Improve conditions and refactor dataset classes (#475)

* Reimplement conditions

* Refactor datasets and implement LabelBatch

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-07 11:24:09 +01:00
committed by Nicola Demo
parent bdad144461
commit a0cbf1c44a
40 changed files with 943 additions and 550 deletions

View File

@@ -285,7 +285,7 @@ class PinaDataModule(LightningDataModule):
@staticmethod
def _split_condition(condition_dict, splits_dict):
len_condition = len(condition_dict["input_points"])
len_condition = len(condition_dict["input"])
lengths = [
int(len_condition * length) for length in splits_dict.values()
@@ -343,7 +343,7 @@ class PinaDataModule(LightningDataModule):
condition_name,
condition_dict,
) in collector.data_collections.items():
len_data = len(condition_dict["input_points"])
len_data = len(condition_dict["input"])
if self.shuffle:
_apply_shuffle(condition_dict, len_data)
for key, data in self._split_condition(
@@ -390,12 +390,12 @@ class PinaDataModule(LightningDataModule):
max_conditions_lengths = {}
for k, v in self.collector_splits[split].items():
if self.batch_size is None:
max_conditions_lengths[k] = len(v["input_points"])
max_conditions_lengths[k] = len(v["input"])
elif self.repeat:
max_conditions_lengths[k] = self.batch_size
else:
max_conditions_lengths[k] = min(
len(v["input_points"]), self.batch_size
len(v["input"]), self.batch_size
)
return max_conditions_lengths
@@ -455,15 +455,15 @@ class PinaDataModule(LightningDataModule):
raise ValueError("The sum of the splits must be 1")
@property
def input_points(self):
def input(self):
"""
# TODO
"""
to_return = {}
if hasattr(self, "train_dataset") and self.train_dataset is not None:
to_return["train"] = self.train_dataset.input_points
to_return["train"] = self.train_dataset.input
if hasattr(self, "val_dataset") and self.val_dataset is not None:
to_return["val"] = self.val_dataset.input_points
to_return["val"] = self.val_dataset.input
if hasattr(self, "test_dataset") and self.test_dataset is not None:
to_return = self.test_dataset.input_points
to_return = self.test_dataset.input
return to_return

View File

@@ -2,12 +2,10 @@
This module provide basic data management functionalities
"""
import functools
import torch
from torch.utils.data import Dataset
from abc import abstractmethod
from torch_geometric.data import Batch, Data
from pina import LabelTensor
from torch.utils.data import Dataset
from torch_geometric.data import Data
from ..graph import Graph, LabelBatch
class PinaDatasetFactory:
@@ -19,25 +17,25 @@ class PinaDatasetFactory:
"""
def __new__(cls, conditions_dict, **kwargs):
# Check if conditions_dict is empty
if len(conditions_dict) == 0:
raise ValueError("No conditions provided")
if all(
[
isinstance(v["input_points"], torch.Tensor)
for v in conditions_dict.values()
]
):
return PinaTensorDataset(conditions_dict, **kwargs)
elif all(
[
isinstance(v["input_points"], list)
for v in conditions_dict.values()
]
):
# Check is a Graph is present in the conditions
is_graph = cls._is_graph_dataset(conditions_dict)
if is_graph:
# If a Graph is present, return a PinaGraphDataset
return PinaGraphDataset(conditions_dict, **kwargs)
raise ValueError(
"Conditions must be either torch.Tensor or list of Data " "objects."
)
# If no Graph is present, return a PinaTensorDataset
return PinaTensorDataset(conditions_dict, **kwargs)
@staticmethod
def _is_graph_dataset(conditions_dict):
for v in conditions_dict.values():
for cond in v.values():
if isinstance(cond, (Data, Graph, list)):
return True
return False
class PinaDataset(Dataset):
@@ -45,209 +43,140 @@ class PinaDataset(Dataset):
Abstract class for the PINA dataset
"""
def __init__(self, conditions_dict, max_conditions_lengths):
def __init__(
self, conditions_dict, max_conditions_lengths, automatic_batching
):
# Store the conditions dictionary
self.conditions_dict = conditions_dict
# Store the maximum number of conditions to consider
self.max_conditions_lengths = max_conditions_lengths
# Store length of each condition
self.conditions_length = {
k: len(v["input_points"]) for k, v in self.conditions_dict.items()
k: len(v["input"]) for k, v in self.conditions_dict.items()
}
# Store the maximum length of the dataset
self.length = max(self.conditions_length.values())
# Dynamically set the getitem function based on automatic batching
if automatic_batching:
self._getitem_func = self._getitem_int
else:
self._getitem_func = self._getitem_dummy
def _get_max_len(self):
""""""
max_len = 0
for condition in self.conditions_dict.values():
max_len = max(max_len, len(condition["input_points"]))
max_len = max(max_len, len(condition["input"]))
return max_len
def __len__(self):
return self.length
def __getitem__(self, idx):
return self._getitem_func(idx)
def _getitem_dummy(self, idx):
# If automatic batching is disabled, return the data at the given index
return idx
def _getitem_int(self, idx):
# If automatic batching is enabled, return the data at the given index
return {
k: {k_data: v[k_data][idx % len(v["input"])] for k_data in v.keys()}
for k, v in self.conditions_dict.items()
}
def get_all_data(self):
"""
Return all data in the dataset
:return: All data in the dataset
:rtype: dict
"""
index = list(range(len(self)))
return self.fetch_from_idx_list(index)
def fetch_from_idx_list(self, idx):
"""
Return data from the dataset given a list of indices
:param idx: List of indices
:type idx: list
:return: Data from the dataset
:rtype: dict
"""
to_return_dict = {}
for condition, data in self.conditions_dict.items():
# Get the indices for the current condition
cond_idx = idx[: self.max_conditions_lengths[condition]]
# Get the length of the current condition
condition_len = self.conditions_length[condition]
# If the length of the dataset is greater than the length of the
# current condition, repeat the indices
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
# Retrieve the data from the current condition
to_return_dict[condition] = self._retrive_data(data, cond_idx)
return to_return_dict
@abstractmethod
def __getitem__(self, item):
def _retrive_data(self, data, idx_list):
pass
class PinaTensorDataset(PinaDataset):
def __init__(
self, conditions_dict, max_conditions_lengths, automatic_batching
):
super().__init__(conditions_dict, max_conditions_lengths)
"""
Class for the PINA dataset with torch.Tensor data
"""
if automatic_batching:
self._getitem_func = self._getitem_int
else:
self._getitem_func = self._getitem_dummy
def _getitem_int(self, idx):
return {
k: {
k_data: v[k_data][idx % len(v["input_points"])]
for k_data in v.keys()
}
for k, v in self.conditions_dict.items()
}
def fetch_from_idx_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[: self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {
k: v[cond_idx] for k, v in data.items()
}
return to_return_dict
@staticmethod
def _getitem_dummy(idx):
return idx
def get_all_data(self):
index = [i for i in range(len(self))]
return self.fetch_from_idx_list(index)
def __getitem__(self, idx):
return self._getitem_func(idx)
# Override _retrive_data method for torch.Tensor data
def _retrive_data(self, data, idx_list):
return {k: v[idx_list] for k, v in data.items()}
@property
def input_points(self):
def input(self):
"""
Method to return input points for training.
"""
return {k: v["input_points"] for k, v in self.conditions_dict.items()}
class PinaBatch(Batch):
"""
Add extract function to torch_geometric Batch object
"""
def __init__(self):
super().__init__(self)
def extract(self, labels):
"""
Perform extraction of labels on node features (x)
:param labels: Labels to extract
:type labels: list[str] | tuple[str] | str
:return: Batch object with extraction performed on x
:rtype: PinaBatch
"""
self.x = self.x.extract(labels)
return self
return {k: v["input"] for k, v in self.conditions_dict.items()}
class PinaGraphDataset(PinaDataset):
"""
Class for the PINA dataset with torch_geometric.data.Data data
"""
def __init__(
self, conditions_dict, max_conditions_lengths, automatic_batching
):
super().__init__(conditions_dict, max_conditions_lengths)
self.in_labels = {}
self.out_labels = None
if automatic_batching:
self._getitem_func = self._getitem_int
else:
self._getitem_func = self._getitem_dummy
ex_data = conditions_dict[list(conditions_dict.keys())[0]][
"input_points"
][0]
for name, attr in ex_data.items():
if isinstance(attr, LabelTensor):
self.in_labels[name] = attr.stored_labels
ex_data = conditions_dict[list(conditions_dict.keys())[0]][
"output_points"
][0]
if isinstance(ex_data, LabelTensor):
self.out_labels = ex_data.labels
self._create_graph_batch_from_list = (
self._labelise_batch(self._base_create_graph_batch_from_list)
if self.in_labels
else self._base_create_graph_batch_from_list
)
self._create_output_batch = (
self._labelise_tensor(self._base_create_output_batch)
if self.out_labels is not None
else self._base_create_output_batch
)
def fetch_from_idx_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[: self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {
k: (
self._create_graph_batch_from_list([v[i] for i in idx])
if isinstance(v, list)
else self._create_output_batch(v[idx])
)
for k, v in data.items()
}
return to_return_dict
def _base_create_graph_batch_from_list(self, data):
batch = PinaBatch.from_data_list(data)
def _create_graph_batch_from_list(self, data):
batch = LabelBatch.from_data_list(data)
return batch
def _base_create_output_batch(self, data):
def _create_output_batch(self, data):
out = data.reshape(-1, *data.shape[2:])
return out
def _getitem_dummy(self, idx):
return idx
def _getitem_int(self, idx):
return {
k: {
k_data: v[k_data][idx % len(v["input_points"])]
for k_data in v.keys()
}
for k, v in self.conditions_dict.items()
}
def get_all_data(self):
index = [i for i in range(len(self))]
return self.fetch_from_idx_list(index)
def __getitem__(self, idx):
return self._getitem_func(idx)
def _labelise_batch(self, func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
batch = func(*args, **kwargs)
for k, v in self.in_labels.items():
tmp = batch[k]
tmp.labels = v
batch[k] = tmp
return batch
return wrapper
def _labelise_tensor(self, func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
out = func(*args, **kwargs)
if isinstance(out, LabelTensor):
out.labels = self.out_labels
return out
return wrapper
def create_graph_batch(self, data):
"""
# TODO
Create a Batch object from a list of Data objects.
:param data: List of Data objects
:type data: list
:return: Batch object
:rtype: Batch or PinaBatch
"""
if isinstance(data[0], Data):
return self._create_graph_batch_from_list(data)
return self._create_output_batch(data)
# Override _retrive_data method for graph handling
def _retrive_data(self, data, idx_list):
# Return the data from the current condition
# If the data is a list of Data objects, create a Batch object
# If the data is a list of torch.Tensor objects, create a torch.Tensor
return {
k: (
self._create_graph_batch_from_list([v[i] for i in idx_list])
if isinstance(v, list)
else self._create_output_batch(v[idx_list])
)
for k, v in data.items()
}