Improve conditions and refactor dataset classes (#475)

* Reimplement conditions

* Refactor datasets and implement LabelBatch

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-07 11:24:09 +01:00
committed by Nicola Demo
parent bdad144461
commit a0cbf1c44a
40 changed files with 943 additions and 550 deletions

View File

@@ -1,12 +1,15 @@
import torch
"""
DataCondition class
"""
from . import ConditionInterface
import torch
from torch_geometric.data import Data
from .condition_interface import ConditionInterface
from ..label_tensor import LabelTensor
from ..graph import Graph
from ..utils import check_consistency
class DataConditionInterface(ConditionInterface):
class DataCondition(ConditionInterface):
"""
Condition for data. This condition must be used every
time a Unsupervised Loss is needed in the Solver. The conditionalvariable
@@ -14,19 +17,64 @@ class DataConditionInterface(ConditionInterface):
distribution
"""
__slots__ = ["input_points", "conditional_variables"]
__slots__ = ["input", "conditional_variables"]
_avail_input_cls = (torch.Tensor, LabelTensor, Data, Graph, list, tuple)
_avail_conditional_variables_cls = (torch.Tensor, LabelTensor)
def __init__(self, input_points, conditional_variables=None):
def __new__(cls, input, conditional_variables=None):
"""
TODO : add docstring
Instanciate the correct subclass of DataCondition by checking the type
of the input data (input and conditional_variables).
:param input: torch.Tensor or Graph/Data object containing the input
data
:type input: torch.Tensor or Graph or Data
:param conditional_variables: torch.Tensor or LabelTensor containing
the conditional variables
:type conditional_variables: torch.Tensor or LabelTensor
:return: DataCondition subclass
:rtype: TensorDataCondition or GraphDataCondition
"""
if cls != DataCondition:
return super().__new__(cls)
if isinstance(input, (torch.Tensor, LabelTensor)):
subclass = TensorDataCondition
return subclass.__new__(subclass, input, conditional_variables)
if isinstance(input, (Graph, Data, list, tuple)):
cls._check_graph_list_consistency(input)
subclass = GraphDataCondition
return subclass.__new__(subclass, input, conditional_variables)
raise ValueError(
"Invalid input types. "
"Please provide either Data or Graph objects."
)
def __init__(self, input, conditional_variables=None):
"""
Initialize the DataCondition, storing the input and conditional
variables (if any).
:param input: torch.Tensor or Graph/Data object containing the input
data
:type input: torch.Tensor or Graph or Data
:param conditional_variables: torch.Tensor or LabelTensor containing
the conditional variables
:type conditional_variables: torch.Tensor or LabelTensor
"""
super().__init__()
self.input_points = input_points
self.input = input
self.conditional_variables = conditional_variables
def __setattr__(self, key, value):
if (key == "input_points") or (key == "conditional_variables"):
check_consistency(value, (LabelTensor, Graph, torch.Tensor))
DataConditionInterface.__dict__[key].__set__(self, value)
elif key in ("_problem", "_condition_type"):
super().__setattr__(key, value)
class TensorDataCondition(DataCondition):
"""
DataCondition for torch.Tensor input data
"""
class GraphDataCondition(DataCondition):
"""
DataCondition for Graph/Data input data
"""