Improve conditions and refactor dataset classes (#475)

* Reimplement conditions

* Refactor datasets and implement LabelBatch

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-07 11:24:09 +01:00
committed by Nicola Demo
parent bdad144461
commit a0cbf1c44a
40 changed files with 943 additions and 550 deletions

View File

@@ -10,19 +10,19 @@ output_tensor_2 = torch.rand((50, 2))
conditions_dict_single = {
'data': {
'input_points': input_tensor,
'output_points': output_tensor,
'input': input_tensor,
'target': output_tensor,
}
}
conditions_dict_single_multi = {
'data_1': {
'input_points': input_tensor,
'output_points': output_tensor,
'input': input_tensor,
'target': output_tensor,
},
'data_2': {
'input_points': input_tensor_2,
'output_points': output_tensor_2,
'input': input_tensor_2,
'target': output_tensor_2,
}
}
@@ -59,11 +59,11 @@ def test_getitem_single():
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ['data']
assert sorted(list(tensors['data'].keys())) == [
'input_points', 'output_points']
assert isinstance(tensors['data']['input_points'], torch.Tensor)
assert tensors['data']['input_points'].shape == torch.Size((70, 10))
assert isinstance(tensors['data']['output_points'], torch.Tensor)
assert tensors['data']['output_points'].shape == torch.Size((70, 2))
'input', 'target']
assert isinstance(tensors['data']['input'], torch.Tensor)
assert tensors['data']['input'].shape == torch.Size((70, 10))
assert isinstance(tensors['data']['target'], torch.Tensor)
assert tensors['data']['target'].shape == torch.Size((70, 2))
def test_getitem_multi():
@@ -74,15 +74,15 @@ def test_getitem_multi():
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ['data_1', 'data_2']
assert sorted(list(tensors['data_1'].keys())) == [
'input_points', 'output_points']
assert isinstance(tensors['data_1']['input_points'], torch.Tensor)
assert tensors['data_1']['input_points'].shape == torch.Size((70, 10))
assert isinstance(tensors['data_1']['output_points'], torch.Tensor)
assert tensors['data_1']['output_points'].shape == torch.Size((70, 2))
'input', 'target']
assert isinstance(tensors['data_1']['input'], torch.Tensor)
assert tensors['data_1']['input'].shape == torch.Size((70, 10))
assert isinstance(tensors['data_1']['target'], torch.Tensor)
assert tensors['data_1']['target'].shape == torch.Size((70, 2))
assert sorted(list(tensors['data_2'].keys())) == [
'input_points', 'output_points']
assert isinstance(tensors['data_2']['input_points'], torch.Tensor)
assert tensors['data_2']['input_points'].shape == torch.Size((50, 10))
assert isinstance(tensors['data_2']['output_points'], torch.Tensor)
assert tensors['data_2']['output_points'].shape == torch.Size((50, 2))
'input', 'target']
assert isinstance(tensors['data_2']['input'], torch.Tensor)
assert tensors['data_2']['input'].shape == torch.Size((50, 10))
assert isinstance(tensors['data_2']['target'], torch.Tensor)
assert tensors['data_2']['target'].shape == torch.Size((50, 2))