Improve conditions and refactor dataset classes (#475)

* Reimplement conditions

* Refactor datasets and implement LabelBatch

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-07 11:24:09 +01:00
committed by Nicola Demo
parent bdad144461
commit a0cbf1c44a
40 changed files with 943 additions and 550 deletions

View File

@@ -1,12 +1,41 @@
"""
Module for conditions.
"""
__all__ = [
"Condition",
"ConditionInterface",
"DomainEquationCondition",
"InputPointsEquationCondition",
"InputOutputPointsCondition",
"InputTargetCondition",
"TensorInputTensorTargetCondition",
"TensorInputGraphTargetCondition",
"GraphInputTensorTargetCondition",
"GraphInputGraphTargetCondition",
"InputEquationCondition",
"InputTensorEquationCondition",
"InputGraphEquationCondition",
"DataCondition",
"GraphDataCondition",
"TensorDataCondition",
]
from .condition_interface import ConditionInterface
from .condition import Condition
from .domain_equation_condition import DomainEquationCondition
from .input_equation_condition import InputPointsEquationCondition
from .input_output_condition import InputOutputPointsCondition
from .input_target_condition import (
InputTargetCondition,
TensorInputTensorTargetCondition,
TensorInputGraphTargetCondition,
GraphInputTensorTargetCondition,
GraphInputGraphTargetCondition,
)
from .input_equation_condition import (
InputEquationCondition,
InputTensorEquationCondition,
InputGraphEquationCondition,
)
from .data_condition import (
DataCondition,
GraphDataCondition,
TensorDataCondition,
)

View File

@@ -1,10 +1,10 @@
"""Condition module."""
from .domain_equation_condition import DomainEquationCondition
from .input_equation_condition import InputPointsEquationCondition
from .input_output_condition import InputOutputPointsCondition
from .data_condition import DataConditionInterface
import warnings
from .data_condition import DataCondition
from .domain_equation_condition import DomainEquationCondition
from .input_equation_condition import InputEquationCondition
from .input_target_condition import InputTargetCondition
from ..utils import custom_warning_format
# Set the custom format for warnings
@@ -12,6 +12,21 @@ warnings.formatwarning = custom_warning_format
warnings.filterwarnings("always", category=DeprecationWarning)
def warning_function(new, old):
"""Handle the deprecation warning.
:param new: Object to use instead of the old one.
:type new: str
:param old: Object to deprecate.
:type old: str
"""
warnings.warn(
f"'{old}' is deprecated and will be removed "
f"in future versions. Please use '{new}' instead.",
DeprecationWarning,
)
class Condition:
"""
The class ``Condition`` is used to represent the constraints (physical
@@ -40,16 +55,32 @@ class Condition:
Example::
>>> TODO
>>> from pina import Condition
>>> condition = Condition(
... input=input,
... target=target
... )
>>> condition = Condition(
... domain=location,
... equation=equation
... )
>>> condition = Condition(
... input=input,
... equation=equation
... )
>>> condition = Condition(
... input=data,
... conditional_variables=conditional_variables
... )
"""
__slots__ = list(
set(
InputOutputPointsCondition.__slots__
+ InputPointsEquationCondition.__slots__
InputTargetCondition.__slots__
+ InputEquationCondition.__slots__
+ DomainEquationCondition.__slots__
+ DataConditionInterface.__slots__
+ DataCondition.__slots__
)
)
@@ -62,25 +93,30 @@ class Condition:
)
# back-compatibility 0.1
if "location" in kwargs.keys():
keys = list(kwargs.keys())
if "location" in keys:
kwargs["domain"] = kwargs.pop("location")
warnings.warn(
f"'location' is deprecated and will be removed "
f"in future versions. Please use 'domain' instead.",
DeprecationWarning,
)
warning_function(new="domain", old="location")
if "input_points" in keys:
kwargs["input"] = kwargs.pop("input_points")
warning_function(new="input", old="input_points")
if "output_points" in keys:
kwargs["target"] = kwargs.pop("output_points")
warning_function(new="target", old="output_points")
sorted_keys = sorted(kwargs.keys())
if sorted_keys == sorted(InputOutputPointsCondition.__slots__):
return InputOutputPointsCondition(**kwargs)
elif sorted_keys == sorted(InputPointsEquationCondition.__slots__):
return InputPointsEquationCondition(**kwargs)
elif sorted_keys == sorted(DomainEquationCondition.__slots__):
if sorted_keys == sorted(InputTargetCondition.__slots__):
return InputTargetCondition(**kwargs)
if sorted_keys == sorted(InputEquationCondition.__slots__):
return InputEquationCondition(**kwargs)
if sorted_keys == sorted(DomainEquationCondition.__slots__):
return DomainEquationCondition(**kwargs)
elif sorted_keys == sorted(DataConditionInterface.__slots__):
return DataConditionInterface(**kwargs)
elif sorted_keys == DataConditionInterface.__slots__[0]:
return DataConditionInterface(**kwargs)
else:
raise ValueError(f"Invalid keyword arguments {kwargs.keys()}.")
if (
sorted_keys == sorted(DataCondition.__slots__)
or sorted_keys[0] == DataCondition.__slots__[0]
):
return DataCondition(**kwargs)
raise ValueError(f"Invalid keyword arguments {kwargs.keys()}.")

View File

@@ -1,34 +1,84 @@
"""
Module that defines the ConditionInterface class.
"""
from abc import ABCMeta
from torch_geometric.data import Data
from ..label_tensor import LabelTensor
from ..graph import Graph
class ConditionInterface(metaclass=ABCMeta):
"""
Abstract class which defines a common interface for all the conditions.
"""
condition_types = ["physics", "supervised", "unsupervised"]
def __init__(self, *args, **kwargs):
self._condition_type = None
def __init__(self):
self._problem = None
@property
def problem(self):
"""
Return the problem to which the condition is associated.
:return: Problem to which the condition is associated
:rtype: pina.problem.AbstractProblem
"""
return self._problem
@problem.setter
def problem(self, value):
self._problem = value
@property
def condition_type(self):
return self._condition_type
@staticmethod
def _check_graph_list_consistency(data_list):
@condition_type.setter
def condition_type(self, values):
if not isinstance(values, (list, tuple)):
values = [values]
for value in values:
if value not in ConditionInterface.condition_types:
# If the data is a Graph or Data object, return (do not need to check
# anything)
if isinstance(data_list, (Graph, Data)):
return
# check all elements in the list are of the same type
if not all(isinstance(i, (Graph, Data)) for i in data_list):
raise ValueError(
"Invalid input types. "
"Please provide either Data or Graph objects."
)
data = data_list[0]
# Store the keys of the first element in the list
keys = sorted(list(data.keys()))
# Store the type of each tensor inside first element Data/Graph object
data_types = {name: tensor.__class__ for name, tensor in data.items()}
# Store the labels of each LabelTensor inside first element Data/Graph
# object
labels = {
name: tensor.labels
for name, tensor in data.items()
if isinstance(tensor, LabelTensor)
}
# Iterate over the list of Data/Graph objects
for data in data_list[1:]:
# Check if the keys of the current element are the same as the first
# element
if sorted(list(data.keys())) != keys:
raise ValueError(
"Unavailable type of condition, expected one of"
f" {ConditionInterface.condition_types}."
"All elements in the list must have the same keys."
)
self._condition_type = values
for name, tensor in data.items():
# Check if the type of each tensor inside the current element
# is the same as the first element
if tensor.__class__ is not data_types[name]:
raise ValueError(
f"Data {name} must be a {data_types[name]}, got "
f"{tensor.__class__}"
)
# If the tensor is a LabelTensor, check if the labels are the
# same as the first element
if isinstance(tensor, LabelTensor):
if tensor.labels != labels[name]:
raise ValueError(
"LabelTensor must have the same labels"
)

View File

@@ -1,12 +1,15 @@
import torch
"""
DataCondition class
"""
from . import ConditionInterface
import torch
from torch_geometric.data import Data
from .condition_interface import ConditionInterface
from ..label_tensor import LabelTensor
from ..graph import Graph
from ..utils import check_consistency
class DataConditionInterface(ConditionInterface):
class DataCondition(ConditionInterface):
"""
Condition for data. This condition must be used every
time a Unsupervised Loss is needed in the Solver. The conditionalvariable
@@ -14,19 +17,64 @@ class DataConditionInterface(ConditionInterface):
distribution
"""
__slots__ = ["input_points", "conditional_variables"]
__slots__ = ["input", "conditional_variables"]
_avail_input_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
_avail_conditional_variables_cls = (torch.Tensor, LabelTensor)
def __init__(self, input_points, conditional_variables=None):
def __new__(cls, input, conditional_variables=None):
"""
TODO : add docstring
Instanciate the correct subclass of DataCondition by checking the type
of the input data (input and conditional_variables).
:param input: torch.Tensor or Graph/Data object containing the input
data
:type input: torch.Tensor or Graph or Data
:param conditional_variables: torch.Tensor or LabelTensor containing
the conditional variables
:type conditional_variables: torch.Tensor or LabelTensor
:return: DataCondition subclass
:rtype: TensorDataCondition or GraphDataCondition
"""
if cls != DataCondition:
return super().__new__(cls)
if isinstance(input, (torch.Tensor, LabelTensor)):
subclass = TensorDataCondition
return subclass.__new__(subclass, input, conditional_variables)
if isinstance(input, (Graph, Data, list, tuple)):
cls._check_graph_list_consistency(input)
subclass = GraphDataCondition
return subclass.__new__(subclass, input, conditional_variables)
raise ValueError(
"Invalid input types. "
"Please provide either Data or Graph objects."
)
def __init__(self, input, conditional_variables=None):
"""
Initialize the DataCondition, storing the input and conditional
variables (if any).
:param input: torch.Tensor or Graph/Data object containing the input
data
:type input: torch.Tensor or Graph or Data
:param conditional_variables: torch.Tensor or LabelTensor containing
the conditional variables
:type conditional_variables: torch.Tensor or LabelTensor
"""
super().__init__()
self.input_points = input_points
self.input = input
self.conditional_variables = conditional_variables
def __setattr__(self, key, value):
if (key == "input_points") or (key == "conditional_variables"):
check_consistency(value, (LabelTensor, Graph, torch.Tensor))
DataConditionInterface.__dict__[key].__set__(self, value)
elif key in ("_problem", "_condition_type"):
super().__setattr__(key, value)
class TensorDataCondition(DataCondition):
"""
DataCondition for torch.Tensor input data
"""
class GraphDataCondition(DataCondition):
"""
DataCondition for Graph/Data input data
"""

View File

@@ -1,4 +1,6 @@
import torch
"""
DomainEquationCondition class definition.
"""
from .condition_interface import ConditionInterface
from ..utils import check_consistency
@@ -16,7 +18,11 @@ class DomainEquationCondition(ConditionInterface):
def __init__(self, domain, equation):
"""
TODO : add docstring
Initialize the DomainEquationCondition, storing the domain and equation.
:param DomainInterface domain: Domain object containing the domain data
:param EquationInterface equation: Equation object containing the
equation data
"""
super().__init__()
self.domain = domain
@@ -29,5 +35,5 @@ class DomainEquationCondition(ConditionInterface):
elif key == "equation":
check_consistency(value, (EquationInterface))
DomainEquationCondition.__dict__[key].__set__(self, value)
elif key in ("_problem", "_condition_type"):
elif key in ("_problem"):
super().__setattr__(key, value)

View File

@@ -1,5 +1,8 @@
import torch
"""
Module to define InputEquationCondition class and its subclasses.
"""
from torch_geometric.data import Data
from .condition_interface import ConditionInterface
from ..label_tensor import LabelTensor
from ..graph import Graph
@@ -7,30 +10,100 @@ from ..utils import check_consistency
from ..equation.equation_interface import EquationInterface
class InputPointsEquationCondition(ConditionInterface):
class InputEquationCondition(ConditionInterface):
"""
Condition for input_points/equation data. This condition must be used every
Condition for input/equation data. This condition must be used every
time a Physics Informed Loss is needed in the Solver.
"""
__slots__ = ["input_points", "equation"]
__slots__ = ["input", "equation"]
_avail_input_cls = (LabelTensor, Graph, list, tuple)
_avail_equation_cls = EquationInterface
def __init__(self, input_points, equation):
def __new__(cls, input, equation):
"""
TODO : add docstring
Instanciate the correct subclass of InputEquationCondition by checking
the type of the input data (only `input`).
:param input: torch.Tensor or Graph/Data object containing the input
:type input: torch.Tensor or Graph or Data
:param EquationInterface equation: Equation object containing the
equation function
:return: InputEquationCondition subclass
:rtype: InputTensorEquationCondition or InputGraphEquationCondition
"""
# If the class is already a subclass, return the instance
if cls != InputEquationCondition:
return super().__new__(cls)
# Instanciate the correct subclass
if isinstance(input, (Graph, Data, list, tuple)):
subclass = InputGraphEquationCondition
cls._check_graph_list_consistency(input)
subclass._check_label_tensor(input)
return subclass.__new__(subclass, input, equation)
if isinstance(input, LabelTensor):
subclass = InputTensorEquationCondition
return subclass.__new__(subclass, input, equation)
# If the input is not a LabelTensor or a Graph object raise an error
raise ValueError(
"The input data object must be a LabelTensor or a Graph object."
)
def __init__(self, input, equation):
"""
Initialize the InputEquationCondition by storing the input and equation.
:param input: torch.Tensor or Graph/Data object containing the input
:type input: torch.Tensor or Graph or Data
:param EquationInterface equation: Equation object containing the
equation function
"""
super().__init__()
self.input_points = input_points
self.input = input
self.equation = equation
def __setattr__(self, key, value):
if key == "input_points":
check_consistency(
value, (LabelTensor)
) # for now only labeltensors, we need labels for the operator!
InputPointsEquationCondition.__dict__[key].__set__(self, value)
if key == "input":
check_consistency(value, self._avail_input_cls)
InputEquationCondition.__dict__[key].__set__(self, value)
elif key == "equation":
check_consistency(value, (EquationInterface))
InputPointsEquationCondition.__dict__[key].__set__(self, value)
elif key in ("_problem", "_condition_type"):
check_consistency(value, self._avail_equation_cls)
InputEquationCondition.__dict__[key].__set__(self, value)
elif key in ("_problem"):
super().__setattr__(key, value)
class InputTensorEquationCondition(InputEquationCondition):
"""
InputEquationCondition subclass for LabelTensor input data.
"""
class InputGraphEquationCondition(InputEquationCondition):
"""
InputEquationCondition subclass for Graph input data.
"""
@staticmethod
def _check_label_tensor(input):
"""
Check if the input is a LabelTensor.
:param input: input data
:type input: torch.Tensor or Graph or Data
"""
# Store the fist element of the list/tuple if input is a list/tuple
# it is anougth to check the first element because all elements must
# have the same type and structure (already checked)
data = input[0] if isinstance(input, (list, tuple)) else input
# Check if the input data contains at least one LabelTensor
for v in data.values():
if isinstance(v, LabelTensor):
return
raise ValueError(
"The input data object must contain at least one LabelTensor."
)

View File

@@ -1,34 +0,0 @@
import torch
import torch_geometric
from .condition_interface import ConditionInterface
from ..label_tensor import LabelTensor
from ..graph import Graph
from ..utils import check_consistency
class InputOutputPointsCondition(ConditionInterface):
"""
Condition for domain/equation data. This condition must be used every
time a Physics Informed or a Supervised Loss is needed in the Solver.
"""
__slots__ = ["input_points", "output_points"]
def __init__(self, input_points, output_points):
"""
TODO : add docstring
"""
super().__init__()
self.input_points = input_points
self.output_points = output_points
def __setattr__(self, key, value):
if (key == "input_points") or (key == "output_points"):
check_consistency(
value,
(LabelTensor, Graph, torch.Tensor, torch_geometric.data.Data),
)
InputOutputPointsCondition.__dict__[key].__set__(self, value)
elif key in ("_problem", "_condition_type"):
super().__setattr__(key, value)

View File

@@ -0,0 +1,121 @@
"""
This module contains condition classes for supervised learning tasks.
"""
import torch
from torch_geometric.data import Data
from ..label_tensor import LabelTensor
from ..graph import Graph
from .condition_interface import ConditionInterface
class InputTargetCondition(ConditionInterface):
"""
Condition for domain/equation data. This condition must be used every
time a Physics Informed or a Supervised Loss is needed in the Solver.
"""
__slots__ = ["input", "target"]
_avail_input_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
_avail_output_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
def __new__(cls, input, target):
"""
Instanciate the correct subclass of InputTargetCondition by checking the
type of the input and target data.
:param input: torch.Tensor or Graph/Data object containing the input
:type input: torch.Tensor or Graph or Data
:param target: torch.Tensor or Graph/Data object containing the target
:type target: torch.Tensor or Graph or Data
:return: InputTargetCondition subclass
:rtype: TensorInputTensorTargetCondition or
TensorInputGraphTargetCondition or GraphInputTensorTargetCondition
or GraphInputGraphTargetCondition
"""
if cls != InputTargetCondition:
return super().__new__(cls)
if isinstance(input, (torch.Tensor, LabelTensor)) and isinstance(
target, (torch.Tensor, LabelTensor)
):
subclass = TensorInputTensorTargetCondition
return subclass.__new__(subclass, input, target)
if isinstance(input, (torch.Tensor, LabelTensor)) and isinstance(
target, (Graph, Data, list, tuple)
):
cls._check_graph_list_consistency(target)
subclass = TensorInputGraphTargetCondition
return subclass.__new__(subclass, input, target)
if isinstance(input, (Graph, Data, list, tuple)) and isinstance(
target, (torch.Tensor, LabelTensor)
):
cls._check_graph_list_consistency(input)
subclass = GraphInputTensorTargetCondition
return subclass.__new__(subclass, input, target)
if isinstance(input, (Graph, Data, list, tuple)) and isinstance(
target, (Graph, Data, list, tuple)
):
cls._check_graph_list_consistency(input)
cls._check_graph_list_consistency(target)
subclass = GraphInputGraphTargetCondition
return subclass.__new__(subclass, input, target)
raise ValueError(
"Invalid input/target types. "
"Please provide either Data, Graph, LabelTensor or torch.Tensor "
"objects."
)
def __init__(self, input, target):
"""
Initialize the InputTargetCondition, storing the input and target data.
:param input: torch.Tensor or Graph/Data object containing the input
:type input: torch.Tensor or Graph or Data
:param target: torch.Tensor or Graph/Data object containing the target
:type target: torch.Tensor or Graph or Data
"""
super().__init__()
self._check_input_target_len(input, target)
self.input = input
self.target = target
@staticmethod
def _check_input_target_len(input, target):
if isinstance(input, (Graph, Data)) or isinstance(
target, (Graph, Data)
):
return
if len(input) != len(target):
raise ValueError(
"The input and target lists must have the same length."
)
class TensorInputTensorTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for torch.Tensor input and target data.
"""
class TensorInputGraphTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for torch.Tensor input and Graph/Data target
data.
"""
class GraphInputTensorTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for Graph/Data input and torch.Tensor target
data.
"""
class GraphInputGraphTargetCondition(InputTargetCondition):
"""
InputTargetCondition subclass for Graph/Data input and target data.
"""