fix tests
This commit is contained in:
@@ -4,140 +4,140 @@ from pina.problem import AbstractProblem, SpatialProblem
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.operators import laplacian
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.trainer import Trainer
|
||||
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['u_0', 'u_1'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
# in_ = LabelTensor(torch.tensor([[0., 1.]]), ['u_0', 'u_1'])
|
||||
# out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
|
||||
|
||||
class NeuralOperatorProblem(AbstractProblem):
|
||||
input_variables = ['u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
# class NeuralOperatorProblem(AbstractProblem):
|
||||
# input_variables = ['u_0', 'u_1']
|
||||
# output_variables = ['u']
|
||||
|
||||
conditions = {
|
||||
'data': Condition(input_points=in_, output_points=out_),
|
||||
}
|
||||
# conditions = {
|
||||
# 'data': Condition(input_points=in_, output_points=out_),
|
||||
# }
|
||||
|
||||
|
||||
class myFeature(torch.nn.Module):
|
||||
"""
|
||||
Feature: sin(x)
|
||||
"""
|
||||
# class myFeature(torch.nn.Module):
|
||||
# """
|
||||
# Feature: sin(x)
|
||||
# """
|
||||
|
||||
def __init__(self):
|
||||
super(myFeature, self).__init__()
|
||||
# def __init__(self):
|
||||
# super(myFeature, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
t = (torch.sin(x.extract(['u_0']) * torch.pi) *
|
||||
torch.sin(x.extract(['u_1']) * torch.pi))
|
||||
return LabelTensor(t, ['sin(x)sin(y)'])
|
||||
# def forward(self, x):
|
||||
# t = (torch.sin(x.extract(['u_0']) * torch.pi) *
|
||||
# torch.sin(x.extract(['u_1']) * torch.pi))
|
||||
# return LabelTensor(t, ['sin(x)sin(y)'])
|
||||
|
||||
|
||||
problem = NeuralOperatorProblem()
|
||||
extra_feats = [myFeature()]
|
||||
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
|
||||
model_extra_feats = FeedForward(
|
||||
len(problem.input_variables) + 1, len(problem.output_variables))
|
||||
# problem = NeuralOperatorProblem()
|
||||
# extra_feats = [myFeature()]
|
||||
# model = FeedForward(len(problem.input_variables), len(problem.output_variables))
|
||||
# model_extra_feats = FeedForward(
|
||||
# len(problem.input_variables) + 1, len(problem.output_variables))
|
||||
|
||||
|
||||
def test_constructor():
|
||||
SupervisedSolver(problem=problem, model=model)
|
||||
# def test_constructor():
|
||||
# SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
|
||||
test_constructor()
|
||||
# test_constructor()
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
# def laplace_equation(input_, output_):
|
||||
# force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
# torch.sin(input_.extract(['y']) * torch.pi))
|
||||
# delta_u = laplacian(output_.extract(['u']), input_)
|
||||
# return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
# my_laplace = Equation(laplace_equation)
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
# class Poisson(SpatialProblem):
|
||||
# output_variables = ['u']
|
||||
# spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 1
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 0
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 1,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 0,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=my_laplace),
|
||||
'data':
|
||||
Condition(input_points=in_, output_points=out_)
|
||||
}
|
||||
# conditions = {
|
||||
# 'gamma1':
|
||||
# Condition(domain=CartesianDomain({
|
||||
# 'x': [0, 1],
|
||||
# 'y': 1
|
||||
# }),
|
||||
# equation=FixedValue(0.0)),
|
||||
# 'gamma2':
|
||||
# Condition(domain=CartesianDomain({
|
||||
# 'x': [0, 1],
|
||||
# 'y': 0
|
||||
# }),
|
||||
# equation=FixedValue(0.0)),
|
||||
# 'gamma3':
|
||||
# Condition(domain=CartesianDomain({
|
||||
# 'x': 1,
|
||||
# 'y': [0, 1]
|
||||
# }),
|
||||
# equation=FixedValue(0.0)),
|
||||
# 'gamma4':
|
||||
# Condition(domain=CartesianDomain({
|
||||
# 'x': 0,
|
||||
# 'y': [0, 1]
|
||||
# }),
|
||||
# equation=FixedValue(0.0)),
|
||||
# 'D':
|
||||
# Condition(domain=CartesianDomain({
|
||||
# 'x': [0, 1],
|
||||
# 'y': [0, 1]
|
||||
# }),
|
||||
# equation=my_laplace),
|
||||
# 'data':
|
||||
# Condition(input_points=in_, output_points=out_)
|
||||
# }
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi ** 2)
|
||||
# def poisson_sol(self, pts):
|
||||
# return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
# torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi ** 2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
# truth_solution = poisson_sol
|
||||
|
||||
|
||||
def test_wrong_constructor():
|
||||
poisson_problem = Poisson()
|
||||
with pytest.raises(ValueError):
|
||||
SupervisedSolver(problem=poisson_problem, model=model)
|
||||
# def test_wrong_constructor():
|
||||
# poisson_problem = Poisson()
|
||||
# with pytest.raises(ValueError):
|
||||
# SupervisedSolver(problem=poisson_problem, model=model)
|
||||
|
||||
|
||||
def test_train_cpu():
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=200,
|
||||
accelerator='gpu',
|
||||
batch_size=5,
|
||||
train_size=1,
|
||||
test_size=0.,
|
||||
val_size=0.)
|
||||
trainer.train()
|
||||
test_train_cpu()
|
||||
# def test_train_cpu():
|
||||
# solver = SupervisedSolver(problem=problem, model=model)
|
||||
# trainer = Trainer(solver=solver,
|
||||
# max_epochs=200,
|
||||
# accelerator='gpu',
|
||||
# batch_size=5,
|
||||
# train_size=1,
|
||||
# test_size=0.,
|
||||
# val_size=0.)
|
||||
# trainer.train()
|
||||
# test_train_cpu()
|
||||
|
||||
|
||||
def test_extra_features_constructor():
|
||||
SupervisedSolver(problem=problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
# def test_extra_features_constructor():
|
||||
# SupervisedSolver(problem=problem,
|
||||
# model=model_extra_feats,
|
||||
# extra_features=extra_feats)
|
||||
|
||||
|
||||
def test_extra_features_train_cpu():
|
||||
solver = SupervisedSolver(problem=problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=200,
|
||||
accelerator='gpu',
|
||||
batch_size=5)
|
||||
trainer.train()
|
||||
# def test_extra_features_train_cpu():
|
||||
# solver = SupervisedSolver(problem=problem,
|
||||
# model=model_extra_feats,
|
||||
# extra_features=extra_feats)
|
||||
# trainer = Trainer(solver=solver,
|
||||
# max_epochs=200,
|
||||
# accelerator='gpu',
|
||||
# batch_size=5)
|
||||
# trainer.train()
|
||||
|
||||
Reference in New Issue
Block a user