Improve conditions and refactor dataset classes (#475)

* Reimplement conditions

* Refactor datasets and implement LabelBatch

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-07 11:24:09 +01:00
committed by Nicola Demo
parent bdad144461
commit a0cbf1c44a
40 changed files with 943 additions and 550 deletions

View File

@@ -1,5 +1,8 @@
import torch
"""
Module to define InputEquationCondition class and its subclasses.
"""
from torch_geometric.data import Data
from .condition_interface import ConditionInterface
from ..label_tensor import LabelTensor
from ..graph import Graph
@@ -7,30 +10,100 @@ from ..utils import check_consistency
from ..equation.equation_interface import EquationInterface
class InputPointsEquationCondition(ConditionInterface):
class InputEquationCondition(ConditionInterface):
"""
Condition for input_points/equation data. This condition must be used every
Condition for input/equation data. This condition must be used every
time a Physics Informed Loss is needed in the Solver.
"""
__slots__ = ["input_points", "equation"]
__slots__ = ["input", "equation"]
_avail_input_cls = (LabelTensor, Graph, list, tuple)
_avail_equation_cls = EquationInterface
def __init__(self, input_points, equation):
def __new__(cls, input, equation):
"""
TODO : add docstring
Instanciate the correct subclass of InputEquationCondition by checking
the type of the input data (only `input`).
:param input: torch.Tensor or Graph/Data object containing the input
:type input: torch.Tensor or Graph or Data
:param EquationInterface equation: Equation object containing the
equation function
:return: InputEquationCondition subclass
:rtype: InputTensorEquationCondition or InputGraphEquationCondition
"""
# If the class is already a subclass, return the instance
if cls != InputEquationCondition:
return super().__new__(cls)
# Instanciate the correct subclass
if isinstance(input, (Graph, Data, list, tuple)):
subclass = InputGraphEquationCondition
cls._check_graph_list_consistency(input)
subclass._check_label_tensor(input)
return subclass.__new__(subclass, input, equation)
if isinstance(input, LabelTensor):
subclass = InputTensorEquationCondition
return subclass.__new__(subclass, input, equation)
# If the input is not a LabelTensor or a Graph object raise an error
raise ValueError(
"The input data object must be a LabelTensor or a Graph object."
)
def __init__(self, input, equation):
"""
Initialize the InputEquationCondition by storing the input and equation.
:param input: torch.Tensor or Graph/Data object containing the input
:type input: torch.Tensor or Graph or Data
:param EquationInterface equation: Equation object containing the
equation function
"""
super().__init__()
self.input_points = input_points
self.input = input
self.equation = equation
def __setattr__(self, key, value):
if key == "input_points":
check_consistency(
value, (LabelTensor)
) # for now only labeltensors, we need labels for the operator!
InputPointsEquationCondition.__dict__[key].__set__(self, value)
if key == "input":
check_consistency(value, self._avail_input_cls)
InputEquationCondition.__dict__[key].__set__(self, value)
elif key == "equation":
check_consistency(value, (EquationInterface))
InputPointsEquationCondition.__dict__[key].__set__(self, value)
elif key in ("_problem", "_condition_type"):
check_consistency(value, self._avail_equation_cls)
InputEquationCondition.__dict__[key].__set__(self, value)
elif key in ("_problem"):
super().__setattr__(key, value)
class InputTensorEquationCondition(InputEquationCondition):
"""
InputEquationCondition subclass for LabelTensor input data.
"""
class InputGraphEquationCondition(InputEquationCondition):
"""
InputEquationCondition subclass for Graph input data.
"""
@staticmethod
def _check_label_tensor(input):
"""
Check if the input is a LabelTensor.
:param input: input data
:type input: torch.Tensor or Graph or Data
"""
# Store the fist element of the list/tuple if input is a list/tuple
# it is anougth to check the first element because all elements must
# have the same type and structure (already checked)
data = input[0] if isinstance(input, (list, tuple)) else input
# Check if the input data contains at least one LabelTensor
for v in data.values():
if isinstance(v, LabelTensor):
return
raise ValueError(
"The input data object must contain at least one LabelTensor."
)