add exhaustive doc for condition module (#629)

This commit is contained in:
Giovanni Canali
2025-09-11 15:47:06 +02:00
committed by GitHub
parent f3ccfd4598
commit a0015c3af6
6 changed files with 366 additions and 246 deletions

View File

@@ -11,39 +11,66 @@ from .condition_interface import ConditionInterface
class InputTargetCondition(ConditionInterface):
"""
Condition defined by input and target data. This condition can be used in
both supervised learning and Physics-informed problems. Based on the type of
the input and target, different condition implementations are available:
The :class:`InputTargetCondition` class represents a supervised condition
defined by both ``input`` and ``target`` data. The model is trained to
reproduce the ``target`` values given the ``input``. Supported data types
include :class:`torch.Tensor`, :class:`~pina.label_tensor.LabelTensor`,
:class:`~pina.graph.Graph`, or :class:`~torch_geometric.data.Data`.
- :class:`TensorInputTensorTargetCondition`: For :class:`torch.Tensor` or \
:class:`~pina.label_tensor.LabelTensor` input and target data.
- :class:`TensorInputGraphTargetCondition`: For :class:`torch.Tensor` or \
:class:`~pina.label_tensor.LabelTensor` input and \
:class:`~pina.graph.Graph` or :class:`torch_geometric.data.Data` \
target data.
- :class:`GraphInputTensorTargetCondition`: For :class:`~pina.graph.Graph` \
or :class:`~torch_geometric.data.Data` input and :class:`torch.Tensor` \
or :class:`~pina.label_tensor.LabelTensor` target data.
- :class:`GraphInputGraphTargetCondition`: For :class:`~pina.graph.Graph` \
or :class:`~torch_geometric.data.Data` input and target data.
The class automatically selects the appropriate implementation based on
the types of ``input`` and ``target``. Depending on whether the ``input``
and ``target`` are tensors or graph-based data, one of the following
specialized subclasses is instantiated:
- :class:`TensorInputTensorTargetCondition`: For cases where both ``input``
and ``target`` data are either :class:`torch.Tensor` or
:class:`~pina.label_tensor.LabelTensor`.
- :class:`TensorInputGraphTargetCondition`: For cases where ``input`` is
either a :class:`torch.Tensor` or :class:`~pina.label_tensor.LabelTensor`
and ``target`` is either a :class:`~pina.graph.Graph` or a
:class:`torch_geometric.data.Data`.
- :class:`GraphInputTensorTargetCondition`: For cases where ``input`` is
either a :class:`~pina.graph.Graph` or :class:`torch_geometric.data.Data`
and ``target`` is either a :class:`torch.Tensor` or a
:class:`~pina.label_tensor.LabelTensor`.
- :class:`GraphInputGraphTargetCondition`: For cases where both ``input``
and ``target`` are either :class:`~pina.graph.Graph` or
:class:`torch_geometric.data.Data`.
:Example:
>>> from pina import Condition, LabelTensor
>>> from pina.graph import Graph
>>> import torch
>>> pos = LabelTensor(torch.randn(100, 2), labels=["x", "y"])
>>> edge_index = torch.randint(0, 100, (2, 300))
>>> graph = Graph(pos=pos, edge_index=edge_index)
>>> input = LabelTensor(torch.randn(100, 2), labels=["x", "y"])
>>> condition = Condition(input=input, target=graph)
"""
# Available input and target data types
__slots__ = ["input", "target"]
_avail_input_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
_avail_output_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
def __new__(cls, input, target):
"""
Instantiate the appropriate subclass of InputTargetCondition based on
the types of input and target data.
Instantiate the appropriate subclass of :class:`InputTargetCondition`
based on the types of both ``input`` and ``target`` data.
:param input: Input data for the condition.
:param input: The input data for the condition.
:type input: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
list[Data] | tuple[Graph] | tuple[Data]
:param target: Target data for the condition.
:param target: The target data for the condition.
:type target: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
list[Data] | tuple[Graph] | tuple[Data]
:return: Subclass of InputTargetCondition
:return: The subclass of InputTargetCondition.
:rtype: pina.condition.input_target_condition.
TensorInputTensorTargetCondition |
pina.condition.input_target_condition.
@@ -59,11 +86,14 @@ class InputTargetCondition(ConditionInterface):
if cls != InputTargetCondition:
return super().__new__(cls)
# Tensor - Tensor
if isinstance(input, (torch.Tensor, LabelTensor)) and isinstance(
target, (torch.Tensor, LabelTensor)
):
subclass = TensorInputTensorTargetCondition
return subclass.__new__(subclass, input, target)
# Tensor - Graph
if isinstance(input, (torch.Tensor, LabelTensor)) and isinstance(
target, (Graph, Data, list, tuple)
):
@@ -71,6 +101,7 @@ class InputTargetCondition(ConditionInterface):
subclass = TensorInputGraphTargetCondition
return subclass.__new__(subclass, input, target)
# Graph - Tensor
if isinstance(input, (Graph, Data, list, tuple)) and isinstance(
target, (torch.Tensor, LabelTensor)
):
@@ -78,6 +109,7 @@ class InputTargetCondition(ConditionInterface):
subclass = GraphInputTensorTargetCondition
return subclass.__new__(subclass, input, target)
# Graph - Graph
if isinstance(input, (Graph, Data, list, tuple)) and isinstance(
target, (Graph, Data, list, tuple)
):
@@ -86,30 +118,31 @@ class InputTargetCondition(ConditionInterface):
subclass = GraphInputGraphTargetCondition
return subclass.__new__(subclass, input, target)
# If the input and/or target are not of the correct type raise an error
raise ValueError(
"Invalid input/target types. "
"Invalid input | target types."
"Please provide either torch_geometric.data.Data, Graph, "
"LabelTensor or torch.Tensor objects."
)
def __init__(self, input, target):
"""
Initialize the object by storing the ``input`` and ``target`` data.
Initialization of the :class:`InputTargetCondition` class.
:param input: Input data for the condition.
:param input: The input data for the condition.
:type input: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
list[Data] | tuple[Graph] | tuple[Data]
:param target: Target data for the condition.
:param target: The target data for the condition.
:type target: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
list[Data] | tuple[Graph] | tuple[Data]
.. note::
If either input or target consists of a list of
:class:~pina.graph.Graph or :class:~torch_geometric.data.Data
objects, all elements must have the same structure (matching
keys and data types).
"""
If either ``input`` or ``target`` is a list of
:class:`~pina.graph.Graph` or :class:`~torch_geometric.data.Data`
objects, all elements in the list must share the same structure,
with matching keys and consistent data types.
"""
super().__init__()
self._check_input_target_len(input, target)
self.input = input
@@ -117,10 +150,24 @@ class InputTargetCondition(ConditionInterface):
@staticmethod
def _check_input_target_len(input, target):
"""
Check that the length of the input and target lists are the same.
:param input: The input data.
:type input: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
list[Data] | tuple[Graph] | tuple[Data]
:param target: The target data.
:type target: torch.Tensor | LabelTensor | Graph | Data | list[Graph] |
list[Data] | tuple[Graph] | tuple[Data]
:raises ValueError: If the lengths of the input and target lists do not
match.
"""
if isinstance(input, (Graph, Data)) or isinstance(
target, (Graph, Data)
):
return
# Raise an error if the lengths of the input and target do not match
if len(input) != len(target):
raise ValueError(
"The input and target lists must have the same length."
@@ -129,30 +176,33 @@ class InputTargetCondition(ConditionInterface):
class TensorInputTensorTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for :class:`torch.Tensor` or
:class:`~pina.label_tensor.LabelTensor` ``input`` and ``target`` data.
Specialization of the :class:`InputTargetCondition` class for the case where
both ``input`` and ``target`` are :class:`torch.Tensor` or
:class:`~pina.label_tensor.LabelTensor` objects.
"""
class TensorInputGraphTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for :class:`torch.Tensor` or
:class:`~pina.label_tensor.LabelTensor` ``input`` and
:class:`~pina.graph.Graph` or :class:`~torch_geometric.data.Data` `target`
data.
Specialization of the :class:`InputTargetCondition` class for the case where
``input`` is either a :class:`torch.Tensor` or a
:class:`~pina.label_tensor.LabelTensor` object and ``target`` is either a
:class:`~pina.graph.Graph` or a :class:`torch_geometric.data.Data` object.
"""
class GraphInputTensorTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for :class:`~pina.graph.Graph` o
:class:`~torch_geometric.data.Data` ``input`` and :class:`torch.Tensor` or
:class:`~pina.label_tensor.LabelTensor` ``target`` data.
Specialization of the :class:`InputTargetCondition` class for the case where
``input`` is either a :class:`~pina.graph.Graph` or
:class:`torch_geometric.data.Data` object and ``target`` is either a
:class:`torch.Tensor` or a :class:`~pina.label_tensor.LabelTensor` object.
"""
class GraphInputGraphTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for :class:`~pina.graph.Graph`/
:class:`~torch_geometric.data.Data` ``input`` and ``target`` data.
Specialization of the :class:`InputTargetCondition` class for the case where
both ``input`` and ``target`` are either :class:`~pina.graph.Graph` or
:class:`torch_geometric.data.Data` objects.
"""