Improve conditions and refactor dataset classes (#475)
* Reimplement conditions * Refactor datasets and implement LabelBatch --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
bdad144461
commit
a0cbf1c44a
@@ -114,10 +114,10 @@ def test_dummy_dataloader(input_, output_):
|
||||
assert isinstance(data, list)
|
||||
assert isinstance(data[0], tuple)
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data[0][1]["input_points"], Batch)
|
||||
assert isinstance(data[0][1]["input"], Batch)
|
||||
else:
|
||||
assert isinstance(data[0][1]["input_points"], torch.Tensor)
|
||||
assert isinstance(data[0][1]["output_points"], torch.Tensor)
|
||||
assert isinstance(data[0][1]["input"], torch.Tensor)
|
||||
assert isinstance(data[0][1]["target"], torch.Tensor)
|
||||
|
||||
dataloader = dm.val_dataloader()
|
||||
assert isinstance(dataloader, DummyDataloader)
|
||||
@@ -126,10 +126,10 @@ def test_dummy_dataloader(input_, output_):
|
||||
assert isinstance(data, list)
|
||||
assert isinstance(data[0], tuple)
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data[0][1]["input_points"], Batch)
|
||||
assert isinstance(data[0][1]["input"], Batch)
|
||||
else:
|
||||
assert isinstance(data[0][1]["input_points"], torch.Tensor)
|
||||
assert isinstance(data[0][1]["output_points"], torch.Tensor)
|
||||
assert isinstance(data[0][1]["input"], torch.Tensor)
|
||||
assert isinstance(data[0][1]["target"], torch.Tensor)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
@@ -157,10 +157,10 @@ def test_dataloader(input_, output_, automatic_batching):
|
||||
data = next(iter(dataloader))
|
||||
assert isinstance(data, dict)
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data["data"]["input_points"], Batch)
|
||||
assert isinstance(data["data"]["input"], Batch)
|
||||
else:
|
||||
assert isinstance(data["data"]["input_points"], torch.Tensor)
|
||||
assert isinstance(data["data"]["output_points"], torch.Tensor)
|
||||
assert isinstance(data["data"]["input"], torch.Tensor)
|
||||
assert isinstance(data["data"]["target"], torch.Tensor)
|
||||
|
||||
dataloader = dm.val_dataloader()
|
||||
assert isinstance(dataloader, DataLoader)
|
||||
@@ -168,10 +168,10 @@ def test_dataloader(input_, output_, automatic_batching):
|
||||
data = next(iter(dataloader))
|
||||
assert isinstance(data, dict)
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data["data"]["input_points"], Batch)
|
||||
assert isinstance(data["data"]["input"], Batch)
|
||||
else:
|
||||
assert isinstance(data["data"]["input_points"], torch.Tensor)
|
||||
assert isinstance(data["data"]["output_points"], torch.Tensor)
|
||||
assert isinstance(data["data"]["input"], torch.Tensor)
|
||||
assert isinstance(data["data"]["target"], torch.Tensor)
|
||||
|
||||
|
||||
from pina import LabelTensor
|
||||
@@ -212,15 +212,15 @@ def test_dataloader_labels(input_, output_, automatic_batching):
|
||||
data = next(iter(dataloader))
|
||||
assert isinstance(data, dict)
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data["data"]["input_points"], Batch)
|
||||
assert isinstance(data["data"]["input_points"].x, LabelTensor)
|
||||
assert data["data"]["input_points"].x.labels == ["u", "v", "w"]
|
||||
assert data["data"]["input_points"].pos.labels == ["x", "y"]
|
||||
assert isinstance(data["data"]["input"], Batch)
|
||||
assert isinstance(data["data"]["input"].x, LabelTensor)
|
||||
assert data["data"]["input"].x.labels == ["u", "v", "w"]
|
||||
assert data["data"]["input"].pos.labels == ["x", "y"]
|
||||
else:
|
||||
assert isinstance(data["data"]["input_points"], LabelTensor)
|
||||
assert data["data"]["input_points"].labels == ["u", "v", "w"]
|
||||
assert isinstance(data["data"]["output_points"], LabelTensor)
|
||||
assert data["data"]["output_points"].labels == ["u", "v", "w"]
|
||||
assert isinstance(data["data"]["input"], LabelTensor)
|
||||
assert data["data"]["input"].labels == ["u", "v", "w"]
|
||||
assert isinstance(data["data"]["target"], LabelTensor)
|
||||
assert data["data"]["target"].labels == ["u", "v", "w"]
|
||||
|
||||
dataloader = dm.val_dataloader()
|
||||
assert isinstance(dataloader, DataLoader)
|
||||
@@ -228,13 +228,13 @@ def test_dataloader_labels(input_, output_, automatic_batching):
|
||||
data = next(iter(dataloader))
|
||||
assert isinstance(data, dict)
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data["data"]["input_points"], Batch)
|
||||
assert isinstance(data["data"]["input_points"].x, LabelTensor)
|
||||
assert data["data"]["input_points"].x.labels == ["u", "v", "w"]
|
||||
assert data["data"]["input_points"].pos.labels == ["x", "y"]
|
||||
assert isinstance(data["data"]["input"], Batch)
|
||||
assert isinstance(data["data"]["input"].x, LabelTensor)
|
||||
assert data["data"]["input"].x.labels == ["u", "v", "w"]
|
||||
assert data["data"]["input"].pos.labels == ["x", "y"]
|
||||
else:
|
||||
assert isinstance(data["data"]["input_points"], torch.Tensor)
|
||||
assert isinstance(data["data"]["input_points"], LabelTensor)
|
||||
assert data["data"]["input_points"].labels == ["u", "v", "w"]
|
||||
assert isinstance(data["data"]["output_points"], torch.Tensor)
|
||||
assert data["data"]["output_points"].labels == ["u", "v", "w"]
|
||||
assert isinstance(data["data"]["input"], torch.Tensor)
|
||||
assert isinstance(data["data"]["input"], LabelTensor)
|
||||
assert data["data"]["input"].labels == ["u", "v", "w"]
|
||||
assert isinstance(data["data"]["target"], torch.Tensor)
|
||||
assert data["data"]["target"].labels == ["u", "v", "w"]
|
||||
|
||||
@@ -24,8 +24,8 @@ output_2_ = torch.rand((50, 20, 10))
|
||||
# Problem with a single condition
|
||||
conditions_dict_single = {
|
||||
"data": {
|
||||
"input_points": input_,
|
||||
"output_points": output_,
|
||||
"input": input_,
|
||||
"target": output_,
|
||||
}
|
||||
}
|
||||
max_conditions_lengths_single = {"data": 100}
|
||||
@@ -33,12 +33,12 @@ max_conditions_lengths_single = {"data": 100}
|
||||
# Problem with multiple conditions
|
||||
conditions_dict_single_multi = {
|
||||
"data_1": {
|
||||
"input_points": input_,
|
||||
"output_points": output_,
|
||||
"input": input_,
|
||||
"target": output_,
|
||||
},
|
||||
"data_2": {
|
||||
"input_points": input_2_,
|
||||
"output_points": output_2_,
|
||||
"input": input_2_,
|
||||
"target": output_2_,
|
||||
},
|
||||
}
|
||||
|
||||
@@ -77,56 +77,56 @@ def test_getitem(conditions_dict, max_conditions_lengths):
|
||||
)
|
||||
data = dataset[50]
|
||||
assert isinstance(data, dict)
|
||||
assert all([isinstance(d["input_points"], Data) for d in data.values()])
|
||||
assert all([isinstance(d["input"], Data) for d in data.values()])
|
||||
assert all(
|
||||
[isinstance(d["output_points"], torch.Tensor) for d in data.values()]
|
||||
[isinstance(d["target"], torch.Tensor) for d in data.values()]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["input_points"].x.shape == torch.Size((20, 10))
|
||||
d["input"].x.shape == torch.Size((20, 10))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["output_points"].shape == torch.Size((20, 10))
|
||||
d["target"].shape == torch.Size((20, 10))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["input_points"].edge_index.shape == torch.Size((2, 60))
|
||||
d["input"].edge_index.shape == torch.Size((2, 60))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[d["input_points"].edge_attr.shape[0] == 60 for d in data.values()]
|
||||
[d["input"].edge_attr.shape[0] == 60 for d in data.values()]
|
||||
)
|
||||
|
||||
data = dataset.fetch_from_idx_list([i for i in range(20)])
|
||||
assert isinstance(data, dict)
|
||||
assert all([isinstance(d["input_points"], Data) for d in data.values()])
|
||||
assert all([isinstance(d["input"], Data) for d in data.values()])
|
||||
assert all(
|
||||
[isinstance(d["output_points"], torch.Tensor) for d in data.values()]
|
||||
[isinstance(d["target"], torch.Tensor) for d in data.values()]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["input_points"].x.shape == torch.Size((400, 10))
|
||||
d["input"].x.shape == torch.Size((400, 10))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["output_points"].shape == torch.Size((400, 10))
|
||||
d["target"].shape == torch.Size((400, 10))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["input_points"].edge_index.shape == torch.Size((2, 1200))
|
||||
d["input"].edge_index.shape == torch.Size((2, 1200))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[d["input_points"].edge_attr.shape[0] == 1200 for d in data.values()]
|
||||
[d["input"].edge_attr.shape[0] == 1200 for d in data.values()]
|
||||
)
|
||||
|
||||
@@ -10,19 +10,19 @@ output_tensor_2 = torch.rand((50, 2))
|
||||
|
||||
conditions_dict_single = {
|
||||
'data': {
|
||||
'input_points': input_tensor,
|
||||
'output_points': output_tensor,
|
||||
'input': input_tensor,
|
||||
'target': output_tensor,
|
||||
}
|
||||
}
|
||||
|
||||
conditions_dict_single_multi = {
|
||||
'data_1': {
|
||||
'input_points': input_tensor,
|
||||
'output_points': output_tensor,
|
||||
'input': input_tensor,
|
||||
'target': output_tensor,
|
||||
},
|
||||
'data_2': {
|
||||
'input_points': input_tensor_2,
|
||||
'output_points': output_tensor_2,
|
||||
'input': input_tensor_2,
|
||||
'target': output_tensor_2,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -59,11 +59,11 @@ def test_getitem_single():
|
||||
assert isinstance(tensors, dict)
|
||||
assert list(tensors.keys()) == ['data']
|
||||
assert sorted(list(tensors['data'].keys())) == [
|
||||
'input_points', 'output_points']
|
||||
assert isinstance(tensors['data']['input_points'], torch.Tensor)
|
||||
assert tensors['data']['input_points'].shape == torch.Size((70, 10))
|
||||
assert isinstance(tensors['data']['output_points'], torch.Tensor)
|
||||
assert tensors['data']['output_points'].shape == torch.Size((70, 2))
|
||||
'input', 'target']
|
||||
assert isinstance(tensors['data']['input'], torch.Tensor)
|
||||
assert tensors['data']['input'].shape == torch.Size((70, 10))
|
||||
assert isinstance(tensors['data']['target'], torch.Tensor)
|
||||
assert tensors['data']['target'].shape == torch.Size((70, 2))
|
||||
|
||||
|
||||
def test_getitem_multi():
|
||||
@@ -74,15 +74,15 @@ def test_getitem_multi():
|
||||
assert isinstance(tensors, dict)
|
||||
assert list(tensors.keys()) == ['data_1', 'data_2']
|
||||
assert sorted(list(tensors['data_1'].keys())) == [
|
||||
'input_points', 'output_points']
|
||||
assert isinstance(tensors['data_1']['input_points'], torch.Tensor)
|
||||
assert tensors['data_1']['input_points'].shape == torch.Size((70, 10))
|
||||
assert isinstance(tensors['data_1']['output_points'], torch.Tensor)
|
||||
assert tensors['data_1']['output_points'].shape == torch.Size((70, 2))
|
||||
'input', 'target']
|
||||
assert isinstance(tensors['data_1']['input'], torch.Tensor)
|
||||
assert tensors['data_1']['input'].shape == torch.Size((70, 10))
|
||||
assert isinstance(tensors['data_1']['target'], torch.Tensor)
|
||||
assert tensors['data_1']['target'].shape == torch.Size((70, 2))
|
||||
|
||||
assert sorted(list(tensors['data_2'].keys())) == [
|
||||
'input_points', 'output_points']
|
||||
assert isinstance(tensors['data_2']['input_points'], torch.Tensor)
|
||||
assert tensors['data_2']['input_points'].shape == torch.Size((50, 10))
|
||||
assert isinstance(tensors['data_2']['output_points'], torch.Tensor)
|
||||
assert tensors['data_2']['output_points'].shape == torch.Size((50, 2))
|
||||
'input', 'target']
|
||||
assert isinstance(tensors['data_2']['input'], torch.Tensor)
|
||||
assert tensors['data_2']['input'].shape == torch.Size((50, 10))
|
||||
assert isinstance(tensors['data_2']['target'], torch.Tensor)
|
||||
assert tensors['data_2']['target'].shape == torch.Size((50, 2))
|
||||
|
||||
Reference in New Issue
Block a user