different implementations exist depending on the type of input.
|
||||
For more details, see
|
||||
:class:`~pina.condition.data_condition.DataCondition`.
|
||||
- :class:`~pina.condition.data_condition.DataCondition`: represents an
|
||||
unsupervised, data-driven condition defined by the ``input`` only.
|
||||
The model is trained using a custom unsupervised loss determined by the
|
||||
chosen :class:`~pina.solver.solver.SolverInterface`, while leveraging the
|
||||
provided data during training. Optional ``conditional_variables`` can be
|
||||
specified when the model depends on additional parameters.
|
||||
Supported data types include :class:`torch.Tensor`,
|
||||
:class:`~pina.label_tensor.LabelTensor`, :class:`~pina.graph.Graph`, or
|
||||
:class:`~torch_geometric.data.Data`.
|
||||
The class automatically selects the appropriate implementation based on
|
||||
the type of the ``input``.
|
||||
|
||||
.. note::
|
||||
|
||||
The user should always instantiate :class:`Condition` directly, without
|
||||
manually creating subclass instances. Please refer to the specific
|
||||
:class:`Condition` classes for implementation details.
|
||||
|
||||
:Example:
|
||||
|
||||
>>> from pina import Condition
|
||||
>>> condition = Condition(
|
||||
... input=input,
|
||||
... target=target
|
||||
... )
|
||||
>>> condition = Condition(
|
||||
... domain=location,
|
||||
... equation=equation
|
||||
... )
|
||||
>>> condition = Condition(
|
||||
... input=input,
|
||||
... equation=equation
|
||||
... )
|
||||
>>> condition = Condition(
|
||||
... input=data,
|
||||
... conditional_variables=conditional_variables
|
||||
... )
|
||||
|
||||
>>> # Example of InputTargetCondition signature
|
||||
>>> condition = Condition(input=input, target=target)
|
||||
|
||||
>>> # Example of DomainEquationCondition signature
|
||||
>>> condition = Condition(domain=domain, equation=equation)
|
||||
|
||||
>>> # Example of InputEquationCondition signature
|
||||
>>> condition = Condition(input=input, equation=equation)
|
||||
|
||||
>>> # Example of DataCondition signature
|
||||
>>> condition = Condition(input=data, conditional_variables=cond_vars)
|
||||
"""
|
||||
|
||||
# Combine all possible keyword arguments from the different Condition types
|
||||
__slots__ = list(
|
||||
set(
|
||||
InputTargetCondition.__slots__
|
||||
@@ -106,46 +97,45 @@ class Condition:
|
||||
|
||||
def __new__(cls, *args, **kwargs):
|
||||
"""
|
||||
Instantiate the appropriate Condition object based on the keyword
|
||||
arguments passed.
|
||||
Instantiate the appropriate :class:`Condition` object based on the
|
||||
keyword arguments passed.
|
||||
|
||||
:raises ValueError: If no keyword arguments are passed.
|
||||
:param tuple args: The positional arguments (should be empty).
|
||||
:param dict kwargs: The keyword arguments corresponding to the
|
||||
parameters of the specific :class:`Condition` type to instantiate.
|
||||
:raises ValueError: If unexpected positional arguments are provided.
|
||||
:raises ValueError: If the keyword arguments are invalid.
|
||||
:return: The appropriate Condition object.
|
||||
:return: The appropriate :class:`Condition` object.
|
||||
:rtype: ConditionInterface
|
||||
"""
|
||||
|
||||
# Check keyword arguments
|
||||
if len(args) != 0:
|
||||
raise ValueError(
|
||||
"Condition takes only the following keyword "
|
||||
f"arguments: {Condition.__slots__}."
|
||||
)
|
||||
|
||||
# back-compatibility 0.1
|
||||
keys = list(kwargs.keys())
|
||||
if "location" in keys:
|
||||
kwargs["domain"] = kwargs.pop("location")
|
||||
warning_function(new="domain", old="location")
|
||||
|
||||
if "input_points" in keys:
|
||||
kwargs["input"] = kwargs.pop("input_points")
|
||||
warning_function(new="input", old="input_points")
|
||||
|
||||
if "output_points" in keys:
|
||||
kwargs["target"] = kwargs.pop("output_points")
|
||||
warning_function(new="target", old="output_points")
|
||||
|
||||
# Class specialization based on keyword arguments
|
||||
sorted_keys = sorted(kwargs.keys())
|
||||
|
||||
# Input - Target Condition
|
||||
if sorted_keys == sorted(InputTargetCondition.__slots__):
|
||||
return InputTargetCondition(**kwargs)
|
||||
|
||||
# Input - Equation Condition
|
||||
if sorted_keys == sorted(InputEquationCondition.__slots__):
|
||||
return InputEquationCondition(**kwargs)
|
||||
|
||||
# Domain - Equation Condition
|
||||
if sorted_keys == sorted(DomainEquationCondition.__slots__):
|
||||
return DomainEquationCondition(**kwargs)
|
||||
|
||||
# Data Condition
|
||||
if (
|
||||
sorted_keys == sorted(DataCondition.__slots__)
|
||||
or sorted_keys[0] == DataCondition.__slots__[0]
|
||||
):
|
||||
return DataCondition(**kwargs)
|
||||
|
||||
# Invalid keyword arguments
|
||||
raise ValueError(f"Invalid keyword arguments {kwargs.keys()}.")
|
||||
|
||||
@@ -8,24 +8,25 @@ from ..graph import Graph
|
||||
|
||||
class ConditionInterface(metaclass=ABCMeta):
|
||||
"""
|
||||
Abstract class which defines a common interface for all the conditions.
|
||||
It defined a common interface for all the conditions.
|
||||
Abstract base class for PINA conditions. All specific conditions must
|
||||
inherit from this interface.
|
||||
|
||||
Refer to :class:`pina.condition.condition.Condition` for a thorough
|
||||
description of all available conditions and how to instantiate them.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initialize the ConditionInterface object.
|
||||
Initialization of the :class:`ConditionInterface` class.
|
||||
"""
|
||||
|
||||
self._problem = None
|
||||
|
||||
@property
|
||||
def problem(self):
|
||||
"""
|
||||
Return the problem to which the condition is associated.
|
||||
Return the problem associated with this condition.
|
||||
|
||||
:return: Problem to which the condition is associated.
|
||||
:return: Problem associated with this condition.
|
||||
:rtype: ~pina.problem.abstract_problem.AbstractProblem
|
||||
"""
|
||||
return self._problem
|
||||
@@ -33,31 +34,32 @@ class ConditionInterface(metaclass=ABCMeta):
|
||||
@problem.setter
|
||||
def problem(self, value):
|
||||
"""
|
||||
Set the problem to which the condition is associated.
|
||||
Set the problem associated with this condition.
|
||||
|
||||
:param pina.problem.abstract_problem.AbstractProblem value: Problem to
|
||||
which the condition is associated
|
||||
:param pina.problem.abstract_problem.AbstractProblem value: The problem
|
||||
to associate with this condition
|
||||
"""
|
||||
self._problem = value
|
||||
|
||||
@staticmethod
|
||||
def _check_graph_list_consistency(data_list):
|
||||
"""
|
||||
Check the consistency of the list of Data/Graph objects. It performs
|
||||
the following checks:
|
||||
Check the consistency of the list of Data | Graph objects.
|
||||
The following checks are performed:
|
||||
|
||||
1. All elements in the list must be of the same type (either Data or
|
||||
Graph).
|
||||
2. All elements in the list must have the same keys.
|
||||
3. The type of each tensor must be consistent across all elements in
|
||||
the list.
|
||||
4. If the tensor is a LabelTensor, the labels must be consistent across
|
||||
all elements in the list.
|
||||
- All elements in the list must be of the same type (either
|
||||
:class:`~torch_geometric.data.Data` or :class:`~pina.graph.Graph`).
|
||||
|
||||
:param data_list: List of Data/Graph objects to check
|
||||
- All elements in the list must have the same keys.
|
||||
|
||||
- The data type of each tensor must be consistent across all elements.
|
||||
|
||||
- If a tensor is a :class:`~pina.label_tensor.LabelTensor`, its labels
|
||||
must also be consistent across all elements.
|
||||
|
||||
:param data_list: The list of Data | Graph objects to check.
|
||||
:type data_list: list[Data] | list[Graph] | tuple[Data] | tuple[Graph]
|
||||
|
||||
:raises ValueError: If the input types are invalid.
|
||||
:raises ValueError: If the input types are invalid.
|
||||
:raises ValueError: If all elements in the list do not have the same
|
||||
keys.
|
||||
:raises ValueError: If the type of each tensor is not consistent across
|
||||
@@ -65,51 +67,45 @@ class ConditionInterface(metaclass=ABCMeta):
|
||||
:raises ValueError: If the labels of the LabelTensors are not consistent
|
||||
across all elements in the list.
|
||||
"""
|
||||
|
||||
# If the data is a Graph or Data object, return (do not need to check
|
||||
# anything)
|
||||
# If the data is a Graph or Data object, perform no checks
|
||||
if isinstance(data_list, (Graph, Data)):
|
||||
return
|
||||
|
||||
# check all elements in the list are of the same type
|
||||
# Check all elements in the list are of the same type
|
||||
if not all(isinstance(i, (Graph, Data)) for i in data_list):
|
||||
raise ValueError(
|
||||
"Invalid input types. "
|
||||
"Please provide either Data or Graph objects."
|
||||
"Invalid input. Please, provide either Data or Graph objects."
|
||||
)
|
||||
|
||||
# Store the keys, data types and labels of the first element
|
||||
data = data_list[0]
|
||||
# Store the keys of the first element in the list
|
||||
keys = sorted(list(data.keys()))
|
||||
|
||||
# Store the type of each tensor inside first element Data/Graph object
|
||||
data_types = {name: tensor.__class__ for name, tensor in data.items()}
|
||||
|
||||
# Store the labels of each LabelTensor inside first element Data/Graph
|
||||
# object
|
||||
labels = {
|
||||
name: tensor.labels
|
||||
for name, tensor in data.items()
|
||||
if isinstance(tensor, LabelTensor)
|
||||
}
|
||||
|
||||
# Iterate over the list of Data/Graph objects
|
||||
# Iterate over the list of Data | Graph objects
|
||||
for data in data_list[1:]:
|
||||
# Check if the keys of the current element are the same as the first
|
||||
# element
|
||||
|
||||
# Check that all elements in the list have the same keys
|
||||
if sorted(list(data.keys())) != keys:
|
||||
raise ValueError(
|
||||
"All elements in the list must have the same keys."
|
||||
)
|
||||
|
||||
# Iterate over the tensors in the current element
|
||||
for name, tensor in data.items():
|
||||
# Check if the type of each tensor inside the current element
|
||||
# is the same as the first element
|
||||
# Check that the type of each tensor is consistent
|
||||
if tensor.__class__ is not data_types[name]:
|
||||
raise ValueError(
|
||||
f"Data {name} must be a {data_types[name]}, got "
|
||||
f"{tensor.__class__}"
|
||||
)
|
||||
# If the tensor is a LabelTensor, check if the labels are the
|
||||
# same as the first element
|
||||
|
||||
# Check that the labels of each LabelTensor are consistent
|
||||
if isinstance(tensor, LabelTensor):
|
||||
if tensor.labels != labels[name]:
|
||||
raise ValueError(
|
||||
@@ -117,6 +113,13 @@ class ConditionInterface(metaclass=ABCMeta):
|
||||
)
|
||||
|
||||
def __getattribute__(self, name):
|
||||
"""
|
||||
Get an attribute from the object.
|
||||
|
||||
:param str name: The name of the attribute to get.
|
||||
:return: The requested attribute.
|
||||
:rtype: Any
|
||||
"""
|
||||
to_return = super().__getattribute__(name)
|
||||
if isinstance(to_return, (Graph, Data)):
|
||||
to_return = [to_return]
|
||||
|
||||
@@ -9,16 +9,35 @@ from ..graph import Graph
|
||||
|
||||
class DataCondition(ConditionInterface):
|
||||
"""
|
||||
Condition defined by input data and conditional variables. It can be used
|
||||
in unsupervised learning problems. Based on the type of the input,
|
||||
different condition implementations are available:
|
||||
The class :class:`DataCondition` defines an unsupervised condition based on
|
||||
``input`` data. This condition is typically used in data-driven problems,
|
||||
where the model is trained using a custom unsupervised loss determined by
|
||||
the chosen :class:`~pina.solver.solver.SolverInterface`, while leveraging
|
||||
the provided data during training. Optional ``conditional_variables`` can be
|
||||
specified when the model depends on additional parameters.
|
||||
|
||||
- :class:`TensorDataCondition`: For :class:`torch.Tensor` or
|
||||
:class:`~pina.label_tensor.LabelTensor` input data.
|
||||
- :class:`GraphDataCondition`: For :class:`~pina.graph.Graph` or
|
||||
:class:`~torch_geometric.data.Data` input data.
|
||||
The class automatically selects the appropriate implementation based on the
|
||||
type of the ``input`` data. Depending on whether the ``input`` is a tensor
|
||||
or graph-based data, one of the following specialized subclasses is
|
||||
instantiated:
|
||||
|
||||
- :class:`TensorDataCondition`: For cases where the ``input`` is either a
|
||||
:class:`torch.Tensor` or a :class:`~pina.label_tensor.LabelTensor` object.
|
||||
|
||||
- :class:`GraphDataCondition`: For cases where the ``input`` is either a
|
||||
:class:`~pina.graph.Graph` or :class:`~torch_geometric.data.Data` object.
|
||||
|
||||
:Example:
|
||||
|
||||
>>> from pina import Condition, LabelTensor
|
||||
>>> import torch
|
||||
|
||||
>>> pts = LabelTensor(torch.randn(100, 2), labels=["x", "y"])
|
||||
>>> cond_vars = LabelTensor(torch.randn(100, 1), labels=["w"])
|
||||
>>> condition = Condition(input=pts, conditional_variables=cond_vars)
|
||||
"""
|
||||
|
||||
# Available input data types
|
||||
__slots__ = ["input", "conditional_variables"]
|
||||
_avail_input_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
|
||||
_avail_conditional_variables_cls = (torch.Tensor, LabelTensor)
|
||||
@@ -26,33 +45,36 @@ class DataCondition(ConditionInterface):
|
||||
def __new__(cls, input, conditional_variables=None):
|
||||
"""
|
||||
Instantiate the appropriate subclass of :class:`DataCondition` based on
|
||||
the type of ``input``.
|
||||
the type of the ``input``.
|
||||
|
||||
:param input: Input data for the condition.
|
||||
:param input: The input data for the condition.
|
||||
:type input: torch.Tensor | LabelTensor | Graph |
|
||||
Data | list[Graph] | list[Data] | tuple[Graph] | tuple[Data]
|
||||
:param conditional_variables: Conditional variables for the condition.
|
||||
:type conditional_variables: torch.Tensor | LabelTensor, optional
|
||||
:return: Subclass of DataCondition.
|
||||
:param conditional_variables: The conditional variables for the
|
||||
condition. Default is ``None``.
|
||||
:type conditional_variables: torch.Tensor | LabelTensor
|
||||
:return: The subclass of DataCondition.
|
||||
:rtype: pina.condition.data_condition.TensorDataCondition |
|
||||
pina.condition.data_condition.GraphDataCondition
|
||||
|
||||
:raises ValueError: If input is not of type :class:`torch.Tensor`,
|
||||
:raises ValueError: If ``input`` is not of type :class:`torch.Tensor`,
|
||||
:class:`~pina.label_tensor.LabelTensor`, :class:`~pina.graph.Graph`,
|
||||
or :class:`~torch_geometric.data.Data`.
|
||||
"""
|
||||
|
||||
if cls != DataCondition:
|
||||
return super().__new__(cls)
|
||||
|
||||
# If the input is a tensor
|
||||
if isinstance(input, (torch.Tensor, LabelTensor)):
|
||||
subclass = TensorDataCondition
|
||||
return subclass.__new__(subclass, input, conditional_variables)
|
||||
|
||||
# If the input is a graph
|
||||
if isinstance(input, (Graph, Data, list, tuple)):
|
||||
cls._check_graph_list_consistency(input)
|
||||
subclass = GraphDataCondition
|
||||
return subclass.__new__(subclass, input, conditional_variables)
|
||||
|
||||
# If the input is not of the correct type raise an error
|
||||
raise ValueError(
|
||||
"Invalid input types. "
|
||||
"Please provide either torch_geometric.data.Data or Graph objects."
|
||||
@@ -60,21 +82,22 @@ class DataCondition(ConditionInterface):
|
||||
|
||||
def __init__(self, input, conditional_variables=None):
|
||||
"""
|
||||
Initialize the object by storing the input and conditional
|
||||
variables (if any).
|
||||
Initialization of the :class:`DataCondition` class.
|
||||
|
||||
:param input: Input data for the condition.
|
||||
:param input: The input data for the condition.
|
||||
:type input: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
|
||||
list[Data] | tuple[Graph] | tuple[Data]
|
||||
:param conditional_variables: Conditional variables for the condition.
|
||||
:param conditional_variables: The conditional variables for the
|
||||
condition. Default is ``None``.
|
||||
:type conditional_variables: torch.Tensor | LabelTensor
|
||||
|
||||
.. note::
|
||||
If ``input`` consists of a list of :class:`~pina.graph.Graph` or
|
||||
:class:`~torch_geometric.data.Data`, all elements must have the same
|
||||
structure (keys and data types)
|
||||
"""
|
||||
|
||||
If ``input`` is a list of :class:`~pina.graph.Graph` or
|
||||
:class:`~torch_geometric.data.Data`, all elements in
|
||||
the list must share the same structure, with matching keys and
|
||||
consistent data types.
|
||||
"""
|
||||
super().__init__()
|
||||
self.input = input
|
||||
self.conditional_variables = conditional_variables
|
||||
@@ -82,13 +105,15 @@ class DataCondition(ConditionInterface):
|
||||
|
||||
class TensorDataCondition(DataCondition):
|
||||
"""
|
||||
DataCondition for :class:`torch.Tensor` or
|
||||
:class:`~pina.label_tensor.LabelTensor` input data
|
||||
Specialization of the :class:`DataCondition` class for the case where
|
||||
``input`` is either a :class:`~pina.label_tensor.LabelTensor` object or a
|
||||
:class:`torch.Tensor` object.
|
||||
"""
|
||||
|
||||
|
||||
class GraphDataCondition(DataCondition):
|
||||
"""
|
||||
DataCondition for :class:`~pina.graph.Graph` or
|
||||
:class:`~torch_geometric.data.Data` input data
|
||||
Specialization of the :class:`DataCondition` class for the case where
|
||||
``input`` is either a :class:`~pina.graph.Graph` object or a
|
||||
:class:`~torch_geometric.data.Data` object.
|
||||
"""
|
||||
|
||||
@@ -8,31 +8,57 @@ from ..equation.equation_interface import EquationInterface
|
||||
|
||||
class DomainEquationCondition(ConditionInterface):
|
||||
"""
|
||||
Condition defined by a domain and an equation. It can be used in Physics
|
||||
Informed problems. Before using this condition, make sure that input data
|
||||
are correctly sampled from the domain.
|
||||
The class :class:`DomainEquationCondition` defines a condition based on a
|
||||
``domain`` and an ``equation``. This condition is typically used in
|
||||
physics-informed problems, where the model is trained to satisfy a given
|
||||
``equation`` over a specified ``domain``. The ``domain`` is used to sample
|
||||
points where the ``equation`` residual is evaluated and minimized during
|
||||
training.
|
||||
|
||||
:Example:
|
||||
|
||||
>>> from pina.domain import CartesianDomain
|
||||
>>> from pina.equation import Equation
|
||||
>>> from pina import Condition
|
||||
|
||||
>>> # Equation to be satisfied over the domain: # x^2 + y^2 - 1 = 0
|
||||
>>> def dummy_equation(pts):
|
||||
... return pts["x"]**2 + pts["y"]**2 - 1
|
||||
|
||||
>>> domain = CartesianDomain({"x": [0, 1], "y": [0, 1]})
|
||||
>>> condition = Condition(domain=domain, equation=Equation(dummy_equation))
|
||||
"""
|
||||
|
||||
# Available slots
|
||||
__slots__ = ["domain", "equation"]
|
||||
|
||||
def __init__(self, domain, equation):
|
||||
"""
|
||||
Initialise the object by storing the domain and equation.
|
||||
Initialization of the :class:`DomainEquationCondition` class.
|
||||
|
||||
:param DomainInterface domain: Domain object containing the domain data.
|
||||
:param EquationInterface equation: Equation object containing the
|
||||
equation data.
|
||||
:param DomainInterface domain: The domain over which the equation is
|
||||
defined.
|
||||
:param EquationInterface equation: The equation to be satisfied over the
|
||||
specified domain.
|
||||
"""
|
||||
super().__init__()
|
||||
self.domain = domain
|
||||
self.equation = equation
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
"""
|
||||
Set the attribute value with type checking.
|
||||
|
||||
:param str key: The attribute name.
|
||||
:param any value: The value to set for the attribute.
|
||||
"""
|
||||
if key == "domain":
|
||||
check_consistency(value, (DomainInterface, str))
|
||||
DomainEquationCondition.__dict__[key].__set__(self, value)
|
||||
|
||||
elif key == "equation":
|
||||
check_consistency(value, (EquationInterface))
|
||||
DomainEquationCondition.__dict__[key].__set__(self, value)
|
||||
|
||||
elif key in ("_problem"):
|
||||
super().__setattr__(key, value)
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
"""Module for the InputEquationCondition class and its subclasses."""
|
||||
|
||||
from torch_geometric.data import Data
|
||||
from .condition_interface import ConditionInterface
|
||||
from ..label_tensor import LabelTensor
|
||||
from ..graph import Graph
|
||||
@@ -10,16 +9,38 @@ from ..equation.equation_interface import EquationInterface
|
||||
|
||||
class InputEquationCondition(ConditionInterface):
|
||||
"""
|
||||
Condition defined by input data and an equation. This condition can be
|
||||
used in a Physics Informed problems. Based on the type of the input,
|
||||
different condition implementations are available:
|
||||
The class :class:`InputEquationCondition` defines a condition based on
|
||||
``input`` data and an ``equation``. This condition is typically used in
|
||||
physics-informed problems, where the model is trained to satisfy a given
|
||||
``equation`` through the evaluation of the residual performed at the
|
||||
provided ``input``.
|
||||
|
||||
- :class:`InputTensorEquationCondition`: For \
|
||||
:class:`~pina.label_tensor.LabelTensor` input data.
|
||||
- :class:`InputGraphEquationCondition`: For :class:`~pina.graph.Graph` \
|
||||
input data.
|
||||
The class automatically selects the appropriate implementation based on
|
||||
the type of the ``input`` data. Depending on whether the ``input`` is a
|
||||
tensor or graph-based data, one of the following specialized subclasses is
|
||||
instantiated:
|
||||
|
||||
- :class:`InputTensorEquationCondition`: For cases where the ``input``
|
||||
data is a :class:`~pina.label_tensor.LabelTensor` object.
|
||||
|
||||
- :class:`InputGraphEquationCondition`: For cases where the ``input`` data
|
||||
is a :class:`~pina.graph.Graph` object.
|
||||
|
||||
:Example:
|
||||
|
||||
>>> from pina import Condition, LabelTensor
|
||||
>>> from pina.equation import Equation
|
||||
>>> import torch
|
||||
|
||||
>>> # Equation to be satisfied over the input points: # x^2 + y^2 - 1 = 0
|
||||
>>> def dummy_equation(pts):
|
||||
... return pts["x"]**2 + pts["y"]**2 - 1
|
||||
|
||||
>>> pts = LabelTensor(torch.randn(100, 2), labels=["x", "y"])
|
||||
>>> condition = Condition(input=pts, equation=Equation(dummy_equation))
|
||||
"""
|
||||
|
||||
# Available input data types
|
||||
__slots__ = ["input", "equation"]
|
||||
_avail_input_cls = (LabelTensor, Graph, list, tuple)
|
||||
_avail_equation_cls = EquationInterface
|
||||
@@ -27,31 +48,31 @@ class InputEquationCondition(ConditionInterface):
|
||||
def __new__(cls, input, equation):
|
||||
"""
|
||||
Instantiate the appropriate subclass of :class:`InputEquationCondition`
|
||||
based on the type of ``input``.
|
||||
based on the type of ``input`` data.
|
||||
|
||||
:param input: Input data for the condition.
|
||||
:param input: The input data for the condition.
|
||||
:type input: LabelTensor | Graph | list[Graph] | tuple[Graph]
|
||||
:param EquationInterface equation: Equation object containing the
|
||||
equation function.
|
||||
:return: Subclass of InputEquationCondition, based on the input type.
|
||||
:param EquationInterface equation: The equation to be satisfied over the
|
||||
specified ``input`` data.
|
||||
:return: The subclass of InputEquationCondition.
|
||||
:rtype: pina.condition.input_equation_condition.
|
||||
InputTensorEquationCondition |
|
||||
pina.condition.input_equation_condition.InputGraphEquationCondition
|
||||
|
||||
:raises ValueError: If input is not of type
|
||||
:class:`~pina.label_tensor.LabelTensor`, :class:`~pina.graph.Graph`.
|
||||
:raises ValueError: If input is not of type :class:`~pina.graph.Graph`
|
||||
or :class:`~pina.label_tensor.LabelTensor`.
|
||||
"""
|
||||
|
||||
# If the class is already a subclass, return the instance
|
||||
if cls != InputEquationCondition:
|
||||
return super().__new__(cls)
|
||||
|
||||
# Instanciate the correct subclass
|
||||
if isinstance(input, (Graph, Data, list, tuple)):
|
||||
# If the input is a Graph object
|
||||
if isinstance(input, (Graph, list, tuple)):
|
||||
subclass = InputGraphEquationCondition
|
||||
cls._check_graph_list_consistency(input)
|
||||
subclass._check_label_tensor(input)
|
||||
return subclass.__new__(subclass, input, equation)
|
||||
|
||||
# If the input is a LabelTensor
|
||||
if isinstance(input, LabelTensor):
|
||||
subclass = InputTensorEquationCondition
|
||||
return subclass.__new__(subclass, input, equation)
|
||||
@@ -63,69 +84,74 @@ class InputEquationCondition(ConditionInterface):
|
||||
|
||||
def __init__(self, input, equation):
|
||||
"""
|
||||
Initialize the object by storing the input data and equation object.
|
||||
Initialization of the :class:`InputEquationCondition` class.
|
||||
|
||||
:param input: Input data for the condition.
|
||||
:type input: LabelTensor | Graph |
|
||||
list[Graph] | tuple[Graph]
|
||||
:param EquationInterface equation: Equation object containing the
|
||||
equation function.
|
||||
:param input: The input data for the condition.
|
||||
:type input: LabelTensor | Graph | list[Graph] | tuple[Graph]
|
||||
:param EquationInterface equation: The equation to be satisfied over the
|
||||
specified input points.
|
||||
|
||||
.. note::
|
||||
If ``input`` consists of a list of :class:`~pina.graph.Graph` or
|
||||
:class:`~torch_geometric.data.Data`, all elements must have the same
|
||||
structure (keys and data types)
|
||||
"""
|
||||
|
||||
If ``input`` is a list of :class:`~pina.graph.Graph` all elements in
|
||||
the list must share the same structure, with matching keys and
|
||||
consistent data types.
|
||||
"""
|
||||
super().__init__()
|
||||
self.input = input
|
||||
self.equation = equation
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
"""
|
||||
Set the attribute value with type checking.
|
||||
|
||||
:param str key: The attribute name.
|
||||
:param any value: The value to set for the attribute.
|
||||
"""
|
||||
if key == "input":
|
||||
check_consistency(value, self._avail_input_cls)
|
||||
InputEquationCondition.__dict__[key].__set__(self, value)
|
||||
|
||||
elif key == "equation":
|
||||
check_consistency(value, self._avail_equation_cls)
|
||||
InputEquationCondition.__dict__[key].__set__(self, value)
|
||||
|
||||
elif key in ("_problem"):
|
||||
super().__setattr__(key, value)
|
||||
|
||||
|
||||
class InputTensorEquationCondition(InputEquationCondition):
|
||||
"""
|
||||
InputEquationCondition subclass for :class:`~pina.label_tensor.LabelTensor`
|
||||
input data.
|
||||
Specialization of the :class:`InputEquationCondition` class for the case
|
||||
where ``input`` is a :class:`~pina.label_tensor.LabelTensor` object.
|
||||
"""
|
||||
|
||||
|
||||
class InputGraphEquationCondition(InputEquationCondition):
|
||||
"""
|
||||
InputEquationCondition subclass for :class:`~pina.graph.Graph` input data.
|
||||
Specialization of the :class:`InputEquationCondition` class for the case
|
||||
where ``input`` is a :class:`~pina.graph.Graph` object.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def _check_label_tensor(input):
|
||||
"""
|
||||
Check if at least one :class:`~pina.label_tensor.LabelTensor` is present
|
||||
in the :class:`~pina.graph.Graph` object.
|
||||
|
||||
:param input: Input data.
|
||||
:type input: torch.Tensor | Graph | Data
|
||||
in the ``input`` object.
|
||||
|
||||
:param input: The input data.
|
||||
:type input: torch.Tensor | Graph | list[Graph] | tuple[Graph]
|
||||
:raises ValueError: If the input data object does not contain at least
|
||||
one LabelTensor.
|
||||
"""
|
||||
|
||||
# Store the fist element of the list/tuple if input is a list/tuple
|
||||
# it is anougth to check the first element because all elements must
|
||||
# have the same type and structure (already checked)
|
||||
# Store the first element: it is sufficient to check this since all
|
||||
# elements must have the same type and structure (already checked).
|
||||
data = input[0] if isinstance(input, (list, tuple)) else input
|
||||
|
||||
# Check if the input data contains at least one LabelTensor
|
||||
for v in data.values():
|
||||
if isinstance(v, LabelTensor):
|
||||
return
|
||||
raise ValueError(
|
||||
"The input data object must contain at least one LabelTensor."
|
||||
)
|
||||
|
||||
raise ValueError("The input must contain at least one LabelTensor.")
|
||||
|
||||
@@ -11,39 +11,66 @@ from .condition_interface import ConditionInterface
|
||||
|
||||
class InputTargetCondition(ConditionInterface):
|
||||
"""
|
||||
Condition defined by input and target data. This condition can be used in
|
||||
both supervised learning and Physics-informed problems. Based on the type of
|
||||
the input and target, different condition implementations are available:
|
||||
The :class:`InputTargetCondition` class represents a supervised condition
|
||||
defined by both ``input`` and ``target`` data. The model is trained to
|
||||
reproduce the ``target`` values given the ``input``. Supported data types
|
||||
include :class:`torch.Tensor`, :class:`~pina.label_tensor.LabelTensor`,
|
||||
:class:`~pina.graph.Graph`, or :class:`~torch_geometric.data.Data`.
|
||||
|
||||
- :class:`TensorInputTensorTargetCondition`: For :class:`torch.Tensor` or \
|
||||
:class:`~pina.label_tensor.LabelTensor` input and target data.
|
||||
- :class:`TensorInputGraphTargetCondition`: For :class:`torch.Tensor` or \
|
||||
:class:`~pina.label_tensor.LabelTensor` input and \
|
||||
:class:`~pina.graph.Graph` or :class:`torch_geometric.data.Data` \
|
||||
target data.
|
||||
- :class:`GraphInputTensorTargetCondition`: For :class:`~pina.graph.Graph` \
|
||||
or :class:`~torch_geometric.data.Data` input and :class:`torch.Tensor` \
|
||||
or :class:`~pina.label_tensor.LabelTensor` target data.
|
||||
- :class:`GraphInputGraphTargetCondition`: For :class:`~pina.graph.Graph` \
|
||||
or :class:`~torch_geometric.data.Data` input and target data.
|
||||
The class automatically selects the appropriate implementation based on
|
||||
the types of ``input`` and ``target``. Depending on whether the ``input``
|
||||
and ``target`` are tensors or graph-based data, one of the following
|
||||
specialized subclasses is instantiated:
|
||||
|
||||
- :class:`TensorInputTensorTargetCondition`: For cases where both ``input``
|
||||
and ``target`` data are either :class:`torch.Tensor` or
|
||||
:class:`~pina.label_tensor.LabelTensor`.
|
||||
|
||||
- :class:`TensorInputGraphTargetCondition`: For cases where ``input`` is
|
||||
either a :class:`torch.Tensor` or :class:`~pina.label_tensor.LabelTensor`
|
||||
and ``target`` is either a :class:`~pina.graph.Graph` or a
|
||||
:class:`torch_geometric.data.Data`.
|
||||
|
||||
- :class:`GraphInputTensorTargetCondition`: For cases where ``input`` is
|
||||
either a :class:`~pina.graph.Graph` or :class:`torch_geometric.data.Data`
|
||||
and ``target`` is either a :class:`torch.Tensor` or a
|
||||
:class:`~pina.label_tensor.LabelTensor`.
|
||||
|
||||
- :class:`GraphInputGraphTargetCondition`: For cases where both ``input``
|
||||
and ``target`` are either :class:`~pina.graph.Graph` or
|
||||
:class:`torch_geometric.data.Data`.
|
||||
|
||||
:Example:
|
||||
|
||||
>>> from pina import Condition, LabelTensor
|
||||
>>> from pina.graph import Graph
|
||||
>>> import torch
|
||||
|
||||
>>> pos = LabelTensor(torch.randn(100, 2), labels=["x", "y"])
|
||||
>>> edge_index = torch.randint(0, 100, (2, 300))
|
||||
>>> graph = Graph(pos=pos, edge_index=edge_index)
|
||||
|
||||
>>> input = LabelTensor(torch.randn(100, 2), labels=["x", "y"])
|
||||
>>> condition = Condition(input=input, target=graph)
|
||||
"""
|
||||
|
||||
# Available input and target data types
|
||||
__slots__ = ["input", "target"]
|
||||
_avail_input_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
|
||||
_avail_output_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
|
||||
|
||||
def __new__(cls, input, target):
|
||||
"""
|
||||
Instantiate the appropriate subclass of InputTargetCondition based on
|
||||
the types of input and target data.
|
||||
Instantiate the appropriate subclass of :class:`InputTargetCondition`
|
||||
based on the types of both ``input`` and ``target`` data.
|
||||
|
||||
:param input: Input data for the condition.
|
||||
:param input: The input data for the condition.
|
||||
:type input: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
|
||||
list[Data] | tuple[Graph] | tuple[Data]
|
||||
:param target: Target data for the condition.
|
||||
:param target: The target data for the condition.
|
||||
:type target: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
|
||||
list[Data] | tuple[Graph] | tuple[Data]
|
||||
:return: Subclass of InputTargetCondition
|
||||
:return: The subclass of InputTargetCondition.
|
||||
:rtype: pina.condition.input_target_condition.
|
||||
TensorInputTensorTargetCondition |
|
||||
pina.condition.input_target_condition.
|
||||
@@ -59,11 +86,14 @@ class InputTargetCondition(ConditionInterface):
|
||||
if cls != InputTargetCondition:
|
||||
return super().__new__(cls)
|
||||
|
||||
# Tensor - Tensor
|
||||
if isinstance(input, (torch.Tensor, LabelTensor)) and isinstance(
|
||||
target, (torch.Tensor, LabelTensor)
|
||||
):
|
||||
subclass = TensorInputTensorTargetCondition
|
||||
return subclass.__new__(subclass, input, target)
|
||||
|
||||
# Tensor - Graph
|
||||
if isinstance(input, (torch.Tensor, LabelTensor)) and isinstance(
|
||||
target, (Graph, Data, list, tuple)
|
||||
):
|
||||
@@ -71,6 +101,7 @@ class InputTargetCondition(ConditionInterface):
|
||||
subclass = TensorInputGraphTargetCondition
|
||||
return subclass.__new__(subclass, input, target)
|
||||
|
||||
# Graph - Tensor
|
||||
if isinstance(input, (Graph, Data, list, tuple)) and isinstance(
|
||||
target, (torch.Tensor, LabelTensor)
|
||||
):
|
||||
@@ -78,6 +109,7 @@ class InputTargetCondition(ConditionInterface):
|
||||
subclass = GraphInputTensorTargetCondition
|
||||
return subclass.__new__(subclass, input, target)
|
||||
|
||||
# Graph - Graph
|
||||
if isinstance(input, (Graph, Data, list, tuple)) and isinstance(
|
||||
target, (Graph, Data, list, tuple)
|
||||
):
|
||||
@@ -86,30 +118,31 @@ class InputTargetCondition(ConditionInterface):
|
||||
subclass = GraphInputGraphTargetCondition
|
||||
return subclass.__new__(subclass, input, target)
|
||||
|
||||
# If the input and/or target are not of the correct type raise an error
|
||||
raise ValueError(
|
||||
"Invalid input/target types. "
|
||||
"Invalid input | target types."
|
||||
"Please provide either torch_geometric.data.Data, Graph, "
|
||||
"LabelTensor or torch.Tensor objects."
|
||||
)
|
||||
|
||||
def __init__(self, input, target):
|
||||
"""
|
||||
Initialize the object by storing the ``input`` and ``target`` data.
|
||||
Initialization of the :class:`InputTargetCondition` class.
|
||||
|
||||
:param input: Input data for the condition.
|
||||
:param input: The input data for the condition.
|
||||
:type input: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
|
||||
list[Data] | tuple[Graph] | tuple[Data]
|
||||
:param target: Target data for the condition.
|
||||
:param target: The target data for the condition.
|
||||
:type target: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
|
||||
list[Data] | tuple[Graph] | tuple[Data]
|
||||
|
||||
.. note::
|
||||
If either input or target consists of a list of
|
||||
:class:~pina.graph.Graph or :class:~torch_geometric.data.Data
|
||||
objects, all elements must have the same structure (matching
|
||||
keys and data types).
|
||||
"""
|
||||
|
||||
If either ``input`` or ``target`` is a list of
|
||||
:class:`~pina.graph.Graph` or :class:`~torch_geometric.data.Data`
|
||||
objects, all elements in the list must share the same structure,
|
||||
with matching keys and consistent data types.
|
||||
"""
|
||||
super().__init__()
|
||||
self._check_input_target_len(input, target)
|
||||
self.input = input
|
||||
@@ -117,10 +150,24 @@ class InputTargetCondition(ConditionInterface):
|
||||
|
||||
@staticmethod
|
||||
def _check_input_target_len(input, target):
|
||||
"""
|
||||
Check that the length of the input and target lists are the same.
|
||||
|
||||
:param input: The input data.
|
||||
:type input: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
|
||||
list[Data] | tuple[Graph] | tuple[Data]
|
||||
:param target: The target data.
|
||||
:type target: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
|
||||
list[Data] | tuple[Graph] | tuple[Data]
|
||||
:raises ValueError: If the lengths of the input and target lists do not
|
||||
match.
|
||||
"""
|
||||
if isinstance(input, (Graph, Data)) or isinstance(
|
||||
target, (Graph, Data)
|
||||
):
|
||||
return
|
||||
|
||||
# Raise an error if the lengths of the input and target do not match
|
||||
if len(input) != len(target):
|
||||
raise ValueError(
|
||||
"The input and target lists must have the same length."
|
||||
@@ -129,30 +176,33 @@ class InputTargetCondition(ConditionInterface):
|
||||
|
||||
class TensorInputTensorTargetCondition(InputTargetCondition):
|
||||
"""
|
||||
InputTargetCondition subclass for :class:`torch.Tensor` or
|
||||
:class:`~pina.label_tensor.LabelTensor` ``input`` and ``target`` data.
|
||||
Specialization of the :class:`InputTargetCondition` class for the case where
|
||||
both ``input`` and ``target`` are :class:`torch.Tensor` or
|
||||
:class:`~pina.label_tensor.LabelTensor` objects.
|
||||
"""
|
||||
|
||||
|
||||
class TensorInputGraphTargetCondition(InputTargetCondition):
|
||||
"""
|
||||
InputTargetCondition subclass for :class:`torch.Tensor` or
|
||||
:class:`~pina.label_tensor.LabelTensor` ``input`` and
|
||||
:class:`~pina.graph.Graph` or :class:`~torch_geometric.data.Data` `target`
|
||||
data.
|
||||
Specialization of the :class:`InputTargetCondition` class for the case where
|
||||
``input`` is either a :class:`torch.Tensor` or a
|
||||
:class:`~pina.label_tensor.LabelTensor` object and ``target`` is either a
|
||||
:class:`~pina.graph.Graph` or a :class:`torch_geometric.data.Data` object.
|
||||
"""
|
||||
|
||||
|
||||
class GraphInputTensorTargetCondition(InputTargetCondition):
|
||||
"""
|
||||
InputTargetCondition subclass for :class:`~pina.graph.Graph` o
|
||||
:class:`~torch_geometric.data.Data` ``input`` and :class:`torch.Tensor` or
|
||||
:class:`~pina.label_tensor.LabelTensor` ``target`` data.
|
||||
Specialization of the :class:`InputTargetCondition` class for the case where
|
||||
``input`` is either a :class:`~pina.graph.Graph` or
|
||||
:class:`torch_geometric.data.Data` object and ``target`` is either a
|
||||
:class:`torch.Tensor` or a :class:`~pina.label_tensor.LabelTensor` object.
|
||||
"""
|
||||
|
||||
|
||||
class GraphInputGraphTargetCondition(InputTargetCondition):
|
||||
"""
|
||||
InputTargetCondition subclass for :class:`~pina.graph.Graph`/
|
||||
:class:`~torch_geometric.data.Data` ``input`` and ``target`` data.
|
||||
Specialization of the :class:`InputTargetCondition` class for the case where
|
||||
both ``input`` and ``target`` are either :class:`~pina.graph.Graph` or
|
||||
:class:`torch_geometric.data.Data` objects.
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user