From a27bd35443df155a61c379ca838d9567f994f1c6 Mon Sep 17 00:00:00 2001 From: Filippo Olivo Date: Wed, 27 Nov 2024 16:01:39 +0100 Subject: [PATCH] Implementation of DataLoader and DataModule (#383) Refactoring for 0.2 * Data module, data loader and dataset * Refactor LabelTensor * Refactor solvers Co-authored-by: dario-coscia --- pina/__init__.py | 8 +- pina/collector.py | 18 +- pina/condition/data_condition.py | 3 +- pina/condition/domain_equation_condition.py | 5 +- pina/condition/input_equation_condition.py | 3 +- pina/condition/input_output_condition.py | 6 +- pina/data/__init__.py | 13 +- pina/data/base_dataset.py | 157 ------- pina/data/data_module.py | 382 +++++++++++------- pina/data/dataset.py | 102 +++++ pina/data/pina_batch.py | 47 --- pina/data/pina_dataloader.py | 68 ---- pina/data/pina_subset.py | 36 -- pina/data/sample_dataset.py | 35 -- pina/data/supervised_dataset.py | 13 - pina/data/unsupervised_dataset.py | 14 - pina/graph.py | 4 +- pina/label_tensor.py | 354 ++++++++-------- pina/model/layers/lowrank_layer.py | 1 + pina/model/network.py | 20 +- pina/operators.py | 10 +- pina/problem/abstract_problem.py | 6 +- pina/problem/inverse_problem.py | 3 +- pina/solvers/graph.py | 34 -- pina/solvers/pinns/basepinn.py | 117 ++++-- pina/solvers/pinns/pinn.py | 49 ++- pina/solvers/solver.py | 22 +- pina/solvers/supervised.py | 74 ++-- pina/trainer.py | 49 +-- setup.py | 3 +- tests/test_dataset.py | 227 ----------- .../test_label_tensor/test_label_tensor_01.py | 2 +- tests/test_solvers/test_pinn.py | 289 +++---------- tests/test_solvers/test_supervised_solver.py | 2 +- 34 files changed, 827 insertions(+), 1349 deletions(-) delete mode 100644 pina/data/base_dataset.py create mode 100644 pina/data/dataset.py delete mode 100644 pina/data/pina_batch.py delete mode 100644 pina/data/pina_dataloader.py delete mode 100644 pina/data/pina_subset.py delete mode 100644 pina/data/sample_dataset.py delete mode 100644 pina/data/supervised_dataset.py delete mode 100644 pina/data/unsupervised_dataset.py delete mode 100644 pina/solvers/graph.py delete mode 100644 tests/test_dataset.py diff --git a/pina/__init__.py b/pina/__init__.py index 3bc28ae..e9ce706 100644 --- a/pina/__init__.py +++ b/pina/__init__.py @@ -1,6 +1,6 @@ __all__ = [ - "Trainer", "LabelTensor", "Plotter", "Condition", "SamplePointDataset", - "PinaDataModule", "PinaDataLoader", 'TorchOptimizer', 'Graph' + "Trainer", "LabelTensor", "Plotter", "Condition", + "PinaDataModule", 'TorchOptimizer', 'Graph', ] from .meta import * @@ -9,9 +9,9 @@ from .solvers.solver import SolverInterface from .trainer import Trainer from .plotter import Plotter from .condition.condition import Condition -from .data import SamplePointDataset + from .data import PinaDataModule -from .data import PinaDataLoader + from .optim import TorchOptimizer from .optim import TorchScheduler from .graph import Graph diff --git a/pina/collector.py b/pina/collector.py index 3219b2b..1f0fb41 100644 --- a/pina/collector.py +++ b/pina/collector.py @@ -1,3 +1,4 @@ +from . import LabelTensor from .utils import check_consistency, merge_tensors @@ -66,9 +67,12 @@ class Collector: for loc in sample_locations: # get condition condition = self.problem.conditions[loc] + condition_domain = condition.domain + if isinstance(condition_domain, str): + condition_domain = self.problem.domains[condition_domain] keys = ["input_points", "equation"] # if the condition is not ready, we get and store the data - if (not self._is_conditions_ready[loc]): + if not self._is_conditions_ready[loc]: # if it is the first time we sample if not self.data_collections[loc]: already_sampled = [] @@ -84,10 +88,11 @@ class Collector: # get the samples samples = [ - condition.domain.sample(n=n, mode=mode, variables=variables) - ] + already_sampled + condition_domain.sample(n=n, mode=mode, + variables=variables) + ] + already_sampled pts = merge_tensors(samples) - if (set(pts.labels).issubset(sorted(self.problem.input_variables))): + if set(pts.labels).issubset(sorted(self.problem.input_variables)): pts = pts.sort_labels() if sorted(pts.labels) == sorted(self.problem.input_variables): self._is_conditions_ready[loc] = True @@ -110,5 +115,6 @@ class Collector: if not self._is_conditions_ready[k]: raise RuntimeError( 'Cannot add points on a non sampled condition') - self.data_collections[k]['input_points'] = self.data_collections[k][ - 'input_points'].vstack(v) + self.data_collections[k]['input_points'] = LabelTensor.vstack( + [self.data_collections[k][ + 'input_points'], v]) diff --git a/pina/condition/data_condition.py b/pina/condition/data_condition.py index c677723..255c329 100644 --- a/pina/condition/data_condition.py +++ b/pina/condition/data_condition.py @@ -18,12 +18,11 @@ class DataConditionInterface(ConditionInterface): def __init__(self, input_points, conditional_variables=None): """ - TODO + TODO : add docstring """ super().__init__() self.input_points = input_points self.conditional_variables = conditional_variables - self._condition_type = 'unsupervised' def __setattr__(self, key, value): if (key == 'input_points') or (key == 'conditional_variables'): diff --git a/pina/condition/domain_equation_condition.py b/pina/condition/domain_equation_condition.py index 58dca70..9fb0dcb 100644 --- a/pina/condition/domain_equation_condition.py +++ b/pina/condition/domain_equation_condition.py @@ -16,16 +16,15 @@ class DomainEquationCondition(ConditionInterface): def __init__(self, domain, equation): """ - TODO + TODO : add docstring """ super().__init__() self.domain = domain self.equation = equation - self._condition_type = 'physics' def __setattr__(self, key, value): if key == 'domain': - check_consistency(value, (DomainInterface)) + check_consistency(value, (DomainInterface, str)) DomainEquationCondition.__dict__[key].__set__(self, value) elif key == 'equation': check_consistency(value, (EquationInterface)) diff --git a/pina/condition/input_equation_condition.py b/pina/condition/input_equation_condition.py index bf05130..a597111 100644 --- a/pina/condition/input_equation_condition.py +++ b/pina/condition/input_equation_condition.py @@ -17,12 +17,11 @@ class InputPointsEquationCondition(ConditionInterface): def __init__(self, input_points, equation): """ - TODO + TODO : add docstring """ super().__init__() self.input_points = input_points self.equation = equation - self._condition_type = 'physics' def __setattr__(self, key, value): if key == 'input_points': diff --git a/pina/condition/input_output_condition.py b/pina/condition/input_output_condition.py index 08ed21d..5cf5518 100644 --- a/pina/condition/input_output_condition.py +++ b/pina/condition/input_output_condition.py @@ -1,4 +1,5 @@ import torch +import torch_geometric from .condition_interface import ConditionInterface from ..label_tensor import LabelTensor @@ -16,16 +17,15 @@ class InputOutputPointsCondition(ConditionInterface): def __init__(self, input_points, output_points): """ - TODO + TODO : add docstring """ super().__init__() self.input_points = input_points self.output_points = output_points - self._condition_type = ['supervised', 'physics'] def __setattr__(self, key, value): if (key == 'input_points') or (key == 'output_points'): - check_consistency(value, (LabelTensor, Graph, torch.Tensor)) + check_consistency(value, (LabelTensor, Graph, torch.Tensor, torch_geometric.data.Data)) InputOutputPointsCondition.__dict__[key].__set__(self, value) elif key in ('_problem', '_condition_type'): super().__setattr__(key, value) diff --git a/pina/data/__init__.py b/pina/data/__init__.py index 2b3a126..292c9ed 100644 --- a/pina/data/__init__.py +++ b/pina/data/__init__.py @@ -2,14 +2,11 @@ Import data classes """ __all__ = [ - 'PinaDataLoader', 'SupervisedDataset', 'SamplePointDataset', - 'UnsupervisedDataset', 'Batch', 'PinaDataModule', 'BaseDataset' + 'PinaDataModule', + 'PinaDataset' ] -from .pina_dataloader import PinaDataLoader -from .supervised_dataset import SupervisedDataset -from .sample_dataset import SamplePointDataset -from .unsupervised_dataset import UnsupervisedDataset -from .pina_batch import Batch + + from .data_module import PinaDataModule -from .base_dataset import BaseDataset +from .dataset import PinaDataset diff --git a/pina/data/base_dataset.py b/pina/data/base_dataset.py deleted file mode 100644 index 2c28ba3..0000000 --- a/pina/data/base_dataset.py +++ /dev/null @@ -1,157 +0,0 @@ -""" -Basic data module implementation -""" -import torch -import logging - -from torch.utils.data import Dataset - -from ..label_tensor import LabelTensor - - -class BaseDataset(Dataset): - """ - BaseDataset class, which handle initialization and data retrieval - :var condition_indices: List of indices - :var device: torch.device - """ - - def __new__(cls, problem=None, device=torch.device('cpu')): - """ - Ensure correct definition of __slots__ before initialization - :param AbstractProblem problem: The formulation of the problem. - :param torch.device device: The device on which the - dataset will be loaded. - """ - if cls is BaseDataset: - raise TypeError( - 'BaseDataset cannot be instantiated directly. Use a subclass.') - if not hasattr(cls, '__slots__'): - raise TypeError( - 'Something is wrong, __slots__ must be defined in subclasses.') - return object.__new__(cls) - - def __init__(self, problem=None, device=torch.device('cpu')): - """" - Initialize the object based on __slots__ - :param AbstractProblem problem: The formulation of the problem. - :param torch.device device: The device on which the - dataset will be loaded. - """ - super().__init__() - self.empty = True - self.problem = problem - self.device = device - self.condition_indices = None - for slot in self.__slots__: - setattr(self, slot, []) - self.num_el_per_condition = [] - self.conditions_idx = [] - if self.problem is not None: - self._init_from_problem(self.problem.collector.data_collections) - self.initialized = False - - def _init_from_problem(self, collector_dict): - """ - TODO - """ - for name, data in collector_dict.items(): - keys = list(data.keys()) - if set(self.__slots__) == set(keys): - self._populate_init_list(data) - idx = [ - key for key, val in - self.problem.collector.conditions_name.items() - if val == name - ] - self.conditions_idx.append(idx) - self.initialize() - - def add_points(self, data_dict, condition_idx, batching_dim=0): - """ - This method filled internal lists of data points - :param data_dict: dictionary containing data points - :param condition_idx: index of the condition to which the data points - belong to - :param batching_dim: dimension of the batching - :raises: ValueError if the dataset has already been initialized - """ - if not self.initialized: - self._populate_init_list(data_dict, batching_dim) - self.conditions_idx.append(condition_idx) - self.empty = False - else: - raise ValueError('Dataset already initialized') - - def _populate_init_list(self, data_dict, batching_dim=0): - current_cond_num_el = None - for slot in data_dict.keys(): - slot_data = data_dict[slot] - if batching_dim != 0: - if isinstance(slot_data, (LabelTensor, torch.Tensor)): - dims = len(slot_data.size()) - slot_data = slot_data.permute( - [batching_dim] + - [dim for dim in range(dims) if dim != batching_dim]) - if current_cond_num_el is None: - current_cond_num_el = len(slot_data) - elif current_cond_num_el != len(slot_data): - raise ValueError('Different dimension in same condition') - current_list = getattr(self, slot) - current_list += [ - slot_data - ] if not (isinstance(slot_data, list)) else slot_data - self.num_el_per_condition.append(current_cond_num_el) - - def initialize(self): - """ - Initialize the datasets tensors/LabelTensors/lists given the lists - already filled - """ - logging.debug(f'Initialize dataset {self.__class__.__name__}') - - if self.num_el_per_condition: - self.condition_indices = torch.cat([ - torch.tensor([i] * self.num_el_per_condition[i], - dtype=torch.uint8) - for i in range(len(self.num_el_per_condition)) - ], - dim=0) - for slot in self.__slots__: - current_attribute = getattr(self, slot) - if all(isinstance(a, LabelTensor) for a in current_attribute): - setattr(self, slot, LabelTensor.vstack(current_attribute)) - self.initialized = True - - def __len__(self): - """ - :return: Number of elements in the dataset - """ - return len(getattr(self, self.__slots__[0])) - - def __getitem__(self, idx): - """ - :param idx: - :return: - """ - if not isinstance(idx, (tuple, list, slice, int)): - raise IndexError("Invalid index") - tensors = [] - for attribute in self.__slots__: - tensor = getattr(self, attribute) - if isinstance(attribute, (LabelTensor, torch.Tensor)): - tensors.append(tensor.__getitem__(idx)) - elif isinstance(attribute, list): - if isinstance(idx, (list, tuple)): - tensor = [tensor[i] for i in idx] - tensors.append(tensor) - return tensors - - def apply_shuffle(self, indices): - for slot in self.__slots__: - if slot != 'equation': - attribute = getattr(self, slot) - if isinstance(attribute, (LabelTensor, torch.Tensor)): - setattr(self, 'slot', attribute[[indices]]) - if isinstance(attribute, list): - setattr(self, 'slot', [attribute[i] for i in indices]) diff --git a/pina/data/data_module.py b/pina/data/data_module.py index bd117b5..c9af8ae 100644 --- a/pina/data/data_module.py +++ b/pina/data/data_module.py @@ -1,17 +1,71 @@ -""" -This module provide basic data management functionalities -""" - +import logging +from lightning.pytorch import LightningDataModule import math import torch -import logging -from pytorch_lightning import LightningDataModule -from .sample_dataset import SamplePointDataset -from .supervised_dataset import SupervisedDataset -from .unsupervised_dataset import UnsupervisedDataset -from .pina_dataloader import PinaDataLoader -from .pina_subset import PinaSubset +from ..label_tensor import LabelTensor +from torch.utils.data import DataLoader, BatchSampler, SequentialSampler, \ + RandomSampler +from torch.utils.data.distributed import DistributedSampler +from .dataset import PinaDatasetFactory +class Collator: + def __init__(self, max_conditions_lengths, ): + self.max_conditions_lengths = max_conditions_lengths + self.callable_function = self._collate_custom_dataloader if \ + max_conditions_lengths is None else ( + self._collate_standard_dataloader) + + @staticmethod + def _collate_custom_dataloader(batch): + return batch[0] + + def _collate_standard_dataloader(self, batch): + """ + Function used to collate the batch + """ + batch_dict = {} + if isinstance(batch, dict): + return batch + conditions_names = batch[0].keys() + + # Condition names + for condition_name in conditions_names: + single_cond_dict = {} + condition_args = batch[0][condition_name].keys() + for arg in condition_args: + data_list = [batch[idx][condition_name][arg] for idx in range( + min(len(batch), + self.max_conditions_lengths[condition_name]))] + if isinstance(data_list[0], LabelTensor): + single_cond_dict[arg] = LabelTensor.stack(data_list) + elif isinstance(data_list[0], torch.Tensor): + single_cond_dict[arg] = torch.stack(data_list) + else: + raise NotImplementedError( + f"Data type {type(data_list[0])} not supported") + batch_dict[condition_name] = single_cond_dict + return batch_dict + + def __call__(self, batch): + return self.callable_function(batch) + + +class PinaBatchSampler(BatchSampler): + def __init__(self, dataset, batch_size, shuffle, sampler=None): + if sampler is None: + if (torch.distributed.is_available() and + torch.distributed.is_initialized()): + rank = torch.distributed.get_rank() + world_size = torch.distributed.get_world_size() + sampler = DistributedSampler(dataset, shuffle=shuffle, + rank=rank, num_replicas=world_size) + else: + if shuffle: + sampler = RandomSampler(dataset) + else: + sampler = SequentialSampler(dataset) + super().__init__(sampler=sampler, batch_size=batch_size, + drop_last=False) class PinaDataModule(LightningDataModule): """ @@ -20,160 +74,218 @@ class PinaDataModule(LightningDataModule): """ def __init__(self, - problem, - device, + collector, train_size=.7, - test_size=.1, - val_size=.2, + test_size=.2, + val_size=.1, predict_size=0., batch_size=None, shuffle=True, - datasets=None): + repeat=False, + automatic_batching=False + ): """ Initialize the object, creating dataset based on input problem - :param AbstractProblem problem: PINA problem - :param device: Device used for training and testing + :param Collector collector: PINA problem :param train_size: number/percentage of elements in train split :param test_size: number/percentage of elements in test split - :param eval_size: number/percentage of elements in evaluation split + :param val_size: number/percentage of elements in evaluation split :param batch_size: batch size used for training - :param datasets: list of datasets objects """ logging.debug('Start initialization of Pina DataModule') logging.info('Start initialization of Pina DataModule') super().__init__() - self.problem = problem - self.device = device - self.dataset_classes = [ - SupervisedDataset, UnsupervisedDataset, SamplePointDataset - ] - if datasets is None: - self.datasets = None - else: - self.datasets = datasets - - self.split_length = [] - self.split_names = [] - self.loader_functions = {} + self.default_batching = automatic_batching self.batch_size = batch_size - self.condition_names = problem.collector.conditions_name - - if train_size > 0: - self.split_names.append('train') - self.split_length.append(train_size) - self.loader_functions['train_dataloader'] = lambda: PinaDataLoader( - self.splits['train'], self.batch_size, self.condition_names) - if test_size > 0: - self.split_length.append(test_size) - self.split_names.append('test') - self.loader_functions['test_dataloader'] = lambda: PinaDataLoader( - self.splits['test'], self.batch_size, self.condition_names) - if val_size > 0: - self.split_length.append(val_size) - self.split_names.append('val') - self.loader_functions['val_dataloader'] = lambda: PinaDataLoader( - self.splits['val'], self.batch_size, self.condition_names) - if predict_size > 0: - self.split_length.append(predict_size) - self.split_names.append('predict') - self.loader_functions['predict_dataloader'] = lambda: PinaDataLoader( - self.splits['predict'], self.batch_size, self.condition_names) - self.splits = {k: {} for k in self.split_names} self.shuffle = shuffle + self.repeat = repeat - for k, v in self.loader_functions.items(): - setattr(self, k, v) - - def prepare_data(self): - if self.datasets is None: - self._create_datasets() + # Begin Data splitting + splits_dict = {} + if train_size > 0: + splits_dict['train'] = train_size + self.train_dataset = None + else: + self.train_dataloader = super().train_dataloader + if test_size > 0: + splits_dict['test'] = test_size + self.test_dataset = None + else: + self.test_dataloader = super().test_dataloader + if val_size > 0: + splits_dict['val'] = val_size + self.val_dataset = None + else: + self.val_dataloader = super().val_dataloader + if predict_size > 0: + splits_dict['predict'] = predict_size + self.predict_dataset = None + else: + self.predict_dataloader = super().predict_dataloader + self.collector_splits = self._create_splits(collector, splits_dict) def setup(self, stage=None): """ Perform the splitting of the dataset """ logging.debug('Start setup of Pina DataModule obj') - if self.datasets is None: - self._create_datasets() if stage == 'fit' or stage is None: - for dataset in self.datasets: - if len(dataset) > 0: - splits = self.dataset_split(dataset, - self.split_length, - shuffle=self.shuffle) - for i in range(len(self.split_length)): - self.splits[self.split_names[i]][ - dataset.data_type] = splits[i] + self.train_dataset = PinaDatasetFactory( + self.collector_splits['train'], + max_conditions_lengths=self.find_max_conditions_lengths( + 'train')) + if 'val' in self.collector_splits.keys(): + self.val_dataset = PinaDatasetFactory( + self.collector_splits['val'], + max_conditions_lengths=self.find_max_conditions_lengths( + 'val') + ) elif stage == 'test': - raise NotImplementedError("Testing pipeline not implemented yet") + self.test_dataset = PinaDatasetFactory( + self.collector_splits['test'], + max_conditions_lengths=self.find_max_conditions_lengths( + 'test') + ) + elif stage == 'predict': + self.predict_dataset = PinaDatasetFactory( + self.collector_splits['predict'], + max_conditions_lengths=self.find_max_conditions_lengths( + 'predict') + ) else: - raise ValueError("stage must be either 'fit' or 'test'") + raise ValueError( + "stage must be either 'fit' or 'test' or 'predict'." + ) @staticmethod - def dataset_split(dataset, lengths, seed=None, shuffle=True): - """ - Perform the splitting of the dataset - :param dataset: dataset object we wanted to split - :param lengths: lengths of elements in dataset - :param seed: random seed - :param shuffle: shuffle dataset - :return: split dataset - :rtype: PinaSubset - """ - if sum(lengths) - 1 < 1e-3: - len_dataset = len(dataset) - lengths = [ - int(math.floor(len_dataset * length)) for length in lengths - ] - remainder = len(dataset) - sum(lengths) - for i in range(remainder): - lengths[i % len(lengths)] += 1 - elif sum(lengths) - 1 >= 1e-3: - raise ValueError(f"Sum of lengths is {sum(lengths)} less than 1") + def _split_condition(condition_dict, splits_dict): + len_condition = len(condition_dict['input_points']) - if shuffle: - if seed is not None: - generator = torch.Generator() - generator.manual_seed(seed) - indices = torch.randperm(sum(lengths), generator=generator) - else: - indices = torch.randperm(sum(lengths)) - dataset.apply_shuffle(indices) - - indices = torch.arange(0, sum(lengths), 1, dtype=torch.uint8).tolist() - offsets = [ - sum(lengths[:i]) if i > 0 else 0 for i in range(len(lengths)) - ] - return [ - PinaSubset(dataset, indices[offset:offset + length]) - for offset, length in zip(offsets, lengths) + lengths = [ + int(math.floor(len_condition * length)) for length in + splits_dict.values() ] - def _create_datasets(self): + remainder = len_condition - sum(lengths) + for i in range(remainder): + lengths[i % len(lengths)] += 1 + splits_dict = {k: v for k, v in zip(splits_dict.keys(), lengths) + } + to_return_dict = {} + offset = 0 + for stage, stage_len in splits_dict.items(): + to_return_dict[stage] = {k: v[offset:offset + stage_len] + for k, v in condition_dict.items() if + k != 'equation' + # Equations are NEVER dataloaded + } + offset += stage_len + return to_return_dict + + def _create_splits(self, collector, splits_dict): """ - Create the dataset objects putting data + Create the dataset objects putting data """ - logging.debug('Dataset creation in PinaDataModule obj') - collector = self.problem.collector - batching_dim = self.problem.batching_dimension - datasets_slots = [i.__slots__ for i in self.dataset_classes] - self.datasets = [ - dataset(device=self.device) for dataset in self.dataset_classes - ] - logging.debug('Filling datasets in PinaDataModule obj') - for name, data in collector.data_collections.items(): - keys = list(data.keys()) - idx = [ - key for key, val in collector.conditions_name.items() - if val == name - ] - for i, slot in enumerate(datasets_slots): - if slot == keys: - self.datasets[i].add_points(data, idx[0], batching_dim) + + # ----------- Auxiliary function ------------ + def _apply_shuffle(condition_dict, len_data): + idx = torch.randperm(len_data) + for k, v in condition_dict.items(): + if k == 'equation': continue - datasets = [] - for dataset in self.datasets: - if not dataset.empty: - dataset.initialize() - datasets.append(dataset) - self.datasets = datasets + if isinstance(v, list): + condition_dict[k] = [v[i] for i in idx] + elif isinstance(v, LabelTensor): + condition_dict[k] = LabelTensor(v.tensor[idx], + v.labels) + elif isinstance(v, torch.Tensor): + condition_dict[k] = v[idx] + else: + raise ValueError(f"Data type {type(v)} not supported") + # ----------- End auxiliary function ------------ + + logging.debug('Dataset creation in PinaDataModule obj') + split_names = list(splits_dict.keys()) + dataset_dict = {name: {} for name in split_names} + for condition_name, condition_dict in collector.data_collections.items(): + len_data = len(condition_dict['input_points']) + if self.shuffle: + _apply_shuffle(condition_dict, len_data) + for key, data in self._split_condition(condition_dict, + splits_dict).items(): + dataset_dict[key].update({condition_name: data}) + return dataset_dict + + def find_max_conditions_lengths(self, split): + max_conditions_lengths = {} + for k, v in self.collector_splits[split].items(): + if self.batch_size is None: + max_conditions_lengths[k] = len(v['input_points']) + elif self.repeat: + max_conditions_lengths[k] = self.batch_size + else: + max_conditions_lengths[k] = min(len(v['input_points']), + self.batch_size) + return max_conditions_lengths + + def val_dataloader(self): + """ + Create the validation dataloader + """ + + batch_size = self.batch_size if self.batch_size is not None else len( + self.val_dataset) + + # Use default batching in torch DataLoader (good is batch size is small) + if self.default_batching: + collate = Collator(self.find_max_conditions_lengths('val')) + return DataLoader(self.val_dataset, self.batch_size, + collate_fn=collate) + collate = Collator(None) + # Use custom batching (good if batch size is large) + sampler = PinaBatchSampler(self.val_dataset, batch_size, shuffle=False) + return DataLoader(self.val_dataset, sampler=sampler, + collate_fn=collate) + + def train_dataloader(self): + """ + Create the training dataloader + """ + # Use default batching in torch DataLoader (good is batch size is small) + if self.default_batching: + collate = Collator(self.find_max_conditions_lengths('train')) + return DataLoader(self.train_dataset, self.batch_size, + collate_fn=collate) + collate = Collator(None) + # Use custom batching (good if batch size is large) + batch_size = self.batch_size if self.batch_size is not None else len( + self.train_dataset) + sampler = PinaBatchSampler(self.train_dataset, batch_size, + shuffle=False) + return DataLoader(self.train_dataset, sampler=sampler, + collate_fn=collate) + + def test_dataloader(self): + """ + Create the testing dataloader + """ + raise NotImplementedError("Test dataloader not implemented") + + def predict_dataloader(self): + """ + Create the prediction dataloader + """ + raise NotImplementedError("Predict dataloader not implemented") + + def transfer_batch_to_device(self, batch, device, dataloader_idx): + """ + Transfer the batch to the device. This method is called in the + training loop and is used to transfer the batch to the device. + """ + batch = [ + (k, super(LightningDataModule, self).transfer_batch_to_device(v, + device, + dataloader_idx)) + for k, v in batch.items() + ] + return batch diff --git a/pina/data/dataset.py b/pina/data/dataset.py new file mode 100644 index 0000000..0bc9237 --- /dev/null +++ b/pina/data/dataset.py @@ -0,0 +1,102 @@ +""" +This module provide basic data management functionalities +""" +import torch +from torch.utils.data import Dataset +from abc import abstractmethod +from torch_geometric.data import Batch + +class PinaDatasetFactory: + """ + Factory class for the PINA dataset. Depending on the type inside the + conditions it creates a different dataset object: + - PinaTensorDataset for torch.Tensor + - PinaGraphDataset for list of torch_geometric.data.Data objects + """ + def __new__(cls, conditions_dict, **kwargs): + if len(conditions_dict) == 0: + raise ValueError('No conditions provided') + if all([isinstance(v['input_points'], torch.Tensor) for v + in conditions_dict.values()]): + return PinaTensorDataset(conditions_dict, **kwargs) + elif all([isinstance(v['input_points'], list) for v + in conditions_dict.values()]): + return PinaGraphDataset(conditions_dict, **kwargs) + raise ValueError('Conditions must be either torch.Tensor or list of Data ' + 'objects.') + +class PinaDataset(Dataset): + """ + Abstract class for the PINA dataset + """ + def __init__(self, conditions_dict, max_conditions_lengths): + self.conditions_dict = conditions_dict + self.max_conditions_lengths = max_conditions_lengths + self.conditions_length = {k: len(v['input_points']) for k, v in + self.conditions_dict.items()} + self.length = max(self.conditions_length.values()) + + def _get_max_len(self): + max_len = 0 + for condition in self.conditions_dict.values(): + max_len = max(max_len, len(condition['input_points'])) + return max_len + + def __len__(self): + return self.length + + @abstractmethod + def __getitem__(self, item): + pass + +class PinaTensorDataset(PinaDataset): + def __init__(self, conditions_dict, max_conditions_lengths, + ): + super().__init__(conditions_dict, max_conditions_lengths) + + def _getitem_int(self, idx): + return { + k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data + in v.keys()} for k, v in self.conditions_dict.items() + } + + def _getitem_list(self, idx): + to_return_dict = {} + for condition, data in self.conditions_dict.items(): + cond_idx = idx[:self.max_conditions_lengths[condition]] + condition_len = self.conditions_length[condition] + if self.length > condition_len: + cond_idx = [idx%condition_len for idx in cond_idx] + to_return_dict[condition] = {k: v[cond_idx] + for k, v in data.items()} + return to_return_dict + + def __getitem__(self, idx): + if isinstance(idx, int): + return self._getitem_int(idx) + return self._getitem_list(idx) + +class PinaGraphDataset(PinaDataset): + pass + """ + def __init__(self, conditions_dict, max_conditions_lengths): + super().__init__(conditions_dict, max_conditions_lengths) + + def __getitem__(self, idx): + + Getitem method for large batch size + + to_return_dict = {} + for condition, data in self.conditions_dict.items(): + cond_idx = idx[:self.max_conditions_lengths[condition]] + condition_len = self.conditions_length[condition] + if self.length > condition_len: + cond_idx = [idx%condition_len for idx in cond_idx] + to_return_dict[condition] = {k: Batch.from_data_list([v[i] + for i in cond_idx]) + if isinstance(v, list) + else v[cond_idx].tensor.reshape(-1, v.size(-1)) + for k, v in data.items() + } + return to_return_dict + """ diff --git a/pina/data/pina_batch.py b/pina/data/pina_batch.py deleted file mode 100644 index c5d1b61..0000000 --- a/pina/data/pina_batch.py +++ /dev/null @@ -1,47 +0,0 @@ -""" -Batch management module -""" -from .pina_subset import PinaSubset - - -class Batch: - """ - Implementation of the Batch class used during training to perform SGD - optimization. - """ - - def __init__(self, dataset_dict, idx_dict, require_grad=True): - self.attributes = [] - for k, v in dataset_dict.items(): - setattr(self, k, v) - self.attributes.append(k) - - for k, v in idx_dict.items(): - setattr(self, k + '_idx', v) - self.require_grad = require_grad - - def __len__(self): - """ - Returns the number of elements in the batch - :return: number of elements in the batch - :rtype: int - """ - length = 0 - for dataset in dir(self): - attribute = getattr(self, dataset) - if isinstance(attribute, list): - length += len(getattr(self, dataset)) - return length - - def __getattribute__(self, item): - if item in super().__getattribute__('attributes'): - dataset = super().__getattribute__(item) - index = super().__getattribute__(item + '_idx') - return PinaSubset(dataset.dataset, dataset.indices[index]) - return super().__getattribute__(item) - - def __getattr__(self, item): - if item == 'data' and len(self.attributes) == 1: - item = self.attributes[0] - return super().__getattribute__(item) - raise AttributeError(f"'Batch' object has no attribute '{item}'") diff --git a/pina/data/pina_dataloader.py b/pina/data/pina_dataloader.py deleted file mode 100644 index e2d3fb7..0000000 --- a/pina/data/pina_dataloader.py +++ /dev/null @@ -1,68 +0,0 @@ -""" -This module is used to create an iterable object used during training -""" -import math -from .pina_batch import Batch - - -class PinaDataLoader: - """ - This class is used to create a dataloader to use during the training. - - :var condition_names: The names of the conditions. The order is consistent - with the condition indeces in the batches. - :vartype condition_names: list[str] - """ - - def __init__(self, dataset_dict, batch_size, condition_names) -> None: - """ - Initialize local variables - :param dataset_dict: Dictionary of datasets - :type dataset_dict: dict - :param batch_size: Size of the batch - :type batch_size: int - :param condition_names: Names of the conditions - :type condition_names: list[str] - """ - self.condition_names = condition_names - self.dataset_dict = dataset_dict - self._init_batches(batch_size) - - def _init_batches(self, batch_size=None): - """ - Create batches according to the batch_size provided in input. - """ - self.batches = [] - n_elements = sum(len(v) for v in self.dataset_dict.values()) - if batch_size is None: - batch_size = n_elements - indexes_dict = {} - n_batches = int(math.ceil(n_elements / batch_size)) - for k, v in self.dataset_dict.items(): - if n_batches != 1: - indexes_dict[k] = math.floor(len(v) / (n_batches - 1)) - else: - indexes_dict[k] = len(v) - for i in range(n_batches): - temp_dict = {} - for k, v in indexes_dict.items(): - if i != n_batches - 1: - temp_dict[k] = slice(i * v, (i + 1) * v) - else: - temp_dict[k] = slice(i * v, len(self.dataset_dict[k])) - self.batches.append( - Batch(idx_dict=temp_dict, dataset_dict=self.dataset_dict)) - - def __iter__(self): - """ - Makes dataloader object iterable - """ - yield from self.batches - - def __len__(self): - """ - Return the number of batches. - :return: The number of batches. - :rtype: int - """ - return len(self.batches) diff --git a/pina/data/pina_subset.py b/pina/data/pina_subset.py deleted file mode 100644 index 275541e..0000000 --- a/pina/data/pina_subset.py +++ /dev/null @@ -1,36 +0,0 @@ -""" -Module for PinaSubset class -""" -from pina import LabelTensor -from torch import Tensor, float32 - - -class PinaSubset: - """ - TODO - """ - __slots__ = ['dataset', 'indices', 'require_grad'] - - def __init__(self, dataset, indices, require_grad=True): - """ - TODO - """ - self.dataset = dataset - self.indices = indices - self.require_grad = require_grad - - def __len__(self): - """ - TODO - """ - return len(self.indices) - - def __getattr__(self, name): - tensor = self.dataset.__getattribute__(name) - if isinstance(tensor, (LabelTensor, Tensor)): - tensor = tensor[[self.indices]].to(self.dataset.device) - return tensor.requires_grad_( - self.require_grad) if tensor.dtype == float32 else tensor - if isinstance(tensor, list): - return [tensor[i] for i in self.indices] - raise AttributeError(f"No attribute named {name}") diff --git a/pina/data/sample_dataset.py b/pina/data/sample_dataset.py deleted file mode 100644 index bc3bca3..0000000 --- a/pina/data/sample_dataset.py +++ /dev/null @@ -1,35 +0,0 @@ -""" -Sample dataset module -""" -from copy import deepcopy -from .base_dataset import BaseDataset -from ..condition import InputPointsEquationCondition - - -class SamplePointDataset(BaseDataset): - """ - This class extends the BaseDataset to handle physical datasets - composed of only input points. - """ - data_type = 'physics' - __slots__ = InputPointsEquationCondition.__slots__ - - def add_points(self, data_dict, condition_idx, batching_dim=0): - data_dict = deepcopy(data_dict) - data_dict.pop('equation') - super().add_points(data_dict, condition_idx) - - def _init_from_problem(self, collector_dict): - for name, data in collector_dict.items(): - keys = list(data.keys()) - if set(self.__slots__) == set(keys): - data = deepcopy(data) - data.pop('equation') - self._populate_init_list(data) - idx = [ - key for key, val in - self.problem.collector.conditions_name.items() - if val == name - ] - self.conditions_idx.append(idx) - self.initialize() diff --git a/pina/data/supervised_dataset.py b/pina/data/supervised_dataset.py deleted file mode 100644 index be60105..0000000 --- a/pina/data/supervised_dataset.py +++ /dev/null @@ -1,13 +0,0 @@ -""" -Supervised dataset module -""" -from .base_dataset import BaseDataset - - -class SupervisedDataset(BaseDataset): - """ - This class extends the BaseDataset to handle datasets that consist of - input-output pairs. - """ - data_type = 'supervised' - __slots__ = ['input_points', 'output_points'] diff --git a/pina/data/unsupervised_dataset.py b/pina/data/unsupervised_dataset.py deleted file mode 100644 index 18cf296..0000000 --- a/pina/data/unsupervised_dataset.py +++ /dev/null @@ -1,14 +0,0 @@ -""" -Unsupervised dataset module -""" -from .base_dataset import BaseDataset - - -class UnsupervisedDataset(BaseDataset): - """ - This class extend BaseDataset class to handle - unsupervised dataset,composed of input points - and, optionally, conditional variables - """ - data_type = 'unsupervised' - __slots__ = ['input_points', 'conditional_variables'] diff --git a/pina/graph.py b/pina/graph.py index 97b2770..bde5bbf 100644 --- a/pina/graph.py +++ b/pina/graph.py @@ -93,8 +93,8 @@ class Graph: logging.debug(f"edge_index computed") return Data( - x=nodes_data, - pos=nodes_coordinates, + x=nodes_data.tensor, + pos=nodes_coordinates.tensor, edge_index=edge_index, edge_attr=edges_data, ) diff --git a/pina/label_tensor.py b/pina/label_tensor.py index 719975c..a3cf5d2 100644 --- a/pina/label_tensor.py +++ b/pina/label_tensor.py @@ -4,26 +4,20 @@ import torch from torch import Tensor -def issubset(a, b): - """ - Check if a is a subset of b. - """ - if isinstance(a, list) and isinstance(b, list): - return set(a).issubset(set(b)) - if isinstance(a, range) and isinstance(b, range): - return a.start <= b.start and a.stop >= b.stop - return False - +full_labels = True +MATH_FUNCTIONS = {torch.sin, torch.cos} class LabelTensor(torch.Tensor): """Torch tensor with a label for any column.""" @staticmethod def __new__(cls, x, labels, *args, **kwargs): + full = kwargs.pop("full", full_labels) + if isinstance(x, LabelTensor): + x.full = full return x - else: - return super().__new__(cls, x, *args, **kwargs) + return super().__new__(cls, x, *args, **kwargs) @property def tensor(self): @@ -40,22 +34,11 @@ class LabelTensor(torch.Tensor): {1: {"name": "space"['a', 'b', 'c']) """ - self.dim_names = None - self.full = kwargs.get('full', True) - self.labels = labels - - @classmethod - def __internal_init__(cls, - x, - labels, - dim_names, - *args, - **kwargs): - lt = cls.__new__(cls, x, labels, *args, **kwargs) - lt._labels = labels - lt.full = kwargs.get('full', True) - lt.dim_names = dim_names - return lt + self.full = kwargs.get('full', full_labels) + if labels is not None: + self.labels = labels + else: + self._labels = {} @property def labels(self): @@ -104,14 +87,13 @@ class LabelTensor(torch.Tensor): self._labels = {} if isinstance(labels, dict): self._init_labels_from_dict(labels) - elif isinstance(labels, list): + elif isinstance(labels, (list, range)): self._init_labels_from_list(labels) elif isinstance(labels, str): labels = [labels] self._init_labels_from_list(labels) else: raise ValueError("labels must be list, dict or string.") - self.set_names() def _init_labels_from_dict(self, labels): """ @@ -125,34 +107,38 @@ class LabelTensor(torch.Tensor): """ tensor_shape = self.shape + # Set all labels if full_labels is True if hasattr(self, 'full') and self.full: labels = { i: labels[i] if i in labels else { - 'name': i + 'name': i, 'dof': range(tensor_shape[i]) } - for i in labels.keys() + for i in range(len(tensor_shape)) } + for k, v in labels.items(): + # Init labels from str if isinstance(v, str): v = {'name': v, 'dof': range(tensor_shape[k])} + # Init labels from dict - elif isinstance(v, dict) and list(v.keys()) == ['name']: - # Init from dict with only name key - v['dof'] = range(tensor_shape[k]) - # Init from dict with both name and dof keys - elif isinstance(v, dict) and sorted(list( - v.keys())) == ['dof', 'name']: - dof_list = v['dof'] - dof_len = len(dof_list) - if dof_len != len(set(dof_list)): - raise ValueError("dof must be unique") - if dof_len != tensor_shape[k]: - raise ValueError( - 'Number of dof does not match tensor shape') + elif isinstance(v, dict): + # Only name of the dimension if provided + if list(v.keys()) == ['name']: + v['dof'] = range(tensor_shape[k]) + # Both name and dof are provided + elif sorted(list(v.keys())) == ['dof', 'name']: + dof_list = v['dof'] + dof_len = len(dof_list) + if dof_len != len(set(dof_list)): + raise ValueError("dof must be unique") + if dof_len != tensor_shape[k]: + raise ValueError( + 'Number of dof does not match tensor shape') else: raise ValueError('Illegal labels initialization') - # Perform update + # Assign labels values self._labels[k] = v def _init_labels_from_list(self, labels): @@ -172,75 +158,71 @@ class LabelTensor(torch.Tensor): } self._init_labels_from_dict(last_dim_labels) - def set_names(self): - labels = self.stored_labels - self.dim_names = {} - for dim in labels.keys(): - self.dim_names[labels[dim]['name']] = dim - def extract(self, labels_to_extract): """ Extract the subset of the original tensor by returning all the columns corresponding to the passed ``label_to_extract``. - :param label_to_extract: The label(s) to extract. - :type label_to_extract: str | list(str) | tuple(str) + :param labels_to_extract: The label(s) to extract. + :type labels_to_extract: str | list(str) | tuple(str) :raises TypeError: Labels are not ``str``. :raises ValueError: Label to extract is not in the labels ``list``. """ # Convert str/int to string + def find_names(labels): + dim_names = {} + for dim in labels.keys(): + dim_names[labels[dim]['name']] = dim + return dim_names + if isinstance(labels_to_extract, (str, int)): labels_to_extract = [labels_to_extract] # Store useful variables - labels = self.stored_labels + labels = copy(self._labels) stored_keys = labels.keys() - dim_names = self.dim_names + dim_names = find_names(labels) ndim = len(super().shape) - # Convert tuple/list to dict + # Convert tuple/list to dict (having a list as input + # means that we want to extract a values from the last dimension) if isinstance(labels_to_extract, (tuple, list)): if not ndim - 1 in stored_keys: raise ValueError( "LabelTensor does not have labels in last dimension") - name = labels[max(stored_keys)]['name'] + name = labels[ndim-1]['name'] labels_to_extract = {name: list(labels_to_extract)} # If labels_to_extract is not dict then rise error if not isinstance(labels_to_extract, dict): raise ValueError('labels_to_extract must be str or list or dict') - # Make copy of labels (avoid issue in consistency) - updated_labels = {k: copy(v) for k, v in labels.items()} - # Initialize list used to perform extraction - extractor = [slice(None) for _ in range(ndim)] + extractor = [slice(None)]*ndim # Loop over labels_to_extract dict - for k, v in labels_to_extract.items(): + for dim_name, labels_te in labels_to_extract.items(): # If label is not find raise value error - idx_dim = dim_names.get(k) + idx_dim = dim_names.get(dim_name, None) if idx_dim is None: raise ValueError( 'Cannot extract label with is not in original labels') dim_labels = labels[idx_dim]['dof'] - v = [v] if isinstance(v, (int, str)) else v - - if not isinstance(v, range): - extractor[idx_dim] = [dim_labels.index(i) - for i in v] if len(v) > 1 else slice( - dim_labels.index(v[0]), - dim_labels.index(v[0]) + 1) + labels_te = [labels_te] if isinstance(labels_te, (int, str)) else labels_te + if not isinstance(labels_te, range): + #If is done to keep the dimension if there is only one extracted label + extractor[idx_dim] = [dim_labels.index(i) for i in labels_te] \ + if len(labels_te)>1 else slice(dim_labels.index(labels_te[0]), dim_labels.index(labels_te[0])+1) else: - extractor[idx_dim] = slice(v.start, v.stop) + extractor[idx_dim] = slice(labels_te.start, labels_te.stop) - updated_labels.update({idx_dim: {'dof': v, 'name': k}}) + labels.update({idx_dim: {'dof': labels_te, 'name': dim_name}}) - tensor = self.tensor - tensor = tensor[extractor] - return LabelTensor.__internal_init__(tensor, updated_labels, dim_names) + tensor = super().__getitem__(extractor).as_subclass(LabelTensor) + tensor._labels = labels + return tensor def __str__(self): """ @@ -272,39 +254,53 @@ class LabelTensor(torch.Tensor): return [] if len(tensors) == 1 or isinstance(tensors, LabelTensor): return tensors[0] + # Perform cat on tensors new_tensor = torch.cat(tensors, dim=dim) - # Update labels - labels = LabelTensor.__create_labels_cat(tensors, dim) + # --------- Start definition auxiliary function ------ + # Compute and update labels + def create_labels_cat(tensors, dim, tensor_shape): + stored_labels = [tensor.stored_labels for tensor in tensors] + keys = stored_labels[0].keys() - return LabelTensor.__internal_init__(new_tensor, labels, - tensors[0].dim_names) + if any(not all(stored_labels[i][k] == stored_labels[0][k] for i in + range(len(stored_labels))) for k in keys if k != dim): + raise RuntimeError('tensors must have the same shape and dof') + + # Copy labels from the first tensor and update the 'dof' for dimension `dim` + labels = copy(stored_labels[0]) + if dim in labels: + labels_list = [tensor[dim]['dof'] for tensor in stored_labels] + last_dim_dof = range(tensor_shape[dim]) if all(isinstance(label, range) + for label in labels_list) else sum(labels_list, []) + labels[dim]['dof'] = last_dim_dof + return labels + # --------- End definition auxiliary function ------ + + # Update labels + if dim in tensors[0].stored_labels.keys(): + new_tensor_shape = new_tensor.shape + labels = create_labels_cat(tensors, dim, new_tensor_shape) + else: + labels = tensors[0].stored_labels + new_tensor._labels = labels + return new_tensor @staticmethod - def __create_labels_cat(tensors, dim): - # Check if names and dof of the labels are the same in all dimensions - # except in dim - stored_labels = [tensor.stored_labels for tensor in tensors] - - # check if: - # - labels dict have same keys - # - all labels are the same expect for dimension dim - if not all( - all(stored_labels[i][k] == stored_labels[0][k] - for i in range(len(stored_labels))) - for k in stored_labels[0].keys() if k != dim): - raise RuntimeError('tensors must have the same shape and dof') - - labels = {k: copy(v) for k, v in tensors[0].stored_labels.items()} - if dim in labels.keys(): - last_dim_dof = [i for j in stored_labels for i in j[dim]['dof']] - labels[dim]['dof'] = last_dim_dof - return labels + def stack(tensors): + new_tensor = torch.stack(tensors) + labels = tensors[0]._labels + labels = {key + 1: value for key, value in labels.items()} + if full_labels: + new_tensor.labels = labels + else: + new_tensor._labels = labels + return new_tensor def requires_grad_(self, mode=True): lt = super().requires_grad_(mode) - lt.labels = self._labels + lt._labels = self._labels return lt @property @@ -316,10 +312,9 @@ class LabelTensor(torch.Tensor): Performs Tensor dtype and/or device conversion. For more details, see :meth:`torch.Tensor.to`. """ - tmp = super().to(*args, **kwargs) - new = self.__class__.clone(self) - new.data = tmp.data - return new + lt = super().to(*args, **kwargs) + lt._labels = self._labels + return lt def clone(self, *args, **kwargs): """ @@ -329,8 +324,7 @@ class LabelTensor(torch.Tensor): :return: A copy of the tensor. :rtype: LabelTensor """ - labels = {k: copy(v) for k, v in self._labels.items()} - out = LabelTensor(super().clone(*args, **kwargs), labels) + out = LabelTensor(super().clone(*args, **kwargs), deepcopy(self._labels)) return out @staticmethod @@ -348,7 +342,7 @@ class LabelTensor(torch.Tensor): raise RuntimeError('Tensors must have the same shape and labels') last_dim_labels = [] - data = torch.zeros(tensors[0].tensor.shape) + data = torch.zeros(tensors[0].tensor.shape).to(tensors[0].device) for tensor in tensors: data += tensor.tensor last_dim_labels.append(tensor.labels) @@ -396,82 +390,114 @@ class LabelTensor(torch.Tensor): """ return LabelTensor.cat(label_tensors, dim=0) + # ---------------------- Start auxiliary function definition ----- + # This method is used to update labels + def _update_single_label(self, old_labels, to_update_labels, index, dim, + to_update_dim): + """ + TODO + :param old_labels: labels from which retrieve data + :param to_update_labels: labels to update + :param index: index of dof to retain + :param dim: label index + :return: + """ + old_dof = old_labels[to_update_dim]['dof'] + if isinstance(index, slice): + to_update_labels.update({ + dim: { + 'dof': old_dof[index], + 'name': old_labels[dim]['name'] + } + }) + return + if isinstance(index, int): + index = [index] + if isinstance(index, (list, torch.Tensor)): + to_update_labels.update({ + dim: { + 'dof': [old_dof[i] for i in index] if isinstance(old_dof, list) else index, + 'name': old_labels[dim]['name'] + } + }) + return + raise NotImplementedError(f'Getitem not implemented for ' + f'{type(index)} values') + # ---------------------- End auxiliary function definition ----- + + def __getitem__(self, index): """ TODO: Complete docstring :param index: :return: """ - if isinstance(index, - str) or (isinstance(index, (tuple, list)) - and all(isinstance(a, str) for a in index)): + # Index are str --> call extract + if isinstance(index, str) or (isinstance(index, (tuple, list)) + and all( + isinstance(a, str) for a in index)): return self.extract(index) + # Store important variables selected_lt = super().__getitem__(index) + stored_labels = self._labels + labels = copy(stored_labels) - if isinstance(index, (int, slice)): + # Put here because it is the most common case (int as index). + # Used by DataLoader -> put here for efficiency purpose + if isinstance(index, list): + if 0 in labels.keys(): + self._update_single_label(stored_labels, labels, index, + 0, 0) + selected_lt._labels = labels + return selected_lt + + if isinstance(index, int): + labels.pop(0, None) + labels = {key - 1 if key > 0 else key: value for key, value in + labels.items()} + selected_lt._labels = labels + return selected_lt + + if not isinstance(index, (tuple, torch.Tensor)): index = [index] + # Ellipsis are used to perform operation on the last dimension if index[0] == Ellipsis: - index = [slice(None)] * (self.ndim - 1) + [index[1]] + if len(self.shape) in labels: + self._update_single_label(stored_labels, labels, index, 0, 0) + selected_lt._labels = labels + return selected_lt - if hasattr(self, "labels"): - labels = {k: copy(v) for k, v in self.stored_labels.items()} - for j, idx in enumerate(index): - if isinstance(idx, int): + i = 0 + for j, idx in enumerate(index): + if j in self.stored_labels.keys(): + if isinstance(idx, int) or ( + isinstance(idx, torch.Tensor) and idx.ndim == 0): selected_lt = selected_lt.unsqueeze(j) - if j in labels.keys() and idx != slice(None): - self._update_single_label(labels, labels, idx, j) - selected_lt = LabelTensor.__internal_init__(selected_lt, labels, - self.dim_names) + if idx != slice(None): + self._update_single_label(stored_labels, labels, idx, j, i) + else: + if isinstance(idx, int): + labels = {key - 1 if key > j else key: + value for key, value in labels.items()} + continue + i += 1 + selected_lt._labels = labels return selected_lt - @staticmethod - def _update_single_label(old_labels, to_update_labels, index, dim): - """ - TODO - :param old_labels: labels from which retrieve data - :param to_update_labels: labels to update - :param index: index of dof to retain - :param dim: label index - :return: - """ - old_dof = old_labels[dim]['dof'] - if not isinstance( - index, - (int, slice)) and len(index) == len(old_dof) and isinstance( - old_dof, range): - return - if isinstance(index, torch.Tensor): - index = index.nonzero( - as_tuple=True - )[0] if index.dtype == torch.bool else index.tolist() - if isinstance(index, list): - to_update_labels.update({ - dim: { - 'dof': [old_dof[i] for i in index], - 'name': old_labels[dim]['name'] - } - }) - else: - to_update_labels.update( - {dim: { - 'dof': old_dof[index], - 'name': old_labels[dim]['name'] - }}) - def sort_labels(self, dim=None): - def arg_sort(lst): return sorted(range(len(lst)), key=lambda x: lst[x]) - if dim is None: dim = self.ndim - 1 + if self.shape[dim] == 1: + return self labels = self.stored_labels[dim]['dof'] sorted_index = arg_sort(labels) indexer = [slice(None)] * self.ndim indexer[dim] = sorted_index - return self.__getitem__(indexer) + return self.__getitem__(tuple(indexer)) def __deepcopy__(self, memo): cls = self.__class__ @@ -480,10 +506,16 @@ class LabelTensor(torch.Tensor): def permute(self, *dims): tensor = super().permute(*dims) - stored_labels = self.stored_labels + labels = self._labels keys_list = list(*dims) labels = { - keys_list.index(k): copy(stored_labels[k]) - for k in stored_labels.keys() + keys_list.index(k): labels[k] + for k in labels.keys() } - return LabelTensor.__internal_init__(tensor, labels, self.dim_names) + tensor._labels = labels + return tensor + + def detach(self): + lt = super().detach() + lt._labels = self.stored_labels + return lt \ No newline at end of file diff --git a/pina/model/layers/lowrank_layer.py b/pina/model/layers/lowrank_layer.py index 80fb43e..c36d279 100644 --- a/pina/model/layers/lowrank_layer.py +++ b/pina/model/layers/lowrank_layer.py @@ -119,6 +119,7 @@ class LowRankBlock(torch.nn.Module): :rtype: torch.Tensor """ # extract basis + coords = coords.as_subclass(torch.Tensor) basis = self._basis(coords) # reshape [B, N, D, 2*rank] shape = list(basis.shape[:-1]) + [-1, 2 * self.rank] diff --git a/pina/model/network.py b/pina/model/network.py index 6fde803..aed3dff 100644 --- a/pina/model/network.py +++ b/pina/model/network.py @@ -29,7 +29,8 @@ class Network(torch.nn.Module): # check model consistency check_consistency(model, nn.Module) check_consistency(input_variables, str) - check_consistency(output_variables, str) + if output_variables is not None: + check_consistency(output_variables, str) self._model = model self._input_variables = input_variables @@ -67,16 +68,15 @@ class Network(torch.nn.Module): # in case `input_variables = []` all points are used if self._input_variables: x = x.extract(self._input_variables) - # extract features and append for feature in self._extra_features: x = x.append(feature(x)) # perform forward pass + converting to LabelTensor - output = self._model(x).as_subclass(LabelTensor) - - # set the labels for LabelTensor - output.labels = self._output_variables + x = x.as_subclass(torch.Tensor) + output = self._model(x) + if self._output_variables is not None: + output = LabelTensor(output, self._output_variables) return output @@ -97,15 +97,9 @@ class Network(torch.nn.Module): This function does not extract the input variables, all the variables are used for both tensors. Output variables are correctly applied. """ - # convert LabelTensor s to torch.Tensor s - x = list(map(lambda x: x.as_subclass(torch.Tensor), x)) # perform forward pass (using torch.Tensor) + converting to LabelTensor - output = self._model(x).as_subclass(LabelTensor) - - # set the labels for LabelTensor - output.labels = self._output_variables - + output = LabelTensor(self._model(x.tensor), self._output_variables) return output @property diff --git a/pina/operators.py b/pina/operators.py index 193243a..8dbfb8c 100644 --- a/pina/operators.py +++ b/pina/operators.py @@ -63,11 +63,9 @@ def grad(output_, input_, components=None, d=None): retain_graph=True, allow_unused=True, )[0] - - gradients.labels = input_.labels - gradients = gradients.extract(d) + gradients.labels = input_.stored_labels + gradients = gradients[..., [input_.labels.index(i) for i in d]] gradients.labels = [f"d{output_fieldname}d{i}" for i in d] - return gradients if not isinstance(input_, LabelTensor): @@ -216,7 +214,9 @@ def laplacian(output_, input_, components=None, d=None, method="std"): to_append_tensors = [] for i, label in enumerate(grad_output.labels): gg = grad(grad_output, input_, d=d, components=[label]) - to_append_tensors.append(gg.extract([gg.labels[i]])) + gg = gg.extract([gg.labels[i]]) + + to_append_tensors.append(gg) labels = [f"dd{components[0]}"] result = LabelTensor.summation(tensors=to_append_tensors) result.labels = labels diff --git a/pina/problem/abstract_problem.py b/pina/problem/abstract_problem.py index 6897fbb..5f424cf 100644 --- a/pina/problem/abstract_problem.py +++ b/pina/problem/abstract_problem.py @@ -90,10 +90,9 @@ class AbstractProblem(metaclass=ABCMeta): variables += self.spatial_variables if hasattr(self, "temporal_variable"): variables += self.temporal_variable - if hasattr(self, "unknown_parameters"): + if hasattr(self, "parameters"): variables += self.parameters - if hasattr(self, "custom_variables"): - variables += self.custom_variables + return variables @@ -170,7 +169,6 @@ class AbstractProblem(metaclass=ABCMeta): f"Wrong variables for sampling. Variables ", f"should be in {self.input_variables}.", ) - # check correct location if locations == "all": locations = [ diff --git a/pina/problem/inverse_problem.py b/pina/problem/inverse_problem.py index 51cbd3c..e54495a 100644 --- a/pina/problem/inverse_problem.py +++ b/pina/problem/inverse_problem.py @@ -1,7 +1,6 @@ """Module for the ParametricProblem class""" - +import torch from abc import abstractmethod - from .abstract_problem import AbstractProblem diff --git a/pina/solvers/graph.py b/pina/solvers/graph.py deleted file mode 100644 index 9af04e7..0000000 --- a/pina/solvers/graph.py +++ /dev/null @@ -1,34 +0,0 @@ -from .supervised import SupervisedSolver -from ..graph import Graph - - -class GraphSupervisedSolver(SupervisedSolver): - - def __init__( - self, - problem, - model, - nodes_coordinates, - nodes_data, - loss=None, - optimizer=None, - scheduler=None): - super().__init__(problem, model, loss, optimizer, scheduler) - if isinstance(nodes_coordinates, str): - self._nodes_coordinates = [nodes_coordinates] - else: - self._nodes_coordinates = nodes_coordinates - if isinstance(nodes_data, str): - self._nodes_data = nodes_data - else: - self._nodes_data = nodes_data - - def forward(self, input): - input_coords = input.extract(self._nodes_coordinates) - input_data = input.extract(self._nodes_data) - - if not isinstance(input, Graph): - input = Graph.build('radius', nodes_coordinates=input_coords, nodes_data=input_data, radius=0.2) - g = self.model(input.data, edge_index=input.data.edge_index) - g.labels = {1: {'name': 'output', 'dof': ['u']}} - return g diff --git a/pina/solvers/pinns/basepinn.py b/pina/solvers/pinns/basepinn.py index a8315b2..66f4d14 100644 --- a/pina/solvers/pinns/basepinn.py +++ b/pina/solvers/pinns/basepinn.py @@ -1,14 +1,15 @@ """ Module for PINN """ -import sys from abc import ABCMeta, abstractmethod import torch - -from ...solvers.solver import SolverInterface -from pina.utils import check_consistency -from pina.loss.loss_interface import LossInterface -from pina.problem import InverseProblem from torch.nn.modules.loss import _Loss +from ...condition import InputOutputPointsCondition +from ...solvers.solver import SolverInterface +from ...utils import check_consistency +from ...loss.loss_interface import LossInterface +from ...problem import InverseProblem +from ...condition import DomainEquationCondition +from ...optim import TorchOptimizer, TorchScheduler torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732 @@ -25,13 +26,14 @@ class PINNInterface(SolverInterface, metaclass=ABCMeta): to the user to choose which problem the implemented solver inheriting from this class is suitable for. """ - + accepted_condition_types = [DomainEquationCondition.condition_type[0], + InputOutputPointsCondition.condition_type[0]] def __init__( self, models, problem, optimizers, - optimizers_kwargs, + schedulers, extra_features, loss, ): @@ -53,11 +55,20 @@ class PINNInterface(SolverInterface, metaclass=ABCMeta): :param torch.nn.Module loss: The loss function used as minimizer, default :class:`torch.nn.MSELoss`. """ + if optimizers is None: + optimizers = TorchOptimizer(torch.optim.Adam, lr=0.001) + + if schedulers is None: + schedulers = TorchScheduler(torch.optim.lr_scheduler.ConstantLR) + + if loss is None: + loss = torch.nn.MSELoss() + super().__init__( models=models, problem=problem, optimizers=optimizers, - optimizers_kwargs=optimizers_kwargs, + schedulers=schedulers, extra_features=extra_features, ) @@ -85,7 +96,12 @@ class PINNInterface(SolverInterface, metaclass=ABCMeta): # variable will be stored with name = self.__logged_metric self.__logged_metric = None - def training_step(self, batch, _): + self._model = self._pina_models[0] + self._optimizer = self._pina_optimizers[0] + self._scheduler = self._pina_schedulers[0] + + + def training_step(self, batch): """ The Physics Informed Solver Training Step. This function takes care of the physics informed training step, and it must not be override @@ -99,53 +115,68 @@ class PINNInterface(SolverInterface, metaclass=ABCMeta): :rtype: LabelTensor """ - condition_losses = [] - condition_idx = batch["condition"] + condition_loss = [] + for condition_name, points in batch: + if 'output_points' in points: + input_pts, output_pts = points['input_points'], points['output_points'] - for condition_id in range(condition_idx.min(), condition_idx.max() + 1): - - condition_name = self._dataloader.condition_names[condition_id] - condition = self.problem.conditions[condition_name] - pts = batch["pts"] - # condition name is logged (if logs enabled) - self.__logged_metric = condition_name - - if len(batch) == 2: - samples = pts[condition_idx == condition_id] - loss = self.loss_phys(samples, condition.equation) - elif len(batch) == 3: - samples = pts[condition_idx == condition_id] - ground_truth = batch["output"][condition_idx == condition_id] - loss = self.loss_data(samples, ground_truth) + loss_ = self.loss_data(input_pts=input_pts, output_pts=output_pts) + condition_loss.append(loss_.as_subclass(torch.Tensor)) else: - raise ValueError("Batch size not supported") + input_pts = points['input_points'] - # add condition losses for each epoch - condition_losses.append(loss * condition.data_weight) + condition = self.problem.conditions[condition_name] + loss_ = self.loss_phys(input_pts.requires_grad_(), condition.equation) + condition_loss.append(loss_.as_subclass(torch.Tensor)) + condition_loss.append(loss_.as_subclass(torch.Tensor)) # clamp unknown parameters in InverseProblem (if needed) self._clamp_params() + loss = sum(condition_loss) + self.log('train_loss', loss, prog_bar=True, on_epoch=True, + logger=True, batch_size=self.get_batch_size(batch), + sync_dist=True) - # total loss (must be a torch.Tensor), and logs - total_loss = sum(condition_losses) - self.save_logs_and_release() - return total_loss.as_subclass(torch.Tensor) + return loss - def loss_data(self, input_tensor, output_tensor): + def validation_step(self, batch): + """ + TODO: add docstring + """ + condition_loss = [] + for condition_name, points in batch: + if 'output_points' in points: + input_pts, output_pts = points['input_points'], points['output_points'] + loss_ = self.loss_data(input_pts=input_pts, output_pts=output_pts) + condition_loss.append(loss_.as_subclass(torch.Tensor)) + else: + input_pts = points['input_points'] + + condition = self.problem.conditions[condition_name] + with torch.set_grad_enabled(True): + loss_ = self.loss_phys(input_pts.requires_grad_(), condition.equation) + condition_loss.append(loss_.as_subclass(torch.Tensor)) + condition_loss.append(loss_.as_subclass(torch.Tensor)) + # clamp unknown parameters in InverseProblem (if needed) + + loss = sum(condition_loss) + self.log('val_loss', loss, on_epoch=True, prog_bar=True, + logger=True, batch_size=self.get_batch_size(batch), + sync_dist=True) + + def loss_data(self, input_pts, output_pts): """ The data loss for the PINN solver. It computes the loss between the network output against the true solution. This function should not be override if not intentionally. - :param LabelTensor input_tensor: The input to the neural networks. - :param LabelTensor output_tensor: The true solution to compare the + :param LabelTensor input_pts: The input to the neural networks. + :param LabelTensor output_pts: The true solution to compare the network solution. :return: The residual loss averaged on the input coordinates :rtype: torch.Tensor """ - loss_value = self.loss(self.forward(input_tensor), output_tensor) - self.store_log(loss_value=float(loss_value)) - return self.loss(self.forward(input_tensor), output_tensor) + return self._loss(self.forward(input_pts), output_pts) @abstractmethod def loss_phys(self, samples, equation): @@ -196,13 +227,17 @@ class PINNInterface(SolverInterface, metaclass=ABCMeta): :param str name: The name of the loss. :param torch.Tensor loss_value: The value of the loss. """ + batch_size = self.trainer.data_module.batch_size \ + if self.trainer.data_module.batch_size is not None else 999 + self.log( self.__logged_metric + "_loss", loss_value, prog_bar=True, logger=True, on_epoch=True, - on_step=False, + on_step=True, + batch_size=batch_size, ) self.__logged_res_losses.append(loss_value) diff --git a/pina/solvers/pinns/pinn.py b/pina/solvers/pinns/pinn.py index 15f9081..0888202 100644 --- a/pina/solvers/pinns/pinn.py +++ b/pina/solvers/pinns/pinn.py @@ -9,10 +9,8 @@ except ImportError: _LRScheduler as LRScheduler, ) # torch < 2.0 -from torch.optim.lr_scheduler import ConstantLR from .basepinn import PINNInterface -from pina.utils import check_consistency from pina.problem import InverseProblem @@ -56,16 +54,16 @@ class PINN(PINNInterface): DOI: `10.1038 `_. """ + __name__ = 'PINN' + def __init__( self, problem, model, extra_features=None, - loss=torch.nn.MSELoss(), - optimizer=torch.optim.Adam, - optimizer_kwargs={"lr": 0.001}, - scheduler=ConstantLR, - scheduler_kwargs={"factor": 1, "total_iters": 0}, + loss=None, + optimizer=None, + scheduler=None, ): """ :param AbstractProblem problem: The formulation of the problem. @@ -82,20 +80,15 @@ class PINN(PINNInterface): :param dict scheduler_kwargs: LR scheduler constructor keyword args. """ super().__init__( - models=[model], + models=model, problem=problem, - optimizers=[optimizer], - optimizers_kwargs=[optimizer_kwargs], + optimizers=optimizer, + schedulers=scheduler, extra_features=extra_features, loss=loss, ) - # check consistency - check_consistency(scheduler, LRScheduler, subclass=True) - check_consistency(scheduler_kwargs, dict) - # assign variables - self._scheduler = scheduler(self.optimizers[0], **scheduler_kwargs) self._neural_net = self.models[0] def forward(self, x): @@ -126,9 +119,8 @@ class PINN(PINNInterface): """ residual = self.compute_residual(samples=samples, equation=equation) loss_value = self.loss( - torch.zeros_like(residual, requires_grad=True), residual + torch.zeros_like(residual), residual ) - self.store_log(loss_value=float(loss_value)) return loss_value def configure_optimizers(self): @@ -141,16 +133,21 @@ class PINN(PINNInterface): """ # if the problem is an InverseProblem, add the unknown parameters # to the parameters that the optimizer needs to optimize + + + self._optimizer.hook(self._model.parameters()) if isinstance(self.problem, InverseProblem): - self.optimizers[0].add_param_group( - { - "params": [ - self._params[var] - for var in self.problem.unknown_variables - ] - } - ) - return self.optimizers, [self.scheduler] + self._optimizer.optimizer_instance.add_param_group( + { + "params": [ + self._params[var] + for var in self.problem.unknown_variables + ] + } + ) + self._scheduler.hook(self._optimizer) + return ([self._optimizer.optimizer_instance], + [self._scheduler.scheduler_instance]) @property def scheduler(self): diff --git a/pina/solvers/solver.py b/pina/solvers/solver.py index e00bc8d..3a8f400 100644 --- a/pina/solvers/solver.py +++ b/pina/solvers/solver.py @@ -2,7 +2,7 @@ from abc import ABCMeta, abstractmethod from ..model.network import Network -import pytorch_lightning +import lightning from ..utils import check_consistency from ..problem import AbstractProblem from ..optim import Optimizer, Scheduler @@ -10,7 +10,8 @@ import torch import sys -class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta): + +class SolverInterface(lightning.pytorch.LightningModule, metaclass=ABCMeta): """ Solver base class. This class inherits is a wrapper of LightningModule class, inheriting all the @@ -83,7 +84,6 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta): " optimizers.") # extra features handling - self._pina_models = models self._pina_optimizers = optimizers self._pina_schedulers = schedulers @@ -94,7 +94,7 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta): pass @abstractmethod - def training_step(self, batch, batch_idx): + def training_step(self, batch): pass @abstractmethod @@ -138,8 +138,16 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta): TODO """ for _, condition in problem.conditions.items(): - if not set(self.accepted_condition_types).issubset( - condition.condition_type): + if not set(condition.condition_type).issubset( + set(self.accepted_condition_types)): raise ValueError( - f'{self.__name__} support only dose not support condition ' + f'{self.__name__} dose not support condition ' f'{condition.condition_type}') + + @staticmethod + def get_batch_size(batch): + # Assuming batch is your custom Batch object + batch_size = 0 + for data in batch: + batch_size += len(data[1]['input_points']) + return batch_size \ No newline at end of file diff --git a/pina/solvers/supervised.py b/pina/solvers/supervised.py index 62fc991..d978fc3 100644 --- a/pina/solvers/supervised.py +++ b/pina/solvers/supervised.py @@ -1,12 +1,14 @@ """ Module for SupervisedSolver """ - import torch +from pytorch_lightning.utilities.types import STEP_OUTPUT +from sympy.strategies.branch import condition from torch.nn.modules.loss import _Loss from ..optim import TorchOptimizer, TorchScheduler from .solver import SolverInterface from ..label_tensor import LabelTensor from ..utils import check_consistency from ..loss.loss_interface import LossInterface +from ..condition import InputOutputPointsCondition class SupervisedSolver(SolverInterface): @@ -37,7 +39,7 @@ class SupervisedSolver(SolverInterface): we are seeking to approximate multiple (discretised) functions given multiple (discretised) input functions. """ - accepted_condition_types = ['supervised'] + accepted_condition_types = [InputOutputPointsCondition.condition_type[0]] __name__ = 'SupervisedSolver' def __init__(self, @@ -46,7 +48,8 @@ class SupervisedSolver(SolverInterface): loss=None, optimizer=None, scheduler=None, - extra_features=None): + extra_features=None, + use_lt=True): """ :param AbstractProblem problem: The formualation of the problem. :param torch.nn.Module model: The neural network model to use. @@ -72,14 +75,19 @@ class SupervisedSolver(SolverInterface): problem=problem, optimizers=optimizer, schedulers=scheduler, - extra_features=extra_features) + extra_features=extra_features, + use_lt=use_lt) # check consistency - check_consistency(loss, (LossInterface, _Loss), subclass=False) + check_consistency(loss, (LossInterface, _Loss, torch.nn.Module), + subclass=False) self._loss = loss self._model = self._pina_models[0] self._optimizer = self._pina_optimizers[0] self._scheduler = self._pina_schedulers[0] + self.validation_condition_losses = { + k: {'loss': [], + 'count': []} for k in self.problem.conditions.keys()} def forward(self, x): """Forward pass implementation for the solver. @@ -105,7 +113,7 @@ class SupervisedSolver(SolverInterface): return ([self._optimizer.optimizer_instance], [self._scheduler.scheduler_instance]) - def training_step(self, batch, batch_idx): + def training_step(self, batch): """Solver training step. :param batch: The batch element in the dataloader. @@ -115,33 +123,37 @@ class SupervisedSolver(SolverInterface): :return: The sum of the loss functions. :rtype: LabelTensor """ - condition_idx = batch.supervised.condition_indices - - for condition_id in range(condition_idx.min(), condition_idx.max() + 1): - - condition_name = self._dataloader.condition_names[condition_id] - condition = self.problem.conditions[condition_name] - pts = batch.supervised.input_points - out = batch.supervised.output_points - if condition_name not in self.problem.conditions: - raise RuntimeError("Something wrong happened.") - - # for data driven mode - if not hasattr(condition, "output_points"): - raise NotImplementedError( - f"{type(self).__name__} works only in data-driven mode.") - output_pts = out[condition_idx == condition_id] - input_pts = pts[condition_idx == condition_id] - - input_pts.labels = pts.labels - output_pts.labels = out.labels - - loss = self.loss_data(input_pts=input_pts, output_pts=output_pts) - loss = loss.as_subclass(torch.Tensor) - - self.log("mean_loss", float(loss), prog_bar=True, logger=True) + condition_loss = [] + for condition_name, points in batch: + input_pts, output_pts = points['input_points'], points['output_points'] + loss_ = self.loss_data(input_pts=input_pts, output_pts=output_pts) + condition_loss.append(loss_.as_subclass(torch.Tensor)) + loss = sum(condition_loss) + self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True, + batch_size=self.get_batch_size(batch), sync_dist=True) return loss + def validation_step(self, batch): + """ + Solver validation step. + """ + condition_loss = [] + for condition_name, points in batch: + input_pts, output_pts = points['input_points'], points['output_points'] + loss_ = self.loss_data(input_pts=input_pts, output_pts=output_pts) + condition_loss.append(loss_.as_subclass(torch.Tensor)) + loss = sum(condition_loss) + self.log('val_loss', loss, prog_bar=True, logger=True, + batch_size=self.get_batch_size(batch), sync_dist=True) + + + def test_step(self, batch, batch_idx) -> STEP_OUTPUT: + """ + Solver test step. + """ + + raise NotImplementedError("Test step not implemented yet.") + def loss_data(self, input_pts, output_pts): """ The data loss for the Supervised solver. It computes the loss between diff --git a/pina/trainer.py b/pina/trainer.py index 58c66f6..a7c5c35 100644 --- a/pina/trainer.py +++ b/pina/trainer.py @@ -1,20 +1,21 @@ """ Trainer module. """ - +import warnings import torch -import pytorch_lightning +import lightning from .utils import check_consistency from .data import PinaDataModule from .solvers.solver import SolverInterface -class Trainer(pytorch_lightning.Trainer): +class Trainer(lightning.pytorch.Trainer): def __init__(self, solver, batch_size=None, train_size=.7, test_size=.2, - eval_size=.1, + val_size=.1, + predict_size=.0, **kwargs): """ PINA Trainer class for costumizing every aspect of training via flags. @@ -39,11 +40,13 @@ class Trainer(pytorch_lightning.Trainer): check_consistency(batch_size, int) self.train_size = train_size self.test_size = test_size - self.eval_size = eval_size + self.val_size = val_size + self.predict_size = predict_size self.solver = solver self.batch_size = batch_size - self._create_loader() self._move_to_device() + self.data_module = None + self._create_loader() def _move_to_device(self): device = self._accelerator_connector._parallel_devices[0] @@ -64,34 +67,34 @@ class Trainer(pytorch_lightning.Trainer): if not self.solver.problem.collector.full: error_message = '\n'.join([ f"""{" " * 13} ---> Condition {key} {"sampled" if value else - "not sampled"}""" for key, value in + "not sampled"}""" for key, value in self._solver.problem.collector._is_conditions_ready.items() ]) raise RuntimeError('Cannot create Trainer if not all conditions ' 'are sampled. The Trainer got the following:\n' f'{error_message}') - devices = self._accelerator_connector._parallel_devices - - if len(devices) > 1: - raise RuntimeError("Parallel training is not supported yet.") - - device = devices[0] - - data_module = PinaDataModule(problem=self.solver.problem, - device=device, - train_size=self.train_size, - test_size=self.test_size, - val_size=self.eval_size) - data_module.setup() - self._loader = data_module.train_dataloader() + self.data_module = PinaDataModule(collector=self.solver.problem.collector, + train_size=self.train_size, + test_size=self.test_size, + val_size=self.val_size, + predict_size=self.predict_size, + batch_size=self.batch_size,) def train(self, **kwargs): """ Train the solver method. """ return super().fit(self.solver, - train_dataloaders=self._loader, - **kwargs) + datamodule=self.data_module, + **kwargs) + + def test(self, **kwargs): + """ + Test the solver method. + """ + return super().test(self.solver, + datamodule=self.data_module, + **kwargs) @property def solver(self): diff --git a/setup.py b/setup.py index 5a2ebc8..b67323b 100644 --- a/setup.py +++ b/setup.py @@ -15,7 +15,8 @@ VERSION = meta['__version__'] KEYWORDS = 'machine-learning deep-learning modeling pytorch ode neural-networks differential-equations pde hacktoberfest pinn physics-informed physics-informed-neural-networks neural-operators equation-learning lightining' REQUIRED = [ - 'numpy', 'matplotlib', 'torch', 'lightning', 'pytorch_lightning', 'torch_geometric', 'torch-cluster' + 'numpy', 'matplotlib', 'torch', 'lightning', 'torch_geometric', + 'torch-cluster', 'pytorch_lightning', ] EXTRAS = { diff --git a/tests/test_dataset.py b/tests/test_dataset.py deleted file mode 100644 index 87fd9a1..0000000 --- a/tests/test_dataset.py +++ /dev/null @@ -1,227 +0,0 @@ -import math -import torch -from pina.data import SamplePointDataset, SupervisedDataset, PinaDataModule, \ - UnsupervisedDataset -from pina.data import PinaDataLoader -from pina import LabelTensor, Condition -from pina.equation import Equation -from pina.domain import CartesianDomain -from pina.problem import SpatialProblem, AbstractProblem -from pina.operators import laplacian -from pina.equation.equation_factory import FixedValue -from pina.graph import Graph - - -def laplace_equation(input_, output_): - force_term = (torch.sin(input_.extract(['x']) * torch.pi) * - torch.sin(input_.extract(['y']) * torch.pi)) - delta_u = laplacian(output_.extract(['u']), input_) - return delta_u - force_term - - -my_laplace = Equation(laplace_equation) -in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y']) -out_ = LabelTensor(torch.tensor([[0.]]), ['u']) -in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y']) -out2_ = LabelTensor(torch.rand(60, 1), ['u']) - - -class Poisson(SpatialProblem): - output_variables = ['u'] - spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) - - conditions = { - 'gamma1': - Condition(domain=CartesianDomain({ - 'x': [0, 1], - 'y': 1 - }), - equation=FixedValue(0.0)), - 'gamma2': - Condition(domain=CartesianDomain({ - 'x': [0, 1], - 'y': 0 - }), - equation=FixedValue(0.0)), - 'gamma3': - Condition(domain=CartesianDomain({ - 'x': 1, - 'y': [0, 1] - }), - equation=FixedValue(0.0)), - 'gamma4': - Condition(domain=CartesianDomain({ - 'x': 0, - 'y': [0, 1] - }), - equation=FixedValue(0.0)), - 'D': - Condition(input_points=LabelTensor(torch.rand(size=(100, 2)), - ['x', 'y']), - equation=my_laplace), - 'data': - Condition(input_points=in_, output_points=out_), - 'data2': - Condition(input_points=in2_, output_points=out2_), - 'unsupervised': - Condition( - input_points=LabelTensor(torch.rand(size=(45, 2)), ['x', 'y']), - conditional_variables=LabelTensor(torch.ones(size=(45, 1)), - ['alpha']), - ), - 'unsupervised2': - Condition( - input_points=LabelTensor(torch.rand(size=(90, 2)), ['x', 'y']), - conditional_variables=LabelTensor(torch.ones(size=(90, 1)), - ['alpha']), - ) - } - - -boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -poisson = Poisson() -poisson.discretise_domain(10, 'grid', locations=boundaries) - - -def test_sample(): - sample_dataset = SamplePointDataset(poisson, device='cpu') - assert len(sample_dataset) == 140 - assert sample_dataset.input_points.shape == (140, 2) - assert sample_dataset.input_points.labels == ['x', 'y'] - assert sample_dataset.condition_indices.dtype == torch.uint8 - assert sample_dataset.condition_indices.max() == torch.tensor(4) - assert sample_dataset.condition_indices.min() == torch.tensor(0) - - -def test_data(): - dataset = SupervisedDataset(poisson, device='cpu') - assert len(dataset) == 61 - assert dataset['input_points'].shape == (61, 2) - assert dataset.input_points.shape == (61, 2) - assert dataset['input_points'].labels == ['x', 'y'] - assert dataset.input_points.labels == ['x', 'y'] - assert dataset.input_points[3:].shape == (58, 2) - assert dataset.output_points[:3].labels == ['u'] - assert dataset.output_points.shape == (61, 1) - assert dataset.output_points.labels == ['u'] - assert dataset.condition_indices.dtype == torch.uint8 - assert dataset.condition_indices.max() == torch.tensor(1) - assert dataset.condition_indices.min() == torch.tensor(0) - - -def test_unsupervised(): - dataset = UnsupervisedDataset(poisson, device='cpu') - assert len(dataset) == 135 - assert dataset.input_points.shape == (135, 2) - assert dataset.input_points.labels == ['x', 'y'] - assert dataset.input_points[3:].shape == (132, 2) - - assert dataset.conditional_variables.shape == (135, 1) - assert dataset.conditional_variables.labels == ['alpha'] - assert dataset.condition_indices.dtype == torch.uint8 - assert dataset.condition_indices.max() == torch.tensor(1) - assert dataset.condition_indices.min() == torch.tensor(0) - - -def test_data_module(): - data_module = PinaDataModule(poisson, device='cpu') - data_module.setup() - loader = data_module.train_dataloader() - assert isinstance(loader, PinaDataLoader) - assert isinstance(loader, PinaDataLoader) - - data_module = PinaDataModule(poisson, - device='cpu', - batch_size=10, - shuffle=False) - data_module.setup() - loader = data_module.train_dataloader() - assert len(loader) == 24 - for i in loader: - assert len(i) <= 10 - len_ref = sum( - [math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets]) - len_real = sum( - [len(dataset) for dataset in data_module.splits['train'].values()]) - assert len_ref == len_real - - supervised_dataset = SupervisedDataset(poisson, device='cpu') - data_module = PinaDataModule(poisson, - device='cpu', - batch_size=10, - shuffle=False, - datasets=[supervised_dataset]) - data_module.setup() - loader = data_module.train_dataloader() - for batch in loader: - assert len(batch) <= 10 - - physics_dataset = SamplePointDataset(poisson, device='cpu') - data_module = PinaDataModule(poisson, - device='cpu', - batch_size=10, - shuffle=False, - datasets=[physics_dataset]) - data_module.setup() - loader = data_module.train_dataloader() - for batch in loader: - assert len(batch) <= 10 - - unsupervised_dataset = UnsupervisedDataset(poisson, device='cpu') - data_module = PinaDataModule(poisson, - device='cpu', - batch_size=10, - shuffle=False, - datasets=[unsupervised_dataset]) - data_module.setup() - loader = data_module.train_dataloader() - for batch in loader: - assert len(batch) <= 10 - - -def test_loader(): - data_module = PinaDataModule(poisson, device='cpu', batch_size=10) - data_module.setup() - loader = data_module.train_dataloader() - assert isinstance(loader, PinaDataLoader) - assert len(loader) == 24 - for i in loader: - assert len(i) <= 10 - assert i.supervised.input_points.labels == ['x', 'y'] - assert i.physics.input_points.labels == ['x', 'y'] - assert i.unsupervised.input_points.labels == ['x', 'y'] - assert i.supervised.input_points.requires_grad == True - assert i.physics.input_points.requires_grad == True - assert i.unsupervised.input_points.requires_grad == True - - -coordinates = LabelTensor(torch.rand((100, 100, 2)), labels=['x', 'y']) -data = LabelTensor(torch.rand((100, 100, 3)), labels=['ux', 'uy', 'p']) - - -class GraphProblem(AbstractProblem): - output = LabelTensor(torch.rand((100, 3)), labels=['ux', 'uy', 'p']) - input = [ - Graph.build('radius', - nodes_coordinates=coordinates[i, :, :], - nodes_data=data[i, :, :], - radius=0.2) for i in range(100) - ] - output_variables = ['u'] - - conditions = { - 'graph_data': Condition(input_points=input, output_points=output) - } - - -graph_problem = GraphProblem() - - -def test_loader_graph(): - data_module = PinaDataModule(graph_problem, device='cpu', batch_size=10) - data_module.setup() - loader = data_module.train_dataloader() - for i in loader: - assert len(i) <= 10 - assert isinstance(i.supervised.input_points, list) - assert all(isinstance(x, Graph) for x in i.supervised.input_points) diff --git a/tests/test_label_tensor/test_label_tensor_01.py b/tests/test_label_tensor/test_label_tensor_01.py index 57aafb8..ea43307 100644 --- a/tests/test_label_tensor/test_label_tensor_01.py +++ b/tests/test_label_tensor/test_label_tensor_01.py @@ -114,5 +114,5 @@ def test_slice(): assert torch.allclose(tensor_view2, data[3]) tensor_view3 = tensor[:, 2] - assert tensor_view3.labels == labels[2] + assert tensor_view3.labels == [labels[2]] assert torch.allclose(tensor_view3, data[:, 2].reshape(-1, 1)) diff --git a/tests/test_solvers/test_pinn.py b/tests/test_solvers/test_pinn.py index 105bd88..72887a4 100644 --- a/tests/test_solvers/test_pinn.py +++ b/tests/test_solvers/test_pinn.py @@ -1,5 +1,4 @@ import torch - from pina.problem import SpatialProblem, InverseProblem from pina.operators import laplacian from pina.domain import CartesianDomain @@ -9,7 +8,7 @@ from pina.trainer import Trainer from pina.model import FeedForward from pina.equation.equation import Equation from pina.equation.equation_factory import FixedValue -from pina.loss.loss_interface import LpLoss +from pina.loss import LpLoss def laplace_equation(input_, output_): @@ -54,22 +53,22 @@ class InversePoisson(SpatialProblem, InverseProblem): # define the conditions for the loss (boundary conditions, equation, data) conditions = { - 'gamma1': Condition(location=CartesianDomain({'x': [x_min, x_max], + 'gamma1': Condition(domain=CartesianDomain({'x': [x_min, x_max], 'y': y_max}), equation=FixedValue(0.0, components=['u'])), - 'gamma2': Condition(location=CartesianDomain( + 'gamma2': Condition(domain=CartesianDomain( {'x': [x_min, x_max], 'y': y_min }), equation=FixedValue(0.0, components=['u'])), - 'gamma3': Condition(location=CartesianDomain( + 'gamma3': Condition(domain=CartesianDomain( {'x': x_max, 'y': [y_min, y_max] }), equation=FixedValue(0.0, components=['u'])), - 'gamma4': Condition(location=CartesianDomain( + 'gamma4': Condition(domain=CartesianDomain( {'x': x_min, 'y': [y_min, y_max] }), equation=FixedValue(0.0, components=['u'])), - 'D': Condition(location=CartesianDomain( + 'D': Condition(domain=CartesianDomain( {'x': [x_min, x_max], 'y': [y_min, y_max] }), equation=Equation(laplace_equation)), @@ -84,16 +83,16 @@ class Poisson(SpatialProblem): conditions = { 'gamma1': Condition( - location=CartesianDomain({'x': [0, 1], 'y': 1}), + domain=CartesianDomain({'x': [0, 1], 'y': 1}), equation=FixedValue(0.0)), 'gamma2': Condition( - location=CartesianDomain({'x': [0, 1], 'y': 0}), + domain=CartesianDomain({'x': [0, 1], 'y': 0}), equation=FixedValue(0.0)), 'gamma3': Condition( - location=CartesianDomain({'x': 1, 'y': [0, 1]}), + domain=CartesianDomain({'x': 1, 'y': [0, 1]}), equation=FixedValue(0.0)), 'gamma4': Condition( - location=CartesianDomain({'x': 0, 'y': [0, 1]}), + domain=CartesianDomain({'x': 0, 'y': [0, 1]}), equation=FixedValue(0.0)), 'D': Condition( input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']), @@ -112,7 +111,6 @@ class Poisson(SpatialProblem): truth_solution = poisson_sol - class myFeature(torch.nn.Module): """ Feature: sin(x) @@ -158,21 +156,35 @@ def test_train_cpu(): pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss()) trainer = Trainer(solver=pinn, max_epochs=1, - accelerator='cpu', batch_size=20) - trainer.train() + accelerator='cpu', batch_size=20, val_size=0., train_size=1., test_size=0.) -def test_log(): - poisson_problem.discretise_domain(100) - solver = PINN(problem = poisson_problem, model=model, - extra_features=None, loss=LpLoss()) - trainer = Trainer(solver, max_epochs=2, accelerator='cpu') +def test_train_load(): + tmpdir = "tests/tmp_load" + poisson_problem = Poisson() + boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] + n = 10 + poisson_problem.discretise_domain(n, 'grid', locations=boundaries) + pinn = PINN(problem=poisson_problem, + model=model, + extra_features=None, + loss=LpLoss()) + trainer = Trainer(solver=pinn, + max_epochs=15, + accelerator='cpu', + default_root_dir=tmpdir) trainer.train() - # assert the logged metrics are correct - logged_metrics = sorted(list(trainer.logged_metrics.keys())) - total_metrics = sorted( - list([key + '_loss' for key in poisson_problem.conditions.keys()]) - + ['mean_loss']) - assert logged_metrics == total_metrics + new_pinn = PINN.load_from_checkpoint( + f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt', + problem = poisson_problem, model=model) + test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10) + assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1) + assert new_pinn.forward(test_pts).extract( + ['u']).shape == pinn.forward(test_pts).extract(['u']).shape + torch.testing.assert_close( + new_pinn.forward(test_pts).extract(['u']), + pinn.forward(test_pts).extract(['u'])) + import shutil + shutil.rmtree(tmpdir) def test_train_restore(): tmpdir = "tests/tmp_restore" @@ -192,36 +204,7 @@ def test_train_restore(): ntrainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu') t = ntrainer.train( ckpt_path=f'{tmpdir}/lightning_logs/version_0/' - 'checkpoints/epoch=4-step=10.ckpt') - import shutil - shutil.rmtree(tmpdir) - - -def test_train_load(): - tmpdir = "tests/tmp_load" - poisson_problem = Poisson() - boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] - n = 10 - poisson_problem.discretise_domain(n, 'grid', locations=boundaries) - pinn = PINN(problem=poisson_problem, - model=model, - extra_features=None, - loss=LpLoss()) - trainer = Trainer(solver=pinn, - max_epochs=15, - accelerator='cpu', - default_root_dir=tmpdir) - trainer.train() - new_pinn = PINN.load_from_checkpoint( - f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt', - problem = poisson_problem, model=model) - test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10) - assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1) - assert new_pinn.forward(test_pts).extract( - ['u']).shape == pinn.forward(test_pts).extract(['u']).shape - torch.testing.assert_close( - new_pinn.forward(test_pts).extract(['u']), - pinn.forward(test_pts).extract(['u'])) + 'checkpoints/epoch=4-step=5.ckpt') import shutil shutil.rmtree(tmpdir) @@ -229,36 +212,24 @@ def test_train_inverse_problem_cpu(): poisson_problem = InversePoisson() boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D'] n = 100 - poisson_problem.discretise_domain(n, 'random', locations=boundaries) + poisson_problem.discretise_domain(n, 'random', locations=boundaries, + variables=['x', 'y']) pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss()) trainer = Trainer(solver=pinn, max_epochs=1, accelerator='cpu', batch_size=20) trainer.train() - -# # TODO does not currently work -# def test_train_inverse_problem_restore(): -# tmpdir = "tests/tmp_restore_inv" -# poisson_problem = InversePoisson() -# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D'] -# n = 100 -# poisson_problem.discretise_domain(n, 'random', locations=boundaries) -# pinn = PINN(problem=poisson_problem, -# model=model, -# extra_features=None, -# loss=LpLoss()) -# trainer = Trainer(solver=pinn, -# max_epochs=5, -# accelerator='cpu', -# default_root_dir=tmpdir) -# trainer.train() -# ntrainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu') -# t = ntrainer.train( -# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=10.ckpt') -# import shutil -# shutil.rmtree(tmpdir) - +def test_train_extra_feats_cpu(): + poisson_problem = Poisson() + boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] + n = 10 + poisson_problem.discretise_domain(n, 'grid', locations=boundaries) + pinn = PINN(problem=poisson_problem, + model=model_extra_feats, + extra_features=extra_feats) + trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu') + trainer.train() def test_train_inverse_problem_load(): tmpdir = "tests/tmp_load_inv" @@ -276,7 +247,7 @@ def test_train_inverse_problem_load(): default_root_dir=tmpdir) trainer.train() new_pinn = PINN.load_from_checkpoint( - f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt', + f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt', problem = poisson_problem, model=model) test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10) assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1) @@ -286,160 +257,4 @@ def test_train_inverse_problem_load(): new_pinn.forward(test_pts).extract(['u']), pinn.forward(test_pts).extract(['u'])) import shutil - shutil.rmtree(tmpdir) - -# # TODO fix asap. Basically sampling few variables -# # works only if both variables are in a range. -# # if one is fixed and the other not, this will -# # not work. This test also needs to be fixed and -# # insert in test problem not in test pinn. -# def test_train_cpu_sampling_few_vars(): -# poisson_problem = Poisson() -# boundaries = ['gamma1', 'gamma2', 'gamma3'] -# n = 10 -# poisson_problem.discretise_domain(n, 'grid', locations=boundaries) -# poisson_problem.discretise_domain(n, 'random', locations=['gamma4'], variables=['x']) -# poisson_problem.discretise_domain(n, 'random', locations=['gamma4'], variables=['y']) -# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss()) -# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'}) -# trainer.train() - - -def test_train_extra_feats_cpu(): - poisson_problem = Poisson() - boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] - n = 10 - poisson_problem.discretise_domain(n, 'grid', locations=boundaries) - pinn = PINN(problem=poisson_problem, - model=model_extra_feats, - extra_features=extra_feats) - trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu') - trainer.train() - - -# TODO, fix GitHub actions to run also on GPU -# def test_train_gpu(): -# poisson_problem = Poisson() -# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# n = 10 -# poisson_problem.discretise_domain(n, 'grid', locations=boundaries) -# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss()) -# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'}) -# trainer.train() - -# def test_train_gpu(): #TODO fix ASAP -# poisson_problem = Poisson() -# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# n = 10 -# poisson_problem.discretise_domain(n, 'grid', locations=boundaries) -# poisson_problem.conditions.pop('data') # The input/output pts are allocated on cpu -# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss()) -# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'}) -# trainer.train() - -# def test_train_2(): -# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# n = 10 -# expected_keys = [[], list(range(0, 50, 3))] -# param = [0, 3] -# for i, truth_key in zip(param, expected_keys): -# pinn = PINN(problem, model) -# pinn.discretise_domain(n, 'grid', locations=boundaries) -# pinn.discretise_domain(n, 'grid', locations=['D']) -# pinn.train(50, save_loss=i) -# assert list(pinn.history_loss.keys()) == truth_key - - -# def test_train_extra_feats(): -# pinn = PINN(problem, model_extra_feat, [myFeature()]) -# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# n = 10 -# pinn.discretise_domain(n, 'grid', locations=boundaries) -# pinn.discretise_domain(n, 'grid', locations=['D']) -# pinn.train(5) - - -# def test_train_2_extra_feats(): -# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# n = 10 -# expected_keys = [[], list(range(0, 50, 3))] -# param = [0, 3] -# for i, truth_key in zip(param, expected_keys): -# pinn = PINN(problem, model_extra_feat, [myFeature()]) -# pinn.discretise_domain(n, 'grid', locations=boundaries) -# pinn.discretise_domain(n, 'grid', locations=['D']) -# pinn.train(50, save_loss=i) -# assert list(pinn.history_loss.keys()) == truth_key - - -# def test_train_with_optimizer_kwargs(): -# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# n = 10 -# expected_keys = [[], list(range(0, 50, 3))] -# param = [0, 3] -# for i, truth_key in zip(param, expected_keys): -# pinn = PINN(problem, model, optimizer_kwargs={'lr' : 0.3}) -# pinn.discretise_domain(n, 'grid', locations=boundaries) -# pinn.discretise_domain(n, 'grid', locations=['D']) -# pinn.train(50, save_loss=i) -# assert list(pinn.history_loss.keys()) == truth_key - - -# def test_train_with_lr_scheduler(): -# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# n = 10 -# expected_keys = [[], list(range(0, 50, 3))] -# param = [0, 3] -# for i, truth_key in zip(param, expected_keys): -# pinn = PINN( -# problem, -# model, -# lr_scheduler_type=torch.optim.lr_scheduler.CyclicLR, -# lr_scheduler_kwargs={'base_lr' : 0.1, 'max_lr' : 0.3, 'cycle_momentum': False} -# ) -# pinn.discretise_domain(n, 'grid', locations=boundaries) -# pinn.discretise_domain(n, 'grid', locations=['D']) -# pinn.train(50, save_loss=i) -# assert list(pinn.history_loss.keys()) == truth_key - - -# # def test_train_batch(): -# # pinn = PINN(problem, model, batch_size=6) -# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# # n = 10 -# # pinn.discretise_domain(n, 'grid', locations=boundaries) -# # pinn.discretise_domain(n, 'grid', locations=['D']) -# # pinn.train(5) - - -# # def test_train_batch_2(): -# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# # n = 10 -# # expected_keys = [[], list(range(0, 50, 3))] -# # param = [0, 3] -# # for i, truth_key in zip(param, expected_keys): -# # pinn = PINN(problem, model, batch_size=6) -# # pinn.discretise_domain(n, 'grid', locations=boundaries) -# # pinn.discretise_domain(n, 'grid', locations=['D']) -# # pinn.train(50, save_loss=i) -# # assert list(pinn.history_loss.keys()) == truth_key - - -# if torch.cuda.is_available(): - -# # def test_gpu_train(): -# # pinn = PINN(problem, model, batch_size=20, device='cuda') -# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# # n = 100 -# # pinn.discretise_domain(n, 'grid', locations=boundaries) -# # pinn.discretise_domain(n, 'grid', locations=['D']) -# # pinn.train(5) - -# def test_gpu_train_nobatch(): -# pinn = PINN(problem, model, batch_size=None, device='cuda') -# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4'] -# n = 100 -# pinn.discretise_domain(n, 'grid', locations=boundaries) -# pinn.discretise_domain(n, 'grid', locations=['D']) -# pinn.train(5) - + shutil.rmtree(tmpdir) \ No newline at end of file diff --git a/tests/test_solvers/test_supervised_solver.py b/tests/test_solvers/test_supervised_solver.py index 8ceadcd..ebe8179 100644 --- a/tests/test_solvers/test_supervised_solver.py +++ b/tests/test_solvers/test_supervised_solver.py @@ -121,7 +121,7 @@ def test_train_cpu(): batch_size=5, train_size=1, test_size=0., - eval_size=0.) + val_size=0.) trainer.train() test_train_cpu()