Improve conditions and refactor dataset classes (#475)

* Reimplement conditions

* Refactor datasets and implement LabelBatch

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-07 11:24:09 +01:00
committed by Nicola Demo
parent bdad144461
commit a0cbf1c44a
40 changed files with 943 additions and 550 deletions

View File

@@ -114,10 +114,10 @@ def test_dummy_dataloader(input_, output_):
assert isinstance(data, list)
assert isinstance(data[0], tuple)
if isinstance(input_, list):
assert isinstance(data[0][1]["input_points"], Batch)
assert isinstance(data[0][1]["input"], Batch)
else:
assert isinstance(data[0][1]["input_points"], torch.Tensor)
assert isinstance(data[0][1]["output_points"], torch.Tensor)
assert isinstance(data[0][1]["input"], torch.Tensor)
assert isinstance(data[0][1]["target"], torch.Tensor)
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DummyDataloader)
@@ -126,10 +126,10 @@ def test_dummy_dataloader(input_, output_):
assert isinstance(data, list)
assert isinstance(data[0], tuple)
if isinstance(input_, list):
assert isinstance(data[0][1]["input_points"], Batch)
assert isinstance(data[0][1]["input"], Batch)
else:
assert isinstance(data[0][1]["input_points"], torch.Tensor)
assert isinstance(data[0][1]["output_points"], torch.Tensor)
assert isinstance(data[0][1]["input"], torch.Tensor)
assert isinstance(data[0][1]["target"], torch.Tensor)
@pytest.mark.parametrize(
@@ -157,10 +157,10 @@ def test_dataloader(input_, output_, automatic_batching):
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, list):
assert isinstance(data["data"]["input_points"], Batch)
assert isinstance(data["data"]["input"], Batch)
else:
assert isinstance(data["data"]["input_points"], torch.Tensor)
assert isinstance(data["data"]["output_points"], torch.Tensor)
assert isinstance(data["data"]["input"], torch.Tensor)
assert isinstance(data["data"]["target"], torch.Tensor)
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DataLoader)
@@ -168,10 +168,10 @@ def test_dataloader(input_, output_, automatic_batching):
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, list):
assert isinstance(data["data"]["input_points"], Batch)
assert isinstance(data["data"]["input"], Batch)
else:
assert isinstance(data["data"]["input_points"], torch.Tensor)
assert isinstance(data["data"]["output_points"], torch.Tensor)
assert isinstance(data["data"]["input"], torch.Tensor)
assert isinstance(data["data"]["target"], torch.Tensor)
from pina import LabelTensor
@@ -212,15 +212,15 @@ def test_dataloader_labels(input_, output_, automatic_batching):
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, list):
assert isinstance(data["data"]["input_points"], Batch)
assert isinstance(data["data"]["input_points"].x, LabelTensor)
assert data["data"]["input_points"].x.labels == ["u", "v", "w"]
assert data["data"]["input_points"].pos.labels == ["x", "y"]
assert isinstance(data["data"]["input"], Batch)
assert isinstance(data["data"]["input"].x, LabelTensor)
assert data["data"]["input"].x.labels == ["u", "v", "w"]
assert data["data"]["input"].pos.labels == ["x", "y"]
else:
assert isinstance(data["data"]["input_points"], LabelTensor)
assert data["data"]["input_points"].labels == ["u", "v", "w"]
assert isinstance(data["data"]["output_points"], LabelTensor)
assert data["data"]["output_points"].labels == ["u", "v", "w"]
assert isinstance(data["data"]["input"], LabelTensor)
assert data["data"]["input"].labels == ["u", "v", "w"]
assert isinstance(data["data"]["target"], LabelTensor)
assert data["data"]["target"].labels == ["u", "v", "w"]
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DataLoader)
@@ -228,13 +228,13 @@ def test_dataloader_labels(input_, output_, automatic_batching):
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, list):
assert isinstance(data["data"]["input_points"], Batch)
assert isinstance(data["data"]["input_points"].x, LabelTensor)
assert data["data"]["input_points"].x.labels == ["u", "v", "w"]
assert data["data"]["input_points"].pos.labels == ["x", "y"]
assert isinstance(data["data"]["input"], Batch)
assert isinstance(data["data"]["input"].x, LabelTensor)
assert data["data"]["input"].x.labels == ["u", "v", "w"]
assert data["data"]["input"].pos.labels == ["x", "y"]
else:
assert isinstance(data["data"]["input_points"], torch.Tensor)
assert isinstance(data["data"]["input_points"], LabelTensor)
assert data["data"]["input_points"].labels == ["u", "v", "w"]
assert isinstance(data["data"]["output_points"], torch.Tensor)
assert data["data"]["output_points"].labels == ["u", "v", "w"]
assert isinstance(data["data"]["input"], torch.Tensor)
assert isinstance(data["data"]["input"], LabelTensor)
assert data["data"]["input"].labels == ["u", "v", "w"]
assert isinstance(data["data"]["target"], torch.Tensor)
assert data["data"]["target"].labels == ["u", "v", "w"]

View File

@@ -24,8 +24,8 @@ output_2_ = torch.rand((50, 20, 10))
# Problem with a single condition
conditions_dict_single = {
"data": {
"input_points": input_,
"output_points": output_,
"input": input_,
"target": output_,
}
}
max_conditions_lengths_single = {"data": 100}
@@ -33,12 +33,12 @@ max_conditions_lengths_single = {"data": 100}
# Problem with multiple conditions
conditions_dict_single_multi = {
"data_1": {
"input_points": input_,
"output_points": output_,
"input": input_,
"target": output_,
},
"data_2": {
"input_points": input_2_,
"output_points": output_2_,
"input": input_2_,
"target": output_2_,
},
}
@@ -77,56 +77,56 @@ def test_getitem(conditions_dict, max_conditions_lengths):
)
data = dataset[50]
assert isinstance(data, dict)
assert all([isinstance(d["input_points"], Data) for d in data.values()])
assert all([isinstance(d["input"], Data) for d in data.values()])
assert all(
[isinstance(d["output_points"], torch.Tensor) for d in data.values()]
[isinstance(d["target"], torch.Tensor) for d in data.values()]
)
assert all(
[
d["input_points"].x.shape == torch.Size((20, 10))
d["input"].x.shape == torch.Size((20, 10))
for d in data.values()
]
)
assert all(
[
d["output_points"].shape == torch.Size((20, 10))
d["target"].shape == torch.Size((20, 10))
for d in data.values()
]
)
assert all(
[
d["input_points"].edge_index.shape == torch.Size((2, 60))
d["input"].edge_index.shape == torch.Size((2, 60))
for d in data.values()
]
)
assert all(
[d["input_points"].edge_attr.shape[0] == 60 for d in data.values()]
[d["input"].edge_attr.shape[0] == 60 for d in data.values()]
)
data = dataset.fetch_from_idx_list([i for i in range(20)])
assert isinstance(data, dict)
assert all([isinstance(d["input_points"], Data) for d in data.values()])
assert all([isinstance(d["input"], Data) for d in data.values()])
assert all(
[isinstance(d["output_points"], torch.Tensor) for d in data.values()]
[isinstance(d["target"], torch.Tensor) for d in data.values()]
)
assert all(
[
d["input_points"].x.shape == torch.Size((400, 10))
d["input"].x.shape == torch.Size((400, 10))
for d in data.values()
]
)
assert all(
[
d["output_points"].shape == torch.Size((400, 10))
d["target"].shape == torch.Size((400, 10))
for d in data.values()
]
)
assert all(
[
d["input_points"].edge_index.shape == torch.Size((2, 1200))
d["input"].edge_index.shape == torch.Size((2, 1200))
for d in data.values()
]
)
assert all(
[d["input_points"].edge_attr.shape[0] == 1200 for d in data.values()]
[d["input"].edge_attr.shape[0] == 1200 for d in data.values()]
)

View File

@@ -10,19 +10,19 @@ output_tensor_2 = torch.rand((50, 2))
conditions_dict_single = {
'data': {
'input_points': input_tensor,
'output_points': output_tensor,
'input': input_tensor,
'target': output_tensor,
}
}
conditions_dict_single_multi = {
'data_1': {
'input_points': input_tensor,
'output_points': output_tensor,
'input': input_tensor,
'target': output_tensor,
},
'data_2': {
'input_points': input_tensor_2,
'output_points': output_tensor_2,
'input': input_tensor_2,
'target': output_tensor_2,
}
}
@@ -59,11 +59,11 @@ def test_getitem_single():
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ['data']
assert sorted(list(tensors['data'].keys())) == [
'input_points', 'output_points']
assert isinstance(tensors['data']['input_points'], torch.Tensor)
assert tensors['data']['input_points'].shape == torch.Size((70, 10))
assert isinstance(tensors['data']['output_points'], torch.Tensor)
assert tensors['data']['output_points'].shape == torch.Size((70, 2))
'input', 'target']
assert isinstance(tensors['data']['input'], torch.Tensor)
assert tensors['data']['input'].shape == torch.Size((70, 10))
assert isinstance(tensors['data']['target'], torch.Tensor)
assert tensors['data']['target'].shape == torch.Size((70, 2))
def test_getitem_multi():
@@ -74,15 +74,15 @@ def test_getitem_multi():
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ['data_1', 'data_2']
assert sorted(list(tensors['data_1'].keys())) == [
'input_points', 'output_points']
assert isinstance(tensors['data_1']['input_points'], torch.Tensor)
assert tensors['data_1']['input_points'].shape == torch.Size((70, 10))
assert isinstance(tensors['data_1']['output_points'], torch.Tensor)
assert tensors['data_1']['output_points'].shape == torch.Size((70, 2))
'input', 'target']
assert isinstance(tensors['data_1']['input'], torch.Tensor)
assert tensors['data_1']['input'].shape == torch.Size((70, 10))
assert isinstance(tensors['data_1']['target'], torch.Tensor)
assert tensors['data_1']['target'].shape == torch.Size((70, 2))
assert sorted(list(tensors['data_2'].keys())) == [
'input_points', 'output_points']
assert isinstance(tensors['data_2']['input_points'], torch.Tensor)
assert tensors['data_2']['input_points'].shape == torch.Size((50, 10))
assert isinstance(tensors['data_2']['output_points'], torch.Tensor)
assert tensors['data_2']['output_points'].shape == torch.Size((50, 2))
'input', 'target']
assert isinstance(tensors['data_2']['input'], torch.Tensor)
assert tensors['data_2']['input'].shape == torch.Size((50, 10))
assert isinstance(tensors['data_2']['target'], torch.Tensor)
assert tensors['data_2']['target'].shape == torch.Size((50, 2))