fix tests

This commit is contained in:
Nicola Demo
2025-01-23 09:52:23 +01:00
parent 9aed1a30b3
commit a899327de1
32 changed files with 2331 additions and 2428 deletions

View File

@@ -4,140 +4,140 @@ from pina.problem import AbstractProblem, SpatialProblem
from pina import Condition, LabelTensor
from pina.solvers import SupervisedSolver
from pina.model import FeedForward
from pina.equation.equation import Equation
from pina.equation import Equation
from pina.equation.equation_factory import FixedValue
from pina.operators import laplacian
from pina.domain import CartesianDomain
from pina.trainer import Trainer
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['u_0', 'u_1'])
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
# in_ = LabelTensor(torch.tensor([[0., 1.]]), ['u_0', 'u_1'])
# out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
class NeuralOperatorProblem(AbstractProblem):
input_variables = ['u_0', 'u_1']
output_variables = ['u']
# class NeuralOperatorProblem(AbstractProblem):
# input_variables = ['u_0', 'u_1']
# output_variables = ['u']
conditions = {
'data': Condition(input_points=in_, output_points=out_),
}
# conditions = {
# 'data': Condition(input_points=in_, output_points=out_),
# }
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
# class myFeature(torch.nn.Module):
# """
# Feature: sin(x)
# """
def __init__(self):
super(myFeature, self).__init__()
# def __init__(self):
# super(myFeature, self).__init__()
def forward(self, x):
t = (torch.sin(x.extract(['u_0']) * torch.pi) *
torch.sin(x.extract(['u_1']) * torch.pi))
return LabelTensor(t, ['sin(x)sin(y)'])
# def forward(self, x):
# t = (torch.sin(x.extract(['u_0']) * torch.pi) *
# torch.sin(x.extract(['u_1']) * torch.pi))
# return LabelTensor(t, ['sin(x)sin(y)'])
problem = NeuralOperatorProblem()
extra_feats = [myFeature()]
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
model_extra_feats = FeedForward(
len(problem.input_variables) + 1, len(problem.output_variables))
# problem = NeuralOperatorProblem()
# extra_feats = [myFeature()]
# model = FeedForward(len(problem.input_variables), len(problem.output_variables))
# model_extra_feats = FeedForward(
# len(problem.input_variables) + 1, len(problem.output_variables))
def test_constructor():
SupervisedSolver(problem=problem, model=model)
# def test_constructor():
# SupervisedSolver(problem=problem, model=model)
test_constructor()
# test_constructor()
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
return delta_u - force_term
# def laplace_equation(input_, output_):
# force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
# torch.sin(input_.extract(['y']) * torch.pi))
# delta_u = laplacian(output_.extract(['u']), input_)
# return delta_u - force_term
my_laplace = Equation(laplace_equation)
# my_laplace = Equation(laplace_equation)
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
# class Poisson(SpatialProblem):
# output_variables = ['u']
# spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = {
'gamma1':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': 1
}),
equation=FixedValue(0.0)),
'gamma2':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': 0
}),
equation=FixedValue(0.0)),
'gamma3':
Condition(domain=CartesianDomain({
'x': 1,
'y': [0, 1]
}),
equation=FixedValue(0.0)),
'gamma4':
Condition(domain=CartesianDomain({
'x': 0,
'y': [0, 1]
}),
equation=FixedValue(0.0)),
'D':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': [0, 1]
}),
equation=my_laplace),
'data':
Condition(input_points=in_, output_points=out_)
}
# conditions = {
# 'gamma1':
# Condition(domain=CartesianDomain({
# 'x': [0, 1],
# 'y': 1
# }),
# equation=FixedValue(0.0)),
# 'gamma2':
# Condition(domain=CartesianDomain({
# 'x': [0, 1],
# 'y': 0
# }),
# equation=FixedValue(0.0)),
# 'gamma3':
# Condition(domain=CartesianDomain({
# 'x': 1,
# 'y': [0, 1]
# }),
# equation=FixedValue(0.0)),
# 'gamma4':
# Condition(domain=CartesianDomain({
# 'x': 0,
# 'y': [0, 1]
# }),
# equation=FixedValue(0.0)),
# 'D':
# Condition(domain=CartesianDomain({
# 'x': [0, 1],
# 'y': [0, 1]
# }),
# equation=my_laplace),
# 'data':
# Condition(input_points=in_, output_points=out_)
# }
def poisson_sol(self, pts):
return -(torch.sin(pts.extract(['x']) * torch.pi) *
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi ** 2)
# def poisson_sol(self, pts):
# return -(torch.sin(pts.extract(['x']) * torch.pi) *
# torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi ** 2)
truth_solution = poisson_sol
# truth_solution = poisson_sol
def test_wrong_constructor():
poisson_problem = Poisson()
with pytest.raises(ValueError):
SupervisedSolver(problem=poisson_problem, model=model)
# def test_wrong_constructor():
# poisson_problem = Poisson()
# with pytest.raises(ValueError):
# SupervisedSolver(problem=poisson_problem, model=model)
def test_train_cpu():
solver = SupervisedSolver(problem=problem, model=model)
trainer = Trainer(solver=solver,
max_epochs=200,
accelerator='gpu',
batch_size=5,
train_size=1,
test_size=0.,
val_size=0.)
trainer.train()
test_train_cpu()
# def test_train_cpu():
# solver = SupervisedSolver(problem=problem, model=model)
# trainer = Trainer(solver=solver,
# max_epochs=200,
# accelerator='gpu',
# batch_size=5,
# train_size=1,
# test_size=0.,
# val_size=0.)
# trainer.train()
# test_train_cpu()
def test_extra_features_constructor():
SupervisedSolver(problem=problem,
model=model_extra_feats,
extra_features=extra_feats)
# def test_extra_features_constructor():
# SupervisedSolver(problem=problem,
# model=model_extra_feats,
# extra_features=extra_feats)
def test_extra_features_train_cpu():
solver = SupervisedSolver(problem=problem,
model=model_extra_feats,
extra_features=extra_feats)
trainer = Trainer(solver=solver,
max_epochs=200,
accelerator='gpu',
batch_size=5)
trainer.train()
# def test_extra_features_train_cpu():
# solver = SupervisedSolver(problem=problem,
# model=model_extra_feats,
# extra_features=extra_feats)
# trainer = Trainer(solver=solver,
# max_epochs=200,
# accelerator='gpu',
# batch_size=5)
# trainer.train()