From a9b1bd2826cf32f29f1bc9771eca5ac27aae1a0d Mon Sep 17 00:00:00 2001 From: Dario Coscia <93731561+dario-coscia@users.noreply.github.com> Date: Tue, 26 Sep 2023 17:29:37 +0200 Subject: [PATCH] Tutorials v0.1 (#178) Tutorial update and small fixes * Tutorials update + Tutorial FNO * Create a metric tracker callback * Update PINN for logging * Update plotter for plotting * Small fix LabelTensor * Small fix FNO --------- Co-authored-by: Dario Coscia Co-authored-by: Dario Coscia --- docs/source/_rst/tutorial1/tutorial.rst | 211 +++--- .../tutorial_files/tutorial_21_0.png | Bin 0 -> 25656 bytes .../tutorial_files/tutorial_23_0.png | Bin 0 -> 20040 bytes .../tutorial_files/tutorial_25_0.png | Bin 9567 -> 0 bytes docs/source/_rst/tutorial2/output_13_0.png | Bin 42020 -> 0 bytes docs/source/_rst/tutorial2/output_18_0.png | Bin 42137 -> 0 bytes docs/source/_rst/tutorial2/output_25_0.png | Bin 54611 -> 0 bytes docs/source/_rst/tutorial2/output_26_0.png | Bin 50845 -> 0 bytes docs/source/_rst/tutorial2/tutorial.rst | 349 +++++---- .../tutorial_files/tutorial_11_0.png | Bin 0 -> 42675 bytes .../tutorial_files/tutorial_13_0.png | Bin 23413 -> 0 bytes .../tutorial_files/tutorial_16_0.png | Bin 0 -> 41264 bytes .../tutorial_files/tutorial_18_0.png | Bin 23403 -> 0 bytes .../tutorial_files/tutorial_23_0.png | Bin 0 -> 45759 bytes .../tutorial_files/tutorial_24_0.png | Bin 0 -> 52893 bytes .../tutorial_files/tutorial_25_0.png | Bin 20680 -> 0 bytes .../tutorial_files/tutorial_26_0.png | Bin 55315 -> 0 bytes docs/source/_rst/tutorial3/tutorial.rst | 207 +++--- .../tutorial_files/tutorial_12_0.png | Bin 21124 -> 40841 bytes .../tutorial_files/tutorial_12_1.png | Bin 0 -> 49285 bytes .../tutorial_files/tutorial_12_2.png | Bin 0 -> 44271 bytes .../tutorial_files/tutorial_14_0.png | Bin 21246 -> 0 bytes docs/source/_rst/tutorial5/tutorial.rst | 252 +++++++ .../tutorial5/tutorial_files/tutorial_6_0.png | Bin 0 -> 15473 bytes docs/source/index.rst | 1 + pina/callbacks/__init__.py | 4 +- pina/callbacks/processing_callbacks.py | 25 + pina/label_tensor.py | 2 +- pina/model/fno.py | 4 +- pina/plotter.py | 55 +- pina/solvers/__init__.py | 1 + pina/solvers/pinn.py | 8 +- pina/solvers/supervised.py | 134 ++++ tutorials/README.md | 1 + tutorials/tutorial1/tutorial.ipynb | 340 +++++---- tutorials/tutorial1/tutorial.py | 114 +-- tutorials/tutorial2/tutorial.ipynb | 518 +++++++++---- tutorials/tutorial2/tutorial.py | 148 ++-- tutorials/tutorial3/tutorial.ipynb | 284 ++++--- tutorials/tutorial3/tutorial.py | 116 ++- tutorials/tutorial4/tutorial.ipynb | 698 ++++++++++-------- tutorials/tutorial4/tutorial.py | 56 +- tutorials/tutorial5/Data_Darcy.mat | Bin 0 -> 7119287 bytes tutorials/tutorial5/tutorial.ipynb | 395 ++++++++++ tutorials/tutorial5/tutorial.py | 158 ++++ 45 files changed, 2760 insertions(+), 1321 deletions(-) create mode 100644 docs/source/_rst/tutorial1/tutorial_files/tutorial_21_0.png create mode 100644 docs/source/_rst/tutorial1/tutorial_files/tutorial_23_0.png delete mode 100644 docs/source/_rst/tutorial1/tutorial_files/tutorial_25_0.png delete mode 100644 docs/source/_rst/tutorial2/output_13_0.png delete mode 100644 docs/source/_rst/tutorial2/output_18_0.png delete mode 100644 docs/source/_rst/tutorial2/output_25_0.png delete mode 100644 docs/source/_rst/tutorial2/output_26_0.png create mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_11_0.png delete mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_13_0.png create mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_16_0.png delete mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_18_0.png create mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_23_0.png create mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_24_0.png delete mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_25_0.png delete mode 100644 docs/source/_rst/tutorial2/tutorial_files/tutorial_26_0.png create mode 100644 docs/source/_rst/tutorial3/tutorial_files/tutorial_12_1.png create mode 100644 docs/source/_rst/tutorial3/tutorial_files/tutorial_12_2.png delete mode 100644 docs/source/_rst/tutorial3/tutorial_files/tutorial_14_0.png create mode 100644 docs/source/_rst/tutorial5/tutorial.rst create mode 100644 docs/source/_rst/tutorial5/tutorial_files/tutorial_6_0.png create mode 100644 pina/callbacks/processing_callbacks.py create mode 100644 pina/solvers/supervised.py create mode 100644 tutorials/tutorial5/Data_Darcy.mat create mode 100644 tutorials/tutorial5/tutorial.ipynb create mode 100644 tutorials/tutorial5/tutorial.py diff --git a/docs/source/_rst/tutorial1/tutorial.rst b/docs/source/_rst/tutorial1/tutorial.rst index 02c6538..1cab5da 100644 --- a/docs/source/_rst/tutorial1/tutorial.rst +++ b/docs/source/_rst/tutorial1/tutorial.rst @@ -2,39 +2,38 @@ Tutorial 1: Physics Informed Neural Networks on PINA ==================================================== In this tutorial we will show the typical use case of PINA on a toy -problem. Specifically, the tutorial aims to introduce the following -topics: +problem solved by Physics Informed Problems. Specifically, the tutorial +aims to introduce the following topics: - Defining a PINA Problem, -- Build a ``pinn`` object, -- Sample points in the domain. +- Build a ``PINN`` Solver, -These are the three main steps needed **before** training a Physics -Informed Neural Network (PINN). We will show in detailed each step, and -at the end we will solve a very simple problem with PINA. +We will show in detailed each step, and at the end we will solve a very +simple problem with PINA. -PINA Problem ------------- +Defining a Problem +------------------ Initialize the Problem class ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The problem definition in the PINA framework is done by building a -phython ``class``, inherited from one or more problem classes -(``SpatialProblem``, ``TimeDependentProblem``, ``ParametricProblem``), -depending on the nature of the problem treated. Let’s see an example to -better understand: #### Simple Ordinary Differential Equation Consider -the following: +phython ``class``, inherited from ``AbsractProblem``. A problem is an +object which explains what the solver is supposed to solve. For Physics +Informed Neural Networks, a problem can be inherited from one or more +problem (already implemented) classes (``SpatialProblem``, +``TimeDependentProblem``, ``ParametricProblem``), depending on the +nature of the problem treated. Let’s see an example to better +understand: + +Simple Ordinary Differential Equation Consider the following: +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. math:: - - - \begin{equation} \begin{cases} - \frac{d}{dx}u(x) &= u(x) \quad x\in(0,1)\\ - u(x=0) &= 1 \\ + \frac{d}{dx}u(x) &= u(x) \quad x\in(0,1)\\ + u(x=0) &= 1 \\ \end{cases} - \end{equation} with analytical solution :math:`u(x) = e^x`. In this case we have that our ODE depends only on the spatial variable :math:`x\in(0,1)` , this @@ -44,12 +43,12 @@ means that our problem class is going to be inherited from .. code:: python from pina.problem import SpatialProblem - from pina import Span + from pina.geometry import CartesianDomain class SimpleODE(SpatialProblem): output_variables = ['u'] - spatial_domain = Span({'x': [0, 1]}) + spatial_domain = CartesianDomain({'x': [0, 1]}) # other stuff ... @@ -57,7 +56,7 @@ Notice that we define ``output_variables`` as a list of symbols, indicating the output variables of our equation (in this case only :math:`u`). The ``spatial_domain`` variable indicates where the sample points are going to be sampled in the domain, in this case -:math:`x\in(0,1)`. +:math:`x\in(0,1)` What about if we also have a time depencency in the equation? Well in that case our ``class`` will inherit from both ``SpatialProblem`` and @@ -66,13 +65,13 @@ that case our ``class`` will inherit from both ``SpatialProblem`` and .. code:: python from pina.problem import SpatialProblem, TimeDependentProblem - from pina import Span + from pina.geometry import CartesianDomain class TimeSpaceODE(SpatialProblem, TimeDependentProblem): output_variables = ['u'] - spatial_domain = Span({'x': [0, 1]}) - temporal_domain = Span({'x': [0, 1]}) + spatial_domain = CartesianDomain({'x': [0, 1]}) + temporal_domain = CartesianDomain({'x': [0, 1]}) # other stuff ... @@ -82,11 +81,12 @@ time domain where we want the solution. Summarizing, in PINA we can initialize a problem with a class which is inherited from three base classes: ``SpatialProblem``, ``TimeDependentProblem``, ``ParametricProblem``, depending on the type -of problem we are considering. For reference: - -* ``SpatialProblem`` :math:`\rightarrow` spatial variable(s) presented in the differential equation -* ``TimeDependentProblem`` :math:`\rightarrow` time variable(s) presented in the differential equation -* ``ParametricProblem`` :math:`\rightarrow` parameter(s) presented in the differential equation +of problem we are considering. For reference: \* ``SpatialProblem`` +:math:`\rightarrow` spatial variable(s) presented in the differential +equation \* ``TimeDependentProblem`` :math:`\rightarrow` time +variable(s) presented in the differential equation \* +``ParametricProblem`` :math:`\rightarrow` parameter(s) presented in the +differential equation Write the problem class ~~~~~~~~~~~~~~~~~~~~~~~ @@ -100,7 +100,9 @@ Equation (1) and try to write the PINA model class: from pina.problem import SpatialProblem from pina.operators import grad - from pina import Condition, Span + from pina.geometry import CartesianDomain + from pina.equation import Equation + from pina import Condition import torch @@ -108,7 +110,7 @@ Equation (1) and try to write the PINA model class: class SimpleODE(SpatialProblem): output_variables = ['u'] - spatial_domain = Span({'x': [0, 1]}) + spatial_domain = CartesianDomain({'x': [0, 1]}) # defining the ode equation def ode_equation(input_, output_): @@ -136,8 +138,8 @@ Equation (1) and try to write the PINA model class: # Conditions to hold conditions = { - 'x0': Condition(location=Span({'x': 0.}), function=initial_condition), - 'D': Condition(location=Span({'x': [0, 1]}), function=ode_equation), + 'x0': Condition(location=CartesianDomain({'x': 0.}), equation=Equation(initial_condition)), + 'D': Condition(location=CartesianDomain({'x': [0, 1]}), equation=Equation(ode_equation)), } # defining true solution @@ -152,7 +154,10 @@ different conditions. For example, in the domain :math:`(0,1)` the ODE equation (``ode_equation``) must be satisfied, so we write it by putting all the ODE equation on the right hand side, such that we return the zero residual. This is done for all the conditions (``ode_equation``, -``initial_condition``). +``initial_condition``). Notice that we do not pass directly a ``python`` +function, but an ``Equation`` object, which is initialized with the +``python`` function. This is done so that all the computations, and +internal checks are done inside PINA. Once we have defined the function we need to tell the network where these methods have to be applied. For doing this we use the class @@ -169,16 +174,17 @@ definition. Build PINN object ----------------- -The basics requirements for building a PINN model are a problem and a -model. We have already covered the problem definition. For the model one -can use the default models provided in PINA or use a custom model. We -will not go into the details of model definition, Tutorial2 and -Tutorial3 treat the topic in detail. +In PINA we have already developed different solvers, one of them is +``PINN``. The basics requirements for building a ``PINN`` model are a +problem and a model. We have already covered the problem definition. For +the model one can use the default models provided in PINA or use a +custom model. We will not go into the details of model definition, +Tutorial2 and Tutorial3 treat the topic in detail. .. code:: ipython3 from pina.model import FeedForward - from pina import PINN + from pina.solvers import PINN # initialize the problem problem = SimpleODE() @@ -187,11 +193,11 @@ Tutorial3 treat the topic in detail. model = FeedForward( layers=[10, 10], func=torch.nn.Tanh, - output_variables=problem.output_variables, - input_variables=problem.input_variables + output_dimensions=len(problem.output_variables), + input_dimensions=len(problem.input_variables) ) - # create the PINN object + # create the PINN object, see the PINN documentation for extra argument in the constructor pinn = PINN(problem, model) @@ -199,31 +205,24 @@ Creating the pinn object is fairly simple by using the ``PINN`` class, different optional inputs can be passed: optimizer, batch size, … (see `documentation `__ for reference). -Sample points in the domain ---------------------------- +Sample points in the domain and create the Trainer +-------------------------------------------------- -Once the ``pinn`` object is created, we need to generate the points for -starting the optimization. For doing this we use the ``span_pts`` method -of the ``PINN`` class. Let’s see some methods to sample in -:math:`(0,1 )`. +Once the ``PINN`` object is created, we need to generate the points for +starting the optimization. For doing this we use the +``.discretise_domain`` method of the ``AbstractProblem`` class. Let’s +see some methods to sample in :math:`(0,1 )`. .. code:: ipython3 # sampling 20 points in (0, 1) with discrite step - pinn.span_pts(20, 'grid', locations=['D']) + problem.discretise_domain(20, 'grid', locations=['D']) # sampling 20 points in (0, 1) with latin hypercube - pinn.span_pts(20, 'latin', locations=['D']) + problem.discretise_domain(20, 'latin', locations=['D']) # sampling 20 points in (0, 1) randomly - pinn.span_pts(20, 'random', locations=['D']) - - -We can also use a dictionary for specific variables: - -.. code:: ipython3 - - pinn.span_pts({'variables': ['x'], 'mode': 'grid', 'n': 20}, locations=['D']) + problem.discretise_domain(20, 'random', locations=['D']) We are going to use equispaced points for sampling. We need to sample in @@ -232,8 +231,8 @@ all the conditions domains. In our case we sample in ``D`` and ``x0``. .. code:: ipython3 # sampling for training - pinn.span_pts(1, 'random', locations=['x0']) - pinn.span_pts(20, 'grid', locations=['D']) + problem.discretise_domain(1, 'random', locations=['x0']) + problem.discretise_domain(20, 'grid', locations=['D']) Very simple training and plotting @@ -241,36 +240,68 @@ Very simple training and plotting Once we have defined the PINA model, created a network and sampled points in the domain, we have everything that is necessary for training -a PINN. Here we show a very short training and some method for plotting -the results. +a ``PINN``. For training we use the ``Trainer`` class. Here we show a +very short training and some method for plotting the results. Notice +that by default all relevant metrics (e.g. MSE error during training) is +going to be tracked using a ``lightining`` logger, by default +``CSVLogger``. If you want to track the metric by yourself without a +logger, use ``pina.callbacks.MetricTracker``. .. code:: ipython3 - # simple training - final_loss = pinn.train(stop=3000, frequency_print=1000) + # create the trainer + from pina.trainer import Trainer + from pina.callbacks import MetricTracker + + trainer = Trainer(solver=pinn, max_epochs=3000, callbacks=[MetricTracker()]) + + # train + trainer.train() .. parsed-literal:: - sum x0initial_co Dode_equatio - [epoch 00000] 1.933187e+00 1.825489e+00 1.076983e-01 - sum x0initial_co Dode_equatio - [epoch 00001] 1.860870e+00 1.766795e+00 9.407549e-02 - sum x0initial_co Dode_equatio - [epoch 01000] 4.974120e-02 1.635524e-02 3.338596e-02 - sum x0initial_co Dode_equatio - [epoch 02000] 1.099083e-03 3.420736e-05 1.064875e-03 - [epoch 03000] 4.049759e-04 2.937766e-06 4.020381e-04 + GPU available: False, used: False + TPU available: False, using: 0 TPU cores + IPU available: False, using: 0 IPUs + HPU available: False, using: 0 HPUs + /Users/dariocoscia/anaconda3/envs/pina/lib/python3.9/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:67: UserWarning: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default + warning_cache.warn( + + | Name | Type | Params + ---------------------------------------- + 0 | _loss | MSELoss | 0 + 1 | _neural_net | Network | 141 + ---------------------------------------- + 141 Trainable params + 0 Non-trainable params + 141 Total params + 0.001 Total estimated model params size (MB) +.. parsed-literal:: -After the training we have saved the final loss in ``final_loss``, which -we can inspect. By default PINA uses mean square error loss. + Epoch 2999: : 1it [00:00, 226.55it/s, v_num=10, mean_loss=2.14e-5, x0_loss=4.24e-5, D_loss=2.93e-7] + +.. parsed-literal:: + + `Trainer.fit` stopped: `max_epochs=3000` reached. + + +.. parsed-literal:: + + Epoch 2999: : 1it [00:00, 159.67it/s, v_num=10, mean_loss=2.14e-5, x0_loss=4.24e-5, D_loss=2.93e-7] + + +After the training we can inspect trainer logged metrics (by default +PINA logs mean square error residual loss). The logged metrics can be +accessed online using one of the ``Lightinig`` loggers. The final loss +can be accessed by ``trainer.logged_metrics``. .. code:: ipython3 # inspecting final loss - final_loss + trainer.logged_metrics @@ -278,12 +309,14 @@ we can inspect. By default PINA uses mean square error loss. .. parsed-literal:: - 0.0004049759008921683 + {'mean_loss': tensor(2.1357e-05), + 'x0_loss': tensor(4.2421e-05), + 'D_loss': tensor(2.9291e-07)} By using the ``Plotter`` class from PINA we can also do some quatitative -plots of the loss function. +plots of the solution. .. code:: ipython3 @@ -291,11 +324,21 @@ plots of the loss function. # plotting the loss plotter = Plotter() - plotter.plot_loss(pinn) + plotter.plot(trainer=trainer) -.. image:: tutorial_files/tutorial_25_0.png +.. image:: tutorial_files/tutorial_21_0.png -We have a very smooth loss decreasing! +The solution is completely overlapped with the actual one. We can also +plot easily the loss: + +.. code:: ipython3 + + plotter.plot_loss(trainer=trainer, metric='mean_loss', log_scale=True) + + + +.. image:: tutorial_files/tutorial_23_0.png + diff --git a/docs/source/_rst/tutorial1/tutorial_files/tutorial_21_0.png b/docs/source/_rst/tutorial1/tutorial_files/tutorial_21_0.png new file mode 100644 index 0000000000000000000000000000000000000000..a951e59cb97c1adaf199b45ac413a69ab29c3435 GIT binary patch literal 25656 zcmb5WbySpH+c!MOg@Gcs7a#}%291J9H;RZu*U%x-okN#_C=xPscgzq22-2ZQI0z^( zba!{>yU+1{-u3+Pu5YdH4;IRv^W4WiYX6R!k19&CWTdpDFc^#s{^FS$40fRw{N!G~ z2>xQ4pF#(I3A@T@yQ({wySf`Yo52)~T^(&5Ty3ph-ElK>cCm7>=j9UQ;(2h#($&?` zMTDE%?*D#(%fZ=#dzkcc5O~QI#}_&-Fc`Tp^h1;?yT|$`g`*=-A!_@MYgu41T3@gL7~1^1Y*h|Ih{Z-jP$4`g~6@;oiU# zFU6;d0-=h7+kP87*a+Gek82Xo*Q@86I#UKmmT4;KyOK(7nS_AdVcfGONa%MOld1<1 z3^svh1IL7ISW_B;UmpCV+~8L&Z6G!HWf=PXD)@zcK1l+D1!!%Tiv)-|SLus*Y@|Jv zmNxq`SP(`G7W{cy*u=#RoSdAtHiftO^-0&+Z;N@TY;JC9wt~kSbykKelo1#W;b|JM z^zQw8xua#qm)hEK&EVv)4TtMN(%`csb*l<&wYeMneD8~kA30{9;q zGB+-OH|GEUCH+g;Mi?!>TqrHSnx$o4Mn*<2TAkHyw0bwBmCs>JUm$TctI(jvjl|?= zf8D?PxMIx92JTM}_N}~Y#OZ$!OvM@X`E%OyP+E3wZe?Y$&3C%x*4g9!=LWO5Xwg}o zFXkO;N=i!KmNR9;mx4KqRQihyu7=j^_UY~ZWKE^4y?*&JTRb=5Hmt(jYSN(6(Kx-I zf>lXFLnBJSek701zH&0E_1W|1H@%YM;_@aYCL&24q@)5~y?PZa_y{~D7N*xRsVFZW z>FSIYkGw*`k|!I^z-n;Au->N%97dzU-hhl=L<9U$eAPlISxNYI*i%SfYu|Rzm=s*U z3+IZJrx$Tmv9`u&Vhw$jT5Si4pC~5q{W;oQ##cH`zd7|c+AUPgeDAh0kj|Ro@$~N9 zySg=Qg)45y@YL-Qm#)Rb`BX_Oe_h>#@87?7p38%yq&*Y5eLXNJC{^9aCGoqc>w=2! z>2AMnomV+V1MRHTI^w%O3cbVc>~NkpY`DrL*BXz>W|ogxm`ik!SoF>9VbAT+*%+F1 zWRs9cffQ{bCs@s6^p#vwv2hcSikR>5YQ?<18!s;!7z=+l~Z&M9C`|yYc$d zsP#+#{KNL(LBVfGLDpX`D%!NrjJl8eCWw1~jo~&bqUE=#1)F>`itb^Xw}* z-e2$klPOC@N9TRl3DW-859+=r0@1Ro=U5JvS&@>FA)K8{QIV0+$;k$fava9%X@#9< z;H^q=kDerpAk_j%sYqA5+S-2K4;RZoF85jOuZ`+fyP`$hR`Q0*ZSujNn9q^{JrjoD z&7yuM9&mqgg{f4D!x@U*^>HIqnftoo;Q{5^tX_pZehHty+aWlfv=i@EV<35c@+Dwqs6azXbmh&U?$ER#FkJ_PJqn=>=;#WONg?Gb_V+at(e=a9!W=;~`HcUl^oj7sd!joX+A?Nm=xLT`5_YX@Vgp@EFLGrd zk0KQ@!#Gy-VHXQWnahsmCt`~%oHBR`7Ctco+zcP`!%1{L|D1FAs`yiZ#EvBmi)YYt zjl!bUOZS^|>@{Mp{7#?Cq@uWCip=_wL7*~;ru7L4m%kEf$J0X+Sy>Wa{<`zV-$R?8 z_Zo9pJl_3+&Zb-Q(Up)`6OW#BAo#r`{3c_)iVse0mbT_Azo!m9^Ls&VL&D#xQk|u3^Fo^>mW*EdQ=#*6}iEK0D)CedJ_4aLjx-B%c4&OH&s}CW@n#v0cNi zYaW%w$mMT{#AuWXss14_%h9@O(799YGn4P^`152@w-TY>hkrR7wdb>0#xcvFf%>RX zzJ|q(_w(jwTI2xrmimYrIep9F5Pt`*iGp;@*@b~U<{ZaTU<(1#66qw@S^ZYyhHTVdw%LHzaD6O2!@JQC(hwJLE-sQ(= zwN5>w4kNsh57+{Nzki zmg6RYg>0;5`5bYH`h1AitH{0rw;VIsB)H}$NUaAFnB zDt)>5$IpnIt?QQ1$njQFa1$vZRtPdN>y3zJWaHZPHj9VR*KZfD$w(n$Gp@Z@?S`r-MVQ5*~Z}Bic>nb$dz-lkbf&t%_0C%;t}B41~uD9z8$Ky@vSk z^EY=+PSN^tl8;ZVJ4e&_Un+k@AbSwI8_u&dHEsr?&o`->3c@rv{;maZo)(`_OLD;z zD2C)K%5ANjGP~PVo zLTlC8!Y~aC;eCd`Oc^4^`^n*`deTLVTj8*7Qr-?h6Ke;?e(rOOL}MfssrXk!s}&Ug zd*()YdV|zF>+?k1hIb?nhJoG+$s|u;VeMzQa>RLtERc$Hb^d9gnZy4aX>87)Jnk}5 zxU5+NkMK2&sk`<+9BgdAttV-)$u1vlvvO4TlLjBco~VB7jDRXO?zKcPojWi@Gx;)f ztJ6Ew;isPU5nO=BRTEc7oH(gd_OhV5LFk$fT0!~$l9yGKSbz(P;cOk)^`6$!5dCT^ z{&LFo?{OQm=s%B7MWC{}aHHtq;j*tn5yxqeZ}1Q?iQ?O}k9ILzpjKD!-|FiJqh+kif9CfFq}LcP&(+kzB3ZL*PTMSBRkW2oB04?Zl*ps`f+& z-fb~S+*@VlVnbZTLl9!FQ&p6hXYm__uL235@EPm8TYw6yzf}B6pIygnZIa;x&O{ui zZGy2h)<~v`zbw4tDeJ~zJ9`zJ`2MAQ-%mCVm1fQegrt0r#zy@lree#j@6Wa#T!#^WbVo{NG@G~g6F(ipA}=ZQ|gOnAtiYc_wLD*7-tEdD>UWxnds-!Bw~&8Yre z`&H$g%yG6;#AKy8(quh&;QWcglYu}-4eqB#%g&S1_H2@`bgr$*S2S6-UO>hL6GU3} zWnv~qa+xU56JgkVA7TIe`<_gMr|3jVX6a@E8QAnYnq&W+i~R z%*@PGw%&Uy>^o<1JSIDRdJcFkA8odgmUd3bnoeY$8e1;;$3 zmBn|X07hYhC-7OJGBPvyEjn-SF8s+ns0WOea^iU&lyhBGqh7k960=;I!j0As$VPP7 zRN`-sm6h?q)l5xiZnc`3n&tuA8yp_4)fz^>JM7RvRa;@x&&ABjnh)4Pa{Rri37-Y0 z07!Z-Ds|pfWY$rL)DFBq`{(9pP_Ud1d+ufrIhpJ-F5wSgJgvRDhXGgYdveAi8*H8C z?s7jcmTKhk(sa0F-$<1UzZs6QN}r40rcVLDwpb>xjXWUz>bd;C^z;TBV+{b!%S}#B zlIZ#P`0)600y%u)m37DYFZQ6a;Il_)_v5~stXo`Q8;XDb-C4#qaPaVKhD;|2*kS5@ zk1^a6YQ;E4E}BC|q_3+>nT$@LcW-r=8U51UK~7FC z-HDx@JvVuu?mz!YD=sdEfVq^FP_;)vhMFMf=s#9nNE4*0LM1+;HY_`^pC;3|>Alt7 z%AoF7+j#5VJk^=5wyv&z?uL^Lpm}gLaA-;jip*^J*qb3vLbr7r{OZ7gbZrO0{l=v+ z_AQm_t6K<@mF|oRvg%M57zL}m!>Rm>7r)D_didPe^aJ0&zxk_#jGSCcMddRS8US33 zepM-mY?$F*lY!K(9sK=yZmUCbii-GrY&}NYd(ZNB+7r~7?l{!=7GSq1B zfY;GtE)_L(u2Qmy&XzdXUI{hdyUFg3Ms4jB7HJ;Whqtx1nj<-|rdE^ml76*JXwU7r zz&-!1pR7yc4Gm0I>tl6Wn}_FD|FniP_D_6!8=aI?ur=GhjL9$RPT;q31$*5L@!a_% z8yz2yzAOEnjh`RUZ{VJMlS|*Do0tPAR)Mo+XJjyLC?}IeW6mlaLaT zcQt@Lq~M&oy0qJ#L@=om7kh)8fW>5H_)FY z$K}qU2IKlCsG^3l1bhVUAIKR2LD%a^TxE=AQY2kSuQw3UyPdZ}xQwFswCcl@7}D-& z#rQem@rXJjjpByvPiE2VgqQvsQ*Ro=ar;!OXzn2Ud22m`c7Ei!+Y)^`O>8Q%) z5b$o+om@87i_ve^*j;H@|FC`8EJD@3J~QH70eu zqfGBbdu`L;gGtN5D+!RAjYznmL+i)7IukrHgHb)4j;lgQb&!D4+3arxMTv?&LGcat z84@4u%v)LCB-~__tR}9uLocJ-MT;c$5s1Su)nHPxG7&^P;Z|aM9zR}(ZF}23%jc)- z^HaVW?N82!Ye1zj98vjVq<9L^at@TAff?AE_8L)?*YO zD82J15UT&7zyz1#6zgNkr}wZo)98(lkM^5i$%N~yGnPjr#v}Z@^L48rPR&`7Fodng zXFPg?n;?blsB-%^_x8Ee!b)t$WVrJXO+%Wp-`W2@`Br!*$fv>cDQd@9iji!|t)}^- zqX^-#44im+8T;vsLz3=dwSI?}WTrDwy=LxrE5d`pY`$la!H%~08x%QqimiFZ<)q-H zxBjl(@o#?`Xn*zswew^~dTIQK_7laVEkU&N9O62i+-ng`iad6`xn2Jm)Oqu3l>iPp z1KXKpr|yuzL)ifZhua7!{OyeYSOmLOzl!Sd3gHUAUM@lvOav*S6l%N1ovPlw zB&kKYC%-POsDtaP$iKma@Off_WiVFkKHO^<+wgw3)u<9Ez5!f4tQ~-D|0i@uVh0yk+$;lr&>#t=_*|WK!n88z%kYX4L#(Qgc22vhTQKls%f-2FVn42jUu=`j&qJ+POg~ zx_w|r^B}XjL7F%Je)>B|7*c~yu0dP%wMM9&*Y^Drey6kR^7LD7NyZQ!5a6v*kYWV%x1XETzwtj& zLG3(mdrRx*4UliT2DD*-yZkVg0NGfohtLiU-joX#6+)D96p$o5uqR^K%8U7FwS1>D z7&P>pheM3T6&|yg-dz zllx6e`lG6w?rBCHrFb`hq|$&<*|x z3Gv=(%|Tm%PwL+Y$<+yZwSC;-;V5uWMFLA>4sqWv0BlO)PO#DxZf@CI>T4P=Q=}6O z$|--(G2^kf?U5XnR|tE03|>vqXp2aVvc_52ug3OHC+LDx(h<%Q9&x_!k3nyBYLGlyHf5MMP$Y{H&W@$8`^#$Ro11 zw=p{GKbABcT_7Ew;CVbBqVi%$lU`s_*SDFi+(rc;=nWWQ?Z%dX5~6B6x82Ovi}!?Q zbbQeZY$>g+>meITn+;`U`S>(cRaKXI(UD*6N4;81Bu+M@4g61cIgILSak1Rkn1_1S z0ILPI?0_7cKw{xDgATA0~q1>-%*kdYoArgV ze4A6vxQ-4)zGh)me7xt736x$;5%*pK7#I)IepHN%Sj|G+#m3jffi0t6%Y^{;aSY@r zry6z}T>{CVcNEvnl-AfKr+aZH?Hal5+ri=2zKT$ZeITS~H!GTg$T>MU>EsM*npE-dsO;|Uro4I6%`g?5A^0^9 zE@?!5){W~ok@^!}Y!YUYJ`oaU8k=uN;oL?}b~YS!@BaO+!?=Qi2eWf?DXzZ&(t;ue z0JyCeey59g?JQVHHZ8j1CLJk<0F>T!)@ndIi&C?J5L+oQH`-B;0`Q!;s)Ncfwmthg zy$FQH^0lxM^V4f}`-Ts7%U(2`?j>FzCT50z{P>ad`gKhJRm)6TuZwT~pdh_+p08rJCooGzSe@;scOkjJFO@^EXm`edtJS=4^MGZ}-(kBNDplac69f0(tO ztdyIiWbw@=s44y6zynfwO}Mh=-f#zHl#9lfZLE5>1O?I{Sxz(e4c%rXJK6uj@hL8Y z^rCJB&?ewjb0KD0DC@ogG*AZXPP?0|j8Pmk}rWW=d7+PlRR5o2jtU zf?+u;Q*VG;hVsw~*v6T6r4)j=2*S$qt|L%r(U6#S~*>YcD&)R5Bx$B}D za%DiZ+@@a>{7L>)^a3ovCH8#zHp$r|Llhs&29bE*vB2TMzyl=`WsASS9cWr_t*1+K zOUq4LUh`jUG+#gt8;V>-SXfzQ4XRz)U4IRfm@vcto5U7zT}T5lwB*^&;ewj6% zgXEuoqK@4Efx+e%+5~31XgT0VZFs}FBW5)kl3^Q`iCV<3jLK;}^xl+ty)?F3Cjl@4&YgSf- zM*LaQV0%k|9tXEFe{uh-v39^H^6LAJ*{GK5{4NrJ&c}rF1skjlZE{o~V?aWr<$ZW> z=BRy4M@tj)OELnXn&$h~hd$d;Op9cx^|S(M4Hr%;;beV~paQ1A)y$f+8)0ymkmz5S zuz+KWyCN;Ya$(S-+EVr9=UrnWx=X4E|V<&eecU7vRF!d~sIH-X&k$k@ysxHzKI z^Tn`!bad|&(m*RHv3J4`;?hK|X{Yat^dP^_P5-c$^s((aIK|^50@NY=8E~)N;5-6% z`WVh-(vyETd?`I;6)?e`P&Ntvv2vy)ab5#owbN53t6ydyIX>1+A{7#c*eB$UK6ZU& z?JyXP#cp9$-==isTa!Qp5fsQJ65O-OHJohwl>oi;PbM1nhaxk9GA9uvo|Fu(3eWJT zVdpvbSroo3h5QMa6N8hbyoPwxiL2Ub;Ha=G0--EcMhq=mQ!&HB?{ST=>;3*dnXThJ z5_tFWUJakmOMjB1O(uSi>x9L+`@>P&g9cj>su|1XY53jku8HUwqamP1rq3NBIlS-$O7{QR#?T?Ub$ATUD} zLZlYu)VV%}Xj|`@c`Q)Ja2Cg~f`8q5u_>SMWRt!>SIjsnmkI7Lc)YasTH4e0QSEi0 z*#V_X8=AA73#`BttMaSt7xt50eTNpw35#sYagQacq=^pWhbAzb$9CuVXfXjAL&(^q zbRttZTW7{de-7oI=4A8w)W1UpCg32? zAi%~Zon$kn-o_mXNDU?Pd=|b_XCMK+7xDm7w;~$s;(e$k@4~%W{c_)5Q&K5zzyb!M zWI=$K_CToAK=`AtS*-jQ1Hpy&XWSfI_u7^;q|lHhPOO%Ow{QNWC&elEKkt{>THlGG z)p+Ot_U(n(uwf4Bg~`2o#_=`f;~Kr>ies8JoHp9Yq-+St;%ehe*6s(tI8xGKk&4U@ z@BaL?pe>*@2+$M|i!(fa{oU{E8EVITpvh~aQ`GcJ$vt8mA(w2(=6~#b$nB+o;u{;2 zC%!a}m6EJ!M#F3fdkV<9vsoM^gG4j8LI2_rQ6?qTO%P!=J|=7l@8c0>an)4us}`uT z=G+K#!Wc1sU(yI51X>=SYHw#Nt`rp)hz~h%Sof5#WAIdXpx@dMqXGmUJrCgx4vw8$pkUWm9!xTT{jkfUF8UMh#BZUnEDtZFR6-FMry-m$gu_TGg z5LLi-IV2s)^A;TPhSLpv+P4DphorVHN@VGJ(MPyv(8JX z8&g@$Q^{8+vL`T!Rb*0S=-n`aYd_A<9ieVLyx&`(RE9^xDxmwUu?N)m4zk8bmB(`^ zDbl008VZN8RS>(xQsfQ>f%=5%gNL=5&qLL~4<#)vCNGZ-xzq~>b#?J&Cs6h8ZKgIVXl#@+a2qt! zEq?hVeLs}PYcAe`l8!DvE$vRZ?V#H5S36EL7DT*19cPypvLu2Pjul%KKExRCD^75*0 z&vkGPxI=kbkiqs^uiG~bQPtN^V(?nHD}J)kgvtULdl^|-o2efkm;Pk7>bU&v)8Ksg zP!ZtP=IvR46yAhTIk3+RH)xvD(4D<|Pv#v*bt}LhN`>YN*IHRwp|aZA+IqrtK>r5F zL+e-?0kBx^wyF#7E;6WzN=nkVQ~)6es3oX9nj242%DsJEHk}Lx%NO!b$((RVjbN%< z?pG$hNS?cLfx6L-6x%-Ay)oH@TrKa%_?`B2Da$D-X}Y>jS_I0<%5n+|S52HY>?hm* z`rj%2lRzI(TItj~8zU?2V0gfIt3!noC{yt3Val<0@BTSGTE@yLC_LCr6$j<-?CfkR zTL8~Fcdx-g7QFCcAMtiiy^X-PwVA4-IRz6%z%bnech4(x4U-*a8Gm zXw*>u63}SRy#Fptu~PcRpf}_JmHYkE^sohXz|3r*q7Eon@YxOVbtH>wrKhKpxY#x| zHBnJgGQpPs-sjLNDgf0gIEukzf@suZI@AmBwYSJXl$nKPDTvYU_a#Q3JMhv$TUrU9 zN<*(jW&@D2$AIph6u%>@=H_O!dahE8k1|Nu1F`%;yQ9DVVVr&REx~({uDZg^1h^5y z=I+0}D{6pUS69zxB9(g^{QcqGV|CuM)7$6N8HxNhIaWP6i|E{xZVF|w^iN#XFI?t+ zvAbptXNF5)e*ID)yY=`P8jY@At6na1oP0`h@nXz@`vq7UTbTduJC2nU>}`|&plGAt z8$}gA&A;f-U)|uaFTakhc?p65DJ#bUKOKqRFk%-o!Cg{F%nySDe z?0-(9vaa}v>MK zJ@>AjHx_N(u#c!y`+zU`+gg@ZW}3S+a4DHG#$7{Ce-pPRrmCfBQD~5sMYt!)JeBBE zej}(#-Pi`B`nfw;^UR3*hDhWfPaS}ob6(t-snJ+$yO^DLrz8J7r+TaxWHzMYp-gJp zJNm@!IF8l$TyS94P41;4Q4wwWD{SfzxQR+DGdoAjboq;u?bLk;;>#L0*xH=@_OFx` zf##>B0-Y)cxOpb{`lTK9@ft?sLW9N&kXMwG>ijypb-ZK<@4lA$wR$z>Pw?fv3Lz>L z0Rp||hwuhAe_ifFcI8j5p+z)ehSBYy58^7@7id??`;paJwIF&EN>i1(v;Tay z)PIvPe>R#LAoKv}-TFdW^=d48h~7;|r*wN?Caqb1d&>-Shj=mZlqOR;RXlBhc)ZQZ zhre*na(B76Wk~~e2Eorp5}{JdvW%|^F(4=D)H_YYE2e$Hkrg7VQ+;U&j;Vx- z(viQvElGO3^I1K?lUCCCaT39V$m1LQGe65Tf$W1{GTw8+A0T-3UYI*{}O(?gQF99o|V(1GXlAfKG9wZTinxO*xg{whNi|#%nyqopz z+ur$<)|vHoqxgW_sS0S-@nk3aUQ7tcotTw|OB)=Hg zfRQ;gzy(J{4R3rCdrY(83av5;lb_thrd)_C_GJq0sbkm)Q0%&p;wr+K;L& zTajQ~eENVK(7fp3S43W5NFYq741@Ks^%{Qq$xssGjy2J_e^fuX|P+QUQZw$!n-9DS*eUKX~RaK zH2Xx!uaA7pp*Fb-EA%3!_jY^W`y)3lcN*5V%{sPppk{zP$%gns>_@z;e*#j@L1ekBn z20hY#xDU9@5vbxYA*_Embgb&o%xIWS(V}dGKgL$ORyRS*P`YH|mOj_&=?oV_Q8x?R zJ_RD!Jnw!(U=b5U5M}!oA$tl{T8RA))s)RYzi7GhEU-0%X1a@w#L&stI%rnoH$P)m zlel6_te!`+_I`1=U`E|248`puLt{E!c|$Q*P+30~ZY=R^7#|*}xDh3ZLS);mo?1s? z&bDHh*h{|GEqU#$m#VuFQ9{mVB4&@HVDn-0%FB zy^g^RSwJ0TUU{d*{ge|nKnY>WP)uJLJu}P5VUK?S?~eUek&iESr(BR7Byl9PJ5@xK zdSzt9NP?cA$Hi|G#`o)SBu6?)qyf1Ea=)kZt7|y@e7hC#N9)Ya^|Uyg^5%>KP$5I8 zc2ztwiToIRGAA)O+uiS1*t=4%tRVr~5w&5p{{W(2qMPXIRSpC9aavptw`z1k*HW`c z(;>$;Ap^0p{q~rU){U$0LFHX{WmumqNKsP;#})7js)cJ$wap!po-c8M+gRQg+dtcs z!@*IT1k}&tE+{kLqB-&PzTNg(%+KYnEYngp_MPAB`b zqzQxSuW^59Q}Z>ZQ{sd3|KqnuOf+%9W9Rl5)VB`u;TTXUNk0XlmpX`Apwv15l{TOk z#Ny;O=m`&MQne(8QDUd{G}$MjYw?s6hei#GjJ6mY*#>K^p9B=;NupuJe$Z`kwg?WNgu z|0CATtehMSaQ9xI*`42UqES7}NhH}>B$)(De?4ewdOA8LCI@u+-18-eNf}!W_qR)A ze|Z{(4*lwdd1P9IY1J$RE{%NNQHYX(!B5Gzqg%LkzMUo$%G&!L?FgF;MrVEaa2bzQ zmjxY2lB;n60Wgw(Hl8uU*z6ZY`+iF7x&^YSC)&p5oumy$8NjkT@8|LrXqP-Ce41+5 z9|wBV!{|jpkgG@f69)5dA1E=DP#59+VY(!1kWu^uls}xyAU-|;eQzNl*X+h>brJ;~ zVwhHk%H_d7xGI0z&a_2CvvT*ZO1-V;?AklzH#l7wUWgt;_B) zqxM=|DdO@wH2@YE9fcuF6&JIdS>z>`{tdjI05WPi;+F#WA0&5gG?7c@$$Yv=f|U)S zxeH(F$ELCI5 zjK;_Fz>Bc#ZzXnxE9wqf!e&;PT!@9n!RkCxGwJ~3$XpJ;yIK_dH!R>h_N!f}Pwtqi zid)k~RX3ujYuE-WGT4OQnSoo=r4H3qj$eZ$FQHWG#GCBX!(^Y_(R62A-*deBkBLD{ zGnqAPyhOrx$f+2H4$&;^UU?5 z07KLM168v++e;qipQ*Yn=L0_(kT?Z4NoxzU)5&i9!A074<@9AfHduOY;~#z)A<@f* z@{b*rlb*|?1)rufkt2ppB+(!H9!lcY%z~>EORqMbIsxzFs1$Zus{O=hNAq*i(YN`> zGUV}@2XVo``viP}wwNdgJ1di#tzXE#BV68@oBnDoUVe~df(Lk}0A7(=r=q78`>FxX zJIP&mj8E4C#7E3a;4XwL0AOphqSrmIx>sKpzj^2tk41DA73nfDh# zBnacWtPbWJP+8(v4b{uZxL=^=NZflv_kFW|-|+`Hv@sBJ=w;q(?U?#SDsUCtH9&3` zZ*ovCSU7RO*ciaE*rwe&yp;I;&ag~YO4<&iA}bF`j<)-WVe8*gEnzB}w=$D?Q#Crq zTcO#59j(N7{RFH-1EYkprcp92mh(G78rxmqa?_!Dzwk93+cqBS9Z%%J2rct-#kwh0 z%ksN-eP-$irp>wT-oR!g3Pk7*V5*c3Dm8bMabGKx*yyL3?NRO4{c4ln6s5-l1xgoT zgu0QLjA59Y|8I3X`9tXDoyVtWR-BRJ0FG;H2bdu3+9P3|p<_d8gyddwQj3<0^||cm zdaa%S9oS+YoIN0xm-Y6LU{NL}`#kRfMH+UwA;;ceEodiu3uAk!!gK)(mNw#<~?tDY+KMU)@>@YSQ1LaO zt+g-a&cD(g6^!mKMk;?p~MU47qj0;mUz0sIMwbzC`lV(x4qLmTup-owo8{Ann6 zp$+sjgjs4EOA7O6B-g0?F)gw7O_Cnf4Y7AzLt=! zyXiz&h9XSzm{Km)h^rJcxnhOeR(UvS2`wK58KA8JdYdI8pdxc}TVKSGiu!tV>Q>pW zeGvqmKy2w%SZ*V*>kX;ndLNxl$@+V6-3kAETJqy(R84OlDv`j}pbApT4+so>z}OwC zp!jO^-ABb%=mSX(^=@B-jZg!^#R55vY9#CQ@cX}_m^#=bpV7Y$(*y%FQ!il?V~|v? zY$XkyP9|egwnDc;6;qof3b@{;eojr+RUoy?S!3-A!B|2FXIQN&Gpm z|HWBiF^{dEXO&-d$bFb^bR;hV__szApqY)KS@s6Z-ml1I60X_tZpy8TsQ33Z`~cQI z@dr8qOPFm^=5OppPATCdIC5ru-^D;DKLL7r8hV;6tKi@TRlV=Cdgnz^fDk-4t|7t; zO@Zh)NP*E7qj-iS*Ub=vLeEiUZR;!s5*G1Ns$=A@cMCNw)A(|OOA!D1fniFqw~f^32vdl14j~nQY1q}x zs+Tvci9qf$9;k1?zcELx&WC<|^0SILXMCG-b>gam2C7gjp<)h9EA1cpp^d8V)FYX& zS?fry82|CE-niUcA}KWFSgr^cAJ8}Z?3V#wT3%N&bxB#P{O>LB7?N!>K;=ADX|x(rlr}op9}c>Xk3C`;F_vyXVt=dymHYsc2^$0DIVKfb>)p zKp?Z~-;g*Jj#W?DRDHE`8A-qO?t+h}7cER1;!g7&$%pWuF&pf`iXFrq-#`An`Tche z4>qK(z>1-vQLfLti|*OV3t0oTl=K3|M@5@8OQS_~Km%Ys~oD3^(S2by9a-t?H=o5P{luFgo8Vy43U}6$S#tR1Xuveg|>Hz zp6^WwKSmFI!!pBpzhBH-{moNQ0?Y!cmK?d^HbwfO_0GJU-H< zCxbacV@^V!Mlx%VJ8zXROC#A}Xelr@OciVI3u;g;TriId^4y9A`c-PH!xdTp+X5Up z_bc9|WwSk&JGR4I)Jk4SiHpyEq|ylkus7(Gftuy*28z@FX&`|)#MB*on}yk=)68=* zCvNE?M{}2k>bT8-U-^(7C4r-OP)mi=s09{lOrM1Dg=@m>IoEM$4ySYg=GnHG2~bfx43%yEr?SIZZzY zC705dso~+_pr(KZEhxG-r~-1GW^K-QE>WJ2@`B2or(dDQ>=-vv7&>>1>}c6dP^^I{ z&@%EZ2XzLCqlNqYU|@H-AKMQaUeNbt!`LJxjsE=k6Bza>EUXXoc_|%NDdnmw<$jqc zZ<=H)S%)=-&YD_{zZ(ly)?tAs-1Lea8r=^5-d?go1M_$s&QS~cyAS|iUNsa1lLn%0 zE5H5EkBt;l#13mE-9i7o7nooDbpIZVeAYRO?eJ77xa-6KOoH7)q^N`wHR-qk-xSb# z4j-#@G67Sm1}F_Mo;tYdmYtPFNgIhmWyHnB_4u{4McfCGfo3sK4eT>sVn^=Iw+)K} zdV*|R+wSzdcN1KiJ$7&H+yTd~eb;(!RqwfN4*G56P$#FSNIXKz3RDzG)@$^+9vW0@ zfQSr?`Tp}i!>?(!FOGdbZb{V2P;H~ihkq;_CrYUA57(4J2fQJl%V%n8N~xb5odtqF zE0E6*4hhi!Ln!>9Y(g*OC>6<~h+?V(gAh=K01Tw&g2Chkki+jTHEZ7i!>N=$Egx>& z@5LHP8u;$wtw$nEF(pgBX2>brlZCq z$_u&9%E)N1L=1BPxM^bdc7yNzA5-h_kKJ?2k}9C{u+#4jtdSEqcaL)E_7-;M zS@o@GdAg2f5vSJNC6B{q$a_WI1F&p;2G{@k)_o1nWpKUq@6BPv9p4lM=Uduw!KBdO za@mmRbX`5qi^beFWQQlvb}JXIGh_y*zrJ~i7^V#p=#BX^jKi7t8QnCaK_<%hBuaah zeRsj1k&_41@&VwU;4gJ6QeTT=2zI0Ize|zsKv$3UqZi$ZdkNq&@c*^n|Lpcq9qsy( zY8IV6!n+oCJVQ3j$w9&#fdx_rSnxi-)Zq2RNwS^`u4`5!H|fi|JeLst@cKoVBQ5&@M!N_WMf%Ok+iozWYGgP~4Zn-OBEHp4j2qG{rBc(Im+#JDP z7A_yv=!=cUrfYi)oaCf2|aM^bsE zFR|{a>v#VP?^ZbPw0?YGhbW}92D%Wy3ILX)O_7PW>rCb_Rctx1@_cmk^StFWSt{BE z3nU*bAPD-1p3blqr-QD8OqCjP;GK=}X@Bo}7}rSBMHm~@TwCGlivK6@p|8d_T#rLe z^S1GL&6}k|eapYIf$3Oi5aB)Ke9ARzxS;BRn zUiIj3A6DS5M)U;7#Wnv-euJd!@fh0Rv-g5Bed=$S=wxru(;uyUcxCstBWR%_sH%q$ z_(*&9`C}uAFBds+rb}rbdzbRZ)y{|Q!Msa{6)fN?P}P_8Cawp|e=x<9REKQ~vg%s5 z=p{5O@|X0I0i&RVRzXB0I!k$7ZRK?!Dyyo#5c$(!8fm6a0?D$LERb3X?Lt4AeV?M5 zO~9tcIm93m$GWihO_{SasR927d~*coBTmyWv)AF+){&H{>V_CK){M>buUOkEKZdT; z38=9`E{I2@c7{yGZ~x7T^P+{i{3TugG$JttP_Fw9EgRZ@y{=Rx>*PHLLcrrPmGb)a ze8pW$8y6xNG+z_&@2p6@auBPlx_-+#j#nb#w#2j5OOjY%69lWh0ocjR0;(0W%wy<< z6Aj>KkG3*mkrrJNTPF2furx{_kf;w$Tf0H%9C|_Dv@=0N697u3ZUM-r zQtPa|FtKw?S+UIv?|zkPLxn$<9@We*Z3dvi4D?h>Pf)ke(CeHe;IN0` zZ)UoI-hAa}#MbEYeG$0@0%5=lu6MlB@W@LXAX1y5FQ2A};DgJBXaKSTW6@wd zpK&Z_n$aC$yT=8liY3SxF=200)HGCS~y@kUfaW9X#H2S$j}}!nWb|ebWW)8EWjlasQ^#iQC*qDqq4Y9 z?A1@t9F~`G5s+q1Koyuy4vTYhGliw}fg~m~I)BBFUN1&3Nn{mENrC_d=BNqIY2oU# z%0$BL^&$fIhk+uSU#l+tbwzn}czDN>C8$|ZfNj*<#nWfH-gBA{yTZGz`J)P#WtVgs zzCvWM(Sr5Jxak_?%rrwV{9GEe&h4ZzR2y$-H)~xk5dld98Q|ztUd&;yX6Z<4{ERLF zqe8s-lDYNnW7(h?2+~a&>;5f-vD|Ksrq)KzJ=ZKAEy%>~;ShT=t*S%Dr z(J*jjK%HW*OK~*x2758zwZyTPXKiXYmFQ?2(BJGFjDPZg?^6MQ)+~b807#Y7?YtkA z0(HMANLsf~MFG5$}A>?SxDadD4fSaedT`$NoNnG3Oje;>{U5{D^T(rO zb%9qTG;`G^E&omxIkMtzHn->WupUAZx8~_)KZ1m&0%pHnAwU zSW93f>W(&h`CwAeL|Uz?{Z};!Zitxxpbxn1&I9Z4Bi)O7PF4amx3NYt=dD zoYvnd!B;0R0RqDJ_9@>tXc@;DObhQW;*Fl16?_M?BVZOkfECxFxfL=QJa~4lP80Uk zPfI$12h{%p{K19GFgLDFlSAUx&rfWq8X0#PV#q`cc<2&*_z~jFNHR-~MNd{CZm!ou zsV*LR<1Mh6^29F{wW&wVYY7kGLod1TfBL5R@@|o%K=J`Z`2mUTqYXM?KYb~eNAi74 zddkvLtcU!gXnCPcT>v*nqIpEBR~`lydOe|v$_3xU@oA|xFJ;t=<99eaXdFobCF_Z> z$Kh;N-3GymI(OkmnxUr4J7E|3Y6l>0cz{m03G>qP6HVb%G7Z}?RpHRooOk4!!!;?I zw$F+o1K0rL)r|(A3G6p8fT=lmN~X-!A|bm<>w=>S2hJK`imu>24;aB0-~2yn6Ov$F zcGS83AyftgUk1}#W~C0A|MPyw&8K)P5k@OEn@=2GRtol)h|75{v&h)_=}A03>Yg{x z-qk5Eq#p(uSy-hM$UcK65d)`YDq2DN5#dmyD(7q{V0frqEJY`1uK`eFFQ|%u=mh<{ z5|lx}3@!SlUY!>b{^L?`;B;$O^r;fBOztUD(3S3>Kgx^mgD8-A83Yu_2WS<$%1MKm zrWf?$xGpuztbXvf7vT?;2PS&Y_uh3asTm<0xL76`&UIc&oqz=A}1`lxT>S)b= zNb2-|=bfeCIK?AG(7AWvs|r?}nQg+Ff6$xv4>ac!i?Ub1#r8|AdIKcrHE-RzwFFwq zzSXlRCRl=AE!|4T^pM-vCMQTt-$aSHW1g%753}V`# z=!|HOd8jPP1!gxu2+#usdeHakIEVBsf-lK=;IRto5@41EbdUuG22w40!*ZiNp8*HO zE^w#^Ipg0S-KKj>Red2RIN|vhW_O{no-?JUVCaLE&+@Z*XOd@2DJT5KjT;#C+_0|> z<9D}b+HwJEKNR&f%( z)fcbPq%HR3<^yI}(5HeK1~8JrCLr*YvYY4}<^2@S%b-#fKT4V6uQ04&<~z2bK6*Go z1M>u5nwScvOMYU^x3mTfHrdgomgaPI1B`}`@&A(?gT6^0OMfY3{5(xih0 zVE`#YfT4-hNKptqlyLX)&3fy;b?;sGy|vySnzi)gobQ~ozx{oC|4KkifzbmwG}H{j z7;fe5=YtgvMc`I61EOTlwE-)OilN?8tIqCSe~}(1Zgv{IWrv4Sr$Sl@a4_nfU#<4+ zpH!}g)kzxyWd~3aIv5!F3%^B*@~4MR&c<6MM+zZ&i97eke&bfc5eUggj~+!3n&*m( zFZb*gf+D7$lLAF)u3jcKb88Ccb|U?Z<_9t>B|yw#q3hnUtOEw7 zx^wDh^L~PA@sS=wMz)|TDox9OAG;;voH&vefU_V(%>1EsV9jo%dqXNT3SO2;EjtVK z@>J&TO6KK(&ixX-906Uw)!S9cHr?yWvjWHNAu;F3 zB~trxMo!x0?z9T6R#BH!HquB`dGmg@ufA@3K1M0yFc7AI!73Lpf66u*WtJkw5CCG# zmwtk)SA;>)>?OW)Fcwunr`e)FFfmoi%b||m{M{IRSIiodWYt?Yl*GAWR&@zvb%1_v zP=_-{U4C8Scx!0~o+qE3(_0^UsO(4<5FbdvSbl;9qAgP;bT==kJe{Y&7}>Fww5HE` zGwL|GmrBuKNmhB4hd?H>n%6`ux;frv+LMI}^i-x^c-`DNX?hPi3C>ugR)iAv{{6yP zG3%LQA=0-&oU&Ovjw_#8uS|Olx)#V2Autw;aLkSOk44vWu&q*XnP-Ev(^R{X;3X6G>Y|Vj% zhf8QPKi$hFzTxq^3o^#M;Qkx<2))=BpC{YWA43KPP-79BOPT&d#-Vb2IYNB&&lOci zJZfGVJA%+WfO$%W%BVJ^1zqUVBZ%wuaTdl5XiRb@6JJTw0$(&avUgLvT+lGp#pd4{sTu7Je5ZzVP$vomr)M>PM8z!FJzK9gg@O zHrrcS$~m+xsD0MrL<$Pl6Vam|RKBTqvwiao7|E%Q1*prtU>+P`C}+?LCqUIQ{hb?b zB)RD8b4SD;_U+NW8e3UsbM7q3f`J46q4OL5-eN`Zi*TpTDq{g&QflgbI+44ibNcO5 zIKZLiolJV4ulvz6orIBD%E5hYEMTbRhGNQ|n_qN$&xi|S{Nii|yUok&8_J)}E6Ic+ z2i<@(ZCz9oZBxem(aO;8HE#iC-?{vX!kJ}%w7Tl8Bre!Yh;UvQzV;>31e+{%otb+Q zw%qZdWec15-p|w1B?FZ-M0+9_z~ARo<>JVsgcx7JGM&VRHf-%DO{$9*daBdBgL-FR z*!=JYq&g-g&;Zpu%B6uE95#t~(xXpLk}-KTuzBH%N$>x}Y6W zZIz((j0o;qU#049btv*8ycQUZh&aqwU!eKb z`k%2k+1FKQi0ZS!o%my8DO4oukAO z*IE`IYw;Fr{q6#pDMXzRzUIvme9PVrr-|K&KYMjqoQwXj zWR|KwZO0+E81+ItddMxm8dcwl3>q}I#vD;eG!yDG{Z*45-nE9zruqVq(vki<_p=F!|vrc0L7ZVNz|rhu)R zh|t{2BD9p^F9y;wnk4pRgYp7qXmz=^`hbTXR4a>+eKkm0I#~cO6AUW6Gia@NaG`sR z-Q!}nkWDZ2&go^sjUnnJbjgf(Jc~Qel29TJt`CcoBpf65zmt=D-COOlzpf2xY9Y|}q(*++*t0l=1#+N8ixQC;vE z{jIK_F@6QPHMGs0>fEh8HizFOR6{6x>AKgM_!hc#`f2Mb*QXA)8rByRbrWb|^|5n6Jo5ox7#_EXoh3v+$b5>s!G^Q45OEPAF6(|;S3_IYBH z?Ja>p+gvNB4PGqvRo=6a3<{MDJXMbD^hh0lb=YB4)+lk#W@(2`R=zM%D4kkL$y zyAVBUFrLQZ(b&1h;r#|9RX0g1p*G^I%~<+umQg(HwK!TYa~1`*X)ET81ar@&O|nQC zQ0a@)&gQ5_1iIXo&jMKq2hLs50D$%m!Msn}4l`-H+NQSzT;PqLD$psX86k=3r5zm8 zl`6<+SzR@w#n*u4L7t8HOf|ntTf5!Y>mW`b+@z%KY_5*usdt+3n9aGdBclclH`;5I zQ#SLFp*UjUkh_rd*>4Zh))>vSOa-tJYV$zAH;^9)P1c)R>|OHyR(#MGmr#1tR~E+xRF{2*@9M9%7K4Cd%QFwzxljry)mBP zk@@Yn-|E-6*+CnfnQ;k7UN=`~dwGu^&q1mPP%*z1tbZc!#!eYAbHGJgtc!QM>ThY0 zr%lj?c!hfXe%YEBK)X2{!$H;(A0J;m9wLqaQqDgBO;ZvO867C)x~AJHDDMqNKyfsn z3KKgnZPxVtGw9!UDsAQaZZp-9qRnQcx*SB{`g*46x27@$`>2A4^#90+p(V3Qp%+r0 ze-Wp&Zr5cuvQNB=8oC5Grh4z63X`62kNM)}%YJNcM9i^w3nb{Nbh^HTaV3sK2WSjs zL)TcST@Dv&nQ{_UQX&A9L_O`d&2(-Z|4N@K{I4=4X*X6Z1ft1!<%O7!vSI33*q9fL z9^zcMh{Y2O8(d&Z#Ni&4wt|YNHm(E>3xYy*)kEoJ3x-CdjKo9%yWvV*K$6b8k2W`} zOBlVNgH&Bp+9pzfZ4vBL?|B{N%=W|%@)`6bt98y!8(nGZx1Ujk1%M-hp&KA8FMk`s zpVmNg(*|aySFRX=pAp{Imo3^1SDGrL&Ov49f<8#NA`m`)$amiiv6*L4RnR~$CY*A( zAgn=M*2V7@f8f68JFxI@I85sXRAhvKwNhmCsw78Wv?!JmUaz^bF5X0!%R9_k(mntfOTn3hwSy24pXrqv_IljCC zfKqvT@wYo=*1C(E3&g#^MC$>svuH9|ALlEKNb3`n{pwG9FaA=;nx@e7GD8rE5a7@1 zyITJqM1mYN@KI)NvHF;1ACN}CQB)jjx|}1AJd~@t(8GZT{J-}_hN=lp@qhLt{?A`a zDC+%YIP#JjY0^>dybfIC(M?uO_Rh#q$CKAyoY0LRWq`XuXcUb4qgHoM4=+#(n=Z*X zOO{uLJ@`kTX6!aY{%Zu-j@J8d9y}<{qy~;R%ddDRs&qE7mXQzqAfxMe`pSw6!b5Fl zyeoC7f@>gjZzw}^cZb2O&bLKTfYG)5fJ^ZtqZ9csB__WqH5u4BDO&(f>>r+h{f|HX zcoj((kgf8={g)g6$E6q@jNiW+Zhh=U7-Ik4+&R#E0cs~;!cMKs zQJ?js;-Sx$AQGHjAN7+({P~#6%hCu&@C`+ZDCfVCBJC^(q@}}q49t*c%5XKHHT*&<2xrh%W_61O+%kc#%|~Z3OqVw zYTQ0c0SQ4C;df3=ZW!ryj)4KT_SLJ8;?b_OfpXi}+hx{~!OxzdkclaJF7Q&*`CHFl zDzGM_Ec^0rtC8Zt2ku1k!f;j3cl-BKVBW@o`SnQc&e~9ueFY`pAb*U`M<8g#_``rH zPo6yS?`N@CXC);&Ad$_Ipg&XH@`9G2$rp)wx~u z$aug)@WplK@%fI-MaTf@SqR5@&2{0!NEzgU@1l}U-~0i4OGhUh@!JNL0N?yFlc@{M zFif>wC661t?3rw;A>7er>#iR$-4?MXS$_!_Zz!=cyuB+e867(P7SQd+?#vc8@_snV zSXd}R?o%^XQsPg>*HuyvWjDA&ZU)(AS(iHo%s!dK=C1=MXMkDFC%9Ak>wtrrYU?9cdQYDMnuGg_6>^YLbKZ`5cONDtnApp(+3acX=#d4g z#$F>&&uRnH)OX^u^4qe8#OH=E9f7m24Nm$ez~*M4+BGj;)*(4KBt+^$-3sZiL%rdI z$RY92&K-c*hvnHp3xv~J74{?fo17MR;H(2>#3) z`oA|`Z8XFRdrd~FzXRscJxDIiCFT~dAe-7jOV0f+0R$>TvG$@lz?HLVY>#J=mlfbRF>o9SzTYGiq!Ur&$5g_ z$xZCe2u7YASb|>OWp(;#5eNj)>?URS;`H=%0stHxbeciicl-7wz`E-U((8nY=7?Bd z$2bS@J|g=S?f7&+#EzvDCiTqpu%DU?+ z^wjBq0N6tpR0IW>=%Uks0|)LvC%>?M(+0syHrZPXyoV1XT=BmS7#J9!fr1&_O|ucJ z*^)NNQuI+E6;C6y-l1Z%K(5mYBH#}N^WW&yeh%y@Jg`1PrzR(J9!xaZzypE)b{^tK z3+r4c{Bi-(0L(>9^oed!G-7iFMr75KkvN$<=3{9UmbfH Uw5M}*9eITqRh{dF*Y5iN9XAi$^Z)<= literal 0 HcmV?d00001 diff --git a/docs/source/_rst/tutorial1/tutorial_files/tutorial_23_0.png b/docs/source/_rst/tutorial1/tutorial_files/tutorial_23_0.png new file mode 100644 index 0000000000000000000000000000000000000000..ae15e5de6b4549f70498ac98ca77b17fa74cf012 GIT binary patch literal 20040 zcma*P1z1&Gw>G>1r6l$S>E3{dNK2Qrf>J6-N~1JLrwY<-03skL-O@-&D+;1?NQp=a zN=tlW@%Wzep8uTxT<5ubt_|$9=9+WNF-P3v9xGf+LzR@6o*0EfkzT%}q=Q1?Dxgp} zrG)tK7iB8qSon}|Q@-hT&B@x$)6CThb=Azx+1|;`{*F1Thn4HyJ5G+md}4fp=UH#N zxjEmJ(AoLsq_J1ErE%F9af*S(&vOn4hz zpF1R2>rK8-cTvI%oN??1FrR~lB0r%b#LFe$mVUFB6| zD0WrdL9qOi5~24p?VY7p6Ta5y&03p=cRk^ zp3pw6jK*Lv`mD+QCy^g6Ka>xH|ISkf9sl_}J{uN`eSMQeK}ku;vWzwuzUwjB5g6XI(^)o9PAy2G%w=2mE8IL*;Yv^qfK^BqfEA z2PP-Q)K!+2Uw|L=|JQk$qhZe2$aYp3Pl-D6p9MWtK9S+nbU^*~?OR#_Q=jKkzqf6bF2A8U|3kC=Y3GYQmlbTyt zxU5adPt<`RynKC^8n?E#I(C20`)0bq6ogz=Sb`T97eVAWl?MK;n+#%(O6KNR-NKvq z*;Qj$u~=M6E)6ApeSLC0pSu?fFy3?SXG8yoTS8k$mMP^>u>9jt%2u-MF)WHaSAEqEO5F+)RZdzgi^!!|e`fg#kt= z*>uf<0xmW@`(%K}$n45F7m+1+;5%%WK2Ot#%YA5g4p zY&c6pC7sJ7G@CzQn>%28`vQH#>bAk#CXb}=MS`G4cW4ia1oLR?V$o}3U1jAo zOP>n+=$FM|Ep8Sh3KYLQs+9R3GG3+U{l!0U*_aGD|7PffxGQH&@2zgpa_Mqlv5R*| z6jlT_q!siI1~t0`dN05%GPeW?D_?T$5#kKRFwRoJfy+$mVC5*gUuP5J@{Ja@N7DkG zFgy@%G0!)Ukul<|xET(T_kl-V8{wJytd667LgV)qa$&4F+E!K5{VDZ{>1whs^)f18 zEndl5ip@4pTF#`QtQ8rTjnNN8MYEKqJ-+89)eEesv3VFJTe? z`hb|a5h*NV&h(#Q@lgZ}c3x6rxTc|ZkXg2|_Q#|xpC{e-@Qpeidr^W!K?NJ8_yZ>B z!x$77Pn)|W@bNMg@+&d?y5m6TFQTOVxP~6Y+1<=)$+5S+aI*HwMR&zhYWWPW_(H)_ zU*zf~k8i}Yhc-kl0;Ha=C zMj-+$T&U*h{cZ|9MKI%s@YgFwa(bxduj8)aJg_H1fpEX|l{jKlDStI1{T3x+l+NO_ zu~SaZk`QE3om)zAsn69}bcIv#fgaXcme4KWXv%_W9_ozXEDnK3)x$n3Mi5bzJQHj? zg<5m>5qu^x$}A@ftH=Tghn}W9XCmTrkKy{3no+)8%izm--~AoXuBQ*=y9o8Wt-Rda zZlRhN(=}e!W$4dDAP=I12l)u}u*fzzxHSGEPTSi*OaDwnClT(l^nf)yPHiDRs_`VW zFSNSU(-`*dXgJ6zmgeO{f0$3$h6-9a{?Wkx{l!IFut*vC`NT0XF){)BLEcnezXDaY zbiWXy*4$pdolx|5_Iymfm+!ObB?CiezbH?iBvD|BlO)7}trM0Ve-wJe)TQd}@W|2o zaiG(MoTiLch7oH?!FGMU98fkzx6M zvbHQORqg|$GnWjwKpg$F!5eK!4?b1C&u1tVIgl33p<>I~sOB2*6(5}{&iGm*^`78h zVwtlrE-dVlB#DBLd7=D|bK0llT^i|AJ`=BRmYH84JQD2>$W0es4c}^i?EF;{PFi;h z>npAf=HTLi;Y@iQT{>h~i8qBGi^?x&6jk@AZ0X5&7}|j7z9Y|n{P+2DKfLYLcoZB* zoT_{LjO_(&lH{zF|1=MnaGN~@VT828pxN}n#T3ez&dB^y?jrQq=Sb}@pKwuHU4|tT zG6Lf)f;bIqg!O80_4gq8+?0M>5%_n3p48RV^@=E=@sipj{7FXs4x2x}T?%v6s-?Ro zn72FkEIPEDwm3o0%A1i#1Ssdqa7E;=jokOMSLg3|a*Jis%#OD+HQvO_v_?*$A(f*T z#F4v%%-tyH(~TQ?&&oD`c>C4KvE-C2s9$L7r6VWX?p!fTD=mAfev=J@>HBDb{!Dq7 zTtP29GfZ)wZ}!Wak7=&`u=q3 zDM8KX^!@3>B)T~~8>xrERN#IlXhA)0x}xg_lOrp4+yZ4`Ulu~9c#14*gg>7mCnLX@ zL@uRAiHTn~h3DgER4t|$l=3#vroZ~mzNAp;=>5vcZhnz_df5nE!e?Yj_!$h8${1B* zzS&3pe)e*GRd+WFZ{Hec>FyZ-r@;hMGea*9w?9+ybE!e6uk@;}i=-Af5v>Lh%m z?v^>P?8L2mSMNM@kkr$RTx)54xn~~7HI@(-MiMH2Ns~6XE~lYq;1Ry>)Pf;_=?j9f z$8ZE=kH6V?S$Wr;b8w}*b&Hb5dDB>o^8;n%3;}D`g#0LOcvx4V05X}l!@0+UQ!H|+ z9iCi#D3m3xfK&&$y5p$_?@hQ}+(B*0VC#eByPP$iT({Va%_*C;BtkXI-+9R8MASAO zkE3Pa!Ux*4Sl1H}(Ct%t=G})RLA(av?T!!0!dZL|iv>TmVvc+Sh*Ov&6_ctdZRrh5 zfBm_ZRN+IumEOSN?hQ}CIgcgeHK-s=_xlyzZ>1$=j%!rv@b*%@zvhWO@w4%ICZWEQ zld)E}Qo$^g_s_vmrYjF)z2G=5E-qdwTrBwL-H8uTzus!9cbIDwvY@7Z2c4|hOr5y& zuJ-Kl3W_<%6}Y*%lO)~G)z{av65>`lPWViSLKuRBgHu{oCU0+lo{U*~`1eDdSm%ne zjwRuiQnN$njT@T^cih>T4Ls32)ixP<$~?!jwT98$-QB?g-7_d^oZgFO5W_+U%cEP^ z9M7%_{_cJ_C0Ax);g#yE5FaQgDwg!7--$~j{W%};lP0<&sPzB`b)+E?nS8W& z@?_#7XK@sm-Ei$_ddd?xhE?`&Hx|CQcSG!op`;9|v>U=jRT%L4`TLhSPb-`^uB-U+ zM?*uSW3go@kaMS2C5y)1W^}bngE{Sh=tfFf%*r(kruV`e$opZGC;W z6F`bKB>2sOhIVmz#MX1Z&iW%p1%Jv`*!>B{cR^YX4!obge2Gs>BSUp{cPm09N=yv7ZFqS2 z&QuWj+IlAoI}gvPSh+)S$UX#|zDg4noUsr%(?yzoz)ejisw?hQj2l}h7sYdxKCc^2 z7bSLgZTH(ZONdAh>*k1vh;B9o$e>JDMk~FRimJ7AbRKkdT`JTs$1f`@lhI*esk7aW zp*HFWVqsEpusEect~DJLnrUY7F|>*Tqc0@u-}qm=1-SI_>AO^3w1i!#`R!eP~1yk&OFXU{|oq&NEHU!^q!qx7Wg4F!lbJO*_V z;ToA>|KP4n2w}7)?GLNUCEW#l>rq++iE3l=v zTeXeyA?briTZm%$`~(hsO}=@RH)*f8LHuqR+3bUfQa(0(p&se0N|sf_`p%HvW9LI3gx0TkXO@;EKFq{x zfKhLf?ja}#b)v;*d+k;7m5!KzfrpVNza>z-4~vOcHbdJIg!USed8#s;Z}LZ@rdCo% z&emM#M|QXWnz&yh9;2)iosxE&Kg)9GVL25oI6lvs_@0@?naVq5Se#Z9e0Hlr#)v ztJi+y!nClRrbbwr6Zsnn1L}U2t0N`T67LEaJm+Qcizcy(bsDLV)txU3!#z zXKEY}t?USx_9^PGLa4)HkF$A>&H1Sk$C5Q}V^!)uDLUx7@9wiSuE3I$)+*S;3!9Vx z`R3cuVjWc#a_82KOZ;Kj(x|(q0Gr~Fb*sel`*H3d{@19=m7A3e5TLFnatE#D^c@^) zOLJ&3#U|_^MYoevs^RT{9>&wg#fgZv)X~A*C)_k2^M{n`{k2J38@{ABpEIrc8MInMrx|84E#4wqineC@#H7~p4+f|yL0hG&1gnpHpb~F zju(+*t2&L!=u~X3eh@geb4Mlq=W!MUJiafl1?A8zh}f7|K~sAD1Wc^VaYAx= z;th?E{*vR~=91?Z|6m;*9Rc^n>oC4N`h@*N-DaHwq;}0)VRa@Rb7@H(Ryl4^c#V>l`ood(WRvV(!aXcKi$4SE9G%MV0VsYcw}UH%&BQ$ z;@q1B^Zyp>zGNsa8L)*AHuB*q8uNwES*fE=78dM|4V${sdp}-!t-U3X8m}rV)82;3 zi$FlE4a%ab+LxJ@y3}Do$6W!l(qHUyS&!kpM1uc(Ry!T zIQl5mq~CASU%!4iFZOevH>s!PuU}IbI@fsre~gP$M?=p>BuRPlIo8fSB~wJB3XN(h zAOf$Wae5iwc$IX!jTi6F3w?I;1wF181HTY;(OJ+rj*UY@2~bEJTr;2Mi#~liIFu!T zmP_OLCqtLHxjB%Fv!|z1`S`>H6DKEU>S$-9|DRHqSryoJDv*0vRMdVeeIl=6NPhmg ziGtG7Qp5R+8@><=lzdU_Q)g2(IJENfVZDX8kMmD&=rz8Bfs&Jx*ETlV;PkA0_5F#1 zT3lLUOYBCDPBgs;v4O+9RMxpCYG%g7PwShjcaD^RXNW?^ z#p~BkCnO}ebwjoTpJ*DIoa))}t_LSi#U&?)D~6KMZHQaeS_LO>J*|)>p^47|C#o5s;`OaDr`fDT69q5}kPeht zbjB=6YEdSilg&s2gvt1s>JK<2?I2|5A!E;lGg{--PAq`GKiFIvvgmm(;lp2%llL#w z_}jN{&dh8=xi3#9x@`M4UF5-C`mQqj^ghX+lF~%qh<9+^>0o?P`d}z-Sgg;qJ3MXr z-6Mr$8*xvbxc{bN$mEXOVj%NcaArtOA0f%N?$hH&CB_V)us- zv-#M}-#89E9}6j6*+w_zj@dfxFwYz58b}c&KV``(ph~T}sS6D%)rMGZe|jPBwKZbn zGN0VC`r{0i8bLQYjt zZtf3Pd8K~ak(Hph=l+=8#KkgO8_`2o)v$g}SYfILLB>FV9z!X~Y-`VF4iQxbyLwr6 zlHY?YEvkQhIs4Xdh3suUtve5JoB1bM1*iITd}iNeL2)T5hD9`fr>p`;WgGwJ^?~@` zKYk9Lnv@Zt2SFmiyO57cpX!gzp&6x%{QlHi_9*@V`hI2=0 zV%|Qd`BqLfS;mp)d;RBU^N%Cp-*2@ol+KvWn39iUR*9l@+sad7j}Z*;|JDfT{U0@$ zcqnF}nt8t9w?eK2F~^#tYcUdYB%j33@Hl_76a@xF-0eqPe-;`CWwi3d%WBjV)jXPh zH{LzN;8>O{LFjm*TJ~|u>W4Kim3d}rKX&$IPV)*u)F^NpO)ukf!QR1v)SD0+i6z86 zl$1FQS|{$(NPINvuX4Os28r{S&$g9aA3rMV>(fPiSVOQ$7-Q9;h z|J93R&=qHlI!YmoW->)dX=rhI-ZRJMY2)DG!5=}J9>#C;^S8v5OwcEKI<8oneqnDY zV}E%9LQ&-znuVRcciLJv*EPfdoLv0u)YHlAOVZcZ*VWZ^QCayU->t?%Ul&|uY%8EI zfhm}52IZ~ZbP32}wDsJ$2~%bL=}VdpCE;+Lu(7cLOuN!M8ILTT%OdBs-r^YpKe1hs z7^>r_JDzA!2OSX|t?XFr-D}Y@{o9h*k^FaC1tI_K3hYyR$&e81uTRfF;AyIb7^l1!0*ChVpLpRU#F>aWTuqa|6<*#9iH}^ zqpJVqo{cChT_xYijQ;-X^?Qp2T6x#w-dVywS`pjRy2VD}IcYv>lOk#lD9@zz@jt}G2Sk&v1_jp)&YzGiUl4z9OV0r~ z#3dhyo+0{kC_Z6)Lt7gsOJ`&yGptMC>4YpHo(!Xw$yiuB!p@5vD1|9Do|K*%KT5Q8WJvW z)Jd1Sd3cDbMAJV6J^&@mwPvaKjq}D2?Tw$4w~*V@J_1^8tk{r2bw5Xxu{~>41+n-E zN{L+8?Qh?1UZ3p*#m`Q$+RMN5C3_)Docq570icRf?$NwSRUZ63Mun|4recNaVfU|C zn^0y_#Lq1*2S>oNr976Kq1Fu*bmINPv6J%mR4imEt6Z$_2-yIjBWT<}9?ffTK1CWG z$lT3Sr)0@YB3ZuC^6-=(M0=-cXcP+us=Sl05n_crgQS_t%ooArr^s2(eySx#;DAMa zctloK)}<>~g5SJ()40Tz$?P#HaO+Cs+5;7yneg727lqG$pMn}M?C&#)yJr#}J=!!P z#$1M!rryPq_Q3>`b6GY<)6e6?Ro>B*#Vb@9qeorc(7WHFmk01e5Ygmd{D(gQcaV*ZQw% znnAu1_pZ*(^P{BzVSJYNd?#b!Wl7SkCnUFIWpOjUY9J4D`$8gVTL@YKsxA5ltz;RV zmL`Cj4Vw5goY`)Xp6&8l87pLGtR@7J=x~k8%SJmkEIaEXqMI_lg!{%TT5h|<%zrMB zM)N+W4hs8lEip|byYKee_Y|iY$P6xedF{BTW=(p}Gc}x6Rr>7wy1YY`s4r=Km0#R# zRp@Epll#>_iJZQ$#D#S+BA!Xy1s8%(9F(P{Wrcp{t;b5=*-B&a`T^|!x~I7F>k{tETGXA<>x(cLJ>*vrQ#S{138(H*|He5O)8QNwyQP__2aFJM#{F2TO0{{pxbw z9^?E@_9gO+;xc8VL{ZniETwLDf&PN1XbWWjaDpHMZJ%xponBlV&HHHssAd(Ye*1^* zfVXpd)=@;Rtsth-rzr=M*Oe^IhxPaLTx%J@0-^2!%O)(7P`Ech34dVnBlFVtj^;sw zn8(i}k1cV` zH`*I4Y`}Sf0QpL~ta0^uQBi8BbKHF6!Hc?BFwinIM01LUukCY|y3-ylf;d3_N{u8+ zAxjJl41L2pW4Du_N)H6F*Rg1AsYXeiV9t~n`P27zE%wX+0(@?k7RF&i?H~L~R| zxq4}l6R1)TJ-)BQE)ixB)hi@2*V(Ee9I1_s4GpIfq`!F=rjAcJpw*W&y@gOOQHi$X2 z>$$XaKEFvi245Z}tMRe(7cZB1MOs+YGi?I4hYI&|bI)>caxOf*Q)vL7Yu;Tg)k%Ix5z}nR5C0K6&NPR|U?)NCARghc(4Jf9 z)bVDUT$w-XTa#;8*l3*Jj-RWmP)96F;KZ-s;1h+nnwUXWD+cwOgNA>(OM`{_fG7&jsP3I;=YeMILc(f z@+7VJun&rIV!nQxJC}leq-J!CDXp8DSjIm0B3EF5b+bt#M!+fhAy#pp)$>B-?Xug7 zl3(|xPqPfFDJ1|ciC`Xs{VeC3MfEjMfH*dGi5#W%Q!=PiPF>O1BC_oXP+-hiGRR6} z(eY+}?ym@;W^w;aG&RHtYllI7Yj-OjL1rdI3BE;1Wu-VncE|6~Id}Pq_zj&P?xXP_ z7Gd?{kW>aCHogNiqeJYJsyVPfZ0QZwesG1ZZ!_h5YDvxw&kY6p82?H-)xOLufbn}Y z3F^3XLhk2=qOqgT;*APBj|Jnf1gt1# zffBiw-IGhbkyfXO|53gdfl-lgdzh{-;N?h zGVYP^4fl@fQ>tc%Ndf2+Q{C*!NfnYOfwqGXK9hm@gcah33>c{xi5^Ih;S_t+Xbs$h zvSZnD!EElG+fVDHu|k62a4Zut@rJcnlTE&u|Q=oDD~?m8vk<`FmYBGn>jhV zwoB%`BOSlccU!seXpT{L<%5dC^XGn2(7S?d)80E|m0X#V$m~XbEjWa_-?b?H-pJ;BS8K-Jn~8b<2P-v%PBi(& zmyDS)bU29A>>jY18U)iMJdJ9vkH>-B2G|^?E%_5*?u3u4iSbZOlvQ9dWnshqPS7`s zrm41K;kE( zwr*=}XxMouFJbf3;CJSSj`2s23T$`dll%%Qg6qxJ5T5`}+3} z$U*FaN?Gd?xy5QAnX8ZrSQQ=xrYYbucI$lk6jk}gwan3p`I!i|&=QwI<-}AT5#E%g z9WRhH`Y)#*>|3K3p->oa^&SS9Z0v5+)VD&RfPVxkEMVQaqrgYWQ4F~@!rlUHdFtTV zqg=n`kiAN+AC|+edxcc~eCQbEG2_S#jm@-N_5Yl zFLCN^N&7N~LU9?|NsE}Fm>E~eA5sy_QqVzx4!A_X;au*i4I66eR`9q(ifRTE+p9?* z_AY}NeZnL6OacWEoIpkTSU}zEC5^&v$bFwOzsincecvQzk|ac^c;KUM#1ubgj&PUQ zu!~UumF-K-o&TyS5ft)$P}L2fp>WXW;F8GHwgHSj^WUeYXzL6h#lMd13Tzk_ibn#T zmMH3|Q`hGRrg^s}^0MSp?UVcmajtx;gs}}}P*x_Z~v z&!q^QbRquZ%8!FWxRJD&dz~E{sy|JL5xMaGm5YqSEk}v3Uz4L>o_vBrf$w6b8=#4e zT0N!8pz;1vKNKa8#ixT-#=Lpmy|zUz(N(WSib7~S>75&@Erfx?+=al(>#8{>lR=^9 zasd^>%KEx1NKk84^hhXwnF;|azPIhUJhjdAIHq}lsmB8taHz9q_9#F)`ay&bs;K-r zf4vn7sEqeTZ1T?71|74;!n%?!*i{Ta*9{iAoZ~V*q@RCav|M_-1vO5$(BA2RK8W~x z8Lh|#J4DTMJyYeq9oUZ#HFXqun;SkBi_hi{`ir&Do$P-Q8~CpC54Vl;?og-4&YMv) zsFQx6o%v{JjkGlYvkc-kd1H%HNOkmQ&U0mDV@hDRwo_}ykhd8tj)18l|3}Z`x$~TC z-{v&oXZ{);y!h?Q81<;wFzz{0yJ-e{8d{OqW@=swgc|2qn%q&AJ z+e&{f-f1`6w)`sjXV*b6kiLItsC9CZrC0iQ6d;=zy5~g-F>=wXp)$SEospiw%^&5% ze?QS%ODv+JJ<=6AOz|O$<^?VeN5b>=6B$hhD^9esel`785TTqke8?CZwHS%q8Ii~4 z?0G%2CLf32Q7XL5>CEixt)7gGRyAgs{%9; zR8>)b{P^)E)Dxh>lEvUSIXoN&`Q60OKbNFQc%N81K~Gh{VMCS4K8YoipM~ZAj=Vo>M6+inzv=sD4VP|uqW`#dn<)h< zQo2Vz=|8#gs`l=@M@_U&Ua(Hy1wTO$Hy>De*(+gh^AcYG4!$ zydpQw{QX_0XWV7sMb8qotOrJXs(0?(NtuJ3ZEbB$;78ejt%!nx0-BQ2;?pb~fH(J< zV|F?l6yx?kczs~PpbYIKG^q6~`a;~I{O{7pj^BN%`1745Q2zeM#tagl<^OEV5c=T) zhx%c90h39ZC~aQ1<6GhClk!%Rk`lAGnz~!Up2%6uZJjsDow+0|#G5clUrR2;{VFG?wY~jhKtKQ_%Ss9gxS3GFwjUNKG-;p*ARtN1DJ}R0B}SjmM(Si5Sg*qi zbu3j`>74|=zv2vaBLj1ux2yX8MmSG_^b_Q4CXA*E9h$$iE#AF*2e{w9dp9KoMJens zlrSpo)&~upGG4tp0cs71E7C0F`$|^U?Fn?C+^NJS+0Arw?2 z%nGKi{mipLY;g$^VAZ!o_!N#Mh63SPd$NB|OAms8afaDQf{;J0L+u(f#P7!cns@D? z8^(7!vRfbSaEP#+q}oKGl2L8suASo;9N^r&AG5YZ|8*Jt{`5s*#yRiTToxskC5(#= znZG&424irN1lt%qh~IVoj05u1;+ZWBl$WB$U(@^TtIIY@>%4m7@EwR{BZ7@yXZh|y zS&tvF%X-jqM)Gn|O&EC7(~tV^b~W|;j9o$BBf^^ybh1RLtX0vu^6^Ruz|25{@VH6`RBDaBQ*mgLO;mx2ffctic^}u$zmQh%8Svx5@Hwm2(0~gx3o8*Wq3Cn}*P5afp|_xl*`YzrE&r9u z@wh;167&xf13;UIhXV+J$Dx5zhw^DcjKUL$eP z^qK*tQPP!pt}?oA4kN3PM7I)oXWGR1wFQBl`dilitIOwsPl)gzm!Zi57~oLnQH-qG zw9qi)Y%OA2O=4b%E|YhJy4GN_1j0`@LH5-+(Uzf1q=7btjHYVAbj98#8WKD~m_^@V z1KT5){^VMOZV%xg_6t`87CGTdeZO~rI`Q5%;EntD75m6L@g^|z$3rD+g!zed9)5^a z;W0lNQAemc9+r<^RFx@LJH80TTaDW2V46k_n8LVVTZz~=Mt|!I|I&pY`H>>gNcpVigU+&yam<-$ z-D(Z1l8XQ~zyp}r_X4;aRh=Ci1X;I-_tS$T5`_HT_kCmSLO#c%$g)*$;-d zW$yhI^bc$BFHye-hLiOlq`!V2=blmbaqp|gAgxR@DO`;ZgwL7q3K9MlOy=s@BFE-q ztM8BD&f%}BeTa`TgTZN*v)>q4a?T5X+PMFB=u5W@E*LQK7AnE604H_E(q*hbnM{qR zZR>7(?nS*QlIt#B0b+kcMGT#q{#863*Z1+yjYDK|y0zW2YCrDDlBvOEW|l9AAy;%3 z>P-0?L@V`ELThAl`@nFDVa%Isphk_9|#E;Ieri8ZUp3Wu;Cpu^567!B$v5YXsh!(xgP3H;ObeEUA!H@s)7Geky zqZuyy)bsY2?nt`7v{eHsA!JU3~V__cG$rqhU`eNw{+4qJl3VSah~_DoUj&d zS(k%=I8i27g8Qe}qy_rCmK?L*S>Xar6tbmiKGxlhs>-kemA~2vy-0b=k%gxQE_F9W zRXpexe-=pBK6GW->&bhQ@Uww7B%4dogtu$}vU>ZKq=f#jp~fWV&%Eam*Kwv({lycn z>r9v2eq(4tgYv`+Xvb{ve~w;V33i6NydT2JwpfYeVZnfqmk;ek`XqK{;Psvj)mD7bow;5&`%n)oM8LyasSNq z%Od%K+omH0k9CDeoShnM-9#8ke^`)faxpZJFWCGwRhd1|c#|~{UFZDRSSRxNXZmlC z2aTZkd_&!lw55dzZ^J;%wMDa*=D`BAfxKA0ME0O3&!Q#Wle3PWpiy4Mr3;Pt_`(6`TAafW8!1JFF ziQSzW0DJ3h1HPaZwL0;Zzd#BY(Jv#tPKe?CZ+*}Imqu;`SN#9IktgqzfQMfCWkX|Q zUKdVye80Y)T(y)>m2{96fvqiM$H4xh&_f!;#R{P98whDD#WZa(nF$ZS*jAq9;|mE2 z!aE`VX)NHMwvfn{76oxh$wh~z?-45l-u4AO7KZN3WBI>_b;UZhRyZTDFz6I?Q70E3 zq+P7X_Twa9!3U;e(8^?AU%cE|vHSn+F7(Q#s@{X*V=w&g&FUPP*Uy!iw-W=)EKgmK z$iC!1AC=l!RVSfSO#@&c=y3ZC(wX}2w*u4rKlCl+dm9VK z1sh&oUK#&$K8Xnl5Av?%v~+i$f*2f{vmFK_Gs6;1e2CK0(n>2UmHqsrHPU4#tW%(R zIv#j*;OyoWTwX5B?EMYXKR8%5@_lE07AaD|tfqjg2sQsNpK`K2nJNdyYwwo$reA$_ zA@8H;)6cp*dc{gtu8;ty;8Tt!3)E^L=Kz4;RCv@krfC4EJ>qJIzVqu)ccxZXSI^=rQZ2e!rhrgIy{21EPAtu|N7ik|%4{Y5SX$ya!^s&Q zO3p$J|MSJr3My1LW@Rapkdji(&d#<&y*y&9+KJ}IxhFMHbK%xdEva&vX&*~e^>c;$hH8)RBnx9Qa0fOx8iu?P&dzB3h4cDRC<*AvPZQ|Ci3#HSU zSC=1+*7u$}cMhb$?I7YZqqHt}v>TfgAJ3MZlM@NVgf~Ct=eeLnyja!O**gK;HDzFm zK=n)e!-o&2k9K*^JW7C{G-Li{-h`=KYBvOa3hBt29sN00?xfOU&xijH8 z87?6qVea8kRpYno+6Uyp4_#eo<-VQCYtRf0m6xO%P_Kz0`e>DnU%x2yijBCqCJU4fr!*AHdaOi@C1mmT= z-OtNSN6tgGm6@TTp*xU)EIdVqP|MOe7KZle_75MfVD5QA;b=m1GVrM3Ea3w$cx?c@ zF=8DiOXa)0I+0zJ7I^3_C@wzSY-1_Daxw#$2IUh!%lfM*l(o7Ha-tIRRDV2#JZFjlMLy8s7N;G8wCghT{c^p8Hr^ zXQ$$sN7Hby>l`|w=b8UX0F-O-pQt_j^hxWyVHL^d=4PGy(_vj8P&0_y zUxXqpyjtMOj7)oI@mA@tU#_<=JQF>dh62WF%(Wbi%h#V=fJv4?(s+V^U=~OcUUN_M zkm@9$1TP?aBz}n7)6?V7*!d5Q7rNXN5*Vsx2i(6eF4j)`7%y>1k@erJ(08)30%m)n z=-9@}*mj-2k@3(QPp6>%$uDQFJ_~-cT6fC-&sKY~uuUnb;gvLLI_SuQnk4m@u0avC zrrf~=l^DiwSOMzOSg*0~7|@z$p<55^l}H;m-G}H=V$}B!$#_8J0_ylQSSYW<-TC;` z)aa7NJ>q*-l>^X~2#ng$kPv)egIjbzT&!TPE z8nr##->nM_efaS0moJoXQ8O&(Q&Zqk8s9Y?s174#;I=68zbOtN+1x zWpy-A`e=#wfxCH&5s0wc5c0X9@ST#f zG8;Gd|@ z>P2m>e)UJ_77PQOe^fv4MPFH28T6h)T1E!vrmi96zsMSq#?fB6Bfp6iSy&;^2`WcA z2OO>}cp9lXxU<7sFi@YqH&_wD&!AAyFPgocw&>w$S9b>v0s4trRt;#lps?^Yc)3X9 zkLBg@?9O^lK-_zGjL-EGtc}1y`GhfC!vzZKpFX`93(cw+ zn2nX=Lp&ECLJlE*LqkJL#~x%Lqo-H)PhrxNC!Fx6jzU$qVAzJHH^ntnxPB^BbIE#Fa;!STq^RQ?IN&52vH z`XnxnHNt!ey$7dP8}YNSt>R`aCj_OW-h7k=W*^5_2#_)x8XA7Ui+_56N&sA@JLMmN zn%<`UQY9Rm(8ksl^`zHqbeg1c!|uzf{E`wHr#CC2eIGwwtpEh};NSoWH8$$xB+q9R zIreLy+K%?;D*lQT(z7D~|6qn&p>;{N^n zGv&RqW7f=U+7(e%KHzbb!Dwk`XoWdCI?e#~(2ea9B0J8o%(EUxbiC-{-vgQ90 zC;l&CG(a7hDUY8&Cy_@N`^Ir#lA+A?{~4<58=N+zrvnV|!=fTy_`1~lw>7G1qH1sT z%}=mq8R=i4LAwUWStQ(T&9Z4jib zH{+3;f`6}bNb}#)2i7|=yyxaYN(w`^Mry?O@7Aay9BW{0)NFtCh1dQN)$jl6_F8YJ zL44E1w%o=i#T|&J%B(-qTUuF7Lr8_ZF=?!Sz2y|YDZJ=M+;2w!TAtR{TFJM&b}8cz z*A{*&S?bU;FaY7?L3+R*V$ka50{6b8Yu&mPi*yp~@2n4(n&DaZrjep@b93*-#*z<~ z+=_)JFvRtDwnx&Gfv&@|x5w}9fUKNb`wn}Wp%aQxo%4E~6?VsI={Onv@1VQ+uxF{0(3xr@D?aC)X zgOH*K(9eLj^vSl;VUH0L?~P$1~L>hOrHW0bCRsTBnlzk!poB0+LbhfK%C1iB0^<1RNVgNXX7apDBwi^$(aLo z%#ikPI4fPfy{f>XxBmEyb0Cj09tR;2yz^eE9Gd$6Jp_9AW}q>}*~6pbQ-)$01R4`X zd17C^@PKgL0%0A7jxHSNulNwspak50X!(J1c`almu8rE2ATAw@;koZUsRdFUzCRm6 zAt0L#=SpkNQcpx0Y~WXQ7vPd!WE4?RvYuNED+U?0j*RHT>ub8YpjiWE_a841tA}fl qmxLiO^S@_&|NBY)HxqEkqH2*#n0rw29^UGPx~#0BRIFh7;Qs;j3*N^7 literal 0 HcmV?d00001 diff --git a/docs/source/_rst/tutorial1/tutorial_files/tutorial_25_0.png b/docs/source/_rst/tutorial1/tutorial_files/tutorial_25_0.png deleted file mode 100644 index 75df4d4cf9a258e9e54802c6bcfb5a8510f0a616..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 9567 zcmZ`<2{@E**B^u|5wa!JAW2O2>=Lp>g^I#R8T&f+eM&{PlxXbP%UWbNCbEwuL>T)r z*~dQi@1Fke_kQ2?UGH~YW;`?Z{oK#F&wbAC{LVQOe#hYEDf+YY5D4Uyj<$v&1VRx2 zu1P0p!29YK^Ahk+-b2&G!^j2U;r-a%8lwN$!`0En!_m&_yqC2*($2+MN?cZ4^2&Kz z4-Z$Q0u1K#?+M~A?l!PXf4Ho`B6P0Wrbq~cfsOp4fFve!K_G%S9gXY8KFQ0Yz5&Kt zb;oOi!aNtQ&<&ZWQ-+=oJAeH&<>h;i*bDN$8DGb<$JxuRE*BmS!58bCTwF%rF26YL z-uZn02Q@o;VL!Fz(9>}ZZODbk40NYuZ)mR{9>#vp5z(`}C~t!p>u!0%hYOIB-`G`{ z-VfMFL1J2xkzrxlGZAam5Ed3YKKcNb*h?R=oGjt2|LfAtg40!Uety2lVX(*|;R2NP ze!RH(!@1-R+utjT*wx{0qI&UH)~Xp>QM0mk6lO0&O(pZFSRYpd`qM?Qc z^d*dHTz)49=^Wth{&g@rEKGwDPJ;;x3r(ejYY6IIB5G=6g#NuGNfMtc>k?KSyd|wy za!x-Gg0hYUaFf3CWlL4K%Ei>ewe<@J_BdJOn-fs{1qVxB=adXPn@4Hu#5Fa3$U!BE z`-Ch=iPfUY?Zwk9YwyAs51j1^ZIifK)~5n35}?p29u{trgoIZ8(wTUd(M3-YC=|mI zi(>9k&E@6s;+^P;wJ+9VVOe{DUbo1Xm!}!+nWKsqkX!pmKKqeL4?)JuA&Gb8DI!=UcJfU7gh1(zbjj&d3vF zfA6cav1us{>xKKS2Evx%VbV?Kf;f)3+HRQl z*iaNxj?0$nV3UORtO@w11iTsnkBy8Bt`eNKYwI@nxQS))GB&3922M-6$8oUCvx}F~ z*#(E}bQHWQ34_7%265eXwEdma-nw?&{pA`O4dzCX#0rX`Ek19iGMSn&-jTPbIWwn$ zytav0IOFEkQfEXwB$8(ATFR-=1=d$|ZW76Tp9-V0C~Vn0{->6G6iD0K45?@W*8YXk)a!c+<}B?Wn#dU)Kc zD`hr$aV2?wi`!A|DW}A0T3>W~=C^`z-}8T*!oxyK!^|H}emFw0mBice!8J0HVN|Md zMhYn--vmXog*INdtKUI~X_MBiCtkVhw%{tS!cum5Iy|Ybu!P%V7!U456Dh?1#CDwwvPJU2;Y)}wqX>H4gcE8E#ng^ z*!O{oU%&eBH~BO9o4*bV6DHrC+DJ=6j7LLi>-=uEmWx1H4gU3QtBxKN*i%CM8KeA6 zPYpqOuxwJh(~X+1ZaWuLdJ`(3tS>Sy6N{HdVws%Sd`Y9H&dx??_pez`$Tgi)=`T#( zeaE6~YHIksO!JX?wG#_V{l?#+BZk;VV3SjWr4SUkgC7(ji3z`=DIKOF|tedNfFvV zBnb!mv$I$f)#zIxy~Ir!4#z8mVut#OI?rt5dxNa}4x39oFEOSf$s_V;jAM;2r4^&UdEm zkrPFi4p&^bV4z6BvX)jtA0Wj;7m4fW;CWzT@<-=Xmwfq(Jg)sM{eWY>rKb+HL-_;O z^f7~Un^(bObel`*DIsA#umZ~C4|C@x2*(=SY4%2c^*!!D{nA3c}h2BT_BV2WgZ}~kfZ^qS% zKhS_iQjXua_v_o0(XR>2a&hZF_eKLS8xTm!TehmrrCTr4`eMIVeNtf6)=*bRtqLe! z#>`}H)u2l;aWM=X*UawS&^1&VzgDB%*gcPZq1>wz8M9S=i-pdJJ|K-O1^!fxug$W- z*uEp@zG%MP`_mmlb&}je#cZ5AxOC0r2DrxARSnd*Qk%hw>cPRqE_3t!56b@f^@9-%ChUc)M=oU0+Y-J@)fI)3??g|7*CDEHv z$0-o@`W^V0lqi2t-c}$S<+6+<{``%NdC77VZamn(u5*`LD#2xXHEnsy_1-B{5iznj z;|pn;-Aqok;&(LyF6W8xO7YN~JCUl)K|*jaI6}m!bVHi3Tni1ya;Ie7ULlL5iT?Bl zeIAvc6TMYOnsBotA0C-#=@$wBmyvk>wQ2!xP}ch~6>5092T4Kti7sirC1-Q8&%hcY}D7ey6)LeU)+YYkIYuXUMwFJFky-%ym; zJ2=<1oLtbTq&X9c;>Wp#n5wzewFsfg+1TG85HVDTG0W$oTjb@2gkgAnopxo5(AQ#IRQBj#Vj=^t)1dBVowA%0$)dC?b~xl> zVRm1c<_ig_Cu#}CG#)y$1Ofkzz1Pc16_yOg5>MFc4@U@*yvdFF)aI>@Nq;;)L8sWh z{}1L;7m5`7u!j#{Y(^rlbB^s!YAOW}TJ90Dh`I8bX2cQZ%Ht;XfbzilL7~@S%qOH8 z{sHBF>O$T^uZ~2q_;|BiSJw zIu+Xtf-P?)mo}{zMZIg6vNhrXC9{$D(=KBIzW9b|a&#}9Mbl)aQt1RkPS*$y(|EHg z@20|z`P-HWymYZ1TkJ*F`!>USkChL!kwk5oJ`U%{?JY?nK>5$`#zB&`oQKF^U-QJU zP!kjCBZ;$WOy8U4>4r-}T6U(N22|~zh2-kipWpm&%|@VG46hzguy$CyGqKH3J#QEV zeOw@7Q2X}en}KR-RsNx*`eR!z>MFZ~IhQo4gUPCZN=*M^uZG|c0M7{7Ufjh8#>PJ8 zy8V9=$6n_;E2h=sy;PVgmthgyJ4>wPtNXp=$r{qx0>@L@o~Mjdcc0xH8&@;C#mF4_ zrzz^Wdzo~p_J^LhXz7O$l_nR>@G14jL4l zoKcw%MZgS`t#bEaVy0$-_Z^}JEi7~ZTi#9gFBf< zx_ZSOtg+MJK_`StouKbr_^>YZqY3YY_PLITX26wKJWZkQXU~v&Z4u3<2n6Ex4h$-n zDYK(opS%w@`~F?vmqo%wXw*apcJLgg-c#SDDboKX@pt5A~>uH?5Goh#bqp6uVE$Sz+ zRgOBds*L*;oZ6D1KWmX71l_ts6v`4`{*{W}u}}kO_$1Bj2a=(}$NX*B2|yM-;|zQj zQ-3CcQLLtN@9q#zMu{|R|M{~6SX*!b#8ohZFz$1%%&v{-_g7-EI8sH2|9aBm-n!eQvvcy-H^5tJfs!&(y5hR} zu*AJn0F7^*(1O&VBoG55xV^-o0-6e(U;SPwc2y^iN9xk67MHVFf+F+Pg*ECkt3S^w zLG`nLqE?fW7^Ia_oloDHNgkO=&Zo416uEU3dUcuqnz(Q88N_hVDPOVVQ~czAsOt`T zTd$#Ymf&GIZ2o)*nfH3}Vke<=`QamYmdJ_yY$uL8W~**G>B|}z+5jppYsAjERl2UK zHozsoA2&Dm^?2b)E6YJ+1YRn%l56^J~O#WJB%6_5?tpY%G zDuIplb@eJ!Iw`j=5(hgKdvAtvs6iIgntJ2j!EW=0E&BALrycZhTY{dbZ78he1Gj4R z(v=`jCw>(Zc>8Z*&abN_1HU-s*)WU&os)VulDAu{-V2KmvE*VJazr3+MKL6j=umGYt&|-Z`B<7G5Htf)bw$6TtdQ` zw7rDC937q|(fg=kV%LqDaXGa)#-_lk_Z5%lv-nmW;M_9V0#U!JHP781^;3DUv-rbh zd^Z{1_3)-sp*noV=byFvVo!56Hpa%3NBKr0dCayekq7P$hu%|WB^sa6}h&N z@Aq!#V(d6(L*AeHfy8_cMcIHgnvAe(VxfTevt+*cw}^MY)+5lg?M3SK5QOEiZ7{7JxCULN(O8+BMgXe zb6(phJSJ*#C$r1Cp=lIdZY#QD@JI_pRuCiXIKc78lCyxPKCq+Jdv#>e=$x`AvM(Cr zXCANp&S*lfzj~v=SxHhM&HB-fdm|fz$S9m_8v42@*xlvCgDa`kTLI;9{8QCB8$)JZ zt>EkvBPrn-Vu&o3zj}9PA_7A2GI-pqd;^$h$DcNa-AdOA zvN4&JQe)65PKcPKAx5dB9BLSN5@I{@D*r{|k$F;+?BnZ}uveBw@B}nif`IxgeZWC$1y- z^sHh-@L4X4`tLX^R5= zNyVmVYh*_*Fbh8!MIS)Gn_1p|K6hO$7U}#BSw!zcQQ0hCF)Z(W@A)G;OGTG!1TDyu z8$)!lcl07-tfzi&RJyq`u@M|+a*K;{sW1lzM{<;&1lOe z1OcDsVUDD2ZEK^;P>P-S(acqkDQBK9WcAs64&6TYdFrRc;a|Ql9V^xA$a&z=6?ih> zcNjrmwv-p!8X6i(p>Lkh+V+8a2R`-=R1lOl=WOr_TShr}g*WBlYap__4?mOFwc&YV zzUoF$d(=}FA5H3X;*`E7x)ajX{+`HoYXU~&_rX+7N)Mt%X)njD zFY7Rv)R;eKrQ@G#Y3#)PQ%i6$d;Iw0;B44IL`E+ae!V~UTwVd9y^u)-t}$V>6UjDOf$m=1_wdg zenIjMyx*$t7m@CirucX&ECkw-%Ro`A{5*}v7HPLZY`&FJfmVJMP26AI6i~VUUP)ImC;pJir&YbpTysY10cb2(mg;l*CouXjgK#MByVNoCAW;2 z{!q?Ok&%}d+`7{IU0zADTD7BmX|`D;;x{s{9r(}znE=LWyL#3e+`?Ex$Q7tPVUChg z^~Ke&3IK4>*r{HNW#4Up$pv{&`=>W{Gj4$)?=vK*zN4%2*}fKb*FV}aWFdz&FE&y`$Py5P8c4`z_X`@G>#UsC;a5TUD5pAodzI5ZTi=d+ zW>oV?S(WBw=cl(Su{|vDK3zN7e{jMdx*1f(c02Aiy3A?atmg2?C;(Bj3Rz}n}|B;+Ja(az@I(T zkdmwy#GzuD0LaBxhx+@&aT7od0roy=Ob4^u8zMvgAMVC<+vru1N2DDll1xRV9$6tC z$PgA^hvqY^_xc8zQP7I!b8nF-2bOzulicUdvj3;5p_b!a~skfb*2P z$an!1rkwrOjZ}t9M!@}yGM9-dNF?fIKGsc5HCu*b`+tBN)Ssd^%nHs>0_K4wQriiiIL0shs$ zLQ4X=WnE_Xoxz*4N417`JPDIb;B*2eM<>v!((cuzyquim`8Mq~%@LbP{F^sD0WZQs z!vRVuAzRLi&!gLpeVt@t0!^~EytD2;qdRa?^Qvn}p>n$3_fP>UJovA;C$pPE8dY4} z-Fmc`_iInlo&I}rX&u*}$B5B9hP|Kto!zvZI4#P*jOmMfY}gs#(EP>Sx#otHw}ZZ- zdD-6|Ozs5l|I6fk+hz{`wFQAEwNgx?ts z%oe_~E`?*?^>2$?tzHmoI^SXwl)RrW*T7G%NO{UbA3q-Wyo^7d(pAVUpP3(_iG3G8 zNk`%swsUXeltTQ^AY)}P-qle6O!jo1NUl0iSu zQx^cQ$nnrn7m#fx&A+$VAfDPSxH8rv1Cp=d<+IwFqF_8Mbl}@z=?Ay&JN7BlfD>*s z>x$KKME&JnEOd34ly|<<7>4;i5%lV9co&eMF?In^j<<*zkW>OE>ua^`dq!wszq*p) ztW;ykFrJ#FC#=OrURgQ?aCg1~gi8)y^39Yo-2GQ(8gYAp7i4{%YA6_Mw)o;`Y6T|v zLKV7jccsi4f80yI{eW+)`ik8@I2Iut)3yB8XLsd7z;UmV1^i3OWN>mvZH6Rx{zZVv zAgR^f&Wg|1>Cb zdJETiGJpaNfacy4bi+{n?rtmfQlMf#W;Uz)TvlJsfL#{L$9Y#~a1tt3j6jVemPosC?#P55C zR=CP68=7(M51rX{lHoC1vm)0YFKVFp2V3E(|Dj|_5KMBzUO&%rNj_>=QxMnmgR8Nt z-4gH^M=@1g+3gDA!dIu-ilVs90Xnm!w5E!#jtuXX@(<|2S*-%CD3EM(c|JZ|`T}}f zCYDsL+@2H|F0LEqq~o0L7gr$d$;fYr0X`C(fd6e&SEL0(cz$&bxtKmTD=X&4@M6c#sOfXaMxp$ef_#7BP2xg5XE|n=KCVUC_ zJhp=XrK^1Bg@tXf@nVn8-b)J$EmnT@*~ejvY0TtH6sSs2TdE~^MgHkSiFVDW6IJ!E z>(3{v{Y|Cmu95_)&1lUivLL}KKR1$*?>Zf6uS#CH@L28iR=D;DZKwCxPHOYYs&od> zz}T4kyj)x5PFwHiz)OAwejS!PNM>SO?Tf9&4Ok@blt1I1jG=s~NLZm)!fLubi`G zNJK}S(3+c_ePM-!vgTB0eX}|!S&8HyNa1CNukU=TA&n&RDs4Yz2~IWAu+Kk%@w!iw zu-X39B*w$=ZCO@h8>n-}WUlCq6dQ4FMxc07kPbKQB?FziEBQ0ulK>q}|-zR6@VWH}t z`eLGbmr0eba{Qd}Uow37Wxhpcg__WK>diLPdc5?wJ-x)_6ds-q3vRqjjQM#IuA%;E zsw4BtZ0~^QsZgJ6J+9o>A+}%VK zUaqlRDhTK_Je|yO2fZAd?>X*>;!$d~hxsRH2z(L>wT9)fuOln37P-yOV`IZ6YPT8S>Te;lLqvPueCsp>&izD-@%vl0RHqwf)iWxTCySU(|NctqjUCLUIi5wzR;QW&KsUR-VgxsKW?1z zhNL+kwZI|feQz=J$9I+>03V?$?w@(F{6(uRA>yBG%9cwM)^s}rBDAw2q9pd73iSz# zqHDz4vvUU4cDoL*;LBdUNNS&db8b%{P`UxM(60)goxHi??goXf-zKkiR~^X1D)jfV zApzxr5a@Jt*VKIR?^ZZ+MW28t&CEO{Hx$FU$dQSKPMNH@IO10L14KE`Z}*q=sZ4P% zO3uMP!H(EO4k24jG0&E7auUq68nxiGL055(ZEIc93^x}djx}^u)dJTta~58K`2OFm zbq)84+uPM4rw!o;!iIYk3laP>I;v1FCb)*ik*Qz|=)q_4{e5CsD}c8D?rKvMFUqq^ z?Kj}=Ck@d{Jz}-hlPUG?EVxQ^sZpyz4`re-g_5NkN=1SHR3QDFa?NYdqi21BKB7k# zGBHX|5hIkVo%B*QU&p$G&i?7}ld8$EsL4%JmFkc!l}Bu&(SmNqjJbg9y<=9q7TvJ8&qMu#%zMj`9}2#n}e-irra6X&4Mvg z90w&6wwVITA3{bc)2d8V1CBzXvA(E%r;t-9zkiD(k?uJWq*QW=IKD4r>5+cuW~n}L zfDx<<9gq=Y+!*ii1IQ4|#p9u?%5p4OHq zjppm84M94Km*igGm>&qDCKe%`W01};qWIO?wg{Jr6M^!v4k4V$$eYQ?BouT(#XmLp zC>g1kjO?J?VTLS*TxlSZRb=p^do=>t#mlG^$&5eeDsokzXABH%2X#U)&WPsleIMOe zF48|utmFf#DOx5{4O&d5bPZL$-Brbl+E+wvqxL6z>iY^uR|BhISAR)t{gyuYxHkbS ztronX_3rT@M*0s!=;Xc?;tQgj@=~@lZ8ghpLUO)}fjRuwIg&5+8?DoU;Xkm_vcO)4ML zq2lOp;D|5*UxYo*`i4Dow3b_141`?kr=F1};PX*)VA<%w1lK@#v|HCQ)g0tTUXpr* z;=iPpykqcJYS0%u34Q>hHk!ce;$zlFhX#q819C~lRlek9bz%%JyPGJ{Z{mmtD~1vf zr4M=S7o4--G(VuiQ;Ek7Qy)p!EA`A((Tv9gL{#t4EbK`txC&~@rPC5cR7eNZbG~Vm zpg46@F&5JR4Eip-VKcDpYH1wyFdl2&A1EwA%f;^VuyJSh_r450={zxED16VyzH?X1 z6FHivxL`@;x$%VA&%9g2zB7A;XXib3_{o-`+=CsJJ11*tv#Nsw`cx%)Dt=+rViwa3 zM$`IleoE4--MD2>yOO@rkqe#h;@_GrMm>B$eROltWObLBX74K>*JMIBzv~6hKAHRw zcGSrGNfIVG3r2otxWe3DOGENaS5BzLic?z9JUlVXMimo5soG6;Gta(WdVpO})?5H0 mGuQqvko_-A`{(jVwS{{O_g;S~1N_(tqN8b`QKWA9?7slxdhne9 diff --git a/docs/source/_rst/tutorial2/output_13_0.png b/docs/source/_rst/tutorial2/output_13_0.png deleted file mode 100644 index ce2f287a4952af839bba9079daa03ee1f35428b9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 42020 zcmcG$1yq%5+wc1jB8apC(kLM!V1RUkbVzrIbSjfh1ql^Ux;rI>Nk|I{ib{8gSaf%v zYp%8SyWc&|`+egZXY9imYpD!)YTox1zyJSw!qrvfh|bZRLlA^WL0(1!LC$a>2-Yb+ z9(<>PUGEnBA&8RILuoo&p*+kVSt2UtC>IB3l!NVkCU?t6uC~rjx4HSaZ(e7zL7`k+ zg?M-z|Mdgh&X25lM$I>x;2;Dp^7^g_LSl~j535kTz!pJrUMa{(YI&wEP5F3U*q%B) z)s>QOd&hE@i4YsFBw76;Z!BqElVMmeEqdc3m!8wT7wTN=5+#(^$VJfK40@hvTqHrO zUmrG*T#3CPV;G((X&@V>^DYyG!>iJk#qxM*mBe3Pzf#blvSBkRY4&IRBaW)uRT*Og zKC{)UN#X1JzG7H#Vel0wd%u+7@4q65$CX^%zyEH=A*J}wcjGVr-}+|JOX;rKX@A26 zqetNf+lvK>iPTLyt0xt(0()VX@)igb8*xX^5>E82V8?$nWpi0EKmE#S3lx1gM;_m+B#|1q!Q zIPdbeCgJ`RvRigEh=8WRVloTd_}2_^Q@_IOG#Us)WwSzZ8!gXr4d3EZftCzt$WflH=Rc- zBy~-^@-{X%x8I#*wE6KqJXzpjw%Ebk6@`8{2ij}XYRYRiZM@N|%EWJ5J1!w%@o@Uo zpO?SbxX>2)E;3VQAHCIzLo&DC$vBcN`yBo7=iTkOK4~v6FCpK(ih%UzJk5G?k#v3a zZi`wvI{9$Sg&)s(;zt%E_U`a!m0<;L%4C<(i+HN%+>Piz-koMd(KmRk4zEl#Y<~|T zS;&bJ>xV-W{`hhK_w20P1KMNXG^S6xq2fnbLtaiT$L`boE&E>sZDZKgc7FftVl6#v|#4eWQIDeb*#Ye(p`J`p-U(irVGl zd%KfjrQiAlQC+u!k&2}Q-ln#RUyr_&J;5wBmr-l)yO4!r0q zma(%sUG9H;z;UN$vtUaUp6bHlV*8ECKfYq7RXv~KvRGMIaFvV8%XRhjlm2w4EoM;C z(iTrn8o?>>j6G~^i_Q@e;^f2QsrHuFS5b+$fB$}LbTs*R2z5v@UaLZz{)lp+t;T}| z%tim&_QnxAjfshgOG_*5@7GXCx+PnX`si7=(BgG2{mSqW-Mjx@TCsej7>z~;+QQfC($b-TlTAjq#o^Mi zTf0*p87uXRW%49Mh|q(PGUJ8mmVkochkI-0M0BIlKD&29Y_%SH?<^JJoF&Fp=Dc>T z|H&Cb?EK}4S~a;S2BHJOCfIP9i%#>dO?mBO#EfDk87Er>^&4HB@JU?w5uf-JZY^BM za74KXb87|z0fs5;Y;1So5;FK6{*XyS^(#D!h|tau^V2diDv41OdwWbvYY973^+II* z9WyhMWmg;H#V|O_e7es{-&31$2?oj`Bls@3X{0(;uvyxY*o zi2drfyQR~ka-u#VwTs_du`-%dn&cYXm(Ss!2|B(-Ws3-WcAc?> zM|hEL9gnpze?cqbg2iM*I|F-IC01XP^ThlP=3v1-hs~Bho9?5EiHhHRRzS zLsXR9xDH$XT;=Az7p-+1u~#uU^7!2h5x#e-4(;$Zy))`mZ6ckcEkD-*?xUurQD~y_ z&}8@bB{KchcRXzaOud_%-HfvF8&Q!StnP<<8OzD5@)k|Qy3M5V^)=4UIVW3X5GmdL zC!##oByu+HdPkJocNW9v9!x;N`{3itOi4QdS>M%R z`6s#eifXuM!`%m|GwMISsvD6M%b5oVw=7MS?cWb-@lD>}m|i|S!`gKEZKssfKS0nW zl6wR9bi0G)L-S0%h^_1BFjcp7lK0Mwdp$92hI_ddrgJgT(c?=-OGCv8^{9FBE!Xj% z>$t}Gc|F?{v(D$Pw(R{NEH$j{-Z74iZh&aMi?3^3RiCf$s>ojDw6vt;JU%TaCnul7 z=naK_c%W#zp=-ww`*xx>iwe>;6coZuyyscJCfzQepP=!ZDY1X}F#P0YrIM7VRM+VH zwUAij`jKi;&9ki3>I0`P4`R!Nyn=?>EAmWF53yOd&?_ems3>KLiz$iJ@!Kecxg%>I zBcsldK9?0Hx5K$&_a4Tw`r#aF2VB@$I>XiKOVcf;KRY4@VCCeBAI*>~jPq4yxV`d1 zN5NjrskR@%Q|9F0xTmVBn!76WTCwqx4#_)rcmFZrImVxFs7wxbC>a^cOG-)td*(Yj z?v@%i)O_ff-|;QuKNFkbe^7LCG%LOstEn3P1y3f)5T3@UHp{|zrex5sbx-U+5aNb9 zB502{>4Z@7(aC8zTzBs1L`1w2G`c}|`QFHhpN=QCVuQZs!}uZTm#FIw(l(x7%qr!V z%d6!a9ZNeR>5KRFJey7q78TEH&P^r16y_kI6UYoW`pI|_usZri+OWpqo}JxmJYu@S zx304b#pTWY(X2`=3L~ZgP3gWH3RC`v%k_}ftDUBVj#oTd256ld$(l<8xkmZc2=6%6 zbK}H$-hQ!K=$p55RN<~Eq+o8IRn~l9N5m**bmi`gUdSS^gU*uJ9c;}<=h_bB&kt&< z4f*X(u`AT?|4G?4J>53-p34g5HE+Y^GHo_mZ8>dD_xf{5p%c3clBZD$zw_{G?PAo{ z+`ZF%H4RP8i;T|Q-GqEZNGkiJ8y7^C+Q~=HSDJQB(jInPqT#i9xzf0)y1h7}M!~Kc zi*g8E`xT=$Jfv${y1zMFY*_2$y)$NAZP7`rl6ZsJZbH>K2z4EmlT+!ZjDJ;ypw6)B zbn9-~mi~L6$=)X}BYX;w3^ZhApSrJp<5IZB!;^q2AsqO*zK7E#9ZEb8`7grG-d@|# zXDRkllh3YB0=Mzy%2MXgSj=r;%7XpVDU?_=JX8ao=DqBb{hol=+1YIYhw$lcb@1CWFTLp;YzYVu-JNvp`uv%&eeJ6RyZ+}T8s(bbd&`$AL_#wAo7vRTOW*`{CrA4m z-c2-j91@>Be}2qvSXNkwKX?A^_a}sChp}5#P=52_)aqT!hVh_eJfxdqrJhXz>bM4CsBMyNTfeTaH-LgbHC$meM(n7x`6kxHM1RT2seB@Bj%vXN3wSC6-j`O#Y2->K$ z*&W*Hy}PZR?n|RtTU%RU4)!k~(aS#gYOZBySp4hPgRedwC9h^zFXtX5Yf67ouMAqs5K6*3_wALvkTFl8 z?aJ`hk*R>y;~ziB+r8^{PX^k33VnMd`OJ+?Z{!EZs^DJ>y3LXK;sN{b$Mm1f4Rr;C zID{!Q6zy*3iuCK1i=S@lnity#92c6(EQ}Xcd1#IpNVGVylc_Vb@6)#Y+1b=jK1uh? z+wm<9#gyWAf`v0toH1KcW-+1}!tI)Suz+rMD-k=aT8P`c()J@Bd}2=5tR-|2 zlIkKA6m)oKCt)S0>dUR{yXx|hAAaESJJrw)A&%ZEr8T>Pk+Y;K!LiIYZayG5%Z_(n z_1z{m{0LM368TDX$I4GR8-ZUFN%$Pbk)&UIRnNUrIe##pkGZ+XHx_!foi`hd1-g|8 ztS{#}uv4_hb-QS+{iam)>Q3D;!5rqvn@#2>cl?v38y#j#NA)*|reeFL<>#eT@#`nQ z5cFi&O0xd-82;doXb1OsvEe;tizJZnB-N-1vVE*5CzwY;B9Z{d38WXuv+oWz>kYnH zXDkpPfj`1LjnWiSN*%(HK#|%AY7T5Be+wx8aD~7)oL`#CtHx0De2cDK&&Y3ulu`yv z`)OA4Q@X8K^&9EXAp_$C?w>T#GCpS zm=WZ9s?Zmdm&as4&;EJ+=4U%eU_x3F)s7DZ%eLwy?(G>Nw(FK}lDu?5FUjyi@u z4J2QdR3~U%UecLPE6JOE(h~r8vwJxgEr_ic+{P`LM=+O7^Tl2Bi1I20GQA_|Xc z5X;OXIC{nH$W_e@v(@OfX2(gfSld4Q8i^*rde2!sYbc6~baJd)?VTbVYkcn(u`9%D zjmA>Cg?7KcCH~sd^Q_hzzk)g~w)0JUf?uAiU&;Zv_enfcCDlv##39kGwJEs3G z{#7!L#u|gW{H&yYs19a2Pa>=vm+0Lq8sy!?22|#qP#Pzv%BSQ?VZrjZt8=2A6kA1= z%Rf}G*K=YaI!s}BQgZBhM5OAM4LnP+!tT_wk*PEeBZfWu2thn@Rk+{C|R71hb0*tZdiXcXJ*>^!{V<;J3~|N zx0&<8g;jB5O$j}yFD)F`i8k_XKbuCD-o2+GM4vT>ow59PLcVl%{<4TC>$|H27uT@@ zbc7#@u)W|IS0?;gdS29ILVU3D5N|11+Ir?fW8~vGm&N_7QF6QVq;#|SD5?<;jpPor z#MS;K>H~Ult6G#n|2=}tCVaQ=yeMsKWc+!>r8zoX_@SCBzvBb@6^z4G$Kz`fw+?uh zn+U&Ce@k(>WipLijtC@lzc}w?Q_nFKq^c+rF%TrekJ5ufF;TbC)}5hp!9mc$FE7oB zU=H;@m%G~Kk!HcndTQfTexnY7EOL9zBzR&i`E1+s&3ky4=dhpTr1aAp(P|`bof(Mj zWlv3|>2<@6I)fD4DvHPMd;cK|K{{{WG+GfXWP80!6~Rb{e=RMly@^aG_#v0Qw?nGS z)jEz)Ki5%uGkWagwdWmC@oc{C!US&k5-cVEdf-Tykd)$c!Mx|uE|tfrGeT8k66Da9tFr6FjqSly?}i#h%)Wjn3<*`mM1G3Rjz>#{AQQ5R+&bP6(;Km>R& zOB%+lX;&DYsy>o8T-(0TZ!A|%3b{M_@5<>{&oz1Vd84xP9Apf*u`@Hl z736`!r0V`(IUYYKeB#Le?)OdHI9NPs((<-s!mE>{s&_+-+ZF3MusmE`C2VJt>516I z#B@e*5tnoI9A7)Lz71!k^d}j4xH(g}S1#38wQIl5X^)J0V{AHrjCTf)Uvh*_W%*Rv zCNf}Ya%b=DdJ{J4LZ~-R_l2*!cXSWk8AhJQ&QS~FS-V?xN{lYh-*Z1NYz_QIQB6(v z{{8IAs;X)zOLb;V-`szC>(;H<#Kb}jb}H5_C$2k&!f|NyjfGnmN5NI7HKAAz|2{{i z;N<1}R#5LbZ>?yVlUGk7_oUm`*-cw0&K4$W%P}1w5CFe}`2ws>Ep2Vvg~1|4MMVuo z#b>~J+`hLyu5hNEe5xwyx;~lsII~|LpCji>q-pOmWxOCklxX(M?*vmFsG^@edxl{^ zMD#*hfON*Itkrt=`5i_xIm;V0_V@P>fYIs3HHrpz8JyjOpEa+p(n zN#f%qWqML8SCpV+UNsb744&VyL{Ij98lY`n-Eo>MWDxbf%EO};O2W9)bK7k}%Wf5`|=(BV)f|g&kcFH~F*6rJFJ)*mFN1Ht( z(D2V^%)Txz>p$Axj7v$OE&VEiE3hs4JLKgT;#3Abq3vUfvp~1RGSs5P4hsK#O({^~ zY0`qOx-9;>e)d#@$08KBF)WS~H7XxIeDGd*I~xnc!^6->@*f&>GCDco02pgmCAsX*bPiB+NFI$G@$)ud$EFJ1oOKa=HSq?5PZTO5s zNElZ#*!lT&-@JJR5H)W?`t#3S#`*E;3|Fnir4M+>NQ`Gb4 zns#>Aw#m%fhnl}im^qX!IKNl2FJ(9*6!h|z;!;J7jDRhPN>9uu^WWV(KEn5B`&ZnT z$1wo)w1tA4{5l;Gsj+)ugN^ZktIe+WkDAO|8ilsql2oiqU!1Tkp^g@+xH49GI33`f zqk8ZH$FtAB%&S_Uh?9jJ|LSt**6fSGR&NCb1+0K~?sFJ2%WYi$7mV-*7$L%-*1PR3 zlK%2fXwztu$)nMVO@SG~>chh>+~xm8ktUL7-xF@q2|kk1*47@B3yzzTx`p6BwU<)l zOgi~6zEwfU_46%ZWZJtO0DihUI`PA0#|L#`fA`!vf`WpQ37l2Y6QW=FPpau`%-r zF=UvTX@$DJfb5)~xitxBZc1pz07+;tK_)dz0(h~!|{b)2qApM7~#epQdygm}+lc}v-5 zx3C%@<(Dj&`TB43~HUyy1Ke}QFH3XzUv>z97QmCPIFkPs4^_WxYX1VuhmHH`#rto)bjFU zsYQ<|g?io-F6g=S1-Y0OeqVcxHzoWi0u%~t)o;^eX~#zPDgvG1YtMhVPG53A$DvYM zS`nGXU1rfQi)z#Urw0z$lxtB>2!5|K%g0eTCs^3Az#M!=_b`%JI5bwrL}1pluP(5= zufBc!pg7}cY1#31j{ky}hG(ZAwA**nnuK$2T3K5!8crX?V+fH#r>ey*vsMJ7oFw12 zR;}7+2U>wiMnkW)Pi(KqMGjV&w_{QR$Tb);Q~S-k*ncA?Lp~ZVJ2pN(pUTwt9x#Ev zX1~M11`p?^nvTA?#?+AaOrr*!P#icS)d-hapX4^Zc zdm5GK{y!k-Qxmk;Iz2QDhUoAA=)M4_OWg5I*-J;v{Ha){V(>4PQ?-hq)MY6pX$&m- zi-`8F?~RukH)v^U{yY^vdE&&jw(pzFXCDukE~n+_H_tfQHik_#wNQ!sEz9@D?wLP( zFUdO-DfO6zlzqOHjy~iS4aDlb)y9U3oiC@iqd*d)*7$GXUyD*uR6Mt*BrlIIWLj?0 zG?=GErLCibrwsTrw(}=J{fo|@wr(eolkW8V!*wyxkIKX|s~buN(d|Lah2hc^2%mYq z{B_WKTxmt~bmX7W4&zP_K)7xSUcFfw-{wEpcIJx&6B#|O-OPud1e)(VJAoD}*^iWM ztATbjI9_cZ7ZXE)N=i*l4cuof%FTT*e)=DIYX6%}QwE;Df$E_VdoD@<`gr7Mqx)>mZ+}xx`K&g1A8(Ir&xA7C!EY^$ zlxM)RzB;eh>jlwt5qRD3^vMptA11Ue*G!=Q!Ik$X7Ul?N_11s)#eWVoxeWCRC}zN zU^G*ca^3b2B2A!tr)~V8Ph!zWQ5m^Bj^{GW_uBk3Z!Lb9)GhGyJVwzKI$Wwc-kbyw zjM)lS-Kj+j3w9Vy_3t1Wi(0y|2_oUt!%lh{QExO24b9e9XMar$W9CE6^@ceX=SV9e zkCh3ojp^gMTy9g4Ne-_L<@Cb|!+p{fc_lNr=-jz;M`lmiY1GNc&ntw{|-UnvOdq3&g~I{7&!j`QK^y+iK?DQpjD zL7G`Uk^T&gai4`9Rh}Vf&5UQhJISWtV~Re7d5NXWR$}EP8!S>kCz6QE_o^luR4IfO zOU(?9vjB#Ck*KgIB0lU`r#n=In_jhU+ZF3ZTne@#MFWEhts3v! z`RcQJk5{hVCate#jEbw?`yxTn84}xP)s|q)zigDb>Dh#=JW$kgmYRCO(hw5hbdEdi zga#K0Un>>$e1W)HYN8HESk_+l=PuepBD$-w=#N`{7;zn@L_wY_cmZk3PA%r^Md#l>P- z)ITLnLs(f@junx?);)6SR>8_McJWsPeiWGE9^H0PzQ$w9iGaJ5_}Z8x?qvH4AX_^p z!_*6U8liz}nG{_PxN#LYPZT{|f8BOgEWj69g;Qb$I5h;w;AM~n@-5M+3vIj1x;$)S zp3!L$D^fwSAFsT#@TB|FLBg=|`{T=7$t5RJ_Ooe^;}hx5C5zN_R~}S9*!CfC5h}(Z z6>jcKBW=`w+ZLsTXPIXHf?6-L|%PgAM&gqHcvw4Qe- zyh@U2_J^0Ul-KYR}1$2^s3v$2^y1QWgQyXd=YnhQ!+ zuHl$52#46Yo7Hv>b**{~vLStFVAZ-$-JQmD*qIAaRGm*_o%SDD7w{au6W|yW#(>Mf zCVhR{<+Y&nDJkBD%7LE_p(9*K@biIo;o7HfRAtoX86pWerdqj8*Mc4@g<0<|qm=kr z13y-_AC7hN4V5ij(7_Hg6ySUBy5Q~>Vyxy>0ex|sA{A5a5|i+fXHrLZma*KJU@-AZ(TF`&44@m>m|_raDvRCS!vHzKot44y;B7SGnZQNcn&Dh3?H$zmbO zD>%mL=JEcGZMXBtt6#w`aKC}^WLiSHp;BE>38}7$iW-BHqN}@m7|Kn9w9`I0#vy&{ zv^=M&dfV1OtYlH28W3zJv#=VHKAHXqVotR0c8UtuE*Eq^N9L$nX0L;?OgdnwF{F2+ z7-&~)RZTS-AQg2d+D{!OqTz5C{dMR`ce1Pu3I|WiQ6+>!Z7r=_kR9yjdb2>h7)TfO zdD7j2ks^|A%Rz1%uW?MFU7Y0(n^dB>x7L+>Zn!UAK$AylFOG7^pw&m(KBITJ>AiQ_H$RZr%n8`h zTzF+;({F|PP>cO9{(P-YeTbNJ@Rol_imCYXU zk%ggRKL4XV)$_D$mt7XAg+-i}ZnPDpnv7)AqY|mr+tQT@6I6U0ao!0u<-haJfBHB- z;_R^Sjl|6Ul^;?`UenEfLSUAFq69m?ATQ7MaA#REVSk1spb!*rOhLV|?<@4^S6Erg z$$<_DbK(E;DnJ99b^dmC$zHTwf5KM$D6`G&F$L2-^eLLUIJEC|@H5XLqLQcuzm=oP z+Wy1Uh`r-j&)cY1?0eSKsa!N}Uwj-j}a5ftly{2USb2rkZFTeA0^;Bm&iRme0!Df)AD}4Xa|T?Cgi9c;~4}=gqT& z1Reaz`uIsdFHKy(MzZTn?XKJdjo+abw+}#X+1^T zXYr|OSBtBkM!uP|<${+{ ze0~Qgg?_Z{0BWJAU;!*NF)YT9KCya3o9Fh;YnB7tQ>S~K;wWf(7NV87*Qq3Mtrv)? zuq;uDbXwS|KL+dn3|=|^AgL*ZYC|GSrojg1{FI<)PXHIRGinu^~dFSgtH zT!%dmxMX-Wd7p)wx~-J)LW#=|pP*?6#;YzD=C(7=(REjyMRwi^auD6`g2S;&UHm%Y#M?$zkkLa@aYfVafpsc+ zVD|L(hjoivwnp^7gGWHw(77@hs_nq2aaTy$WkR8k;Og?zS;E%vRO-qJLC;D<#HMyV zxz%y{A{MeDp-#Z*Qdi5o)QE#;pY&+7R+FR(hxF?B;}`UcIhxqbKWp1nL!W9!A-v2F zun?a&e(bDmp=Bb6k0x9@nWquuU%!ZD8XOJL?T&zW5mlMqD4Q#}!7RH^jZ`1Bx!QC_ zvLnlKRF*F8glj_WsuOkzBWgZt?U#_&Yq)V?Y*Jl1GWOPA7I^yDf(`LW(v=WZb2mo^ z65%uMGk^X#o;4%E<&@Z4^Or(HIYkWX;!>&EW9dai?`hzQeZDwl-}#0j5M9`>6w2_9 z3gx2OvUqenp6SusV6nNjSu6W+8P%!J&(8x2&~kULx#KuKxNyX&Q=)$NZU{LAg&V{j zo9%@mtlGo>Xf%vYL1cIMXul#I3*)2Y12}@5Nk?^w2i{LEfo*^nm@3AP#mXuRv{nf0 zO2wb)#C-LttiJYROoxyv?fP>SUW3~uu^>BJ3P6VX?#k3qfg0nK`-CF|eEC)pr3CJw z-Yn^%CLa$l66ubZ_>`V(mj^ucqs3w}!oNmlTSLszCx{!{ZMp5L#GlvHc(n2P+V$&N z_wK#Ii0gn&z_g&|v$I4XbQ(fLi~1d>dre&26ufbdG2I=YB8<&%qi6HK^bxwC?-1Ux zw99<(2;cggl+kG4V3B6E+oBFwy=MJFK%N(-GbqayHg&Xv}F>jxX5 z+n8m-zOy*wHa6wN%!31ONANuIG;Kwj_^!)B6EZE{g8@^3-#Or-z??Dk>>?)wJvP8r zSD@Qr!{w0pwRR%KLZ(sEIzJOS#7ucP3RvCtT04n-$BRptzANPXCGb8{76I|~KG~lQ z>OLK{h_aomdx+_rVv~}JAWzB7W&||tqZl!B{3Ro{f{kmQzEpc|>7+u<$q(G{7L(KQQ1n zpu%t4n<+`dXBX?gmBU!=#e#z*24<4Kl9IP&)@+ddPKO(pHoGO=ytuds{WL~iI7N^C zTRoDOmxr~fqyc`$fD?LQ_m7L)cwb_G9W5;_QH~H)z5Olqi2c@0hbqE0<55XCsfLCI zukW7ADH@LSp`*hN>`jsh9Gsk*($dlr5uZPP>}`FFbIezUMr(m7Hxf#dqs?Exe;3u% z=)lJm$MXBvFB@!VgZ~Xu_cqj7Hb;BwuST_WnMJU&gLY{yKYrQ&6u*p=2vw?A z{tt^O8xw)*W&o@tIPSSDK+IJDyUckvnK&13@*nfZx?!`OiN$r8vFQJ4({EpLCG{jn z-*8-WKwaL%m8gcjKBAmvOxo7*cg0 zql+*^MaRTcyUetyI#VGsN|1Sjv5@2~@Xd2q}ZNn~{Q>99pi=V%!hV;!`h#V%5pY>mP5EHASVF z?&x@*Hjy=vXeMb4{P~iUbGX{lGPLb9QNyKtWhoH@a`~rytN!$4ls7ht9B*cv4m#FO z^<{?IlNgNPnORKb|+4-DRdkfmd9=I7V+y0{ppoP{4QRj@|Njbr-<+`fvXYq%kyN7wRc1*VH6czZ*&r zRmG7dAT^MlJe=#X`mO8ZN1JUPF)@>WWAtPHo6$>-q`}#MaN!NsZEQS(Hf7J=NL4jb z4EAaug3isAfeWL#^&pI89^&h>2%^c0i%^8-T2N);APqk{u~B%;d1v+>o#)iMsIlqI zZwi83y5Ej|6QFKPQ{z-OgNLzBgYcEWqLOk)1&pcNJpn+zi|gw2NJO_@);Ld>!P=Pv zW3{fN&c)Pbmo8m8>HY{36aeUAs3kG>E(}hF`Vq57e|>xv zoeOP{-N%>A^$V|yw`yCCRWJ~R*ZG^s*JQrWjAbU6x^jC+cYA9er(%q=?t*3pFNYLGtuITJJor<>%!sY-}`wLVZKc=hrK_qs`%=Ar8oUYNFe*r#m1s zVKPRJJ%_D$TW?=P=0I4VMasWhln_(Qjw%ggeQ)$2d%-2lvHxV)Ull)B znE*efL(+p4L8ZrukCUkUjCa^wWNGE{#d!1}$OS|jQ%EyvsIrRvQ{ram5ZvFFnC0CLEbiTnL7JZUX& z?|N8b7^6LG-fE#!C_G|cy~=w3UM3CHf5>ZYt;?W4LxZFX?fDQ4gFx@UFrX$*R9{wK zFGNIpNBQQ>o8y(1N_BTQu1YDMtyH4Qqu`bpAQy&W*OX@oAFL%(b>|Vp<;(xKA&^rM z5|On)hJd4oTn1=)T7D<3C%fkn%zd@3C42 zC6d_OQIzOTA|~WaI5nswB_-8^=8l4@YVi|$Ml7o2`39yvZS>ki&F3X7OuF_AfmImo zv+IPR#8`_5EvJX#rTSHONyPTda``o*iKG>UpZ!ryqOZR?ML9WU?z6mBPjE(D2yszt zeL9ylz<7feixpu9i!;$)aWP>!?cm5raY>2t+qZ8|Y(YNn`ubHHRQO&?MI|MiKMA>z zKTnT@-IrdDED|NM3kvFk7>l(C&g#Jzmu_z@nw}bfH(+(GCgcg>ER)?5>9FiGdY;!5 z3P!(aT`~$!%;Y5IsdbE&X#>6RuVU$$PbF9vD($YVwDTK3_60bGHSioP7iRCCSZ%KU zJ?o%tU|`U?1;od3x>>{kg{1Sytn5lLiIT>2AkrT!_(=C6|r^g(KZF89}|htv~&!FLpDB3Z|W zyY?%SZ|^mk67Sx9Po|FdV_kr)-&h-$D^R#kc3xSeJW!ZS9oyw~Zf4@xY;~@V&iucQ}u=EaG?xd#vOSX7o3{m`3vAkK_Edi{x>5zMgM0> z{b-YfhF6{;irp-IeB8isvaV0O=Vz37SymbsqFrVu9`LM25 zI+2-Y^jD0L8kYY^7}=Gr zxtyqlf7f1wKs<7TN<|^s2}Zq+M*@x$7`*40!RIacIe}*cs4tquJjjKB9IX5C9ncsM@*pEj~L|rsbJ4XRcknitjxEcbcNo@Z%XL>cd4{ zbX_xyzfFN7za9p)CfrV;9p2c#oFNK|1OENa^UIb774`;eL`dlyh;T)-;php$>pAPb zoAktC+}Mgppp3k&PySPd{HKoYKZaoB#mY49u$7w;Nqa)iop=TfXadO$ zFD2fM#1+m6_{{4>G?scTc{U&SyRy?MSzFoT40>Xm*$U^@6S!D}Jv-)>)MSkX6t4^- zku#knWDrM9`QRNxqbp0GF!r>*K+%YB&i-*z~HZvkgrZJw#5$a7*@-#sq${KBA z0TI~c96O#*zEjjEX1>5bn8P|gJf8U$7+&{-A8B~L6-B~^rrg<VtHy?c*NKvn8^_;hFAQMcnxCja_Etc$i$mSv$l(Q)e z*8GjmNUh7~!?6e~ONyA9soY)~mnw#WApezz(_1T*#Z{N+t1Ybp9i@CN@Wm zlu+>+H9#k(R1gO~F0_6O?mZ8tRw-)4>PqTiGDnmwOS^q73J>h$K$*xZuxfGJ;X&9$ z5E#ei2R~w)xe0@!5(1jgOKPw^rgdi2?n2jb%{9h=~q0hkYcfP%o`%Bkh^wp5$o2dp4uW6heOH0JkZO@8b z)vrW(iIjWYN)K)V39NYJC?DRdM;|$3uNuIuJV}O&pflqB@m=qLKje!0>V4>S*;DB| zULCx8%&mAh^AIjxq7a{>{bLcmnd<6f)fLVRind3HlVmT(OD#jf%!>RJ;9EOu#)uo6 zW<6v8_LM#9Uh?zVe2Y3yVl$ppi{5YeK0!H@aO1qQT`!|~LL_D} zPIUGwdW1Zj3~FtTaL~htmh#~{S(-h*B65iGOsupy0W2y6v4-*SZ%}F?X{rjJE+r;-q*i+7PW3C zdc(&n6ygGY%Mpd}_&(Y2$gnNu>C}Y&>tMM`7IJ$HZVZ@T%sx8u1s6@`kR@jNPru4) z9_E+s^`wjP+4i$w1phCtfHZ(7C_(lC@}Y-Yi|o-D$F8(8PuoPqVce4Q823+-b$SsD zQKoq>6dk~93_}@AfOcNaL~%4lr>IMa9Z+GgK9hQQ>* zssI?Ej>UHMThjr|u`%RvJ>u8w38gA6*z>FD~#pdS=GKS?C{c@|ig_NRsZF)1q zpo|m1n#mRJRTxuHoo9krgE;=%4%FC-uNp+f1fos6;V2dD;l8UNea8S#u=^JH2IGF9gP=~3L z(3A;Smm|!+_^FQ151eeR4Hf+@LXk`y^wzkH@O~Pv-`StdScI|SUJUAc@QIvW)LRSl zVS?$k4BGdnja>RZG!4-TrUTJoJKEK$f5?+J;`w}n)8w}$C zZ=y2HvevWAg9rB&OPc$*?Xn38B0w<1Qs+X9WE%gMw!sepX9oY_4H#<>3kOu+fVF`& z52iRb7lB5qk|AacEarqWQ?XzCWSs4W8R3i}#u`I!>)&+YAQkuQuATe6E?>sjBg zGTOtAghlLz=`hCa%ZJV~`ewqBj_2gW`(>$&FZ3D{K-8BY2v=1cab3vzwm#8v-uC3+ z#R(Y=LEDE!=9Rzx`+gva6DO!%f>%F)$ ztOA(5--7YOGbOt){ybpl-1Pf&7bfi46~^CKgaU`X(s0j(h%<#O?Y0UQp4voXfO z>HThxK|o%|y8)-QP*i5&JKsbSLj%cGFvf%S$uAUk0$x8JsSBMg2IHdr z`VPG7VBh!glp;v-26Zl3fPF`QJc58hGD2#u$>#o+xnAHGtxiQ{83qEioF1=Ei0U9N zm$4P;qF(k(7>x;|zzuI`5H--Ih`0#XUnO%w?cpH30Q?2+g?1~vb(xXMD=6RudH|i! zi7OhN3&VRLFla!}8u#*LCT7Wlk$t5%kW5TfU{KiqFu|PgYR(&zf-7dB#$%;r5E--G zO%c#-3}ILfCNc2Ye!blIZw%-FpxydpscfOy@dhyg<50EE@Y5+s_qHoIOXBhTZrEIK zWP0N|?=s*hzW@)1OFBqRFY$RY^O3+GTtW4X_O^>8tklk_Je_>$(CJbrUM)aK~ zm|d@N3e%?bYTJ4km7JTQjHss!PqupE(#$yTWS_C;*f4&C^WDV#n=VXn!TeIxOQ|l* zfcjit4s@r4iRtn2Y~>@gs3f=zqw>a$XORq|uc6yn#3h@YCjylU2Q&$O-)@o zrM+P$akU*?ZId?86B&x6kdi0g2#E~)v-#DF!<@aZ(B7%ccCJw!N1h!w9@UIZ-`-4v zXp*UCHwmF;Qq_6y+<6VIZtp)y*0I1jF>cyO;gw!cLJW+opox54RJ4A&JZ|}o%2B93 z`*W^KZ|)l;tXX|Ancj}(3q@pR--^toFn+B25**RVf4!{X6uzepj%!R=fN|S-|BT?@!YmKi zL+7S-m{{C}7+EFF_D1KuoQZ^k@%a~MN+`d!S1w=B!p5hE)yFZHEh86krMmPpkfje5AS`^^lT3<$&$ z??@O|>9CY9Ifgoka7wkq3KZCyU`lnuosm(&F~f$5HLZ`#c`O$%TqwjC6&(M#l8#z(MaY7ve5O)#GvMjSb1G69`bjb;p6P?Gjl_J^yz+_jB4<$nfo% z3VVu<#T6MXkae1f(Hih zf;goVpM;i^X~+`KTti^St#QZILjBSw*DP%0`yJfaSGE5~kb>l)S-e@U_eKiHHOQ`m zg0rbPuuaZRu59k}2Aud}WX`F2H%%v}GO^>Wfk3bSD5Z|pE_;?iix5E^{gHW2+GmXc z*GxAb?@4|nTvuX5;H?c4|9#7gl$5Uv3*|90hy0MS#xoXLZnZy65CWlC&$6)&`#ZF6wcp{nZh)B#@!VOuZQ@HyESK+{LAKaPylEh zUXG#*iXte25JF*G0`lg6@JRntiT=OmUFzw7T&}TV!c|?6crksFw{ZIaX8#aGin7Hq zVd3^!J<;=q3WZ_1Q?1?*1rQ0Xx6GL$d$Q4B;DG6uj?+_@1(9%pVtU4{0I{h_qPC0lso2dJUZr_<1?P)2sp(X9~41jYzSgZDwI z@Eo*m`hQ7STu)=0ytg%A!e2{Y|I&@7%1SURvd`TD0c~hM4R#xEKn) z%+J4m{lfjiqX3HE$^Ka)8Ww36|tWr;l)&GlD)td0=uC@tK3XodJa;3FAS^I9{?A`uXDa7SxFIV87n!aRt}GA_o3}Aq?b7%-RRY#<^Zc zcm^W?!^vrGTfMk%VS(vKF+*=;Q#zP8V11{~H|Fi^uIuMV5F06~yz2jv@i;d>-)^kZ zk~yjx#7){TCL!77Pei)nctX!M-_?*9V;Xx780h7SB;jbMzccDKd);7`>HHZi2BeOP zitEkUHXZ2XWuE^86ZBtS!I9jGG8D|Lq~@p>*nthbe$@V{_7~tN`!HbMIR?j8;7&dL`#3gI@&qziS=W&|9OKZrFc;G~GI+Gv z&&hR|a&ZHhM$K`TLN_VzMryYIKfRp^T#fy{_E!TU8Y!aENGPE+lgiL2qEecSCCxLc zg_NXFkwzhflF-1altPH+IY|RetCA)f-|HXGv!8wTK4+hO&ilT7p3ld_8oJlL?)yJn zzw7$`j8fOLQ&e4;!y)8|{dzG)8v+wlfYS!q3m7QWlVw}yuIAiLQ%z58{b(L@gOfs$ z*F>(NS{+YMQ^D1x#d4Hr7nDTu3qTgz|2|#HltO)$vMDB(RRj;o16M#juhbRv#!Tg^ zI(_EX80_8%HOrNY{8mscnhwJPRkp-^bJh6$FgZv>ehhdd-SXG$GV_Ym&z+Y;sWZQc z5`WlrSHZ#%HjMKw&29olPl^76^AyM;aeAe2!YoQxLhP07>pa3iE)MuC$T7oWM1J<4 zSI@QLBHy^>$+tIZ_Yo}$7oX}5c%Sg|c|G1&#xI;lsf)Fwcvk+Ve>%tfXLg;T<|$G| zCG0Mk9^>JxmDsSs0F@Kt1UcMuBHaz7g8KBSJc>kX_D9d6P$hAy({lYT{5b#MBtEK0 zro9r;QvMBLWBqh5cC93R;xicCYz>YRtt~`J#-ne)%Fp(&E1#B8sKxutYRSETl5+5p z4dV31*%ZBPymvOd+NXj$PUZOTuw;MkC~VeJ85ElSeBz~J_)AYNNs z>cq_=+I5cCTpuOqPu`m}`)ozvq5DxIEJs9kRM)%^ls;a8=f_ah1Z%MTY9d_%*p_O5mkb3LZEj@dD zsU@l_#3;rqeT;HwqW+_f!?y#LifR7U!r|(f`>(YN66PZ7hFnx#`2|)}mXFc*REpa6 zG+@tsU%}<;4B)A?wN8wQs_%F=%VifQL;lS_1p`DR&y>jhsYcimHG7bT}$Rby}-4*3fHdVT~g@br(OGaqUQna zYm}`??9p$ZUwrpeCRyP8Aq1=L-oLL!W+7*ROWTogLROKjQ}JF(%JIzi#CNpr;A?B_ zsG{T?%%j_8Q=V==X&ZIO$E*>ls!zVt-rf+wrd;-H+_>>w#~`?2dhja^-00_`P~?OF z35@9ZtwgN)`ZtdSBo0wcTz&?av#{zoD;4(3Wb{5>H5o8-eg-Vudpl$6!rR7N%1xH~tx@}MO(IF5W zt~n2m+!#7n+AXwv{xvDH`xh_HC%?I^=u$25guUNT`oqD&+FIYs>lqurV*8DeHzJoh zf!eD{&YK1vqC^wLXW z!@&dj?JF{5FJ$?vS)jOsb$$XjH#cleYA`QKcdlpUS<^YR$mDd?i@91TJ3!4%TVl}7 zm%%}4AiDB)+!()pehv8K|I-$d@%a4x$u3x*82I%1cEt zRnANjzh86b)yR#n&(%N8Ea>p0f(wQ57;mX1xLR)cIr5OFQOg`RX^sBz9+cnU$@I6~ z>J7HDR~Vm|26tl#?}yX;@*5LA{yglE9AJ4ds`BS<_73g4=W(hjl!%#<2?q-2qHM$N zyol6DM>m#~c4qc2c-_Yv*c!l2v3o?T#1klK8^{oknI-9B-}F5)Rn;vcpNwMirAn%N zvTLO8J60Qxmhc(+Vg)X+j6dGWl#0Gos(-YEE z$JSd4&>w%z6_otlm~+D`v**V?2Q;MPwi0G)O8LxG!m-WoL`%`nZ4Bd|FFWKb=d88j z^$VAJF$?Tb@s|7VMpQq~!x^y_O7QyCKb{*6Ap$xz476 z_g#)zN%~ABjjcCLB?ePk8Q&R03jeF0{S=t0ci2!Tlbp<@D3log%k1PRcJJML=bk~* zDhUZqjHvHQOKVRv%`q|iiZU+=^XVykSvX9uHwY8g-HquZUl}(h0alWFKjGD7HriL> z_BfN;AM5dH7c@#(L~Cx^El==UM=$fP6VR(?lQDXf9f31Ty(=wY8C)eau|EgrMgHwS z-wFMXT%dXNw7<<;iG_`-JGz9IePX4kx<)P>!S$6N`Ty95na_F*8S3FNlDNPcoXuel zwsQwYr8KfH34$WD7vJFU=406v^lt57OA5VfQWEJ9raA(Y?L8XmE_6-!$ zo*UQTCBavLElXA2CxVl}Og80(eG~y&fqXZXl>4oKbqq8FIMb@`^`7sks*o~}OEX8w z5V!mQZn4!6>kQdN4lyG|x*XdVu!6Fx3(w#Eb)UOf3>DnlV14-aj%-{5*qx7 zcBRZu%j!;lF(Ej(LW-rjQEbkOZlN8aCwv5wrRKKu_9~fp9QTHP?$bf$BP7oibIc*> z;A&vj37P=}+|Mz02r4F-O5(00umRsC5VoKrG<|Z77A05a6tjSvb%Ytx5k@S z9@b!=ABBS5so8xMC0t0S*@gWo(AZU@z9u#U(0+KTVRBpOe4ihUWe5FE{_`$wnEhvK6 ziV{mR>>=HS?3?Es_mkWWr2j4we@BQ_t-)MPYw?Gn_)r|c`$G+0644~`fn$mLi+KO{ zvn5fNLx&LDu|dq;;MQhh)t8<4m#P{&l`47xl&pjt)y-JZ!QZ zCIKx9O91W&Ei$Vt&OD;E{mxSSTY2H4=M2kFfFqc3y#6td!_J*MBT9L%D}hK%n7$C{ zt%8b4S%f&ivWp(U48&$}FGf#`_p$AYScw<$5^b1dqN^EhR*yFGV1mSELJIT4qGTqu zSU*v!(XfuIOelvouK zP9aq!d+_yqQo&L8pAX?Hs0#jemFbB=NhueQ7jR40;z3vKcNm_+o zQy4`tz+09g`HOc+X%LeNkNlmS{|g(XS->?i4><`^l7;E0qHjiacda$^IJaJA`|nGo zcH|;U_YeJb7-nNlJ_W{|$HSi}!vm=?%x zdn!*D(6H$`WbRi}JHy5Ge&USDA9IGtnqzu9^-la+i+my&`aiik4No3R5!*77D! zU+eVv)M(zre((O1#P6u#>!jVECwHJ{Hr-!6_w;A_p4x&yKKL&W9@B*nL3vFN14Z8A zxBgCywpfhFf(orN)_I%c#}jwnkkTYKub#^A9@NLZi3$vzohU9c$D z-Tv?wm*T6rvG=eOGf2|gi{Tq;VmOp#>|fJq@3BgdwXInb>-|==M4E~1&i=|beSz(P4JoGjHFw2XN!GpVm7bkZ&!0>iINQ$_C@lpt&Vu1SgnW!p?vyb|ks@eVmHvYNOOD)Y*sNY_>tRh(>>0 zJdsuO`gM1O_S$Mv86%+d88Rth(1Hag&EEC^9jT140yCndCgp} zz?l31+jLwB&6Ok(2=#pVfyR0HO*MOB4i9rsH@bDkgr85bwou;Q%BVmz4`#r*kGR`;Ovx9-n<{@rjUs|_T}AG#r~W@;j|2t z0xs#jV~clTcF(t(xch4f*Rx;Rz{KP}NY&FJF{1x^0f)3Ni3gEyVtVZ1ba$1f)#ha( ztnp$*irD8yidEyI{YF^h%*ld2HGVscOSR5v)4LHRn~0ret%Z#W-sw|yV9|p zOF%qk9!+}ORTw6beoh~bT%Wl3~>!4<1i|MCSw$Jl_u$fZJ&SIx1 z9s}luPbuvqcHfeOzGxV8sp8pxx*q#C)r(Ma+r4|IKfLMk`2 zeE>_dV=-Y|AD%woF4gqx;P>f>2LS?=o2R&43eH91NQmXwQw zJ-!x}!yJ}E5D}~jf5Mq(7kEUP-afdCky6HKyQ<{z2^Q5L7Kw6U#X8rT$m^=>JfqsYI8P2z-X6OOt|P8z+$n-N{mq}zX_8cR07WJ zE8sMwFi|Yoq~e$i6cAvY$IW(Ij6>a4$1|8Q?V5qlQxP53&8r0r813_y`3X^|Be?pG zpD(LZIL$(>*~ht&bB}O^yxc$llKO1gU)Mwnum^ z|M2gV$f@>DueD52BPfu8c%LSn>~m^3GwWGNb%Ziw^c0_^CO-R!-s?90^MZ3I8r)kB zTYKi)cX$3qBXT>MknkUY?yR{|Xx+RY$y`OxRf&r8cKoR8?_5eZx6U ziLFlfW>k-I?)E<&mc6YZNL4aN$5;6Q{Z{+r?EGWQ&Zl)em4%mB8hB7c+VpqlpUT-u z3J6Qr4@;X?o|Vo1>;zP;yW&KZpS{-GiT z+&w3B7QAJ+UMLxR)SkUlr{2flj4eK>YX~YpN$V9>K2|R~A}k;`xPYDoNs+?v@r0X2 zn3{ya8Je|Ak2{7m4Vc~yi1XBxh9k|FlyUdUNntDUy1^iQC7LlC3P5VZC&ya;kZ<@* z)=PxMgkMX&h_3dGq2y0}himnst<3+EX&C} zM`Lnj>v+mUfAw;7jnNNxLA7_%k6VjV%xH})U!ET+DtaOHa05m9TvMS+Ws$=%RlG4Z zL?l6DPyM=hR^Brv6npMq!G0a~WF7YLGmjcQn>vL{-DgnQ9PWPMY?fJ4a&rD|?w`!F zbDvZ4HQZTN_eyV*P<-Jk%IK~Xx0?YwEpdVG3p|{*?syxawxM3(sqNbAIgb;W!(({o ztJ>=HCo0F;Y_Y8L)ZydCXZrYdk$&k4@H^sNwtfW zCH~%4w?7}f!E+lC+I`N=Ev~0NM@;OCJttxl8K$O58F7OEG}8&;_Flu9tt*xvO82FF zkWj}~>hYhnc#bo_Eexnh#lc1(rFo(?aD|M|gr~}n&u2l!vUu`G#2OSt9TZEhi4xh2 z%q+k{C1VOX24B}0+#16jo2U0dVetG?QcU7+Y|pa8SjSYAmBr5lvQZWw9fRPUm>Q0Q=!cgKmWH9`K+-Tcm7yelXqN46 z1Ec_uF39avf#rG&)9lQlC|))|?AG;w^x_9>+AHRSu2?S-&ukeyG<7lqo+>K~2bpY% z(WIizgxHegv-VrR&94ix;cdb_ruB1sZfk2nW1~m=n@55gbN;=R=G0*beyXbVt|u$) zLS0+V@gD1{xI^mm#M+G-Qz!T$4=6{h?^{r9&&a^H^G z+tnP~A^bGN^kZ{VEnB<4vRfIo$!n1I5Zz%+6#Rt=MYU{8#Gt40edrHhy{gJV2fyQs zl+Z_>-= zer?TQT+VlEvW>~i6Zaqg(cN-)xJ$L`1<0y%+qP}VzGPGV_U$e=w+vh!6UC{fS$gOz zgryf7tq6wpY%ll4C(1_9^1rMtXK{3!nt$j2(pt%mk0%}hQ|b7d$?#Y zzmg%5g9wI)EP9a|o=N~4&ZZ`1pVkg}chMfQ1;n~-vDAE4Nk6E#P;*~j9^u0{MU-xzmDfRaxClPw@PG|68GPg#`7?6#A*&V zm}9Iq#=Dkwm240!g_(ky4VSs-aZ1QK*?1YTsyUzEM`^Mgk&0WIKUL%H16L-}}7dVbM{FG_qkdFX=>Kz-Mw<1mysQ=f5-4@qMm)(pTmtYvMDsKO<5fGxq8*D1yI^luYUKc1^PqH<5bi0D0~0J8JU9taat`l+AJqyt^&A88K)zb55v__$7B z+)O7^DKc~ngT%OqT71n;P)@Cnv(2|EI7*#+Gt%_>H{de z6YSbZ7avS_)9HjdL8MiZd#E$kGT5%sz2B{z#gt`L)9IqciH{zqk_Kfd>crZ|h_#IP zdh~uMc^PLJ9+@V>Gyn9pCv{(b$_!5~SGdiZ_y@bgpl9$zE<7kZ^V8vOxs#aqu4g#& zsSbjnki2HlWj{$HwMtYf?h%oOPu|fo={1Y%><-O~%M1jJ!g|AKn_nFqB=me%n z)PvgqiV%H6@#$8|XMttkdv%-)*(qQDrskK;b)UOpAR~d_?LrW1|DZc&IR32vIsnof z2ybsPq85{-(-S*i_Az};UTXXhL6qbGp)TWi_X@pktEbnw^tT0Z`?Po8O^B_jl?kNH zrd-MVb7k^b75w_j@&0O92Tk3l#e2`ko<|oRI*)$E2QII_ItI6NWdGYCk&3+c#PR_8 zCt(_2K^McKO=k%ZTdD7{#>y z#8V)665u|{P;|$B_uW+?F_Z23Hk$$6{}L{B{kL~ysISQs*(iQhsJeF%4!{M2IVsfj z`1TYCS4a(jiT$5uNp^(#OpiCuS=KOuPG(&sp@FZJH`ZsY%Pxeq#H!(vr>@XatHYf- ztSha2i9Vy!ZGtiwXH+gCr^xym*}&0NyBb8^P0v8V)%DB%cA5hfl#d zK~$Di7{!2&ygcsGpR+nPJla&Tx85hwKdgMr>Al2e=V#}xy7fZjBmnw*jShKc1gC_B za}p7?i1qu{C|OT0mWnyc!|4-g2Qp0NsSut1TN*w8o9fk~LXVss0&LwQ-_8Yfr+=s_ z3ZR{>G2UBCZhn$`fPO|ALz1xaA3dNNGZ|D9obEXIMcXP#=*s6^3v3czactg;&igV! z{Dqot1(Yt>vma;(jf%Pt;WWeZBya}PA5C?EH27@{Ni!QAKJne?C4XgrAimZ;A-4Jli-v}Ws}hT zsb&)qo7ScvB)=inK;WR#^XJ$?+usnc%~zSy{Hry@XdYYIVaWqUu?uX~U5{{k=bdE#KO?yY0wm?FQ<#eVp&) zzijyOgH1d6>=uL9oKkvT!MI9{3_T2_9+qSdO_h74_9y7{=NX|7h26091pSkwaQVJ^ zbG`ZE(RFs)uShM<7l_dp*|~7d^7$TFcMQ~aaBscs<9HZy&}W`hb_q@ezpEb<6s{jX zkVWNEEixV!xq*~9H|HwjxGo}THSM6>J%ld28~{(HWO3ao%c%Zrq1?BZw9u+Rw}J&;?NQ(O})vW z6iHQ4$j}p(aetsfp?+25-sn#|4n7k9^R?;0_F4!{imho&&#$n%**;LG$^7wcx8P4q z9l}RYINszf7?f#s;*qEjet{fNZ!PRw(nO>@!!DaD;HlmU2BR^S% zK5eCbs*iK^maV>dxT8!rFr>3gL4x-m`oKDUA~B*F4VWO1fnzbWx3^CoG<{W-R?xk+ z#ZZ1~*|o%&;_{d4BJ+bE?vxMX?lDQfuD|)`8fV@(hj_Ot8RM=WgBlGI@$+A6HXgW& z#z?Sz*6F+v`to1!H_)KeoESMjof_1|jCc$b2tFnEl;`M~rpNwC^2d4sWzqQ_#*2f; z9l5geq;y#fEoUdy$Y!}&)=zGj+k3EJP-l`#(2ABDvzWc?>-F-rz()NqJ^uvhcFA|* zAVG*A13|i1{N_!%pZI2fpdiB8AcIHB|9im5lkuJ_{5s1n(Q3RBbCT#&^?o&xSfPA3 znPZ}+t1eS!wbIDpp6WeSB!d@ka~NOj~|XafojYqorv~QfjIm$#eRa zTaNMW^Wb`ml6HPV#-pgp63?s z?)wi&3}ipuAGDzwb&r_5^_6$J0=|G)VEwcl$maU~bC;{dq=i{)U1r>%aXWQa<*m}W zH}=XWqPVuMbj2`J;z5fAS5zsrKFWrqeN1olP1X+As_CizX(FtT!Actc^5sjOj%X#1 z)EWN>X59-7i*=_NkG+ku0k38(F9H8o2Z)LHde2a%= z$G5s!+w}uS&a)o=`j4cH%I?P~Ud2x#(Pu>ZlDgq*$W(NgDXVg+Es095T99Hy{Lh6{ zZF!p&T=|>Sx)UzW zw4X4{4-AjiONj{!t88^9EEgh7pc-cT<68^ApyY(k_;YUf=(z(2^X$t`!5Op{1s>dP%9biXKM}Bf$2N9%8i#vgpQ!t6rR&zgl|2nx<9b&S zKEV8g-7*)EvDXDxqUwIhvEqb1`|8?1$GiE9oOeiQqB8m?w}NRZ7e1npkLSMV z&>3wOD4DU$3G-N}bb((dJz#0KNqXe|?LSYKF4IdrY zUU|jq?Ygjo!o)E*ae7C7N1Pj7-y`M3q%#aFEiZp^d?*@ZIt4iAqQw6Fvks2&`dlx1 z`*4ZU^MKPkmJeA+@)xXM@u;{>carj%+0SC6<+XHVQ0MZ+1pZSP;cHwfh2wa|CT=-9 zJBK%RD$-h3z=CpKKyJ3VUQ1?2NIcgH^r<^*=ANqevV>yN>R;<`)|^E(sP9tg@-Ka3 z{kW~o=1b4j)T5NxmP~5#TTg)&L&%~>v-p`bt}QiZcb}(DwSKHPk=A&!GNdI+lRoyN zzSnIYg{vjO;Mo^1tlx`75{}Qw_O;6B31KVit7h=V~xOEj(x7XGsEUum>0e%;b*hnEVrpt&+8K7l|yPQt>L5hmu^0K zsUv~SASp+j;prSC%oTn=iVaWQYIJ9Vg4NMSB6TmA>96|uuNEl{xYWMQsD2b%~L_SAQO_P1kTg>;{o-F{Lb@G-5ePJq6jvE*}A$h(^KAq9c1 zG4078QJS(Z69n1N?=X;IVL@piY4etKl5@8^wbJ7*%jyq>A%~ZTxl1v)##QzlJ2|jV zkiUupK_H|Zoqov0Pz!UF-Yl?iY;t`Q5$HJ)4M#=oqJEX-6*}~ft+~P0pWSBXyDs|_ zT;f<^8&LSXDey8^ubMFrKXaJm!6GilO`kf>FEsFNUq3L1iBjXVJD<5nUZPX{t}8To zJ?VjB`vlHg=L9d=G=BVH&LsSy%F%CBsUWy^A*E75V$T@`Pu*vv&rG6TELcLKXz;TV zD$pFZW!7$y;2XdNzE2VTFRI`&C*g8n`xpj4x>o99=-UUAfeGLPUc6sGI*;Smh zl?~a_5Y2N}p*uCB+Pi-oxigbN)G?NPZavF8ea!4JU0|+dSF_07`)K>prt^8^FYzs64ms&mRqw~Qvcfq zqy*f@R4+*KQIlxCq8u81hP!T^a?6vKx%3}7jRPuQXJ5H*t4lD$_k5?PE(8Wb$ac%O zBkR_Gh9b7Dw4^X<)iFFYIQj;KnWs)|s1?n(Ye?55m83uN8dq~kUW0U60?9Ho;cw>C zzXw+Scu1GjBxG}<*}-%=iMmcXs4C>I)wP03^F~lPs6tP33`cS{uphuUga2SLndha1 zb}?^4EaFe^X!Evm_{XA{{b0o7`X@(i;SVxFufIp=HV+T@?^IGqj zVHO|D74A8$IhCm+{A~XVGli^WF8qqIpa&?U?@(R^NxqYQS8&M0&2*ziq$mR2RfLFz zj#Le&AKq!G;{#tynr%B%h*eU>)Nk87%vUG*Hl2DZI@2BR$3WXKItPyV-c&OG58kVg zb60*lub6ypYHMnCl|9=@6_0sX@r-V+P9I~UR&J%Gs{GbAfj1lWogVdN=pi{^EHUkA zUE-P*q_OpF!O6QHf<*F9xwD?2w$=B3bCBa7X%hIWs9xMLI7>$x#y=F62%(oJ!W6w< zl1Impn(2PUYcc=uT}dFo=Fz8K@paCpnaAAzw?bq2ImD@q21KYtun-^Xhj}Y+70$Jq zcSEV&B1%{MtR$H8ry*5Xf~q=KY_f%h;cq#E7CIIBSgyepwH+msmLUWDrZ8#8qB{5MKGc zfm>}c9DB4*vDHV0#VIA_+(_YpO1d>Q74O`IU{uvw-=Es3EJ}Bt_@{_t)80d;>*+jn zAle#xBI7F*CL!tUB7+aG6{?Skl^e&uCs@01!9ahf8^1B9pQV}OE)a# zp)Ho-dl3$t>hPUPdgZlg>c_#RQ-dF(Hv2w@q&!sWJ7qxHKBB630u!bDfrIKl>LuSZ zG!)wh_!KT-k&w*yTGgVV_wiYJ_TLZlO@D;l%xV$v{W9R0j*zM{djQnaTBC5FF< zuhU)Hf014z{&gwPu!wyFhkijtM7ta zSH;#)`4vxeanQQ-ioMVJib2C-R1Caap|;Ftw$i~lmEQjsoN8@(jNJfo?cKNU9_sR| zfTV%0IreI;&&?YX?JErJrKWuK;9TG^2KughwpsWH$30rjLXC~}2=`A23%DG0Ta)PS?=_+Wt^PJlDv!9X1r&Dl1<5h8G%+WN<}tgE-Yt4Z8d9G_4dva|@N!XJ7exoAWH-l})hE9X7;z*&0?=yEtv`8sQkf zMq;so9c+t{n9kQ4eqEV}zo@b&o)lL75@ic`9vUm6BO_>CQYmfB1uZX2Hyv~Bxx0ut z+}ExJLA_TOk}>`&#Af34SX&u@}rH=lp1*7Y;7x|AXp1G&T6 zXS}6o&yEZq^L8UK0$f*h-CMAV?#O7pV9Q|_dlspC3+zPVnPUQ}T-N+s z#0r8hS6KR8JwMxh6NBHG_{Vm3-lwfAQ61Mw-(&448g^Hr7=@I5V0(Rli3!@T$n zSWYEvxbZ^LoA#kU+R z1TpxoSvH>`6678AGP5o{Jf?%kl0=X-IOoW9ehnUD7P?c2$BvW7USk~DgSU0T+m;v3 za^paBc8*9|x*Ve>#eJ)hSj-tmE=L}C>iAsu-pWM@we@9wP+5gCUK`_=s#V9&Aoh8g zUl<&HtI7qC-rH(z!(Xt2Vy|W-M)&{yQqcFUS%t(zIZd`PT8UDY;iJ*1N;nE8)~aU!@m zcMGSeEf^K%KgP9@k@}2fwbd-V@jd`6Pm0`qIRFokgqj8=f8ZwPX)$4(14jXToF(!* z#iEDM{0h)yHXvZ!bTSMY8FvK9?hVfhL8Ex5`O`#4SHB z_PbW1x_s_a?iNw1W#@fY_L+Y*eo-KGM*9iJ4#wp%qhI_CAwSgVCB5Z&dPG`D)2F@<16|?}E=UJV&^c8CmAw7q@6Y zDfq=I;Jhh7IfX-4P2kw0NHCB^bC0TiP7hg$`nolKEyn`9JD>>po`&vX{JzZr>@uDF z#oKU>EH~ku%D3rvEyD*}Q*`qRY6&Cm--1M6iHn;6P9o(7{5~JMVCIR%oua1a!ke|n zHGCBuLlC0l5LVlPXXC*5@IXba)trt%ruSP|aH#lEEOZw-92TV9ICs_Ql|p`Srr_tw zp~lO*ZzXf#7Wws3OEJ@ca9x(wr^)BV6Q~MM`ZliVsrNl`(71-l_yecVVeSGg(C9?T z>#wiazva;O{<9Qr_tv|YAJ4TCi}B~c*GHke=MC0hzwpItb;r2|3hNV&JD*BZx14Lh zsXFtn-jO^ynO|NGaGA_d6E1li;LxxRv|dh~IjoLHrqcC%YTDNeWQD#2vPhOM@w-Ic z^RtxRJaJQ(33o1I;V5(@k6UTnso~fq#XR#UmHU}k%zS?-Z4fICuQr+YfMsp(=`uJP za6)$3v#l^yix3kIy!@D{VO}1~y27BenTI$e{la=HhvYd8h4*7w9xrk;iu??E_Bff^pM(~�w|Iv zJX3Cq?3V3?(`+}o5928^$LrGKd(h97@Fv~hqh2K>w1t45X43FE3xx8t{%4$`bIQgP zY6cN-umypLqXEsM0wv7{ksFR?(%!>&o#FgN>j5xJ4!OhEuwQskES0^+G7c6aV~>wc z0i;g_UfGRx+7qnTgr7|D@qUt~!rElG zv3bhyXsnxIQf5HZ>~!|ik+M+*S_0E=&L7gv1_xZ$>w7y-tqTlAJqRpRl5_(4VD^BL zO|Z>spZpi!DD7Z9e40)_P7Li8D8@=?9z)wsbi8)O#CNPDM&ZNP8^nNy&dD$|{!Ai~ zM2J0=2&Of--9QE7FCC@y{aGniEP)gqAoC(Y5ZGC~3zA$01l0_qK&B z!Zczt7W^4S9}qi`WA5H z#i1~?k|B+XZ}?65g^?J7|C)#0}C<1?4ZN^o!f+T<1q zHEBx|w1zRq0+FYm6oIgzpYpA(s#+H9^KHk-p!j^X0YujX~FjqpZ5*- z-(6S?EWC%WVtJY2JMCizrVrqW0i^RS+odd(89W?CXHg&RNYc!HM>Z0nbwq&`NoSH; z3*TI#?to6MSwXT&km7ny&k-nt>&SMvvs}G-dTNyPl)sBG1Al`+@@O>%@V>IAr>(nw zdZmPzsIbUXPPQGKR*`->I4hyc(uX3NI-4Ze`sPeu%W4Ecoj%ckhy>reaJ*E4Mb072!#O3)IE|a1Z*F? z#jbwe>Fn0F!ttIj1HVsOZ9Q$oO?TXF@%G`29aS^yeNL-+ zRN9tVXJhd|g_!%iAwCh^gjkAT#XSadF%4PN40|){ab=-%;pOW+`aV)EhTsHqYp_YW z2Q*9N3+h|sIb|*LDHuOi(*vGde<|50@$9H+)8km&tHdB=%vMYSfFb-!2nPxJUy8^? zl8sB2E{$`k7Zn#@RZex0`*Z922j}I3UXE}38&2$dGfbFZ*4}Go#{Z4AX}~QW8L7|& zA$9*B4*f(}gm>t|g$r!Qca3koo%$>{QM2#oaZ4PwWFub)?TFUQhW*7M^z4SEZ5Kke zn3}4x94rWTnc=26w()4x_cfvQA0u=&Lu(tn`Z6Q>&9=vx10B zt*xyS40l{p5(&n3D>^6cDBb_B8v~fc2vRuA{tbJqY&;t}T_oSSRbVlPNFLKe;)Dl^ zt)iY%Z~Bhoj|JUeEGX)x@w|sP=nBWccwsK-{7EeC;4VxIlD700f`j)?PfaSNHz7Rj zD8Oyo5J=vPAI{(#-XoDSG)ZC2oBgFf)rhyx0=12PXir1l=qmFZ6X_UiZKps-z!iCl z1mPWUJx={>hMCp^tc-qulZG&zd@$Oxr@aRo_D{fUyb8h`48wAhli zYq)}%4uX&N9Qs{pmQ&ldW{c@Dqvj-a(OkK56vE&SG&53f#u3w(qLI%l`#HAQRigmm{sai5FB+1KZyao#<71=! z{n@ysy)mE;6RP%ebm}RDA+6T!*hyRx%d(Cqm3I8PA#@x0bP`6Y;dC@;Mws*Sc=;ut zb|u^t-lVr&KW6=JxKn=Oy6Q)PLG=UeHbT3=A$`xtivT=fMFfx+soq~@X=6oH@43G_uIXHL> z^#q56tm0s?c6F5rb>g0VQe5yM{axHArb(;}4AAr*~?~r@E?YB`9QM(!>NJ zyMF!pj@Tb2l8QNxliFj=>NouKw5fHxHJo7rQ~G=Qg{;%3PnW6WO;2SLx&utE$$%*1 zYp+HR;br}og+ElI<(o9CWV{8%9-plmcAt1s@53?z{Fiwrr;+Hm3K0miaPq^4I|)LD;Tl3Twm9w|OFlZz zf=R})t2GZT9v&SK%tRc2x33^BshOIzM4Cj(6Dm6cjwMlsPo-)`o$0V=e5mkqBLqlAK1?P zc|@(2BgBaI^=hJ~t7JWGTV=s*n?MOEHi^}%Rw4PqF*eZNo`A_`2vL9kTwhdoNYkK1 zGekS8pl)+kD|Ec;ii?Q8eqA4xFJQ+et%K#)3fH?FIG_eJbq(3HK)3ZfAJ=}W7W23P zu|qCh8dQCLu%IgrNPE(jB#Cg`tFWTErPy(b7WGX90}UW5H{9*es@5dS-fZCt^&EUn zqO@zr$=4-H+sIAxcg(4feJG=Q%l2)JY!r`xuC`9B=$x2ugBZAh@LdJKXmBj>!Kn%ATi4MTuOwS22t{UjAYcwq4Mnq z*L}@7f2bC+;7e>dQ*PdTfnpaOX_O2o+V!Y#rMz}u6RLuSeRfHDvGXQ3oVAp;=I7_n z^qCyH{(jl&z#selI=_=^%jEIz3+{<#RfmYirJ2(mS)OsIhfgG)cuctncc>y&QAx0q#?<5`Y{y;;jz5I1d~#{At!SVB&{ z?+US0Jr|cJ*uK?cDG$V7VXxEI58u9}p^5^e>-h13)>rnIxZS`ZymsS;1KGGf*#E2o zeN2z*>gr~qmY%ge+6dP?>4zCdkM4SWNqxpZ9yTuv*q6$c|GL3X7C6 zj?fzc8N{ozwz|AmaG`bJ{ym;I@jVF5ONCtRjvd2h5Z-k<;5UZou+VfhY`D>rxdhWmSy z53K8sk#BMV?6Ib?(H24Ln_1Ws*Afz8PgmC?EcA>+`ge#5Rsvs9hsBVZmE4ALw5UkI zZc^&@QJ(rZ5fKrim%Y2`Vp|>R7Hhxk5Y~wJ;|MWwEHR7Ly|qbD=)}xTh)*GAT5H|# zo@?M4%Mqu6?oUY8VYq4lig0XfEFGK(kQk0RI_ifKLKa$>`t@!0nRtp5jrxxO#>v$j zEGv-)&&|!Xf8e+`rmz0v$2B)flP+x<+W{6mYwiMe_Uw#;y%=7f1RLDh_FVFMW#tqM z&~6?c#qSAs_Fi_jDH3YQqBdx8L||Y|zeiA@Ax$PHCy&|L?LBtvzM_&+lL>=U{%YN@ z-*Y|2mwY0+k!BD+83>E-bfBe7>AA+<;-F{UB}*cx$;uSw03x>S*vR;I-?lk1vsUE!IhI( zAtLjOclO4FsT36z4Wq0I7TF$b&Pg*VH2DM*_Y&SBAKgj{ry{e{O|dJ$`sbnNd+ECm=ty6wO?ICrabT1aG8aLCjXicL}~uX9amGm{`g0k;6$;Yg%W|!Z}9$F0;m=^ wO-}!Y2vR=V{i_9o6A^vMPyXKji%*?ozw9a&@M2nMKY44-t$G@%YL;jI4-R)cKmY&$ diff --git a/docs/source/_rst/tutorial2/output_18_0.png b/docs/source/_rst/tutorial2/output_18_0.png deleted file mode 100644 index 417fe99f56bcb4253a7dd661894b02483e3fa934..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 42137 zcmb@uc{G*p`!;+VG9*(fVA}J(f|KA_D;OJ~A)MxUi8V*A3bnUJSg3z0w|41@q)2$ICjY3sP{+4^f zuVF9uV{5|)2f9bEH3-O)A7!|Blb+=2&5TP=*KhL_-aLC;NHg=F)3<1Dhl(A3>K_v0 zDRb+k{*~lW)2lgJhuE<4Y1hfayUvo{4tm^09>qt3q5QnRKNkDyO#1MBx9OEQ51G7Y z**M`3Qo>SFi$1ke!om+8$(=d{SB3r*+^HHA{`Xe|5xm+#{qOH}p5%%Dc{NAn|F;(z zDHF4G^Lw5!@^n{wJ#1=fvi=f%1}kIvJxfP&p_usc<;%2*2q|@%6X&fy<&YvN=D&w3 zzJC6E)7kkw{1iJ3S1P9)Rk;^l78ZV$kdU*#w`05Y=O?!xJvk{}!i7+Yn6TdP3W+FfbKbzWu8beV3uuBzG@#jUuyKIkY_V;BCGK;kc^*_&aDjGb}lE|Km8V42Y7Mr*v-{E$n#j-DPq`o)Xy=^9+EuP-Tn|Ngz+da6As zzo=bCU*#n3WrXD1KR+iYF%pY{#~*Z5_#ODtvRssdv(nmb3+k6zZ7z*VZVb7U`0jZQ zyArXL>jSoHQ}K?JXZjo}Vk#EJP zNUr=y+5I~_DiPhEpYyEErYBLPS1i`-toE5jT8~tD=zVa@9VoF)9~!!+bL$p)`c{9t zFM*7b&g$paS7*7W=*e`9p^e z=~cRB-p)774Q1k|I2ftK*@mB#y6srK79;97lB2@up|mpH-kWo`=rJ)zujD#b<$(mdp3A z1^CH2jmae|hR{8lPV%dHe#Rm0cIUI3^aAJ4-%?js|7->mR5?qCXY*D!H-C5b+_``Q z18wb8SVc24sgbwgfW;Qa5w_!0! zD;jUIq!K(lZd#7 zzQDBx;`uatPhT}48#~ioqL`3j8x#~Y*H@TILC?vNzz2`b^71mekbIY)8FhP%3e{{X zY;A2-ZvJ@2es3KXn>sA~x$aEu0Alg2?tr!*KTO}fdlz&iCMJgP=Z~`w%!>_?fK8l+ zSyXvA;$c~ANsHjkch(o?I#X4i8K$PBC{%lv5aGh;T6Hqk7Y0M_$zF}NXvM$lFR~1| zQtGwgaPo?K!N}e!0UJN(vk<&KUy?rcec#cH__3*J*3oY#UO9pzlkTMCKQKrJAKY|& zeQV&^%lLdkG&sW=smgeVYkm3OH+i+YB&N3nt`fH}ATqg_t5>3xuAVq|FZ$;<;r4D7 zE}yioU$0{m#5Erd<8-T6&Zw4+cxG3^giW7{f04rJD%!j{OH}Nde*gaR+T8aW+PVqp zX>Q7Gm;Db$KhqsJd7VhH7_DL3)9AT?o9TGll&_^K9ZAzHLnHJv$j!tU|>H`+)31s&1K|Ko(Z6rxmo5gJoM&j z^Gzc1I?MThWY};2>xo{G+Fnd(Wly%Q(8-k!OjDWa?H}t(x>MPW>;C5!2ekx@bTHD4 z-nms8?+1&~ePFk9hfPlanC-+M>&iC=%d9R`e%Obvd zlR7E;8aol0Sbs#njKr^9;n!%f8I@6AkSgBAY~BosxI#!v3q01o?fQG@E;Tjv+V6BC zkvQ+8uDG){Fl&2ImX^kwR(MW8ptJ4~*%{Syx_RAQ?{2J(9_)*WM`~PI4m^DL@G8V@ z+ks+hlMA+X=-Pd*jcZ-_JFP$O8$5G-k+UiK<@z-@{+Zq1?wO6X3p7$2mYg>0+O?;a zlrr8=(Al$7UuX}BU+477khxk(mtiZIZwt4Db8vGVt0P(HFG_FQS^w3q9o?O8BnvC< zCKJDUcdOWFPGBIHOa&#UyIk$T-r`zW?H)Eg!TI`&mf@r7ex|tlmX@|nPmgm)9zS;M zA1NuR0Y_RS-1FUTvFE{-s;OxT1ufgL_ept~nVnCMpJN-+5GyfS9R5(&MIJlB;Iw)&*E*^4+_4Y1a+Yt{rCnNbe{pHE@fAXZ?bzUb)j-y)uVfs3u@ls&e^mzD36d zB33qTUePjd*lV#Gtu72<6wUA7C(mE(ukrCJaU7L7JAdv+@=7DUY%%A#UkYfiLT<=XiRAR$o=txhA3tCBi%f2H^UM;5 zv}du~!oa&YVau%Y@;i{VZ~6NAF8%0+1JJO(b)Jf|oNHn>>JDQSb{(`Yo86pe#*bewHOKxG>$Urj5gus7ucB?)?<< z>x62+wDi}%MF75b9=~9c?)uNt>0hh#q-}~+;_Oq(1~2Fi#l7Iy=-HZ1%HP~{4`&m( z9x1(kX9*3XUDX>S+3m6i_aK%vb9&|QX}rl1&?bl}w01)*-|x1p7igQ_Pmg7E*suHIzhZnf zsAhNAzFQ>e*|vxzNu8VT2M2xx@n;&UGE8Sy4tbEPyf`jQ`!i@!;G5#V1?>_?e&9dk zX6rm-N19rL8L&|CGEgYvND)LS;zNN{K=LmI{QcA^2Za?!KMH|&Q}&ZQJ4^koJehlshCRbub8O&nMZns3PC z+fGjgw*LKsX-={@ap7(huR&DJmxa3sqG}N~_mWB~()GT-)%7LS0@jn{2}`7p)miFa z2DejV!jUnq(%$^3HrWz7|5!#h(VQCpO9SKlZ!PQ?oEy$jNiyn`iut!Pez{Eiht$7f z_fBKO@wUphpGcm(6iAh1jB|SYdAs2zshSIX`UaI`=V{C%L1OoIsw%nvOiIL64YT=} zZHi=WLSSOpoa>3Vgg7ek@vG#CR5anqQfzvQm?sE>giV}8h9hDp*GDb1qWAeOL@1F_ z-3n>;i-PP&L`jn@BuTZVdQ0n^AtiNCgFaXVte=(^1jp8Sww z>uwhd=@Qdi+(XS##P9Sk@&uL7)Uu~$R$1BP50WpDkC}H1A4u*NrI(UCIo_b&7v|68 ztI#n^h6#wGk|F7f^bF?F97G(2t#9!gpHooZq?J#n?4&x)5%z?{n9PRlw7fl8RdZUw z3(dp=T5kT`C&@%bD~is0m|#RrK{|lRri^Ef4dG{WgUL=<5`L`S(s`u88r~gJz$#*# zF47kysisPvX;6P19>wIV(qS!tmsesB=k~vo{DwP5{555rKw#oUS`vOID*5!QRutnW z*c1`|1NXrR>TU%+*_pU~AjIs&iI(CEpvdh&Wv4uWl*p`{X zmW8`ciOh}vl(#$^Jk~p*gkf~84CHEAA}e*N;}S0?sWq0O{AOx%^GB2M;onO?O7G8Y zoEVYsm?ib)ZPe%+A#t3LqN_EDr(|QE*Gwb?^BEq=V3114qQh{>TZS!9u=swo5~_>e zG;GWVc-t`Elzg~z`ujp~6jNb?L9f{pu8)N!Yx5Vd>W#QS(`O%gNk`~|Sn zZ7F#qYjBC@_;!l*hJsES%73OV=8(5M(s86z4dcgKGFf7MB0hw`P{4%~yj*Cv9^W7@ zH;qn;1?1nkrA7b2A`%(~XVSJ)GhvtU^@O-?L^-8!i=b-9f#o(9n$v5v%e7QVsks_a zNzvVu(ZngKB8t@&N0CL#Gosv&nxYsv!1z_=wr_Y`dfdSw#B4Io=akT0#P(02SHggiIJXW9>(JQg-RR@rpm61WEF8n{z1Ij)gkMw*8 z+VKrS^9hwx7v|X1=vrIMQmaY322%4 z?nZ1+Tzam4*__|Oh93?fxm3Bu95XW&c^H?Nk)dH;clWJUcfSmP9By82Y?D8^N(>#Z z+5PyL`h$@4TemP@ZzEwj=Iht5FQcQoQhKw7^L@&>u?te-Uf--oN7!g(GI@V(ef#>g zE7EV*Od2Z8=rlZ@Z4GLEu_31bK$o{Ix1qwbJ=ovlKJ+V0xUB=wh=}9Jl|!T?C|nmC z^)A}q@H^0rzIFRHp|}_$c&9)PEg3}}hBAEjwr2sVb&S;qoKb~Zn@!a2boMZX*7=Y|k^XG0rgxIqYy05v2R{bq zPs*(u#|M1(?B?*#aP~kJUB7XI2;368_b)hyee<#qu93mVDpHAuZrN{^SEy)`o#93}_!MAS;#%p?m{!Dx;vFV5C>@{P`ns zhS9Jn0*H?N@2>(M#7#^i5P-utCyq5Sc`NDmi{(5%`sIrksqnpAgAb)!G_=j`3p+DE zebSki`jZ95y8(*^bG<%RgZbDp&g?t(v%NofF)p)8uNNi+=z;X8=HHd`7XWqZz|wbI z@=*U_p_CDz+{jsy^eR@lVRJ#5?#4RZP3O9PO&=)o&Q!m9BkdJ@MFv)F>lgfH>{Y#Ji{$ zc#GIZSs|frQ5(IMt6D_fIs6w>A4)fUCzsQXJd?%jIKlUo>wj8==F#~(*c&}K#N`Em zYz+tjtG(^DH5q<3D#?>$uY#kvIM@G}j)leyLb3mOmO)jOHc6eromQmP*D%xGmqscz z2p>FkagXj-36)fJa|=oOWMq`^K-KMDln)DM7gI-xGFARWUe$pQ5A*Y?{#-J|B;ri9+^%{ zPZyK)SvZJ!`7%Sl%z>MDghTwIcu?q7rGl!mIy6+_dB8Zj*Cm|BG^8CMFszy1Xwc zQY6HtJ%0RnY_-~JS-CQ6nxeFF?#yqh7+%JrwVA^818jZ0(ol0Yx6eddX@f`=T9JG|Dv z`U)kdUYlVo+c;Fa!o@~1l6EKgJ(ub!MZ7ni(BQhg)JVV9t*xON{o}_EAZo>C-+2A* zTyEydAF1}5kC6I(6X2YP^W-&Et zQm?ij6m4oga3ZaXvwV}uY~-y8p}WJrY?uJp-tb1ud1`^%Wkb%-P{a-dZ&q>fEyds? znn0q#Ndt)I@0H*DA0Xea6CB)j*|5C)ic0dhMKf#*SWVIssU#S&gq{+hM-3r$Bmzoj zI&$~SEWhkl=hjxjCT!-{}=Q-Q}%E@Lbvs*B2|2UHw*rl>+N6JJ<^s{ z?;vCqbWV0MS1?`zB=s|YQv$p>Ui z#FwhWZaSp>Ga-s8<7&sO$?lAb8PyS_FL3WT-t>k+(a$6t{88kxC@|449QUH^`?|WwEJFL-)QhBpWw3!=mfWUv zxzW;ea6{?+{AJN67aprejyFr=0~RR!L;J+uR;Z1-smazMb?1GldhEtS+8;+TmGaDl z`OnH;#~x_X7sbigz#+Med0y1&@-0RhQxfOdkc|dv_5co9ay!03FS`UG88Y@-_P_-3 zqfpZ?DRQct>XVL%t}8l4XAZvjLdk}_{z5MwAG-T~gj!{v~Wz>BoYDwGmnd?_>c4BtaRFayaeH&Ez2FKeNx_M-;EurO0<^6GNo-0) zyaF;ZmX5bjke1T&S(%I-P&Od@_M+1)_8ji*d)-&hcV?Uz-6WeGxzp`Mk}AWU7+po{ z(>fD;t*Gp`pO2SObfyuaI)&s`;w%6esdFL zb$Rc0%WLcg+o&ZvIT9*IsF>Ik@^?4awG_MWh2)bB9{%=Re3)L&rQfhO!%{XmkHp_Y zJY4!pV1oa{ODRNSLo14E(YZze!#hHyj!B4V`_x`A^ZH=tWDtIFecif&#I26pfzx&A zI>Tf$gU~(SD>?@6T?VHRUi`CUrih~I&d@W1?234WI!*^aqoENaOvu8HRarqBQs?7) zWChb?6#lVn=zS54)$bX2hSmxPo;bLf_D1(4m~1e^u=ULe6k_lzJ_k0QB3dSTJQLGU{P zhqZ~*>s1?#+zy{j3dtP2G{zjr)j3fj*J0a2JX#vG>fJtGY;hlmCzmXO(|9T9%b{N~>)bKjqmtR^#lH!I~x{fs{cZ*oYRdQX# z)lwJDvl+7s^%mbL61@2IC9|@erwMDq{Xx+ipF^#lh|k>nKNS9c%T3H8_5+w!yvPl9 zF^6v9_A9AZpPiU39dxi={^k`FO3O_fa&j}wKPEMAi)`nH)ay-&xJ@Zqt0&C1Z1UGu z`&mv5h_`oIz<4R$_$WWENH3j6&BSLlRQ_PDH$Mp_RZHy$=lU&^avyGs*!Ili6t#67 z*S+^PEbIvFNy%G4BzwG2IkDI9k*l3gl-25WXi{wGphyS99KJ|xXWwP4O~%_W!6a}h zl_1fsG5(yko}0vS&u&Ov;>jbc(0^uf{_T!AJ3ITjKl)#_>~w<1R2&q!hflQR*KA*J zi52QCFlp4gIQZlQo<^$kGx1o8N0ni(>0b54OOt_#YT32~`$0LMs(VB#CDZ2aQ=Q#g z3M)&A%9xU;_kaAqD^B~Y4GGCpga2WmngNVZ36(9I^vRU>@3mk$>klpn z2}Rx)jc;wIeXH6^ju*1lPr0PBQtCS#L`pHyl#*AWL)?w1oTBX(IpuA*_(!d!B!^TgVRynJY>*6s{1u6|_F0Ipc3D?7g?%e*CK_Vzip!@E*moQ$LBBSRqddF{B-T zvS#&lV1sAU4sXxR&p^X?C=n{q+X@PguV25ez$qjkpb52Fb$bQ0-Ccja(w!Ty&DVi) zY3-TOt^#@`XsPtQySsZQVV0Pl4Q1P=Bee6LevyK8#GGosp-J^gi){f#j-Mr*0lFY(lT-9dwg+16I_m*%(d|!fa9m0>Av{jN&j#lW=7`I<{PP%-%gcr7q;I;nvgwb>6ZHVh!W;&pu8_+cg`dvOj7tV6&^c^KE zLyLc4Fhk+}uC-Q#NwfDC6nOMZHf+6ffnTchh&JY{eLro4em2|Ul%I}W79Gk9dY(>o7cpJC_K9)xCSkZ(WWa0qFO? zVdjXhULS2HX=u5JCM`6>bUHlbJ@+0S$0;<`*bKXT(udo#UAETi9LkrFNOCef4|p{a z@al?K8N2k{0DXq_zT4*X!G_OX>b|eThW61l%HPf(_OG6eAv2`=mEY~fEUj*^Qjsx= zJ2{nnsRCB&aZe!0<9;R5V(NFBr7(UTo z;=;AjV=qR&F2o-tDYP(4OkE7nr;;=a48G{uV84I*=TD301P0{Wgp#!FoJf`4Aau(( z>d1DVNfnUMriwNIwa+=#)WDv5Q+R0Ok5<4nZK~u7ara*5!W_%+Y9U;!_o1dZ&1!B& z|0$kdO6T1ROG!GFI#|gZFoA{wcp1 z9=E9C+Qopcr=itZxZEes#@EAREbeo%KsQJ6qz&GS&WJAF2H+bBVrXn8nA#jb&C+=%$gdU%XF4!&>N-e5?Td~~z0GA~Eq?bGl_$G%xih?;-h0B&fNL0>^# z_Ru3yL4GW^Kf!4!&sTI|UjHk>yu^HmI)u4h4murAC?2={bNVy2xwgwBMn7iw29_K7 z&|e_?-h7mk7P2s6amoBxTsY5?F&}%`8SR=7f2EFDRy1KMhIFueqDwVGlxTMTaJ{a% zV7j&QgltGI<4$4?oqK3FH@`94V|DtA5|fx}66a@M<^u@~;r}x+#^$3A!U#SrJ`G}? z9tdxGGc;3gX=xq3+zQVK2C!L){orkQhQ0&2fE%lO6lD#3SOy6hMTY%g>0D24d|t&A zn-4U)B7{;~Q&^Xp|LoY<7^D(JzD=%~&aIOR-|QXZRXDrJm?~jr_J64krDLI&)D=#bSY%WNGp!ZgF z;{2Ut=onI@dn{IOppgva_1H!2&@Y!b3`=5PU*xuFIsEW-<-sMKpZ(Dn^K59w6=Nu_ zqp>^kb?bN2r zR+8_wwG)2l_XiE=2EIm9KQM(^FgIUYTXn8pz3PM~*i3?&=Q{z*zBeUSs|gHLz>44O zyI31&oqIwnv)E(BVh=<+U7`GMX6o>nN%;ZlLKh3U)4qfr3Fo#ed@!L5Xm%bHPPcF0 zjtM@(nj*V9PVWgvC^l=3@J!MMLeBDyhcdnNY7~so6*QT&OK&9fUfp>h?3 zTd9>x4KyOSxm#-sgSrn#eah6O7BGLQN4oGSZ%8{Bvrk71TsyBy{(Pyu+CU?O&aU43 z`=Mz|HupccEv!zy&_LOQ>lzyQ4-KJn`*#I^zU}LmFPcz50?C5wxoas=o3igmo_Io7 za59b6j+NMR63ZQN>&~5wh?7z_z)??0wWX!Rq>(~Z%gwE{)NwTLXG`ok2C58Df8iTH4xBE*;luIi34_&0}w^R|N9$FpLt)$GA37^Ut6>@Y>$SXviMh^V2h7 zq_PxZ7~wW!=>}CGlDH2bW$CYa0$Vu;DvHl$|IzZ?x_57A%;hK()AvHN=BQ?3SJ&fq zfeRPttSM{{40ps-CFgUBik-$4!a1e&fL?*2)wQw7nrcfNOfi2fp>|k;dN#qV%M)YG zZcA4?dcS=Z6`53hO6zF))N%N?iPwX+3hSf~(ljPCWqAuD)%uhmdnn7p+|Fi;uUYqt z$Mbcu-AzJ^PY_4t$?UCaSA((-EiqQVp39%m*I)D24)XOND{TjqePgpk;}xV zaJn{=NtvBre@P>h`~ensE$Lua1tcBcalHoV@K}8M?h#OSlbFzJVq5nF&(}oAv)`+H zrupc``M8^Z)0R?vDDL;;Rcw~kuAwud@VmTzl=_1T1l2*nG@UsqdHf*y#)VG6CvQPb zDZc-PJkd%NUq5sC-KF9Rf%E^gt^O=|YhyoJV*v7?`UCarS+&E!5a^F$0IcfMX;^mt+BQvWd2l|j%v>c%T#yE}D zjbWbmeBO4Q@4+^6xTsy6e3=HFnzK;r&*#_n0P)AQZX486mY%1Q-M9UYJB>Arwntd+ zG%&Q2Mv6^EH)1b*{r1gn)d;9jcs@ZUngvh8n2RpRXQ1C;Zf^d4XCQ!rR%^Z|x5TvR z>6jVHuR_QG-c)e51NRk(%@nrWDy58PZo~tvA z>+?ztW%B&^_CUTS4YfO?n4l=SlO7+?=mxP5dN%5iaNeMrkCqD`)Brfe^7^c_iork} ziMX$d#eUyho&eEedfBM2K4b)xdPQT`CsxaA(ZO^lv(WYlJRaS$`^)szpcX|-Ur7GP z&TpcHFA911lf1QzeAZr#cr8k!Nu(2!0jIZP-XVg1)WtSVbMa`91*;EV^i~HH` zlU%%EX!r&d2%&5wig4F@jq>+)Hf#Z*MyEk&u-RUnt)F$QTK=0_>M6Opp#_BTTDSAr z91p=?@p#V*QA1s9*!9KlifPX3{q6Z}h{kAAMVmn&x_x=fF#IK*!BcYx`vcJ3gGNU& zhHuY?OW$<3hE2b0^#sXF{evDiIPsabkUI z2ys}ng8A}-e;%Z6=)fz7v%Lc;&H2p@&?niCRNVzq)nKVGgv(bP_%8Ez=%Ws(ko@3H zR8%r_&*rx0^K~I&Lo`g!&a1qRN*JB+FnD@i8^6D!QZ7)m-aRSh*6lH!*gGlG=TErV zJ2dWQFu~THan;}%ZS9*HI?Tr&w)>{F786!&*U%6NS*Q!Nn>zRIn{8j zO01xSGfw{>L`a~~=13r9vI(d*2GbHzN!^%VlIL7zw6D0-Tc4fvv;X|lK`S-|gKs zB=Szrv5B;fHssnCR(*VGEuTKPMrTndGWqfwjbvobvu=@V36&1V71Wm`5P#vmBz%2q zJNH0sb_!#$lb|8uudhZU@hF(VHANK@V6p71O;sl=?jEA&&FL@u@z1Ijk(4!FWvTvd zsRIqcC!Nz$O@Ww=oyeQ~kQVLv{OI zbPnF?ox6!Yo5;rf1=WsNjv18(C-{eZv$~QR{wM+LQubhp4%uy4Of8`L;2*QH<4ca^ znZa<-ayN{>YY*!b^53aim0s=I?-UaEr$m;H#*;ZHD>o{WC(n=N z(=<(aNHTGnN}@Wn{kXqT;lT=@jBcI2_@Uz$V?$FV`Ylf#%^iC4=#JU_*s^!NI{m+< zW7brioz#aQU&?t2|47-FQ5`%gVM<;8Ik@sfwx+WoO{1O`(Z(aUwBH5<0%3L>B(~&h+K~NT_T$&Hh!KBZWDQOfr zB|H;UHmd^hifvYy$KzG8;jJb)_y#NERT>5_z6dw!*j$`ojL5?0jiN#zb9*ml5%tAy zQj|y9x|Yge*c6`L+taGeI-S@Faj$O{6kn>#=iEEuq z*p!mX#S~(Qoy}1-yE;2|TCIr$A5cy*guxRwSh_$ql3NV!)j-D z*uLh{VPkgoT1URcUbQ^R@ypeDSK~(mJWriqDLnpE^O4&R7qV{(9sO#Uz_w*Qrk^E0 zNsz$yXXDA4EoO6zYzWeEnS)&Z1{_p}AgUo~Zj;KsKp-99h0W!1&& z9rRU85-_=jliA6{d^KCDz0Vrq1w<@2fa9IbGaP?fe5+;n1V5}UM7^2yZV$y$ym3M8=k95;q1eq4t<@rk51{?v;Cb>x&YA4iqhfdTV8x!jG4 zOHW&Zqngh>VnaSct0<(C0pGfSYn)+5I>&x4)(-C2zbJHQuq4LGBmOr7+dCVr=Yc;@ zZ?U4<3&)WoZpMDYn6lpI)RgWdb=KszPbk=xF=VY*L4V`)pZ7;W5v|t<@#ViGC{e6 zTBU9S=WyYBLda&Med-XElv%(UhY!b)9A=Ym zW^%y0Q(kfABq7pw93y+`CD$B&cIQlB6l2zq~*rA#V8UB=@Wa1%A;1hD-c9fWRKtqYt zv4aru5*s}09rp@%Pu4#&MhvH$Izt>xeMmvIrldqAF)R;BO~bT;D%V*C*$X9qQZLNa^;S5mH%a>n*Nenn^C|UD5XPJczbH063JHyYP?RT)RSL5yRd6evtzeQU@CMvW7jR^ql z&f5L8{3z>&%;yKY)3T^8>70bbT>vrNpsm-nH01P{WK4Ab5sE6(J=cF_0%4N@6@Q#< z3aktyr{3E4H@mP!n5bP}^5e&(f(Dhh&|>goC=#^R#O`Rd{G-WpI`JW}8FU8T z%S|}Khbg=*1}bj~qiJ}*8+C)A9)x&N`z}BsdGL32Q%hjXxEuwv<|=+3ekwft=FmI{ z;t<0B-+C`@lKa{s@1bK4)~D|v2g?TjVA$_q4=?Ri`UXn3F$|c3QlNMypb!-x>0d_2 zs`K=)+n~MX9qo|frvv9w4NFA>F+3L6_Oi6heWD?!o-Cy(7UQ`vw@CKEZm3)nG*jDS z0rV&*uiC}6zeGvPE~-XcR~o!?bAx61BYp=yi4Q)p zMyElktQK8t+k0UTRhDg3Cwc!-^#NJEw2i=Ws8Qq4oBYR#Dt?YRI&f<)r=o*xY=MpFh36 zQXBZ8%hkL;r=}>|?s;#4LaNzF%Mx&bb zN^IV#CrW0PmzUR1^YZa!0n5i7nf~sb$Y#Q}_u6;eZLmq@Ha%mW4`Md#0IYy^OAVaA zoYAXrHviZ{>c?|$g)6=N*0q6{Yp)s1)KRAtg}*V&Z|eW%Y;Ni4>3yECwzeK9&fM=T z1Quyc-AF&(=AbOo8lUwX{>HT_XZW;&RqQ0LTN9m-V(_BTvR+mKhXW-YM+dMg&6)E~ z%(UDL(t~cUx4q-;h5GTXx4PO_X4S?o>oZ6~8>c@!LC?pnK^=-@!6RT_84=YT4Pg zoB@;115NF)S_0@db#--BlDXoz&!pHlZ%{%R#96^%z7U|Tmn7C^flY@QIc`UB zCev}WCOQq^Unhg7()kO`4fRrW>f=2yyumR=Tat+&e2f2NrCu&DRM`V&Rp2XtG~}IJ z{xqi!O~q7V@4lm|YABd;Ph4(=u2%pNqr=1QnbbH6&BosyuXGJFZS$*dM|aoy`7Mmr z8lfI6ltABfpU%(tA|ffM3^JkDe-v9Zc*wv#r?4+_>&ge$*_3bJz9}ET@;fUfr4NP| zv;i#h5L~WVFwC$>tMjF;I!*xruJ^aYSPE=2+yWNNQzk+!cP$g&fxTv?MX2_O%sN_vv9E+eRRiy+t)#n0A1)+8zzJLv%>0(%Hq>E^XzaIyTg zcjZXIA-Rb+wB+UGowk8RJ_pv+`*`p{Lbp#;94jtz87>f_|7{!&_jxA)k_H$RQ+ZWU zV4rwV7<7Ko$EcL}i9mL8LnaoThX8j0{F}hr%L83Rgf*0o5(MDyq#21@2RN^3VPUak zN`xz5ll83vr5kEy&W2C`aah~U&26czIC>R~La34vZ8ZWLo)4UoE&Pen-aHs^c%~=1 z;s16^Acmp7;C$b;a|TZJhqzNskYsMYk-E-xMzhk?y!!cFhA9%?DBy9nR;K4+sCr>J zG*3JD2`3!#M23k{h})T5|hYNshL z|LDJ3vMlbB;o7|uY(&u^9pN!_>#|J*p^}R0Xs!|7<1vtb!+J!;6370krm4$&4qK4nL zw)Ey$fTp3TJ9R1r2?qq3{E1`hl~n#F@&B_P&vCa1R$i3m3wYlDy2nuKc-gR9e1z=2 zJDMY4Fr1z6V7WWve%Qm>Iuq@6?CyG>;XiP~b`fmu164iZIWLHoNhpUn-IgfgGNlGa zuS?>s-~|IcY&xs3#SFSKVlNnAOg~cXt(Vn?4{SfBQL@d+2!Me53Vgz>i}X6qJ3XzQ z;W2OW<~}k$Os7#RR^jVlzzdy_Pk+%n>-s|_h$-C|v+*+Ysn7Sy>98^oJ)dxvel?Xb zoWJJn>~`ydQ}y0o1E1pL4NXjNqEbk18v>#E>GjOJ-Qb&0TM^)1C}zEWhLBID=1??i_)3+aD??s4r_b9N}H)*7vJL2Z1(oLtEU^n zasf{IOoX;@qPfz77_SO_Lkt#&uE&Z51<>UhL!``&(+qDeh198_3BJ#<=*-r z6jfCeNy0wcuFxzxbYMT)Mita}>Cd|h{L1eyvQfy1gUF>DgQ3LH%AN1)$gc1qV-gBh z_NCb$lR?!bu}_p;-TrkQ|8+1|K@SVs3~Ms!pqsWCt}Hov^yuSAv^@tIAIdTDow|g!VEao!+tl37%TD@qCF*6a|I&F)vOO3+9}4w zJw=ongnH+ByASR1r!b<*T@G4J0q16rrU8F~z3#$Mn4EpFgelcegzE zx28*=GiuAI?bE(Z2%B1h$PY)m(p|1fa?Ev()4}4Cq)GiKP7}i~Bs%?UYy!mgp zvO$?KqGAv*XnNN+!`i=0lgL2*SPn5f)|ojU4ba01Lfj2u%eGq&9u!j0ab)c7?v7o} zFS8#cY;JP>A%Z%84(!q0fM8s|3Z&1xHjC&)<%8KV zNZbWun#jYeE0sjiu)}Et6X4CRc+kp~2Y~qo?1yf(!R6gd$*l6}yr>Zu6vufRj!@@h zt=s`Z8*2Q$sjB0qPl5|(Hwc%=t02&dfg4_lOr+I=RocxOjyCirJY(6WkGd`?#kUtH z-qQZ?p4hmn6w_3_+wK!mM0hTgdZmMfovw})G$Fm634|XJ^G`$`tKX?lv-pjH^Kq3*i#q*OEqv@!{H`$)>3S;*=Jz;?o zn+*=pz{cPLVz9?*5lxp^g*43)_v1E*_MbRuxe?^|TRJkiy zkktXFdog$c`)Xl@9&tK>BZ0kC2!YQC-zX7bMpshK`vW-L$d4y&NR*z=|97;el%!}V-avFpvr|j3Pi-Ka;vDkn?Qxg?1O<1{ z4V9DlYxgDfJ=#8kWN73lswk*qe!}hpLvIeTJWdw=%CZGg76e(s-wBEgOh8V{cUV&^ z*YpJdqcrB&O)?$lOmP@Fb;~?ID}&-W`T^MIrni%U6fwRqhe47BI;nW6C1B$md2kE^ zIpY3TcYK2P!9;AZxJae&K&lcWJHgv%T$Vgh?if(_$ZqJKEZ*$zN<4%(sohYxPOAQQ z_Z;0$24(tQVcR?M4+w)r$f?79i&rCc=S6zuDE((LPQGGQcVhigjC8!b?a+>%3oe?E zR1GQo_(Yw{Y!bMgw&l4D6?nPs1f1(-#}X+rMh}cM0Dk1sC)!ZN( zAN@T90+bzk<@m{UlIs^LfEWWx(e>|;06W8pz9&ahAw9r|ep;TNK?egX7yT)e@1WLY zKnAiKd%(B%_ob+pAee^VS%Us`^7>OTUIbw=>cy2)yL5TTFyT3B<9z}1`}gyIk3VLT zX{1vrO@lBn{aQroxInEnxqco&jsWfU@2CFmC*)rMI8?>#Q<&!U>rcUFl(9U~Yzsb$ zaG7-283Z=P=tB1~fo(z10uGJf`+Fea2thq-sB;Sy%fhGEpgI)Y^hA4*D0GBIm1M~s z1W5wtB4T&(;qQB3(*FlY8~6cRzdPJWQyxQT(7oi^>57=NBPuao6cY-A17Bp<331_G*0i`mfqEkQl;tZF69j1EjhGnd~zxMA&63>~Ph z8ZC)ao?VFMt%i;@TG60eCG?xe2I=rHL(dfeuk_BZqU&mE-Qdnj1AH|9HiYvqMGCg{ z1_rg|U&*Sfx-w~GZrG z4sDI@-Mev;xVdA0`armljtWDdTC(YMMvz|p4^Yk89 z?R$9M=f0oe_x}8`vDIn~-|ux@=W!m#=L8nW87j=WO`A4#cn~tv?96D1>0dA4_|3=L z4=j8Wq`hyYkKYPf*u8%a*FF7|X@K@FU`YYn>gTg_nm7${C`oMEbb!cAByX4g{5!5a z^(#D5AEAc%hT_(k{fM*eZvw1I*FR85DOHoLBRUJkGJ2u29YRqGFsOa}_;IJuzPU3b z=slq@{s~`$8UFG4>3f^nnf{c-5Nijc1fPeCC_?!jljq>_WtxRH z^q{4ih>NIwA63&EaU~`W)nCK4eTdi4={f-g#j6JH30oqxErm4Q!5B(LJ>VaK9jA1| zoHW5gkuer?=D3c=03{SSuZ5C#IiA2|;0z&YtAci{k_T)cM&EtuMAg9?L;f}}1Vjs} zf%|v?NPxiH;e2-p$N6sDmUL*hG~D%VUrApb?f4X6xa3^za$&VVRy5zbZV%{KM+OzF zD3mjc=A{GgaR>(g?6c0y{80<<(HW`kBi>3tj=|og`?(xCc0NxOJ|+d;h*3D4D~C zhJwG8B<{K<5EN5Z=UP6(jbPjR?-O#*6>B`9PASYz4GqHx*Y&$*&X+}+1Gx7P=hTE6 zRoEWD4;M@NmiKb1ALDB#h}RE`84(6ti^H*k5UVsGItsARsCM4Rlfnw0F(gN!w9jn? zM7ki(2tQWNdiX~&2)t}^bbzzvqR0P_Il%V1*Ntzpf?>TR@F-#d+YT$BJCPcOT55~b z80WT)#k?Dd9^#DC`Fh;siRxEB!Y9fzbskU_a{IzQwsEWhs);~!0g?sq&bfaHlJNEN zf+v4Y<^CD!Rg1mwRohp>TPZmGneWCo2Fe(;T#8BIzmXq)L4KHv1D1{ayEveH#JRUp zk4Qig+gJh?OWMiTTyS5a=^;;cjLkIKVFG_6-dxmagri4%XW}~1E31p-q&9M~F(r)j zEJ1-ye0AnU%7@T65KLok4)!}xD>SoliM5qfO+nb1-_w_n@z!I-Re?iikI0e{3sNdDezCv^JkSdP*1@m?}(*eUNc3_aRdD3n z+AOk*GNw@Y$YG4)osOVkndA|+K&$68O0GRcdc=0o61&Kwy7qqC@i2}!i0>|->KD9| zphUdh$2yq8dntUr@S;%sBAiqc=HEIcTns0wmq)(b=fgx9yB_3B&#QhyY2IbYK(WN} zU95UHH86-H-gvCN)_~G-!r`-w8&+o^htMLoOp-N9de7@aqX?Mw%v9A*kdN7Q0cutI z>l5Ld(j}>Oo@j<|N)L&URn9K`hT|}$2$$j!nfnX3oKm8cY73Ow$m{k5NeC1U@!A+Uz--6yZL;fFdX0vy2jfDqx2!b@^%9sidub zVS=&36amRd)pOLQSM>kgY~7gl{hvq`Q9}jZ_ZqfZQ2l0vG}*o4G6?_0 zYaWB*O*nTHPaZHc(L;pM*9tCfte>G&lTr#6duwQ(SC!5{4xeb9oi>gEyRq`_vA82? zk<`c?rIRT(GCMZ(XdiC9TVG4#SO3Z&{>wpo{d^Uj8sTt^`PtJ;`OpCWsmDi%Z-9F4 zgECu3{P}H;eJqi`?Lw%~#+caH^O5MIc@DMr38Cr?<~ zlv?Ska72jlIA4wI+{ix~ibg}_j!YJcivN!9I2$<+w(XchD&7TBk({4mhY7r@J(q?*eUrMve_b~KwiRnwh3utRZWm%p!Ccu$GOWNYcUkPuK>$z5>0#O9TVb@ zEEtuRo~@GquO+t>qX}+>->Svs^(wVStv1QyZnuQ@8CZz%MXMVQv7%m51~O1?S#oCi z83fGMTK(#HgZ76*v6n%<_2I-1hFK;%99x!oFNQ8s5|{Brx)C0<@7|RZhsA5eaAzDc7X>+n3|0 zOobSXb9xGdN78>nolfs^#4SLz`Y0v{+KhGUvtrm-S2$=ioGF<;Lh3a1^E2>Klj?6@1KFoXE-iMrXVR}AgVbKe1F}Ts8EUMwm1iyu3oD#y41(Dni^`m?`MN8Uf z)hSjV(BMK(C|cmoqR(LeDmKg(dUn6|NE*QXcQ9VaEBy6jNX{db6@6(rq-FH-i)Uk9K(hm`cbSaOH+H<|J4Nl=|sT@$Gc1q>dh-zk5|VS|q~PF6Lt~w$i7M z6E7AigIdsUNku}^w50du%edEMMZaSXV78Q zu8uC=WQObEvKOVEG#URROQ?&M^OerTb0s5*O`ggA9UVNy_1BjiIn?#G^>gRz3qq&S zpCmzHrLi_f4xw#&VK-xAGfm3_y5Vj)g4(fnTXI^OmSLe&H6)W1umjb?P;815p&nH= z(Gz++GKs8#hGq#ODlKhO(Qs1mZFhIteLdfYo2LEC-0(^rP2qt}XV5M~M|ZVkZs$rQ zyZsBzPmrox=j_7_+Kbw_8*S^hWwWo5r!>iNFUi<7`M#I8!XxFm#I3QMj9sZo)5Dow zbp*-*TfC_2iKlKuo!!V1K}C6b6Bc`@-G>RuF*(+g??ONEzGJEW^TUVRV(3(Lzfzvb zhNyE^^B{1XL^t9;{dfnuDL2G`iZt4%G=2{Zm_OTk1#qVnj<%e4CZAgIMwCi%M$um^ zO3==|=5_0q)MA%Kix-nPi%I*}t$K}4>XJ`bh5BTboVeZIlTH!>)uvCkJ4@-)(m_fV>qwhE-`~m?Me0`aa5Iyw zvpwjT4eR7u)o>^dX9*7r zbMG_II9Zl%wal5r{)S}YAKDSDH8RUSZ73MF&bEIg=#l~?ix;Z)-=Os16WNEx_XCm< zxnvZ$G{*E#VmuZsZwY=Jal9t@K#aEsj1gspKi*;iO@qo-SZ(!})#KWgU3))58qI_K z4%rVntlfW4;B@RZMb9gSfQ8^$FoZNpurqUU8-id(JJddsG~DS%=hJzljgEi+&8AiX zFRhn|lltSi=U%y2t5`{*$3p+Ho+3(C-ymE~Wan=dEFQ_|3*6_}5!1ML&mOS35(tkS zRtEwC*3q5h!`pqI+$D2ft?qj_#55UM*sEY6a;c0_JPH-h#z{~hByLLu3W-%mDJGo! zXLd3TkxJjNkSgek%_0@=5Y#f#ZxgfnC)>w|Rro)I+w04*ZTbRxR? zSqLr%@OSOnU084z>*NvvnZ9w|I<{x({~#h+cD%kGwxsSQ`RUk>!|oAW_Q!Y|7om+J zA|iUKvR}%1HSBpltta`DxkOk=>JdW0%a!wIEffG`KlA@w>q6uNG5dbg5 za5zGa;O>KVd;A#h*n+E!kyrd&qZ{gN1ZaCPI@Wv_ePrkaoIRPBZYduT%5cSKUWTCT@|pK)Ph=An}lZ|Logt`It>% zd+A%{wx5i?<`E|FcOYI=i=B|{8&=3`!i$*vcYlYUM#nu>`npNNyoZsrJKFI*xCVtr z9>aBQtxb7WiLkJckSFmFCTZPCAbUSR_Xx5k-*w+Zl)!tMH)`<~ww1tJwMlmIl6__+ zi@Xb2@`AM&Bxny^?mU*`f(}XBL(AGcqFuvXhbtOaR=u>>_+Em@pU>ZrFeyF-5^N#B zeRv#uAUz!cyxl$$Doro(u_9nYh)swN8NmnnoPRm-Dgj<`^e+zw$-lXSEHwwghKX)z zdf;P~)m+m<<@zaD#Qvh_u6=aoa~j?L%WEH94dsMvzpF2;JoDx1J_yQ&Uf5)%X0cbj z6w=l(y})#cA>7+w)q zcVgf%sa;A@W1T$u_+`I3w~Qc&IkrpW*G_&fS=$iO?hNa6)^yiWZByIqX9%{N4O!|? zyj^zg%-q204a}#|b51w8=N&cm3nJc*49K(Iq)^yG>18`Ir8p_RI#h0aU)J3PV~5i? z+ejR)eha1HZEAen(c5nii5rD8wCt=}wIJg@6M`!}d}fmMA`%u)DI=RVvHhHM<|r0o zarYPx=@{)_)uLY2EfVbclc)a7I)+u0>IzR@?d<8z9F!^n&xH%7bE3WJ zy09bq)pJEk!BDT&Gf$4`shnod&l&9=czs_hIM0LihQ4DdXNt|>nvJg*sPA6%I+l4& zEjw3uaX>x+C3{Gmq!UZ;rot)vhtd>_Eah_nx9by+s!K7d$gxf6u@W_+eWf&Q3xyJQ zs(He&^w=UwbjPcj^9#p3+lHOnU-k31XaG?qv5$7S{xvG5rl0^W?|xwEYEz#!1QIpZvLBJdJZn%L0{-BA)t}e7%|9R=&Avxw^}i zB}zwrv+3_EC)K%6GU(R(Nj5Q4zzA4l@#jplT^cJzM@Fh|u)Irlr-DV6(1IZ@C%#f? zQRb-@_VH8WF)erP7MV~4cA^r~4R5_U$WO7|A@_YlX4*bwrl~Bh)Fb_e|%3#G|z?aeJ5y(?q_GktX;;?wqpW%7wBORa}26gx8H znc5zGpQ0w5oc?NwsQ?AMU#eQ(zM(BvzxPUIZrvj;>nDDimD0wX)IX5;{Kctz;8VG> z$tQkT+}m(9t~Jk3FiUuc#PL&RH62Wu8;|O0J=+*-yzeJ-^A|d!tI_A#sK>{}Pcu^b zI=@v%U*eGVkMZtjQ;2#~p&P1Y$5sR?ThWFj&l$=)6+_362hMTwS{XLg=D%=7Ut(%E zAa^d5M!pvV$|-hdl5Fp~=zdyRMDgyp8fpG(DvHm6@e+G-n!0d&l%lQCK(K899^0cL zprW*+;-L~0q=U9fE+wqPl%C5kJ)i$BG*`VU7iKrqt8qMp+5RqXxnNYethC8=V5pyv z{jwbr!6#KuSe9>tiNi#-GRstG?Rm}?TpQkcYff(QOON&A_469j08NY%kJG{~4~xfJ zMRnjbPnZzWkuPfBGyU-6OL_Sh0W5>NlS0oic!%d?XOIxIB4}!7WUQEO({~CQl+!5o z45A7KrJbTfvH`~VqT0=tf7-74=5SBX<2@28uBvcMO$JUpIaag8%d4qjY?2w#scSXc zE{Lnxg7AIh^2qLe{87r8+2bk<-VM1{hrVAoJ3Hdb+r!5?Kp8+_Z%Q0YAm`yzP;<>1 zZ>(5u;lN=nSLU+gJCe)6f20iuz3lD{`>fsG&S%|HX2nxnHAeG4AWfO7SnQnstZ=#2 zSogO^^x0O5vR0a(0K)dQ3nrCL2EpV3r; z%Y%s6tDE?DQY<%)cv&ut+_!o{OF{1Yt(y9U@=K+R#zRVt*%S=c>1%YI7*~x-sxmMe zcT=}fbe=f>GT+F1@BrO}PiY^1tVpuQ*gHP+k3L)t;DUu&t|{{UuoOlQ=rPq_E?&20 zG9USp%b0-Fok_G3Geu>H>)I#j`dASQNlNuAOQ|;20{<8zxpfpTkuEhZ?fB0{AGsI? zGxP?wf=%o_;VSYtd#xBFQ6rtaZ~wTbscR{rw3VWhkn!A3poq~sV5x&UYwRh*;3@UJ zxbEIx6>gzkJa_ghw&Zi&_q~}_44L*=E-F!_oY}m#D9eK?@jPO*Ven4lOtDW1(wRoo zRU{(mos^xK$BNG*&QzAk%u-0npj7@DyMo=*OHU0FjV;*^2&5dW!)2_bBwG4( zW#uOaCR6*U%2wgAE7E@NE!!?_H>TFM8bidyx`9#k+N>`E2P; zKhZ4i9m#7~)&-R#&M6bg?cJYZBPZa@F~}LEk+{@*oHdqK<$x&tGVSR?mzU{b_P)KJjyv)S`|T48 zB45?p2VAR(9c$)nU%imP+DsEAoo>_V%A&@7S^ulJ&Ak?@lIanH;jU_eAi{77j`604 zhf|#zt&-7z(?mTI4a!Jc)xmfXBPDMMH?I=w99ZDeyjJ=^6Ue~g@Cb;My)9aNM3u>OW`G<--N?#qjyt4bDs-jsBQ^*GP< zr&;mPd&S1=6M-9_jiKc%2yseB{@YE3Py)CmqbG;}LmK@_QKvtmxJ$+Hy5{;fU#};{ zUc;i?_43Xf`6)Klr^+sE;MZ_m=CEV4i(=MK#c#a-jTX~hn@2+CuxCUnx}5eK`bBh4 z95cyL6>sD34_-66F3o2HfqoO!=S*J{*{BL<%t^KO{JNH4Ip+pG`}4BfKKPq+r4VZ$ zfu8)GD(p2@E=;v;kl8+1%80k_e9ZTow{CS49hgWYc)0)tU@jH0=(}U=4hh#YC3}$R z3viTx3e%J6HEr{{_Z^gO#6artxa&0M5;QQMZ=V`0ho9tX{Tfjg(odREy&K7+C|;Yd z=N}z?--PIkrRx(8*AVY98J09BY$4V{P%0#La2ow?V0sPUdNi%ei=FwMJOP|bW7p

2 zuTCDD_FktfqnP&5C|MA50;iw_*jD#KyhuggStOL$0AduJ58^KJ`=F_%bqHt|Rbqu$ ztdxv?E*X>cqh!_-K9SVtborvk_0QDtqo2VoW4>`I*X6glYN3+7b^iMWE9Y$@GNG-i zQnepm^p{omu_a~SKWdX=R5z2JZMEism7>d!S}-bpL&z{98Y}sjroZr(R1r}RjtGe~ zddjyZUAmn`*#ndW-##2mqWUf4Fx_y^HvLfQk@udRD0uz|L#B=0?E=~@h<2Te=}!K; z>jKP##1lg<_XzL}m)8X5g{;aS^&U^LX*qS!@CvhX?0u7+M01gQQLwt=CLdcHE9MWS z+$w+Y$%k=8SYLOY*?qj1VUS08t#Ffu-GdHc4cijIt{)z5T#pn)gpwkv$Jx3JJsjg0XXACYikkCBp_CA(2pFIeQi8N%Qc!y`Z{4 ztU~u%HDoy`$xN}i4&U~Wo53CJb1_Yy()j7!__n!8D5T4SbV|(A*;@cCqo#+e%*v^y z+9CU)jkrjkt$a;SWIyY`lxO(P$3!%{<6WaIdScH$R>!q=d#M>ApsDQDa({xJ-oAPj z1NVH$DySPbcDMnlKWL?|UxNlq8UVNtj7vO4Lg_{WTb9iovQ38~>e=^A6vsUCHFz?g{!kzYr9w=QBdQIV zX6FtnRle<~oQ8DD3;zdbr11!q&}r`vW-WG>QUIotlFj=cbqg#Zt!@RFAJO|`TEQ>sMKyF5Gb zBduGP#Q96`(WD@*fkJZ_NJm^q!*7je4id57(B<=rXz}RC5$K3L09w~QNWS}rCNUM_ z4`hR2NgjVG?HNxb?q`!fbm0IQh6|?`TUIV!!?J4kON(obs1+vY$?gHtC3rOOk0%~B z8peu|#u0iv$7;^GYM6<=}qMUnQ{IP`L9wi?_czoI8KZj-`Vdx zIFcSF7+J0gTX|KF%YefijDw`ec-GhE3-70+t4G*_kIH)+TStdo&Yw$LsGyzcC=&(B zkD0T~wrGVeS3||#kgnSN(H}_}yRK(yIJpODDi%)2EUO4{HkmlbRI04iDtzaeawv0; z{<@M-cNQ&`*9$3_K#`y~+eRyvyxC`YIlA-JsU@r&A|}Gm9>q@;dObSz#BR)R`9|p$ zJDx#IN0EDeum5#8Bl{pH91aNunmO?YtT#4=f7lDx^qH(vB^`lqmmH;=1^H3Df1i7^ zFymPXhv^l~_T?u0FjS#Suf8f#A*%C!#hZF_dIeC=$_)ixIoT{!G>}VK;PCdY(OUF= zd`X$uGfstK*FUbMEB~;wOR|j_&_8V}9eiOyf<&Y9)qyjvwwWBVAD*U{_)%P=G~<^S z`SmYKNxjvy1^!{sjfQmw20QeI5mEem(zsesjhuRDYKS_LU-mw`R>h8HY-iS zus*qOrv}AsVcG27myUrJy_NsXGdXBd1mTU{Cf&9*uBU!oO3u)=$bZdT5`2`WL z7w0cF-`f~&sm9Sf;mqs4eWg!aO?lDB#+PmiKyt!UzDfxL6_jB=9zM~Y$ zeTi1)+{Wemex<_@>n3dxF_%YvdUmr$oUWt>_j_@UQmVzI13AD~M>u}f;8rCsijL!X zHU3GO*ViG|ska@~(O?4KSlDE|;aM!fJbH1Wkl9jUxu~7xk+RF9N9QRm-$rIQe%Mbs ze&4`cx*an?zBVjrcd1;YfK4M6c`!uAF&$wqI@&h&jU){RcX0gy4Z-_~Aqsool)9=j zz@t2U&FQJUitSG~M(rUp!z(Memz>Os9pY6w6L+?j>cX{gfwIiFH&c=HmpI4&%HCV| z@G!CW4wGabg1;nrUKOu84B0i$wbO2w?j^lV?T)gh=UMr_))jUpGrESYnp9MaT^PH? znL~WYT03=@D}(so!MD}2EO1FshC}`;>epoUAlS~-F zOjWW1q+;_ye8uwTyF?tsdAPQFPF8n{Uf(fWJth1hNAo2i!*ub)^cM`&A#Rc%Z1@JzC6RiXOp(wiSzg<-^+)uftQ z$Oo=VQa8@ixHSUYwyRwB?|zO5MyIp5r%Ss>`kFhBVXxb>d-r~HXI_7W3zb+#e?K9) zc+c6%)?Vz<(5=4RR8Q94vj=4$4mmc#98M$P23c}ec6^G3O0}CUDxrY zHlH{3J?Wdc0h<{6pUK#nm_QR{%{#BNj=)IBrTFsnXad$r8f4!LdU)GU9BFVxUj_%X7XQZVK zq_#dX;6^sA;F6Bv?R)>)DJkv#*WiR}v82~V0{d%kA7A!M;jd7)f$XS|S)*iMzFhx@ zZ8-0oHtSfdU)Jl~Pr}+M(=x{sUTzbo(=h(5qL)@_=b0*O#5o&s=xLFs{Qb{+fprbM zBG+~E9xU)SXbla|kO>zev&BGxcNQ_TtF~FO+=$u%opvN4L;gc8qw6wSrC1W3R;q3U zpmQCUavggKbF{`U>$dLBe1%6qOB*fS#9i|=Bk`>4g`ZZtn@!6lZ_C=2P|V)`p7!mY zJS?4FqYP%weK^`H$VMXAQ?r83dFpb*e9~6pl#RdNE9}GU#Yl#sWE?wtJ?1 z7AM|@58IUwY$|=L#b4R&%oGjfx4~~OEuIG)xXN(zm+A%S23z@eG6Ku@76+ zkIj=$OuXo1$Jn)C`6|z8-^=?w8+F38MsgvDOK%P z$Hif@vVu3y6~|)I8MkSDzgQh8p6m8`^FwZIWh zp@s`q;i7_1N=D7JQ@=soD>Y22WyF!9z9!NLj~Sy}tmGYv4T1B}>w+;#wY$+8G7ihzTx4cik<)8fYkTF%J42X2G-w4u< zf5CZ9jdh0tWouUJj=Tsk_@_MxdpHoKiq5Mhcw z(KGs{!-K2ug)DPK;DO_ns(R*I`IVH_oy!&juVZ4ZyY8o`(0da_1`~#nUG|sXG=;q> zS-&7N_bfG;Lu3`WVr*){z$Zmaoe=8W;xQSIhqU-L`e&`~Ra4Fa;Zm*Bp)EO59UXZV z1DmFY^7<7S1aS7+DZcgMva2F%Udb|+p6rX|lH>;ms6=8xW{y}0K_VRDndR0B(!zhzw>%3muC$g*xK zNQaN)A%;!$fGr_1H;tUI4S)?IU1cj6vP8UM!FBgU@G2EF8*pP&Nl*&aDP3_NupWd8 zjO`_P?cQ*;A|YturJcfQ)W8;tNekPd(YJ5O05@=HQsUxNP+-+Tx}lx@@5(IUqdK?FjBJH~X9W&8Nq{-`ra!U%%f0A5Mt z4jm8}g6h--^hq@)RR|p4xw~a-#?8vB%jH7&C2^3ZpE$Q+?uqP{vy&!=lE?oG!LoCZ zo)XhJSm=5W!^t(tSaaV{g#TO!x`v7jB;mb2?Q-UFQYc-lZ7RjLXwtQR%h1QsH+KI^ znlizf69d!aK#6g&`|!h2XTpt@!lbA~jnE_TzrgoHAQMj4>o>Qw z$2p^Mr6-khMCF95*K$3@1N3A#n}S9^eN4q|7w8|I@0B@iaH0l!YA+r=bLbgNWpjQ; z_*c4d1uaoh!mSpAAs>YZ^p)v-2{_wRsA{Wxae8;)R$c+^O`%64OGL-BS7|j*UDbc7 zIO(_TS<;@c+FXkd*Irr750$6i@r1soefN(?P}pB}4(tZ9Rm`fbsOX=3x)tyIrmqcSoG#I}c;>;gN@zKTQ(Ca&HO8GUe8GcSFagNxRBn zC;1KI2f6+@lt$osv4L4t%MNbi$NYC*SiF9_C_vc6txY_$ zaXb9P1pnBLO9F-^@FoZV1qC=D%8SUZ5=JQU*b4~P2MJYVc14n@7cj}K5G=L1m?CLE zhzS-N?M*!rzm`nZ`^d>57XAHYRxS^%($MpPoxRSSz&n2Hfr!Kc3H`FX12Ng=Whw71 zA-DfaNfgn6k~S)wI-G9(WYnF_?m+7%!ia%UP8)W{gUH6J&JnwT+-kh`YGQOC6M;cJ zKx`}>#yR15kdfYcF;LOLLiI-1hRh%D_;ch1?|X3RpWS5(@ir-uk-y zoa~G`QpCQd8 zQH(l_plcA&UKFyk7!I@FxRQIr4Nh0n=*JT=ik?^;>q$~{Xe)eS#h6$yf%_|AiJ$_e zrQgBoKwN-inBnzgvW9S9mPJ-*(NxuPp&;?>Q&Y85fqHi`A69*ZcJ=MJIVzViK@bmfauk7lQdr;3~u({xCJ; zqm-kv{)QX>C(EOCHtiM5Px6=2`z)CzUs>Q1tZaWuzURXv(kQ3s{W7SKk_n!&gFy>R| zE1CFI&(7e9fi*5tshq=7%bhtcZQrR=DvVzBZZ7DSS53?L8V`JGpyt$EWv^UqB4Mp> z=*g!1;H-9H#)6Lpf-x&vle)X3F|1j6bNBLd8FdSFmpWBYu9}`Kvq~}hr1r5*{)#zQ z7C)3~?K%!_zx~#RL!cAx#ta_88+fbD4oQ^ls#+yV4R~+HY9WE-4u6W3R81IP{r=s1 z44r^;u@AILl!q_DW^S&we-LK7T&m#mRNunpy0_mYvXIAsDY6q2&VI;9c8Ikxnem@P zP1X*9cT<_p*wV_?ZHBe9v88w%R*~eGgC!}J^+SJ#>^CoSW9-(wES}?Cdpss;;Z9u5OdArMkiuX@6UiJTJ~5 z^{h`}qoa<4R(l#2M)=0noC^No&s)vTFr%jJcNDMHWvN5qhklb>$-ob>v8wyFZhFX_ z1mg~qsA(HB)t4fMY0?;R`8f1ijbIXM)YYFSx=<{&v7%fy6=S!>>uj^Hr8a<67#D85 zQzxptGGI*dH&tZrX>kpVu*Yrm)GHT9yu>VuxoY(YXBLMuhfLtYMEPkhha}Gf?QgCP z?e^5u;Vz)-d7gnpu-1Hl`8*iF`-A;`x-A(N_+N=+A#)pYxg6AQ(-})DYBxTmYq+Ak zuCkJgRE-Ew=TdPzP-C*DhYzLBQof} zFvZ6ENwZL8cmA~-_PJ+`*tco3DK2<~d4QK#mS(GovaQxnv9M>vQ{)#(c4U(i{hD7| z(@zGC+oR5TY00%zit0lK3-WL+u9c-||J?Ihv-H#E2gZk7#rvELHk9kcflS3(wYqE} z)tjPKx?`JMP$Nsj%gX9#BR2Vkaxq_TRmYqT?Fqh*5t|1>6Q7+sFKYsmV5rD%H8D%d zf{4rR0i6j23(l?SuvKDs-}SSsOXpGfd%cjJ=7K~=trk{u(XQVzk!rPpEL`4pDHfKC z@;NX^PrzZBeMP`gbr%LtOxxzxkfl&B&+HgtE!~@9k+RE!5yOe9qXE@sivE%1=9C<( z?##dxqqHlr%aH0xneun<6t3M`8U>TRMrpTFl!nW)b7j(O3L+0?I(^KmFHk)wT$kHw z_%Rwj0f#)PQ@!L#>8$3#l=--TNcKo|m#W|Js>xlmQ0n1tGd>;MnJ0y-oq9XnG&u_Q zs^01@wHJIgyDfzb0?aun389Q`KjJDD$O(v8d}WjCH-U11_e88uEss!j+o_v8?Zm7G zDW$gB{mIk%C2Mx1Gn)K?@uN5F5*0r$QS`9{sr6m{y@d`>-=IZHnO*dV<*{LEw0b{d z8}-p?m6Hk#I!{0GoGSz<`jR-{ITy_rQ%n@BS5T(_7A>C9$-+hTD@0&>J$3YClIA07N-NReO3t4zn0nQ%=I z40ZR9mRZ%bfQx?)P($%fxm34Xid$93K*vD6FXGvD8K^fZ^BfXyKP}F@HldnF9A!Fy zlg~Y9o1Ah;=gH*~Wu_CdW*=P^U0VLv;~wzjkoU3AF0Ktd5MwDh|5Ci2+2l)M^QDo_K~u0qEp8 zB8t7gaoNHfev%DAb`Lj}^zCcg@YfGmp|!G7bM-~bP0meU++(sdiM@^dGAXfSU3NM! zIw@ek$_A$~7ZoDno|p9&hX;-Pd)1ntCNOLyB8t+_7V9)113UL!8+Pi9aWow_^p9cV zoqt`F;nnuO23ns-9vew$(bM7_|3~wXDkG0kyq}`XN<>tWw9SEvs6{sb*_LPOvAT$X zfJ)Yl;N}sGhohm(i8{w$i<_7C==W9xjh1iL2A_3CV#nIGACBqeNO*Tw7|H=34h_4wT9bt(8kQ(RMG+JTb)ZRPKU?!Pn6y5y%R)24(pVF)@tZE{*6T6lxD_GkYPv|3{gwc zKtJDw^bLkyie;qOW1QQGJaAr6e3N5^ezAK#(((;mj^qrnwZ&ES3a@lM8O4k@unP_7 zj4fowNiq!S%Fn&kX8gi9FSq? zWbV1L=YtYMW!bUZPIv=q6S7F*0m&xYFr zsQCl?y<{g5%f7yWg`$@Bk7JVL+O_w0WgdQN{I+|uQTmq{sd`rHhrb^gevsQ78`uQH z%EWMQGI2rx_7E;cdKHi?CQx_P{Y|pag}Z(ZD2&lI*TrD^&;*A1FoD_1eP!1SRDV{4 z$vw`IrTTbXeSKrZ6Z4=3p>p-{|ddG zwBS+mkIpu8DAl|5sl5M~%$`qY-+Poqf9W)ASbzR-om*PxC6#l6(O;~Syeb(Z$MlQ*ZfYBvGXvuU}|7%+cp=#F%X0E@-yuu zL&8YEA5e>Hnb41ckVqOMQMKs?W@5O zo4|)ZnvT}AIc^M|l!@L&@y^=tNipvIiCdGL93Mgl$Mz>KVS0Ekz{Rf8OIz@dsz5}0 zNc$<*_|d=8MpBKZzVJHV)y0K`Q6|9VFbV%Pduk`&PE8_C5hC$$cZ~+!&?Sb5`DJAPY%^>q4uSX&s2H74xP)4;T6Ht#~Bd)F<#*;(w#OKU7~=I;Bc(1 z{Doj#Gp2$Mzwd=MmJd;naBES4a%|MKTPdLVT5{J)ryuiUqS%kAXcG7kisK#+9r(hE zYj{c2P3bRi;<4{PXWulgc+SXDlG5`?u~X_TZ_n;&4^IQ>1-w(~fncdouZ-8RiCY_un` zskkwmb-=pfIOEdQORlvzo@eQ6dsWDj9$CLXCgq>>98RH9A_EeF3sCPQ1DRPo5{dit z=s*z}r3ELU%Z=m~x(K6xn2Z4JU~0UmKi>BmjLmB5>a}Zr zT%GNf`a#g8dFj+Fyg3ia^m7PK$_-rgwYBRo_XmY1d%X{V1l&IE5Of!$UY@Hx!LlXw z)HlkLEa5fhr*hJ8$KSBVz^N)&>7hZ91)mYPiHzC?^AU@V9*U8I7< zBCjjaw*j$A#LViT9hhG%`TP9UoiU0s#DGSMViLsDpcdB-Ui*yl{)5-1waf!Mzd3sz z(|M!(w&(V@;Ly-9rPITNUzX!X&#|7H>@#PIs{#K}gACF-Z4Ola0z&z&=G*@l$Vl{} zcAXD)w$CWxAL3R=LK-aQq!S_X;`e-r7nH%r``OHdjUY&5+R~QW$y8O$#hLBn*V7sJ z`8G%40A1^WRhU;VU$MUJ*r}4$<9OfkF9(UlMVxq0OGQ4Urt=5x(>0cYc(qX8{x)K= zpgUu-Dj3WjkYn5dFdO#5Xt(E9a5|*|kiK6~!KsQ|boJ??CCNL~Vm<#6qGJ+H{fn-= zEmH}i#z}WgM5!!)Z@WNI>2pE|5JKzKnZ58=0u+h63!ByQ3qQaqJ&ZZBApN@=pP#qP zIqw#1D00h1n6uteP!AsrArqO1lKFX7ux8>;Ft(4x5XIx*2lZ4Zj`KcD#>AD;v3vxc zD5d9{Gpuk|6G?67&RTH%k$Pv+Fq3^04ika@@u4TE@1d$6#uLY?HQdQs>BB~V7e4py z-77^>n;{k_8xy#ceXzK*py$Epqq5o_UPKnG20YO-xG)#zS=apmZ!ag4?CIu}5j2}4 zacBqoKvNLw8{M#e{o>t=VEEmo@brkOeDN#kx1ia-0{(oZ9F`(R!e1)F?dyX;xspBX zaICX4fGe}=Z2S456xcVvP~85`K1Rjv%ttbguNoUH=VZj|@#*X9YilL6&{Du87zr}J zjch}0i0rYUu_7xomoNwCiUX$sQTsP*Z!-~htSim}41la%Xv1`1yPun17G{iFDgJt! zlM~(Y_4cXZw+^xuHqKX#q}-=+qJ6x*!f$>1Eu<`E;{g)S5&=0bIrP*S@qTfn8J8$s z!|dBG2!1AHB9|2wqEr=_#~HEHa$qvRCh+^3Rd(*&xf-*l=H3Ym31q}s z&AkmX203T?C6vcC+i;sMx-$duYDqM}>^?7EyeI_|Zn<88?J>21qX!Nwo%>)g-$6dt zhGTvm*pTdX0o^PgL>#wOLAz7IVb%neSsxrUSZ1FA1nhmUwCPNV;DtV{F`QEq^pYh4 zV9NX8T4eG3dBvCsFJqQzb_VM$O$K+Z3J%PS*z^~(uasFW0|0I*_7>Ha^Jv8Qpt(S% zKrldeV(a+!jTufoMUC+F;m(!&nywqqz0V~ZQjNoNH(?$6ZC%}d`x`scRBqaa$_O(c+#k+I}XC;D^G6erIRlG z9!evY95TEOXXoG_> zSP3x39)DS3iQ9KI4wi#>h0LT|$V6TbPSM$SOjo{!h5-D1Rg^uT3;fGT7zj169U1!N6F z2`05BD8x#w=ynk5M(fvysLXd^zqPDP5RJ@@hPj=M42Ji?&8}cyclhYB19FT$uWt{( zk%(o-ekpD9fj_D*IucI z3JJbOSmI0cb0>WAJ{0Fl8|TXTmqqi(Sdp>&f4w$ZW*yC1e;UKHzfC;o{W~2<=RY08 z1GF+{Gm9q|Tjh9tm78(9+nrZ>>6$jkVTMFK=8p%sYE5@++O|$Ct!8(a-pMy? z-C~#5CA<&2&B074Wx?=0+*z=>4%!fRG4;ve&-50yP9bL!!SivNDuBr4BV^S!-1kR~fj4z+LJQ8#Uh zM-#pmq3eq)pO|zO@=i~U>wi_hF)FTMFAH7Mhj z0o}5(*)sC{ifQf`y@=gn33u-bZND(KAKvztLKbhtZfIWIDe}375 zrKg)8$Ak8bQ_gNdLBT={iOkk8I4EuW?9kDpw-Js?8XagQV=zE*d2b>)56(9l44Xlt)cPft%y;oRqX z^T&_VyVfj)9YYIu^_%YzSHk=6#wvT&-3=?j@?fBVT97r-fqgw;4`%(Ch>Sn z&BTN|=DGa&_2tqDqO%+SQaYj5v{;f%M|`P{jOB_+mK zR@T2rxf0fYmvrdc+TzTz^*YbapK>*_^|UxRI4%k(uYXdMOr}=8e!aUhicu4XiW@z> zy?ZxDA3S|NBs6q(#p?%WR=(TdRn8N^J+SMw^dqWvg3Y&j+T8C$XM3jE#=nNoKYP52 z>bxiNKaKp?9(>p8PsI`U6|8`LAV7??m$TZ~+2y0vrN8F7%$D5!>rVFf_uuJ-qt1kB-Q(coY{HdV`F-dUR^!X_4dv`ooOoa^QYF zwwfyoqJfR2WmZ9f?Bvg{8hD5@NM`2Kkx`B5_wT=qjEb6duLLimvUgbj#EHbu&pe*C zIVS#oeBa94sWPpouroaAPBm>yVZcSlxf^*)q4^ObEJ9R{+0oErt2|^^&7VQM*RPnK z{TqML`{kE;!4$x~uV?>$V)-few=ZaO75E$Q+J4)TdEu8rkrQH#`Rm9d5bF0gtYgTl jzm!%A<<-~!?qO#cAy}`we~s-3c_7VQI%*j^O?>|k9o*zo diff --git a/docs/source/_rst/tutorial2/output_25_0.png b/docs/source/_rst/tutorial2/output_25_0.png deleted file mode 100644 index 5ee8319d29440b4b4734975006abad339a4dd649..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 54611 zcmbrmbyQSs-v$aQsH8|LrGtbtDye`-ODG~CF|>k1%1}cpl0%53NC_y-&^-*&f^-ax zfG~73G@N^$_j}&&J8PZ)&R$Dp>Fj&g!WH%5+77SbZf5VSh&0ULj0>k8&nnKUb-i(o_Z$f z=*-BTVO}?UkuxKW>hv=rz01rW@S&MTKqwZ@mpo&)5~apnmOg`3+$o3Pvl^gu~OHZ`kppr9!YZG=2)Uc8ZW;+wqfp zV=^r1+zow$?yiY}gUc`Y-%I6%%^1lo$iLTp5u-c*{+#}tN$@(&|6E!;6pSJN-o!%} zh*bFZq9bck{Pz|JS-=eB-&<$`8Xcqly(RdGS(VDawJ4vdv>&x$NJH+M66!;2fgllA_8 zpWCWGzJ8a}Ye~&yyAD%cPOoR;E$XvhJ8d>zVR!KRjg0?S`243t6A6W%Nn$T$ju@!LSh(xvm++#Kat&{Z5gtb^JYj zezxzv`SWtIbswbe>}aLx{Onl7_sna;_x#jG`u9jN?!SvZ-`$=3urdWv_n`x9yyAnm~+ayg+5UI$X{~$VOH*6wy^o7Lc3vmB&xRC^$Hc~dtEkXDNMQHgrFp7`yiDe{)K9Xu zwieZqd;fnoXN>AYxAo?62aNH-X|mhY&s?3n-aI`a7LUJC2@h0~n#f$LqD!p7_`6rJc2r;)__QrvRJpiIeSA-HnT+6b*;C)W~XQTzY=KdW(F2#O?>d9@+Cpt&!}J z#1~1^GBYndd$gtSN2W7gs0}BxFBuabKS!H-aB01EqyCyACnUX!U%!Y*R8%xOJG&u4 z#G>fk{L|?*c8|X_gTuq=>FF1g*}Wg6cr1KLKYl1BCG56tw7W6QK3U@;@9iypwukbi zx7!&ubeLH!?NQp8LTkNx6+){iLEIyAoWI?+5ae=`MoX+1YJpZ#u#{ZNjPC90>sxB8 znPP?a%2k2QvDN)>Bdwr-lHF^Qn9Xyw`1wx=(e7g3#mXrJ-<0>hu@~6t`WPQ+`>L71 z=Raq`vV>SfNRr0J#%AZ|D;OKIp6&adW1Wv{*K5eRQ`{j`(!0-D5R2ckQ7G#Ci#ngE z7~R&!0%$mtOn-hLc`}aK>3%4&l3(h${fpaTC|BoT-3^0O6Rf`Ed$yDMom@>pVOjcQ zvnfFo#<0-!H3-Z+D~D28LzUAUVK-sdOb|<)Nxo-?2~sY+Q|@z=NzUDp61XJiO%Px* zin@Ay&zvV*$L;j19B)HC=IL49wclnEw`XzPm@*z&=rlRIhhLvWT6M;K`}U2PFmOEP z#Oi^lXvk2*a7obK%@t8ddOnkc<1HVsj|rbcq4760CFkjqyz!&@Xhiu6p0JjL zWq*_E&A_Ld-;gHf?|8J7HFvr{9a)|f6{r{=6Z2=QjlE40mo!)1MeVbB@zLq-fMV>9 z2QE3tZoI;5Yqq8ExU8Zgy}Z19)6>)QVTJuMkr%Dp5dk|NDH@MO_Fso8spf-VNimsdm|`t9BHJ!nexIDns_VVRR_@l$W(NQVUw~A2=lY@gF!F1D4f@hMo1z*7K zdm>WfvNCLwD(SpnI-LJ1VA{~YK-hiL)Tn%yE{464q%eeswV)P1%a|o7AIT;SVb25S z*07??;*ig~4_!OvaOk$a+MsG7W-;(X11uK*#5!JMB#7N77^IbIXco56cm?5wTB#9T z?L5Ldd<6;n1jLUPuu1*dq!DRlWpvo4Ha`d%`{t<;Dhp{kE18cX~sy%yTaytwa{YfLe=4wDsf%bxv|Y@6Tu=aMHj z1UTCyv)ZP=?~hiOvT}!ye$GKq5>0vSXbcVwnSq5|oI*b&gi{umL9Hja=l5=%~-_{%1;~Q*<#oPQQ^(^%C zTTtgA%stlJyu7}N2_v|nv-5pkK0ag2RSrn{-`({|X5$*T6IxSGPp@`;&c(R0qVjBS z{Pk#wmHTo|)@H9fwb|-O@xcU6Cg|aM)kTm4nn1)s{Vi^J55j!Zls@X08CuCQZo3uU z`0lCRt5-KWn!E z=5d0?2JmshA=lGm+|LOK=6MW8Q3}7Q15dVhaA*SuO&T>Ihu!-oACz8GQ)B%VZ0)&N zJ?LHAojzrD;>TGbacXL6eN$6xr|(-n{-39!Gmdn7*gI!j>X~crg^KK-6R^o``TS$7 zz0CuDjH8R;@*EoH!(9ImA3;pu9^hAID ztqn#-u9%*)u;A&f1#4ID*^U$u6H1?APz_BuwXq(YZumxix&J2DbWNR zJ3-`P!C<&LrzT4AKcIZ0CG2ALlt+XrfG1!7m7ZRZJhk*ctABR3kC`i|oNCn3 zGY$Yn)8#kGF1qHC$%Jf-F9O;4wV4nKu2Zm2C0oLi<5yf)%&&)9tGgWLyzrY4aU;W- z#b>+3r<;=`or}B<->D})xcV3;wf5tyePcNmiUgbMGAJ3W-@bjKtxfB?K5+vk`5kBE zwN{QLWL8F>O0FF=I1EnH-up9PQry06U%>kg?C%advsn23`Hp)I!RWcZ!@kWoWJgGut;9R?w&QNkZ|adB}rcPmI}k%~x$nM7FOPY?s; zy+FOyO#AH7`yQ`_`vG?K=cgNl8La|UcCp>KSdwGoRj`ImW`&VcXip1}@v4rN^PD>F zW|{V+NdHr$$)0URGKrWg{NI_06C3a>&Usm0PcP8ajGN8e)kibxbYrSAb98^5AS3P1 zjTR3XH7Y?hK$v>4-WV+%od7~jLMS1e#%!{P7mczeK?<{m!J70iM?>jzzrTu8gOxP4 zo#$U#T;AZ zFMX0j?eolJoO<6BwJz&HXWz5FgZ{VmN*~FgVwfYNjV7aZA)nY*n0IF9%8u~}51@pc zPO;znnK6DWX8VVUa3dxGYt~<5{%-?UTzcWE&g~47$JaUCDQFiyUcEEG!fX4k$VS>> z*h1K*-DN`l#~c%H!OAt8e)4~t!;YBYpLQYL)r%D2aAv8sJGAYRI88V?SMvMR--k_t zN9Iqm69!L^en+NSR@o|}S+1|2{->)cc# zWA57I)7ibvUL11n6*wrhFP(m~wn0yK#MuB-CaXl zYnY^!T%P;o>h(+%Ne|9{&~&L=Jn)=uP_vx}oV*Uy@VR{GeWEusqg z@Zd6MIR>rn+uc6MCd;UhJjIJ!mqJ_UZI9N6Cz#WM6J(jy-zmQ&7>FUi< zPZ95baRMIgS%VQsULAt_vq%4x;fxo3{!zphHUI7F<`b|_1O=Kp$_@T1W|e%5ZDA{{ zaW`)ZE<=7Y{CA9CNQrKUm`AzwL(fk*ioN{azB7(@EVz0(+}6X0oX-gFqJ2Tm92h__ zu7B^eL}lrqG-|IXC|F7i+koHi!P?7I{@_@k#{ZoC4kQC?Yb>sj&w<~fK_vv>5g`NL z<>+-swo8eX6=I|b<@#>S@CU(%fiX+GG+rdOD>de$BVO1r}!#v2|g^nAZ~ zyuy(K4deB14d2+4>uL~q8Zlp%nG=^PLeb(F6>|?AMb90D3uJr&fp`~b?zDokwlUcA z`(ow=Ma-sffvL#TcAT4GlJwOk(m1mY?vi9_KRCJU+!dZvs1WZ5zAj>ghhuM4-d*DO;Si%8dmVo|`H)XkUZNmGt)1%rZ4-Y!hk3YKt{P zAo6brrJ%Pk{0<~EVlPofA4M~dq!-MlxPfk@rvH|q@;C$Hr~Wp(F!Z_lg9dH--4HTQ z85A^BQvOY=R2`%rY6_nhNa?>sS0TsaNqOZJhtFS| zRV8TK!mZ+W96FKrXy%Dm%2&4{>EFy=5L@)iy`IRwCbEuIzn-U@ zXS5p7l-||oD8fCm*dZj=5zK?sN6p8dI`n|G;7MI2&M0;JrpYJ2!nK?f>I#)JH_B7J zZ#&4`)Iwp=gq$eSQd0NUM=qzmXn@Oxrh16dO($Bgg`uQg!T*blTDg*K9f-%K)mzmGP$I6tX z8q^H$-5KpdzM4?CR4tg@@fI=qO$2Tu5o-@tVa&&>kgT{gONH~K&KmvZ9p8YG*Hi_hsG^8io6ByE35Ez!98~vGP%u)qir;7npu7ipdT~WG z^djaFM@MRzzanj8I{)rbDLL7LHM4ZhpAaowVWS7vm`!5nz*q9v=MV6xo@|E&&ze3- zSo|w)@{PW=dhc!7#)hls^~NN_%BfI@I@>*s!zRbRYqnlmVC;h@CCiUf7>!H9d_=g2sZYIh}&8(MIJOGIykrX>)kxzK|E zmkJ*y!MDNej=%1B6PbIJ-2Le&VrA>6 zHM}XR5#!)>u00I;-4`57&u@oIGHR?A^Q6D^&ch`IGT>%~onqzj2N1KgU&Of~Ov0~e zgA}uZ*5aPX;|ZU5*7Y?O1S{9c?i}8r1nS&vHjo>r#l0u-*L@fLD-3@8z z6YSpXdp2VF6fWy2!N8R^X#5=Yn8xRrRCrShhKow+tET85Y%8KWU|Oy>k+AGCx^ydy9+LS-%Wp>UU+#tw{4D*?IgCmxxpwn`S)LjEF(4g0JX+eNeBnTCtfieZ5GnG@^CCYgT#%+4$JG;lk1#?M z4iWB>C_4;OP&oX{qRBEC-MdkdHg~xzoXJ(^b^k?K*q6u|bBgT|qPdn^b#>w$Ov2Zf zz?c1McSaKur#jAvbL?3^G1O>B`t|LwGK7@Uk^qeTy782LTzhC=3@ah3{4U=@%LK5$ z;EwEpvH6ov{{MzQOI=oU2@Mj!Bo{|ZxqoOThk|yI*VmR#13Hz8hdHDaVpQA5cM{|G z!@!hBQ6cKawRST&P(_8{)H;5`Ve@)DSXSJQBd4ni&TG5&naUE&PWOvuzD=hKJ8gLu zG#^TBlhF^=rOhf}vC&J;A_jmNTpE8w|%_a{J8XiaYabkwTO z_f7k4c=5KKSN+|q08JBq-IW;Nv9mCIZNfFD>H+jQLrA=gCvOM-4)QZ1p!EqvEmB=#&uE9a89+j zKRH<`jfCb=O$hw}-==0cBPs?U!tT;DkLPY6Q!x@Y?&)It6mzeTgtMW|s1F6|IB7pG zbGhnAzMowdOrKR}SeE_c)`WA9+0pKjJ7|%MEq`5K9WA|_mFgqqx;92%wE@2QAHWcR zz2>X`(@*JC|8GB~thn#rFBp-P@AK&|vytp8R`Van&rANdzhVF=pORFZi?OGji!6NO z8{RV|`Qezz(Lh(@Jj?yp6f)<_OQUps#06AlNM#e<~6c2!ikPYt*Pa?m#IELL7EcO1R8#@5FAA#ndRGHO< z4(h$96UHWelc>mj%RC8y>h2rpePPoEBKl_maq2k(;QYj}48xY51I+6s0rUF&`t-Ez z%!#yyZI%_k_-<{eoKbhAsGUrp^rqN+_|Aq6^>@#@@ox_@D?sBC^f*iUj#S5+59nHh zt=ZAaH-!KWEU_X#!ml9#w?$=g(8&0x63{*D^_u}ge`b+Ft>i*=egF@i0Z3@@^LM@= zr$zCLHNX#v9w(2Ui@kdL$*GXHyux7`y6frTA=%N1l-;c?FDIbV04caTp=)3edUS-y z*Dr3|t0ExL;6+32nZ@mmzLg*Vht>;F#-pR7##0>~9VRfjy7~I=0Rm4AKKd9m;pCLU zL;$E)wz0WOK+8|CzNdQGZR*RG1yGCRAL1(;(ch)Q2e1D#FH)r#%s?Gi=SME+Z8a8R ztHEBLnk2Xz zTfQS||F+2bW*?#}=lgdOA_BWJz2>u%{N{-a|77OyUF^T zoE%4t%hzc!fNToXU|`t7MF7c~F+Y74_d#(O_WIXY{G0rN^yq(H@kjQJs+QoDQoZ)i zFaIRm;j7vvD^hUSCvQ0Err}cGk*ZX=p`bu{(9c9Bbe&?k>N&Cydx>>fv=)zd^#Y7z z%Sf@s)|VcyR_9vG>6$|opp=T=4&^SAFf==Az2|?>2>0TMPRb7mqniYtt3<&6u0# z%Jjm*Yrr32tiMKaC^J+zY35_xHlVhXHA6dfF%-kFOy*(OrQjhOq7~78y_G*=bDrX_ z-`nahvb1&;iLiN`oNyVSUcLUEpry}m`={Z3%6I`FAi;iXKG>QguPm>uyf`wQ;R6C9 zlbEgk!3WPjZ~G);gJN&)MEF`<*V5Gu)XGpY1H4_pIDq?#;Y%+73S7Oe4G_;VX(Ikt zC7DI1z2D@ujE#-Uy1<%lb?~9+DsuAjnkwwZdwYAIj}XvMYk))orYuHU=Cj4SqIMV* zzvZ9~0j1T=)o7QLj;IGa5pId zbmlj#ppXxu+MBGes9$j2A_-&PLaL^oQ0vOE!S0;fUv2X%Ru=)Rm6D0tPuWLEPY$(wfaAxS+zo>qOSmjC{as{wqPk z2~uG@`hmcR=Hy)EP>yH@gaSD&R$NRhy=?cf@;;z`*a)MGVvYRS&o+Y&{&LHL@aLYM zU2+7_yh!6(*O`7bp%$>>072w71;8PoMnN9@<4%&59^@ROCS@nkzJq68ZmEf#d3Ayn=55aVn zwrbPMsV!v%*sfw9g9UY-piqhbG6bu5?Q)Xpj}nviDR2^oG<}=07O(a z@T&w0#@ng7yrfUaDDAfS*hVcKlOoMd5MX8Tk@tJ|uAP%y%@?ZGsEZi)^jx~$pfFDl zukI4!xfv>1NlBX$IOB4bwx;O$JakpaIrVEM&bbVevL=1QW!VOXnpTwRT%8;WW$dX> z-ZLN@aTd8G*3b^;+B-1aP)tAg@&Z+?$sxpr@8<5{Sn+;q-e65_sPKW2_CkBwtxg}z zDuky5_u}r`S8My#lr0S2P)qjGTwJ@Iewm4Bw%Vt~X2c}FQ7>nP#FAvlAK1rW^`9&B zBqH;rk$25xXlOW@Lvu4>raVm_rIM*kt9X8Wr2gnd`0G__#BsA$a#E zmK;EzS|t+vQWgjA6B~tX5+2aZUtW1YrnYa^pS112tr8EbS@e2mpSPAMJorj!gv9FP zj%b^CB98K5RtEMIPl9;48$)N@+@gs+RB)-be=dwSib-?cpu(@-qKErXE}fil+>7nr z;7dj+Tax;SLHhk8HWd3BT41SVBmTU&^EFwy{fCv>H`;S#Qr2;M*I%-sj?rhWa{C^W zTpb&Gth+vU9r*c9+F8UYRt(bTTsSwtR9-yz0f~igtjQ^iwjsh__LoB~HWWL^QTrwa zSi~EYVxOX*8L<&HHm{UnYOj!%mbaG1#BZ|ke=RkfsH`GTo#v6ExO41HTe z{*;KEIl)ZZLH4yOig4*Opm&p4JgVuhj;D{ZfqTm?Ax>|XZn-EbWC}%pcn*2j=BV{4 zB3#(#`45S$Jw*l8*-eJfuMsFAR#}tlS`zpv=xPC{&}z}b9fZKxxl3)&iW}>aa9wIi zNK-oH_qofK$?ZlDULAT4IPu&FilR}>GEDm^CBU>IDhkiX25;Zt!+N4%C8Bi?ki-$w zvqIgDJw6zfO8K|CGVa>A3D1zI>&E z=<~EkdV7b<9T<}!nJI@lyVJ|T^tRtHi*QO2NT_zo$^$=eZs2*?gYP%2k_E9IUtkt7 zFy|3(#S0~69Rk~6>8)`QxrJAEO0pWt&9oc#VmRx%VqD# zVCLFC#`}<$yLZ(xm4((!rwe+VPDC*R6eUA#KIzhA{nifeGd97`HKNVIJk0u8-#ZJ` zJ+cV}oq}rLyp)hLrLH&HmHhn#Vz%1ut7Wz|iM7xE_^WY)O2#0Esd19Y^){)X(xiKB zSETB(PUtfSp?Iv*>hYm;8w0&rL1|Xz?@gylyU9l7(H;sp?aLn}xmKLLg^eiEv{8!2 zyf}%)k;Uutm5I7>i}0D(Le%M-@EmN3Q5NySFwBFD#U&RTT$20x4}(DAzCAiWNxFD; zmVQycvXiREWgMz_- zD5G$N@@WJ`4fW7_v;lxe>Sagnm$6N<&+|o5V8$VCuL=hIY=vH=si9kix_CP4rYvmA z9g?sju~^aLBqY=c)$(lJ;ld3_ z$w5NtHsa2`aH^m6Z*?Ug*FP&5f(+fSEoYD(KPEK1O|OcRiT| zk9xn+#05~-y@GvIh>BJELWNReok~@>^DJmZneJ6}MBb}cSv|SI<0c0T zzmc29?T6=PW5^AC6eSKbd_D=4<%K@O&vBg|-rB%kHx@P;O!(#SnO{_5*8FJ4VtXYz zxZiBsrD+%DI#Kd`BkT0&Z~W_+%frX~Yx`fxy0uZaF> z>?=D{upai6EpBxkIDYxT?cf+JfD@xL@j1I4pEY0tdMp+Y%~b-+d^o zp5AGsqd>>M_NTF#+B<)sQKTBm0V$s-Je3-{++F>5V&Qw~bbLh`z3-%Mnx^&(;*4qU z+!XRJI_Og$YTjqP9|V2!WIOY(P#y#Y-a|73#5Y%#+tv$3P0DtZ(r@uuA`rQPc04CF!uup{03yyHHo~V2LiWVoI-O=rVMN4IyA)hBGRITun!MHH&Vf zTD#9zG?q{20s`@yJ1e(!tYy^WJ`c9aG(kZ*oU8quE|-q4MP-Zr>OS!@bVb#R&H5zG zZ54ORje=1$)A0LB5M_~j!r(0n`LN)U4=x6e)N=>?;47j&HcGE7ePv&nSunKo2b($N zz4=VVlW~o*OrfbH?f63kM`q>Yr`r5_*+GN5u%h&B1&W^kXo^xLvy-kzjD56u|&_XK}xH<+r`63kW^CV?E3voHI zMQ@dB5H%_4*-(cJe^I6M&ljGTe74dAnMNrb-TOvk)3_%JQ_sN$tAqpSUnE^7n0NJq zfJZe~ps^*Vb!ysN?v)eE2s@$3QX{9JNZtr`EcjRVa2#upB1{4IG@j9a_lsD5Sg^{Q zd~82XeD&#N8_LLqUh9tQp2teKiU?+$Xvc=zmm#l=#o2bHNL3OAX`_pW<4X za3*&k$U>k&dVpR$YqF*J?|s)Sgs347HtMWt&iH;k3#VF>-3hrox$#PuGjE+sVfXSB^RiKsx~AOD0g28|Kz>6NN445=%EYO7W5VW~6rH-~D? z5*I~L+N;4(RNup}_yHev7pYfW*RfWfy!t5ko)yC+^tHW`c1V7<=Ic+1&c#3#1TKP} zVWy(L|HU8{Yta%)UwF*od$M(qdVa{BZ&ZD~jm?u^%yz`@O^OHU^g*lmqn?4WvC!e+ z;l>RBP{iN;Ap*~}J$&6wn#@(Lfmm1Uu2nI+qlKFPt~o%tQf>bnQ``kT(E(lSt5uSL8mrS>n21{cT5-J0W`)@h&e-i zNxvI~z0Jd=^O;UPi~Jt5d1mdMadm%c}@E|J9l4;?#oMQ_P9;*nYsvey0K9H#o5YRVcuWU0^Zbh++5grgLW)`&&q%u-frD?!)X;|;d6KTr-d669*Lg0E*s zu4G6Q!z8u5ELX}O4cgTFaS^J8AC7Y!9txmL5ZWcPZ}WyICSDx;LIRdOps3{tqwaWP zFUf2j`(89F{j|*kGwupKu9?J@V@_Q$CBJNOdsQcFkvlSd(~2A9O}kin&S$web0GKp zN4qO7&Nw+WF%h=B{1)q7h{hXu%`s0maK;;5Ad)y*%qWIo1&t6(-wE;yErT)1>Hla4 ztJV8>E*Z;YYkR>L*M3eRGfTlNf~S@8GHaC*IEH5r1jBz=7-|F^$#FXk>8#2z{6=9- z=zQAflJ&H7s^PCR61P>sQ~XCD6!2Xwp1~gWAB~Wfo*u5I2S}j?b6za>ejLh>7OfBHMtBCaec&ISKgJl+Ur9k>^@DkPCZ#o9&l_-ZZOI`KvvKmLBnpg2xRZ z1n$~g7RbkLbFWE-tGuZhw6Vcb@{Zu1@77MQ;O{JFr8&39+_vtPN&X;2<3#G-t&`J~ zB;O*Ev?C(r;LIkJ{U(Eoyhb9j=V*$he+Iyn|DS>yi7FtdSsX{f3ad$h-m_{U5w;0r zNg2;lW&YJMXM56-s+Oi(UF4r0Vd8k#hUhW^PsO(;C6FW37589hw(RYGfJE@b;`6K} z7XDEFvRR`~Ep}h4JV@lsf_ldo6={sGa4rcKzdb#pZ#NA5A|0zfbTr(|=082HvQT~< z`^kyEzi>mcm#uUf)^0a%t(Js(h>ItZ+w(bY zt1VvIUeQN=zl9%4Um_A~RJrUWaLvkOIP2(-OBlaRJp)t9wJ5>WyqCBT8~O6NOjwV6 z2lbL!pJhs&SR=xgE+H#DkZ~q|=Gwh<%S`%wK<~$cHctLWa4=PG_2mr14XH}AF*C$% zsYsf^IpN2x~ zz`VK66e3HmE4f91OAApsv_Ct<0-?)~@iVuj8uUj1DIZ-bWHK_6V%Kyf913vveXy}K+ho>8p5 zxn=U&99aB=JCn@Q&8AU%1~s4&rTO))_O*nAwv%y)LDnzQC-%rJ1?h_ECwGT8?pdvD z*$2V0UH>GU5r5Z9V1#SF$zI-Ln&`&Sw|4{<$XUVp^q!-1qKd{Gh*>e!+*XT^?xfB} z9XpDwv$5HJ^yqv#*BQPyqHYrg$UX%+peyjcV~i@^htPx+>AtHlNqt#1U5C(X?OVCW zQ$#`QcNAa@9j^&+^pT6Z|9A&TR(cod<3jKhE)U~ezG9tk9n}S2LHssbs*{rB+3d0r!l`mey9Fs)n%6DeA?`H2F zO*#;N6*fyeWrD~L7fkyjToJLdJbwqZbeHvCWIR~AVEN^0-gnNNw$=zE(S}uZk5yHl zD>KLb!6ym5Joo0u*n%F(x3PJk}n@5$2SGu{BK1zuJ~NAw4;1{t;8%&)frbE>vRs`olia! z+NrYCn{ln37P1bTtBz&uX8jSLdAdjMx~@?xJm22WLo!f|Gba_+e-PO%Ed%$FrisEx z;Ak{UDvJxTx06wmHUozqeS3Qf3JW%@6R-dFT6h-Ci#KCs6tHKtSbTav%hZaILQA!| z^YhW9@gUZ)E+s6ECx;xKv=Lp!2oZv1(fJq%c1 zW^?lj8-eN(S>XYUI0WS_i`VAQ#c7Nz!H;r+lReiuW4dcx$>rjt4k7C>m1K&g3YolxWDq3UnS z2U5rZJ_%T$9D(q@*+4T888}ct(;67?Nal^@XVqvfv%TdZ{SwQofNQ(^2)Mims!s3y zFOtq&DPG&EkG9)6+}Epd;N{r=fFf650^=|(Ljbo4qD#O(emvg5uoKv~h3;g-k%bmU zlV%{#C(L6$6n!)D(e@SHLZc9yfgde+{SYE(MpN(BVMk;9YdUJcL4>xuaIMXJwV}3) zqfDz~(9x29IWCkLJu0gT!G*yBte*}S8rKSgNd?sLWA{`PFlFi2!0)ctAKT{}R#IV( zCpR{8o_X`OzF6?;RvhpYTVmpW;Vv!aYAyPP9*4S>B?=oRz{&)9IH8CjY5+sP2y|eA ztgj5PYW3Qr0s?Wudw){D%$kPa{UB;U?@u9Tnu6x$<4syY6&OU&P9K1U48Z^s&LS4Y zPT(R5y5$3cgngy3mdeV?O262ggy1s+wzbPd!oUybwexklSwnm>W`g#Ug(?YGKDI=D zznUoo;8b)e_Io;?%H$QfF^7i}f%ZsJ8`Z9zH*1Uw_1TSa*bOEpmisoZ>}!31)vb}> zd7D{d6oQ5kh(%^G+s7yl8N;2!rZX}&M`&Vf`Yz< z;8)<85ct(s)_%l~fraR)ni_#+sahZC?e&xP#HZEQ*E<>lKN=}DTNpi`E?tD@Zl7|7 z3C1VDj=(wt!M6q28$^CJHBz=?WmkJ1?N9(*ycg7;1noQMCthc^DIE3Yd~2NwU0&RM zw7h#0l&nH6883_p__vBCfRAR{)?9I7-HQ4X`0(h(C!E8PznzlJ(y$Otd-881IA6L+ ztexSP*e{a{s=K_%_MO|c4M=RYVrpfYo#i<@V-!{~Nj(oYmyIR*M~Dq%;^C?1C%At| zm%mZUv!2t(Y``yK!P&O|c_jtOH83BZp`CG?55Bw>HSgdD-?H6_TC5rHUXL%rufHYP zWTd$HAbSx{VCQRA3dy}Ee*ECt1#h}o0d`ut9tsNB#O;Z!{Co;9L;N*p!fbdaCMJg7 zG#x%2_9hZ`UDbbd@W-FPegLmgINEcc;6HfLbTL=~^p(%DQVvxIVIEM?u}mpSQ?%00 zRcx4W-s7yk*W_d|`E0L!h`)G`6l1Sh_W22P$9{T$`tuw1QK-FTW&Eh@acCd zGq<%9I|dtOBKZMdS%t2EzcxUV5`m>}0Cpd7U@!T{aYSgH9K2Ty4}d4gAFvnV+gm_G zoY^}7%Q`(1+D{fOniK;URddy9x9f=^4DEAzgtD`ftzUcjGRcosYN=? zwGyP`;)ONKyhg60Rs=p%TflIbv#&P6B*7|G(~-7=`d>;4t{HwEn`adlk|?-^i*$6`J+sngYp`1q>~=s>5= z-`qB-eEo+fuPUogHT-oc-8`q79x-5?Tj}}Z?E2^Kf4}ktp`iqPQiM%rM2%qd5l{ak3k?-_6JB&88y- zwopWR4z}dH~V8jub1V? zi%t`Wy2M^J5u1B^iD6*exy>eOp-V_2VXp&6;NAKI!ch}&imJ}zE&=>8pn+7s1nyq% za;2=vbOZvZW0~xNg1ytbe0=i2)&Z!rKyWqIcg6|GgGmIy%p77BP_Z*<{#1>?)InYe z5*}4}czAYR-o+x{sT^RPEX{sj3Dh4zt}&aP5pjXY3xok40fE92U{t+8w795pF8yR? z$GKF#pgbY;V#2`o*0|}nHP<#* z+{V^Kusl*Si~S*d53q}|5?ao}Jdf)kvwNbfHnJNwz9|rCATTrDx>;`0kNlM2I8g-W zqYfFbcIF0ja)3^rE-?{!IM#fFaxyT*M1BN=7jT>etO)@?h{bipj9@}J1FE7~fC{w{ zEF-`TEm3j1?{P$sVySX;T^aKQk9hp^lB%F6C+o5sY+jpk1Vc(z3W67eZxOS`O9azn z!14a-s6Vif%>aik?}TfoKqXy;ot<3^a8Ejdccxq40KGUNp&R)e&V!Y1x*f#w0Vq(e z$sYAZl8qa|`xJqM;j%pd9gIBY{}EGx+!xazS#S6Bx69dPD>yt%Y= z$90k+M60|vuw$kOf{Y9AgY(%BnWtI@(-w@MX?Wj%+mxVhtpubznMWHWzq9=u+4J-(Bjb z&lasTg0HJ-fW%Iw-!`~Knt~(3ajR^(yd$FgfBDzz9zGN+HDdo^S@-xpq22LoPdikX zTeSXhw1LtY82BWmhX1E;rLNhLigC?Tsg(%X%57Rj7L4Gu;b*c-Qo^efKK92*ey`6u zTDl)K%|&f+)2%Qz1=QLHA2)JHQypntqj?lb$jRzBnt8?dNPZZ0x81Hs@p>C+08I*uhzdO^($b7t3Gy`b{x0$zMbxq4S?WjOnP<<1WC1?qsS@- z&!$zM?T*PK<3b0jx5;I;B^vfLXE#~-BkD#go%vAHVhku@O|Hyn$-q-F+^G)+8KW$w zzk57>D4;ZVVkmLGvA-WIQ4#TLhBNeu2>f)h%~y2@(q}5Dqs;>#^Y{c$6q&FKI%36HPX_*Gq^>Tn*UtIwf<*j83muv zNpMM{TvTjI@^SE#J)_I_#k5n!Cu5m!ZO_DBJcXTV5hXv!;w{pK^XQ$MJT18yzgH+|=rAb6cfV6V2 zSAZ76=xA-F95if)lMy(#uhRLYcsKG*s#U}FYP-&&?I#V3u7aqxKdYnM+qKiqe;#4@ zW6hj;r{Dkn+?j&>p;7`)rM}qahKfQNJ1Xc7QoHY()J*xJ_I zr6}B}UX<6D4?OF|+n>7~Pp*i?PB5%HoylrI&3*{Zb2zP5t9;QazkL)?Js)g6{b1=% zP72%Vyj)Bnr$)IANZCQY4lA^)xHAg{TxlTcTS9u^g9wkYPeWKYK2;1^oTlTwz@zi zuZQo+j}GG=#aQWt*~OVCh41E1H>i?5br+4qxV6uw0GRgWUGhNrx^RKG#dY6}I`Qog z9*>%5ZP#8`*-qS!()+VGG|*!wM@ugsF^PBK``XSDW-l$6jN3LWf2e+i`9WqYd_MW`QZX@rQK?tBytruWbyp( z1pZvFz(EllNtN3%E)+OBC}#ZJVY+7ppXNNeANwlVz|t3k3A!tNy>ydl+ixaaX?xs3_Y$w(wn!pm5Z4xZeni**!`gd5MU}SOx|mP_ z$vG*dlCzSNNEL!2f=GtKA_)=%2?_|Pq$1~}!~zvTa!#Tk8Hp;AMT8=%2o#d^yo>(# zzWdyL{&VlR_w*Ruqjj`&)k@#D-Z|$pGg&>bttAJ-dSZ;Lv#V5vPzu#_=Bmavrx>Lp zDCL7SWap_)VYevg(C~*U`q>ml?b` zu*G?YnR^E7_H^$Y>xQ3EDE*ucIJC;UM+>3MP0^@ z4y)%7l&20)Cl8?$j_MjDlAa7nP(BV;GM&y*I{bl$ zw&&~A;}2FyEUgenFEhbiY!42MUrEDERvvXxv!$0TGPuQjzA?nI3@iosDlGl&_4hbc zZdtNXKXrRRvVhrC4ci!OepF=pt3gs$VsOhVMlScvd^wt&qFzo<{dw8EjH7X?FJ8mZ zeCQlmqS$3M6OaFOQ$GpoZ)Zr zC1MF*nG+UX<1eQWjW^rhJ=DEM#UdafFNGeA3n5+@rn&63GL1RYoSXfm?y#m;O~%n_ zw+rZReah7Y-zdy2@dc(E-|P>V0Li=1y%u)QqR-j#KZ>UKjI+oDbo{W+^BzAeC)e zYJU?n>lrK2;9|#p6Ip39ijL&^tQ-Gl(F&a)V*Gu!_2z)-sK*n{e=VuG=2WOKV>tfv z4<(jg8*n)Wg?^H-WaD0UG7Af@UA+IB;7@AKQ!)X!Ou%dCPQWVUVAYW8=Jx%iOz{>O0{~vlzi^%|=xF4Mw@-;_LYI2YN$_$^m=a-Z&9nfdad z2UmL}#^4Q~WV_|ZZG&n3JpI0r`3=sL^D?>A#b-w$2clj|XG^VYfkr2swg2P*lYBh- zut+fd+i}vc=)`!%JvwKMT*_g$F zEdAVoDBM(Ety99sCoSK_yd9gy_JY^zjy&mIX{;)BGd(`aMhbn!yK?VorBTG#76!iV zZ!R&)x2S~xC6;sig~*IxAa`T8b;DbiP0}UEb3cZMBJ8@Fx@dkxX`vqFj$KPxLyxE& z*Gzn0Se;{7tWi8wNTyT8mos1Grz9EB#a@+6=y1Du2231h7`*St)P9aRiyAys+&-{+ zfa`9%V?Uy9&osbihIgSMmZ{{)5tdZ;ym=!qzQ}P|1^{k9A1FDJ{TXbn zeD8$_9LL#6H&I(H_DFGQ&JSM|_0i}B%f{yh>>DQgS8tC0HA>WA^tqc6^s;p;OU!9o z?_2r1{e+iT1r6FsGg8FtJ2meySqvD@h@*S>Fem`TcrdzYyfcROBd$|c|WC|7CO;_@u-ko&Hs(0op;eq}S|2Cui z;>@-_7epA`G=iO!p3XcKS9a1ac zfb$x&H<#X-Ww)X~j(_QL>;zO*-?=3w6Du4X&KBo>I^smo{nf3rgc{e$YRiW2 zZ9)q~nW#RD@z&iGe4PHI5pSi2rj8vyir;-*;TnA$tL>86`Bpzu9pi?Ja!p@E_!Huf zuYA4lhc--&8XSxJ1DyhNAl?wp6asZpCTdF3l<&B;_nVNyHgTxfH|ADtfu!>o+S0ZY0rKO*rbKRHO1?I=Y3&7LW~&6>jRQ z!SZA*gG-ILVKRTVh-|<~--g)Ls@u%hWL3*Gwj!N+w+n*~}}n;b_-3m@cal8Ae&&I<0}Ae-%ETQvINUmeQ(-fxa#G5);OR2 zr+hS?2UVFy`2uaOfpKSAIM3qf%D|``Mvhb63@xHq*{p}~nsc^s!l|pC7QG)eqC=o#${rQ zRgay)G-h^$PFs?nVInW(i4j%)i$>pGt$RX)JU<6%Jye;has7hb7pJ{~d_IXUh`U`g z*?|y)T4%F>BxOrrE%Ju}-*$Yg&O-<&ae-Z3m)Dm^81!Cfw*s`tcXOoCM+QlbAS@|l zsuFmd0Y>v?74MPJRRp^f#q8`XkUesjTw!Q04pcaVuEsAW);=9_GAeWT8(%&*d(b;_ z%Ai&k8F}p;22e1=;(cdrk&9=_=7`8R{bsYMs~*?wPVPR6%{Yo-Yvu>8cZIC3+uZt{ z(r|>5IqUgzawaCG{j^b$*+TsuU{JykvJwL3AwR($2uK!7;Qo{*Mo*)T;|^V*dH#n> zYtKb3{VHVm3JiN_-}QGq9=3Y+1TrCd-$D zb$-2Ni)2moo@*T-6E>@%y{58v9>hLw1TQ#55^G$iN2axuqBUe>I(m8m5IHCi5n}Q70+7d*uf%oJe$4sv33AE9PWB={QS=%wj}p3S2e}7bo z`5U6dB0$T5L$BKJX31Qx*XLKV-D%$;4zixN(-~NS3!}wj*qmj%2G}|C;Gr9Ef+PzD zWH|`oeXG3&wi!fq+jqJtZn~Dk4{rcPt4L3t4S*BIS1m;r(d((t3#Q8 z81Id{9z~p`)l+^P`!_vga3BeDd_E(x&TBlfS?F%4lUj*`bFZ`yL`==inGQcI9|TaGcb>}HA5ZJrrbxNm)MaU^J=xL|G+%iwB_`%A!LO^UOZ@hSJc9R&#zw9y$)X#t?kR)I zQ2T&ovZy&3r0Z69BiTgh*}@tx3)r`W(6l4mR8abHvt5bzS6f*m{*_$|Vv?Hj|LY5s zOJ-i0qWt`300tsYTty(X+QGviK|l{EWQIn%3}lFH4^dCx&ieg(CK^(eg2*qOoOV?1 ze;OX1am(D{L{@?ZF#REa6oPeE(>zD*F^$Uj-Jf-uXiw0c`Fe3p&N!3t15X{_@au6m z9kFfJ5OiFp+_4UjW$+e_%Rutk2*z@A%3lRUqkwL)CQe`{3cli20#hNZK`+3nygK8G zuxYbHxSJJzGz1{AYq<7Wk@zD|&TUTS^ixCL&ZTtfXl+=ePC-)g5j@72o;`b(B91%g zT)$G)yoX>$!3g~mfN4z5^|MK)6k}CYRhHv5uE1wh2#fN8YvfBUF+*tg4?xX5mN** z3Q$bkw~p9-fLCmCTU#3;BW&2r?F8trF7Ks=zW{jdQl_%6xZm!5*fgkw7DfOCsDpuM ze&z+X(Hl2Fz+`L=fB4|Oc-ul(_Yv$15dLSzj)=u;#h>Fyv=O3zN2kl^M_}rEJ<=`9 z1{f#@Ng<&m+5rc@)>p4M3$G6jUu2M9?jR2$t?V&-Yf|_aE!xA4582J&CEs587w`Z} zk-5VSoY3S8og_*rVekLRdalRH`^5%s=@eyO`R&ag(Z7D(MfN)P=TdK7WJ)20*M}VC zz}bG83e`9rfw6zR4H`$enp%T{_bw#*0jH;cvzSk{@BF5BM%4@({1I7-@_ubwz zwvZ{kPqU@kR|FX&W)yqhycc>HpFSl{?MDRhWOz5$UWHf1AdhdbK)k1P=xe2HqbHoP31RrJAdj~xZH~{>?ZH0-;34-F;+1dUk)R8UwV2;( zID%aJ)(kK*Ok%sY$jT&}rj^(oR9ASzNBjJx@~j!B2gTRExrLF3Js+qHvHX1MTGhP_ zH|kb#w3;l@ivGlf87e8$;KZEUz7Esvb?=)WO6=q|w}NbrK!jhv{`2O*u1pu32sTAAJ{$~A*&Y;Rx@5?o2>)9We zgkUfuzxre^$U(Dwm6ulxfEGb5RZmP@MZSHN{x*VrA^#&<;g#M%K#7OTQ=*P@(@q?% z&9NU*JZFP4W&5n?QkVKov|8me&xx-Kh4?nf21{2X5=za4_6TofR`MKYZIn^m~8Nb&<@F|<>*UM zZQeYy513X?$=>7DHVD(u{^R#yp{~p`2s4Bc1Ln{o_N$EA++(+~l&|iKbfCN&vUXls z)lcxMeRC`I)%%!xP0!rKPR-4`}oqv z9vcCu2YV3Ujqq_XtyNE$@;d$4R>raI0_efz19lr17#Bk4SrmDBiq;MX-NiO?rdKQY zpo32woS~2o@Me=tJ0kBLLRvDp)3SAo2^> zKEIG#>Ud=X=j`mrcAH6cEog#K>hT_0@!k(gl8@@jf)~d4)sU9u=m)x2!(U&NT~dzK z{%oLksr}}_4P(>2(P$}aV_P4>tC+=FqkoqfKL?hZ24LR8Q4#ycFyR09Pf=oG)UO-0 zDIbo7*UOOm_<&g$3rThcFePejDK?8mYw~#&4y8FsE!`WDPU|26n(141quu-Wc7IpL z4CXwUY~q!!rMwvup>j7hJ3BAkq@S0rMriC6px5$tnyK~&hULXV<`rv;&#iy_yF|fi zjKojO?@a_Dem5j$0`{;d*!SVO5(LN|cE9iHG^Ju>b0he7z$Y>q_sU_P)ik+yzF0@h@iVbH(=ac^x`dyj_oW~*uA`UF zH#)DL8&O82JHd*%h@nFrc-rGy=+v^zK3m>V~a!MmwcJ137ak#3|^JG{4$@61$AdTZ^4aOZ|O-F1o$Yi8@x0+XqHNBvoT zwIUmXLIc&=ndj>oA>dqrbst;{EgP?aynU~(5R4eeVM)=`ee8ZG@Y%%J#mzROv^CMY zeu7;f$R`A!Uy_;tYAZ#whspWg#OEt-2_1{wt^*PkVW7jrT?x7Gr`#Mp$-k56BzskB0b94^qnl&y>SG@0vS*z{!cG^)sl; z*GGjgOFGma2PstbX*8>%Zqbk)_hx%bur+xx1w6*=>~UUqDl!WUH>M~4lt^FrKsNYN z7>%~?Fo_P#UAPfFe}fr?GQWQ!K-)VCqcBou=wUt~UsFgcoPUfpJ|#qAepeOEq8&S{ zXq!+npnSLTXb-+tC7y7KaHeGVX^rBia<9Fz zBs}4Y!ynAZ1+h@>U_yc9t(Vm~-FA!lEx1Qu5^iG>U;KHtVXCWN8w+5B6<+cPf)Yi5x2$~h%yoT5-nQsffw*v9&XBqxLbmePp zxeM_5BpWhXGIb>(|Slfbpa+j3%u9V^sXLb zzRG{vqb-P1pl|s=_HdJ6l+&K`hMktfB!;W`5}ThAYoYi6n_yUAME+xqSgYSh>`6P; zhhzp;^vRP+r#>vz0KSHwMzHYIz+}JxrH|AT7^m5HCXh!7%--O+#zRJ@i=BOm)eEvf zF)Z-h{=&zh{`_P8fVJeKtd1(p;6mpXyv>|66$d@9l0PATP2x(e#7Q$?yg8l>7@G1dN1H*GJRb;$c>J~xTekPTFV=T#|JXm=ij`%yN< z)Ut}QpAl1P|9mW5y;@z0jxIH5L!2(Pi+eXTFv>udl{YJb-H}(M6Z=Uuys2iwV$$fj z&9$FdttJhm<33cyP64E98Y$A)r#i9TBj)I+*mrXL##Aht1>#*F$Rl6Q@}da$Oa1Vo zMSTKZTZ2jbcbdulda)6>mKIr`bLuCi2+Lv&f4nxd7>_d*PGNcztyvd7xw*8*&^!51 z)P>f+GWdZW=oSV?n8%?;^_m`Pa|k)VqWWeuZ`eMt!PDJ!^IpjeI1YYEL+K50wG zbnEvmi=MM#xju4XqKovNKEyrMop8?6BC2W`E2;!vd_^Tq$d#wafp1w4j#!xGL!l~- z#AxZxcGuQHs=JZIGQ!(a8=tkL7-F9+G{0LWbg{m$ZMj;qeBKq)mFy{=OxhAK-{(d0 zpL2h**y2ugDYWB!nVYDI^~L7Amgj3-lVdvVwM;E{pIYeJ`o#LCjg3|(o0rOmVk0?6 z(?G=vWgL9Q)7BFpn-UZm7AE*dMcv0l7q}A$ah#E-*lA5{E(_{tIiQ0L zJ6NO@9oY=HuUz0`SI<|LX;EJT6y$Z`?ncEM8|S~4Tt;=32@fB#pH9w3pJ`E691&xr zIwzJB#e<`rQ1+=$Y=06DHvn&=WW~vmj9_Qg?8V6d`ywhQ7Td~OO=Pj*EhzvDeFi)L z_$a=m8N7s76by_{WXnVfajmXFkL`~{m8oVhp@NSyH1^I`K8#SxD|gnTQw-y7@$+MP zdsC+mLvs8;(}GcRaTY|r4vJvi@#++pJJqdI3yQ&x9c&ei^Q&K}xf-Ly%3Z>TS9FP% zH<)ySkNbXuUEzj2JH$vUs;UJ zaYZvqlPk1~0(La(%R6{by@nkI?EP5{vF;Cwvq!KtKUSTO!lTQwJ%(aRvUbJcUfa*KdDr0W%W(RranHBr{rKp6bmf;e{P(hOOI&dc_C0$)4{$ z(`HwT!T503IVIolvU#l1RLf!$jam2?Z1~aOpX)KFMe+QaxPyuViD@&;_kPb;p*$1T zI?02b$2y95xsDd=XRcI_{it?MHWnGJE!?QDG^toqE}rQu(iUl6be;dSreiCLArG_t zPk?bPT@~@>2ksC}YV)WyvtFxq57FX`Xy@vJ#j|Wd<<&QJ#MB%ln27{oTojK`R4vP% zH;1Hn&%cnkbk8OVqQPRdM$w*DeRQLD?a3vHsGlO=kC`&C zMu|ALAM@e7Wk-~5B50+|4;Ku)gqNHbUQFrj%*TZ=HBQ6ebMV4cq%62-t=MAd`ZU-VxnJq*Ov?~*0KiqcDO%DYl#X7=Gi%cqju9G zmdt0Bb&ZRbN6z=#^|qvl{PXzLRg%unM5o2Q6+0T*aad9{ed7@4u@fuRt>#hUMEZ$K zA7}7_my5NUzVtibE1ctuTrlVJ^eSV*^Jfkxj(MpZ(gYIfzsiRSUvf)3W=8jWISvGw zHbgl{epCz3Q9Nm2j1FkY^5U4`l@}gGBCUSyWq+ICHTtteZmzgLF2T(N9W14=Ssmi% zx1;cbQa*W^lz==^00!KUe`1&SDRM6|3u_8}i8pp^eI4!SwL+9o>Y=hc5^Uf1g1_0x zW3J&B#etDE@%sPZ6vux0$~wtWb(F9;JtWzDIK@6}NA8!Yk_qM%o75?H(MeQ&Oju>H zK6N#Bq~w}nTPp>FenvlI1y0+i*v=0}LU*OWNY)t<+v_~?3wb=5S#sfk)*j*(nH zjr?b49G5;7B84>Iq8})~bxkW>o(XKr>l3$NsEEAhQY$QryF-r-1FzNv@Q_dcL2RzF z5TcQ=>p!*Mhy+uyV!sWczM00~U&H4|D}^9D@^TRer&JpNyiW~_Wk>WgTZHpa-9q2= zCJMxQGa}{1o*b+R@zV{saI5b^>P*-A_4UzDi=lQCndstoC92t#77*~%z~xB!=kC=| zi6JAG|0czpj#hj;I%ESlauXk z4>z@?-pUBwS|eIPJxV&s-rjy69e{xE6ZEtXkc~sA0wHo?{kCj4VHRBjXE2;32a3gh zV-&E!U_hll;G1mj$%X{}-J$6SX#kpUzlcWL>h5P?%GyNUtWk~*9-D?<3C-n(=fM$J z5X2Q*E{w$VzxD<0+O*CP#Rg&hOU33z#_8qK`H%6}gO?kk8EI0zSN;oYfb30k5alZH z1ZJRb;w^w06`cM;Ac6w%$0NB7vNuRT9k^;=D85^d|^WFQDw{!f?^6Iy|)3cp%bB_o1eY$IhED^oowFrI?}KeC&O} zWHTgP?>b8_cc`QiW1-U!HLJ(+S^hDfxUW1W#lHU?T(Dv?jKqP=syFjr+(25p2od>E zz_PuXUt-&r5eZEzQzwhVu2dpCKcs<7;?AUEn&0*U*+UqEO(VzyfPzND?I{_1mzFLT zyRR;oV7G$s*tE^o#`wX9T1~0?h>lxMBx){9aMKOH1dgtU5S_i-J-uxvTIL8Dg|6m|^dzJ*CnE2uNT*juTyfD{Z! zU?qT{Bw)EA$(T;sLNaa0%z9s(sGWP#yrST_{00P!U;r@Wh#TsIJm)mInp1 zh`}2>v8Ng?^U{u^POi!PZoFZ^UVh;fH6ru$N%NNCs;bY%X0F$Uxn(?7ql4HVB7i}a zN*MACdh zGI?v0q1J9(Zaa+}c>oByE|<1{g-lN?r0FOME?tA-4tSQ|$LXdZeJd7F7qtrAT=Yke@38PtFZQ1ES!sXj=kdVnbqCPb{LERJO zYq%h-ngfr6IP&@-Tuh2^tb%r+bWYcCr0mGwHI=^s5T#=ALm0Ds+n+leMJ}Z%T{}Vd zEMUW=DtBN==cAlHXS-iSUi;93YiC(VB;l>q=ZAx%*OIa6eyX<#r;& zHDrx|;TqDDg5-Rl*pG$T3BdpFkmbIa)PB-mky*qfaB6o>1}5%@x#45%7bN;ULX1)9 zGq2!*3Hj1k;vU2{=jZwVRFy;B8zr;wo5x2e%{FU6F>smi7}iWY-J=Y9B5efWE9m|6 zB`1Yb7iUZ_&w%r0fo#;%J*C|)vk<)kdYcS%wQmkd>xM|440!fFX&J+sJS1$zd;smFnU@du+8OFbKPY zKEbX3YHpdCcTP&@{PF!lL|uaChlH$lb>G)ge6BDze`bCdg);07(pql(-EdL380&{> z{7dK=p0CQx_c~tao2Hg)^H{HXCWvkrrc-NQKaJ^l!hJXHP42zN?MaPpnzA7=P4MyG zTvsRxlVh16^^H*s@LKl4-k5`L|6Aq8De0VdeRhkXTln(qgBZ!j&F%bdXY(_L#ov3; z4>ij%m4gj1)bbr|BC_x1=OVQDH#UnVy0M1g9VT1(+w~iZ^V|8m3W)??zt$QbY5A@9 z*(vWR`dr^v+r5wEAFJ1K_aT{lIQdWCBj%l0Jk(LpGhUD*+9fDuXuX-03CVVQeW`k9 zH;Uu@i<~YwhIs0)=sE56I+dQ?P}T9dD-~1BjN_e$eQ+1wkl*n*;0Y z{>wS4D==@3!JCWkHcgwXp+(h6h2D%LNj1EFpig1I7=;S#roUHL9ru~cYDe^;t_MMc zhTiPkcnP(O6#rRNViW9JAdj;4b$~I~ zGhM86S~8?2Dwny5cL~=JZc8N95N*FH;u*>R`8X5_r2ZdCr$2w@LEXV!EHB}~eO?Pv zO78g68>9R2pr9*xxLUQt*f&`Uz#p{d9%fsc6!@vFCvGo4!OI(6bDrcPo2; zjcfI>uoXh*UQGC?9;%@(c-6_CnAqIVdo4v+E9qSkfLlqQ1VX zDufP^v!!L?$y6%2Qg-W^mK}fnvB;_0J%R!6WarJQPMNu=BZDYO!4=#OaKCaHuO!yy z1S`ql%PwMW&a(8%y);rXInSS9UOVd7G$uF5Dao~Isc?ZvJHW>7y{8hDJ=9Ap<`}IC zHisiY*y_;0FsdK?5k>YartrfiCL%F(P4?>a=+C!W>Xx;n+_8e|J}P_NAwpoxMk4TnEx@|rgbDh zheh%&uD?nWck_mBRJNodqg;|jNk_lL$^UrWqSMsj>gw#NWvz(hxMf_<&0j~iQks{a zY}4Ow!}apm+4PqD#$e-f?mbXik|0m|1=Y2KEKBw%$;9K0zn0xlb?+1Br6Nq`T+gm@ zc4VCH#F&$LJj!;|unY3Y58(+h7gv7~6Yr*Ai}Vt;mW?0NlTuXalrx0*O46+NDG{?= z@EivnpRx`Dl!vuS)7?v6TG;TqnnX?MgpW#ZD!Y9Y-YNeeJOyjB`=TyCg9gk6#Dc>Q zXw~Tizol7%b4T8L){&h289Mh|HLY+jQ^rKp%x;sR_${$yi~H5UsmHX3=JcrAY>c-1 zJstbwy2*I8%!%9cQL-#i(|z(J$t>STceGXMLoN7YL-ZWNU@*!f6v<-FeN@c~6?SE^ zX%*Jjb6zmz_Wo$y^stA5c_^#wh2>y0&uvMNoT z?Gr!G>~dW^I6U|L?hW3dm*A{GZ{OUz0O6kdLH=0Ep%@h*BX`pE!!a7gnAlS~A=6!; z6QIAJWtC#JF0tbc4kz#ImRWu-_0C;Lti=+A3cFYh2ZmoepJ?H(fMr*`sUvIu*Ia)~ zYx#tIP$=oAuI#Q0G=1H%hXlIjpZg=Y*tT{8M;V#)jWBsEQ88!7PX2&7F#tfkvL^h){#Ko;NC9_(YkA?}${| zy>dJ7LW+2w)3XKf19qc1r*5Q8O{$CC5vG*-K@i2=OwoVdNLqkZT)6Qt%usgV!Xxv$ z4;L&TW~b9J#4iXijr3-|M5C3jYpvhJY>vtF5Jo-6EDR2VQtn0 z`aEQjy5P<&7FGihh6gYM933j;d2Z?jXc^(UkEiPr z`Hp)%`4NwANUfmNWOSyim2FY279T9&dp<1jm6`NocA05md6~9qO)Vu${BlY1JH_z) z$CqL;=GMWN$Es&(9bg4HuZ2~iS{nR0@Qf40JWHBy09?A}E^w4CR*>*$82r|O-;G%- z@!Ph@{ecA1)=B9Fe43<9Ik!)W(~ODI*pJU;Lb^Ml zqf33YO&dPrYXbR-ejtJ$j3zPzEB%hhw(HpBlHZ_3p38sdK7w%?Dl4;rZw_-9?UW&U zriv3M6EtSP?Sny@xc%T6GylB} zS(qgq>>B`74-iOL_ENNGL#~My>1x?n^?cA7sL)B#;By`R$3XFQ1ER}xL9JDzev*%} zyGq1*bnL}?v*2VcPDT*=)O7Id6>(Mbt_}BHxi;gwQ^!w2cSX)405k4qn>y-ECw3BKB$ap{uliG`@0&&9xe zW1}>=3zqLA5xPdR2CkeVE4w7u`fDD?ST{IfC5$Cvsd8XK4P0I~pOL+pFNVReQ40Fm z@9>tnOZ26S?x+7-4TDI7#eOfx*4wxbohB{aAkGoKL3u-&$qUFG>TN$#(0=Z3KbJ5I z?KpAqn^h(s-gJwNyFKle=-Q3SuSqnP&bqaH)?={`F~AIWMpJ=kZ}%aX}Gu@E^i6H-QUel(5Sw1ZM;$l#ycUn zmf#=(8Cbooy$Xlj?Y_WR$ppMFH*^Llb-uA;vvVq&mP?_q_(m(%ws?!j#<0!vx>9v^ z*vwW?R9SYqT|aUy=RO?pqaKkAK8^yz7fVnW>C`|mOOCHfaI|eKkVb)rgBX$a0V2@- zUV{=C&G zuiR~wB^We+49Wl=aTUu7yclyS(IH^L)0*-z=Dhgp9cYHe0$-06N|c+)#3<=}KT zx`)KwP|{TT+POL>we4=wumL*v1nFl-@c(-rTDD!;7ND3^WM?AIA&Sdd zc8QreSi~n~&wV~6M~!VXBNb-)J9vcgutn#?PY*Zs*L- zv#Ok7&>ch!eNg&h)fsnozegFsXfseSu`zKAxUKt+T5zr-hTE2-Cm%e7d`Y#7KQ!X> zD(^V%f>W^>{L?|;)TaR+iG}NkO)^uJ*PksS(lk2_Qh}7@4TB1TRQRhs7&4iY$J8! zMNHG(Ev0DP$2Vg8*ih3JpC9%+G>K>WHwXH=9tkdM*Vm7N=MYAPG!{_BBLQC^qjnHmJ~GKiYj%=8?b~uf@}%1 zpwNG#tU zDuxm4Tm!C;$J?(MggDEDX-~7%_PNTY{9jL$!#oWOtlAea>2)h7U+1QGEAQ5LE;!#*#o9>MIYp+q9Gv^jacSk zeYn31MOque-Md?BrEWy+2XHmhY~I9cZ~%j@WgknHB-P9PNL6V89iWl8Ymj9y@lnMy1S&$pj4k$z<sEQ zsN9w&{hGYnEwWEpZddt3hb(ZgoinR81r#5Gf8K?Xm>)MD(TCnlNmR*K5lfxaYeN%| zR`*D1{Pu{%`@W3cQ<96~woE%+R6(Rs!{JuPG>9}q5HrUdluD_5q>7Hk!39?+d~?3143Duq)WX}aRWW{!NmTM zzQpNz7>e9Wff+{_``@NX6jt;AD+c3eh&muFIoZ{B46e}BO#s7ckP~tVnBDC>iv)qf zf^%aV&d({L?ppR=A^b}O^4bVyc==RsH>?UB*p;n8fx2g%wuU2fyReuX+@zZbE_#WJu?ooueb#+&rCF z3sp`Bvh2RcA~i;c9J&hI{%N3L()&HIPU4a}J6|gC2d4x9NB(-G*j2m5X~kyM#FY)t zU2%2`lfAq+;#Y8U>DRqqsPdcP^PbMrnR``PCH-6VYp+Y(Db5yrs=h6AUf#*|lRb>` z>BzDwD(>sJLD+<1BMIuD&qM%J_5lY-vj3(eDd=PSBm_;;pf&FPmq$lkK#V}}afnb1 z7Z%b%hR8y&?UY_zTyz1%_W`mDuQ|5!GBPu;Fe%pE`w<1p#|(n>{KrIp=;q&;QiPiY z<>JNSknw14;DO_z1|@5PeMeXL>P=9wXJ3l-l#O%ztyugWLb7E8WcpolLqY*-Hwnvl zyu-RhwrLD~GJdKwz*|w?u!0%*vu=zxo+FLd_CvL*XKLb)lMiJW>b^J?7Z&t#=(d9c z+(!=%B3gn3650f4*nP0|mjIwm5&Dp>6NzczY%#Mm@7*81Y-AQNMG#?dxqXEkWh zOTT|k?+4Rbi^|8bSjV|NChpA}Q9FJ6 z)V-XWC3!L<@+%0L4h#x#ZEoKLlp?~~LvnIo0F>Ph-$=m289ZA8%Z(|%R0W;aAZAx$ zH-PHfakzcEe?WIP@-}S#n1ziVf(@ePyBox2W*|!XOX&ybAkVrl&t1L^DVg?fHw}{~ z#dFCadh+d{*oad+dzB*%&y0NW{8veA_OtS%Hfep4qQkcnvn_Pqq#WU-=en9Azk-x> zL2s1`TKS%{x9H+|M|3hJS8B^QNHNFu-uHc0F|Rzu8r$ja?Jwu^yH!`ZdZs?Too%j@ z^qP@JGQsrYgLrJ&;H2l%%vcS>+T$$x{V(J0UM{O*>yr)cR?BTs%6(A4yIzIo>X;X$c^ ztM(X-8WwzCm4z4GT+W<3vkq!n*;f z)RTmA$ijnP5x@!*aUZj7&|a}~$+w+(QY*{KEsB+Pq$RBl+?jcxB>SE~D|_tGB#*F@sP#8=(mR zZSq5ObT+dALQCg22JdULX)(+ie#W}W>nI72I;FS{Hm~1Ln2_#mf9^nY(Yzb81t&-2 zoMRvz9oHKu>Is*f63}gE2tLKfcDXjO^M`cPuY4+w^fiTi`J#?J=je8a3=Bv~U0lOc zgUY$1BK>ZY%u?$NZ1heOcm7&d!yD^7Vkw`Yd-=vimtKXc&Pq+|gmN?*?fqrLC{kD{ z+IS)T3i>G8eyo!`5!FJl>E+WCZMvY1>7OUbzM3&nOWJ#U9U+1}&=mVJ!_;5<@r33P z?_M_-Df`O|Ev<~L8$42lSUcm}7jhr%+<{olBt*g43~^+co!; zU;*lRvuGfF(gy3qoL0oejny=N%3`aoUeoz;tml;YtDCVFfx0FzYn(MRixf{};_#tj zNPT4SBsQpzi*BJ!=*AV4BZFM>lqIiV-w%?1mRrB4$;K!lvxMk6`Mpvne9RNo9?|UZ zmQ}2`PtFx$zU76cG@1i9+(K0CGC8s7-BblT#AivA%^4KXE@2z z$wwyrwRO8i%9`AsLP`wc1RRSGaB9jvY*3l**Uq%y%kMLpSCc|9djzgln@SEz4ra^W ziga|LnmgUJ*y2{}4X?q~HIolnkNKkqVODtf{hr+sERH*%L%DZmObrlAIeF*3b@Gj9 zc`v)(rX#Pl=29&f7L;q;a`eMQd!tIq)!iP2-L zUw7*dA4w8aQ@wRZoha9wA#|AyLt23gb$&*#3Xn?|(oULq%+DT}ANbk-NVG3Nv^e~X zD_E27@CN;^Gi!3M&3F;ncZkkLpR?dxed$pXQcT}#e;CCLWn_r_31re-@g0Scpxshy^ot4oshhA0b8_$b@$q> zJKT%5rZ#_lBmOv5PJ&!0)?d49_5{Vw_(659)>SqQ+f^0^g{7%8k1vx)9R^bWk#uGE zr9oQFC)&}bFNP1%Vd96mYvs+`-RoZS2^2>^#h3A{@buwQjBNRu+G)?98R3pu+%k^{g^a}v3fP_Et0|4~WD z{kxM|!X?slhv24Lu!U>Grp)W%7vg54E5EVuGT|zev*y|4CcEkJU92qH%};Yj+@&}O z0yx%;XUl!TH>~S3F(TAoSfn#iB_k!2XEGI*gxlI)jxnTSQKLBb1M}n`F~0G&Zily( zRy(=Tc%$zxNya#Qhrp5tdrTkbBW2wp{nx#;fT?q_Gt2Y&@I|q*@KSuRTW?I?iej0n zZU0LC*ogDnG`o6?^&=*tFD~E>h-`t}mX1@yA5O)=wHtdq@nc&`)CqBh(vYLEwO_x- z7B3~+UXb>ggGL7lqcf<)v;(PH#p=}=e!ade!G3#@_!h^5belCFW}m^d$g#MghiRtaa5;?F9akf^6PBhj@#{A&Q;L^7t`2*j zqDo(?tU*>!&kHbuNGpy(X2jCYU8nuU{jCcvV6dd`T)VF%W8kDevS5|$k zX#;yLHK9spwD`-v``<%#JwNl>y?<}p_9EA`wTagnf3Z+2Ln}|uVoO;|Gae!f#iM2izwPPd!;M?IE-y6M}Cj@}nd&xHKGPAXg9 z{Vn6X&qk;9HIov9jbi7lH9d-3r9u=^nR;IP4f#3-7pL z(W!6xEV(V^TnVYmt1FCM*5OU*8{!FhnPS z3EFB8W;QRAJ0|kY=FFp_x+dCCosGmU7?bn!si;=*P|36u9G@z9Bpo*{+ugqkZJh4G z43eNdA2vQ`OCqgHEBVc0ES`ojZ}fcL!@Bh z1ill{4@s=-3=l6_p>J3~v|RgEM#xO2x7?sj6l|-+r$rzfF{&GiHdP~{A{c(u)a$_(rMd^V;5Hha=s#_ein?!cGT+rAog$;4xUUOD2GmziM+HgvG^ zJ*%e8ix_H^LP9J3AJXbhA@Aqr$!9f!c)$Sq$;`0Pf5A zjxLsiS85XEhG)H;A@`l=E!dL{@S4k39)hn0FHT-CY)7U ze&IK%DVAL0I~=lhm#taJGH%(?Xn&LPMgS*@o-deCa@7xB1==M0%5x&9M=CZvZgrLa zLpZZP_Nn}3hef|-IBk#*ku5GbGK_1Jq1?-T0L5t|MzwV?Y*<8a` zL!ZCB<QAf8=*uwRa}v-(W`h^13b6{AR9S?H(lw!BBq zY3Kb3g;Dg27<}%y{BhH3ihP1`eYnAzqDbC4n?`ca32RSvJ9;aCliG*@rQlJL_4l?E zQ(Mmgm%?C^=oGn`RM=UYQ<2MK{x-W_gaal^yIk{ME+-bR(WO@MNR}jTWS*9q({vD_ z#a(NS(FNE<5FvL#%K9!(Mn2zS+nFR$uEqU(i$CVCpdMfcxr~`h?p!i?8hyE1%(0JgTlgxYF$$l;|MA551KxHU( zHPAxLp|>t4y-ZSk{=L-K z-OSD#voq;vBT?q%7b_WD2NiphbasI{hr^vPmfZY3_x5Q=UbelGo2?O9yKgowjV+6j zN(ar5r+CE`bU&|PA6P3VzDVXsdw+apJP>?B&KZ@OU)Vu2R1_ZHF4ypsl1c(LIKYHZ zB#a_TMv-Xm&drvbb2PJuOv?Q+JXs9yBnskDs<2w$wenf?^0v5m4nVQxKw>N%&B8|=Pi4UNvhDJaeYLBy^<0mASuC`VdkB6w@;?-L_F(UjRN1WM_5w-aE8lietj(wl zO%jb)l_IOR1C~9Sw1g!=-^7`IL^Dyt&Zc{FnA}1BpnxihzGNyXqsJXnaPxg&VZv^q z{!7Dkg)`g0wDAMwJpfinz*yiL5HOI`+@u@gApotxGkNtyl8{?M2;Y#7sIWNzmxJ>_ zMVFG7zX+Kt4TnjDic;3)Mg&-=y>HCouOU&b)Sa9ps&KF$Eh{WKp9<1zXhQeHTJ2pc z#KZc%=YFOgLgH{-*mgcWL-tMJR0)ORb=U#mm*?g1b%9Ej6tRgD0xtukwPETA0b%62 z&a$P0I2^%+gG0b3B!0q#1?#0792UxH1a}1F$Pz4jT2kagkuCs4Y_24>eKp?W*a>kR zt3GIty+f)b{+of;=_j%1?idC>`?4+YgvxD1zz+oJJdU&R0H}uTfcDcVfd4dpR?qx3 zzUEGjP=Ai0l)&bs8%9ebUb-P1bDbt0$AHE-?TJQ$ae8yWkr+Ew-|#MR)w$*!TmQPU zkRq`{2a&Yx((I|0d$a2mlTNqi?~J=IkKTE%v_WOLJ%`O-!t^D!xE~0wVdB}$JLSSR zg-2XORfItX{R@#tLYlkmmpGDjyvQ8u3EdLx`qkI}?0WophcH|~GpjPc%KAj>!3kng zBWo7~!1?Voa>+mpI@7PI-vHv*Q+S9&h#g=ji~vmqb}V<(+`vc6 z7Ti&c0h1v#8>Whfw>#m&>3x|l5WbxfQ0=;gqoDjHg>+o~SQ%!$=FdTmbdxri3L@s< z`o|j|@DM1?%yW+eYMZiIGJk5p+d1#7!g@as8p*3>Z_Mayax}<;`+%d)A$Upou*0Q7 zk@yd1d?uf{a7Fqrg@c-%E6ORZ1L8Y)-#NB0)R#D@iT1-=vaj2W`W|N=#*4V%&2Kw3 zly`9~tA2H|0U&GZtU9f_X~B*o(WeP$-}$~79P$#3@J@TGDeWPSGKehK9h%9>ZNQNt za;pq-*(gKFo3yTId9QyZ=8I*7CxGzu9mrYtPZQuR;c$qJw zV&Ml+F<&5iA^CI!S{DCm`r@MTmw6+Cjh?ppx(V86i#^DFRk%OfsNt~kdFOfc%e7-a zi~ns#K5p(1++p+$frOv8;huYuG3_1CxOjR7~2)3gZxlxA!-SxrOdamWo+7_xo4 zU|OVV@@QL!WMhna@*l&H^FHiC(*xC^dgqfCIt7V8q!a5w9@}3p}IbrG(Ndi1-W8&HDQ|EqG5R;YsCk4u>4EF+IpMi_@yu_yv`mDoi>EaNmK1Pe0B^ zsvZbKcwf4TY^EX`IQa0{6vtP{swxrgip zKol(AnMrRxQ~5@zW^)u|jBh2A7&B}#`v+Q;g8C*Vi11E2D*$GIR|~L%btv%}0vdyW zT)Kf@LOuQqH(8(!Ay;ke<<~#6{|7MC|IQHv8W5(SiQpT!EL;K~j3E!gMW8()94AD* z0ZG)=LXxK#3@^y?hb!nM9rj`EAb+Y1%BW{@*DWA8DX6L>2MT{)cwtFvKv_ma4uhHV z@;H?d+^Bp9D^Js#TJ0{EFH`=jabhqNG3XgBM!Z0gegw}W!gQ!>K?S+dG2#DW{ei44 zc(pL{z7Gxgz+3Q6$ULrx>rGy6Xt!;3UDx#nq~R7IS_G^L5fVA4wGp|(**sS$L_QIB9S>=K{*MbEN(EDVl}&} zO1owRw}d`_+<1~HlSVV)6yDp{b#n(W6@Q$^&7RUdpxLQ3WEjQ|7NhNd20a0=rXd#? z+IZwp|jp#$>Q=P5AbU|b_x>C;vpbD3Q zat})Oo=~E=w=_mTZXEX0OLN|vqPCI3KxPK}6?JwIdR(BB;-`}b0Kg1wZYlg{ZvR5u zOiJjZB?kf=Vh<~sQ)|Lb3NEID7I-**W>uH|pAd4AFplJG>Wnd_TbtMD&pDI4V6?E5 z%a0qZV?hN;3*-^FbQFG&ctB|~vSf%OxyGhAy7u9>F2ez3YxS!(po-+ohyS*k6JQW- ze{W%#@Np%3WoKpJPl0?a2r$IQUQW7IkCyh!!f@mU1lhFQ{9N7w0ryRc)|tF~QE@Y3 z*x*IITN^cUs;Z9JD1EpG`t{8Vq>RkzIR%r?&pPZRKsx!LE%wQ^?!+c^Pz&uFKT)Qd zCezEp(g~MwFLF0qw|@5d7EJi51eL9f3YT_lMt;V%gI4m=>x82}I|t*%+oLjO`VY{n z_0sNI3h!Wg_nZO?1?G_wYxI(zG-rUbv0 zL5|vsjt75UxBbTWe1^U8^TJ4>ci|QRw?zbMeezF^gYY7yQ(Uti8Lnsxwwp;Tl^V8W z!voet^&fA3ePpro3)A_VLTz$%ZFhv3C5vF>(bgf8cg>?6r^|1PPZRaMOf5Qk3k2di z+wQx|Ws#nItQSHhv|@S`>JXi6ROe4&LayZMybsFr_UGhhis};GrLKCLFPM?>%9W>@O z8d4XjP3wx%>-{<0*$mUV4>&E8DmmZm1Z+$SFzn_RWhT8wABeH;>#YzlYZ6ZAgeX}u%e_2JtU>r7qYbsS-&gVMcWOvdry zxAG6mVCZ;$FO|6>tA-YE04xV;9yTuBy z3!s7&p^688S%gcbNt4BVvDp=Qu3L3;hC-WoHd1*>ZXlNd3w9F>mnB=8so5@|R5-E| zyU9Sg)d(B^kdL3^F|@K~s|_hjI`i+%OFlkMQM~sxVbp27xYt^a?}x+dn(?f`LU0JOvS(Fq`eo|O9+65mZjRUGt{Rckv}YYHXatLATP?V8d1 z*BMoj#S`h%f(^3lp$q9*!?;v*tYe(!g}F+x2b5}mTkUjTvdAW(nV%Lg48&>BF;W(P zy0&b$Dq~Mib6foIS3R`&kwLfZyFq;q8hRQ3T5x;HbJ{c;T=~GMABc2BcZnacBZ`=N zZ_iC3*5e4Os_a*)k)(e}QvIa%yFroQge-ul;*UC(PADHb?1>bh>Eld`9x14feKk@s zeSD3}FTTw(y`XjT-J%6$Ny^+E|4i||#CS$t`FB`QAMqkqT;Q$s1AM~jpdr}~+Vzlz zWV`WW@Q3_XQoYULfBgi$?EoTJ^%kzR;p&Dy#K6H=4K3vdQ=Pz07xJ71_Bjw4Y4my|Di`*(#tC zFVf5aH0u;tM?O|tyfY4K8^j>2hu|tGml~NkyDg~;J>6(49)?_xw#sUcThad*mW#IG z9J#O#`~FD^o{xSq;;f6ZE-fXdw-q&2KYnn%X}kR4EM`XYg?dn1Zs&u1@lE_Yjv1P_ zo{;Eq>_3$_phTo2qJXPSPf!0fW&@xxbC9hag0$w=R~07N4}NuZSpQ*%XP&3_tEzpc zZ>Z#c(oSQfDaUP94=y^(P5pW<7nYSW@=RmFu+>F0W5QXuKM|co)c?ZeHn{!>lq9t~ znL2aJ=*0=k3%9piu%!?v!?70F{Wq@TlWy}}2|)=*%TM=k`hWb41Mf7x90lGYX#d)- zc4+OWmpFVEE)5{ZKOMC(eMkk$ocE zehf=pLS4jHrFhc&V*aH_&8b+egCH~rc0@lm+Bln_)%8CVsoYOHW9xPV#~nx!cXseg z6-&>^xTmU03ewR$NccDg-B08bZ(nqNJ@d|`YHu5`}fIV_~byPuOcFN zHk68t5buBBdQSgnY?KL$plxPftK5791l%cL2R!SxLuM0Df85qtLw!!9SF@K z**H z{Q0DblzM4AL^2BEnki=_$%S>FEVVO^RDCZa^fX-D;o#ToHyMg3zwKz}a(4^p;_vlc z-KGlmRZQ=FbtHB-B}Yv?VdOMlW_+=YDh+#M3)=-p{PWV1Pv*Z{=te5Ue^YzZI`Vm}7~WCm+RL1D(_f>L*5dNP{bdj1T)J~}2wf63-3R7>dQBz0 z<72KB{B+aI@U0?8@9iN1GG7)Sc|@UKq?p<3>44+k;Yk(E%fT;4(^W2IeZ11f22Heq z%>ti){^qUVHSgDp?0Q&Uoxma?#IB>tq`MWXNV$|kk1OL{`K@r^*eXL2Tv|BEX`#<) z67}lgfNw@uf<>+>syAv&I(e9gT~d5AT;LX{j*g z9ULF7$bf0k5)LaQ@t}xrN!PV=W!#z7?|QGL^v}FEf%D5wl+2L+w=wnK5cLr)ahDwG zB@sBy@|>NwoR+EJ%Y0H$p^Foqv))gWs1a&T8*L}FqPsPTvan)}jmhkOwhmc5ISo2S z*macwwf%;S%oj&tgAp02e^_JudEv+O3xeROIW$IPKdy-*E1R-ZdTGSQD2)~s2bpIn zlf)@v=>b{^P=}cHOt~f3Z%cZy>-E+*t5ijV4>ANVE{jn)u8p%O^!qg>or;{)4V3pb z&%c*=DQW(_-b0<2%SCb)GkNBxBZWmr6wuz0rrXnHRUu^5`z)Y?_F zLLB1ev!0rEt%1dwqV2q+%VVX6y!mbF&f9D`HJW3&i|kcTn?(u8Pp6bUE7XgiGJ2u? zENph_ey2gOkD6gss>Fb0OLw9sH*wTg%j)|##`qtm-rf;TaAUE5+&nL^X7b&sbVwl& zhjrXX_58m!(JAs^a&*Z8!*&vc#h3f_Q4OLqo(2C61k zBdX>0tyY&&mq{WqoObfc}Z=c6i7 zPgj9&mA_Dw5^+=pcyP(Jzd2h=z-NBXM$@DGTHW;uc5iHrG_Jg?x!IM^#`)wxo4+aFvbgJVj66OxP?Z0H^Jj^1AXs#&N@V!uC?l1sK+l4;e^i3@ zwi7!yjDDX*>eFXf%Hl)F-AYZPuPcdWeFaUok7)m&HXZ zEtpk!&=Q8t)pklFt|1n(t3!<1AI^D2vvws;N6LG2HgDjH!76JR+Y@{ar9aE$kG zzxQan9v(wy;hJ0rn#KonKXC6@VknFp=CXK?mc9$+1X%P9+syxTlyKK3lD|dejSX?I z@i|rbQANmg{0ibHgVJU?(_8Kl&(K3zPxw4(P~zI4+<0z*R2X7=Vp8|+Sf-C%Ye`ndc?+GE+@T*=lBW;gCIX&~5P{D7$)#@eXok2)$e>|K_(w{6l27j-wR64ZA&Oa*N}mk*lC;e? zrT{l+ZYhM&zHVlzd*61TzLJb|mfGdEw~5Y=ue5Y$A~hFdcEstEen!3!qu*9Mw5oRw zV2OqiPC&*#U)=nFWbj$<(&@N$F&RV9YEYsbHe0^IePV3;_WkW(@gdLpn$5I}za05> zs%#kz+(R6<>G~Jqs5etaXHwne+Mj*89~X64BCvfF?g-My1}J3!YQ`5N7$hM8U}* z@jX$*LfuBTUy?rZpqlr$j;#G&35=Xv<#-0}PjXbf5kBljlEbFk<~B5A-o^KRuQ--L zpBjRdl6*%bU1BrNWi`Zw7*SYT8+FOc%AT*@`oxL!)d5%N@2%gIP?vrtN$}(R7W>R( z#551Iks&7Q3K8sI0hr-6pWs0Y`uU7Cao(q$-$IqdePwB#&VcRvbwu@!5J4ez#hoGOl zI`RjYAky;k@(Y`od*stU_b83*Pg5tdGku^V1$s!oda> z0IaC5ukVM*FKLQ*My3=8b@1dcp`LjFBVQBJbd0xq2yl&#Io04BYwSzmj|4f+pZqu z1reJ2bkQJM^3U;+B%++Z*8Jd#k#nx6Xj{+ZZMHRLnv>lOptJdV*8kn<08=P9X#_!v ztrD0&IR^+W2km z@3@w1nKANw;=$;yX7Sr|gskOm6O~S-kOsX^R{}U`$e41JX9J-dA>BZ{EV_%BTEn?v zZPxy$x=LIiLWllu4B55v4DKy7N&fyC?{C%&X2vC80fzWen6bL7G1|}f$9&Ij`Z!r6 zxZoaTUFCe+nebC_waG?i#R`U_bt{%k!CwbImw9vU@b){so5$P7FMPrc%3+e1A z=n@y{0iaq4r$F;oXhY)%#^(WfrPk2v5FQ@xgA)%6E8%kA7jK@5@tmbSCe?9`%xtk=Wk;}6Iq_x4bz8Bl#{51; z`kW9P612_9MO5>G;==R`5<{}Lo@l(tC83cIF024=w zhLExlvw@x|e;N@oO+CkJct0YI1HU3=W>O_lV!<(6$%V3e&2&({R-j$tS5Y`IQYX$} z=ymCS`1pAv*Y58X<84tBG0Ac`u>x0^a1oPfJE&dEfCWUrnmhC`)I%?f$aZ4_%-4?q z!v@t{(L7hcQTUmbotz-0)8{Lc?5T+3#zHUiUX`w<<~um}#Kgo?(A)S|Ud{by&!0EJ zUPO1763QqA%RqLoYRgb$#4%LJiT;`0MDVf@g@l2_9--NKyUj}&Pp zT-F@pHV18XmWNA!hA8;ihyd)!4xGIaO}xsiNh!r!QNC~NC^p~VQc?a&b}P>)V-W10 zG~Zc|@IkxB6~u1hzxt!wEoG!lzdlb}3$1uq$WtII4RFlwgNPnk_Moaf3T>QhS?L!1 zh3t^-FoZHmiTO-ZP*b5ruPs#S$-INyb}J?u;QhGrXy%OYL8R2o=ahwz-k1>1A5lOc z(=(c;#R8wL4N&YON&33?Hzg6nDXU@oADGDgf(h+3bxqBRojy9zS6oonW_5J;#&Wl) zO11|YCdXC^oSe)&vX~-A4~Lutj_`2VYpqMhHA+2T2KX=VCk4Y%Nc2D@oCu(N@A{lL z%NI~c6Bp78lLPKVh)Y<o?%@hxAg)d5=OvcTXOC6u2Z8%wde17dqMS6qCg_byym- z8&mEpcqfPPBTMM$^O^wo3~Eqau$Ol&5wB^aWvKKR-mN)+vUW1`kqlP43bU5eg}ty# z`N?gt6*`X3F&2e@_{~q{2lsqVZE} zg>J1ewJq1UD&nslU4Lz$JUPo}Zpcwl>wZ;)?dU8GuCQ|~XE&>N+{x#fkgNLTR z;mjBA2qJ;ft=e-G%Eel1U=Z126qkA#*=0<9qFMOl=Dy^wPZXKWxANCdLJ1!g+I2^z zFg;ffRpf^hX3K5!lF_PFAQmi8+)nkRle?v~=gizHUfp%_Lr=^TpCRE=LI5FAaFGx< zz{Pp+C==awIW5e|HGp*X{N!4g!(f&zC+3Z%`f*;Pl?2i&K7*%PFP)o{8m@!A77MK|hYqQ(W2j-Hn@1b|B;jj!yxbtiWDqA4MhFr-ukb`lzSOQva)ZZfwG7Ue z%j4cwk@?mcmZozHG|FjOc@isA00m4otJf#L=}t+Kn7PS<9G;{UsvkCKo&nrFXQ>UO zQvL$RgHt%ZB&+=M?{sS!W3mhZC<5&sHUnSfuye@0hK3Ws zVqB#*xhg17?Za~GaKk?Y`srBcDxKLzp3iex6l5$|H`8KIe(gH7NeUIUzEl{KyORv- zmq(DjKpWB%LvwX$sdlhlcV{s8*(KoJ+(KpC_VX)ps(c!~=g1sjFlsl=0i}`zMFet~R0N4Z9PsJYs_% za#9RQFwC!RkoVC69kcP*m=JZLEg+X+ zflNCc*BbKjI@v?yE=x(3J?;3UHKEn$bnO-<_GXeMr%W91{Oj&2tNsTM?x#UE?ZYtj zd#8*?PNj&+6@KtKg}6GOppJ=&?^zX@4 zm8{AyS-&Jr{_=i}+?0QP31ZFOpi%V27r>6S?C*9~ySU z+yCnM;P5C)T9xbnang)`W2>(y4! zVJRxeSQ*#KC6;jv-48oMgk}2YNP5n^Qy>ktxbKAp&fndK4+&XWS&#p$jJrGzn;kv> zi}SAv{97NBu3z2ifBaq4%g;Peq60R3$@YBwedl=JI>=lP<wJ z_lAfi{R*=Vr7KxiSJ5qJvD><(o>0&-L}-t&!)4Era9p}-)*0&? z8A)McYI>8E^^&r(a_Ot}q-i5xpXM(Jh84`prhZM;3)%j_dlV~#5R&p{%q@)Da;4m**GbCL^eoG`F?YgTliH6otkkg%*T4ob2pU@GT^y zq;~7m(ufV*;^Lx@udnjq*liT*0iv3&%`>b=_GEaT-R4q{A74Q*lJIiIJq158#K%g= zww6!O=-UMXT2Z8xylC$_Y%tQZviRH%;ab6UHP&tvGEbNql_Ci?R*M+?u}L2E5fTOy z6B8Z#x?m*sYiFm?!!>zot|$LbuNJ+!kj7!n9$ek2*;&)*!DmI^pA~6%On`AHVvkhw z=U4;+v`ct$N=i+T8?l8`KXdNffXEzdE5Z8*zxrTRL^V&Z%>JyQp`no5J|DPcp88Rv z`6?wfb--n6Tgus480~T7_;Y?f84?Q`y9U15n1Co5scdzHS)C{Ce6@El9l^Q%$4?ho z3wxJzvdBN@vihtw$o=6I${XrtEEMLyrYF-Z)>c;Ncq+rZtBBF=@YQbpnb2nbUe%(`sc?xo(NZ6$7`O73Pu0s|=77bYy z?P}LDxM~mN*RS0pvKUM@hgr1G<}8(drk$;=?cvLG{=wsw z)$s}*w|xiLdW0p-Kr(}=y1LpgL8+UOw4tFPJv-YgAt7P7G9iI3N4Lyqo#O3R1G}oP z2Ijwl^rWUZJMOzPn6k1cf#{&%;Ak6Em~>@RalOUxOp|2?%HyuXu^5 zoHJeWWpgt4d-1kosfW@wl@)S1!Y!@2d-3Mm_^UMvIErG)@wT^G#p8lTFobvjJPAZZ zh(Jh%A~#nB&yj^67W?JJ%1BzZm=9z2#@ZLE^6P!0qoa!+6nM35ZCE#9%A&2$5#pmo z1xskHZ8*0DhrmCZiGTln#udbl0XZ!l9Yq#|Y??WIN4u~$d5lH}c1iph+d{RQ^VKyp zoP~^^K$Y!qsU1C1-v%qC+WPwX)NTHEBfNx3DXsAjgXWL=$qm9I2EqgXc3r-)BTcovWSNihL8H+QMiCKHfq=@Fx@^F-IvOQN(jp2Cnswr zsO!LE@5e-yOMuy3b@gjt&exu^@k)mXW_SZIuY?)lZ;edpyLa(G-)HthT1rccLh4M( z^GO*wx#nK#BF{1zsh_TW(U$EH1 z$5nArQxCCAT>SLmW4C#p#~*iG?tt1pQ$R~gOH%(c)4?1)``;U;+Ia@AVG#R#H2^x& z!h*THoE%rSgwsY!X<3=Pkx|mmxj8>{F8RxsFX4R_8yIo-L#-|6DpB~$qRjfzfrI$7 z#c;RJP2j|4+Wh{eJ@~t}w6}-7e}5(F4kmSR9jxsXz_D!>){E3Kz&by$wavSJ$6g9* z_LqJA{ll7@<$7meKKlR(2l+>j0uO-#4p|to^{uTin5CiyKpiO$`hQbcIP4dD7@>k) z3hO{KW^papUa0?b%fg_i`j>7YoX@LX$Hvt9LT_{;Iy<8pR4v3DXlJ3fVg;ADbxOGeZ z&D*!q$=%Jca?ZlwO>F`XMtaPAC;yWg-~d3ELJ&*^i<31q*F|4_k4}RC;(Ue6ZVssa zRY$013M3D_Ctd)YnTwkaBx{eZ8al$rdTH3Om|2 z!YT}LMpuHz@h$k+a7b$VYGj5(7QYolDYNi_sr-(-DkG5?M=0jPP+=HD?e1ib2{|Hdc7v!-FeAA^k%d@ch?iNxMT z2y0&>7pPnuf(l3^eP46{**{)SPtUTN#U{%l2I>T$LEsa9vFrl_+z3)RN=Gj(IKte; z6678|^2TEElai9Go*3Y(j99|MGCe(g<;oSjYz-{H5DId-emE40DQ#iXsmw zVnez<)AZu=fH3o;Sj0N@3I)Xla&q!R5d0{K%>lRK6)=ku`=6~Z7jzlH@E6Dp)sZMN zp{mt&i7t+?eAdF}SvGKGj!HWzLRVEG^;CP2cVRzVQ0+#=f@HFaHAh|sW@fBRaxjg^ zi{?)XAAW+ZHwhgb-7Qwu{L*8fZXqi!NdMorec(jw6F%hq6nzan5%{e~xp@y3n2097}Fuas9%2nGAe zW?00}ctQ{&P%bVZp)V>X#wae1zO7%)4n+s#fFbhQxfQ9ySY#4?0n;&T|Bxe!sZQ7O z0w#c6Ss^Ebu~#b6vNHmv$F@j|oqkpUa#+}I+u7Nr23cBKGIDV}7C+ij#p2SG5^jew zD+$Daf#`ck7LBGl3Vi4h$9>Mo2qvNtZifG5nMv~GZ+^FdzP@Id^=4z9R|i8`qS!Z& zM0o-S{u7Kq@d<%koJ;r+Dr|?6oSYf-xV$mgpr8+s2OKW!jOYuibzZC5O@We<83vTk z?=O-v4dwAXTj>k2K(+HfZR0;Vi|m{2{P|KGWvLO0q=q?np5$=%vKyxkf2jY%UJltR z5b89+6Z8-R%R@cr7i+a59@r{}Srz7c6zmAx-Q8b7Lk|Mq2k6L1rd31MA_m-Jg*=Wc7wr!r z2uS(#$*?Cy{zb+xdStrH$4Y@C>KxZ#EXN=mJRT;S+j`qo3g)eUh8}V*W;*roi|HH~ zjKit_r${GHJFdg@VS*zV%U*}*Yuo*<4yomSdwcsgc;18K;;i3YdJ@QAH8(#$1J^xL z%tZhmL)(=R{%>GuTV77(Ts1*!%4YU30ZD+`*>R&^O`Y|*06IRTN`+*UcUXpPsD#NO zYMO>h)URK^Y#*EcWI1_W=B$vbd^*xHz%WNy?^z4n0C=7-$Zmk&Kgvv>sK!1x+6-V! z@KDP!FSUyq_8?!}kDL#8MxRp%*?#0`vl95^ zhOTj^5wsaYCJ{x9OfoUvkGVN-*z|0zj*k{gKWT~1wSa(PYYD9X{q)>2YCwr861%ogeOC{#*&YUu&%y7I5^lanwKh|xw-kSiAhR>F^ZnP zW8icx^g>bVPEu+0GUHhd<(-0SDGfUgm_42asl-TIB)}Zp+|qIn<_-%a*A4TC^oth) zZ{ECF)~-ekxIUB(pz?w@Mg0ZY9CVeRr>Ca|rG}@Yn}(WNAO0uin;fWOwt>$7R|EGU z=I6LcJlyz`N$SN)2r@6iRe+FOmf#%tY)Q$=D%`*S#^MN2ZVeqB58+-g3JPjMcu`tW zp#Z@^vW_{)C$}8^8Z=y4(0N|ApYNpUWnp8(sNp|MD(osBX&rBp3fpzY4R9=ePkf8G z$%lOSzzo49R2wQFf~7Is*;0fm5IcogqAEWC$%`6N{-VHN&8B`Zr2 z+F=;j*c9-Zfh5TYKiEuE-a?@+Uc5*`Lu0K2I}FbF`1pJ%<3Pw94j@%56nRq8(nLO= zeRlT0&OQNUG7r)jk*E5fDankAH=E!5S_~G2f+?5e`gL}y02yd>yA6ssZZQF~c8VyG zmpQ}x5RN&VsMZi<}|h2m8z2$?x#e1>ve3;cLn*4sK44JkSzLEF6Sw zq&$Qz=0!Tt9q_>w06!|Ks>bu5!&Q5pIyx3X0bB>FOdP^-kKi^l2ncAbPS!mCQ+G|s zc`Lmkp^UkzBThsUA{o`SNO+o%g$-irmd-el6|`WHI6U6ObJ0GS*=QY}hkuvBnvk5T z`tJn+)fo;ef?0HOnU7GnWA48aLJ%Mb5_$YPaRu3)XEFaJM3|aGSla)*w7ve9amD}t cH_iURtEYbKKdc;g6AxbU(vPHa?i;-MKa2>80ssI2 diff --git a/docs/source/_rst/tutorial2/output_26_0.png b/docs/source/_rst/tutorial2/output_26_0.png deleted file mode 100644 index dfcd81aecb9012b173159b3bb3b797f9e31aa7f8..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 50845 zcmbSzWmr_*`|e<%2!e9^HXJAa|uCUn)W%H_0IojFa1#;3qgH z30B}Q0sB{K_Da?!_D=eC#t>P3dmBq@drLEe$BxE!a5HNd7b_1d2lL~1_VzY#C>xvA zzrVn0ZD-0huD{m+-UQ1=QXLL~;OV2E7+*zm%pj1CJ5n#7zjaRDKsv?09l1d49;Gxk zl=ZX@xowZ%dw%a#3F483cL(eZfh=|91H+)pQ1QF?CE}Um*ow@z8E@C#9@1Z%irX|c zFx-E{`a270IMwrZjpUW&L62>8!#AJI_%eGEx6TOl#<|31ugA3%cx z|2!n~6jz`A{YB~m>GaIMuLPDe`i1@b%24kA`=IX8QF4AQcM(dr!wo7%#yf57leL2X z9x3s#X;xlJ3hUdqZ)(haW1JLR>5HktZjv%G7VEHoPewN4xHT<>>Q6}$UWvyd&&fq1FaBmUzw2Uz@{(H0l#Iq?aKcD#yHuh94lb!F**+o`XRxupaPsmbf z_oP&f*?xP5JfO|?&F0hpcF>3B60rbW-+%zh3aY4binIXA37U${{cag)5 z2{98BI_+9}fv>Y>|FvyrUF!#!*Ac$HzLi^HWK>{_U{$1XJq~aE!yr;pQX3Ox0l$8k zZ#bS|RKe|M8ve!v>7CwrVhW0x4q<#V?GO4Rw*=|4Ur78}fQai^R3k$(<)hob6&^xU zon~CVx3}BQ`w>+-sQz8Bmswa6%B#*(R#m%uJ#1ADeE;X)* z<+fRo>~(o^_ps??C8;-_!v~e>7FJ@2*jtK{=QQqqz-u}FEC81rLdw@Ip#M9xoSj{SD9$}aMbhxn2F6B_ z6V^mpHW;v~BqCk+2nu1>Pbn#Vs5CD*7!0=Ki96O%(Qz;hbFvv(9)-Di9ba6|tq&f% zVXQbUAD!(w3#k>1LeCCS192+Y#)AiRqS{iq%LL+Hv^GimCcY6pC z-&0&>Ha2Tp!2&`kFJjZN%x+nFs|J-i#~ae#nk5x=d^lx|*Tu74gQ76$jmJON($adZ zq46ju#qklSApuK?R(*@R#d&EooPZqEe;F|>sZ|V(ctC;t63(zfB*jRN|H5t z6~(Gx$m-RM5J>UVCbLd`{PD5#%0L=r{bA#z$WIWvw6wG@U%jf}zacX8Rz>ALAz?=s zeHz(05_ddp?y%T5%*Dk8RKUonsC7$uIXRPy(*qWm=}?wbzD7lGX(=bvX{%S$x}kj+ zK{>lxB9~LvB6fX+&Dia#?MSU!B7!C%^?5{P4(d&o)f&kIGfh`aJiMZ@5Pf1bWk9fY;@In#*>>(eY|#cr{3IpQ#+Vlx|r*JXI5sh9gfXf{hn(;C<>ip+l^;o@}d{f5)>}JSLY~E2mcoVj4Uk6 zmuK6k#c)wNF0Lq0wiy{2$4d+)QWpJjNbb8^6Jvskx3shbDF&eeex#V=U0C8>iY}Sp zGnE-4aKQmKbx0gi-u!+JpIdl^T;YZ?Q?YG}U>Adeg47CBO3TXDEeHDh>1b(}ZS2#L zOw32c25wY7i<7nVf3KOYja@_N`-$Y7T}`}@3uhF){K|~m_VQTMCC?GkNjEBeF~w=7 z3zQh=jS|G_NFI^CzP^_8ykCm|%k^KXZ6y9Bx*@ssyB(y{E~pft%i~2duk&3HVY^_f zz$%wQ5uojsSIY{VFV~FL=VxO(w0gApk{T|LGqQ zl{|XQknZko2p9iv*9M0}HtpKzyrRa${eHpl7N1+_1go@~I$VEradw2tN%PDAp;^5N zN~DEN3V|H|2U6?$2v9|a^HkX?EhmN;t$OB%&C?A*mt9+1YkByUi<47QULG%YydN|R z^)i#)AsMz3u+FgRc}#Fx?>zOMmbH7g$&qLLZ~pYUFtd}Blh?`o5g^idsu>T^SwIsm z)GB~Vz8=q{#->po2!O!h783i}_Dlm<3@2~~(~(?dEyoGtGv$`sHWS8i`ox&SIr65P zlNIiJUGzeSM!#n{<3b)V%E>lj+arU9%;RHTw9iMjNrDpp;UKG>Q!+0jzpg(<-n~sw+ z65R{G6Uf_ulXAWL@p!A@Nau@uTK}-T=-p-zf&E~A0f56c5xzP`hz5p)Ecz12=}nfK zp*t=ye!Z8{$6 zkgJ0Iz>LNf_tj)9x{73*?(F2|=RcvL@!3Mwjj30^46_nR3tw0;$jHnLpB%|cIz!H+ zxo@u4yO}kcmE9*bxlEJR3F=V$7eP!Ztd5605l`&-j*3>Pu$BLdT9(wl{3s#EVy25y z&G@14_otI#FA$DTzR}sg&HfiOm(%)%ZA$7nI~1<`3*RDmv(QK56!nknnEyqQW@2~9 zry`nnereq;BK!-2{`tiqY`y?hq8PWy>c2ThZO5zxF6ot6(mx`CS zvY?JCAOU?bLuS`M_ikD(rvBN>&Im?6zBp1?^#@k%+BthDz(~y5`&s>n(v3+DnEKYhP`8Vph|3I8L9oL{g5GUhRNaw(S=#w#QY-}24=8eyj zpc|RA`QLS@1e;CvHYvb+Y7@53O2+YaZ9MG83yJVCdF6_tk8Xb{j6`B<>x;(AQ;W;X zqb4r>)*H2so89pohSdPJ@t9uGCQNd0LWo~Y69)xl~l*82nm0^9ZbiJMjW!~l=~Ji)q= zU@@9MAIjDL7-YlJl2Kvx!kxXnJ#SQh5?^?f95iTrTn%(l{`LH_@ls3dy&guW`fJrL^*A2 zwZC{&^)&=^`ODz@94Km_Se6;I-&yHPl5lk7CDOK6*og-<6=0{9;D=0VS~sd`z1(t((g*}iFM0#yMNZytT}ghKAK46SH<&9w{YhJ)fWZcpoKw z`t-xHDT&i|;UyXXLjYexH;*`NNA+UqQm5@1p@W}Fp_HPjrfD9rro4Ll z_JMYtqcJG=XC6qJ6h`u?5K7&)!``P`Weqo;No6zs4VbKSG|UioI|O@8X#;{_e>qN< z)8PAUur9+JE+9zIUHSL+Y#In}G*GRAX%`QbWP^?&08V|hp8WOeQ}B(C=&bwxT}Ylv z!2;+lw^eM!#l?q;bVc9K-TNh*#A^!x>rkcy9;mxMZS6-@v$7;S=5JF5&?%K2r;|IJ z!=UtKZvUjSvr}(xsmp$IG6s|ioA!sQI{>yS=;+KadI&^*9V%(qi8g!y%gk(ljS>q` z^(vtXh-;ka5JTZmvxw9exc(vGLyZ${eZg&&wTGTIHCnGzg%Y}==-~kV?XBxxC7x~7 z74^IO9U#FcV^%AEk8XrI4X*eA$@&rLRL_RwkacEof@lRlu*IdtJJt;X1(j14px7vwB-SnV?`FW_)g;n(g2WhkMmYQBg6)g`q)*4Q!Ntt1njHp&5YJ`I=RQgP*vYP0BdThMv&LCVuxg zLP}U#GN*Z63IO`*xzFeRU~uQxVaAFsck8zspL?zR!@SPyJ$631h?*+A9b}In`cH?8 zFckCj6amakc8)i#F5EeW8fZNBO5tLrZH?avn0i8>0X^Hac_?E4$ZL&=(*6SqR zk07tu4Za6LH${)AuO-K?6G1A9vtauX0^0E=6?W0**|-`#7v*tB-}Jt(nWu3t9c{Oene zGgve!S=qb(MPoW{EUMZL4^?$sXaOzDkqDF6Hgo?hRGY4sjjNzC;NUFlN*fGcTXg+#B%h|ZxeuQhXRU9vyoJJ*S?-eI{;sj~X2)3w z4VppQdsv5@8Aaj?(5(sl!!gl-v864qv@|j_6sOi{JFI8fe0{4EzZJEw0M2P|&rR4f zsJ=cny?uDOWFdh<%822@ohw2n1<2vjjNcAVN;Gifwo-04uS^foC4K$vtX?aC7d|$& z#PMersj1I0{EQ~C>jdg2Np6$pj>sc26EdEx6g+@J7;yYbZse(o)@`cy zE~qh1=ETDQeorfTA-rOaVe zK17ukIFmA!s>a6^^Ao4>rmp$q42z~;&DRV5Ma2TaPwg$)@^R1oZ?`l})m z(+vl*Zs+5ZI$NEspU;k_dFMP*`^LKc`l>qp+-~V9#T9p)uv=cuVtHzo!&d{t7V+2( zoz~b47UuEB_kL4EoCPRu7^SVC)V!3HUESXgVYj5XI<76S&{ z`KQ_-z6z@87N-(Rp=B8qbU;9Jo!Um@Ggn44Nvb5I?%i))@uSM0O-e;7a@*|!JKN_w7s zsK3Iinw-S);<3QBUE;Nq9vd~X*PC`&#z|fQqF0tf8AFgxCI_XhLj&R;H6~jKjBhIj z98-JUJI)?=S-JSl*o)*mV&HBmAp_fsU6iRyX`+`(E&uW!2w*dDiP8x6%=;G8UK5Gs z_lw#Q#j7Iq@P5H*&W)<$hKQxOS|5!0FmFzXqG7AeWIn_`)E0lM802o5a8v!DOpPTg z1$38ci_C!@Ql>Jn08a9D=da8j&>N@g8Kh7AfRK>a1#nt;;Kz@`mL8EE4EB~1=RE0# z&s!OD4OI+w&uX~5*an`+rd!yn-ltB6R5yr7TdcU@_y%h)wE1iT4l|G?38`F)<#p@J z!_;X<8g60g9VSlH*KUoBHZc4NL^EYH?gH!rrs=d8=m`1;AUQs1e%M5n(q}AK^5Kr) z^Abq#Cv7-7(iPs+Gtt3NeHb^_%_kZlknbzlYu@3_$@hj7>L`1=X!varuE}b(K+eez z{JFi$I5?tH5aMjvZpe&mD1Qk1o3oSH;fUc;?Q!etw{X!Iyng^x|LIYr`JChh>>=2~ zLz_!dD}O(Np6;5@Kgpn0J?i8_PefWVo_WfyR+ly7kPk1c`-cfz5XMZXW*asuUoTpy z*FnwipH;8t)pb7Y<_{$O%QGuWP5K@I`4|WEUnx1cm0+gA$82nD)m}68F3I*oQr|l| zB0qg<2GFuSmPOP1tjcQ2AFxFrqyg|r0dz8pq6WhJVt2H{GhRXiI_b3iu&l$2GSC71 z6f(u}A3l5~Eqw>zRuTaLfxD;G_G^kjk@D_YUZ`FSGwe&`>6;k_9djTMp9UZ{z`=ZO zQ8>T<_3M|(K*@yVKMc&4zgNq+E0Q*plrOBfn0;tysQO@3lYxoJV$cKK*suubAV7l- z&?naNI2eK0uaADDPjfGo6ZOAK+5vDD<+&v>Cg}Lg04wu?4}QMP<~4y5KE3eVYP#|S zQmXgx+7lk07$D13Oq_|Tq3O6ml215wU-3>{J8jFRc)!Mu3x?!v->__+n6R6Ds!*8O z^K6>Fj480|X%nY;hf56!215 zWb&+r+L?GvGD)6gIedDTiRPqmy9naZv3Ft6x+QT{ZCo9oVW7bGxB7q>iQ+J7os zXGDHRt#?ULxK)$|Tb(7z{NauVWi=kaO59-GQAJ)C7B*AB=#r9=L91mzK@I>M=ySgS znvgLt1XWm!alZTUc@EI^rWA1XP5mVRPocRR5JXQ8))5J&sa=5n#sdHb0Z7McXB=>q zou5kb9In6L0jDGgV2CZCB%Yz=PzZX5QUsk=fXrM#5QZtV(|mmzz-29m5#<&~O4n5? z&!f6o+gXnzo)hhSorcK_VWbXX zzGhY`f_8FRUHvv#4+(XZ8v`{%dkj}bj}!`Po9^J_GU+=qJ)~f(p;fk*eRopSomCjc zUo}=!Uv(mE!kW@mhpG?hS%C%$68vXv1or$UTGbpUN_p!XEuONl7z0K09N=2(;vz#t z7z7Q_3$^PwEk>CYm6Uc*+;JXp-*%Fvzy~~j@bld|qzGHvoCqH86kz!WIAL zvtl*oyZ+sLyq5KsPIX0YuR#icJZ9Fa{sahw4RAj8fatylxERmzY*qz;Ui6@Pt>=Y6 zh_`s#5S&`kBoTAB7!R*~x(73kJP3fIaLbMEt>vHP=@DZ}DabiKh#vC|yLfq%4wLhS?M z42*otW}qcK5eC? z?;_hY#g9LZtrwIDgB0)W?VUp{EG+09EH$2%7rEhJV;iEiYOoziu-YKci_;R<19S0E z;*x0#XIIB!N5@qc#U4s!{Rroxt3jS}ox+ z?Oy^_W#z*yiaEg5O^~$?X!GTKP2LOo*%Pg&q5zAX2SuL_a8{t*>;jYN7E$Edbj`lV zcBaKxAu!)1C_P@nV655MCKwZdvH=BC_4stXNF4|!fcGh<%&*E$j0yKAa0L+QIDY`w zQ0%a-qT_L(+}hf@I$5y}I2}v+kCGHMRlR=AAH$n1>Pmi^{!w-^eZDz7ZFx}*CK`<+ zlPMX;`VgE7m_>PCR^ktiBghMh_d(ipcG8m!Z_jdFR_g*ZtY}&ORv~^}&l6fu;fwb7 zfw}!DF|m6nTV~g_A=z=#42MD}9$n6Xhy^+;kaqZHoPB`93<~{Y&$Fpnbl6u)r$t6a z#&enCS~naJqLme3xUQ5SC@g-D2T*#(qd7kCxg%p@+QGNP`4suqKsk2@47fKuNl6J>m;wAh0vP7SHuEn;fRzHYX53Z5 zcUWkX6Ai0;vriAd83Fn>Jnc2Ctl*ubcu{gp5OwK78 zT3kMYd$n#JMCksabz5J9)K_lturU7hHir7i0et}qZU_+@It7h;Vt0Z5A9H^0FXkO? zrtctzuxkpDc0lenxitHHbI}th_)S$Su_sG;f zF>;_IaWVexI}wCkrKC6>g~35Tci`sYeA1@z_AlMYA{R7&A(1yC?d;4CQC3zyzVN)M zdQfAqYj{I6cD|M1HaSyB^ERG;m|H!^1J$=t>){+nalBv|-w;4oVpQf25@svLP^gRF z$QDDL3z*=Dj;;?p&NMz`LW`5`qYT2HqfXVGRW2{eSiL8{$>Z|*%pXQ7Ii8Nz_?Wg+ zM11_Xbb~cLv&!^n;2e5+%q3*Mt{%N;*9pB-2IWQ&i9J_WE{h4<#a~g}7ZKfHak{?K z7b{d6k{9SWVKc!JUDJ?1z-VT(6}-7(v!$TDC;*p~fHWd+tNw1nd@s@D6>TSf(lT52 zr+<;&&cCOlQ`j^meYW73MDl6GT==V_Wx*iHd*FEZyOP5!t_^Jh7Zmi;^3)0X`lXY8dGWVZ8;k(nt*M5-Ln zLwAvn=bw<-bqN)&gjFA_H}84T1Rz$D?~7=sywdjzXk<`G=6#$nZX==TB=eshhKmp4 z1zfU#z{+e+TU#3kjv=L~lpE-|V5|TPhZvNQ@mvq}0j@<&O$``UGb|(5vK$AKTqLH+ zE#Nu0bm?`zNclQVB*mhTg9(}Hwk03}j3!VZ`v6|P`wZBNA%!u?$-O_)#ZEwjso818 zCKdjYn;V>)J6UrZJ#qy^J?9rH&MJTCAXljSmYtyxjQcf$0KwxpM`&Chqgmc?8I1mxb|w?U!&#(da9O2 z$q1fDw|%ayP4w(i04r3&QI;$yKHU=9&K1AEPu9QTN~fJ!M=`X${ASPD<9u`YZhfsg zefkLENHAZEyOdxob^K!(M`7jqXEK!!qMDQIX&lrN*ZuVYJ<$V*LFLzv zfI+slwFLzSXMn*cFxUhK6K~uu=d+iGeE$H$DHNFANhU27eqzBhjn(B|h1SnD8EZ{zUS;bAr+rUE48AHw3|__< z9-C$H&c4pRE-PloiKKl?2enVH9UHt6+0rv>W%@QFElSDV{x%K&;urn*7prHt@XXQy z8ZCDqdKu>OKfHV{oW;)p8Np;&0F>$!#oZ<4<*xPe`a;0ZoNlP2Ljh(iTi&b!Yj(8A z+Wlbh6m9N0jA;{TJzI&@gz4|hwa8L<0cDxpumiZlUhGn!@zqMDJB(Y1*3U( zy3SO`HDp9SwN5mgMO+(`vf-=doqi3m{19nj%$o1l?ya!s{~|GsH&au_8m%g7Ew$ok z$QMrN^}!+GNZj>^Jl_AshQT*Xmnu2tOmuaAf*mY`ne!U@(I((zz5E!-Q*41pkGt0P zQ^^%Fcg7IqXI=1RnglS)FylA7k3Dz0*v8*B1a+oIgl-F6vU@7s8rVL9Z{M;waoL7x zIbzFS8r;q~+`czmWds+wx`g^{a~_rojp@0-+I&kS3~t1Qt@S=MtkbI?^GMI*UfOk5 z19N3yAP2X9o0>WxE>#RY6Y*!V%5C#P04MYbEU4{1w9=o$u%q1hnCJcQ8kj-j9fyIb z+T|-ii7bqEJV@kP$#|LPcOh!hWstAj<^g9bAX?rX3ytT=Pzh1+viVtsV61K;UzpN_ zOS3tbe9|?k0nxh@&9k-Zk% z4EZ-6^YAi{i&y#HCga6khOtdycdw-qw>XFuF18h{WN@+-xBtN#lIqD8`x1znOF)wGN_%o24 zrOnS=)-6DWD;`FMmL|NXK*_)E&6R(Th-n#PHbl|kOCe<`ci9;{w=NrbG z=a3e-zV^ZDBDb{=4w4W(?a;u{mj(6K051G+`uU0b}s-dnJgwx`(?#CA6s-1R!Efcmb z{s&c0{@^dW@d}M>^yF0%pEa&$e`hC{2~GjFJCN*JL2Ir4m77P*WBveS^*m5Wv%m~h zbz((1uC?T6wIBf8@+Ve!#Uz@tVXN=3k!!KUwm&v0zLw^it86kq@ld7GwCjGFyYogx zSvI;y+}+ow-&X(k>)fcKyNH+S>Uv@ad)`(s*OyC{Hy)%#C?v_f(nH1L;-PF;z+%4%v^#0 zx$FuGU-kK^#cv+R9jRAXbwVq)!YppR7b%E0pK5%v_WIP|qmadMC8gzYs_u!$pMDV= zs)(2nD*rtE!R|cgdu#kn@dt8R!Rmv3%>;)@=GM&sC%@f3f$Zs>U((Y$l!${sR4>)H z{2ArW^NNY3m|B-33Ah6+seSHrSGd~HPM5iW`@!kLpqcw`B{~^i)Nc4qQkP#t^94gN z8RhB*_iA&zw8Acrr}47``0oxP||7w{CrFe-gRL zw)FjXx%v3~4aRCcrQ?QK*FI@9^azQR@MYUxNHNa7{y9?tY5BonFM@ar3yZvE`AoPOT%3T++kU zZrys3#;L>syeaG;+%j8qp=;~V^wB4t_7E5CKSkXaQL6};4c+c~|5MCs`_(eV<;4M^ zj%KA#tDU@!n|Wx+y!OKCEJyJ1ZF+n;CR((IR6C*brXzNmvvMg~QA4?Jw4SqaC8oqi zd(*vu@Otg{fMI%p?sKW23~RdwNCIV&KTe)qKEJt2QEcq)c!smZ!r1xzA`67SfT}I; z`imExPviPQ#LqYj;`k#ehtl0? zAa$hbFXOKpm&`VNb`-xQ#J46;sA)qkx^&*WOsU&%xJa34?LK?`jQX%ml@xyB zszl+K*Fr;t`wfds)-lh|wjqjmOmOYfq5hj3;{HcN5#gTQOS>ne&hx(p1Ae>e<`2vl zR;fm)mOXOOa3>}Tmp1Hfe&Fg5_?a&;VFf!=8A+>*k#4|W)2;7!hYnnO7Fhf|tK07@xFsQN^wcdi%4 z^$3gH;>tAKMnjB|oXMOhDoFPF=kA!>4+Tq9mlRfZ?n`j64(RO1`|9uy`?rSw=ri4j(;yJVPS1li`ocb%Y?O@Jr?HApIz8Gl3Y0@e$bKn06ddBn1t!B|O-fwHJSe>ke8&ZvY-lMBP}Ppa21QAXTK$bmxyQt_dAXRT?|_2bS@6YRhl}I zX1C`W@jNl-hB&mVuQo6o7zOcS^@*Rn5|9eEvwP9N&Y4#oc~_kl9TZ}YSb}%DfgA6g zzaX9K;pw-ma_S42Ye@15qUco7DkM!n!prfr?w@bpUY z@SKJ*9TlBsv~LE;$&`f4B!&KPwX66t{C^olfLVCJ+T#MXrGvRTDWtK zr>$~bD$G%zc&_j;LU#qm9e+a-M`o!DOTJXdLZHkuvAs0kn0c}!@RcAT#t)7Rn(G9Z zob0xbeF$!GvFksM29kUN!wmpr%auZwcu)*wwb{7GR^q4w*>&>0kA zU^9Ms{?AZ&L}nD2i0#zRy9oJ=H0Rb`Tg_KpTP>1;B`ZLVX?lNfv?@JI7?4SfFx(2? zrm)Ox4x|ZF%)P_K@QqunbhX%3td`^YkMEN7K>If$RN*CodY{Bil#nAhD;L#9iSkWb zD*fu~^hIj6tc+rfBh_QOTFJ5d3^`WuhkZE65$se}*D@8w^{cq+Jw58MnU1qe;xkiMrF5%j@@7?x zV9|@UDHf|UJ22X;-ztbb9VrptM4g`DWPbVRde%G;W<@w8ihPeWDR9!VO1e9ByGG}6 z;0!_}(^E8Qd~B}z({@1#uO;F2x)E=rc_TERPGUBhVylX~bD z%t$;f@a5IfFw+-2ualC%f}~oX?8vG9+cd1K0V6JX>QPnx!p3gnisgPRuQZRhPp|Hy zLQzB>tV&=j^rS;uE!uBWQ_^|ka6X$vyGPq~PRjf_Z2eGKHR4t(T1=+Ygr-@7MC8#&tI>gt7{(%Je^LBHuZax#INs z)}*)C@6YZ=s2Y=Xx2mdxJ0S@Qy3IMfsf;e34Z$k(sz$cpYAoZ|&a4PqH&pf!`j<6k zo|QL5>s}lN+!PVaf61T!5^6R6Lj27?1*be3B*;^HISG{K-6B>zv+rbumLa@ib!xLZ z-9kDUEIf#6bFo?j&1=prs>wig6ks!m&f9Iy7AwboN?n!3SY0r!-IslJiJOD$?imX+ zyZ6MSrbSEp5hN|-3fz^tbQEWM@OWQjk8w{erYv}Xvr%tm^wmZIQPtQ92 z9KiN>aoWm>XfA_zdf|~zekWyk5N4G>RN|-xNBS8tHmh=qz=HJt`6?YFIRSNV<3@qH4d&cQQDv#QDn3M>W%B#B+_owz`NX0O za=dJ-t(L0L+_9lZSlF{dl-c{RlA!Ir0Ie1EfaiVj-9wJ?j8TJd-8=JB&bufg7q6bP zX|5FtxouC^;y#4Pl%#S+_#kqDKigU{)5A)JPkyy;n$oe%*^pIqYrJQN^_I%!>e1QB zI{iAN`rTX84tr5kGehDJE==M1!3!SXo<#SBna-cXr(`1!5h7`n;R6APb%fGp z+v36e;i&uJsm++>zVpS~u_@KMSuoNcCmkMsCmj44cgLwOFXynLbu+tlF_Up;!mvMm zy^!~Me{*uJ0M(V=xFX^8g;w(KulNJO(vrgHsfL~_Mu#lDqbE1liOSS|@{<3pG8)AW zg#p(x;1G=2Q9yGtD*&$lCB5$fyadyH5-8oHSMSq^0Vl)>xm&3)F9~VZh?O-{=J{ct zZKx%?s`duvA9j+hEY##IV{^41Qe}65g*0cRPM=&ioQJ|Gy1w~9BZ=3H3=ioD^9$~h zV-Q;R8n+)dyo9ElpGE5KpVb(SM;*~%X|E`}Nody&*cR)&-JGuw?kktY*zZA; z^m>WQvlV%--=$4(_fWcQ(iRy0Dx3V)vV=@k+qAu~<*?z?N;|e!FPGkwsNp0NGRcwt z`2CvU0dc^>B;Gp>*?;p?6+^ZQw-sU`60MqX(7(j4RYpY>>OW)@G&KCb~QLU9;d z$M6&$rTdF6Co6JefzeKyv5TRQx~lw6(SSTmO1bX=bNk22wPN*EGE(uJ>Phxew-+~r zBdOOC?|FXjJ75Aq_0R1#xFg@}%QZgFNcWHam>=nP#qN3=6Th9Zk{m{;`e50UeqQ`x zkhnr-x}ifg2^7k>?>%PyOZ4=*m#uBwQp>q$gc1+Md#V(JK$}UmH04%2L31$#_&6B+ zg%UzQR>2_8Tzf#;0fYiH6ZG{Y2h5+{%Ze956uOFomhI78@bY{YO6VczeTl3s9u^5v z)TF~lrs}_#CZFakQN?Z=tQ=(F@P_+m@Ac!=ouE)j#{)Bbi*EvPRoEIXK9ixF zm|c8+`8qB7sbYq9{T|X$1vX16F$nK2MS7%-}CWB=osQS#6`^X&ZrL z){1LOM83lL^|MsDvOz?&jL`b#oWGK**)B0YzCeaL3nqDnmVKZd#>XqK6vR4B-q*+! zx4wIJV>(=)rh(o#nyd(tZ9@G`OTYJ>#>se1)HJSw+^Iw87cc1t7f|s*Hrm8gsR)P5 zbQQE)q7fGv==k)v=x0(=9jl75OAD`*k-R)D{-Zf9@Le|wd5d=!(ZVL#(tp>Em3Mo-t z=-~}O8Gb*k;u9gIoQAuzj|YII(?g7vE3qTz(WN{^p+N50c>0t+Co4EPQj0LaH-b0h zIhYB?*(B@vQLg51AC_({{Wj(133_don!(g&0Dvgh;Q4hMqnI&am7p4t@fMHaxaB_m zD*QBSXwZ~L4DmAf#o?HLWPcz(<2i0C4xf}bl|mt|>>-QDbPMe$8)Qc!+aP*FKk+~_ z!<>;kDkB-#KD%Irz}bx9VI{a0vo0s;X>YcnhCw-r0$s(}3A=5%7eA`8nZ9uZJ>}N<<4fyJjy1$*s zh+qm^H^)r}^L}OsoXkqay=n?9hr<{Z!tvs|!qXd{}C3il68B zP*G96uY1$2@0(6+BEnJTw(095=MG1CJ@6N}Eb@}8H|WN0_XOOFDK~^Cw&sj>WyV%z(UBq!K%Z3mP_u-(MdHcOi6uhh`|HQhXLcAX9iNGu1WPBhji z^IoZ!Kda#yk}8soZ>f|a=lcff4?fyEA=z7A)3;U}-0kM+AabiQ)w=tfB>pWQ+h9*R zNZQ(ZC|4>RiWJn8JH_Zle33);?rgt z8wYFHc0%WIqg3d6jB|6I8~Q%fa;H1w;WrN$$@9c6f$}ujtXMQuqO*K1RD2&(ar5(gBr2=$?tz4Vz%J-614B z&b8njy?e4DR~F0>^a3vCBP}5~;mH+`lNtQgM5Tz%={ltDJSfZ5O>*A}_14q3*B;_Z zp9E)vbu(aHO1L$BIw8A`nI+EED1Tqqs@GU+`#a`7-)1-%TftupoeyK%*6Z4$MGwcP z3LKCaB(rEToZ1wt;q;S_26=flCIFGqlGEP(C;;hP@9FOtX7<|+jPpgrhB!_n{3yCk zaGJ2M99P#jKPJPwygSmNHEJ4D43w!nN5Z|I8M05rp$VMq3B$LtZM4E~ut=lFIuP7` zVF+*6bi=A8wa0j$9p$Lq_}?Zx47@8QQTD6o+x$obD=7&WAjyneEjIC|M_Jv_3t@`^ z6*RxZo~z2V@LKN)HU=10cv`4F{>2N?(N-p!CK#x$YrR|><;LyNKnShb@9KqG5%RIr z1}WF%RsR~!bB67~vtDMA*-sTL_fnCg;lPQx7%OcIMaH89!Trscl^;bRi?!`WL$RrN*xq96()rP4@< zASxi;DWIStA>AF)-EaUwP$>cF2I)9-r$;z6NOyN5&EddX$FKbEd-sm}&)Z|*V2q7> z?={z4bImp5^U-&f-JbOYKCr!g$`52bW>%q+dp*j=m*qq(+yS2Gis)-iTuvXE&yEpy z*B?Hf$o#YcX4oj@P!|V`9+t1Tkbbrn9l6mfW<+4Y;pq73mN*YX26ki*hF_-PASLD&)VEFaKr&_N_4$vN?CH{!8Fj6M z(6i@2(dmJ=Z79~ze=pxpENKIesxpw7L6Ozbu@(fLTAs4=4nZ9qC!Rvdb*RK1|7H;^ zNWAqpZm%^(|8)7THsQx*8%*FXT6*`qjo7)L!-#H51p0>Bne%R@N_$q<{B+LYcAzz6 zPdr}5^b%HUSa9F(B!}7}KW>hz)Q2#MHbh9tLj3p57B!Cquzs@PX5sVXQ;`<+nB5hC z)C&;$fO-FnE&7K92DTrwK1v>GTWdHi5JIv$}pqUZg65V+B720ypB6<5eWVCpNQ&{B*FD0a&F zkrzMxiFk{pU@i!+rp3X7;gzk{iR+^vJO=mrvF-C+)b?ix+8}|T=7-fDoTUgm&J#%) zC20rrD4&eEr)3Nq$m?*{3v}l!R3~E>J4tP$&kEsXUk!Wen&5Bt9wk_PU;MfH`R4+Q zZv?Zgq}}qq_L+Ic8BH;sivQI4<9aVED^Ui~v35L~#G!U2ouqR{7f&~=uF`0`uGK13 z$4<3yb(nAbF5 z1Nw*qLo2?7P4t(P-t~FZL~f~p%a$%Eu7gdq>-%daaY8ii8AjyU)~aO|9yWIW1;q6# zdZKSu7$>9XQ?)hT?&`xkk%L8pk7a z%NU)}Pa3W`vkBhLf4rB(-)JhHU*NM1;tY1Cv^LDMErIzQeuE=7FE!_b#hxWjJ?WrK zD@|E=L>ast-aPj0(*-DI@@y*fVI48$v>BGYGc7_=*ryM2C6|XY6qqhw^?{GVfVbA{ z6Z+fglAs3VNUS|`6e3aEP!-_0FA!k8$)2{;cpeoR`WZ9(L`K^89oek#4aT5uekzQ& zrQOZ_Y^esUXrE%OPA~LcI&rPKGk4rc{&Q$dcM8!&&!}x1tyC;0{OTObWR;EUD=gX^ z@1i#qoVAO5IQHDxgqk;!nq3&x+S5JF6;t?1)6Me2(DC-J?dzf%R+6BWTx8_g?jI^} z5~0GS61_AdXhy$U76UdDzX7-{IFimQAH$QzwbfcYM0ZerhGh@a;xvuR!A@A+I@#hv z{d`ijo{_0L!>gUT-|m0j=DUJD>%yj0mS_1pX4T2Nuc!nFpZCjE362v35Qut)p%^>% z#CNe^a*f@9QrG60-tSsV$dr2f#`LR#8SP($IJ^VTc!J*`1=-AAa2VD-p(GC4LPcLM z71vyui`BYQdsXqs^h$Vy7+k!z5kvY;C&N(3a$a1jKC<70B0Q^(^cEF0>>T88%UU*h zU~R>GIZtnsgb|gmvx6vA1By^<%=+ z5*uABx`6EOp0Te=LH6faU4guUWy!r>L#MxYUz>J&hz9j$tcBny9|J=3s`EzbfZzF4?$QE63L?S&dMaaMcjyi)@& ze4G*EgQF}hkj>Z|sG4+JpWFsf)Zh)0K0D$2sIxqVLdNDh8ag;W0J*E^12HZFmmctM z)ynY2zH3j4IdsEcf_)@3ec=9Eu8(WlzXeK%Kp}_k9h!w?&$0Qf9aOMok+} z&XA|bAy1xJ#08|D7Jd%?ZJapa4%3mJ`-0Sk37q^%UGeBRDz1f_M zJEdovB*;w`lKjc#k9V_42`J82k?y&SH!O^HUmdo@DSyDnQ`~2eD?Fl6){|2;tFSAu z!rkrV3(;V%7|j#zwd~Sx2>q?+-C!{^Wt!yGazZ7m5pMxdf*6vIrQ_EY6f+7Jtyjckmu- z1^Hxk5N83QspP9pO0fZ8o(z6O#>U(q# zBhnMKxCBCiB(vYI@0S`WQsayom)UCLyJaeSRF_5n|suZ|H!#+NouT=N9{+NgfP7l7JO1q>0%^9>^5f=a8#Cs9b1!14 z+>_dN3iX?(_7DXPI&*@zks^GIR|Vg_fE_3(o@kL6Ok1oLoZp1c6+EHX$=6*UYv0?L z<8g7bEg?%66f^otE)Z=rOl|07zw1V~o?Po!7MS(3jeF&IK^Simuc9t1uVk=2-uxZL zR~Ioe{Fl_{^Sz*y^3TSQs@vLR;Hm9q;DzC`=qWG))I#%O2HGWo7w70Kby0Q=gmFzg z34M@WhU_t|bwoF9p!0oqu(j})g9wNz{(5_ygn)wl$_l6p^Q@qap>ZLJ2v?N^+Yw6DIyAv=x5dz=v|d7WuBVopO&dd zOi0Rj%Bovx-pf9~4#&U$DCw6J-)H-A(5wn<1$ZTX{$sW0t4D}^cO;mp?@B6)3hQar zD-}OV;~SQ(8HF1q-N$M{@fTHkBE3}IN9Y^c6v3B*U!2FkIF5gI96PSt=u}lCSK9&E z&+W{Dm5O@Cy~g-bMw_Hj`>Ii)O2(x`MjNYYHA1!#=!D=D$ctt7e1w^_n3aJeHt=4z zRB%A0TEcL%HM_2r3J!k0Z{bSWw0VmOd+{Xm*z=Xk{>2`i?#1nqTK%u@S*Og@kfaLA zWE9s*|PB{#SHaB*MhU@=b_^iAA^8DNjA zRz+}@3k+@^j9S1irvGp&44bKVjWlHS1*)S1Tftl0r&?uSUO8K_dh>j#P}gh&M=9#u zViqAjnLBBc%E(>b6Mc#A;RUJ3Yqa8@GEXU#6d!B5A%}yP_aOo5ZuN-SipT#keX|vF zu(c4`F~ZZbhbwksM0exf3+&dCM{H0-#h}!8rx>_3WcNLIr$9GgN%;J5%Z8Lo+!=;R zJJ~q8{b*cN=sfoUXF%(Hs+GAmMfbQAKUh9z!cJ2kj>kaHNs?rI&^Y}Oci^YpOZ4;P znZugGr`;rNy0YguFag}f`DKEG)?U`?IX@iNwI6|ev`7B10W6blewYCI%AFz56y3p^pPuv6ugm%|C~14nf(o`vE#DOjY6TG& zTnt6S)8RMM`v@d(ef4^F3`TaI8Aw}`gL=TRWL4QW%1(Qxnh>}ABQSBF@u~

^x*y z;s(hh%WA(dTS0wii{jD_1;sCl>-!`AE+)2BRZ}uLxd~GdZ^52~>d{u3Z_(a19G$rX zsuw=I_kNVblgJ~z$6B$X`?05qNYw+`vLWWuBfq!-`-VGFhzV8_u%>KM4XSm-F|fC; z?L67jUk6RF&)6{}qsQQ`YuaiQ@@=oIX6(D1znhQ@G%%9HcjKv} zkjhO)%7i;q&sAP;44yWkb{Sl#^Uy_5Z8q-I;}s86`j?rpyV9lRu-4-0+EvL4;PbwT z9^Y1w`(Q}8kk;ru^Q+tyx7t4X6wmr13Jb=qRM2tP$a>bS?GSvZs`pTp_bh^bg79)DUi@b; zwlzvp+0|-WS(@+nr*=*d&x&#wpaowq6nJkLo8+j1%DqfDWu@jiFxKvV!%uvhdyT8^ zFPGliE+wQgq3bk$(rHY`(=BG{pY$|)`y1YR{-JBf^V~-uQIWX7SQ^CC@htaIUA42O zwHa|Mak8GPnufBB8O&gW1iMW0i*5Y8u0M?OoNB(n&1vkmiw3sK5R%eeORYzKzn_i0 z+q%_ySX|Wpuv86~`DwGY#gW8>-WWN>ObF}st^X~yeZDvw4XFXe&3zwI9)g9o*i#ZiH_Q7f#gDVHgv({*aS!|Z+wZ>|qN z3Vb9Ls3dTX4C%|EyiHH1Xug_=>mT-M^2Cc^_JUBQmwna-dB4chW_EQ8*6ie;$jUo$VGqkY0CeZsul_vA8;_KgI7EpkQeIi|Ou&Fv;neR2!|$%COx7&le`Dh?(c zpnsRp`U%67Y~PQ{9ht70EtP?Vp0lS3izf*ZKcw^XKzKDPZ{op4m+P9Ydk^g|5=tJ7 zz=}%ue*LnW`RuP=hQ0(2QW>?NwP@sx{ z3Q7F#rYgvS;np21C#(uQhzopLT-Q-RfY0^ltv#5KQ@y>kRs=25Q@`gPxkM?*C z%}-1Hi}h+zJNwnhn%x8hXt19{#UUodM(tt!4{Rx4w@-=##VKBpi#&w(0WY8i`cddmDXf3M$xl*bSNd>QJ>IZU zAibNPEbWY+3O(`niiKiSXe;m+ja;3KzN*u%=krY3yj@{Ds92O=^T;}b^o7Ys&mQt) z%?}l2|C!<6We0V+^$^y+t3#m}i088hcX%ixHm^|(Db0uksG0E1U7bKNqM<~73+^K; z{T0NEigeCW=cg5QM4cAmsB>U3O;l)Z#bg1`=N+R))`{U$w_)XPWxbv$0=SPNyNL_X zOGmjNvP_>HTKC6J;jWGs8NUP!$BSJsVmuwOp@klJO|#zZMX0PH>awRtt)SwO0&+*t zxfW8WMKz_$`pxm>kT9=&h?=*o6xyf=BNc{&K!A#X`1ak+pHv|!F=Zs4)SPR$%tDbu z#m=*|&hAx%ZYPN@{1sifN{D<^+tyUs5;bEU6aHDnzY6e|6JJ5tF7@}r6&vlkN^C7 zCbw7jy9s8lcILVX*Am>-_``(Xvu6$5E7TQUnbp6q_FDs>DUoW75YQ)un|w0XGv4@9 zAHV$`uMZC&Y7Me9is(_FRuEZ?R0$d_0;UaT@j^Mynrx0!@Xi6{%)OuVuE(xww!31t z!T>5>s}Iv@pV<}d2zgih1^30DNZrx~R{%VXiuR)}`yUE_t0&LNMuFd%v2}KmgSJhtEPqN`jW6HHbOd>TOLCh4tR{Ot!-V3Mu0%Y0Rq9lMS z^L(ILBhXB)j+nWpE||z)u5iDZS`wpWI3J`qwROrioLt4N642+dx#2`yGubcJ$f!!u zWVCoWn+uBkKNg0hsH)>ytiMJGfOi(FGMna7(+eT18b} z&tvFK5bh`Ty(86y4&E;gkqI^thxbQiN(9P}LM<)J2TI~T8BK9dQikK5d}>XAF3WU> zsnx?h@e1tmOl&D;VV+Gcnv1Je$ornd-}-T~E{3Nnz03xQqY%&7nZw5wO&koe33Crs z>>~DoI)i!x)wJE8bbU-A)=N#Mvc3|{jQ@R)(T{Hq>Qb4I)1(l-=SSY4Hzqs3^dqdt3>W*6AB8AE}eWoL9#RO1aPV z&58%?q+mSKrKv_?Zcyz|-YO?*!^RyQJNbMy-Zt|Rj)UqrEx|PnG-};5J~`wb(WOdb z=-&z|5G$FtSNaqRnyL)}P#UUP6u^>{JGq3i2+R6@reCxBHmm6X1}q`v;ku3J@05g1 zxbBT>Wg6PLIw`@toJq$l7$0u-ZIad`J}s;5r^WqI;0*8o6>5f78XbGo2%6Ow+|f?_L~guA46+LjpoK zyGQYn7FGN|Y26+gA#c{H@+8u6JhUOK_a>x2_T6s^94l`Nv-kyjn!&Fn;1?2~6smgR9Ohm$hh4 zpO*Ag=j^_^KrS^Ia$0&u>|lUVIq{@{8GDS1>cDQrA%fNZB6m_gd)_uk>p*x|cc}pc)eug~G%vYB<*D z6}`H^L;#RQ85E)>=mLZTsAo5TW)=sKz5(h%Dxd>EL+RVbMnIJQ!D`GDk)e2w!F!{SGB+rxKkR%%?ef)>Vi_cgK2-!54q>IsXG|3tz zdn;-UdXSklPRE*EIK^ngy&o<@5>12Nz;c*>2-q-PR>!jq@4}+Xs4@0_ofLUM-(VDD zTow!~)lK6uN?GNv8lVlEUeZXKk&Hku1H3yTl}<#fI(GB<;ZJD#I0=*IkD=D4#>a1q z;#}~;QZD$Y=me}#xcnm6$Cy4$5wT1<+G^H315oWU z>(^JzVbee8lQK9u^|5u=c-}|qnFGV_=n0v*+!3`7qsJExZ}NFbzNXt(w;Hw^2&#pz zO)&<**z7fq(UyGw{vLq0@1gckBZ&Zz{{>n#5kPEDs(TDd*Z|mLBl38Xq~g7bN(X0sEPYK81ckXcJm(Z2;PF-bE(>-FmsjroWoJm6#-mi$_=lMYHWv=({O|(i@H|Kr zHj1+zMLxMU`O@GXR)Az+GViXm+8Lc+9X;C~(SZ=%B9j_UwExaK;e&zz zuc-sFrJ}_lU#h*6WQEC*(XgNHsjDv;QnU#@Nt*B{W7yKlNN3mDc55=TqGgwh9=ntj z=~1!9G;|;NL03opAR(>&8Efpk; zE3N2N7AU67?(EI&PrdjItC@rvSm75x_=RRQYDg{CE<42!>f3*{^#yUOrdCE94=1aZ z;-JwLX)ey{cj~ok2R^rY{p% zBVuZuOEw!D&xBPKQTW$HVjtu>xAfkMU@=a*a%9lfKCuiuEv8irTWxzP0O zLQ+VlJ3ODyXxCZo@*Hr3uU`Fu%b{B~GGu+A)Vvc>9gY%2^E#{e;-N_L{IhD8x-*K&ihYL&3vu|x^9ud7W1H^Lq9;SzzbDwbt8~3QzpoaE0 zx+r0KN6VrCcE0-BbmxRV)dxHL85E+d^62Db0eBS>g&4};LcSD%PW$h}_^mSlcg`q6 zz2P&B{Yczo<#Tpj40OYsq9^gt$rzrgs(HgPzP<}tgW4Az)Tb-CSqRNAP;=yV)#bLj z{4v~K^~9Y2>>0?HHB0<{(ZCQlB)RrCUaQJ87~v=|Kq zB#(l{2bh4709_$GIk~sq?SO)rg>GA3nu!Vn?#8Hxgzu$v6fbI~X5A?P)fX*q;lSA` z9?OERe$JtC*RIE63`$Ek`Rt%Y2+&44eBG$LKbrGyX<0+?lls^n-hH{Fg+KG{&da7* zN)MUCEAe#0d$r5@ znx0}VDm4Lf#)tV#J-3Wfogwfnl5p(XEDU8>cPs)_0-tbcD`Pv6Ms{c!tC$3|N*K%r zz!{Es5p&Nt!|=u`ekQK|UinzU`=U>g*7!4j%Cejd*X*h!2#N7G^v)w4W>&kYO&1Oj zuEyI;i6@tC%;OD4O_QjsH|pXilj_+RwkNV!7w7Pmw>#3Tn7pCv9ok-d@HoIeKmlr6X^2DST;n`>-=WBnSL+G`UK*g?fAep0P0u%TfKCx|{N{^&Gf zK6V;+Cc@@oXt=@3uz2vZZ#RAyOIyuDYc_XfGt@?-KEg>+cEj=hZt?+(Dt`6-ApQBs zU^%`kzXSE!y6~FE*Q;D3PF#xra6?Ier^?;Q6=v1y(LI{A;(%*AqWLcCF-`{>{UL|$ z0qm#8=IW!*@piJI;Vi_EX3260BSwz=A9(@k(y) z90o7KI1s=Dd;#%L1aMRFsBkpY)<2Xq@AHm8cD#A$2`tY~ztfsr<$ZmKFg@K@c0e>A zw5;TKSf&j2jP~Hf@4_Htv3%dIlFxKm);+M%ST8RgsrJ-;1-KxZ+Z6v^{3wk`pfhcB z;4OURm_H+-NfJPU|MIk2PYiA8x63CN`q>CVL9{V198Edj32pcF&{$N6jV^*CxCq9k z2-j>_b^3fsgDkgh6$D#E7luqAZSiJkxx(XAJ+-CL(-*IAjfILfpwBQm=(LBzD5yu>%H3F(&%PZgPJ7innCoHE8$BuJ z#h7U%alR_vwFu;^*vzdL-nI&$$4~pE{quRs>`zgZOFwhnBS^*n!1Yjm3bkLWaFvDo z-KN^?TPMqLb!^?ru)*ha#r^#H#;8ahqaU2%h0@!u&~0|~+94%D3KhPi%Qn@;%89f| zz5`@*pG6e{xi=GH!Z&gBa*dBDk4b+<_<0@VGw276b2z7jj9?$DAq&Z|(eD{qE%>yz6s@mA@ zl~=_cpK8W>Kb6gwUir3S3O4x(uOp_Z>V|uF;TOqpxTvhZ@JAYZ$Q(-MHYc8SvsTyf zv!QI%t43l6*@YU-4ON&p87tkvBvK+ll`FY950|-m z&0tt7UJnp8&&L>Q4HM)TBj2KuPU;3qKIQ9R1Xtg8Pr)Q@nmAox3Dk6CbOh&f-K%>> z%mGPV%^UuN*15vghtTd(Cz=;d!|1w2(vGC4Y9G?WMl?~#Wz;1r3R@Q-HKg9#@wH()T?qY8josRKDa0Hm^}9C z$pNxGf3uf1&YAM1lYgFpL&c`wTxm`9l|SOF>y0-pNHOtxG|r>MN#g(k!LWbEV`=OM z5T`KAr`^Z_J!<7AtpCNpJ?!3Zx3qsA-$MlhfhCowqOl6lxpR-ITRE=`!jVrYS6{fp zPJ(kN*yY)D?59$*H7?w@f`a=M&JyHb=GWrfrAXF1N>r%=MG>eg90|xt@WZ-h{B;|r zJ=fGsK^%2j`Nv6(yHk5&sBiyo176i^5sFvzu{dpNTX#vYV(Ky3lPIWp=PVDLVDP!4 z^3F_;)}w_G&RIS4lU!G%PVyV?093pTl(J}MUdM6Fu7EX|4;P?xm$kek191%xDS9&6 zrep+X_TnWd)1coJ!MBzUoKz9p?FgY6T)ufwmpg_t89g+;S{SgK{7Icqe}<-6@%IAw z8<-m~{TEhKv!Cr>mN0nZk$Sn_gBEz*N||+;JGlmgfZqg5ZmIZ_ihyKXnz|2N{rrBK z_^Kmrk(Sr@z)&>yq!!}ALr8w1^XH>lcZmYg2Aq{?ygJpNE`7~RtA5aB-!y%)#NkEe z8DWIB>^tFbMjPTV&#T)_$yXN6F*_nY3IB-?)S`U?7T$g+*D=@!87IXCf^Up>1tiOL zW$0@|bGyAOCqOvgyHc zI(K7c{16|~)O56SjQ}`-hZ@Ii&<|#gH4Eu}PnI}{igkN{IQ*BLMcPN$o%VV?T2H(D zU|JGeLou%D`>?+ClH+4t=Q%@I|VOHnSHDCN{4AC z_@A#-js^C~_ItJN6|I;v$lLH6X&Hh>v~h-+1Ha7!7p=Kwy)R8&?HHAaUi^8;cP8tA z07jDOGwCi5X%hbnv)^Xj$s7rSk~6;32CH4#y7rfd)v^zWbd~CVGP-BR3T8hXW)AhT zDG|#KU-8Je)s*E6D$T~US_B*?OZ31xtf2{V7N5a%$T{bi8--*avynkQok5lp{c67t z8!T^#sUEbc+w=p_YLEP5dqhmtLH1+sbgsLn{~#{f*=2wo;K!v~Y9P)M!8G*781-)0 zbx8WXl0R#K&l+HuJ#eqPc|T@XyvpwGG&Y2PREu3`=ra>KMkNIMOcVb+!fWAt?>r9b zu$^kb&gKdl-?a8xZh590A;qdd>(JjziWf|VQK=g3qkFxlfxj;8DKLmQ<`Jae44ZkNVvJEd6t0kIC>>JY=84>|z|fG-dPWx^#dfk) zqt%bNad8?4P^MUrrwWxM)>ak&>oF3j$53Li(PZSCe0JJTj^_z2c?*wTa}WR)=#P-v z)%$6$1d^Y1O}=svtjrq3v?H+T2)XK%YzCoM^-Re!9=vuP@R+^Jl@ra}gKP6wF2D9v zDq7K0yz?%Z2l6syGZ;AQX&H)Xh8QZE?H@TRFI_6q6B@(Xs_z<*X|S6 zzSG+oci=Btv{O=2-OJAOUI>%Ed|i`WPi+0-pAiqmL}?($4*qG+=v|V!t5r+@o^YpI z733WSG3!c-E5#hb7jR(G%0iv+?B*ZOXX zlqx>T$7l=&3Rg=z%I?u=Dd6w&FypCTmq=r<3r~Z?-pRvjRRHDM1CVNf{4h2og*ptb zvX8cWZ;HqHLr>rzu9`3zBkbKDLlGwwQI*}$^Cn3)y;HLlwfK;;Q(=>n?l|Mu9~b@# z^>HAJ2HNHZ7iwFeq%GuOKk;UN4oUSigV=fYN}F7o?P`l|FEN}mTLe}JvuSPC+sUfY z65cg0?JUKwy^hZF{{g<AHFgr*>NnlYw~j3kR7 zuD2{Q`7tIw|xRF{7=?FE*AI<~RcDl2MLi2LKX%(%iq z@9PJ0zBT@Vv~3+~l-nA1Mt+cM)56lX`&M-i;!6J3VJ@>wfBj1AH~v@x`c>Wi0bTG= zJlNa-B<2q|C4Y8lEz{q{L@lxbhXKtKk$)PyR17$9x1~O08h#XqtIU55h=f=)UadL1 z7VvJJwp|qUUCC|NhaK$jV02(`J#xEwC4A6y_+?W9Vl2{hzNP9}y$ti)ZMrtV*#ESN z`aXR6HjD*|OdKM}^2V2dpetTtK9fi-z1?`)C8o{5%@Ku4OMNjTv_ni?=y%Y#+Al|* zUNrjEUsLt+PZ0^cMWnrjOTf$n9g=;SWvZmbPuPJtyl>i8mu++Kf}w zy@Z6xbEAIVc+Dtatz%Z}(HorC3QmstB>&ct#<0y9lj#pJxESuT{^jg?B_q?L%dTre znDy3b$5Uduod#;vR==z+j(#*P6!V=LtdeT&uM-!{u9dK0uz7rIl7I$0vSmk1le1^EM|C!+)q0raS6pj!U;rSZ z<##2)Np#IWgRDo&N82=>xX%T~%pXb5H6%Pd$VOTV0MW)|H+IK5L;(w zy?Jzf9M?z!&oHC%WBrJakt#$ZQcqm@+*h4&-cM6+G5gykV|Vh61k!DnL2w{RPB^3- zbbkliJh8v3Iyo33kefe25VV9`ulN?AIgbiqD?Vm&=$Hjpw^tIe)kVbsv%)FiA>S>b zWwsMl`S`Ngp2nR=C^I#<+xyVRP_6!4H-O|2!1{xw2Li-P zl{?X&x1iYGT!A{KSui;pN+m_FMZ}+pp-~i&#?~LpqKm_~sKuI@aJ_ZSg#vKkAuJlt zWKeRW zxchaw^<9c+64b@Z>$AYMRy_ytvHuU>@b9($)&GNRSTxlFfO%gn0ziI|cIu$l3FL?e zuh(v6sA%=||0n%6Dgy(07-uJ_*l_&-A5#oS zT=7<0ZH<+na%+I^31CC?p(q8artERReV3p~2ntJjtE|rzpjIac@1Ph?0aW#eVgP5Z z`$R~nzIBu^TmnA-jG^MgEm=8Q{@)Vg4`wiMF*KdXpIAd;$G&baNge8&?RxAz7$K=x zKS0E)@`u^vHKNZMt#-U~mTCK7sejFTVOH|zk3CD>7RT4GUjYiF_3;>p+tyB713XPP zKry^|GaSWY1h8i7uPzbKtvvunxE4qefed2d_##EVBfw9m102FBx}Co}{|_?Y#0K)Q zOHOo{_SX~t*@c8XI7!OJ3Bt{6T3RUTk_av4xaPZ{)QnrZpVa@(y8OSW%K@%!dVdMX z1oA#%Wd%IA(f}>;xn7G9A%zmXesjkm3N%jefP1pH4yTCk^L5U%7=v#J$ zZKLaVl<=g4;UqAP+o7hmOCMe}mmd%+LCcug0_YE9pR^IfBxZ$wdGlV95>W35@8~eM zrRj?P1m(Gr$(&NKe;YA)qCtVu&q2-yWH7Jkia ze{mTDh~GYXB&K+IC&L@>RDUtMc-eu|Hh2g34YGMNz$W?QD2xBspP1PxAS_Q!eZr;! z>qMal>_B(h7A;Z;&;K1ED4*d=udUhgk@4Hp17O5E)(2;vD0p;$k9cY8CNf;B=d!dS9^mRJmB{MVl&E(NCwwQ@?Q5rnD?B(!fnh_CfVT^r zwb@%{;gnfx z?=V(pNQ;&3R2yNokS`z{xH$P|3Py6ViqBj5twwrDKwpiRV6vDUh08eX!to8!NsYY@J!sbG2bNP&q5uLy}7EljXEgC%$C zms4PG25qC@l8x`~6>Ohh)2*nzBP92kXUrK@6@(`#J77v&OA4T*LZoBEv_;+V9(iNJiF;(iu z1NuxGC$#5+Z%BPV+XyajD;zg*_}Fuc2Wt%0vwdvK7A$cj^DjzAc^5bh_U|5q3w<r^u(2@*ta=oW%BJyr@dunPEu+tg#UP0KUQ@A)AoTQ(i7$5entc z>h;hhoZRMK9iFsy;1ZfKzzWKA+ExB<216H z4-1qNJ@e01%r>Z+v?K!MzM;$w-MN2I zQJZ%RR|MzCI~{oj2dl3MZ|nGpeIT4Sc}QO|ws|Z2Sh8|leBus&c1uOPKvCxQGcMx4 zrv!d7@D(pVi0!$u;b!nuZ*eWmO=57iAATPVh}==QY-$iB2+I=!iTJ*E43WajwAk2! z>Fp%PWOnEw4>ioi3M*7{oy^`7C0rKB>xx<3Vj9W3m8n2nsGO@}Cx!9Z=TZCpV{IdB z`hqv@;v8LWSGUOtOTQUMM0R_Mjz;0E@b@Lw$gL^1Z>ujkN6$zNY+vl3%%qp*ln*%) zCynbUoG%L;(2m}(e%qAT$iKv3S~6U+g?ql=WfD_R z$+>Jit~TzBP=|K4Sq^VK$w5c3Bq%~=O=tRy&(Od{aW9h&E%A3wYX(%ES;5wIUG>Mf ze(zqjG>&XoS$T6oUcn(rhUwR?(ukqOb32`JL?4U%rf{FKbwd8eiF@7$NxZ5hduf5` zrP)pfJLfocs}A)b@j-K@=VpbK1MEQ+3$Z7v7B&2)ArHOvsEoXN9++yO(FIq;IncF-b$f8&3;83))O+!a4Rq_DIJ2F5nx{$ z{WuG*tWh7`!|LH)bK+D3ErU;)uDH*x3MhW9HLtO8sX5_iYCNva6IqF`tk4sSV2S*Z z)HsomxuH-#F;JStuiRazO0F?IHL;RcL{`KYLlC47-glD-ypIp3)ex;z4N^av(Zn8% zNfN)xD6MUp{BwszSg_pEo4Bp>YU7N(Z`{zduW%hX+|4b-LcFrd#5_bRovD?~c)Thy z%DeZDe>0+&o0vOa72P7r=$XrvrZT$;zeT|mG^)*Sc0DHQ_8 zoR4?;!y3NUuXfKPF`mc3|18E%7UrZQ2f_;#w z)qS1CdIbCM^JI8Y_^4;pC}r7iH>K-Ye)dcIB$Xa-yC@I2PX&@khE7z_9gqJ0KEc(g z+NDA``w)*}NXq-ZsiSF?b+$YNGmWK1`^ll}%M7wUAq)OAShCHH(U+`UX zn&V9$MkQsT-dg);N}j;+-#)b^YP~|`PhKm09yg;%>RKO4&!b*biu_~zL$0fT<7;o; zTMd_^%pACbN|E`BN?d+k4L4D-GKAHfFW^s2?-8tYK6;9)>av%`%%9$hm;ZIyVunHK zGilE9*UoPY>COB)#C*_5=*?1}zZ*#D4mA(}(~{FR-fB28z$MIk!9R}Nx8!^HO}#Lp z;Lj1@=hK%V1T8_GMrkB&J z#!Nu)(pRWoa4|kR+?(42F?Z9#8&_Fxav3_Lk)Wt9tejoV3$5cx(OlLvKNlG~;oPX2 zHYDrpU{cuZOd+#t*q826zBR{zv>T`4KKK)Nr}U3^3YxswxO&CK z0Y_?0qO6zBXjzC?M^0|ycSe#FC#w8~vd$G1ihS#ff)at0Bek$H`UeQk_+@sk*2{#| zla6)A4Zxw>-yTk9QG#jl-j@4AedsRs;UrpiZIHJ8=Ii42U_Y4)C6VDQw45zbR~lbEx_W#;qn@GB%g}G zM*V@$Ta*CsC7sAKn{W|9%%vYLL(klur^`&FZv1_~I7-I^CjD72}2Q^zT)CDpr9a z-pYowTwOV3Bl#cW;ix}A`#{1scn@u(!=PlXg_dAr!g{pRxcYGJ50+E2Q}dSE-@l0s z9k_=^(QIC_(MNiv4!a+)UXCcg)ZVk%?who6X8!v(?_RCnM#D3z8b9jZGaagvu_31T zRC|?=h;k5sUq2=QJjU~3H+7aNtG7xab7A?_5JcwOJ_3|Cn!x{#wwdUADB2tydm4K! z_kzl+F}m`db^#fLNjxr$O%P@G(9mR1ALIG7mn1tbrdR3PgIs58LF5>WK0O{fHX(flPxaq?F^GYIhWs)wF+YDiI9z9CvrM$Q z*7*1&w^?29pDZY-P|ryJmU>rMbiu9FzwLuduQk%_EM&6j9IkmHsi~FpTLk?X|}b9?I#|_57@a|0IEy0wjq> z==fzPJuas2`zsQp&FIzPOwmbq=wC_u^a0iMd4qa?19CTtUU+|-aKhd*sN>7uPu#-; zD}(K~HgacRnTkdAOZH1|wR5cH#9ns6`+xrcPZ9{4p;V(F9=%Nd^?( z)A-+1Z-k*_@P&OEzP6IgD;<$l5StF(@lV9^qR;ajJpp&$FyP!dS|60MsoxJ6w?k`Q zrKY?{J+IizR(za&*k2mB^r!mYh+iaC#17a2Qb2dWuwLQ3tpT{{T;jPcqQObCJM@OV0GsLYJaL_ z@G|}H>hGE6Q_UxU^6=mLJ3yz!vH`pCQez5ElVHGMWK^P7uGjMMtpnivCQG59q5UVgfe=Y+?I0)FT0nYyqKtQ(+jOz?P5^H@F`SfPzmbQ&F`zpamR!MXF7o(6f?%iq^j+#I;206ta^?_ezTEXfu}s7xr(q zhTeXII&%TqzYuES+KFwz%on^+Z6VTKxBu(gcOoQpU7?@K-bioXs=d zS6;|1Q_)EJsPEsOGBdveymv(|?;_g5XrPISlwN@Ly<%b)&{_ck=6paPzt;A^W(dfM zh)BuF<{YqMZ2$tSe6C9nOk!kaF6f2dL^DxWuUAMR@_JOaRm=NFr*+KWpDNvc0U{;m zfK@YhYDx=mG!OHQnwkoXEP+C0`?_fmlFDbJCMC@VHBO`MqJXt0$=<<%n3}o>FsoKf z{Cppg^)4>Gyqs%yv%X%)2~Y*nNrein@@8h*3naajlN(i5)qY$zZS73?aE@z)qJE-U zLn?-Hcw=i=V?ixFMo~8!fJi;|$=h?G)ngfX`1eP|TQ|^H_5P@2DwJz?aIfI)>;O7$kWTWI)Lwaa&ng88HpbEYUr*)K?ZXzjeGR|46+VC^#xB ze_|T;&vfMIfNyANX`$fy@Qs93XN&5lGj6sUlFMUM2}B&iZ}OG3cYBgHgW@6KrM5oLf#$Q(8qm5y;CK1(O?(o&X53jE!;}BEdybT- zP*8psqfZvq2;v^ANt|{IFTpg+0a`MR3iGIl$VjiFeYCr5ZO3H!z9ksSON;}Avm&%G zw(C#2C1Woqh32!X_FP3qI*y@kxM(@9>*%bp?|NC^LfQ2jP8P#5E=LX05r<28Pogvv zE&f?W$V*^$pAS)a?aBiH2?5A?wMk)$u`}gggHw;%c0S#yytNq~L>*3#bXoPTK>l*R zHkn_6LDeXx-Is85ipgJQ7m9B*7a)lGyPI&~px*iuslP`6;vyZ9td0o&BmGC_za9IwBe*+|wN2>Inn8@@61ma(3vl9{Eq2H#tyu31ghAm0ObkeNCn;;ny8}%RC8FQzM=I0 zsqMR?n%cf~bB>DVfPfVh1@ss|Iw~MVih2M8(yLUF-g{J#VgW=1BuJ6oJ4AX1mEIvV z0Vx`Km5$Uqci{Z)@4kD-c<=pjGt3~vWUsyUDsz7Go8MZCB6qcCt+3he5OUK$xRD3- zf;eJ+%FQ1=HP*s4quju9(73<RN_mQS*I)l z$g_~ShqTi_tw4@^tFMMFQFQ5FQwT`Ex7WYIl}kkKiTeF8QtUOKnmEi$CJb)3lvpYF z-mQN0Z{$mNF)YiCh!uvHAyYrm$b0jQkg7o9@OH3=#moOS1ou5-pFz_8*5sh5oe(t!CSi@q2 z-BT^6r^`(TciFgx+~rcG^kyV_s$6@4CH+#1Szen{zefjzk{RgJIm zpcmW`Y~qem!WIzsu)A_~K7Qd5WXLrm{?O}}J{|LANUON!qVj{KW1DWdWxxG@-bE_- z5G;M|Iz1Q0$$4vl)$Yszk{+=}E<|bfO-V6Ipr;KMF)n!%R}LC+`xrFh;h0P2@2ut= z)6r9_nfNCCCkKf0Co@uPOl{On)qu|d{UL>N($ws{`vd=zKLX#~$#cD?k|?ZjXcDsT zL@J8fM*92k$8hJN3@EpU?m@DzeBF6|FyLL?VMzZTQS)dqYHp*o^|8S@ z&jVx2fq+@DUTnE490s`aZvCaIVdnMy+Q)dr!)U$=fIiw`%NsrACbVa~Ukx#7N$8t* zXy3VOs<@T0=Uk3yqwgC`ks6{n&Laily3%F19R26BpdN(v#PIz|+5Q4X0ty`@B0tVN zD9x3lRbP`4{jMqKDa7dPkGhydv*1J`h@Q`!KmTCD66Nl>Wx5_M zg%kO;d+NNW-aikbJn{bov7GX`a(+jJeL6#je>Z5>OZ`;TM6Q+oV0>uA#FSLT#>9wW zFqq92Yu9*NVy#NQh}-V7#Kc5XV3eg~WqTlmqWqvT<^%+S+EXJL>2}p&__!oO0M4y%83kLtN@59tsn3d+?IV=Ppbl4OnhDGg+k$ zkgAc!f%ZEdPS^VzU$*pyNiK>V(^y}hGE>*n2S)_0eAV|?q1}Tt9UK?mGZ}52w6fxm zdj<7d3q#Mt(jQn{!V%50R~N_hYw+5Q-UA54YZ{#N!$B}8 zDk=+3<&lEi%q+jyr^RI6P&+|!hKjvds#5CoVZ)uS%W*IJ0^Btgli}Wf|LfirR83jv zEXwF$KPWPAU``cMcpi&IMf{e-73Do!7#W#vINTh3ehd|z;AG_EAq6R^MuEbh2^;=V z8-7;bfjMmD_FXQn<9;VhTDSEmYy0(i`K>;}Y#`*^ZQ`j|f0BFUH^(2;GsjID)L*(6 z!~55^BVEr}=raw$%|gwuxqg)mt zq0%o;u-JkhM54+^%@@M&(iQWy6= zI5?@;eqtKVS?q)egh%ho;WMXCKZ!P?M41S1$`+~PR#s#2GO{FmVuG1|CRYcGR!pj2 zpBU;jlzUAt>RJXsB^eI;#lWWT-2iaBQbTV({DbiP6 zNv}y}t|$4tZRJSmy6;t9P26v3C+W$CyNp5r`XoV(r(8mYAv2*U{SU*tZIlqR+c&I6S{ zUS1uxb?|VAmru#pv2@1Z3L?K6*^vTpF?%EcPsyhk(7K92y5N>)-M;5_A4lMkyt#H< zX}z9(O1nzR&eN>}Cu)*JDxJoFlJG0DEd*^TT0HpARjl>1;Gu$%>h?QW1Qsw1XQh{F z&2_q*6{N^t{3a?x%rgL(x8`xagl2e&v&9IXNCgtt`b+_-ta7vS)R?;OlHxI;ph}qZ3S)kkn zSxU>C()Iolsp`DWs*-}$&Bd_FD=yBs&8)V+VCJEm^&Yv*Avkt;AFIM1E|Y{ z#-;X0*(uKH^HLWglEiOv5=LVKyO|Pvsm2+Ufg6@l=efPLw8lGGM5=hjU8HMstujk6 zX~T>?0?GC(r7OcMH$;^p{}P&-i!RI5^R6=6arJ76)#NM_kM`ZV58EGWV$-#C88$Wa zMbD-8ozERx;h%{h&4Uq5WZVkQ&<|?kR$N-w9i5`Xa>sx0F3gilgi3$36kCwqi{cs^K;DQ6JwFk${%J(|gdD-3l=vrD{sAlP{caWHC-Upz6*p9&c&-YKMeEq8D-v3CedvCq;#E(DOE{EF z6=A>I6s{YLPQ=Qp`1c6Y@@jtYImOlE=C-7}>N}NQhPyRbx}oDzG*QL$%L3_nQZVK2 zlxjKkBx5p^W?uU$rX+rW&NnK(Z0*Dx@51!cl7fMJ0PVtMKlFCYJ1Y&&Nd%4~SGtRl z#!Lt-q+pCJb=Wp(lZ2nGn)k|;53E_eF*$R1;05mvZmOhw9r&7wUSa(CbmMycCtF;e-d}+7raOEXg3vq8GnK2`B@_GCeX1kf>?8wV zf581Lcr?CIpouy-*bm~zyav1O+9G=5ip^3LPAWQMXF6EzAU@qiT!TCpRrp=YJN@@? zIpjI4mTerZDzzQQFa$>L5FW!kjbGwzx|4fkd(r5r;`}z##fqAP*lZ7BlT!-6epJUO zV)d|zmNWhtA$31f%pKGi|3>pT=4ljX_F8V%9I1SF`EFo{Tu(4j^B~Z7eU9AM+E&jN zm&QqVlYa0jM#?OtE8)ZR7a;RvW2sHme{e@)qkCL@7Sfk8WRM0G8zi+&W`@Hp#U}}b z0^d3*={ncBO=&KSA{iPMx9&Ilv#e=b5IyOf&?!gOtdowhUHnYaY-LMfNbx(-Br$DxYg>Xy_RE{Ia{!%?%-N z?I&7!SuUf*HW!zsa~GzHfKWoGO3u*BM5V^g&pIc2K0cRqQqG$YoWxSd-@DHkwg2Gx z&rpKRS5iX44ER=n!|iD*={zo*4s@cf-(I~!p{D9?(8&qNK^9=#Vx*+59*RyaDpL2Ysc*sBc_X zv4d8D#Rph<8vp9mVE`E%>K|hW5q-JF=|KOI|M{naon4M9UT4lH11H6mEh{CZ=tV`h zGV+p|m5Hg=7%XR(wz;G^hS2aM5SP%I)hYO7ItHDpnQoOdW|k6V>13wS$b%t>-rQC4 zS>w3A&qU{4bmXL?ASXvCVYri8vCHoEFTn7fd8VCtR)d0!jEtsm;JcvRXx)}e&|u)= zEFSh)h+JOQ%r{GfvxiL;{N)z&2EoM9D2vJCOU6slyjdU5o?m4kbL7uFRTGHa29q8_M(U{oiC9t9Cj^5 zBSF^YXrSCmBOBgiX|w^C@b>N7%|s4nPEJ_}$}}pTJxx5?dM`0V_w3oT&bkw0V;Ee7 zY;uIG@k`N40ahVSH(`;OVu~)_uZ>xO) zqG?xlovT>aT5HD>`l;E^!|d?1;NdWee`8V|1+oM~{CHVdSUURi&3O$QPcMXao2i(Y zrKx6V^^NQp8ym9$!yFJ0(Ad(_4Qp5dmcL@1Xbrt~*I#%|J#mq%V&jXm?magMhpe!N zFU1_`r)}nH4nb%37fHnm-OV3eIf=n>^d`xP?sPSqhy+e!x;dLT>6%4ThB-GfUC->Y z!O+Onk0pCvK=pjw^Pk92w^t8dnG>6N4!5wgq2H_ufBg8t`nIm7#&m0KE`LZ4YRG5t zHRi>O-yJ90Z!eTB`vL2kXFV)32+5A2qxIiFc{n{#XdSc_dfgDVG$54WmzS2hvh^i> zFA69sDC|D#|0rDPV+FoMzpa0>M7iK=rO8w~nX*xB@ z=0l_6lDivw*Q;lfVBuAD*{e#y6rN{mjKS&YbDOtf_B1Bu+)NoO&vgVC1#$-F1no*z z=qvsV_|tXOW%AU3WFVO=q0>C7XSioa<}9;LhMxjm3(}SS(3Kbd)s@;_jsi)7qW6-R zK*E>PXAwj{kBf}Vgd=rzT~DK8K3sKv*WA#VD2H$5yt*TFiIY96e?3pRaIHk;C6O$> zUL}ErEvbIY^w)X@0)5=6WIKTQ!GD^aa8lQ4~dVfiuvs|iDQg66K$x-e1^QcTY zQnjYkpCmaPTd#z5N7>Wf(oyoSgzq3BVtTkP?|%A>M;d12^73*}K*0C%=BF^f5TgZA z86yUElL!-foTcMD$7?xIAajc8zWnXm&(}?RP^djcY!cDClUaF^y(<-`gxg-eFNu+Q zeXsrfDB);Q`Mbpz1@yya`&_1p>wgUesm;&--$TKl)MH%uR@P=5+GC*V%!!M7Mi~;k zNdxCNgg+`zZ4r14f1PgGYk1~y*dvsVgd4(qVV>+0;=HXN_-*5uWFyoU15F*nYi8Ug#x_ zD~SHe*{~-qnVM&@am*$kd;AEwbcK;$nJ{lCeRyxk1{UWm z2T9GnXN5b*58q-fth3zDsG86q=z&soEnymXI@Kq1eWuhM=aGK|y|of`2=3 zvv><+E!dWGTG+=fMgD@!!N4p(;?^G`G7zzs`Ti;Df=m)*tsnew2D$w!?d@J@3x(ir))>5{*a2)*6G~%&{jZ5***+P;OORV6)P>wJ!?Dgp9x4eikyHDl%ikj zl26Se?0cijOgs`K0@}2-R^XO05?hFgAw+&mz_%y6zSGA$ZbO$%Em|``+Gan2?@p2l zh+WAZn05MrV>ZbBy3(*7J-O@>eULp5LwI+TugSx2VuKy)R2YKv1zlX-&(M9{1}zc+ zp?qfxbP8Dj186fpHtqXtxKD|@OCZz&Xa}%=&yYxCND7BI3n3B0PiN>56wh-_=RsBo z-F)l#%wUQBKJ6eDk3i1A&e0fA@P9bQ7!SL(t`=%i3chqu~d&J&M#;W|B}X-OW)F{zglD(_ta` zpV}f5N$gaPI{T2bP(?Y>vRK$^e~!5?AnZkZb=Hh)|E{f>4a2>jo_<);axBTOD; z-qDy^f9b}B*{s`iOKE>#vTuBTa=-{c-M4`lq8s==a%~Td;Ns@}*+3F5ph7{fVrCE$ zfJ@+V-T1OkL6G89RH%W$1c6}t>+=|^4b1_Q^2`fH2`Ug7QQC1Olb~-I`nHyIP!(gO zD%{>Rk2)4`uFM!G$K~`!j#l3N!M#C-JUkQapkrRExnq>9fShSZh4?}CA{ya`KK-rg zqY_{87Ki2#s#nTDVDZLLQuVPgV9^*hYP_;{Y4v^;+ij3844wVLcb1ipM^!xQFGQTO zpIb8FCS7Het?ppzCC!M@rQ2@&_p5jg8HT94IsRn(7kzDV4!I)ixlg|?8WMq^ZUBzO z{Gc=>X$0SKJBLCb8-#{bc-J>>s2r+Yj5Lf+sX3I~!L59sr!KBWG6?%vUhKxTk{J_- z!}6FP`}5HcnCzF9a+6e=HxM`4-M?5d1kgD(QyxN!qeSQ>u^ZQuw$5P)KU{pqmWuAn zlD=8(1PGk1UzY}(qm+F2yufNXLrC=5T%Acq=tE!_nGz16Viu42F=UuX=E>4TcWqvo zIUt%=5%`P=WSWAt40!AooI@TDjHb)4u@IS1a&V-^h5fv7`crPo(!(KE`=ne-w9x}W zDh3fPfK^6yV82eMMk+!x(r@6B)sYIB1WaoQa%vXb*ROr6aOchoa49tG>hh+ovwgYU ziPC31UcI_1An+hv4ZkL?iowBv7z@$Ox_sAjQgrW^f7==b@J!e8cH{*tsDKVK1=Y{N z+>1QYy-IoH$PpmD3D&O57kn?=%p&|Fr?4MyMlgAl^SppBEw2=893yXGk%3Ni+uOA( zW*xq`2MRX%J9qB*MpuFuoso%Y8j==LGBPT|6)xR)-Abut&;zJwY0bJshJ-L= z90kXN<7SJtS2x_p{doV-{ZsLsXEkNVo4agz4tt7@-jk282{bPq_Y(sDnG|Sx#4}RD z0olOyVK-gTt-iK0eNd3lUN?Ac)Dp&sS$cA7`fGOleCdLSOw_I7o-LgchgA3`5l~-Y zzW}w!MvT+?e5UT+W^Yh|FlZi}X0z*9eJf!B4LJoxx+7$Jn}1p^7H$?z>N^%V_Gkw@ zRuRJ2DE6dS)WsSv3N%s{Xt4~Un2x4bbK$#J>98ORa zh?GrCPM%3i&%zD1Qb&s^=~I3Q**v?_%gpdB&SlMYEd{}(n%*r4D*y!JS6z`>>Q#{eqn-j0 zkJCitV?^RJJ8R)fC!~sl-#dbO!xXlXQ<<;&Zd3o=Mwzy7V9xcImyXV*i&xqsvdO+v zL~1(ry!N}2H~Q&hdHynou+w7vnF6=KU%p9hH??ufTFMz)AwzioTGxbEufwdBPF_{_ zBIO_cha5!O#f6^Ca6s_w)sT(juETF_Yaq%qNoNtl`%xCVuddtvrq&kDcX1Bd>obTz z55ZIRH(R>%-kTcL96{zYUQo2WlarLyT*(G40q*!;|!Z?n#iayCy2C zd;a`+K)mnJbAzR7@VURztrE=w;w4}Ky3O(BNdSFKzr6aB_3G93xx(T3&Jp0KUR3`i z5VE&F_|5ob1fnUWFOJh)=zE%ghGdP?{@8R+>;4txXWo<1@%qG-GJI3iabef(CoSPO zJ)UaZs zq#i?jC!}`X{ON1D1bGbQ4bQ*=a8gxzpxC`J^+aWl& z`+9M@J1OL`&YizsIOWeJX4Vy&fls3y(9d9bO5$FY7KOoaxmzRfF+|PyV#7Q1s?~rd zHoW}HH@!a-Lp1TN8rlnOLQgjnj55Mvvl-rY3;WD>B*lkMmy@za&waovx*N^THl-I{ z9R3R<^+qO*=dsCFEH0tjOD%di?N!=n(CAc8n^iX=yqJ#|)Bv)rkfTf{dTuA9ViBpu z;j1Lakex$Vgj5a?Yo@&o+PH*e&1hXyt3B+_84JpufVeCD;e~~=(fa2+VOO<}Yh!at zz#1Frh$yK!R!DLBOZz|Dd0jv^-1GA#Qs!}P5;&*@+V@SKq!f-SN-$+mpp+3Ktg)KH za}#~FdducRx7Q5Td$oTyU&F~Jbyl@Biea%VYu+wDs$$zzJM2j+kXvCn&)!7P8&^@0 zAl)a#S;u^sIXNhLPj1Df)7qfy3h{+afI$?l?zw)^`P3cVu=!7nQH}x;v z9709+qxXJ3O>9bRTU$yBVZ?yLWeW-)LvlNVcHcRiTxMoKBvdlw?IH=8lZoaEpmSP= zujxj+?xg~hQu!KuE+7SDPP}N>*JL%6ijb|dP}R)ex_;~~9I`nUGzwImT5(PB(D2#f zH>V9Kaor!yq#I~FF8-mQeDD32x$h9{v9Vvh53z^G5f4o8l2FjCrTRJBCd(qwCxO%i z__$)<8xUq21iWCsO`a3%+Luv4j?bjo72-r5h#o z#uXM+Ci3=~ml2@{4^mFR=3j;U3rN8>C%61TNah5|0+k}?3zNOk}SMq(p_FB2mK z7^eou7JAI0@Gu1X*b4|J35pt0!G^qVZ&WtQKX|rK!0K10n01C@Z;RZ}^gMAkM4|=n z+wZbRD{Z;A-EMc@^K#)pW@Yo94|{Oht|UdwwQREAmf?R(>$1!peESsclj4gTz+DDG z;{#?K99)>U-#y*|=_Jl68}DFx^)$7cm1*Xs+Ufq4d+Jc-H`M;UAe8EbAs4pUqFhW_ z=*f6YX`!IJ?E}JLPDtEJ*5%sH4>soPZHfMtaiO*H_S~HTr0*oj{Y^TvWi;Fj$|0o1 zp~GvEPS8nCPMqD=x=ZwOYBONBp)slIpwtM=moU%iMScstCa7goq&nhzDTk0~s6hyYce~`ibJoK4W!*fEKgBmPgA`HIqw4pxRAi zZ@uLyNnfRu+=klz(AlDaYOba|d|zUM3zKusXpeb;2^SKQJUMAHHa^bE%Gx-~@B0PT z6LiXncEb*SR}S=(AIUmGvC-c$-^QP(?bX-H`L++rWALUm@8MBqA6ww_{F_DC{!M5 zB40#qB0p<4wcEH9y?9dCb&=?_Jy3Us=5$hrwj|=BA%KbZuh^^CBA4J=C-b3JE^+ymiVUEk83KGK%4O^(lWJw-<~wGqg0szBNMfBPdZM zW2@aUMGkG~M3IA3i4cS7fBGmH@tNGt>g8*6`&zwJp{=Mbop*?#{2fUgqFmYgPiUJW z^75C&qv7vJJ|c#HT_zU!3A|#c5HCb}ZJb6fAiYScc+#i+IF$798A3vkUhZ-SiUNq% zSrE%kdWj$j57O&X^8ZSqFPf>^VVmZ6=&`Y}4-pBA{E@O}XlPhLB7LBv(SxSbr~7^U z5&T8o%j=HnJ?TNK7QBCk5*9(!flKhC6AFtUC1@d1Dwd5DOq`sYq@7TI+piqx`iZzW z*&ciM&D*!{YaU$_l8vw57wmCV&Jl=ezS+a$QwSpo#v*-9duqh53&S?^!oqno%rZbVdsJp zhbcs|&&bSdzB=6v^w0JekV)|v)E^g@kYMHGQ$@n4JV;ED+sj6aWI8XDs{!_eHJz`r zDtDa>jg8epb3uWu?L3zcagP#&e)P|N-Y(Y4O1gFW6W6U@qk+JkIE_3%TBe_IJ7&?) z$Y@%vaxvNqSeh~ca@T5Re+^GLra?m8yC#==cj)Wk&WPw)wC)W zS5Qze>rM-rFCtQnO-$TejYV@&T9paXzbWDbif!%9k%+Mnb_Tr|HyMkvt~xsmY_`ZP9oToy&yt$v_TH36>4O z`s_rIo`=#=nk-gqPO}Zd({HW~SVPu=Gr2PrBC@oYm`_3z>y>-uBAb&}%0b1y2^&T` zOtxQ!7`e4{a1J}uZ;n@i*bmu*y?m|TJnW`*RFZ6@S?%TDIC>!NOm^E{j-Kwt>w4Js zTxu^u7B|4Q8Vy#3Gr4UdojsYFtA&+2GMSo%YpqYGQog#VHea!2b%W|p6NTN)-pc8kv$|aw4|4M?2l#eY@owEp za>9vj+eC&T0T|eY_VZ_Wf|u1y6G2^5xI4kloWe6}9IuT7Tj$Zn0ZU7kHd=0s;b_gH|_T17x~|2pBl$ zac@B7tbv&F4i`GxKXZ;+^Fh1_mI;JM-}%meds|?G_iD{ zV!8DfNFj~^6>4B)#HaJ*6SWo$)mor2!pZevb;k{>;xU>kZuOU9`hf<><_<%>6&m(j zWj|kZz~Tq;J$jePSg*GfoJBDK{wY&7N%|COii&ah=Dn=EyxspM{R;~{_EQcbep~{d zCFIc|)MrcXe4t0UHruBZDd@PA^%39&x$#Jg?dNrKP1j!=_-S`_y?_>qE|X z*xS9I+*}6Cm(2GnYSAvp{W=nTZz6LL5#@g?wl5z*ly4as8RRqEf`S@AZJg=ROIOY0 zdGhn&LIg~j2brpw8u@8cRAeU4IV(0EA(5!i98GJlE1^=gJWAhP~qAX}js$}La&2aPa6?|EXiMf<- z+Ue=|M?}?VLtqf#nJ8iBMx)#Ym{;D+QSBUs-~PgYS@Hg5)?#RAm}=ge6||;MkhyJn zUjs=3q$DEtD*UE(&zm!B&3?ZhehXW=n}D?!Z&@f?-D=^#0jD_9PM= zEWW?^Z!*kBi3tgzFqo-5^-O+Ldpp72_xT15IH}}HYT!7qrR85}zh&!ttt|{MXukxS z19n1D@~CtmbatLOb4F##iyw7H`{`H^{C6O-PDK~a8t8$3`mrMnvsVj7O(%>i*0*!t zij^XT9tWcx=lWIP5nv>PDj0^ZiXPqg=%@+U{~-bCVD^AIBG8L=r!F38w*#NwXqLGV zU)o|6SVs&1xEmIR@6m$nVlam$Q*!52WFW|EVXl7S;>--L?o8kLJYZdE$$ybbf2izf zEf`Z@um}Stuz9&hvcvBw(QqQiIoRXAmXIjz3t2knN^oK2_O9!t!{=enUJqt}@CZz1 z?L7?U8sv$~2DCXtI+EoW^hfIhBw!e1+kC$huU(3*eb1uQ%#V(#VcT0Vt9l5XWeL7i zLSFveV)ZGxbEVk1>tN*f&OvS(7FEGnt;>+hr-hk%U1VeA5MqUDfk!iTnCtJp%F4Rb zS`6Lq``aP1b14`b;n76XLA+I;0NQVYdv^f>)Ck21lYtd?trZ2ER z7pyCH3Qo|_7;Qr>EtZIu?CpWjvXEIolk6aF?X7uns+pzK2+5TBYT?@v>7kvB`5N2#tG3-9%k8EWUq5UKp zp)Ht0_PlnzLz3aV%jU{8Ksz0|#&X2O5S_G-h*9^ywehi!Lchh=v_DT;$bbF zkQeVC8^|<#FxK{*Sm%H9Sk+^5D;SBjj3HW&;3ikDUF$$LVF{l;9{#F^`&d

>n5|aLitxf*c(F|X0`@W7{KZeO!e(bw|>_4_lVnz#L;#%(N6|MpIjDRxHsS5 zcsq2U`*y|>Ix^YaTLhrz@EPC7S0HAo1=v-RK7d14!{(qHAVyYrXy(UfsmYCS8$x?Y zb^i1ecLf1_+jfiW2$0X%bJV?6GcN0+$@t&=i{fRI!5^O1gb()qqiX0P?=f2E)Osb1 zaC6et&WuQUa`B|U9KLn3FLbOa`hhgGYlw9o^_SQE=%dfH&;aRL)Dd+DK(q&`tr_6V5LwWT9f7D6B^i}YzZ*uy$cvb1o ztoDPtlsap1UL}aZ8)>_4aiQVlsFufcsSI`R?uA7aT1GirnXITOd#Tgvs>pplcSU#2 z-ySC?oEz)Srx@c&SiI+G+pIAA4nCboQ&)64FdL*|f*l>_-RgD%S1m7Ot=E+|-j^*t zQ3k09mYwhBqa|~?KE>qm6@tn%Y0;Q9PoI|4I?9%X*O<`qCWz3N*Kn^y8X2n(E`jZ z@l+*%5DwntVbrkQ0EChddme@eMbOx6K6eU0v-naM)8nD|9-R;eRz5dsf^5rc*{C9-U=WAM#gh5G%dJk{u5+}4+g`Z=_Gj3M^$eJqP-Mrv2 zk@ut)^+o+LHA(6}_zlwE{04V?lPQZDSCq%W`6jXo-w)o;`JfP+c45{?R(a^gRh_L# z*Vb=FW~=VQcuI>aq#;!Uq&$%%O9rHL<@xyU4!+!mH}3*rg)B}c0ahL{V)<_gQ?Tq0 zKhP55ex{Q3`bp8@h#fHBFRyJ{%npm+z|~S)_+K~SzCbacfQ_rUAQgQyB@vDkEYNG$ zUTVp=0iB&Z1?6WgI{4`yreP=DIP{PJTfgX}9JGg9D{KZ(Al7+DSJU;@RlETMN=AJg z{o#6%_E*V;N*jagI_m7n3U}7QjECWy{Ncc?HlGSa{{j(8+GR9S(;F!i*AQze;91bq z&r3?O3yB7subxuNv=`U}Ely~dB6 zlIOMfy^$@nj~#bi6r!>ACQ%%ETmfXUU#%L^n=cYrk^EAw2nZ~Z)mJlm1}Gv%y!Ko@ zhfENsR_EObD2s)euO(b`hwYX0P6-0knhJXb)I-2zx?!+`G21?*J{L)^-hDF-&H^AU zF7kR2V^x^@j-0OaY!TmMW`VN%chY?dh&zkcZm8 zTLeOU+UUFBSepy_S4QNaVsFAOE3n+B{}+ZsOKS2eboIu@hxFPfD{42}7h?vj7K{r| zuN!IXaa-j;YGdE?L{c{b&!uQa2M3|$=14WiTRPKE_)<%;t-pHx`m)T;GDLrX!&r^W3 zr$WgQG0Ilk)qt52a+R_-c>d5!21ap9)y3e}pKOX6U zeZ$1c=661t42Ua|mEzR&WSh(4I6w-8ud?rEw{=^J2n?L~mT$GNkCRSUylYH7GDLr5#vvDPv`{#`tM*}b(BDG*JGrfTmq0>su%kCrpM8_d`-4v z1y=7;&daQvg9CeP=9jllvI@#cr_#S)6$+RoPVhxLYtN;gDWnRxGs)Y>$x-2s)@)ms z-ETtf@-mjm`34(ejEf9$s1^pJ)x4RWYYr~|>NSzq4_r?&xGNTUBHAKEz2H!p+U78d za~=kDhADRouxEL{xL>cS{(`!9e}4R721T?47Nw}(v42d2ubkMI5b_y7aFONvbuBa! zvsR8VKg}l{uEn*Z1jsRd6UgeW^8dHnn{6aq>H z$kDt1|4zdF$K!i#F2Kie+>SZnyZdLnuuBqFO-IYV`ol;`wVRD58faiWepd{9^w1N8qa{$do z=&IoiI-&e(z?$o*bB6ElEdsbVe#fx@;RBniO6{Aklq>0mKmA^4z0HdQM56L#&xyQN z0Hqx+-=?uvo}a4*5{-)Yt{C~co~!S9cl`k$wcoEkjPVM4BGR_0X&m^sg`=NeK_a|i z{6%K-Tr_N?0Q+t(?eZ_r+j~LH^m62dH2WVg)1MJ0hJ`- z1P$Q40I-p(DBxM~wQB(73EU+?kGlA#zGyAHehT#@Q888(uJrDLDFkP3uh^-`m~ zshNPwOeNCBX@7w$9Myfd3}&6Yba?|+39D+ocBON4>~@GT zyfyn^pDGR?3C5OSo$E_77Y0#hRFC@b+LqvECCqF0W{y^RpND5bJ;!vBk<{(r8$3!0|l(}I5J5_nyN=~xEuuy zZg@*DA#u{l-PitC(%2b93{?Dsy5Oc;7v;Jx!GOn*UK3SY96E9Z1rFpM-cquaO(R&b z*@b*JBHmNdrCbU5hv!vU)sPYu0%0)q;({u7u%l!KMca!!z3F={n4|1eFXz@UW;>K; z%~XfkLX{wJdbB~XFSVAe%$9dof>Cbe0zR@Tc!biI|Bq~hzS@@Htp5yy3&WkWIcN+$tQfcikd1?Zl%>e=dO``=gmee@^A)}P1)FS31%IVd?`~3_4p9(dCIQWb(U1Ff@?V`x(WB2S{<+y3o z#?JR#OK=%tWPR|uN>IxzN9wyz0r)AOFI)jfZ@k{F_NasSvf#w?Vv0|dU8M0salir| zp0_7%T@3iV+K5@p@=QWy<8u0@hMExT>jJt8H~=|VTvZ?OMeSFZY~6QPUwgkuf62mE z2x#U%vEiUFe$hL|p`p-KC@FH_*63hEyd8LpV}6tB^mO)&mu5k;_EG7FPN3T$8$u9p z%eg3_Z`Ls%&SwLg*yTCKk4xFPZb6XD$-b(@#(&*))x|Mt(}7X@wWKpCH&>(?%|R!% z^rXy{Bmy?gn^4)pOb@am!Q^KSQ~z(v$BZwG5vq^eB9(k%VTW2$y{Ldr{&&($_|HBzc@d>@**6Sd?r_sZC;~vL;u|MkPDTR%W z-Bh(I6J?u9O;hi_+G7b+l!<6)YUAv`b<^+?0N<^WPoB~sS+B|$bYF@2Pr&(`yo>Z^1Eak}JWOUfW}_u`Ms zQqRE=h>YJR3ltaS*mCW3F$>n{`|>h6j{_*_0M5qVWm2;?LD$u>jmu_ zBtUtr1)y{+dM!bt)JR}q!qxC&f!)%v(9;M-hyOjog=H~xIc zzP=6O%+}*9I6Oq=j9JmE8$9;o1}(uEk=imo-N#mzuRxG<2YN|TUY}NI%_FRhWK}J>n&{uPRX2ek*){isx-X<#8ny zNxhJKQn&t~)@woy&{IfQdj(HBGtJ1-DOqpN9Q;kdX$-V=19V|Go zW}=hZ6d#HikZF+rf#q8t)T;wSUBb}hJAjxXEH+%znuXl!A*tTSlW}=9EPmm(Y0J&f z&6^YB0|&S2!)wzH0qNZrx^bw0do6@G+mAV=<`RT2prKRKbNrAwQ%Q;qvm+}7cddf$ z4rD-X$8|Y2|KJ7aekp6#{u6xD=WJfnLw6Zm>^+q>+H=-@YUhv`%w{+cHs_pa+aLxz z*@@gi&c7>s!0^4<`{mG_l_KqGoBoq;TDQyOZ4kzre}m8Ia6`6yyBk_3`9fKN@@y+B zj9+XRA6_5etka*EHPawo_B=kMWLDxBo}%w~RNL_=4RGT_4F4n4_PPw{)e+cfRY|Vj zeqw+~xO6_YkE2pQCX&s&Q)Dn|J0!_F$mNB4&$#VBBq!wlpvQLqt5WvR^0p@xMKm^{ zmMt+tNFk#ko6$2fVNx$8nM75%dNPBnd&tg^L+-|2SyF`Kw6m${5Sx|wqjumKa@qC#c|3qlKa zUZkH4muC@jJOUh~M@J-!m(s)52S5j=itG}v(5s*abh*1NFJ5sH6$#y!GDxx<}|MC)>zYBRB z&0PI-&}6}S@dRUWDW~jiy%lQ^UzxI~klfU|xn+{FciB@U(fT)0c}pvy{MCCA%04G) zO>DJzb7mIM28^GSW}dl#yJvP3;Q%3|9=n!e(eNK4ep63nT=ClhPz4W5j47|{>IueY z*L4Rnj2y@J%W(7xeX29QV8Scd%IP;&EevSk@^Q-Yq*SCebyuv5q$j)bWr+!#JQ(>AF!7Yp)m4oSqurj2Aj&!rSoYT;8JJG(A z0f~BD%=gW1kyulczIl$W?e=M5?rzgQmlzE7b<+CS0wQuvUc12j;^m4`MD`8LyB*XP}x7U`LiyD>o5M*8x8bDWAoeS9Vj#{aX+qP5@dC*FcUoKJp?~@eR9M zbR-&!HZaqky#TH@&HTpeXp4yetI2*?FhgJ11XvSk-c&%3Pf9F#3H(AvL#W27xIT} zz&$U1sd7!b9@3r<)x0Rr!tPkfZT+h~lxL%_Oa*w+#0bycnRlPvRSo80B0sxrx|aW< zAimC*SA6~Ccwq4wfE%!TjLdkuPqCJ_F*B z!uti%`0~rOkpOua8H4syH1n zq0fL_n%D@kA*=(Y;pez&NG`!)l>x8V)4pAh+EQIW3nT8P#nm3dMJ&9QwNynQB=0!k zl9@(Do^<#!ZqwR^0C`&yV`f^WUpQqE3(-;{Ko%+FnTu9ajdKJj+GuGh*sq!goeD`BIG5PQ$xk9T(0x|jkXj0Xf&m7Ps5WRW}V%OXXZSxLR z99Eom@4PJa80?Ga)`6$0CEadem{%o zZ0s4FkrZ2N-QbL9?NKz))-vx7mUDadSuH;kzTCVaa4NSUD9R13YDbm5W-%V>Q}u;L z93PB-zY>qPkV5K4q^jn;M5i`c^^5>}4CvOum3HgxRLGgd#L;sED<7QPXIq<3W#f(y z6g|YB&%ErCpCeU;HuDtp&Xe968l)gb8&Ovqxo;zJ?l(J1#%YTG?sbWx&Zg$D zUop#bamQl7!sb3s#BBt$#$;@<;MWw`aa-T*_50!%j@`}LZ)J7yo`BQGnu^5WP5hd; zNxDHILyPFc9{Wu#P1l&m$(tahS3vja8FO|D>u-g?c{;ke8_C~0evWaCahGw5VG7NE zjyWmqcQdbGvrI#VYD%g3JZ}0-TPSb0cIuORQq}_Y!Kb{<=Z~u+z=>|dP9?cPU?Rda z-ZX;l6-}c6twFbFBU<|}le_=d1tQ4S%v;S-cK#c4rG#vD>QDuFA0-|-JGtRnvq@MM zW*-3cD|`0?)Qr+RCS8{5QEj?qTp(ef`2FS^K#Z1t$c|5hf3AJ20L$(zx%9`Zx`W4L zD=vF{%C>k32UJwt`|2KbPVBlX;cxFRH`I-lc)gD9zd9KcD+d~JkC)?hAgcOdiW1>@ z@HqOhSQ~nT58MxXY`}T_+PRFxw+Ndlv-Svlsa(iIGwn-AN(?+IpQvP6MQS$z$rgF{xVk8>x@MaBizvuQpga7bAwbBF+pPKo0(GN6S?D)%gTdrX(8m0u#qq z7-LJ;&=5`i9u@dLT|CB=6&IeLuzk1h)5OJ}IX}N-to3DFF&Stdc4$PzCjnMKlPAwj z1^uu`0N26A=I+5i-HzboS?4CF z{-Q`ed3{V9n|R#$c6mZ6M8WD0VA`HQ^N{-P_xETe$E!v{eb(2%qv1+0zF*w#EtpZY zu)|!lZXA%CD&39mH-%X>jc#bG;U~O&KabC~n4Px!!|wpl@rHg{i+Y;#HupiS$u&1) zTv;t5Zz}V0A6bSIT)AEb_z(auW;c)HO;}3TSJD%utc$sQfM!FDgL8Vn!sh1oWMNjl z;zbr*qC(uq>XiUqo7c?e`n`o)W4E6?az1^0kW@Q!7O1^!FZg@UVo2Ca@zRwa*PpWh zrk3GzR@5qh%s5%;_MleJ_^{n}<21uCZZjc!qNneuu|3!}K~*)l`_mEx_I{HHo%K z2_B#{D&^%jCL7KbMdQMI*wZ*{wVVd`;dJyb;V@p71gH8yWzn1bKavgE64**Ru-})| z8FSxCH0VoR*RtV$v~R$22OmFvvk`v?A~F#-S{^60yi=l2!vB&x7llYja&c<1b$QO+Fs4~i%H(eM+{b@w5Y#A zWJIe^@UdFgPgE~E;hCl~%ZJ>I*Pn9`5YwP)Ik-RWz`6}D>A4Rm5|uK^RuE}G@?z|4 zV9e9J2LGqnqYiNojk49{_&Ydge_V?1z}@4XC8#@NDY+3+6Vu;T;KoFNSF(c&v&wP# zu+}IS(50Y*Y^j_f@}fJJ)VljI^`~$p4yyo(v^a`9Pw{?1gqd`iI&sjC<&X%;r6|+l z%lHa4eX}QuN_k22ArZ=Nf15t(xN<;U4$f03v{U%n4b=;3-^%@08`k|0h>w3Ur@!~i zy`Uk6tNA>RyT_$Vhc|`uvPHAk>((j6w6N^xwKu5H3ZuK9&|}L`r_Bmnmq-TIkJ z0ap@mmw#rObio{oN-pdCW1_Qw`<|Zf#59lXx2UuDu++2T!b0G_zuDa0dP=U0|3-=j zO{S$#o(zyDVZ3^ED0`(pb%M0pYsu3^_2#cf%;mj?lRo4gvTGE{lWYv&G5$1_gtj?8 zUSyhwY^~4iW3i5*S96s8n>KknP-o09Iy`_;zAOqD`t*TLuba^rfYZ0VaQ|sKd`aTb zdH~h%8$}g)*G{pxnTs*(YC1*;x1nYWIIhMO2iWhHvhX6BqQ6TJueG~OE_+!KMl{Y( zGF?xMJwHt^t)|4$&y;_uaNj8+lkNb8q36CA>_q|`PM>k9Ew4mB?ia<81ckn+^tJNw*%fW9wp)l3*Ip2R3E(R3E|Bd##6%u02HQSAD)%ps?A1AThus~ZAMVI` zL6_0C?PwNZ$@KRKgvyI4T+u69&Az~omEA45L5HpHy>3j+ZG;a5 zB^mu#UMC?&?_Hb7^C~NPginMijO11s&jifG7)855grSjippuQ-cMUavdci*D2Y+l0 z%&NKX7G3blsSCyjs*xJPJ=$-ZlRh&4!1e^uhTL79^i`QB-hX;exz(J35%62>iG6^# z=;;*n+nhR7oz2;Af+HbQo>Ft=vLE+-`01|+t|Q*cDs$76!4-=py6DpUCis99u3QpqSN%74oc`%_ z;&Y+K{sc>gU~Iq**=sq+Z4{bXKl?zywUC?Vzo1@gC%)exAEsw7m}=Zr`TEYKTSpQ! z0FjoSAmzB23V~=-F9VweAJX!VI+Sw5xoq!+P9U57%Z0wUW=rEpE?r)_Ju<;y;(f0J zs2b}A=-&VS@vmSlIho2F$Hjz@)-um5U30K{DAKtZWZhNbFguMP0B8toe_V1AEmxE? z-H_e>vl_1+iK17vMk{vAZ%(Wd%Kw``yGOVlW{1HThx4*dKSxdEHhwDWIvt-R6flhn zJw2C#BQ?hd*qPnEcOejy!|qnTwb3VIG&h}8=kO_TD^+Z@@9Xt=K5tlT zf%94sq{2hsZooVvZZ7CF0*OJDWM(cqb>@ex*>}F!1)iX3X~xC#hdqW5inc0hZPDeT zdx}Ub_9x za`;E_(QixkL+5~eY~0tg*ndWm(o-q&uc_q#0x;xT7ujZ%qfO7S_lxkmr4uJfsWwA# zu3Ltcd`}aE}*T<-n|q&P?C- z9=KPaBQ<*n+URje6O3=NQqV$BP;oVuJT5oAHgN1RX`EhIZW5WpaU;_t8K2rDP%2qa z_vB(;tTp319a(uH;M ze^1xbepfJ(t9)Z}Nc9qEy^b|;;sR4TVQa4?YldMbUtlow?!)c2#oMaL8@tFgT;Z86 z)2OZceo+f7yqupMYg7f_T?KQm>qgV4po~(CtJN0kVA*wZ{Wkki#hWe156heG5Eync zDPAnx;}xGK8mRpz>5boW)f$cClYQ^h~R@w(`W?Ze)#nBvTpW{{oBP?ehuHnEPqbhWGDw(<#VU~|QP%qTgp{zO1g zse$DM*QB-g(>_$^8Sf~8X-rUiU?8ecL|AACvvh~TX=sB~0hqjd;&!-|bRBuo5|>{0 zKR`D;Wx5+msD8$VWL%cIlM0tESD+gPTJ}nO80(q_M1_s%$V(qffyxV~@Q#PhDhlJR zC%UA1TVezOo0&b-EEq~p@W!*F^G zk|WMf5186;3*zIyXRPtJRsn+Iy3Z7Jyrw^>=;52!@Mn{tsw{`+Aj_D+H-;Mk1=8dMC{t@-+KE*^6k?RuQM6v z8bAMbnf%P=A(t1M(t95V_QBu5$!%T<3D=~)yxYjC)8f8#OMTfMo?_W#sLc`}Y0PXB!{ zyKy?eHY3P-US%S%E<=41Z$aij3I%<>bNAIxq0!wB|50dUk#tSf_pq;cQ{_r#LS50L zBFB{DchjVv5mn=qt@hzmy0UHL&(ceej&qdOYvp1ed>4jmWY4QdQNN0Vi>^uONIEm*v9W(Z04wQq^|wpIFjm8 z4y#+$YT}K_u_D$tJl(lfg%^3L?gD#7C;68p0o%0rz}RT!IOM>bTW*W49VIU;%9r!3 zn_DitW&k|XyD0}De#oE_t#UH(McT-GVnS;(z4x*;DIo#Lqd)0k*QJGYMI5d|xtw)K3&_3&SP4sGM%;;WGk zi}-|oB^qD2(}E-w>&Jr(>^F%6H@t5SHr>RIR*do-xLfOE%`{d6BncC(M@g=JNs$m8 z-a&oAVCizU=56*ce%=N6?Y~_#grb4n%*es#MzY63pF9ox5m}{l)%-Zkw7Dmh3NJ0x zrpT-+O21-tvfbUu(wk@!@Rpi0apP#HwordFCGRnZTSH3F+YgBTp}cr$FaLTEA@?Nxi(%e{P@O|5ByoO(htDR%0{Pq+gz=lwA| zOzhVp9`vUJXN1Oh$828y0>m_QEKHtscl-w4tLv8h)yN1sLfYkmgY<@enJFXC#MaN= z$kymdXeQ+o4K*O4+ZWY*ZO|+J)PvEK4CXSaIv{2m0(UzZ!tX0TG-R$T{0d#+;TCgJ)#%gju?|gQ}3vhpg!pNtZ#_g zfNd1#m0bJuyLG;xs?hI@|^&Z=haD~g0~5@ z((?WCKJ`5qYoK4c-8_frMlf<$pXiaY>(^hjE+zu4% zKE8-Al!Xu#R9E@BpMCV49eM0&#S>3*_2u(HgIJu*g%AV3nVbsR=RQk>u?exHG5ua_ zg-sRAo$NihOy_%)1k94$eZW!*8ie3!G2z9;!U7d7p^bgx_dV4_;%!B~f--%eOcZN! zWxh~k!^rkSfwNFg*u@(4Z&{<`W}Y>|a|2FUGv+((t9B>1eS0}b`&PfP(HfaC}woL5jcdeLun16XGxKg%z<3a?u;94=S zcJEY0(5=|=%tS(FB{#GY>;@3@9oE;n$D%zEpM5=D!vf_dU*6NZbqXZ_YQ=W6!g-)| zeZe4ri8jmOZis|7sd2~K*F^GgDaBL1A0MB5jkQS-6~yBy&d2+~ zh5js?OyHg6L}3HTiKoZEW_7ySy9aDrzOWk+F}jaiJY&wU-{Un;X>W0A}1)T|e=9M5gEnX%eH zqn8eg9}3$CJq>N?{0d$J9DRTVRM{tx1&i+f0s@b$f3%?u(!OjJ@u$jJKx5{d`lQum zTfP9{T)a~sfVMh1zWeu^ywba2-_23oR=QCp?X?r86(+c8QTE3*U>3DuNT#A9pS6h; z0o$ph|KqQ76_xU|f8y22%)h)=wUf^&Hy6A1ZT&r{?Q z1R0i~yjP1n29SUqEYHA!%jr=rdb$hwUgU-Ykv4=Q9Q29~G(~}yu{AyK!Q3^w>bKnm z!KOS7zpGvdA6X_uY#DwnXmMuE>83DU|C47(iip|`bJbw9YQy{eppWQRBl{WN`+=at49&Ph?qBnh{ zAN0jP*f=_GMZoVKYiO&{jhGly_FmWJ&HKv_OtJVF;DF^Ext>&D7xUC$ zGQ<);Vme`=vpwQa!@2}jm!st*N_W|Y>J}{&O$OQ~NgsLYk@1?&sK}w|9RHMM?3cQn z*H?`+$A^dzt%e0n_;uQQQ#^rEj}mEN70Sq6{PXWZLc>JuzitthG+gO$8PHtT5Nkv1 zt~%HvRqvjvQEsK?PffTBgnYlroenuLw3pv)EOf=TKIgT+<{j0ZBcr?ccXxRo()$-C z*>;|VN%reVOXk9k_vL-keEYPeYeQ>_O~lcd__TI_wvcUvF*O&tY4pb{Yxu~VWo$L; z!Ob;=svWlEF+l$bj`s^uXK^OXms52tv&AA&`jxPoM<^`J!-(Jc^kHG26|7UTN^$YR23+W}W2@E)9AyjEC!QxN6D`ldp} zz@x?`r=PJsjg%}wxxKx1jzCK0wC`YrM=j(V_^Yf5qf8AVke*06rxdhT&;2x8)Y>## zRIS0=at-dM4dK+N-fR;l@b%(^I!F7K6vnzi^0}vQuhH{VI7HI9s9;?WWx?a63xT= z(*l3FPrM5M6*|utD%^se&9PaYdcd?a)Xj0$fQnv)~LXBI8Uvb4nHspMKi z0>yghO&L%3@WLtSRk&e@8>4KcQF^WdwU}D)AS3Y1D8-Cek19pyaFFX!?fKgy5q;2w zkXr!`*52Tr0S+0l%Nk@;{nYtW(+9rB#}EnG!Am~Wf_!hK$05#D(KRvam=3khk9atn zaSeIAXaFC>Skr9U{rbB0>tOcyPnxuqy2-T%x6rfKA!~;lA~|Oej()EhD`DXoX?4hs zrGa&xpw+jLh&cwVA0LT0!YFG(wTqEg5ifP8=q1Q;T<{eAwnx!2Hfc2#LDK%m#kDfn z9R%8gJ_Ts{KAg|-Y1v^x-plWhn2?a<2Y?>6 zXb=)84;$EvlSt--okdv;+Fg;7`XXNaR`g)p^;3xP=8B7;!rp{t=paQkdKv3nkCIPk zwE)Q}WW$4^-is80ktIivXM76J1|X7)8L738hUXS5iYpOq-y3sL9O*_&w+oPGuyxga zt7me9*JNi>m`WETm1i{h|1wwYY*+lfqV#4cVKJl!B-d|`Zq)6iYk{iKluEp)rnMT7 z>-{0UfhRfY!KI?bnrCSDS}n%P2HE92ZCq;m)ngoj+ly0YR;0|S8e$Ay>1GVoLBa-p z7~>GQ?C6mgy928(`dW7W&E9Zbd9xl@BJF4eSKG*B6)s4Rfn3&N&aC-<*g2*|d~?dY0dFn;)X&n)fo<(=6zQ=A~Iz8apx;MC!a zup%@uH6F1HgDlY&1P68`Cp6<2R|H?^=m`fy#1Bnot`A_fMDy#)LK7+|@} z*oi|g+gdhPB4vmVxrr>$92{l-KSd9&eH#CtU+cOxd*9Do^R*}f#@B3yr_bqE=sDi_ EFZ)uM!vFvP diff --git a/docs/source/_rst/tutorial2/tutorial_files/tutorial_23_0.png b/docs/source/_rst/tutorial2/tutorial_files/tutorial_23_0.png new file mode 100644 index 0000000000000000000000000000000000000000..4c04f2e5364528a8c10fa31317eacf3cadd83599 GIT binary patch literal 45759 zcmZ_01z1#V*ET#zNQerEAV{dgP|^+3ARt3YDc#+j0}@KdAl)Gy(hZ78N{d5xNQ-p; z*WCB>yzlXS$NzC0IwRnoy|2Blwa#^(=h~sliZX=w6!;Jbgiuaa>NNy{4c_0v#l->N zfpLz_f)@c7={GK__GT{bhEAps1w$7H8+#WUOCwr0QzvIjdpj;xK30zBv=%Nd4$gvX zY_|XN3#|4|=4{jWxF5hl@El~{Izu4$4AFlu3PlSnA&{!)a#G@I9%o0+J3?PG`s)vMsKmeTAW(daf8WJ0VEy}smN@u7Ka+<(6%_CJRRk$Up)w{C5IC)59Vww_smfr-Pw#-^ksdR3FV zSMR>3r|UexL&0eh(&W08&o#&|ScRSmt%!!JrV^@#XK4 z+@tXdgnIp)R|%o_;&Z0|tj_&c&g+BY;GAo0CONM%Zw~wp?Qf3l1=rJ@4~P7&$No0m zr4r2h_TgShVIjlrncZyD#-86zvu^4(!~Yz@gNhk{YiorVzGWZ;{0mQuOghS?M>#{5Azz=EsbWk?;L9Xxf8T5 za~{itR3biazP%?@J=vW#jwaLd5Vvo?s)JhgC$RMO_sgF(T%T_lZ(Ua0oU=(kB_e#x zuN)j4+_Y8R>@p%v#wa>Z!`M)+XaDcoK^E$KFOG}k6IqLkic}I=b(gMxwR*eDjSgo^ z)_NYSecTe*ZCEzC@$0~&{~b)GH++3{F+MX>3SO)?e-=>)x)fdsEkOR~KBlWG39Em& zNAv3g4WiI-xr;axvo~LSFNJJ z>c@uUaIT{n=OISo(BGXTNTt}ppQZlyLFP@%>dD17n(M5y zgLUifD5}lb=6aY?Mrr2d3jO9}bpciLGJpRw#^aidgWh3ej?fBoF zs`9eG{bILSaIfXS<#^KEdbumIX)VRt1?=9f#`TQqmP!cZLiqZ0Ifc(Y;~}d~;nb8? zBsqsf986&p#7C0DS*sO`A6q9{B2>%MQ)(|ioE zKlf1~){y&B=xnpweuGGN>SK&*Q&QB8KKS2+A=~uh9^wzC@WpnuL~@gfj_u*!K-z@>jG#|QIQ;ok+EmdFLDUjT9j#g z4`W}wdUd!I&enxPIM?i65f&bA+hQH9@5&oLtsQ!ch3!;5K^6Wqmc9p9sI$06avVaeE~ zrKP-zw+#-4QpESDUwDw8O|f)orgD}5{y>C;_T>3y=Bo}mqXtzgH((lXR# zWAxKlqfb}Fqu2_+t1Y~G-{CCrSfRZZuH8m#f`?M*eTzOq3y3%(xmc9GpRipr8@S=I zdx(=}P{4>St*yh;JeERZ``OxGRN2qB^?VJy{jB|RmF*eGSdrUvtwJTnDa@fsU4gfw z9YmZWt@Ar;WP=)hWk~5Pe+`u3rx6dcR^c-H5uyWP7k$LD(Zsf&8#A`_-R8n}78c6w zh^wWHEmTEjN^0s6x+-Yb+okJq`Ca=Ar1G&H@8##i2&rGZnb#K93+`rD;ey!LY>VdU zE56C47WP_cDgX6LV`pkSe_em4WOsI_^`gyQUrL|)BD>Chz8tLD#6jq;vMZMXL-lu@|^kLS&xZf@wCZe~4$|L^ru?ApgA3)zV7&!_zysHL{v}qfq-Jg~z(a z=sP}(b{*V2!_&;BB@$h2-Pbms`aLMx)7KeM^!Uuo%(Y%en+@y5B_--_-)63D7`3n=n{Cg0yRCdDvblnE^jN_P`%Pb;aDYHD1lCKz)-MaRI)$(qzMq{9C zkzSlM@3obnf8@S5NAber^V(2m1pqzz(IV%C(2YLkil4$KGr0g|Tr_Q0_1BmUP+TqE z^Bb-n60x4w1JIM#e(r@XsB0A9Qxt`ExUbGp?Y}^=b_I9y71HcSQuaH{+naUMc5zT$ zu*c8AmdMk;+SEkna5T!Xo%k%?ezjvyN5y#5j?U#EO>9TmG^dK6DWGMpgOs3{Zf!mcs_zYdw{8iYJKVdH~&5m_BtE}`|I(^3`h6l+~p{t z^05QA$~1mmj1=b9*R^`CtKM2_%|q@qs8haM$1-*8)Gsh8fBw|d^1`5 z%iUWGUjxr))*fqSLo~X6x$}j73lu{catIPHss4 zXXbLEu@08=v&^%CM!1;~12XV)_y$S(1SwYsHR>@o1llel&op zq+nM$(ub+P-zdf>di>wkM4~Thw-@(r6E!CKunWd^ZWvK*ny!-4GZ%G!B9nElmp4*d zuj=Ncw(6?jNpBS{=}I0$-;v){d(goL7g$u)y9enZ2+aOHJn6%E1b@t7B@eFYRlrO>G%HGb8 zOH*&EhC?gyAKeT;hvFMDxAP^XeeA8obN+(?8M{A*e3p;lpPaM4e!OnLJnIzr_`+$n zUaI?-y^~zeTe*kG(*r)@;Lp!{zJ9arjVj9wB!VPGB(0^Xbtg37Kn9<-HC9}4@Cgh` z$N5e||4z{pjIkvC_LZYP#|)K#N;`1e#*>2dP&p1f22j9X-_%K%C}{JWR4MdAkTrGF zbp#6 z0|^Lec&LYXgozI^U~8wx%Z0ysD46Yg3)z_|8q08pokB%62repQ`*e=FVGqK%og~5z`4IX&}P+Lf|U&3W{y6BRnyb$4jOgGXi>Inw%%t^}`Lf z7PyTlW=vk^-Vt+fNsHu5fx-{@XiLG?LH=yC=9GJNu;Sf{(E|tZvyI{LZjS~cuK!_>*>WgIkO9g^4)mbDUf?t#|0A1edak z1?{fgH>K0^Te2Sxur33v*&#)Fn|f)z))-JFoYx8#cbV`BJAxT6!(QEigx*IjXo5RU zH5vQc*oY*Lc&%6h#?3)M8vH(sBbau<`;J%+6T#Q7C*)#vq(Nf5@KB-tRGCJtMH%Gq zbF~LvKR%LR7?2gS`#U@jDn2@u6Dp`rBD?as?lG_x4n zr1=K7u|VJ>I(crMlw*8dP^Wt`8=X$_(IlHO?bTAPK3lJZGx$Fk^pCCKOlLzb+PHs` zb5*cUX&eVA+Q0J{rSNp}e3@?%k&&6tblxK>B9>N!#pY}&xGA1&PIc#zFTW&?hGsvK zeIOXorRJn}+f;~dn(P+B2!{Ov^6NedN$^TXzLuu5wll=qUle<_g$g=ONQxIHZ3int zw%+TNxOjU7FXDH(9V&5qB0Rer3iR17BdeYMV7B_foFw2n|f1J0@Zo1tYy z48x-p4JU^23#d@{hmG@|Eh#EF33qS-vPp^$L+^XUZF$&q%zViKS0IzLOu@l|?gHC6 z_FD!$f-}SPob%-I8`Eq04qMY2%yMS2_+lAc#K$&qGaW7AYo ziS3G_DmmIh73f@t(q|}3O9zLAg&l&9RgYP-JmSI|N<4xt*X@3OXw0Clu718Qdh@9M z$L?%159skp$;e7HEA&zXob!)&rp+(fp70r-`PPY^yx+LodjFXU_4(2aE~6vqy)z^V z%M6Fl@v=R)r;h)-mk%oeabjh(kU+BQ z0WVR%*{zJV>G#utGy&C$_Uk4zYS(r6ihbTKdQGIgM%I2ByxX+J%A(iurlReG&&nx?|uXPI)U#xl-$ zFPSV<>SR@d^a3e475OfokKax0*dFmw^8-TnSkD?Od2Gohr-Qd_u;xXtF#f+rR!FyfD zfxILb5o+e))#cFTn2xJ({_xg-T#xBn=sNM zW=lZ+=_fSj9f25=s{jsohBxZEAkE{^^3qkwoY`iJkZvakrz&IkC8Ldea=CK<$W z5eV7Ju8&X<&Wxg>`XB(Tj)e%Pv35?#e;$}A|Cyvsha06x=}58%?fWD#2?%;mbCcC~ zKB8j2<1F_%*(LJfvEA3k9`5p5_tQUy=q3kXQ%w-5#?xIUun>~2tQGf>q2~;x}0(GJ2%<|90lw_w%s$t)j8k=J2NH0 zSH~(P1%;7cv`C^=a+~i(*Hx=EsvNLc?lzA+y7LHzb%;=xpRU$PgBo7K`_tpm%YJ_- znu8X1U4$OX@mA#V{@2Y~&55OOO*rWK4!bDr3#+PLg9uj!MC1{gf6a?ita5FhdZuC# zNXuP#NiIdiW`QTUVh7qA$JOoNU^BPdx6;IP4%)Lic_^HZY4guil@Z-`i~MwnJI{My zTMeR!0p^MLPC_G2eo|(~9WqnYuyT>F zBtb(z_u83NrOdm+M2N8g9d=#_8Y?Rsn+Wf=%1V__pFZKCv_U`VboSeCjAhJG`AqV| zT}yDza`R-ne=hdeaM#5;2|CO-Pv+zCI72Oo9SJl4_Iu{G*l2DWO6NG|QeD{mb#yLH z-TJ$xlHs1c!>{TD3t_oVu+)jm3kbO7yT+9{0@_8_Y1?{Bz+s;c*dvxF>HwT6qSbME z#v@{Ek^@N4T$$)!o8u+ML$$TFmPec8a^0fOB=k$nqk^ci z)J)A{XRn-gX>;*9p-M6;uHhh)?D2g9g+{mP!se`` zqD>3kBUK=dm~AJkr1|E3s(EcDvKpP&Um*b*?=rxH`u$7WemwK$(!6!Qi!z17_&v@Y z@+<<@1~DWz;6u`#2L(V+pYW?fzami|@fJq{Rza;W!gLf1Z6x<+xm1)&7@mhHM z`nLW(5N)k+>3U>t0cflyaQ;Vt|5eVs+BQEr98=m_iBpPVIrx9HkZNjb546`RyQ#-! z8l8CzJFr&Q*RB7q^r8v)nQ6yPj@74Js+~0s#xq=b5;}n!938#Rn&gAwu$p^m)Jkj& z%VcKX`YL%C8@E2*6TMUh1lBO1W5=t_mC*F1*KXrFx8ssj_Z$}+aj4W|?Pdi)MxcK> zdkQ3ypR;q1%&S%lXo@%95$_(1VF%%n-BP)IO!c#@;6_?OLBSDo$n0D1K}z~G-bFGw zI?Y~2HY89rFJW`A%;aR=B>Sb5ly`fG_C|mcQ(9+^n-#SwLZvQ*S&Z5o*I8O7^3b)J z#I=O)nqT05mD-X!Iq?O#Y|S~cv-a`G5kCQU{(?JVvv|E=o^nAGah86zF@x>C-wH7h zq;I15a5l4E&svadXWzY=)634R8{3*NU`{eS2q3ELTh-N^8&O-ZX0vOB6L(QHvMFIMo*A$S3>x@f z@>+yovJCKLXp8R-Sx@+ z$6 zOMQoZ5<*FCKLR79vXzL)Uo)4o^_;$2fnR2f6y9<&pW5r`bdIzPu|8gC#=(llYqw^? z8(1)V+S|GNgDMVu?%vxg8zhxJGI;m*<`K^6J2_GI-Ux%=r1TVG$>r6i4kbH#JGVjq z)o_Zjki^~%IL$Teu_Z0gPc4*)L3&%}GpJf-GP9`Uh1B@eI@48E=?*~i#mPCDSn^v$ z+L;{oog7BDe~&m=gd`s)-cp^Yw~qb}VHvI71jZj~jsfk^I>tL33Qx;1?5zCC*XwWd zfy4a1Hk4OoC0UVD?>5P{4Di_w3@GomOgdb~cM9wq(k-}bn$<`?yyDt$$2*N=Y^RAE zWK{fPZS%+ZMIF=cd2!l1Etgbre}a0a=$GM*$IgAA0=UT4Jqne`#9jJsqfGfk+|B@d z-y0X=hWocswD5v1nFJLu7lJv(wd$To06M^Dj(H8meHQgLv?Ne`Us~L+YWQx?nBuc` zoR!<6#mJML-jRPikR2Y}OU7LixxIRUo75ROPuf1~0i(IcRyXj`nz|yHQ^e34>Np^i z!;Vd&$O_B+!$n$yBh4Bx`h|1R+p=Si#NQQ`ChA1=@t}b!z~%Ynbt@M9!IdsuaofRx z{oqe43DtV}zjo8IvaT6;0zIcKJCZrW28g>^;#M#CzwdQ-56vq<=KdUbe%o8ODZqZR z>wR^#f-$i^7T9i1DN3XO;6+5t&g$dY*_<2e^y*~#W2Tdy2 zw9b0^56<^}h=NuU$@tC08eG#>C!*JHq%PB-E}PEmXVsB*)7!RVHg7ZMOUB`)&krv+ z2sw#^<%YAW-oF&zwTRJLKiYdBW)@<(xYE7+yMB+!AO-FxiBN1hQ}LW+m5FNX%{0ES zt$y}4Nx?PMQug6fRVY5;N7E16~7x0`bj&Yi9=dF+f()d%wROSiyP6@a}U4$v2z85`lTL*^VyThr4I+z z!>4qBm)IuB+h@9Box+~XbNdOR1$u{2B4?NumdW2(ctV|t0h##VTzmo-y`F(!{#aSF zkF%1vNOE{y#B`}vL%_*#J2ZxYJ7_~rBI(=8(6^O64v2fQmk6!6#ltbtd#df-kTi1% zBW4RYf4*9oFOy&;Uay1;5bWiW5&P6;Fh5>B?qXa!F(pOifC{42cnQ=9>vSNwZ2l@s#UZ4~v#w~> z0PwEIDlq+J;3h8Xud8=Mc%NlrmMNkZd^YaE5Q;Fp0*s>jV*!B&(XPplt7+9q*P7Ty ziX~KCW@wPfbDz@~d;p8f14wBWod#t9e9#OkOd%x?ls5LozW}CIaOB6KUxBi_;z~eFaV!^>X61gGx$$Var_0vYZXP)XCYf=HD zHO0cJ$j^pmj4BgAb4^L109}G_Q^2JUc(nw*1)jb$KpKTWZF*=k=ebT*rqlQubX|6% zCusfA+1YvKSqL1T6Q&#S%p2w#W#`x4i22^8fe6(>JO(!&J-a{2wc*UY(L^X4RHwDe zDQB0Q0qK_lj8y56rN+tpuCqDo^qfjlkXjP4M!viF`{pLCx2L($BBP7nK8#oBw>PX` z9BmZ8=S+V?)sH2Ih(uPE&yk+xppjZM(+refg75OG9zuSUX~y zJI-&_-myFK;(}7)t%x@yNjNkTp<2Q$?YQVdCEx_qaZ3~iRay1p@K7%CnC4z4%gckIEwnLWxAjDC{MWBdARPPz z@jLL$wd=t- zODW&yMb;^+uLh__#t6RCZ!dT=H`KiW)%B=7QrxsC=QB|HH%C8(Q&3VaXV}}=sDTyl zK+OP|LCB&F8(VOpnWB0XX(!Iz)`{U{CQ24WlsPj*{nkpo;tZ2X@`kj zXDxdtH;EmBXe?kTC-FX9Xjp_{@4?Cfth!zMT@1+#4E&wAbq7b_q=Q1o-&e zUWXQCdaZ)TI@;Q)8WnnFpwSPiKr2f^*h#FqO|nREE5>&Su_`Fl)KY`xlSH;Y&k;%; z2Rue~9D3u9d9rT9PfJ_dqA-zoPH-;L^}reU^I7CyA}mC4h;=6aoiSIaV6~bGgB%*& z1B*^6hjG{MnlZ&O^nU+8&^-meLzZ3h4zJuO+QlQZ+aL)f;bJtS1FSLfe6ucbgQ7Q= zZ|-x7zd_)_bPT@v>S-D(tK-ID^OQG!-+D>x$l}uyW$E7=VmaA+EEvBvJ(EXiKQzGW zb=bO1jrn=`99__zw!amEq$&|dDeja&60BOFI9{&Xj5ay&aC2J#OIBz&$`=tV2-*?c(LWn zs1l8p?q3`gX;wd|H>W#OpH+_C|En5i&GV_@mlJ75yh--Fs2}|dfYE05scT1OUnJks z;m1-@sIg-ZGSi+0%$Wuyy=SoV$MA2?QAbQ_q@WS^D(a0KF-)6x%=(#XGmdwyt{Ulk zlF*L(xYmKiGP>s&Nhb;Gji2cpNWR{2_@K$x9%5M(%z-X=f9@f-u1Bv^1id1u6f}~P z;Ne#7wmT#?JJWc*#2?%u)qhJFu?cd7O?PJ;tDnX&d=!c&<1XAzw9I8pbj7Oux~iTV zwn+eyjcP~`UZS|Kqga<4aC%XD(DKvqp^hjNFD^8yHL>?cTTzn?{VNE}Yj8tOC9NwD zwwREKAUai#K?VtLK24_k(Q%}xKltwLG-0q&8b*6!JyAoJFl3jDPiSFOw)R_!MDh+_&d`I^687^6W zKCcOUw%o>JUzlUZ2;X1yJ}QlYLQX17B8^ z4)(FUg5Ha?@Td#vD)tw@y&j7p+GLNlpMAPIKCcxbGZw=5O57RFzm(z~a33}E^2GQH z1#|nO0z3ALGd}Befdb=T-8Xcp26QT9E1#(fqI6>(Rj@ynebC{Iu$H2eTxN1s}!UwP_%YVp5_Fx;SODK7MJV86&q||7Ks>k7j|p<8-Szk zB)+lsF=YODKxv*5!X7_Ac%^Y_J3kX;eWwKD3tNtE#7|&S5?R{0rXPP6vN0M|nq~ws%#WhW%P9837#&Q+LXxhKU#q6mkHO|^& zWy}=T>HNGT^7RvX3J(?Td+C0vYw=VoC8*R@ch=jB!^`RRUomJ1YRegxo6(J0ueZVy zIy0T0wfT5(0f`BtK?WfN>V=;CxVZa81kp%c;|%}qvc<$Uz53?XcxY!LBVOL|#mj&p z&wQU<2b|CjfA&UkY2zi;#{`f+qJyiMoL6rgFz>MI$AGRasyWG4a~a$F9}<4Ku0g0Dhza5Pf23XCL+BL>B!>@`{+TQWH26dg35p4EUZD z5#J_YlNm43WJA-qfR&OzOToN-*J3bDKoHp6egfy4LdJ`?k&%&({XbEtt(Jqqu@M=X zGQgH?de2{EfP(m-{s(Ypz8aLNhu9K#T8~Qiri8~j#_Q@$fIgWg6iH$@r zLmJH9OQC`c?Uh!aYKbSw8CGjR6pfj)U zB7wegG_~;0dV75|y*$6X#tVemn zQrO3e#^WjLqaR#DzX9_;42ZHUw80CloE!Uz`ka0q6xw?MOiETeQ?=)_dx!!VYELPG zhtES;4*vGDS)<7vz`COkOrPN)0T3ao^lkOyX-%=E$LWM5(VF+|{J%cxILQ+!^~65=$IvNy zy&qj`G4iywjyk#01z;_pQJ{cnM3)MXZRk(o_CB^L({G=vy}HL$Php>*?hY4XyTHTK zIK^-z6eo@xFG3pXY5rX0^lnDUiBv@EmZ!}i+Sk?L^;Y9dx=y`x|5yXi!2pbXDu6ix zwv)&ITw*$LSF<5E&NflkGI`g0xHe#EmZ@1-SOm)K!Fd24FcB;`iFbK%@hdXZwR5-Et263ofSd^s2 zCU3q_8-RPUxP-KTX#n`Dym5^J{V9THD{;27<;R5#Qok(V0{tJCtzW&S_+>larVFmW zvitJvfP~fk>IlWm#>Td4+@G-B95%5yz&HPMTvNXcIM@JQe+eki*SfmtvwW(V+yxkp_nj^91);OKh*onP5zJ!zvMOR!&f1UUT(rXxZPUt~ zekq+j&@q~|WHe6&Q#a&i{4q|Zh!(0G9UZ4u(GEa#oG~Uo0#@5s^72Q()YK*H2Yin^ zbFJEFZd+edORE^|MVqXqFF((ztmHUO0WKv)V@_%F=m=J4z)Ej`r10~k?L=5^l(8T! z$2dyhC2;wTmDSG`gFRU=JCwD&^qjAg$35vjsxaZC0B(#HD?C;>*D@`g(mx3l<`@%b z3Ggba^Swm%@)QV{cJj!fQIgGQSydJ1?fQr?36pnSADiL)b1-N@wfOyhIDlzPOiZsu z@bU50-o7mY9-B_Wv}WK}LbKmskK>_$E69S%^`{EjU$xy>rd?m$)}{wS8W|NahNf^k zd48ciS-{#Frzj|gJOu75W>HZQ6W5JVY2<@Yj~hzyV>o|%l0ybz9Q)(FEVs-M1zu@(iy{Mzm?Po5rtY8J%0rTkMpB z7nkOw9=j(Qoc>uv8@$myBFGGSZ0(m-YlG<}XwxN7wql^IH`f=ySsbGN`fz(vmCJna zXN%{-At1^XKwr{yI4TcZWJP02qPoaKboWS~?t*MPDzo44yE*YgyOcM;rTt73a8`Tc zVFHgi7!uV77Tmnu<~@;C;GFUT-q|CNoHYy5-L$q_-`O}Ij^3lXXScQ(lioGpv^V)p zj7G$Xix&&tDPjCx+m_;*Y?9rI4yb<;-{>d#@m!gEV4oFcXNzb0{0%kUdo(5WL|<>K zrLFLuP(^h6SR_+1+vOr4s8xYD3xg+RIS&bIqB}kWa1VD~BS5ycoo!MFdW7S4BXDf0 zqK&rPo_|ezfgKlgNJSaI_Bk=%?6Q#qiRMeAf5qGTf7 zf138%E`9>d2W{BjoNxEr-bXh>#~BeS7P+*1g$+r3fq2G3PiDMMcFR7=#|^#I)YF?Q z>Ic^8*oQ1yADv*`PbA-4toFq-&R-Oll#i-w>YCaHzJrEXoBiP|7ZBFSCRyIo;8Rnk zGT~a%`h#6G?RdX?-?+}euh%6_VkzFYg*@tM4QX)C<4DG8k26mX-78F5{)V$)1`*&0 zirB!bwQ1_snxz+Y{YqF27v=JDJSPK;;Gbgg@86q~Pjw*tEQQ}N9Im0&_h^R)5y=^eBs$GFc%+(r$XhXaF_ny)!NgESh%a-g7Ym}N1_D0!Nlu@@9Uj}>=0P$ zYaMGiQn?B-;CSA`Y?})0U2~nQd2AeNJ8&=lY&nA7-dkF1mPp33VaB7QLb?Z0L!A&vG9#QHR zNsl-K?ufv~$t?W7?;aET0=K>prQI_m1uJXP5&5d&I9^*XQq`h^{2j~&6WO2N5o3}q z3LJ2^-gj|8NE{CcCKsx)VhBZ}l_oeiEa)B?n;Q*S5nBK`BYn;f{Ow2@yK|FabG4Bm zR~L=07HM%An*;qqOUDJ5gjF{+ZaO{DfFC(M=)8pb`74 zr}&)*;vnfN8En4XL$?W=*>42ruQm6A$&QjM{fhrQ#pEJ!0O3CKu-^0P+N~#Fg8iHV z8L^g=!!CocR|be4CZY*3{C>ukbgF}Kssgk9e%!y3!ryBG7p*AS6@+yGZ$p=G;_jZJ zUHCL-^4X+`o?qg^VpWik*SpJkE{CP$0aR&oev#?z(FJx$ixMX80wwW zqzHjKAsS+PXGx*_(zMsl-{<{=w9lw9C`j#g~D7Y-E!#J_Gn%UDV}YPfW48OQ#Gj9=9Z9!;g=YnS6M5 z5W7ldA`>HtB3~o++2iDftKPg<(3FoR+?Lv}pS-om7^cHF6cOdoxU4AyLjwp|;&Vog zQ&XX_sR$);p{D`By*lEfa~og zTD9u1*i(~wL%$7_ECAbB3_D-p7+~=w|8WJ){2TKUY zm!DT0M@`^77Nwo&bWPs~A{22=Q=}AXbaJGu$eWMeJ7#_hlQK+@HCSN{i7YyX&+rvc zs;lWkLY&Th42+OHod<2Y0o2tPSdxI1ui$&~4D^&9NS9=QAwQ>DUGr>4(Eg3XK zF$t!DP|3e~98xSVw(4J!`mb~ddeq3RSF&qN1zY+ReY|bJN5WLGEvxpP4rBF%=~cUp z-xVaJD3gm zaq?lf4f5E~^@6SlM!9VEw4t#@a)_8yXqWtKpz?D0nLd&KEzRQ9B-JK_6j^#WMW36&n5{dDNesup1jv z%C!i)y}mcd4}-vgZK|`nj?(s}eb6Uu=i)0Juu|j81}N`XDL$D(;$XvzrR3o(2`4?i z(o+P)K_aH4qD90$HNrSf0D0Tr8+-=c_N{F?(R9qqBo_ktTBG8tG+?#gbPQ?B#3MQS zLY@8UK}raYdIRk+kjMKLCC6D1XQt??uaMx=0-#BdpLIJS)y*!dGh4r&a#1{oJ~=Q+A-=wu!bLCW&y- zRN%D|ETJ%FJ%#y3vm*FoNAxZBJ9CsTqa3CAL zSFwAhS5t7NYtEu3ZIJL6fmpFU8Gq+l5e`%)=YCz5_^N%x2G$p~w9L!Mt-#L0kGHo? zz4(^ZyjsY58^BVmg4906o1Z#19;ipZO5EBW?|Uro`Uy2{x$aIp_f&555Nxd_gQb4igdTw$ zI6k+f!DxR zdF$SdWn72XeM}nZrWW;S)5*3wqCfOkEYn#cD@UsJ(r|d^vtC6L;05+?n9W+snSc9O zAEIcSR^yT8p1yj#@4D2)z`*B)(ZD?BEYsa^IdeMy=9SH-IO|b{6n^y59`{I9rKXV;`m8hIWR289lo;0*#R`Y25FYND*}iZ_m1Dj(R(adJnjD%jNwFnaE;YeU4m z-Dcs{RT&-U0gCDlMM%}q>jc(EA2;`UyI#WcfP9`{y(M*FAS1!5m7E+3wnHNl>rimy z_tC{S(I&4}j6d`gY7W5VORPU+aT_a{L|wy0=x%<-UQMB;MK&rG17bPpI%~=Ea#u%4 znIhrp;;q8-xmwuHJ^9h{>dp7~W(vGmq`?o9 zW~9S$)Eyd=KYmJm=+C~iMh2nP212=wJ$-)3CV>RmC>>?j_b!udi&y9oAjPVbKQ#xw z>Gy;7uz!f<3}Ygc(uT8uv48UK1;Bt`k=Dox;9VNs{APn{1%dHVE)(3UM|8oZE_80w zV4Hj@UD-NyM;dIXe8O!Gf~oXOm>ko}{U(eO@@IGCYW#Lasxj&M4YiWNB$ng?|2ug$ z{bSW9)~;(Aj+6k|o_sofY_s!;2K}moV5RI5Cr6Y#J2(n1Ef**gkhGTp55;1no1Z0? z3B();5-Zpk#mAS|>d|{_Bm4?Vwpxnk4$hsOD6sX+XjRA|c64qHg(nZYX&~F*J$W93 zO?4_+H}3AHIhMHs!W6fkrjO9FaVWi2=z)We+#Q(3WH1RJFP&J1^59TuC*j)rB*HT`1R-rYZ zgtJ}u_L7lYnUc?+m7mE(!5cCFu`+Gnu8SVG1v8vDcOMs`=RVzbD5_RY9NibGh-({j z|2}o^HT5FaxbPO4OMUQtzqJMqZ_muS@x|QYX|`QsHpG>#|tzE$nCkN z@!A$`s1Z$tN7*VDV>=7%LLUiv?|&zA1-2#hoG{QI$3P#sbLx#`ka~%3dh|s<(CQp6 zhJZ0C>#=-=;_~ueVWiCH8Nkgj=5pDy6trMF^x_~Q!($1r^-l)@nmjuMZnWw#r$k-1 zQanp__@;Cf zED{sGmerM&fZG6ksg)*%<*(J3rEe1YFTkjXs|ztQYT8WGh;iCiZ|=n_5FB|vzWJHD ztkeDrQ|*53FC)ma0eRDSoT01hO)py|YAE4O!JjRoE9Kqq+>RM$Fxlc+jh=Wz>3J&{ zcSXcPXMtT;@MOl>^;E3i> z1yTQ08#Q^{8~f-Oi1`mrE<1t=Tn`5L%vh=-Fsj;40Pi-luXH@261-XVPYoI%l;ooAT^_wz zuLoxhd`dY;Jby5{+@=d$+LeA}4`Fs8`oL+7p4-oG(gpl*o$GWdn6Oiomk+1*Jyap2 z{Hczv<(Pb+R*o1nei3&S5Td}OxG^wzlJ7ig>A* z4P=$LHdriR*-C)f7VQxxq!H0Us_E-11@=8d>`~x2E31dNa7LnCr*p;ADo+ar&4Q1x z8B4mH7GHkXyV%jIGE4)o@4GMx!5MF%sU-w^)BBR!(DKC5v5DYwYJ6f(WPHOKFK|V5 zNx}Y*?Bb`E~lePukf}sJB z?8IB`tB8h&k4Gq9>qsK3)~DX3lv!GuPbm~!p`{Kp%VPr}VwIuD8-+gCsrWm!TjZ-~ z;0Vka{KyqsHZAqvrd2Wf_phSCcz$Ni6p0&IYSHw4{Tnkf~?o$3X(@lF*G=_xW*PRR$}#Hv#g*@2BmqBRS&OS-IWR z-f*=>& zNxaf8(`&N`8HLsH_pcK$lWw7t2cWb*p~s~K*OH76(a)|xKN#WhoN+@iljraixgKr# zSzx-bs#Dq0Q5Akex3`SZ>fDoK4VgITVS7}sctKO4`BTA0{OwA^Z#e0`$CH(QL#cd9 zNEc9lwt$r3xFRg~;FfG(r=8XxjlH?nS{KW|;Zfl8rJwHOWdhR>i&l+n_(PUg=S|=V z2O>M(_sH4B(3CdUoJN)~kjCxq6cOF&*$SrcyDc+|-`qzIGg}y&2FdaYg_&=seD4D-2nGIzKr*N4^ouBMgfYEyN z?g!%}Kdb^BgT~MT_9fbw^kII9!rc-B(tFC1FP9uCo>b_bAZP6JYllIAGd47^wZ|=j zEvy8l12)tr)*i(us`cXr7pgcTMZ0gnm?l`(Y5@Q)@{#+17> zb=5`8%UluHLWdNV#_O z(k-am;J;(brz`Qm7KAC_dc{8HDWl{qt^CMv`G3znfCoW5S+qtws?f3+`k5r)c^a-` z3Va)y?dS1!tw+D|_R!);5t!tt>;}(eD7Aq}{ID_(?Nax0iE0m-} zA`)ubqB74alnQNA=FIb$*)~NorZQ)?DP+tnW5|#pWoDbnJS!P9^t{i$-+MjxZ$01)&Ow8Gb1Xu{76P15sFR2(_y@cE0dl zC2k1(n(I(kR#sjv^sIWyg~LnC+%?1Tzt|ruI5Kf6$38eV0D_mO^1A%TAK;vRxr)*( zpNZ%p~bB)wAbpMyQUOCU?<9i1<~p*EDNKeqcKn9kOg+H(tU&gQ#glARWKXC zk~sU#n_sOZFa?9rNloyZtM2FwnJ5@}yPQi;ZFh`z{d4pw@Z$4k7}4Y>E%_2TzsGQiM%e_`SPX|x zZu;nG$VAP0s#xyTV4Nc8*9p8Vv2D0Z+SgRio;!OMd2;=;A%cqvHmOIjAp*zTY@FF5 ztgjwwX=yE2z_SS<6ObJZ4Z?oZnmH>jkeQel@#e(Q<240M0~()Ff8f* zZDTBM99oXds}+ch(H)<|m-LL_Hyuqgs4_0{A+*crg6CHdN1m@%XHg}>oN~|l@>jEp zrJu0nDKT!PI)D>G&+NB^%@y0HT8J$S2s0cqNWKB0`b=7f!{djgxV5odBqA|f`nU(N zt|8wD^MtRzKns3Ik$Ei5YmlJ#{#rP_W?FF7QgS=9$5|#uOZK zEu}u_RzBw5rK`UXU3u|AH-ZYWB5+>UD3E|>8oh`^8qCc!4E$xVHQU`yo@F`)j!jtp z%EKs~3wVvQ2>1t?^}T-hG7Xf`9;e}=7a>U~>w&1{mC5+B#0xHj)2bGY{JkqzcyJiC zolrfaM<8-5P;283Pl@5k3UAATHPHIV7b^qW{KzPjw>~#Z zQfvW5R;<@iYKd}xiwhpLWJ|(N)V9RlHy@8911(TGaXH0=HkNVEFE28qP{d`~>ozhIoVc_7+ zzU9Pl7dfmRpXz!}b}pZ55#@KZ&peLYD3M|*SpAb!g*L;(zL+7HGO2Fax)^qpOowQV zTIMcqgUzG#n`olVA6~h0vZiY1;qdMg6bYWG}%%)|CZ z<4cKmQz#?8V!7kS%y~TbP$*Lt8x6C`O)`{YEVq#>jKN(uP2u{|#mvhPMtd7qGv$|J zkN@K3F?~nReLlZZ>as9|Yd=kYB0_nq*Y_UuoR+yQZhcua_2s$xFMd2kJCkj5hJV^gkdS;$`EDqXn%si9!es9^R9B#O;^AB6TD89Gug zq1-AC`y;4jv)d6hAFX3nqJnWDRvM+V63c(K54&(p@1$TGX>gZkJYi%44cT zLm15+W=sT)?xn|@f1Yl$ddB6T)*Ii!@p>%;TBGlpS3#62$YPOk!0`i9ZlICVE zGmKL&4gWCVN6=b042n-DxzD7#+J!Ty5sSI>vkDT$i?<;buN1^uD<}_H0TjyY43ooL zud}R%&8H)hGre^FgXqKMfpcX|e2FEqi|_TU%#O6?y|^t#9jRtKe0O*Qors^JnSJQo zS{?*q-tkW^^_|XCsE<-U)ZVR+NXzJXrV5!h-4-(6N2sc?4RT*+k6uEvNDc;I2cpv2 zO!VYdhZso#7jUvxNOr&G0EO~6LyJPC4~n4`LT`!G{oDrK{ef!i11eVIQTY!q3naAIF$x+c@=SY9l1EG8N*W5jN_zK{@%e@ z3zaTK(uuR;f&m}(WpAKR!fpBXg;OV67zg9#d7X7u2JzEHLvq8p+h1PySt>^O)!j~^ zy!S?u1ogdMit13}38}X}Y?C_S$pd$H{(Pa&j$ZN(BAONR&Z_8-cT%{6-zdaO%$!F+ z46*N;J+?*^AACqc?!a(p2x0SE#x~w1(4?W&IGdYW(Poedc@x6N3j%6^W>^l_ayDw+ zik1S^A{92}tzKS8#%#THs+G_3CdNFu#G&{^CzooBJbE)W43mhs^7w%z!%b^Xk18@# zH+d6D#p=r|(^#SN7^0p}y{1*x`D2V^Qo53*&;BMh5+Q=W$a_!}L%NbT?|A8F?Bi{t z$Vdqs<{K}*S|qboCQ{r?*jI{W0+r2$VontPbD2SsiJGAxp|xQ^c(kwV;P(oa{?_kl z;S-Q)!f!meE+hpI^?ds`P^%I zQqtf0>)Ik%KYhf6o%MAo*DiosH3%NCX*#yaF(DC6T6)Oc2jtmdcBQj&7!kb02?w8c z^a^!RoL9PJUeQV3zl1t#%HC`-6t@y`-_JgQ_fp_8V;>Vkcl4k4g7EQgjM8h)pEEIW zp^=445Txy(u7HS^p;MQ`If{EIRQlZgzq zg}llh>(DK>svBIk7yB&4VPrYyAzZf>)Ow}q3bM-naWaS>`9P?Fjr`m14~*2lYLUS> zG@Be~XYl!}cslTq(8N}fdbK#}v0U#vcL;Y6Gz1-#iq)CUZAXLhVDt*%fTXDwxK%w0 zJiWeraNdK~o3TD@KGI>SURy(tQoSqMLUjVz8w0NXYBQoqZ=(pX`M91TdtV5%!tH4o zW-V^E1BeXduRu{2JFZB`Jp98qR<d5IRX5S1=j*G!l_<(%p3`)lr23Cvk99DVqjw>iy z9D`rZEbR~{(b(=hy*}mOx96CauQpsu6sm^s3x6(OhzLcgh?Co& zFoV}nm^OiY!eJuWD!9{$kttk+WsiW>*9WC}Ju7IuUS#6@E1rKqjx|aeddyL7)in1x zD9C%bX3Mp+X{f(FN&E_n3<0ekYbHVme-;%^9y7iyAAOH7*Dw66YrD`$91dTZ_ckbL z{vl&(D3+y8OV=0qVyo8UnG-nMa83<^I@wa{8@4#rjzNKohP*Zk7(>EdIC|q8e553r zkU0>v+MM!ojcWHz1akKQz*?{KMeHWL5z7ulQRG4LBTTnO_6-cs?d>5Rp1(XiIE^6e zEkrA--Th`8k+%l&pc=U7keq!L4%TT88wH+Po*%LNE0Sx-d$Y#Etc+)~niR4WFn*(^lX9`#bz7cCQGTcG zuP2IPNZQ(Pnim7PHH&z4)*mC9dF6>=5q8;9nPzw{43$zS!6MHBEZjZ|C-hwPBVAyyZQBFXPdwY4Una&?RC_qB6|HFChnu>wJ z*5w83v5%TaWEmv#bjUwQN37QD+2FyRR0#w+U^aTo=UZ4>cKe>bl?fnD%l)075oy3E z)BsQz0jAj$#L)#By5@*gz$wOT$owxL!4!!2P95TAqSP$`!+<175WLj;Z4%T37Y+$H zo>Rj)49H+#Iywk&QUTN& z{72OF#~V1=8+HJc()`Cn-J>!ao$hTAu^)m0G?nB59E?ry5Ss&PKxE|@>eG3z7l>-v zUR3;`Q|tzmVieH zG>(g)${^In!Z`$pxd<140HR1*o(`D~ic;|Jb1g%h_|? zs-vvGtCWkcyFAI4TEkmJ=?nI~h%*cM%z$pXj9^*QsgelquNX;< zQANp!4n?)e_~CL-5)=#Y>j(>Au9Ky~DQFGXgX)bVTu=BA>uD8D=Dr{2`yF~DZ zl-K5uP+1cRmThn+Qr>19d2EAoFn7)1%TK9QSW0Fi8&*gnbb@dH0|@m1V#w|xX2ZSx z`#b_Gy46DWw2M+(TN_P~)MV0C4vub!ua=m1rTFDn0Q3aeYH1CHSnD1|N!)J~FitVL z-T9gr%xOlKR(}tfS$lNcPfmQp9%D=}5$YOuI8V+Uk1lo$n1CrYnq%X=%~M$H%M}(r z3b(A+j{}3SkxsB!%D)tBh7DIP!v(jTHVsWqYMe_{Qpv34aDUViG5cW6Emgv#%F`u{ zIx|)!A=qlc0QLIk`ob7P3kfn(PGncl9Mad4C0jDyYFUy)p;B2Nd^Cv&YvZ?=n-+c! z)B5!5=gY#Tsc=M2T9Gbs#$ru*qYd`9KRC|L!>DLd&FL-0azpaYUwqxyZWseMpH#7C zIPb8_e1HiV)+m{kZ+)_FOn|lXxbSnoE6Bj9JuuiOJnHW9iVMbp3OUMi_<_dLL1iFO zc7vLV3`tYj>xoI_XpRJqdTgc3o`tDtY#_qvlL#s2Ax7D~h|~$jyVoMOOK^D#S_clPM|4#g5drax?gc}x37|lrtm=!cV=WSQ;h@GZ)T6!@4XkLw8 zk^R}xMX%-A*yqR?h)j$PWM1);{zi*#zF&zXuHzMcq4Cw8p*oUfIcSr?M)q4aYel zZmoG@c5gh4$wV{G1P7Fa9r1@p4z?AJe6XTcLp&xbTQezh!`BygaS!gb4aF%siHXDo ztEl?x=3T{0wcakPlsk5?ePj?T0G1gi!_)I51Wq8Sg=fbg%^*fP3 zDt^gxZ1nYGRReyJ+1UY~^bjNSMO@t<>9gr)HrBN{KN6vI^_O*?GB1#!T2xaOTi|bb zcxL<0w8I7A0J|eWx9M1}P@GZT@+Ia*WhkCGiJX#Q2(DAVLjjYm_80G_XACI)llYP$ly*YuuwDeQVT>x$bXYmhrYQvEWJ-0Hc6Vcfm*qD+k zIQKpXs>V`1@LFnGBFIXML7sPV6GKc7uhjn@4eyx^nE=!$E6iu3jLJy9x2Gm-2USu` zQsBuqLnzl&ja{M(7_7MuN6zzX9Jw||rPK);GRuQ;8oUOthk7RaGHV_Br-1D1arBwc%}R z1+uZjx>U7rw~0MRKz))^i$Eh^IVa!J2tQa>D8Sq>y`Qu&*04e_<0}kOUdCSh{dnY# z1Snw4cMN1yj!M!7R5hlLa{pAG{H8E$c_Ke29_8B5<~ro$qiNsHIf#>NzgtS<6^9Y1 z&Sd6i{eI#P{L{<3@7_+vtPrE9{TE1ye;$!HkZ{?FlZlKlZpdLEsZiN}w=}!#EM%Th z#mp8V=g{5jm`@#~)^zP86O}*bguEjTYpVj}D-=q@z)+hnSM;p62#l>a6!c$%hS4_B zpSE%{qw4rEC3x5-M7c7KUmf)TJCU>T9vJtLok~&Oaqw%(BI(rjfaOhFl0%pmBFZUY z7Pi1(CR2b$hpMCT^LYVx5t%BMH9EcN_5QS&Jo>H$nFqYzdtdeAz{mFGA&Fk43CJr5 ztj;f}1}haA6Ewzl@=nJm_&OQzD>HDW+r%(Y)ku~z6YJkn?g&h8I*s}vtC&Y2H+;G* z`+Qsf1-t2LOm4-{y4A?V@q)^?m!`hdg9lCpvd2nA+_Z3bjU1M_r(ES6NCqF7j*@#( z7Q;tTKWKX%)Uo{fRl*`EL&VcXsT}~X&hXl3Pgy8e}ss$2V1 zG+i$Sb^MeV#(e_w$OgWp@aJ#3{J>yHMU1_6vFRST?|HT2VP3CJZWBOq6lV3d4osgyJSsG0XlSQWWH=?$nFGT{!sPfugz%XF}>l+ca zRtL|6f9_{97TbEJHv<@9gR}OZ4wdqv3uuJncc00#1V>m-Y1asn(v5pLe6j#k;&p^zQGa8KiWW!x>-h+Gq;6Zye-1XV!niEq3#UjI;pD zvf+OR&5+UCPGvff1`>Q9$SQp9$-_2Pa(~acq!g1!XcuO>=~7stv^%MKz7hv)!HTkx z-}q%Y>8BI0yp77tZa@9-u}hJxWKN$C81_E*t7_1xC=_|E9-33u!-BbqDvM}{op zvWAr+ez{qy8g)=EBGPTur-mlp9kR>@!!$W*ECarhG)EA`L~Y1A^i9raqgMEi{KEuIoSB& zO;ZV+Gms33J0I`lHiJGRiAXw;ox;G7WtUCPh!gH!bK0BN%t@N_u~FQ>%;$&qmeN)?zQ(Ake3TU^a#C4=z?0IsJlw#k%I49lIP3KQSLPCGjy#yERk~;7p0V%d@S0`W}bx zjdJSZw8s>JTHgct14D z`=XIe*Z<~(w$%NAD+-NtnLzTq7vZXao#yXJFnf4*0v5q;-*DP5kmCi~he%<<~@>mpk4>1AEZ46h^$^x)nxvlqjD-GaWy41Xo{~*uo7TfJy6EKtU@K!p zsS8!++oUEz&{ok=Gq9q{GkVB9O6MOJVlW?Ac#5cX5@fuv>l|D@2LJcjeG!{Co6t9* z_cy|+{|N;p9G1{Lfy6!`fo;@w19HFd!uBc9oq?35fOQ3U`i>zhY(7C!D&;(hq*N?< z{tBH`p11*?nwHINtPsX9-3W88pY}r5wUVq9PNhp+Iu2Zs)5(#2eiFS3UhC9&`=;}v zzvokp?#O_-{cWgy9r>rnJsAoF$Y_HxC>KJK^GGogpytEZ1(5B0lH2V0zotq6qHfe3 zW13GG-#1-egB8Q%=&s8`U;!d%mGeABbU*L7=`@M|Ty z+!+qE5$kJ%UrZv-RIyzN3UM}HZ)E#X1_|PW;o5_Q8qf&lN|N4JUc7u`-pd*zM6ZHQ z>FR=8+y}_KR|8@I=@vjQKw`BY(G`%hI|O6rH{yX{baQ9I_fe%&7Qkt_WZXe86aXVo z_4=2qqDY?(B)gkPiXodhFE+j#;swn#O-Xz30vXH35R1g$MkZ)?xQ9Szj(WU&11PuW zm-0k9WVemVtw4s_guh(X#Yl{UayUQr04MdQcFH4dxc?tvuU#hq^qp2qWLR@ZJ7Fhl zpL=;U6c+f_dTjf1Ai#yc-s7fHIcwU&j?f=XO{{7Pn&kTF3Gae#Kpjl!h-s#%eQT zq=Q-|+n&WWNeu5#Hnz!l9f+YnQqhZLeLq_4lYQS)O6SBfeqqyYDSVTHo*$~EfIqVc zDqg#LHK?J`5@I{zs8fYgh2PrO*%`JW0CzroQ_DOdUoV584K+`HFD0lrQsB<30kikB zv|$ItP(5Dbi4^^8FXKqPc>vq~{cm`FWFp4zywCS8Ha6*TY|?Za|1NE#%>DfvT4gcr z*4ygZ#Q+ZHEEdyv==qGBrChVva}W2I!30hwh4K*u;Pvt2$Je3PwThNX4L&1+5)}PF zUBc6D_;BO`QJGcS1_5c#L~CsT+Uu?I(bFx&L0LZv_uPY~1NZ(lzdmsK7QZlk0cZEC z8vCmkKjo+!I4X0S<8YbgwM{>!tPifyy-bdiv{apSityEi(vXri9neE7rz0LbUb90A)k*U3T*T~2ygYY^!8j-m`b%Qsp3~ZYj z2{x57AfJU^FNP8f9k1OPcj#i8tn{p_gjpVJxs#iw%+u0Cmz4je`b~XcQYMUL$RB3D zmL)g~4*xtty|9aWxpm6k6fw+~C$VMDwd?Om4I29%gy?B?rq)eg- z$FMz{oRN#xH+j$wn0^B1@e6rz)a%!oX=u-S1gq<@wX6h=yL+J*ugg3tHVqyc8sdjC zA;0|d@PtE(oDeTmB%4As8VPG}Zf-&d8~a-qNX-#vh18m1M)AMSeMB$3B?yQG;ZltsZV4f`HF!Fz0{B>7{J=@38w`7!KN?OiAy$3_ z>BbgU*T2|Fx z{kfGinqaxNmCptHTf(>SX?chCrPVLE+CK!Q-6S+0h8522R>QlMMnba%E>?Lqna6eR znsC6SMJ9#Cr6t7wj(CU}glu|YLvbxP5Q+zgcaP8|Us58cz5#+O(l`dvuoFO97m-F0 zTPWlj7>C-VOmK!S!r&ir(`63tvS_8Z7mrkkAr4+p?fW7XZk^xrD6<(w9AWwm|a$mTa|zW`le;#=j=sWUogPfRtZiUOl8GDd+-9Fb$= ze3vOb~m#}P)y5^15 zjk%27_Y*HNblRwyX(fRw?5kx|3c86#M40jS4CD!TbG_xVNIn}sjX%cIt^AXps+Wx- zk$0cEUv0vLrOo;LTxr>BT#vC#Jr?&D}T|Fl^k6B^sviwq@t}4pH z9|U;QCz5lfG<3lnF1rV=k#xsUC3B|Qsj?TnRc%Ulm+2ci(QtSw7aTJHDbgbJd;14` zj%aZo56{4@!ntXUX9i4x+%yq>?O+CD4j`rRw%$1i@E*5qL3wA5EXpS?5u_^;1~8+-;)jJeg~uy>r%p1* zY1@dp3Dg*1mdoR2H>EDy*ztx}fFofzdp#nTt;eQe&^j0=| z8bUlWVpS1dgUb&DYs2TSjU9&w#zp&-gmbiwb+?vn3G*YZbciYb90; zAOQ@8KX1b&ERWD$U9uGY-cvp{_b#;rVor&bEaT$Wc26$Yw54Z<_%ZRqB3b0E(#)$j z7u4xhydCR1qmmft>dw4|BcVWk{sDI0$ND~RIvi1>-n+IHayBE^dS1$=*^L{i}vHuC`N2R?vtzrDZN8xmI+_N9NZ?g+7=d?C}YSAb9L@{G-Wice- zF;%-?A(i9kRwW}V5_XPdpmnxqUwex(i{Q8CB1H46( zmEUByzC9VSug)rAn&P?wiqOVs*p67zJ0Ui28=6PBR?VM5>vV?+dVuKsN7=ypEl_D&x7dCU06{ zFO)a)PmVk#*3%N}Pm4PJY-%J0Exz^T)y{#QjK?UqnmEwpgBImbosEb(Thi#0MlMxB zQY@4X@&cL5SU=@f@|~kXpC~^U9-R=VGNWi$g$NTzB*jAwy)cLOx7j$h!4{23{6=e4 zuqdC2dyQYlS+nlWsq9@-y~M4`+qtwlAbAI3sVN3wj3ErD{IKT=!M}=Y73GdIBc4M- zP7+@B`?c)mogqx8a8fN;~SH+o2>M_7m^jHWijf z0Y=T%+ODP@s~8#?M6i0*Ol;irO*2d`tHnnEq!Z%^%7!%hP|EhpN_6`C*3(-W#Goq1yU z+7l-2OZR-Uu)>^P7K%g?ugT`FQ@4*}Cd*OWaS5va3t`tbbW?(C9I|vBQ|Sv~sQe;> zybWlx?}5`(Hacf1i@k)akhd2^A7u)bx#YNZ9{}vh^}5CRDH+%u6F%d{cf*N zNct@Or`9*-w>SNb?_I7ZPQP$WxrWxp@ERMlNG-nx+Ob_PJ+Y&@$sRR9i?ue?=^?AT z*~~Un1~Nc87R#FObs90h6grX1Tqh=lP9n^5a8SXrcoby*9WEYkbGvz7d29UjG!N=m z#UPMr(~MK{O5?7Txk#`7${Ek0P+rmEXw4=CO_DU5yDlxE1+6~{v|(awrMKWarSF1~ zTf=E^%3A} z8u2xcvgA_y&Iqh4>WOtyUP!W0yXj&Lk4VE-gNK@d5t@X&D!$p0xuKFBem6Y}BD+Lw zOF8(t@qqWI7>XIFuKpPG%KJvyt5YXQS?%Z2VP-N6QjmF6WT3tLN165LFxz^B>Lt@Q z*@!S4^|Dk7w-mPe&8dgLw)5oK{B=y9R9sg--d&eZ;FNI#KxO%}r-`;J;-vTu&KX}V zB*?nxlvQoT4@C{U2-#EA(0hZZco2DhZFG7J5RsRM@5C6n21&h@toM>!+zxm?UM8+? z@aOP|gol?xL0rv2Iwpu{=jCu;a1fO*PVde!77Kz>9!k1z)6?#=KIwj(BS<|QeB|`^Bg=Xl(c)GI) zrwKM$e^#3{+W_`>YBG5H;W{#$?cgaYC?~$ z%N^YM!AiE8HJ7GgpC#?IbxDVE=L(%JxlRh@{hcf&ni-QjP5Bh;;$H1aBSc3>nkl%q zT^ZH)frkIISpbEPgDsb%VWi5E%%+f774w63bT_u!E5NWSP1aiek)w0Q-14&Ng$1oE!oJN~5pPpa(QR^|51zpEcwqeym*YP!1I>ZZiF%vgdjS`=C7+&C>dq`ALXM z1dX&wMgG-3IiU<&zin5plq6d*>ie*2YCVu`g1g2AnG2=rh!{ya{jXo8lAf&y?&WiR zexN{I8GscGHP|JcXIA5r8B|wTE%!AZo0GgH>N`Wh0VSVEcgImmLBt=oB$Ll^GBxOW zek2+yOI0!=-iJ28cW6i~ttF~avuJzUM{940hesGJbNGlrulo^{R6+HLVCUpD#J;p9 zd8-t4JQ$5K;DN)-oJ(?#{Sv8$;+dZP@tN2F+OS7^#%~G3N^EA4{tFS|@bgQGZZ!+6`b~{qQR4nFsJ>I z2C5+Ns-rpUeSJF40F?q-vUH!T(YW8#HK1H!j4%_?jJ@(RZeFCUQu}@t^HdMKarOGZ zW8u#JfI_vLBE$S~+~advtZZ9tI)q4fY2IlGLnq17CRv(PWtvbMwTDBaB!jkz+2#IF z2{pug#l^#1WmiiP))hW&2=0gi74{Nu<(Qy?R-FH0`iN9dmc^&3mk;97>@cUEg zyBe1SI4FEsUI*PyyO;V!@8izL{oXh0J;6lGC-#huscSahqD}4ec46 zL!PHYSfjon*v}=wpl6cEee%~pz>i}HnQHxZC-4gB)n>^b`JRx#?W>6_eRlJUHNAD~ zGAfqrM=0@0suU|p(L*~ZUGM~(Od5-t_Ekw*YiEjyk5nX|#Q1b2!iGB$4;YDB9 zv6ClmF`&}AP24)YPEOg%R4M}i~{F>Dw+Z%NzzhS7yV#8Xl_^@Oh1Dfy>=%oU03sO`U< zlnk+w|1s>ECZQM?wr|I)IX~ma?xpaMbC5f)2R4qnhO%0%OWBXgFP8+}<}7)isx)&w zL>yH{vP&A<=+^fDRsq6?s3&b%abdX*l|`M`CF8l@!RiRM)IA^_91(DnQ4u5rVD{DY z<;1H2FZXD-uNyFo-Bg)U8HUEQRu!LE9Q}JzXV!koAg81I*aZ5)$T zCq`KBxw-xM0L&k{X3n-Km3hRDwwWIDKL?jmbBe*wMv71HNl$?Y>I`wd1w{D-&Bhri znE`Ss0r+)hZC-U^7__x;M`g30(MppG=ShOEq@=cQt0=}Kg4N z|AH)-J&2U%7Br)qf=NjhDV7H2-DR0dsKItdPW_OVCU_Ga6|MdcVrev|PBzqtK8Uyo zNpZx_i$GC9-Pjl?g4dG_Z$K(Y^z%=llWelT7=h8lg#4o;G z#32*CIE~8B;Z^-`!@W>j&Icu=J&9(r+DB8KTeTpkUX|HpkCNJZ^3K&44z%#H-Az3z zG#)mpzd$*qiv3cz^*i}z4Ix3l1m3=qy$endwVnr~ThM{WeCJyvjErCi5iUe@|J}PR z4)u3y`GoTd?)*bKc*mNt2{MK}Seai4q@%O`Z^)%Lw?VaByf6Mc90~2u%({(PVldG5y6Lr)?-z>C&es=*`o=o;JKtWGGzGcezJm)sg3wCj*uV4` znw~-7m`YlL8el}t2nYyB%V)oGMKNEudNOGZG}C1PSZP+yr@Y)~(>r|Vd+c;SC}xp% zH(~F$R1z{fYw8JNFMPPQ`u9lqC<#7oY2~v4-0BZ@*wcZpR!~$Np9|kuXWkrH#CCHp z%D*5mA-S4B!jS#|irY6UW8N@#tDK9t|&GCZ-8u3uP{tETjGfl_L%_D>Cxwg0R7 zL!{WmZTL3+ij(Dy4DM8eD8?Ro<%mBFDq-NfobplNCFr=|IV+|kUbmfO6jcGn!EX@e zrjo>+=EIO15CBL0@~>XMu4-kKgWOcqJ-fis?g2(ktG}DK-SwG>H0kLUku*T=SAGv* zaB90=mRV9#((@_;?4!UtO<%kufvqIM*i&Dl#WV@*X#Isa)OljmWIiyJDLQZ&%-@aZ z{I+deL^bevwe(RhFhSlxx>Cz5(LMk{SDJo!{8s*~Xlw2wc@MoR6~)yYtTmQ|MTTzc z3;9)K-}5ly@CgFvgf%fjZv}>Mv{M=natkOlYQ{YIhE#Y#6c*{`Ld=k83;3vJ=jS6m zZ0Lp1r~9e5V0koPrR%XGfJm!ILADcYG8@M{05xg9l$Vzml6$nyz*75ix=B-GET)2% zU@jaF)XuWclhFoI{@odK-~&JUSSItGR$x$+A8u7>&dtMhG-nH&<*?Q#V{EIeD zw0kvz1)3a+ngL!*juZAVwjyX^f(!AZi_9gaY8IPXfd3ouZ2yZV{SS4Oj2bf!(CR*m z4178`?=2x|5HDn#gnaZTCk=I+`&2u&>TwL(}i zNZ*+F{`b>}!F*Hl2l_bm|X3)Wjx$djgH&qQy#IMpEWMor{3zufp6J9uHU7=UQ#|?$O zNRjkcx#+RX11m*!u&gS2dDS2aY1L}w)vay#N?O93@f%G4MjfMWbNE6ND0D;08Am`TfrLEH(S)l6= zi5P=V%|6?(vr)D&6SSaS-txX~GpogIW(G9b!Q0BpN4C|Q(FjT+D(Z8L(EY$qEoY&p zvqIC;z#&yO#Q;t@EO((bc>`?f5TKU(y$wwT^3O6eGZ8ofVp8RG4@F)&neQOf5Sk#g ziGD%4nwh}zbF&E7MfAkORBmX~D~JrDPADP#Of+{$6p-9-g;B>CkLDL~OUx?R=J@&Y z0cQnzMI#{YOI`!-tLZ>=$JqJ}J^pLUXPZ3R{l<@CDDUmtO!;r_uf`l~H8?A!)49<8 zINd|d0nZ7;P-Z;a%DG(TubV?`#|iTCPcnS%w0*8^z&P^p@33 z8)CYe5fZ#0W8z1v6UsP?i_2Tk`5=12FveJ1FlD5M+pbdbGX;uS__@{Cx)C;VKhl^~ zztp<xeBmCbJK!c!@vF81|}NV}cAL<-Mf=yPrkRXkOn_@qjR&u`h%E;N?6Kw)rS7 z)PD1ZW*A@BpI6&chBZt^_Io>F@2^w&4F;{;yKCqgex*0u<`Kwfy0!r;KHZs?T$-s( zs{v}A^a??M?wSxX2m*)7AG=hg*77RvS`rqbDC-Li<{l|V)~i2t8w>48dve9P1a}X1 zj@n#Sny2E*=1S8S%%*yK#yD7A=C%(%B@{c)QTDu_0(O}4ZdP{Z;sE1XoGnen~{&sqf6ZJ?k?To3ei7xXrsKXYDCgfS2mMkeJP} zk@Bbz5$yX6Zc)? z(C90u0&07Thd*q+h>i!q!J)79a5`L_Kq#csj^4we6Rv#@@qCFPADspx^wzoMh_y}9 zPdBx(fegvws46#4$uDl#M|Sp!c0fOr)W-x~f$R(nVWrCo8`@*MaOy-X^M6@`RJjZVi2ODq!brcpC@gg#CKKi0Cfu>~(yII_Hd%;* z1Dr(BH>qui{T6NpLHFZql zPDRV9W7N0IsB6|FI3$Cu3?3vV*wy&{!tNvnS#fJB8pUT7;YSH2JUBe|)b914#@k!J z*-eEHG z_5aeRgeKP8mrtdWyK7M#zhp>`onCz3EWS6`Q36Zho3J7SqPcA42n5?;Q+d_{a8;w9 zbDcsh*hrK)8^akRVPbL{xBWyG*C@bc6hBPn6zR2%!JiIiymjZ3PD$TL)WXRYZ-yPt zl#;>Yg^aGL}znV?G zNdvK+jRPlR2-t3jo5TtjBM2CsRR$@ugsW%N_6L}A1UaG6w7`q*(h#5m0GT3`1t68r z>)?1(#3^8*DEB4xR!DSIlJ?|0D*V$%iFQQ{}uwIM=q_n(_Lm?marB z>(3>)qP-0IRQBJ{>CFP4LZ4fVA!ffE%Z7PZf7~mPV`)>f0`%i%f9#$6jcR{nGo&tv zGgm%#Yd+mPwz0;A+KvON@WDrVE{-!>uo=`8aC;?C*F25+Ay;OJ4v6tWaU*cuzgjWQ4jQ~h@Wk{bqaIZ z;*&c^yvw9d&43FZua|f9OsJFrm9CoJ&PsFR=i2Ih+>L`RPm+mS;&`@w+$ljkQ)oua zxO(?9SM|EVme82r++jPejH)ws;mv>()X*<2!8MC@k)GAZMiJ-zz{BjjyD2qIXnIB~ ztcKDTtQ~9l`64+qN-w_(MXUhF-pf&XS?!LAN0r+)c48kDsv~H!$G#vxq)#|+`a_e9 zU~o>OkAwF9{wVPTMQyT>kHcZ97G=mwvT-@;JTao!%kQZZc5cR*+`h5Ul4E2!Stwx& z&VCw6bE)Y|=6kmFGRdSg`gpQh2I_Vu-0^Oan+%dKtR#2kj~u^vl`M%nSp4`WO{Ct@ zoVGyHQag>R_u%Bv_8IRzAE%2JPxDR>?bf6gEVH3v>t$(;tBkDn0Pto(m*&|jHLyjy z#jF$?K-Ne5uz+55g(T}4O`4|+CUg7_YL$F(7cE`LEWH=;ihcZ!a-I-TESt4X82%QQ zmd?{Xsf6(e8(o`x_MbF^3sAVp>}97=Z@8z<;`NtHP;_+?ml4gT-XFB?_xLUjXU?49?UmWOt+*!YGpD;`1I8T4Go$op`yuUty$~;+PbfVB}Q5f-tVG&KN^fum7XP ze}N4Ld+h^k!uy=+c@b#&u#US3CiG^I*Wur;YK9FbbFC!tv-UW<*|%?bByum%x2`o) z{mi^l(z0PpBCcrcyGDUhw)gT;^~wwpI&i1*-o?sN#bHi1V@~cJUxRZWv$!^M!%45* zJQxoXrvk@gnA(-OkB-xz3=Fy(G3kZ$xFpKbo{cF8p)=Q!ER`-i?XAocCE8T0E5RlT#A|2Pr(+^<)SoB~J_a~CM zM`V{aFBUrCZIYOAaV@B@CS|mzNEhp_7On;=(OpA!lr-ffTC-%&(!(Et;^xR9c#7#y zCX5MM%IVlb}2$>?e*-Y5ZLnXPTPZawV1I^0Ue0vfr%tOx08}q=YBb4m+WU(7!VZuWq9y$59 z3s0Ry6fNX8Aym`{OR!aent1r+HXU4(PS#QMQoxuaxdKpyrb}udVxOg+uM1{V>~ckR zHU~mJgzg<6R|0H+5hA%TR~F8}M8@y>LmzZW&aDxo|B2~f{yqXLjY=LD;fD||7`|2> zRXDtZfHSZ-KRnrWKtlf_E7VlvU)H##=b8%0y3J@`k4F-gLy$Ck-DIDuKcp!{*ss`M z#WR04=Mp(X7#apMA)-$F_4+Pmre3R#)(m|-S*97LZ1E>`uF;lLzP(PdVAIq2TiN!i zt(R5~+T#Bw9kR#bCU|1gk>8GRT?C)70S>}`8ec;TmR9=k3Rm83Bij@_|f!&*0G3WE9pzR06uOd$Rjij zLmz^vq>akmu5yR_vGSkLWYwzwgyw5!z>y9`PWQoIi$odHE(gB_?j2P03Vyc&FKBLR zh^Q>Y8u|el!YZRxW~1uq>3L1#;AiO5UZ~lj^7w}EE!sG%uw2y}5y&n^rW)#$x={Raal!OfJN+H=PVzQN;MABlZWGR#-jyiVDR1;dXNVbM-Q9^P; z%2>)$AyFzyWvQ(1byMf_zUTKlpU>-`nwe*2p1Gg zoXq0kGy=>L@+8@`4-(_r>9l?^;1P5KHp8fEOE( z;gl0J?)74b|6N$zUZZA`pw&-%EgBNFy7Ck6*FmmZt(q|!!_Ml!kcmIUP+xl{T!ANj z2BMYPQlQW==y??R{c`@j!a^HB)K8<49;MrQ)2OF6Pi_gH*{rX0g+<2M7k}K;KD@JC zyY=X>12U4%eAz&+(&4yS$jBc^r1xyyo<4r3M|*p|;1Df&Ixg_Gz(^Nn09sD?U>#>7 zRAStGM?^$Xo0xYk0aMy9-2Euh<;GPK;4u56dtG&V!Jh>z+KS&62{%3}+s(Y_9CE~S z@WrfWe1ZG7ayjZ5_N=PpX6emssHY`!$yqoC_%r|bRM|4ic0Y%w{q$$F@ib9O#468< z_ceW+6u%H_q#zt@AVLGxe4`=vtEF|f_ynsI0)NQv-K~QEmWth93qr%W+N?+R?4@bD z`PUgA|8#BbbRO=tvPy;J61x&?uvi^UaXRa0e#iAebC18=Cr7A}mI&VE@q4(dbOm&s zR~_H*i<<1cjCUCfC>hy#iL8ABFpQ#oI_>#Z=GBJ9xhBbe^Ul>GsAI=XHLptJKP`JY!!*-rkG*&NQ0uwVhxZug8A6f`WH3eU zuVWB|%XJickNQA6xq|n_VtN=PiQ<>HosfedkVgWav(b+GxCxGS-ZxfS!}0m<;~igi zWMXyi=i4!vM!AL~gG-L}8RB*Cgn26a^=C^l{4t2NhogEN`nq#;chM$&}q8=XZYQ-X%&2-M;no3F%pm^RNZ0%L++#Hsq=Vhhd3S zG8g4)$f;G*Yr|mBG{7ZlDK{PR#3RV^;we|4Xw{yQ4qb$@y#5HEt*F%@LA+)x>Bzf= z+CZUb>oBQs3VCOyz<#A5YD#%o7A;qRDhc)p5_cs|ONT-lKP(o#vN`&s5M_-A?e`<( z+p-;xW}hmTyZ{!Jmb2aB?FvbhxRVPVD}~qcQ>fVeQS?Tqs}PL z`z(nRcX;4sXC2f-x_Uu~j$>tA>2I?|w^Fq1_^G%Tr%@1ycWg4Ha==PecUw9}(21gFc zBr8Y8&7cgqIP8dHZ(l|K>t%fXn6;D*Z#Ue>jrFD8p4==*iKDeD#}}}~amJqeWR{<; z@{E_BCpdO9AY?7CMb!J4Kj>AZ-ul92bQDwOuZ%t+saWhR&7~!`=V;&@Q)0|cp$erk zcUIj|9a-+j+ET%O@t(z17NxT|N{hyW*U05!8`5iK7A{=dx_f23_n*eO{sR*^EkR~6 z@!L~YgqnT5*9IQ|{82gO?BaOyPMi0$FZNF4(7&HpPUqbKe(L0_mAtc*y`UlZa#WD2 z_0thS?o_zN30`r580XlZN1c?i2{X@F@e#G1^(7~-rBPFLPWzkBkh1#u9Tfi<>BYTTKm9r+E~inC zH~jPKK@7WM z@(V+Gc0_X}ZTxxai?x{4@U7ZmL%&Wgl!~ZZohGNrWBoInuI~hA_SqklY^H^72Wm&= z_V#RO12Oqq!tvasa8%Gl?FzILkgdEYfuP9!jDPlU8l@=j*tdg5i5kR0i3E%8t+|j2 zVeEDPC&An^iCzHUug8bBdv{4ejlhk2P^D5)2mL|#wjuoV4;FOH;9sy#hh&-~hyalA z?&?6S(~uoBzbVY6v*Kpe15=C>Xh{LDp^72%#a;VmOASqSm(3GNU$fO>xRfc7fCzH?nt7 z?|&>$gg686e}9KvS*;R^d&br3fX$y5dhP4=xIbN_d<>>zW9`Jvhp5j8iy?4gq`jwH z(B!dSBI*A2+L3PMxrba9yxg*psZKHxk(lnw~3aud~{(VO;pTgkKQAJxCEyEI~IemO;Da?LjuH*n~&9DDop-KBF35JX43TS`TOfWcRWD2 zgbLYiF=Nc_)c{vt6y3Isc%GdQu}^`)ydHGHHAf``JXAm%p~O967rd>ATQXgq?bl+d zI(}#Rqcy9t4>+8%?~!DNRz7*fB>~!VzRG|{y8XR(x35IIF$Xj!`ZY-{dHj2Y<_E9D zkqh=gV~3-~lq5AEe_d_bN zA!ZH)0B)VnC`Vyee6vOygu*Lt)P$1yx;_FXonAEKRE;^{5y{;+5D2v$jgU@`eS&2^ z0~XdgB!MzC(*~wZI;LF{8dc-g>JYcNx@8DyAC?Hqg*eEsK^+^4e3UJCk<`m`}vjQFs+F+k8n888g`v!=lwrs z#?oT59_E2PQdt_zO#}7EwhN~J(fScZsOqwsoKnwpz=*vbOXO$pC@bh58SJ?syFFjp z-)PgOO=WKuii$FeIY7S^-P?+qOTM9BKna;rT&&T(Lj1I%l9C%Xj2G8cYYVc*&Xnb3 zI<|1$E%H+RG%AAI9baVOmM-rTLSuyC=6!vsdT_SIKhkyklDa{Bo-t2ICM3|d*1&CZE zJ58c|HCvqnc9q`k4y@iI#wLhJ3Hz=dQa;bnM(r%Qs7Os6EBsrVD@jpnxmof%gp^o7 zJSEmzY!|AYOz%)u%1XR1$O_0qii1D{AkT&}@uo6Q`%`Gv-hH2Wmb3SWHXv@G#2Et0 z1kIqpnm!j84NSS2U2n*+CyW$griL6{Q-f-5%FDz5X}cyj@Y8l}xs%r4q!-5O*-;p- zN$&Ks`ueL_)I+P~0HJqOy7_$2xzI+qgRgK<;(70*!1Y=b__cK>%;hN|*nQ z8ujM6HD+wX=I&w4qVtDZ3CU!e-lBOTGl>z{@bK^%kDVCM$&8~B17Moob4sKk8Uc3hI@A@ zZ<~)f$frHPXE){#Mo36VCE4%d9{DU?_OaYhi;F9R7gdf;o(U=QiC8|QheM31{3%F5f#UdRHbcR_Y-+y!5_ zXffRCjETO9kqIePpHER^V}ySw1(Sd%@4hy5&&O*kbPyRa*QUtVqYD#@N8dfDc=ds} zB>{7o{PieidtMsc5P@}jhfq0Tom0A)%N`?QdG7g@G_J`t4dr{3x|z@9T8TpWJY{=C zUih^DqCiGBb)eP^ncqbI=|~#z=uIMmtk9bYp(YVEL!x~@m#?5?IpjrRHk1xth*2N1 zCWU&qNp3l2XXrTCA4Mdu7$d#0HrQ}CczyPrOlWEAkoNVoBq)gZ0W@bh7JnbNZRI#j z3^%C&iG4<_R^gLLwE45eHoU5D+}lmm_C#I}SOdyO69j5_KW|b)rJf|mpgRx7bNn}> zONVv7nALwmh7bY00kf5n@y2#txuUcHt3a4V@Gj;TH!#9vHXBwmTg~M5Il)k7@;YOk zCDfAZVzwJptEt;z;X=XH6JWIJk!keDUuy#A`oY3>m)^@;=71acyb~mKaPR>_|DY3!3kJpYHdB=51_gfaN&bpQ2R#?Kzi!= zF|Uanlwnu6&hr7k(&Tg;mQ-nGqJGx%2NoJjC+`+wiZXfrq<1G_t-=5@U6^xU&eVFB zt@K7aK3h9J1H(w2Ft;jd(xFlmw7&1 zuuq3*;VW@%dm~E)!>!w!Py$}F&ih@hK8En^=bib|N0jkxm2hnAyo5!VeHX?;Z*SF) zXXu}QfQl>e<7Kyo$hVhR64C$&c^<0Xc_*tpS3k5sIG0>*;c#jbb1{1{BMZFHU(atg zG>D30sdMg%-~O8!ajTn*sTLO30dvdvKS6@nYt}h%e3!`VXya+=-KU4lnOn0V9ESU$ zYF@l@^%2dWfol?}@DEN<_DWuO-X(JX&>#?}95A^Ri6*$G$%F)L2SWP)0k`bI1NnPe zdb=0wyKn`7xpmbDn(Erwl~x}RL4J78`PSDJUUM(Zo9v(=zq;*;Ky``x%Ag`Sh64(h z#h?|(x*);PO@4>+qCZB!|HHM&#lRk#>4NC60)H$;oLsHOYw!kX8F%fVqdlBVV7Tap;}O94YRV^|yy z9c`e@4=H#XG})5;TCUpBq(#F>yo)!^q4&R#KRzphRm);2X|EqyK+^AeFnz_34>y&3 zIAdn);VJL6_ps(aEp?XAKY-Ot=5Rsd4fk83YfRTCy8L^jOKIJKn$7D+{7486F$h|X zh$(t~x8{W3$MzBjD?5)9WH0!pduFG&E*jXwW35lh#uckbv2VI8duo(34|99BY?X)X zuV?2rFu`}_^t)?mYX=jE`dPYF#U(fFqOcbQ-S)@CZJ&zORplOH6(w_?EeNg^Qn0>E z)i&59R3|yc9ev<+BlTwRi|O-pbPN=lEOnfMpVpceKzysqoA0B2xe;O@wi$2A;INm0o>1^FBCEpOi@-(<6GH4<-!hlfkX z3_Fb0D66QrUN^0Z_-oe~9AI)JKmzO`{<6{+@9^dlu<4ykA zv-5ZRK2A8_k1g(|ov!!K4tV{^Z>_2k`8nrmy@LFmMwcCtTN)m}dtQ>;)6c89bj8#| z+Z%_YlLKxpO4OC5J$5inRaR3oUnSfyK3>eu%*@Nmx;#D}sIIO~XReEn@+`C)8?UZ5 zIPBwtRx)_wX~XVGyKzJBy6N(axuUOqYNDh0m1C}Tb~>qRXf$TJ=7~1)@_$k7Zh!v9 zDpz_UM?+0*nRu+5iwj*zNl8UnxvsSIcw=K@ndp_pf!*FatiJf#&73(i&3uK5s;b$F zv-L2VwWcW~+1`BAujY4YseHrGP`(C39!Iz}U zL(It7IBn~)rw#@;8XoP<>HDOqqEcU3875W%Hh7$|i3zuchu7$1w9YE|kwb;-g`@Wa zzK-~fr|u{->-1?%PhSb|hULPM%i|4Q0|IuqySsBGKG)RrDlRT|-LpqG)qKmnd-t|T z3)tG(J?-!J`aJVn2lmYkC56xTx9qok?>+qB*u#p7HydJ@RY^lbL(?>sY)#A)meeVx z=G+lJn@smMy6Wa^Xa4j5A2Qf=3JF6O1L=zfO0G{WL?{UY!#-2+4$Mm>BH<1>`L}Ay zNuEN8O!qhrZbsyCxZ~^y2d)}jXOjB2iu&Z A;s5{u literal 0 HcmV?d00001 diff --git a/docs/source/_rst/tutorial2/tutorial_files/tutorial_24_0.png b/docs/source/_rst/tutorial2/tutorial_files/tutorial_24_0.png new file mode 100644 index 0000000000000000000000000000000000000000..86da991c91d2d3ea3f2e4e066d5e32ee84185182 GIT binary patch literal 52893 zcmaI81z6Ny)HO;-NeL<)0t(XI3@9NA64G5FNDW9gNF!y?X@GPN-3?NMbazM$Fm!Xz z{Of)1^WE?Az=JY%e&_77_u6Z%^9xs1mM6STbsG&0jqt^DSv52?EFLs83_@IN@E1HT z)eP`U)LBl)S>4{k+0E4P4VsdvvxBX@v#pic1J^f>PFD6%elB4yUXBNEot+(=#JIWb z{(AzKy`v@f^ljWw)O$HR*L6ZeBQ{0-pyx2q9u+g36fg2^(uQoRVhcWO2psy16=)`c)@L#c>Dy{aYIknaRQJ)dhwEb@fwX;-B70Wm)t!T{b^E2?>e%7VN~9mX@H< zP~qxOnasw)|MQiddo=0R?$4B#nEo9NTJT_ zel#jh7#dO|q7{>U_6!>_RUy80e*eD}JJq$aVg)Y%a}GY^$}oC_0sIdC8nHc9(d$NR`NMa%;-A%fj;S?|!S+dAl)P!!lkLA1|G&qH)g9NJnQ&8z%&e@@ ze4E~1tpCN`Cz$J>K?Z2Uk=EzWpK%EY9)jy8VR}~Ljx<9fXj>Rokvg*fq*iQ2=J;>S ziP|I>`-*}It3O*yDTmG`7Zh-;!872WnB*@Fr*v64IUhZE&^-U<`J>JE|3)7ZpwFqVtNRhE~5XDd7P_cRw1{&M()kw55c2 z9zJ;dIBc%L3+8#W$<{Rs6>hpdDz+NUyH6Av7#n*p-D{_Y&910!M~wMpV)Ks}Nd;+X z3|3awY!|y+$p0SmebHIx+T9ero4F|Bs0Shohm1eKAi&a|9S*D1ECk?#`6_VqKHFav zu$zkYySbQ;q!A^}AHDs=*H`j~e9YQ!dHP2@JRff^*QFw9#p4eToxw=G*QJg|)Fm$W z+Ah!Fers*SQY&Nn_HP!N-)ClKe$2>#C-T0g5VEDPZ#W_Y;dOaj)l|5D1>yqi!o3z8 z`a5^;wtar2SiSKxB`hXpy@$Q{up&juPjYc_u`f-0TzfvZh_gcee{xCc{gnRBz9jx6 zAv-GWrb|8$)#l*C3|vMvowvrKn3a;z?od*`Ffd5nt>2lg8*cD&n?DAl>SM|9Znezt z={(#R_PLOcq3gG+n#FE5berwqhfB1%&HKnJDBRwyKOh2QySZq(VFI&0kR}du+ciSP z)BKrhT^bI(_h8j*o+i8RB~pIQ@8*gP-QxLk+~TI|+TBs4wz1Dq?0Edt4>Waa=Lc1Z zSU3dO@zr7F(_kz79qP}2ESKm{o(|$RdG97wU+(wTY?t-wR68(8T^-&v_PY{9&AP|c z(Rj^H?UuC!i$E6xi?Hy`zzEzvHiz zBJ{gZUl{B(Z@cr8U1LO@kvCFq&V8BCb$3qb)hiMZ;h8^wYFQ0e*o?C+8>R15WVt?W zj-|TVoM)f#Xzyv}3{4v3|2@C@&!!X*3o%VS&Y!s^yLYd>#Iy~yhJIID#x=-J>YAJD z3l$2J>qTNelbxBG%VqkTuXfXwA~ZzID(Nq+tgPZ(kC(+XDMQ|OEsG**=X_2KulGWw z_D0lIemD8~wYIjp@Bd=at#t-ZWME*(_EF09Np6?77ASM#M{Cr}*jQKiw^lT6jO5Wl&+oKVe2C2HtKU3H|%N;zq>J2!458ed#2_fvhm03uIK{8y7;9fv-!ph-}Bt5 z69Nhz|7mDl6dlBKu+mPy(th4o`R`a7$&qNj^zAjhtzh6=^z5IH+WgKWAI)RleP_;d zi*u~VP!VJ}dhb1S)RIt2`AV1!FiZMfd-L)0i+UbDMgz%jc{xUknUgb0&}Pg5?AMG} za0UPT;zp`Ao6uwlIfr<7KLWzI6=7 z%iLGlr#xnu4YAb{-gReRn|lANqK^dxVtud9k$wDdhhL8p2D22&ug}Mu`0S5$;V zX-0b6l)8bzOE8&*dKGzm?;^vxmKnIYV?fd6h(8}EN18WHXQvd8Hr2)J4YLky*Iu=a zwN*oUYW~Fwna8Znv3ITSV}E-uREDphTPNK0Uyz19XUarVSMIick3TJoS@PiOV@CeJ ziTzXObM&97BhAO9XdDyY|EqJd))^QtMROyjlhD_u8boP+aU-1s|EXpM?efBuV6+04>c{;YyxYR*Ae9r$~m4FtCHxBNS% zqZf`muMCp@*-v2t%u!;^sUq(fU%h(uGF@VFK5K+EYe(&8e@18hl1F{X8kT2e17iE7ze;aWF{N^U% z>y(qB`JXC|0%#FcRy6;Ds$7TvTR}9YZsR!xsULni1!|PU#WqaySSg7wm{Y$p)un;o za-f|j(z|@Ykn-IwdCWn|gD;FjuB^tJwIN zL6HXO2FQmALKmF2QI^O`CIdfHcE1Fcf9BVveKo;Y8Gr=)#xv$Z{VHa5_K35Cb*Gi? zPY3%xM4_0WZAe%V2_2oXr>AF}54e7*t>kqX@B$(IAJM!1Vl$Wrq4d5c+Y_Y^A3jXw z$?`*XkiSq?W(KJmY?4y2v!=Mq(d!=WkrpY}Q2Ap`a+?sou-u4ds-B^f(q{g57*Caz ziSWs}R>E1*P4*UA%55h4~DZ8^L(Ro@WP)52rSP-aT1cTaLRd$`V$yA*Of8 z$+h3G63dMj8^d#6{lFz8%+iHf75eB-MRU>`wiH<-~- z6$zV&Cai7o0Wa?-@tx|xfB=kn5AKFTQjmL4#mu5VS+IJMbj#LXS5@^1s3IO<_G~1s z=e%~oCll;6-S}!1>dAozD0$6p;Sg)}#ik`ED%-qKi_D%|K%72uW9#322^gl&#uMeb!=N!R#v^=!|r2u`}S=B zKd{-g3QVpq&vZD*z&nI>y>>li+cgokpOXM@-P}d*=lx9ZuNvlcvQuExkc>*sw)2f? z>_yc9AU~G6BJ{uEsbHRH6pV)}ajM6EWK<|;N zye@i?Ui4 zM~j|}wvbcH$mc%)uavv&EQa)KaF?JnzVplqJ-$nS#FI0hs{b4W2m;N_%na?I0`XHRC3$`kIapz%UF(Y2tQ!j?mh47hr~+MB_0{oo zcw}U|bpZ%$R%bik3P7YFX${r!&w1V*a3K_$Do zI5~j(U4I!F(V+8KA(<~7H}*@5=hQFrIIx(ivNtYtTL<|@8D`P1)8q>=taV1t+G}WN z#MPqD-*m0k8`)R*1mX~{xiwv+*?WPh1$i_HggRy$&)eajgmB3V4%EXP%a@s8ZCUDXrq+<|AVZ6!DHmwj#J$eGuvAPV%A=vdE9mk(729_dOYD!$3m~u(`KJ` zKVRDZg8saU`FNb&-IC9m<{|N)(2br|?hO{_l1Dhc`~*|Gruh(d^9Qt%+>k)V>+JQt zOW34sdq>Boj0_bktK6Dl-RGI~*1yDE3AT5Jp;ERJJVMZ!ZZMGU5BJ#<#of46B+nj# zOd|o1W<{~#t5=_jWhfFMJQ?mwc%XHav9Mr_l_5o z^D1rtRcwlCek!DVVddgt=HMvkseeos5nNv{p;ct?D*y{0mzcQNb*|QBD=Z@7^~Etl z;&|e9fkDmZ?QL6Q)oQRtAYi-UaGbvMBlLx|~(mbqPgz^IbIgtdhbwn3{f2OW)#i!Rol;r6Wbf4~CD z!;C>tuwtqdfZNVU$~FKyjSxEC-Vy*i8#wg~K78~DIb~D)>ElQLuH|p~RnQ4rq1LuG zABeb&v~=Fcy*qdOXQ9Pq@U0`QNy}25u<-EQp`T#tw~FebDfullym|#$S;PJP(X@(< z`au}{6=@R4Tc~JLOyDXM(#ny#M^3&B2DG4CTBRa2eU0*!Nlaj`}glh zkEapG*jJ(Ms~20teBldB!>p0M!4k&~2UWrc-N7+D5*{McL~93iC*zCA){U({`yn0w1h#vIM1VwT`@QHhO%k(9vEoo?{Wz$>sfCZk#?k5C%KugI}LE zx}u|_yGx|At;ZE7__=~!akudz+W6*tJX>=bxvo8yugxua{)b7g3Tn8#Jue?k!vKM# zjT?DIMQ}G#_{&9*ofT=*Rb!0qRDq&kZeekLTr&$5vYlvNXbH?OXTO0w9tRkFXn5Fa zyvQ(0F!0QYO43`TEtGiuJr3OiKEBUb_+&g*Lz%%bCS(sZ z=%}K`$H#XHcG4**$*7R^L45x5B?+|NNl8gG5YK!50OBB#UG!h#<2#cDZK}^V^Yf#o z6H` zim$;cpipwlGV%B;)#0l zkGt`*sCwEA>u1)`GxCT;G%0O|%<3JD=V|x8z4q~;r*UPMvK4JVbkkDb%%jHq^$%g$ zJ&6zCopF<|#6cgwf#a`7&KpC2^?5H-grdle+*`(Xav%#`Xan6Pw3% zTjyCM#Z!1XB;VlXTPU3wC|~7P!y$mp7}041K>M$C+J?cOD=EDJSf??m8Lk0no(OVo zkSh7TPaQyw?n!f-L$wLTp{sSfjlDf_>>EQ__)QnHyQpqE-=NI`hP*t09{`HwT6~i`YMv(|U@1kJtfpe7-eSNGajI$7-`VR!D8^jl|Ngv|R)f`V+7vGk_ogm>b2d z`~rxn4=l}}iBcvM0|WZwn?Ill*S#XxWNh04O^>0h(*D5#YF$lS<9q=A18>Xo`}c2D zqC%lfmrV^LkJbC<$B14ST(b9Kw+X)1pOPOHy}gT4jnZs+2@wgO+Lc(GuR`qkH_GcsQ$6;T(sp)tEG4}-cD{W-gm^GpuV}!^WBNx zsJhm&qC{PmEfrMVPg6hsFI}mS@>c;UpnX6k1bI{C^tOkgYuP+vxPN?en<5dQ$DGg7 z32t3!VlHf;Eiwl%hepgf>|&=brmyd%n!0)t#LKlXC?QHWBF99mGZeP*gzo0*9r>do z*=W1EFJYM~?{MrECN<&vh;)08!&dnh(a(z`fXmpL6H=i)%+HWu4!{vq6b&#O>0;e44s9CN{noP%4%FS+z=*$gXoKC96HY zbe-c{HpGRiAK=9c14eH95kyVRW*V1>=C83o>mBX5q1U?#Yqou6BTiC0h@~-SWn7l* z!Cym>wq#(QL$0#ZgL^D^|IA1PNOJ!8Gs*WstCZp4Gn~7&Rc57$Fh{_W8qjeoSK(w& zNAx0)c6BpG+d}vZ=vp-BS{McK)-aFof3LuAbP`SdvUh)$$$7r+-uPTZ9#-P(+DCgc z^@ZCa258NiKBSbhoal*9nyP(gs#YX@#rE#TaC@cNyZQCrO^|q6z%=G|y+EYoVW}sz zb2@K*Y)<}ezJO40Y*3UTRr1$w)TpSbnoG^dLk|=us-X~wpHy_ciZ z93U*w+lviO$nLe~#jQ*+wQ%r{TR@|3LD#a?!p!dg)8d`HMN?(xJH>&mWiy$bbvdl& zGVK{~MfPL+f@6XcTPPo^ZuCL3bqkb#da95N!&Bhf{jl$WV@X7T55v+`+Fw2tuuv?3abc%ya!H~{azpAUZl$5+n!NBrzInRawlYgdM zuS7S>dTX^MyA8_F4ecqaQ=g~L!v9Wo8fCHiR zW6EZUt147FJEfIWI5>;zw&LuY2oKKeu86MXj^(4JW1oO7{ZcprxpWjzH&ofX+=1XV z)^)4vt%{j8ZbTd}<<%G4PHz;s&(3ZLwTqp4}oY6s3>a$u8Tue1M5mo z4wp~b+xx+pa&N{(+zVDBw}?x0docRZ%%m~iQjt9$-g}T7f;Ge;5%zQOy#PMHRN(fg zWi|QV!T2czD0Cy;)S6?M2bQ-I(RiaNjOee$s^Cp&_jTE=AGO;?a*zc+iHM_Oc9z;z zFo51xm{}pO6VX~)(J76%G$TKIQ@p&6`os3as_qxc-@g0^&N3&Dbu2H5{eh*dFl(Xm zyRY7i@8E;Vna|==p(VzEw{#m{J< zf7S9(4(AI6?MtIa&rw(1@kgl!bMQKu}*++l3QReeoTDNX3k z&d`|?8P=LYu6xPN<|IxmjOdQ}W>cJ{a7GnmEGe)_h{VA+A~|?;;^)Zf;*%mu+Z|E8 z?(}U&S4;BvLUKourq~%qmaXH}GN>`M;(!yoU0$Te(^ibl6B_T+8T9AK`L9p?6k^^I zfJHzjkq87IQc6nQ*C|Q-mX7ObZU7sq=U2SI!b)_M#(J+5&iVXC_wE@@u|#`;1oK+2 zj4^YC)u!kLkySm0Ety_t&>$akX6G{2qoTYP3s=)PIB7!H_GFTJdyL@a6b_C~e|pNR z)dnG2ftcIOY!k}n4rrfRTp4LyZ8tmqR@tJu0nINDh&mLR-=vreqjO(Cr}N%xvAzJ{ zsCV$2jNkE*3QJfa{GLe<-hHh0ME0)ZjNz^Lm~hdn=?xCJ!2l{?=rM0vIyku`v*(!{ z>%j`qF12plAvZ!Kj&H3FmXaRR2)6aj%I6)=_4Tp;EE(xv>w9fGAmKW+i-!*?t{Dr* zU^G+nhc@V=ZYZaIRpK=ISQ%1=bD|L26_xF!{YL|4Eui|yGGxxvm18Cm3`}nXhV3e% z&k3_|&{)062(Ix-3YA^pwFYqA~U zfirMc(JRw8-*-c($e+LmE@Wo%KpCK$v{rH?KA<_M=w!jJ_N*wlCjLm8km4iH?g<4e z-M+&VOw-M|^!D4A)K<0q4~A$o>?!YQKMXv5qh&N%zaKe(`xu|E-+x%G)R4?Keix=k z0IFI_N3%8Wv<|1B{d7Tm*_GyazmTB4cB5;Dr>=;;t6_xc4lKSfp{i7epdjRZ2ZmN# zvqfp*RvetS&-JfOqE=OC+>|bLjf~+is0Ntw4(PrIfSM))dKomBC4B9ZJe}#)`4P~R zfhGlafRdijv(V)LcJDfGwq$7eD9WI0lD5p zLTc7%db(4$i+ZzhcY0I{35a4eS-B+LfstJGBvB`3Ks(NOtf!%V8g~@{E^iIOlh|v< z^go+#L$R(XIS;Uu>oIZM{z9 z)*BaH?{U7}-W;ph9N(z@-3p4hqF2XGypdF!QrAXov+LoTd~|G)y(YdyL5EXZHpp5sQ$`#ewXjkeU5c)g{E0| zk$_=cO0rB}1p6k-X?*}t5M_Y);BPz`21Xg>oIeuB%^c(=gbUZ#C&Q9?kQ*H&F&RR? zy0F0d%_?7D)&t}PqmGXt1XmQ!zZ4a6u_u)NTF zW?4|G-^Ia0!d+s4Yub;`h`YMpNJLItw23V=Ely@I4}B9)dXNg^ck)27cb`PpUU1*) zQ~R@ug7`dBdkVgAvsq34lW0HS4mMUT6F4+AJE3#DCj z2MDj_C}F?_n}bAAZa<&i%iUDpBWhod#8yfcFkSA9()4^f2e$LeWPx0TX+Th*6xISQ zc3Ls#g|c3**FZvOL^}wfhVE6^&DIK{h*+QVLk1wy4-S4HVmq1llLCAr=0d;ld?uia zyg}D(;ISGvy0Za%4l5w^EH+1S8@D7;UI{>9h*|m9fB`xiakWSVX$}nEtG@ zomGF+;Q2>a^d4kG)QB5OtT}*m@BcXFrkv$u*yy^D>pf$0jd1tC)%TcPJ~}6>>XOj1 zYbY>`JCImi*Q|Xu3GwVbu7iMzW236|rD~f>!?@Vl@PJBlycaIj=(Zbv8emRk{n2*y zOWMXY*HXDAu{pc6%Dn2GH*I_q9GaodC7M)X-_54gO6_<{^w>R_5{TtYkL>iLr;Gkv z86am@O$)Pz&XHYgn*|&0XC?PQwN3%0T1}`vc(mEbYU1`05g7>yvI$7{dtf_h;_dX< z0mbJSF%5Is(gI5*8P8?dv)C4jbeBK_qEwxN|74xpuJt$|I{3A0I{ffEy1HP{S+V(J zz_WNPyvNajSrCGJQ|O3LP7^zuI@+C|ucD)+RRX3GQ1iqVA)H3_iSqP5BUNyOD@qYJ zHDzdN5e#htRvm9p;~Ejo%}?f!fbpPr+P(=PzINmZKHJ>f9FSMidU{khr(IGyb*_jP zyUVt;H!#R3#OPheeN+)dnU;Wd&j+-Q&S+Y%A?-hYL@1P&RmoF7hDPAVO4A#Zb3n~l z`QdHH4dIPcg2x zptg|I&-SpvRkhJ`OTfvFlNq^tt0WF{WEoSZxQg*k5lyX@K|Z5-5zSg{et|Zjna?<+ zu^;K8b^AvzrcDgF0aV!Qc!x<+6216ooPUku1zUw?evMkn-8u5ci<8maeAxH&;YDOX z*X&2k)nRQC$9NyDDK6tGdV243jNczzj8&}#Wi;z5BxE^_ixZz0dK>%qOMfl&UJ}ed z(-p$g_wUcCg=_H|l}c-qkmUB6I+Yx5X8E4YIXwcqvh;Nq%9EubPDW2p+&oeG+G?`w zQE|gD6#xT38mo2QkVbh`j#rnTYPnucTLZT%jY**JzjZ+PxavH_Won2q-!h3H$0b8`408@JTfty?5 zt;98Ls>qjgzrx~~bgJzcZl*7#$aeMnhWfHN`VADERRt0%8Y6iNy9Rk{e_TH@mR*t9 zZvbM$6>N;A$CUVoyxYOW%SfYLWXm>^!EQ9YA}(;wy5TeX(PJ+9fp7KNjvcO}%TW7C z9i+fNP{B>U?1^kX{-uDr5YGP{Ed)H_2 zo97lIqf4YI#rn1;)Nf-F#zOCNNCIG#;PHUC;|ea&QtOYWYz(}S9sZ)<`fEyn;1o?G z+6v?jWivBIG!ze4icpcdk_A}}4eYfyAdfo((YUh`n7|%FAPt>7`?e@KGm2U`eb3Wo ztbjpWJf-OhVP9@*Wx?MyFaN|}G&X74(1j}qFsmT9b`1IhhYQ$bsai_eweq2DEg(uL z#a%h7=6%IM+BZRYW`Khxc3eswEKX*Yl8X+%O|R>aO_y%Vepa-4JSqwW zih)Q6lokqp3xXFfUI4|GGNPju=m{u=H%4N=n{wP^+|cb^3l=#KfJo4K!r;`x*qUsbjaLcKQj=M* zg4VHerX&__HYUsbRs$qYLW)^7pnA@9mmJkKHj5hPt#+Jh*`-JJZC38r4V*RT5%fKQ zaV!uJm7G_$1#AalP2%F0kr-Lcn(|M?*NKcn=Sd75 zByalyz=wVyst+u6MAQJqj{;~?j~+cjd0s%#05q*%%@L?~j$O2FD07*bni@(!0bKGR zyeJn4U45ydU!-o%;1V~N2dKT}2b>a-)WSu2(?AADMOl$h>I)F`C2uaBjEg&$qbPU- zxEoIcLg_rifX@sAppZ}^+G^l?faeVWyn_Uak<)I&i6d~IEFXCS3{D8(IC8cN;OK6Y zi2(I!RJ%WbMB4Z(7zJ&7kMfOqoz`CN)U4A1%?cGsfUH1SPP0cb4>V3FfF=Qw!~g*A z4t2B6h^aV~8z(U_5q3_Q`e6}rE$1%E`F}XsdMu^rUKGO zW!b-D{I~~INK@s-KYQEMRLeG`vmqMW*{n(Sl}vp0o+!KYz~^NQ_)=LjEN4W?G&dzc zjXd~Kmrr~x>tkLi6v-KzI4&^`c-6*_Fvd#(DJEK1MjBVfK!mIaMi_z6I8*Of;7G9U zO5~r6;EL?(>cq%M0=)`rm!Ws}vXB5M0Nv!wf}z-6`MA!f_Dm0QA#R=PvI^med6SgU zQB$%??c}p(yig}^a^z<^2rk4U zOCjc6!6C)jfcNcGtd)edFS~s#*$+dvmu&ab&TK_%g8_QbsB;BT&fWKts2EpBKd7P^ z`dg|5@Ew_^rEyAX_Z-t}i)$f9A5x*W6%Fob+!pa^u?&x>H)HAgVE9IH(lh)^JtIq! zydzQvQ&ek-&$t+8U(sMCp<3jl*V@so2@Y8?HtGH_lRA5GK$9_weC0 zohw2?1V{nOkY$xHT2T8oaZ1L87P?WGEgtzSUaxWJ<;#gnEazNFeoea)3NpQ*im!4y z5yRHTD{MO(`v*g!L`>9NsQ6xwI$2gPIV9B9Hp=lEqhFz2F1z* z3z_t_#kIECjRCmWow@$!*3Tt+haWzJ_Pe`=^ev2(!upZWVc*UE1n?LcFEM5h>awmle^%GfE8VR| z>@RmH6GLMXwgc3F2NV9s%Z{vVypEqur1`}9;+HhMdjU-vqu{nASp6Q9g_50^2R|ke ztVvQvzgJ3z9d-)3MW^(h=eP75MXisVVX=SiseM<^+dlDZFu!kc*4l>HJmx#XV#l?5`Cv zQBl3OAt`HS$9ocbI@Z`3!Ed(STtt(JvAQJj_tOt>uR8d$sya-~TUAkM1`a4}eR}is zt;a4rtjym{w`ym3n+P8_4&{yZm=o0(Ak}|@tnyJvbj%ALC!mO4v zq~ZK+JYo3ZOk5A6uko&YE*gxuLnDY_M}M>`*KCi1lc$|3)wj7U)Q_2k-q`0k7NRMl z{UZ5Q9{yHltNVjLKQG6t*MDEa)2FWN;Jd#SZmSk$mOV}Gc^)vJ@GYDB4yWI00|zdr zimRc{Q>S42<*WHIG(x$tH z#Jq}>e(`~1>$|CS_lC7h`8XN)k2oVccrL@Cgx;TrRXO*vrxkOj+rGViL?hP5E6I+J zS8{IQQcUBDjiUq9qea{jQc{x+5)-C}%?b`*qfF}J7M`#(pj*@}Jki&sW=GeG@C^Qt zie5avwM!~Hkn4mLF9b}-0G%z@fb>Mu)C_sN33kHjXKo?PK10Q?<1W6eu%c25GSarY zF9?dy13phLTlls3x~^=SctLe@bSsTk*v#|?geq5U0}b!5>kzVsn}%x|$=KhW3|ZMT z53scy!+(NOb2f$AcyNhINN7x$820-D;H_$IqvJEZ((uFZtD+wz88fMDAvBqZ5 zgk5fz6j(iZEXd?8Uy|IQJHIS=d!$vUTi$E&FA$V0mgv8mD7-bvDS}aOYpSoAzuN*_ zF!IQoFmI-4zY&f7sZhi&O@wE(0>rW^#eU^J8QGFU>h%G)+Bo#3GpPEuXlxDEe&(k}ID zC&>e!bqWfQ%uKP9N$k8Eg!F@}7$@kqW2Wz-2!APFffAs657rNycUa z+eRLBUq|F#fkO3<#?}u<{YzOm_)*+35ae8v-ski#ANAAuNn%ZK+<$MO`-k#v)l!K* zTkzLa#Z{hi4vq?4JT`ne8*6f%+_YKi9PQjxCtz^t?tTu4Hryu;4kfJwYaw=wQ#oCKol#3wJ>%HrwdC#fQZj(5=$330-SbUmuzZ>u0bm)B-$=7lzN-n# zDZ7pOC<}KCe7Nf9vLgpIUCkeWH}GA5Kog6h!}%=kEC1f7tR5)o*xGOnFlzwh33uh6E~KSTTLUVZ80a|n=9~a?7Cgp0=-EcKUz?#*URJ? z%{V51z344D>32jlQv}Fa8(1xNKMz4Nws4k}!?5)i99mXMwIj{LGJpO$krbb^3smb7 zd_i_T0Ky+^(@YMFiV(Dp!5G9B1Omz>2=XTC_3v%dgS-+PoN*0Lc4LF`(0WqDN3kqve(XC_Cp zbMk944X@xCo(DzwqTwoQVpxe4!02p7TiPyWwn05#)l>STL*B=9EqaF5R=gHPQ#h2b zJf^InG+(jU>mRW9M#vz(mB(1C)aAG~s=`2dmfmKl@X`NElCW&IW~Jvpy!1;L-^yxV z{nk$IsI^P0$9d}P!G@KiIelN#T3t=Xe)zLOgQ6iF_t~Sh{L2c4X6xL;o_Z|H(ztQA zo1ivm{@nCowe|r!PL^PUul+Gc;al>zu*W=w??6&FP6AXbZH8PW;;xj6ovDVh?W-1fq!!O>8qTK2)Up;+wczaW>*rLJvqQ}b? z`fF|}1>L9jH>WLJuxrA=#o>NFQBj^_8mMx8Pxx!US6M_1lId`shvtB68zvwb^6ED} zU%&zV19yqFf_=HH9qR_^{9E5wA*$>Z`K)(1iPde0^dXHeQi06B=Gsx6g`IRU@Vh`+ z5Vu@65BvLQCsUzVw3SKLI5LJFR{rxzMZKlf*IDVW{ojQLWj7g67txYUViF${n4~G= zU*kkl?;|HiJV2PythxK-VsX7vS(L#zrhl!J;H_kH)%=EQ8Na<{oT?MJ0vZm9?zzi` z?f&`RDzC<)3bzTG@+ezHut1rzS%bVknOI-3CJQ`A1>y<~Oot$V!{UxMHCt1(F^Mn8 zn{2BW9a2LLmiDQ1KNQ~Ty?(IC*ET|`P1vB++oqX7ojtvEu>;gw@ICYWz%L`j6#Hi! ziwhgEYK-4iqh5}6l?I+nzA}-fsP|})3gdb*(9@iQ(QAG3Lrd_f#T109`8bO&XKK*mcDY%>EMw7(?i(k4F3zbjJtEk>UWNp$XSWBkzPgpzy;8tx zaf@72;2`t*71_!^T*8$egclrrWjzySO>I z3KRD>PPGpr(&!Yd2~_e!b1eB5zYHTfHeBBoR5E*)>9To-om`w>JC*KNk{2rFw50Az?b7*F5db_G-gcNA z=%_@Oov7>_jd;19I8YvKTd4ZCWn%LYz$oQO4YW2kt=Xj7qc76fLbD!eR_0gbvvP3e z&WKm2O@Cfy@pklh?BdbQE_w6b>g+U2li4|MM&ct;Pmf8+go-zamG<-OQ%S(UDac)x(T+*LbkswRQ#_)hLZ()e@FU_G`Y zA;A;zXs?RvQ>0?P3TYNn5gt2)ChF#W_pAU^P0T*!<@_oHAEm_&B@vXzk}GCQPh9ZB z`~;^fXf>XPE1OEJ?FMyina-E`*mln~cQR2=y1O$`$JnkU9#8-i+#AHVijUCr-4fB~ z;R;Bs7H8B(05H79F0LquyXp3g!0jST; zksHs)CyJaS5YNV$4XvnVMvSZeIrx4g8;4Y+t>E{y%AHoXD|j`plli8_(l#v3$Hpz= z#B;Ok8MVpU$_fu~`~#hoDF!GBC_&8rBBk0P z=I>FR!~fh^Avci9&fls+506O5%Oox~7924|#>b4XSr&WPKmUVQWR|#Be78x`sOai3 zfAh->Lnr^F(mP{*xJJZ>H-rLKe!iRW*ew>NzkxiA_%X$wJNpprc3QBlNZI?N&~ez# zp4b?jo}!j1nSL}BRV`5NgJv2Pn3Jt#gD2NtJC{+dYh)4)bqsIe7fXiuYEK*uxYGbQ zDiDNsms!K=08q30D_>MTCndcAgz*{Rh*5{(RW8IG9UUn|93Ft<39I0R4~2w|Y3Aja z%qv>T?fYHYL|iUnKb0)-P9SMTB3g{BG^R%F+boCs_ef3p>l{}7`kiEz)q(j6l(Ro~ z$GfU_O%|Vy(du^rsS3rYO~5hc z!3HlkDDXT3?q36O3alVqfH8Cjhq5-ti|J8^hnSv4J^-HopGy5k>bbeO)dr)M_R0K~ zL_jYB_d5V$I~6!tmMCCF3Va(sb@`*(PGM=v4!T@L)IpD$ORqj6G0W+pJMbyojH^xp zZtiJg7_sDyvsHSgL zkQ}Y9LmA|GXZxYFk)OGlLQ0RuzBQfR`D({qm4?~&xg*-S+8a*3Xz3y&BCqe|r0gv|k^N&ng1tx?ll|9t^ zuKyZC|HfD*_3Z1qVa`fwJEmzfSZa!tp3MR9WhbNVtnts0DAo2Gs(mN-+7om4t(NAP z5K|40;CgU63lR7y-JGpBP6gO_fI9>@A6$BDEZ)2!p`m%HqeD?sQ)A%17<{?wck{z$ zyhyOp4~ViT_fI~;57^hdUt9G|hO(HmT-Qe>zs}~~6ISAncW0*Haf+|Ooke~fo5Q9XQXoZ;ZC3G2HXxKA_ZFeOV|T$?|YDPHzWb=WX6e@-=c5NZvC%2jdX)MlBk?x78L`d z2GB&_Oq7^TAdU|%-WYMuY0tH|no~2$2%AkF^P+Wr^`e+*+H9AcgKNDm@XCmQNG;Jp zt}e$OIo<|Lu2bhhn~koMJK+{lG1Gh!oM@cLwc7QGZZ<+|vGC7a`}Vh_sfTg#rkuRW zuXBR+e2C;SpZ%|MPk-P2B))0Uo9&3NS%Mtc_r0co%kdUAHYo*#j$P9%)ZU>ZlRD@r-}$5j<&HN!+wyPgtk0%jcw7s-^a%)HW^fk-czxx#&$rczcjke4c?@Z z%ud^DPU${78L>pLNU4;~>*sPc)6EI{5iC%5GP zCs{u!;YssbT%KlOY~((Wo!%|>Ah<(FKvCJ zB9lSQP)j(WLOOR?*FnIe-9#9;8~ioo+0hbTG$chiR3u z+1$6n85UWS==^-8s8i;Lhb9ye#l>s*hi;m-YPer6i=5{JDuZ#?+x zFh+{KI1^J~dAR@(_+BU|ppKHEEOFq@BE#V5CCX+5j>~$(J}W}ZDFzD;a;HI2D`j;M zq19@_y0XuoThn27pSeRuOx9Zi=7Ogj)8<-w6gkcq(=+q$WC$ssgK?87?B##D608!R7R!pbt_3z$&rxL-gT zem`R3nCJY(TS&M4>W9?GQL{&n{vXEPGOWt3Ya2xoK|xSaxh>}tQBHi60B`mtT8|kh+F7SEYcYk~T_52h|M2zYSeqbH*ehFtZK3Q z_l#DqVC_)QJ_bxLLHS{VF2x$8=BdS+SR+DbcuKSz)-4*SwGSoPjCr|n&tT%=QVgFx zjy$K-^j>!2Ks~Si4ymVzjy>&%u@4{3c)~OMoW(1u4wdb!DO0i)v)GO4<|I4%0J#AG zCp6E6C`R~SH8fc|SS+7!FNAUM+^z|hUm@bhA1L=2n%;SnOLcBSgRQRiU~N0|FXqn5 z`9e#oTk(52Mu9n3C%m+%7+xfE93b-P!u)AjHY8KApO;XJXZQ4<53ZxZc3< zXnv?jt%hD}nqq2^kNHQ1bIBLTD=P3XZjTW-TtF}Cj|$G6Q8pquG-Og zWz*5S9z#OE+VF7jyz)iS7u?0jeuke#e^p^ran!maM7i?;3D|;<%??=aS4)KSvTXP+ zOIGZ-B1Rj-*gbmr;i=<6hKu|-H!b=e$4EFHxxPp@*5xo9r(n^!EFatZ*m%3RY8K?m zOs7@CowIZ>y(c^gE); zg^@U&$usJovf&Ye#*&G4$IDL~a0R3EWam+@Qi_D)?{F?(kj#(RpB}_jA#b|ieog1` zO+pZpS1ExXO}MVQgWNfnafDDQKL!=&yUnV%dQ^iUc21)8K|1T<_@1T6FRWW0blN1I zLgpg>-sv*D(+-5UBc|>f8C4VSe?-y#hkgxy55{k=-yAgB7>9&=D3Jp!Sbt|1 z|8%){K>$BKJ%7q=9WC!tp)DM(Df;xBvvnM)UjJLI-?|s?iDN)fG<8?h*0ZIe{Ej?s z0a@_&M;Bs?rd!GIuTiYX;JngmrOU^~yn3DumQatdt})Bn-~Z zD<5@8Ybk5>ifU!;m9Pi$!Uu!;IlqE(9~?Z?^HCE|{i9kle(1YvdF*e}*jHOzy`XGo zPnnVG;_=jp!DV7^?=1TFikRET+f&`!X$hofvhj7S=*#PkBh~(_mE~Vsm-W02vAZ!c zv4rh$QMXZ7&QxlnUWASDr_lIP6CBikc9Gs$t@NM#GPwf1V!O621sJ(Frd1wj)_Avv zZpZ~-qG^hr@;zBWiZXsueDc-aAkLdBE4!4L`;w@nrfK)BYVAt%SaH_lP6l}|E?mRf z_xXgOt+r>WGQ0rxQO-8MAic$U1B{u|`u3W}o>OVa5tU-~-MZ&=KfL`L@vWuib!o#jBg_SDj(rJ6Saqqk8`9<;^JVT9BUrDOfQHHOE zHQ$R2>oz6BYCa3vcBRa$oWq>{UuakwxXjQ_5T5{hJS%q@moG5fR>j z17Yf`cpr^_AO@*xlr37jIh_Z?+WT*14VrcO`!sP|+M@>mKHPkAB31GCTHOvmd}H>- z8ZW7iSBe?yWglFKXSAFLb!!Y%j2=a&h_aD(}ZP zUoc~QQ`kjc_ zQu~+3Z*H9f_3~3mKEMMRXr@b{^b|Uq1pBP<7OnYkOq)BiR!y;)Q=hA1$F6mmD3k9% zJxi)gH&6K=IP_yXw0Z1%HF7i_PK=KFu4U`S<-@yN7=Wyxo~`>97S_~Qf0+9|9Cm7K zH$R?z61W~~h)uH1|Ir2CYP<5NE7LrI=jCo2Ug$OklS|h(lAr5hYNTP}#o-UX)tr0quD@{O@kgZVxd#$xpGI z_;k=LR)VDG#cqd5C$3t|9U}I0>k3Ej!HT2up(e>LH|L{OyFA*>D6~$TWCzuTLH|2G z$Kk5jU!qLI6`>wZ#A_2r)D0}n(>Y7gt9@H7nJOk5hTV1FE|k>>L&d?0-R{4D8IkI| z1|5&TN+O9DGIvyzcdnTn6KO1Bn|eL$X$W8^d;9B9JxS_a>#f2Ig#EHw4+k!Q9#hm$ zo8B)QSw9?J?)zGBq8>B@lB>qR&!>Md zyL4#A9^#TRT1TvPSQl`VP?SrJMcm>}RW?O}t`#0|k?hbbZ{V5ioU^hGTkws#huPGb zf_~)o5bkc8)Vu3Mmumq)geuYx9TTtMn9B#&DM$Vu1!H1ihgLWVuG_WL87a^8rP9MD zad2C*G5=ECDf!n4<_PV9QZ82q@Nbu%i;I5GJW}cDuiZ#duSzg-KsqgeqfRe65jJ+1radrK&S%g>Svc?d|Ory`utx=Bi+ufBt}G`t2^cQho@wSkrI@bkBE z3fJCkOk~SID_g{jVl11udfDBt5VaTP4#_QiFCD}(^=q1VJd@|YA{+@UVezqScv6eT zEOk^K*N;6R*mS+kWZ$Hws&Q^8F|>^R9WA0M<1Uk4Ybd-wK>}K=CS3<{_mG8_w_WAH z8`E6edCO|+EE2$ln91L*!J?!f%;1n8v8bO~G1;f?ciJy|)KrZ+jgF60*Q#V%-Ck6E zk>%_{Y#oJDmi`XJ`CX9|^M!1zdkmJB-(AHX+bUE+8GJGyk46HH0w=0<+m>o5W`x32 z(I8KDZp%zP&J%?aC;r(6^ z3qrS$Qz%hB1+*3?QQ!xQRlLGkyG;GCK1NhEy@df`Q#twcuz9)au<_m8(x+wY;zrM= z9=ZRWb-;%58Vvm{;aJ&(}HUFFGfib$m z;Ch?Sm4=%nZC2+@+9)C!pa=TyD-#n>lA)Jysp-EbkR!MYS(pn8z9UOy8Yk)(8P_#8q-r;tcbB9)w}H< zWAn<`Erj{xMXYM!;Ojq#7kJ)qdn2+fT)UmQ$K1PtMKOqh`s-2T=5b#%W`14cJUI<>n98MJ{k&m>L%1FXC^W=4Oa9zqxntAS$~vC?f=}; z3+=Niyp3^^c?slAdxjl~0R%KRfbweOwRb1A9|NjATJXWIz@^MB0p)d;$wl@$^b;rY zUoV9V7@MNPWcYSUbOI$9nP@&{nbxxBqm|blukV;`+d1c~le-Qc-~0!~AD}jc9zkBJ zOfTwM)Z}vZsrpPd*ns0Yz`JLvwGxe1YO*^%XMBWBF345asJ8L3=y&47ZB5~j#v8dG z5E;+?h53tg#Fl?zz>mJ*RtUnK@Svnzd+sO!NehF%ZpmnW2op+dqZ2K(scd>@c&vv_FBw!t-E5|?c#rdeEQ}Usd zf8%v|$r>LO#R?5XZdzQaCVz&1qf(-DH|XQS)@rWlrAI%~6Zugg4P86{wMnElL+=}8 zWq{>t(4zVh(!tfg3MJ_Nz;Cny^f4V7nnDP|g|MtRI`TsA6c!B^7u0YlEDiFYrlEJW z^1HaN!Eh-LHa>;cY-=o1MGVEtk=ss$hOLVttqyOCu2Ha%v#zW6R$R<)zDMkYV@-jn zp7Fl>U8So2F~e2E6-c=M3wFm1R-Yjn3S4+?AaJ-()mIPMMhBy*=LiPYmL|agY)DWJ za>VlTM3s{T@H!2VKrw6|~uNlzgBHxAIcRtStEXQZU1`R436 z&4(%6cXsR%2EAm36j>6j;Qs~eSI${OF^=4R`MmF%lacrK?K}pWvyQ`BERy*;D#tg1 zH>tHJ7dh*i)%K}|18&>%%KRR1U>|-@rDraCW`pAK5^kO+dwG|AZ2?(J+jv~l0Ed4c zpMK6>tC1q5S`DbGoq_C%Hr90Nn?aK7g*93Lwj8nSmm+N0nvUni59C^6y^pyjXI8A2 z8-Q$WcwMcr1*~_p^BSaxo?yiM7tR+Q5p+*_o(Qew)zGRd>wt#l8(^W<*4Cb!nL&Er zG+cLI155IA-F<`x7ua_*`;Y8~9lSioYFUG`0TrLq!R(Zip%wzhgNl~AXgq}BrW zeq?3_0N+gb;Gh~p0@IrgBE=sD^i31CB|rdaRN0oQ!g1ex*jcrw{?8ws@!uaX3Wv;~ z?#cGo%GFV%hZq3W@+IJqxk^Y#D(JlP$gOhoYscIxVEn-&zmHdG#(x zjK)0zw)TqKxwm}r!=hVntP}EIC|j`&`ga0E+^nCug-R(gDj8DU(Fcwq5M|AB^L~cjxJ2%geMiWwALuUq8 zlMESgCdoX{BC)Y;uI%{nKfF6Y=4I^NGB!6XSBA%?tE-!(n)d4TYlXgOXov>R=IG?B zfzfnqc*UBpS?aR2s_XPZi`=f8L>RMdUFP_`s3^EASH1V{WxOENE&AP~oFnN7$|sr^Fqhx{R2*e;w^^R^1wyWQ z1^t)>z;ct9BnSE=)&z?$4VyK}k8~OM@fe5MLRO|*9cZm1@m7<<8`OULFB0+ngI0cP zs=K`&EBA1YT;&>B-i=x+8gMY{Lh%>O^Ef_OK!iIN(u$d$s{+9l5P%FK-XoQ3E#^^w_gIZ7muR?t4pNYLm2nFDUxBL;lK{ zU_t1uOtk2*;La)*>Vp}kI?IFVrrUQ;%qTASps7;`HeHJ}RSaXkS zS~TpvPXIaYxttqLdv|`Ey zT1IBz_3lA!0<;sX*&!{8?U3nR6^ZiP5S35lJnbxwg zJKRF*(*C(zc~8Jk;Cxcm*1GSAYT&~l7rdv*F;Z~VmWeHdRbO~OyY=XVhFP|)< z!mPMQzmW)#hsaoV5z#N99;WlsewyOdve!b!BT}j$ac4$sd*4Ep< z(rWnj*OMzk(tc8Uj{b9l!H(pR%eiN~&ji}18j2uGzieG)O(+vv)+bvsb%M3!q=m zzWe&CNsdO}E`g0BUZ?4aM;NUup$UPWNkrC1Q;uNFUF;p5I^w2&L0_l?+%ehLcg{cL z7#AH!z(QnCUfWCmXHWEjOWV8t!wXyvrLSdrM|URwdS0TA@D(`Mf5`)1H}=p1$7jWE z3OsdZ1OAR;nTgu;2ibtY3l1ES=5XktAaF(yMx~ze$3{UfY6~b^yeF@`$9lh8^6Dh& z;JF01Kup$4TNnv#7Gty7)(Lyr8u2)w2#wg6QdJ#~vR2ruk%p;xjG^e}T*nxkp32nXMcGlV+o{R&a5St!qyrzvm3&q>7-fy$Wa zZHD^6CThpyH_Kbjb@VTVv|+apiX70u{P`RABnrsTy^6X(8GOW|aw4hE03D^ZDt}Ke zJYqO4Z+$J_S$C^>@IEyJf`8m1e7RaF9^?$+psvRJeC4LZ(r$208IuH}F9;~P1KiwI z2J~0w^5u}!=5|48%l^yZ#IOWXo(L4lh#CKh<9oVF8>C-o<;ek+IlPOqBoe88*t>Vh zBurQKY_4fkk@KOXx6GTZn{29@K4Uh!C02nFH=)x1W%0-_nISVBNRc5IdEFL$voWaV zc}moHQSJCIOA6F)=??6^TA)X;(d>&k_BKl?rNvtcdo`Q74@)lK$&ft`V6Gpb zJITm!awB(T{;K3PF#78B6L;_EHPjuCe?Rx2J94D@Z*)@@N5?QbvAdpn?53~*560&` zQHxx+1!BWWUNO7TDA#SaxNW@hfkR3}147E=_dm!~cdL$M$dOYix8g0N&D}yyc(B^F z5Xd1Zg-Oxs?aK*LHnN3EAz{NCi$_;%ov{aqg}aM=ra*`lCM0%xIvepD5edo+TUj+Bl%z{8KRwCm(zNR0RY&0^;N? z<#Oe+iJwOwn03D6%ivOg9ZaX2?hW(0AJ*t|%rPKFCpwPR`uzdtG8Venow?E+mTSHB z{WFa3#L;3Bl%KD=jiV)VoIR4ZgqRg?ZoavB8Ruedd;rrM9FV{MpVJx-P{k$ zHYkjX_z?n}cFb?oeQ%&BDTWMLj7PWzlre9VlXEVs6B%v2|EU;GA~mU>O+xg~E<%oW z48i@!f(iOuOde31?79==I}6v%`aLld3WE@jknHmO^5>H%ef|=n6E2BMFvtZOX zKr#yoE%y~6Avk?Y#3>}Au|0eJEp1a4=R|R+0P@_5A}WCmcK0!v?zVu2Jw`z zUkYjsr#m3QaJ7&?laS)UJ0zM!Uaii$wpEkn)Q|guyqo7;28#YmP*IjaoNX5>GCh19 z`U8vbeNfsxw5U7!$~W>ONe%8V;bbkL>58vIQVJzRy9wR-8y^-#LF-U33(hZmErQ$~ zwdtX^f4-~O;};i$2IQu}hq*#@dHO%^b_;p8PafLBPsmYowh2Wo3TM6AZx{=_N`F9q z?vEOQc%OwqPSJ}Z&l(CPj{GuGi`rZcQFMLqdx&ctfjg~IfJMq;mBQj0;`DVvux%9xcz7~PeR z2fhknGE!!AHtQVr2|YF(1cIW%;)$+<@71hQd|zrIibI3}0Z2}65Pgvd#&G=K|(>&)NKg_Mbpvo+qMv<*}QR0$x&2IVTtsnVi->7pG zSBCTbcU?ywBGo})M|IxnghHJLqWhtb&h41!RF9xeBz=tSW42NirEt#rv5N+)z1sB~ zi7D~4qZ@@y!!c$`HN|xb`Re5wTXQe%-qxub9`0;$eOs^%&lq$X)N`M={F+wM*e&q2 zd+54pO70z@0+SNeh{yYKd+QeO2278b$Z!|~E@swM*kCBT<2D9AN%=}p{cx9o=}UEu zq`m2o@xe&HQc-;27e?I2MVXzSYS{ife1`kfugq^Q_A)vTK^(njpvpMr{wXQkdWoiNCxg@t5X>;Vt=u!cV z&Wy+rh)r&&Flk*_vAdpEyJVfcn3938Ul2JlV|QsR-+3orQisOL@VcV$fN#xqwW>KI zG*4e}pJB9bmO90&ZVm3NM5&_zN?Wc3$Uo+f(fzLO#v<3t6#^a>c09IJ_sv|#-F!cTD)kS8G+9W1pfB36a;Y@8d@)RUy7*VM(+!J3U8ijnf@}iVY#0)1~4CY_14!G zzN)Ms4POou&GKf$+>ALA`U-zS^#$jZ!(&HRmXQEucQN-kR~E7PteguGNj0sTVoP#~ zdd)HE9C+1?lpI$bF=d(ujzu@$APNR(Q+{is*s_MiZs$kTdsdU%LtyWmH^F#c-+cOr zZhO7cClR?s&*gu#(x!S;G=A-v+9zQ0tzb-2&`1m_D-oUTHs$QJWi?3R^CNiQa-T#n zVr4_$@@3K;7y-6BR)(%eoz@>*=7x_&4(u17X;@)UPBmNS(7c35R9eLXb>fk@jtK zGy5ROBO?UQqi^5iW|DkjBq0oR6wCO&_qA^BRoz&|Y^yn^;-UD%iBW-fmFq96R!FhS zzD?Po&Mz7B)~a+m=ErV?VUI`6+Gcjym>s*N>m%w6`VuW56R*}Y#hbol&Fs6yJRXT& z&U|%zm1t4D@@*Ne6u#UvkpJE*N83Nde0Zpy4qw>`GAAKVVl0)VH#z(>@_Og%Q8JR! zj1SCIO~rdcQO{VdF_v>7+7beHoGh{!@mhOV#XKMJ&?Ml3H?tqwLA}yG}|CmL4`C@E*B^vn-PGx(wsUs zwl1g7TU>`D%j87eIUd*$LLR#vQyMAsgG@4F0OM_gyf6Cv^Bdc7xcaF=fvE^UustH+ z3rdW3onOvIoRWiIYh{B=D+<+tid{rR1mV~LI;O}jyE2&n@+6FXN?#E{ zQ`*@e{DeNSsKUt$47e)jpt4(&}+e9Kcvy5+y0hmzo0kc|7QMA`8^gnJ(y^MM=kgb#(f0kGv2uq8z29>ATlHb+r4A%_ndXq zn$vv5X#z)H6B!#LB;ZA_SM@7&@}64v8oMHeS`}Z!$e5RlP^Q5MEfjT$rK~6(&`uGn zbNoG@U{%T)@BCg}N@9l%ELY3St%1?oIQO(&q=8no_^fwbUO{L=qW z^o}^pP(q`W-2OgtHOP{0{=IqdVvR86vC^}*yTldv)gsI8!yCAZlJRuy6mg&!~a6v^B6}t`dF2Pt*Hnz-u*OH;(QCEk% z#^3?y%SO4}Os+!L9=ew_GG}oZ?%K_$4AVAIF5Gt(1iA7zv#0u0R$*>i-ZHjBU zmC^s?+kPYYwwctkO~}kcn9h-{-$LbiiQKbBrx~lW*v1$JE(PWkO_BmDSB+7gA};mm zlo7t=5yVZRP1MU%CjHF${>CFwsTSFpG#T^NDL+;fC~&o7EsaQ2;zzUc9=(Nj2oW)@ z_Z5vNij;RgRqqD&>`=)A7F+&FQj2LSmb~|6{v$pzg-K4F-oec;pVqjPjf20K!u3`jWnZqJsJ~0%J~YKr3M`r z(ym>*wxdUf6uJZ!)7M_9W*#!vZk|HfZ+w?Dgi>OdvVxH9vFuN>yKWCHBeiAACvj&y zK2M5Lz0kpmsOxT{=Ghfs?hOhItO7E>UFbS$1Xa`sBwKE_+Q_^ypbIWvTDxG44A?-% zm9oFS2sBvZKty|!g990WrPmUrZmM$vQzbbqD)J!(4kim(2iBwX!-G4wk?MxwzYa|U z0{&()#rN_$Ua-g%UrVW(KUL7b{hRMr@;mQjnx{4Z1*i`)s|?sHQPr0otPG-BB7=Ux zJ7B3v$l#`*_tcNG&n_hW4E-)8-fBOoroiD$4*F=qF=U$ zJ!?q}%Jq*}luk_BC}=)&Xjy`pmcL=%2#i<*$vQ6#6qbr9N1kfPXPVUpe&+LAkBK&g z@q0xS4~c>8+h5yW-N~*a-5YxvrLv2sf~AsJ9)MVGP6qw!S{g7H4dF+HIVms;hlJOf z0Rx&U6M!psCRZ2{4?{H|g*f<8XCBJofbTZ9O$@{qlge}VkSfKSLR1aW#7AKpi`H%- zC(Q_Xlkkv8)7LCaJ%Rkx80-lR8{1`!l&(KO@#!LqdtxJN8^DQ6sJ@miRrD6iiD+fo z^MMLbFGMfzd~30DmW49@Crg}Pq2%hlHp#!&Zw>;^#2{a;BEbZuU$m_J}-F?Jz+(=GfDPMhgfDSL>&0t{#fmvDc+ zsWhYjNnuDZOe5qE$vc^b@uCgN)#dP=KWE%_smY5>r~6Iy3#d#6D<)kfTsc4Y^pweJ z7)Di`IE{<=ks28H5DeVTU;Ln@tu~B5&7APd19xg<^dcO#~99|i{ckrPo zXl89+qasnof&-tJavI8w?j2N*@#l@-k=a2yblZi$bumu*3+^!>lTUYtmR)BC?0_9^ z1x7_8QwLGVsMDOYC%}a4Eht-AC|0ZEicHtGtu;YT27wSz)lY`|H;8mq{l@^>Zo8fR z>7NbFu?D4Xx7dsDET$|`!<)lQV4)HQ-qsV;(i0{OIPDY-jb2Rnr6Za2<^uSmC8>Mmr3)eezK>4uUR&fw{$#A{b zOTozs^5YY2nzwdGLw*0Q(hs$hnnt8f{nQVB+-!u0IM4_V%1QGDImg9D{qj38t~rOG;3k}3T)54bg->>zgU&5({hbhi)QKfa%SF#Z^+Kr{0n z7c6G7BAAlG8ZAB zr#V42z=X;KiUcA_NYw3?F@myVVM0klB!l4GH}P@D;vB;BTiSkXzT7;K{d0TUUvnGn z_m=!33xipaud$D+ky+UOXXB{`c@Ab@MUJ$McvDB-Fhdo+2;(B@yQ)UvCF4FXzZc%P zd-h_zZObx&+n^?o@|jo^X2y)e3O5_a_DuN?XX;H}RLk!ONmdE?|2RYX8bHai;dCHqlYrHzUE7EMmmRgCi%Ujcbs_)JH zmQ%I03M*EeOV-}>O8RU^mlJmu17niB=q?*fi%l1KcYY4cJv-jb4ng0V?;9H%{1>p{ z2PY+oe8tg?_m$SO(RnlNR4(PmDASTcnZ{$~^skAE^JDH_T%|`A3d|Z^i$CG>_^e9Q zH{7Pf^gH7p5dssf6fg(FjIZ!R#@n}VXK=uh7`uwPBei?qCy4jP0;xB&Jg{GLm|XmT z^DJYkY@@w4#F}Y3wC@VME`@4(dL_T*_h95@f-Gp{V%mdeKZ&hcs(hJP^uur6|d< zu&{(}!Ax8sxnJ;n7+75{bbmV}(}dcSDxZhDSmZyXeV99SKxE2OA&&lYzr%a)W@l$c z(#exN2}wDdBNr|BIUX!te*w(uB=xKkbw-|u;-`G6&kue!@tc^E^NsH`ji#s>^Crge zmkJ9-Ke><_iydAu(#S7jBJ%Bf2FpGPOgYN|7cT<^U&ioI6<_uV@3s0aan7&x+dEY5 z#-#jGQLbdQs25|Vb&SM$zZbq%%na;jFoa`+;1T2#9y>&0BFo0Fi8mTMx7uGy5qhFY zy{9S^x$|hBb-9OQA^MrtoUj1-PU_n~SkGRa#c+RkQwdAY6Gq)Ku(Qhp?{`?f-SY4u zwFh#V7x^k^UC9PaQa!t(OthJ}SiKBt^Tfjbkgzn! zu4Dy9m?gFU(75#S!4u@C;GEvkf)=^P0C%aQ zqho4nitf?c>S`O17u*_hENnseyjdubJ?FbSp(2qna$Nk-(aYc|T4alMea=R1p&?Js zNU4)0=O%I^Kfo^8EOd7r9q!XTg7~ll$_Ha$=(G`3?j^(VMV&u+oEc}|9V3&Rtc!D$ z-`{Xy|EZb(E)cS1FxwwXR&2{4ej5X$e%nexs~i}PCM23wxUGYNk>W0h5G01tCXo$rNQn#<#oINJzH*iafJtIca`5NG#Q zWGJSE`vFHUaEN?mc=k4t8j*wBYmDQGmgu^5&K% zz5sw5#rCV;Z_U9>4e%<rqv2AA{v3UO7*>z~Tof;|vaw|vFlhZj!fYSk%;O}Z`YS&0f@5sr??Qg+J8N)$2 z5dAf~NI;qN` zWth1tBu>bl?D41{oLKtH0$K35%J07T8DQwNIp1XiBXapK+wYA7F<@?P4g58NB((s5Rydlm}*) z+QRcBtC!?Qxg9wOY_y8rRZI;He_+l+PoK!&fDg~aU7TE#Vq_GN#7l;H!LfyItwoXN zEl#qh@#Z~tN#1VDbgZ6y`Mc-DfEF>Hm`@jAxDV$v{CulHC#xRpAxzbM3O9KDmNJZ3 z>MBCb2n`9D_H$k$zyAaXUgB>-8LWzGnPVPoWE_m~RR4U9h-fQh`5qu{!20~~^9F4-Zd6{gGpDPNIn-571=ua^DRVy>?!qEZM04 zU5E9`9}zS^+w+0AeB-e!4^>B&Q4P#z>dS(3KT5tIP~utN*eLzLZ15>yn_R%=@|F4J{hrvI1<=Hg<>W## z%%}ZxclP$?Vbpn_Mj{a1`}q1k52O{}*zD0fHgvf2NVm>U0r)cyXP^RncYi+x{_VC) zz+C}Th!hMAe)3w+(hw69=S*ODT!lUJ=MmH1OkGXQmo)9s-xul_3$5<|R;uD;>a?kh zuH*bUO>^Dmj-#9v+dJe)DxI+$@Hqs>4(#9#J^ox$QUX60Q&}n8XLA2hd%Akbtw%#8 zb}dWU+nq4HINK#PB4U7Yd3kPpTz=Gbbuc|9nmT~`-|0#aC^|nS*b$2Pr2k;PBU8=> zu0NWWTYBBUr6l^pgMxxs)Qi6u?!%NPC=|C-8X<>6VPFEw-mhqq(tVVc_qT}`-TOc^aYAlk zqKtaMYlV8_$tcIXLRpAfD%Jw)bL4g^qt?H}bRSt5P}Kpq@KsJ9yUWnhn*3)qb@i@7 zOI_36%&Ky_uVwlL9|;6+ zw$49K0Y6Ny4vY)di}Z_40BPLe=H_k`U|4U5)DGMjJ-5&HVq))ME;*w49$m!8?}lm8 zn*dNT@bjyIcL0-J-ySAS!eSU}!8u(j0?C`LK2eOETSr-U=QQN?Gorf|D$3Gb8TSp> zi_j{9u~=YM<)-FuPQt90uG&xJ>j#Dt1p{SH1%NOZAM;F{;T847YlDFkT@`L_>gCQV zP=*iK`WG@zgBXBu2fO62!&>f>^OMOUdFPY#^P=|t*4u?U*{A!d^Zj^6E|K&sOoFV# z;3L`YeRjn1FwlT-xWZspM;KhR30EWuim6r13U^^<&GCd5Oy$}gINrA1m~A5iv{uNK z6?qq)nYr<#D{pRgR!F#^c{nB4{hB+5XUoX4^}MN4S7M^fcS?=Eq-xtf!N3S;nM$tw zCgfHQwd?eDc6O$Nh0ln5Ysy=6vL+wB0Urp1#*N{xhFX=(Tdu-xEi^Biw6q*k*EA|( zbD(IXv&c&SlNp=p(eTm9Iqbej|NDl=Y>>Nby_pa0QU@SnfM04K^8%E8>Xif#>=3PX zy%aGwRPld}c(a~(9%Ao*?q~nq+um|puo{1jm@Ri_25{g&iNG{7))X!!R>ZS^>W*~{ zw-xbTf2HGgWjjkJkQ%Dmo5WJ7ta%F#uV;;ao@nyJfujsm;|f5|;g<*QIxjAK)BS8b z_|V~9uEEpR;c=DiZ;HcQpKDU?J&p{q?he7Ocpmd`tYS?{K)u{J~6B=;LwP~EZ%?DAya%q<2HZVah{qo~$=otFa2Vyn6%&0|65qFURc!H`!PI;bP3XE?^NEp zhQyQ@6cSzI3S5V=b9>Wc<}Wf{2qfH9(4;z&R}Z#rBN!86;1cLUK0ZnnSBW@|qZV)( z+6VnmT&<{>yABHSO=yy`f^~sS_O}8c^>mntW!qVz7b4&$JMStDcx&ou7-{B3^M@Bkc^=`TD-`)RE@nALWdDM!&i* z_{e^|&qs@aQHaZc#0VIZjDl2xWIfK`f;ZKE_sjlxC-H zvoD?rL6AtHhi{@ib**B8zm1fyNGhLcjdUwGcbG6)^!R z@~J*Q3L?^3d7Wd8YEtg7@W?*5m3=mH-6e1HKrv_H493&hQ?YW7kFgR_9W>3VeL$UY z)r`*i?%yv_D#srY5tOZoWapy-Z9;S^u?KF=iu#)=ZQuZAv=in<2jtYKR74)jxCC#v z?emSy9Kj_EbwAk+j3cjtlmZRIJ)ht$<>dR<`x($u9ou6gDUIzc;cnLD?J%teu!ES^ z)7@|vy7H7sxMM)3XJ$#LV1ydA=GQP^@;$><=(wbB6^zlfQ>h*`&t({S=v%_vU8pzl zVlb`n$a`P(X19Oq?4`KtSBSN3`5|`ZJQdRV^ZF?{=Q}B46v`CmvQ+&W;KInv+)vtG z8{X6E!5*Y0#BeV;y}B4yF`+N-orqDp?gzwDwSVMvv76+xQSVp4^d8bY$-R@xWhE2p0>x|3kWd*B{%a(s$F@R{%QPY{WPAL~oYP6PX3%F2 zlr|C!SCPN7IjVI)P9k9W^du^UCLvm@49CnX?lHQQ%p)aBMDG!GLBapEz=le%{^Q5e z?1*gc{yU7xKpnFh&ip=Q=J|XnnZxkAJOU~l+bu8Py{AwgU!B!-vl#NSl! zQ(9hfmRr5EiX0t{Cc`x>J-{bkd>6a0xis)VavxC*qtR;?TdhCO$K{sJSmmYk%7UP} z;v9>phgf&X)w#(RGY=th&7J%3nU)_ZhXizwn)+=c8cSFsX;eXky5LYb+HOZp!AGGj zZ_?P&X<&ft8oLyNHNj=8)V}U>HV0Ze*VfkltO_Cv)*Cbb$!ql=a_dZy(NuUA@}1Xe z)0^se*YeW+~%_6&Cj>ec62?8 zS(cJB2wc)SH(mr0p2ZmDe!|K|c=hTv5|W?b@()@bgWbPQL6HjC8fj=#RnXFk0skW& z;*R}$m&iDuLVTCwtX^m_rV)7_S!FWR-^>4Y{+ zB1zom^m8z+{|>4|^4T4A971}tBU8J211b|9e};~~1i;#io4@fm9&Yx~J%X-EI|2Rw ziOWVDb+n9(lI5S{4j=P{Tgqas4!R$_M{#!g?h_8>9D5m;p)un$ALWEO?G78> zqg>?f_wN=ww}{jF$}Hc#=*uvnXjoSG`BVhv#40|0+B)*LWC+qva26)VJc5E6M@L8Vy;*Uk zWo0M_Pd`R3E``|G*!kAjcYsYa`C(pr+;l@raQZTvl6F+p@O&C!7X8L>`gZQ}nxMxp zUe|>lLdU$e6a-o9TYc(%ZJOsCg}6vm^+!4GV@fX;w)H>I7>&wXwly;|vqGU7vxjPG z5-JbJi_}GgglL4c@XxH@^Kvh`xPaHqqW*Hk`bZ*0Hm$vL==sTpA8xAHq;@{b;B*mp z6+dY5^L`kg*?ePE3f^6B+xdx`cZ=rg|0g1=9LS8}ZY${cOQ`jL{7LiWHc6{7s!0toUT>>2Z;UPolm{cSxMBy9r$te%}=L1|RRw(fiA#x1G z5qR@?jmn%L-wP-WJQ>XMVW7(zzcFM6{AYH(l_cBw%xBIaLKvCPW}7rIkgvRY^s`R& zWLtu@v>9YA;*OIqfxf^S*Pn*`sHLhFed{Mo)dPYsI#lN>lquy!l>we-5MKkx+On#z zV?amH#r7D3eL#kBz?n71Ze}ctZn`%6=A?PbB?Meg&+L=T(-I|Mr`}nh!~I*x!Qn0= zWe(^dRhJ5#Cr7MLNAwu=v}gKil1ztJZ?0330oGIf1K|1e@ZWgM4o&ttv|6JEQ2(`(W<;8Cu5yvy8nu85F zYp=@y^qRtt8gv106F=+w9vx2GJO>ej;~%k+wi!tkdubh%cba=6tTFtUKP*LcjHP4wRg#$;HtrhUX9`Ue)Jsr=>Ts~3(yd_tTeZD zHve4p=On7=zUsRye97rIgW+v#KFb4sv@~BU?@xvdvq^#W%H!I%x+9L|$9m{la_X>2 zmwhx#(}#ujro7SzI}tv5%0hnLZpboF>};JCP;!><=?Ln+5L;zjc+CG)@8=x<)?ip- z2ah0w>LWgG6xf>Rrd!J6*FyI}P9?Vw%LVuOM8 zFkW^8k^Rpe6xuLDDmhDe#gO0Z^{P5S;Bc)}i8&s@4{HYX*=oKA#*BDO;K1 z@)|;{vdqE!VjR+JItpWVKR7AcN@_q3BF^Bei!ktSd1tAk>CMsO9=dt(xDEWUhl39> z-~lSER^pOaETHHRi8xfrZeJd9WWa?wrZmPpfCvBiTw~IQX>qP)!Zx0qmaA zDh?inXisjOI#@Lq+ac#!#g5!V`^;aSA;K)pa_z5vglN|c2CUH-NZmLXgEDI`2`{0% zR-v8DR^M@`>p(s&Y|{E8p>pQ|YZ_Y&3~eaY!5YWRSFA-2SR?l00il$|@~?uUGv!s8 zKG#Wcjg1&gaPR@td#pt5$d%!$Tb0_+V4icMgCaow_s*gVi9H`jf#zsGPNN-^c(39WkQ{uAIVmFtfVFxLpMhpL?huTr_ z4r1incb4K)&ZMBRdVKL6H_;(VT%sQ4& zm(~8al$w>emhoYkUk>s=OoJ9YCu8=~?@_DT8EZ6yT#$UV><9`!T*bhueTQC2LX(4{ z1sJ{TTYsFH87u`z1*ILU&a^)eVOZfjYXw?NHde%fV8$Z=rDot?XHe<+W}y@jC|>k{ zT_i;U|kCeC{CSHe?dXB(!_;psIO;l@7;&!LwXEH#I4Yt zqyL}-xlFahdirMGTzyXrCN$)=!9z9{7LKb|l|h17Huk;HV^3I(TALrv0Y)99D{>tj z9c#t{^N%)a4A1lGuMd*=464cyX8ry5A6nx?m7?Jq>LN$P@nMEMS%>aTJ?~|j8WUm4 ziSWF#^ApJ*z0}J;X(h7hF-y$;!S&f`?*BG# zI4}5n)ynUT9cpq))58f1R$Uv46a-pq;B8(jqYt-^x*d;UXnzDb!2WP~{k^ep&FR?!-+Ch4Deqe%?K3|)$p+O!?!gE8`V>QaiGwsN%SV=u{BtC38C;oF)kG9YfVAe+ zPQt?Mhn|~s>&r4hmO^))TT@2$7;PF~qCdA^L2H8wTK${7zW(}p+57kJ>oDdzPIt0y zY;3%apg`*^)DQ)ztlpdVJh)Yq`!BL)vd=z$z=TTT;+{LXXiK~P=ez-o0Kc%Y?Jw4G zbI4a#-2K~yt2f--uX$Rur%TQhrG%Vg&|`Uf6~%+Hpnv5JdmOI+(~1aY92Cun8eIXU zPxr^tg0RjoA z+}086Lc!C8+vh$pwJPeonmQ=sGo}lA1%dEFyRAA3gp(_DMX85m-rPPw0kyXAd2JpQ zBVD>5o!?kRYqzP#gqmgVVTDRdh^*gPHQ+me z^Tn498ttR7>8)=IJ-!;gNG&jKf>HiPMs}f;fG+8ngbV}+T0f!xgCs9L*MrYz1(w8y>FX$dDV%KX^Pjze+i*MYu)8GQQ$fqW?b+4 zQ!*ns13MCBy%e{(rU2MW;@7Ttm(AXUO@_#*rGHN3Ge1+hnfiHYtkSBKfXUS0Pt_w@RNbQfHLqI#L~CQ|==Zfz zD6(sdMhH>F*(K`U#aovt4Mp`;PNMs_l9!vLa#L!Al>5}#AbTl;`TO$&KjCkB zYp!%a2HhHb40Ae&Jd&R8j0&<0gM4(mZC}kqU{lv4+z3_ErifY-RkcIll>W>CY7-tI9%8Yc0#SyZd_-Xwp=v)MPrGSLJMYPX=u8cgdp5hctgpWA2IuYc zufkWx_#M1B=J*$_cS?p%>o;&h?ze#ow3R4TfhtkCvwe%xe9(#HZ{%H8`DfFwJTTe%T1@Id+Ktd?+P7l5v zZ8H0a&P&oi$b)%0-&jVLhghu+2aRd~&uympUFEmElwEZf&ZGHpWgvfU14*|wbBE38 zM!l*~4ku`pxtTka>fN!`f<8y{{d2z^9H_;x$9tBuGf`d$iF7aIey}0RtiP{vb53`y zPOXG$Rgf^E8c?(-A@_;i`)R}@z;TsG&U7y_A(GdeDAfgu6BF`oK*^2%0NUOSYTtK* z8t;8xkLr%)*sX8+s7`eL4DVEO`P` z5YR%%C;KB52#-AVeMw%Dhm*6cRdyX_{)FQt%$HOMKsE(F3!Tr1f0)k$ z7<%hq^5WTNPbl++wNF;^s<(y-)5Ou|oENE1KB33X!7Th2oPVLV(Ijy3tpau$E{zd*Sh68z_UCcH*SC;*lKx!o`~8ODzmng$}kOT(pUu{7Q& z4$TY`6Oc>=h=A7TG>qNfHs7+!g}W;Du8k96p2F1*akRv@p8inoXzn~ew4p>&iW5-; z@X`e)yeo1*ZboV14Dz5?#WvTAl4{chLVA z$^S3$)hx+Xo%XBxkL{EVd`RU3q&BbFk5}7kXO66HZH(e)J9+cu_0k)hUwPzg=wbD9 zVH-TXk$G{?CuZ1DfKa;){=_Rt?FSA}>rpe1b^>aKr9x!FC547wjB91%i-4B|D&a&b&5@zN;*$bHwQvj*656n)$E8S zRhi_)eH4$LV%H}oCWheuLd@w`_lYJN5Cb*$^@(=57#bQffE9jlwiptMEz*J(NM}Is zmkjO=E)I^nkUb%lEQ=gCcIiZHVq!&XJ?e$w4RStxdbrgN)cF#Lqy?I<2_i8e5Ux3c zq=$l%QUjb?<6piQxzHyo8<7e6m|tqW5>&5ezaO9*m?_s7OewM4X*@Q0Y3GJKho?N)Ygf?g)cwHk+N4etinh0@l346?bZ%GkyTEG)%~XX{%C z!>{q2$CzSpK(3b z?tHdVrTuUuQCx!p#e@H-b`s#H-CwLPlmJw0e)@}QW%_1PQ(u?XSNr(BEXvfCZNB!| z?V#n?!HRbkm7#E#mWH7?({-{1EMlO$*mj@-q~!v(_U{PR;Y==19`{KNhJG6 zOXQ-z%8}D*4L)^|NpOcTrqXpm6B0?Hw7CR_c|$03>~+_C1o2^KSc7#nARs^$c4jdo z^W0Qx`@e=E1!o3kK8yQDj%Uw&Y?Wgnz_iX4?=JlIxWjFO8fO(%^&1fx3vv0cx6HA| z>A{G!J$&zYlTkrTJfn<{k;kw78HyKZ{T8F^!Az{1DjQNQ`^WxR$+&26sVEvcZ_6|P z#Jp)il3iOW1S14tXxx-XvOxWKKE3kYTfc+2T|LKy$Gdk|5Tyk1^fEq=Hf0<3pG{`h ztU$XP=>(?AZ|q^0`68Y8vXPj(nzY(O^}y%Dv;33YMY>Am*UPy;J^%;1=yidoUgSbG zX8Z(DRD|wvR@<2xIgtF6*yDhq2I?ve1jTY;CGn$1nzt|;2l5DzgRnzjVUy##Xb@4L zM+uX91=dB^~>}z5Yo7MAa~epPQ&7=+^G0b=BsOFxpo<&Eya1j?tnCE+%4~2_bo^_ z5-sCO<4OU;IaFx^tCl}p6=fL*s~9R3@HZ7alFbCo2MPKbe-my6_X(W33FR1*3g=&Y zj3Pt)m4Z($bIEB%*xf7LvnkM4A4nCd+cG2rD-0NK|LQbcBGK3fLyR+}` zXFXi&D`QK{V?jBClf_D;Oq#|u_s`_+M3e4?q56RpD>fTQSC6|?a$zWzgNTKp#zmt3 z=p^n{jTPkkz7?aR&4%FVX~NC6MB|r zTd&1*trg$V5h^w`XaxjpNu;H|CB|k)btA?a7yTnzl^hb@k`X`$sZ8 zmlHofh1J!p>1wJ~qDh(EZB`A{veh>W6 zq{f9`>Xt`)^K_)Rh2e^n9P-i>JjZA;`10KWa%3|2sorTs#k3n9Wa2D9*&5biG zagR_kQerriFQlg%oIf?>;1hU?)}ioPKW;<;pFT6US_Cz>J3aF1&1<^X`Q~AmZlBW` zH*pSQN$>BBh>6M~M6b=f;tVnI%!6&}={{{!?koj#C9ta?$l{SbYNqcHPpE3qZf1+K z@lyoV4i8Ksh$(?MQR69W2z}#pdAM3Ka~9GW9n;q0;732}zt~_WZ?UI0IVLp~fMn`T zj(uLdx8(Bzbc4icd_XyE>Wlhw10j`azv>X&ob!5g6UtmJ)h~F0iiqV(mVPKBc0JS^ z%^G0pp6RkKF@xo~prS(B5kgc8lon^SQtx2Q@59 zpuWTmxKiDs(hRqDus};dwJKBdr0z5be_1own!4(i?fVL7MH1ln2rCA4;)dr2m$0OU zqK^ekeVYF8Zt|ZE8;WQ4!vtpj61>_mQ@W`jGkc4-sTYKDcDS8!0}l-H4UoRKbvxG7 zy%i)m;Xuf?iqZUZfmsf#nk%0{JXCj>Wyer1`mFgEyT~VzRb2fzESFYsd^}GZl8$!# z(a~=(E8j^2ORdqWps8jmFQwC}0Gr}kr?(KcC@qtYX%Oz(+YY17&nyVCje*D62kC1m}^k^WH? zv`CuemnK-`AcI?5aNJxd_~)KEjgE+@3B8$N%>^sRz1B_qD2{X9K%)5xDY8oAVd6{4 zY?L?hQTb#;d~mPOK?G<&J6Yt0%lPRh)O5 zbeN-`*ubv}3?~()Xte>-xFU*9;V|_^F6;8>t}{HTRh5KOt=e3frdb5-)uxKx{#kQD zNg4LRayz}8Vp&T#r5nsXI?cZ?pTjxp$$4(cRypckG^hW%Fk!z}=Ka2+)clU7*KhRu zvowCv*Ey-);dav%C~t#~+!~g&uBS(yw;_M25q4Zd4u(HF#q~Duw+*9%hCYctP)ZA9 zfkWYS`p-O{4Q_y-3rXu@3?JsjQ!@I(15`In~`X3&iwz?0?C%}Nl zd2WCoRx1`_shIBUT9}A25zc1wt)!Zr?W)4v*pD8MxU?Sbey4x-wU$V_@F@B%styGk zNMhkQ0M;!P2t|gwQjhD|pP3K&FZtrCTYmh+kPKgDO-dhLa#@XnPy+(f38S4^cIVM- znaZ87@%q2MRuLb8KYRPSY(Jol4L?I1T6J98@``fcGaXHQB`C#eP#|i&;8r)cSFy7j zTAGvz6z2q?X;xvI7Jf9Gcvx^uVvm%hb9+JWsM-BC!PM?nRf)+zvvw+dL&OM1_?btA0bK&t++6c+at0V!1|_dB!gzPw+bpgF#J7i~PP@caSksG)bbMuxr?j;o`C z8;K+EuXkl&&+Xg#0S#UKY5<@e99_a87V9VIPk@sR3i?D`&4W89O2BUj>to0Ri?1{C zy;Rm?gqNNkX!Mw^an&DsGK(M4!3~9{o#kgQUJ8kPy=Lmw-M_TA7hXW@E2 z0s$XV`DGW%?pum7&XG&z7z%DGbE+N=ov~o1z59wv8cwRkc4~eTd2S7e;jK`R0Weu&;i3f4+#&wzs?7q)h^f z!&N`?p3M29S2$#KPSTNCJY^1mLs?LZ^>tSO*Q;*->|VZ|0=%M;Zps<8vw}OWP-TaJ z8X2Exvxn6wG|SjhFv}(BcJ;w_&kHde-Ho(MGw+XDoB-;M6itxs(oL7VH@o52ZmqP! z*jR>d4Tb9A?!wmI;G?|}(ANxOotho;{|b7J$lN_r?4U{RM$J(C(25(ezR1QG*!ZwC zA-w?xLsxb%_CB{d-Bh^KK^HRPv~39i!OWBArr*GN>8rSKy$m9ev!n~6sWa=ed`VxJ z9Zfr4zNe`;?@l8fXnTEw6TKFo=5VJvNWeA+M2yT}vh~9az!0nvIY?NDw{Jr@4G9q@jAnY<_chackUMvuL0EL5W$?_g}_* z`jZ^)L3PMYo)jq52a@vz%+t4I^$O^u{{Mdzh?G!6Cg`6N&B04<|c;Mq!l$T_79#LCT0(!a**dqg`MGnAT|f zLERtM!3swx2ZEy3Ymzl@DdEG*!P%-fp=2M7O~-v9&y->rd|syttx%zOE@ zEvz{`SPB}>7>2R@<+U~5$8Qgfi~buW5CV!!E#=-8VX;@btgUf$R9>WCjwJ z0=-}+dx(PPpOwJ_Ij8YycXGCd!5n{2rV7FGK$Z)`7y6TlXqfazWJ(k41=`dxWvQTE zg*HAi^Yimo-~e}-AF^~|NtTHbFbx1Yg%emG|{boR&D$iUGbP%-`Q1%&3`QIvXTi@OuMAyeymk!liHDltEkS3}#*hYbftpK);=( zwKdJfFLkTkYD&}Kf+B6IKlQpIDfwWmK12)bp2$fGccp-iL9Swlwx)$Sv=o(_;g*+d z{c;CLD|Jh3bTW3_g&pAzm=8y&BrbyU2<&ypbyGH&>7u0k@KPYzuK8c9_`pLi5kP!w z*`1{_Q0-lLwuYOrFP>6%1%*@Oj@QBIF z$#sBRHQ&B^;|^T%-SgXtvn|(HFOGuSCt7N6+p!1S@?9=4HkDw(%YY77O?7p*rT4ar zg6YLl;0_fmNHx}srPey6Rs$%+{z~;gr4ewJNr}U23a^LnY-_hIDxK+JH55d=s8u zq8;|u|Md?ARaMnu=)462hmq=5D?An~dEml}`=jycGh_!1Q!g};lj}^B^o#&UtmQH5 z-rVc}8mhzL1X^R?p?8G;0kwsY z+?-0~RLgh?%w`s_Yl9@{Lk?rdo5!Fi20Z9WIYvko{$hpb@_z~gkm!spP^(%Rw&FL@{IZnzW) z@98As>R;4<=#zH7emUxIq2PNZoaKOr?M{Q~1s~-KbpOhNc7Ry0ys}&YeQth!KBqyI zTZS=cE@)_IOrago5tYsnSyMt)W%lVfkZpjaaU zaSMllij9p;#+ZE)h{J2Hw^_WG!uZ<34udu&ny?7Q=jOQ0&CNltEC;tK{Slv#FflvZ z48x`a>Lraz7ox(TRS!13q2aFFo~W$v>Q@!`8g8l>g?snZ6ckROk>bKtr6BJ%G-*=? zP0I?j&Y6Wvyt?6z7Z!g1T0)eTpjPN!ygV%B|LlVWW?1>^&wg(@Qe~}yc1F(YLj93Z zFwB;hm6^o;1!iR6d^@F{gBV2I?c2kQ(JD9#5y3ve_ZvpQ8oCNVd&Vpns4cWIh2SGw zq?U`1UGX;kszAjz7ZcYP$FS;lv}VDA?||pL3=B9}`h!#|oGgu@MWR{!nb3vd zU22E750Cv?X$!J4zoMd|Md+?T$9_NlDr&6x7CK(6?`|y+>#Lx>#__875q?M61;z+!PV~+tx*J@;fOZgDiRty zJ>u3WeD`f}k>9|3Rpa0!&o`{Gn;R@`|5$3D#M~GoVjEjvKPoi_J!||PjkmTyy8}A# zPrL_7*pJ#FOc3f+ zkHgjMLN!cPHEeONsGW{gKH@4w{2&k$(w^rtXen+3?`;q?Sh&E*$mkam60!&lC1|1Q zLRzY;!US7-E!LfXy$0tw>YC*TqP5SHlV-)%eQnpE zi&}pNT|UiH-5__Yff#CM=;z4umRxvzDJzjp_pYz|F3bE>B}T zRQBW!6v=jep8T;v4?L{1412uSOd5WCdv(cf64ZD05J8&IuQx^W*`xU&%}_6J2Es+? zVtqdQ#TCFwhGUEeHP`D~3zw7o4i5`;$Z2z!@TR^~w00x<9^X9$B`o4qGnO%@;`#ScGx zfJSzLM5X)pdm&)5`TF{nmzQVj;;lAka&Q6+0Ad-1Ejw?4Fwd$Z17w zj9{sRghZipd|+VUj%Q%qrRm-sF?hJg_D}Z39`tu0f=@uM01*Opg6fK{sj1m1BMz1h z*3>|EsbD7Qd{_i>VJM0~uN*U7S3p-4aA_v=xlM!49*t&2rWKiN@bmQNwUD`@_K};r z`!vLWUci1FajhAedAbPa=#|<87$n*aa+ literal 0 HcmV?d00001 diff --git a/docs/source/_rst/tutorial2/tutorial_files/tutorial_25_0.png b/docs/source/_rst/tutorial2/tutorial_files/tutorial_25_0.png deleted file mode 100644 index e2b878410e279496bbcd0cdbd81f36893143cafe..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 20680 zcmZ^LcQ~7E_;&EBmeOUFDr(dowc4mrJ6bzIXs8vVMvG8dqr)h*qDE+{Dm5Y~F=}^M zC1^uphAt&Syj7!>hVSvd-*0`to#)-@0O!)Xkso2nt#7dvC5g=PMjIZZUAa)j}_ggP-$j;+4Le=SL17wn|*` z%j7CyS-Kq2F`&>Ww0Znae6`1D|JREnbmlTMY=R!Yz3ns~2E(-T0apr2biG(c-@ktl zDBH4he`-Lfyh%#?uTn~a!1MrzRN7Z^?*H@L$=Hel( z+fIo{=f3k<{|wR7ONuuk8(rQhZ0|n*>8qg&Sq)N6W8W@4t*31P+3Nfy}@6 z^hc^|5Q~Rbl#yH9TJA=@rrqXbe{VHMIbPWQxvhGIA>Ch?>IECu(S{d$eXdH;Ph4_` z-F;!BxBoFnqX=W*POg??w_-NyJo0H&%M(@RcYUb`A_uL;b^+~&tJiQpX z8sVKqHVC{nb0oE`To}-o;y`X4f_S1gWRT6*kZX@OBG7YzNYC6xQ}Xvir^7tRVvq!V zFa5r!^8KWdk?`v&7@Lh>rmd_2Nr;g&-4D$?9nSiVHk5fU+i6WM=r@oz`t$eLoFwG3 zEV~T1c)2KdLkA*$AYYM`;jo>zF@YW#qU}Z8ow1?*cz49;MS|mS+se)N`tiR$S8Uil zB%OzlC**2|)k?&^#PnxY#=h~&;R$wLn>A!ITdcu~GY}DDJ*-?{LHkCd9o(% zUAWJ99D*Ft&~5j)QQf!fJs5Pt`W!=cUEsB^wQt{yEMkp$o46o(_(zAdKzXAzncX_X zH-%zxUDQq75cGSid|8DUM2g$P;@n9q-IXmfZ>!(wviFxw|_%^jw-qxHa>J#{rA(T*-duJY+SGG zHtPp5>!)Sc&+#jxonLF$*0MLun0QrYmmI78iu_@B zt5}Kg{b|#;g^DLXR+MJA8|S*}jKDXk5aJ@jl4z@hiT+Kv-A8UMkc=i*_0Q7Zx6;Kw zM)s|t5wE!`W=|Nf~G^ZX8V@k!YI{uQ2dr$;5uO3PslEcc-;pi@3WJ?=MuRQeeTR}YE^6KN67B|!KDqr9U=_NEf>QK2dk*?+xQp$q1e}NDT|~%5j<#navCwmC>+tBeX*#=ahr46P zSF`p$ed9KnFKu#y@?Q8^ePkqZufs-p?a-DhqGk2<4o1>v^lcAn_Sn#tZS#Wf?-uzP z*YGd3>*5;Uneg-9+lnQB4M5@BcJndT6EtmhY|O{$xUz=YN8FGjt*mIdxCxS>I$aKp zRDzm5dHUS~5;mH7bXy6M)u!)cn#gRkA%nH_-;ut{BA$8Je&Zhk_Ac!#y=iK`E;rJX zqK@+|=7@9xc8B%FwKhjw*Y68^8e3;|rK$b{du!*3!NK%Gaar~&jH(XtD`h6nYmsmS z9A&1Xud+Ucw$&tZL%QYY81y%$i}f^q?&Ieu$j(z-G-+A^L=WG7hm5MixsU5NEKrzT z??`IzLnVvE-!Y2~HumJ{_mR!ePP(ES_sj-LFx)Zix6x+n<$0s7 zB7KMM7?XKS48u~Zy7wd7jYoyNtU%rPD`58aM@in>QdMeY_S_(lF%&6blebJOIJOx$ zvxmCLUM?>_s`_vI4LH~vRDZOhVn1fzJJghg7mWW)?K_uBFAg8)#JFfM+$c|T5$Y9n z*dHg-L`aAzsQWco|K;w$k*C5wIZ8H0FYXkLjbCZ2Q!2yvdz%RX<2XEwk%U<|^ouuT zA{D*UcPny*>)6{=ZA(zTyuKg5Of}K#pW`msXmRForj1X9xW(9g*gU^_;Nekm)4@*) zugCtmZqSDds3)}t#(b95_pi=vSGA!e;Jn z-bt>2n$L~a8J@O2$c+{i)M$uJVV ziJ9fj4o}uw5BpEHJ^K9Gn(Qk>7(3;9Xu-Zx_d(`#WExf6^OSMNKpQ<9wRBD(SgT#n zXi+lr51ZZ}zf#HgS>QtqTrj}?n!5&VI>k#Viu`OkA-Hvt$$C&@DLPYOw|F7F5XN}vgfWAj0bCINy@uy zM)wiSgRr77i7XQxDRA(QQW>5HmegM0Nb#g1&Z`TGmw$EGln2Bm{jtUPNm9CYS)t?{ zO5hgkg{wq{3CbdJl6=WhppZYN;6Q_b4I_H;uKaMg;3u#HLBO&UEC&t_WbExN^>CEs zpaNwWAgOr4>RtutS+j~71n_R}KwFg8Vk9{eeAC6`CAcz!(AjA1a3{Qhs9)j z>mZ1LYjUN zA})&vK#Cs_*0&?Ktt@&&Bo%MY56Ol^Z==x7{so#Qylcac4H+;i`ew!7@%R()6o+3O zr1HUIbV2`Svrl$%Sp6?sVb-xV?IntIHoE!2E%JyBJLAH6$E8Yb>28mM1+q{6K}Y$r zTJ6qcB*b%6l?W&I&(h>*LCCY1DLVSQh3kMci91 z+D)J8HROJEd6xYXscZCQOZ~groKhevb#WD1D)zM)D=_1WzbN%q#c^74A?Iw?#97JP zQ@^+^+vtK??FP}k!qIDC2JUk7-PsU6w8w?NLFPjQv55Jx*|=`mR#v>0KB{@*gNG&( zYc^+dkHF`%)d9p8c^Hf^QfDaoO#nzZJJrFIoKg*jC118>G{T?2il}9m6U? zeN0k9bTy;CI5J)jFG=r%jOOQ9^#ez4>IGxYZJV16v`uBBGGrKHg6qcCub#0*?-&)cpmJpQSO`JR5w+wHa)HElqf=ir^&Kkv{!S8eKU)^!4e!?M zm^gEz7>7beC1ZvmZN}sbuAx~4`s&m%O;0)c$6)+SC2LNB{(NOEU6y9Q$p^7Hyw>e% zm>$x*lfet;8TSP?trF(_v3J3F{Rtn?7mwd~imAzq?8KEsZ-+gIowXIj+mtyul!$_F zY6|k%07wC?mKT|h!=h^=wk42J4>1U|YBP)+3Tc;R>p{9NE_Y4EsTDN7Coyvy726-B zYO|*pK3_Xj>vWxMh_^XlHik`AOTXD&t9Em{W*PNieFA}D&B%3Duf!1`Yu0oLwhsfQ~DvqC2H?o0@s&! zi!vQ}3m29+YjR1Xz*z)u^VeV4=3jpsU7FF!L)~fq@^6bW0k_1qAUr`x%%5NN%wDzh{oiS&rcN!*UEkFn{gMgsMRXR$55w5q@4*kKO~J1N*pH?f z*Pps=!_C=lTAM9+^}cd&=!5VGr-ee{6ty#qq7!3{*Q6{^cXWTv*;$@258PwF8Mxgk z>X30|%ze^lyk|!$^=NhTBj+4c{}~48TKMm`c{!9QMObCgennh|Sv^M_;te(WNZKWn zx{yeH(u&0AVz=(L?$`82{t2^+=Cr*8_q0dNXBf+usQi}HQUSy;_?k02hw_`k<9|BI zUwHTy0GGAg&(L`xi;!t4x{20|#>>fe**F@_^9(&0(jA6`Y@02wywYs2Kg~D<3LlcohC{l?+%4Mj!eNVLSn0MM=(5#t#)>MR?qLz%IdGl z8q2N)k#pcOC%6kwgW4&o94B6u@$?Tf+O*|_6{q+Gyi>V7BD+yOI;JVseR6$HnjX70 zB}XqtXVNp;S;EotOH6UQ^R306ZIQZft9^Qs18-tKR1vCo3~Z=LmQ?9%>xR(xht5K& zpYW@2*N?w$Cjj8pQrDMw>9#JRdrKkWG-XD%MvJH=8|O~uM$hTKBzZsJi3~Wy0xw}VAsjC zyl9j}(j0e2dT#hwLTT)mxXW_1Gl3O2#%x>)2H}k?@J;XZBv%iws6l|B*H4qg<3B1s z|LUBjG!Zf8?(R^d=7-2z^J}O*?JH4Ec|jjw9ESmLWcen00rz`3N;^SRaCcxjQ3qAT!zV#-T-EV*3& zW_{GB$+szBU|Hxb_X)}tR4-?n&N_yg?z&9*@1a7E-PhJJFyUIks?RqxUc4?k<>lJd zUq*kmusK8VoiW+-oSvlf$X}vLq!YNv6Gl?DPUg#><|{1_Jg(^T17sDj!E>=4zE@S5 z?vEszy}VDxfHVvmLObM%YSbK<6gRue>u?gcOf^0IbKK(wUp~s@Ncy;0zv>IynP>9g zn~`(b&yT`I!ply<^)R}@Pkg%XXxBVkTWj04lgQh=KeniN&0oY_;;#1#`QB2(zj| zj3(_o!Ky-?PI(15RjAh0)bW`jv9_n+V2SdKXK~&ZdhI;iI%WW^sv#GVVB<~ zj@jN+NMP3UOftp0sZ7GOLG7iyzj<$4iC2Q>Web;dp_&5u3D~2x(sO;ju=)QH=CtCD zp_=XaUyPh-T3wFKh@2B^fs=Kn<|nLTo!*@DhfFUp+i7tQIfyqbXq+WoArs}|EXkkY zPqnAwpzX3v0>diH(&;et3!5!`Vb5!$ zrq}TvJeoEfq2kdAo$cMPJ}n-A94Q1~{bP3g%TLn6vNi7!9yN2q;EY#$GqSW5=6v)v zj~p9|b0|$eh&#`(+X!vQq;~_!aariyc2t5VMbzjBVo5SZaAvnUM?4P}x0W5*xxIqk zuz_fGD(0#{eeC^QqdLd(3*NS+{uojU*RyU@V6o0X^aNER{z1DI%`&^(`%9cqhns+p z9zuJ_DbmB9h=L`25eBXzHD*+ffOH2qrNxDO0qu*dfb1NDXbo>H&5qAcrt^Z8`|;sH zSI1Z#k>d;KS}kHUUL+_iPgd*pQ(W~d`%bh`FtWh9&76E3;?mB_bl7%T3y74=i)@K? zf*LL}qp6$EHBL4#U40RZY?RPI*v0E#46tjK!kdc4Pmf=u9~i04lX=092;UDNJyGh0;S)`9O9O2|^`HHs5IYwIme;bTJ$df`hPr$NyAtB7 z^Zl{54$gkuL3?X)=((fo7Zjl~m-<6G@ZcNL7GlT?J7E*xuq9m}95o{)j+$KI4kDFs z?+ATenE3cD{1g=co zLOUBmZmf_AHKMr@!XMw(m`oada{QJr_`olSa$pK|| z>cvz?vGUHWAA19~t)_ zeVc~U4R9jZW;sx&nszI@6_egHIxZiDbZ$AvHIj~6_C8v*y0;_%J^&D1J~#im_9?JF zA#9O_Q(WyX+OrjlQge95`>0ajm^WVpMdol-NYm)$CYmv!XjZ|cKOhK?$q8!bcu-*N z1-{ZHwJN!qe`Yg)z4<2g(0vmfhmfT|P`21)0-vaQQea6H5P^B1Yagb2D=nQ^JHU;a zGp=2-KIR-e8S52ilLc^ru&7gxYmE!NyKat4JzO?;pYK-UJ-guY;Wo7u4=(84QQH=K zf^CY4P)2nF*TlFLm#6XT6>oK>Jf)9Ne1LVWjJH0_l__ba*t>ga_p#2Mc!#sR6i#BY zL|Iktbq1s8ug^y=*3@7=P$#&1u1(Fg$`~mQh}0zgmhDJkLVQ{BV&)?DZR={(c!hBw5aE) zsurbU_DfYaLY7`fp2X@k3IW6;#j117_)Su_0`yqT2kZnKJW(HZmpfanL7>u(cPt?V zvKgtXkaA|v^*yk+XD$^VI{-o$Q#mRx$S}+% z5T>~f!vAQzO%!-_g&Y;_c{cEN)Nci3vl&?kJ(AmaiJXLNmTvzY3NezQ|K!?+E78BA z0X{?o0(K{FE64H|9)r86ByXbKcnrOL5#QF=HlcId?7-LcA_VhA=NGOv6NLn^tITLQ z+VL+jiqM?Dz+p8F|3BdLjj2y#&)s8nTq0wcyG_BZDKz%`4;gFckg}i?(v0KiFCP+dSgT!j|kZvn~jVLdULK?mR8ceEm;{EcttWv z34QYm(=>MD_YgAv6gceC#cxdU6j}hXB(JgIQ~7q@oj=bLKD_$e@dE8p=5apWjvS@M zN^1{O|NX>R(8N#To)iNt^}@TUQX}K0uZ~fy^_y72LCXS5BzDk`A_YGOaW4@nZ2 zLp)~3<>175^IQK*Da@vYJ$9GH1|s|YdBkICaCJOE5sN@I7j&D7@_mp*Fnw_#i}TdX zK+tZZ&MAAv7$4#wZS=-=Oms=X1_Yq%F6SsYRB~3%FQ9cXQ*mfrzXCtx=#a&MZ_E@q z1l}Vh_@6@5vU#?6IQSB|J3G>;xg>v~Wkk=8cqKoCj{vik*DL?azcCI5At#_W`38Oi#1EE@PX$lzb6Q1K`L* z@CgCMmF}W>7oG3-l{fjfP;DQ!1Mfd4gl{XSsId5?pGE|i7U_qL$Zvi>JC8)_wXr55 zhMvgM-=RlP+nuJF!7jy<<%Uu!0^0YKaD}J=IL*<7wY-yN1X{Wha>dYCT2%i{ptrBEyLjjZi})OY=X?%2kG~I2<(B1z0+>( zg)5Dp-W+q5((xojXEJcuhh$X+OBzSfiz5DJK+qNcQE z$~C_sQVG>RXFpn*$iabZp;Pm|?J+9}5Wdf)rBN0By?fz*0R8X?V>1S#erU`L>P4*z z4JlOWr|W7w+k_W{FJ2cWB4NvLp2Pd&!n>`8C9fT_f?-UWNEf<7vp2pXo5x9+E@8ay zM_$^5l$4jhOuAV2`2ds?BI&X}t1fV<%G8kAqqEN(2ZF#P`G7tIc} z$`}567N0^@lPCT_#&5n+NFz5WI643#qBM$0g!%Vp*q%x3aJ9XBLJY{O$af=vpwSnR z20d(An)YewHAjF6Z7SE1`a<`dKo4>@7!MU_6Z}fQzTDF4f(oshzPlcwGx6~`G5DJ~EQckhd!q7rI+UiZ2; zKy5caie4Bf1Qk&>k~JFymYM}EVCf@O(~&=lO4f__isPI=_NOijIu@!;NA~lBmM0Ye zBp=|oYX!_=#q`8@7ycdZN5BJ7YSrt2R)9{u2O}cS+&zC~?5?#}*;N%FrN&hW5sV4I zXPTH=RAJk>JTc>z9F*~$G=Z0o_axfoEnp`TP2e@kP#^tox}axb^&yYbYYad|I<7ri zb?G)Laf@EuDoG*HO||ysca}OhK#8@3A{D@lTEGc?&np%Dx+%=(_8}+JO!o7EKA+Awlvd@VD&(yjWvnLZ#j<#rgMh^=FXpg%4%h%>lQY6Wj>6aL zrzLGdV*3Qj@JstDyVNr!zQA%Q7pU!?iBMDNPvF}}*D8ZN$I9?Ak6uPikjupZ{T$Q? zcklw=LIhXT&_$|kR*2R&c^{fI=}h_qZZj!~dZBVndWl`$y{4JM9X^oN0r3UUGyNTI z~1!}v0wmPUU&n;`K4^{*^179Ozre4l?mCscT*DJ8J`nwgMs4QZtn z**r{Q4#k&T^lgn8Uh&YH@k16Y)b1r>Xgjmhwy{|;y z`z+k|Z5O|J%4c(>-s=&`elTW~7SU)Vw0n%?q05MH1d_sxAG*1n1%}KJhb%RTK;X`f ze2U{ot7#MYr-o-_J11$Qk2m-sYZ9+mlGZy{%tLsry*%Ag3GW{7$l&jf-7R+BR=hrG zq;uM*0l#(;!e}T-my7eIF21nmwr?3m*S_EFvLF}p=3lr>R*RlrWu~KRhnZ)i_pV19 zJyDIW#!=Y%n5kmf)%?aXbUv4HjIV_CkO=Nk<(5XQSY9bSZ(n2VSagQ$D~!a8ib+a| zZP@QjmYgCh?jLZmkb)C#U>sn(`^oSkqwe9ht#<4#x$}X>q!}7HUS$%X^P+h;bI5^93IBHCUy_AA=d%8z=2KglKx+tcEjQAYT;k`# zJ_|`$V(tYyM@EAXC#2Q}z~iB_x1(;9P{EsgRDi(09yj+#`_sO1qk7Aj0&waiPzQ$$`pnVs*5nJ!xg&2}tYgzL z?5DU~Spz?$-78kgV3z_&)RV) zV|>*DBI1|eDN9ej=NFpWI6@lHAYOoo_-^N7u+?*oEhSOgYnyAIm_|(IPbT0}%93Tz zN6vz@QwgSw9u0oc4ACOk1wHH7+ff_yE|A#9Zq~a-!02M%G9-ua2Mm0TE@XGP_oSz1 z=}OT?^Ry$yQ!mh=IgLQ@X3iM}45Y}a<~FJpZ$(wNdpd5XgDl{8J{SGqD_tD`|26jQ zO}@evO_gfW3VLNrSuP|mvI~bmcb%n65DnFVRds7+0r^_-ReVV-$3%Artn-8TRc4Cy z#s08Ssx_#PA1L7N$3cr79>d^wr}t*$I+edgoZE~x$r_FLv~SwfmP!6uy;T94(3u9` z8u!fPoaF~xor%60FN8rw6Frymc6#aMdD|M#r;h;<_tGLi@EufYU^mRdWhUKZ-=$+k z`Xu@W(`SNv>+GC7 z{{jIq71WjpocPR}E?rP!U~hOlrS0)a)rH$SA%gfybCQfy)~GuWCgiC-7gppyQWWu; z{xt1E1J0iPLblJS8VF|=dz}w9>?^5+tG_j_r{=Dqa}kERxZ(#l5^yrf(mrh7I-7FjyO(<`zWI#%LIN=gnc{q@Q+x}Yy+Ifp_0MV@hg57_O6=bf)~)K?8@I z`71e2&Wpaj6*3Ce9porZ+WY7~<$rt4tclA}=@dufWh}QaT<;XH9OJ4+ z&)pU`Jb^U_vZ*vGOroxu%hK|gaW1eNOQ+MuqMqBYX5;mp5%gC!U{vzE1{pua%$^(+ z=mtS_q{eNr5{RQa3ebwj-itQ)+WQo<{*1V0&|y>RFfcvFtZ_Jj+F7F18_0UB1RY+v zs?|P0io#6!$^1tVcxb}xfpA+{?-J+qJwmmGQ<5;82jIf&MQktMhd)w<4hKKPDa&Hd z2HwZ<4F|u=UWj)gtCosSIoo6&OkTR7+I7Q*EYSkB>~+|85CF1rfUg9QF4DclG&F26 z$0$VE)$nZ^vrB>Q1}WytX9+<{&>PoYZEHEOPk>;pqeT*J02?g>izrGo&M zTL}s@T}q09xSb(>9s+|3IpHa`!j(YTqUcmPCm)E#V5R9ZXtnH(=0BXwc#FL- zEtV4`!Mw0E11}I|(&*qT@%*jD1?U5U>7r&^QF46}zFkt6c$uQVJo680ETGjc+s+L6FF^z zH1*Nigzi|&$~)GbWe&Ud+Sjy*HfXg1?X!Un5Df_?Sfs?UMjiM7&T4oOoW;)ZEd!LwWu6rxl zkxwuVLL32rYvmc=pf8pb+=NSzqvIQnTn$=QKYHI@Mia#>aodLGpUXexn5y`sqHt=p zb;!M8Oz`o|qV}}{+35K&WQDMb*80T+GL&?$Zr$>ff<cfAGno9eTGNSNs??*AOUI zlD`oZz1JT&lLgQ{z@}=<+ZOD zr|5%H8|L>_lyAT!=vK_d?1ny;)p9RzXI9A3auEsWSc%r{Hr70BEb@T~wUi5-hcfK9 zP|occrD9;kU+Tsoct zkfe!?5^n9c#_jgN&jJPUT;8l}QS~RBdaom8IFGidArV4F1N%7&gf}h~a}~n=1-=3D z2C_!&^*RySu^EemN4mE_FXVRD?7JG*-yAO#+o(RjOBQ*j6ZOuT=$(;Pb>s>jHAQ$ zr95wn`n8i@H7?bBl)&LO?kfCONfB zOcH(jO#ymhtk2dqukPWo15!4C!~wVnK-1ngEPPe8WKY`ENG1iD<5#pBtGGm1*D+D) zH&jY_p&0~a_3sl-i%TLz%fw%rXEH_YE9I5G3)sO!Zt;Wgl>8?FLk!U#iwn=<&KD?o zUn&Kg@k)+7);B~oVykYvz9rpIyFBVP2tNy(j|Wi22a6hYXz}c{yXB&EufWx`kOSTm zTRAm?5nllycDaFOte_aY(O)N!e-avR}RT7;J)S(&@3_?7H^xvEcUS z>g(^WD#ZYm@9Paf>vkDK(kMZK*u$j00ug z1Ke59m4W7*k6=LT@a_=Rw?c`0v{|d8Y$+DL)z4p-$s?am;#NtR7FCX6D%yjqW=uCb@C3jNLus6L!=wXwOuC0oM9w<->Fi3$>M`jO; z+ema6Hs8Gm+=C?1t9Gf)VWP~G$0?1@f5l(MBUsvOc>w(Q616n6W05@3Je6c49%U?l zu|_LtnP9@BBJoPYH7lUHytx*Qy6J7e`MTbF`h5D|Xl3Y0F-y;-%o&12Y|@r-r-j4rEh>?m3_Y!#C*=;(toX+ z6$4KPND8%Y|1{?bJx5S~77GjR_)OHtC{aZKxcJ~D(1MUtBHw!_lLFCPj#c5M9D;4i z+40mqah(`bk#Sv#&QN=}sdY-6dSW^)LvHm3V4B*y49zsrITLxsqB@9uw9!~om!u=} zo#0b;3h+z^1l5lS;ib1|_=cCITrQ6`Ij_j~v7tYIT@mr=1X*2*pAH)vOL$RM0Xo7G zr_-;N7IA`=EUUxgG>Y7e{+oaJ2%Pz!;F7y#uL#qM!J^xlom1=EMN{I{cO+1$UVo+W zM{G(nrjrQbncFfSPM`3l)fG(vh-HRk=!NXhxV<9FM`@0plLg<1Q;eMTmTXP?@c$2j(L>irhh4fa@ArJhD_5bAVEi*5IA{)`H}Xl3oXY-iOq%zpvb>6Q4n1O@tp z-0#<4Js8ZCS#~ix$}ejS?u+;X>=uhUF;i;k3GX4%au&7r3Kc?jgp8gezCdRdG=|M` zsq=pXLl=L@ZW|l0<-?G_qwHC?9sRaK$)oaNCbSvAhWRdC+z4w z2s_gH(L5k&Cd`m_(_@LIyGD?NRc3+#^R6P)KN3L73;H?HRa^zr1A_z^XU!`wSjc?j_Wh~2 z+JcQBhzuXamRTm|hQ;1(UTueOGagobrF#7@=LXD2Po+gf$L1p^e3qIpfAk>Qg@E{wWeir^%O+E z-#{ZNND3ul9J18&Vs2N!E~%LEuavPYF}xlQIHwmeQ_g_k^sj9>_EHqKeNA-p+0^O; zWTy>REY~?iDW&-NW#kIw;I6^$SZ8W;EcP2D%@1FsEgD>D~7oXA_#LY|oZe-Mq1#LYYD9-eMa<78lh3 z_Y;cbGkoOgt^}m}1g=!|IGC|q#Q6j;XaXH0cY#h6)fs(D0o1@>@NIW={B?A{ZL@ub z!wGCl*QEYUo2=9a0#__V6OlbnQI5nI%f+L{hrLyuQ!?=6y7UuCLDy`AtH~cFaH8OF z8<9%Q^bqT_(>446BMBH`_Sw`T^6xlk^{?ZZeteDz-IZ3HQ-)21}TR-lCiOF_y1i)zxJMgyx|sY4aH&3CDDdjPG8yzz_B?)sH(s3=HAm*OAtHJctl)A0dbY1ji>!EA)I#qFT3k zkVo5DdT;e28kL%-$#>I57<@tx4Hyg(VfwrumAcGGVOb7$X%q6nL<&j=6#!&_zU{PS{TKwnU^RLOZ zLEgSFz*7$FabwiZe1%{+(7>l!S~cSC=>qgv1RK;eeC>mtzoy+#Yv?Nh>Pfn{#4s%5i&ijB-fZprNQ>XTWr# z>khzeSbLMeio+f0nhftrQ4UZHVDvP{6a)w-EkE#Hehul5y64Rt=sjf|Ih$D4n~!n? zn_n*=?(=zx_HH_xF8IaE=e|FeH}b2ck2qclIVtyj@2tjQxQJa>&v?Fr_ih5`yPiK7 zPJ2}gXocX{0Mi^V4#^9Cv; zAk_VdaiqT%l0GPkFy0wx`>~If=|IPU<}!V^aPHGyp0`j;P4SMq9vDQ&c*ebK-V+Ce zcD@ERn?Lg)P}OsL{=`gU@GsBOkmXs?w~J>bP@&nmlL{%znuAn{M^DS@nt)CX&!Wgr zU;6hB79wceN9FtX0CngZLx`eVbvY=Y`22u;gpaa}hoUCu1G@J+ zLE>V7eQN0>eq`xYDc?Zbt(T>O#xwh}3{GQsFM}C?Dpk^PCy)aJgc*_u6DrCjmr=4m zb9kV{2oaNbwF7i2lz&ZD3)+d8Ft@3T02=+S?Wl{wS2Op!Y7#KIG|Un&HA3wFqu~h6 z?p{ZJM@Csk{l*}pGB7khBp`rx!n*S(wXvw<;)~11)E9SwK8aqXLf%tHv~E}LdvhyD z!C$lesD)E|#eP%)t=rLHPA!xbP61q%71)k^ z03uQ}l{~w8T{Z;Ws2APRV(s>wX{1D7K*zr)eXou^CaP9G>Ra5?=<&V{c%Gge5F})@ zyOT$)cK)RL30&UUX6~9m>d+gtcc}bhKpkDKPALS7E2f7S^lh9@pG86@d=r4)FB|Tm ze_O@=X{1MPGgzjOZngIj6Ro%tq~I!?Kg8|vhU;W`zk2z$*PfQx*rK*M;hk>|O2`{3 zME-Rq?@V(nvuljDCP5^{NACq~ZGS~aS-a^l>kE;BFPYddNAP5(3iH?=3x zjUT*OCMjf@>W6Y8=M^As{=WZ#HqeCF0xseSx^};EC zT3qz|#o)Zj{oe&h%SL^aW}Km_TZrnIe!QKy-D_4p0*>x3UCAw+0&L6Hf@Ly%jE80^ywjVEgKH}`t~!=O?En0~>gjtLLEns7iF z07nCc2W0eK7Y_JYi#6Gh$K$Od?n(pgK(`*k7jX(;VQ>m>9M;!T03%N3Nw4Agxu%a3 zfsY2;8b~XcWudBs@63sUR=cx&6jw{J1N>1Q({nkOUl8*x`$LofG-yR$m|Ah+l9tm!B$e{Ml@P62kG#hr zC5#n%ij704p5&n9B_!tMu^iPx=B2ji)Y75NFh<*$O2uZI%KMl-*HBM=KF|4lu7B?P zv+cfiU-$L9f4}eV`~Awwgi@Gal?w*@O2YAZP}%3M>-1OT$pRFaLFe7(Wt$F}fcw1% zdF0{zoH*$veTQ7f2D+LISX4#8W`2bLn#eFn>>V5@3Y-ZSiKjOC^@GCV>J8=ZEvR&! zDgUv{ubcT>%qdi0r_l*R$~>5zC^E3WXcJ5H1`@}r{t`!&o7`ewpy~F_rQP=|h(|ov6P{%K|4y0VhRyHqSeCelxT^#e9QTC>@9?xwa zA-a?SXiiPg(f_z;F90hXa!ECB!;z4+nNO#8j>t9zlsujCU3bSe=9Ss^<7)M5#xd(& zCn`XK+~OFSjt!7wy`#ayN}MY*R^YGH|Db=@o@4Bl`U<7HAnR5NfzHY*M8-ZBEZnOy zpJ>O;be%zHe=HdX`tYMqM@_OeWlH=VWf_l92%7L0Si~r-u3A@~8ma=hv%OI@ezaZz zp+Ck+BP!Z-nq+CJvbJ`mol=2C{uw^kx%#&PKnt|l&}x#Utjf~qN<;mKw>o|{q70=D z=qQN$s?UHtTO+;iL3fbi)1SxQfI<|)0c_V*F>h}o!q!x6^3zuNBuA0f-O?%>ppP>QkoktrbnMS)FR{a(mJ^ z?V?td%93M^+2(ZbvR{i!~bRGI8$WxuE3umU=yfotqS zm2(>)5VX@1&h~YctmUIsL62F}<;Ic9OFyfj(Rz|&d}!EBFlq5kF5W?3w4q2{%@h1) zD_4apeuG0)o5j+FO&vn69O#Ws5;vN62vO)pDqRc;xGfR7AS+m1x3>7SC6xB~9YR{R z$2{RwzO$T0`2!6ff-bcnCD0@OD3oTLxwf~_&GK6Yf?@_}g&m!azE8MzB_RNU#}*Pq z;ucrtwD6O=%UgyXc^*Y7y~j?>cac0G0AaCn4kLe3T6Yx)^nfDGL370as#XfdEEXlv zL6+)~22>1zZeh%@*@?+GqaJ{EnleRF1`?YnJ6*^=%=Z^Ut$=~g%zz2sz#QKEELd^0 zL>!T0t zlIZ8!@q$y;d1ogS^=v~q(;=DWBrb?!59ae1n=vE2PW*S z--y`ydfWowWp3dg8IaP@(+*R()Y)spVhhG+Qbf@Solvlmc^Po`EDo&(Yg1HnL~oSaAL93s!}XGi+8)LQHC z)^(XU<^6E#%`IaD!9*ref9#GUoa%BL-!o9tPTYoZU|yso+fo*gTEeD%Rdl;=>l>R| z`qdm>3Dgk0sWyoY$10px_>6ft`@gyTp7Cdr$7!F_MoCDZCjp7vIb3aazl%ij`4Le# zZx9PK&q?NE*VdO-Xg;*WIkA@b69T2-uNsLiNPk28PE0|3j~j0n>n@~AY5B#r6;nfK z0>ISX!%S~+(qipEyI7Whp7xlkEEi=@qQHZ5?FL(~s{bF+NdG};<>w8c5Wd$ufkcqq z;n_`C7qX$^#pmbxLNgZA3HxYPSt6gbfL$|aoS79VV%tA01gAOZVL*)Tuu~BS=j$A*JyrQAaZy-%eW9Y(@<_TSNRrPs2 zT3FRs8#$g^=$}d4wmF4J<2dk~0VLOifB3GAtl37+KQr?psh5kC>9OGLW5t9TB*(0l z4lJZ9c(#;4Lq5&B5px;W@+-5QJv7qF0dq;N;62gcX$Hd$@dRFXOCP%6@YQ;}%z-(M zPOizCgd(FYnWr4x<{8>k4La1*V8-MKB>D!=ZXkpgNZc;4-G%1q*AY)U4fpM zjPyLr$TEYP&Gqg5eYYq8R2c&NhnX)9PQ483mo*y+}v4EO?E+uA*T)(P;6HnMQ8opSK&bM53yNhVNt>=y?o&Hm30 zPLDmB^>5&70)5XNZr%=UFkv$Q*rk|bR~*TL3B|hl5n;nGK-vr_f*m>H>yy`k@~!!U z#^662D-Q5jCjez6;LnF=5&A;co z?>X=J|L?kfuWMk$hi9I>_geRTuX`FG9+EypLqo%nk$&?Y4Gp~%4egG}9~j^# z_nhbPz&8PB2@PjuJ5y&j14k3IcLvV()^^U;7KTq}VqjI7lg3|w9i~1Jio&|~h=eO}>2A_8q{_B2*l#F_`|GOOTFu|kYPU_wV0xlb;FnM6Um!QTw)@K|}Nny!+3W-#F_(G8isrF60_; zWdB|uUJ%V%TE|f3JFj7hEp$_ANCV8?J3!YXN9*MOJ`Zx`Stppt%KAE&&lQAD zKBX_1kO}hpM}WDlZTO7n!NEaZL4n}*p4jcx;Vfi1Ovws1@-fu?e+Sl!JrKvToEaf% zxHD6&QLI)_P+(uL!>m*HZGg2g^z7`6(jtCxtJ|FWq_4#jYxLm7Kamkm@>W(BIyl&6 zS$+3gVj@)Au317x<^g>ggc|iiYh)yAGu+Cw5 zs>X&4ZG3z@#bYyHE{Qv6tF)C;RTUi}a60Rh$Z7KM{QO+__?Pmh)u5oDt8Zo4`ym%EL-{N&9KE&jD2kq&*)*}=Fd|2$hKxmM#{ex}wTn1aZ$ z%5K9Jt7Pbtb|`)NV22-8{rOt5`+hs7W`*&C#Kgpp_AK%W3cXv$oObiVyw+1~XUOF{ z&mfZ}x&uZLB0blq2pAVkxKsb;fY=n4Hk5vQWhQ!aw)|)0#dakuDlJW3Ru*e4=iTzv zA&ma{^Dj9$bUon|1G;W=5*8MWVmHVL%}P@oMn=XI$WjnkE@MG&PVIA+Ql*v4R8?~G zBM=$?#HS1y4IN#D=@4m}$0lP%MTJJ4{WF-@tykgkJY*RMwS8GK(Nj(CT-r6(54>FG z-PiB1oAeW$?9O4ejb_W%Z&wVU@h^vRNrOi!y4~-@)wX{KbhV9@q{@`H)zBh zWZcKkpYQgBk@aG+HT`*To+jd1cYAZGS#3#ZVPT=;&`tQvM3+0>D03vRcliNxM9iz& zva)XyAw=cY)0|7o%Zv;Re^?KgR{C|-_cIUfjAh2DODOp>1Rv;2D9vv|UEg3uziKa} z^bq+EAOY|g<+4V!h3|cqv-X~n7FOm zaEd_FK|d3k*TqKeuZfAfiu(ErT3Vz?B+?pQ6Sg`KFLiYjO2WkeprfIIv=%;;Y}ewR zC3c**T*guwoFR;r@<1i8Kv1pLOLX6^?GNG1f=zE58*$a~xwdhs5C{(`VN-$1KL99G zWLOKY-^fYMD=h3Z=H#%RVn>~tp7*gT5wpfiM2j~nzM|>gQG+yiChpH}HBlsPdm1jZ zyAUPIYH+Xu9ZVI92M2SP-S@^T4YKs0CxQyr7x_F3(3`q-Uq%>uD#YgsW`L7|e-ThR$ZWq^d;lybPWHJ_Cl@o%p9;x0?-;>)xu4KfFDi zf3JG{S$xN7^H=`n=6E4)Ve?$O%qek{iR1nS%b{ljW0X-!N5^Xr2ObS1ctHSrIX?Xt zd%sxEHN=i&N}W1$h0BnVkpV>8+%UZt=*-FxTp_7Co*y|OW<5|?P#{Yv0maf5rkL8O z&C6iuw`vn8D3}i^8>Jk7k_|8W9~n457?Gcf!6N_J%!XlFRb7$6K+-1CMkAqgvp`(G zxTS-sgZV8wTHL_EK!uF_9XSh2S7I~AoFugT)0}NQ0Cl>5!@I$^n3$NC*7;eUNRMU? zmu-qiQn@7|<{^{P8|5=q5(NcXI9El@I0Xe41p5Sk)Glhc)=JNvu>=pW>b|BC33q-M z)%EZ|C#LJ}f$(2nuq#})CK4QVMdAW^Y7LTyCi1mvMuvHHu(5wO@8QP0ai`)48Tq~t zYw|BTquG3;-BfbdpDCDALx}*(o@4)2%<1FGgs_K{s;2j%|H+*wbEheAMltH2OxmO+ zl!6H*>a|o=aqXY)3zQK;Kx_?-SXgdX!aXouf~fut1wktyEW5!L$LAHysH>`078G2o zs$Q4+p3@f;ge$7L0CYcnQ<`5Mp;W%Wt9J5l6cPHr#DMl+W)NLD?VJ<>`I28)xb?Fo z-S@^F;7kI)12sOq{0hC;In?0Vzx8^@F5tL%Uao4+Kf=QLsNE>)e_Rx#8popDBSq!i zHB)UhU1oqDLd0U&h89_~Zr{B{pYHYA($X>j4nXDgM6q^ngUc2K*-b2TO}4P#RoJ^M zP~_eH@O_hHBqSSG)QE+(w6GK5;5m1ulDI1Kx6;^n^#7t4nO2``$k}25fY8M*e1#S8 zy0_p@X8QpIHef%eUJ5s~H#%%=Y!L+oFVOV7kP@gw`uYIB?&@GbXtu=n<}h6@nKul% z+>3c~-+s4#ofBZ@!Qr9%W_~VO-A)bM+`__OsVhjwVGt~6X+72L zuA-u18`bTZ)Y@?Bz;cAxa1xJIf{+`la*o_$)tG!{RTcMsBOs_wz#8>uOCh-HKV1bz zSYw^!@Jo;GsGRU^n`z9H@lIMf^Bm0Pte+Xf=*g?7x(v&{CC3aD`Bd_=>~Yf>zk8`f ztx6H~ci4nei#Fr*^GdoUd-t?|zMQ!_`=zX~TGF^{*cJFV#p?iyV(EIPb;rXYzQctt zxE01wJWejIJBxZLX=&k;TPE{O?$%Rf&z3w$llkn{(mZz;8~0kCb8$r{B_##gK(3D` z&rjfXcg|MXd}VBHStTSSigfDnR8<8ow<|RpoEe?g1{bHz(rHCRQsd%?a^5BPoUfl3*9$+TJhUd!cF zr5UbTVRa|#&$%#yQYD&^DO};QQUm?uB^SGEy^`AlkGIKh1%BKXZ6O$#^XtCK&}y@7v>Asc0Pw>E#T~4 z4k=?GriyAz@@>PJdOs|3ssmoL@;0rF-u9rJxk|nOg^`t3}~ubm9W+EdOmg`w>+ur`_4zwhwu9C-!zy-X3_h4CiY2~BtUBh z28Iu_bq-DY9azO(TmP4W`N_jwYYPiD4M@^eR9A6*&(J6JeZBh*0M-++Xmx@82#kox z{r>%_A(vy6+IU?ddzp0`VsJ&zKDOQ*ms-y^kwi1r ztYm}&i9nQz)15ewbingi>~^4{RdKIq9jcsWO{;TfX$Z+oUj6NK*c;@@+4IItSLAYp z@1U64^%v9AALzaR)4P{|)l)MvGTJTy^m3U0e2Nwo6=iO1eee5^AD_N{z4!k8dj>YP z^)Ur8951QXv^4j_HDnK&ouaNT&d(gUJ%4VhD=AF$lG(M9;^P-g-1kaKue`lQfClO6 z?X9$d^Tx61Q=WxSTleg^qN9jKLgGFUocyWsq8AK~=fjJg0m_=1B!8CL)+P@n^DQ5q z^V=_=p|tDmS+5u%bgU}cxIh-hxdEBeiSJWRn%XVF-aIbYZxwL7YVs}dWgjswuF3Fm zz3^6PgmaJ$>Tqu24U;?4-RfQ1>CGJAg`Bdj!MJV*k@dZ9$kK2Bq_y6*s}SFuGro(9 zOM)DoKMom@^jGIOm&x)E?RPIub_SwoWfQn9@PGiuCgJ=F0{ni>rU-Cl z;h_EkKpAwypOABHMo2Bwk5hA3*A? z$5wG_f7+}rLqWlbGnwGvuYBe4@j`W=4Q9H0+$e83Ls!CP@rH-bu}%lY*!HKx^ym5- z`dz$yZq{iM@CB>qcvh|I4ljkK;brk5QhI}>xi_TAP@LKISXe+4{@yT^ra>|C zy?-&Xnq&m!+}IF5orSeE4I^WIZt~-&qxIhz`bkw)b0xL(8*ro|iHz`!$VFAg+g|nN zv>mXFYo9foS^03T(WerXpeZ}%>`zSFIh-d9xZ7M>=^P+w3C4*iE<*lSlRCyc?Y1It zNQ&xvue~qeC@_UbP^wVm`Mkp`mEiOf{u8rH2jwUm& z|LZ1o(nwN?lpLD(F?7Q3#PjS4M}AuxYY*|pk!y6UX0p*k9arcsrt2%+FSlzG=iLN- zwUK;2wMTB8iP3)p8nwV?B!CP4chIb#UvnMEMTNZ@)|JzAZfSzn-mp?QS^PSQCW(g{ z9a1jGL2LKBTiEK3qGhKi%h)X8@qdRGO_YXs@Fc?$Cw+7g_oCBElqqSKe*A5$#3eCm z6J%;=q+IlaGwhG+3f-?(dh;#wm%xH@_Fo#PoId-fxT7im3^2OOM4pahu|r5?L+gU> z$VC2DKu73ih84b!ybfPK=F&HNIf`bh<%JKk_LA&rfBSa@6P5XhQ7B}XXN`5vuC>dj$@xMyMfA-1ruhVMwb3ZHc+$}5oc{NA%Gl9zaFpjJ zqgBm?GnLeRuATQN?1a}J4hunthD-oS%cbx~!fhLi$83OtSuXFT+&VgK!2i#O-hH~H z=lues`(p;fT!mfXNWVAzY%h%dDh1coyUj&kPpY}HMf-&1@1>FtK!nrMZ0~~4U;=4m zG}qvQB9YXao5f)D(n_Z#FWI92y7D|=%;D+Y+Fo|18?O2 zd2r0>YAfQyb(mRy3}cFY#{*Dv;C#dtyZT1LWy%h6R$lbnxPM^aj=@e7s7LuhfqM>B z@aaf(n}@2Z>q@+Obw}JE8^t=0tS^CnGXb{&>gEvSxZn2aWa|x2G`)f;;B^%>wHnLG z|D!^x#9KiLdjLn=#955xZ~#6^^E!}01Aue5He>|SKa`9w{1o9!^%3k|m~Nvhhr`kv zpG!F6y@p0#qFEZr)O;ALxmnMZc+? zlQ!Po|0tgGAv>S3AFj0l8-cY?A1qW~u#~>VXAya-$Af~y`k?wNMP9myd$M6pNl=A>*lSJ#&7_{p8-Tyf-2Pqh_^}z(hya7 zAFK{25%`&NGEmH~ax1oRhGY;W%$>QMPFzddaimLKxW#fKMP4$5?s(#U*j6Hcs z7$};o+}yFz(T*yMF@9i%K>PZ>=jR7Oqv;RZ&~fc2b={Ehtyg|P(Q^N!16AQWzPYZ; zy;cP^H6kEw1X0KfsK&bRoQK;`$FVl!wpRu7gFbcVMw$Gdl^Uq7e`iR{}8ul(s{? z4xj`6vSIM3?{su@7OqLmQa+7ac3W0QrKY}fcNe(6JYE04a_Ce0hYvt^q3O6zo20nS zyFc5RY4H|H=CxUhQI@~+m8aSc(el{0v$%Gi)Nrn8;WO4$nSuCI*P51=G*tLm{$jWR zWLx39@g5rk9TS%lTO(TN%fv3I(<^~wGaX90|8Zb-2?XAA0Ra-QVLX#Mo#4qH8+ME6 zWI@8HMO)$a6{BwwJ3Do$Z0>y6^ENw@_QasUS?Ipc=Gd7*R_Bf!x^kJ&7qI%RDKbhV z11sBoNue%U8wImX6qm0k&Q1PrDB^W2YDhQUO@~Q=(xq)PZ#^g3c1gYUg3v78n-`oH zDz-ks@bK_nPgH9ae{%oJ-T3kUH8$E7?cZ2SL0ZUFRiQAL*>r_T>dm`?f`h*25%x0{ zx%cCEczFQ>mnv#%LP7R|&|Fzvm9UP08h5N8-k%RB&AfI60(><_8FDu<&St(1Qf4b0B!py@$=9C~kD zTzHI*jskUP2CuPU)^8EsPlT;wX-M9lw%&4ho@{^H3nv$d>hJIW2ytng1ER2A{8D76 zY77G8qC=wuVHAas>(5`m-T);rJw2T;WE#h;+0o)nEhYc{Js$8uKkea?atE?#*DN>- z=9iYP7nZgJ*QF8W zcNu9vz*74yJ>9qOTF+^S2UT4H+{r9>p{c3abTlf9DmhbJCN$+z1!IHo={Z4CpaJ(c z0l9;ExA*_a1XGm-+(G;0zI*C~nHUVEyI9|t5rfvLUw{edS_+n1O z0+<1vp9%`D08nlIatQgFQLy>gE~_y?(50Zk<9IX8Rx;VE!IBJ1G_75KE*`1Bw}B@2 zJH6wQZ&a<(tRDW0}#6cP=GRG`Ktf-+O4H!yYq&2u3{-Vx$ z?d7hhn~nmXtRr?tY6zZ;0yRurhWRP1^Qm^Nt;x~v5#Z4qMFFD@$a>%|-Jwp!3eG4} zQgyM+I?i6@2~LoE{RinE7yhTl6N~nt7|&~Ab*bFiq(FP!4d`u0$e)p!eyPt*rrV%C zxnwEzEKKtJ=MeFrkbe zqReb?iy%(XbW(e=d2N>e8Sc$wiDitz386`=Jimi?0-p^OrZM&EL8;8HB55(>?8lap z&5>0{&e1eVIitH>8_38+^VJW!SS%$|z$N=H<41*~v?IsGoc}Tby?6{Bh8bN~3@A;2 zaQxaB-Wp;;J8*WMkv_H(H&LG%G-FDPR_Sl@y`ZeQ3Hc`?(A!mw+j0D`5aK<4lVdL3BDS1atsm)x@`G;6(OIIb835i%UTJT$TZ}p4tpaG+fjST@yT)yOR zl9t4+eQ^R=DWvXM%dua|+fK9nt1l+_Y1-O!f1&-aSnlZP;N7Y|!B|oBA>be(Xlf8A zwZo(4ja$|`9vn^`0?IryEB`B#SZh>8PDPq+)XE=am)%yMyWgY}kg2+w;nx1{6Hpu* zM2d5PXPMG@j~E-;;8feqH&B!m*1tV@gXXF>$_uDXve59IR~w7VUpxt>FP` z8=xQBa)q)SFrI07Dv!o)c;_DeVpLEXd*7)bcFl-M`Un-T0YRqj@2Zld!?~0ZOS_9i z6eI-&?{(lEZATEv6B$D*&AnQh+U|)8jGon;pM2etpSu~lt?o@w<@IhUYu2`g>&70O z{UsV4ng5Dz5^3JTxwtj1NMM?R^HNY!p#72iOesJqBD12 zMh^@$VYaLVTvvN*!KI^BURO~5fNxwv}4t7f~sK_?^lX>NnA{e>kiJ$w*N z?tF{-VXgX+apj}rY@rwBPjKW0WHWuWghf?`{f~PQHF?!zluXCp#T;=LJ4;@rI?2jO1yq7>7@+)t`bVFFM=Jl zJ>kFz1|G2(I_upWN?UEi`{@ce9dUfPhT+_S>Y%@pZyt(?IBG}g_BzmHA- z@<(p+M6oqPiIJ0xNNMpbmGn?3`T0`rDLvb5irxl8h7;Giuk3iAu9~#o3?#s?Q^mU z(@?7@LM;T%H8B%Jo=ftRc0M>N=c@@+J;GKiyY} z*fr31Q3mmcikK+Y)xQjS*-uGj-D96p3kr7CRLAc(VWfb@k)*0B4BJ!nto9J_aW8s2 z>TvvCks!an5zVslbmxpr`AVK9v?G8)hr7~KYP+(9u78Tk-|x_kXCwOh`~s{RW_3kB zPJ<%lyimd=?6rG1D#cgwdYpf&3QDkkKeb`{ zZ&T)eoBKz?v#cRv3q zptSM`O(sSR5+&3I zqaDUiycrV0z>Gbw-b*4uXA?i!i$pQ6OcPdKa-)gw|E;I(qfE71Cbpr-bfs%rY(w7V#Mq@}26e^$JOK|VlD zHR_G?3d!!;?{Ej}y`6E16>IC+Cb6(Ol3YOC@eKK!3UyKj1VluJWo>PuPyzzEoRaD8 zy*Qr-FEe|ki@-{`Z5aFrtpwaBoO_P&Su@aieL|kKzkbzzL}{ygG^IHbcp8$O!tH{6 zKl&0g?v&AL0eOu0#%WJ*AK%Hd%r7+;Yek7~%fDw=~XMuq*$?AG=9*wgp(I>T)Aw|L^1 zK8;zIKwqHScFNRz7_`dl6ptPg|6F}NfY^#)nbkDFZL$P|D>xW(822-ko=uw?N}E!P zSK;8Htf0o_tkHg-R z`wLl00)tm@^%x$0h{d$%e^eZ7#du zZIX$fu3&P$YgrLpjE%LGcY?7b=WtcHpg-GqpqDmx#7sCuIO}qyn-I1p?yEVvTG#ZV zdWbdZYT7@{z;@FF=aIi@P+fm82Ie%BSBH`+-HtW0Xue%YjNDk=k0QP#+)}rQS+p;zz%FCL+oZUKwRwB&0|j zyVLtn;>M!{Y~kxT?RS!N*wU-9gqQWsJ>T_2&Rl39O`>YsC5wX(u4i=2=6{p#UMbGn z@lh6u6?AR2Y|<5MQ$HKGI2X9HSb%J`GP4Ih!I`0~fSXTQBAh6+!*o~IcI_{5QPpb@ z0-Er8_aA+e&>zgOXsfi z8&kehpN6p6U;Oiz-ON76J%Tkc-0W_~M5{QDD)5R!_tN_rjU1nRqfAa^%WUu4;j*Qt z7YzvTg(URHy`@aJL}Q$YNwb~dfSuA(rchGlhC&}O4-5p-bB*+GdRG@ss}KAvdK0%( zuojgY&t>u91t{e5tcdQwjhv$E9n~m1EAUC;Qu}^xcfBm0vfoV7-Daq*w6wz+a8o~= zNHWyZsfl<~7=$ln!X?&^k{wN;{Ow@n{}bFZuzOG^dY*c2$|(Tlg-UDbI;ejl;3uoVxvU}W`HUhkf-+@3p4 zY!|M^a0qC~N%fv9WmPt%3+5;k!UBwG9nT%Upf(%k+ZvxJ&Y2)qbL{cgULUDFYUIl= z*rc^#zWvG@#YTbk#+l4@+I`EccWmW={brbr!Op(SF+%#6S6PW);;E0{$ai)ldqD(| zYGkyvk(&wrUNO_+ZbYqp&zTR1eDkLhY;lSNepbEuvguz%XOY(wI#(mz!j7ZQv1Q37 z#@-2;G8Ve+&&%_jUq_*5o1i@eNmNk4xz}Fm?sR;IHA(OzeG3sZ!e>gq_o#j2YN^Wr zTQ0&((ZefH(K_N61PhQSX3O5e*_n?zAqei}kfBwtx|Vx|(6*GvnkfP;Y~a{}7=~vu zvr1^YOrAWY*VLdY+#U{O&1#O!a1`q70ND*>pWz$V_oXl$9~$x^{Om{!ijE{p9ula0 z#lg0lCquE_B61+dS?aJMW{CD!7yn5t+ z>OJMIw1=C=Z+-^~k)c;s2ACZzRd}NTdAeSk8`hPJ$Kh}D(nHu+gFPu7M$yw55&}7C z6k(oI>ee3~Uhh(x);+;`6#qaIAF>lVSy#QUW~=Fl#V1$yX{%R1V&tii++25(HxKiS zR{QG!_VgRg`ycl2(M)2^M72G}5TA^~arv z-{0tYFRG*ex?-s7bGf&Gr=b`Spb@`sE@uj^LpP(lbk|n`m?xP_SDVXhZD<}%R4>?H zKAHDlCHyej#;vF8{_!2{F~FS}@34@^Z#T8rNeL>VA5k1$PCE4%a*#sS1HSyKt&<7b znnRuqu_}?8Nt<>&n;&wmmY{TFCeyHU`3V>$djf#%)Nhhz?y{v^Dsac{-?|M$<2^w@;>TvHl$9aPqU# z-RpW;=W?|=hKGV8E@Hl|wS}3QYovqm%gkYpn|`zJ|;yaba@2fxWHqQy(2 zXSof$;re5XYnjr^i6h%Q{I#|{F?BcXGP zC&>ARFIOj3^Xj6e;tmvMViy!>X5o9Xw^iY^`(#P6edxsU3%a+*S;(GE!+8zeK`O*t z-z7mXvqP)&3$>0?|1yq2z}ObTHmX+h+l%?bH-e{L#@OQ z3b(SkFep4$pLCe=a{5~9?~2$7C*L@d!t@2g(#iS$$jo5p=K{5G+sdoR%7O6B z|G@NP-r)WnV>&IFFuPW@-L5-eAuF<MqS!sfld)^xJ=*u(vs;?9E7{w~ zaSoIsCPv2NMwH*Bj!Jj~`j7Y{HgymemD3*#55?G?^eo5Aqjt2_%SLyw;m@_~739GN zo73Fc)|oRbH|20%z^mzUIlho-k}*^KM=yiPf;VrNqKAidTh?RF!_!Qn4^gV)4Ce2%3a>q~4K1uiHt6 z*Ik4ZPV2Bp?Pqj%>L1G&T6vm7lV_YlsK(ex;wPmRPx{+9b9)DdgXdS@ZXf4w7nN}d z3vGPc(vrjQH=(C+ikrl2nR=COOr}0eIh()782lQcvS_)jEKxi)-;veo11)62WoPB{ zi>-wTZCfvZytwh~=ALg^jh;N7cz#A;m+PT79 zRsaP*OSy3lx9jlwt5zn+TJoG%Yhi)Z3?a*`9@VX8MfCmK8~?GJ>KNh{glx80v@`SA zZ~Ntwiz!tLv7`Rxk9%%vN;Z3m%QvfW-~TA8Xteh*bo=>xry4WSW+>Jq8oSz9IITS=XKP9Rg$qA{n?1I?o-vDF&}S5v@^)sPn$Lj_dWK}bH!G7_;qG1^ zh%R>CURr;=^7!gtWpTvTP$l2a6?4r=d08;V;9SwXe0SMVS))GJAG2k4#4@!w8wVIt z3w|b-bAP5Rjo>FQyMFUIb7WDh>g+w+G@fAEAa0{9F4c0Wm*X=*B zyxgomX!z2j*YKl}-;POG%E`~sZzgVDWr;$fQ-j2{!w@*}6 zTYC23Nq&h8k3zf?l#Nm_K@)s-lRCfn&UPWIJ7HPzico3-C*Azc2( z?B4c*#PSqv2r+n%S#rO5&;sifc*v#-Loq)%Q({tlkAyPj8iAlM&oo~4`_AcAT=O*`**I_e(yhOl2ny+T_XH#WO z!fo*sti6EK-Q(j7D#3Eo+-6-zE+>!+e zwELs=S0{~TRGmpbi;nQ7VH)B}*lrJ!eCpN$Yx;Cp2l>@4x5p)tBLOK=L~O66R(Gce zal{{eofpFMpjk1Y+h2TFY3>Yp5*hs!mWy#OsB@=#=eRtxDblhrBv_LEvLHFn*0H>{ zAc%z)$E&`cT>WdpG)*$&Q)4bXW@8$yYh|pB2XPB#K}4g=ED4Xsk{ZFK9(upGzOq_;vnv7{C`D+%h_(CeJ+&L}`INPMMakCn zQ@+E9!(Ofoh4(7=mMe6}i{|tP#KaIj8i>iR<1|l&JwjLr{vMn4>0zv=B`WU=O>sn* zUd1NS5zFx6AG7Q}7i>LM<3SekY0(qRXd0NA`H5^U9ap}~2Dq?-&?hwDA+h)H!iK*6 zV6JAE8&zE$K&Ny3i@QFfVn=*YSykT0e&dIFsKd>*s!}OFs)mT5ybM3?J{FlHfIj{! zNon;6@8dbO%~w~;6U&peF)^JWPZerGyoomVcvmUBrm{`;A)5?uj8m^^=^zuD|1feR zu|m7<&>o1T!4A1IjkKXB6_{}MKK3EE)&C`x<4NYNy!1PndhIw>GD6u3Rk&P$ss5}53f!=H7iTwmi;N4Cni$~U5P~NvH6?6 zN_Y@mTcRZL>JJHOsgH51hvQaeQR&IEriNv^h6<|6OrMGVp=9? z)-)y|nyY^dx%i&eoNW(R_OSD?r2@cDok#4x6=FL1wIATdOX;X9@rkA|2qPe%h=vJ= z#Wux&Xu1MJipdQOY%rGC1U;x-YA_`RS35(lpZQ*Wy<|&iyRR&`Te5SQk8)dkz8r&A z)57792{uf|P+Jq7K4REFT8;Y4=(2#37vhmNY;w1BwW+to&Mh@QZf7+V3{^q)tDqYO ztMjBcH`6CCqd0ebTL9-mrOV3JZsi3sytfN&mu7Fhh>?|c!3Ch1(f5s&RZMNqT1bzZ zs8|2M_L6_;K!bFDi(&j-NnpqL@-fB9LS>d27((5AQ->Di_`TeUtBM5Yp|7YDHdeaU z@EAzPHTQA~7@@qR4hEk>OX3#24vg5dbzz9Y&hd8h(*46Ry4-N$;8oLk3g>SE&ZY2q zc@Hxr#Jg$#TGSL<-b}7_CCyg8wEKf%pL~T2L(b22<$Nm#<*}8l{@sims6@3cm>tTR z+0Dr7kguL237oWw5QXyE3Oi`z8l~o(>&~*edkDaEIl}PaP&#3X#tS#60EY=QtL&F$I;Cq8q3=SrCZ5y@iA@c{t;AVgXI|2|6-qdOk`;Y) zIZ=o@1f&#S^M&~L8+(2?pSt^~M#b{3Q*RWWoB84%@&aOvluy%Y5XwmA{Mc>YwtDQa z)W^KUEGa***O|})1u6AA8BZz%K5&TGTOD9oRXLB|nLU^hq}1V$1P`L3YO<0p`kZ!N z&LlH>YYp2#+VrjoA!QFYKffY8^p%oySZx_#SbWT^_j4;<#_ZqXBVXE7hJ3m?WY%I` zZFP4N38|@hM6sDp)cZXY(gN3<+pMH-nePrvdDC;MAhL3T(9|Am*)#=-{MfGY88{enH2Eb>5!NMY|3M;t&$H(nwmj8j zKrfb?!^p2YM=}Bj_o(K=Ky_F2!^~mgXXTV~YXI!Tr^n1wbUBUi)PAqulO$OnPV?H7 zgUOA^h^xntn>@{Ldii){VP6rk1T1t3?+~GVOLK>@rIRK5OM7$W2;y9Lh{F9Z)H=JN z!Jmh$p9&1iy-gAL_NVy=NnxPY8iW~tW)u^W7g;Ud4wH{%Uq;^JctS9W|CQE71G6fl zcPq1Inu4JI9V;n?Evc4pmv(4gLBG551yx)(8xyp@GhS}##Es8!^{^0SGRdGTZzSUd z+%=}xR#KEMOHx!qUZ{8#1iw;ZC&7M#^RS>G<8JV6EeYZM%vbFn6xkU*C=w9d{`$`F z1m^?y6ZRJmF}^(E9&0h;Hs4}MxPpTpyt9p^%cWm&+94fPROPX^nND45m{p$}6rr-i z>3VsyQunGjDuw(J@FaQX-CuzJu|qent&XQr(tYS%Qy=QX$ZMHAmm-u;1^RQ!hogWb z-^9*AtD2mF)$Bm@oa6yfljw1o)J|deU>lB< zu2pP&5D{Y9o;|o|2;B0iYx!DzX(_-X79cci3HLj?cEQxFuBH3N&x8lWt;1EB9376d z$#7s1FD5Q1HOcwXxI-nh`|Fp#3>8f&ccxNVuWh8uWf!%78rZ_3F>$xt*!}p_$9C&I z*k(LtI+d>axDOl|)Js;C(M7; z`In&30r2vhJa({`Sm?Y&W7%qAkX@6F=%1a;{Ql~|sn({;sl7L5noRPpW}a4SkCt`2 zKido^CHToH<=ZOz$LgM|T6B7{oOnpGtQq!er4Q=asgRH$b@lDsa{S}vYW}HkkU

zH5HO?x3s4ebzsj!LS~N4N4S74hO8!$43fr8FJ4=m#$l!FOsu_>JG;>3`QSWngizKY zb5;;#(eL6@=Mi)-vR9WI*Ams3?8qg9hr?LIe$=>r#p!lwsLeGbK~M{l_QzlFQq_R_?BK}uPA`+<{neJKYXBJmTl$bJFY{@vm`G1qt*5hI@gVs z1}wlY1x$t`EfQXC`$D{GHg6FpYN@96V%YiJ_lHtkMfI3NkWLS=Ij7(x5UCClvP1r01J6QRvRV?-m&) z-=}(4zc?TLs@gxc!_sm|!}@CsJ8<)crW^|N%hh$IjSBBW;`JKA(sF+~uRCAAVkASQ zGsp1%BqME27YinP=r8GV3%adSxQPI7hlI^KuAFadQc4qUc9Y7#Wp=*rII``q*;)MwWpNzst)Hn$csO6jaux07;V{ zx!OUCeD#GRUy(dO)q&0Fwph$m2r)mt5;4{;TKAzA(j;9yz%$7P(?LKGd>L5owB)Qn zeh>k2k7O8~JD>N3%+}8vU(Xro5)lLGMu!`%=|o!ii)r<_u4{ekh$jO$_m(Vq;;t8I zE^@jSPcHT^RP^*(BJM9=jM7iLPNh9L9zyi?{QLE+H%2nv3oHf!zI$ism9QMOaR23Pzyyc{D~& zwLstK*qPUh$)>ubZa6i){53qH2f0krE8j5y3Z+~3Ju6#&vqu&jDNGVdF+2qY@?mF* z1f?U{2P5aksw`g~A1+EMyw-W)bsP9+St}eJshd8uyO(aWjO@^Dx;$J?S*3C z4Q5@iWHBPw7A_%N`3^);%iss`VALX2{^Rmt{x9xEelS}Dh!dEim9D-lWVjQ{$N4}n zFVJ&gmfO#?<#j!`W3l6ET@Rg4540kvR zHATD&f_s^m%Y&(V##Cb4zK14Yun>u=GM}Ee6&9R%8H&wZP^N3F9p^)?5tDXSm*J_{ zl$>w8)>P5q`xmWDq-=D@EVfbBbZ<8)G(s^PmHm=`!?66LMkF}YhFEdsYa_rZ8FG+l z_+iTlB zvhT%A25arONm}~`BfM{lJ77H2qLrj;gPS7pNMW@JS`T`>`BtunHHa`iJOsiOFEMC>H=Topm2Iz7sL#d#*~XW~ABqB`;_+_g zc{PVVkM0??Z{x;)=#)xz$f_%t8K-A`+Yc6Ns*EhHRaac9?GUN5rw0ACDJ9$W8@8It z@;b_ZUbyY=EW1v^tw$Ihw5jB*Wjg^%)@TqvdM^JY4T|vL4!;zg>&Z=ii_AAQ_M6~FP-=wu>bA9op0$Z`XYf2NDR=?k43yF+F)?XZggc*nox({M0Hi&bFiOmg z+g$=}AEVWs!!jY^l%uvu9Zv73Sh?NuYj!BiE~~69$QM8L2hh>Gzx^gjM=zWz>9N!5 zQ3e?QK(!`8Q2Ij5p4;j8l8<4!DfsVnz6zeS%~}%6jn+M<2o<4Xg{U#lo{9+9zHFlM z^og$pE-U-qr`MouG~epr8ekY1PEb23^=0_DW_Zs>8z6g&fXc^*uSlx`{pk@uGa0^F zABMbZt^1`n;~7%#N4h89pQ1gDsEWNl(dBOVk~soq@j*Su!S4R_OB801`smXOx|43> z-&zBb)pOAG2b)&%ePI5HrZj=LvOQ2cR{#vK4l39jlk=% zrTsG%fQg*=EWk<2>Pnv0pOe%2><9QG%7$)qiDf&_e5D9^ZST>9J+SNT!bL{W(d`Ku z^D2ZWv;5oOy%u1hjC7jxEI9kG(>Pvk7-ht1{9HbE*ldlf!E*-oO^$v6&X){DC9MuV zT2Y{;vqv^^GTNb_Au**h+SVs3qw!8sZMWF;wXafIcJ~hOh&ue2Jb-6p?&zLp^<1yw zxsI?6S}*Rv%Jzc*`N6fre6PyNU|?>STiV$KoJOX7c*Zo+-(i6cdfKp0Nv5D7pPg0W z2P%3nZHMeQz3h8i@qT3CJ9HHXTd%r%+aU1@2)vXTf2_+~GTHjY*lG$}BmN`^#WsXw zJe_MrAB!GLfRTclFyGcuNej_29pO)>MLNbOkX7{FEJ2t(cCti>mHp#)cLQ^1$^{KP zuSy6`a0N`oOc2-D!v1%Lg_FSLt&&xQ0`fppg$p;@|wKLix&-{d*9^xd^I9fM!uVmeV3a5)}s99x*w)w`}gI= z4C01tio%nL{bewOkYmTGpeI@_jw~%G7+pDdZ{(%~-+uVVut(~jIAOTQe>|Jn&d5(4 zaryIko=p(!7o>HS%ga5*k0v>Pj9NiewLf`aTCFl{hX+2bSsU$*b2){mOQ&-yb23uI zHtsPQrEkF%cpz{j^IKfr>k)WoJjE$pnG)!w%=vt0ES(xH&vE=x(+6 zk!7>imPtC~ZhPt}eDz|dX?(0pf>O*+Qe5-c{I`_?T5*ED&VxZ1sc=(W{i^JgcFhOd zrM9M^R~luV!@9vf&RY-q`aG>?>3_bT9HbmPb_&4QEuV4!jl57?{1!(T01ufq|6cS8 za_9eH>MEn6?82?2bbo?$cXtU2(p}O+N)6rJodPl-A>A=_4k9HYA~_7*A>Cc~^{#c- zxdR^}+>w0+7~^caemk&#T}k=JQoe#XCnf1VM$vDRTLzGrN5cfkdQL(2Z) zQ4>MwU-(%MKMj4*)4M_lZk$#E6obg#FPMQkx>4`Kno+S=j%&6LFdu;$(tx)WA87QA zGrmj$X&)FyWCLI5Uq5j3R0(T$ysjpn{ zE)@FqQOj8j+V2+|a;55A1~&NjzYSifC0Y5Dc8?CI13)x@5~-)8{C>}2Q!E4Uq8wmf zn9F12V`2aXifP7G?AO;i9*Mb9PK^3d89isWx~-Wajn)BZ&o?z*yA>yzSZ~~H7(n^T zFt{S{;ntoYfY+Kc7rIbwDMZ2hngocNA;#UTZ*vEKCZEZtIoV{JF2{yTz)19zOtGay zK62R6sJibo>KxSoH;JC3cL?Q~-OR;P9M;Oy?uGN?XrA1^RQAx&G+cQ@&TN7#?N5Kxd*2i4MALtK z?QLxQ%86~KOh4qio#wy&+jv=$W-YXK;R{exv}eX;47(%F& z%_L~$sW{*4Oei+HmsC_Kw-jgpyD*6Q6rupkk7^%33uS68>#F;Ch;eC zHTES7lS)mcsn$yL6S;~-Oj@d=af}8;iu^38=IXS=^ktaar~tnU>2&|R64vP;?Gw}< zwJ9nv_T)*vapzMvJzy0jaXVzYaQgreOFRI$3myaEYZJSgEv5sGDvS!DK>9n{jJRZC zG)Sy<(EM@W=j+N?@D= zmh~L_*fkZ=f4CLGan)4VUZ>Z3Oj?)y2MF<@e>2~7c#25;qHyzv0klUeGcN%T1#19J zqi2|i@880;F3_mYQmiNEqrj!Z#JZHxC7x%FKq}^A?QHQ12nQxmhksfB1^ACC`6~HmOuVQ3qSw;B_}}~pzTIIztkD{DwI*kMUCQwO2f3LYS2%7( z10@iqb;j=#TTM8~{uDw`m`!P$Y=0eYS5U={TZjHD`&Wh6jP_1N@eeK8+9rrm%=1>h zi>J`!rgPtsl;@Sqi>6-HTsH0#ZC#H0YDr%ha~aN0IuRzOn+`EFLE$3>ZZaL;~NW~>1^<7D%<$F4^Kxiw{XIkl0PmV2RY*q37;Ref3B;K@I^j4 zf)k7T+RtJ?hIc!+`2J}@6AS;YJ0Q7>5PdXUtHB9ZT-)+Y@&M0h&wN*UtwcJkBS7HZ zKZrdeNqrHtCY+aHmo)q?|LFVS*8K0;E|<+^Px^@kO63)#wK2-BcGM0GOXb1s=%Qf(^#@=61n>*y8VWlvh|s3TjorP{Ff)!cu9qV}iFt0&a-XhFh` zFKv35m$Pwg0Ox>#oCh8cN%gMuHqss{UmAY+=+Ku9$#I?f~&R;H{ zjM^_#RfwpBME8t%7M?I`{N-WRv%e-}N2&R6k13@24RI`gJ{wJ90!m5#s`cY$4vW0& zP~SJdXynt>|H+vKtIIr|HdZ|TX^^f-htl(`i6L4Zc9ZePK6(uvE<)E2cATWil+#Dv z3?0n7a&GN^o!mt%eC8UCpOd52Tr7?yAU}RN3I5nIzZPe6Vjl$AmiNNnrgvfH&#On< zk)&}dl^E$LwUowJ3T2RhvFtyjzTkjolPgANIH)m=W=9(u`7#j=H$*anxGW0a^ z8_aYc?mANvqK+hwg`dN_Xc;;$^O)X5E}0$AYVjy5FkeP(1QXs;ep18>`$x9;D@@4@ zO1}%Y485C?%V!!A1}cMp<4m`S^pWVAZdct%u*`P;tn`Xjza>1DZBQ{32* zRy0q)m+N(C6rxkZ1{7yM6Gs>sxEZXa1h@rGq(&h#TTICSt-fTWa+bMl6t3BbH`Bu` zevy>z%XQdLCP!7??e#51u}`jP9O?4|?cn}IxG=$#3CfBz{Wgm!^~2&mgid+sosL)A z5Ty@V<4dxS$m>FjXAXjxNE}?yG>pXk{JwvHb!X-W4}iSj3&6Z|uXjHj*RJIhu?LHU zSRvR}@R5@3c&1L8SDN{1a#; zkuVI2gPPQESx6A9=VCi@fAT|PHTsy2g=Pl!LRN!FDey(j@anWf>t0%{yzi5uKV34q z-I?vZQymuf^OaezpRH9nzq1NndI(-vt{d;&(O2hTLO{?rZO>pq{C1DFVh-LtntDO5 z{yM!s{|{Nene=?$zd<{VIt^~<)W+7>u}c|HadIS&?a#|MPlqvKa$>FreU`xgP^^dX zCo)$SiUVA`N^f0kiv{|~T4q;{91b=xx0ThFJixR7kCqzfM1D#dD|C@Db5D2Q&7YO# zJyf;i{wGCqd}<@8^8VhAP3QI2wPT2_OscK^8}clNT#=-x|6;UHAYB;{Y;JIFPHaw} z+9?JF`HWdWUW%vwo&|07BKi>%^iK=5G^m*p6eYfg4uMau(6c1oPTL&!l7F)kT_;^& zKe5JrkZXdFVAQD%@O*$#6=YD<^KzAQwF`m<&|E`m%LAN|P znCYm(HBgGSPxMd$ zJGVDR1J%qjD#4*^<>;BmX6W0ItLFCA$Cn4^3hrc%_wQq;)>snUHKbuU<&Ru9ejY8X zXlQ*=2K|H;XpXi77S462Dtu~P88w|yH2~{a?Op`;*ACT`${2>Q~ z1O5Gg#O*|1?gc=(O9fQyxI4=K78(9QqBS!ya6wfV(8XArpM4ibG;|#Ren}BkoK(}$+s-vyiR08k?}Gi_+~b8pzKwaR_e5fCOBQQ<3w&}Amnx#ThP z1GK)g>_r;#_y{_=WdBob9EB9$+E-(IS3xum7EV>D##mYNtX7jMU!{qtpr-U?J~RFM znQ^zo!Nd=Xpw}?!#m;(KTdV8lV*`28Xmjt&qh4e{ji*k*2YvC#9KYL|5|yK=Qwr3E zAF>kBsoU+4vCDDIW!>KBoJ|5vd~JX?bv?{z;J&!x{F9xMwe_8%d|4Z}-j+^~uCTr~ z(6WT|2VYGeTWIuCd(Rw}oV=x@h7%izEJ6MNOTtm1`T=m95)~!&Rkqit~j`g5AR z>7v8vQGvdS4w^6JCoy_m*!*Kd*zlv=Fr|;mv3h+`mF5;H^s3PugciDOqr{cd3g#Q=Hb>q3XlnFFgx$DHwR!7ASS!ghm`;AVhhX$ zhxk=(W72x}!h}Cn9I8cF9v@@GYgztIpCPW6PjAGho!U2F{-mDre!0Q=y?_k4p&c+? zi45Gn>R@x`v;n-Gu7nT%>uU|hr#XJgLM%aF&Wx!2{^+~s8eNWyA3Gm5jPlXOI&RZI zK0mb5rp=WC-2&}YGy-5xXD8H{y_nT5pr%{(Z}M%)Oc>B*LwTPU5JbeT&p>wmeHP-I z;oRRHU-oM?a7%dYO~GBb^Z9Vl;F;pV4bF@tep4`J`67Hv?aiJ&Dm!Ik{UZ;zY+To>bstw!*pna=U4}DIof>o}?K_XyMypt4G@fTSAo@3+sC4k`=S_ElvkmCTb_+qBj#d^fPVcl}p&qUun0G zr$?9{`$?@kZO^j68=KP%DSj8Puf)05oFI4=C-&~N>Lcdjwdq(32jDIm z6&&~YH*+?n17#Z>(gox8MjV$_w8lCKEzD|nNBy%(0WX-L(EcGA0$e%%Ee%+tmB3J1 zW^POoPa$9wlZ;;?yaZ-HSfO)~XB)4OLo2pdCq(=g1q z-i;uky$>*;gia78`Uz!)e}TN~#Jv{Y^IUJK!Z?wh5*z^sN_@4hW9Bxq*Hr3{ol`AxK9k($>O1JB)=cxG5%N+fU;~`TI;P%RNcOT$?c3^) z6vr+uzC`TZzDX+hyXGn*V4h-cXcoCDeN(OX5#r$0l;S!(4fQKz)oabI6~r=gdKYD0 zGqAUpUX*7Ujr02QV0?;d;WODm{F-WmA;h2=iaCE4S-Mm-<{WX> z=QnXmbLl@5_nGqafV*YAuTX!Wm38Yu=HczyVdK|QilI{UfvEf_G|MP$z`P9-rYD<_ z1Rpo1JKXA4gx%%SVH#SJbA!}Atcl|k{V8V#;WFF%9Xbhqj_oBIWL@VH66E_&2}Z7F zu8IdDrG80iz@#j{HF|U>tbj6VO#7iP?BZk01>bh*ew3}LPE<2YSw^g6OOIxO?%(QI zK}-&W#zf)H{m#!~>@SS~d9S&pZ?@uz=km$_6fo~<(t8N%RK5$Z! zVxviBJ6YJ>^Yg2aQT-I+r+uI9$DXR$2AkFxh$ENHKsEQDmIgsjDJ#)}f=GPGCBOfL zB1gRTi--SaabRUt4i*}%EaEpo4-%Gshe=0-!1;uTD^k&Jx4ex05Tl0I?1^pPDu{(n zqRCtE;zb)`6q3zV!)Dh1t1$!Cv;X+^;NWL-s_L;s-fmEt0Fy12lE!Z$iU}4wz(8y% z0y3ox1o#mkg_wsUMa!{8qTnxB)L;OHlZDseDKSlN-ze>c;PmPMqlOAVTbHGWJ2C{oK7sB0GLVV&6n&sKuh{-^%4gwKFdx|&rvs)#kG z4>G1t^0BLkRRS=$JS51`LXt2?iN|knhQ5V!)+rlf=3F@UYZEA1VrZzGJm46B0(|5< zmy_r0Y-DCo>&OHC)5v{5T`@hQ;^Fd*%VA!6UnP_w(%RFjmf&J}1#Y@^TcM;@QL_lz z@`rs}el$;0^#8Al+|vi1iH$U2A;=PG^huEJWpLXZMyYGxzP$cWyKj&UHOx=WE=a?U z>U__m?dj2|l5+ISA(`~3Wb%wWr^XM7`U}oIB#Qf5RF0<44)+6G@i%5LbvZE<{rS>d zFsk#rh@Na&&#Nw}Q%%m|H!l6P177zQr%Q#GF2%!TZBZj<**mhC`%BT65Phgh^Mv`2 z@sWEB1%A~N$rIL-qSm*7FY5`-DoG@nX({Wkm!X91A_w>SNGlapcP&M%V&5aamnw{Z z&7vhcpZ`&q0nt~gS$8JPL&u2M&m@61L;?xOvQ_cG6X40a`sX=TEPjul{EyT4mRF;M z`TT|@Gu1(PwH?Vrl{!8tR=I~P?oijOf!q2VyY-fJN8WyO^?YB^I5?%%9!KM4RpxnCyuGXRl_dsjL}W za*=N#5?<&iD?@WP+ycoiD*7k8Up0`(()pqRzqKz@A$S}7Ll$-;0)UjhISGLa6t3yq z*e#8AGc)bY1q-fQcy7<0Ligtwe`iwgNuf{obwX^cpnfZm5Rr%F*qKqs8_}LFUR{{@ zq0DD6N--^J(gc0l8Ch-byPzgDN)F(MXIGdqpq)yy!SFYDXKnlX{mR=W*xtkt-~M2= zkdg@px(6Ufx4W>VKH^%AoBy7{r>bp#G-)b?QOq>sc!i(km;0nThWjaPA=+0cVuF!a zI4br3yX5X5l_OPRa5$Ize?_*k+95f=$vWe5Yjklsfyj9z~+{wk%zi57&zR zEZ$w+Q;1)f>Jl$Us%A|MVteL+6ZELp2tk2y z>F53*wK(?fsmOwUNsKp{E{hGBZiMsWipWQ4OOCOH;3|#X%tYkC__*xRC`W$O!Tp~> zawXNwAD|CNPPp;1mrW|2)G4kk)5$q#VK#sKKm5+2OojqBVDYoPR@_^wrijKy`Dle%eLX|I9RJ?ue4W;>6L018aE%`h^#ZAz_l`L-gH$~F zp8A)A<>6TTRfu}4%`sU>{%@&3CUMkuR9W=Y<4?Ua`{)QRbrt}oD~&y z41*i}8}3(oJMPVc)kGGCIe(U`s=lGXrk2t5^n$Q_vHm&RI=p+=o7xN=nFF1@eo_2m zQ@}yy-Tr@j%cvoCzeAsl-;-wYou$o zM>QKpT}?`s5q+zU;S>EzEMG~^+`5~-y5I+otUo5)UahtT+CC@y>PR+u*m_KUPZtF& zSOIT{IN>}gQl>O+TK1i_NxgcMXl6kH-5x;vT92o#@H!_y<^j@D&0I~b1dN?R*A1b}s@?0M%dPDfaLtPT> z8{r7Cz@5w#b(;2+Qnn}ZL0}oYj$en!f9Sc#hQ=}CK&rzUe8^==)BaL5Ul8w34Xdu_ z&hTwmrM|c0z0X&aw>{Nnc#w=Uze3GO>M|o3N#d_inV%JgC^ICEvOi?u?wm*CsL69d z_YodEuhJ(alAS03W9U~X{yY0mZBpRR05 z0nt5UF6D+Y*B_q*M6G_l25gHye6BMe4rAh+>xtyK3JO!=;{$YZ+qk(y!x8Ebx5hLp z6g@Pi$@T!$DxWxe!>p?5#po7(y?`F<;BDtu&W(4HWOUB`t*cL$EvEg%!eOorg4tHb zQj6Lg>v|iL;Y`|sCc$kMLE2R}iRNaCKooDpytdTIm9|Ltq&O1H#@@esemBEP=4RyC z24zCg#wn_+{s5h|KJUUcmL1awVz!9jHj$G+;MyqeQTUm47pB0jC1#)EvJf%oe@%BU zOVLM!dllN^{knZGMc0lTMK_SLywzMg#z=G9GUE(*o%r&lNF2Nq_9wDQ zvi%Ie#SPa(FnNg+`~P@Nv_AL77a4>mgy9##QnHw{>MK#^q67M)*u;d#EmZ(AkQ^bO z(i$eQzh87`G34ZVaB14PkqgKOxlbPL8|@MXffJS>qZ6Xc9W!+$9ZVl+drtbYWE{As z9n$6lQ|oSOA%J)yrwAAb%S@h&?iB`N!vdvX*B-u}4)wp2qNk`;$&1U~b3!_WE<6Iz z3Q(I$UIkG<{DyN93GbSUUN(d<8`q16jjl}S;}r50kw5X1)((J&J7;w{-g zl88v<|84Hdj`W3J$E^#5Qw60n`8uk8u;@_P+enGan2VN3LWDR6-rC-*$W5$#6Xwkp zGK$r&eX5@zQk^Y%%$GOiZ**;bUa<==$^E&15uJtD(TJhy+u&zJsKJw0Vc(!V?>={e zo089mdhkp^-2$R31tXL-Jn!Hp3~9Du&&vhz0dYd%EO4!~`dvlkEf^LjiadL~b`9$< zcvY2uC`H&6VEqDzv)H$Yo0v2Lrhbt0S(uEnTzjXUr3-)6+ zw&y*;E*%t}Dv63d_#H4UesK5&y*XLL_uH>&Yxh5Z1NhA5pN~G;C;mtxoSk8S_Cv$U zmrHrL(C?o729Y&R=&5vFRKJcj{p0`hSpw*)1t*m8rZtfzq+EhlCOQ4) zildk`Rg@#in_=0W5ri=$&{v8F#D00pHmegmD42xM&R_J&yebv)?L*=6bJ0KdMIRxE zW=So5eG1rQnw?>KM1+Mu4_@)08GE_U^;R9YKZx<4ERajc_$F{{C-B>~ z$J519J}-}efP{~5Ilfe0I1<`ypMZ+8Q4{<)aMKL~JGUgjb-KTfss3Dr)o8#v;LG2E zk4fQfq;Iz|_`Z9%;?@M?Z7;t{+>vfCySy@Th*FS!-qnQh&-$U#HLA82u;MoSg0!^4 z_I7~MbyT~k4YV6)?FWDF=^Hdxw;Dp)UomBIrXiCFUWY?C2S&e^u9Jn`9ImYkNii5K z!0j+Q336(B)5PUH#^YIcMJL=_xMBD+-(E~XW2T-7P3rPoDpB5EzROs7(^@%icJ=dB zAoZ7;=3i1Zg?TIJP3_L=cf^~C5&ER)h+SNW{+qj#h^o9#;uw2ZQSq*$O9(jY6NlOW zA_i0E5L80LIE8S8qo+-sMJA6+OC? zTkl5}&B=5-nIRGzKd)#w=jU~yD}!fpSU}MJmNX2RN&5SAH6FMLm|NwiY6QzmwW)Vx z;ObG_IF8u{He6!^e!Vh9VyRPS>Kg!uosTUbjk9O!RlHVWVgRLPr+O?)(5Q-%r=}k3 z3aXqLR`uQ!;7)0*WBxbJ@f^>5+OMreU9>F(O)`MpF<2qC5z<+3**8bl9PRL`d^6ax zDn;zPGm31AlV>f@*(1>IH#pX}#ajkuH0XVSEaxGD(_Ea;7=xgRqyo%BN=9TQ_PAQ; zUyWsRekEku56>5)Fs3X)2?A~TPEU;e zmeHcxYT1T!KYHE*@Aur5XuP|ub^rV=_)b*NNMuyAKMRgDQ@F1a)}OX%v~-7E=*HP7 z@3>iooHWK#feKv-?$=Vhvyd|4R@%D3&n8;WgAnqI0e++RzpJ}|!~Soa)SHFCGXSX| z`i-BGOMkDj?>#2)|rIdg?JIRVI5@&Y~Ozh7+xitT24sAF6N=RFGyXpVxe z(+QnL+2-&Xe83LB#;or|r|?;jH=C7%(^|J==OA?VlQ3Cp2>U>_RAjjg{sk4!c1v;# zGw71a2|AUJF}Om94_$Ls!T<_$)Usju0?i2K&uTN84HO3Y25K@UviqKENP2Rg1j;V2 zi^4zy2WIFIp3cAgM>ry93Z3el^8(qqg>+Xp)uY3u`&Nm=_sO{UEvDASAqyt~BC+-g zKx`UzslzlqsvvztRr}l;8RXm;^@BHt!bZLOWtA5q>#1}6TKZz9Z#jG~YG?c9itSB; z)$U;RvQ=@ZFe`|{a~-Zlnu|d1n>>qTtz!?z4`D<9^n$4AaewzcUu>k>uIvD;rDdVM z=;|np4uGCj%Q>O`^dDb+R_w%f^5kLM)?4X4ldiDtE1NB@O+Do9v*YD2KE|=R$m<1M zS9Yo&%}&?q@crB$(0Ck0NTefE|{-vNhKqE@Q4JJ16Whd`;8xh{^=&(|P5&!&g$ zrYqb^)-FZk%IEoBCOn0&#MD`R=7Z+-?GyG@R_=}O@6BDb#tu^lJJ@M+9ZEY^;+n2# z@kFND6r732q`6(?p(SpV zylGeHZT9#6jY`D1|H$W(AQQFqS^IE3Vz8Li+D(q<44lC=Gf4&eN3Na|zBhf#q$mMN zb+#|uI7*T`WM)x#-dqKf7~1*HQ4TX65z0}^b@2pN0)T|kGox0*#&g+0u!q-Bh=(oP z05qslk}|>U2c}p~w@JJZ`{lNh5KYcUEw{qGyI` zs;8&7BfdhgmkgZmK1GU(Q_)C0URsb-=kpAaIBgvZukS=OPMikmPRH0nD~nYP;n!Y$ zfbd@zouLu8KLBUkTbnro9Nci3`m~KZxSE@jyW}oLRA2Fh+N|uaWSX(IF@cT=AQXo38NL>URET<<@D(wWT7TTi@%Uz|E)F>y?1~^XUAcIoUBO z@4cbuA@JcN`kh*IT8lP}I)2Yors7o)Qb5mt&K=vRWd235Nfg1#^;TrK7m(sA`k$2C z;_0bGC3YW{P9oKUePFRATT#KUxZPXAsMH7|u`LeC0b7!!(vtzlEZ@q%i)A62dp&CR&67?sz0uKEb^T;yfLmp|w|Tkw#&Dk;TrIG1p=A!vbr)~=|f z7A!9SWTME0>JKk3FYYbwTAZF|zA`Qfa1Do~O#WIDgv8y;Z=cMp!{Mw0He0RZwlQ5w zi}!-yTF8=NSF*UJpVxHUb++#tEak2Lom8qddjnA=1;J&h-)y8tq~ufB#vRG>8^ery z5PVSB2FU^XO2RI3Iosl#aTfo(%W1Ro6I=YIx%MwF5t2Xq!8F?gVJz-XC+A=0e3*YM z^A`n+zW?=N$u{?IpdiF6z{8SU;myGu~VHbxGnH?;$yv8#|6<-C^$v!ytrR zJgtg-vHL#pKc`9Kw|!Qi%a6s)k!t?E_G(DA^6q!$_4@;16UYdj|Bl)Uh@s*m)kUZh zHQ6@;hO!d(`yj%(l=OSdch#h9FC@MZ3|&ljN!WB(E#Tv8kes(U6JnYPW>?E8h|%dV z=1h+#=z}8x^u0BtH>lIf94{}rxb3IYv#xb4q&aC};>z}}7u~k|21=_7+uPu5>5ZwG z2tG9;CV?jVyHWo&-6U=dKW7HpG4Hl=Lc=1}2#M0))hBUxt#C{n%RCLcSQ@~hFH?y4 z2ac!j43a*sUzgmS%lsXzMo?XtoQRsk1=hcn7y=0UspJR{O$3p-d&}ohp+0*4D@oP`l5Ah4re+7KYl4w# z9Sp(l)kF>Kc*N#YA(dV++MPN9Pv}MnTjchqj^44BN+}!Nd=lki?-bVi;*M8f-T!)@ zxk=8a>M)s8km$7Yl0K!=bk?GDmZ<72M6APih>@A4WMKeKY;oCS?H@b#?FbMbeFLkahhObIEthRw z5=4;B3$MUr7%{qR+%_*e6M{xoH_ZBfqVXO-(?f}!M-x>@gUSg`=Qn9y=)6ZRbD;_U zB7)&ohx_D9xqh3vsIf@Qb-M1m{|x=1?Pj{0fBhk(lHJ(d_3Z&dV&Fc8CGI--7#Dbb zE^_>nB;^k?PI+gB!aTd7C06mzDo2FJZ@5o+-R1%^Q+i6S(qI=<&O|E^(UqTe9rA!Dworr_$enhcSB-cPiu5=`ZDe!&3Zo(%N>@cP8jUmznYSHiCW7_TNCT_kpi8J7x!t*dKbG=$P(wLkSEH0 z`kEmBb>~+I;jA_GLBy_l{dSLAT`D9c+b-k4 z9ZTT3BbY5KF={l)5zFat=>=jaB)tK$a_PMt+3X(Ht4FjCl7zPc-7R>1{EM#=R2MD> z3&${>z6%7oo=A)etv_wM#fQZcoK{h2?pAEI6a$GXSmAd2=szfzSN(;b z*#!!U+wOW`5(&GV5(&zSY>Ja@pD16Ug#kA=;n;f>0H+Ry+!QFpP=hW1u4k135*mo(X}(*}N?+`#!UE=oQyDjtvsGgRrM4l0WI#7OrPlMIMvvIgL&W)Ezh zUxt~*iSCk%8H72ZsbsnQSqo(=KStA?w~Lo(PUo)>?Hl(JzJP{3SK`3rRk8`$y_Z#< z_gY`eMSlI-s;3}{5R`Q|kpoh)2EIR8GuY2b z7WP-J^WVoba2PSq4kMgGApEo!L9xDXXo()g4hz@e8_yaoo7SUx^lq;(_&zpAM*rB2 za#Z|X-E!#IN99F<*R00^>gsv|-`co+#g{OgPWKjm|0lFoy48rjRMGi#hVl7vP+GJM z-Yt|hcov~dyXW0A`jVlgL@3( zkvA0_*@s-OjXXzqJfWm>?{~B+C*#gnm6qc+lc|cI&Ud-^D*SgRo=$F5j-Y(0-s77@ z*tT{RD>CFU@iU>_bs(yy)?fs@0NMyKejZ9N23Z4d$~;*A*2r46^&jgZksyB`mo|A> zXoKMJ?QS{4Ni_`U5kVA(YV zOkGKQz$O6}l5Ao+S!n`MzqXbCnJGbCLh``h+M`qL89D-gZ*h{rUZ?~(XHI-yqPKiv zZ%ep$+wx{zVT`Pjx1`Y$xBja{f2!tQN6<1t0}kk#DKS@AUYe8`sP5J_&=V^3cU9vR zsASTbev&*QE!{9KK&_`il`o;ZiX2V%Z^2r#cNJr)pDuFxTjBx z9uJ#$REKT}(cMU;mHsj(+5bD}t&>4OGyEvC6y2iwM^-&j%>|9?7pN_ESY?EGn)WU$F!u6q;wZ*yu^-CrJC9U6hSo*etT7YG0*+sX|<6dChK72Y?<-@4n%kn6A z*8Q0`*(z7iR@kv1M2XWWp1t1Jh#S*^yDxC$a7kQvc$e`5FCNkB;kkn8LE&5tsj(!X zT6Aq&i{xAr_BZ!)?O^VVA&LFtxfD!CkOPkFa?$a$s3!UcX@mM0agrN~!N_mujZ+Vj&)>?kM$31&ubiZ%6F7#}2bCOwztdd~X zQX0v;b|(5FWZSX$wTZ=bl`H-WuI+iP;}j1#lOyuY<<-p2TVv;bL=e}}(As+4S^+Dc zPFv4DC-h$bdsBIQN%h^L(EKe8H>kgRMz@E_`)MWOOMlDCM2LeXa8wssVcCwoCuj{? zZjKC>-OWUD^Fk#{L-apj028I=oIMU*Ud7HGZM3$$5LN0n&zGz@V@Z`>j0m#Kvo4mn zJ#*?qxD;LLn}qo_hlkUA&F;ByIeP+oF?yljq4}(MO?rLNVyCgj^EHpNU#bG)&95nn z{OyB6TaUS{5wf&Nb)}4LayO0Ixxmlye1#5_?og!KE4KgR#SNk_?% z1e{|zLAArZ>IqV>HGMXk6YwktKlB(Zv4V_pt1Ln!`)yH%RZEqe& zs`x_AxX0PE+h&ojC#jJL z8NX+|;erBR?&5VL;6wfN(deLt`cM)}I$y_qP{k~SI+D+J+;I&VDm@kis#qY+Ycz_w z{zuW2%@jd|GO=YbveSYdhrFMH>Mt2mdnw+Fk}xCDLq=aH2o zvAh|1z-IErLsCbNL-{dGv!Ti-1XasJAc!|nTnA(7cdCqQ8D9L?|FkFw@rSZWNa+1D zr|bGAR@<0eh-F&byRr~nrC*5O+qYqo-bd~E{v==Wj!P&elp~xeFZ)#x^^=ljTev2{ z&uI*|wU&rBrcqE{rpXm;U3Nh+l$dS1rIP$k6@%G*l8966!Hc%VVDpDI9~`~Iakw{2 zK@BGE#XU9u)RG*)*k(bnlOjf~NzcMOBJs|1n}JFtGc5V6Pm75L84Y)4(5Ld-8=Njr!l>Pz}5 zuN%K_yHsmF)4TFw9timVFQAf`hmz_`i-E~DSVj#uSS0A&MY&B!bHdWQ7E!z^e(}8MAvd{NdWZ2TY|OBO1EW zjo(w~r;|BBrD@SG_V9RXo?iIO9PX6)OSq8b_>Fd@RkP3VF0XCw-N|Edej%HTiBFcf z`?Sj8q-pI_YiA|c8%fiD_Z-FD#=Of3)dJj}g)rTW8sso^)hhPD4CJ-+Yd^n#`E;p6 zr`aSQw?UuJ)~7wI`&u=*WDFgv&rAFMm>v>5A%5TK*zZ5z__H-;f{1))9#}H%LcM9M z?nxJ}Ef%;qOsh9B!?^(l4jk9#bw5zjh6E z?78de@79p6VJwEnIIgCl*enkWHF96Uj|a}!`T{i}dY>KG?qoOxh7yn(JA)2GNFRm= zJipYp*tTEMzSwd^*6d9jsn3Yh(}nZhK2ie>y40gL*GkXXDmGsr{l0yUN#s@|Bu)F%$#Qp9IGr7)P!oJIe;gi?A8wI-Ck{$VXBAUA#A!O%%agjr$ zDI@4hi)#Xa*E>P0oqBXpSjdocyiDuNDvzD`26{iwEapE^o|7_7H|bml@&WpmqfoMs zPSsNRn?FzQuru`?3At4QAXq-dW${1vjfo?Q2MCx!T^%)V72Mh|NPhr z_J-g#+XzEXRPC3a_%5uS6{&t^3hq z#aQjf^nTp-&D*-6nI)sghH?+K=&i_X7msdg?$xwfM(Z^YtTN%zW#`u&Ye#p~h^9e^k~* z=i{8hRQR=V&&d7Nq|h67P`CJ)t0+;r0AVAnbL&mVrG_+5l?f z##`tlg`)UM%PH5NFIhd3sp0E+Y}Y%p2S0NS`|- zLoSiTYCb{krTyrD`~I6K*E;Sv&@leV-0@)GX_Yw}2iGgfX9XG92Pa@Wz&^3lz!(o^ zmfRLvB&wC(Q4@CK+~_y)W55ik)y2cmpdH1Yq9nZ)MO%!Pu-u)&l_wh|)75}dKLAFB zuVOvJ%JFdG5p!*QZO=sKQGidR2pc7%LOh7%edn${l@OG}cf(WgyR4PPn`S6bb^qW z_$gN(5W$XxHcjfV2>A2Q*z9Qq#ylk|R!cnM`{qWHd4Rlt9oTkyyF7M#T=wjK-_~{x zU^=dHPyapG&8EcSkAdc>B7HPTN`prB5zi!fWg9N9sIHEw!y~|hA+y>nL~Ll1?j&nh zxdI;;$%cnx4kolqsJXNC;ZdX0Y7{a9_hA|hzXa3Xu48dC4X1@jyR4c2JoxFsw_*NZBsNCcTse%s02wW-DF_!~mIH5*|hNDgf34WK-G|k{i@@-+tq;JaV zQUx-Dt>ZVt(P_mBFkwi4vW6UN>qy4UWJADwUZ~GV9UCj(iR!fABVi*>#HpVbYLtRRtY zhTySIeVIY<+>h0VULk;#&ZM*_Qt3sVy-jYRB~1370(l)C0(;o94J}A${SiAAIVif= z#ZcncUUGseZJ2BMqXR>o?O zd(@o_()dyax=AdGyif-c_v1a&5O>ZBZc$>@SeEIvAEV(Do zZv$R1TVw4HWRt$1t7RY*0=21sjy6e{t1xxM?l^Aq2NUAY%7z5nd zDxco8uEB@ov8bqz2us5B>I`SmHIX9X96r_dL@E`xN>jDBp0{%5CCNVD&&Ye7M91e` z`p>WmxxZ7<(Sp3F97N*b`WK^7Ao}`t zuu#^{;+5zl#Fb8d;ol>X~6`S9%^pXnRfwy^n-Wc#?V0d zc4GAddQ|%DFhRDMhOWy~Cx2S#n`O;{tbb+HUqzYY92Gh+gPo>lCZ2eL6b*QQr*IA4 zhIr6;w34v_<7<|WpH>jh>-q!DrRd-MUPwJNBxcdz%t92!`*ZXozqyP#&F)OZ=`Yz? zPms!dV!GZ>WA^3%h&&Zydy!EiTF3d&%Y=!&0y21yPaB~|6&WqJY3$GqPAV!3odl~U z@gp?y;7{DALKaM(L^+>mZv5jHe`!Kr>i5Tp+?y(;fbXvtM&1wAZ@%Q4H0c&FSZHqe z{k#(M@ttnsx)0+eVO~U-fDD?wCEkkD;%H6!*wIY8vYb{HKwt$P@?49Fr}6dPXp(F_ z;`_RCAxWCjnU%l&{Mpl3#K2LNP#yu)!WIz3=yB{W+^p}uhoJAWxhIaiDy^2N&f#|UROeMJUbH4nWOr(gU8eIP!yuzevY4QDc2O{^Seq za0l&(dZ_$c zn)I2gEBfPdk@g-=q95?-)vr&Z@ukAKaJdLYI}5oi-)~L(Q3j}K{rEjq#yOGZG{N%j z2yi2>uiRJ)-2DHjl3Mwfg8*t1QVH3fT# zVY*51i$1V=e_Cd5SZWi{RjZas{8!&vGahEKT0-9#v-1p7i5A`8<3 zL6GwNrJ{_bIJjJPM;BPneW)Ktv6>v`ygl27@5;Vqg)AiWLww|S9C_Duf*3Ry#M}t;}V>v;6$me%$u1*7gz{?;9`?`LFK?NnE`kU| zv`p6zTU>)`X_naQX+_N?KS!ryL`g8ze7*Jl%mM)8n_jcY0&%JAmICZs?iREyz8c}Pt?5oXrQc!|ZK6(3#vzNR^a?3}a z(?v|q^4u`q8KQ0|8_@=77~u=lM0=kJ)5a^k+4@+SU7sY1m-&GosG_hU7P_HfojH%$ zy)^HHZZck6;F38XY+9p_WCkjOm4<_IVunYWjKZ+79DPwkZE~*p^3)=$(Xo3l^Ed)J zID8q;5JcFJTj8-M_uLoxO&KndBditk=1dp5~$JQ489TR zy@xYbe2qqy_vc+QYyTePchINbK)sY6$OT06{mGL2!`&mg)_fX2QJEFn_kL=k4ROW^ zsgS)*rc&ogn=uO(_9_Xnny0b|LGRAsQnjzlF&nhDm zc7L}(cEBbsKI=-00-s!&+}J(u0o8@rYyxbi?Ma51hs8kIKL>-3Xug$^;0{?iQz>z^ z$AhfF2VWM#RO=N&jLEc__~b$jGTrWrY~ugkiFv`=dH&d-KHd;3_>GXV_oA|}2M0_V zYmc$YIsTkq;^Mjg1)ux9IYGw3;0;9k(G~^5kN+7Vu#L+_u{I94FJ%ao)IlY~iKph~ zf8yYyDi{8Q4Ta4PR^5uERY`2EJ8GueJ``|z5Yq6;_RVET@N5%xifE;TX>7jKL)A$( z-~hAYFghR2nsm%QFfAU}l08{Hy-dX3?tmQ(xZjiykLE)PxG?O;soMaTMkis$= zf4CED@G&^@w^k915uV#q*Cs242bugJucYu^*-}5@Md<+S7neF?@X*T)kvEJDlR_Vk z=&D3W-TDhp#BEAfEJUH-^2x}0X=i45j*pjbJU1P4&Ihn205 zdsN4tZ3k?T-Iq93EP*-#B~KSCnZI~eQ!9`j``eE|sDg0XeHclq<#5@5h`n_zm7R73 zpR}BWQ+m`i#;XO803me;S=tR&wfnvH)j)z!&Y^bNW*m(`2PPbEHoMFA6BAt0-nqE+ey(OU>zWj!o$VUz#`FLasQvLBb#Cq*+LImM&wPn3;cZ+*CyRxTUcsY2`g zEwrlAz`{c;_J9`CO;yD$pQLfBtecQ=AuodO#f>`dOwiLOSua2!wfFW2@b*t=@-9`o89 zELEXmo1B_QGk*MI*TW>9M)?@nkGyPj<&3+)g9ZQ0q+y1ij z9_@9SRKa17r4RoBaK$Z^e|SLv;o~V%QeXT?b zA&$bO+_sO;o;}mtYX_mT+`i+`5g?f~S9f{mck8#Q({`=8)l%%JR9kBjJ4+72%}NV3 zprF29uk;O8Tzz`r61F1ODcM`<&>~s$6vN@H-E8{tB4n{=p3N0liPnf;I1Z2A5>9fyoQ>e_4g}L(@%589 zon1zf5PBWrxEC69m;uvpV3`hrW$PHbAVqpnNiJmjGg0a&>G|4~WI)y^X0fnZNQOoc zz)JGKh7yy_dDQE4>ETW=V}>w3sQqtF z*0U+>n6muBGOCL$!pjcc{GoU=S#+#l+-EaBoPAq228)d| z*G-QI+r=gG^T>B4@uYcMM<%M-NH%qvAz|PiKH!wf<>seq4CwcO(-Cae4jg^}8|)mv zUE@LPcT{GXos;?`bh{Lh9?p)`_LEi6F7$}cjk4+{3Uz(DZ5bGR*O6fvc29wD8;3C) zDEoKaPk3RGA7raIkm4F|&K{toc46=5TCx=n_~0!?Ah$E^2h{ab?y>|gSpzFS^AOJhbLv+D@i4|=CV{!+@s z>HXpJw_nf(o*9;g(oqQL&V;4=4(o*gC3q1-`BrLQWR*SvixHA!NM|17ShW|ojkAZQ zFlurPbuT9{Lep+5I;7?08Tt;1_pV$&xP+dYMGhM<%7o_kChN4NLrjd|p3^Y$I(ylHKmssoY&G zC|5feukUtrUK)c|?{K;&-YPQ_+Yq8(h@^<(1UQAxb8VaAN+;%OzZDx;ct$L3yWdR} zxiPe8ZXyXKx}r8fr9PCB?JF=Py@BfK8lQSh2ATH?WieA_%}d*6FDYoLzI3p>ZnPLF zMY8E7$Vs*(h^+;t(eATYl zHnfMPO+6RHRMO|wON?WdlEiqPyHox~* zSsJb1_#(2!Ji1Kit@kIpM)lfye9R7#me@anqrl#+iQ|^}FdcTFvdwQ~Plgm1IXU7Z z4@{}9PoBv6r$G_U*I`s0%K;mmVZ1CVYouaaLdEw* z@iefpqNB>xzf7;{uTKg1eQ=WckCFg15~uoj#a&`Xo6JC%e(MDe2%mYhoncyLa`vH& z@FCx_*m$E@N0ZFLB;-*qVb#cI`0dc3#Q33?)Zgg8d+Wc4rhJ!ytDM5?Zs#|x)sXA; zl1{cWSGNs%@o3yc!A0my#A_a(iB`w{Q9wG4oqqK9fh$uo#tmc=Eq{u zofW+_{BO6;udR(DlfG6AEe}%7)v$niruz@6Qss7S(ri-krnR!kb#^TFt$E8{W0_MR;v+I;J96OUou*SkTa zLK9&p4(Uyih{cbzgtCDZbF?k1;Th(Zj>kl_yqM5+Tg5rZ>(|1IRCyY_1}^GTxGg;R z%#&nmMHt(z^i}*qym3`xI>7B*Eu z?O@PM41zxQTB6BfW64z0Nu`}8(AP@Yr^?XIB{jpL4d1ebxTeKUmT2~9p-sSuZzwm% z;C5Q8CcDN8u6)uoticb@EJUtG$1FkVs6|z(n#5>wV;W8Dd1ubmC;q1I+frD;tHa!T z&nIMERqQggEhhJc;@#?yPTe90p@sK1V43)e$;XfS92nOE6;tOCx96NgrLL*q3!Qcc zXIFncgJyogLBHT!(WKdxaJ12sE|wRQ6(YDlUADsZQ-gOEc6OP|^D}zEXJTy0Jkj>V zVPhLA;#w7uPC0h!um}-jCBgZexAYvlb~)$$%~J&Qa@J;xsKV) zc{oDr*2|(?vpLW?^M1&CUmqzBA5g9BeICQwKg3QkU?^3vXJ)I~TTAAy+P-fzy?Iq^ zIw$NLBSFg>(D@{*ITY@MkU4GTuWqkHg;!NE%mR&S` z{}-}`Ir*huVLqAzpr4u0Uu;_Z-B`Ynh<)3I{XKD!-#r@dv$jtMQ=oo%u(+u;NIhoK z$7aRd74#VDw3rg7;%`sjI72I@^|9H}P@12y874BM3csh2kCYa!0FC?4xxE~$FWfD6 zGG9~MUwNQ@iEYFrb2d<5fW6K-oiI9~wQe*h6#X7*|kgy20Kx>Ix#% z_Gmj!MjQ*cjueo2z09*#&DL|C*#5O2iy7(2rWtFle}6@h1QQbsi=wFgw<1 z@&qVcZ3WUIt?4R~M=RReT0xgK&rv#ckzk`>*9m@a{to)St8Ncw$^A3o!z&ImdU?>b z!Bm%zc!@5PAX%Lse-)aESF;(EFip8J4Ds^ZxNT1MbJNy0IZcf=Cr91iheR@<_JKI8 zogeha2_>gfA*u>0O;v|P5zy5=?Bd4`Dv~oj;Ip>a1}_x|F_&-Bxp=?*Z>h7}hy!w` z2#Q8=QlVtcp2VJaE{zgPLalv&dmJ0{Hy=&7DV6I(kO$NL zDG+TX23iPzpm5j~<(|2Fc(<@qGXHF&_nMl}ko-f7Z&v=TFc(}0iuAcSpi-W~$u7+} z)x8pFJwsvC_9;aOxn5ik44%iz`feu9>|RXycmI zbrNXI$0rV{H0zp6sj`+iaR~6HxZyb1JeU}>XXx6j+`N3y*q8ij^1|_(9G~wQT@3xv zqlpcw+Rf0j?$~#k)TQ%@y&#di&EH$`?fTuE)SSOGn`ot$&w}Hyu63+^qY!QD zF^H>AE1Xa>y7*P9EdM4u`qJGUDt1ji^vzj$;DEXP$G`RJk(JL&@f@0U^SJrhgdA2N z^}@kLVOAGRR!35fORI--S{yMLD=GUmfrZx@EQdtTR!$pfT@T9{S?g~dD^98TGxti=0~MQ z)qYw{KdBXY2d3{;@WW({L%oL1YSX74Ki?Bbj%#uZG`UUbqV{O;!Kl}1Ii}TC^zVO` z_zl8Wzm2Rv;rn&AVU=0={c&$vdVP-J$Fy>Tn)bl2Q2NplqLpZxQo@nFEo_N2E)pRP zVQAjf&c0g^MlxOJr}LvO0NCo9PE7V7Vd{42FG`3Imfekl#-<+;{fu#gSUZK@&&B~Bs8~&t& z>qdXYQ+Apo8y>6Ws)av>ar0Lt4IT=x1!QYknxv~G%y|4un()@6Tr4h3m?!#R%zX2l zR<$8@#7lf$>8&MNzNyRaD=pM4E#bn}x%zb0#pIlI-^eDuHB-odwiM64=VUIwN)Fc8 zy`_z~?3PZ+xlpb*W&6RO`>_uQ3Bl5OwI3s1X>uUHt z;wDMduAc<#Vr3tEvY52$KsW!s^fs-~S#_goL2$*=KdrL%x0y~FKWms=|CauawqqJ% zaTrduK(#n^JSZvOEc_$)gStvjp^Kbv_ovStzF4|%WL99_KJ-5(t= z?kp7zU98i&wtXT5scy6z+3N1_P6?D~X**(fS7NtRygk>LJ_%=~)A#42)eT*F{r-)v zc%u;3AwvDxQ?}SA-E00h*ln|+3M%XoW*69UeZI{z^BgC2Kgh21yvC?`K+45b^`pyq zL@F?=!^BaJ3j}~=EiAEJ6S~ zvDtLW9R};*drXq<>HJc1yGchn&{1byaq+4MK3P)Dpn09%S6N6}6 zu@rr$VXFe_EB40}v~(2i-$!;SZwQr^n6%HEdEm|R<&_h^Z{0YWGdDh8x(Tqx?Gemv z6Yk!>RH-v*H+l61v;;G+B?y|&Vbg}N z=!*Cgse(j%zB-LS?rur7 zL^0Ga3h@qKq7C1xou9$SgLW|nT5zbTpyS@_aZjQin?V1nMY*N!gXKJ%zMQ4LoUVR9 zG{9rmA!+YE3;gZt{6G7*Htwyr=bkmzX15Pg1u=vYpLo->Mu*SW?)|n7L6}BD{pPMH z^Jsi)9G@u)Mmc}+?mf>J{)r?Dv*b}yD1F@+?|kwlRd7wCLaCzG?x0w^ZeB)pTYEtp z+VCS4@m9tz+aOMuutW~ZP`cZku)D*aUL>P=Vdv1E`@qP#l)t2xzO>0RiZQmt$uO4PBbN0UGSn#P9=U&s_c)7`=lCgAsC7lbW z9Mo(WCm5q%+<&7N3b7~kWL>4!tAd=oo&RY(q#wfjY#dxXqc)|Uja%%@Gxd$p4NKv= ze9WY(so3=us1bf{aC_4?jNHBm7s)KNSQ%sz{Fan?A1`@uIPZo>^|Q2{3am^Tw~cN` zae)Q@$`=8Lb}gj|3>sK!clpk+EO+a;hX9A|w(MUfM~!a=oF=Myj=4XO4EI!{@ddGK zJB6-WE?7_~;{uU#$y5JARVSC;IV|Da+Ond=trCGa(4Xfjg`40>D{C)g>Y9T*F*8qk zFE~4>UZf$af6UT8(NTQ186h>k-&6^sh)&~jRqA*RMlWB5K@d)5(i(?E8cs~t(~woz z4C7uvFId?~aeDD;T|Ti*+P(Jvx3dS4fog|DYZ6w{G;m60wDI-&Ms%LKpl-QGhN?&6 z`u$XTxF4pf%{8iwKa+}vls-hmqS6j&ZOKpmcGEK0JpHF&mK!mLq1E@97?eA8fj^#P z$H)+VN%uJEVVTqC>&{^*6$cXg$+EEBmM%PyOf}8X$SJM4K`ocLZ#R?YjOsO>m6d~r>hSkUuCQ$- zItXr*^_e&<+_G|q!TDjI(0Rx;7#p^8OpnWh2PZZB!Urn;6J(j?<&jF)>dCmuUgnL1n+xw6u4!A`1c>{&1S;9H=wq{)?A70w;EiduhhMi6xFb!buv=a%tIBb7wU)v&lc`=#W z=vyQmc^ZG=C@f&#UGl>t3*p}A6-phvUhRY-=^J+4_q;0??du4Iob+2Gzc7}$#G#UD z#Mhax>NNpeQ%%|2WhQ;ql6OnyyTE zQ)bw%$|df)rvop|z}P=75oiKc1%weJ#vYDW8OVlqf3x7JmLZF?wtDF8>FspR7}|O! zebU@lt^mp!xL;gFrB~dT7gVbFF!%m*5}x7J)m1oO?M0dK2n8;i#I1+P<*ubM|4D1b z_4;Cd_M_Fg=Ucj-LUYtEN6N`Wa)lSxxOgx!|GiRAV9S+0R!TwrEybGX6mxgmNoS7# zW$ODE^=eBHsuQ7$XYdaS3TQuY58V78xhozG*CqFLT@#=0RLrs6dLT7aYeSNrOm{fx z47D56iEICz;?Z^^P;K>8w#iT#I%|Rl$^G$mzgG0IFlv)rQLIrA*8k1EaxgD2jwI)+ z0%M{jM&I&6<7CFtE4TGpdPI9qlDTCUJcgHkpOn2;=p$8Cb<=t6<7zyYgYSxTs7TE2 zx;1i{w;R7DJbRGsurAeL!|atK{2*Pw6mP>(B3V~hV$*zeA4x_i2X2k7UXA7YVR5Rb4eShgRHm zSR=#BQa@L%6QuS?@5B$Bb?$ZBb)Gjz>DuZ}7^4;kq5SkRo4hOW)gm&$rwy;zKceU)}{~ z(SSkiY!tbeYBd;n9g6Zdx6&Wi|5o9JuL||{mnx%KCTu$eS>+Tk=b5I;6UxK%Z@_FA zqN`ekKwE`>PV@I!NQU9*reD3*5z?Kg`>vI5E+}d$yF) z^H_5WS!o^IzNjQk+oCD$X#6 zFfw!kqnUE59Iu@xhog^KtZ#o^PW;frSXv8T8+6$F-km`T@~43;VE@(C_5VY|Ja@}r zE8KT%r*^1`Yifm;ko-uAVU`{(Ijpcr@BBOM)oG@NG4AFF<>pP}7wR8rYVWpqik2Zz zuI>**3kEfmKzWB2x5kL(&ZtHE=U7h1x>d-#<||d+PfZs|vqe`+O6(aX`~?FkWlyp= z%!qh!N_16KXE1e#^W|$6qG|2E)wOtRLp>1utx&!_ZGYDNYlQiE&JD-bqtjil zlWS<0*k+57YsdzxA9oY-iP~vn;$vMFy}#frNB0%vOJFO7ifp9vcX6h|hewyGTU#Zj znzg2c2|kZTdm~5w_{q=PYKOXpW2+@p@U<}MwwB4Ld35>-b5;!%7V7`tX*DibK7P9E z!&dQCxe7R3Unn!e<*{1DKp6gvU;FJ|^Eu15x{kZVhXU}7`S%q_?(`b(NOkYQd9vT{ zuM2Y-wRXgCRbC5-0;m`grvaYQ0(-+J!{Cz}8B54wh@=*{K?^K6nayI11D-y0f~oSpxHM^xTz{gyAy!!DhKpKwbt}3x z`@m7Vs8L8)`LvU-eEY^T!O$NJWd4{g)`0jHHG%}bW2Xf+5=F-WhL-qztMkHNDasze zezw#20211fXBfM5t1Dq@pCT}YyMkrX`D6cZmVR=_NS^#*nXjC(49QN7L^xWs#)w6K z<=|?yHQL#_=-h9nE_WLIDY}nfNYUNz1BEnYRC16+&`Qbx;s%Z*AI|bSoLooLmdx2P zPSyrs=r;UXixrj>vGzhNNK*tPLM3?XFw?g2NkV|09=TgwtrS+|ga;})F&{boRX{J8@am>OQhQA$Im61j@}p+%k=mIl!xApSShQ5W{$X+! z?dZneDTv$$f5#xK4mHza)YRHC@y-hB^5SxR;g+hgP}T9W{0ftHcgq{yTDZ{S)sI=;Rxh_<-c`19yckE1n zeEHqMN2{402)qlWrtQooBj!?$`EyeRUwMLW-I;`My2B@&^$NQq0*x}MDMunhM$Ij; zNE6I_@P_~FY|G?flJoq?55SL6b5P33k5aLr{k$OaeIpTJjG06qA4^m+DKW*|g}-lz znd{=}K)cwaeW4ee?A&NP0OkdxSm=fKwo!bhpwy{h;h1iCm50C{h?k<4 zan1Q60y;WPc=HZ=eM_y{1G&q-_u)!33ndB{oq5;ea!Y*9!&HlezLrSh(iT~PR83h` z^@86yJ%ulk&8^Uv%7B3SPrQY}x)?6A0=-EqdtjDnY1RLDM7KS-x6oyx13fOzjjXS? zu)$K+?xZ68vg)fHvAy!)q^D zts%OgUFr7TX9E>;?=5C|gr*J>5E;^LY_Mc5?Rt04$*P6F>){x}MhmSn^_VUk=ISws zg1V^R`_-&44J6Ty(bRFsx=vA}3@8|jpS)X+NtY*Z1z4uo=8Ir_3x|K>F-J-P1w4WJDGcNy9@v;e7GL&u%^eK*o z8q_Q#K6984LsWtElM8CQgwmHG*0Oy+Tb1>WUB@rxHib*FAI;W2X47mN=3l~3qpIE; z^bv`IhJDQb%-;3B2>E_BETQjgcFF0yFs^PNf{{>TLB{3!ks4DOl82f1M;5nszth75qNl{3?s- zOVgA(1j2OlJ1mo$H>TLB*lf~D{3688zI0#a`{5)MgG89wev0;b*{0TA<9K(fntQqd zF%kL}6b+44I-DHO;r3Q8@m29C1RZl))>Lv1e)i6otF85?rJ#U0nDyx=*v&HT@|`oQ z?rQgp*Xbu*Yh>P?@* zMRHGWfIh!F?B|$8k-Tj=P6G6alHT@ShQaB$fQKQmF^rOH=oN;>4usSoAX3db5>aKQ ze$-d6cNwnxVU~<%4{-oSXQrTlte&0|I`s3P^fe)wGBB1VIMC_Q5U*J6v1n(EEBhG% zRjn9eAmLr%g2ExA%bfR#*y?K-KCeJb0oRp=49cu8G`Fz-B+*&Ib;0>3?MjYGn~RdyMuB z%aJs(<6|)#DnaEwmx2`sy+_DI?=JW83rMG@u(~&2v+9{CkbTlS)Oi_D1m&`&ldt0Z ziW*z8Yv`D#$wG>O&e*g}&_ZZZhBTPKS@OCY5H#e6=Aa3b>w>e%WBW9r(V0shMBctA zAKZu~yIH_NXst*b_Tz_^M&4`@*6?LpP#Q6A*sA!dYa5>0!tJvYmHi>KdWA%C@Won8P2BEBGYql<|7_HhF zh}XsZ@zRmM3ij3tv!|?l!==ki+IMZRRY2gp3OA4z`O=l_69AWA9b8C#9i@P=AezWS zoF*r_k4I+rm*4!E!kA0LOek&)QxFsTmMw`SLkVo!e$=>Xua zu%&i+^Z-M%HV+M;U~|Gg&3^_GnmgvzUkh7d(Y+D}1KTmp`H$^+F)g&Q%)^7-wF4RTJ9yWpBpKGIPWTE5AP{Y&|+Ia5Lh$T-{ zA4SVgUO2_7Ax1<+U5b(?rA|e|{#D%&d(Q34*Y1tKf>%KuXj;Pie2gZ4{N}KQr%=%l zW!|!in3$L;<2=Uuy1DO$Dcr$FANYh_xBRa*vvh%Ln92Z8BD#zec>~*eC)S}4#HC_l z+3<_1&Gzljm37}*GsFR`mhoepz{E=fP?Kq^m(l!fUo^G>@51r1Q zkqzCPY6Qs!0sR#dBYN?#o49y+tI53#S-M}<*S-qe^eoA#zxR^A6_i1>El@) z5=Mb_J7Wrp$c{VJY1{tUZt0I;Pnfo3L&67^BAa#EdQ%tx$^^I}IR8k7({j$0~z82!?Ck`VGX#|s zi)T{${igc;MEds%q4X`OudoYKksSGET5}xrVlKX&9@t z9T#XvDXw>m+%sbLVHbh${!0a=N#a_@FFHHmkOcgLQq27a?*|ExPlqe8%7K=oe)cI0 ztd2}e*17D@xK>=_F(<`#R~tG}d;}vBO(neA2B1?VXak{j&H_v8@oeoRiVB=BxF%W&AZ4(nO%wJo?4O z*WRHU5Be+NC+IUb%y+jqgqq9?3m0o~qvQi~~96 z!w=y8K&tdtLc)d}!RQ|o5}C|l_2}N0lOI8I*L=5=w=6$?^2!+tdfB(yvwDz*ib_8s z@{fEP`IQ8Vl+QK+Vy{+_R@R!j34*? z6z!V3qz@p2QP1R&gXgQ-JpTGxBz-A+Gd+!abA1b$?f)Q#PV@gJOHf*PI7X9&IVLH$ zw%MeHJXB*rUZ2mcZ8hq;pukJ@tKKXINm2G_-5_M*dq{$DG1G$*wAT*`JtyFrI}$*A zLZR~P?7_6vBBlW6HeEI8WLFN7`9Bh%pg_-Lp7CR;gjd(VpAp8-D_Il@M^ey z4P59&!zYv>vhrjt5%v>u`lk-K{McI5I`2elPEW6G*(wtQjI}(K3q{dNMmvdB`m28u zv?nfQZYnNVLehj&Lod0VQN2VtF%&ej(^>v7(ay9jiIN+QdC6;E)W|xmdF(mo*S-sZ`efXpJ%B zO`kafEFSNl#YevUdGn?QyFNwIhTPzK_84W%8c>sR#Mi(8DZ$VGxK7%@ac!Z$Nso&+ zfft2GMUM*(>go>Eu&4&_40&`T8Wy-Vp}w{aMYl)vF--#{kKq@1tf4Q?woVF*osZQoO-&K@t?l4WB+?623QN_ zEG}J0Tq<3Fah4u>`wHv*%gF)k3`xK14oBL7^))&InZ)kV9@o(PeHv=bI9ERX?_Yj* z?POUg#MwA5OyfVj@J5kx9eB-|G%_II?|;4JXxq}etl1dS*_-L4lqJvjo&D$E=S2T~ zJ}OYmJM`ScZ;uoyn0kBVRC0M~_df+GJ^lxU(e+1eBD*~2SiAhkLa`QFy|qqD>J3K4 z|DZtqUpt)DYwCt!@zS8rWT*_|HPfC8svBSKw8LR~J$1C!iPX&oygBL@{UE`qtzUrh zpZ)g>$dK6(##&PgP`5FC+j@=iYoE21woy1)yi?92V_dU;z`rVAN&wuM@C|VIfV$)G zKe*lLSSny{ZLM0Q<^ZYeKG@8Co76W4P5u`$0ycCf)8(geNA*5={(=MWhgx;pp?&I2 z`gMr6fdL%O|IjFw$-}w!1?6F@J`kxfL4$mCS&sOqa3Un+|KUvPaXt6eVA{|vd!yC~ zkj9>AtGZQa*Zc?Q(8zyajgYC50=HJK3G|)M4F0QzD>>cG{7?TxDV~V?fGG!1)qnAz z$4)tUp;J-6|2I#u{Jh1GjQE0JU@Q?u=u%l3y(p8H;v~?I2fSc-^1)LE`;vJVOV@Ba z7dQ%$z$^b?lKn)&p0p<?07e1(+p8VG!W0}<0sX`e}- z;$S&X@z8_(id>vp9A!JBZ(v$AU-jj<=b7J3X`7zw#ah=zHHhJHw0W5rq-yrdGYP_!A3 z8h!<97b@4XUm4}m)sQr2u-F#3-8;2{!UZN!1cZ5epI}2sFXZ5%;{CM;jb42rtc{_p zZlSD5iW^9v$zOn2DbUwP^_f>{>Y5D(QaQD6R#(i%Yg$p@BYLhp)AgV$p1DN;Y@Rl} z)7sJqpTx%$p+MUaPCZpF-C zkd0?($yAbO6hnO_YcBQvJ*%Irt3b_w=t!8j(4Z#&|KE51TKd0zr`UWaPd{~B z5SbwVhUGb)h4>RX{~dM?6~PUj#iqugy5uR6t@(<#qV8*;4c=h}?|cWFpISu{?fjFe z=rC^~JBq==4FzkhM?(K+jFFl;kqG$@w1}Osme_hnM#$=hbViK%X++cP7;5BGjkR1P6O=dHJ@`>s3SS4X!@E0veE3xUcK!@?@?( z`bIgv!Jb)pHlfYy=R*|KBEJ;C%6c?iG#+=aJw)mgMW6uk@O#MDAI&|$*7dN<+2(L` z44VC;3B@rQQT}H^0be9_fP5$FHOx?85rEcTum@P1t6LmksKPG-Y>Unb^~-!C(I0;A z-8yWsUXv{cahK{H*AzBlNsCb}+&w?|kf!Q(w)97M@$|gTv{eNa%ApKQ+W5|X1V)QB zxKZ|_nO&ndsuksEiF5(^Q&B{g-I z^C;rA)KZP8$N$GU<>BPY4;UzLargP|0b|6W!#jHHv=0-_QrurdXJ-?1!ddbX#Hm+D z(x|t}Gr}Xtq)z!baBvij2mW!^Pqr>A`DSqK-rr003IlYM3NzY7Q7T+S|Ht(39tOT*-KmI6%clYjzDyIk!hCinIPQ+%+Km z4TwFi?AI+d8eKS1GofuE=s%CL8G0uWsz@Mw?;dhawsS$S9ux;|_fKu0WP1GZPNtD4 zM5mIRP$ivME}~(0w48`e{Zsnxf6~ZMo=j`|TbWm}GtX6`Y4vK3d01%TitN9tn z$*b)p6kLJu?B8?t|DOL^(jp%M;Pj53?pxbWbj^nh6qx_PXTjWohP}!89NiYL7Dq-9~F+wfT+tTBB$@i;lzrsCy3-Y=_Nn2F6X1Y0MvBn5uaPu{ZbE%1QJTu# ziIQ@dzVQ{iM8Dqn=k_z$sP4h^;Tjaxy2O92|D3YJQAcRdXS@LjtV-7v0I7B|OuiODpk#a3|n4mI`5|I}FQ#Mx!b-X+J~ z)o)G84<|r|uo{N3u1;PA0b#6|7_bc1I!5;WQ-jF#^Wms_qT;U1x{U>k^N0hDRCjn{wa7?!l<_Voz zr;&mGIjqbAic9#;X^k1tV5TYj2bzcT_bx2F?)QYd4}+smaGLiw>~?_L>P=u0QEzZ~w) z-Fv`Y1X+{h6+(}HGz>Vu`z(z|N|43lUayB}fBO56_@0|Ab6`<_HfBUk*ovA;u{=7X zrc#&VtMqGg2RP3{>{UWup=OIc@3H)`NbCDGiS1M^bcncC?h)(MaNnm@vo+F}lbydm z|46@|6h7%6!dlm&{^nIY`HnSw(xipM6Zp~O^z<~J4~a+cYbJ^j{b)bMrBArNU71u5 zLfbd{sN=R_6R2RZ$f79`d|5~>U4)uFN}X7%$1TIecvZg=A~YK?;z_K{aLRsTu>x)& zK<#N!tm4x4pwU>RlOhVM_c!6@j(Ed8b`6weITj13cLNX>{2N?}Pm+EN zU7mhI1*1F^6dz_H5jh_e_2ty`<(|FAiYHDgL+QSQ0f^gdrqZX>n{0SlJdP_6Koj?1 zbM$NCdg#M_1eHAm>?4|5kF>EFAF1B2EQT;F;TNF(@iz`xpV}?Gqp%1N_EM7foFi#i zfYfoM8hFP5K6wJ4OovowLF}E^&s@PfKyF|cK8dzSeD^87{_|6;rnt;Vie2YDW*M_U zfFOa0z*e&(l>W{6C}K8$O?V+Bn+JjB55_u$RUXpf z9Ei1S-9w3i>VQ)g+-2#16Wh0{)3wjrPB`ntLs=j4hJiY`D4H=bmm|kSMw!h!;mpn5 zRe}>2Cy?pC4l$wFWhdFBUyDDSS9f4x=eAL2-P?lq0RDt- zS(@A9%W<``aBp8UI%c}u@z=`VWZzYYM@L70`iKtD_je#+1anT&y#tgzy79^3DkH$c#1eX|iDC2+?y5kx@d zhlZcCK_a{yUa>O&TFI5}d!C_w$lKC);qBu7vU!BW&tp07z<@J>_JN9eTq~9i^a=0(g+jvf5u)i>|B1DcxY8{rz+A zrZ+(5IU2}l($UjVtYgR0)Qaf-N*9)Dc~mw&>Ub~A#OXO@Lr8X6?Th9iUGKEWfG>Bm zvj8e4{pa1)0@b6JM`p883n~7R*OO}vLTi09x}!jf#(jxJ-Z5Av=v|d>zlNZ{aPb8m zkP@MUrOAAie(T%mJJ>zk4D|5%6S;M1rk4{G?&k|E6LyaH_vmPR`iSj=U*vX=HP`AodNpPeGaCdL z&|%Oa&lkr4=%PT`C$r!KLUOcc*zdtG#uJiR@1Zl}RCqE?E6vNPZ$UCa1*9IR@ZO|F z-b}DI21xTVjcWedRHOy~2sET=R8=xEBub@v=U@XI(+f5Rzj{w%e*R&VnT`FtzlwCi{U=AjTY@Ln&Q@fRi zvz6}Q*g91%6;%;MxvjOTxq{d_9o0VV)G`x$lp4pDYbh!ywY3zTXs4Fasf&0Jomxw@ z8YF|BTxtnsLZih{OUzh8sB5YFMRe|S|G)PU&jg&f)>vi1kp4oP6Vam695I5 z~k zmj*|>fxzi2YUjLl8zEfDH2iIY!@2>wON0^Gi+}QT>jqL}1^_z%xhysJYpEM=;StY} z_;_q3W6RojTcwH?5sY42>fN2;^%rUD7^ef>>2885?rIbYvLn6-D2~wYNOJ$z7v7&% z{MVHibpYG}lmJ?9&b3@erZPCw1Qr=yL$k_TPy3HjLZkZT?EoGoBR%n4o_W!Dj>yvw`}yCCRvzAn*kPg}fXH9boH%Eu-7?I>fv#P3Oym zZ16)O82lWtVHh|@qvj*pBM?t9@@-GRxf~4Yepn(<`ceUqUglE|3#8s4y@qoGKOW&l z@|zbG6I+}`g&pt)F2Se@K{0-M=g>Ww*vTB7e*#%CCblHvQK&~0Fe{8!IDET0LNR?EURYuXvyRp)y#2=J=_g8ta zvV6no<;{s+m$9Wm@B9_2OVZ?qD@$T|y2$AA8Z}#`r>w3Fz}R-Ai))NH&ztV~s>n=0 z3O4LNo%BfK)b>|)ZN-{ucbA8961&@OCmb7|$KBfa+MvDb^E@t@Ge<0=f}W>F&fY$T(~}ePx?7gwjwGk%)d$fU3anTPUb+Z*L(#oIy|o^HQP+)E5D-`;@lh-!LApP9K{& zlfGz4A9_I=cTe-G-49pbxxlEJ#ds2L;l``Nj@(H-p{MuZdOtNZr%C;yn_1VFd=Ftl zwzbvIop+pWb6SG@8XkfpSZa5g z7J6)=$qu71Fc}M1nZi{V_}wDOYA{>{vQU9O0iDX9>_H?qYeu!CVP-<19yiK^Uatqu zf5n=*sX`ZHm0Ph`7{$QMD1vqdc4*f5r!jCr09;@W7Z}+rW!*73THdAtg&o@Q^8Su| za{!f75uv;G^JizOom2%w{U~E5s=-P?V`X6~+8Fsi>E6ux?}C3J)Oj#jNz4ow4N?wb z6{+y(0@ISiEn-?yMpN5N<#2K+X)85!gI0aG1UO>jIrUA;vZYT7Z5>sj(O2+`du|*= z?h;Fsm2Kp#i*4hk?54h%@6ZT`A9{wuW6nNEwz0ry#oU_u!Nl}{SnwW6kz!t920ehX z4|EggzY?}0=2mxbIz)3EwD^ER-vJGLo42sb*)-E}0$ttxj&Z<+`A*c30!|~gkK_*C zo`=zv!ATUz`BWR$aTdRVzMa2@xMT)PCd>NBpwsd4RkS@LY&hr-6^JY0!Qr0d5bp_E ze#c0Iu9J`tdz2yVer9JLra~rMd|8vtA<&fyC6$8|Up;}Too^tfV+wK@13vfl_sMF^ z9`=#-Su(~RI9YLi)$e7u(IbcusdYl|xDEIgPDAziikns|u{PhXpj8KE?mWwC0B_b- zj8%C#K%mz?r(ZO$;Omim$<2t7uxc;Y_vyCgV4dm@BOD|v2*HjBIpmM(Zem#%GMm|P z?E~lBN+j5wDC4&0qUY8qrStOzVKJSL^|g@7aKUkh$xWT$1p`XQsEyOv zg9-1{Eo%6B{4gO)XN^^`XCJZ@?`02*2BuZHZVcQQ=Y!w%EC}n;bo;7)(J8YwXu>Mt`^j@ z#e diff --git a/docs/source/_rst/tutorial3/tutorial.rst b/docs/source/_rst/tutorial3/tutorial.rst index 19bbf02..c86ec1e 100644 --- a/docs/source/_rst/tutorial3/tutorial.rst +++ b/docs/source/_rst/tutorial3/tutorial.rst @@ -1,12 +1,12 @@ -Tutorial 3: resolution of wave equation with custom Network -=========================================================== +Tutorial 3: resolution of wave equation with hard constraint PINNs. +=================================================================== The problem solution ~~~~~~~~~~~~~~~~~~~~ -In this tutorial we present how to solve the wave equation using the -``SpatialProblem`` and ``TimeDependentProblem`` class, and the -``Network`` class for building custom **torch** networks. +In this tutorial we present how to solve the wave equation using hard +constraint PINNs. For doing so we will build a costum torch model and +pass it to the ``PINN`` solver. The problem is written in the following form: @@ -29,9 +29,13 @@ First of all, some useful imports. import torch from pina.problem import SpatialProblem, TimeDependentProblem - from pina.operators import nabla, grad - from pina.model import Network - from pina import Condition, Span, PINN, Plotter + from pina.operators import laplacian, grad + from pina.geometry import CartesianDomain + from pina.solvers import PINN + from pina.trainer import Trainer + from pina.equation import Equation + from pina.equation.equation_factory import FixedValue + from pina import Condition, Plotter Now, the wave problem is written in PINA code as a class, inheriting from ``SpatialProblem`` and ``TimeDependentProblem`` since we deal with @@ -44,31 +48,27 @@ predicted one. class Wave(TimeDependentProblem, SpatialProblem): output_variables = ['u'] - spatial_domain = Span({'x': [0, 1], 'y': [0, 1]}) - temporal_domain = Span({'t': [0, 1]}) + spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) + temporal_domain = CartesianDomain({'t': [0, 1]}) def wave_equation(input_, output_): u_t = grad(output_, input_, components=['u'], d=['t']) u_tt = grad(u_t, input_, components=['dudt'], d=['t']) - nabla_u = nabla(output_, input_, components=['u'], d=['x', 'y']) + nabla_u = laplacian(output_, input_, components=['u'], d=['x', 'y']) return nabla_u - u_tt - def nil_dirichlet(input_, output_): - value = 0.0 - return output_.extract(['u']) - value - def initial_condition(input_, output_): u_expected = (torch.sin(torch.pi*input_.extract(['x'])) * torch.sin(torch.pi*input_.extract(['y']))) return output_.extract(['u']) - u_expected conditions = { - 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1, 't': [0, 1]}), function=nil_dirichlet), - 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0, 't': [0, 1]}), function=nil_dirichlet), - 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet), - 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet), - 't0': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': 0}), function=initial_condition), - 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), function=wave_equation), + 'gamma1': Condition(location=CartesianDomain({'x': [0, 1], 'y': 1, 't': [0, 1]}), equation=FixedValue(0.)), + 'gamma2': Condition(location=CartesianDomain({'x': [0, 1], 'y': 0, 't': [0, 1]}), equation=FixedValue(0.)), + 'gamma3': Condition(location=CartesianDomain({'x': 1, 'y': [0, 1], 't': [0, 1]}), equation=FixedValue(0.)), + 'gamma4': Condition(location=CartesianDomain({'x': 0, 'y': [0, 1], 't': [0, 1]}), equation=FixedValue(0.)), + 't0': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1], 't': 0}), equation=Equation(initial_condition)), + 'D': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), equation=Equation(wave_equation)), } def wave_sol(self, pts): @@ -80,101 +80,100 @@ predicted one. problem = Wave() -After the problem, a **torch** model is needed to solve the PINN. With -the ``Network`` class the users can convert any **torch** model in a -**PINA** model which uses label tensors with a single line of code. We -will write a simple residual network using linear layers. Here we -implement a simple residual network composed by linear torch layers. +After the problem, a **torch** model is needed to solve the PINN. +Usually many models are already implemented in ``PINA``, but the user +has the possibility to build his/her own model in ``pyTorch``. The hard +constraint we impose are on the boundary of the spatial domain. +Specificly our solution is written as: -This neural network takes as input the coordinates (in this case -:math:`x`, :math:`y` and :math:`t`) and provides the unkwown field of -the Wave problem. The residual of the equations are evaluated at several -sampling points (which the user can manipulate using the method -``span_pts``) and the loss minimized by the neural network is the sum of -the residuals. +.. math:: u_{\rm{pinn}} = xy(1-x)(1-y)\cdot NN(x, y, t), + +where :math:`NN` is the neural net output. This neural network takes as +input the coordinates (in this case :math:`x`, :math:`y` and :math:`t`) +and provides the unkwown field of the Wave problem. By construction it +is zero on the boundaries. The residual of the equations are evaluated +at several sampling points (which the user can manipulate using the +method ``discretise_domain``) and the loss minimized by the neural +network is the sum of the residuals. .. code:: ipython3 - class TorchNet(torch.nn.Module): - - def __init__(self): + class HardMLP(torch.nn.Module): + + def __init__(self, input_dim, output_dim): super().__init__() - - self.residual = torch.nn.Sequential(torch.nn.Linear(3, 24), - torch.nn.Tanh(), - torch.nn.Linear(24, 3)) - - self.mlp = torch.nn.Sequential(torch.nn.Linear(3, 64), - torch.nn.Tanh(), - torch.nn.Linear(64, 1)) - def forward(self, x): - residual_x = self.residual(x) - return self.mlp(x + residual_x) - # model definition - model = Network(model = TorchNet(), - input_variables=problem.input_variables, - output_variables=problem.output_variables, - extra_features=None) + self.layers = torch.nn.Sequential(torch.nn.Linear(input_dim, 20), + torch.nn.Tanh(), + torch.nn.Linear(20, 20), + torch.nn.Tanh(), + torch.nn.Linear(20, output_dim)) + + # here in the foward we implement the hard constraints + def forward(self, x): + hard = x.extract(['x'])*(1-x.extract(['x']))*x.extract(['y'])*(1-x.extract(['y'])) + return hard*self.layers(x) -In this tutorial, the neural network is trained for 2000 epochs with a -learning rate of 0.001. These parameters can be modified as desired. We -highlight that the generation of the sampling points and the train is -here encapsulated within the function ``generate_samples_and_train``, -but only for saving some lines of code in the next cells; that function -is not mandatory in the **PINA** framework. The training takes -approximately one minute. +In this tutorial, the neural network is trained for 3000 epochs with a +learning rate of 0.001 (default in ``PINN``). Training takes +approximately 1 minute. .. code:: ipython3 - def generate_samples_and_train(model, problem): - # generate pinn object - pinn = PINN(problem, model, lr=0.001) - - pinn.span_pts(1000, 'random', locations=['D','t0', 'gamma1', 'gamma2', 'gamma3', 'gamma4']) - pinn.train(1500, 150) - return pinn - - - pinn = generate_samples_and_train(model, problem) + pinn = PINN(problem, HardMLP(len(problem.input_variables), len(problem.output_variables))) + problem.discretise_domain(1000, 'random', locations=['D','t0', 'gamma1', 'gamma2', 'gamma3', 'gamma4']) + trainer = Trainer(pinn, max_epochs=3000) + trainer.train() .. parsed-literal:: - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00000] 1.021557e-01 1.350026e-02 4.368403e-03 6.463497e-03 1.698729e-03 5.513944e-02 2.098533e-02 - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00001] 8.096325e-02 7.543423e-03 2.978407e-03 7.128799e-03 2.084145e-03 3.967418e-02 2.155431e-02 - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00150] 4.684930e-02 9.609548e-03 3.093602e-03 7.733506e-03 2.570329e-03 1.896760e-02 4.874712e-03 - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00300] 3.519089e-02 6.642059e-03 2.865276e-03 6.399740e-03 2.900236e-03 1.244203e-02 3.941551e-03 - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00450] 2.766160e-02 5.089254e-03 2.789679e-03 5.370538e-03 3.071685e-03 7.834940e-03 3.505504e-03 - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00600] 2.361075e-02 4.279066e-03 2.785937e-03 4.689044e-03 3.101575e-03 5.907214e-03 2.847910e-03 - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00750] 8.005206e-02 3.891625e-03 2.690672e-03 3.808867e-03 3.402538e-03 6.042966e-03 6.021538e-02 - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 00900] 1.892301e-02 3.592897e-03 2.639081e-03 3.797543e-03 2.988781e-03 3.860098e-03 2.044612e-03 - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 01050] 1.739456e-02 3.420912e-03 2.557583e-03 3.532733e-03 2.910482e-03 3.114843e-03 1.858010e-03 - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 01200] 1.663617e-02 3.213567e-03 2.571464e-03 3.355495e-03 2.749454e-03 3.247283e-03 1.498912e-03 - sum gamma1nil_di gamma2nil_di gamma3nil_di gamma4nil_di t0initial_co Dwave_equati - [epoch 01350] 1.551488e-02 3.121611e-03 2.481438e-03 3.141828e-03 2.706321e-03 2.636140e-03 1.427544e-03 - [epoch 01500] 1.497287e-02 2.974171e-03 2.475442e-03 2.979754e-03 2.593079e-03 2.723322e-03 1.227099e-03 + GPU available: False, used: False + TPU available: False, using: 0 TPU cores + IPU available: False, using: 0 IPUs + HPU available: False, using: 0 HPUs + + | Name | Type | Params + ---------------------------------------- + 0 | _loss | MSELoss | 0 + 1 | _neural_net | Network | 521 + ---------------------------------------- + 521 Trainable params + 0 Non-trainable params + 521 Total params + 0.002 Total estimated model params size (MB) -After the training is completed one can now plot some results using the -``Plotter`` class of **PINA**. +.. parsed-literal:: + + Epoch 2999: : 1it [00:00, 79.33it/s, v_num=5, mean_loss=0.00119, D_loss=0.00542, t0_loss=0.0017, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000] + +.. parsed-literal:: + + `Trainer.fit` stopped: `max_epochs=3000` reached. + + +.. parsed-literal:: + + Epoch 2999: : 1it [00:00, 68.62it/s, v_num=5, mean_loss=0.00119, D_loss=0.00542, t0_loss=0.0017, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000] + + +Notice that the loss on the boundaries of the spatial domain is exactly +zero, as expected! After the training is completed one can now plot some +results using the ``Plotter`` class of **PINA**. .. code:: ipython3 plotter = Plotter() - # plotting at fixed time t = 0.6 - plotter.plot(pinn, fixed_variables={'t': 0.6}) + # plotting at fixed time t = 0.0 + plotter.plot(trainer, fixed_variables={'t': 0.0}) + + # plotting at fixed time t = 0.5 + plotter.plot(trainer, fixed_variables={'t': 0.5}) + + # plotting at fixed time t = 1. + plotter.plot(trainer, fixed_variables={'t': 1.0}) @@ -182,24 +181,10 @@ After the training is completed one can now plot some results using the .. image:: tutorial_files/tutorial_12_0.png -We can also plot the pinn loss during the training to see the decrease. -.. code:: ipython3 - - import matplotlib.pyplot as plt - - plt.figure(figsize=(16, 6)) - plotter.plot_loss(pinn, label='Loss') - - plt.grid() - plt.legend() - plt.show() +.. image:: tutorial_files/tutorial_12_1.png -.. image:: tutorial_files/tutorial_14_0.png +.. image:: tutorial_files/tutorial_12_2.png - -You can now trying improving the training by changing network, optimizer -and its parameters, changin the sampling points,or adding extra -features! diff --git a/docs/source/_rst/tutorial3/tutorial_files/tutorial_12_0.png b/docs/source/_rst/tutorial3/tutorial_files/tutorial_12_0.png index 00a92d7b20bee6c9ecad23a87c4088154f2d221d..2682aa46a38d60966dead7f6e096b335c5415113 100644 GIT binary patch literal 40841 zcmcG01yohty7nTJk~9#IkVYgFkQOjN8bxU~B_JRn-E0W~1C;JgNolD~8Gv+by1Qf3 z_0Of>x%d3{eCLik#{GZBIOp5$z4qF3&3NbYKF{;cKoun!VnS*{2!e=ZA3b;iLFd>Z z2ou@m9pvHXtt`{lQHLY#wRaK@h0{{6DNLiA*yHO4yZsAobKaZe`TN z`O;3!*_pbP0`@&@Lgv@rSWhLt<}lnEdnzt{e<$a=7U`4V7bM^MsdLi$-ZDyI0!rn+ zgh$BDz7Q`}$(_ZptA}Nzi-+OMFhoAVx?GP8fo>2ykYyemr#~$!dLFuBH8;n{*YU$) zHC@5PRHB$qbp51ymyb_2S%sY$vh<>!r?pNrFEw>jeIvy?N0| z@?Z~jrmK!{Nk30=Eh{aJIZx+nQR{rJX0fzsyhB8HPmjY=cIHyFX@YE0HUxJK0hP(D#*#{X%igJeT{?n*|Z}eM$DyX%w;}4z$NIKaLTY%l_FcB zdy(tTQo2P!jhcglLqvggYz0os_wUjlXatqsUEz9bb{a40wDguUzw;ZVUhdM8`6&4Q z;chu94?GOZ+IMUy*A)Hg6h4-I)V+h&EAYW1{hX4**cEvm8mRj` zeK_*fuGDr`?wPv!@QC5EN)J@$m1WT@0BuwrAG^nU><+qaHM6nE=H=y4i#Zosp-vn} z?K;F)=Mrxlzon+3+3A+&@ym?2YZs=L@T|VVgUBr(_ta*Re%~3vrENbKZTcoMIy5xZ zpWahr{B*bcnVw$3>B-UZ!F(cG5Ots^+g)Zk%x~Vy{_NSa#W=h6FYe;1TzXTlK7aoF zR72zHt-P$PM^0ldrv4pf=H^dSRaN)LK}!zzr-L0pvp6|8n)5TTB{M;%k;IASO1J>xHIUvP#zI=529t-NnVlQG{dej~#G785}&4r_$1I2nh-Ky-wYU zscxqY7p$|IQ$rG8it=4bGh}-OmZ%}rhLNs?l~w=u4>ST6{ka<@Gc(UGU%3JrcVlTQ z2Q*Pl?F!sPcK5;HG9zbcY3ZihJv}|8j;mT8N5kXr_jbUO%Jc?&Vv;fc`SJP~F}sC@ zMRugJPr)uxCE@!J3AVl2vZJJ89wrtztMazdeh1TWrw)g7!JCL1 z9)sR0r**6Hdaho6$g_8}(sAY|IWd)O%C1}CKOXW+N`7>=x~R%371weG=~P$^ z`*StP&8$5U3x0ESOeQ?cm@*WHw9{b2NU2=*d)e%B5vp z$jXR!YYz^KSsJ;6g`B1pA4+p5IH?$R$ou+L^JuT!yzLNcsjqd2+}@wm-~RFGU3H6? z2fCtaG7em44Q^pEF=bzEj#dypF9#1eH#1XG)vBzk8-JURFZGm>%|Wb0KtT8dk^;G$E9SA-glJys z8y-qQv-0urr7UQ&e42Jmyz60qxR|*->NH+jEv{5ll98U#^9e^EH)lz!03my)w}eN! zVBlE~^HPk11D8+b`8s^HK7ose<|l_cs&aC2y+#g7N=m)+_VzC&98U=@vSw9QYVGXo zm|Iz?ot>V9gMkmc$o3|(Yh)xBEN$ucDJv@uRjmn5hgZ*?JNG#^_kC2E>yG*5OP2;t zx*>>$*;YrweZSCgWgvNEM5ij&loL$)eNu-HmFJ-hIeGaWUxJH_L49D6f$y$tXwY_i z5$EKTKRMb%i>_CvqV>FV)%83|(|E9dT~rdfZYVrlZmq7U_`ySzKc8g0 z-fF%*9=uWmpQQ1;IaZFn!zFg+ggVl#*&B1KJX)(NwH&^4GDV5%T=zP2Yl{=^i4lMx z`**ZIcIZzx{C@{F-6}`3(MpHPxfqMEkdPD*FGVV?bpJWR8XFsH6+I73@YvO~9Ibp- zKIWPOLejG*PZ(um?pSIyDcY}9Op`o&`gCFQ2R#~&G)`+eHK&KmH@LWnJBkgz5$1u7 zXuW1H;q(Y~rX7iJ%?7d8VbC~I_K>k6?yg5=OG^s|%*AIkf>uvuWdlLHc==T-D6EcS ztN?Xd$z8iYwSgMWm$2Y$@O=j5nbS>yrybgO3ZwL!(q7iO+F)=YupFT~~JD#E}%QJoQ zvyD^#dscF?l%}TUjbA4u=p@{UnAE(s!|gG>?AqGeVRXH@Xnx-4?ar;`m}_@?KX1!; zy^s|(s425NE8U*A$>WCdMO-lfr?rlV^5uuauU2=wOopHIuqJ5ADDr6x?@FwPdV zpNk#~ql+q~_1ZMc^n57(f+HgL{y)Hx|0To;U2?<$%{$Kbbgmp$43O;)Vl9saZy+JY zBwuUyJFXwoTbIAg;>bthK^u4lz8?Y~Js-svz=EJoUEDC6@V?}f@Z6U)25gYCPhz7? zRnt}ixgjJ)Ip=wx^as!CS1al@e%NnV2T(p4Yu5`xy4k}wSSz=e;)q1*?&1U+O= zu_fp4QhhR6+&Z+fF0*%mj$b3Y@8h#h-jRNW{peCXvx1BY0mGwQ653UFOKe4ktN85V zNPUWo>sh#DoZhm|#8NB}%7)LkbOkcr`j;u9(zou9aLPuBF>(cOz`*lUbQ z{Lm!xaX?S)Ykh{e2c2Y3unUQj)2f2J&cJ|}lB-k(=u>#gJR;bqnPm2Ut6Gbt;iuBA z^FALp?xEx&MT0EvxlDJQ(+5HXph1#T_^dU4g%pMKSm{LgY~&B#XW$u#D~l{ zUL0CH@%*{U>U`xo3sQqz?(qJwBXbsRF1QabxDVBJmI+JT&@Z=cAy?$oEm`YUu7T^? z$rKJRrryA^AXgFb)u-6U23INihOWBY3Q%||vn*$Gz;aIx`oR=+fdusasEp(y)F8VY z^<;)aZ1nyk0%xMh=Yil3A{^kiA4KcGMwo!zGXL*)1Ok4ch= z>@AmM0oK&Db0Uto5qb=1xWA^+HX$nA*QD?{2{^F4QpbIq$)94=G9{Hrk;y1OiOVCO zsS5!=>`&h)>n&S+?mC#jJQ%M|TJV!@%~pbS*4`9Kp0^pfrm);_SH($M=J9x=6C0ZE zXEOWIZ;+rY`6N6ts-JhIJOpT86#&bv?d?*7#y2GMC&$|z0@h<<#PoM{sHmu@1+C&h z=&meP*jN8p8{6o)A`ccWJJ-yf4a*CIXfx+CEQULtL>1mG%2<5Y(~Bc`^zw^}Zih!k zTJ&Tn!ry-T_HBvvcx~2pM}oLE49hUviDx?2H9HZtN2BXYF&6nyw2z z9%2(jxM5c|?Sz`Kdc-_QI8Tl>u@&Zb$iDFyTp2PNW~3v!azj zwNhdVyqu=`aU`-Ir;ijSMQ~hx%&YB4OP5K1<OX$R1U#t$567XC+ohn}+;*F#~a+J)ikPSL_d?~|*7sJh6a)IGR zHTBcvqoJ}Iv{lyhUX^Qs7{3x#^2M9FbDtU$=RKG!T6j)G7}VmXXl*WB-{X;Zsf{`Y5t15lw}x_e zbI5bDlpa^%Q*<=d<^p@t3c4Wi$&)8f)zv9))#T?Z2@4B9PV7N>d4U}I$%hXgT+dGS zU>LQt)F{a!xlY#UNoK0^miIeyc1oG9FB{HhpT{Uiq-Cw)V zQ>e^{kI#N_rq3p%@J2;-xNLVR79ZG%a;lRvUF)&NF}c5=L3f zWH*spam zxCmzXdi*ce7#XqDMT%KJ{b3>rGUq;k(l7%?!Dj7ozms8rxSl{m#NEo;g{Cj)+O-K#^S}7mpRbz(a;T zKyN`$LPyUeT`eC_;@z@ulBd+UGxn;dl_}s@+V38{6hD{=4XG8fwA`4euRPfucIXh_D~a`*sC!+xUVCIeY+3G? zsq3~{y402Gf4Yo1BU_ic$Mfe5*5ypA$-DG(ngB`(;A+L+L$nnahMe_^ppkBeaYsu zvQnhxc&jz$u7_(CN*v5N5zvP_eFdJ+Bo3OD!RqSLP`_oBUB)$-S$*3z1n0`sCI~ju zUVcX}F$_%7kF_iZ>)q4oOC3vOdnP+rP9FbrM3YwdD_I|kPlt1n#lXGY49na_Vbe2iu2F;8&jI4OF8)ao4tutL=(1;X@0MS>r9y1oa zeY^a~{E4AQ&d|_M);7AoUpoG5&@}Pc`dH1*2WxjG!$UyfdBi*PYlGK18)&^Oj$xaU0?|xxBjXk;&eKgR7E@ryAIloqmF@jt7GmTY6@~EaQ$Xq7R z=tUiKySuwF@$2p~+w&de={2}vuXsH$%=OHbtr)$@W0AMr+<-jLMWEC4P@ZzKvX6Cj zb(=6?6lP~;9(X8$Oc^G*XoYPb(0gD$!Ca)<+E;?f;w7EB2>ZhXK-(@v9Zk^ob7p?se^-zk03hn&v2gF6hN-qPS1la zmzY%1Aa_hidCknsEQZ&>8w>+jyf+u$z2jC_Q~O*}QqnVT0zx7PvWEZ~?D$I@OPw7S zoDHoSGdg=;Q~FLJH1zcsgMYMd7_=bqZLM=dO*>-P4X?bZknlwCOfJp(nTkphNJ|4^ zhjS4%S|G_^o$~+;gMdK;E||yptz}@t-~OaUeLWL62~Y|NfKYBn1~7B5JYnyTYRFIZ3@zIXJV z(p2({oet4DjU*HCRI3C_oL1ylOc4T>Qvpt%6I_?F17`2=^TSN0>+$A~;Tn@?&%*l) z^a=nEqX7seHSkZ9_PA`XqjE3R@mdc{O=WDk;M9r+rAuG+qX7T7yFOkZY&VxxR;C7) zzdE2-_ZwOS1O()iPPgQzz+S-bw)+xh9G3cWBDqn=w&DQKEPJO#QtaybV}6z=$YPi`Zv@)>FOGmCIrAyLWvW6)wQf z&ko2Gzpvwu&5O46J}T0R%L)->Mrq89Tz%+LQmW}ScEs6-M*py{`Pg1UiTP2U zot~g;r#htZ+cyN-^euzbSEJUP}$VkR$w# zJdEygZv&yzhWxb&58u#!LPK_!TqE>2sR0WU2iE>4`uojBv?xyiu2as=^Du%WuA!Mn zNYjSH@scn!I=^Fcdm;I`%rS);#S`pPN?*^g@%zo~*Q(Yq;|r*IH-Js_hZaYr*gyZ^ zOa5t#HO~|Ebf!X+WP%Gp%tpX6-LvcIB9LV-nl@u1jPy7j3BH|-dQRQY!V}f&g##w^ z;&o5%&z991IzEo(SPw}y=*pGXcMXMPc?ZQ2bk7zY9}z%bwhYIci7nSd$B)dAXmS-- z-^4~))a8B#+=vX{u=gprzvk27jDQY7|7?+8`Z0F@wzgi2^$A-huEW!G4iCX3PTa6~ z-dT(l;pg&$QnDutko`B#N#^=AzUoU)Z@-1p!~WnR)lTVW-A+D~WGd9{Jd@1dFhrh2 zoE-MZgOR&6!_RR;*EZx-WI=l8Lw~4>Nng2Gl0?BvmDoTM#p~M5^DWGqT6fs3@u)|f z)m;s%#Po1Mwn27JfY|Jgr)X3yJ<{o3l`M+BS!RI zGuTXHtW+CidEWOEiKvzbXCLuHXIq9|b=Jq##0ypRPjSN@S9r8!p-HYHi2D@gzU}q4 zo%FAE+=Pmwsoj&sRehe{ldE&9?#~RV9>m+=E5n<(3DRTd?2oo}W%TQ}Af8)XO}7MA z?x6>)MkWaHscW}mTZ27r^URXqlVHm=wFTq7=y919&+NpiH#QU^u;$~^zhg;{*LjP_ zgKei}&z+1B$B`+CKY)^u1JBsWWs>MU<*pF}zPH$6OPUJNsA=~u$TRg>dQj+8aURSM z!-pv1jO$5aLE7jdzLSZGOq?(DgUVkY-}qv;{3~#c_nK_*qrPS63-9^$K6n;$zoJEKXCB=nep8Ik+Ge~}mfTryk!3L^ zgPirscxl9jbHEVnD?OEEHpjOkDmGvdrx1qeyAt&usoxeBwhvjEA40vR9^5Pz$~ z%g0p>}$I}b-l z@QjTQ*Fdc80l3>9q=-(bgS!*dj<~uA)1flELwUwTgQnJXhc+uKe|{_fr#6(s^Z^eP z`C`q+dkn;Rtc`jaJ#g=vi}BG5*+_D6akaF!2Sp|P1#Udr%WHSIXu&6d<*Wtq7T$K( zJ@=~O6Yg~O_NHZIWNe^lsHvySGEAc!$u_pIF6)W#S3j$9vN_{qxT4fsn$*jmNv1v9`R3?zWro`07n0e$Fb#)L1m02o!T?j~AO$2F3 z|H7m{eLs)qCXwY(i7cEWB0LX_#rG$CXz!Yy9v^_sm{8(8DcwsaKAhl`MIKg5Wb0D@_NfxAO1eavjd6U@^>2R-g4B5 zrEGW9Eu-Fnfh=vSuMhV|of1PrhfULpP1>FSa&~_lNJzDu?yMgBHO?Ck&{t&%?Arn> z=j;`?k9OF6u1U{&7<*-UjhAMk?sMG=)@I^}r+!G#`hykg0=X;bTEY$}<8p;erWDJizP|@U+oyvSJ_gbJI^PjYZsa^ndT}JJ2 zJi+C=G~$oM%iJe^TGSuKWm#DD@>hKoaP97xe6Bv38s55L@o{l(aSTatJfgn*R@O&i zsI$X+rsiXJvnP#Bbp^JZEC5S@NFPlDiiUZ2nyglZP4YkS`7!5-snZU&=jB84tGDF1 zGzum4PL|YR1;lCGLw#@D3kBY9vDqY|RwZPA$R|{-b`^{5F}k{5c{1&?L0WjhdS+es zhmYNXkHd8QDZZp+M8EdD67*2-LV)53*6iO??370NfMVajYy~tgpvH8s3>NRy#4gY?Hn}@7&bA`U|Y(L`b}vt+4ZnV_etbpab_j)(w4xoo z2iJpXN4=YLnBj?tG!+@6J>u@p&ZOMjo0sQ2WwM)h-6!prE?JiYtj0TOVqpKdbI{@K z9#GCsT-FPo0^Ri2uU}SNIja?FmAlmGdm{BIS3Hv!H|AZpjwQ6Zl{5-0hrL#hh2<36 z3f&JJ^?bS)k=;3yX^Y9vbE~PuM{U zl7LOZs+S`BVR(rJ=}cZ*GM`@9ZjR7&;yE{}`^C+df8t?=dqG-(pR~c6o}aMxT(y>M-}x%y%7p^|f8XoE{=EqtInCXNb@;D61S8+F?RAJ3d_H@z7p(z-wU<7U$Z;08sA|@%$ zIJGHztU4NR5fE~UjueP*VATr;}pr*iw+(?CImwGBvzFOTK}?5GUh3xKPPrk>0tLTdki9b$FN&f-93-p zNyp)<>^!M{MdIXhA1%U}K5is&<@j72{dK7Lt2pSHZgDB+b>X&QUEuS8cg5ScZ-;>( zLQHeVUTFOxrEVJda}4IpuV57G049==we?UoWkEU^H%FVg&iPOd=L*)2H zo)tS}I6k`pXTcSm%qSgRjsWPmWmW%zp6$_`uy5FDiGDpc%saBMu!u~*=PPmEG~8Jk zR0Rq52az*bw)nKTxVQ}?z!olnRHh0EJQ3oCwY45cB40#=NKz|O_)3)x2t$u_Uz!<*Z-4coE>tFCg$Re*M3Yxqbcpjt3$% zcV5C~2h6Iqm#E<(APIM3$B(4}yLq@7?3If;S+zbqM5FQ}A|jg92^UxoNdvdLk4#)8 zNiiDBs6I*0p^oK(n?qvc+P>wJ#FbETv!$wd`aOMdzFiwi=aaSCjLUL_X{Fx# zp65MgZhd4|+FPNXOe?SWQnPZQ{cCKwfaCgD-r?clh7s^vJf2_vSDHA!RvK_)pg%Hz zo55)?0VomKfERHE@WDurz@BED5=GWj>mBbbfyIY=C#gi9>>Vqfy<3!h%Nw)T&SKT4 zMz|AfR__y-<1nmcG(nLtA^k`>_;gx9ODl#|AqwUnHcI;Y)xgaDoRpN*gVy+B=m$h( zjP=>BwQd=(T!|kpqy~q@#?p+xty5JvCV44$R%czkQ5#bsfvpB7jG-h72%(Q|v><0- zJ1{GuyiPe)U&?-x3ShH*#Lceaj=MQ|+T}}Nx;z8V0`^{JS)hQt6T#kI%uG}R9G}wN zgPDLue^UB>ux`?Uimh1XxcUSDm;Bm8^LRim04C1%c{~()o@YOta?D7z2+2V5%lo9_ zJPU=%Vg0bOLIroaELt3ELR`sT0u1wy9rjOI9I6>F09zEpXBuQ~VIkmo>kzLmuz$_5K2{Lt#S4!eZuB+8hq}lN z>j_70;voqZyrLU>W9K`0e8z2v<$@=0{(BQ;#~~sk;R0RNEUSglS(#ZiFDJc(+Yc@v?tJ zkd9cLhaMQqFbwutI13co-$*N2HW7w8FCQXI__)&StMtB4P-p}qDdJNku_bv2UY*EF zD?9!QRJq-c-qX@p-1!s+b&?+<#`Lv7D(>g>M)F*gb|#eyLrs0&>hp$0p2GH&hws87 zBQxK>zc4#LZvkjQ+IF|Dhm;%~9NDAOzyyfjVYl5TSblT_B1^o+W!(3X4bAd)Wq$Om zw@P)P&hOd9eIv)7^5d=A3PT7?tM~PU(-`JFjW73L4G74A-``WEKFd)njWq=+U**#0 z93XzA17pZz(?pLlb93_sFA3mSv#MIX6YstSOhh@6fY{gS>+933wXy_iez+{2j(wZ; zaBD}T0&my#^dLOFw41EUqZ`-T)moo0kZKQKhzIQSvNsBAHhj!53r>O0AH8o zSheQ2Z{KckbN7Q_(y+ZU@Z~<7fk_8l%ZBr!4}xQzCwt=s@87@Q5c_Y8iGa2v8aQ}u zKaD0MDH&^Wyq^Ly)&DMQl>jtzSZL@)Pnh2n2MiviN=9a;%r7*sPO_=ty|J0XSoO## zyRxjj`%Yvj2%L6pM1sxOWHhxuQmd{$T(sWYMZ+2#*hn?Ojv6WbfjS+J-dzPYoF;(o z-4KJ*sNZxT2vUbj>Zs3vn_m8$li!WR!eN#L?yBEeIoM85T2aUE;D84^E_*8-mNCGf zGgy=W9I_PB*ZH;Y-@o6K3QRboVt=n|Mj_@wwCaa_mteGS86JXkl3%|L`f&BuJ=m>u z7c^ikkId#mXd?%YuiKZco=WD1?By(M8~Vt;dyE5~kDlK25a9T7ss;R!O~)a?q;n|& zRa*Lt2X$PeBynPY8Hkv5NGw=+YYFFU+_oO6c%0~U>e6HjkJ0t}Z<@sGU~)1xe-kO-`_wVNNTUo3Pc4}CH62Pr?o<78P+9dNZEOQg`?90=@D%A1^L zSnrOrlpa&?rU5K z2YVeG!KN*m@%=ZaVB215AmVvyX_*HkfZj~yM3P9O(zgGI)$LKJC9b?0T&;m&dE7 zU!|bFMOzel6AXvR+qlU5H7S5IFmrov8LbSaAPo5!=cokCpYC&y0jU@m1p5JnW#l;u z+fXjyU4fJy{jv8w)zqX)=m#QdON$)v1==5uT;^2E%FdPrd-qxY>@vu40YJlivbD3T z8Z~jho+bE`*9?#!h=thecR|2_je@$)lYX!e;qdLU`U@~Nt|vR_onBRCzepFfu9I0y7{_n3 z0IW`cb$6I}c0dpN2Seas4uBTS__4*?hX8Y^!_jJaPEwNOe4Jen*Rm||vSA4tw_I8s zN9ozk{dx@MGOVfqE60XkxP`fSSlqP(7Pxn`svPqW9y@)Gt@5(6T{PC!$zX#}!y~2Z z1*jMHB`yN;!5%YoBj7`%lAwSAhI#V2n-o4r>>Ga0n(y?HJ6L4Ri+t#-*RWAjB4N9M zz!YcQ$~!0EVD(xcP^LWKap5F27>9lH-OV+dH4Wni$am41IUS>kw-6!s!E zZXaVZC7#*Z7QuTFP*t*l7aO(zjpwB{i03%Mn#>#@Pv>?EoJJphvQsiM%Z3S~)4Wyn z5+gXgfs%uzV{unZCuc#mq472_4mCytH2{ip8vMAb+hHH4ZXrF;NnuwpN@{c|{j6zN zuWGGw*?!ak?NIs43n*=9*#7RczXvvDE@1nIP5C)_fs9Ej=L^OeeppXFXY~8R9WjQ21p`tOi^f1;NsfWYPf0*X?#f9*t*QwCp@IrLGqdLvqa7z+v8rm&=FD&tb*%F zzL}a-a*ky>sLS%u1_hv8D3reY16j1%n-6Vhq@I|QgWkMP|NbLI04-L!LEMdyOFx_R zdfxekG~h#l*W(o4)8Ci7Sa4tS4|xdii9St1;+HvNE6i6B3m?iOeJi`^3xeETerpU# zzHCt{48tX*evE^3nJzeEhO@-B$Ih;Tlh5}mEhlme z@R1q!BbqR+`C)f&*~97dRT9W@M5HFxrklDt7@8nPEDk%T$N#X);hDqeF1=pE@5OKF zkR~m9sp%MJRaZYPkGLU%I2Gt15>kYaJ@|dq9r=&LSQF-m8E)xlEfXP@oM_+Oy*eTB zKIy{M9-_3FRYo({;hMq|tfUV#uoRm2!;LyVJW>NfK8PA~3iP8q)VI9)kib3&N%4K- z$*aZp^!>@A>`2Lt{n^7%T(jL*(=`r9YwM8y(gcLUfX4`Txb2WwNFi8$F9n~Sc=AD( z(N=vY(Klu~)`H;XBP`@VFR8Lq6+s!3&K5nkK9qsKMY_bgrlgz2G?q#JG+L6U}JV)M5K5-DxH9IxbQ zKD?;bpswdi31A8>ijCPpHcFj`*MAV13lTY!W2IxQ&{p@QRH%YonHSu zw%mZXkGuPbCknp=tLa^rQ6V+fZRDLe;ftc>N93Lc4Mz*l6W_mP<^|pV?$}j@cXDFw zVYM}+Pv5}v$YiW7)}jHJK~L~3Ha%gNCFZ&k&j$CH1SI*9oEfL^UA)izkp-_V>q7tG z^_=ncmqz^jQ&N%yk|AeruS4sFZck~FDOVcOL9@L^NH|_60spSC&`0e?>-AJU9%HB? z{ZH4uG)t;>(&rb8=t+)^7ySO zsURVv9~m;y`4uKDoQW}5HzKl84j9W(7f6!FXT=2X%duUf9{W5dD)i-wiM}$h65B+N zW?I&WZ{tr=gD)HI0_2oDQec+c0~3G73C#iq(!x|RG($AC8L`$6xO3#9&~ z>g{$_Kor6l4_GX?fuH6qZprIF;L`SuGCX~HY&m9MoZ@0<6jt4^0)007IleUCGk!rq z3&8e)x~&V!@=E`tmMME3hJrc**fzxhYJh;VslSm_A{S6ozL5lWydoD6KlGV#&tb73 z9ofC1l`Cmo76`&qg_k+aOoo$jZ{EBKkO5>w@4S{2ap05UG2iHkI%HHno6p(N( zo*u2Er-LQ({pnoUCylYy^gnt>A6Mw&Zy9($EvJFjH>a@%iMVNsbPM|51MCHf-NYB1 z;^q2v`_{&C3z*1@es79Ltlnhu6Pu~IesDv#<hs5b^xKmqi2KV9&ZZH= zZI1@nn7VtNstzIvysPlpjh=6Pi{bdV;eEeRyUz{Jrwj|%pR%#}j&B%m+uCSVI3T1> zom^dAdkeMux4?u0a1)US2VuATy-%`tJ`Plo z!F*cZ(BbSJ2CjMg`t>V7K=Lo5C7m{F#@$~s)oH!PXP2N62d-==q4B2AZ7DE@;_=@*F2;5I{pH~(;8sCa|O!k&PF5Ya@nxeJC|rkU$E-P6hW_WZhiWa zb<=yj0El5A=8cBkDuYC@*0xd7kHxW#n191*+5X|Qcz&2&pcB(5sNQ-Dn{B=r{V)gS zq{`_aQA{fR3HzKeqfp#Fd7@{elg(#AeOhd}IwLSIq0DHqCy1D0MZoA(4xM+F`3C^B z1n#ia43JkWl%f&9lgfLMsR61J#eVg+JnO>|rJbZcu+pesUH5dNrU(u1WGf?wN?7Im(w`z_J?< zUW$s1PvLx(I8_6LcEAanZBBiIGv)?AB9LaL0bSk#6bT^9TeE=A~i@Kz4`zf z^_G+4#h+qD;HuuA#SZyTclAL};%S<>LmU&B4&+)OXOh^TlEE;z zoKYNvGEkcIIB^@UTm`+SA}{|=El(>Q6dUQm)-O8Og=7-Ff7Z*dDf8j@5Y1pq?g>3c zXPIphX&5sTpprtg=*)`F;N zgOut}7gc6iYP?T)wd)*PHBY{U$}UKw0pABqyYHe9>gt(5EXnF5-GSIOEiGb*%*T%hP5tdEUqJ3C(^KP-SairHQd(4!xCwcDYqwUisMP@87>~#81KXUz)`xe)A|`<=+7|{^cOiwN79i z&V%dKKrL}0%t9{rV?$FLg9}n%ah^}k#|mW1I``|I;x=m!HdkmP%E%=>-f`3L1>H=s zYFBB6(q=^3-^Uo9?>fJEa~``6z(p*Ft0TI8Me_;3q6n}VI*q*Y_XI&kv-}FyOjG^O zl6wRt2hShG99qr0Iv1XIXcPAQ+D@Mwcf{Q`n9*0tGz#*pYv$CItrp4SA3V@hE|q)6 z_sf?1V#vXg+z6|{0SQ(?T}xr*g&{4XUTO7jvxD1bY8 zc5dzls7uaF^sEF6r7zDIJ7fDkJ{}a1IDVf&;+&hO7UhJ-zxdkC(CVW7a3v*>`OJV_ ziM(ffYYWWJOPkI!pJZ}1;QPfI@6(-F{F3P~x;cwlTds zY+Y_Y8uU<-U?1`$9sTm(36U>-*2z99wsmf;F^rnw^kK5Bc9Lzr0HnO2^53hQOSWf#7|90oPWh-~ zY*BGB;8I?QA8#~*8WUNt;c54LoU`I-Tv|R77IzKmsluug#aCm9zWC&J6mC~jw|XeW zvNoV|AO7Nz1&&qn?eem+CD`o)%UFCJV#SS)cmK{X?ySbg4GiN{Ws~;WbrRI$9Zzkg z-=w#`6t@M&UFVI7fJK0;Vnm&+no2-*dsce-!@91WO9Ha}Kx3Tu|UUNfHt-&Wr8n_NMlOBPXJdj#2&PAs6<*575qc*?O?0~5S zYQ{y5uL{{D0fvpc2Kbg}%hEv^d2@3!4ARe8^wVWJHAk5*mh}e3EAEtk17sh-m-Zl0SpsVveOX;683d3;pp&3g zmBm?P;c5x^fCriC@9_2;7k3S&6uT(}hcr>1HK6R;aA$24UPLj%b{VIun&_ zGcIl4#wyU~XMpN>yzjp4T&0=Qx%0dVkw-N-wA@%VwOSAl3J6?J59S4cKn0sOMOI6C zN+Lhr#h;Y9oh98nqL~s~Ej2Sb!LiPQXTLE=)tbfYQVvA+}z1Wwn3T zcPD(%jM{hcKLUFa zwDI*1cEKfMQo%|RFNoX3JsS8*y3g`dhL>EWp*Zfa@0}hRR2?ra`Da#*;@08o$gxv+ zLmEC>QPSS(~X*pDGzA5}EX4CXngZVvXO(+3{o-=Dj`*=W;2 zh`5p45Q3)u$h#;18V~-!Yg1bym}a&v2X2t0f6NnU@1K$$42B>yPW{?+|vfION zKy~u)-Jzg*hl@4yKm`LJ3YvK3DWV+&e)%0B2dO-7TwSPDmQDjm4qU$<7KuZ5sJMZB zXeUI61?sNBAF{DRjBmNflpb>hQ?DyCzjV@IsO)!&Oat25Tm10Edy^$E^@@j*3V zs=;yuXjm4gzvMmEwFf33Fg_GxRZe($zZDC@XZ_R7wO{@uRN2+lIwyDMHz!^a4K zwdinI4a#B`L3K+qcg2KvmKUrW!ZmQ7$7@cg;?x5O!ll4sVHS2$yad`%r}XcuP)QPd z0GR>Gfuu;qHjtpc@QOnM*epO{k1svE>Mbrq74Mf-u-jpRs<=@U@D<=0@ss|ODFG+J zl)jpl1}C??$z)+;%PA~W0ilDI+iR@a1rC52%86r>Vz5OAq#68%P55vvB2Z?7DfF&G z5ZU#<)$?^1070UE2_74Yh%!+{4l1(G)D`)}>bA3*)s z60BB%qlWxfqyBpdbxNB9oESjzXE0O$aV&~gW@e^#(a3#&l0_IRgs{l>7U-c!=Bxg# zp4ojRsY-}zuOU>VE&4U1BB-~`SHfd{dLv*3cVh2@E1 zuZg+&XBa60v9{c8tk9qlv_S&in{dOB%A*5L@d-yWI_0rlTs3d{?V`Dz&vywz%1c!> zgMa~npvJWHbU1+n2aCY>`)x7?yVXz|@IE}MIhc!uj}DQ@uUxvJ>%RF7{KLx0+$9zm z0KiDxeFDy|uw2Fl3@@)Yd`JY+8t^BJppdD%De$6zSvND6PK636ioL@ zdE)NlgKhX&sIF8Q88H;d;zKSachA$_HzDs*YU= z{uqKlU4MfrK0f?yaJ3&2blk+%5eI4zavl~W?|`@z5V(%h@>_Q$*dUO$#)kC&BwBDx zsjT0_VmbCtf+IdO;S1;#yD9={VgBmARo1#peD>E@$=+f^WEXyK@bGkc4e+xvBQGvw znudl$oAXulHi$5iH-Up?*SrnCJXW8%L1h_WfaKr77;=9d1|`fsuvsXz3Hb;f82mYd zC??isfyD?Vxm9Qb6uObq`sO9jijWrI7fHxGrA4awTETom8dW$lf-n5;kpx;P#z|&y zaY!z$A{=fZ1_RtM-G$#%?}7d$ZF{xzZ+%0d;|$=iDvw1%hL>)D?;3*B5ui1VmG|>^ zh0BL0f8PSUjVylDPF7Fq^jeAec?shPF7%+>LfNZ4_9K}zP zzt=8T#{D2YCgc7+D98yQFRmYO1;DWtTzC-%pAa(L+uhaORWSw#1>j9EilF5jN(ejN z|5Mz1$8){^f7~AO< zl1ji^2Fvi{(o)f@>xga!I@Q1iP$XHIox)sh$Pux}#nk3V(!Y!)d=^+zQw(^UdxuYH zAnE`J6CuUix3B_!_?ute-WOY_r|kkc4J?TWG(^342io4{BLRn^Vq+hJ8`%uNWI&lJ z_&U`c;6*cI^J3rJGq-q#!C2F&?<0A?bGPJojH7%KHIN-%?xB<0LUO61-3$;C)!|w0Fb~4F2}7$VDc+ z2^m{q347EWnUs`=q_Js$Rd9TY>*Zzp-QE*3K|$b+Ij>c@RfK%3pa9;L8A1&RwctCi z+(^s-hMd6Z7UWDphY{!qVv8RHiy*fJn;()!g|i_j5mE{u@(-e^d2X+*ueEsQp;#Ac z{)H%D#Swk7LO~&}V*XR%S`?r4KRz2{XB}w211kZxtFDpf<4y5dkR73u!_W*4kb~q0 z_@oi?3zc`mB-gXuj^UU3QG3G`R-o}u-B9PqCRDCK7MX?Q3Q!C1k8aCSWl~NMbf_2*6s|GJzQYYvsM#<*Jsmg+31@Gym2T(PeEo_`NOl9&G;zyUNRA6mVp-U{x7 zy(GwPazM~JVoG*^kNN60q@9WO?FuswP4?j`$}PcCqYuG)Uz0SMs6IXeVyS^9iW>UUS5DeRf!QO_u`+6(PmpR@j-b`QYf)sqt{H zFly&cuz;EZYFI1;Uc&xw`>Ymhut2%n6)z(`6WHgUzz!v6)%dr~wmbLmFrPd@9dXqV zB?=%JSNb`}%i#z9z>Iv3*F%PpNa-CjCIvV7E?p70dTrq2c?yR~0(99UriVRglc4YP z4LU=!^9~ikUhOP;PLy6jAg~ew8!@PQ1G0*Wi=O}zW7l8Ibjmh;@Xn$#KmzYFY3n;& zTi_O-)5s`k2ySDmw65i0zdq~<%~D6*XiC$4U|R)AO(#Rz5NIj)#?7E zbWff=Q-{?rBHg?r(;UiFaZ;YupxhS%9ZTT&%4Em6h`J6+CdphvMrUb+w1S+x(4>K4 zzIZNj&sR1b>z6apj~8NQ|(TexHBHci#af>hC>0>B2j-&VtaM8{PQ2j z3SqHDq%d^Duqi-bu^zUwN~!PAbrHU77hLp(W^G5@=U)<*L-NI@kS2ex9WHZW=q5s4 z`Z7rHP&3E@1Vk2qNhr?c#9bAB@#hHU+pF$ zElfXe#6ktD+}3IzCh&Eh#1?G)m|E$Clawf(76)VV68On2z^AkeZ0R-6GKUh{2o5`h zCva27BS;!@&>`|Af;w!??QG{apI-bhZ|ec9LU5*QMeErH!7|`5Q`GbAhSWx^6)2Y` z)%!0}cs=-gZaRrAYdO8BRA1xvQ-=KLAr8Z+{Hd{FtTo&c8$YEyb!jYN(GY!s%i&pL z&uJ(GVc`QdbT!Wo*9F4k_>Tn2-e|XIN8!5fDTifR)@=;PE!cy@b1eWD1qJ^+7JT0at93-0d!FW%z2@y%WevAu5_yXwCa;W#aaQj) zfBCz(#8}k_L=j|zErX<0^uu-X<0Ph)) z4b*^Df>0jlj6;~(38hQ%J1WrkKwA_FG7p}#yj*fHgqNCe4;`y6&Xn`xJkuF7#Z}N@ zP+s{6+9%$4PX&SAb)NE{8cKNnvn+& z9z4QmLuq^fQ)BxGwLNYxQXXzmWqE3NLdwf1E&sX%fnTjTwu<^1yeh0ts3`*lOV-RA zH*Vyh<<$=1M_{|vfz>c*&0(x1IX^cycise&ngyYb%X*%am=B+KJ3+oRxMI8`>ygs- z*se-%3<>7Z3t@h7`-yPt$_06zE6?R1jtE|JLB>RPclTAK!91i3h$zFGm=!h+=i-l1OHunzq);3?g_=qC9cL!3 zCg6XNGbG0hn}YRH>6dCq;F>^u5VesDaft)Y${zkZg|!>|?^zqh`UEUF+H@ ze0c=Y18ma=h+C&*3>J!*)SA7ED>CA>PXKK43Kd%~JBC?Q%_C z5eHN0T|P#cFlHrH@=Bp1#+GnyaPBVLa(BD{t2_VXUpN{mn(S!nW9wdh503!ltNIMvx9yNQmD{xK% z&_WZ`%gDz8B~E0dhF-X$a}tPPwWKyawICxEf?+@$_y{DM_CQe0xL6*6lO{+>~oWOMX0X*zPORSXlUPd79lPX1Q$7l z&_?tolpzO728!!fv0tD`jY^FApb9+*7!;4i_@N1i9Xmn8$)G2=N^BfeMr4QM6n>DI zWv>=yK8d-X{bN)|WnawR@2_9w%s2*5MoZ26{%^$){c07iy~sR+(tCuEiAV?j@e^1g zuEv7T7`o+Q=CNMfM1w~A2vTY(hzDLD8aq`fcmWdqiUG3AAaK_RtDtBEOc5)QonM5Ick?yD@d|}z zD5NXE4z~W9*CX`;ZPYB+G#sLbDx7XXR5OLZrMbDFjE;o@Q)cjq^0)0h-Xd$} zd~fZN6LNM_UwSCYjN0PJmhrnrh}YrG<7wjY(7viU3GEV7`;F<^CC(~#=wy6uQbU{uVP1VL@k7%x6wLd~7WE0c!rgY8$(p0)E%XlpZjTv_SYw-DqiM z)(U~R=*k`&x-93kKGCi|R}T`8GA{v4;f*@(Ar8VwX{Z0aib4_=o&d2H zhe|>=)O~W`eB@ku+75SP76fn65s-wkA;=Q6_wU-Hr~_)<S3DA9PfdO?$`wJ=h6aU6G}fNC*8?cE?wUKh2?L z7$7ueCqm#=3gJAw2creF<*#cdPs2d2}D@XI0tGFPsF;V?n4kZr({p{p9CX zWd9$6 z#PKvOdBaz_5;u|=`|-PXpE3~}MJa>eNEJWJTY_Qbki))R2}Jjm4?pdLF9*evJHbpJ zZl8{Xqj_KSYQwt=PBbUk?+CC23X;zegVgniD0svn3(Le(6D@4MiULIH9-NFupYJ(I z+^@UwGb`x~j$SfYH-<8rH*?%~wxwYb~njlYt}FJU4g0om?}z%z;FQ%1+G9j-eEi$WFuB*9cHVbx`$pGE zcAWEwE5C;$0wq1+GooDarJ;_Vsh{bDF#~79_Z~K&2&xiuJwSA%I$o#oOKbi;y50$V zTEe3^i6dr-7~Vm3a9u|R;Uw)t9jrbFJV2YgH4(Rjz&C3xh|5LHx3-aLSr{(SB7M3+%J>6Uyg&tq#5Okn0rtvdvHCrZ-o z_8!1kzwK>HUmux-0O=Bx9<>Lxm&KP|e@1zsRg9S0Q&moEQ_yTIiN7BX+rfb$PO-sf zFGnDB`t)26W(ffA7R0oVdse5BAg!%{bfiqVT^ zdp+xytVJcYLO2W9!j%qhNja;h;G%+QD|i#HJkNz&e(4>Nh3dlXZ_yIG`!#5N6!ZNf zR9-+dcOr(Y*4!^@*@iViXiFzk?>dfjZl&lS;M1pIm{i40B-N58o)ceAnU%Z0EK5Do zBZx8hiZvfBxSK4mV!NdP8Il{78bK7@Id#Ul)%n&Zwe6ItY`s5%E=(;eTDwZ>6u=0F zJ5QOle$nILS$a8-NfTR5t&c%o?R*B+UN8DKZCgtsG}Ab_wY)@@Jfza00e9v3@rpdz z$!;!1nfJ4c9dF@{!1XXOd@-E_=Z$yc(8p>_s|3DfklkXH36{;vY;)dM3{RjkXojHv z&Bi%%y4!e^wUT$LF@?7UZH}aeBpVJ1(&kIW7Nxy|qHOVe?}{`50Y-X-TJ7N5cZMrm zncH8!I4-@)Z^N|G*AQ4c+H64oc|u`!n4DQX0DM_DNmjVje`;9#0rHw6y$5nc*LWrJT0pYVig(5_eK zOQh;04UGsWg7xu?J_W-6u zn^bxFa4y!>E+i#Hh&4)Zs?bTZ&H`gY!*U>@et7Q+r0O6KO9Xt`6EHAYK!OQgPbBF9 zA^}ZO7L;6&-P2=pl*wtm7qR>h-#iQg85%!RIT+^U3 z)sP-9WPV!Gm0A%k&x02jb_kDvh`VXD`{Y80*FL#FN@|wjoSJ?A@~(U;uL1?ss0Sl9 zmHPqSUl8>#%k(RqZ^SDwLE~FBj!2L^#g&KL&zgpy_o}Q*J0{ zWt!p|(54qO*Q<4>w;uFbTfNWVMf_7Q0)@}sJz*gJAzpgDTYQ09=0OS9LTChKK-pAi z*0la;S26pm7Zh_JGG5au*H&dCyxnt_42+y7v^#Mk4+7ya zY6m4P!+XY8%74`P&Tv)$4wBB7}|DHR`460ST{V-4u zpGR(a@XH$3(<{Wrn+^Byld*BYjFz&Q0=%j+qTakG08Jm4URR3UyZd=ZEC)2D{-tTKu#W%Mcn zX0P3*r*p1+eW+_qyvt-j$>W6+Wpb#>0C7K$r^K6*G}*&nFt-~2!>;*viBQ%nQy@T2 zfdsV+Eg8N{o6_h46^7v<3M5jzgQj(cK8(|=ES-W2_OmAZt~6ec`@fyzcWsfVTnW_v zAG>BKkNY!d1Sqrvzqaq`S9?FNcDzy*l1B@p6AGfdJUq&@97<|{ymZz9(jrt7fb~eV zXse^E`>IEo9(aO~NE~_i38+E9#ce23N;#HEsAYwd{Eo#?$iVW2_GK5}1Q6%vU)+;o z;jt}wL5)EC<5KL%bXgvIyWz3FO0hH5mmM66*tkVRN^~11i6A-9O!#KSAzxCb2yb2v zZB?P$pXHR}gcL~WPQcii|G_VGfF!z(m2Di#M2OL}IzIwk&~_kxVPO%SjIP7l!zLF#dFjR+1 zWR2GYw&{Slh!m-yAkGH+g`T$FZGQx^K!Yb#A$xL;MPg}qS1dre6eEgn?R=)8wsM*p z1TS(D7@ze$*1qntR-sF71}5EI$0jT@y~wn^|JlYtZfpHujU(wo_u}`woi&VK+tb7V zEZMg0tqrs^08QlP=IR2_iir#_mt|(kzk6qBz48A(-w3?N(34uYas8Bmy(N{I%;m`< zBMkx1FUK+GXO~k;88htqDLARgz<=5-v7#pduFE*U10zp0I&?Z^wi)taj0{QR;2F^r z9ga$$%C9kKj~1CyfZA2^&gQty0Vt&#A@(kM9;(*{#ZYO)c^ftuMYp$WK*lJ))dvRW zBimc8vXqlxuKs54qM)FFG8iZ(-ndBXP2pm?_v=DG(Xpxn=gYm@A~BVr;q4wAevw#8 zUsi-MKvWu3dwLDQ zi(!w7s4iNMI^HKg3N0=cHY6b?HLc8X3gB&4$=~$ zR?DmHZWiyi2{6x&q+{viRg0s4L_UGO+(T3BGR1PS%hj=ksyLTeT%=2G+Z0}+8d8-? zsK!gNQz4WBNY8Ne%-bc-#FAeWy|z(P6HF61fGtLuCWw1y#$x}PhGm<0xxP7lZZ*^2 zDsyxTH{p!5Ie(VV{to$~SS_2X4}~jjgN+SI>zOZ1F_vzJpUBLMi#(W~;-Q3+ENH30#vFk}nQ-7_cKQ_pT zIWzjkywERd@MW>gx!uCLvT~be!YP~Gxk!IEIS|))0Qxt{WsDwC3ec*DHhXAXh!(}#$I)f;T;HYx@NA+bzQpSM*h^PjD3uMDOlkU z?YVJW89# z4r94N`p`ugzDawg2uYR% z$m{Vq?ncp^`T9(Wl7syQDRoU8&daFXwr8{FHZgb8>$eK_rYo}pAfF}MsYtUp`wyc; z&m_6c=Pu|ZBXb{eMDgfy82wRPaDwPe2Az)rGgn}}mCSs5(&HW-dl|@^F-kI2*BM1h zf(Ft!XG*uPspX5uqwXjG?|)s9zucV!;i3h6In-vfjJ1jGNPAt`Dl)$aq%vI*-f3QG zCm?%sDlwgP$z{Hmjn!c>J|N|F(lL2#2C|&VM(L2Ys99FN0EYjgthKuISu-eG_igVW z?J+pZ5RU~_?iAW7Jy&J*A>`hjNCg|v6R2Urh8HL1@I?F=u_51@)||d| z>&G_aF}DWcFk*-cZ_YI^x+#T8EXSah~dW>nn5lKrA){`Donw3gr1loi`--dc+8cxC(J`#ViA%n(;JTIP@^Tiy(ldKf@ z?DU3i&H&=5JQYU|K6k1-OmUOdH0!1?IrhM!K1oI>$J#`PPSjuXV<_Igti0@ z{|6pK?8t}2$^{1UlXS*}lS?%71dpU2@N@5v}+f-sbKUe@rvas#2CBjH02 z3bui7b^^|Otl^!wrS^535nkt%y&&a(zaecE!{<#5Uw|*J-8BPrUmfF0xUk%A1?(34bnlhMXCvkZ#qhJxJW8;-b=)&>sSq&XCgM)bc7FJo^cr z7$nFO6O};92|Jy0a{N{{b3jz!m+Q$71*eBOmL-!%F}`LWc`-3>>)WiLlp!KuDM&v@ zhq0&hJ>e5<6~@e(VG|hNbD24$?pc37Q)xGm5tF#;mc6Z9Ob|H!>zz#=}f7M#_qo#B3*t(yPE$h&e`m`K1DO-^j^jX+j|3 zh2W_alvQmd_U@FOp)jJ9SCz08Ce6Bwx|+*?U?j7#ZLUgq>T(aGgHug{phWR^Fe zrYN~5iu&rag{v`i_o8LBq59`>O)+MVMS+C(`EZa-~E31aL6WicAs!|vWa~%(^Q;(Khf37!y1f@g|**Tmt$HpXTLXA z+n%-#_jOk5*lbC+Azd)pz-fD(c=fnpwH}1hM|pXBKrt_5-7gCHxH&M)0m=(7Jd|+5 zgu8r51lu8t+pQM(Qu;8k#Rxq)o^AZlFt$)axwpkTR1NT@VJ|fcy;?)VTOaq_j@R8F zO5-%9xf$oKv>wVsZR@hHk9^|t%}UkF1xDW2Kg6Vhphlq`oXkt#8+k2&0$e_x~K)D=xg^Jxm`a-BQhojURqHk$#X-e`{6W7!r9Q(GSA@2V)+ZaQ@A zR>XE-W*q8z95`+5M@1TW`}oDanR+xiz+Q`3<lXU^IS)t>N8&%uf3xy|7fH~r&HM8{yXW<>{=v<||9}NURvYth0VSSbfeGPC zXo#2ctOip^T^QKU8akBhBZG|T#IAo{wjI5|+LJ7I1TeK8PtC0f1pT7SUR7i61Xafg zDs9g4#GVqPync&LbHx-tI?e41YuM>WNVElHqBIblh$Y+t^xl*Fd`c-`@y(py=qD0Y z+FA1o1?XAEPT5gvd{tk=7`cH2Y+e^>XZ})r zD|TlP#I;Wl9t$o|Xt`ef{B()C1CN2iV2sbbGktPHz~*#KcM^DSkcGV?sr-^@yizYE2lp|AO07>7gdxjU`z@!Pyh&< zu6kP`-=L~9N1K;a`}IL!2&Vwf1g^df>s#HNto=K61Jv@Gs zxH5S0j>&7TClimb8427x7}{W_c*B_`#y-AJ>S*nq+k{cS-cb!hekOJV+%=nDdAnc$ z$Sr8AQa8dFn;sa4TG8Vw8k*AXVnEEnEjoV`5ZqvOR)me(Dbp_!n&M>bW@eXt`$WB(rJNRU3>i@QRYAU=^USjfJ&(Ng&p@DRz0fWNOoaz^dE#HY?YzqV@!|^ zm?-jb-@YkQ$#Pz}$!|MSTShS`rTwM>DJM>c3nvaSQT`qY1CqANI_#8ETtG*K_e27t zi>Zci^T@F4`(WMl*f3t16NJyH4LM#4ISR7vnzCp9z7 z;l?Nnb;e-L>Z*o9BMn>5gfAfeuvDV&AIX69-N|xQ{xbc$sh4cS?1RekcbcbOQf6^G z<;`p@e0RH6Ckak>>2Y*h95#Ju5PALDg#YqK6-?!a#-W)$=OwIZ&f28={40+jBO`oM z!hXpnU4ikQ+Sy_39IyHTOs#&xvek)5Uja!&8qxMC zSxn=Z10Hzr5J8U%-{=Ib>XPLCEcf_VU*NOyCO}t^Sn;svA02I+P= zECcm1Tt!O0r^7lUtHaHzd;0TJ!TU)2^N_kMDkYM&9%8TC0RO>>+z+yuLZ!rd&UhWJBYXOs&=1cmaY! zYteU;170=w?CGZsv~i4`@IIsvh9?rc*6bSunKBE<_R)#-%anydcW{Q82Tyg>DX7d5 zRK6lj;|g=I441$B$=!gIgI!()x4=M6_I)!IU+=3zSlYJE$K3OJPRfxu#zU>~rmoQU zd5^jlX3lO==+-+o7SluW7dhSp!!f8+0CvUfF=~xEYpm~x!}Lo=IV1e6n9_WxWzBQ& z5=udlaD-3{$hU9(+@rwM=*cSWqyMpFm~i?vKOaBUBuK5_&J%6F+}^VqO#JdLF^-xO z^(BwVk1IYacwXE}I}{hf@pEF!Rb#iW__=)OkE9lq#1{BI-gposwI350#w7Fp6rQ`wYMq;q&!vK2FLJ?rSOgNKxIH28&1`+a%lZQ_ixMp zl>Rb^9txJiF6d1|t@&G`(_m1{IEXE~$wm58K73GG0=XiZ>;(OE9>bE8*XOzd_+9p9 z)StlwE!I_=tdF-e{(s5bYtwuVP@E;jNhHG?@Nn0}dPrUC+`iEsM(AbeJhEYRsN)q! zjQ_C&Ip<$m>T6$Tx*pj$q5o{N`GC%|fLvy&Gwyp*2Vi=)K zlQbT1$huW(XHE4fFdBKQuo2taD>YM4Vtr;Mp=qTnpx1UOP>P;9H!ej`2ZSvrO7JtkEAlDqw7WtT?eEw}wq2n%5{X0c|0Z-sU@#UU%3p6u zdYY48trLMoh+vQ`qcR()fL;GoYXf&o3S`mh5xbN1;DeSix=r&#{j&A@67~(FHC2Ad z=g%o#dCrqj*7=lQxbH76y4Xc#CIbjU{rQCjHU*WlH{`o zv$(8W?vV0M1V&fqu1O?JFLWDZaOiH(OZ2Y4US{}T)!TJeZ-I>g#h^66&6>d!DA!?c zLVM8jn?b4vj%la5Mt@vEeC!on9h6YVve8FQ%BI8p%YirsbEv0isC5uw$Pi74?=upjyh?^15(-3haIe>(?y zo>65jfI*2IWmg|t8r@UT{mG5@0rJ?brjKQxv;`lmEIYH+U&valV>IaB_F$4QF9C>t z;JLy_J^xVXWb}khcVvYjq$ct+J>;PsFtO#kdNT%pj(_I5D5ihp_1sIV(heuSXH8o_ z27Y<+Adcf&-*#Wu>4qV{abRkox#U(AEf_a}SdrO&AD; zRKnnf9&rIlPE9s2B|u8|@afRA%Chk^U7}o{ms5S8a-?vb)qewq(Ekez0TdMQsTD!j z5=BNoOCZ!~te&f{n7-Ze+=xdqS%<0aNfQ1nPqw*iDXBQ$6|MguYrv)%TL0#yJjOxgH1s#Pd9;f+- zr39uW&NDhu4Wk@l+h3x24Q-l#V;olg(>NR>xj8TEzLaA~zO(VHfw99ROd=CO3cx~m zpKS*4nP^FcE@?V+6{bM++=G}1@UwWi^*o_{bGxHjT zeRu9Z-@vpk88jV`cpNf-UFv#20Tei?Jg#w#~@vPJF8sCV0yLmG2 zYq9K2t-VSN5`UX+bxyBUl-iN8C)biQx2Jff#&P>_MrK^wW8s<5LFfj`2|?i97ek{4 z0?!{~0+;HVM|F-^eSl>N6_Y{1uF+1HRR;w2%K%=g_`%UpjTJbHhGI@;MAvmRpBg`m zbarT%DJVt(p1IqyL(U|2#P>xE9JIngKV{HIcqy-V#&eL}?%rdI#087wyD9Cun>0$r z{29DpE}-5@v&}PgxK|zbVsq)SbV*?%jph57d!8-yofH&Kz&9euQw|z+vGU|&Prw3X z>d)MF#2no9AS2L%HN0~i{{Op$d}u_#_=J@EEr?!;+FzAQ z8qjcVt`wUyG~wM^=y*KXAbxW5s#XU5=Kk}zjxY=&5Kxwoa|n5mbKsP=1n<_Bh`Q1VFaJ5jb2JSX`dbgy+CqWw~LqpXOI4eawXirD7Pm4m+1VYlH0Hx?0PHHvkJ z$kFKB?eQg}h_=Xq7tmD*v~W0kNP=78-+FJ(Z+5%hsp7^SG=ujBAzvaB?%q80NhyzynI5Z_WjsIim%jz< z`1tq)uCbfL41|$2sMS9KpG=?&9L7SAt#yiM;#)-Ton}Uh^a=UT8^`H~y7Rh7dCwZ- zXT08Yed2U3l=oXmo|2MU&0z)TRGC-0K3Q2fpgw5@BiKgJklz1;VTEn-zw|bv{tvy= z<1~JnRpNGcvfoU+&!d(jsMsOdpi=8)He>nvjOe(@E1WG-_-rWcQM`YK&NyRj^MI0o zYrD&@GvT2xFgXdeI0?w0N|cBCr$~YU47q$2@fjgBXBO5OiWa+HuL@|1xwBkI+^tMo@B4`pWFh6(n=7K z!Vptc5TLwx62wQwVrt)3cd91fA^v^+G(%Ex7+wVnfE5tm)`{NeZK%7Y|}d&Mrn_*CBURQW*J5N zeIsnc?&yf@;|V0yF;h73i636uu-AtkAQkYB334!_8y-gvkAs>(o5TK(E~hHl0z)X_ z4~8L`a#YkRb>{d{Cz#Xa)Zkle%burCzAP)r>8s>(&VpJA_oeiCD7Gi~9Rdz$`~H3^ zt-3HG4oJ|_3mH>WMW9jo64bu);ywzcL4DWDLYN6XUP+SUG_Gyvo2ed z-t%h5K;=a`8_&>4iol26;v6jtId0Gvqcn66@WtlImrY~5yxN)l#OII7I5K}EvY^`Q z_Z<^@t^kjh)$Fc9DM5yD=}GoVKQ$WZ_~O<83(dNG_!#zn@Ix?+U_XefC`+wX2UGDd zVs+&9!y@p*RT!qu%N*nPSoC$D4gMKE@(nhxJez~ZH+{AaNFNck+Rt&d#&7b#nMs_G zOus%Nb{saJj_Q$%@XXxWK*bm@H5!96kQ+Ay$oW06!G-?CF`HhIN*^N{FNRR^K%!$K zd(lXEoQ!k)PiP#E#NZnV%WLj_f`qzk#gF%lXbd2=z8&(!?;^am=*UOrzyca;))@TZ z{qh&<6#XLR@o*KHjJ4Q5pXGv~@9?-o@VJoymL3;eeu-`nS)!~-H6z{d4Vq_QsD*7u2i&jcYG!X(8nqHcWkJZTk=rD^AJ=(TPM^Dq=S9 z^b$`Um19Ly;Mp)AS#?s*noW}X-Ny{)Uak|8`M^spiMtFoW~-~@!<&1r(TL%C#fp(s z!;7DxBE}5fKhHJpuNGNA%}0vEu6HgQ0Jayj&(Pys|4hV!!(2+VgQ*WjUh@>ZX91RH zhy{olz>sZ3h&<0;*3Sh>Ux-b!X@Nc3YjT&9K_-(z1iz#xI99;pcK`F)eLngT*}i}N zwG=+~kAMFE`;RmvTy#7->CmSKRXLZGlp!GUC+xQYqizP~Ay^h$Vf0Jk&8{bY2T3sn zce@&v)VR`NP$`#)h&CXx)xd5$=rYbAuAQozZGoXuLXsBb83Snj6TlPz6TX~+NwR;^ z4)HVf!5{+7S2Ri-BC?OxNk8NPXHTO#aeVg?8ewvb5BL2zNART}z8_M*fIpTOsX}&X zcH@ZbjZjJ;s)C@XdO!do_^!M$&=^dD+#on-3reMp(Y)G_8vv-N2xv+`IaL99S}(Lj zI@fxDO!!zc>n50SdMjOC0PPEnqlPiA^&9ON%%P9B^*q4?y7VG>O9|qwZm=GpsXrj0 zIe#wn@a>yLSLOBbyoQmx9NXf#t(l{p-wjTV^qQTmxpGitiMcm}0qqGy=xDs^jD5As z;+Q$4og)o1B}3Mx9chm;aine7H98QTa%U}hr|pk@$FLBNDl>VkrlMH{h4FJkFdSUi z^nH{{^wPN0&Z$SUFx;FaZ<*5{IOL~QQ9}D?=M=wS*z{Bt5(BLt_FGllD=j36O}oMUU4 zP^uL*iWR^JR|RgnB_KOYK(`KvMxqeTb zuvKlz%wzKn4=aTki9sMjI)Hn9VrP492kEgCG|ry&M`J5ch5`MJY3v$emcV%QT!1ji zK`kI?RoB2EX|{4v1vxSv7MC5fUhZnHxOT#U+$#rWChm@J%gdv0)egRRMEGfSwZYcL zN)O5^Pysw59R^98Bls0`rQk5o^6x;Nh4h!;kU6I`1i0M*h?!uYKF458pVR4l-TDV^ z5=MdK{(bz@H#>L*txK2o^FM`);Fxya^t=NM2ZFlJ-fbs1Ch5E<*#NRUb71fIoLC~S zVCV57o#Im7=*PSyQ_ldY2r3aq{-)5;_2xwJi-2xL)1`)9?3O*CV|FwRSCR9Z&RyXd zGoaw&)N)%ju;hG;>l5ZNfLI$%_bp}RRDkxAqKeAy#n>d=V{fq*cKUlD0>U9W7m_Lp z*^Mb>WWMRz`XhMCy(n!gksXKma&M^YnOuvY&O*2WzQJ(`nX(18(LC7u$QQe(yMH!xstpfM2E3l zXgkNmee76{ZX=9k0Bmh&cW1Ai-V{g;cHL1=f4HOW#awT=T{Tm)z_>9mET=z}o%z&l zrh&NlASSnKpnTa>dE=h{({+tp`0`+s2bhg?ec?|x{6L=ee}k}f+ls?9LaVKzgt9jr zFxUmv|)rLDO;Sro@>$|ud7GOex&SnwVKpRz!`4!Zm@NYH6?uQEfwkl z4j5d5**Hi$Gj`ogKH#nl3oJ=zm8NFT)3R}73oDZ}Kl5I~Ca2`)Ty$tEjB|vs^AinH zvzzBqAT!o!FAhEI*8h*u;460|C~oSLzQ272-tBqP_Gm--bs6O;MQFAi`BsP406<)- zA)eecDc8m>J2=YG3H$he$iZK})C<>iF0^*TT*e{K6gF-_!N?_SY)Y<$TDRb-Q?nbv zXAx2+gv=?w>)P(A`7>$B67OMq=1c3qGx7INzR#h_FRpuxP-@lNx_WI)WgLzAfPANS z;PlwfijnwC4%-pfL_l}m1+G^FAi5Ae5CEM>A6va}pBH(#Sv#wb^FCeafai5WO$L%N z`H)A`Pbliq(_lRfojP^fs_1v9;=OzK$^mN-9ye>_f$_4N7R>_&!md|rQ3%FwLrV6B zVdJp{W>^X>2T%bQcL!7t0vw`~iYB|ZY&9BgKZ1c@Fdj*_H}l)Ko4`>j5#MT7>=eSx zGl^UD{yF5M(;INQIgnQLIivt}?rMRelFV(LV#_OBFm4VDE1};Yz?E8gO8RNgtqP;N zPws`ntjM6V$wZRdEOE;Y^jKMedvMTo`dNbvsME=zL3kJO8e2hnNWW;&-P3cI&Hvlf z)TmWnRzcD>ZIpwlL={>tpi8^^q7!IxgzPQwB~N_I$)_M^5EH_}sXtZip?|wPZ_NRW zs9aO;UDs9Bx`nx>KE=Y;bGLfED?b2ck23*p#A*VDWRQZIMtE}tRN{Ux6@wb#9GrVW z{w@p9OA7Eiv$1hwS88@73Sqlyg<22#7O7Ac^Y;L5LjY{NvY;;}+UoJ#($0oyp{al^ z_*5;4?V6^IS|aoRaaQro_0ts6Gu>AzV2&%j02>yxWb9bjD((UoNd`a()Q#>?IhH|h z={_z#M2s|6sjvXwJ$Y;JFlgG)d$vL$gBCSXWzoTcBDOFVO(jkJ^5sh_IMPRNdiLX( za_uGAg1!eOdY34e@B>&s4FqT=-I;;mI%FtyrCtPNV-4l*Tfmt5*4P_K^awXS>RJU; zto$G{kcItRA-yc=2^`7}cV7`RI z7)CUBi41*9xD1g$I2G*aYVz{(X0T7C-evOm_-rM%I!?mpc~YvH&Fv_8cNI8X17uQpao+>g#ou*#njUG~K=sUB zc=h!krG3eJNv_!MIQ$4XF@cf7POd+H_QI$77j+GT>G|uA_xN$X{%fXKVsp*EkUU@2 zE>v(PE$KbK76hC$T%(#VD8TYNmfYw4B0VMGW+_ZNncmwp?lJ*WFWJ@ zUoRsoYYK=cEA`ul=3Gwz01IF+YA~i1aG*v_38yqs{FPl4v<3lS9*kkpfS>_|kx=XV z^wka&3~4W##V&xG9sx2?l=5*Ca3;u_lBJ}+Z2~H0=O7}E9La>m^=|cI z;@rpH=Gi}-B*L7q6K!g6!OFt5oU5-~D0gJa1^(0u-0(w)Da3%3`lr?BWl~prmSE{H zH3JAyD%2pe;>?1adlrEaPl_g(U8pZa-vC0w8y4bE_g-kLfEI`BjU<=r^@YeX3#N8U zOL`@`sJQ(k>OGs6(7Bdjfs>tW5y-)Xu7jW7QoZ9*TBb|bRF*RwyI)Q>K=ve<2L%TE zZ#EvZY|oP#HsAtX0uSyK7?_^t#11^1aBYT44;}$oD>NMw%`(|(uJlN4O{xMarWIY+ z)6&eA(pr|vLztF67KJHVsdvV4M zp#vWWQBsI@*tr7L-SYsy?w$sR55WzOQZ6`D;QZHEO{cH-lYUU{_yXcmn}d^OM)Dem z!ZnGWpO_3#gHjZ>iUs9PLE$_L$wyFL1F7Co)HYflT&d22%DNu#3{-@~t>J}!Gq@Zv zS`y8kn}~_+N3;gt9O&WpC&4fGK)GjFSKJqsP#No%J3cV{q*~ zu3LOO3UVjcvDh0jx2l#dO(4(H?rIFF2#OVed&O@LVYJ`)PJ`4oH6V(~C6+&$>@K=! zgXc`Jk(q%0nZ3ont2A@2h(o=*yhC$~su$c?tGD6$D!IhMv5+^uP-&}Os>ZeL@bvLx zV!-i=YXQ6#{BUj)FhhX^&}7V5@SKztk?;pONdO;Hw#sdV0;U?*kOGO?Eftn85|G z(zmfAEqPO%qS{Kx)}#+K#Dcn$60LlcS}H2N00J>~6%ay|C)yC+uga7;OpxfBA=$Gr}yRSS5tVpQN_UalK9H)l24Wo%kyd~ z$FW$Uix*8#Gu|lDnc3>UBc*Sy^TqP+V-CVTnAiG#51>rbICb)mOQSh=I{RxQMPxBkZUMjFu` kF?&r?b{U6%@c-uNa~HFt4XBr`Gti?I&Z@}e$r$+smo2hp%NCJkY*|ybtdniVHYl=2%HGJnXY5;=48|JShcpH; zGo%z_8Obt5_}#sq=lOh|@8>vve>iT(W$t_K>%Ono>vg`)^SnH_FgIjn=3xebK&)V+ zTUH&)z3wgoe0m15Wa?t3B-AduxY_|{FE zhlQJ@=v}9f$d$ucg3vPt;g^D^PYb^o6beulIkP`sQ=VX96p=ddhJW>f^}1uC2F|-9 ze3oHo0`HK6vWmDwaE^ZcDyU-Njz>*aidn*N%6!L_th*df*ulRzy4j-)qnN}`El|@@ zXEzE9ceD-*QPkr`|-#VA@T{&w!D7`b(#`&Cs;;n_Vo<`d)|iTdHT(@|a=F@X%}ADdXKwqDF|3 zf7s3ET{W-yIxC`*t{r`ARh)hs#Zv5j6n6aiP&*P!N-tQx(eoqQ?pJ#8L)V$bhz?}Q z%f|Ut3U6}B)!BHCsCOhmCDd0jr~*nO+4AXRWo?L@_TzVXL-h}BGdF49P=B1=H+5V` z&aFEc`WD%2w`cj1$`a+S?|iyQ`g5H4HsBqqtiYm9>qF0*ti>Jtu^nH)?>xa9nzjvx z1FfBXRIJ51tfXfKJnhrhNywe!Ky-_esl=n2FKf4r4=kEViK0%zpaqu4d0oM42x zl#{a*`JF2-ryR}ztbP=dcyK>@FPQ8^erw3fL-DcHTC9sY%3 z{9w)@@+a~3cQu3hAT#bklA!c)^n2{FL065u0{j;+rDSvM!RVc)S*1mFA$Pm_?$9sx z664NW>h|l%qz?^_>)C}-Z%+<=PxLh!^nw7RKGL$Mp*)))vqK~y=aY5+CyP`hBRN;ER0R>H!{u#JRV z2>7XtShzw4hb=nwe+^|5R+RhJ^MLoJ>g84=dvC~9Q7s{|F1W|?TN-3v5#juua+^!L zM1q{o>r3_k*41cGL&&*3Hf3HeZoR}sG#xaq7T-}8(vLO8JrE@=QBGPOCmt)b4-AAE z@nGT(MF*ccC?0kqTaDCbu-`?GULbQ!5FPg=y-~;(M5s~t9bCr)s0|aniBiqU@tW>% z2=xdOT7z5{lgWT*bu7XlITu>*dqa{%p;^09V7c76t(w+@g=WNYr5$6)Gh|OFwW;MJ zr4fkVJ)@QxFka(*m2q3W259J<*Q_*VC*~u8+qNc*$4NEnCT;-H?GI_?oIM(H^IQg! zh0k84*y2_4;`sbb^U@4SjwiUoBz&=+)%)DLi_NRX!!pb>-(%MsrH}q(giqO?(h?)@ zjiX_0d_Md!p%r)6Mc4Ro7fiS}Ynk_8UO<4I-0n{w%Idi97_8`|m% z&$OV)kdU7XzI5DA5imdigbhmOQM#K~Y{{tibnq4xd`f&Uqb2Znlgnci;lJnlN(!6bPQVDcJB zvAx&h=dZJea#-P)vR#rJ-F7)aF+NN!fg&5P%sxK-d#$v;Cwj%tD`lO)=$-H~^Z#Vz zGsepJ1&uIA_w=sEhg%?t#Ko1r}A^E|<;n<6F4t1N(=sM0;04g@llB4+ zw%$axXqsEQoo-M05=ys(*0WkIoR~FG_u>mn-mkDwmDe^1evwpZ0M$E1z|d|e^@yM+ zO@{S(Uoo{xi`zCiYLpjVrt`Yp7=j#QYG2J~FGHsSPxUqWJ^Mp<=5~7GpIaO-1%CCC zdLCwcDh8pgE9+)Mt%er7Q>oO^FmG=tdjdNnoD)+Z*ay{Jg{KV#LV9RD1B-$vgrHNn$gvyM*OP>6t&uqL)vZwnW;CTq;o4%DhE`2OsX4X-^0JL z4}H0&ucnnkRC(65=nW?OPbU=VR@)hGZAlfkuT;M{2|6Z0$2KFMbh7*P`$mYW0+SVK z(}IL{=Rs9b{E*P!8H91{@vF8Y6~&1Dw!{261qgZoOOZOhf8AH(NjmX+65Gvu?g9NY zt0qIqgh5y6=BSa}WF>}{tqd)YxT&smXi1b+L@^+4$a<$D)xfQ}bK+qqH@#6Tq7Bl= zU6wcrv93UDq+AZXyu<&B?$$SiY(YgsJR!eg;rXqzQ`;HI7ksUZUC~MJRx<5BRR~L@hvmRgdHhgF zvY1TCO82^GS4G>&G@@I$56Wk?q2m?>Uya#c=JZ<0bOWya3WhS>t9Qq%+HAnVCjjDQ`0zvvx@Zx!5 zWUFZVAxu#t>R@G3udRXRoyvXqYQ~#SzScRkn~x8g^frWZ!k=*?IsG26zMcA$#@z=i zC~q^hY#eZ>M9pZno{g|(?QS=OT7T9vcE>JL?eB)6!=@0ee>daJv+Qs1c; zE%bTc?GGRR8Hg5+KR)t=ZW?*{mesJy$tp{bk+^Ra2!Z;x@yFE2wp>j8mlHz>^vY7G z@#A-4EYVvdO3kkXYLmB*@^u4}PdC}}REJFEsR&_tob%7vD=>_{;hvxVo-|5N93)=$ zuE=YUN9l<SS==NhONz^-XdnX(`J3epGw|T*B@ai1Z~Lg(`Nu$I42o5Twa4u!d-)F|Ma%t9u|)#mL?r5?0fi|MTfR!l**)`7b72 zgzMky5tVoFdJN6@>QA)y*4#8?bL_7?x1X)OM{9DvOe#x9!?b5pIBgv2+gwwb-k_ZxH7M7sk?we9i`Jo<{5s6iFQ6HdR!dDDxMgCiD1$@9;*sK0g$FHnmH zT6P+0XYonlM)dE{YRw76PXJJ=4ymcr_*BW~!K_m=^YIhgHPi)I>l8o~ZEF zTf^KmZ~ZNo-9YAUOnBXwqrt!L%E_MZ!M?%8t8004rJFQg_9b2lXxXRm6pP2tb9Upf5h#>76)ME;QhX8a_epwv-4e=13BnYJC=uwcsL zQWaVMGS1(DCa36e?g!B!F>`e&96%Rwo6GagUbT|a@>vpnP~iki0$x4OEE#$$E{#7Z zQ+K>Z5j$}Z;m+3CJZ&O$ik?7jxfqaFoC4;6U5tKhR`%o)b9vip?WgrS*18FEQlrph zh1GKbFXGTZ#ib{dhf<2xqHY%l-5r;yF=V63`AGQlo?xP5b@fyt=h!-ax;OUE`=5Dh z8bK>#uh`H}4mML8#?4NgYGQk1)8^Z$Kxz>b2{CIdb(~!rDLi+Dtw^vvbualkI?a=r zdw^k$!{q3>47d4JG>4Nxz>DO&hR}jDW#5LVn-^b0&^ovwF()Ci5|}G*&YP~F>o)Ez@n{dRaGA`k=(~Rg ztNaX#S9xmgDXZI^-Q3k=VK&hsd(nwGs;tB}QyIa--OAq5_?(~;EuvAk)6!_JKyM=XxHlVjKQjL#LDS~9fzxI3G45OY7tEVfo6XEz!mk>W#GTz7ky*lc3Q7MP|eh z4dDTiFtQgTQ`C9wt0wPb=o{o8k`xR=TN;x9;9Kh|0ph{e*xNmrG#2}`A0qad*3-R5 zjTG5~G!b)>BeQ{LF^8Lw(C2whR(|`!VE=2VEfb6-&XaO{*E-ew63x|mmHQ`?8kX{T z7kr#Xw#3$w%xc0Aie1YPZU2jRg-=z&=Kg=C(XPV-f`-1 zarmu&99+LkrP_=tvS!?f18~WWQZ}HMYvWk>)s8{kAnW5&?V$wN58NnEa_@hHKr|GPB9)L zx~WTsor92d0{yrxdep;SA{`5Q720&Bg3h3w`nFq1gOt6eNc^LX+k(<3$>i<)m$=2# zMmMn~)Iz1->a+K_^15))5dN_1BVNS%^7wW}f^5pdE5d35+=lQ@@q4LBuYQiw@2K?c zogzhN|59h*1Cv%o#hROV56&#+a>d0IC`BtxS$g1{yt|iP0e8C&7o4ofpIPZlz1uUC zk%LKpP$;GuBKaxwTl*WPd#Zt0=(yWD`+MTjMyt$I_o3@l8TqcRbYVgvaT1#Dy+R)|B17!n8i-c= zQw&zJ)TnuGH1gIO(ZS=Vcf+4EXLRBl0tTmMAz;$7g1uNyqk}dii)fKJ`Ld!$L))Wd zq$2Ss1QB(Gd{ogvfm5dkdYa$eSu<*b>YXWyvC-QsofPI8wrng%mpy^3F5c(tUv$rv z-E=YN%0;B8urmoi%z#d0zwIY&g;FCCjgl0Ju%34$Di?ty z?M;?Wb+r#V<+eGAm3klOVa6X30rX7j{&V}=ytL1moWk6gGM^kkN4@8-t#i28e^uWL zkrf}PhKA4I*jJ&FM{aLM52V~Y@K0ApHB?+x!5j`Ih23~Z3Ihn0Efv()L_gFm+)>3? zFk<1lN5|qF|D@nWX2rusWR>VqS;xsy+aNp4mpurt0%t^dOTVNol^(RvxZ*Kf0ims4 zt1gPzTb4{rfSvmCBe$bOdCfra5QEg$gB|D$3<;tozQ%M}LH23Dhhj&zfzvSX81X1j zQNtQ%huwgOMf-H$e;L^Z4Oh3Rb}5LcmhtUC4H_{7S%(!dTSi+kwLH;HaHN$Dn%sTq zVF2wn3EV~3)rof;wwJ>cQHkSzfeJnycX1+mDg~KvEAme(@Y!qu_b%l9EO=T+#I^?2 zc;4a9AAUuGBv~0TDuQJso9m7m<-|b+hn8N|xoJ4RaM5VT69oJ7&-GrBHm9d=1>+9B ztn48gdEbo7AnxSPF)M1=;1ULo4(hJl7bin0$9^YlkWj~F_AKniG~$jiCc@F(h((cU zJ7IAzW_D($N|7<1YfRTH#Otsfe$+vmd$t_C?G>?di(ipeT+6wWF4-8G@pcePLAIp_eqyUhA1h`k>}V>VNMf!3+uq1GFK_r5lWU%nnFRXWV>SJh9Bt&Q+m zyt>9@_D=))EtS&U9Q_X4E$jU;<1o@?=DsvJ6LCXyB>AK%W0#<;DQkZ#!`IHv*MoI0 z&7P|aZ1{`2#cb#WwY~Vpoc&=W(3{&t`+755ol>fIV ze#C?e5T9ADgM@^UHAd`yAB77<8|0##<;WN?#Swn)a6#CcPz{Z}pnUOo{a10GXBGI& z)P{pW16^eXuDR9JEbZ)b=6kLZH_!d6*#p~KJ7(teVrJd)#x*FBX=&^-@CZ_LAn`)0ojaPU&rLAK42jC3_@D zH&20b1xiXDzP1MCIy+b+PB)D|i+tHFw^F1c>1H3qV3r#9em=GktvJA30(vT3I$lX3 zkD$!W8iN@g35D1`*(?hq3VyrrP2#qiH2nOlciyo-+4V7)hf8KHH=LQTUK`}}Cvx#MZ?kp_tapH{AHA(z|SVKJBzFGr_K0g?uKZGL3X-+Uuum?Pd3UOQ8yz@xmDc z$@5I6=^68l7YzLC1i~~H<9w?b7h(M8Yf+cfmj^|2$dx*4Y>WH7G$(F`tPCKRDCsNH zZ!99l+{qV|0~ZWHd)25L16IKYweho-1kJEP1g1c-<*v`_+hk+XYu~I12Xt2~r*J5$ z@e1$QDt|fJ_3fht2hMC`-lb3h1+%RJeZL}XRK)yR={V+^*QL66T5`3o68g_|1qRZ+ z>3h7fxo<<5g+SXteM_DfXi1Hf3cy0?bw;^upM%8GP4Wfv&` zaeFzxjTV+yRx{h(S9}rv+UzvHx=`ocCmscxuPAhz)xO3*yJw4S#=Z(I@C!&wT@+YS zp;HS92nv_gk+Le7X7_!)ncNi#0xe552$;p?Qq*5<8kveoG{XbUQB zwg~gAQXxM<{H;Rx7=C&8N2&__lzIP{!dp7q0nA#2R}DR(8$Ztyuk+ALaENgEK|JA< zf)7injBwa!i)FGEYf=rG*U0kxRk7esDA7%8pL2;Fc78g+g^;kq6rbJq5|5{Io7$|p zL#q=kUgXrP^yl@Lt?AD~a1V&J;e+CubsY_>vuGVV&6bmkshYAP!F!{D#z9G291|gg z!umca|4_~JMSCl5Rxr&?foHrWAAQ`;lBc2`G?$;{PL~`RH&OWfy$_qFfRcfP+HIfo zaS)39A%tNBMwNcR=CuGZ*;kHv|zy;_nnPKz|+?`v9-qby|wG^Or9G{qEaxPwZr_&i1qK9tR#~CX+xIz+ZTP^V7 zU@6+bMGaBtRV_*aBs4d#A>*wTu60QHssEe&k7`DY(N|rRAypxpPj4 znF~3d5Q+Rb2sns(gpkdGcOf-Ioz^L>T-1|id6A1)Smy2>aL;|>N+@{N_#hV91P(9h z(AI8L$O@;HPnamZ9(PCzK2L%{7VCeuai_C+bO!Or=$&nmt>-pWEWo#{BtLv_wI1XY ztAf@c4oHshMGyqSqKTvrfz+&lliL?&wO1*=CIo0Gb++wLl5)I++vDmuJXxkR1yfu1 zxT>UJhXKt;Qeh_@Qk$1}VOI-tj3A+Jk++S)3pz?<$+NY8f?TZPBb5^D6ZtGe6wC=N zu)&Ltndco|>tA<@*cy5@ItleP2aeAzIWhl9tzGdTs$&sNjKO!y*ax`JGzBF5Jj z-o5N!70bu~_=mCdD9W01Y)RB9^oq<&kjeiA}aTJP4K1GO7&NXd@!*IDni~@Lg`^QvJeZ^3)en?GMEA7Rkn17M)7kSp)HlQ6<7iu zkeu8(u>qB^>agQ70$!t?Qbmd+R1aY-{gP43X)mDoRC}&d04NEyT*t&(5^~;aDn9~L zwx=-N&{|WI><<6zw~sz!t}@C3ZKrlalQ&5}fUd7}M))PBN}O(|Y=&mD?SHylICFn0 z$lmk6@Nfpy*%h*=@^5}E+B_&)DY3|3M;Wg!B%qMK@Cry$AZW+`X1ALWVn>LM9%q~n zc%@+O!|i|*k8#X(XJeq5#9FSi(_14xdd3rm<)y6nn{40AfH9a~zkR^|g2dj4VoBNV z&R?^Oo9g?=PS?hbx9U0AtJM2%>?tq<-*!19ZQ)I|O{WxpFpH4jhb-6G@_(MTfcBoJ{(r}G!CCL-m1k{d;cKKsGMYs?6h ziS_GQL&T$cOV#|jSuq)&pee@MW7@E2;O-SQ>~V{^bC>F8PM3ND;=2*k66X$2q4zI(U&6sfYWGK!fvFkDr|%A`B+; zM@?I<$GqixRI*Oalz}Tw3O(f$IX9(XmFOSg; z1egEi4R+&};(AF~U^DW>719dE=;JuUPSze%4R?NZ(wqn0_@z2u%Nm)pMfPJ~OB20E z9)47EZHX4Fyjm_57VU^r(`$^jz|DVIA&4HKz?8Efg|eBJ^$}~fDN7CNQ<#B#3ZOLN zmpc`LSipfPeYC5m*36=O?#A+iV)8g(4{T)u5)gAaK;BuOOS1l7D)CW!ExCI!cV#xRww`*&9ZJX8N zfMR_K1i~g=gsu!#L)EX(LL=TVwf>F2y-4@FOE2`bA^q!&z&YRmBD5IzQ|=j&I-RiT zmcGNc)!Lx^J|l5ZpA64UM!;27dWrsbrypQ40h+{9e{EK8eX{$XgGyyh%_hz+g`O&_ zqMAM7umvs#2cSqwwzE1N=xtg8VSXUZ2m}&0Y}0pNEu;a(sC>Ion|HWl!m)x$Wm!^r ztzxLhQ~=Dv`|>A%wg=R2&?Kg7>^hNVsimbF-xWO6@-t!{@?U}VY;!^twFyD@V`b%> zP8bwBT7HE!0eHf(hlnk{N(%MN+UK(xL(xv=|10SMx2~Tuf7va^1oIIfk;?Xhz&Tl} z^8Z%?jqNyD$A#J%g};H%7E!vx5rgtUfT=9zidN(sv&VvQLX)*2h(_6{ZhIUd(J%Oa znQ61Y9wlWcvvZK=$U~Eym8A92C`(*FCCZMBxd_>J zQar58J95h!l$QbC5-9a9fFk_TmFeAF5B+9r3;yA9{)Xt+{JUt84W`ou_oQOz`Yl`!0uCXEQL^5) z{`#!}L0jW|MYHsN-OSAroeS{i$DYGBOK-?!&TW z!CeD;x`V|?WJ>VSRqRHao3K>gT%B0MOE~o})dalbj3T_DmbHI$4)(g(^$=ds1_e|H z-huVe6Vbf6=MeNg1o8i+mMezZEEwfP_aI=P>!pfDTH?eg$M4(z{pdc1A9(m~IwG5e zK3%>@Ic`G+KXp7QMYdFo6^KCvwz+$hmoakS0~~VGbr~%JK(~OK*MLcYh8cm!6*K%= z?_9NEl1Ql}`qDE7U_^eV*tY0KF_VtozAS+YbJ|k))6=PznyvQB#8(O_njp|qHGr9$ zG}B3B=Z>Wa5idUyHvET;e!a*F0{y(n^kETLw+S%aeRY0V2_WkOA2n3)iM1%c@hzdW zr{oepsB(LEL4pSlS2VO`t;my{WtPG}mTAX(W??uj7ZN<;nw*1d`W| zld+Kd$JVGWTq%Fa+9Ae~9cHOv0Hp!xEdH!WpZR$mB@jm7(yLA>W7SDx0{o)4;`!r^ zKGw1Q9>G&t0~-k$O9&ShrNjV&0z99MGkotZ$V+#43P~f$#BuF3S_j3{T5U^M%A4TL z5D0zqEipJs#1{J0EKX)pvk%IsJl%}!2MnqCHnV}Pp3r#nI4BR0iK@D{Tsyb}p3?x& z&EmA87-+e+=ErYACQofDu|VCbxYc9qbJ}WeX6dlJ|C%w$s`KzeQS+_8 zRi^e(Sc_%f*pO2AsAuN?2iw07jTR@LWWbj*2(rqkFz~z-`7AN=_P`=*sh&@D7(jsh zwQr#{;cJtGY`I7q>IDC6Q1Y5y00XXfSVq)Lz$W-K8fDs(yp+2cBM?kQ8K1DNZsg6) zj{6ZZqStFR+wzWTk${U+Ll1V0L|ThBWWRO5T~xf0gADl-nVY4)E~V(;qt}pZGi9Ag zgM9wNp|g6iIp6<+YK}!Rr2W6>R7CSXbm}1k*#9c0#iInI9bjc$r}U61XLAJBtr6Yo z%f}-C@f-^D{Efdk*_j8QQ5$Re5mXwHwV2``HYztLcc=Pz@LUMC4iSkJvsBMvdR1@ zurGE)7VMieb`5oYynfWDR8Rr6RWJudEJ%^51-?=s(^Pv#kc_+iwU|5Yhkz^KQqa*8 z1eMD%Hpgma6qGON%zX;*g#ZeJBaQ)Ko(X@ESES5bJe(MWK=9o>6w zxB=$tzZ`1)mg}^xyD9=3yX)~AKK$jaAb@Tmh#@F)PQ_OnBVOdmSo(|gTwRF}QjBQI zg96|zqWCk*1sxke#rr^+bBNH>bAP~>@fN_^=~VeI%tD<~OQD}A@`7!D9w20csVl&l zVT+%%IS%^V?^a*ROs=qw{0C>z?EM4Sms~?yn(m}b4#Zme(oY&S9Ofms0(q#5LCDrY z=8-uLTrmc;e%D`*-$OJiD1z1R;OrF%Ta^1X!v_4Kc{|*KrxS~8m=)PFhNBdUD z$D;Y4lQoLU0f6mH-Or9s1NBh`wIRCnaQnK=>DK>PMoSmKgVE)ku^mmTCw`EUtX*66 zh)e=%%|eDa!C20kV(-f2!*4(Rz8Wfxa$s-q^CeA56r^?f2e9+#u_4zy@x+b-ytBP#0XqMLoO~c)a=OFU0Y(w5BO8iqScH zRf4X;UV^;#Wu;E6EAo>8DN)=4n{kurUIJ?E7z_^aq??RWlLyNSjg#Y-Krr{@M2w5dmf6`7+)63n>z_SKzsW!$DOP2g1 zoV^}Fr`y^!({I+_jH#S%_PIvGW&7hs-v7xT8w1v9d2=gbM^BKp5S0gzt-P&cN>m5Z zSL{d!H!Irpfm9+m%UvlZVo(3L^pRv?oyOi*{{l8N-q=O6@(SH}0Ch;LNOAdqQLI76 zsoM*2$kiHo7ndmEefx*N_{x5#BtZC1e`7PL|4?Mf{9bA~LUHDU@0lR}W(KSG!+aS% zpO;j)_?j+g9~dX} z!{5SIjkd!i)F^1lc%HYCPpOY7Os&s!SIv21lm^ZPxO)#Ft$14uTa`l`MQFGHe54}W zeyX>!gsVsuu5V|E(>*n2Au`+^B?u}D;FHZ@?1Q?kP9l>p25_J-p|lCLmcqJ_+VU2i z(R}Bu>=+hgYJdYu#o%->a~sgfR9o{3tL|=ht3@(`6a=0OUxBs$Xq_B zut-+0@ob$f#cLeZ-Fhdqk+luMN#}wr8CKd-$ArsxW5^r#LaI4ox2gSj zgO!{#UirML+mCJS3AyFZ|3O&^!!zJL8yCqF7tF!6zq{!vWCa-=|;7-&$K zs8ZU%=2lCinmutT=KFj55;xWckT@!A?gl@)j&ywM(S@AS0!D-HJDH2J2Weo*E0lX7 zURIk7Ru`r&gx}cOtKHf2fUwM4d~pxp!Er zGhvHpap$jvVQ~7;|4OHS+L2A|hcyU5x=K5}mCiJ9SKER=B=9m`T`4I;qX^@Sk_B2J zOO>T;h6sqF^p8P4$cwlC)3Y%GEuS4Y9EJQ~1c>6nR6*M=?X{2iG&P^mKl$O2x?5hG zpQ%bMvN5u!*mPxoApH8E8@gdqL7a!xP(}^-*TTOnNzJd5U&4e=dt5osKYAj-w7t=7DA47vG9kP5W-+zLypOZe`xekmXmqK1x6JwH{rX+Ujk}5j zdrT+Li|zxP7XD#Rdd}KB{-Y<_brZMMcBq{{S5l`cwxw-GaCt9Lxf3*0I^sf@w!f#> zRX!sowZc$2_~^jHeW`{+Hz9f=kRZ?pP1bEHEG%dYow>aIuN)qx9fpTO_Fw18gi=Wm z^uHB!r4`D_UB}~B&gu*GqerNKg*Tgj&CsP#FAR($Ai|2fIW2b%{Kz5!P z>~v|wbn{VA+bOHou(@vY+m_ilriYTN2ZvWe;|V&S3T~)5E4l=QJUvHC*_hW1duXbh z$shSlfA$HOiw?HBf;Ar59F-!@9DSSHEndr27ijkV+T!Lx`^>OF__a*CmY~ZyK&n*R zj?8CfpeIu3iLzRDyB-%|*0*~3(`T8SI0?_}2qi;&w64!eomUp0^G6SJ(Bw?2rZ)EY zKUF}vWBrozNVb1^0^WxLh+PDNhJHTKRz_)zZ>T69@+xXz+M)oI`vBO)a?)6j1J(pR zlYe>3-u&bvy$P%6=qk-5-dCi@RYDSG=H!iVixI8Q-;e)X4*E}c?cv%njFA9d(Q911 zOgkeDz@9DXx zRIxJid#yJDl)(Gai7DFDK60G=gp$V1d3#fzcefo4H;Ec!dVGMh&Ll_mueF7$^}p7Z z2VO(|CI`CYpZ|}ag;9ujXL4E1f9#+L(O5#Ky2s%lWB{FRR>^weF$`=!nB2G2;OJ0J zrr`gfF;ZR}ELHdltF{JzzUHIxm)R`cfl`6?>tEF7nomq#qz*0$9Bu2^;()sb=mgk_ zm%A4gHAtkA{H?$@EUf@AYUB-VU?!#H#q)8TZrGf-RDP~^*R9qT%1F9P3uV53i!Q{= zeHY!7T;2v4ljER(x#&LIrT_b`5-3R6rFWoJG9X zhZ)Ze5e@2mBR-b^Btm_$Vv!nN@;lW!rG#+2-54T3oqz8>Q}eusPUB?K(@B$4bw8Se^Y$B>qDs7R~XX@v^8 zO3N4G32S^)fqJt_wnJ`BwhB)_st>e1q4Cl!C~u8);vFyxp$ER9xQ!LjsEnc-&5My| zMMtpaFL%Ae?mIXh1G~Da!ya!HBDI64AB+xik^Q1jps&ER-@WvE9C7>!yKfTi3{W^x zlW{grm|9;XcTHVS&fvcWR2)7fTf>?c&upt>u7<4KCE{seQ}06OEeUAOOy+SCApcEd ztP8$;i-!Mx#X&u3=a`KK<8s8Iw~K3Pgv+`&f(zah5O!#+a5ns36-hUogOOLhk#n5# zYYRt>yred7MZ7uFsvuaRlFX;;dS=r5sL<9JdDEwSh(tY%jBSGpFArV_aQ7LzqOkFpEcMr)KVQc`Rb74I ze#Gefua1ffI+IYdXaTo+8a1zjkW}&^>+jn2Ho_-bdK%RxmE~h9_F|pbZOQjFv4fIf z;q#8JY6<4j{3@l9YEAnBy38${UJlQuGgmSXM@NqW=JtI?73kM1k)6Z#DQ{T+Ykj($ z(zqECDsR2+0x&d7^Pj+my+uwA%B>Xp5mU~$V(6Hw96{^HTF?SdybAgfgOjx+F@Nqi z;@A;KyJtSw;re+$T7>-O%NIq&v1-_fa}jH*WlDK#Ig-=J`j(+=Wb-V>CTxCh{j6|U z5FVx^yl=0X%1zgJYq)4HFczG;>HU91Tvor(bYwJ{(v-O?4CY;jdDU}YOyP|dw3(i^ zpZ)$IzEmYo<-VMcXBeQ?<>w|{+Ie=5l59R5GGEGVuKjXnv4*8~!$8{s#}?K@AW^{> z103e(DN0mk$Cjk*g0#1H*LWeDh&RdL0qc2V^h`y3jD|BI`KRSo4T*JouHfD*%=w_Y zr+9E{y3@v1k8JfhSdI~<2mYwB4fc|1bkK2+CyPh@)VBAbe_z^5X*hbO<>=A#5dA&w z<)0Xf^X1u*4JN`a%X|T2r}}+2T+vsfa|&%wxAreQ(vz4em~)uE8kdvWcGLwyPh-)P zN0-y(e%zpiY5sC>F;2x}9#A(LnxBs+JY_E_aEx>0*JX%W^OR7wT94|KXtc;M?iDi~ z5P82CmxWlj6C+N5)ob97YLJYKs@G7n;Dfiw5X$kd*Nj2bR7w<}=(haG{lm#wmdP#< zO@}Q7yTpvWx@2M1*%ec>6z3`*C#l#c zmc-W&H+K~FZFDHzi`c(v@<^VfB-f{OJGeA`yGe(#+7*=p4PZv zk@(WbDYJ^6IWh?)Tc~p7sg4P0qY)T$I-pS77Rw3tTIM>{wRoNrM-Ul>n;^%MW))FDwgssX7=2wcX{Q&pGQ~ISD&)IY<}xrn0r#Zinb_vY!GOfXtSW_^llhx;>O1S z2KyCVGmx0PSc7l0eD`L8W8qW(`s4ZPGQ2)A$&yHMHN4pkU?}5?OzzB2x-#sU;&x`T zChegWd`9cK{QAuEj(2@>@po**KbtpAxQtapAFC_M+)HwA`U&(D$Z|`|`X=i$TOy^< z<|qLL?PFN4hgDuJR_Po0NB*}a>m?O&_;rKiM~t9%oKBqUE9d%Kep6qmykb+3d7WuB ztgjr>a|hL_?H1m&QW?CYQYrU2SI?1f(8SQhD4&P+RIx6CS3UYR$ic~zVX3Vbc@obzds#c5_FfOnlM(D{$!5@qd3UK0rn~M}m0l^Etp*y2= zxI9@L|$MU z-Gjqm(M>q@FdxbZ`Pf9$JY89s(Aa?=YOW4ZWR9c|!0#Uy6J?9ITFDl?>uF~?kyA_i z0DTw&IDr8jC(E@cAFZBMreOnp-uyLmyRQHem6D@HwdU{MjJ+rL{eQZOJDppnDcuf$ zg3_ADuMIh55sQrajQMZF$#&QSnWy;%!%$~Cp8)>9{It5M2LPALS=$hA*xKnGjQG#C zTJaUV!`N*8II|AN-BY(nd8cwMz5VcBIZO%FWMZ$hTzS^?CqTtnfc-Ofk8#r_FM<5+ z{3kjAxmdg$7|dy6rU7h#q$lPN*i>oQh}49{Rw#uNxDKy0zO)-Q^JWf`n%cDH)Fe80 z{t%CZeJIdXEw^@C6B?-2D?$(cH=*S{k1;otu~B6i)d@eDvB z|J{U%CSjx6jU$*^8M^D=MU*Q4OTH3qkdz(6nk%8W?C6wHcATxzk3Jv&HN;y43ySUmn=ftflb{rM;QU*Sp#l zC9r<)+6L)MviUOarrGKpuD)&=A_?00+fKgwHyXMJ*4FUoNalqK*;}&tn>v`guPKBC zUBhF(@6y4Nth2-_uilnQm~_$~)qo6EzrEJk5j}>@zWu8W@V7XFskw7(;0GoLiN7hg z+VrbF-UGUZIoH|g(gNL52Dj|B=C;V@#(HUf?kjo>q{%Xs3QLE>ksJKsLq{mhTLoA9 z&no(P{t`pLWTA?7j;eBfn=v-(PjdNzgpy%zmV8vWfHG3UTFG(L{q(w2D89Vil(hRP(8yC~UtZC( z{U_%??s5Mm2Y<*sNF3&fZ$Hok1&%$4*<*CKT#f_$Z&_}KKAy&)Dn3OF_ z$?yQc92r47O(kWL{w(uJ-pN^RywUDP+|y;9r#-6qT30QR0*@4R=>c_`Gw`iXTAoXC zDEx)hN)4<0xOT+V`shNyTAV>ej7(+O26%q%p0GaCfaS82HG?T>Ej!{5w!SW3(jwE}BvQn$@_(1}Kk`g5 z{EHOL@7OHnEkr7wOiMn!uDg{Miwd zH#-HNqoiqI6y|k={iaK>pt3usGz;f0-|Juv=Y?Ym-RnA*+)UoIzo8AtUO|ny!$B zOzbtI1a5&}m)gr;A6D=LDLL8Kd3UaO9X*`)mA6&tAES}3D#*s;a=HMJ?UOq%mZ#m_ zDG3{pY<+z+CX$H^`rWYLiWpnflI}-%xpeazu zzhk?<4Vdu!nEM$!4!ul(LLfgVw`baP^5SeUF%8zbS~AaMdG9@@^(Ve|+zmKl(wcW*H4KesCt6S3<30c&PAz zc(>pa9HQ>0J>D$!j2o}Vj|W#!g)0b$!@B{9#{d|7ljV z12Wg@4)OtXrb-V)F)NscHzM>qwd_@@RfGQaWdE z<#{~;TEaQXGGqtjy$L}rj6&)9SzFF7ACwsX&B-J!@NW|N!3^O-x}ZK4=O^KOK8ll) z-lt1$IOxO310)!eHLXQ`S_ml9Jtn zg9))P!=Wj!l(LP;Jo~1mT-aJmKbF!LhzdT>yDA`6vs_M=8Eyt49Z#CSiSpBELou5; zdW=bln+Rn^*4A@blwpw{b^vF zNIcn{?_exCW@vLvP5ji^jJ{R>}=$ zBGiz>)3>8D2*+^)AmM0Lk@IPiyibNPC=9 z>K@nDLu>t+j`WSrN%rE*kz6WK0jD9H%YXg9^w5DkbY13OJ}XS+gIGnMT)^X84mK`n zoR*Cx^~8~S{Iccjho;8#J0IO0ytzg2eORB@LpTBbN1^k9w1-+>oXq<;38f`C_U`35l&A2{w5{0{5$ANP%{12FD6dE1V^>jOaan8+Jh1jz z=(PDOO?WDV5B{4&Ys;sK;<8G|#$bl8biE-K@BSr5^NWnBO`J!?*qN2EIj#N(Ks`c; zPkO}0BMp4J8D!wyTW>ea=)2kURmjO|Yzh5YfB*0S?@uk%O*_363|Brtp2adY{i~>( ztEptYlHgxkb}u}Nk63zX^R)@~dQuQIqu!FMjba}LX%&D>)*=PCcJbdK>hc{ zjJ~kfKQcVbk(1y^MI%|qQrYsNQbkcIR!j7$>e9MJP4!i96xSf|&$naEAjIN8&Q`z~ z#MbZoO?hT>NlHrZ8#VLSN36yTE%G_XTE1p#)yxg<6|vel{y;GJ<6S$Kv;hz~{p#S_ zz6S2J8XtoQ1ER7op6)dLa)DYh6KvedS*K*&F8B7D`~#ZNXOCaJmmy=AdEr=APFZdb zjSpJrVtxajoH?>6_~GAYiik-p{Y9Jl=x<2qP+Fc@H!_0nBhD{Poe!SKyeIwd;)WlGte>Kh04Yi9 zzn!MR2)kE%*{9ITfD7`gk9rLweHF z9q0H<^9#{-1c^egHPia-VZw{BEYz3tRW`PZzaLE-RyUwS7{-FG3Mv zSU+kQDwPy|f$P_eytTFjTPtI+J1}!vaUT#}M9_)tDp6^>TieMK>)+E6 zRqDMm+HagaDFycaKWEh2*B|<CduHOKFRp&;OwQ~L z|n z=o|&1UMv{3!%C8rWmM5tKK@L+fZczMg7+Rf2{K9Qi$#mp-1fU7qqC^{G9aPENJ}$-fOI#C!q5_;v?3))2?)|10wPF= zgdib}AdTR+9{2zKzvrCmeb1NIH`m^7_cQU_x$gCg^@OOY+&puN?i31zI-{t7#i3Bg zI8i8~KPO1wipGo(8vY~ZBB$eW$KJxl-NeZpb=$YNGkFHw$kwiOChx2}l2uHliq zH0JH0F)()ZP+YcMk>-Xdp8N#ylf;WBjwzwj(}~F^->y@V@gIB1rD0?`pu@{aPRy%G zM3&LLNc2=2=kZg9%(E{mL*Xe6KhY(cdzr@k^TZx~q%krd>!f$gyI6%{6S}0{lx-ip zFL)o9An83Qh2QFu{8pwVqpYlan(*(Ji*aui5%xb`ctbR2$bY=2AoBm$|41E=JARI_ zdCdJ=#N6CHVq#+B?Uk_P_6%7Ux#19j5U$vbgaF{=CV?T(5$PO6%^g9|nB>bDx;Il0?o~Sy_pCZE#wAOb$s9vi!cYHWg`Z=(8qw z|7+<aw324d|Lx<=`9(cjTi(#n(4SpGJuh-{PB8iWBvMJa_L%9%zje zrQwpbPqOD;*G8ZMsH9Q%c7HaVljQp~9jp3o)MF|_WxG2;D4R`8Y&h*1I|lRk)^q-s z=JS1-k^UmW!e!W-H_P7`R1MCoLo19r!)b+*SCkbL?(Mc*_Ur9KUZbOV>+qC6IlRx%pWgO^?PT5J43p0+rzklWIi`0O-4y@vQp zVMD?gjG5Y0<>2^aQ}A6>sn7m$IRm5jVt%=v*XF`NS?m5qwPn;5X=x@!MMafuHV%%d z-kVIW`^lA+*ZKzr#16+sN5exyPi@S9K2AhLWG(!Z(Echuo=U&ghqkx3w@BwVQ{(o+ zKweH^q4o=NhO*L97mqsh*|YKv4n?1RH#avqd3c)FXF3_Sb$O^*+1Qw+rN7No{`&O` zCU(-r$jRyLs|&+0b;ji*DdYRzn+uO0JtCg|@xyFo^!?%e!~$eFvZ$|DvNsB!QTtIz zf}-G1X-<{&{#lZCfQAN$I!vGr*P{FsnRRZoEz*(Eo-DK(@^Ch=S?$YIK5^p2 zr;JPG;)X^snE$cQ5z{OaWDo)c%{VaIb|J=N}(UCh8yf z0V;_>&}O=?V4q zGCDj|)rWhF70d5NDl0TiCtM>4;e?^GkA*h2$am`wHwy*q$0c;~wV2*vb)g>y#Xh@E z*`?diJDMx^NY7Gk$VM?Hdn6M!)D6bMJ5Ex6DzQ|p8`3l~iaJf5==kD=wAY5(yRR=Q zE04uee4HA6@2o;iqg~e?y*Fy`S?gev>d^-2y5KD=yJJ};S>DP{*Xp94udgIuvVChq z(}MnIyQCL?gl(bGJHLPR6kGN%q8TMuZ}k*c+lpe4RG zH*{tQzPI1ue4Cqe+hXE5IyyRsZ@$|vGc%9X{W(~5wUWIwP)9p_|7zT`XX0bphK6VJ z1{T(-#p->nY@!&cHs(44Vh9_V`0Y$a$s-ybMpawNX#>{F8`MR$zWeES%k5y$ZLcPE z{;2RavNx#RtecscA%uoH=~;9=7m%_IxffTR^?2h1UPcjnLv5ilYy0o&ahv&YUShNV z&JJu+0kc*#s{Xdf*dw#HNRzQjSKRS9CBva3RmWKP`LR#kV%&~Y{i2Ea?P2iC$G~QQ zPQ?#)PJ3tP=Q1zyxkjGxTBTdJnhy{5Q&u{=yX8zx)4yK6jm4&%ICZMA!f`5jJUb~V zso4LIU-|0il$yeGw1UJ}le(=Ea&x&UDJd2HjQ7~kkwt&$uP6|{a^(fY;3f|XXoReD z$+fXRrHzYpWv-ql@;E}U5US4XNG1P<&=^wpd*<@o=j^C!7bcFTDU0Oh<*jv#d=owN zo$aEf7k5LGk&z(_BL1>bWM3cd{>ZyCsGk#o=e`eU8@0r$N`<5yELlPqn*9H4`%g_p zNo(0%A`o&q1qB6v)*n4*{Cj8ZIlsw~t9GM=#6&tCz0wn?BIAZ5Xc~T$%}~KHl*D>F zOU1#~NU`667Yy@Jakr&dTCHn0z603=n9_XKPrkDq2|9D(>fF1Of}fQT*d!pZ zAD%f*u(7eJXtF>c!n(O# z)q11zAUoCT6dbi}D`QmxPSXl)f~r!xtk%}nMfeVK4J|Fxz6{0oj*jaJ1f8*>-a}zHl#{0;smRI)Cvj$GCY(#>P%bnN7YqFl zF0reoqESez#yx*9w3$i&o;)Yc^C}}C9^!J#P;L>dv5kd+(?-dJX_`1}M$$rOH;uoU z7@tAq^!5(Db!{QnunNv_vG~t&^oSS<8`=DVwJS^f!5l?hA$9($jhs=Q^X&`b4~MQq zmofh7koHP6Q&S3^WTlleYtp1#(Q8;t%y_;9YYllNkTxk|$d4UW!u<1!H4#o&WdMK0%{G9^Fo(M*h#OXlamJ zG5q^hfu?XPLF0elN(Q+V)xU3r4w_^o>v%-O_RqJYAMhu$Vupzq#!&xi>N-=PA|~ei zQKgs<-kN5cc1KpqsOHCrF&M!o)nSf_b+akHs@8{zSZoGg5VTW>Brb!NtWl0_r-}hB z8bS!a9%Zb~rBs^2%t00{iZpeJMlI%BIJty%%g8~?#aMy@li=|vy>&Nffp%65jv87o zc!VTw`h3unuZ#E7gz8x_3v?t;zAoJN|NHlAa2Gr!nzQ3%pn_+GxE7i(giv5Y%5~hm zEu?{sEZP$K*RDXLmPpg2VCLkiPpd~B-764&g;BdL?j;*puQ2ldJ$RqENx|91|2M4; z(jt_HS}oF>C_QStSMFS9=9uI!a7rxI{@}Sut9g zaO(IAgzq`5^NJuL8ok~mNiM*1n17(QZV3=PslR%LSl&K=F(L4c1Yz+?#0!6!1< zVbHNd{4e^+;L0_)GTUGr6VA74N-wK~!J%P=U@WO>E*Q(NYDSogDrPnQN@@Q>qY|S# zZ4f@StAh12gJ13^JE{~Rki%T^{kQw+Y7%1Ja9UcqK}$ki>O&t$HVM42CGRIbIcJ=%Ddy^QzpJOi!Y z<$u1U&`gTsN_`hGnJE+$hn+qPYY?-_|3V`=p-HiXIND&+`rC8iQoMp9>$#xV*0U_W zGj>ML#VX(eb{T2@I^$8Lr_Xtl@fYWrgo5MITp`Vttqw6J_@UBo_7Vh58~~R&Q%5xWj2P>s|d#RYmXe*Hy6b) zvqgI#7oPM7>mE^tR?ap<7|2=V@e-+52&Yn+{W_Iw$9nb^BlW9;Gh`iIgh_m{WS=98 z0L|`mnl*a`_WzfV=K-servfJo4DM;)P}w=D9n|Nn+p=j=zNDn20gxNG>I9G3wf)}x zWl}QiFy=aBvh=0cmJo%F zIWEI2>qjyzoRd_(s#|sw7`N?$+R^Yek@zXd?uzvC{qmK&w}sh86hGKVZq-RTiQn)d zi1me%-8j$kSl`0(k=;bP+jgzq7{Oe6uX%M*ZgF3)cL(6@qW(-XNk-Jylh!1?;(|?VYIVONw9(*_hr!}> z<>26OiKPI(ofH{Yv(|7&uQxZN7%Qh-U3`#e;qV`5^Sq@}H{ zi|y|2s&pQe0VHF#3sYEcS1!)`IZyjCD=TY-0SE1cDi?}qEto4$oA1pbU*0=&aC38i z0#L;u?lu7kj5tEQ$czDoEeml$sb%$PQgHyaDaqNx8eWUo~W646^ z6jnE3n>S>Ll}WA$K7MNPe0aY{*zv?kwXMaLfkb)K3{0eBrL>R`MV?kZZljEFt;r## zUBAoEz86#moYG`YF`+NjAUFg#(P^Hc4h7Fb!B0Z$6udhdi9+!Ba69)zjhhF>rD|c zVC`D@ejh_kN%_ces@3Gr;X&kn;yfJl4`m!~?k%hth3-AjyhEbPk)ac@P8Yt$Yu3z272n(O* zP)U}tv*X)Z84C+Me$KQbhK(`p*B7&>$yZTQjRgi(KRY$ov#_xp z3nV#n8%x6!9UUEjh}FDfZ>a_qJ!)X}4E%Aj>_dBdJtWqV?&F@vTUuH? z=3WM?-MJGe7e+;dqTM6%!S+A5auqL<^W%Tng|_{{d1`7F z4vynDBk3D}5+Xt+iP*QoEEe01T?5X=-Q#1X^0S|_N%k0V@e9x`4%9?``S=YV9|@^H zznw=R5{Y`Qv%)?t^4hd+)8R=-NT`_4O8N=-A@}MDp^gU+D0Y>C?7l56^@9&=~cp%69;_Z`Pkg0V{Fr=Yh`iu`2gAfWSrfhXqG{x5sh{ z3R;nYLFNWlzP7nIt=gWVS2Ee$`H^nN$8 zc?^h4V4HMmyvlI5S+66R1sRvG!QBc6W-31Yxi#V7b4-!j-~7Klv)Fq~lt~1sdS-~; zZL4PP4`a`6vSegdr7u?NjiDxbLVM7b}2x0Vd6>^l&bfIQg;-{>Bl_}cPQ)qjuT$WhM(L6)G{49e&{E?qfARz@WI+nc0` zGbAteiZMGL^VP$zV;Kk%IB{a82Ho^y-o^9Y4GIWAMU}^L4D6Hp0)vo|nK>DM*RJ75 zntvqFMrf9skuM!4>PFLdoGdvIUCY7xBf&8xy>~*tI!M@dRLdN zD!ThB>8ggan8F_1FtkvhM$Dsn*;hzr)#Pv3M6X?`e>|gc9G*lzs@AZ^%fdQ zZ!8Y&ilse&PWbRaiIR%SbhN?|6;NF*aYaOgg_*fw#9$;Y=oMh z#>HI}5FkUT-MxD{tmPq$S=%qYKVzd^=WH#Ew;bLU^W6G1gbptl_$@5Q{Pj!R(!%Ww zrl8pV)IOpN>B6?3FtLtQoL-otoYe^m?JV+a26WzRhiINURE@zAUe$MFpI| zlhoA6_s&1AS^VVVIC3auujmq8hKw8+v+lKxmMXkrCw$ga$MD(S(GARP4?s z5uxs6tF$1b18n~9lfg{#&dx%9a4KQ=`AOYJ9fMPo?kiwmK)9awvpm{pzT@3RY8Xm| zBahyqQAtc1ypGo{wP!i13@9Nkg%mVqK^`}a%H0b^_`sj1E~p*-I-?$or41d%wl4+b^Bwh^igdsEq?=aNsm-m zb2ApWz~4WErLih1XVcTuuZ&6cMXEO`_C9Pca40(?kLHy-g{<2Q29nrWR@sZgv?TF( z7c?iEahyY6&Vvk*ul7|-4>C_Mv*mGa!q#}Ov~<5bs;#v(Ju|aqzV^uzQlQ?CLB8y` zU;X+{w&_Cu>(H{;W{V7mz7v1HovnUEIZ{~>&xhvdZaVP*Z~4`ZrAY}vt&9XUNiJ_u zt68R>es}a)$ zAnw+nL(Izzd;Hl;n`i&-J8In~MUt2lo2n@M8RXh1D zn#UvSlzfl_F8))O0{+Vn!Q?8eMW*E(v$81HT>?8x!d5ZQ4_>nOtqwRpG~3e_UqwM< zYJ2L9+;(!w2{OrxLV<&37p=GL-L~1&-(k;r;!k#lXSvpO4jv>Cn%j)wOTGOqcHdY9 z4>#{*<8#J^E<{I#FkTn0@}vm4IqiVUQj%h!I1rt4JzJ6_qCUi*97mnUR@UZw8}nV4 z>jYUIhuqnQIXd;IXu=PnXx(`-Hv*kXC?g@^X?vSozjFd1Ss*!%LRQh&@muV@FD+FJ zlHA4E)6Q6Qb-Pe+l^+G!ykh^)u;h@hn@Nz{g+xqd_|Sxh1RB&TviewlqHR*d#VE9? zE;=WTRfjZR)N6q&y96Ee*PEW*cH`J_6H%^nZc|hjqE3edoR7Ok&Xr8b^#${XpmDoH z(HUr3*LG%{D3@M6WUf4?DGCx}2+j4zI7W2sw7O({qmokJ`ER^m`OS{S=a|vN{K1M9 zV2-U}Ga&e8kVNNl$z5v;=>lj=ufxm5!6?*6(Ib^YApJ@pH;(q|qLN8kyGerCOI0wT z;!=*A$~9N$fF>~rBvS%?v%9tvZRjyO51fG2?bRvXMln_VRlT4K7>)Q4 z=+S!cr*wfX*HWR$I0lt^9E+#-IH! zGjOb_&$&w7TN9~wPIP`gYM=z$+G>o`N3(Z7Zc8jB&v8Gh;46QIBT)I_ z74Q7Y>zj!+@me4KhRziqy*xLD#^4_G<`vK=so#w-H#va>OxLjGXadj#hm}~1dI#Js zbS^>RHk$M0?UtvE1F`a_*vrr?zMj6rfy$CMKInVXXMI(%-b=)0NYvzVM9`}Q`DPzd z*L{7^om&^gNP{D%J>H}!Adq~ee1V8+gHw3c@&x(uqe_7>V#)pD;Tv-M?>^Az&_j(lfCY=>W0uuuSjW!J~ zCJ~a^@LQ7^>NgbK@p%RP*D~h73FZ-S%`nIwVYLC*fojrx%b*4j5?9f2dSjbVFnCkbtm8IJ^fMdG*m zpJ4?*HlZL3ssG`g4rIFV+V>Wn(tBj`;WQ6`NqF@5vB~0K{y)rv-TN7;QU5;&(EXND ztIz!QZ~Ib_&Xc&fN56mjJnKmib;O)HeVT##y+4S>U&`&7 zvQ*PnZkDuUYtCUHY?!vQU+CR>sqlk3n$E+3B8p%V(>|GW4?CuIB@b5I3k%BpeT_#6b!DkzNeaq(`a`9aS+5oI zKFO6j;F@3Drpn)sH0mdmvh2AF2gRE5JM+ID5bhXTq*-&8+eDrAid)xH{h)Smc^b0K zoo;)-z;6dD?ws7*jmMdM0-~f3X>11HIPNEx*$kz_8j8Go>sI*JZjCsqfmk?U8+i7g zja4hM*BTDt>$0rmG8}OI+%mKwrI*bM)2Fdw86^3&c@XFV6B-rCE?tnbITwA;$18XN zP<5s2V$k}!Q}%vmXD9Gd`cgj=-QnO=BPO%ff-U!*SPpOrYt#+}EG;w*W{WidPY6U2VQV@qDTCmnNs6 zFp$ay&`K5dtJ7t1@C*t#o$u>npk4!|q#~mG{3ZFV)uOI98)vx(&T@7CESLS>`@J%2 zK=^k40(VLHYYwFV3w%0pJ({Z{2fJSY(UV^O%#(19=zDR?7uSPT&D4&_z)oWHm>>#g zl4hh}zf}(@srvs2ONow>7%zV75yYwy-S zQnTWoa}HfWmV_z)>+Mb1)A=KupDigPf>GjxhJPzmEtTw0MgMy;T!c^;(w z$Cp*G={Hr)4@Cz~a1N}b=iZd*Fvj_K5kIxoQs-t+8@J)b-8UF`mLzc4>ZD)k(y?k+ z3F6NsskERcjAQ4mCxx~1F8mzr_Sect$*3MQ`!m8)&XN(_Q%6ymDNk+xiX`s$i_27! zbso98awlb;a(@ut=XOs4koGSk@Uh;iO@Nav>t^X+4T(-WXnU|qjCcx?#WU<<(UZTz z#x>(2&Sagi6Q@k=0Kr2IwU0{V{gUIw(IcT#*?5qUO!E3!>)20_8I+OW@v8R za-MD{L(=fc$;r8~Dv_Aj*fnqmpIzxqyDPM{+m>GoAl1a(OXGZ&-m_bT$hnSMKXvFnlQw2sLIR81bkj@IL@TuRFd3& zu);FsTS2e8%@&>K~q$5IYjWm*#uQS}I$II`RvcVAGB@pO3*ZT^=#fW8Qsx3-9{xvYL8H%w# z8&6;M@L6sNqn`Tq=dgTg>wDN`?n+zRwWXJ5!ztYoLI&GzXK^cGUfr=Fv1c*aVLJ{p zmH6QO*Cy5{{-I%E(Lnx)jC&kCdGh4*D^}!J?Z**@6EOqLID_)|2%!*=U6|rN9s*?8 zBoHo*(5j!iKhl8dNtFlz5%i5=4IOgwf|o@eZ()&MT}}VZZ$CdiNr4>_NsKLjv+-M- zif>)!O+jaLsyzg#c=aCrV@x`2Vq)^8(lxJh#>jK#d`3pbL+D|&g&qdYee_ve95H}gn3ZQeTs%BjS=qqP)Rh$#qG-A+Cx8(~1zfPJ zAcE!60MRA{P`mznr(^cDyX@bmrpPW_Sah!n`D)5L?p(8|}F8LC`%6W`ljU3D=sHogcFDL8V*q&PS^Prx=(*}f?+e=YSh_)6$S z9Z-l;ktl3~LLs7e+TjKVF-hY3BK2!5aK;Z3*Ws8xy_t~h6(G0W;S`5ybY1@55_Zqp z`UXD3ndmwm&#IE@a*#4?S6-z*K33M9vcFo#1eB$`i_4Y6!|l4Mp}Iq1g!=<6rapVq zBTQT2NWDYfy>LK;pN^e57x#P;HShk%x958mz4Bp+> z%{H?J67bUCyR8EK_YZ;59d+vD1>e+RKvov}o4e&_g)F-2qgif}(tYT_xBI_+9E)Zj z7^w8$-Mz_Jt3R~S=XPsW{gpg38079`-D;TsoGozw3qL|$XTB(XlX^u-bokc@Rm-5O zr$d10VqaK1bLQN59$lDszMPjxpu#C@*VVzdUNKA`BV-q!#59|i>D4f9F95;Q295$r zJ|UMmwJ-PIouxouxq20l{t;M-Gr#U%y|A#jsIIF!uOX*vXt?5`0%_sLRLL+%q<|S{ z^991W6})FRyHdo5@|G_;-OO@`S)Ke!o}U;q`fIClu-x7VIc;ZVK1#d2t63?vEE)FE z8@~&C5)}ZePyT5@jAcO@KFv{Q(BbWma$W{I>q4XXp-&IB+O#8N47TccF@49S<1R$S zw`mm8&MNA{*(9s4pWJp=O^p-|b!b`$EYvpVU+e3jVJz*C501mx|Eb2?ed$}>H^*?jA;ZVYOyHg zyLaVnNr`~(o(m#K`2X4ewuaFA??&vJz{ZsE!Aj63JD-idD?P;}W)k@x2`b=td@g8y3Z}`TJMr=Dq^n|#_V@19Lywa! zczyqGuvL-PnjCl^!D@S<=ai>qm8PEmmkH3VM|U6rqQMcP5NjxqQ*U&Nk088q5YWHC zY@1EDM@O0iYdm#Alt?s)$tvXy5`g@7JB{c~?%leDMp_A3Q_j1TtkaxNlN;_v@a5=f zsD{$3d>~b-{QT8TJy41E5|e*Us)w=vPvx7v%C+1 z-h)+C<+B9YKEq0qr1w>ep44SG-_z858={8J&_Jo(X$qsHdFr)q^9t(eL9uTm*XBao z&9riTf0reXfty7;$&B{vsW|MYRPV>5G0OjS7GzUc6VwsQ(PUkQxp)x;Hc`H3`#V!n(V)J9 z!D?e=>;gn=4ZoubcPt81e#$>pZ$|o2Q(uZET`rVjhC~>BF)hKrgA; zp0p^Cg(f>M*EL(F`36B?H=3V~Juax_9zuufApPknyAhzdJk>*66GG588^}oB5Vc4T zUSg&C9C7_MWoBC%rEtG`qVA1r?pWGvT-F+=*x5|ceCLf@s8X1Z0dn2K^)KgoVHXgfuH z27|FB?D=(qZJ{4CTgAww^k_j*NR!k{_L1+)Sx=Mr`my`#zkY!dxN?Gn=pq-_N#Jwg zWngHpu1=<;tjti7EH5WFSx~jo2rA>#dsk_nAk(B7q(otR*E}yht{9g2EYs zz)<{3>B0A-oe{3-RwYMcZSVf?i>{iQnqp%M3k$#X(#Gs=0*#)savF^WBNXwHoAflEE|080y%Ryu!5gsbt`>E;vduQg>jRG$Tn}^c|{y+;K{VTB_?>te^*PJ((0 zihFMXr4nU|BgbEzUrHS{8#{aY+qdM8A3vrMv7<*_ynOi_KwSj|g*hkjHqb&QCXAD> zxt;>v;RxyqF#h1dppo!!cs8WG$G>pgi6k~6Ex#k=~5#yXo6xtkeb|A%5->3Zx#|2brS#p)n&tQNVTRwB#`y;x;FbU zW$}4K6+lP8DIkXyO?iT~xh;~R36kuisGWtpLWiX<0&P1nT6yOoiMj}c(;E0kX|q*Q z8fDK(5~C1RuJx{Bdf%_3SDF-8=Oy{F^?rm9jQHdj0^Jd^lEo#^z(vCAQ& zD*2IR_kM_mgaG*~h}+CiKO!7`&j8V8)?2rhN1{QF0Y$vtwAdKd$d^*9*r_!*aFGEi zEBoe;>iqDb5t_cZvu#^GMl$hLG&bL$(+Di>;6gAx{JmS@G;<2rw)wr!VW?POM%qlDV}!S@%{7 zm)$iS&>00_n9fvCL}<;Tsot^Ek}Ub>m;n91hw%WW%gS+?(nNQ6qXmOk(}vvzfk<)hQwVpLS0qRrW@u^JqdPV-2M)FOd`v~`G3)1>6wSW-v13ZiM2E=& z#Voy+Pe*?|Daau(&LI2~MyMuf;)RP&lS7|=mk&MmFgl>U3tz}>b}x&UcUz>&i-OFR z6-U})+$S9L4ln<^U*1r_nUfvE8+p7fofT7akCs~?xj(pT-{7^3;RZ7mLBSIPM=-gH zV8E})!F`3eUx8hUf7}(;!>E|afoSe<)Bn;91Tc%Uf(5bOvOkNqdgxVMDl){nw)atC zU-{9K)aI5FS+lo~ue^P1Z1HMq&Ez~=v?G^hO{UAXU4A1guq+df7cnKI%+GtPu6h6`sfj8W%Q&zgsT)axdNLEjpKmY?>OV`c$iMv~l+93*eEzWW13cp6L$O>LN z_{OEEBag22N-6kUb+S)g@Pu~y!!O^MPGb}K!wAV%>OeE%BqZ3e*o8jvWY(E`WzrzD zd7bF5BC<%wZ`+l@oT52u&M?*JuJjcd`zO76o%-$F#QFrPCh0nso#pO%+CYBCO-@^_ znnung@h}IYiqOBL{USo>M~@?fUjzq#rB-E+F?JkGs|@YrD!IC6hW*9_iQ}z<;(&h2 zxu8+_p)!PkGE>Fh81KboXyAZ%s`H_U{UZMs;QkiZX%ZBn@sbFB03(w*DJ?`<|u3Oy)EB#N-3hf zujX!lfO3X$k?mc4&Kr$Wd7L5PvLUq9<_miGI6wvoml&DqBv>_G#goE3!O69mlZrRa zk_35+#YATQ7@6fytw6$LhC)NerTk?IuAFI)I4tW0;k>VS2(+g$zP_pV8#3=3z%h>n zV^CbW7OYEck1R#`9Ekm~vznpdabw-tMqL+%vG-4Tqbh=XvISFo?;BsCuf_gFWV!~7KclPI>}QEqM{vkUL&)T zEo9Q5QOUia7S|fj+){ypnW07RZeK2HS-k2M=4FcAn zA$4#h-Mwg(wkAmKqT^b)8d(#y)+x83{a^yVk-Ipui{{Jx`)+IE-gK8=>=^P0L!xKB z4?Et4SKDF_zjFvSaE;a6?Oad{vLEktl6K?)TkVX&(jKw8Ji`x_LdY9~V)MJIm$6t| z+A=R(k3%22^s7o{6ieGnR$+k`8v!N6v0C^u&JluA++o6!u~k`*4!k9wep9E#Vcpw;&c8&6{>XKe^XJbi+`j#Iz*^43 zLlo-5)C>%k*Tf2Iw&;*z05Cd$-2#jumHI1C)**l6#t{&&daK;+yOPE3?4G%3Q0#@H zwK%&_`o*mmg7_+80{{aLaGclSvuBy4mK=A1ePrh2JIl<>Oe1Vf3CH@6jU7bAu=Zp)1y=2D1oSb?DA0q@8)U6-|Cw>6Xz5_f~vQIpEROvy7UP`OO+r_Sm)!(#v zPc=VcGlYX2P1UYFzp7+@d6)0M@v7aqdp9gDjuNTQv3uqT23rAO>yRQ8BfniXsr@A( zM66O0NmFoyNX9WDWh`R93|1WqK<({aU06uX5vLzi`Xx*IkI$?JpJiyQ_WT7vAn4W2 zDAU=l1cddBWRhOd$;!$iflLhu&*}*$26JVnT)2m&#JQTkwBwfD;xLcPq)6!uX6R;Y=nmC9SKJz(J;PU3%*j^CsY>(d7}ak8DO z>!JTjS5MDP5046#Wa5B~3|1hlz`5+=StBPW$H~k4xW%*qQDCtDASb6>edgWy-kK3k z8kNe{15>_n!y$zG0xueTx6KzI7qGPLJw5Kb$-sVP&k$Yw%Y}|tf)^Md0rw=U@xxO} zeIO#67l+0W+J$(Vzy>@X`#wf+N&IwG{_ebnr?kuI)9NlMx68nMEFd7DvTgZK>7HNy zh+X+B|38N++sD8Ni@_XmtE%Z-JOJYH7z(j2A|v|ci_ROPI!0jmTftIw4xri2fSn-6 zD-Bh_N55`$D=CrXapoP@d34yI{%G+ljDK%`|D$$=AHOhyg5(^ksV=*8f4#Ve`XhXX z)dXRiL6>XjP-(EkD0SpsQ3=Ix@ZLbGW->eIaeF|~hR2fSOoR0d1hPo*_*VT1F9j@C zZf0G^&Bv$p#&#J&Vs8)rH%N?q;S{7w>QzaRXiH=C@vNZGb8Aj=Nft z#1;SrF%>0+i`=JPA^M%sw1g+Dv0{hG8&REThHI2plk%I0kN(@MwrG8a?ELv-^`2cF z0F00ifE&`l@N$Uk;x+?|hPzPmMuZ-7CO{sGnPt~}`){>#;A{QRner#-LucohVcz|# zNvfURPP^;oK;^%%>`6r`_IiP3OdFcy^-I6=K!IX9#{fy$?A{cxVeAQ8*R}ErpaAHg z>ENc<{7@m&_wU~&#(|%I@^2H{wbUd47{E1x2I#W8`JbrmgQF2tG9xr=L*ViKGFvbb zr+dXr;)fjS$WTyehOm?%YSvBF{zFtUfuW2qE%y2Ixl#$#^z3Y%r@cS8*Q6FdYK!JGC_UI%iwne}BKI#in7AF%b!xCIA%bBPd4CX|hqMbJVHx zlSGybVo?vfTw4$P(yWdpa8F3dot72}Dw1gcxN4XsmgG12`7NNNETy8f; z`Avl+uHXDkYX4bTrERBW$LH2UZsk|O!_$8B^_`m*j8QSuMZWuP2q6n3Y>^HRVj+ZL zhiQ-MmoJF`q~5Sy-qy5$`fZP`VM~TTwNM$0(!XH&w#;T%`Et!8sG03blV(Edcj5F} z2Pzs)I@_z^8fF^?qLF2!zQD=JiJoE-xYc^o z-NPCyAhy~+eryFr_9vJvOm==weyQ;mk&mRG*8y%%GBSVy1#tWH#D0etly9i1si9C6 zP^_Es)fs9on_FACYg3@8>Q?tk73BA_uZOD-7$6@FSAMs~p)2{Cr{r!yadK|FMjX&+ubuCdCL|<7IDUHs@m4Tc^KB zwnp*XSoHc?&qjymgi?zvfl&OZUVO&Zp?SbcopK~~b9J3!^B!bmZxTqgxPhT2FY$Cvr^k^WRa#FBABer) z@}pX>KuSt}20+PfVIEVsT=K3uD`+v1jG5h`E)78LU~IRQFfnO*tI`%U?rN`%-(tuo=Kv1x?$VtD?b6QA_R0hwk7b(qk0aD)qG`nO? zD&zIc7|l4Om~s9_K}uavdsbcp-g1#b5^B!K6L1E8{Y&HB3s6ucc(ly#O0Rfw|F!2X z+k0=dG`M@g&&c(gw%xev>LFfjO{}F!k#}hIoN%t*Q&IoluZgejvEGqKidXylHK48= zo{+!-`U6y#Gd}a*nGAMpIwNxN$`wj*=Qm#V-&IEB`I+@U`*nZ99vnUXFOHYn_88fG zL<2urv<G+mga@f|Jdb0Q4+zd5K71$wcRancAH99u!ByBL2!-mjizsIu-0u5M1V?;pqytp-%ob2)W4m6f23@B|xsyZS5das{I23Jot5 zY}FHogHB#t{m1wIzlyenL(cPkY%ub~B!1H9^&unw2&nZi8+m72q~l?Q*$iQf1p92r ztwo1h@eXgF-dYw`3b?&4v{7Eao!h!FMvNm69=zbRCFjDj7el=U!sPxI*M=hD|3yHp z(QAXmpxC0DF57O>)z$U6h&>|`pFt&VFT5Hfx{)iz@;>K0WyyLxAueM8J^ofBT_AZQ zl4_X>jthm8$t_8v5t;+62g0G=pcJ zfqjhH(4%4M8kqPG?6m*$*cUA`+g+a_L`AiM3I0x4m=2Bw%QkGU_-vXprS@OnxrL7GqZ4HQd#O5VBtOct$D9)Dn8SzUywVLs6{u*!* zHCUHjJ7l1zUvhf?f5OdnPyM=VR2vTYJyK?ZlpR&NudaCT0FR24s*QWEN}^gI6Ukmcr0GBN55f)`6cM91VZ%-^On@5N&F=!7#uf| zu_BefAflE9bCt?$UijIy;!2n6PXGCTrRSmfQ5#U(lX67KeQ$Fy*zaJ^wNl^I6vKV# z5|VI&9f7EVitp+_=Jw@ZkkLL#P7a6E1u3OtX8w5o6{2nw=}3`0hnVl^a3vP4^7Og9XT=DTzj_p#-;d@3`oK@Mh>FG_to1GbV?AuY zF#W|){k{_K@^ENdPFQzLr`cm2-%>08)=H%Wm)wRKXLWpoBgMWbJEqvO#FaYQuej%OStnoVHi$ zKWBzMiq*^4c6n3JhDpd-Gb6kitBRmfc_+Bw#&tc<(NOWe#A)Ie&FFD?lScung|?(7 zU21~0%OmA1fC>=}98^aEt3KB1t*=nl^_!_k z5$E{xtqNVa7k15GZYZ9LD82o9W_yDG8JWQ=IpEnnoJ{SH;*L~#TxwR(G(uMr+Ee}q zS#D4uh!u4!RbqJl+xXlEX9XUmu8Dm4%_IWzbH)cI6Z1H?{i`n^C;e@zip2>vc|X@P zsCha!dpko!ON}l-y*2I1jZOR|7TeQgWUpm=tmVmoB0)b1A>fz2a)DC>GOwFdMSy{=x})Kjr+=INO(9JakRjL z3;>NHMPnb+q*tAG!5MNZ<=T13=UTj1Yl5LdVG_!D+5(7{^sqxT0?GHyr)^mTPZTM*C1K6sE#28os`w`zp#plP@oMtE0(WCmux$Yag)@1q-@fb5Mp z5aD4NEpN>`LE3R$)B^cv;?ql6B;yFMF^h|SE_w*n)MpB9GT79cWYk+Tmpo@r@tr$4 zP(>SR#dF&1nOGlXp_P;1FJcx8G{@c7!i;RuZ+!L?D{5;QK@5Qh2krSC`yYxSy|dHE|AaPX*xmH(ViW!{%;4#uO&5jhzlfhd}+TBkqjOW z!3bqZh)+x6SCfTg>e@*B=>xot zy=Aywv~mWqpEgSk_@ycG>=jj|BCZerr)A@{kEf>?$If(p2rvjt6XR zs6J)k%rT?>0a1zg`0@R|D>313&Obgp!7UZM=W*D0ilRkWqlf(IpS^~44#yL=A zz+kqy{Z*PgmPaw-! ze6>38`*%}`jZd-=tsJ{3%i(b%JVv#n#lJy@dITN^M6caJZicK>WT_NEz2(fi8Wa(~x9DNRyHQHW)p%8*Qr;C==k)!a^E&6Z|Jl2CS*-OupXa`>`?}t@!Dyk-3bzXO z`6Sd1=n>7W?t_Ql(f7{$yC)l-tfu>Yk$*-SCM^{CsuO_-9TS%lA$^b>pOi)EPnOBI zuURKE-k5}T=H9+1y_V z)ahOt$3UY49c!zXS7A*BGnc~4cMsqfIWaTYW9BLP*;iJgM*Cj2$Z?;x(=}%p#vBoI z@G#>SkBRqRxEWJ7NWQ-oK6icR8n0NCQs!=2cfmjD_G4| zKy$%fMHf1hBEjz@V}QP>XDV_(88UU+zw&b6vX7`yQl*3W7!(vm6oW;>5D8@!A4E~h zV%a%rbM=zKf9CiBR)2euXARjt#ymctJ z@v>9}(kCZ*`9Nl6)1uEgo4>Kse=Hi6|FF<9ZSL}F)wB2kVi?kNs?wo+a~09Cv9L^T z{rFPXh2q-SBcM;UUUALhoc~y)qEA*6$XZ`-`=v<(a;qVg4DLa1`*A>(b?d z6vIne#_pQs7Yt;=arq?Oy!jZW2SjlZZATVz{QmU6kS5ng&vwrKFlXXYSO$z$N_x7H zE!a2Z`pThYsVPXK|CbcN?`)uZOik|`{XoO*$%pD3`qVc}ReN){Lwh8yk&zK6;>oy6i-A6yS`uL-r}4ts;RvGe=#h0qW7W3;c}F~WOE zV)uKu$($US$fzg+BvSC1R_O4Va_H{v=9QFu{^2uzMsoQ!*s0?EEdBosM`JI|>o-F* zl*GZI+wmeki$rlL+-k;c=;xK*J$niXOhBCRuJzpi&-J~3<)*Qr6}6o2p5$1TF-q(! z=D4^*^07Y)KY4@!Aa}UEu<^s^tm4m$3=IuO%GvaIkw1l!`3TIPQ4G81+&57vfTBUH z62K2Fbu8=^BGL(zUDC|cS>O#OPrQ4FTTc_!TJ3vX2>H?ooUZ9S@g+#Ct;)AvFa7h; z5VPo#3U9RO-K&ZQB20goK!V}%P#)Swqn(C1bMxj?&HV*GB}j3^Pq`<&f!{-{RSxtb z#*6373;g|+cBuFcM`ivmZ~+RJQq$7Z_4Pwv$w}b)q8sVG6(@Grd2obDN_uzE44P|? zX9{J~X$t~!caR5ZTH2S{W9k3JK2o%^|Gvj41*7<`2Fc>gOlFX~%7|{V`3&P^yKa4S zx_YSpmSNf^ih<{Gvm*RaJU^Fla`w8Mw6;!avyWI(ZGZ8ekRsM(%gu!SJxn#Mt;8Ab=Kd>gYP`esDq&Rq*JmxS59GW?qWx_TkaI znyCrnkeBxb1!N2|?Y-^;&@}o&d6*aUKI9p;LT(zVF`r>YNpSlslf@>{8<@&|YM(1Z z{{3q@`_3R!g?Wd=bkwEFXD!^9H}=AavDP|V>2GTZETi6#GnKi^|A^jl3vnDed>FU+ zJUosodd$JPgMv=H*Q(Pa>Mp|_?W4Q)?c;gyy-&P&qT@JSX3*Dpbi|42a#;2yP z!T>Fmq0?34A+jj~d3cxm|5Ik;m&RG~VbAQIefxs(q`h?je5tN)6F(+8Lx>+1JhPun zMZ^S1jt7z8jw2~c0T>cfxS23~`az#t;^A7A~$pmE+^QNoKCkNi#0K^TBL3{CEGM zyScoxZPQ1V@$2*Q7+Qn&F1`*oNb~_MZ990DA@2VPH6Vi(x_H7(^I#e{Q^pu$)b6z42*ZyT&_7!{7je5b|e8rKU#jIltR&?k;HmWVP!%k>XygS#wB6T`oocqS1HUhqGbJ!aJJ0;Fn)=yNU9&2v3=`dVh!1AdBZpFwpMy%sYHq(s>; z&Z?u=$y2##p&V%qlTnYaE>&q=7w3JVI$>TWb)(7$xFh9&Z z=VBx>pYCu+F(>#L735&x<{td)>A>&|1Hhj&Llv*}WH@A5=J)QP+EmP|&+6xyHGF(j zRS^op3?nUnGr3sIUMA*pHZtt$=fB!?$Jr|+%iDCHjb`6%y{8rK#&~lfDjh9^!aJGw z0P{>JzRHia>Civ_QB~~hCpXrfBPHkf)ctscgq{u_jb3ZEg-ShZJ}5{&9lP4AZ|fGk z69_xJYqK^rDKY-o=1(hFlOP3V?ps}4;!SrMH=uEviK}M`%z!_pCfp0x0c?Ob8oe@4 z+*DEL59U9xgib_W#(TVZb7uY&)Bpk{0tvBeZGIHqCoN6O&fWUTFJ}WhR@FRS#$ndq ztn|yuG}XQW<~?#iwoaa2Wl0BqhKWAy<4+INCTh3>o~TIrbl;amhxg$qYHD@Fqbl~a zX*(1WKn(~?PlV%6oL)2icK-e02UAWUf-u)`LvbcW8$62A_)H(}iy+^Fq)p88t7H6+ zySF?rv`Y|{5jFt@kTbH;4i<<(m%r7{pZZLyuv!4;Y7luU(FmiCtY1|qFnwR`zMeYjgqrY6AKa|YY;;{ucH9^=S zU0>FIgM(Gm8F)6H4UfK-9EcuQJZ51B4>x@_c05qomRvs3=G7DG@Oqm$4PK#Z>& zwiicPbUSu*@3Y!{8Fw4o{vVPoES`d>VNq0&7!&*#fdnK%-1y4wnO2O$pm&mk6gnVk zEu?056}d^`LN`FP0vDep9P$g6EO~-vgMM#+lXnHTy9ES6P{w@Q9SN-L+~SokZ6^4E z5?=UsJip4v_KSn)8Dte-4`T<*%9ZEIj}H?yiE8aTJ}6hwg~zCZYu|D^`>Z9^Jglsz ziN1MR)mw@514QmXtxyizEf?DmDS7TYy_?hFJz<6#Nzswi(=M%=Ki@)1{fZ(FHkPnv z{3`VN^}+E`+(x;%xe7Dfz(b=(^4!}4qw(|=v!BQHAz}@D=Ewdg0@AG1u_K9*^WcaO zIcyD$yiWxFI-nQ|iJ3wO*RyuwuT%2GW8ZKsDJD;JiVY~a*PIN{+HGfS;O8y;Vk#=! za%CDrKqb3#$Ed%SF}xc6t9R(Iz@y~@yP8Sy`V zyE{7eU{-ujjJ>>JumMmFEP28&inz&9jc+4MF2#D6C^Jiu=Uqen?UYz?Yvy0)Z*h6{ ziU9u;RyX78nc9nYYoxAC-m-^BI2@3`i1%kjsZ{Ir(dW-%ia?PhbwXz6Y|qviZ{RQlJk-^Cbj$W|@pJcc3@PIeBnG^cI;fo1-i5fk^WaC-6Po4h*t zLiL;4yPh-x~fYrNQ@?XK9c6BEWTIUF*|11I=!buaws<32444dS=y2!hBVZh17z-_X&V z#bH4#0suzS`65F#Hr%-ehu~V02qp6llFm-cdT{%R5NG%^zT{Pb`!sBYXy>yx@;uEw z)}w1}ZOw}rKfE*?cpjmCcgB$yU9(2XWdYhdbwF=|c~mZ->LX4kCmyQ&VGU8p5!W@7+GQqIjw0n0~J|s1vV!IYhqk1?^JYu8eY^0b#22l#HRqL$o1&UW0Hdzoytx1ndy z%?B;uVRH;PSWtBkG4F6T|BIVdY`RrPX9+1tn1FSbmL5`@+E?hZ5SP7Ae#|bN)@r6x zp>^uCx_f%vjFOm$&g7b6%kUlR7j|V|lIk(NKFe+q*)y(f1mt z%J^jJC% zYbwb30iFhKy60KV0ta(kCruL5@^|}iEYGOdU#R&;=yTAzW;vDh^5(~Dy^yVzwr`TC z_*R2ui5s0&;3le2HtchGTCm9|q8o+9WpD(&3 z5wU}%37RO?((*=E!SAY^(K2#QA@2CIA0}0fMt+D=c=8p)ZZTSz@H5*3XD#$H94sar zyZ$8)Liq1+r-a%sE#TGxl*KUByxnC3lNFh>A$iAD^LK*g&i=OM6%Uta_5D#~QUwGg z#cg+KYYAjwE&_8HA)F8*ATfv%L(xAHo)pY2!Ifila@d|p033jKqQzAJbd_|H2*z!X zQ{^trb8H9vYd%T zUJK;phgtHog~OR;=wh@DY4@Yc8e( zRa*ZYYOKTraH3x&961$A1usbuito(i<>RBrWr(UhpNO;JT3d5mhHaj# zWeGcu!kTx)CAH%@Zyo^O&NHbq@R_hs$V)Q$~;ORbOkm^Q@=>cyeLZEIl?#BmQCjnpishBs_&wN$M~aGfRB<{lwSHYEn{Dt zm0ozARD2|d@Y=AIWu}z+(^t;CDtbRGK*Wgks=o3GA=1}q+XNoU?B{( zR@=MpOBMi1@U8tW92bUS#tZjh5LN8HHSHdK0xR3nY7J9eOK{<1KoKpw*jTD74$QE5)ucV8MNZK~I5jIiN+?^|4k zYeqfCSPzMr%~G;L6AWpR^B`&oT8i2v&cKa6QvkG`5jHu%CAHooi5}%~{7f z%@)RFkM;;}4c%Yz ze@eu^MLjvjy@D$lF0+kO19v%;TvE)J2!)5Gze@@euH>_O(!VNIyD8ML$&C$Ck?l;c z=f?|DaJ^B7F4Tn9AEyn8^FMp3`?TwovN7a;G@xOTkz+p)7yo0C%itFx!(j;q+-uL% zn#uHn;4*>&wVU4RS|_*+3x%Kh2^7-W;B`KNwzK4lW&J{mZ)am<5|B|hGdt+iX-Aya zgmHcwTkHCF=@7z?!-{yPj}b0yG1!eBcul%R#H22f@rlKeQzdEr_wj)Jx1WD` zcAT0?Yy@p`K~`T~lic6-ERK0?XPuzKv-#*-cew+c(n&^()M*8x&ePP)YC+FbFB3E9 z`d@l#D+t^cOjWNR#X#8->~(M(=#oZ@eehJdiFk_oPg2 zn13XHm%CgBr(}|mjM09rRPLdbG8Z?QuNeAM>p$9K?)r<*q$F|j`l|Lt}W)*3aI?zgwfjFRV

?nnKrY;_`e??|$=39z1gP$~Z7$@NOM zeXkn8y-Vg)=i)zq^nt#Wn$uA())+nZNV?G9T97S%h8D0k$^vRSkvYf^06R2p^_)L{ zo&l=w^K?gjmDAf!k2(4+3pCWW&Ak& zyJNk0%G!P%OPDa1vYxW3-#I)DrLL_{QJ#v$IG=j+MstW+Lde!sn{)fX$RBxk{Yu-d zhHO-RhHSNKk8V4=wk+qYk5~SVUaJqoa}}-k{w`M3cno81r)D#EKClEJ{kwUkCne1V zE@jiMT^#T?h6u-c%z@Qk?C`0{%gOIIx!KJ>pD;hd&WPW68W8;mgDtdV2I0ISmeqLF z^|=-Bd$s6(ml_k!|A|I9wLISaTQg@}+pYO8-a734ts`}`uVA&jBX!fJijg89-pEVi z_(A1zmSB#FJ=G+0Z>r0efV0DwZn=btcu9#WB^Ro)hDm?jcuXTYKAbN(`?hFf$BJMT z?HnnWO`>dqbGYShcTiIj=9Vv^*Kh!7?%xuNx{if#EBgU3Z3S8$H_sI6r@*X-Gpk6y zPS(H_4HYgX^JfHX^v!GUv^{&am%e$GgqxtnK;M@!ir1m-)CSJ5r}9H$ty^fN9LDEm z92kn+BVK#>iTXzzPuZ3vbq7A?%j0*B%NP7H$xZuW?+tDc7{(RfM!UEtP)a@8pB+y? z;9oGjaz-A?3JM2$inYzkz^GR+CDIX-BHVx16r3MtZD1>)Sn)Qg-WhY@mv-XXNjX-h zlw_26F+H6xc{`uEc*bj3mBY28ZAOLax7mxN^e}ZM%#E;SQmIATsDCk`|M2aH_a0p4 z=s6|_nE_DuzRzC20|E^bSQTIp&b2BN_sx#9IkEb7b;dSr+rMMK(2;~pnPXoiS$enj zb3Qa$2^_rynNCQw>ba2*~YUz(`m zj|gQZk$HylDLj~vdC8XvqBdzWR7#2Di!@5~G7K0MRy>n`;$J&fH~ryQ{cwz+BjaYL zdvqs)R>>_|_i$Qf=)sg@g;yLJHS&Yho!bb#A2a}d&A^d^uPXJBj@@#yRIngmpGp;H zaX{r7Q^vqQ&gV(3kvgJ_EaJ%V;DzP zND&vCSS9=hmY~|xkqDtBCj6JxPO6gSd}y+WRRcY}Yn$YCt%d0c>xJqntoSKkUdkjH zS#6{xo{h|SJ>So6?j_3EaN6wsXG85t?6`80o+?E8elw2Dhjw zPa$3gKK~utS3>{LvP)*)wr1>+C%83CnhC+k88X;AL}5y?dZDppZhfdB+lQ1!GHW%4`gpkgPYLy=WCzz;e zCj+eA51Q*P(D=OL%eF$1_9BhxdL8Qb`p*?oa$ejibA35&TD+? z;8q?vO?32Asb-wQ+nhA1)T35fy{j1RW$v)=bUw;ezp7S&!3wGS;}fPAF(nLJK0SE5 znzr69*=>OY4Z=af3#S3AW)8#e!Bc^OXXCp41s>^N_SZ54pOZq#IK*yPZKSbK%IV9w zD^s)}t7oIYJTZy1U$*Q2PMtgBW*l`OfrZiLwZSoSabw%GX3zfGPBE4$jf;!mDenul zeVEf1?VtNNv|cWFTdU&G8X4?_V!SopavJ+)FwfGC1S7LL)o#PXZw<-{PlET6`090=f z8z_eKkQ7rMuLw23(UWt<(A#u?AupJ}B5te`_aY|m7XjNA0BjN?9G>XTJo}Xhq@mM2 z4W^i7=L2uuko??Sl1c*JYRjQRA|REFpz(iY8$(u0l57|1pk?gr=P*W3Oi$lF>R|sw z&qXL+W5JV9?C4n35K!qp^P*elqkvUq&8YBm;opX8_o=wUvan#mr*De?_CZ=@VU7OL zWXJ8Q^fsO5f&W#g_T!V4=H*aPh_MQ0@V$8Z$hJ<*=(%gi7PfE0vol8s5`nILe;5s3wE};IW zax*#>86C(-@&~Yb!Pm@i!bf;!d)jhLbEZkah)qhN1r8J?{LlYgl-S~mJ z1<$zpu6Qe)?Vo86EFG$zG25_V?;dkNa9{oSm0O82@4weJ_^I>Z!&lzuhoJjngy}w2 zOrXn9k;p(?S)3REv;YX&ZLH(*_ zLexb60uCPaG*k4f|GG4CC{sP7IlgJu%k*X=Oyl;&-}};15L_gm8JK!*Ip@qO;;!pZ z)5K`4b2fw>${XHguno^_+4GJMULI8w{c+B;NzDB2f0%F&=KML~zFM@-^*Wp>OA$px zvhwL#xTGg`Y4@(?H{$BcUNZ1HW2rg3YhE}toFGWj9<+Eve{Fue< zK>|GTqhZO_pwrpFi7| z9lpP3U6^uu(%AJt_NbisY2C_4vg|RW)xfvM)f{F57n)<1=zre0gSM%6-G-aH8pvW9bPY=9xFfzs~Y2r%f02QU|XIo{FO(zNsCl9 z=sZL6LaWZS&Cpz~IQ^=~+iuP3m?HO!6sX%c1k2Fxa!<&~%afHA zj_Qx$*1q-O*Oh;siE|D-1G(E_jDvW+kul`?^XA}NtX-Rm9xtM?KVdHRz1#T}QdHr7 z!DM&992Ak6=nXQC{4TrY0}&HTBy79blBcVG=4IUf`_cs z=59gyE>0Zq*pNAgj(F1uoEyh{7Y@*~7~bQAAtv~_^J^w!LdFiBrO`G$oY+%$TTFvl zM|&e^2Oe)v&6o0-_84={EKZ)`((h-&eU;`I=VvjSE!9*yZI@xf{ zi=YueadYY5|9uO?7ZGU5MiCfex(HtSj%ArqYV2H?xa+|@_%xZJWW{(NPi;i+5e&ug z9m4lvVr+r1Mn>%N58KvF+DwfP5^Ek7bm07w!gvL1nX5)UkhUfQ_iNMPkR#+iKo*fi z1hlYFl`Lx}IpwsSSteF&l~n7cqV(Q{C-NIrIT}8f?8(&+x6-S&!rm}qKtLC`5V2@% za)n#DLb^&vTYI6zrQwhs^e16hje?QN+tgdJkMRu7##0<=l=|#ve+<1qu=|f1^c=bc zix-y>;00zz$VT&m{7L*7+56Agsoj%~kMs?^>zQAH8fCXQ*<(lRbrzu?BpSmRMcMgL znkm-=F8KRza&x=aR$*mjrF@;Kw6P0R)2C3DrXAN99A^@ZO17~OHRWx+wBj8u8*%K) zAppj;Ym|R$ZyOx1xJwA6>(*s$a~KrEdah(wcEQrn9F>eR?c_A!s81b(wR07zHm(Od zBPxqp@)o{%@9;t7-d4BCJcdO3b2E1`=0p7GW7oYsdSG|tx+*HQ11c4d?1>ka9|Qs} z9K2c0QL13|?xoO z@>0H7YH4@8R~4!oWs*}Y5$_LN{@OF4$F0vhu>IZ0eCkIVEC({tT=a#y(CjO796&=h zNul9hwXeg`0E zZWr7n%<776e|zzODK>i0J~6{Z|{F;`^4t?xIL0G4HY;8Zz&9r?GI(;bajXvR?3mdN|R)!ccp< z&R5IaYiA(msg4`*DVDZ-D1OgiJ(M!lS}2t=c4^;~e`7@Vx*6APTFyoVAi?ws3B#GLhj@PWE3vFb7Z*7Im6$uLs?cH@%UTb;B+JD$IcGO`M>bB&lo3L+GYoKY+u!LG7A=;i6jWB~{CxRW|9|&nt3m zyBgbH$AJCG&&oP?AAjDI9C<2wV}q)R&CHx_)Q>lf-H&XFvs03FJF?=y)!i!EG|PF( z(b$?nY38{FIz@_^hUn3qM~+l3U;BOAy-mCIesx7G1@Ug|$=l6Jp40B}#3ZHkt2VEuK(h37`czc9^==L}3v#i<3E9n160xxTJdX5y_(C z4CzlJmV~TK4Txh+t>L(AyS2vqc{Z-7Gwgdit(Y*@XE~5MJmQ zq$qd0ZfP*oC(h9wU#4SZI=nLs2mCkZxBKkF=1B5Ub_N>mHo+<#DIH6%0X_cOH#*d6 z7CzqPHqs(Okymh7l<7HNdYVw)7I zv(0Nz-b63_r;p>mrlA^-$zvC}uWxXVhpVd`N-U{EFL_CEf}Dj0=p11XKmnRemOu5{ zQZV`;lc@Kt9#yiCw_};yg1O}mS7Z4E)n&Y$9!4~MOT|5yAp_MzMMd2#@3FREt^IDF z6JR1jI#l|65J-6#FOUYDH?N1T1_MTOh=S+`pp5ZiKSK8+_nbgIft50 zao2;tm`TWJfSo;rT_%LnMc6uBgo^*?B0lU{A;ip%6JK;l?Y&`xNsta7dn#x5Co}GY z4I?@WDQE9{#jWYs-zXFIfXX!Uh9x@#`?8qC@*e%z?)6sKf$gO-zMaPflr0|Oj|(>U zrT*D==Bc8bLZPhOz7lY2=vz?g@@tO|WLHQbp@95?%Gx!P3bd7S^P`ZZFnY zkU(9~P33#+qyOcaRNtL>c6VY^)w5nzccdT8oEHY1&8Nn+=&pN6SVTLJmKtiz#tz-s zf!D`7u;7p2LW5Sz7n*&njuO|}wyjJu|IKNvQ0I#C9_IwWB>=gix7F<4YIIl6)w7#v zW+ogKq)FWpHn?XVdF(VS#t9gz&y7lw7}`qV2#li4mjA~8jWl*LB zuwn2TcA?qzXRS60c^l5#*fcCIJ1+{dzp2I7Bn3dUc5Ld^edzP!WtMr*u*zQ+AU@0q z=f5?jYsHdU;5(vgcjLYHfr&)9T^^H%;_1&d_u;dm-@7`oet)*Y^O5%N!yj#Y^eN5M zMWXb_pyc~ZMnGHZ!rlK61ACbyms6V$G;>bgU0ikUWQk9xvyCN-cu(M)uY1ZJ*haZ{ z75`rF_Y_Hz(bj`;e5j29n9#sV06MZGzJyG=NR`&Y?OA*s||~m4{v)w9?VK>DWP$-QRq~AYc0)c1vrCQcOGw8y~2#1A0@c%)OaIjxsb<{KsWd3D%1JWOee zf08Y4U#UwyYN6H3d8Yb>^K2;gwzVZu`-j?N54S(mVB&9Mle;`leJXY!@!~)Fin{vu zlfzAoU1XOb)(ZY`ToWKDRk#A1!frqCJ7iYUX1{tQU`At81C;BqGq!q>>4p#PuFDFc zK46u8`DJC%ara=ehsvx!zAT7=;eB1t1J51g3BwlKYIvkqD%uK3=iRjDP=1x3H&4 zhqGJ*X|i+OZCW&Cu^)Ib?5ivgX>rw8Bqa?E{ALr(zlZ<_sx?<;hR(hcn|$ui?l!bV z^N6FSWqH?Y;{?564Qm%uM%A42kwYGfc!HL1Ddfj0Gysm1(&5X%@NN!7jFuwzb<8{) z{ROvO^7#4&#~OtZ+-H6>FR0y}#9boCJ`7LkDdHcFQ4<|$I?%9%vzv(rS|!d22E zOMY~}{s-FvQ>;yJH9vm*c<;V5bZ?_}?%NDXcC5$yg*Zv9o?nsUP-7%;%=+bMj!kP@qlD{e0eT!fMqVQu)T%0NQE$jORBMDIYk(? z7~hT-a3-qU|5}t5-ld8qGI;LeiBNPx*T?4p*#>>>+Q628(%T?*q`%&?aCl zd69RARfvio&d2w7FPtYmP(eArEu|;XDa1)MLU>fj2ItwyxY^AXyged~XHrgGzd~)d zY28w7;!s9oIlZawwfY0>8Ts4h>q)5r=Oe#a4AQalWYetMz3n?Q!)D&H8}iw`_=vI7 z9PBmJi*haEZyV?+$Jra1`1EjxSD3Tgk$Tl@)?brkykbjEmzJ*3Xl`xsaF9s9e3|3c zl&q|5HqiIKo;+kvdq}_J+OWO*?k55sDgl z>_fa-u!Q}Hjg^cL%fSi8^6T%~R%UM5ELU;bW|^s@YmgbZMfIPWWfoj_1SS`_0|S=}z0#MI+iQZTRIx_dt7fHrczTM}Gj% z`(-Ov_KcGJE<{j3V_}SaIr`=w+kFcOO6uY4kKv!5AVxYePbO}6y5^@Txw|BEWl!YK z6cxk_Ya{^(y<%~Z4cprvuEa(BpLJF!dM=aKeoC$M2%I%%PeW1z@KV=n@ zxtIUPf!Dr_Vel`)>q)oC)>ahL zHL|=BK3W=K_qj0m{xy7tqxikr?Br6yq(QMy4qV^`h}m@LeiyU%hD+P^xGKm z?klm6mZ{USIlg*uNO#L8{I|>{ui04SG0ummeqTV6`0#Q0BRR+p-T|;{&V974Npc42 zw9?{6u(8M{7IIr)72SUL#PN}GpkC*Scmo9DTe9iPY7!>`S%gk#!UUm6w%^cBesaj}mCAh~F1dj)Q7 zz0hUYr#Eb22;r*L?^q}@l5!c84ktxo z!^+lq*2m}nNjsE=|2e;ZG4yIYDYD_t&98BB3o{CH?YfR@#qSNx7 zITaJ*q{fz7A<_)BIE}jC!WeVSGwNCWT^EnN`1DRSpa#1G4Oc?!VGYA;{r1Ur2ehW> z8lX|RXM1L+*C18Sh!WGID@dM8mO1Psb%7|o-$6T&;Z}Uu`z0zc!ZK{!!|coUi}4zf zp@ze6pMAQ2GN7TtewF7oztC`8+y&p3>o+wwC&C2}a7kxYDcLl}ii4@dbSt_|Y}H2O z=bc*&axXuLb`7N?TND%K+G_IE&oof30fAqC5nj%WOxqkbKD3WUw>KwwSNCbl$Rv92 zlRP^9lSW7g>9P{xQ5i4 zVRZ!A8vY(&#>Ip*5>mrBe?Gs0LQC|`g}(}7=PSh~zuY2fI{Ru?X582VW%Gq3OT?iY z*5WMcM<{YIs=oSs1&mAx_bD%2h5roae;56umVX$WWy+9$XL$V&hn->x=fX3nOb-GY zO7X)RpSrazd4cmD^=hKDJ1%5NeRNB&6<`u9Cb{-1zAEF4h_H}Qp?3$stpqwuKrVJ)XfQ{aiqF+p(w+O%+d1e8DD>akguZf&7TV0E%%@RI=J%z#o^*=4;}t%J zi)T{ZFS8?KmyWjecGYNlWYB(tb^05J@cBaxcg;iCwLCt?93!kT5jpH&gp)3d6a!GyT2R2nEt(~n?m9_!w*@(A7U z7fJoxq&er}hp9JT&~K>#9PJDam{NxDFYnsttgqeSDea^gYT(RUeE*ZB^>I_b2(IJd z)JOeSCUW~ew$mDhItF8sr}CN5vf%$=v*yv$T%T8D*;)%>#%$?+gu*bY7(dtdpF5v) zXH{_??cDcRKbPxbP80~rY2%w?pPfoRj1SgCH#}yv@S_UcDS1mr0+;QoUO~IJ|ARmb zXO?aE(%nxJ4?l4h#hQf~y%&pK?oU@zx&6eN`Pyr@^D9(FB2qJk4tZy${Fo>m6|Q;~ zxXV`1zD2-Fe&n9RrPOu@Tki)>0}xVH#T0tw?~gu0nRHD(9p25iM=)7A^R!wl5FKI{#LzMWP` zW{0mcobV?WGO3)4(Okl#oVZh}3JPaR8pdvI{Sv%Jl+yM47xZ4(_b3S)Yc zni`APadLS|$FEqHR88UI(H?jR2&@Ec=w;D`XP@ZV z3vTsfH%}D{Q$F-^zMQMsER(Wc(GOp^k3?ZjfqgV&5`BIS`?Zr+l$=@R7x~fpQkUbH z-62XwmBLNRB!RFqi3JFh`sOT=Eb_acuk-X}H5XOksp<7$P*cWKWaq86S(v63SiQSM z-4jNps(l)*7x)CjS~&FKt_o#c#$QTt^>;d~p;!x`3uW#G%G{kvYkABG3j*(fGXN2E z={MJ};?bkjUs=E>Sh}pnpSmb6Z)5Fqqj@?>f^J`iRwWu4%o+HsBY+8>5?e-L;G;`# zsLDPG*E^}!%#?Yi-D|>v6GiwoB5!#Hue^&x|6XDRha1IDfpTtdH+NldOjD0sMVvsN zR{tW2x;b2oQJ+}{TLRo1vDE#MmT_bTPOE@3^vS%`C88ROOH%k*LL#sv9=jvTdABCT zU);zhdAVV6kvm)J#rEPVgobOGgBNa}z_{P0tm`EUzD&T@2K}wwyw3uuYCH*8&Pw%?-Y-9V58p-a zdHQ4v>l9V1O*fZvju$cYfM3DuBW2?vGjOuxu{J1Y^^91Yu8cP$X(?l*g>!Nz%l?@E}gDByPsYIT6xhVX5!+*5?c< zbJp&l)L+`pC&+6aFC@k}apQ207)uyWpel2+IG!mD6~6ThEQP_wN9!1fu#a zt8HWa_RD%NbfBcI`gO)9bv*x+bMM9;*z|)XS35Fet68o-4nW1jB@O&u-1L z7{NR1X_zkq6T#A(hPc2Ew>>vA`+;=CcX_CItqHV`kc2_OmyGkzbu-;j8WZg}x z7I5;V9R477Uv|qO+wx60k_L~-Jij-DPjHgl4LJ&o$t$U84Kh16HTZCCE2%iVJVV9w zik-6PvjXAQok=mU$nwH~23rcmY)G-{uC93%J>Yk8B21~9kD>aVvZKVeO`eyi9pmAl z+g0e2YI@bujxvug;jFrytujyIr!JX7yR^zd=dugl@hu)#I{kr4dV?)LZu!fdcwAW0*%y)*U4zO7~hHl6;(FuxjwIiLPztoBY zdu$eqmORoo;Ko`OssN8)WP>qoitaUTqZ{bz<_O3zh84O*aQqS<{^Jfhp12~A)5lPl z5Qs7!xCVQsyuXFxodDhmTP-P|N|5zz-V^QT(O{{Ro$v%&1^V#n!uUx%4dbM+!k$B|@(G=4p0yu@_;gc8hhE0xxMVd+} zke(Kzm`nTepOi`x=v(DBIv(Z^>GFL`WcN~oGur%%m5eWJ+7_D7pS#|C@z;N|pzh6w zak7eVbQT-Ww-^~Mzqvi;G~6myEq5#lr~^h5VCB!keoRj{Gjd)H>hU|+zr-PL6-~bu z5axgJS?BvQ#mmdTZkR8AaZQ zqkjc{&3>7#%HZ9(K6K|fwgM+hw zUsm)9;n%w&2b~Yo`ozM{Xj8)H!@9f6tZy|QfZZx?qeF9cpJsKN5;{`p6kGXOUU(Ih z2$y3k^~d|0m!b{eIf8-@-Sr=cFYemsH8twTj@{*V8G8z|6kRFH_73d3r6X)8#Y?FW z+JF_7_874+m%n;Kz>9rlQBU|fYejSFY>{ll?*@L~u3?`fKQC`-?>M##xa}H(D)*GA zXRx&rasj;C#`dyW8cf}l=D2iCd#mLJ(V^j{7A0dU9u+UL3QlC5`;3G!pe4{`coE`9 z_^5(SZzB;-D!Sr)zKas=h9DCO90&qC_C^jIo8r`W3)_AwfQf#&ZAj0&NwNPaD206R z(EbRm1!lZ#Bn2dP-JwJ1^{UmSp`Xwh_?F2wahDk0+QFGA3|1t}T%>S1)PJ z?iWk3L_=Fg=Ly>4P~2GPB;Ui^Nj+4CReP2?447_)s41Cw|{bp9s7SUTlCrf;q z|C$b_Xw%CK?yLFC=athZ2iuQ38GZdRJGzpub?#XKO6c5$`pcMjB_p-`Q$(nD^p8B* z9A;U%?!uxLW(AsvZ3Khl-Rf`r)M0>@BOx!9zhpk%FZ*XB5KpKUlpMhdryB;WD zIn1FXO>--Mbno#tg@x>G+tm|D$W&KV)j*!|Z@X!1 zWONAhLemnjJapVb+FtMzHez$cU`w_-j9N`N*3w{V#A%@eySE{Hf^zOddvQf=L-gaQ z0@o@j3t#x_-ahDbY%jD0L+(44l3X22GUs;F-=LnfLU`cX-CJ7I1zY|Wgrni|Jnt>Q?$>R6~B2UgV~9y{{!Zu_7A+A5x#Xy0`8=>PJ{z)phW- z@pUEFdfZ3}yYJeh=H?n9qZJ{5JbBfJqrI^E)f3b&9`_=`!dvs-9KA?Z@+xxq%$z(M ze_On7Aoptc(fWri+MJ3M(dH9X>uu*wQC{o}}&I?r_7;5;-E`{N_n3BSzxBefxH?gC~hE zL}mOk><$f|6k+JtdGu&bFqh(c=i+W8DtsbTM8>zi<*r=i~`PV|mov+^AV4r`E%+X!Rk?HD+3(xLLijH)}HyqJO z({|HiG{@=KfLGfVi){y~u!X1GxucINCsM$nHAiD@bd8zP1`TKDY=MG{RiLM7g#(+? zSa9s1c0JIou5euAqG`Npu#7MLK0bUI1rbqa(NoWIu}VWsNJtZ_DVo5~5V&5GiECC= zR`!+mLm+itVR-mv9be~t=R`ySRAT*$LTf&J{_ZU&D)OV!PVfMCb@hl4t_)H`1Aon1~DZ>+AaElRE)U<;F8hRa26;Mc=-8Qxi|8W_+CeGr6zGod?@(Gkgnj zFtl(hIBi1B+LU6D=<mc{JKCDG&CL$Z+mcn>~IL-kAKBnT1-}U2M)PQ0zn+o zTfD!I)nN-zF7`JmUf2E5-F*lW=1_Ff^h&OrI$d9z zZfe+6aEBxD4ij_QitwJqYjYomG}5Y-BBO2`Y~1qsL}Wx5S+aUX)w>W2y)!{ICFeaX z8O2lM;LJo_x`dyn?VZyhoUmR1VYt8}f!)$}kfm{QkKXTuMs0_D=ji#{_vSo`pHHhD>L&m^LyWU-{-xb`+1)GQ7j!hJ@o~lICoei`rB(pOstYxg%VS&lvYgU!1l^s zA2)=K)cwa2kdobY$7q=*`e@PLC7v&}4Ha;XaI2Ws@g9F`46E_3JMemI>XE(atQIM2 zg$?3*P6JwgveHBPCTam0%_*NA_hzK0A0D4_q$H1e%V$1wDGw#vWoO#PK0eULI>DJ8 z4EZA9x6H~ew#xrj<0WaTo~+!w%B3kT@jEuGZ-~pV`cilxHh%S}smE;Ssp^6|wbcci zttUQ~4|J$qx^hL}vkzytDl1y}`kOQMOs>rVU&FH=zEy>MD@8*^4c2D9Pxj=~kPCKB zBaiD|+igDAkJc8?{9K%?e<$}-WPDAPfPsk`|62cg#W~MXvalkwN?XPKjC4e`{p2?^ zv|D_j_5a;mPknn9W}(U{jWHhddF2u2ja$QZh6gYB2t7#&&&W!Sn*ZCVtn9q3oUpt= z%YeiR6ZK6@7Bh-vsK&3qrsM{5wR?J0KHb}R`AgLrV^UYfJ(W*3ZpMFzvR@eRYurg# zBILJci~XM3G7Dk0@YU}+_$vjInsfFUPXs3BUZ2~%Rroq-`r@JGOlIz;#Wib_l0PZd zaH{li8J2Ii1<7_mCm|yNGNxa-yV*Ftjrt|Y3`ZdnNDFs zi>&{8PjS>5mOEqhp+u0x_u#>z&?TRR!V(TGqTY1GU!6WAM3PLJmzltvPa^RxU0kzS z567*6694O<(qZvy5qO!jwn$d?S?eTq8C9Ai`dlik!eZ~A3=7k_Bo6=WK0%Gdgb31b zhJH~ZbN=h>kC!EDOv1%48DmI|NeK~ag`@c>c=Y{Aj!C${kEh49bwp43Pi{SZakr3m zLT;u|qV@)U66v=PS=n_GROz{=@N}-F^`B9)(ijLwd_l@tyL}ri_i@CT3=(GnReBm% z;I4cuENn$eHZ_SXHYQzr&0$>R2ni-eVHg+egqd3`9YhV>+!Tcwq^vNG&l>YsFBK53WW%KgHuYiG##j3>CKCaK7k zPE6J*1AcxIw|(D$L4arwGYT`WD!D*9CVRsIF=^V2tmK@vpA@WaSUS?rk1xlIT}cW0 z7GG`uGBC+AZsH^HdXK!J73yB+5U-sw)VY{z_+b(0f{HL5kHbzT>6YPt;>SN@+Bnlf zaSor@Vw0cGkp9rq!SoP6Yh7ezF%04-e8~doAHQgeyqQ_=v{jh-;}MCZd+s!DocPhM zvap!@Bya>i^5<^5q2z z`StJ7DTZJv`gobaNvo-1L1eJm966F* zsfKrqQFguZ$ZsSA0w~0dBZM;HK67w2lZY%*piKn%=0T`|@ft$DC==$^=!(SMiD>`; z4@fq}Yzw%LzG%lGiZlpW?p7e3!I6gxN#QS0#a@WQjwAmmvVO6bP%(%@Fn_ zf^@_=1dpg0rDYT(RT&uAOX#5PE*vu;oZj1h*=`b`BxH8*XSLlaWdPg$n1O3vqq zFm$$ki8TuU+R&}yj>F8L&FCv6GGsR0F(OdMtB1$h35{7eOYaaGD65=71)nu>#-oya zudQu{jYF^%{uSB`9dn9M>av3@MI!p!S%)HrOxhSY43Y$N$TdgD#|Jk}LYed`;k!T! zpyaCHnr-{w!nQ*pB=(c$u3OvgB2j22@ED_`px0`Eq}#JMW#>R}t(B!^B0v_c)26e> z*7|()r7J#P-Ol#6KFTN@D4~Yz@1KNw(VDhPa-^&5017}D$#8v8w{3zl@}pzRa#2J$ zgl-&7P_z~=n}y_o5!{1Tgs^u(3Csr2eh}qy-MsE7$9~(+hLESDiI+T9jFjt;p6qlr zZ`(N4ke*9em$~6g?eM2f3ihzTVUqV5Y3V4IEkM$bgdKE+Oq6eWNa55tqu*MxO{x@9x z)=QOn`}RGepc5fz0(3Me`+sIxf(3+T3;|Xq@&E?#+Fb}5ba@c(iG_9585~wCR(I3u z3FHIpM()Z~`KFB$U;=?cYg-FlN5Xe`oZo&;c2@8(alsJ=}@g$h9~gEz>`z+umxKnyLKFvq9qNR z6cyVEbhfq2Uk@2cUjib#78~YJm~NOtUf_1p{GFXWQRP1J46@n%gE?ov9V_g}w-U6U z`&!7|!#14Gf5YoRUxZX(UyLH#df&cuz#9y&_$pA@U2r3#r|%~uXakP;vaUB5$N2-4 z6ksz5ifq=#1g64OF9i02!fI#>m1Um_>2Q0nbx`j$Q|vC=D2q&-jC|Jyx|}IWKN+8p z57`zN*)otd5tP>Q^7RB;EA%lzXW1Q}PK|g^%+&n9;3hJoq8hWNyi_Gj%*}aI_2rXp zR=0rb?!fQ9>WmySBv*Z$+#YY9rtUZV&Rb4h-4=GqV@#RzT z2>iB7Yi2K0UztjVXqMXy(Yh?S-@$O2x8G|z@U*J%99jN--_;;H3hAqjukT1G`^)Tf zQN}D}NQ`;4g%-2f4@PM{yu?2aeag@glypp0AT?jTYvuoig#Y z6-dfL`j|P8@gwM1W*}z+?w>Q^p~r61+xPf^C*a$fhPUym-n!^h+(x(__KU;wArHEd zLa{;%vFL6Gj*$5C*XlDG532;MPO(`)MPg|i?9%1!O=+d2cGcC@pATL~`d8cJ?q>%M ztPm2Cn_XtY0D@HyaCvd~aG&QDeDH3z(%;h_F-W<`bix(Q$D>O|ir6 zJl-G{z2NrLwB+O+46t!M-lfQX#O{ugazn}LMp@aScivi>n)Wz*2wV9#SM?yjVa`j< z7OAOiTQ;YCenGVkeQR6f664Zs*K@4!b#86XX-q4-g`UOqfa3(m6tg*mD!Vl$vJDNV z@E9wpw&&5K|DLh1TMN5v zO{3Au+97;Lk5e=TYwS4|MAG&;0Us0XP9j6pB$iTXv_X8ZJZmEEwycd=v5BzgXBV2EV4Y~exDf%b@3H@OLB0 zU>7(aT*#W58XI4%=5i^>e;|5{nti{8Qfos7XxcHq;^k-6vMUwx$!Wnv);JBSNHj1s zgvxy?Vi$x=;^?bolG{CV9)EMshosm<9?@_Dd5^K+Nn+q2a!}526Q#BJ*vj3NjFM!n2)K0oz<*wA25>2b3i z9`^_dRMGR#oX`r;gJ^(r?{PPTZB36J&4KV>gko)^NS&LeA3IuYqz6WVm=fp?Y>~lN zMYIS{y??(sIIvUF2^j&mDo;S*Yiqp5$t^JQTTpY}2Rr6D7C65oK}Dvhn3mSPuH?sl zWf4}xIqRm!boMF{KX!}A&uyHxf2e0?>de=kt287l^+AYuEAd7+V_1`4ULDgMod9R8 zQvUV1qA4_UOtGK2*pxKzW!vh(TPmT4Z7R%qD%J`O4tXCERmR+BWK4R%-qE{yt{9Uk1SoC^P)*air z>L#0aDh`|zKib&Ka>&8G+To5^)3ZVfr85CM5NMIM1&0&CJS*o4d|G$RRnzLGgT{e$}v*CCnYQloFR1{TxcTonG)T!{f)(9y^kO zWUaNx@*MxEyxvo}&|m2BQmsRniwj1Di%&WXplk*@wyZxC7%defDeVpCEDeepGAIE? zGS*F;Sn~sVyFU2U6I!rDbVzvRN;dSpl%ZLCJu1o(YU>hjqXR2nsSQbN^KY~Z=#B2f z1Z{@wnUUA3SEgO{wpLbD9MN15GIc21uEQ20#&Zmq`%J0Ndw&f=!Q9l-Gi!gLd$bxz z1wz)Ait?m7&^D)Wh3AXhr%2$f%sTL}eg_$c8vRZ`D>|BuJiJ(}g@+U%XYX(W$_29zN3#ChcJFDo+x0we@cm zKjh@(Sc6q2y607b=pn!xT6NR!ZIG26Q*~e0rD(?s0Ei$iiQ^YHQxG~EVivD%1^%~&%N4Bnam!FLxlI5eNE05c z5CH)_2!qT!7CQCHQBLi!7+p?1U_3cw`hyWRG=&vW9z{|1 zK3oO1%ry_|S_(Pa$;I|9|Kw5=74GQ;0tMJuWze$4ErD{HhQ-{CHsg)x5tWSg0O#py zbNYRXTl1Wa%D(=6SxnU{f#~SLWh)y2+6sPdo*qP(qV_$zG*i%TRtF*!d05zK2wfe3 znZxU(aDE^8@t4FM32OIb#kdI-)1KqR{VhlL@tONrH|{U*rvQy=USY9Vo7B{byF3t) zEmPN$_)2z-hYfLqo-V%4>mlD-ZZGs-8~a;4rmt#|u4QHV0<`@%X66XXNDEc=m?xT}<$s+PLzm&i5)#ocWqKj2OvK zKOR8nF@{XN1jBqMUDjjU*5*cMOQh^KRJ~;WSPb~~e;TGG#peWGO1BR)h@li>C}M`G z2DhSS`v6Y_B~&edWBeq2i|sl}1M<uc zOysXoKVDUEFl+Q(Hji z6oA((BqSu=P+KJThh>E!!qZ7Uj~h0NW^NlH+uxJj61M7fAzEff@UK?Td3 z$45}=M}xG_n*MV1zfHx#Snyzdc$W@^efT`!@X= z9R_$<{f8BUDdviJ-~=&D-LE6yELU)T^-r*&t=f2Gd; jL9~(hME~VY>t+|7Hw!<~BftC-aZknu=K49hj;H?zzLKCd literal 0 HcmV?d00001 diff --git a/docs/source/_rst/tutorial3/tutorial_files/tutorial_12_2.png b/docs/source/_rst/tutorial3/tutorial_files/tutorial_12_2.png new file mode 100644 index 0000000000000000000000000000000000000000..1c53e120a77ea7239de87147b2a5d38df9603e41 GIT binary patch literal 44271 zcmc$`2T)X9w=LQv1(hJEC5lNCInaDYVBoWC$$+;zd20#JHNhC*+oDoEnEUAGe zs^lopyt}Ezn(r75&(V;Pg#R-Ud#ZYM zALo5*UG?$Ge)6Kkqrwg^35-jtfS{lta_7j`1Bz8wg1^5-5mMtZ|MM+|LKXk-Zyibh zKYQ`>Wz~Azput|7PJJ5VonW>bHDHP?)Kd(@tldXsP553 zp$((C3^HH6I>XG&%+AUxlOW_^@3uRe;%5{W7bh<--#aUL>`}KhVx!hABq+F$?6vZJ z@>9S-o(}i)^z{7k(duzpbWV15PpMU3RAOR&f4}DW3m0-TGrz3+*pU0spmrh$4)vWX zMxVa?@#DwlS~I!9=)%f-V*-@l$7*A*-!0SvR=rHPMU2XmCr?JIU2I<3y<(6wf*;f* zkw1D{bDntyy*^ZIRy~*Yveb6?qcT^64d#ZS%YarqkEwsT{a7y6zD8+cZ?Ix>Z?UL# zR2PNDX%`t4R5{IBPc;R3uGVckf4@h~E-7hzlAPYwWjB;oXrX$sP{Y*p-O<6UEX7$Gsz*$K{(yvNU>S# zP5V({@wG;R<@&8xm-sh-w=&51`mRT&=vF(Z(bPz*|8(%%$GXN;9d2Q1xhp6Avs(*c z=D!>q9IVvdL^WQGG4izfnXgxJ^;p7XLG$Np#yd2t4aY~?F~{3}$J<}>3adF5iW3tP zzZ~y`A6wcYUzV1ZXM%2rzNF?3yJf7WHyj%qJG9eoeDtvxzJ3?^9ooE4|H5TZem8pe zaMf?(A~iLp(qTfPeT(bDrWI)s_Yd($3UUhsR=soU;BwR6t2T?Hj_ zZvlpf`etTkKMM_OXqW|#cDw!Te~-pA987;%_1&%+v-Y~~IYjM~to`6Yer;`ScI*1a zh6~oNqO3~U&aS}P#^&0wy``nv z3?ADX(?>O~%j&|H!#r12Q$Rq=?8~d?*CS(MvUYad?M6!F zjQ2+{)uj`z@H{73wYO|oHmxGW596Kp>h{0TI`sP;V*KX)Pv4mPG9DY`ONvhEDM}iQ z^DQXRE_{$CEquP&|J6HDjl!$s)+4= z0_$17)KabAEQFk4Fh?Ux-zR0f*i0r5Yrp6tewj=r*}*fv&in+~<%>A)aC-5m=;#Z2 zU+%(#Jjkv&9C=Q~8kKx>iSB8YO61Z!hH3uUNqSXy+h)?Lch*ZUQrtyIzQJ^E|h@7Tv@)oVgSPcP2M`*%xhd7obS$tc5OlTZHHr4_lk z^7Hfao`++vCHfL*!wDQ)i{npBhm+>1q)3d7Yr_*HW3c`(?NgAGR{{>$uT z=Q0&ecJ}Yr!f&N*k9&omlKx(V#}o7RaAfKZseXmkYp%nQ&xr)dJNbhLN2rwJgINLh zH4~*oVKoNdop)VgtGC*XySM0>&YhZXd`6%aPABXr_3hiY0^e(_WribrapS)i#zN4P z=$iZk$A`1~`Y=$N7IG@V4vEx*B0P-jSiZ z<*o{I_hwclNi@S_V`hFTgkf-Htj27Z@qJGb-rBXjvaS8H!nSYU-Y_kXR`o@rd$&rt zg@kk#2Mb<$=4WTiR#jEGHrzy|5|EIPv~_ibd8WXY>Zx{F9Pv(Bne*}4S(}1&sn)Kk zqhr&Tsq_YNtCNq@l5Po3x$5a?gUyNK!-;ALZn#bdUk$h}28lm)dkcAk%S5Qu_L;7vyafAd zIoOlmGh&Q#Ll}H@Tf^x3Hs|}8ssXYO1QH zUgCdjxw}4{TU3Nu8ZJTN0_i2b&&57jf5LgSF$^+g54T8-qY?Mo(quc=`}NJWq_HY8 zcrNH;-LWD$^?Ub%+S=R8{EmI))M0C+_YK6nQ{&i4eb@T?g@$Oq2uOyCk%-+Vt$RsmJcvl+v;Ium9 z_+`Rxt^WmaA(u79TOFd>g_{hh9z%?gR{A_0ybBvIAh??$B0%x zw%_Q>)yi|m7`n}eiLLa^N^FZ9uDCVy1yLJa)SKDDI$)5T6jKc_m+z)-}lkvaEWhQYD&j?=9}hi=f+$xhULo^4e5hd<@Gh%muuFa=TM(hcK;uERT+$?{QFz94KW+u-{1cK z{96Ug({I{Zh^MWtP7O=1z&nY&$*B$g5qv!upH_MW~`C+_%h9y4co3 zR*?YjL8Gsx-i;w*_Ab3+5k|+zf{Jb5{7}qUU9Cch{Ce&NzP$5aS9F>T%Z#6oN#u2lf4dUtbCX7M#_yoT0vRc)pGQvk!C7z)! z=o#Chbi`k|ntFz(N!Cwf!<$kUztJl2&5ZTpD8&POv`_7YTcR2Ktw9u2AIR~{(G;>L z6l`V_dMMEoXYcPd$IZTJq(nWuLu?hk6~;Nm+#^mHC2{}CbAEva7Gh4k9lU3ccuHN9 zNx1OPS9+NWl1|@NNZlZ2^9fd^Olo=Uh%&l+4v}sC+GTlgD3fC}V!)YBu5Ih1+t@CkNi5YX4H@ zizUAPtdE#Y96nq*Ete7>r5ky++J3C78>BHxy(- zshkS$Bq3%#d%8)UkOVJdikQWe#$O(#%@`YKkey37$#h#z_t^(ZUl}PYHh;O;uvAJZ z9SZp-Cc?L_DBfs?~p) zQ2O2zV5YDoj9hz}=E%axjMhG@*yIdXjd!o0rO*tFB*rgvy5dgEIwf>(O0m!eb+#y^ z1b$+FP_%XmU!Iy`s>xR&3PnP(wU?M?y)(PP#l&oMw|RznS^ZnPUSx0u#wE3qI-`ym z6Yuso63|@{hJnj;D3NHKRTV`$u4}Laz1FsJNFnAnxSCFQ5a38DeP4ii(jhQ%O)Qt) zlm=fufk-5A)9m7Ozc z9VK{5Us&$Sut;EZ)>(D@@w>vqA}mC&>E^Qw2xFJ8!Bt>xrSA$bD@sXOMP3PvB#aoe z^1U8#PMZ?meOq`qBF6t~p|uSI$qmVSvLx;dpP2l^UQ^m%OD%nt(kypdZa>N6)giqu z@@^^NORsqNE?Cfqr=E-sj6%DeRmO*lHYpKCUDz-amSdYQyrQWC?|gjP8pd=fVK7Xm z=e7cj*Nd3-nPp&<<7vE%po4SDl=AW4x=rEsP!(ro^^10SN#%9r;NmBz((Br`x7={J zz7Tp>9IoyajO0q{UBY+i6*rT(8;IVbI(}>~z^G;k+4Gsw2|Hwjhkfi%BDd@F=XL{O zrE~q5UXb&bbJ)<(V%Ca6>mAU*1*^G<|6H(vNBpm)+`+AvJ$y8b%!%iqB0Xr#oBB1f z{w6R|;%A7{!oUP;qr<^P<&|+Uv}3Q7(rl0u0Vh-jikB{3f;vzgptGRE_~^=dx8!jx zA3y)wsHpUAzoQM$~W@SZScu-JKZca|I_e4B}s%s>5^Et^tUCR_qcQLhJ z5lZs6hOpeuG?%ZKj_;n~dIS`oHY=l5`jw9F#=Ta>4WYbi>+Z(Dr40;ye|`zAUa4Nx z)YZ+FJl^fD26W*98Q%t5ZuiC7AXZ;$)33b(+nQJ&YnMaZm!{Iu_5a1 z+l>8{8kLv_PoE#{Hyj)E&T~W}fX8jjCFTfce602UerPX1r@X`c?M1hS{iFb|;FYV7 z7;Q`NTgjE3-WzjraScGe-~1J+!U1(V+;^W@xOk@V;eyUcgI@#JzMRxBsZq}Q)pURA zBD|slUp(KRIGz^ncNZk4;c??8IH>>+${h9&4whFx0Duk;IVvWG`hP2?lAvhMo@R#P zS@PonRCwpeLf%Kq{VAlB6R?3E{+E?0vxiw_TLr&1+;QcpGv>T;L)+Rq_sgqGRC+Aj z+$z6+{~jr|(!jV@6O1xty{x53cISHSe^~1}>tG*GAl%;0_yR+4-8p~$@;)w8)OW4s zJvDnyaaIQQmYN2)RY5Q*?FHOUQ_$%$%kOCy+5r>kW+^B2rb-8-(KFn%eC@hqd6;=` z%CT}_x_Qd+*KTI(i2ey4B?^50zMGOWzIDUOJ@)Y%>)+J`aW!nm_|w<>RCX@wIu)aXw6+9`&Z%k7(gI;Sf4USNwKkW4{as|q;n3g zM%|R5Xp(m(Kh#$^^Lqt9GLN-RIEs2@t*z|g`YP=tt5II^X7dMQXYyG|-H6D@_r4>0 zS1=8Jen~EadZLb#QvE+ql3iA1J7?{Zq{`O6vaWO-YM#IYpZP8I4DS|4LsH6>17(p< zo4#C7XjGDP1A^32Q!_P~kdd0dW<;D|LSKaBnx7et5hj$K9?PC=x2=U(V%R#)pM2-;aYC7`JeE_m-I zrF2m)3`FVm7l!4+W_4sPawL1s?raHB^ONVF`~`URfD=;HOTX z*3!`ETM>nNy$2|Y{vu;Z+{&1NMyBHPz48@qzulLGH7lZ|w1SFto;Y=F?Pz+BUvIMQ zY==Hb1KGpn8@tb`TYK*ACq1K693`yj+PK|!$qv`Tpxoml34UzS2d z{qIl*%TNA9Z>AA)%epgOz;o@>$uhH6GA{j6S)>fO>9u7mr~cqUqJ7P>;Nj#+$sPsn zx^!}h9Vw)cxcTTSg`p2_z<%kf=(i%q7b*UQSAHBYYTIwx=;`Tku(9<3KU3!4f3H8=@Ai>q?d(N8+KZ_Z`uy=*o{`I0hiRT zXOVP%{%!)qhkKm^PiH=N{*^@CL|H_r;yAHVM{r9>h&kU4BJM)ZyF1mh$zHG_1w1z` z3-n4@p7NvD*Pphu`srsq88(lx8pzcGnybdSmCkL>DP=zq*qDj=rqkT7t~>27S1bah zhK!VhlT!d_Dfocm)Og;+rNYv8XB_14sxj*8Wu!FovW*}`^$6tNzq(iDLTTD(v^=l+j&21{6BF1 zi&NjKo4U3III+VItgLdnB#*uAhCkkeqVEk8GKxr6mBH~kFM~st0w5I#PMqn1B4!g; ziqX;~kq5sRVF)pN7iDR=AhEjZ1PvKZIKy>QhM)MG;1R znjA>&O@AHX+lkFiU1ExClJoyoKCmP|zxlB)L}z%2a`kDNg|4k(c zP%6u-8yO}4`1$isYFV~1wkcKyhH7DP5ehnptNi>LQ0Fh7h|<#1l2=f$`Mopu{k@if zLEdTZTGf{qxO%B!G2B=s?;v9(Vfk*Tse%7#ItI2mpKh&@8i_MCUPdb+Z{jOv=Te&* zX;OZr)9fi?PvaJ~qO|w5%)=;E^!E!M*eTVePgoCqFjWiZeo%>g>cYA!gvOVQ1LB^W zs`~o+2~N_%&884AO0zvL-?UUsShR(u2T6MnmMV>h?b_rg{d(^zh~V!>M)bvZe?`(r z`qm2Cjif8ws7i0&C*(h?+{D2W5(VJ$S}q%2Y={Zp5TKWBP1$d%4!S|;-a7~M$|L9R z>c1-}Ct|F;$(4S0c6qpj)p|(EU?6g1wi`o0eyeAtTwWn*_q`e9}Hj+i@ z#Vv`azhpx%@6LNon#UMsl1m<_D#Y9vaOxJHmBk)>>0gj*lG81ikLMG}CN$wH(ovyQ zzMU3N`RT6IFbT_<)h#n&tEX3n^(wMEqLaM4%*$luOH5e>-A zIw8yTo4pD+sGi*_FV_N;b>%CLkKm9;DG{@Lrzz6ZP`^jQNulbAHg1xWB#fZ@?POx5 zE=yuVdXYzp;Dqz#Gt)COxgS5O1Kkc(O*9j-c1cM|f!(okNm^R6#VrkMKp5|fV%K0w zs;6@E@Th{Qe68JXqTW#F!IL2S>UoyKwGhcA&6*0}z5(>OS?k^9FZP7Zrp&{ePG~|` zqz#jjCa$S*m5rE9Y|<5%j%ogOB`{*ys{YuQm{W;_Jtxgs214+uQ>Sj4eL2HrT>k)v z!~GNIXsQCX>wWfb!aa-cFO^io-M)>8NNZ}k-I*k&V`YUz{K0~X@!ZkT(XXUW%k8k4 zoQ0LQftEm6*GKkkC0(MNl!+1tYt1x3Vce*k#7_b;Q$=DoeXz*5sLTda?Zjhp$zP7W z_|~W2n0%!orvm{cQ+-*v^UM?v2qXUrnjeVLR7D2x!d1{+{FQ#pD8RYy;-1N zmfJbY&&St4G;|TCtF9h_h%Dyq(PhHlY{N!M$L&z z21h=hCQ+00{W0sqKdpar`XvEsi(>+t;z$`iDeBLlCjC6tgG+WJBGYW~ZLT~AJDvk0 zVR7_CQ+1bh{e*9JVR{7RngsWmRTfqMfl3dugWywbf|XiH)2>?jUbVW@vsy-?gZ4%x znristX7VliI=f{NAMy^K-cqc*v5Swl#@!@0^sRKU{j~ALMnx!Kc?A+T)pcitj6}9F zjcQOG4{sCqpZ6u1TAIO`{Tf)LLJupR4xdzcV6jGkFMlWY;+i}2<1V^X)oSSF@u z=ZNu`(vgte~am$f|V@e?oiif@X$SI(a^A_2^T=d9J!Bv*ucZ&8lfJo?%WtP8uO=7KB# zBv4%*Cs;$=5-64V8s1gJxvq>>7FHz)nXvQ$eB651rc%ozlVO12HfBSOpAU5WxO=NP zvmx9qIAtrN>dJ$cYYg~pXnwBI+nCr3dZ)*+|UQ-Y75g zpuWkQFbYpv_51_-6t7@U0>^+DiJPf*EJ-r(zd#rU_CDg0T=P74Yetdcg9J&ugj`{xlT?9F^fVD9aRveSxev%5nGk0DMu_?Ab`u z@i~sYn-=c8OYg!l*zkzt<^4PHtt(&{^b%BLhmWd|G1;)4+)OclL(-MdQu(|sYCI> zmrz<9L^L&wv0oh%`?YI#fbC6!WZmDH`Tm+ODeJzsxwrrHOjpHar)=V3ZR*5XE!$FkW(Pic@z~VuFQmUCL&zFLCPaf*i;0sKvU- zTARx&ljk}9>uXcZqAm+jCrD||;dY?z0}L3Zjj1}?TXfl3GX*VIIW#m>)MGu}zG^z! zHG~w(+1&DS!Sz)bsc!rw{sz+1xTnHa))(C$*VGzW$uToK##0@}_xZ&4jgr|Y9yT*< zJ+0w0-yX+nyXg6K3&VcOVxdiSarItf+`*n+CzBD0%N%Xz57!hT_n>8~9wi+g`L3e< z15V`wiJj%sCu3O$eLGcrM&f{%W9gFY@sU2xpAllwSt3e$KKo_9F=_r%&zsoZxBuu) zy->8K(Mvi`q5-z#EspwZk5&KvLW?VK@KHcCE?ilWkCNox_i$$r8uH$~!*P@noxYHr zo6E5dMQk$6gRT(?>mkL8!0hzl?=}H~p_b>qp%R_+nTK!4-6}okD(QL%EKY&$CqzI7 zF=?K0swcORG#n2NW#Ka@HU< zyCi-7d>5&g4^w@Nh~sN%ezY{bG|lM4kU6O}F)44_*l$`Xk6vl*bPSeU`F~C2$qVfKy zzzj!gA%n~J&~Y@%Cj_EwLu35qv+}tZa^&Vg03djMw_%3ackjw$3yMqaHhb))n~Ndh z_E7=4Jz09){ipaPanGd(oXN&kY5-pA?DaH<)ebIBU7rq-r}N-)S9xG&P_};}r?604 zUjD`SxZvHoeO+4bVJ+!P0FwQ`g~eUg6xF+Di~@Wrsw7>bWE`mX-X zdcpnWBKBf8m6!VN`cO6;d5t=7S+VA0{wbTTOKdAG(f?TfvSu&oP2qGc>eX8Ye1$B@ zIT1B!D;+71v`iz(i#6rg!=R*98||{QTTjxAZGL>Y9K~`X%6E?HZ0GXp-W;@gL;)W2 zVSL3K7LSWl=|XY0WHKT#=bY5=w;UfH$z^%q0(4Uvgzg`@Kf{dJ;M+$N2nRT>-z?gC zZkd9e9r$cR_sQ(B{EsKfgxoAakt`?eS@?04an5#lJmGz&udsd}+=7hpC5nRI8r42V zrSiM`Z3uO7`*+nkf0lL~ztXClNhq6n!q%vnmk>SZF;DJN6zq{SUFPGoH}dWU#3IdnKLvbZLgv{WPPZg3;-f>UIU`{1l0f{U-}2 zP)V~{+x*TQtFze9d74Sm8K$cerf!oz0A^cB$4|sM+m6)_q6ib_{Sv*H(@P?$!=6QA z&f-Z-GO%bx#EmmF(c34vMHc!HhKpDci~e#od8F<>V-eUmxVCVP4ApVOGZUoRWp$Yf z<$Bt>nV#4FsT#x`i55+~ZdcD)#0r_viG@59)uMa6!0Ti&p7HBZ4BIW(LE48I_L5|A*V=CX&P>o^LX_Wod*jJ%Bt?fDFduKLI)OH6t z20KzJRbHTA5+Aik8(cgZ=A~-l_4cF>OU6t-Raio3F_w&&s3_m5+;_X)%iqGS=bILb|$A*5i zk{3-gH5k!KIi;%xUrW5}lt>HGmfW*=<5*|Kq#blCj|0kZssh!Pj_ye>cMh2-JUgkF zPWRVs)MJT?t~b6%Y4wui(Qk56I#Eqvw{r9IOHIj5&I>hP&$?J8>#oHdGX@KW*cYG9F%6g9dZ0vLyN9N5zpP}7~H`|_hP5e zL_Z`GmrempX|*j_pYDg!n9KA{QQ2AXGa6z+SxKOt74F-KW(`(nlZ zr@}S)zc5-#`?IYz&k};gJPg|5CV=RF%S0#YEDI(n-vqlk(DEUD#%w=(#4!nj?^c<8 zZ90xhye&L0Q4uoe#e30&V-j`ZQ@UmR?Ki{;Y!lVN49inF5o&BhO;;fV!onKG8)mC**=FC;Q3IFObiSUU>L;w%dQa zrurn;vsdMlcF&U=cGArJmSb+L}{>z!;WEpguabRE|=i^7d+#kQd z!t=%jVI~lAxM8=`fk`ejG;6|ZZ+o>!Y_(Qn;`nGAYey@A^Av7hW+9}UdW79uvcJiZ z{_CaS>Vj>?!^>^h z3d`?CQ!R`;46EcUt->V!Dl03q91V=CAp1zB#oTh ziTO4VNf?=ArZ12|#b~}eek9M}IW&kNj_=yCvER1(yDCD{G!A|iTVn9M`iEH^Q6{=i$_JC46_U5T@&S038eshm~*(p73L&;3Jre6ToA zB{Drp%nf{`_rcnd;=TSHjGi2FqQ?gtZ(qMoMKG_ttZYvUwefX1PcV_<`ZZMMzp{w#@h&TRuURJr(t05vmin=Kv(?uQBNMM$AL?il#_FEl8h|# zG-gM0XvOfPt|M`9-pNwO-NfY{pHmn92mGn@GFacvhq3V&{RxVB#LE1c6-fa=Z2h5dMasNOp!nS1($vS!Vqn%59IsOp$-K93bz;W2(~EEk&kr^P|-s zWNw?m;H+?c_EzXC$?a)9)uwMViliLNnkAg~fbmDL&l(eF)7LIrO#8D84Mt{$C6sPU zAVNgD5lxd#jQ#c$RseHNMFJi{tj5EW3UR99^RrWzPIC zL8PWiIoEXa$k%Y%qWNEo`YkVKFQGIz8m^CK$2ztlyd`S3S{%~AW?Cb8!_ zsyfrnq-CG4#0%QRmpe=pf@D><-p1*V!D`v~&zJfF`vBwz_(`9J`4WqeTrz)dMxe8|=K8{x z>ISGr6~*l2KoR1X&%$^=WAC|=LUsz|V}H$mPc_)vK)eIn=E3&e=YNb2lE|)>{AX;S zp`mg9RFJ;U@^pKQ4fq`qJ&;)rf|Vy|U1iSm>Oj&M)a9Y470K}uD!MmKCza3O%FSYh zHdOH+6U*bMpT&A4(yw$zF|X0IL;p zuT68%OIqb*|L(E4?W=5&WM@~_oAWa(AP9E-J@Icq zo2DES7MVaF2Ak%>Z^VUM-~`Oo!VAvA9>kjfg#3c!@rESGx9?ZIXT{zupP{*#-69AI z7Y-t7Hn=$q$GP2O5XKR|K8oBXv>Z0R-T07Mw=P=ndF11L^ z_MIy*(s0&QmgHCg+$pEnuzdf@{5SX?ekO)A58hgyh2J14=7Iv=S#|BsyVnSVrKfjE z>z>DC<1<0bn{*h|nA?O;Zb5+-c*_AHz7+Fg_}dn&sY27XGG)i2t+L0JXxsG*ykp0; z^j%MDNDOBN*X&^=Px#Uw-9^>rU0B^r-Tr~7{(_{f2} z$-&L7V{dPtP=t7Fam!dCbzEFRLLRt1xvb;hE?g_{gj>2l{fbkh-Li8#pE1C&P^m^X zS(rL{!Czhb6PuC{?gC zlZKys{=8fhBg#C-n8d#Cpl(8nQr__Vdfr(%sUh{i?u3KcUlruSBDD#Qy%HUAB;2wJ z3W(o!#9IPr*wE1LewHwKR>L37^~-Jb@)pmXJC~iBn%az^2RRjKJZT*?aefhF|Jv;K zMRR!`3;e!dZ|t+G8dU5H$6kg?D>6rY6Am_|oMgV@k7s5auc2HQS5{FJoK154agK_L zm4e{aUfE^MQ6)gHyz}q^Ym}`17KK`|9ZQ-`7PZ31OjGGz!ds|BlWEeY2RkxF z#sorQRURF&FTqjjQRdlO(AZ;RnxWIpZ9;@E-)N#79ObI1=E)m%(uBU^Hfz(j!kiIpDcaV|&(eM%u)51i zxJ=fhx%5e1J7`0CUz|{sGEi(sU3{M5vJT4kSAUEXONf?l&h5>1UzE{(spo9Kj-xsTi3!bxbfvptuM6`H(sG(-^sY_|RP_8{% zC4HJ`0t}6ubn?JKtpoa-Y|Uj8$YQQn5Bw*@{{UjtP6XXVlh~yjXO%@m%t#x#{q>(+ zhq$`Fyo;6t?~6Wu~XrTW$k*T1kikJ zevnQ<|IotnE{I?3 zb7xLVR;^u5(EpKGZ|)+>7vWHg0{xVAEOOnnAh%1w88kYyvZGikzjT{SSuTxq1JTfP zG-YyL@+*PYOO`&8gwZIJd#DDZIq-!Gb5&2u8^UN`G{sf(l{POwMm_uaxkpzccZQf% za{96Cu!Y#dHOK$HTU| zhFa7+WbDkD8q-w4NA*ZFeTzPDRg4XxWO?V$H>p^Z>@0fI)>9lz!aH;u6Q2mr;7*vZ z7LDr-0Sas&dZPU_F9Iw8J4qhQ>W#-gAK!bg!@;3M9-Hvp(S@pLFAQlrqA%CqVtXHC3*uZrwY;bnv>()U{H zXPZAo4ShasM~Es7rMNz%nBQZ5Ll?#Jj)TYbGCx4_D95B2e@TtJTS})B@lb!A$Kyk% zlCL^DxeG}fU_^YDMw3sVK7e_3YAKeWC!MGL^M@k-+L4t)6MA`+@`sx0(6!UrX0n$l zZuuV8u_h9l;75eG0>3@)O6A?T$e4n`uAYd@5=Yghvn9f7D1#w7rUc;*TGXVE5xK`9 zO?|TgG24`|Mu?nSklenhy7_ff36b5nSS~Bx6?eoCTSLP8#Ac`v6Ce;N>~UR*Zf3b` zLM%1|T=eLYQLFs7D1KYvFrZogaXfL?uTm&XX?F+?J!xL8aWv0Sj&@_}!mNmg(^!fU)~L_41J!OWqe>05cZ#k62u*b76Hq3P^p zANwA-S(7zR|(YTQRYXhv?{#ZJ)_l&R)-D!?t?in_Ljf8?L2zT6LDj zlRf*4f9hCi+s*&l6Fa=}$L!Y5-H?x%-5lz7Gq+YJifjt2Sk}D(EyG}?{mipYzNg%Sl06ZLyr6%BNH zvxou3?`YP~8aTT*tAR1LzWouX6w4Ld(>~0G?9=oCI9v)o=h& z9OB}JP{Bl`zquxp3!Jrn@xvfM#G8QhEn8lk2RNmE|9)`6K4IhKz)y}5h9FTQ50cv0 zTg~`rJ?6bp&8{F5*nt~5?Mj0_ zW&Ioh>GR1)UwSCL9>wUK8|&3 z{dYEzjcD86*6}W4Qm7bS`$i)7;>=t7kN*@{11>Y&DMcsg-BZVwqobqsd+P_i*T1nM zm>KMQ_YT)%8v3Cbs`Sw}N~A}51a_(?ZowRD^YdmN0p)$N)I4>GT&)4(J>H^`nue6c z!+5NZeq@G14AQLpXUT(dYYFyt1U+;4km9$YOx!EHV#A?r#ozG`8C4#u5;_zqX z8^yPz%jORX%qyTdjSVQs_0`Xx%O%&k|K)ST((*nGy#4Mq8U3w`xShY9#P7g$yxn;_V)JvRSXue1!yYvgPyp4S8VX4a(UrbKsK&Z+f-Er`kfyf-I za7ck}h%zt>%c=hd;dwYk?xzZx0n!P8R33C<+7ZsvZ*>;Hp9-%1Xe0>v?7J$ZNEkw$ z-V;bd^#E&3NIejVJ{}&(LI&vxluMZ%R&aT|&Y-A%FBc-<1s~WWuSR#4qYdmq-0(>U z1DTrxNsGlj;-dzg5B3uVQ9sgX&iGpm9GpSV!M&FQc!gS-u=a9adP#s9Agsct9{ zkpK_UyD?Y*_IhLL)1f)R2He-s1N-6q{>jEOt|6b5m8nrq!{4)T3j+$0`@`Kx(>p{o zD^R2M7IYeNp_797V+Yte5cL6!m$KA`&Tr_w*QAjR44%F4oWnD}gUyMjdh`Tp)cd{M zwPG;F1`_I#z3ta+&!W3NF5JiSEi&3rsBCp~*fG@CkN;z~-heh0Yui`84M4>7el%}K zjtUUO)BwNb0@JQPsJuh|j8d^>v~Ap6CPmP+i4Y9e#s9e&o8(uOCJ_!qQKS4naZjbo zDdxT+qPT9<5FpfC)A^|iHG;`NKZV5G_VueOkg?#4zxoq{g`UqGkpHZ}HH&0a$-_R$ zvREmq@%uZES%P;6lI}E|$lKvf-25pK_jr3ejJ4sU=t~Jw)Z{(hlTnE07V7LWh%9v= zAt47GKvtai;X0!PAsJaM*03Y@pjq}kP|=WAB>N!N^(}u%$bPINUolv*&cYO^F~j(k zsN+t<41?zIaBC4`#zYp4)LKv0I}wg8|CV$sg1>RpT59ZUs`uQx5XA6_th$I&pzo2= z*Ar-|n|?iAikkXdjh&GMT|yN6|?UZ zcRy$Yy;{Asw`^K}Bi3J{lUDIm#AJR{xV4r*Q%C(7M+3!aPlz)dkb{hj#*E`^hJ%39Hc}iE|imWPDl$ zMr`A^9!#G(FHzJ#J@7Xzds6?Tl5`Np7DO3*HsAPy_%R3D6KPFyM*JXt?3+VV5pIeb7OSe0B0uUV!=!e_jim8Te>N1<;W(_UGc7-J-pYXw4anBb75i>V_pAgkk zsHL+u4fj)K{G?AW`yN05ZD&$sUizJt5vdh90xE;WD=YYgC zw1CyL0JKGy=wkj?GaxY`Z31}HxP80*kpxh|&!2a+qmCEK>{2AEUVm%FtAN4p=BWI{ zZblO?CYrC`ib7*|@?B|!X4k?4d$*cbtFPy}b@%@piliz$%uQ94l~n~f3Hr6EJ@VhZ zlLi`B19+#rMQ;c){ote-=vkXr5;y|5f~@WWS9ca&1Bu>c7I*yS8a($T>isfsS1uRf zIe%99blq(|*x0>Tg+GbTxI^Sgz-8_;jP?q*=aavNzip5I(mqT4L80SL?JRV7BLHa+ zPKhW4Q9gN#L<=zvP!|*lQc3|AH7y5L;zEg5O>opl#k}yXlput(la`UM!$z*A4u)9L|U340uS!#%zTMWa3_~dEItHAKtZ?LG1K|MOm}1K8J7r znxF>vcLg%%F5P%-4wLvZW~x+Er8>le?b+7%ETV*%U^1-U@=&Q=WI)@Wo#lUY#@EJw_;#%h@dNIttq^9yNK} zj{ymZ)+MU@*x8xd(@#6+ZY3*WBJ}4f0REM*6%IOTYHy4@rq2UqXaEf;k82jetsukQ zaPTqN@5rNWcP0U8UxPlG_^%sCi#s&L|IAJ~IPmt_Z8shSh2(uX`13E6jmC8oI3_c2 z$RF|vaiC53MV9!OFW=0dL+LN{Dm^v1QRDEs`Sqhk5f>o`s?}el4(xyT%awvS8hVNU ze#GXGS-92uuW$MvA3cXN4tgIZfnBaZxA=CRc0uoXod=9^NCtijIyR8QI^a6g0vBmN z#O$x4A!KyDa4JCA!`A9$S0OSP(l#aP#?erUb>mYlZABPcum5++|GXtvQ*V~0}EG(s%&y0JN zPQ^`nnyP!U6CXw41cSy|MnG)z!9?>wt?Ic!bOrQWqxVQEbd~_CaytyftiL164P2+QdzOa|T;fQWzfK zmJ%)0E6r~Yooq}1c9*?Fl0+(^x3{;{dLUOYr5muDnb{^qW_mgk(%Re}&1K_;r4_Qb z-Kavabj5_Pmu)B!`r_uU*ZZ(!+F67Ey0P~2L6ncH(1PWOLz>zE-gq=)BJs1Fk3^Hy z%4DnN?m{RO9Vi)6ZWOBe>EMLIDj~-;yo}8|jjDZ#KJN&9TX>bj#3-PjIF#`!Gr&*{ zUG2L6i?{cV=X(GD|DS}2%%YUNLZY(wDv_0)vKnSak(rT1C6SRG%HEZ|LlHuRvPEV# z*?jL0opavjoXN|#;)?!nUxX0@Wx%#^NuWtgw7#}9gt8)L+ z=jRR@ud!v4QOHfnt^GOsZB#81p{?Z=E~m@w&})>#}cz&ikX!&qc=4i9s?=w4?ASL`nA zj4=&feV+|3R>f#Ta+SmRtUAU2z@d%v!~R%hi5Ch_J(n3uc6i@j3VgmIlXmEfp1&(kb!z zS}K%tgCi+8z*0a5NgZSv4^MRh`lKiD1r%HMJ2fCtrETrL0SwpT z-<*46tMkJsgi7bs`)P6!4tVNNcY;>5tpNLH7sx`e4lf9X@5QS28BDZ~HbuS+H}bfM za{2vt7FCdss_U}7N=73!HMJ$&BGxu29L3e(~uux+#y~Uabu|g8vpg8Y073fkAsb39`Z`^OP*2$LWj_2T4ntWA9 z4@&_i{{H-yzV3P+#Lazte5kbp?-A^OlnI8M3<%_^g2_$C)wM(tdZpAohvDdq)ITsq zrWO?FpyngEdywgHBKZ6XP_TYc0{OcC)IYxx-Prtx=cg@F zDp+!eFrD+q)zqy;h1OqdnC&|5puRo^Vunz!om_O|740 z?D^D^)vtSz58<6xUF-)u$2y6Yc10O{aZ z*!NzhA0vaK&P6l0S=I;dku8DI^lUJsjVIiT47hGyl4g+!uqICWg3`w14U=c7Q1h>zyS%a zk3rSh6nSZ)s$Y&ESPRM3|35h4!W>+iv*BWZOGGJHa&>Ue@1KNuPaOFZ10!fxvUHc$G`w=8a zv91C0!*zvU-v1t;{7DdZ_k;TGa*ttu<2&8Ev)dWM!5Gs{*qhf8za>O^1=<%|eZis* z+mE>S|DZ%Y4+rOZj|!nrNu~+x!(L=?Gt4FKMmBy?r1ZSJC<%jDSg3ko`@-Ify4u9- z?)ikQxJr5c(FO55yA35G?5IYx;g}=UpiHkh?9y258MJ%CvRkJWaLxgaZpMe9sZFkx zv5NuqVq``;*mI5B&rcs@A-O<+=?$3^EcW0^E9~x}u-T<_T;C5Z8tl&B(N@NszI9^1 zqoOL#zB^_tg{p+;!Y_eWNvdoP%aIkMH;rND2XT_rjvkI2bfhvC&ZfX@L|wCmY{{kB z;=jg}m>^!(kKbS9UhM$8S$|qzi9NZ%rowcW=nbJEjvk~+*oL450;;Y5AWr6#Ej;RXo#KJ`_nW@kP@`r; zb=`Nfj?SRp22f_~Dp83LP1gmdhklv!D{3D7M9_w+U%T(=9{%1SU3rCG0}~DqlkD-E zJ7}j$R(J%Pf=@rb;`*I8I92rjo9oSBwxGu*gcZpKjXeg%w~|n&2Ar;(5Xz#tYT*r9Y+?>ODRJ`icpYAIK(&R4R#nH;`_fzMCKe^UEbWT&#&`iOd zt}9!evY0kHHiilXg(pWR7OeKVo%2jmt`ec%ryk=f_Q_hKG*als#R*Bu@KPWdF z`0cjNi~NCuvFQ@!vo=-t36K=#1tBLOPg_-iWqY^@@?%Vz57yMPp=2g~m-QKz#pFHKqWm0EYXGjLO zwqNT(JL-d>4~VoqI|qfUiO@L_^tKT*0D)wk5Q1|eyvh8HH_)B)yF^xXKK1#JipL3l z=xU6n`}hEEoC4<7Hw5;Nm{U{Z@dkyH|5c@d$6kD+Uy#-jivn> z|J4FEu`uOiS_+4}5@3R8gMSdVD5YSCa_|EM!Plwg0;F`XcZVN{j&#I( zEgt$deOjkQ=nJhchZ9*HnIRG>{tt&f`)lQ}2SI`lt>eMFFqBJ$Hrha|Oeu8RTJGY8 z%Lc|Q7 z8g#Nl3@Naoisp9lMIMoJ-y*Na!Hj8gbQxUBx4d-0K}rs5t9l&S2mh@nlVGp@;`9>O zV0nMd+#hleA3ftwecO3u?nwc+B9io=BVMOkc+hK$&`L^scU8vlj)M1d?iA%o2O^nE zd~^~yZvn&shQ8YCGQ}njbu-AzyKSn-b{Apt)3W*im(~{W<{cux{P)x` z$D}FYG;;1H6%`31zKns(*NBs$RO~lPCPUXa?lvzfRr+=oYhO^1-dhD&R=)dP=@jLi zhE=wp6GH3r-=g^&&JI$Rw76Oq(JSfS)r3fuJrRVBLlz^b~kfE$w5$ z2#8K2>rjg4Kz;9!@z#rmV$>sjWsVEZ?(zvnQ{p-9=j?H1V&D8oeYV_Kmg*%R*U9QW zZc-TSWm-nA;hGTOHSq3$dMD&6KuUnRJI;nt@^>h&eYx9gxh|^kO-xKu3{#+7fB?n? zDMRww!TW<*S3N||f_u?p1OkyAlKahx6W~2aX1FM*+k_4u^dRLZ?i^(MSH<79a;pGE zt#>=`9+F*Cyz!`KJk&_+cF zHeEU;gvXy|!2VpQO0l5--3A;8cEh!A;;ftZc9N(7$_ECJVry#m!azXV^Zt8D>oKjTx*TP2&l&UR!B{l>WK{QPDMb|zHb zGF06dqrURN&|rQ@bo4p2tI(b{eS87{pc26P5Ow?!0nN@6itB%l=t3miVdy^1*{ryz zC@w`F`n{XAws(1i>hH!u$3mgQ<)PAAZfA$!YJPBA&QJzt`~GVr5+hJCQ7u{gOjXIz zyi%Nh22(iw4fQUPdX^}KxH(lwI8;bOaZ-SEZs<0hFX}KJgiew7YfO;6)2cJ`q4N97 zhKAXz&X-aO^7N_tO%NI}+-tRnuGSOMxy4c7(g!qx^SUa&fUoxFwm$LJ^r)OO?-(lv6=Ul#Kc z+|BhWUDU06M~kffFFMHRDc-UW-DW9Uk|t05sfP6oXG=zj?_Txb*rN*~&91)yX=SRLdq0>dv$i!Shy+Y%K;Az%ms z?TdH*G*+KpoN@j3kmHJ_XZUD59{I;G|)+knZ{YvY@xTomnOZx|iY zmT1>TOvqD~k(Z|hm*OWd9`l)&jL7@5;MUVM=;{?rA)aVTb>kaXVB5AnkJLJeDKAT8) zA3YeFtD-Jj8vn!0DN@IPq{>|;-FQ)UTsK_gGu59xPzR1YxDYNA5yd^3Y-(xQ zm5z^!v`x6jd!NFdJXTg8IOSB)x3XbSu0q67>?VXow2UYzY2H)Rv~l%mo_LdT!HkVx zzvQFl?UX{H8+s1pul}s*{5?7WZws6jiovL|N3L;j8K7th>U?ZX+j?pOP^++ezo$qP zMT%r;)>b)=ae(Ca{s|;O!HR^ie1F6)I@dt%{tR$FhOKc0*O8|Rp@3B?ohdmFj))|L zS4V#heknN8^Avnqq6Lt^^k+$R84JeBk85U156lEAXLRj7N~v-1{L=Ilqob zCcS^zAN)VRU=ILe7YvV;@~nVczkBQJtD1_2c3>R zQd=YHfU1VXR~Mn5edBO0G}>LRMP?=XOk@R;Cf+8dF`e#x3KJn9m#NAl_TPdTP+q5I zsB}PoiS0~_NF)rXKoTP)X&QU(Z;bC?dP)DHBBkU@T0@Nu%8_TH8ZqpvGn;)&vwG{A zfXlJ7k8q-@^a%xQ07%Ba7U!PRc^~tlzsIC;GCHuN@=L_vm0bNTbQyj3zt!kwW@g;5 zBSTF~D`XSHng;c4sncvHXk|U$r>iStXh#hMm@jZLME39!?AOj3ClTAo`y0#aKhX{l zocxV8uZ+wm$f@mY>46>%U`B=YJg^C&ZwXlBx=?4Z#Xc{+1--3U`hK31wMR%7U5m{0 zH>NY6UxS8&aLosk0d~@pWF@-?99d&{Wohy8(g+j-DUM}W8O{F^%hWVAO$P7M(Tlur zfkFQWr8ih7?vY8hg1iNMNu~)0?IxbW-WMQnTTXZ9!@;?|uyV^ z9~`_he-WhCYZ$iU0b__3WH`dmiaBPoPQ-0b#4Y9Qtmo`5YQSefVUd!FGb|pfCAU%|I0?xU+>k=r7oUfa{ zz1tlF(dRrIuwG455ns8pH47arcjYivFS^w3(|g8n9LJU7fF`D~)mXXdkAnSZ-2vwu zFC1V#JH|oa8$!9`=^5E=h(wRTZK(RtIuG3?bNCFqAp{Dyn*h4>K_fuDZt$o+a5@6} zhlTapxx#1@PAXp)q4{n*Tks{%vA6rV6eha_eTf|!FxUtVv#G2w0{2LjtFEsj zh)OLcU-&RQDlnHQ{vh>@^rVE0#9`@V-2oB01Fk#~c^jMfJcsrg6L9qm=95P@P%;*6 zE^MelHZ5dTGQRB9>{(sI@bp(RZ^VR`^!bRearzv5W6WzX0k^r*o0`xm#Z{zUQv&a> z&?NZbTc;&B$Cnav zPLDxoqN8w5G#I*9AXg@=U}g2qF2{(XFgyyJ>tdUR`S0vZW(P0dj=Qw@373!TuHKxU zL|G57P(9}DE#~5M+u{dw9O!hjdexy2g&VrzM50=*) zz@@}X0E0guXmHlBC`2gCWpr^;WTASQEPi9vm(Jh}5Tt*7$e6TP%s%%>YRp4gny7`q zSZ45ZaRT%+$ti;H?>%&yB^V_0*bIIGh(nv*cG_7c^#v(jzZwq`RxIK}R=TjPl9k=j zyI%l$=+k%5M(aY9pZ%?<0b3pXDg#5(hO&kaS8Z;6v7Qvq^&(o3OR^DSnj`EgsrxW& zc01@J%}sz~vl%mT)F_Ho+m6QJdB2j(M!voedf#V;?xW7b~frRuYkIc(OKhXzlx~h%-bk_GFUWh@lOh z3eRog?iKEbbAeYUg@(TW@K?%qZfwTbuxw^t4l|<>dJ@o+AYd#2U5yGS02+W4DoscR61}3?P2k9lRcNIa6ACP>%@g~rPWmH{4gGm)5F8S{hArvzZ$J+WFA4S zQB2n@!gg$fsOYX&TTKjUG$Chc;8nt^*&mz6rn1;~M?y2MC&XCQ>`?5$O3ML9m04^N zK=buvPQvWQQ=)}|v9Wgx7_#9hj#n3%vmYfBtFfZ;bJ{abU)l83O#fig$N%c-iQz6fn1{NDRM*9kMHGYJ&AYv{BlV27_P zFFkS724Br)uZ`i&Yu9k=8m|AUfbJx{cp(ev2-Ks2@>m-H1RxXFp!(uP2Ag-`&&XSMevrO8+)sD>UjrII$JCXPxjR!d{6r^i z;MG+>T3XsAl>9}4AGC4OL8&V&*+le9fE)-fgv7>LfADYtTFy5s4aS4DT-A)zw(8Z6 zSf~BMR?X62gOyAYK$|ElmE$lcl=G5l2kqI?F-foFBlHAPTl{9OeN;Hho@#s8vn=jI zs2ydl22k;kw;#M0=1mbNgA?oM-INjV7j`oUs|4wEl|qu7RS^t%=F4j!X+maIep>>v zyr?||^HS0vq(PZ~qtasw+&Lwcr@h`mbWE$kFCXb5>;xg~_d8;Tk|qvdR3m;$h}iMW zI)zLk6M8+?Uj_BM4y-5Lxn}BVaqF0c8R5t9n|$~OL&pVuPb!?A&~vt)QPj(T-qj?? zQ*NFlAdLf={;yQuHqMO4YXYyWLkIH@4=lLV*kn&o7 zRNLpRQ}eVKRv2M;=4*__K`7Su5^`}JbFco$)xa*3lg!T<5gJ3pF@30?E^p$1hEr#n z0-2SkliG9fEjMAnVyD*8oVc8dWK5S*U|_%#J$B6mj09=}3Ll+WaBRu5A5%r)l?xpq zGOgvVZj*V*y9i}W?rig~*u6(~Xg;PlIXah6!c1Wa^X zDkSW&vS*0AX3}?67yCGhC#JRF9a&s|SHMq(-(OE0&~|E$EIMgl)2L-Xm30#$l^iAIJoY%rw6uGpg?^f-VZo* zV95$C%<|qDB1UdMYFaMfx^o{GX2a}d8^k{tI+ddn&Wpsq(>VU?fCH?go8lp5B4Rh=w;UIAgMm@pN z;zD4YxQhmyET1(I7X#M-Nnhaxj*-uuzda-kZ~5@y0{j#j(e#^I9=vW37*G{5_VT8N zHI93(_l{Rtsy4|TUgDi9`PM}KD&uYvL-o0I4hq)0M8~rDILnnGU|7=k*fEk)Lus3o zOJzSh+i0x(k6)%QQTpy^$Zt0^D1j$Ie&%_($Cj%AKmRcfj+9H*U!ZHxt{f2$hXvGY zg^_2g?l*q(cNH4aY!BWK(l{lQx}<+>0_p}RY|5H4v_q}u$qo*S!i9h@_uOU^A4l;AUfTc_(?7fqhYRT9K24IqpRu47U2LSB<`A0+ue~ktIZ8z z+@QGKKy$kw5{3@0^zKWa>KEZ;ijF4G0cHtA*kTkCV%e#Hyf@n}FUqE3%@n?43uthl zBMwLhw9Bpm0ddGY1zEUa%tYLSL!h05FH>n(w-_ zs|dk)$L3K|+TEMi&HW%&1gjIF;eO6&EADfT*@~8|4k<3Pk}JbjTaI7?hxvi?nCwVlijt30aIel*U>!x4BfiXd$+tSOdSmjOoZYo)&b4yNqG&t8W zXNklc=gD#Fe+tv7c3+g3NJ^u^9AeuU8VEVdKl0WrXFc~^fSTca;od=hsezBBBC<-S zU5Z^Pb06(!WH|Ohe}}DS{z`;wQY>I(#7sM8#mMD7N)r5xWV7RMu9saHl7Za+6Dqu2(d7JYZgqofFt zh98=I#ZaoYI>0X2>VTJa@3uO@A_Z5C;=gRoqYKa^=mI($vQvRrrh?{xp>49dy1M=p znso~*LzA*b?MOLG@Xr4h@*$zqNc!W1{lTgUkzign!!wyN@M8Ev@nax8mY}8vfDNL zg~mbVoP-VsYWG!cFX!yqHenbd((Dl=sbZyk)&j&nS({*4%`hx?O@puc>1{;%hJm715NG5m5Q13dlNd&Ad;)}!g z72B^0`#oG*9boybcSN7Q6+*6EhYwI2CLVxI;8Nk9IdQ7=ubXh3y~=*sHdhT)5|BlJ zjm6E&%e$ZlGDTZ^yY}VF5Kn25+{kQ}+_>QmJ~Z3;-v4PngS;Pe;u3xHVJv0s)q+3P zblE2Mh-9XV0*b?^SzB8d79NKFHi;DK7eO5&Dq-6R$x+0gJ+nW7*stcoP-0?z<<;0g z;%562+9sbBCKya}vkB&;b%sgu93_P=Z^D_5VL<72Up9l!s02{DFVnezg`bI9wa5#F zss}JiSb&iNjZeMOz1P>->C>-Hip7MW8(EG9P_w~MPVMXF<`)f;z-}AFyKzFyRmh~M z(1q~H7K@8+mg`dP&pXe>UDo$N(Y@R- zm_PyIiBCN_*x3t;f0Vf_I)DeMu(bSF<#1+3x_jh50|K13;3`N5q0N1L>65MJ#w8Ga zPA^=BxqzU$y?ka{!eXh=bB3>YImy5(BD~GeBO@m7^*3Ru5#@T*N1&}b{ah-FHE^9sLeL_y%h_Ojs}a5kl(LhVN4$D|Yd75JsfcE%kMch0 zt+b*p@=%Wzh`a7VRxMsQd-#o|>t>M@2fN1q8&?8NI=ZGZTNhpt=4mpAk0HOV%{VbpqN}ABO*2Z z^Vk*I;+_ex$bouzIPF1Zc6Mi?Vu-_!FDFq_1A54ijDr6mLNu!dYTdvEbQ>JulW5=! ziu52dFXSzCO2gs^1>5_>3EMO6`B|DfhAq1D@!gPK2E&X1hlyrSqO}U5YM%hL9R?K} zNZ)6zJt4-pOP4Mh@}P6&3>5W$E!am1nlv0Hz*te zwG)fM!#E=OG6R?fns16lI6PvoJ@sApe;;8G&Wh52PfHVEN^@L5H>{YYp--PCpe8bM zBUM1(0RjKw)|$+q2P-rIZ5J5L*lLZGmsSqJy0Xwdg;rvYcikz9ZGR)zIs04Zpg;$> zgZ+<8om2w5y-w6i{Cz?~>2$!69{PYga0^Vql#RfwS6Pe! zr$R3=Jte}qNRDh853bIBzHK%(X9Mo=_zbY=n<+mS6-qv;3o7b3ZJ{5hTL4krBS|tt zIq9z|9x)0nKJmxT3HM{hoeZCneJni4Yg@yI`n)`gw3$pb;+)y3yoEw2MsN*arXQb> zUpHmc*Ot)q59}VP&+&`{83|6vkaT96cF&()+v90=`Ed6TbUTFWM^=u@7Ij8CC@WWZ zcomSVzffVnZ{~5e`_=V+U`+7M2U@ht3i9%u>=l^r#vR;m)BMJ4-Hk@(yM>H6DQFC0 z5EiIve#BRJkEK0*v#hyxcw$80>@us@lZaK5rrN5HS~60qGMRz|G0zydZkG~0IrYj& zT$6lH2|N2tAx(DVY5eIG+AQL0(i8d7=0$WGN~7AFE);dG9)=rz1evB|C;o zGGrebd2Ys~{VF{H#_=Uduv`^pOxOs$Y>)CTl`P%rQj4Nj68$tw@ulVjs|xiixAAmE znc#;tp(@wbZ{Avuy5cM}=&p6)?CE05RvW`FPP~`pu(FzI_4od>7Ao4l$$qY}L-)7l zz6s#+D@Z>)aa!b#eF*f7uIUW!$E@cY7`hD!r!rgf;$*()w%hHsWz<(6%K-Dt7g}Dt zJ7x=-Rr{QA`IE?pu2N-HFpNYM?G4Z1eo z7vxb>>T6%0=)hh}06+Ae==DAN`)){Ego80rA0;nM552WDN$QeQ1d0=`oet1LyUU%t zUgk`MlU>QeziZ?3%!7zEda=fjABzqDwS(#!_V^_92Yar+f3kW~Z;6>I-EYX&Kq&y- zY=52kZvS;Rn2AE&u-v8tr~+pASvk2lJn5=t&)I+9=39qj+=r~G`;&^!FuOo#Rlv(q zGNyYnp~KOpht0@8soOA^1sbXKr9j%sYw{sJJOot(xZIC2(US#5Ahe(UWko%mAua~$&y*WT9##Z@>v`sVVeMs zgOB7#5q9m6dC5cKs&V!q*-opv@a)jzPDC?)VJsKg8c=>M*8S&K)C$)(@BlmXddtqH z8Y)7;8-pTkXtM-+%Lwz_4%$Z4~{Ii%-J~j!Keg=b$-ox1y{Rb_nFxA=Syw^{F(2}1e_wY&Tz(h zcsguIQ2w-=D(iL$C^f*}|3=u=>N_&qts@&8q<0G;Y;9>@{HJjQ^m{K&7})q}*u@cb zVREGutg#baoBb)p5=~)bCU0v*_WpQlmY;o^Co$AHXX!{Yhc{!g*K5z6Z3siZae(|v zY8^xf;?eND5(JM9^xV9fWl*XEmJ~~;ufLBVaDIA3CV&X%VDH=Fy;sJ-SEdt3o!G#= zZB9l?)tujxAl~{c-b3dlZiY2`nc0htUhzP7-`TmG2;2rA9~2%?P>Jg0e|QUl_@mumLmX)>gx8&{2+Enkp8_GnP#!{Ni`A51$7uBlwc}#VAKam>Q`VhJ}dF>EGBA2w18b_gzDKIoE}_bIew?AaCUKk0 zPN@kei4`FRfs|phTnu-%{FWQg3=CX|j3Pq~lk>l`7`Rx=DtVsbiMeJjRMwoc)%~l$ z5dG=u6PioO(Cn2xZxuIs5YUntyOFt1$;m4^>*wqvTX#e*NPO6QB^>h7Y2H^%nfOhs zL~^WJVYQ+!i2Q_d-DQn=i?Ej(ONLaF@{$AyOuJKW_TiGNH$=wQOz%70F3VG!4O>Su z3pN~iXk@Og!YN{Ps42iIYK;SDc2Vh^MYo%cdZYt=ncZ}C9DtjAyc(mGC2ei?&SFj1 zEYDeho7DW_;+`toGRmb^g%ba(WHD!@Cm1!Wk80MO$h)>sd~4Cw6#AhqT35~t%SE^- zOLDOLPGjAsZG5)8r`EQ<1S*U7tKOg7%zhz&7fO1XGm&3pbDwB?OCV?0Nz6Wy{zt^m zyNnN%H;p@EE_Lx4aberv!nhhnl|5{K5>o}fqRG)-CC2%_L-qO5@esLO##0gzcwTzW zOo{ySd%Op3_Tqf`P}^{vmq4max98sQzPtdhHvDAmIEqKbE$7Forl*8bjo7iiA=5L@ zCYX|H{qR$qCxqRGO7I7H3`sbX)CNk+7q+dr+5;1GbJXC8lFs*%y66ul1vT-OIX0=3 z+2B-hC3`y0aplnI3e}(weS377yxwYdjD0X7|Js$X(@oOSUrE9)rnvC%FEaDeUxjkd zLjlKjL0^EjgSm6=+sUQw{C)Aa+4nLUl5w)xR#b|8JYQE&*2TIB9iKDoc#_leS00#( z=Fn@l=V)Ve_NAv9Gu{SBlmC&d?!Avy`!p{FR(Z1ck;Z}%--usDd`4NxtVb!q zkULDRnp46?z6X7@FeGD(j&QI(Rd!@tk_wlc$~%5$VRA18_e~Nkeq)oC96uqDuv)VF z?Gi8P;0fG@(?tipBM#u*uH_wy?$~s^T;`yHJ4Y?$6RHyBDLud8cc5}6B`#Y5`&35m zyDE@)<6F2#8}G)a+Sx9;vNXgoD-<9bhMq~$7fPp9w#VWj7DJ$Yd+mS^GI2Ma+d5F&IzND%LU&6hP({i z-=m&=zts-&UHJ`>Cb0~A&Q}rye~hG7#m(*fb-R`HktlA1G&y`PqF9*-YCUc#t#laj z47HwSn;$)?{5hB8f^|lY^~U&RPaEG5!&GzM(nH^@4@upZ`{*a`cJhnZn=Qj$KfOrj ztqT$s&j8$jg8p!(21>3roU9U}%r>JE%szz8tycMzLd5wcf2YQv1zWBjpZ@38v3X#FX>fG0;W&)pA1d(`wu~%>L zDJ~~ogf`B9rI3~MTNn1RD*_oyuC!;iJtYuaQW-4>SN_jdK4?o)!MYg@ZyT;3`?5nC zN^c{=DSw_~iUG%v=sl)>g3}_xx8$tkvU@gU>WbcPX8qRdD!A11Yih40YfR{$q^~~f zY>&-hh76#DmB5sveCPQqvEnYLCi8*SaEp!gjwlTpos2BYU{kWGbR>^F^f=-W<6DNJ z0?av#Xo#}Re`>FxEdF(|-s~5l-r9;pW|8!&1WB&1yNslC0-dcmFsZM0uFm6s(T4sh zJW|xy6PAeB#3dua=OOQzjBG`a`an|Va;qHK8ACTP&0UxRaPhH)%V0q)U0&x?&X%xkWEocJ6uc|Cv5Rc17z@m;@08F2CBJL$a# zJ`c-|l;!7R;8+@$+8&ld6P60U+Bn2n*k2H=3$k?xhjYtA?Ix`0eQ)Ua@es5Ly?g^L z`xl&A%&GED&P*{rw?RLAiQ7={Ut^T!_A~X_XowL=(a0Je0P##TqY`}M`pFXmI+cP= z0PoIbj=^iC&e6Fbm=Hxtcak#(?~07{R~+OcQV?J(sXmWdXU#|WjJ*g*#)a`3K7K?o zTd2Wc#t4rhitIzzH#8*Vszo$P53R1Q)(0*8&3UE>N)WBcE!LXS(hnnCN)MR^9>h)z zv0^JO5{aRy$?{V$wCZ{HRQJ-H~GZ0<#`rh&>*E)ZaW}} z=)I8cc)DCYl#8DBj~t|RUx_xz_ra|i zSBKREamx{!;Hd)rLt0u=PZkGR1rWv-YH!QJP4&-~=(S6><=VfEfkPBRbS0&yTW%2q zK%FYZ?=Y?o(l1PdXiF}a)?GFEVgdOyJdL1hGx>vl1E+car3;XEs2JXgr~!~CCU1)*rMrKYF)IhQZ^aYaRHb*#47RGtKrc%xvj|w$BJLlu*GEaMQ-f90QL`8sh z6zX)LMmXvvLxxTMuT%u!3!z(30N726ZQsLb~8MaZd9L+z6kWzzB?Z ziXa3B9@hjRT``1x0@NaHbY9{$%!I!88TaQ?kBi>J&lkt9E}-=(DJp*I>G4fSw$LnF-dk$Q!GQhpo45W{1j$dw%+txyeFBEBdNX3E3 zZ?GliJ1{64TUK^nG-R0UqxJRJdk@wRU=Pde#@3<9VF8X*{d~)?3h0uY4|e?VB>}O! zX=toq22RQF6EQ8w;(~udzS9lSxWSe?3t6>zIN-jFgH%28wI3w)3k$Mae>06B>!kx* zs$z}~+qMi`$HYF2%+>mb-O8o!!tt8n;}M=9;TrSywCrM1p5Mq>s91RXHT!*Ld7p`D>`Y--Yia64dH*c1U10|_ru3pen% zKpPDhBdiPEU`}^I8x0VBkf{ScmDv8hu8oHxj%q0NXT`{^tTILLZ#fYY?&I|hr8LnF za$dXaw!G4KU^g)Y582mm3KWIj$61R18Hkf+eH2E+LnF!PGkFP&Ek>#W3S>gxrL<4= zOG_YAlDztaf}u!?$5!m?;EvsNe)6Nb(-|AP5K0c1>;V{%&mbG02LhQA>V1O>%dLpE z7?$6tlKc`~7kl6Jm_>PW`MPh!b%EUE6M|({(^YOYW+Yq-iT4R1^6ar)%VV40e>)gO zP5;B?|0_1qai_)}(xcfWlU%W$+iMrBFXkHGg;_@q&?$4+5Ewiv)%&%SN98WHTxEG9 zaY7;kTj;cXxsiRknpGp{-+8bV_W^7j#gxLpE?qiXamf?5Y90nAY3ai+k8IfRyGk~& z#6;9Yfgx`p_I>FK;}FZ<8vcSFRR?ILpJR3@|mn`gnZ|B;aVo;ACnj_5psdp$BXjx$jbRQ5)cnGV%h$#n3XI;oK^|?y zF$1@<*1_+HWZM}D{28>+gX2gKWN0*#Hy=1^@Ishh$DW==e(oph?J$1c9bP)a<^d%^ zrWm}Y?|wlV%&ALUmG^^X(w^sC0^di9Ej!;XAE0%9*8LC2&I>SBD5liB`;8)5YzUt^ zbneiHh5!TadM~3?i6nGj>MILjG?gu&RKUCN zl=sJP*-nVz6xI|7nUFS|n7fku&Cg}uy$2BW?CavUO&IXzt(+egVUFRy^zR$1qz^p8 z?=+vp_Mwq~?Tbv5EjG79Tkp`?VaYqrXyOh7$taQja=7j&KgqtFxWM?W?TAE3WBfOI zrQqvn2&n82_h~oRqkw5t^-?TtbP$%V)~_ySt#{{-21@hgCvmJ z=lvt1_q>KzkJ~siZ*>d|CE(70b_Wq>G`UVU$Ai1q?BTz1 z!e>joA$$A!3cg5CqATTGc=90IxXg8`bndHTUFe0gX39!i;D9$rrJ3Y2;qj|fOS@l1 z)rL23T|!hdqJlht?``=iBAwQzl1J*20YJkbEfZ+-NdtHl!lbjjtuZr zwmzY+CT@H&a|%)%Hz%uBWORmhD{U;%W(>(mB1W-57|YHWpC{8Q*HBPPyLs`TIi;|u zza1qZfvnOL1*0qRTUIQcb6UaN97ZU80oVYLy80Ay$0dA1q;tt(X@T#U9|~+4I6a8H zEA0btd!~#!m{C}|pm76sVDe5z^`d^9Jl{bAk2(R;QVR9%$E~~nD9xOAcZcHrp7C=Y zsiEY1D{61==O9-X^}_ag$ak=Mou=ro$|)+qsrBaD>ruT-k^%@?xhU_Wqe(tp6iT?} zYMMbcy`j6Ha)Y<<52D_R!XV$6^os8_Ji|xCNR1bUeuwEWruxuOs8;VMnRmpIyE-Ir zIR`6w6tvf{=5h%3qiQpBZeO-$(fxf&G#6Be+9{M_uv16q9ImV)rW*f(GMPC75y=hU z$ilZjffXwy*Q%Ds3&DC@#YvbmeWD53O@It22fww3-^R3wlf!Q>L9i~uJ6);hz8xh% z)cHwd*ka_55mi}hX;)jopDCZwW{Z*KBccL3|D$+HN9G7TV_I*eFAvozy}HPCs!8!e z_zr__K5DO`PuMsqycEN#Ia|H^@UM-?bzX=OvJD-?3#FIUX1gN8NK`dN$W6fwf8?Q{ z_pljWFFLr9YllHN7(7Ozr=6K|<*DFb%iK1_&KMKPDmues*To(_N1;bRe3#WLo;jD~ z1g;`@ckf>3qfn~mg)PLls;!cc1t;Db@7cEeAtKB`!FWOqFL;g{S1FDqcZt3F95(*E z)0;>3{2Pk1xL)P@#07*r9~BrM#xur~M09%d%AQ{#m&f(8@7`BMcp~-;IT1E$&b`T8 zww ztu9QhtPXex($Pgu4xg3xv51dMW(Md4O`*$c8=4JI8I^=(lQ6PK(KYzoe z{Qv#SZd$uVm^liFUo7`8fav+5$v93-R^ z{}UzWfQ5qq5*dxQ;MhVFxnT_6@|e`lMU=dS30jum9pLEppb}`Njd)MV0>p%-R(Bmw`lBxbo0rKjzKd>0u3SFXX93ID2@SiAb~OpTGg3rKfl3 zVln{Yfn<&BaKJcOg7$g_Xk7qZ)&+GeYXjh=*xT!MX8C#rJ$)^fH(|1Nz^lw45HFBX zcOA|ewu%~nB130dbf*3_f*j#h0gpKmrfc|6T+s1{9%`q-r1II%Ryw-6+;9xFwLS8p z-~CV+X%*dnj%gZDv=tU~ELA)cT9x|DBKh_O^>fG9397btHl?2By(tDfEUJwGO?IAD z_%e(Rg@NLk;B&UD4`Q0mu7uVhvhYIW^#Ul2(T(7?nu@V+{)AkAs2*;cu>I~!#*mF1 zTgY9bUCR1l%_D1~cVKyjm2G*(qVEYN{aE$$=c&C{yBtd^A1qnysl2Wh=QyX>xWS*c zv85k^CK&)K>)sPOv19<5jH`LBhg8hn=Y?qEWhm`JSluBBN{doeC>)8}r#yXuqrID% zXDbP+te>q|?b$ay(M6gy*JPFt!{gFhEG4d7ECPffqQ&GI%Z$8QU3G>-QyPqW?YIpm zCYY4in_7pgd2njW{zX9s$JfY!iX8is4*uG<%UG^fyPNvsfvLQyYgc2h&0p&I@Lp6g zMXYlaTs=_Le)*1&F37i@o__L=aBfJ&&-|R*EfbR4OXSrA(JmaK^zC#uL7lY9}Iu90ubNRIy7hx z&3H1}{6=#SX1jt>Q3lzuTy{Am&QGxL7ddMKTH z)HRh#N0>Q}hJ{^_>q94QXlsoF#k>=mgB*(My%ywd%4y2WzI3R5;QsQej& z{_}9jjN7KAI_^4ea{PYyBF?dU2t=3D5IhJjfj&}vWgSpKkn0Y@pU=olPAaPZ)ZEux zL2z9v10Z)GTfzIWvE}CERD>xQ$hm{hW0m&m)deJ>2j(va^!_nYtsHKh#_rDNaI;J< zcNul%!1+D34i0Aw9q2wbYDHF47_qifS-ugNmcG4%Z3h#t80u|uebcR>J#a-n!>-q$ z{?*a*9B6yEe8IE%#}cIElT{kuh(;D%l`ydjzK9qBy6975mUr6zVYQt1S>mx zi8wnXc-yy`&sXLNh>Gg3c&alqgXO;|?R5GzZ8o!W56t?ByKV^jf4%Xu-aYF*xR%)A zgVuM9gCQ%5%F1OEDnG|YM@L|mu;I^`>@)BM^a2Koo9mSSJ7%~^GhD@umZBzO*zY6m6pSy7* z6a3>s3t($4rTIbaoHcqRJ%&d9^M{6*^_MAzi!1q2r7Kg-@b=6;n)54x6)&%_P^^&W z`0;aYZl!uzI^lJCS)FG#{2%1y=kpXxQBbUP0wI_ay2*|GkI%k@zksbOed*^<(Lf3N z(Z|P+AAj)f%EjfQSRyP*APp9up>aJwF*OyEn3$+7!R{9D;GAb!pA{7q)dGkh{-4Z4 zL7?n+z!4J=U}Iup@;9Wj-1j+mT^R5vmTyn7c1 z1bb$7c7m5LUt(Th@_>el*vjn8%vp2uV*oT5v=cUd^Oc;M+IM?<`=He5>Z-6j-th3S ze%*eqrZlPaYu8n8!-t1YCbh{2(8Iv&>=V6k10Lhzy5+G0_BOpj8#?&?Y_H&{Q@Evl zPeA;6K-m0Tf*Af8ymrS+pm(AsCl60!IH2DNO9_$XQrentOVCk7DS*zIJK|cDuJ#RhY;2 zni)bgKX~%wy^-hE_YUzgoke=>Tey?(!nZDPW^nhH=#+MBxlZbmR3V1~&R#P$eNkL|v3*!YO|8cCjftykckIo3 z1oo4G=oQlGW?z=MaDl?6bXrjU%$Xr@Y}UagwzyGKQ$tSS;NT!!`1OY1gL;+1l9G}$ zD+XFxKA`Z22VR2j1B}ru%*?oO;iKn=9EHTQ#_)f5?@ykPhR3oqAEKvsq<5P9%sKM? zJCmp=?WzT{a@xw^XE34YjR*`J`KDjk~%-xJsM+wU%QSr(QUsTpKs;fOD-P09c9 zL+dgcLjT~8pWZ5bCFb9M7LJ@yr=X3jj}Zagru$ivn9`hK7y~JJgt0PDQdxNJt#>@XR0G1VqC%Ktxi~)1Lq} z;I-4NVdV4YKR@Noh`9aCyaA3+Xyxoa5-h9(3lYuDsxClssJ(XT1Ck3t;xUX1!HwgJ zWv@0Y4KoHZqo|5cdBK67w8bx!a?;u?n1AFa;aTOpYQKCn1^=*+WO45>x>@*XZ^F(3 zo_$_tm}X2tMRo7htCQgyPEJlW#(aaV337)H9jXFCaR3lPmR43aoNrm@jY4mV18N`R z!k!^J;asb(6Y>fQ!*EMTKEHe>G^tS^AipkthJ})h$2Rwu~WU zG(I_5JvYZEDkk=+t7~ldL;k0zMUZ3pB9(=2jS%|!`OU*t$Hd7=1l9BM{75%!K=ChL z;Bu(Ocs+%{5PC;=OggX;sV+;gZzC$GD*4E1(s}2NdP4Ih_Cl?xOCbeTf zyEVR8jXdHiPgY97`5{ogOe^+Lz)^pW=mCBMfVg2;xJc#mxHyGdw@x8CX7~o!&*&f^ z>0fa1ICU9>>kMP<^Ycc_KEVwLtLQwmKwPcl1MN7*;1>V`orhcCB^)7+?IUY_z6_Ip zWGpSYOifMi2)s}*|9DYH#}|6iJl)Vdl7tJ{<+iGtzT!kVsHgQ!O_%emL9_n?Ol%sC zm(nS}y}&50Sc2THXVr!*x>^(PE$%nYnaJw;Vv+r--8*n#$A6`%=`k#&N)T+bzjW^0 z1EAxcQ&S6Uyb8Al^)xT@Yv{MIt&ri(jFf%){5iC#xw!!fteLEnx*z*uz*GOcwyv%b z#7_5<$qGdw%V06TlCPfx^gT*S$`LRF1>M_A*08x*mh--|DK-Wy-EBQRQ=2*Xa&mHD z`ez1r_40?N3d+Z0%nK)Wud!dBwEP#VMxxF|3YWm$&-!6**HWj|kGv%O;o@_*6SnCG zArN*-N{SbhI{yL=R@QnL*gLrp@#)ir@QuJHPh72=J8p4|1t5&DqN-}eMBwqDqL4Qk z8RsijzY)XUu=v*J`LJqdLIM-?m>!D*2noHKd-v|WHfy1ejEy}Q{c+U)m4H151hB-u z!;>w*4Yd!00j41cN`pv>Mvs4-J|FAP&dxppgao+JW>P-X8^P5=@iVI5RV7T7$|Q%! zul%f#MpD=BzYT~j;D^g)euMj%#dQdPB|+T-;o908f*Wo}10!Q%LSbWpnIU1Y?|TLg z-zFv|ret8?1w=#SH8ZpSx6{A|{1RZ-(eCe;;QIb&fph21EduV@`3bDmo-UtXHwid3 z;Zam$R3H0`W%n8xyXOx_Z`B;Hi=lJZzHE($QOL zb8>uu&F)ya$-v>{%>ND#{LZ}w)@Z;>*@OJ%+vx)DlV4zdJjQgbB{0vG@2vQ^2v~lc z-I<%1=;-3&_8RQ+8W? zakcU8!*l0=CRKs6G^c@kGZd7RfXn4S0b3$o!2Ptq`5<8Wv-_8uva&cZBt+!Dt6$)% zl35(pzWJc+26X+j!*PqHS6<47i5~Ndma^9U@#C-gc_JDT^$G>*%R5dibZ$=p_AD>m zx}^o&o%`YFiq(ru(}7oo0ZSwA`1tvszX4}0PXJFjQmd`41s($R==4X^!snJ}PoJKA z@StP*%I=Ooz~1I0;AyrKTGb!Lodce|J-h2|)kWqH_cqvxk&=un|NUv12P)9XX<^jW zyG97EwFK@P0v5R+uZG7brlcIHoIPjGm+%%*VDaa6@YBkIhHqmWNff*|jzstG7Ja^ZVUyMJ4mQIcBrpvtRdk{rTsAR_}+g z%S~ScJ;mRBlxgzG7GO(P#-f0sxVYGEUX-=2CGgmrkMDNBSJKtxP1`I9tPgK&PUrvk z^SS(e{&kM-?(L`d?|gj|xVB)z{Q32l4S^>N3iP-s1NXiMhKE1@yi@Z7*fYEr!a)@u zLp87ny?6?o45bdlF@L!V%u;2u9wCd{l5v_wDadC}KScBk1{tgFE zc%!23Fp;f@Hts2KO;5~Y7O222+y9VB71s0+{K-qCRkQyyhR2o~E32qK0u7jXy85}S Ib4q9e088?;BLDyZ literal 0 HcmV?d00001 diff --git a/docs/source/_rst/tutorial3/tutorial_files/tutorial_14_0.png b/docs/source/_rst/tutorial3/tutorial_files/tutorial_14_0.png deleted file mode 100644 index 798d7b964f3d33f9673d62592cd8b2ec7a462777..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 21246 zcmagGc{tQx{5P!nN~O@Ay+VqRJ-bpgWH)3PlB~lBgOH_!7E8ufWZ#!T82eIW$-d2u zZAh}sSPEkw?(^~e{_gv_pXa%*=a0EepUyd-v%J^W`*r56j+WY~6Kp5w=;%(t9^BKT zqdQVVM|a5j*irCAKy*I<{EoY==fabCVSjar)m4gq>Y&MMh5?3ju>1fA+xGjgF4-Ec7`<7ytPZ9i1K$cJGeC z^UsSU&yNOpTI=7QPbH;w#cTEFZoGPvcKN}V7LwL(b$~6 zWTDuA6Bm?qqOZO>7b&1oG};lpx?^P%x9FHCC%)sSz}(aQ*=M%f^L8|CL1u%)3VR;R zfR66%_i6N@gKuThjl$5E%abe~2TzWN6f;5(9^8J7fc`2sURgK{eK`}}I)7N!gjk4J z{QB}pqHww{A0MB(hK5`9$uc_M3l?)ln|J-2FK!F&_1gXo+IuIm7Uvc#jHo7>jABtf zjUl9$M;IJ_VEDA+`f{q=W*tV#?6u-vUP$Tr#Yj8o%_e!jYMd9(Y*XDB4!~5wk znx!0JV0wUAs@pIR#y}%MX&X#QRdPk2t!}2;06YRSsONzHqams zE;o4j#uz$_I1-WJ3yHZFi9S!?TX=3w$5HBcmIelM^{E{edwLC9UC!tpg^jsxx#htu z&4k~pTj)PO@4)&Io}|p3*S=VP7{ngnXBC@D1Yl61qX@YZzLDeiuCHk%p z$4eq(uRZ*jQZeCY+7!a8^WNQFzp7O7@_I5ojt?+UGeP39=zP3VUu70+_ zxfAvj0#*9RP7{*0`Fh7z}>^wHOM zLu9dyJ#CN<2E@X&v_Y^6N-HN{L(v;1uYy$+IK@#-9ELP1kF-1x7Qc* zf%Gm8m$uI9$v$*-b;V-Cm_mx#kEjbA#z*{5vs!bY6)T^Gd9rSW$sCO~5Gy%Q?8UdB zp~DikL*Zb*dOco~F0mB2ob{?ow(o>y*lP$qIYxLC_UXR|HU~|rs4R>Ikn|`gfE6is z*>{Hit6|Urm9deCrGHgYif5sP?!WKr_lLp`UC9zX0(Gmoy3i6p_um)?|9CvtYljL- zjy$k5(4L(vt7!)ptjkq75rV!&ssDjf59dQm_o_)b6-Li^6$1 zD66Lj>IXf)e0IwOrySF2U1|I8vqP4|J1wuL3YA<3P!5=c{}#k_tcJ<;ez3=pZ-3fQ z@jXov2dZbs@EXDJDX*A4Po_lU;OGO&uP(^8q0idA!JzxYWOtwsN#+wXq+I$(U?-9(CFrdd-L5F4Y0uop9Ty z6%LX!r+nVw>Qc<&l5Z(%i;Seb=h`mb-i->`=!HieCBObwg}1D#ZSlCD>?GJ5%~O4U zBM=%w8Hl264mpXGhyR#=A;+Y4D}Z;Ne0CN6ZAj6iE?vi~%HE{XvM6cid44_4CN6lR zv-kX22J)*fz7B{e`a)=kfMQBco{vXwrYLe>kuG zuMdUWdp}gDBP)yEyMbNRwCNb=gDd>udmw6G6>7rsYLwv>CzIQ0SFmkLId@3?zw_c} z%~VQ=SZ5BRws?bon%@Rqml}Tdz#BnttseNu@Hj1GJSNn;klt@=W{$SWZMNuvx9GY+S=_%KjK1`L?+(9zyBt zt6SUsh28$4A-Fb@Jxbkvx48Y+D0sg8t(Q71Pw5O~1nAzrjs&tww(p$u@i6U}l{sgw zw%$Hi`4Yhko48$=EH&X(zUSV2`_z1Fp;E(El~#jo(hPQVpuF*5*)69%IMH@&ZqJ`q z;4tzb)h>jtD7;XU5oPlRkGI{rkp5byva+-8iclan{+>{ex_CAMPAf$(kOWw>U((vQZXD`X^n4| zs5J4z607%8_3`ZiqAFz-abI?Id6`n=M#vRo$@5%d)L6y2Xv6X;kgW-@1I7dBZK;yo zv*56zWDqD4qM-50AjBbh-T7pe@><6L?5K_K+(1Tf40s2Dm` zT32*cTW_vyyl*8JOMF<1NYn^?OWfMOBui zg8166wYR6ZN@L*(&=GxS0Al7K{B?{_oDjL-gue?vHJ_N6wqJv~Tep6Gi(Vl2SXqY; zG^Vl|WTWPEzB(a?oSdf^rpcJ89lV3w{$7ym`i9%uJRz|A+<_nKx;Nym)AfS#_DiuK z%-oZv#5KM5p}WC9^$7l8pj99h25xMnf=8Q{qEktqg`tVinFIl|s?W37@~dqrm&a#r zYFT#9)%NpH8|77?Mh4>JEh7pwaBrJTiJ^Lw(U%1}QB>oHP}*xRCb!y7R47M?jGgPkK(G2)EU$I3_fzxsVYuF6pDm27UjZ?Y z%|v)(&I$(lvbVK&jW$EYd(#FMt7j9e@JiD7$OAo2xu)vDd9K5h8J;V%J;pD0-?`_b zKwQV%?@5ISzGQd#q%Piz-NLu@V>mwgz~rouBwu)~aIlw>*3?Y(x}>h%eYvYKM~cW`JW%1%I_@k}*ehR;i?B`3r?kcu?& zk}6l8(|&!9^xl78CreA(^0t}|w~Iaoy@2}NrjgA1#Fug1ze(fH%)Yf`& zEjh+^^pY>*8hOQu6Mi6(gLlE3us$B_k9KbuqI(_^;wO?)^RJz9{EO7)8doVrB^5;0 ziMy}5b-3?z2*OX>jhD?h)7&DtKG&o+FCRoS&~BWl5tR+AQdh^+5ENR3`UC~<_n6Dw z8OT0GDCPFgea~&2f#`aK-3mOlvz9GQEGH{KVuMD3uFXw~HH*zt9`gk8V9Ga*h`w35 z_vrOH#{*BZKr za!3z*3zwjz-DmFyrlDoMvEs^Roa=NbL@khCgJZitwVkVGQzGoYV1=OlK9k)6HTpnz zX&8(NW@_JlnzXj*84mI&@SN`W)xyR?(V6^~kN#{{=8`R+m(U7MaG#fXmE?C!F8zO& zWZmz1W_LhMKhUMc7Ke&Puv&SrTPfxb_yvp3xLI|2TXi~VBAQHg-r?3wU=xvRT}(Hn z1sp_lrXR72PVZ?%rsXF6=>n?vYw1qjT(j5=90+9pwEgc`;%pH+S4G<@>nv7cUAz zIha`Q!!@H9sSQvL=|5NcZwA^S!=H%m*F!E=RxfH5wT!9t6WDrI`NEuk?JjG`!u4WB zZQkJ4Q-ifi2#QzdPs7-xQJ)i~oJ@8MM!VZ-ckH_pFd3Fj;k{+Yk8l)Tm)do9thzS# zSF3K_)#%+er;Ju$jm%C&+gO#``F#H@9q#{k_WDjit0&RP?)Wd&ka#R^!vqJ8&BXc;R`GXBx7o~zVeXQ};GtI8+oRq9-qDztel$)A~OwlLfH=i^5G9w82It4H!h z&w3yo$Q4tcBFb}8I=SnfKn=fhW;ZQ8fvJRvdbNDyg%mkHsB=NvnHn^s~WwOp!+S^RH!p zVtd&=b!~w#s6+6z-@X^d{vjQmtk!(~P~v_>koQcw(20Lk`b1d343rI+X8f<(@Y+7`ELk!-E6HAknMm zMIFu|`$!CA6riXg1a2*>>VeGn>RI|aCPD3jVLih|RgIEAW*bXu5(35~d^d74w}Bc5 zRiL3hy}2M!`DbH+U?{%eP14*Kxj)`9(^Y&pWy5d!RL)XlOB| zIPW2Gkld80tFdueYo&7Sy_+i8!YFhg{FPXu+r;6z+M5kW1pfhzSvr7`%75p=brGRE z5Y)Pc^;>ZGc5Yc;b*;A`fgfp*e6#EMo_^PJzbcTUaq2=x5^zbi(e={Cg46;-_DQ@w zkIw@Pllc3pBy-~%+dYy~?yEOcs1w@d^J6;~?C|Tam~zg5PRa$q+Y4b_j@RI-%v2S% zHzRD3SA^bu{VR6$8_1G>VWTsgXKwF*#sil^vkQ`*S_S9;1*{Ed1QXH0u`kWz3D>-mBt?bA=wGYs2 zc$pdtn@$dVWOqk5I0|iT<+f{SIuI!{SvzZM_$l}K%{}ku33|46V*D0hV@;VOT z2=ypzov@%_$Gl$r_qM`P;e=btJ!azO3>vg;GL2EvnZ%W?aUe`g;3X~WOT+Hnn|G?b z7h7QDsKm7Vq(=o{=c|6K3I-aov(g_0(|N*XNwi!jWoO@>$smIbkz9O(f;N3E-$+S6 z#X)9Hmdji>6$HK6uKu^$4?+w(Vdw-{;R0{Cg-RGQ$Emmqp6Emb3TGpbPnsXp$LN4V`Md;KP}2G(QA4J)iKp|JIh zF7M5dPi-gQsHQg5&8p4Kz3mNrD^goGNZ9XbWUS-3g>Qj_>#D!faMrXbv#cIB=o66T z^;tNjH2+;CO4?GI@Q`B+u5IpKTj=HbwtlZSr24TVH@%9XB!inu>_Iwz`GP2bcZR&L zOL3A!Orb5*d(OLo)2<-OaveJZWp@FOKs@>g-r_DACS!Ao@+sA}D6#ja=)cIple3o6 zssJDw)w=XKKmXb^9x0N0vY7rfm+M-H?f z%KA`);Fyn7%_%7RQ{~G-g>PIB;wk`=P;RCF883X}ix}{&-boYv7Y|EeJ?OFHJ_Ym0 ztN6CAT`$ivtqz8wlK|20EuJM}82=4(&%nit@_$~gFh{Fau|fYCb_F0Esvc8n>UvF< zMi{N#0Uwjn^jq%^!fCsc;8a>3pe~YFMB-1>V9+xY6GSUUsT<$-plmoG{edwPBXG*- z^LB+TS)#ojJ^D|C89 z#@nw$!v2#kVt^if&Z@Ht)6FUN^vyt~#0~kdPd*+~_g#++d~A?*DlU{2)z*9NlO`w3 zf$b?jKNq`iT9{m0c2~q7Q#9f49vzJCdE-$9#!}9XDOPz$7$IVDL~Cnn8H9S&kgasR zgha_slz4DHP*$*Oc&GI3r}iL6M7IW|<80I-yLWeXwpSC7a6{HmoBtWcQri5I)v+3v z?-Y;u87ros5oVNJRi9g!X!UQPup1%z?&BX7y&o?fP2Aep+I~K;XBQ1Y?`Q`AHGL(h z{N)p&^jaj058nt;P?9EP*EEQ#?pN8=z9NtlB3|S`&`M^^%kY~3M5mh@Jdg*o;9_>| zG3-LoTa{{ZS3>sO%JCy>-x(6zTNIX&KWtRJAdw3P(f&tKOsnQl7{Akep+vG;gN%Q4 zQVr@=K|%fBKOxmV>$4zCTr|222Brf__$WnSudKDc?d;KMau^u2(Q2Dq?@6RknEfDE zG3sXtHN+gN2^V*ul|8zhUU&4@fG-!xz3-C3vw6{x+9Ctni5le|zun9NYYQlgPQild zS|yV<2gXagd)P=C&U=qb!dX9HM=i{AA$Wp5b8p=jT3AXHBwvlF7owcE&P;%qS{os0 zt|W(iJ&vd`wI%J;D{ieQ*EBGLroF}>qLsQlkjdj?D~mY#B%s3@y%>GRdvg0Mh!24M z;zs>D5?w;%v6-}VOR z=<2%cqQFh(RspEzkm?Y<$z)bk$lQE>tLG54RIko^bF`IgG#frx>+XXl00Hk8!j495 zlsW}f&n}9fSKX4!++x7|lozfp9LC-Pv9qj;9g)eG*($W~b9DB_qU7rpqjT)cBK=LP zQf1FgN|nxyH&u-FnAd|&bMnV(ltbAEL`=n<;|m7V)_Xaf3-D{%ak)9QTltb9cPF3K zzM$MukZ@K}i-A&+@8=qYSs28k>b!sUTdl2@s@ZkNBV_lv8F45h-BNS*JW-b23K@!Q z&Rx*>ayg5~%iETreUecO^Gd`}BTFyk*?p^2^Bwe#rNza9NDt#72yaZJx4ig99OTs? zBjhKyjen}1AJ$$=AR7JPcHH$Fi{IEh3WF4Sju*_9gBY)zd;G^KX~4= zkxX)IzMeV_*}PsD^wMefnzar$HFCX1ivujYd6H3(>1th4@88!iWChEmWVMCB8BdL`ua)GncTZGM1SV%X$7&h_ES+3mO6!g zYmM2^3=Q;7_vUv{L>^17**e<+(|+W@v-C~5RMXKd@`w-Tw-(83d3KuQw_ZRwxMt1( zL=`|l7n{joEdg`tLy-tzQ(8W%oj7sgvoQUe_`IFxMTwt@zr9{wmR<%P@bVYF|Jz>% z>Ea&Jr-Q;l$&fWVY9h{j+`ODm5RqVw9e5 zWVlG4w%$4sRB!|iwvukKbqW;4(kRiBBx;2-7naAzxnDYh!jH@ZK3LpnsW;G#h-_I+ zCMQ)i^fGI4<`r>~)P&<)s-J?+Db1IL>197XEizS%FqQr+aSvEZa_pqOI>yvOsl3Q$ zLJYpYNqA(P?JYUArR_c$$ZaYZ2-NH1SIJn&xL@`COy)NLNW_TGvV|i&QYUfnq55V zwtcZp;aF#DUc*?a!Y4m+V=;I{uoxuU-EuFpGxkuU$J z{V#VMt*90RF4(^`>Uc!fJQ?QYZEsw!RgEm>9 zd`?|;Q*{7tNJ6pb{nB$QYnmTR9@KV8}WsgxKHicJcnz zK6UPxF=D0X{`Qae$>hiO)-?@~*z}q~ja@vIhp=K!k38$Bfj8n6or=v($~Ck1+>=1; z8g_un{X7PC?`@@KYY+ma4s)eIkOh@p+aUR~0cm&4)pz!9^GJ0=naTt-XwG{ei&qPo zI6#X3bopVOylLtx|e$0abj}}o%An)#6bg)+RSp{d4G9@VpV%!p*Z?0HTn=sLt*M!7Kn2RkaNzXUd3Yk=duV$&+5}z&Wob)M@sCxCn+R=e$m769cOFL79o&BTV!YChNg= z9Ir7_5Q}4=e3pXu161U98?rD4?My-%BWE>6Ccchxh}hTRJkoLHdi`#g?g~O-86io3 zmblc0GcP4*MWgNAly3GK*R3|?LSEssunGWtNG_AQP>yxJq@Qo!ECceqjVoDdj`


rU@!}>xBI) zuhdVtY}F}Y)mhi_F@&$n;rC|{>O`D7_sswDtxD5sV01d>#qu;c`r*#B$L|Ug#2)Nd zY-%K~6TRX~y^YdmO@ju64~ocL_|L_ZNOWih0~Tk+7xN&`QyYt0@4>Y5DO{hIM>@GM zlI`Y9hg79!%Lv^#!uV4xtq`}qr`qjBGVwte8X7XT)3FHMfT3t>1*f-{H?G~_mxMts z9ktsdwkTMb<365{yx3cfnDp1$ll9>glm&2kigEl|k5#^DQ>4;6d4Ju>Kc??RZAvn9 zF?)jZMnVNV7J3bAJv-_n5c}dsjg@TN{{l-md z^3EqSD08rrq%}mel5ktjAkkA_YD&fd`uA@fLaYIA3Ta;XRc{J|MI#aXcqANpqW_wrD0AQW!QVQlvB3= z%8CBIE@r%JBPm%T2qP-hJ%p?r?2==LcT1-|)FPEOO0pUZ`o(*Yosu#P2 z%d^6k3s9wuH-KbuOKetfSXub;5Vtre>5Ry zUkoapp(8uczJbE<6EnRdJZUj6b)t&qK@`WX#g?|EqzF@zCuEEImby>WSlB`5%bc`x zucLx%A;kfiKXPKI?cOvE?9a1ffPV1AM1`j&gs}z=TyY;setYkJtNrTu8HKG$o4R6N zi=vwoh3PxilgQ1 zICsnGF=z-<>uh7^f7i^CbMKpi5^T9z6>g}lcd2gq#W#UIFb7=_pR)|eyQ?CU_Gzr~ zx2{*{tO!=I5V}EhjH$eUfzx7)8RZD>~*tQ4$SOZIG$?DaiY$@2#)Pg19@d-pfo0;rk?M z+a2aKnlN~&6Kgj!hy-&fV}?#j+RM(UZohe)sj6I56$+tuQ_QfV@C>yX=Rt99r#}7n z<#S`{-t#{Er}{t)YvR5be>P4f_Ml4N_Z?K_MVE8)Th*q0!{;JXYlPX-H~d{o3gabo zN{yEL=lv6kK)!TOaD};i)4N>t>nTx)y2Jtpv;<{Ng;ER^0z!NSg6IA+OHtkiC9Dzh z5b^S5`5-!a(=zLxD_vK8<$%I)I|M)$cK5VQFi>Ig!nj8XO3tm4uyFmLFnOQZH)lg} z0)hNpUN{@)h>!Kn#P|5`{yO2iW5Int-4U$z4R~=#OymNds?UJ@hUKS7&vNE2GIXG) zr{24F`!Y%(r^Am{oCi^dAQ|UA=-UeV@3dS!}xgz3<9$*sOaZn4e^IgDJJ%B+eJEo&Wwzg`IR z*jHg$59M%-{O(PVdZY+Ji#fz}(XhsLbB$`X<1jFO2IRNI?nYOdd$%l1&jDk~f3h9_ zI~5@b0>M-AogS+H9TgqtSI>{dH9rYa6#8GU^cob$Yb}=jzo@Me7yIOpo*G3(hUP>G zD3Bfqb|-Gu3ahVk`3+X`_*PR>O7!d4K4=^R^Zf#XLORZr)MB6E*L&N2^G#(9871E$ zCkhOTwAhDLvcndxz_wj2a%T!hu^WUXg1_Rn9;lBNl<`(%ouU*DL@cD*H&qJ?Hjhpw zXBMt5TU>{Y07=mGcLrxN19EI-hChE%eYPhsP`bElsI2F zOp&Oy4esV5Y1ne(H3DU?Zvt`tE(Yj;XgaITNo@yymFjHdgAKH1veYAx8&O*T1;?$K ziKJkgxRi93seYCNuVEX8GW~-ilv_c#9OuCa{LY-`pF=YHUBYiHe2OU$SRe9E)90Z$mOZMP+My+V5%2NG~_%6C7sH#puw}s(_p$-;LiiJvOGN&f65`JnYzrXRQ&x` z-Dq1~J(79aS>5adreJ4GeM|J8V(}KU1#Z>A9tB(g)H7v%f}Gra;zO`8#zK1|vW^<1Mn{o7$^x0a#!bvhO<9i3kCBIYFX{Aj%L8TgC z7U%+)K#&u_1m$*;E)R^dJM3@(qngjnk8oalu4STkF5h0M=7a#0hD`W625bv8vh3I>5jhzs&>0T+W%H&pH+{@4MfinAnJhhj^dw2h|JJEYTnY2+j^T}@vY_ZjjEz+@pBWy7ltLs}5z2GiQQP_wx zkQy@AnQ^Y@0S@i68t^C*8d?q*b-|9b74uVJhmHPu1%UYnkmmp&on%La6k|b8b&z7D zL+l3NB|x-f)XKb&R$$;(ou2mo8_z-4>c%bg&{n1#5}T`LQ?vl7!H%W$Oz*M4PR z+h1RE>Kb~c2z{Vr1xiy0nHyu}K#DE^spy^<{b*6&!Ydw*QuCgWCCRd0^C1jJIdA$a8+fCiT=5-dty`yraLR>h@7; zl-S7ua7YFs!cb9l0Ly^0oAMJHsVtJ+l~TL>t(>QX;P7p`P8MjGD)tav;u%QR1Ylfo z1AK!~3+_k|cZG3B=O;)SoPU{O`1|5q3@9vqieO8sH_Pmt_)0c)5nwqv&o5Hg+mY-z zU{UWEEzCyjnFp+#H`PNsTJ&@*7sKb17tzNvn%g!TJeD`l@=Wc{pjK!`lN1NPsZYvDiYoYO@0hxe^&Z)v^045}d6384Vh)8s38@KDJiGFNDHKbe(7m-+VGQm!2*l9)i$533}!j8J1*m^=ZzA&12gi zKLC8k=)_-ek34DA1@FA`9`{G+>CjrB>PfbNA$hF{3XenQg>ySiObybV-rziZ6ZMln ztTDs(3s=1>GIsb9uidcde`3{%Ji#y_M>d-hKrRBv#tVabZ^jIE$;+q3AaR@M6~;B8 zt5Z08!5Q!NzJlPeQ5{yDxicsvZcGw?K~9>~2PDdB+j~j2!O5PQ8$T!>9={B7RO_t) z6}H#-02mo@F@=Iyfk8J&yCVz=rpA;hv<0qo>uMyW&6Q*5GhDC^KyN<>^4$bm&y z{CZ%r6DB?(jXd9|kB}BoYw@BsSsD8hI;;N{mL9k%UIi5iI|l(bO(QL~9Nr2Inwvg+ zlG*;i4#q&$!}28&JP>;*rWvP%MpkEB%e6Hu*`ChGvxqxKUB=|qBlIA~C}3s+#jV(A z&C3LYu;O}pQ%<>N(OMCPCCPHxmlgH^S; zEli8FM~SFSd3RMZ11Oe!ud$ln<6aXAcFhi&2st(juw*66e5!-j+jI=yRTxWlnN+EOrZR&pv&Nz< zp{vZj55IlD^8pU!h89}^hz}tT%KLgIbU_P)P7R-Q5%S9I;<-$6@F0NL#?~YI@_2mApD8E^e&ilR*J&D>ed;ii*!`m1osO>;BW8J$to;)vg`&GIWO@r(B9g zjeoh_F+g`$x^d`S9K+h*8JfweW2)iawxCwr5xV1(P^#cllQEh}o^MiexI7mQe-8g$ z%IAbxD-)gBAdDnSmxecEf>pEbI!B?uWH?K%0+_CB#8l~H+8}R*SX6?v>&Q4rLD)dK z2q08M2j-xH^7~nLi$>uEkXu9F+59DWP}^~|lY5eu{2Z=?a7r8W#psl_?O z0UohN!m_*^8+SH|UhaoN&0j?l2i+504MQuGdS1r+0vtQ z*{oLhXzeCDB1osNm)z1bD$bd|+!94D=6U3uq6<)^wyib)uKy++r`sT$OD6Kc`I(n> zNn9t5r@61=s}ap6HR(FU; zu{cJG{6_vunlly`C*iVa?C|u<4LUm6cde67uT0t(#n?V1WF4xqmvwr|>}#O{d5L$e ziUhTUbvcB2O$mWqyK~_-Le;=PlX#7CSb67d(f;HiIy;7}mXbGIMk+|&mN-zmVD{e` zy4Lfyb^h!0p3dEHL+S6_ZyNRv1w4XWDq5D&S)pqCi*&cD2YXavd`5C2e)F)Y_1{y@8(dRQXba47XTGB z1AA*_K!1uc_{RWuyV&u$J_nN7DPl@W6#%R;7h)(uP94#h--hpqSc7C!fGbaDKzQql zq!4U4vQ_Al7@)yM?#bFBjx08VG<1q*=x^I#QYF2wZf)Kas=thOjGGe?NmF zA;IQ+P-y}~XYRuiolVu z37_~VGCZR5se8{u!wASJY&Z6ZWAM`a_v=b9)6~i`Yv8}pG)^ptPxlC)KQQ5 z;*?Q6RGjWc=+iKAROV{LQaWokXKEDy@&F?>^#>6}?H4S_{vT1Qdd~WVjar|3_hQxQ>C=as-XP|~kY7-%H8-nTvA{{! zvpMC$xU8@FM1T4Pw<(d{m26J$d|FhZS4+mkW=L3!*2j#LRZN~XO9)6{0sd&me4#7x z@tO(d?iE3!SHe}akWcy4g;rC@Ir5*1i1@@aX9mJKI^If7`nL**GPNviko7%9V%SrGjgH0k#pPAS(5CydV< z9W{6~V|3?}MUeHO^RXe^%Obgh<7p?L2m#18u*m}}So#qQz0_bE{T+E>_l`e57R5&T zzrP#60KnCwZT2l+BHzMxVCw4;f&8pIZebjn@ynz0$AZheEZzbd&9mxrWoMzgipL%2 zd$i$kWxOEYjah!kk;AVzH1_ig#7hK85~q1!hjpX=$EZ5;=$~o}>g&6P4C;coircjn zf0BN=E(+xhCj9~d%T1zSM+NsfTjJG)qi1<8bA~IuRLbT*<8kEp8INU9^4!BcjvC+p z0RxT&KkwQLZZ&~(DIU8tY?CAD=Q|#GDwwpa#d)x6>OvZgEd=E<`d1S#?Q-`W*qIk7Cx zQMTSYrStqL?9XakPJMrpHgzbR9i zI}pe#g9uNDw&Jo4+*+`R@@HqMB^_kjn&7$^pc$vF{4o?h|MJ7q3oEDhh4U_~Rc6;X zp7KOsaVLzyU6&8#D81g13lS~gj?-}Nq(X41epEE@0fy=r*MX=(KB3)wq&KEIlRw`y zSR0sw`Z0?sKj#{4lx_xZ1(JJIa* zpkVuog6*XmsY7P9QFZ^+lL(mThlocVEi7p;BXSz_1YG7#cbH02K%E zGK?Ka1};dfx?mvCan@nyN`r)r*tssa9Cf(7QPpAtT$R~g($}E=hPPI%^L#JxmCV{y z?=Nh01rBly?@N36{RDjPc0+QlKt6waqootz-T;~~1t5pptv;0LRo?MA3k1Z!SgFo} zhmfSf<%vlJaTDKU$FfUS(KD;pyJn#{P*%3&4oKGmjc>}|%iEfg=RJCrXYsG%T@u$BM@8_e2fRx1v|~=YQ^x8myn7Wly$}Nq3fz5y z;xmCulWP=Ao<)*)|GZe51K={%l`qm$N6*0078yC0d1~MrI^rcA5Q6l^vgJ~<*Emu% zxi#}`pc^EuW-|6E5T^{p^iF>^Pxag!un?A2&xHx?lnT)Q@fmdTya{3RKt z2o!78!{0rTym5lNL$fY7nkj|#%QAdFuuq+z^O4K<9$W8nPk=iH**R&N#8CI+;w9`` zY;RV5KCCiF!_;eonoI(rV`EWK+^2oQ8LozTwp^N)_`*U2uS1DQvYiE>GPT?|pIi&jmS5uHSe(eftw*YYveG2r?^t z@#G6{V<8}3fgO_htLR%LyliRswjMC4$T$#>k(1{20ix9J%LQE2jjoHs`_d&M&(tye zE0VkN*p|JoTyYwPhJ@gY3%TALWrpYXK7gA9F*{AERb$+GAaW~d4|vypMD`Kc=#KFw zaXoMv!lUS|{mvVe-7ND%zVNTBl(687d3)YN2h#_xa29|0LPRI*_c z2k|1^S6xPDIph1&;A+gA&QjBBlE6fw*aJYwoR20m&(_n&Z%o-kyuHV5?U#Tw$Kv|;`qg9LN8x&`I9;Iczuvg{+~uF=adbxl_}GtC{bmh0lvy%of7AK=!Bx{Xko51_DoFc>OM9+lqT zel6>e$bOl5l=PX$zFcuHxZ=i8`gJTuF?r|fXjgz1-#QbXApPXiFLyz}C@h>;1YERf z<{>g&a*ml~KkD*RsCEKax#LWRgR*bSD-ovuG8QNE8eiiKr4z*rHtJV{UO0^nNL|32 zg$lBiP?z=#PE=zC#RZM0j{eSZ)_UjKkAch_>7u!%ENQkcKBhy``qy(lpZr%&&$)lj z2yeoTZk>720W^c*F1W#%lOtbCMq3(#avtOm;E$Gw01F48x?Sr57GCMz!0M8*x+3KJjtj)+exik6XumhX zlX95b=wY%x{@+I}T-oazdHC^ILFvL;!m-uktF( zCsj^8;8aW6rcU_lOuzgyRnq=5mA-;^Sl0iESqn!zVNn4+;R^0mAD|<3?GOLntM^7K z^k`8D)!FXOE56Q5N@E~$wD3Ec(Big-XADeOm z$1V^kaFbD_1peqkj^B&o!6HP^^oXfhF4gB9GrNbyBTUiDs$A$2@Mv9k_!+y$xW#tm zoIY%Z>=7ttr;{D~2$1)k8u4Fbb3CE?*Xx%iHKjU6n(c1Y(H?Pt;?p#tXgJ~Ybi0Tb zfY0xMldtf`&k=xLDwL$TJ7-FGp>92;0?IkHW*>|CvpN3j1Zlg!z4CYskZ*-so+@?g z`N?Jl{Dtz0WZ%<*2jcwZT{jCl^UvJukvJ|2nw8V$c~9ukQ4yK?WKh~uQ>m7IAs<_b zIJndVZlwFI-KEuqPIWn(BX5^A>^GZ(%ta@n^Y_sR{_4t;H7y@cV^Fb!@P0YM2m_}u zM2Vg|N7i~@M-82nwFK;%wXQrIoq_zNVL`xw1-}nqzgMk*$$)-(0C*%e62At3Jq7`! zXT6sKpc;Xj%yWvlz}e^4 z(`gS@0CMtqnc*#>##BMv*^iM|*IvKQQ-UzSPYK&AX7c+)|Mmz{Lr<6%X|FP}(Lw>V z(!9}chxLTG1h7~M3yg^C-h0A`1#YGb+-ro%s`aCgi#f8b-5=IGVJKLH33AzSL6$Hg zi7AwBspO@VN&*lN5NNA1WH&~&lBI@H)kjeGicb12eyj%!Qa|_6pD260Qej>GmptS!ffwOsoDh5iBO;T&)OE47wO2vHYh_aWMN**DGc3Gbzkpc|kl1sCIHkc-`E z*DPxCQ)&l<4cx&FV{w>wJlb`U7ViE9x8VI~t4?r1%+;zBhY|jOHcUizNw=JI{OJ^a zP!Q0?0Mgw5t_YmMQ{yv;p`zk^wCp99|G8_@HVH}spu%gTUe+5Of37}GURnsIBx6-6 zwJ6l*yG-CJ^;uhS315nGyt>24??VE7=z++(%&1^bBH-NHlM1gU?p17s)q8-<4*l1K zhMpyczkAaBCDnLiK~>c}PMz)QydQE=O)|n1X>qINHw^GDS6>0%C0C|Xp(3W7@H|Px z{>549!zgrWqkg`vBpO^Rb%zy2uuCtETo{Bn-6_ZaS0m>h)x?#@aja)+r6?XDX$*o^ zf{IY+NKhakN_h<_k1Zk+UJJnojBw--P>2Cv_#!N30ErI}bs&_7sY+C&kV<8UNZrU%T9@IyHD-n2RgI>%6-&V)9$4>7q#^crwAOYU9>Z)Og zGFaUY#PKU6rlDZ-WRV?m-Z~50+?V|f5-{KbfzCxRcsCn_vJ}Zj_r7v!xsJu4Po41E z5SOBk8^nyX!}V*_;UskTYa-ycs&Uu5VKUK+1<@>4Cw@Sb1taF*9mnsq$<)QhllCQja*?pUxMj zQHjja@P(5D9KJ*#Zd0NpUvUpfD)N&`v;?}|LNv6pJ)@E_hjSibU;H{2bb=2yD!{RrWcR>9`jojTXleh| zzz6j%d`MGu(#Fe3Kz?^Iq}BTK0dKsL+y042>gpVm#>Y%OH{*v|8(y*;xx#+h_-RO+ zBhnedg&Xk%3vLV(ug#zGU>%t`6OD@_*UVD0LG_rR6@Ho1O69h5aj^y$cP7=#?iL84 zHad5Q@830u5bBz-FWqK6{kB9QKW!(3Kom&mb@9z{t-3N(o%#yIcSNY?T+5$10|5y$ z4b-MbOL&!-2z3BlH1GBXe`EiNE3%B^*kUy0l;LqQ`t$~|wAc{zqG3&&!#N&?IWatz z=_9>+e?W=ugF!j1*X8Ui6^9k2q~%V6Ubo@mEochL?BK8h(8y;qT5)8I(AkECo-;1!$@pu z5#+6ha6>WgHs*&gRk4tQR%n}e2Frm_*=;35r8( z_y`h&dK+66XY$GtN9~)}bm=x$QkA?`cB@WyM4|FQCw#3`u}hH`uS*!yfuLaA6E$@T z{Pg3|I)kWQhL2DATf`rSc9&x}&@E{9_ngKrj2Fej8f!^cK}VzCv)TP#&gvm)A9D`y z_p2=R1bDyMGzDPZ{R~aTn4)zl{1-y~kE`!A*%1^G}bpbCYFP{V^x50 z86JD1i!I@|lJHQE#BD&f1z1QUNY_7n2pcO!Fo#xG@FV9z3 zei(F3zA`}w7aN>l`M#n3p!<^VKWglFSkf)U$D56VO^*R(e@yPNQ71xOV*Nwo8dZq- z`+F>9kf$4hV&g*SBBhz~Qv$bL1@3fMGj<51R*}we!^&*Ev=0RCKtk<7aO7BtO`!QS z#gwD=d+)|fzrCAv^#NJ*Ok+eRnT~uMkkeXr-+0z&Or>~dC9wI-2{(Y&gI#<0ClQvfV^Lx!GRql!f}qz=xi@<$Yn;`NoA7@Lp-f{(x3Sdvmm{xg zWp^TxNe;4T!_??4kYIJVI8Ia<%BZ7GQ)-%vnD=Rg^!IoEX`b5)fn^<= zH?e+WPlJNy^r^D9r1#(wH!-9&f$s#kb#fv(gUhBV+*%pXj%ey+3#|wEFW7Et-^^M} zQ;v}?GZ7KULR@TN(^N5LTv8B$gu6yjTdZ>j&ebbvx7?M#gu({`vYyh?WGw?mF$|bc zhv8x!W#)v(YW;^u^5-wZu7L%cA&6BviB`QyF5*?Rcpj{f#|ve@SaaL+&~vs^le4EW zKSo8~%$XIqc#lnBVRsL$&`}?rq>&#{QDQPT`8?zM4lGkgTTiDqGA?7TBFjW-1R|Bl zFZG7x0Jxy%NrNGL-^P=>NvRZ&q|gAAO@8^KHRJE1CfVRmg1K&X!K0XTO4~+)l;Rn| MK0)5sz5aIe-#Cg&asU7T diff --git a/docs/source/_rst/tutorial5/tutorial.rst b/docs/source/_rst/tutorial5/tutorial.rst new file mode 100644 index 0000000..e80c62f --- /dev/null +++ b/docs/source/_rst/tutorial5/tutorial.rst @@ -0,0 +1,252 @@ +Tutorial 5: Fourier Neural Operator Learning +============================================ + +In this tutorial we are going to solve the Darcy flow 2d problem, +presented in `Fourier Neural Operator for Parametric Partial +Differential Equation `__. +First of all we import the modules needed for the tutorial. Importing +``scipy`` is needed for input output operation, run +``pip install scipy`` for installing it. + +.. code:: ipython3 + + + from scipy import io + import torch + from pina.model import FNO, FeedForward # let's import some models + from pina import Condition + from pina import LabelTensor + from pina.solvers import SupervisedSolver + from pina.trainer import Trainer + from pina.problem import AbstractProblem + import matplotlib.pyplot as plt + +Data Generation +--------------- + +We will focus on solving the a specfic PDE, the **Darcy Flow** equation. +The Darcy PDE is a second order, elliptic PDE with the following form: + +.. math:: + + + -\nabla\cdot(k(x, y)\nabla u(x, y)) = f(x) \quad (x, y) \in D. + +Specifically, :math:`u` is the flow pressure, :math:`k` is the +permeability field and :math:`f` is the forcing function. The Darcy flow +can parameterize a variety of systems including flow through porous +media, elastic materials and heat conduction. Here you will define the +domain as a 2D unit square Dirichlet boundary conditions. The dataset is +taken from the authors original reference. + +.. code:: ipython3 + + # download the dataset + data = io.loadmat("Data_Darcy.mat") + + # extract data + k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1) + u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1) + k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1) + u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1) + x = torch.tensor(data['x'], dtype=torch.float)[0] + y = torch.tensor(data['y'], dtype=torch.float)[0] + +Let’s visualize some data + +.. code:: ipython3 + + plt.subplot(1, 2, 1) + plt.title('permeability') + plt.imshow(k_train.squeeze(-1)[0]) + plt.subplot(1, 2, 2) + plt.title('field solution') + plt.imshow(u_train.squeeze(-1)[0]) + plt.show() + + + +.. image:: tutorial_files/tutorial_6_0.png + + +We now create the neural operator class. It is a very simple class, +inheriting from ``AbstractProblem``. + +.. code:: ipython3 + + class NeuralOperatorSolver(AbstractProblem): + input_variables = ['u_0'] + output_variables = ['u'] + conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables), + output_points=LabelTensor(u_train, input_variables))} + + # make problem + problem = NeuralOperatorSolver() + +Solving the problem with a FeedForward Neural Network +----------------------------------------------------- + +We will first solve the problem using a Feedforward neural network. We +will use the ``SupervisedSolver`` for solving the problem, since we are +training using supervised learning. + +.. code:: ipython3 + + # make model + model=FeedForward(input_dimensions=1, output_dimensions=1) + + + # make solver + solver = SupervisedSolver(problem=problem, model=model) + + # make the trainer and train + trainer = Trainer(solver=solver, max_epochs=100) + trainer.train() + + + +.. parsed-literal:: + + GPU available: False, used: False + TPU available: False, using: 0 TPU cores + IPU available: False, using: 0 IPUs + HPU available: False, using: 0 HPUs + + | Name | Type | Params + ---------------------------------------- + 0 | _loss | MSELoss | 0 + 1 | _neural_net | Network | 481 + ---------------------------------------- + 481 Trainable params + 0 Non-trainable params + 481 Total params + 0.002 Total estimated model params size (MB) + + +.. parsed-literal:: + + Epoch 99: : 1it [00:00, 15.95it/s, v_num=85, mean_loss=0.105] + +.. parsed-literal:: + + `Trainer.fit` stopped: `max_epochs=100` reached. + + +.. parsed-literal:: + + Epoch 99: : 1it [00:00, 15.53it/s, v_num=85, mean_loss=0.105] + + +The final loss is pretty high… We can calculate the error by importing +``LpLoss``. + +.. code:: ipython3 + + from pina.loss import LpLoss + + # make the metric + metric_err = LpLoss(relative=True) + + + err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100 + print(f'Final error training {err:.2f}%') + + err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100 + print(f'Final error testing {err:.2f}%') + + +.. parsed-literal:: + + Final error training 56.06% + Final error testing 55.95% + + +Solving the problem with a Fuorier Neural Operator (FNO) +-------------------------------------------------------- + +We will now move to solve the problem using a FNO. Since we are learning +operator this approach is better suited, as we shall see. + +.. code:: ipython3 + + # make model + lifting_net = torch.nn.Linear(1, 24) + projecting_net = torch.nn.Linear(24, 1) + model = FNO(lifting_net=lifting_net, + projecting_net=projecting_net, + n_modes=16, + dimensions=2, + inner_size=24, + padding=11) + + + # make solver + solver = SupervisedSolver(problem=problem, model=model) + + # make the trainer and train + trainer = Trainer(solver=solver, max_epochs=20) + trainer.train() + + + +.. parsed-literal:: + + GPU available: False, used: False + TPU available: False, using: 0 TPU cores + IPU available: False, using: 0 IPUs + HPU available: False, using: 0 HPUs + + | Name | Type | Params + ---------------------------------------- + 0 | _loss | MSELoss | 0 + 1 | _neural_net | Network | 591 K + ---------------------------------------- + 591 K Trainable params + 0 Non-trainable params + 591 K Total params + 2.364 Total estimated model params size (MB) + + +.. parsed-literal:: + + Epoch 19: : 1it [00:02, 2.65s/it, v_num=84, mean_loss=0.0294] + +.. parsed-literal:: + + `Trainer.fit` stopped: `max_epochs=20` reached. + + +.. parsed-literal:: + + Epoch 19: : 1it [00:02, 2.67s/it, v_num=84, mean_loss=0.0294] + + +We can clearly see that with 1/3 of the total epochs the loss is lower. +Let’s see in testing.. Notice that the number of parameters is way +higher than a ``FeedForward`` network. We suggest to use GPU or TPU for +a speed up in training. + +.. code:: ipython3 + + err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100 + print(f'Final error training {err:.2f}%') + + err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100 + print(f'Final error testing {err:.2f}%') + + +.. parsed-literal:: + + Final error training 26.05% + Final error testing 25.58% + + +As we can see the loss is way lower! + +What’s next? +------------ + +We have made a very simple example on how to use the ``FNO`` for +learning neural operator. Currently in **PINA** we implement 1D/2D/3D +cases. We suggest to extend the tutorial using more complex problems and +train for longer, to see the full potential of neural operators. diff --git a/docs/source/_rst/tutorial5/tutorial_files/tutorial_6_0.png b/docs/source/_rst/tutorial5/tutorial_files/tutorial_6_0.png new file mode 100644 index 0000000000000000000000000000000000000000..fec83e2c20352675a80410dd35fe20a419bc6386 GIT binary patch literal 15473 zcmb`ubzGF~x;8u(AdM2zr6>(j3J6G8NJ~hEL3g*3qJ$zLDJUhK149XjAc!C}G}6)~ zF)+Y;j*rh?>)XGz*Sq%b{r*5jhKc*WuH!uFdZwy;lZ23t5P?9D+`c8RjzApeK_HH? z6X3!BP<+u%gTJmiE9f|D*gbM~GjV)~P%?40x3+V(wlHOJedy?9VP`AEC&nkp!(#62 zZ0{t_&u{Zz58$(Ne9S*gNDu-~a@zjZeJ2Eh%mnv!EL%Fu0)dbiyDfkHo_o^rsF$m+7vdZZ;bWqS~I>lJRloLpqY$X&(zY*QT9PE$Rnz zU%pjGFJ-B`s!i2CD@#C5K|w(q{{?-5g^i7EBk&Xv?t3O8YWVK5BsGt`y!-=q9-Yw8 z(AG7bB6#r2iDF|`_+gV-gDm_oxaDaO{E#^E6p@SG{rmU3gh^szVwlYEN$3K9{c=Wc z`Rs3B?-5=aMs}9-T)V~?fJd^h_v8%i*T<yvI>8`?}qHNsU?fKcP3oA>m z60=|51e8ARoNT5s`ebytK|{=Nr3>A3`Mq8J0X4ia1H+}R=F@9ih)}+usg}s52Md)_ zep`LoX^W^uPct)it$f{62<&+U-*<1{A}*?=e9A4X3sZPbT@@>RxI5+k>-$ZgE0?D* z+rxInmVI1zQzWbU#BQzDAJy66xzNJ3U=k4(O}`n*RL689ONWO#Qt-)>CvnE-9fBrcMR~}he*{*6gyRWIz%oi?PuoaBHsPg&e_jeAzeyZI~x?#NAR+xv8(u@H8NRf{`)Y=x7g}{o#Y< z=GE-HykC{eG)zt1v8hL-M)&Rowzl3veEgu9`__U^SV>Mxi(1rfj995>4KtUD)NK*! zlsr*7_=4GYH?66KZ6gR)#oYwq(+Gjb-x$mjX7{#>YRz;WY~0ZMkemB5C51G%FDx{a z;C)6$8VaRrndDl{n5&iF*p((n!NBl>yP)zo+`X2uTCdSbDeRh@w$!uG(2wwm)(ia( z+NbvPwr7YABvq!Tr;WcQT}AkFYGhVA%CxI|vSDm;ggY_fHtrJ|7A9+NFL36}nWBg7 z)X4bMxo&Mkk5h8N#7~+{8%V@P{5z%g?=E1f^ox_W&pOS0Ykqq@ASyXIyeWiiDkILY zvC3&~ZOE$d7$U`Y&w|IOjsf?WbcN@tYHCl)t<> za&2cMAUpdK+Ge=ICZOX{)2i=|MA9`c>Rj!@&m&b%4x1ffX5)1}?$a-CMx~}k;+|)) zMf75wAEwHe6yDhcd@Psh@d}$^0gsIbzZTJ}>CB0(dcK>9<8O`Xecfl@JYM?|KsFgnZ)-nX z&;S0Fn6EOylQ%+-C#NE%Kim23>*@P!^|{X_yTRM#5c!su$MfLvW3%t+3g^UZ87!@= z9Hv_-7$jVYkt2>o2zVwbnLBp~CnqPPVq${eDw!=0l~>MZCfY9z6e}~!NIOi*OYZ&% zaG%eJTN^NooLI;$#6zI#X~g{wB{@`5USP4_JO(Jr0DQ8~!*=!Iu(s}LYfq(xFgZT= zJJ>?2X={g!V`s$xLvWWl*=_6@Y}u6Y?TVYK$O^}qJI7>399kG{+m8;$j|>pxM&9c| zm$pR?x_2D~5o8z+O+vqWkhuUkf=C9v+@wu^BEl zMvnOOLx7i-DLJTj|h#F+G{Q6;pJ7rL6}Qzdb%uvoLjrVS|p{n z_Z|g3J$I6FmepXfS<6X8vB&1D*1G(S?;B%&`^(7DSmcrl@4b!BLHpmnB}<$_6nk!2 zqA!Ouv2xsvXDN?7fBt+ZT&LQmctNwzp>;m{VIMwlp-cGdc4g!5augdk97mUQB#IFs z(u<0^%JXUu_8KME0rHS-XL&i463)ZdG^*}V2OV6BQB+^~*GHw#-oHOjK}W|0_cn-J zdZrt8s4Oh&eyVCKG~Y29?7^zvs(m&8W9;o#6`uPgpO*J<3m@@uWwaVT0qIXv1nj2t zl9FzhXAu#fVVkdizsX!RiZ(4ao@flRk%C?9WL&OmfIfTn>@md7h*RY7>iDx~&x!`E z3sP@vuZ%ulSg?GbnTZN-uoh((6#Q;O%*x7Ia3m%ol2%f3rhd1XAAx9zVAL3LwYy(r zd`vl2YFTszmOAVC^C#U#UEpQF`CD-UmPN!zL!>cW-%<-uAnvGjNEUM3_g=u)3M7mCm9 zO}@3YHBj$YuZOMi*zC&H=0|UxKFfhX)Eyn}D+>Lv4V6BPd6p&@f-+#f{D9yt$Jwy3 zFyqT_SOU$ddL|nSnfJFA(JRLup1>ovuO3sc`L#M;-!U`yE%^jOd$I~Mn>eg*=k8v) zc=Wh4r5V6?Z8p&kMM`e1rlHZZP{(Lf4LhuzH}u)F2Ha+LS-1yRT5QbygwW$}@;W;4 zzd!X=hsi+ovE3?|Cu|%Xcxh>Aw(S5Hd|Lx5lItfQeM@>~(iCj+>*x1)DIf8b+8x7B zEiKjk<70aTb$gcBDdr;?Ik^*_+e@5V?gkUnU!u>6JDca0Qt0{0TGBc_Cvvh-T(xy}6W4Q%4hReD_P7og>ko;J zuyfK5d%rA3oI0-=`dOzdUKg=*&UkkAVmeIpYS-n){nh$N>4SL{_w{C)Vuz_4NR8s^ zgr50dLn!`f&d2IjJUZA<@Nfb5HDmM^APZcv>j8N1X5|Q;Gz8$A4HTJ3(T+#4${`TI zYMRR|dWOO!+*TMIot$u-AWx^bvAm|XFj&vl%5GSqNn@fEHk9NMc5`=s{3v2)%!>>_ z3GWOt*TA4ttGl4sm! zCwb9zfq|)M@?w9X(WK`1A^}>^Nj|aSFh3n0l`7M zF>+XM)KE?B*pDm~Mw$qxjs%hAg6elRt1n{5gqD-TXqlNKcX!>f^D2IgW~Kul77 zcv|h8IqXJUhi&YyFuuzJ%o@4TFtqF=ev)upQM(x+)|Ym0~Y^y!oF*LcB!l84WS z4>4P4qp5?P@fI88X#d1s2r=!`6ZoW+yk0Xg+PXeX-Ri$ulOlYEZIEesdBnp=J2zgZ zD-1f-uDr5xat2w^JO+yHh6M2hDE=YvO& z(zCM(N*{H|>gb#!BqCb>Cb9Yh#$`*%!}c2Sy0tZX>w%(UaD(^@s#nBuGz)IjB|g5- zaIK#w+M-Sa50i6uzrvxM6xx@o-DHb=hZ}}R2RmvyI_}?xeT#vi2{=yQvL3HvYziik zgK;eA`OEwT)3qTg+#*0bwWJ2LrV`U$o=)HV{DM}r}c+hg*qtb9PZhwxfD5=maksDvWHt+rEFE9n{TtNgQ)_V zI)SV|;9Ws2^5J&eTeJ|&1)xm)XLuYDi9-K(Ihtbm0<(9G|LQKX=z z=J4EFxDd-{!1XOvdX;(~UR>z~v$P=)Ne$fBi*tgq0QT|>(!L{9LNGc7Eqk-IB6}RU z#$a>KRn*jKoYzynfL$u>)NQ_a@gh-f9~Tf!+@6s4^h8~8oDSul?ak3J1)2g{Lly?7 zAkanF-Sb*mY#*%mo0Ix^0?F~om?+I!BB-ukziyL4cwbkS3kK3TQEQ#txfiXW4^*sd zS);{k_v8gA&#GAC|mh11_Z0dBCR4KMgmu~4hb%^9wl-KHW$?s?B z^+XD@x(BMb#R3V^%+*RuPfzd5IPp$%5PLdVBUIYkGemd3J8DoVB%e?&%*d!m0vVk@q%& zjVO7tR8nn4^aLm{H*ViPT~M=e$B0ah&<+4;r(B1(3ukS-n%vZU-MLd-F2lnQ7M&a|jmXe5qSmE4!A+wdlv zA1HO%C`K6Pu4BbA6lBW1Q;P3>nJfCi)m)>;DZS`?%j2DMUe&L>?kfxrXHv{4H-fbZ zW0!}K?Ck6(=*4X1O-=0>Vdsd({c42?j`}v1J*n>ez-iowzpVl29LPnx)eWL z!@F#O;X+d~EX6!+wq93mFeQ9>#BNsMUT7?c|7De!s~AB}&Qc$K=aizqZi6Z5E5BU) zlU$TMq(M&=w7pj-!!8?4c#sO5;tZGTIX~`|e&KM^SGTIyV`|QfgiM50^6RGW*n3s~ z?9XD0gvH7j^ziIG#mzZJLO&t;k2X@b2Kc6Ti zik8zJwMZXQ^kk{DG?7WafL%kUB854R!{9tUrGxf3xtl1u zoP{s=M!;rB7_dIOV;}x(&(ui94L!+!|q>-@XO+S-KdwcQL5#xN>gbeH^*oo9q(lM8+TW=FPK& z1Uhua`}d#Fa%}0g{#60l`wJTZw)?;4ae{Wkapzq?dwV;mVw3P1^wWcEZ*SilWbGyb)sV>%P2|d`$<#MFwXrJkonPI8Az}KBaDu?GjoKC6bv7BI+3VboC;0<#GcM=-qt}%`6nC|q8m}2?KC@@<*?bi^1A1@ z^JH(@#3&=FEcdM=34@f84-J=`_nRy_1sfxL1}?;ip=R#m{4r+_lmG6M{Vxr+xtOXz z?`GnmQN+s3{KHz{d#L`SRtfae$FwIgx6DCa!t52DEk7G}GWFUUt)Hj{b1w$k!(5mc-xMsuk`igyRQ*jQwI zM=Ne%t{$g*+UF`3t#tT>NGhvKd6X_)nA9m|+Dlj4OG$h(yyjS0ss#4Uoqcaa7uDWJ zuhP-Ff+U-1bFTdDW6iGnggu_|lv;VadZBHvS?}o1JhQ3w7ib9; zQu8Rr@-(20{KCb?y-S-aLFDu36d^!~HN3waT?E2i{>F{TnK&a`At@oDvmzoQ1&X(C zKNAa9k(c_BUvo^rjojt2;r?y&`Rk|?fWxq*i=w8#)CyBClJQqHQTm}*^S}IF+#?{LGW&7YTd|H z5PZ0C2BhZKLLU*}dNXK4LC5LV0wyL3TJk@u_BnZq%Hj~xE_HZ|#>krj92Qe;GMG!J zaSJri=``$y|L&yEZS`a0)Kx7q-t@UFw`ZxTghhxq z(L;j_4KM$pD|ZQb*X86A-ru?d)b?32t0rESFBhrLjPi=noy@(fm%baPE7mT}-k7&m z8zhaKy$I}kf$%@`|Nm!P!+sE{?-Kcmn(J?9;oj%UN3Oi~-gn99-+DsG+kK&;T`3BS zQo61@Kk$P|G{Zzb_zSX&`HUeaqXb*oJqw27Cw<+;Bq#-O@M4pkt?%o^JM$pSJz=kD zq>0q$T=ykBiRd~$-5r=&I&&11M5r{SX{tH2I~=5&faL!5!VQ4Tg-e;@2XEWxj1pl! zhH9h!PPNZ98JjNI9Fh7)l#+Fa3Ltea>z}m4z_17eH-r|*_D~9T@tRJYvk1z7<;sWL8@t}J{FzD8ojfNer*gG!A7_E%*c-5M z>bk={D?8%wP~tF{^Wu{+PcN{rAijV9UZ4nSekl9^?37So-BS}G%%A(TjlwUcdY?fX zxH0zU>&=CyQM|k^Xh*Jgvqrrr>59Yg;^N}a=g*r)-NwT~Xt{~ z22*LMRs}!{Jh@Rm`QBO&2|L7BM)}eE0KZ_JLAcV8a?PvAqzR9bn%cB6@HEhSE1^1& z*lKEOw(TH4RJFAFSIl77G+CCT_zw1WR=aIj(iIogr%7-;NMdp0DI^i6oMyjX2Nw*; zS237pIO`Rld7-4G_3Kx8C8h91pgG+S7dg@uSO5OSP0y)HFx80ZMTs#OjLjGmWD6S` zj>v}~kU}FOY~7NnpP!azgbHtNTACyRyR`!B4FdXuk@zPzo(5YFpF zHzvWWUfv2D%-lUxeXEUbZ9ZM@k?H#_&Z8;OIfzE>;Wy^QZf|MJ&HA5&>!b$03|yPc z2j^CkJ*@6>lwU0r4m!}%Zms6JYH;b>h4+_LUJ|If8{Dn4i5Q0w3wgod#Pa_3vQ@b? z7_RX`kCp##X!VcW?|K`G${e)Lg)qJE z_Z-df$kO!clqug{{2r@2KT!ErXrnl6bwpJo+u8bEc3gyr)rL)7vT}JR{xL!gS#y+Z z;;L~uqYUy3i9F3l53{qj@|!AY-_MzAZ&Wiz>+aC|RX2Jb`&iIzYm^pVZ<*_3S3awq z(Vbv4!;J{ax}Vc`7`eXDnJmC9*_mKxbk?`&zeSn<*N+72?6P?mi+Mu-LdkNRtUsi~MII1R_N@4T58;5_bwImxv~*a6 z{_Hke`Ag)Sp{1R7J&-<}k`{Q-N)9Pm&gi~*Lh#R@KMR-$DO}iL5BE|OR?H#?tp`vp z+?Ow37ROF&7#T%Ejv$M6(FZ#lXWt2c+2T5tn3(u|WMm0tsJCyn?`CqiKKU#|H@~(* zfU_)B%luhh_r^Fy`t}#KjNI~TI)^r@c4X>wH{WSU)u~OKwxA@rGvz;ao>6y#_+>;s za2c%IK(Fq5d`@SS*x<}~&yYv?Jk{Onj`>(6S;U5lQwX2SO4Q6RhRGW=8}+C~!ul== zD%0gKpHWR+j0Dx0aJVCO>Wo3^HL~=6F|=oU^)_=qeJESsSvDy&^!b%6;Raa>9T@A& zpNW~J7!pNo8Vd}ni(D49fQ#W$;w}tZK7D| zBTVP5+qbWSMNuty`}S=eF#2&a=XNxQ33&gw;0s)?krkiILPB7WPoZAFe(i3yD?g39 zq|U5`2j`tPrf++%HQ)~vn}u{A9RCML89n#B`S^2%i5*I|1yN9R*}R7P!4EfQJAMu$ z`EBbDTr>8sCM$bGk_=w^dUtDRYwKT+;>6h~vmJ>qA-D5K?C?8K^XT}0{dyO@buq>L zIK)s=kOX+)vM`__WXdU$&%nm>Ff*5bV2r!ZOoiCkA^C^Tyt; z%_5A|-)!7`=*bg3G)Kv+Q}8{3ql_<6u{E1A(;9RN)uVJZ50%`nJMY9pA`1khqvW*D zg|wY~9JU_D|NM-ShE8=G2Uotf1K-sk1O1uR#Dyy;x_Xm;T}Jp9pXlGQm^tlyOhD&V za`GQ*=d$oGRa9yJe4AHd`?$!v_FPw<=%Z+ZG-^%rsc|09OW{)z*Y1c{R9w{&-yZHd zm*Ef?Kclx9Cl++Og<5kvHi9HuGg0}Yb+q49PR-4mjwft4OTPc?XOqdN*6!&V}X>&Gph6HkTP8H zrxkj{A}UIqkZA%DkS&skwaB!Y5X?aqNU?e{m6{;8kSuUJ*xNcMY)%eV>dW}}P%tv@ zxxji-{Yo$2d%x|JBBV9A(A)Q5Pt?w+)>FjLbN&KEniQ$t8>b=0c?K?&ut>Rd_~Q2R zFgV~(Vz{*@VME-ybxX$4@iGjCcjABB3OqBv34qGAElQZMqYI*}CviSj3$q^sE@1*v zVCc0hk|gDW>bv+M)oUV%rpSHWlt;gk90u*D&*Ajn-`ym$9xA)-;x7L{=Jy*k@FZ3= zF=2&ejdOR683lF3*6qDEQO8%TgTCr{UvT?MQWWbY$n}yHt~_?KtQBZQNKi zsB3BAAwt6(rG?IOakaS&2XS$8PdJOmtVDxllH0d{!sTd0H&o>7?EmYx+Dilf2^V%f zZ^`$P-~^13fo>7V#S@6O_V&@(xVX4#+iF!HYsR99F)L=pI^;}DE3T~REA#3ze^^oX z(}!z68i2>#z6<&pZw(!PJ`06CEG48 zE`oWyiZayE39YG-{IxPl54qpRRlg%I$*o=u$ki@^26{2m9>)%g0D=t1(Z?X+;;(s$ zf=(htw6?a&=<3oH)E|1jpcf;x>d(6l_nMkde*nXKo-GxKYWg==NVqrwSBNNh{NMos z(cRr06&)QQjh!IF`Ad+(M1m;7ksPn>rR(-J0i<-Tb(Y1Q}s}!*M_juB_GR2sh@kL_NlCuZ%qFvo9c4y1HzcZi0eHa zG7pE5v{&u2Rg-;Wa)Rm_X~vXeVt4P1DdFYBk3q&= zYvg3i-TEc@xVMuw-T3OeZMyACF@7tuD(%wDtkS)l;Z67447t9giA@EhyJY9&%!{@J zmrX}F9nplW33Tq8J*hRcIJiKHnVY~5@uo1Gh)P{uNP3qAG9{_By^}_3E-LjX_cI4G z5yHh4v+J3N4N2bP==5XvUBP-_TqG7}jw<4*W~qt9v$n4nx6lTStOt0n{QPase4D~B znKAtT?I~qR#zjdBpoKZd8YG;o;wfjH1x2{OUFhXG>IMKeax)Il4Y$gP^;=m=+c0wt z%&v8D!K@73aq@(YPkgW*p_qFLv2;!rF6P=65|AKJ6CW?hb&={t9Xn1%~ro}*&Q`Vwr z^=QORCXbUiIfetSfdL(yJpp;dihc6$7Fx&hWz$atGvTakW;kJhTm5u&bWu@J{t&Ap zQTfHi6hI7`HfGu#mIeeNZadKu$=t%|HZtK*`|d`#tc69+;>LOlb1v!MicPVqM+4F~ zkTgRz9hT*$kn!2JgE$KTk2Vd4G;CONKbB+1VE1b=l2W*w_zh}?(!m*EFePNdm`ZP| zJbO_Y2jdP74wd^W)oS|sBepnq=`W!+E&X4DC%3jNF(F|M0wxv_5h{pfmp@Eb0UurS2v=r}kk|!^Wa(;H9#Y$n4tSZ!AI7la?yw!qHg8;|K!l*M3uj zUTxBDp8mR4hb++}PILCo9TAgY>wqKmb21x@#k7jf4`s7%3xrdu=Fi9wD2)t}dhcwI z)zKPK)Cl1q_ZW+7EN_Tvnyto*29{lM0Di4g!7X50Tk7Q)yo+d{ji|Ude8eRl9(hAUrm*MFO_0Ou?M8=ZZbmTRDilAQ#nrU5g2DEI zS%enPR89_aS?sSW;Mc1l26=oFf?Qm5Gg$h#33@0ZBITQUx8$W-YOc#CXJDhdUb5d5 zc-TgX-g@zZ7=gp;l9H0Oai|?3{Gp0dIlB5TQmPSL%wq_6gHW+^9(7&l<%C{K`iBpM zFpJMg`%02BOT7RY+V|(Jt3BqV;eksMOuo#lHS*nt7YZc6^Pn2?p@}8kHV|hsJpY$Y z(;w~DnVXN{7wLEu@@PXp;2C-IXEo94Mixq48bt>4fyUlE0X&3kMv!BG_oyYQ>Y^V1 z@fmPdT%Hfs`zH*j&rK@3nOg*yoZp@GLuI+Kk?A?A%cM=6~p0-#pg2SGi z%BRx=Tmmv~q}5ii4fc=T;jR0^4@+I!ren2h#wp}ZUco>Dvn$3u+Q65-&oo2M?}c02 z>hlCSlls2Fgj68X*>Zmv=D&ih;bl-aUBUoM&{Bw8G^qEzh6fedA3u!Gb8t-ds7Pxv z{_(tBVjUa0ySn@X15f4|)z^*2gDLc`tgP3?19BR1{ki{yn+4cvsH;c4dev?6qS^Gi zvvb)maU=JMQ#^(>=ZI+dP9kum59}#EQJbMa=$zei36*~!@E2ZP4SopK0Gzl9CS#7k zXL3hChjIDy&~E}p3EXSnLY3oercz=s#6&=AW@jJu_V=RQX|lY zUL??Mao-+%T^Vba>#wJ3b-`Tpn|jz8zT0HL3-30Uj@$x3IpV4&-TnNL$d%^ zz=ej7LA$fTOGtfHqsuT;um?xA z-`>!dT)F%zL!g|=3Tw5JRDa@TGYow?!S>FH6Oes0E~X2tlC#NX$aRPYZ5=1bQFZU2 zN)f+VG~}c`KE8?7NBsC{Tz8gzj)dw%>e}4|td)82ojk0sxz@P=v7B!grtiJUx@Ez~ zTJ9jjYPi{rmEnlN_#)x~8(c9vA(_e|sPz+q@iQM{s&^$4paKHY*qXo_NXOGPncevcFTq%QRf zw^OwtRNV}vw!H&%57CP=o7ZK+v2|4U*z0?AKlE+b-iq<|j#S5-_6oQ&WGB)^eN(M? z?wm=B)Y7Xq`hTme|D6u~gUl*bBK0qy$p{6?le|=h^fa|2RP@cS{yUV?Ke4# zf)v0cZgq->f$&=Du|k*6eU##aC;ZJ{t>%5#MzI=5QuBHe0RzWSjXoz zVy?*-uxIt;4Q$lVZ_ILl{~|_ckk(wHYSU5JWjj89&%9$*wVg3RE^V|4qpN03#(;29?f?B{cH8V@IpmSXrnRl(uw6HNu@mi^JMZbxO z>ErVK6iU%XFDL)`)9+cSUnDFn%)-ig4B8`ho7<4?A=?3Mpj!^@rUFv5gk|p~7Ih(0$UYx=f4S-`7eox1XA!+AWYLYA z7nfWyRN6@~qlD7vV6TFYyvtp{m zhIey;Vo?n(=jPEMl2G0?Jvl|TF*@1hvuH~7c%bh2q`2@(_GNbt-^_Ui58I5&2n;yD|m_28rwcY@i8xvuzxM7yj+%Z(25# zKuS2`volISy0WVm`5&^hb5ax-f8^ibxqLAVSEO!UpK2-g*>|1UzacMg3{}9^&Q7~c zSDcTwfL?_2Bx7Ic5l;AOZnNcfI)~8O#MRxvWKgZM113gDNC?gfs`vKFEUa|2dL5 z5*Rr9<;&{-FfJ0vrKD7Hh+qshT9&iT_iIW?=ik@3s&My-7CM`f-?GLDl{uDug_J+J zKkpP*NsJX^Xtvp*5v{sZ4C*r(WbcPz}KQ??g^; z{{y~gzBNa9W^Bb>@x0Y?_~YjVM!ktBKi|%QKEvmPdhyQI51mxz2b?-KI!_^zY;ex4 zRn&O>@>W>YJLN+sALC>!XV-O+jpA4*OTSF7d#!WbQ6-z*#k1-dQBuT@D_a5o8G!w^ z289M);sfUb442a^@ih}7S~47Ivz441H%RicB*_yiH|C;s2F9&e0^>2JIH-r#5|GirGp` z+ORpHq>K@SfFVmSMhDR~(~?JoaaokjpDMVWwrSSBcu7uUNh^n_Z@a)Tu+a%WXa^5L z5R}@4V zn)wDr6TNFjIgSq9gmVt698%)^R2IWG7W+E6E5dDFt$tj#Rv#dv>VDFbS)p>367@hL zNvXS7R=eGV^jSR(DfS$Dv=}zsI45_%nDOx9(LS>j)9G@ydj4#+_J%Qy#f$;lyn+H! ztz2v`d0p=-2|PpX>ES2j2D1+~f;mt*Oj`^T_0ECG8kLmv0*ugIPjds)-fT5oLEAv;aM#R;EJx#?j0lhY zg}&VNZbg2Rsn6lN)6ptjrH@t4U%dD(=Zjt`w=1v8Fg^lqlbe^)xcgMN;uYEBSZO=N zVT?q)7++}(E4CN9tDjz7P}D~!D`$a0LInsf#h{6Xi<$w5y0#@ygXfPsj-!uuF`$98 zc@j#*PQ1AV1=Q5f6>6XgB6ZGWPQTJemH=`J4ygRkN3VCOV6WN{OpI3rcr+bhX2f_z z6G`AO8LsfI-wp>A{*Zr+{R0D>zJ`}o0H(cCw{HumyzhC-Py;X;2qzNV19%8WGVBah z5Ccd%W?UBs81WRGu#nNzj42FpzF)<#foG4ICY>cYnufalg0Z&*xCIW zM<$H;kTnx=<3(^50sm1cE#%g=&;rEO0GHoEd?7D?66kp_93LWIP%sfg;N)`@| z&uF>zFzA@Di;E8}Z{_9ZH$ydGGOq9iWJ7XEDPd{?de! zQrO3jGPqJ#F~kpG;LI+X7{y{mV0rt&@}Amgqfa20)gL+orwBuDg&Q&bPJ$1E{vVFP f{u2SNIl|ZfF;8F%p&T6lMch_UmM@Sse)@j^mw8QN literal 0 HcmV?d00001 diff --git a/docs/source/index.rst b/docs/source/index.rst index 174d5ba..12ed5ba 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -56,6 +56,7 @@ solve problems in a continuous and nonlinear settings. :py:class:`pina.pinn.PINN Poisson problem <_rst/tutorial2/tutorial.rst> Wave equation <_rst/tutorial3/tutorial.rst> Continuous Convolutional Filter <_rst/tutorial4/tutorial.rst> + Fourier Neural Operator <_rst/tutorial5/tutorial.rst> .. ........................................................................................ diff --git a/pina/callbacks/__init__.py b/pina/callbacks/__init__.py index 6d052f1..e0beae9 100644 --- a/pina/callbacks/__init__.py +++ b/pina/callbacks/__init__.py @@ -1,7 +1,9 @@ __all__ = [ 'SwitchOptimizer', 'R3Refinement', + 'MetricTracker' ] from .optimizer_callbacks import SwitchOptimizer -from .adaptive_refinment_callbacks import R3Refinement \ No newline at end of file +from .adaptive_refinment_callbacks import R3Refinement +from .processing_callbacks import MetricTracker \ No newline at end of file diff --git a/pina/callbacks/processing_callbacks.py b/pina/callbacks/processing_callbacks.py new file mode 100644 index 0000000..c382c6c --- /dev/null +++ b/pina/callbacks/processing_callbacks.py @@ -0,0 +1,25 @@ +'''PINA Callbacks Implementations''' + +from lightning.pytorch.callbacks import Callback +import torch +import copy + + +class MetricTracker(Callback): + """ + PINA implementation of a Lightining Callback to track relevant + metrics during training. + """ + def __init__(self): + self._collection = [] + + def on_train_epoch_end(self, trainer, __): + self._collection.append(copy.deepcopy(trainer.logged_metrics)) # track them + + @property + def metrics(self): + common_keys = set.intersection(*map(set, self._collection)) + v = {k: torch.stack([dic[k] for dic in self._collection]) for k in common_keys} + return v + + \ No newline at end of file diff --git a/pina/label_tensor.py b/pina/label_tensor.py index c469995..d6f57e3 100644 --- a/pina/label_tensor.py +++ b/pina/label_tensor.py @@ -63,7 +63,7 @@ class LabelTensor(torch.Tensor): if isinstance(labels, str): labels = [labels] - if len(labels) != x.shape[1]: + if len(labels) != x.shape[-1]: raise ValueError( 'the tensor has not the same number of columns of ' 'the passed labels.' diff --git a/pina/model/fno.py b/pina/model/fno.py index d90c380..9e70066 100644 --- a/pina/model/fno.py +++ b/pina/model/fno.py @@ -94,7 +94,9 @@ class FNO(torch.nn.Module): # 4. Build the FNO network tmp_layers = layers.copy() - out_feats = lifting_net(torch.rand(10, dimensions)).shape[-1] + first_parameter = next(lifting_net.parameters()) + input_shape = first_parameter.size() + out_feats = lifting_net(torch.rand(size=input_shape)).shape[-1] tmp_layers.insert(0, out_feats) self._layers = [] diff --git a/pina/plotter.py b/pina/plotter.py index fd22d06..e67b388 100644 --- a/pina/plotter.py +++ b/pina/plotter.py @@ -1,6 +1,7 @@ """ Module for plotting. """ import matplotlib.pyplot as plt import torch +from pina.callbacks import MetricTracker from pina import LabelTensor @@ -129,12 +130,12 @@ class Plotter: *grids, pred_output.cpu().detach(), **kwargs) fig.colorbar(cb, ax=ax) - def plot(self, solver, components=None, fixed_variables={}, method='contourf', + def plot(self, trainer, components=None, fixed_variables={}, method='contourf', res=256, filename=None, **kwargs): """ Plot sample of SolverInterface output. - :param SolverInterface solver: the SolverInterface object. + :param Trainer trainer: the Trainer object. :param list(str) components: the output variable to plot. If None, all the output variables of the problem are selected. Default value is None. @@ -149,6 +150,7 @@ class Plotter: :param str filename: the file name to save the plot. If None, the plot is shown using the setted matplotlib frontend. Default is None. """ + solver = trainer.solver if components is None: components = [solver.problem.output_variables] v = [ @@ -186,25 +188,38 @@ class Plotter: else: plt.show() - # TODO loss - # def plot_loss(self, solver, label=None, log_scale=True): - # """ - # Plot the loss function values during traininig. + def plot_loss(self, trainer, metric=None, label=None, log_scale=True): + """ + Plot the loss function values during traininig. - # :param SolverInterface solver: the SolverInterface object. - # :param str label: the label to use in the legend, defaults to None. - # :param bool log_scale: If True, the y axis is in log scale. Default is - # True. - # """ + :param SolverInterface solver: the SolverInterface object. + :param str metric: the metric to use in the y axis. + :param str label: the label to use in the legend, defaults to None. + :param bool log_scale: If True, the y axis is in log scale. Default is + True. + """ - # if not label: - # label = str(solver) + # check that MetricTracker has been used + list_ = [idx for idx, s in enumerate(trainer.callbacks) if isinstance(s, MetricTracker)] + if not bool(list_): + raise FileNotFoundError('MetricTracker should be used as a callback during training to' + ' use this method.') - # epochs = list(solver.history_loss.keys()) - # loss = np.array(list(solver.history_loss.values())) - # if loss.ndim != 1: - # loss = loss[:, 0] + metrics = trainer.callbacks[list_[0]].metrics - # plt.plot(epochs, loss, label=label) - # if log_scale: - # plt.yscale('log') + if not metric: + metric = 'mean_loss' + + loss = metrics[metric] + epochs = range(len(loss)) + + if label is not None: + plt.plot(epochs, loss, label=label) + plt.legend() + else: + plt.plot(epochs, loss) + + if log_scale: + plt.yscale('log') + plt.xlabel('epoch') + plt.ylabel(metric) diff --git a/pina/solvers/__init__.py b/pina/solvers/__init__.py index c551a22..39fbc2e 100644 --- a/pina/solvers/__init__.py +++ b/pina/solvers/__init__.py @@ -5,3 +5,4 @@ __all__ = [ from .garom import GAROM from .pinn import PINN +from .supervised import SupervisedSolver diff --git a/pina/solvers/pinn.py b/pina/solvers/pinn.py index fd561fc..04d2dca 100644 --- a/pina/solvers/pinn.py +++ b/pina/solvers/pinn.py @@ -109,12 +109,14 @@ class PINN(SolverInterface): """ condition_losses = [] + condition_names = [] for condition_name, samples in batch.items(): if condition_name not in self.problem.conditions: raise RuntimeError('Something wrong happened.') + condition_names.append(condition_name) condition = self.problem.conditions[condition_name] # PINN loss: equation evaluated on location or input_points @@ -132,9 +134,9 @@ class PINN(SolverInterface): # we need to pass it as a torch tensor to make everything work total_loss = sum(condition_losses) - self.log('mean_loss', float(total_loss / len(condition_losses)), prog_bar=True, logger=False) - for condition_loss, loss in zip(self.problem.conditions, condition_losses): - self.log(condition_loss + '_loss', float(loss), prog_bar=True, logger=False) + self.log('mean_loss', float(total_loss / len(condition_losses)), prog_bar=True, logger=True) + for condition_loss, loss in zip(condition_names, condition_losses): + self.log(condition_loss + '_loss', float(loss), prog_bar=True, logger=True) return total_loss @property diff --git a/pina/solvers/supervised.py b/pina/solvers/supervised.py new file mode 100644 index 0000000..be86b6e --- /dev/null +++ b/pina/solvers/supervised.py @@ -0,0 +1,134 @@ +""" Module for SupervisedSolver """ +import torch +try: + from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0 +except ImportError: + from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0 + +from torch.optim.lr_scheduler import ConstantLR + +from .solver import SolverInterface +from ..label_tensor import LabelTensor +from ..utils import check_consistency +from ..loss import LossInterface +from torch.nn.modules.loss import _Loss + + +class SupervisedSolver(SolverInterface): + """ + SupervisedSolver solver class. This class implements a SupervisedSolver, + using a user specified ``model`` to solve a specific ``problem``. + """ + def __init__(self, + problem, + model, + extra_features=None, + loss = torch.nn.MSELoss(), + optimizer=torch.optim.Adam, + optimizer_kwargs={'lr' : 0.001}, + scheduler=ConstantLR, + scheduler_kwargs={"factor": 1, "total_iters": 0}, + ): + ''' + :param AbstractProblem problem: The formualation of the problem. + :param torch.nn.Module model: The neural network model to use. + :param torch.nn.Module loss: The loss function used as minimizer, + default torch.nn.MSELoss(). + :param torch.nn.Module extra_features: The additional input + features to use as augmented input. + :param torch.optim.Optimizer optimizer: The neural network optimizer to + use; default is `torch.optim.Adam`. + :param dict optimizer_kwargs: Optimizer constructor keyword args. + :param float lr: The learning rate; default is 0.001. + :param torch.optim.LRScheduler scheduler: Learning + rate scheduler. + :param dict scheduler_kwargs: LR scheduler constructor keyword args. + ''' + super().__init__(models=[model], + problem=problem, + optimizers=[optimizer], + optimizers_kwargs=[optimizer_kwargs], + extra_features=extra_features) + + # check consistency + check_consistency(scheduler, LRScheduler, subclass=True) + check_consistency(scheduler_kwargs, dict) + check_consistency(loss, (LossInterface, _Loss), subclass=False) + + # assign variables + self._scheduler = scheduler(self.optimizers[0], **scheduler_kwargs) + self._loss = loss + self._neural_net = self.models[0] + + + def forward(self, x): + """Forward pass implementation for the solver. + + :param torch.tensor x: Input data. + :return: Solver solution. + :rtype: torch.tensor + """ + # extract labels + x = x.extract(self.problem.input_variables) + # perform forward pass + output = self.neural_net(x).as_subclass(LabelTensor) + # set the labels + output.labels = self.problem.output_variables + return output + + def configure_optimizers(self): + """Optimizer configuration for the solver. + + :return: The optimizers and the schedulers + :rtype: tuple(list, list) + """ + return self.optimizers, [self.scheduler] + + def training_step(self, batch, batch_idx): + """Solver training step. + + :param batch: The batch element in the dataloader. + :type batch: tuple + :param batch_idx: The batch index. + :type batch_idx: int + :return: The sum of the loss functions. + :rtype: LabelTensor + """ + + for condition_name, samples in batch.items(): + + if condition_name not in self.problem.conditions: + raise RuntimeError('Something wrong happened.') + + condition = self.problem.conditions[condition_name] + + # data loss + if hasattr(condition, 'output_points'): + input_pts, output_pts = samples + loss = self.loss(self.forward(input_pts), output_pts) * condition.data_weight + else: + raise RuntimeError('Supervised solver works only in data-driven mode.') + + self.log('mean_loss', float(loss), prog_bar=True, logger=True) + return loss + + @property + def scheduler(self): + """ + Scheduler for training. + """ + return self._scheduler + + @property + def neural_net(self): + """ + Neural network for training. + """ + return self._neural_net + + @property + def loss(self): + """ + Loss for training. + """ + return self._loss \ No newline at end of file diff --git a/tutorials/README.md b/tutorials/README.md index 370eed3..9146f2b 100644 --- a/tutorials/README.md +++ b/tutorials/README.md @@ -9,5 +9,6 @@ In this folder we collect useful tutorials in order to understand the principles | Tutorial2 [[.ipynb](tutorial2/tutorial.ipynb), [.py](tutorial2/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorial2/tutorial.html)]| Poisson problem on regular domain using extra features | `SpatialProblem` | | Tutorial3 [[.ipynb](tutorial3/tutorial.ipynb), [.py](tutorial3/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorial3/tutorial.html)]| Wave problem on regular domain using custom pytorch networks. | `SpatialProblem`, `TimeDependentProblem` | | Tutorial4 [[.ipynb](tutorial4/tutorial.ipynb), [.py](tutorial4/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorial4/tutorial.html)]| Continuous Convolutional Filter usage. | `None` | +| Tutorial5 [[.ipynb](tutorial5/tutorial.ipynb), [.py](tutorial5/tutorial.py), [.html](http://mathlab.github.io/PINA/_rst/tutorial5/tutorial.html)]| Fourier Neural Operator. | `AbstractProblem` | diff --git a/tutorials/tutorial1/tutorial.ipynb b/tutorials/tutorial1/tutorial.ipynb index 2752025..6d93efe 100644 --- a/tutorials/tutorial1/tutorial.ipynb +++ b/tutorials/tutorial1/tutorial.ipynb @@ -2,42 +2,37 @@ "cells": [ { "cell_type": "markdown", + "metadata": {}, "source": [ "# Tutorial 1: Physics Informed Neural Networks on PINA" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "In this tutorial we will show the typical use case of PINA on a toy problem. Specifically, the tutorial aims to introduce the following topics:\n", + "In this tutorial we will show the typical use case of PINA on a toy problem solved by Physics Informed Problems. Specifically, the tutorial aims to introduce the following topics:\n", "\n", "* Defining a PINA Problem,\n", - "* Build a `pinn` object,\n", - "* Sample points in the domain.\n", + "* Build a `PINN` Solver,\n", "\n", - "These are the three main steps needed **before** training a Physics Informed Neural Network (PINN). We will show in detailed each step, and at the end we will solve a very simple problem with PINA." - ], - "metadata": {} + "We will show in detailed each step, and at the end we will solve a very simple problem with PINA." + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "## PINA Problem" - ], - "metadata": {} + "## Defining a Problem" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "### Initialize the Problem class" - ], - "metadata": {} - }, - { - "cell_type": "markdown", - "source": [ - "The problem definition in the PINA framework is done by building a phython `class`, inherited from one or more problem classes (`SpatialProblem`, `TimeDependentProblem`, `ParametricProblem`), depending on the nature of the problem treated. Let's see an example to better understand:\n", + "### Initialize the Problem class\n", + "The problem definition in the PINA framework is done by building a phython `class`, inherited from `AbsractProblem`. A problem is an object which explains what the solver is supposed to solve. For Physics Informed Neural Networks, a problem can be inherited from one or more problem (already implemented) classes (`SpatialProblem`, `TimeDependentProblem`, `ParametricProblem`), depending on the nature of the problem treated. \n", + "Let's see an example to better understand:\n", "#### Simple Ordinary Differential Equation\n", "Consider the following:\n", "\n", @@ -54,33 +49,28 @@ "\n", "```python\n", "from pina.problem import SpatialProblem\n", - "from pina import Span\n", + "from pina.geometry import CartesianDomain\n", "\n", "class SimpleODE(SpatialProblem):\n", " \n", " output_variables = ['u']\n", - " spatial_domain = Span({'x': [0, 1]})\n", + " spatial_domain = CartesianDomain({'x': [0, 1]})\n", "\n", " # other stuff ...\n", "```\n", "\n", - "Notice that we define `output_variables` as a list of symbols, indicating the output variables of our equation (in this case only $u$). The `spatial_domain` variable indicates where the sample points are going to be sampled in the domain, in this case $x\\in(0,1)$." - ], - "metadata": {} - }, - { - "cell_type": "markdown", - "source": [ + "Notice that we define `output_variables` as a list of symbols, indicating the output variables of our equation (in this case only $u$). The `spatial_domain` variable indicates where the sample points are going to be sampled in the domain, in this case $x\\in(0,1)$\n", + "\n", "What about if we also have a time depencency in the equation? Well in that case our `class` will inherit from both `SpatialProblem` and `TimeDependentProblem`:\n", "```python\n", "from pina.problem import SpatialProblem, TimeDependentProblem\n", - "from pina import Span\n", + "from pina.geometry import CartesianDomain\n", "\n", "class TimeSpaceODE(SpatialProblem, TimeDependentProblem):\n", " \n", " output_variables = ['u']\n", - " spatial_domain = Span({'x': [0, 1]})\n", - " temporal_domain = Span({'x': [0, 1]})\n", + " spatial_domain = CartesianDomain({'x': [0, 1]})\n", + " temporal_domain = CartesianDomain({'x': [0, 1]})\n", "\n", " # other stuff ...\n", "```\n", @@ -90,25 +80,28 @@ "* `SpatialProblem` $\\rightarrow$ spatial variable(s) presented in the differential equation\n", "* `TimeDependentProblem` $\\rightarrow$ time variable(s) presented in the differential equation\n", "* `ParametricProblem` $\\rightarrow$ parameter(s) presented in the differential equation\n" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### Write the problem class\n", "\n", "Once the problem class is initialized we need to write the differential equation in PINA language. For doing this we need to load the pina operators found in `pina.operators` module. Let's again consider the Equation (1) and try to write the PINA model class:" - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, + "metadata": {}, + "outputs": [], "source": [ "from pina.problem import SpatialProblem\n", "from pina.operators import grad\n", - "from pina import Condition, Span\n", + "from pina.geometry import CartesianDomain\n", + "from pina.equation import Equation\n", + "from pina import Condition\n", "\n", "import torch\n", "\n", @@ -116,7 +109,7 @@ "class SimpleODE(SpatialProblem):\n", "\n", " output_variables = ['u']\n", - " spatial_domain = Span({'x': [0, 1]})\n", + " spatial_domain = CartesianDomain({'x': [0, 1]})\n", "\n", " # defining the ode equation\n", " def ode_equation(input_, output_):\n", @@ -144,48 +137,48 @@ "\n", " # Conditions to hold\n", " conditions = {\n", - " 'x0': Condition(location=Span({'x': 0.}), function=initial_condition),\n", - " 'D': Condition(location=Span({'x': [0, 1]}), function=ode_equation),\n", + " 'x0': Condition(location=CartesianDomain({'x': 0.}), equation=Equation(initial_condition)),\n", + " 'D': Condition(location=CartesianDomain({'x': [0, 1]}), equation=Equation(ode_equation)),\n", " }\n", "\n", " # defining true solution\n", " def truth_solution(self, pts):\n", " return torch.exp(pts.extract(['x']))\n" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "After the defition of the Class we need to write different class methods, where each method is a function returning a residual. This functions are the ones minimized during the PINN optimization, for the different conditions. For example, in the domain $(0,1)$ the ODE equation (`ode_equation`) must be satisfied, so we write it by putting all the ODE equation on the right hand side, such that we return the zero residual. This is done for all the conditions (`ode_equation`, `initial_condition`). \n", + "After the defition of the Class we need to write different class methods, where each method is a function returning a residual. This functions are the ones minimized during the PINN optimization, for the different conditions. For example, in the domain $(0,1)$ the ODE equation (`ode_equation`) must be satisfied, so we write it by putting all the ODE equation on the right hand side, such that we return the zero residual. This is done for all the conditions (`ode_equation`, `initial_condition`). Notice that we do not pass directly a `python` function, but an `Equation` object, which is initialized with the `python` function. This is done so that all the computations, and internal checks are done inside PINA.\n", "\n", "Once we have defined the function we need to tell the network where these methods have to be applied. For doing this we use the class `Condition`. In `Condition` we pass the location points and the function to be minimized on those points (other possibilities are allowed, see the documentation for reference).\n", "\n", "Finally, it's possible to defing the `truth_solution` function, which can be useful if we want to plot the results and see a comparison of real vs expected solution. Notice that `truth_solution` function is a method of the `PINN` class, but it is not mandatory for the problem definition." - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "## Build PINN object" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "The basics requirements for building a PINN model are a problem and a model. We have already covered the problem definition. For the model one can use the default models provided in PINA or use a custom model. We will not go into the details of model definition, Tutorial2 and Tutorial3 treat the topic in detail." - ], - "metadata": {} + "In PINA we have already developed different solvers, one of them is `PINN`. The basics requirements for building a `PINN` model are a problem and a model. We have already covered the problem definition. For the model one can use the default models provided in PINA or use a custom model. We will not go into the details of model definition, Tutorial2 and Tutorial3 treat the topic in detail." + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, + "metadata": {}, + "outputs": [], "source": [ "from pina.model import FeedForward\n", - "from pina import PINN\n", + "from pina.solvers import PINN\n", "\n", "# initialize the problem\n", "problem = SimpleODE()\n", @@ -194,156 +187,242 @@ "model = FeedForward(\n", " layers=[10, 10],\n", " func=torch.nn.Tanh,\n", - " output_variables=problem.output_variables,\n", - " input_variables=problem.input_variables\n", + " output_dimensions=len(problem.output_variables),\n", + " input_dimensions=len(problem.input_variables)\n", ")\n", "\n", - "# create the PINN object\n", + "# create the PINN object, see the PINN documentation for extra argument in the constructor\n", "pinn = PINN(problem, model)\n" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Creating the pinn object is fairly simple by using the `PINN` class, different optional inputs can be passed: optimizer, batch size, ... (see [documentation](https://mathlab.github.io/PINA/) for reference)." - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "## Sample points in the domain " - ], - "metadata": {} + "## Sample points in the domain and create the Trainer" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "Once the `pinn` object is created, we need to generate the points for starting the optimization. For doing this we use the `span_pts` method of the `PINN` class.\n", - "Let's see some methods to sample in $(0,1 )$." - ], - "metadata": {} + "Once the `PINN` object is created, we need to generate the points for starting the optimization. For doing this we use the `.discretise_domain` method of the `AbstractProblem` class. Let's see some methods to sample in $(0,1 )$." + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, + "metadata": {}, + "outputs": [], "source": [ "# sampling 20 points in (0, 1) with discrite step\n", - "pinn.span_pts(20, 'grid', locations=['D'])\n", + "problem.discretise_domain(20, 'grid', locations=['D'])\n", "\n", "# sampling 20 points in (0, 1) with latin hypercube\n", - "pinn.span_pts(20, 'latin', locations=['D'])\n", + "problem.discretise_domain(20, 'latin', locations=['D'])\n", "\n", "# sampling 20 points in (0, 1) randomly\n", - "pinn.span_pts(20, 'random', locations=['D'])\n" - ], - "outputs": [], - "metadata": {} - }, - { - "cell_type": "markdown", - "source": [ - "We can also use a dictionary for specific variables:" - ], - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": null, - "source": [ - "pinn.span_pts({'variables': ['x'], 'mode': 'grid', 'n': 20}, locations=['D'])\n" - ], - "outputs": [], - "metadata": {} + "problem.discretise_domain(20, 'random', locations=['D'])\n" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "We are going to use equispaced points for sampling. We need to sample in all the conditions domains. In our case we sample in `D` and `x0`." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, + "metadata": {}, + "outputs": [], "source": [ "# sampling for training\n", - "pinn.span_pts(1, 'random', locations=['x0'])\n", - "pinn.span_pts(20, 'grid', locations=['D'])\n" - ], - "outputs": [], - "metadata": {} + "problem.discretise_domain(1, 'random', locations=['x0'])\n", + "problem.discretise_domain(20, 'grid', locations=['D'])\n" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### Very simple training and plotting\n", "\n", - "Once we have defined the PINA model, created a network and sampled points in the domain, we have everything that is necessary for training a PINN. Here we show a very short training and some method for plotting the results." - ], - "metadata": {} + "Once we have defined the PINA model, created a network and sampled points in the domain, we have everything that is necessary for training a `PINN`. For training we use the `Trainer` class. Here we show a very short training and some method for plotting the results. Notice that by default all relevant metrics (e.g. MSE error during training) is going to be tracked using a `lightining` logger, by default `CSVLogger`. If you want to track the metric by yourself without a logger, use `pina.callbacks.MetricTracker`." + ] }, { "cell_type": "code", - "execution_count": null, - "source": [ - "# simple training \n", - "final_loss = pinn.train(stop=3000, frequency_print=1000)" + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPU available: False, used: False\n", + "TPU available: False, using: 0 TPU cores\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "/Users/dariocoscia/anaconda3/envs/pina/lib/python3.9/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:67: UserWarning: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", + " warning_cache.warn(\n", + "\n", + " | Name | Type | Params\n", + "----------------------------------------\n", + "0 | _loss | MSELoss | 0 \n", + "1 | _neural_net | Network | 141 \n", + "----------------------------------------\n", + "141 Trainable params\n", + "0 Non-trainable params\n", + "141 Total params\n", + "0.001 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2999: : 1it [00:00, 226.55it/s, v_num=10, mean_loss=2.14e-5, x0_loss=4.24e-5, D_loss=2.93e-7] " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "`Trainer.fit` stopped: `max_epochs=3000` reached.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2999: : 1it [00:00, 159.67it/s, v_num=10, mean_loss=2.14e-5, x0_loss=4.24e-5, D_loss=2.93e-7]\n" + ] + } ], - "outputs": [], - "metadata": {} + "source": [ + "# create the trainer\n", + "from pina.trainer import Trainer\n", + "from pina.callbacks import MetricTracker\n", + "\n", + "trainer = Trainer(solver=pinn, max_epochs=3000, callbacks=[MetricTracker()])\n", + "\n", + "# train\n", + "trainer.train()" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "After the training we have saved the final loss in `final_loss`, which we can inspect. By default PINA uses mean square error loss." - ], - "metadata": {} + "After the training we can inspect trainer logged metrics (by default PINA logs mean square error residual loss). The logged metrics can be accessed online using one of the `Lightinig` loggers. The final loss can be accessed by `trainer.logged_metrics`." + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'mean_loss': tensor(2.1357e-05),\n", + " 'x0_loss': tensor(4.2421e-05),\n", + " 'D_loss': tensor(2.9291e-07)}" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# inspecting final loss\n", - "final_loss\n" - ], - "outputs": [], - "metadata": {} + "trainer.logged_metrics\n" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "By using the `Plotter` class from PINA we can also do some quatitative plots of the loss function. " - ], - "metadata": {} + "By using the `Plotter` class from PINA we can also do some quatitative plots of the solution. " + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAKnCAYAAABkq54bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjpUlEQVR4nO3dZ3gUVcPG8Xuz6aQRIA1CF1RQQQUEGyiCgDSlI02KYlARK/b2CCL62BAbitQgSlFAkCJNmiLYQXpNQk02jU3Z837wMa+RGkgyu5v/77rmw86e2dzrGLgdz5yxGWOMAAAAAC/lY3UAAAAAoCRReAEAAODVKLwAAADwahReAAAAeDUKLwAAALwahRcAAABejcILAAAAr0bhBQAAgFfztTqAO3K5XDp48KBCQ0Nls9msjgMAAIB/McYoPT1dcXFx8vE58zVcCu8pHDx4UPHx8VbHAAAAwFns27dPVapUOeMYCu8phIaGSvrrH2BYWJjFaQAAAPBvDodD8fHxBb3tTCi8p/D3NIawsDAKLwAAgBs7l+mn3LQGAAAAr0bhBQAAgFej8AIAAMCrUXgBAADg1Si8AAAA8GoUXgAAAHg1Ci8AAAC8GoUXAAAAXo3CCwAAAK9G4QUAAIBXs7Twjho1So0aNVJoaKiioqLUqVMnbd269YzHNG/eXDab7aStXbt2BWP69+9/0vu33nprSX8dAAAAuCFfK3/4ihUrlJCQoEaNGikvL09PPPGEWrVqpd9//13lypU75TGzZs1STk5OweujR4/qiiuuUNeuXQuNu/XWW/XJJ58UvA4ICCiZLwEAAAC3ZmnhXbhwYaHXEydOVFRUlDZu3KgbbrjhlMdERkYWep2YmKjg4OCTCm9AQIBiYmKKNzAAAAA8jlvN4U1LS5N0cqk9kwkTJqhHjx4nXRFevny5oqKiVLduXQ0dOlRHjx497Wc4nU45HI5CGwAAALyDzRhjrA4hSS6XSx06dFBqaqpWr159Tsds2LBBTZo00fr169W4ceOC/X9f9a1Ro4Z27NihJ554QiEhIVq7dq3sdvtJn/Pcc8/p+eefP2l/WlqawsLCzv9LAQAAoEQ4HA6Fh4efU19zm8I7dOhQff3111q9erWqVKlyTsfcfffdWrt2rX7++eczjtu5c6dq1aqlJUuW6Oabbz7pfafTKafTWfDa4XAoPj6ewgsAAOCmilJ43WJKw7BhwzRv3jx9++2351x2MzMzlZiYqIEDB551bM2aNVWxYkVt3779lO8HBAQoLCys0AYAAADvYOlNa8YY3XfffZo9e7aWL1+uGjVqnPOxM2fOlNPp1J133nnWsfv379fRo0cVGxt7IXEBAADggSy9wpuQkKApU6Zo2rRpCg0NVXJyspKTk5WdnV0wpm/fvho5cuRJx06YMEGdOnVShQoVCu3PyMjQI488onXr1mn37t1aunSpOnbsqNq1a6t169Yl/p0AAADgXiy9wjt+/HhJfz1M4p8++eQT9e/fX5K0d+9e+fgU7uVbt27V6tWr9c0335z0mXa7XT///LM+/fRTpaamKi4uTq1atdKLL77IWrwAAABlkNvctOZOijIJGgAAAKXP425aAwAAAEoKhRcAAABejcILAACAC3Zi1TvSsZ1WxzglCi8AAAAuSPbWpQpc+qSc7zRT5rGDVsc5CYUXAAAA5y8nS9lfDJMkLfBpLp+QaIsDnYzCCwAAgPOW/OWzisw5qIMmUrG3j1KQv93qSCeh8AIAAOC85OzbqEq/fiRJWljtUV1z6bk/Nbc0UXgBAABQdPm5Sk28R3a59I3tWt3RY5DViU6LwgsAAIAiO/TNWEVl/qnjJkQ+bccoPNjP6kinReEFAABAkeQf3q6I9a9JkmZH3aubr65ncaIzo/ACAADg3LlcOjR1iPyVqzXmcrXtPUI2m83qVGdE4QUAAMA5O7rqI8WmblSWCdCh5qMVExFkdaSzovACAADgnBjHQQUuf06S9Hl4P3W4sZm1gc4RhRcAAADnZP/UYSpnMvWzqaUb7nxaPj7uPZXhbxReAAAAnNXxH75QfMpS5Rq7tjV5WdWjwqyOdM4ovAAAADgjk3Vctq8fliTNCu6qjq1bWZyoaCi8AAAAOKO9Mx5WRP4x7TBxatj7JfnaPatCelZaAAAAlCrHH8tUbc/nkqQfLn9edapUsjhR0VF4AQAAcGq52XLOSpAkfeXfRp07drE40Pmh8AIAAOCU9nzxtCrlHlSSiVS17q/K39czq6NnpgYAAECJytz9gypvmSBJWlXncV1eK97iROePwgsAAIDC8nLkSBwiX7m01H6d2ncdZHWiC0LhBQAAQCH7vvqPYk/s0FETqrDb/6sgf7vVkS4IhRcAAAAFTuz/RTE/vSNJWlztITWqV8fiRBeOwgsAAIC/5Ofp2PTB8lOeVtgaq23PBKsTFQsKLwAAACRJBxeOVVzmH0ozwbJ3eF1hQf5WRyoWFF4AAAAoJ2WrKn4/VpL0Vdz9uq7hZRYnKj4UXgAAgLLOla8jUwbJX7n6Tg3UtvcIqxMVKwovAABAGZey5C3Fpf+sdBOk7NavKTIkwOpIxYrCCwAAUIblH9mpiDWjJEmzK96tm6+5yuJExY/CCwAAUFa5XEqZMkQBcmq96ql138dks9msTlXsKLwAAABl1JGVHygu9XtlmQAdvvFVRYcHWx2pRFB4AQAAyqD843sVvOI5SdIXEXepXfNm1gYqQRReAACAssYYJU25W8EmW5tMHTXv86RXTmX4G4UXAACgjDmy+hNVObpGTuOnfde/qviKoVZHKlEUXgAAgDLElXZQgcueliR9Ed5Xt910o8WJSh6FFwAAoKwwRvunDFWIydAvpqau7/ucfHy8dyrD3yi8AAAAZcSRddNV9fBy5Ri7dl07RvEVw6yOVCoovAAAAGWAK/2w/Bc/LkmaE9pLt7VsaXGi0kPhBQAAKAP2Tk1QmCtNW0xVNen7YpmYyvA3Ci8AAICXO/L956qevEh5xkfbrhmtalHlrY5Uqii8AAAAXsxkHpHf1w9Jkr4K6ap2rdtanKj0UXgBAAC82N7J9yrclao/TRU17Du6TE1l+BuFFwAAwEsdXZ+oav+byvB7kzGqHh1pdSRLUHgBAAC8kElPkf+iRyRJs0O6q/2tZW8qw98ovAAAAN7mfw+YCHU5tMVU1VV9Xpa9DE5l+BuFFwAAwMscWz9d8SlLlWvs+r3JGNWMKZtTGf5G4QUAAPAixpEk/28elSR9HtJTHW+91eJE1qPwAgAAeAtjdHDKPQpxpes3U12N7nypTE9l+BuFFwAAwEukrpusyoeWK8fY9XvjV1Q7tmw9YOJ0KLwAAABewKQdkN/ikZKkz8rdqdvbtLY4kfug8AIAAHg6Y5Q09W6Vc2XoF1NT1/R9nqkM/0DhBQAA8HDH13yiuEOr5DR++r3JGNWOYSrDP1F4AQAAPJjr+D4FLHlSkpQY0kddbm1pcSL3Q+EFAADwVMYoecpgBZssbTYX6fq+zzGV4RQovAAAAB7q6MoPFHd0rU4YP+249lXVjA63OpJbovACAAB4oPxjuxW8/FlJ0mfhA9S5ZXNrA7kxCi8AAICncbmUPHmwgky2NpqL1aLvM/JhKsNpUXgBAAA8zKHl76ry8Q3KNv46cONriq8YanUkt0bhBQAA8CB5R3YqbOULkqTPIwerfYtrLU7k/ii8AAAAnsKVr5TJAxUop77XpWrZ70nZbExlOBsKLwAAgIdI/uZ1VU77URkmUEdvfl2xEeWsjuQRKLwAAAAeIPfgr6qwbrQk6YtK96r1dddYnMhzUHgBAADcXV6Ojk8dID/laaWuVNu+jzGVoQgovAAAAG4u5avnFZX5p46ZEOW0fVOVwgKtjuRRKLwAAABuzLl7nSr+9K4kaVbcw2rZ+HKLE3keCi8AAIC7yslUxvRBssulBbYbdMedCVYn8kgUXgAAADd1aNajquDcpyQTqeCOr6t8OX+rI3kkCi8AAIAbOrHlG0VtmSJJ+rLak2re4CKLE3kuCi8AAIC7yT6unC+GSpJm+rRRj579LA7k2Si8AAAAbubwjPsVlntEO1yxiu0yRuFBflZH8miWFt5Ro0apUaNGCg0NVVRUlDp16qStW7ee8ZiJEyfKZrMV2gIDCy/NYYzRM888o9jYWAUFBally5batm1bSX4VAACAYpH140xV2v2l8oyPFtV9XtddWtXqSB7P0sK7YsUKJSQkaN26dVq8eLFyc3PVqlUrZWZmnvG4sLAwJSUlFWx79uwp9P6YMWP01ltv6b333tP69etVrlw5tW7dWidOnCjJrwMAAHBhHEky80dIkqb6d1G/LndYHMg7+Fr5wxcuXFjo9cSJExUVFaWNGzfqhhtuOO1xNptNMTExp3zPGKM33nhDTz31lDp27ChJmjRpkqKjozVnzhz16NGj+L4AAABAcTFGh6YOUVS+Q7+4quuyni+pXIClVc1ruNUc3rS0NElSZGTkGcdlZGSoWrVqio+PV8eOHfXbb78VvLdr1y4lJyerZcuWBfvCw8PVpEkTrV279pSf53Q65XA4Cm0AAAClyfHdh4pKWSmn8dMPDUfryprRVkfyGm5TeF0ul4YPH65rr71W9evXP+24unXr6uOPP9bcuXM1ZcoUuVwuNWvWTPv375ckJScnS5Kiowv/SxIdHV3w3r+NGjVK4eHhBVt8fHwxfSsAAICzM0d3yn/p05KkSeX6qXf71hYn8i5uU3gTEhL066+/KjEx8YzjmjZtqr59+6pBgwa68cYbNWvWLFWqVEnvv//+ef/skSNHKi0trWDbt2/feX8WAABAkbjydXjyAAWaE1pvLlHzvs/I39dtKppXcIt/msOGDdO8efP07bffqkqVKkU61s/PTw0bNtT27dslqWBub0pKSqFxKSkpp533GxAQoLCwsEIbAABAaTi6eKyiUjcr3QRpz3VjdVFMuNWRvI6lhdcYo2HDhmn27NlatmyZatSoUeTPyM/P1y+//KLY2FhJUo0aNRQTE6OlS5cWjHE4HFq/fr2aNm1abNkBAAAuVN7BnxW2dowkaVrkUHW5+VqLE3knS2/9S0hI0LRp0zR37lyFhoYWzLENDw9XUFCQJKlv376qXLmyRo0aJUl64YUXdM0116h27dpKTU3Vq6++qj179mjQoEGS/lrBYfjw4XrppZd00UUXqUaNGnr66acVFxenTp06WfI9AQAATpLn1PEpd6mS8vStrlb7vo/Ix8dmdSqvZGnhHT9+vCSpefPmhfZ/8skn6t+/vyRp79698vH5/wvRx48f1+DBg5WcnKzy5cvrqquu0po1a3TppZcWjHn00UeVmZmpIUOGKDU1Vdddd50WLlx40gMqAAAArHJozpOKytqmoyZU2W3+q7jywVZH8lo2Y4yxOoS7cTgcCg8PV1paGvN5AQBAsXNuXaaA6Z0lSe/FvaS7Bw+TzcbV3aIoSl9zi5vWAAAAyoysY3J+PkSSNMvnFvW4827Kbgmj8AIAAJQWY3Q48V6F5R7WTleMKnV5TRHB/lan8noUXgAAgFKS+f0UVdr7tXKNXd9c/JKuv7Sa1ZHKBAovAABAaTi+Wz4LH5UkTQroob5dOlscqOyg8AIAAJQ0V76OTh6gIFeWfnDV1VW9X1Swv6WLZZUpFF4AAIASlr5kjCoc+1HpJkg/NXpFDapVsDpSmULhBQAAKEGufRsVtOZVSdJHoUPVt+2NFicqeyi8AAAAJSUnU+nTB8hX+fradY069B0hPzv1q7TxTxwAAKCEpM55VOFZe5RkIpV68xjVigq1OlKZROEFAAAoATm/zVfE71MkSZOiH1OPGy63OFHZReEFAAAobhmHlDs7QZI02dZeA/r052lqFqLwAgAAFCdjdGzaYJXLO64/XFVV+Y5RigoNtDpVmUbhBQAAKEaZ372vyIPL5TR+WnzJS7qpfrzVkco8Ci8AAEAxMYe2yG/p05KkjwL7afAdt1mcCBKFFwAAoHjk5ej4lP7yNzla7bpMN/Z5SkH+dqtTQRReAACAYnF8wfOKdPyh4yZEu64bq/pVylsdCf9D4QUAALhAuTtWKfzHcZKkiRUeVO+WTSxOhH+i8AIAAFyIrGPKnnGXfGQ0Wy3Uo1+CfHxYgsydUHgBAADOlzE6lniPwnIOaYcrVuU6jlVseJDVqfAvFF4AAIDzlLVugiL3LlKOsWveRS+oVcPaVkfCKVB4AQAAzoM59Id8v3lCkvRhQB8N6na7xYlwOhReAACAoso9obQp/eRvnFrpulzNej+jcgG+VqfCaVB4AQAAiih9/pOKcGzVEROmbU3HqGG1ClZHwhlQeAEAAIogf8tChW7+SJL0QeRD6t/6GosT4WwovAAAAOcqPVnOL+6RJE0xbdSnzxDZWYLM7VF4AQAAzoXLJUfiIAXnHtfvrmoKa/+y4iODrU6Fc0DhBQAAOAcnVr2lsAOrlG38NafWC+pwdU2rI+EcUXgBAADOwhzYJN9vX5QkveU3UAnd2lmcCEVB4QUAADgTZ4YypvWTr/K00NVYLe98ROFBflanQhFQeAEAAM7AMechhWbu0UETqX3XjtJV1VmCzNNQeAEAAE4j7+cvFPZHolzGpg8rPq67brnK6kg4DxReAACAU0ndq7y590uSJtg66+6+/ViCzENReAEAAP4tP09pU/orMD9DP7pqq0aXFxUTHmh1KpwnCi8AAMC/ZC4ZpfAjG+UwQVpRf5Ra1q9idSRcAAovAADAP7h2r1HQ2tclSe+WS9DQzjdbnAgXisILAADwt6xjypreXz5yaY7rBt3Rb7gC/exWp8IFovACAABIkjFKSxyiEGeKdrpilNN6jC6KDrU6FYoBhRcAAECS87t3Fb53sZzGT9OrvaCuzS62OhKKCYUXAADg4CbZlzwjSXrbr7+G9bxdNhtLkHkLCi8AACjbTjiUMaWPfJWnRfmNdGPvkQoP5tHB3oTCCwAAyi5jlPHFMIVk7dN+U1G7rn1FjWrw6GBvQ+EFAABlVt4Pnypk21zlGR+Nr/iEBre60upIKAEUXgAAUDYd+kPm60clSe/YeiqhTy8eHeylKLwAAKDsyclSxpQ75edyakX+5arX9WnFRQRZnQolhMILAADKnMwvH1aIY7sOmQh933CUbqkXa3UklCAKLwAAKFPyf5qpcr9OlcvY9Fb4o7q/QzOrI6GEUXgBAEDZcXSH8r68X5L0gW7X4H795e9LHfJ2nGEAAFA25DmVPrWvAvKztN51seI7P6dqFcpZnQqlgMILAADKhKwFTyr02K86ZkL0bb2X1a5BVasjoZRQeAEAgNfL/2O+gn/8UJL0RsiDGn57c2sDoVRReAEAgHdL26+cL4ZKkia62qlvv3sU6Ge3OBRKE4UXAAB4r/w8pU/pq6C8NP3kqqmw9i+pdlSI1alQyii8AADAa2UvfkmhhzfKYYI0v85/dHujmlZHggUovAAAwCu5/lyigHVvSJLeDErQA11bWRsIlqHwAgAA75N2QM6ZA+Ujo2muW9Sl3wMqF+BrdSpYhMILAAC8S36uMqb2VVBuqn51VZft1pd1SWyY1algIQovAADwKs5Fzynk0A9ymCDNrPmSejS9yOpIsBiFFwAAeA2zZYECNrwjSXo14D491ONW2Ww2i1PBahReAADgHVL3yvn53ZKkia426t5vmMIC/SwOBXdA4QUAAJ4vL0cZU+5UYJ5Dm121FNDmJdWvHG51KrgJCi8AAPB42QueVMiRn5Rqymlu7ZfU45paVkeCG6HwAgAAj5b/21wF/fiBJGls8HA93L0V83ZRCIUXAAB4rmM7lTdrqCTpI1d79e0/lPV2cRIKLwAA8Ey5J5Qx+U4F5Gfqe1cdlW//oupEh1qdCm6IwgsAADxS1rzHFHL8Nx01oVp8ySjd0aiG1ZHgpii8AADA4+T/9JmCf5ool7Hp9ZCHNKJLC6sjwY1ReAEAgGc5sk35cx+QJH2ozhrYf7AC/ewWh4I7o/ACAADPkZOljMm95e/K0tr8S1Wl8/OqWSnE6lRwcxReAADgMTLnjFBI2lYdNuFafcUotWtQ1epI8AAUXgAA4BHyNk5Vud+ny2VsejP8Md3f6XqrI8FDWFp4R40apUaNGik0NFRRUVHq1KmTtm7desZjPvzwQ11//fUqX768ypcvr5YtW2rDhg2FxvTv3182m63Qduutt5bkVwEAACUp5TeZeQ9Kksbbuuru/gMU4Mu8XZwbSwvvihUrlJCQoHXr1mnx4sXKzc1Vq1atlJmZedpjli9frp49e+rbb7/V2rVrFR8fr1atWunAgQOFxt16661KSkoq2KZPn17SXwcAAJSEEw5lTu4pP+PUyvzLVKfL84qPDLY6FTyIzRhjrA7xt8OHDysqKkorVqzQDTfccE7H5Ofnq3z58nrnnXfUt29fSX9d4U1NTdWcOXPOK4fD4VB4eLjS0tIUFhZ2Xp8BAACKgTHKnNxL5XYu0AFTQTOvnKrhHZtanQpuoCh9za3m8KalpUmSIiMjz/mYrKws5ebmnnTM8uXLFRUVpbp162ro0KE6evToaT/D6XTK4XAU2gAAgPVyV7+pcjsXKMfY9U6Fp5VwWxOrI8EDuc0VXpfLpQ4dOig1NVWrV68+5+PuvfdeLVq0SL/99psCAwMlSYmJiQoODlaNGjW0Y8cOPfHEEwoJCdHatWtlt5883+e5557T888/f9J+rvACAGCh3auVP7GD7MrXy7bBumv4S4oJD7Q6FdxEUa7wuk3hHTp0qL7++mutXr1aVapUOadjRo8erTFjxmj58uW6/PLLTztu586dqlWrlpYsWaKbb775pPedTqecTmfBa4fDofj4eAovAABWSU9W9tvNFJRzVLPzr1OlPhN1XZ1KVqeCG/G4KQ3Dhg3TvHnz9O23355z2R07dqxGjx6tb7755oxlV5Jq1qypihUravv27ad8PyAgQGFhYYU2AABgkfxcZU65U0E5R7XFFa9DN46m7OKCWFp4jTEaNmyYZs+erWXLlqlGjRrndNyYMWP04osvauHChbr66qvPOn7//v06evSoYmNjLzQyAAAoYSe+flrlUr6XwwRpUtUXNfim+lZHgoeztPAmJCRoypQpmjZtmkJDQ5WcnKzk5GRlZ2cXjOnbt69GjhxZ8PqVV17R008/rY8//ljVq1cvOCYjI0OSlJGRoUceeUTr1q3T7t27tXTpUnXs2FG1a9dW69atS/07AgCAc5f/6xwF/jBekjQm8AE91vs2+fjYLE4FT2dp4R0/frzS0tLUvHlzxcbGFmwzZswoGLN3714lJSUVOiYnJ0ddunQpdMzYsWMlSXa7XT///LM6dOigOnXqaODAgbrqqqu0atUqBQQElPp3BAAA5+jINuXPGipJ+sjVXr36JSg8yM/iUPAGbnPTmjthHV4AAEqZM0OZ425UOcd2rXNdooPtE3V7o+pWp4Ib87ib1gAAQBlmjDK/GKZyju1KMRFaftloyi6KFYUXAABYKnft+yr352zlGR/9t/yTerDz9VZHgpeh8AIAAOvs2yDb4iclSW/69NH9/fsowPfkh0QBF4LCCwAArJF5RFlTe8vX5GlBfmM16fm04iKCrE4FL0ThBQAApc+Vr4ypfRV84pB2uGK1/4axPFwCJYbCCwAASl32Ny8o5OB3yjQBmhj/kgbdfOanpgIXgsILAABKVf4f8xW07g1J0muBCXr4zo48XAIlisILAABKz5Ftyvt8sCRpsutWden3IA+XQImj8AIAgNLhTFfmpO4KyM/UBlddhXQYrUvjeMATSh6FFwAAlDxjlPXZ3Srn2KFkU17LLhujzlfXsDoVyggKLwAAKHG5K15X8I75yjF2vV7+KR4ugVJF4QUAACXKbF8q+/KXJEmv+gzU8P69ebgEShWFFwAAlJzju+VM7C8fufRZfgvdfOdjPFwCpY7CCwAASkZOljIn9VBgnkObXTXlvGW0rqlV0epUKIMovAAAoPgZo8wvElTu+B86YsL0Zd1XdOf1da1OhTKKwgsAAIpd7trxKrd1lvKMj8aGj9Sj3W6WzcbDJWANCi8AAChWZvdq+XzzlCTpDZ++GjagvwL9uEkN1qHwAgCA4pN2QCem9ZFd+Zqbf62a9X5KVcoHW50KZRyFFwAAFI88p9In91JQzjH97qqmYze/qma1K1mdCqDwAgCA4pE5Z4RCj2xWqimnL2qPUv8bL7U6EiCJwgsAAIpB7oaPVe7XKXIZm8aGPqqHe9zKTWpwGxReAABwQcy+72X7+lFJ0js+PXX3XUMU5M9NanAfFF4AAHD+Mg4pa0ov+ZpcLcxvpCt7vqD4SG5Sg3uh8AIAgPOTl6P0ST1VznlI21yVldTidV1Xh5vU4H4ovAAA4Lxkzn1IoYd+kMMEKbHWKPVvcZnVkYBTovACAIAiy13/kcr9MkkuY9OrIY/qoZ7tuEkNbovCCwAAisTs/k4+/7tJ7W1bTw2+6x4F+/tanAo4PQovAAA4d6n7dGJqb9mVr6/yr1GDns+ragVuUoN7o/ACAIBzk5OljE+7Kyj3uH51Vdfhm17XjXWjrE4FnBWFFwAAnJ0xypx5j0KO/6YjJkyz6ozRgOY8SQ2egcILAADOyrnyvyq3ba5yjV2vRTypR7u35CY1eAwKLwAAOCPX1kXy+/YFSdLr9rs0fGB/BfrxJDV4DgovAAA4vSPblPPZXfKRUaLrZrXq94SiwwKtTgUUCYUXAACc2ok0ZUzsqsD8DH3vqqOADmPVsFqk1amAIqPwAgCAk7ny5ZjaXyEZu3TQROq7K/+rzlfXtDoVcF4ovAAA4CRZi15Q2L5lOmH89H7MC7qvw7VWRwLOG4UXAAAUkvfT5wpe/4Yk6bXAYRrRv4fsPqzIAM9F4QUAAAVM0k9yzblXkvSx6aAegx5WeJCfxamAC0PhBQAAf8k8osxPu8vfOLXCdblqdB+jWpVCrE4FXDAKLwAAkPJylPZpT4WcSNIuV7R23PCWWlwaa3UqoFhQeAEAKOuMUcasBxR+aIPSTZASa72iATc3sDoVUGwovAAAlHHO795VyO/T5DI2vR7+mB7s1YHHBsOrUHgBACjDXH8ult+SpyRJb9n76u6BQ3lsMLwOhRcAgLLq8FblzugnH7n0uau5buj3nGLCeWwwvA+FFwCAsijrmDI+uUMB+Zna4Kor+23/1ZU8NhheisILAEBZk58rx+TeCsnap/2motY3elOdG/PYYHgvCi8AAGWJMcqYM0JhSWuUYQI1IX6UEtpdY3UqoERReAEAKEOca95TyC+T5DI2jQ15RI/0vV0+PDYYXo7CCwBAGZG/bZl8Fz8hSXrHfqeGDE5QsL+vxamAkkfhBQCgLDiyXTmJfWWXS7NdN+iG/i8qLiLI6lRAqaDwAgDg7bKPy/HJHQrKT9dG10Xy7/SWGlQtb3UqoNRQeAEA8Gb5uUqd1Fthmbu131TUD03eVrsra1idCihVFF4AALyYY+4jikj6TlkmQJOrj9KQtqzIgLKHwgsAgJfKXvuBwn7+RJL0ZtjDevDOO2SzsSIDyh4KLwAAXih/+3L5L3pMkjTe3ksDB9+vQD+7xakAa1B4AQDwNkd3KGf6nbLLpS9d1+n6AaMUFRZodSrAMhReAAC8SdYxOSZ0VlB+uja5aivwjnGqXyXC6lSApSi8AAB4i7wcpU3srrCsPdpvKmrTte+q1RXVrU4FWI7CCwCANzBGjs/vVfihDUo3QZpa81UNaNXY6lSAW6DwAgDgBTKXvaqwLTOVZ3z034gn9ECvjqzIAPwPhRcAAA+X8/MXKrfqP5KkN/0HKWHw3azIAPwDhRcAAA/m2vu9NPseSdIUtVXHwc+oQkiAxakA90LhBQDAU6XuVfbkbvI3OVrmaqiavd5Q7ahQq1MBbofCCwCAJzrhUNqE21Uu95h+d1VTatv31KxOtNWpALdE4QUAwNPk5+n4pN4KT9+mFBOhlVe/rduvudjqVIDbovACAOBJjFHq7BEqf3Clso2/JlYbrSG33WB1KsCtUXgBAPAgmavGKeLXT+UyNr0V8age6NNNPj4sPwacCYUXAAAPkfP71wpc9rQk6T3/vho0+H6WHwPOAYUXAAAP4Dr4s1wzB8gul77QTWo16D8sPwacIwovAADuLj1ZGRPvUKDJ1hpXPcX1fle1o1l+DDhXFF4AANxZTpaOfXS7wnIOaYcrVodu/UBNL4q1OhXgUSwtvKNGjVKjRo0UGhqqqKgoderUSVu3bj3rcTNnztTFF1+swMBAXXbZZVqwYEGh940xeuaZZxQbG6ugoCC1bNlS27ZtK6mvAQBAyXDl6+ikPopM+03HTIiWXTVOnZrVtzoV4HEsLbwrVqxQQkKC1q1bp8WLFys3N1etWrVSZmbmaY9Zs2aNevbsqYEDB2rTpk3q1KmTOnXqpF9//bVgzJgxY/TWW2/pvffe0/r161WuXDm1bt1aJ06cKI2vBQBAsUid/bAq7F8ip/HTxKqjNLD9TVZHAjySzRhjrA7xt8OHDysqKkorVqzQDTecek3B7t27KzMzU/PmzSvYd80116hBgwZ67733ZIxRXFycHnroIT388MOSpLS0NEVHR2vixInq0aPHWXM4HA6Fh4crLS1NYWFhxfPlAAAogowVbynk279WZBgb/oSGDXuYFRmAfyhKX3OrObxpaWmSpMjIyNOOWbt2rVq2bFloX+vWrbV27VpJ0q5du5ScnFxoTHh4uJo0aVIw5t+cTqccDkehDQAAqzh/nqPgb5+RJL3r108DBg+n7AIXwG0Kr8vl0vDhw3Xttdeqfv3Tz09KTk5WdHThZ4VHR0crOTm54P2/951uzL+NGjVK4eHhBVt8fPyFfBUAAM5b/t4Nss0eLB8ZzVArlh8DioHbFN6EhAT9+uuvSkxMLPWfPXLkSKWlpRVs+/btK/UMAACYozt1YlJX+ZscfetqqJp9x7H8GFAM3KLwDhs2TPPmzdO3336rKlWqnHFsTEyMUlJSCu1LSUlRTExMwft/7zvdmH8LCAhQWFhYoQ0AgFKVdUxpH3VUubxU/eKqLmenj9SoZpTVqQCvYGnhNcZo2LBhmj17tpYtW6YaNWqc9ZimTZtq6dKlhfYtXrxYTZs2lSTVqFFDMTExhcY4HA6tX7++YAwAAG4l94SOTbhDEdl7td9U1E/Xf6Bbr6xtdSrAa/ha+cMTEhI0bdo0zZ07V6GhoQVzbMPDwxUUFCRJ6tu3rypXrqxRo0ZJkh544AHdeOONeu2119SuXTslJibqhx9+0AcffCBJstlsGj58uF566SVddNFFqlGjhp5++mnFxcWpU6dOlnxPAABOy+XS0al3qcLRH+UwwZp76Ru6t2Vjq1MBXsXSwjt+/HhJUvPmzQvt/+STT9S/f39J0t69e+Xj8/8Xops1a6Zp06bpqaee0hNPPKGLLrpIc+bMKXSj26OPPqrMzEwNGTJEqampuu6667Rw4UIFBgaW+HcCAKAojn/1hCrsnq8cY9eHlV/Q8K63yWazWR0L8CputQ6vu2AdXgBAaXCsfl9hSx6VJL0R+pDuuf9Jlh8DzpHHrsMLAEBZceK3r1VuyeOSpAl+PdXn7scou0AJofACAFDK8vZvkj7vL7tcmmO7STcPGctau0AJovACAFCKTOpeZU28Q4HmhL4zl6lqv/dVvVKI1bEAr0bhBQCgtGSn6tgHnRSWd1RbXPHK7jxRV1ZnrV2gpFF4AQAoDXlOHZ7QVRWydijZlNcvzSeoZQPW2gVKA4UXAICS5nLp8OS7VOnIBqWbIM2r/6a63tTE6lRAmUHhBQCghB2b85gq7ZmnHGPXJ/Ev6q47OlgdCShTKLwAAJSgtGX/VeTPfz0N9L2IhzSk313y8eHBEkBpovACAFBCsjbOUPjK5yRJ7wf0U9+7H2GtXcACFF4AAEpAzrbl8vvqXknSDJ+2uu2e0YoI9rc4FVA2UXgBAChm+Um/KH9aL/kpT4t0ja4YPF6VywdbHQsosyi8AAAUI5O6VxkTOinIZGqDuUTle3+ii2MjrI4FlGkUXgAAikvWMR17v4PC845oq6uKHB0nqvFFcVanAso8Ci8AAMUhN1uHPrxDFbJ3KclE6tcWH6vllRdbnQqAKLwAAFw4V75SJvZV1PEf5TDBWtRgnO5owYMlAHdB4QUA4EIYo0OfPaDoA9/IaXw1reZo9evUxupUAP6BwgsAwAU4smi0orZMlsvY9HHU4xp0Zx/ZbDxYAnAnFF4AAM5T6tpJqrhutCTpk9DB6j94hHzt/NUKuBt+KwEAOA+Zv3+jkEXDJUmJfp3Veeh/FOTPU9QAd0ThBQCgiJx7vpd9Zh/5Kl8Lbdfr2nveUWQ5nqIGuCsKLwAARZB/6E/lfHqHAs0JrTWXqdrAiYqvEGJ1LABnQOEFAOAcmbQDSv/wNoW60vSLq6Z8ek7VJVUqWh0LwFlQeAEAOBdZx3T0/dsUkZuina5YJbefoiYXV7M6FYBzQOEFAOBscrJ06IPOqpi1U8mmvDY1n6BbGtWzOhWAc0ThBQDgTPJzlTyhh6JSNyvNBGvxle/qjpuutToVgCKg8AIAcDoul5InD1ZMygqdMH6aWec13dmBp6gBnobCCwDAaSTPekwxu2crz/jo0yrP666ePXmKGuCBKLwAAJzC4YVjFPPrB5KkCRUe1oABQ+XjQ9kFPBGFFwCAfzm6+hNVWvcfSdInIYPU557H5O/LX5mAp+K3FwCAf3D89KUiloyQJH3m31md7x2lYH9fi1MBuBAUXgAA/idr2yoFzB4ou1yab79JN9w7XhHBPDIY8HQUXgAAJDkP/CIzrbsClKOVukqX3j1RMRFBVscCUAwovACAMi/v6G5lf9xR5UymfjR1VWHANNWICrc6FoBiQuEFAJRpJj1Fx99vp4j8o9pq4pXXPVH1qsVYHQtAMaLwAgDKruxUHRrfTpVy9mu/qaik9lPV+NKaVqcCUMwovACAsiknS0nvdVR01jYdNuH6ucWnan71FVanAlACKLwAgLInL0dJH3ZRbNpmpZlgfdv4fbVtfp3VqQCUkPNaWPCFF1444/vPPPPMeYUBAKDEufJ18JM+ijv8nbJMgOZe+qb6tmtjdSoAJei8Cu/s2bMLvc7NzdWuXbvk6+urWrVqUXgBAO7JGB2ccrfiDixUjrFres3RuqtbV6tTAShh51V4N23adNI+h8Oh/v37q3PnzhccCgCAYmeMDs58RHE7Zyrf2DSp8jMa0GeAbDab1ckAlLBim8MbFham559/Xk8//XRxfSQAAMUmaf5/FPf7h5KkTys+pH4D75fdh7ILlAXFetNaWlqa0tLSivMjAQC4YIeWvq3YH16VJE0Ku1u97nlCfnbu2wbKivOa0vDWW28Vem2MUVJSkiZPnqw2bZj4DwBwH0fWTFbUqqckSTOCe+r2hJcV6Ge3OBWA0nRehfe///1vodc+Pj6qVKmS+vXrp5EjRxZLMAAALtTxH+cq4pv7JUlz/G9T64Q3FRJwXn/1AfBg5/Vbv2vXruLOAQBAsXL88a3KfTlQvnJpoW8LNUv4UBHlAqyOBcACTGACAHidjF3r5Tujp/yVqxU+jVXvnkmKCg+2OhYAi1B4AQBe5cSB32Qm3aFgZWuD6qvKoOmKrxhmdSwAFqLwAgC8Rs7hXcr+uL1CTbp+Vm2F9PtMteIqWh0LgMUovAAAr5Cful+O929V+fyj2maqKL/nTF1ao7LVsQC4AQovAMDjuRwpOvburaqYl6w9JlpHO89Qw7o1rY4FwE1QeAEAHs1kHdPh8W1UKWefDpoK2tV2mq5pUN/qWADcCIUXAOCxzIk0JY1rp+jsHTpkIvTTzZPVvMnVVscC4GYovAAAz5STqYPvdlBc5u86ZkK07rqP1eaGa61OBcANUXgBAJ4n94T2j++syo7NcphgrWjyoTrccrPVqQC4KQovAMCz5Odq3wfdVOX4emWaAH3T8B11btvW6lQA3BiFFwDgOVz52vtRb8UfXqETxk9f1fuvunS6w+pUANwchRcA4BlcLu395C5VTVqkHGPXrDqvqHvXXlanAuABKLwAAPdnjPZMuVdV981RnvHRzBovqGevu2Sz2axOBsADUHgBAO7NGO2Z8ZCq7Zwul7FpRpUn1LNvAmUXwDmj8AIA3NreWc+o2pYJkqTE6BHqMfBh+fhQdgGcOwovAMBt7f1qlKr+8pYkKbHCvep691OyU3YBFBGFFwDglvYvelNVN46WJM0MH6DOQ1+Sn52/tgAUHX9yAADczsGl76rK2mckSbNDeqj9sNcU4Gu3OBUAT0XhBQC4leTlHypu1UhJ0pfBt6vVsHcU6EfZBXD+KLwAALeRsnqiopY/Ikn6MrCDmt/3vsoF+lmcCoCno/ACANzCoTVTVHHJg/KR0Vf+bXT9sI8UFuRvdSwAXoDCCwCw3OF1iYr85j7Z5dLXfq3U7L5PVD4kwOpYALwEhRcAYKnDG75Q+YX3ylcuLfK7WY3un6QKoUFWxwLgRSi8AADLHN44VxELhshX+Vrs21wNh01WRcougGJG4QUAWOLI5vkK/+ou+SlPS32v1+XDpioqvJzVsQB4IUsL78qVK9W+fXvFxcXJZrNpzpw5Zxzfv39/2Wy2k7Z69eoVjHnuuedOev/iiy8u4W8CACiKoz8vUuicfvJXnpbbm6revdMVHRFidSwAXsrSwpuZmakrrrhC48aNO6fxb775ppKSkgq2ffv2KTIyUl27di00rl69eoXGrV69uiTiAwDOw7HflqrcrDsVoFytsjdSnXtnKCYy1OpYALyYr5U/vE2bNmrTps05jw8PD1d4eHjB6zlz5uj48eMaMGBAoXG+vr6KiYkptpwAgOJx/PflCprZU4HK0Rqfq1TjnpmKqxB+9gMB4AJ49BzeCRMmqGXLlqpWrVqh/du2bVNcXJxq1qyp3r17a+/evWf8HKfTKYfDUWgDABSv41tWKeCzHgqSU+ttDRR/z+eqUqm81bEAlAEeW3gPHjyor7/+WoMGDSq0v0mTJpo4caIWLlyo8ePHa9euXbr++uuVnp5+2s8aNWpUwdXj8PBwxcfHl3R8AChT0ratlX9iVwUrW9/bLlfsPV8oPirS6lgAygibMcZYHUKSbDabZs+erU6dOp3T+FGjRum1117TwYMH5e9/+ifxpKamqlq1anr99dc1cODAU45xOp1yOp0Frx0Oh+Lj45WWlqawsLAifQ8AQGFp29fLPqWzQpSpjbZ6qjBkrqrHVrI6FgAP53A4FB4efk59zdI5vOfLGKOPP/5Yffr0OWPZlaSIiAjVqVNH27dvP+2YgIAABQTwRB8AKG7pO9bJPvV2hShTm2yXqPyg2ZRdAKXOI6c0rFixQtu3bz/tFdt/ysjI0I4dOxQbG1sKyQAAf8vYsV4+UzorxGTqR12isEFzVLNytNWxAJRBlhbejIwMbd68WZs3b5Yk7dq1S5s3by64yWzkyJHq27fvScdNmDBBTZo0Uf369U967+GHH9aKFSu0e/durVmzRp07d5bdblfPnj1L9LsAAP5f+o51sk3ppHImSz/qEoUOmqNalVk9B4A1LJ3S8MMPP6hFixYFr0eMGCFJ6tevnyZOnKikpKSTVlhIS0vTF198oTfffPOUn7l//3717NlTR48eVaVKlXTddddp3bp1qlSJ/4UGAKXBsW2t7FNvVzllaaMuVejA2bqoCmUXgHXc5qY1d1KUSdAAgP+Xtm2NfKfeUVB2wwZRdgGUDK+/aQ0A4H7+XXbDB81R7SrM2QVgPQovAOCCpf35nXyn3aFyytZG1VPE4NmqxQ1qANyER67SAABwH6l/ri4ouz/Y6ili8BzKLgC3whVeAMB5O751tfyndykou5GD56hmXJTVsQCgEK7wAgDOy7Etq/5RduurAmUXgJviCi8AoMiObVmlwMQuCtYJ/WCrr4pD5vAENQBui8ILACiSf5fdSkPmqBplF4AbY0oDAOCcHft9+T/K7mWKupuyC8D9cYUXAHBOjv2yWEFf9FaQnPrB5zJFD5mj+JiKVscCgLPiCi8A4KyO/rRA5b7opSA5tc6noWLumUvZBeAxKLwAgDM6vHGuQmf3UYBy9J3P1ap8zyxViapgdSwAOGcUXgDAaR1a/7kivrpL/srTCvs1qnbvF4qPirQ6FgAUCYUXAHBKyWumKfLrwfJTnpb5Xq+6CZ+rSsUIq2MBQJFx0xoA4CQHV05U9LIHZZdLS/xa6Iph01QpPNjqWABwXrjCCwAoZP+yDxSzbLjscmlRQCtdef90yi4Aj0bhBQAU2PvN26qy8hH5yGhBYDtdc/8URYYGWR0LAC4IUxoAAJKkPQteU7UNL0iS5gV31I33faTQIH+LUwHAhaPwAgC0e+7Lqr7pFUnSlyFddfOw8SoX6GdxKgAoHhReACjjds16TjV+/q8kaU5Yb9067C0F+vPXAwDvwZ9oAFBWGaOdM59Uzd/HSZJmR/RXm4TXFehntzgYABQvCi8AlEXGaOf0h1TzzwmSpFkVhui2oa/I35d7mQF4HwovAJQ1Lpd2TbpHNXfPkCTNihqmDne/KF87ZReAd6LwAkBZkp+n3R/3V40DX8llbPq88iO6Y9ATsvvYrE4GACWGwgsAZUVejnZ/0FPVDy1RnvHR59WeVrf+D8qHsgvAy1F4AaAMMDlZ2vteF1U/9p2cxldzav9H3e+8WzYbZReA96PwAoCXMycc2jeuo6ql/6gsE6Cv67+mbl3upOwCKDMovADgxVyZx3RgXDtVzfpdDhOk5VeN0x0d7rA6FgCUKgovAHipvLRkHXq3reKdO3TMhGj9tR+pQ6s2VscCgFJH4QUAL+Q8tlfHx7dRXO5+HTIR+vXmT9XmhuZWxwIAS1B4AcDLnEjZrvQP2ikmP1kHTEXtbDtNNzVpYnUsALAMhRcAvEjm/t/k/Li9KrmOareJ1aHOM3R9gyusjgUAlqLwAoCXcOz8QWZyZ0Uah7aZeGV2/0KNL61rdSwAsByFFwC8wLGtq+Q/vbtClKnfVEs+fWepQa3qVscCALdA4QUAD3d48wKFzOmvIDm1yXaJwu6apVrxcVbHAgC3QeEFAA+Wsi5RkQsT5Kc8rfNpqMpDPld8TEWrYwGAW/GxOgAA4PwcXDpeFRcOlZ/ytMz3OlUbNpeyCwCnwBVeAPBA+758WfE/viJJWuB/qxoP+0QVw4ItTgUA7onCCwCexBjtmfGIqm35UJI0u1x33TzsHYUF+VscDADcF4UXADyFK1+7P71b1ffMlCTNKD9EHYaOVpC/3eJgAODeKLwA4AnynNr94Z2qnvKN8o1Nn8U+rC6Dn5CfnVsxAOBsKLwA4OaMM0N7x9+h6qnrlGPsmlPzeXXvM0w+PjarowGAR6DwAoAbc2Ue14F3b1O1zF+VaQK0qP5r6trlTtlslF0AOFcUXgBwU7mpB3V4fDvFO3cq1ZTTd43H6/Z2Ha2OBQAeh8ILAG7IeWiH0j5op7i8JKWYCP1606dqd2Nzq2MBgEei8AKAm8nY97NyPumoKNcx7TVR2nfbNN3cqJHVsQDAY1F4AcCNpG5dJXtiD0WaDG0z8UrvOlPX1r/E6lgA4NEovADgJo5snKPQrwYrQDn6SXXk3/dzXVmrmtWxAMDjUXgBwA2krPhIFb59RL5y6Tufq1R58AxVj61kdSwA8AoUXgCwkjHaP+9lVdk4RpK0yO8mXT70U8VGhlkcDAC8B4UXAKzicmnv9AdVddtESdLs4C5qkfCuIsoFWJsLALwMhRcArJCXoz0f91e1g/MlSYnl71HHoS8ryN9ucTAA8D4UXgAoZeaEQ/ve76pqx9cp19g1s8pIdb3rIfnZfayOBgBeicILAKXIlX5YSeNvU9WsLcoyAZp/ySvq2b0/jwoGgBJE4QWAUuI8skup79+myrn7dcyE6LvG49W1XQerYwGA16PwAkApyNy7WTkTOyvadUwHTEVtveVTtb/uOqtjAUCZQOEFgBKW+sdy+X7WS+VNpv408Uq9PVE3XVHf6lgAUGZQeAGgBB3a8LnCF9yjAOVqky6Wf9/P1JinpwFAqaLwAkAJObD4HcV897Tscmm1vbHiB09XtZiKVscCgDKHwgsAxc0Y7ftipOJ/HS9JWuTfSg0TPlFUeIjFwQCgbKLwAkBxysvRvk8HKX7fXEnS56F91Pre1xUa5G9xMAAouyi8AFBMzIk07X+/m+KPr1Oe8VFi9Ah1HfKEAnx5ehoAWInCCwDFID8tSYfea6/47G3KMgGafdF/1KvXIPn48EAJALAahRcALpAz6XelT+ik2LwUHTZh+q7xu+rdrr3VsQAA/0PhBYAL4Ni6UrbEnqpoMrTLxGjXrZPUqWkTq2MBAP6BwgsA5+nIhs8UtuBe+StXP+ki5XWfrpsuvcjqWACAf6HwAsB5OLjoDcWsfU4+Mlrp01hxd01V7SpRVscCAJwChRcAisLl0t7PHlHVLR9JkuYFtFWjoR8pOqKcxcEAAKdD4QWAc5Xn1J6P+6nawa8lSTPCBqjt0DGssQsAbo7CCwDnwGSnat97d6ha2g/KNXZ9Vvkxdb3rEfn7+lgdDQBwFhReADiL3KO7dfSDTqrq3KV0E6SFl45Rr259ZLOxxi4AeAJLL02sXLlS7du3V1xcnGw2m+bMmXPG8cuXL5fNZjtpS05OLjRu3Lhxql69ugIDA9WkSRNt2LChBL8FAG+Wvft7ZY5roRjnLiWb8lp13afq2r0vZRcAPIilhTczM1NXXHGFxo0bV6Tjtm7dqqSkpIItKur/74yeMWOGRowYoWeffVY//vijrrjiCrVu3VqHDh0q7vgAvNzxTXNlm9hOEa5j2mKqalv7uWp7S2urYwEAisjSKQ1t2rRRmzZtinxcVFSUIiIiTvne66+/rsGDB2vAgAGSpPfee0/z58/Xxx9/rMcff/xC4gIoQ1IWv6mK3z0nu1xaowYK6TtF19eKtzoWAOA8eOTdFg0aNFBsbKxuueUWfffddwX7c3JytHHjRrVs2bJgn4+Pj1q2bKm1a9daERWAp3Hla//0BxT93TOyy6V5fq1U5d4vdTllFwA8lkfdtBYbG6v33ntPV199tZxOpz766CM1b95c69ev15VXXqkjR44oPz9f0dHRhY6Ljo7Wli1bTvu5TqdTTqez4LXD4Six7wDAjeVkad+E3opPWSZJmhZ6l9rd84rCy7HsGAB4Mo8qvHXr1lXdunULXjdr1kw7duzQf//7X02ePPm8P3fUqFF6/vnniyMiAA/lcqQo+f1Ois/8XU7jpxlVnlCPAcNZdgwAvIDH/0neuHFjbd++XZJUsWJF2e12paSkFBqTkpKimJiY037GyJEjlZaWVrDt27evRDMDcC/Og7/p2Fs3KC7zdx0zIZpzxXj1GfQgZRcAvITH/2m+efNmxcbGSpL8/f111VVXaenSpQXvu1wuLV26VE2bNj3tZwQEBCgsLKzQBqBsSPt9ifI+vEUV85K128To+5s+U/fbu7LsGAB4EUunNGRkZBRcnZWkXbt2afPmzYqMjFTVqlU1cuRIHThwQJMmTZIkvfHGG6pRo4bq1aunEydO6KOPPtKyZcv0zTffFHzGiBEj1K9fP1199dVq3Lix3njjDWVmZhas2gAAf0tZ9Ykilz4sP+XpR9VVfrepal3vIqtjAQCKmaWF94cfflCLFi0KXo8YMUKS1K9fP02cOFFJSUnau3dvwfs5OTl66KGHdODAAQUHB+vyyy/XkiVLCn1G9+7ddfjwYT3zzDNKTk5WgwYNtHDhwpNuZANQhhmj/bOfUZWf35IkLbVfp+oDJ6pWXCWLgwEASoLNGGOsDuFuHA6HwsPDlZaWxvQGwNvkObV34iBV3f+lJOnzoK5qfu/bqhgaZHEwAEBRFKWvedQqDQBwIUzGYSV9cIeqOn5SnvFRYtRwdRnylAL97FZHAwCUIAovgDIhJ/kPOSbcrrjcg3KYYM27eJR6de8nHx9uTgMAb0fhBeD1HL99I/vn/VXRZGqPidLm6z9Qr5Ytzn4gAMArUHgBeLVDy8YpcuVT8pVLG83FOnHHp+p4+cVWxwIAlCIKLwDv5MrXgRkjVHnrREnS1/bmqj1wgq6Kq2htLgBAqaPwAvA+znTt/6iXqhxeKUmaGtJPre8eo4qhgRYHAwBYgcILwKvkH9ujIx92VpXsHTph/JRY5Sn16H8fKzEAQBlG4QXgNbJ2rlPulB6Kdh3XIROhbxu+qX4dO/KYYAAo4yi8ALzC0fXTFfr1fQpWrv4w1XSwzUR1v+ZKq2MBANwAhReAZzNGB796QXE/vi5JWmW7SuF9J+vmmpUtDgYAcBcUXgCeK/eE9k8apCr7vpIkfRHQSU3vHqe4yBCLgwEA3AmFF4BHMo4kJX/YRVXSf1WusWt6xft1x5CnVC6AP9YAAIXxNwMAj+Pcu1HZk7opNu+IUk05zb/kFfXudqfsPCYYAHAKFF4AHiV1Q6KCFtyvCDm13VTWluYfqHeL66yOBQBwYxReAJ7B5VLyl88qZvNbkqRVaij/Hp/otktqWBwMAODuKLwA3J8zQwcn9lNc0hJJ0kz/zmoy+G1VrRRqcTAAgCeg8AJwa65je3Tko9sVl7VdTuOrqZVGqOugRxUa6Gd1NACAh6DwAnBbWdtXK29ab0W5UnXYhGth/dfU744u3JwGACgSCi8At3R01QSFLX1UwcrTb6a69reeoD7NrrY6FgDAA1F4AbiX/Dwd/PwRxf3xsSRpqa2povp+rNY14ywOBgDwVBReAO7jRJoOfNRTlY98J0maFtxbN989VtHhwRYHAwB4MgovALeQe+hPHZ/QRZWde5Rt/JVY+Qn1HHC/Av3sVkcDAHg4Ci8Ay6X/Ml8+swYrymTqoInU6qvfUv/bbpPNxs1pAIALR+EFYB1jdPjr0aqw4RX5yOhHU1cZHT5Wt6vqW50MAOBFKLwArJGTqaRP71LsgYWSpLm+rXXJXeN1ZVwFi4MBALwNhRdAqXMd3aUjE7ooNmu7coxdk8on6PbBTyuynL/V0QAAXojCC6BUZW5ZKvNZP0W50nXYhGvexa+of7fu8rX7WB0NAOClKLwASocxOrzkDUV+94LsculnU0sHWn+gATxMAgBQwii8AEpebrYOTrlHcXvmSJLm+7RQtb7vq031aGtzAQDKBAovgBLlOr5Phyd0U1zG78ozPpocPkTtBz+viqGBVkcDAJQRFF4AJSZr2yrlJd6p6PxUHTMh+vKil3Vnzz7yY74uAKAUUXgBlIjD376r8iueUrDy9Yepph03faD+N15jdSwAQBlE4QVQvHJP6OD0+xS38zNJ0mKfaxXV+0PdVquyxcEAAGUVhRdAsTGp+3RoQnfFpf8ml7FpWmh/tRo8SlHhQVZHAwCUYRReAMUi+89vlTejv6LzU3XchGh2zRd0Z+8B8vdlvi4AwFoUXgAXxhgdWfyayq/5j4Lk0m+murY1H6+7WjSzOhkAAJIovAAuhDNDSZMHKnb/QknSPJ/miuv9njrVirU4GAAA/4/CC+C85B/epuMfd1Vs9i7lGLs+DR+qjoOeUlQY83UBAO6FwgugyNI3z5V97j2qaLKUYiK04JJX1L9rN9bXBQC4JQovgHPnylfKl88qevPbkqQfzMU62vYDDWhyhcXBAAA4PQovgHOTdUxJn/RR7OHVkqQv/G5T/f5v6+rKkRYHAwDgzCi8AM4qZ/9mZUzqodicJGUbf02JekjdBz6ksEA/q6MBAHBWFF4AZ3R87SQFL3pIkcrRHhOlNVe9oYG3tZWPj83qaAAAnBMKL4BTyz2h5M+GK2bbdEnSajWUretH6lm/tsXBAAAoGgovgJOY47t15OMeikn/Qy5j0/SgHrph8FjFVwixOhoAAEVG4QVQSOavC6RZQ1TJla7jJkQzqz+nvnfepUA/u9XRAAA4LxReAH9x5evwV8+p0qa3JEk/uWppR4t3Nbh5E9lszNcFAHguCi8AKfOIkj/prZgj6yRJX9jbqM6AN3V7tWiLgwEAcOEovEAZ59y5VtnT+igm77CyTIAmV3pI3e96UBHB/lZHAwCgWFB4gbLKGB1d9pbCVz2vCOVruytOGxq/qcFtb2HJMQCAV6HwAmWRM11Jkwcrdv/XkqRvbM0U1mu8el1c3dpcAACUAAovUMbkJv2mtE97KPbEXuUYu6aEDVG7Qc8qOjzI6mgAAJQICi9QhqSum6LAhSNUUU4dNJFaXG+M+t5xh3ztPlZHAwCgxFB4gbIgN1tJM4YrdnuiJGmNLteJju+r35WXWhwMAICSR+EFvJzr0J86+mkvxWZuK3hq2nUDx6hapTCrowEAUCoovIAXc3w/XX4LHlQlk63DJkxzaj6vPr368dQ0AECZQuEFvFFutlI+e1DR26ZLktaZejp8yzsafN2VFgcDAKD0UXgBL5N/6E8d/7SXov83hWFqQHc1GfCKromNsDoaAACWoPACXsSxYbr8vn5QFf83hWF29ed0Z+9+CvbnVx0AUHbxtyDgDXKzlfzZcMVs+2sVhvXmUh1u9a6GXNvQ4mAAAFiPwgt4uPzD23Tsk56KyfrfFIbA7rqm/ytqwhQGAAAkUXgBj/b3FIa/V2GYXeM59enVX0H+rMIAAMDfKLyAJ8rNVvKM4YrZ/v9TGI62fldDmjGFAQCAf6PwAh7m31MYpgV21zUDXlGTmAirowEA4JYovIAHSdswVf5fP6RKJltHTJjm1HhOvZnCAADAGVF4AU/gzFBS4jDF7potSdpgLtXR1uM0qBkPkgAA4GwovICby92/WY7JfRTr3Kt8Y9O0oJ5q2n+UGjOFAQCAc0LhBdyVMTq67C2FrXpBFZSngyZSi+q8qJ7deirQjykMAACcKwov4I4yjyhp0l2KTVkhSfpWjWTr9I4GNLzY4mAAAHgeCi/gZrL//FY5nw1UbN5ROY2fpoQPVtu7nlZsRLDV0QAA8EgUXsBd5Ofp0FfPqeLmdxQko+2uOG24aqz6t28ru4/N6nQAAHgsHyt/+MqVK9W+fXvFxcXJZrNpzpw5Zxw/a9Ys3XLLLapUqZLCwsLUtGlTLVq0qNCY5557TjabrdB28cX8b2C4N9exPUp56yZFbX5bPjL60udmpfVZrF4d21F2AQC4QJYW3szMTF1xxRUaN27cOY1fuXKlbrnlFi1YsEAbN25UixYt1L59e23atKnQuHr16ikpKalgW716dUnEB4qF48fPlf1OM0Wn/SSHCdKH0U/phocTddVFVayOBgCAV7B0SkObNm3Upk2bcx7/xhtvFHr98ssva+7cufrqq6/UsOH/P1LV19dXMTExxRUTKBk5WUr67EHF/u/xwJtNbe268S0NatFMNhtXdQEAKC6WXuG9UC6XS+np6YqMjCy0f9u2bYqLi1PNmjXVu3dv7d2794yf43Q65XA4Cm1AScpN+lWH/3utYrcnymVsmu5/h4KGLFbnm66l7AIAUMw8uvCOHTtWGRkZ6tatW8G+Jk2aaOLEiVq4cKHGjx+vXbt26frrr1d6evppP2fUqFEKDw8v2OLj40sjPsoiY3RsxXi53m+hStk7dchEaGKt19Xp4Q9Vt3Lk2Y8HAABFZjPGGKtDSJLNZtPs2bPVqVOncxo/bdo0DR48WHPnzlXLli1POy41NVXVqlXT66+/roEDB55yjNPplNPpLHjtcDgUHx+vtLQ0hYWFFel7AKeVeURJkwcpNvlbSdJqNdCJduPUslF9i4MBAOB5HA6HwsPDz6mveeSyZImJiRo0aJBmzpx5xrIrSREREapTp462b99+2jEBAQEKCAgo7phAgczfFilv1j2KzT8mp/HV9NABannXc6oSGWJ1NAAAvJ7HTWmYPn26BgwYoOnTp6tdu3ZnHZ+RkaEdO3YoNja2FNIB/5J7QkkzHlC5md0Unn9M20xlfd7wU9354BjKLgAApcTSK7wZGRmFrrzu2rVLmzdvVmRkpKpWraqRI0fqwIEDmjRpkqS/pjH069dPb775ppo0aaLk5GRJUlBQkMLDwyVJDz/8sNq3b69q1arp4MGDevbZZ2W329WzZ8/S/4Io03IP/qLUyf0Um71DkvSFb1vV7PW6etfkP74AAChNll7h/eGHH9SwYcOCJcVGjBihhg0b6plnnpEkJSUlFVph4YMPPlBeXp4SEhIUGxtbsD3wwAMFY/bv36+ePXuqbt266tatmypUqKB169apUqVKpfvlUHYZoyNL3pT5oIUqZe/QYROmCVVfUetHJqshZRcAgFLnNjetuZOiTIIG/smkJytp0l2KO/ydJGmlGsrZ9m3d0vgyi5MBAOBdvP6mNcAdpf/0pTR3mOJcaTph/DQtYojaDHhKsRHBVkcDAKBMo/ACFyonSwc/e0hx26dJkv4w1fRzk9fU/9aW8vHhIRIAAFiNwgtcAOfeH5U+tZ/inH/NNf/Mr5Pq9XlV3atGWZwMAAD8jcILnA+XS4cXvaqI9WNUUXlKMRFaUPs59ejeV0H+dqvTAQCAf6DwAkVkUvcp+dMBij3+vSRpmRrL3vltDWhwscXJAADAqVB4gXNljFLXT5XfokcVazKVZQKUWCFB7fs/pkphgVanAwAAp0HhBc5F1jEdmHKPKh9cJEn6ydTSzute14CWN8pm48Y0AADcGYUXOIv0XxbINSdBlfOPKdfY9Vm5nmrS9z/qHBNhdTQAAHAOKLzA6TgzdGDmQ6q8PVGStN3EaUPD0erWvr387JY+pBAAABQBhRc4hewda5U1Y6Aq5xyQJH3u1151e49Vr+oxFicDAABFReEF/ikvR0lfPquon99TkFw6YCpoSZ1n1b3bnQr0Y7kxAAA8EYUX+J/cpN90bPIAxWZtlSR97XOjynd5Q/0urWlxMgAAcCEovIDLpUOL/6uItaMUrVwdMyH6ssqj6nznvQoP8rM6HQAAuEAUXpRp+cf2KGXSAMWlbpQkrVJD5bZ7U/0bX2FxMgAAUFwovCibjNHR7yYqaOkTijNZyjQB+rziULXp97iiwoKsTgcAAIoRhRdljklP0YEp96hKyjJJ0iZTRweav6G+zZvxEAkAALwQhRdlyvENifJd+IiquBzKMXbNDO2r6/u9qIaVQq2OBgAASgiFF2WCyTis/VMTFJ/016OB/zDV9GvjV9Sjza2y+3BVFwAAb0bhhddL3fiFfOaPULwrVXnGR5+X66Gr+7ykrrEVrI4GAABKAYUXXstkHtX+acMUf2CBJGmriddPV49Sl7bt5MujgQEAKDMovPBKqZvmyDZvuOLzjyvf2PRFcFc17DNK3eIqWh0NAACUMgovvIrJOq590x9Q1X1zJUnbTWX9eOXL6nxbB/lxVRcAgDKJwguvkfbzfJm596lq/lHlG5tmB92u+r1Hq1t8lNXRAACAhSi88Hwn0rR3+nBV3TNLkrTTxOr7K/6j2zt25qouAACg8MKzOX5dqPw5w1Q177BcxqbZgR11Se8x6l412upoAADATVB44Zmc6dqb+JCq7pohSdpjorX28pd0e8cu8vflqi4AAPh/FF54nLRfvlb+3PtVNe+QJGm2f3vV6fWqelSPtTgZAABwRxReeAyTdUz7pj+oqvvmSJL2mCitrfecOt/eQwG+dmvDAQAAt0XhhUc4tvEL2ec/pKqu43IZm+YEdlDdnq9wVRcAAJwVhRduzZV+SPumJqha8jeS/lpXd3PDF9WxPSswAACAc0PhhXsyRkfWTpH/kidUzeVQnvHR7HJd1bD3f9SlciWr0wEAAA9C4YXbyU89oANT7lHVIyslSX+YatrSZLRuv7WN7D42i9MBAABPQ+GF+zBGKcs/UMjK51TVZMlpfDUnrLeu6fOCOkdFWJ0OAAB4KAov3ELukV1KnjJE8akbJEk/mYu07/pX1e3m5rLZuKoLAADOH4UX1nK5dHDxm4pcO0rxcirb+Gtu5F26se/TuqJ8iNXpAACAF6DwwjLO5C06PHWwqqT/LEn6QZfqeMvX1P26plzVBQAAxYbCi9KXl6N9815W9Oa3VUV5SjdBmhd9j27p85iuDg2yOh0AAPAyFF6Uqoxta5Tx+b2Kd+6SJH1na6i8dq+rZ6MrLU4GAAC8FYUXpcKcSNOezx5X1Z3TFSKjIyZMS6o9qDY9hik82N/qeAAAwItReFHijm6cI9uCh1Q9/4gkaaHvTYq6Y6x6XFLL4mQAAKAsoPCixOSnJWnv1GGqcWiJJGmPidb39Z9R+849FeBrtzgdAAAoKyi8KH4ul5K+fV+hq19UDZOpPOOjr8rdoct6v6wulaOsTgcAAMoYCi+KlTPpD6VMG6qq6ZskSb+YWtp73Wh1vPkW+fBYYAAAYAEKL4pHXo72fPkfxf78jqoqT5kmQPMrDtSNfZ7SZRHlrE4HAADKMAovLpjjz++U+UWCqv1vqbE1tiuV23asujW+yuJkAAAAFF5cAJOdql2fjVT1XdMV9r+lxr6tPkK39khQaBBLjQEAAPdA4UXRGaND62fI75uRquk6Jkla5HezoruMVde6NS0OBwAAUBiFF0XiPLxDSdOGqfrxNZKkXSZGmy97Ru069ZS/r4/F6QAAAE5G4cW5ycvRnnmjFbP5bVVXjpzGV/PDe+iqXi+oc0wFq9MBAACcFoUXZ5X6x3KdmH2/quXskSR9b7tM6S1fUedrm8lmY6kxAADg3ii8OC1XxhHtmv6Qah2YI0k6YsK0vPpwtepxn8K4KQ0AAHgICi9OZowOLP9IoStfUC3jkCR9HXCrqnYboy61qlkcDgAAoGgovCgk68CvOjI9QVUzNkuS/jRVta3xi7q1TUfZeVIaAADwQBReSJJMTqZ2zXpeVbd8pKrKV5YJ0MJKA3Rt76fUrnyo1fEAAADOG4UXOrLpK5n5D6tmXrIkaZW9keztxur2KxtYGwwAAKAYUHjLsJxj+7Rv+nDVOrxEknTQVND6ix9Xmy4DFehntzgdAABA8aDwlkV5Odo9/1VFb3pLtXRCecZHC0M66ZJeo9S5cozV6QAAAIoVhbeMOfbLYuV8NULVc/ZKkjbrYh258T9q1+Jm1tQFAABeicJbRuQc26+9iSNU+9AiSX+tqbuq+v26qfsDahDMmroAAMB7UXi9XX6uds9/TVE/vqHayla+sWlR8G2q2W2UOteItzodAABAiaPwerFjvy6V88sRqp6zW5L0s+ro0I0v69bmLeXDmroAAKCMoPB6odzUg9ozfYRqp3wtSTpqQrWq2jC16PGgLg8OsDgdAABA6aLwepP8PO1e8LoqbXxdtZUtl7Hpm+C2qtZllDrxSGAAAFBGUXi9xLHfl+vE3AdV3blTkvSLaiv5+pfU6qZbmb4AAADKNAqvh8tNPajdiQ/rouT5kqTjJkQrqiaoRY+HdFk5pi8AAABQeD1VXo52zh+r6E1v6aL/TV9YHHSrqnYdrU61qludDgAAwG1QeD3QoR/nyfX1Y6qZu1+S9KtqK+m6F3TLzW2ZvgAAAPAvFF4Pkp38pw7OGKFax1dJ+uvhEd9Vv0/Nuz+g+qy+AAAAcEoUXg9gnOna/sULqvbnx6qlPOUauxaHdlTdbi+pY9XKVscDAABwaxRed2aM9q+apODlz+si11FJ0nqfBspp+bLaNG0mm43pCwAAAGfjY+UPX7lypdq3b6+4uDjZbDbNmTPnrMcsX75cV155pQICAlS7dm1NnDjxpDHjxo1T9erVFRgYqCZNmmjDhg3FH76EOXb+oN1jb1CVZfcr0nVU+0yU5l06Vlc8vlTXN7uWsgsAAHCOLC28mZmZuuKKKzRu3LhzGr9r1y61a9dOLVq00ObNmzV8+HANGjRIixYtKhgzY8YMjRgxQs8++6x+/PFHXXHFFWrdurUOHTpUUl+jWOWlH9afHw1UyKSWqp75s7JMgL6sMFA+923Qbd0GK9Cfi/IAAABFYTPGGKtDSJLNZtPs2bPVqVOn04557LHHNH/+fP36668F+3r06KHU1FQtXLhQktSkSRM1atRI77zzjiTJ5XIpPj5e9913nx5//PFzyuJwOBQeHq60tDSFhYWd/5cqivw87Vz0tip9P1ahJkOS9K3fDQrvMEpXXla/dDIAAAB4iKL0NY+6XLh27Vq1bNmy0L7WrVtr+PDhkqScnBxt3LhRI0eOLHjfx8dHLVu21Nq1a0szapEc/mWJcr56RDVz/npK2hZV055Gz+rmWzvL127pRXgAAACP51GFNzk5WdHR0YX2RUdHy+FwKDs7W8ePH1d+fv4px2zZsuW0n+t0OuV0OgteOxyO4g1+BulpxxTwRR9VUpaOmxCtjL9HN3R/WBeHBpVaBgAAAG/mUYW3pIwaNUrPP/+8JT87NDxSi6reLR3ZpmpdXlbHmtUsyQEAAOCtPKrwxsTEKCUlpdC+lJQUhYWFKSgoSHa7XXa7/ZRjYmJiTvu5I0eO1IgRIwpeOxwOxcfHF2/4M2jR9xn52W2svAAAAFACPGqCaNOmTbV06dJC+xYvXqymTZtKkvz9/XXVVVcVGuNyubR06dKCMacSEBCgsLCwQltp8vf1oewCAACUEEsLb0ZGhjZv3qzNmzdL+mvZsc2bN2vv3r2S/rry2rdv34Lx99xzj3bu3KlHH31UW7Zs0bvvvqvPPvtMDz74YMGYESNG6MMPP9Snn36qP/74Q0OHDlVmZqYGDBhQqt8NAAAA7sHSKQ0//PCDWrRoUfD672kF/fr108SJE5WUlFRQfiWpRo0amj9/vh588EG9+eabqlKlij766CO1bt26YEz37t11+PBhPfPMM0pOTlaDBg20cOHCk25kAwAAQNngNuvwuhNL1uEFAADAOStKX/OoObwAAABAUVF4AQAA4NUovAAAAPBqFF4AAAB4NQovAAAAvBqFFwAAAF6NwgsAAACvRuEFAACAV6PwAgAAwKtReAEAAODVKLwAAADwahReAAAAeDUKLwAAALwahRcAAABejcILAAAAr0bhBQAAgFej8AIAAMCrUXgBAADg1Si8AAAA8GoUXgAAAHg1Ci8AAAC8mq/VAdyRMUaS5HA4LE4CAACAU/m7p/3d286EwnsK6enpkqT4+HiLkwAAAOBM0tPTFR4efsYxNnMutbiMcblcOnjwoEJDQ2Wz2Ur85zkcDsXHx2vfvn0KCwsr8Z+H4sc59HycQ8/G+fN8nEPPV9rn0Bij9PR0xcXFycfnzLN0ucJ7Cj4+PqpSpUqp/9ywsDB+yT0c59DzcQ49G+fP83EOPV9pnsOzXdn9GzetAQAAwKtReAEAAODVKLxuICAgQM8++6wCAgKsjoLzxDn0fJxDz8b583ycQ8/nzueQm9YAAADg1bjCCwAAAK9G4QUAAIBXo/ACAADAq1F4AQAA4NUovKVk3Lhxql69ugIDA9WkSRNt2LDhjONnzpypiy++WIGBgbrsssu0YMGCUkqK0ynKOfzwww91/fXXq3z58ipfvrxatmx51nOOklfU38O/JSYmymazqVOnTiUbEGdU1POXmpqqhIQExcbGKiAgQHXq1OHPUosV9Ry+8cYbqlu3roKCghQfH68HH3xQJ06cKKW0+KeVK1eqffv2iouLk81m05w5c856zPLly3XllVcqICBAtWvX1sSJE0s852kZlLjExETj7+9vPv74Y/Pbb7+ZwYMHm4iICJOSknLK8d99952x2+1mzJgx5vfffzdPPfWU8fPzM7/88kspJ8ffinoOe/XqZcaNG2c2bdpk/vjjD9O/f38THh5u9u/fX8rJ8beinsO/7dq1y1SuXNlcf/31pmPHjqUTFicp6vlzOp3m6quvNm3btjWrV682u3btMsuXLzebN28u5eT4W1HP4dSpU01AQICZOnWq2bVrl1m0aJGJjY01Dz74YCknhzHGLFiwwDz55JNm1qxZRpKZPXv2Gcfv3LnTBAcHmxEjRpjff//dvP3228Zut5uFCxeWTuB/ofCWgsaNG5uEhISC1/n5+SYuLs6MGjXqlOO7detm2rVrV2hfkyZNzN13312iOXF6RT2H/5aXl2dCQ0PNp59+WlIRcRbncw7z8vJMs2bNzEcffWT69etH4bVQUc/f+PHjTc2aNU1OTk5pRcRZFPUcJiQkmJtuuqnQvhEjRphrr722RHPi7M6l8D766KOmXr16hfZ1797dtG7dugSTnR5TGkpYTk6ONm7cqJYtWxbs8/HxUcuWLbV27dpTHrN27dpC4yWpdevWpx2PknU+5/DfsrKylJubq8jIyJKKiTM433P4wgsvKCoqSgMHDiyNmDiN8zl/X375pZo2baqEhARFR0erfv36evnll5Wfn19asfEP53MOmzVrpo0bNxZMe9i5c6cWLFigtm3blkpmXBh36zK+lvzUMuTIkSPKz89XdHR0of3R0dHasmXLKY9JTk4+5fjk5OQSy4nTO59z+G+PPfaY4uLiTvrlR+k4n3O4evVqTZgwQZs3by6FhDiT8zl/O3fu1LJly9S7d28tWLBA27dv17333qvc3Fw9++yzpREb/3A+57BXr146cuSIrrvuOhljlJeXp3vuuUdPPPFEaUTGBTpdl3E4HMrOzlZQUFCp5uEKL1DCRo8ercTERM2ePVuBgYFWx8E5SE9PV58+ffThhx+qYsWKVsfBeXC5XIqKitIHH3ygq666St27d9eTTz6p9957z+poOEfLly/Xyy+/rHfffVc//vijZs2apfnz5+vFF1+0Oho8EFd4S1jFihVlt9uVkpJSaH9KSopiYmJOeUxMTEyRxqNknc85/NvYsWM1evRoLVmyRJdffnlJxsQZFPUc7tixQ7t371b79u0L9rlcLkmSr6+vtm7dqlq1apVsaBQ4n9/B2NhY+fn5yW63F+y75JJLlJycrJycHPn7+5doZhR2Pufw6aefVp8+fTRo0CBJ0mWXXabMzEwNGTJETz75pHx8uGbnzk7XZcLCwkr96q7EFd4S5+/vr6uuukpLly4t2OdyubR06VI1bdr0lMc0bdq00HhJWrx48WnHo2SdzzmUpDFjxujFF1/UwoULdfXVV5dGVJxGUc/hxRdfrF9++UWbN28u2Dp06KAWLVpo8+bNio+PL834Zd75/A5ee+212r59e8F/qEjSn3/+qdjYWMquBc7nHGZlZZ1Uav/+DxhjTMmFRbFwuy5jya1yZUxiYqIJCAgwEydONL///rsZMmSIiYiIMMnJycYYY/r06WMef/zxgvHfffed8fX1NWPHjjV//PGHefbZZ1mWzGJFPYejR482/v7+5vPPPzdJSUkFW3p6ulVfocwr6jn8N1ZpsFZRz9/evXtNaGioGTZsmNm6dauZN2+eiYqKMi+99JJVX6HMK+o5fPbZZ01oaKiZPn262blzp/nmm29MrVq1TLdu3az6CmVaenq62bRpk9m0aZORZF5//XWzadMms2fPHmOMMY8//rjp06dPwfi/lyV75JFHzB9//GHGjRvHsmRlwdtvv22qVq1q/P39TePGjc26desK3rvxxhtNv379Co3/7LPPTJ06dYy/v7+pV6+emT9/fiknxr8V5RxWq1bNSDppe/bZZ0s/OAoU9ffwnyi81ivq+VuzZo1p0qSJCQgIMDVr1jT/+c9/TF5eXimnxj8V5Rzm5uaa5557ztSqVcsEBgaa+Ph4c++995rjx4+XfnCYb7/99pR/r/19zvr162duvPHGk45p0KCB8ff3NzVr1jSffPJJqef+m80Y/r8AAAAAvBdzeAEAAODVKLwAAADwahReAAAAeDUKLwAAALwahRcAAABejcILAAAAr0bhBQAAgFej8AIAAMCrUXgBAADg1Si8AAAA8GoUXgDwUocPH1ZMTIxefvnlgn1r1qyRv7+/li5damEyAChdNmOMsToEAKBkLFiwQJ06ddKaNWtUt25dNWjQQB07dtTrr79udTQAKDUUXgDwcgkJCVqyZImuvvpq/fLLL/r+++8VEBBgdSwAKDUUXgDwctnZ2apfv7727dunjRs36rLLLrM6EgCUKubwAoCX27Fjhw4ePCiXy6Xdu3dbHQcASh1XeAHAi+Xk5Khx48Zq0KCB6tatqzfeeEO//PKLoqKirI4GAKWGwgsAXuyRRx7R559/rp9++kkhISG68cYbFR4ernnz5lkdDQBKDVMaAMBLLV++XG+88YYmT56ssLAw+fj4aPLkyVq1apXGjx9vdTwAKDVc4QUAAIBX4wovAAAAvBqFFwAAAF6NwgsAAACvRuEFAACAV6PwAgAAwKtReAEAAODVKLwAAADwahReAAAAeDUKLwAAALwahRcAAABejcILAAAAr0bhBQAAgFf7P8ETwIgDz/X3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from pina.plotter import Plotter\n", "\n", "# plotting the loss\n", "plotter = Plotter()\n", - "plotter.plot_loss(pinn)" - ], - "outputs": [], - "metadata": {} + "plotter.plot(trainer=trainer)" + ] }, { "cell_type": "markdown", + "id": "7693a9f2", + "metadata": {}, "source": [ - "We have a very smooth loss decreasing!" + "The solution is completely overlapped with the actual one. We can also plot easily the loss:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "d18e866e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGwCAYAAABFFQqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNtUlEQVR4nO3deVxU5f4H8M+ZgRlANmGQfVERFNkUEHE3KTXTtEzLFrRu3srMxBa1W7bcm93Kfl6vU/e2eK1bN01LbTGzSEQNNxQVQRBFFhEQkV22mfP7g5wkJRBmOLN83q/XvF5yzuGc73kcmA/nPM9zBFEURRARERFZIJnUBRARERFJhUGIiIiILBaDEBEREVksBiEiIiKyWAxCREREZLEYhIiIiMhiMQgRERGRxbKSugBjp9VqUVxcDAcHBwiCIHU5RERE1AmiKKKmpgZeXl6Qydq/7sMg1IHi4mL4+vpKXQYRERF1QWFhIXx8fNpdzyDUAQcHBwCtDeno6ChxNURERNQZ1dXV8PX11X2Ot4dBqANXb4c5OjoyCBEREZmYjrq1sLM0ERERWSwGISIiIrJYDEJERERksRiEiIiIyGIxCBEREZHFYhAiIiIii8UgRERERBaLQYiIiIgslkUEoW+//RbBwcEYMGAAPvzwQ6nLISIiIiNh9jNLt7S0IDExEbt27YKTkxOioqIwY8YMuLq6Sl0aERERSczsrwgdPHgQgwcPhre3N+zt7TF58mTs3LlT6rKIiIjICBh9EEpJScHUqVPh5eUFQRCwdevW67ZRq9UICAiAjY0NYmNjcfDgQd264uJieHt767729vbG+fPne6J0IiIiMnJGH4Tq6uoQEREBtVp9w/UbN25EYmIiVqxYgSNHjiAiIgITJ05EWVlZD1d6czRaEXnldSivbZS6FCIiIotl9EFo8uTJ+Otf/4oZM2bccP0777yDRx99FPPmzUNISAj+9a9/wc7ODuvWrQMAeHl5tbkCdP78eXh5ebV7vMbGRlRXV7d5GcKiDUcx/u1kbD3Kq1NERERSMfog9EeampqQlpaG+Ph43TKZTIb4+HikpqYCAIYNG4aMjAycP38etbW1+P777zFx4sR297ly5Uo4OTnpXr6+vgapvb+bPQAgp7TGIPsnIiKijpl0ECovL4dGo4G7u3ub5e7u7igpKQEAWFlZYdWqVRg/fjwiIyOxZMmSPxwxtmzZMlRVVelehYWFBqk92MMBAJBdWmuQ/RMREVHHzH74PABMmzYN06ZN69S2SqUSSqXSwBUBQe6tQeh0aQ20WhEymWDwYxIREVFbJn1FSKVSQS6Xo7S0tM3y0tJSeHh4dGvfarUaISEhiImJ6dZ+2hPgageFXIb6Jg3OV14xyDGIiIjoj5l0EFIoFIiKikJSUpJumVarRVJSEuLi4rq17wULFiAzMxOHDh3qbpk3ZCWXoX+f1n5C2SXsJ0RERCQFow9CtbW1SE9PR3p6OgAgLy8P6enpKCgoAAAkJibigw8+wMcff4ysrCw8/vjjqKurw7x58ySsunOC3X8NQuwwTUREJAmj7yN0+PBhjB8/Xvd1YmIiACAhIQHr16/H7NmzcfHiRbz00ksoKSlBZGQkduzYcV0HamMU9GuHaY4cIyIikobRB6Fx48ZBFMU/3ObJJ5/Ek08+qdfjqtVqqNVqaDQave73WsG/dpjmrTEiIiJpGP2tMakYuo8Q8NvIsbMX69Cs0RrsOERERHRjDEIS8na2RS+FHE0aLfIv1UldDhERkcVhEJKQTCZggO72GCdWJCIi6mkMQu0w9DxCV/3WT8gwzzQjIiKi9jEItaMn+ggB144c4xUhIiKinsYgJLGBumeOceQYERFRT2MQktjVkWPnLtWhodlwQ/WJiIjoegxCElPZK+DSSwFRBE7z9hgREVGPYhBqR091lhYE4bcO07w9RkRE1KMYhNrRU52lASCYj9ogIiKSBIOQEbjaT+gUH7VBRETUoxiEjIDuihCDEBERUY9iEDICQe72AICS6gZU1TdLXA0REZHlYBBqR091lgYABxtreDvbAmCHaSIiop7EINSOnuwsDfx2e4yP2iAiIuo5DEJGIohD6ImIiHocg5CRGKjrMM1JFYmIiHoKg5CR+G0IfTVEUZS4GiIiIsvAIGQk+vfpBblMQHVDC0qqG6Quh4iIyCIwCBkJpZUcA/q0DqM/XlQlcTVERESWgUGoHT05fP6qCB9nAMCxwsoeOyYREZElYxBqR08PnweASD9nAEA6gxAREVGPYBAyIpG+zgBab41ptewwTUREZGgMQkZkQB972FrLUdvYgjMXOYyeiIjI0BiEjIiVXIYwHycAwOH8yxJXQ0REZP4YhIxMXD9XAMDe3HKJKyEiIjJ/DEJGZkyQCgCwL7ccGvYTIiIiMigGISMT4eMMB6UVKuubcbyoUupyiIiIzBqDkJGxksswbmAfAMDXx4olroaIiMi8MQi1Q4oJFa+aMcQLAPB1ejGaNdoePz4REZGlYBBqhxQTKl41eoAbVPZKXKprwtaj53v8+ERERJaCQcgIWctleHR0XwDA6p9Oo7qhWeKKiIiIzBODkJF6MM4fPr1tcb7yCp76/CgamjVSl0RERGR2GISMlJ3CCv+4dwhsrGVIzr6Iyf/Yg2+PF6OFfYaIiIj0RhBFkZPV/IHq6mo4OTmhqqoKjo6OPX78g3kVePJ/R1BW0wgA8HSywd1DfXB3lA/6qnr1eD1ERESmoLOf3wxCHZA6CAFAdUMzPtyTh/8dyEd5bZNueZR/b9w91Ad3RHjC0cZaktqIiIiMEYOQnhhDELqqsUWDnzLLsDmtELtzLuLqxNNKKxluG+yBmVE+GBWoglwmSFonERGR1BiE9MSYgtC1yqobsDX9PDanFSGn9Lcn1Xs42uCuod64O8oH/d3sJayQiIhIOgxCemKsQegqURSRcb4am9IK8fWxYlTW/zbUfqifM+6J9sWUcN46IyIiy8IgpCfGHoSu1diiQVJWGTanFSE5u6zNrbNJoa23zkb2V0HGW2dERGTmGIT0xJSC0LXKqhuw5eh5bEorQm7Zb7fOfF1sMWeYP2ZF+8DVXilhhURERIbDIKQnphqErhJFEceLqrAprRDb0otR09ACAFDIW68SPTDcHzEBvSEIvEpERETmg0Gom9RqNdRqNTQaDXJyckw2CF3rSpMG3xwvxmf783GsqEq3PMjdHvfH+mPGUG/2JSIiIrPAIKQnpn5FqD0niqrw2YF8bEsvxpVfH99hay3HnZFeeGC4P0K9nSSukIiIqOsYhPTEXIPQVVVXmrH16Hl8uj8fp6/pSzTEzxkPDvfH7WGesLGWS1ghERHRzWMQ0hNzD0JXiaKIQ+cu49P9+fg+4wKaNa1vC5deCsyO8cWcYX7wdbGTuEoiIqLOYRDSE0sJQte6WNOIjYcK8NmBAlyoagAACAIwYWAfPDDcH2MGuHEIPhERGTUGIT2xxCB0VYtGi6RTZfhvaj725pbrlge42uGB4f6YGeUDZzuFhBUSERHdGIOQnlhyELrWmYu1+HR/PjanFemG4CutZLgz0gsPDg9AmA87VxMRkfFgENITBqG26ptasC29GJ+k5iPrQrVueaRva+fqKeHsXE1ERNJjENITBqEbE0URRwou45PUfGw/0bZz9axoX9wfy87VREQkHQYhPWEQ6tjFmkZ8cbgQn+3PR/E1natvCe6DB+L8MZadq4mIqIcxCOkJg1DntWi0+PlUGf67Px97Tv/WudrPxQ4PDPfDrGhfdq4mIqIewSCkJwxCXXP2Yi0+3V+ATWmFbTpXT4vwwsOj+mKQJ9uSiIgMh0FITxiEuqe9ztWTBnvg6VsHYKAH25SIiPSPQUhPGIT0o7VzdSXW7cvD9hMXcPVdNyXME4viByDI3UHaAomIyKwwCOkJg5D+5ZTW4B8/ncZ3Jy4AAGQCMDvGD0tuC4LKXilxdUREZA4YhPSEQchwTpVUY/WPp7HjZAkAwEFphSdvCcTckQFQWnEuIiIi6rrOfn7LerAmycyYMQO9e/fGzJkzpS6FrjHQwxH/ejAKmx6LQ5i3E2oaW7Dy+1OYtHoP9p+9JHV5RERkASwiCC1atAiffPKJ1GVQO2ICXLBtwUi8fU8E+jgokVdeh3vf349lX51AdUOz1OUREZEZs4ggNG7cODg4sDOuMZPJBMyM8sFPS8ZiTqwfAODzgwW49Z3dSMm5KHF1RERkriQPQikpKZg6dSq8vLwgCAK2bt163TZqtRoBAQGwsbFBbGwsDh482POFUo9wtLHG6zPCsGH+cPRV9UJpdSMeWncQK7dnoalFK3V5RERkZiQPQnV1dYiIiIBarb7h+o0bNyIxMRErVqzAkSNHEBERgYkTJ6KsrEy3TWRkJEJDQ697FRcX99RpkJ4N7+eK7xeNxoPD/QEA/045i5n/+gUFl+olroyIiMyJUY0aEwQBW7ZswfTp03XLYmNjERMTg7Vr1wIAtFotfH19sXDhQixdurTT+05OTsbatWuxefPmP9yusbERjY2Nuq+rq6vh6+vLUWMS2pFRgue/PI6qK81wtrPGu3OGYkSgSuqyiIjIiJnFqLGmpiakpaUhPj5et0wmkyE+Ph6pqakGOebKlSvh5OSke/n6+hrkONR5k0I98P2i0YjwcUJlfTMeXHcQH/9yDkaU4YmIyEQZdRAqLy+HRqOBu7t7m+Xu7u4oKSnp9H7i4+Nxzz33YPv27fDx8fnDELVs2TJUVVXpXoWFhV2un/THy9kWG/8chxlDvKHRiljx9Um8/PVJaLUMQ0RE1HVWUhfQE3766adOb6tUKqFUcnZjY2RjLcc7syIw0MMBb+w4hY9T81FR34xV90RAYWXUmZ6IiIyUUX96qFQqyOVylJaWtlleWloKDw8Pgx5brVYjJCQEMTExBj0O3RxBEPDnsf3xj3uHwFou4JtjxXjk40Ooa2yRujQiIjJBRh2EFAoFoqKikJSUpFum1WqRlJSEuLg4gx57wYIFyMzMxKFDhwx6HOqaaRFe+CghBnYKOfacLse8/xxCfRPDEBER3RzJg1BtbS3S09ORnp4OAMjLy0N6ejoKCgoAAImJifjggw/w8ccfIysrC48//jjq6uowb948CasmYzAmyA2f/SkWDjZWOHiuAo+sP4wrTRqpyyIiIhMi+fD55ORkjB8//rrlCQkJWL9+PQBg7dq1eOutt1BSUoLIyEisWbMGsbGxPVIfH7pq/I4WXMaDHx1EbWMLRg9Q4YOHomFjzYe2EhFZMj59vpvUajXUajU0Gg1ycnIYhIzc4XMVeGjdQdQ3aTA51ANr5wyFXCZIXRYREUmEQUhPeEXIdKSeuYSEdQfRpNFi7ogArJgaAkFgGCIiskRmMaEi0c2I6++KVbMiAADrfzmHD/fkSVwREREZOwYhMitTI7zwwu2DAAB/256FHRmdn3iTiIgsD4NQOziPkOn60+i+SIhrfVjrki/SkVNaI3FFRERkrNhHqAPsI2SamjVaPPTRQaSevYQAVztsWzAKTnbWUpdFREQ9hH2EyKJZy2VQ3z8U3s62OHepHk9tOAoNn0tGRES/wyBEZsullwLvPxQFG2sZdudcxD9/Pi11SUREZGQYhMisDfZywsq7wgAAa5JOI/XMJYkrIiIiY8Ig1A52ljYfM4b4YGaUD7QisGjDUVyqbZS6JCIiMhLsLN0BdpY2D/VNLZj6z704c7EO44LdsC4hBjLOPE1EZLbYWZroGnYKK6ydMxQKKxmSsy9i3T5OtkhERAxCZEEGeTrixTtCAABv/pCN3DLOL0REZOkYhMiiPBDrhzFBbmhq0SLxi2No1milLomIiCTEINQOdpY2T4Ig4M27w+FoY4XjRVVQ78qVuiQiIpIQO0t3gJ2lzdO29PNYtCEdVjIBW54YiTAfJ6lLIiIiPWJnaaI/MC3CC1PCPNGiFZH4RToamjVSl0RERBJgECKLJAgCXpseCpW9EqfLanmLjIjIQjEIkcVy6aXAa3cOBgC8l3wGWReqJa6IiIh6GoMQWbTJYZ6YONgdLVoRS788zgezEhFZGAYhsniv3hkKBxsrHCuqwn840SIRkUVhEGoHh89bDndHGyy/fRAA4O2d2Si4VC9xRURE1FM4fL4DHD5vGURRxH0f7Mf+sxUYFajCfx8ZBkHgs8iIiEwVh88T3QRBEPDGXeFQWsmwN7ccm9KKpC6JiIh6AIMQ0a8CVL2w+NYgAMDK7VmoqGuSuCIiIjI0BiGiazwyqi8Gejjgcn0zXt+eJXU5RERkYAxCRNewlsvwtxlhEARgc1oR9p+9JHVJRERkQAxCRL8T5d8b9w3zAwC8sOUEGlv4+A0iInPFIER0A89PHAiVvQJnLtbhg5SzUpdDREQGwiBEdANOdtZ48Y4QAMA/f85F/qU6iSsiIiJDYBBqBydUpGkRXhgVqEJjixZ/2ZoBTrlFRGR+OKFiBzihomXLK6/DxNUpaGrRYs19QzAtwkvqkoiIqBM4oSKRHvRV9cKCcYEAgNe+zUTVlWaJKyIiIn1iECLqwGPj+qGfqhcu1jTi7R+ypS6HiIj0iEGIqANKKzn+OiMUAPDpgXykF1ZKWxAREekNgxBRJ4zor8JdQ7whisDyr06gRaOVuiQiItIDBiGiTlo+ZRCcbK2ReaEa6385J3U5RESkBwxCRJ2ksldi2eSBAIB3fsxBceUViSsiIqLuYhAiugmzon0R7d8b9U0avLTtJOcWIiIycQxCRDdBJhPw+l1hsJIJ+CmrFD+cLJW6JCIi6gYGIaKbFOTugD+P7QcAePnrk6hp4NxCRESmikGIqAsW3jIA/q52KKluwKqdOVKXQ0REXcQgRNQFNtZy/HV669xCH6eewzHOLUREZJIYhNrBh65SR0YPcMP0SC+IIrCMcwsREZkkPnS1A3zoKv2R8tpGTFi1G1VXmvGXKYPwp9H9pC6JiIjAh64S9QiVvRLLb2+dW2jVzhwUXa6XuCIiIroZDEJE3XRPlC+GBbjgSjPnFiIiMjUMQkTdJJMJ+NuMUFjLBfx8qgw7MkqkLomIiDqJQYhIDwa4O+Cxsf0BACu+Polqzi1ERGQSGISI9GTB+EAEuNqhrKYRb/+QLXU5RETUCQxCRHpiYy3H32aEAQD+uz8fRwsuS1wRERF1hEGISI9GBqpw1xBv3dxCzZxbiIjIqDEIEenZC1MGwdnOGqdKarBub57U5RAR0R9gECLSM1d7JZbfPggA8H8/5aCwgnMLEREZKwYhIgO4J8oHw/q6oKFZi79szeDcQkRERopBiMgABEHA6zPCoJDLsDvnIr4+Vix1SUREdAN6CULV1dXYunUrsrKy9LE7IrMQ2MceT94SCAB45ZtMVNQ1SVwRERH9XpeC0KxZs7B27VoAwJUrVxAdHY1Zs2YhPDwcX375pV4LJDJlj43tj2B3B1TUNeG1bzOlLoeIiH6nS0EoJSUFo0ePBgBs2bIFoiiisrISa9aswV//+le9FkhkyhRWMvx9ZjgEAdhy9DySs8ukLomIiK7RpSBUVVUFFxcXAMCOHTtw9913w87ODlOmTMHp06f1WmB3FRYWYty4cQgJCUF4eDg2bdokdUlkYSJ9nTFvRF8AwAtbMlDX2CJxRUREdFWXgpCvry9SU1NRV1eHHTt24LbbbgMAXL58GTY2NnotsLusrKywevVqZGZmYufOnXj66adRV1cndVlkYZ6ZGASf3rY4X3kFb/HxG0RERqNLQejpp5/G/fffDx8fH3h5eWHcuHEAWm+ZhYWF6bO+bvP09ERkZCQAwMPDAyqVChUVFdIWRRbHTmGF1399/MbHqedwhI/fICIyCl0KQk888QRSU1Oxbt067N27FzJZ62769et3032EUlJSMHXqVHh5eUEQBGzduvW6bdRqNQICAmBjY4PY2FgcPHiwK2UjLS0NGo0Gvr6+Xfp+ou4YE+SGu4a2Pn5j6ZfH0dTCx28QEUmty8Pno6OjMWPGDNjb20Oj0SA9PR0jRozAyJEjb2o/dXV1iIiIgFqtvuH6jRs3IjExEStWrMCRI0cQERGBiRMnoqzst06nkZGRCA0Nve5VXPzb3C0VFRV46KGH8P7773fthIn04MUpIXDtpUBOaS3eSz4jdTlERBZPELsw5e3TTz+NsLAwPPLII9BoNBg7dix++eUX2NnZ4dtvv9XdKrvpYgQBW7ZswfTp03XLYmNjERMToxuur9Vq4evri4ULF2Lp0qWd2m9jYyNuvfVWPProo3jwwQc73LaxsVH3dXV1NXx9fVFVVQVHR8ebPymi3/n6WDGe+vworOUCtj81GgPcHaQuiYjI7FRXV8PJyanDz+8uXRHavHkzIiIiAADffPMN8vLycOrUKSxevBgvvPBC1yq+gaamJqSlpSE+Pl63TCaTIT4+HqmpqZ3ahyiKmDt3Lm655ZYOQxAArFy5Ek5OTroXb6ORvk0N98QtA/ugWSNi6VcnoNXy8RtERFLpUhAqLy+Hh4cHAGD79u245557EBQUhIcffhgnTpzQW3Hl5eXQaDRwd3dvs9zd3R0lJSWd2se+ffuwceNGbN26FZGRkYiMjPzDGpctW4aqqirdq7CwsFvnQPR7giDgr9ND0UshR1r+ZXx6IF/qkoiILJZVV77J3d0dmZmZ8PT0xI4dO/Dee+8BAOrr6yGXy/VaYHeNGjUKWm3nO6UqlUoolUoDVkQEeDnb4vnJA/HStpP4+/enMGGQO7ydbaUui4jI4nTpitC8efMwa9YshIaGQhAE3a2rAwcOYODAgXorTqVSQS6Xo7S0tM3y0tJS3RUpQ1Gr1QgJCUFMTIxBj0OW64FYf0T590ZdkwZ/2XKCT6gnIpJAl4LQyy+/jA8//BDz58/Hvn37dFdQ5HJ5pzswd4ZCoUBUVBSSkpJ0y7RaLZKSkhAXF6e349zIggULkJmZiUOHDhn0OGS5ZDIBf7+79Qn1u7L5hHoiIil06dYYAMycOfO6ZQkJCTe9n9raWuTm5uq+zsvLQ3p6OlxcXODn54fExEQkJCQgOjoaw4YNw+rVq1FXV4d58+Z1tXQioxHYxwFP3hKId37MwSvfZGL0ADe49FJIXRYRkcXo8jxCu3fvxtSpUxEYGIjAwEBMmzYNe/bsuen9HD58GEOGDMGQIUMAAImJiRgyZAheeuklAMDs2bPx9ttv46WXXkJkZCTS09OxY8eO6zpQE5kqPqGeiEg6XZpH6NNPP8W8efNw11136SZQ3LdvH7Zs2YL169djzpw5ei+0p6nVaqjVamg0GuTk5HAeITKoowWXcfd7v0ArAuvmRuOWgQz6RETd0dl5hLoUhAYNGoT58+dj8eLFbZa/8847+OCDD5CVlXXzFRupzjYkUXf97btMfLAnD+6OSuxcPBZOttZSl0REZLIMOqHi2bNnMXXq1OuWT5s2DXl5eV3ZJZHFW3JbMPqqeqG0uhErt5vPHxNERMasS0HI19e3zUiuq3766SfOxEzURTbWcvz97nAAwIZDhdhz+qLEFRERmb8ujRpbsmQJnnrqKd2DVoHWPkLr16/HP/7xD70WKJVr+wgR9ZRhfV2QEOePj1PzsfTLE/hh8RjYK7s8uJOIiDrQpT5CALBlyxasWrVK1x9o0KBBePbZZ3HnnXfqtUCpsY8Q9bS6xhZMXJ2CostX8FCcP169M1TqkoiITI5BO0tbEgYhksK+3HLc/+EBAMDG+cMR289V4oqIiEyLQTtLE5FhjQxU4b5hrf3tnvvyOK408RYtEZEhdLrzQe/evSEIQqe2raio6HJBRNRq2e2DkJx9EfmX6rFqZzb+ckeI1CUREZmdTgeh1atXG7AM48PO0iQ1RxtrvD4jDPPWH8JH+/Jwe7gnhvr1lrosIiKzYtA+Qm+88QYee+wxODs7G+oQBsc+QiS1xC/S8dWR8+jv1gvfPTUaNtZyqUsiIjJ6RtFH6PXXX+dtMqJueumOELg5KHHmYh3WJJ2WuhwiIrNi0CDEAWlE3edsp8Bfp7cOof93ylmcKKqSuCIiIvPBUWNEJmDiYA/cEe4JjVbEs5uPoalFK3VJRERmgUGoHWq1GiEhIYiJiZG6FCIAwCvTBsOllwKnSmrwbnKu1OUQEZkFBqF2LFiwAJmZmTh06JDUpRABAFztlXhl2mAAwNqfc5F1oVriioiITB+DEJEJuSPcE7eFuKNFK+K5zcfRouEtMiKi7jBoEBo9ejRsbW0NeQgiiyIIAv46PRROttY4cb4K/9p9RuqSiIhMWpfnEdJqtcjNzUVZWRm02rZ/lY4ZM0YvxRkDziNExmjL0SIs3ngM1nIB2xaMQogX35tERNfq7Od3p2eWvtb+/fsxZ84c5OfnXzdEXhAEzsZMZGDTI72xI6MEP5wsReIX6fj6yVFQWPFONxHRzerSb87HHnsM0dHRyMjIQEVFBS5fvqx7cQJFIsMTBAF/mxGmG0X2z5850SIRUVd0KQidPn0ar7/+OgYNGgRnZ2c4OTm1eZkDDp8nY6eyV+omWnw3+QyOFVZKWxARkQnqUhCKjY1Fbq55z2PC4fNkCm4P88S0CC9otCKWbDqGhmbeliYiuhld6iO0cOFCLFmyBCUlJQgLC4O1tXWb9eHh4Xopjog69uqdg5F69hJyy2qxamc2XpgSInVJREQmo0ujxmSy6y8kCYIAURTNrrM0R42RKUjKKsUjHx+GIABf/DkOMQEuUpdERCQpg44ay8vL63JhRKR/Ewa5454oH2xKK8Izm47h+0WjYafo0o83EZFF6dJvSn9/f33XQUTd9OLUEOzLLUf+pXq88f0pvHpnqNQlEREZvW79yZiZmYmCggI0NTW1WT5t2rRuFUVEN8/RxhpvzozAAx8dwCep+Zg42AMjA1VSl0VEZNS6FITOnj2LGTNm4MSJE7q+QUBrPyEAZtVHiMiUjBqgwgPD/fDp/gI8t/k4vn96NBxtrDv+RiIiC9Wl4fOLFi1C3759UVZWBjs7O5w8eRIpKSmIjo5GcnKynkskopuxbPIg+LnY4XzlFbzydabU5RARGbUuBaHU1FS8+uqrUKlUkMlkkMlkGDVqFFauXImnnnpK3zVKghMqkqnqpbTCqlkRkAnAl0eK8N3xC1KXRERktLoUhDQaDRwcHAAAKpUKxcXFAFo7UWdnZ+uvOglxQkUyZTEBLnhiXCAAYPmWE7hQdUXiioiIjFOXglBoaCiOHTsGoHWW6TfffBP79u3Dq6++in79+um1QCLqmkXxAxDu44SqK814ZtMxaLU3PWUYEZHZ61IQ+stf/gKtVgsAePXVV5GXl4fRo0dj+/btWLNmjV4LJKKusZbLsHp2JGyt5diXewkf7eX8X0REv9elmaVvpKKiAr1799aNHDMXnFmaTN3/DhRg+ZYTUMhl2LpgJEK8+D4mIvPX2c/vLl0Ruio3Nxc//PADrly5AhcXTulPZIzuG+aLW0Pc0aTRYtGGo3wwKxHRNboUhC5duoQJEyYgKCgIt99+Oy5caB2V8sgjj2DJkiV6LZCIukcQBLxxVxhU9kqcLqvFG9+fkrokIiKj0aUgtHjxYlhbW6OgoAB2dna65bNnz8aOHTv0VhwR6YervRJv3RMOAFj/yzkkZ5dJXBERkXHoUhDauXMn/v73v8PHx6fN8gEDBiA/P18vhRGRfo0P7oOEuNbnBD6z6TjKahokroiISHpdCkJ1dXVtrgRdVVFRAaVS2e2iiMgwlt0+CAM9HFBe24jFG9Oh4ZB6IrJwXQpCo0ePxieffKL7WhAEaLVavPnmmxg/frzeiiMi/bKxlmPtnCG6IfXv7sqVuiQiIkl16aGrb775JiZMmIDDhw+jqakJzz33HE6ePImKigrs27dP3zUSkR4F9nHAa9ND8cymY/i/n3IwrK8LYvu5Sl0WEZEkujyzdHZ2NkaNGoU777wTdXV1uOuuu3D06FH0799f3zUSkZ7NjPLBXUO9oRWBpzYcxaXaRqlLIiKSRJcnVGxoaMDx48dRVlamm2X6qmnTpumlOCmp1Wqo1WpoNBrk5ORwQkUyO3WNLZi2di/OXKzDuGA3rEuIgUxmXhOiEpHl6uyEil0KQjt27MCDDz6IiooK/P7bBUGARmM+E7ZxZmkyZ1kXqjFdvQ+NLVosmzwQfx7LK7pEZB4MOrP0woULMWvWLBQXF0Or1bZ5mVMIIjJ3gzwdsWLqYADAmz9k49C5CokrIiLqWV0KQqWlpUhMTIS7u7u+6yGiHnbfMF9Mi/CCRiviic+OoKya8wsRkeXoUhCaOXMmkpOT9VwKEUlBEAS8cXcYgt0dcLGmEU98dgRNLdqOv5GIyAx0qY9QfX097rnnHri5uSEsLAzW1tZt1j/11FN6K1Bq7CNEliKvvA7T1u5FTUMLEuL88cqdoVKXRETUZQbtLP3RRx/hscceg42NDVxdXSEIv400EQQBZ8+e7VrVRohBiCxJUlYpHvn4MADgnVkRuGuoTwffQURknAwahDw8PPDUU09h6dKlkMm6dHfNZDAIkaV558ccrEk6DaWVDF8+PgKh3k5Sl0REdNMMOmqsqakJs2fPNvsQRGSJnp4wAOOD3dDYosVjn6ZxskUiMmtdSjIJCQnYuHGjvmshIiMgkwlYPXsI/F3tUHT5Ch77NA2NLZwWg4jMU5eeNabRaPDmm2/ihx9+QHh4+HWdpd955x29FEdE0nCys8ZHCdGY8e4vOHTuMpZ/lYG37wlv0x+QiMgcdCkInThxAkOGDAEAZGRktFnHX5RE5iGwjwPUc4Zi3vpD+PJIEQL72OPxcZx5mojMS5efNWYp2FmaLN1/U8/hxW0nIQjAe/dHYVKoh9QlERF1yKCdpYnIcjwYF4CEOH+IIrB4YzoyzldJXRIRkd4wCBFRh168IwRjgtxwpVmDuf85hIJL9VKXRESkFwxCRNQhK7kMa+cMwSBPR5TXNuKhdQdQzmH1RGQGzD4IVVZWIjo6GpGRkQgNDcUHH3wgdUlEJsnRxhofz4uBt7Mtzl2qxyPrD6GusUXqsoiIusXsO0trNBo0NjbCzs4OdXV1CA0NxeHDh+Hq6tqp72dnaaK2zlysxcz3fsHl+maMCXLDRwnRsJab/d9URGRi2Fn6V3K5HHZ2dgCAxsZGiKIIM89+RAbV380e6+bGwNZajpSci3hm0zFotPyZIiLTJHkQSklJwdSpU+Hl5QVBELB169brtlGr1QgICICNjQ1iY2Nx8ODBmzpGZWUlIiIi4OPjg2effRYqlUpP1RNZpiF+vfHu/UNhJROwLb0Yy786AS3DEBGZIMmDUF1dHSIiIqBWq2+4fuPGjUhMTMSKFStw5MgRREREYOLEiSgrK9Ntc7X/z+9fxcXFAABnZ2ccO3YMeXl5+N///ofS0tIeOTciczZ+YB+svjcSMgHYeLgQL39zkldbicjkGFUfIUEQsGXLFkyfPl23LDY2FjExMVi7di0AQKvVwtfXFwsXLsTSpUtv+hhPPPEEbrnlFsycOfOG6xsbG9HY+NtomOrqavj6+rKPEFE7vjpShCWbjkEUgflj+mHZ5IGcYZ6IJGcWfYSampqQlpaG+Ph43TKZTIb4+HikpqZ2ah+lpaWoqakBAFRVVSElJQXBwcHtbr9y5Uo4OTnpXr6+vt07CSIzd9dQH7w+IwwA8H7KWazamcMrQ0RkMow6CJWXl0Oj0cDd3b3Ncnd3d5SUlHRqH/n5+Rg9ejQiIiIwevRoLFy4EGFhYe1uv2zZMlRVVelehYWF3ToHIktw3zA/vDw1BACwdlcu3thximGIiExClx66akqGDRuG9PT0Tm+vVCqhVCoNVxCRmZo7si+0IvDqt5n49+6zaGjSYMXUwZDJeJuMiIyXUV8RUqlUkMvl13VuLi0thYeHYR/8qFarERISgpiYGIMeh8icPDyqL16fEQZBAD5OzcfyLSc4tJ6IjJpRByGFQoGoqCgkJSXplmm1WiQlJSEuLs6gx16wYAEyMzNx6NAhgx6HyNzMifXD2zMjIBOADYcKkfhFOpo1WqnLIiK6IclvjdXW1iI3N1f3dV5eHtLT0+Hi4gI/Pz8kJiYiISEB0dHRGDZsGFavXo26ujrMmzdPwqqJ6I/cHeUDG2s5Fm04im3pxaisb8a79w9FL6Xkv3KIiNqQfPh8cnIyxo8ff93yhIQErF+/HgCwdu1avPXWWygpKUFkZCTWrFmD2NjYHqmPj9gg6rqfT5Xiic+OoKFZi3AfJ6ybGwOVPfvgEZHhdfbzW/IgZKzUajXUajU0Gg1ycnIYhIi66GjBZTzy8WFU1DXB39UOH88bhgBVL6nLIiIzxyCkJ7wiRNR9Zy/WIuE/B1FYcQWuvRT4MCEaQ/x6S10WEZkxs5hQkYjMQz83e3z1+EiEejviUl0TZr+/H9vSz0tdFhERgxAR9Qw3ByU2zI9D/CB3NLVosWhDOt764RQf1kpEkmIQagfnESLSP3ulFd5/MAqPj+sPAFDvOoPHP0tDXWOLxJURkaViH6EOsI8QkWF8daQIS788gSaNFgM9HPD+g9Hwc7WTuiwiMhPsI0RERu2uoT74fP5wqOyVOFVSgyn/3IMfM0s7/kYiIj1iECIiyUT598Y3C0diqJ8zahpa8Ognh/H3HafQwpmoiaiHMAgRkaQ8nWyxYX4c5o0MAAC8l3wGD3x0ABdrGqUtjIgsAoNQO9hZmqjnKKxkWDF1MNbOGYJeCjn2n63AlDV7kHrmktSlEZGZY2fpDrCzNFHPyi2rxeOfpuF0WS0EAXh8bH8svjUI1nL+3UZEncfO0kRkkgL72GPbkyNxb4wvRBF4N/kMZv4rFefK66QujYjMEIMQERkdO4UV3rg7HO/ePxSONlY4VliJKWv24Mu0IvAiNhHpE4MQERmt28M8sePpMRjW1wV1TRos2XQMT21IR2V9k9SlEZGZYBBqBztLExkHL2dbfP7ocDxzWxDkMgHfHCvGrf+XgqQszjlERN3HztIdYGdpIuORXliJZzYdQ25ZLQDg7qE+eGlqCJxsrSWujIiMDTtLE5HZifR1xrcLR2H+mH4QBODLI0WYtDoFu3MuSl0aEZkoBiEiMik21nIsv30QNv05DgGudrhQ1YCEdQex7KvjqGlolro8IjIxDEJEZJKiA1zw/aIxmDsiAADw+cFC3PpOCnaeLJG2MCIyKQxCRGSybBVyvDxtMD5/dDj8Xe1QUt2A+f9Nw+OfpqGsukHq8ojIBDAIEZHJi+vvih+eHoPHx/WHXCbg+4wSTHhnN/53oABaLceDEFH7GITaweHzRKbFxlqO5ycNxDdPjkKEjxNqGlqwfMsJ3Pv+ft0oMyKi3+Pw+Q5w+DyR6dFoRaz/5RxW7cxGfZMGCrkMT94SiD+P7QellVzq8oioB3D4PBFZLLlMwCOj+mLn4jEYH+yGJo0W7/yYg8mr92DPaQ61J6LfMAgRkdny6W2HdXNjsOa+IXBzUOJseR0e/OggFnx2BBeqrkhdHhEZAQYhIjJrgiBgWoQXkpaMxbyRAZAJwHcnLmDCqt349+4zaNZopS6RiCTEPkIdYB8hIvOSWVyNF7dlIC3/MgBgQB97vDY9FMP7uUpcGRHpE/sIERHdQIiXIzb9OQ5vzgyHSy8FTpfV4t739+PpDUdRVsO5h4gsDYMQEVkcmUzArGhf/LxkLB4Y7gdBALamF2PC27vxQcpZNLXwdhmRpeCtsQ7w1hiR+TteVIkXt2bgWFEVAKCvqhdevGMQbhnoLnFlRNRVvDXWTZxQkchyhPs4Y8sTI/HmzHCo7JXIK6/Dw+sPY+5/DnIyRiIzxytCHeAVISLLUtPQjLW7crFubx6aNSKsZAISRgTgqQkD4GRrLXV5RNRJnf38ZhDqAIMQkWXKK6/D377LxE9ZZQAAl14KPHNbMGbH+EIuEySujog6wiCkJwxCRJZtd85FvPZtpu4WWYinI1ZMDUEsh9sTGTUGIT1hECKiZo0Wn+7Px//9mIPqhhYAwO1hHnh+0kD4u/aSuDoiuhEGIT1hECKiqy7VNuKdH3Pw+cECaEXAWi4gIS4AC28ZACc79h8iMiYMQnrCIEREv5d1oRqvb8/CntPlAAAnW2s8NWEAHhzuD4UVB+MSGQMGIT1hECKi9uzOuYjXv8tCdmkNAMDf1Q7PTxqIyaEeEAR2qCaSEoOQnjAIEdEf0WhFbDpciFU/5uBiTSMAIMq/N16YMghD/XpLXB2R5WIQ0hMGISLqjLrGFvw75SzeTzmDhubWR3TcEe6J5ycNhK+LncTVEVkeBiE9YRAioptRUtWAd37Mxqa0IogioJDLMHdkABaMC2SHaqIexCCkJwxCRNQVmcWtHar35v7WofqJcf2RMCIANtZyiasjMn8MQnrCIEREXSWKYmuH6u1ZyCltnZDR08kGi+ODcNdQb1jJOcKMyFAYhLpJrVZDrVZDo9EgJyeHQYiIukyjFfHVkSL83485KK5qAAAE9rHHsxODcVuIO0eYERkAg5Ce8IoQEelLQ7MGn+7Px9pduaisbwYADPVzxvOTBvKRHUR6xiCkJwxCRKRv1Q3NeH/3WXy496xuhNktA/vguUnBGOjB3zNE+sAgpCcMQkRkKGXVDfhH0mlsOFQIjVaEIAAzIr2x+NYgDrkn6iYGIT1hECIiQ8srr8PbO7Px3fELAFqH3M+J9cMT4/ujj4ONxNURmSYGIT1hECKinnK8qBJ/33EK+3IvAQBsrGVIGBGAx8b0R+9eComrIzItDEJ6wiBERD1tX2453t6ZjaMFlQAAe6UVHhnVF4+M7gtHG07KSNQZDEJ6wiBERFIQRRG7ssvw9g85yLxQDQBwtrPGn8f0R8IIf9gprCSukMi4MQjpCYMQEUlJqxWx42QJ3vkxB7llrZMyquwVeGJcIObE+nGWaqJ2MAjpCYMQERkDjVbE18fO4/9+PI2CinoArbNUL7xlAO6J9oE1Z6kmaoNBSE8YhIjImDRrtNicVoQ1Sadx4ddZqv1c7LBowgDcGenFx3YQ/YpBSE8YhIjIGDU0a/D5wQKod51BeW0jAKCvqhcWjA/EdAYiIgYhfWEQIiJjVt/Ugo9/ycf7KWdw+dfHdvi72mHB+EDMGOLNW2ZksRiE9IRBiIhMQV1jC/67Px/vp5xFRV0TAMDXxRZPjg/EXUPZh4gsD4OQnjAIEZEpqW9qwae/BqLy2tZA5NPbFgvGB+LuoT5QWDEQkWVgENITBiEiMkVXmjT47EA+/rX7rK4PkbezLR4f1x/3RPtAacVh92TeOvv5bTF/GtTX18Pf3x/PPPOM1KUQERmcrUKOP43uhz3PjceLd4TAzUGJ85VX8JetGRj/VjL+m3oOjS0aqcskkpzFBKG//e1vGD58uNRlEBH1KFuFHI+M6os9z43HiqkhcHdUoriqAS9uO4mxbybj41/OoaGZgYgsl0UEodOnT+PUqVOYPHmy1KUQEUnCxlqOeSP7Yvez4/HqnYPh4WiDkuoGrPj6JEb9fRf+tfsMahqapS6TqMdJHoRSUlIwdepUeHl5QRAEbN269bpt1Go1AgICYGNjg9jYWBw8ePCmjvHMM89g5cqVeqqYiMh02VjL8VBcAHY/Nw6vTQ+Ft7Mtymsb8cb3pzDyjZ+xame2btQZkSWQPAjV1dUhIiICarX6hus3btyIxMRErFixAkeOHEFERAQmTpyIsrIy3TaRkZEIDQ297lVcXIxt27YhKCgIQUFBPXVKRERGT2klx4PD/ZH87Di8fU8E+rv1QnVDC/75cy5GvvEzXvnmJIorr0hdJpHBGdWoMUEQsGXLFkyfPl23LDY2FjExMVi7di0AQKvVwtfXFwsXLsTSpUs73OeyZcvw6aefQi6Xo7a2Fs3NzViyZAleeumlG27f2NiIxsZG3dfV1dXw9fXlqDEiMmtarYidmSVQ7zqDE+erAADWcgF3DfHBn8f2Qz83e4krJLo5Jjl8/vdBqKmpCXZ2dti8eXObcJSQkIDKykps27btpva/fv16ZGRk4O233253m5dffhmvvPLKdcsZhIjIEoiiiL255VDvysX+sxUAAEEAbg/zxBPj+mOwl5PEFRJ1jlkMny8vL4dGo4G7u3ub5e7u7igpKTHIMZctW4aqqirdq7Cw0CDHISIyRoIgYPQAN2yYH4cvHx+B+EF9IIrAd8cvYMqavUhYdxD7csthRH9DE3WLldQF9KS5c+d2uI1SqYRSqTR8MURERi7Kvzc+TIjBqZJqvJd8Bt8cK8bunIvYnXMRg70cMX9MP9we5snHd5BJM+p3r0qlglwuR2lpaZvlpaWl8PDwMOix1Wo1QkJCEBMTY9DjEBEZu4EejvjHvUOQ/Mx4zB0RAFtrOU4WV2PRhnSMfXMXPtxzlkPvyWQZdRBSKBSIiopCUlKSbplWq0VSUhLi4uIMeuwFCxYgMzMThw4dMuhxiIhMhZ+rHV6eNhipy27BM7cFQWXfOjnjX7/LwoiVP2Pl9ixcqOJIMzItkt8aq62tRW5uru7rvLw8pKenw8XFBX5+fkhMTERCQgKio6MxbNgwrF69GnV1dZg3b56EVRMRWS5nOwWevGUA/jS6H7aln8cHe/KQW1aLf6ecxUd78zAtwgt/Gt0PIV4cYELGT/JRY8nJyRg/fvx1yxMSErB+/XoAwNq1a/HWW2+hpKQEkZGRWLNmDWJjY3ukPj50lYjoj2m1IpJzyvB+ylndSDMAGD1AhUdH98PoASoIgiBhhWSJTHL4vDFRq9VQq9XQaDTIyclhECIi6oTjRZV4P+Ustp+4AO2vny7B7g6YOzIA0yO9YavgU++pZzAI6QmvCBER3bzCinqs25eHjYcKUd/U+lBXJ1tr3BvjiweG+8PXxU7iCsncMQjpCYMQEVHXVV1pxqbDhfgkNR8FFfUAAJkAxA9yx9wRAYjr78rbZmQQDEJ6wiBERNR9Gq2IXafK8HHqOew5Xa5bHuRuj4QRAZgxxBt2CsnH75AZYRDqJvYRIiIyjNyyGnz8Sz6+PFKku23maGOF2TG+eCgugLfNSC8YhPSEV4SIiAyj6kozNqcV4ZPUc8i/1HrbTBCACQPdMW9kAEbwthl1A4OQnjAIEREZ1tXh9+t/yUdKzkXd8n5uvTBnmB9mRvnA2U4hYYVkihiE9IRBiIio55y5WItPfjmHzWlFqPv1tpnCSoYpYZ6YE+uHaP/evEpEncIgpCcMQkREPa+2sQXb0s/jfwcKcLK4Wrc8yN0ec4b5YcZQHzjZWktYIRk7BqFuYmdpIiLpiaKI40VV+N+BAnx9rBhXmluvEtlYy3BHuBfmxPphiK8zrxLRdRiE9IRXhIiIjEN1QzO2Hm29SnSqpEa3PMjdHrOifTF9iDdU9koJKyRjwiCkJwxCRETGRRRFHCmoxP8OFODb48VobNECAKxkAsYP7IN7onwwfmAfWMtlEldKUmIQ0hMGISIi41V1pRnfHi/GpsNFSC+s1C1X2SswPdIb90T7ItjDQboCSTIMQnrCIEREZBpOl9ZgU1oRvjpyHuW1jbrlET5OmBnti2nhXnCyYwdrS8Eg1E3sLE1EZJqaNVrszr6ITWmFSMoqQ4u29WNOYSXDrSHumB7pjbFBblBY8daZOWMQ0hNeESIiMl2XahuxNb0Ymw4Xtulg7WxnjdvDPDE90hvR/r0hk3HUmblhENITBiEiItMniiJOFldj69Hz+PpYMcpqfrt15u1si2mRXpge6c3+RGaEQUhPGISIiMyLRiti/9lL2HL0PHZklKC2sUW3bqCHA+6M9MYd4Z58+KuJYxDSEwYhIiLz1dCsQVJWGbamn0dydhmaNb99JIb7OGFKmCduD2MoMkUMQnrCIEREZBkq65uw/UQJvjtRjNQzl6C95tMxwtcZU8I8cHuYJ3x6MxSZAgYhPWEQIiKyPOW1jdiRUYLtJy5g/9nfhSIfJ9w22AO3hbgjsI89H+9hpBiEuonD54mICAAu1jRix8kSfHe8GAfyKnDtp2ZfVS/cGuKO20LcMcSvN+QcfWY0GIT0hFeEiIjoqos1jUjKKsXOzFLsPV2OJo1Wt05lr0D8IHfcNtgdI/qrYGMtl7BSYhDSEwYhIiK6kdrGFqTkXMTOkyVIOlWGmobfRp/ZKeQYG+SGW0PcMTbIDa58GGyPYxDSEwYhIiLqSLNGiwNnK/BjZgl2ZpbiQlWDbp0gAOHeThgb3Afjgt0Q4ePMW2g9gEFITxiEiIjoZoiiiIzz1diZWYKfssqQdaG6zfredtYYPcAN44LdMCbIDSpeLTIIBiE9YRAiIqLuKK1uwO6ci9idfREppy+2uYUGAGHeThgX7Ka7WmQl5zPQ9IFBSE8YhIiISF9aNFocLaxEcnYZkrMv4mRx26tFDkorxPZzxahAV4wMVHF4fjcwCOkJgxARERlKWU0DUnLKkZxdhj2ny1F1pbnN+j4OSowMVGFkoArD+7lwMsebwCCkJwxCRETUEzRaEZnF1dibW45fzpTjYF4FGlu0bbbxdrZFbD8XDO/rith+LvBzseMVo3YwCHUTJ1QkIiIpNTRrcKTgMvblluOXM5dwoqgKLdq2H9kejjatwaifK4b1dUE/VS8Go18xCOkJrwgREZExqGtsQVr+ZRzIu4QDZytwrKiyzUNiAcDZzhpD/Xojyr83hvg5I8LHGb2UVhJVLC0GIT1hECIiImN0pUmDowWXsT+vAvvPXsKxwsrrbqXJZQIGejggyr+3LiD59La1iKtGDEJ6wiBERESmoKlFi6wL1UjLv4y0gss4mn8ZxddM7HiVyl6JKH9nDPXrjQhfZ4R6O8HeDK8aMQjpCYMQERGZquLKKzhScBlH8iuRVnAZmcVV191OEwSgv5s9wn2cEO7thHBfZ4R4Opr8s9IYhPSEQYiIiMxFQ7MGJ85XIS3/Mo4WXMbxoqo2jwO5Si4TEOTugAgfJwz2dsJgL0cM8nCErcJ0whGDkJ4wCBERkTkrq2nAiaIqHC+qwvGiShwvqsKluqbrtpMJQF9VLwz2ag1GIV6OGOzlBJdeCgmq7hiDkJ4wCBERkSURRREXqhpwvKgSx4qqcLK4GpnFVSivvT4cAYCnkw0Gejgg2MMRwR72CHZ3RP8+vaC0kvbqEYOQnjAIERERAWXVDTh5oRqZxdU4WVyFzOJqnLtUf8Nt5TIBAa52GOjhiCB3h9aA5OEIPxc7yGU9M2KNQUhPGISIiIhurKahGVkXapBdWoPskmrklNTiVEk1qn/3YNmrlFYyDHBvvWp0NRwN6GMPTycbvQ/pZxDSEwYhIiKizhNFEaXVjbpwlF1Si5zSGuSU1lw3z9FVS24NwsIJA/RaR2c/v81v4gAiIiKSjCAI8HCygYeTDcYGuemWa7QiCirqkV3SGoqyS1qvJJ0rr0P/PvaS1csgRERERAYnlwnoq+qFvqpemBTqoVverNFCyntTMukObdzUajVCQkIQExMjdSlERERmy1oug8JKujjCPkIdYB8hIiIi09PZz29eESIiIiKLxSBEREREFotBiIiIiCwWgxARERFZLAYhIiIislgMQkRERGSxGISIiIjIYjEIERERkcViECIiIiKLxSBEREREFotBiIiIiCwWgxARERFZLCupCzB2V59JW11dLXElRERE1FlXP7c7erY8g1AHampqAAC+vr4SV0JEREQ3q6amBk5OTu2uF8SOopKF02q1KC4uhoODAwRB0Nt+q6ur4evri8LCQjg6Ouptv+aK7dV5bKvOY1t1Htuq89hWN8dQ7SWKImpqauDl5QWZrP2eQLwi1AGZTAYfHx+D7d/R0ZE/KDeB7dV5bKvOY1t1Htuq89hWN8cQ7fVHV4KuYmdpIiIislgMQkRERGSxGIQkolQqsWLFCiiVSqlLMQlsr85jW3Ue26rz2Fadx7a6OVK3FztLExERkcXiFSEiIiKyWAxCREREZLEYhIiIiMhiMQgRERGRxWIQkoharUZAQABsbGwQGxuLgwcPSl1Sj3v55ZchCEKb18CBA3XrGxoasGDBAri6usLe3h533303SktL2+yjoKAAU6ZMgZ2dHfr06YNnn30WLS0tPX0qepeSkoKpU6fCy8sLgiBg69atbdaLooiXXnoJnp6esLW1RXx8PE6fPt1mm4qKCtx///1wdHSEs7MzHnnkEdTW1rbZ5vjx4xg9ejRsbGzg6+uLN99809CnpncdtdXcuXOve59NmjSpzTaW0lYrV65ETEwMHBwc0KdPH0yfPh3Z2dltttHXz11ycjKGDh0KpVKJwMBArF+/3tCnp1edaatx48Zd99567LHH2mxjCW313nvvITw8XDchYlxcHL7//nvdeqN/T4nU4zZs2CAqFApx3bp14smTJ8VHH31UdHZ2FktLS6UurUetWLFCHDx4sHjhwgXd6+LFi7r1jz32mOjr6ysmJSWJhw8fFocPHy6OGDFCt76lpUUMDQ0V4+PjxaNHj4rbt28XVSqVuGzZMilOR6+2b98uvvDCC+JXX30lAhC3bNnSZv0bb7whOjk5iVu3bhWPHTsmTps2Tezbt6945coV3TaTJk0SIyIixP3794t79uwRAwMDxfvuu0+3vqqqSnR3dxfvv/9+MSMjQ/z8889FW1tb8d///ndPnaZedNRWCQkJ4qRJk9q8zyoqKtpsYyltNXHiRPE///mPmJGRIaanp4u333676OfnJ9bW1uq20cfP3dmzZ0U7OzsxMTFRzMzMFP/5z3+Kcrlc3LFjR4+eb3d0pq3Gjh0rPvroo23eW1VVVbr1ltJWX3/9tfjdd9+JOTk5YnZ2trh8+XLR2tpazMjIEEXR+N9TDEISGDZsmLhgwQLd1xqNRvTy8hJXrlwpYVU9b8WKFWJERMQN11VWVorW1tbipk2bdMuysrJEAGJqaqooiq0fgDKZTCwpKdFt895774mOjo5iY2OjQWvvSb//cNdqtaKHh4f41ltv6ZZVVlaKSqVS/Pzzz0VRFMXMzEwRgHjo0CHdNt9//70oCIJ4/vx5URRF8d133xV79+7dpq2ef/55MTg42MBnZDjtBaE777yz3e+x1LYSRVEsKysTAYi7d+8WRVF/P3fPPfecOHjw4DbHmj17tjhx4kRDn5LB/L6tRLE1CC1atKjd77HUthJFUezdu7f44YcfmsR7irfGelhTUxPS0tIQHx+vWyaTyRAfH4/U1FQJK5PG6dOn4eXlhX79+uH+++9HQUEBACAtLQ3Nzc1t2mngwIHw8/PTtVNqairCwsLg7u6u22bixImorq7GyZMne/ZEelBeXh5KSkratI2TkxNiY2PbtI2zszOio6N128THx0Mmk+HAgQO6bcaMGQOFQqHbZuLEicjOzsbly5d76Gx6RnJyMvr06YPg4GA8/vjjuHTpkm6dJbdVVVUVAMDFxQWA/n7uUlNT2+zj6jam/Dvu92111WeffQaVSoXQ0FAsW7YM9fX1unWW2FYajQYbNmxAXV0d4uLiTOI9xYeu9rDy8nJoNJo2/+EA4O7ujlOnTklUlTRiY2Oxfv16BAcH48KFC3jllVcwevRoZGRkoKSkBAqFAs7Ozm2+x93dHSUlJQCAkpKSG7bj1XXm6uq53ejcr22bPn36tFlvZWUFFxeXNtv07dv3un1cXde7d2+D1N/TJk2ahLvuugt9+/bFmTNnsHz5ckyePBmpqamQy+UW21ZarRZPP/00Ro4cidDQUADQ289de9tUV1fjypUrsLW1NcQpGcyN2goA5syZA39/f3h5eeH48eN4/vnnkZ2dja+++gqAZbXViRMnEBcXh4aGBtjb22PLli0ICQlBenq60b+nGIRIMpMnT9b9Ozw8HLGxsfD398cXX3xhMj/8ZPzuvfde3b/DwsIQHh6O/v37Izk5GRMmTJCwMmktWLAAGRkZ2Lt3r9SlGL322mr+/Pm6f4eFhcHT0xMTJkzAmTNn0L9//54uU1LBwcFIT09HVVUVNm/ejISEBOzevVvqsjqFt8Z6mEqlglwuv67HfGlpKTw8PCSqyjg4OzsjKCgIubm58PDwQFNTEyorK9tsc207eXh43LAdr64zV1fP7Y/eQx4eHigrK2uzvqWlBRUVFRbffv369YNKpUJubi4Ay2yrJ598Et9++y127doFHx8f3XJ9/dy1t42jo6PJ/ZHTXlvdSGxsLAC0eW9ZSlspFAoEBgYiKioKK1euREREBP7xj3+YxHuKQaiHKRQKREVFISkpSbdMq9UiKSkJcXFxElYmvdraWpw5cwaenp6IioqCtbV1m3bKzs5GQUGBrp3i4uJw4sSJNh9iP/74IxwdHRESEtLj9feUvn37wsPDo03bVFdX48CBA23aprKyEmlpabptfv75Z2i1Wt0v67i4OKSkpKC5uVm3zY8//ojg4GCTvNXTWUVFRbh06RI8PT0BWFZbiaKIJ598Elu2bMHPP/983e0+ff3cxcXFtdnH1W1M6XdcR211I+np6QDQ5r1lCW11I1qtFo2Njabxnup2d2u6aRs2bBCVSqW4fv16MTMzU5w/f77o7Ozcpse8JViyZImYnJws5uXlifv27RPj4+NFlUollpWViaLYOuTSz89P/Pnnn8XDhw+LcXFxYlxcnO77rw65vO2228T09HRxx44dopubm1kMn6+pqRGPHj0qHj16VAQgvvPOO+LRo0fF/Px8URRbh887OzuL27ZtE48fPy7eeeedNxw+P2TIEPHAgQPi3r17xQEDBrQZEl5ZWSm6u7uLDz74oJiRkSFu2LBBtLOzM7kh4X/UVjU1NeIzzzwjpqaminl5eeJPP/0kDh06VBwwYIDY0NCg24eltNXjjz8uOjk5icnJyW2GfNfX1+u20cfP3dWhzs8++6yYlZUlqtVqkxsS3lFb5ebmiq+++qp4+PBhMS8vT9y2bZvYr18/ccyYMbp9WEpbLV26VNy9e7eYl5cnHj9+XFy6dKkoCIK4c+dOURSN/z3FICSRf/7zn6Kfn5+oUCjEYcOGifv375e6pB43e/Zs0dPTU1QoFKK3t7c4e/ZsMTc3V7f+ypUr4hNPPCH27t1btLOzE2fMmCFeuHChzT7OnTsnTp48WbS1tRVVKpW4ZMkSsbm5uadPRe927dolArjulZCQIIpi6xD6F198UXR3dxeVSqU4YcIEMTs7u80+Ll26JN53332ivb296OjoKM6bN0+sqalps82xY8fEUaNGiUqlUvT29hbfeOONnjpFvfmjtqqvrxdvu+020c3NTbS2thb9/f3FRx999Lo/OiylrW7UTgDE//znP7pt9PVzt2vXLjEyMlJUKBRiv3792hzDFHTUVgUFBeKYMWNEFxcXUalUioGBgeKzzz7bZh4hUbSMtnr44YdFf39/UaFQiG5ubuKECRN0IUgUjf89JYiiKHb/uhIRERGR6WEfISIiIrJYDEJERERksRiEiIiIyGIxCBEREZHFYhAiIiIii8UgRERERBaLQYiIiIgsFoMQERERWSwGISKim5ScnAxBEK57kCQRmR4GISIiIrJYDEJERERksRiEiMjkaLVarFy5En379oWtrS0iIiKwefNmAL/dtvruu+8QHh4OGxsbDB8+HBkZGW328eWXX2Lw4MFQKpUICAjAqlWr2qxvbGzE888/D19fXyiVSgQGBuKjjz5qs01aWhqio6NhZ2eHESNGIDs727AnTkR6xyBERCZn5cqV+OSTT/Cvf/0LJ0+exOLFi/HAAw9g9+7dum2effZZrFq1CocOHYKbmxumTp2K5uZmAK0BZtasWbj33ntx4sQJvPzyy3jxxRexfv163fc/9NBD+Pzzz7FmzRpkZWXh3//+N+zt7dvU8cILL2DVqlU4fPgwrKys8PDDD/fI+ROR/vDp80RkUhobG+Hi4oKffvoJcXFxuuV/+tOfUF9fj/nz52P8+PHYsGEDZs+eDQCoqKiAj48P1q9fj1mzZuH+++/HxYsXsXPnTt33P/fcc/juu+9w8uRJ5OTkIDg4GD/++CPi4+OvqyE5ORnjx4/HTz/9hAkTJgAAtm/fjilTpuDKlSuwsbExcCsQkb7wihARmZTc3FzU19fj1ltvhb29ve71ySef4MyZM7rtrg1JLi4uCA4ORlZWFgAgKysLI0eObLPfkSNH4vTp09BoNEhPT4dcLsfYsWP/sJbw8HDdvz09PQEAZWVl3T5HIuo5VlIXQER0M2prawEA3333Hby9vdusUyqVbcJQV9na2nZqO2tra92/BUEA0Np/iYhMB68IEZFJCQkJgVKpREFBAQIDA9u8fH19ddvt379f9+/Lly8jJycHgwYNAgAMGjQI+/bta7Pfffv2ISgoCHK5HGFhYdBqtW36HBGReeIVISIyKQ4ODnjmmWewePFiaLVajBo1ClVVVdi3bx8cHR3h7+8PAHj11Vfh6uoKd3d3vPDCC1CpVJg+fToAYMmSJYiJicFrr72G2bNnIzU1FWvXrsW7774LAAgICEBCQgIefvhhrFmzBhEREcjPz0dZWRlmzZol1akTkQEwCBGRyXnttdfg5uaGlStX4uzZs3B2dsbQoUOxfPly3a2pN954A4sWLcLp06cRGRmJb775BgqFAgAwdOhQfPHFF3jppZfw2muvwdPTE6+++irmzp2rO8Z7772H5cuX44knnsClS5fg5+eH5cuXS3G6RGRAHDVGRGbl6oiuy5cvw9nZWepyiMjIsY8QERERWSwGISIiIrJYvDVGREREFotXhIiIiMhiMQgRERGRxWIQIiIiIovFIEREREQWi0GIiIiILBaDEBEREVksBiEiIiKyWAxCREREZLH+H0djqAio/a/KAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "metadata": {} + "source": [ + "plotter.plot_loss(trainer=trainer, metric='mean_loss', log_scale=True)" + ] } ], "metadata": { + "interpreter": { + "hash": "56be7540488f3dc66429ddf54a0fa9de50124d45fcfccfaf04c4c3886d735a3a" + }, "kernelspec": { - "name": "python3", - "display_name": "Python 3.9.16 64-bit ('dl': conda)" + "display_name": "Python 3.9.16 64-bit ('dl': conda)", + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -356,11 +435,8 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" - }, - "interpreter": { - "hash": "56be7540488f3dc66429ddf54a0fa9de50124d45fcfccfaf04c4c3886d735a3a" } }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} diff --git a/tutorials/tutorial1/tutorial.py b/tutorials/tutorial1/tutorial.py index 801f133..37f089d 100644 --- a/tutorials/tutorial1/tutorial.py +++ b/tutorials/tutorial1/tutorial.py @@ -3,19 +3,18 @@ # # Tutorial 1: Physics Informed Neural Networks on PINA -# In this tutorial we will show the typical use case of PINA on a toy problem. Specifically, the tutorial aims to introduce the following topics: +# In this tutorial we will show the typical use case of PINA on a toy problem solved by Physics Informed Problems. Specifically, the tutorial aims to introduce the following topics: # # * Defining a PINA Problem, -# * Build a `pinn` object, -# * Sample points in the domain. +# * Build a `PINN` Solver, # -# These are the three main steps needed **before** training a Physics Informed Neural Network (PINN). We will show in detailed each step, and at the end we will solve a very simple problem with PINA. +# We will show in detailed each step, and at the end we will solve a very simple problem with PINA. -# ## PINA Problem +# ## Defining a Problem # ### Initialize the Problem class - -# The problem definition in the PINA framework is done by building a phython `class`, inherited from one or more problem classes (`SpatialProblem`, `TimeDependentProblem`, `ParametricProblem`), depending on the nature of the problem treated. Let's see an example to better understand: +# The problem definition in the PINA framework is done by building a phython `class`, inherited from `AbsractProblem`. A problem is an object which explains what the solver is supposed to solve. For Physics Informed Neural Networks, a problem can be inherited from one or more problem (already implemented) classes (`SpatialProblem`, `TimeDependentProblem`, `ParametricProblem`), depending on the nature of the problem treated. +# Let's see an example to better understand: # #### Simple Ordinary Differential Equation # Consider the following: # @@ -32,28 +31,28 @@ # # ```python # from pina.problem import SpatialProblem -# from pina import Span +# from pina.geometry import CartesianDomain # # class SimpleODE(SpatialProblem): # # output_variables = ['u'] -# spatial_domain = Span({'x': [0, 1]}) +# spatial_domain = CartesianDomain({'x': [0, 1]}) # # # other stuff ... # ``` # -# Notice that we define `output_variables` as a list of symbols, indicating the output variables of our equation (in this case only $u$). The `spatial_domain` variable indicates where the sample points are going to be sampled in the domain, in this case $x\in(0,1)$. - +# Notice that we define `output_variables` as a list of symbols, indicating the output variables of our equation (in this case only $u$). The `spatial_domain` variable indicates where the sample points are going to be sampled in the domain, in this case $x\in(0,1)$ +# # What about if we also have a time depencency in the equation? Well in that case our `class` will inherit from both `SpatialProblem` and `TimeDependentProblem`: # ```python # from pina.problem import SpatialProblem, TimeDependentProblem -# from pina import Span +# from pina.geometry import CartesianDomain # # class TimeSpaceODE(SpatialProblem, TimeDependentProblem): # # output_variables = ['u'] -# spatial_domain = Span({'x': [0, 1]}) -# temporal_domain = Span({'x': [0, 1]}) +# spatial_domain = CartesianDomain({'x': [0, 1]}) +# temporal_domain = CartesianDomain({'x': [0, 1]}) # # # other stuff ... # ``` @@ -69,12 +68,14 @@ # # Once the problem class is initialized we need to write the differential equation in PINA language. For doing this we need to load the pina operators found in `pina.operators` module. Let's again consider the Equation (1) and try to write the PINA model class: -# In[ ]: +# In[2]: from pina.problem import SpatialProblem from pina.operators import grad -from pina import Condition, Span +from pina.geometry import CartesianDomain +from pina.equation import Equation +from pina import Condition import torch @@ -82,7 +83,7 @@ import torch class SimpleODE(SpatialProblem): output_variables = ['u'] - spatial_domain = Span({'x': [0, 1]}) + spatial_domain = CartesianDomain({'x': [0, 1]}) # defining the ode equation def ode_equation(input_, output_): @@ -110,8 +111,8 @@ class SimpleODE(SpatialProblem): # Conditions to hold conditions = { - 'x0': Condition(location=Span({'x': 0.}), function=initial_condition), - 'D': Condition(location=Span({'x': [0, 1]}), function=ode_equation), + 'x0': Condition(location=CartesianDomain({'x': 0.}), equation=Equation(initial_condition)), + 'D': Condition(location=CartesianDomain({'x': [0, 1]}), equation=Equation(ode_equation)), } # defining true solution @@ -119,7 +120,7 @@ class SimpleODE(SpatialProblem): return torch.exp(pts.extract(['x'])) -# After the defition of the Class we need to write different class methods, where each method is a function returning a residual. This functions are the ones minimized during the PINN optimization, for the different conditions. For example, in the domain $(0,1)$ the ODE equation (`ode_equation`) must be satisfied, so we write it by putting all the ODE equation on the right hand side, such that we return the zero residual. This is done for all the conditions (`ode_equation`, `initial_condition`). +# After the defition of the Class we need to write different class methods, where each method is a function returning a residual. This functions are the ones minimized during the PINN optimization, for the different conditions. For example, in the domain $(0,1)$ the ODE equation (`ode_equation`) must be satisfied, so we write it by putting all the ODE equation on the right hand side, such that we return the zero residual. This is done for all the conditions (`ode_equation`, `initial_condition`). Notice that we do not pass directly a `python` function, but an `Equation` object, which is initialized with the `python` function. This is done so that all the computations, and internal checks are done inside PINA. # # Once we have defined the function we need to tell the network where these methods have to be applied. For doing this we use the class `Condition`. In `Condition` we pass the location points and the function to be minimized on those points (other possibilities are allowed, see the documentation for reference). # @@ -127,13 +128,13 @@ class SimpleODE(SpatialProblem): # ## Build PINN object -# The basics requirements for building a PINN model are a problem and a model. We have already covered the problem definition. For the model one can use the default models provided in PINA or use a custom model. We will not go into the details of model definition, Tutorial2 and Tutorial3 treat the topic in detail. +# In PINA we have already developed different solvers, one of them is `PINN`. The basics requirements for building a `PINN` model are a problem and a model. We have already covered the problem definition. For the model one can use the default models provided in PINA or use a custom model. We will not go into the details of model definition, Tutorial2 and Tutorial3 treat the topic in detail. -# In[ ]: +# In[3]: from pina.model import FeedForward -from pina import PINN +from pina.solvers import PINN # initialize the problem problem = SimpleODE() @@ -142,82 +143,85 @@ problem = SimpleODE() model = FeedForward( layers=[10, 10], func=torch.nn.Tanh, - output_variables=problem.output_variables, - input_variables=problem.input_variables + output_dimensions=len(problem.output_variables), + input_dimensions=len(problem.input_variables) ) -# create the PINN object +# create the PINN object, see the PINN documentation for extra argument in the constructor pinn = PINN(problem, model) # Creating the pinn object is fairly simple by using the `PINN` class, different optional inputs can be passed: optimizer, batch size, ... (see [documentation](https://mathlab.github.io/PINA/) for reference). -# ## Sample points in the domain +# ## Sample points in the domain and create the Trainer -# Once the `pinn` object is created, we need to generate the points for starting the optimization. For doing this we use the `span_pts` method of the `PINN` class. -# Let's see some methods to sample in $(0,1 )$. +# Once the `PINN` object is created, we need to generate the points for starting the optimization. For doing this we use the `.discretise_domain` method of the `AbstractProblem` class. Let's see some methods to sample in $(0,1 )$. -# In[ ]: +# In[4]: # sampling 20 points in (0, 1) with discrite step -pinn.span_pts(20, 'grid', locations=['D']) +problem.discretise_domain(20, 'grid', locations=['D']) # sampling 20 points in (0, 1) with latin hypercube -pinn.span_pts(20, 'latin', locations=['D']) +problem.discretise_domain(20, 'latin', locations=['D']) # sampling 20 points in (0, 1) randomly -pinn.span_pts(20, 'random', locations=['D']) - - -# We can also use a dictionary for specific variables: - -# In[ ]: - - -pinn.span_pts({'variables': ['x'], 'mode': 'grid', 'n': 20}, locations=['D']) +problem.discretise_domain(20, 'random', locations=['D']) # We are going to use equispaced points for sampling. We need to sample in all the conditions domains. In our case we sample in `D` and `x0`. -# In[ ]: +# In[5]: # sampling for training -pinn.span_pts(1, 'random', locations=['x0']) -pinn.span_pts(20, 'grid', locations=['D']) +problem.discretise_domain(1, 'random', locations=['x0']) +problem.discretise_domain(20, 'grid', locations=['D']) # ### Very simple training and plotting # -# Once we have defined the PINA model, created a network and sampled points in the domain, we have everything that is necessary for training a PINN. Here we show a very short training and some method for plotting the results. +# Once we have defined the PINA model, created a network and sampled points in the domain, we have everything that is necessary for training a `PINN`. For training we use the `Trainer` class. Here we show a very short training and some method for plotting the results. Notice that by default all relevant metrics (e.g. MSE error during training) is going to be tracked using a `lightining` logger, by default `CSVLogger`. If you want to track the metric by yourself without a logger, use `pina.callbacks.MetricTracker`. -# In[ ]: +# In[6]: -# simple training -final_loss = pinn.train(stop=3000, frequency_print=1000) +# create the trainer +from pina.trainer import Trainer +from pina.callbacks import MetricTracker + +trainer = Trainer(solver=pinn, max_epochs=3000, callbacks=[MetricTracker()]) + +# train +trainer.train() -# After the training we have saved the final loss in `final_loss`, which we can inspect. By default PINA uses mean square error loss. +# After the training we can inspect trainer logged metrics (by default PINA logs mean square error residual loss). The logged metrics can be accessed online using one of the `Lightinig` loggers. The final loss can be accessed by `trainer.logged_metrics`. -# In[ ]: +# In[7]: # inspecting final loss -final_loss +trainer.logged_metrics -# By using the `Plotter` class from PINA we can also do some quatitative plots of the loss function. +# By using the `Plotter` class from PINA we can also do some quatitative plots of the solution. -# In[ ]: +# In[8]: from pina.plotter import Plotter # plotting the loss plotter = Plotter() -plotter.plot_loss(pinn) +plotter.plot(trainer=trainer) -# We have a very smooth loss decreasing! +# The solution is completely overlapped with the actual one. We can also plot easily the loss: + +# In[9]: + + +plotter.plot_loss(trainer=trainer, metric='mean_loss', log_scale=True) + diff --git a/tutorials/tutorial2/tutorial.ipynb b/tutorials/tutorial2/tutorial.ipynb index b5fbcd8..36e7bd3 100644 --- a/tutorials/tutorial2/tutorial.ipynb +++ b/tutorials/tutorial2/tutorial.ipynb @@ -2,22 +2,23 @@ "cells": [ { "cell_type": "markdown", + "metadata": {}, "source": [ "# Tutorial 2: resolution of Poisson problem and usage of extra-features" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### The problem definition" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "This tutorial presents how to solve with Physics-Informed Neural Networks a 2D Poisson problem with Dirichlet boundary conditions.\n", + "This tutorial presents how to solve with Physics-Informed Neural Networks a 2D Poisson problem with Dirichlet boundary conditions. Using extrafeatures.\n", "\n", "The problem is written as:\n", "\\begin{equation}\n", @@ -27,63 +28,66 @@ "\\end{cases}\n", "\\end{equation}\n", "where $D$ is a square domain $[0,1]^2$, and $\\Gamma_i$, with $i=1,...,4$, are the boundaries of the square." - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "First of all, some useful imports." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, + "metadata": {}, + "outputs": [], "source": [ "import torch\n", "from torch.nn import Softplus\n", "\n", "from pina.problem import SpatialProblem\n", - "from pina.operators import nabla\n", + "from pina.operators import laplacian\n", "from pina.model import FeedForward\n", - "from pina import Condition, Span, PINN, LabelTensor, Plotter" - ], - "outputs": [], - "metadata": {} + "from pina.solvers import PINN\n", + "from pina.trainer import Trainer\n", + "from pina.plotter import Plotter\n", + "from pina.geometry import CartesianDomain\n", + "from pina.equation import Equation, FixedValue\n", + "from pina import Condition, LabelTensor\n", + "from pina.callbacks import MetricTracker" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Now, the Poisson problem is written in PINA code as a class. The equations are written as *conditions* that should be satisfied in the corresponding domains. *truth_solution*\n", "is the exact solution which will be compared with the predicted one." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, + "metadata": {}, + "outputs": [], "source": [ "class Poisson(SpatialProblem):\n", " output_variables = ['u']\n", - " spatial_domain = Span({'x': [0, 1], 'y': [0, 1]})\n", + " spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})\n", "\n", " def laplace_equation(input_, output_):\n", " force_term = (torch.sin(input_.extract(['x'])*torch.pi) *\n", " torch.sin(input_.extract(['y'])*torch.pi))\n", - " nabla_u = nabla(output_, input_, components=['u'], d=['x', 'y'])\n", - " return nabla_u - force_term\n", - "\n", - " def nil_dirichlet(input_, output_):\n", - " value = 0.0\n", - " return output_.extract(['u']) - value\n", + " laplacian_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])\n", + " return laplacian_u - force_term\n", "\n", " conditions = {\n", - " 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1}), function=nil_dirichlet),\n", - " 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0}), function=nil_dirichlet),\n", - " 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1]}), function=nil_dirichlet),\n", - " 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1]}), function=nil_dirichlet),\n", - " 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1]}), function=laplace_equation),\n", + " 'gamma1': Condition(location=CartesianDomain({'x': [0, 1], 'y': 1}), equation=FixedValue(0.)),\n", + " 'gamma2': Condition(location=CartesianDomain({'x': [0, 1], 'y': 0}), equation=FixedValue(0.)),\n", + " 'gamma3': Condition(location=CartesianDomain({'x': 1, 'y': [0, 1]}), equation=FixedValue(0.)),\n", + " 'gamma4': Condition(location=CartesianDomain({'x': 0, 'y': [0, 1]}), equation=FixedValue(0.)),\n", + " 'D': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1]}), equation=Equation(laplace_equation)),\n", " }\n", "\n", " def poisson_sol(self, pts):\n", @@ -92,98 +96,136 @@ " torch.sin(pts.extract(['y'])*torch.pi)\n", " )/(2*torch.pi**2)\n", " \n", - " truth_solution = poisson_sol" - ], - "outputs": [], - "metadata": {} + " truth_solution = poisson_sol\n", + "\n", + "problem = Poisson()\n", + "\n", + "# let's discretise the domain\n", + "problem.discretise_domain(25, 'grid', locations=['D'])\n", + "problem.discretise_domain(25, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### The problem solution " - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "After the problem, the feed-forward neural network is defined, through the class `FeedForward`. This neural network takes as input the coordinates (in this case $x$ and $y$) and provides the unkwown field of the Poisson problem. The residual of the equations are evaluated at several sampling points (which the user can manipulate using the method `span_pts`) and the loss minimized by the neural network is the sum of the residuals.\n", + "After the problem, the feed-forward neural network is defined, through the class `FeedForward`. This neural network takes as input the coordinates (in this case $x$ and $y$) and provides the unkwown field of the Poisson problem. The residual of the equations are evaluated at several sampling points (which the user can manipulate using the method `CartesianDomain_pts`) and the loss minimized by the neural network is the sum of the residuals.\n", "\n", - "In this tutorial, the neural network is composed by two hidden layers of 10 neurons each, and it is trained for 1000 epochs with a learning rate of 0.006. These parameters can be modified as desired.\n", - "The output of the cell below is the final loss of the training phase of the PINN.\n", - "We highlight that the generation of the sampling points and the train is here encapsulated within the function `generate_samples_and_train`, but only for saving some lines of code in the next cells; that function is not mandatory in the **PINA** framework. " - ], - "metadata": {} + "In this tutorial, the neural network is composed by two hidden layers of 10 neurons each, and it is trained for 1000 epochs with a learning rate of 0.006. These parameters can be modified as desired." + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPU available: False, used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "/Users/dariocoscia/anaconda3/envs/pina/lib/python3.9/site-packages/lightning/pytorch/trainer/connectors/logger_connector/logger_connector.py:67: UserWarning: Starting from v1.9.0, `tensorboardX` has been removed as a dependency of the `lightning.pytorch` package, due to potential conflicts with other packages in the ML ecosystem. For this reason, `logger=True` will use `CSVLogger` as the default logger, unless the `tensorboard` or `tensorboardX` packages are found. Please `pip install lightning[extra]` or one of them to enable TensorBoard support by default\n", + " warning_cache.warn(\n", + "\n", + " | Name | Type | Params\n", + "----------------------------------------\n", + "0 | _loss | MSELoss | 0 \n", + "1 | _neural_net | Network | 151 \n", + "----------------------------------------\n", + "151 Trainable params\n", + "0 Non-trainable params\n", + "151 Total params\n", + "0.001 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 999: : 1it [00:00, 129.50it/s, v_num=45, mean_loss=0.00196, gamma1_loss=0.0093, gamma2_loss=0.000146, gamma3_loss=8.16e-5, gamma4_loss=0.000201, D_loss=8.44e-5] " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "`Trainer.fit` stopped: `max_epochs=1000` reached.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 999: : 1it [00:00, 101.25it/s, v_num=45, mean_loss=0.00196, gamma1_loss=0.0093, gamma2_loss=0.000146, gamma3_loss=8.16e-5, gamma4_loss=0.000201, D_loss=8.44e-5]\n" + ] + } + ], "source": [ - "def generate_samples_and_train(model, problem):\n", - " pinn = PINN(problem, model, lr=0.006, regularizer=1e-8)\n", - " pinn.span_pts(20, 'grid', locations=['D'])\n", - " pinn.span_pts(20, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])\n", - " pinn.train(1000, 100)\n", - " return pinn\n", - "\n", - "problem = Poisson()\n", + "# make model + solver + trainer\n", "model = FeedForward(\n", " layers=[10, 10],\n", " func=Softplus,\n", - " output_variables=problem.output_variables,\n", - " input_variables=problem.input_variables\n", + " output_dimensions=len(problem.output_variables),\n", + " input_dimensions=len(problem.input_variables)\n", ")\n", + "pinn = PINN(problem, model, optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8})\n", + "trainer = Trainer(pinn, max_epochs=1000, callbacks=[MetricTracker()])\n", "\n", - "pinn = generate_samples_and_train(model, problem)" - ], - "outputs": [], - "metadata": { - "scrolled": true - } - }, - { - "cell_type": "markdown", - "source": [ - "The neural network of course can be saved in a file. In such a way, we can store it after the train, and load it just to infer the field. Here we don't store the model, but for demonstrative purposes we put in the next cell the commented line of code." - ], - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": null, - "source": [ - "# pinn.save_state('pina.poisson')" - ], - "outputs": [], - "metadata": {} + "# train\n", + "trainer.train()" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Now the *Plotter* class is used to plot the results.\n", "The solution predicted by the neural network is plotted on the left, the exact one is represented at the center and on the right the error between the exact and the predicted solutions is showed. " - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSkAAAH/CAYAAAC7J1gyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmIElEQVR4nOzde1xVZd7//zdIgCdAPLDVMNQpwbF0wkTKalIUb6vJO5tRc7KMNOcWp6S7RidTO43T+Wh5l3bwO3rb2DiV5o+JtLJJ0kKdSVMqD2EaqBEgHgCF3x/e7NyyOWzYe6/T6/l47Ee5WGvta+3Ttdd7f65rhdTU1NQIAAAAAAAAAAwSanQDAAAAAAAAADgbISUAAAAAAAAAQxFSAgAAAAAAADAUISUAAAAAAAAAQxFSAgAAAAAAADAUISUAAAAAAAAAQxFSAgAAAAAAADAUISUAAAAAAAAAQxFSAgAAAAAAADAUISUAAAAAAAAAQ/kcUq5fv17XXnutunXrppCQEL311luNbvPhhx/q4osvVkREhH72s5/ptddea0ZTAQCBsmDBAiUkJCgyMlIpKSnatGlTg+uvWLFCiYmJioyM1IUXXqg1a9bUu+7UqVMVEhKip59+2mN5QkKCQkJCPG5//vOf/XE4TUafBgD25O9+raamRnPmzFHXrl3VunVrpaWl6euvv/ZY56uvvtJ1112nTp06KSoqSkOGDNEHH3zg92NrCP0aANiTP/u1qqoq/eEPf9CFF16otm3bqlu3bpo4caIOHDjgdV8VFRUaMGCAQkJCtHXrVn8eVh0+h5RHjx5V//79tWDBgiatv2fPHl199dW66qqrtHXrVt1555267bbb9I9//MPnxgIA/O+NN95QVlaW5s6dq82bN6t///5KT0/XwYMHva6/YcMGjR8/XhkZGdqyZYtGjx6t0aNHa9u2bXXW/fvf/65PP/1U3bp187qvBx54QN9//737Nn36dL8eW2Po0wDAfgLRrz366KN69tlntXDhQm3cuFFt27ZVenq6Tpw44V7nmmuu0cmTJ7Vu3Trl5eWpf//+uuaaa1RYWBjwY65FvwYA9uPvfu3YsWPavHmz7rvvPm3evFkrV65Ufn6+fvWrX3nd3z333FPv+Zzf1bSApJq///3vDa5zzz331Pz85z/3WDZ27Nia9PT0ltw1AMBPBg0aVDNt2jT3v0+dOlXTrVu3mvnz53td/ze/+U3N1Vdf7bEsJSWl5vbbb/dY9t1339V07969Ztu2bTXnnXdezVNPPeXxd2/LjESfBgD24O9+rbq6usblctU89thj7r+XlJTURERE1Pzv//5vTU1NTc2hQ4dqJNWsX7/evU5ZWVmNpJqcnBy/HZsv6NcAwB4Cdb52pk2bNtVIqvn22289lq9Zs6YmMTGxZvv27TWSarZs2dL8A2mCsECHoLm5uUpLS/NYlp6erjvvvLPebSoqKlRRUeH+d3V1tYqLi9WxY0eFhIQEqqkA0KCamhodOXJE3bp1U2hoy6f0PXHihCorK/3QsrpqamrqfF5GREQoIiLCY1llZaXy8vI0a9Ys97LQ0FClpaUpNzfX675zc3OVlZXlsSw9Pd1jSFl1dbVuuukm3X333fr5z39ebzv//Oc/68EHH1SPHj104403asaMGQoLC3jX1Gz0aQDsxJ/9mhn6NCkw/dqePXtUWFjo8fkfHR2tlJQU5ebmaty4cerYsaP69OmjJUuWuIdO/8///I+6dOmi5OTk5h56wNGvAbAT+rXTmnK+drbS0lKFhIQoJibGvayoqEiTJ0/WW2+9pTZt2jThyFou4GeChYWFiouL81gWFxensrIyHT9+XK1bt66zzfz583X//fcHumkA0Cz79u3Tueee26J9nDhxQvE92urwoWo/tcpTu3btVF5e7rFs7ty5mjdvnseyw4cP69SpU14/p3fu3Ol13/V9rp85nO2RRx5RWFiYfv/739fbxt///ve6+OKLFRsbqw0bNmjWrFn6/vvv9eSTTzblEA1BnwbAjlrar504cUI9erTVIYP7NCkw/VrtfxtaJyQkRO+//75Gjx6t9u3bKzQ0VF26dFF2drY6dOjQ9IMNMvo1AHbkj37NDOdqUuDO18504sQJ/eEPf9D48eMVFRUl6XSQesstt2jq1KkaOHCg9u7d28SjaxlTlqvMmjXLI/UtLS1Vjx491OeVO9SqTd1k2WhHv40yuglwuLbnlRndhGYbeu7Xja9kAuNiNupoebXSBxeqffv2Ld5fZWWlDh+q1j8+daltu5ZXZZ6ptp379u1zdzKSvP4yFwh5eXl65plntHnz5gYrKs78nL/ooosUHh6u22+/XfPnzw9aW4Ohvj7t7rVDFdHWlN0wAIeoOHpSjw1b1+J+rbKyUocOVevDjV3Urp1/K+nKy2v0y5SDhvVpTVVTU6Np06apS5cu+vjjj9W6dWstWrRI1157rT777DN17drV6Cb6TX39Wvz9sxUaGWlgy7yz6vdkq3xHNpt1351vdBO8ClZm0G63f88rzhbzTWAqCyWp9Zfft3gfJ6sr9WHRq37p1+x6rna2qqoq/eY3v1FNTY1efPFF9/LnnntOR44c8ajgDIaAnx25XC4VFRV5LCsqKlJUVJTXX+ak+stcW7WJMF1IWb4nWqHm64vhMMeLItWuZ6nRzWiWj4r7aUSPfKOb0ai/nxyi/2z3T0ny61Cmtu1C1a59YL5MREVFeXR83nTq1EmtWrXy+jntcrm8blPf53rt+h9//LEOHjyoHj16uP9+6tQp3XXXXXr66afr/RUuJSVFJ0+e1N69e9WnT5/GDs8Q/uzTItqGKbLdOQFpJwD4wl/9Wrt2IQHo005XsTSlT5MC06/V/reoqMgjbCwqKtKAAQMkSevWrdPq1av1448/utv5wgsvKCcnR6+//rpmzpzZhGMNPn/2a6GRkaYMKVu1qWh8JROyyndkszFbXlArWO+NY32l9rsCF1Qe+XmkOuQHJqgMCw3327781a8Zfa4mBaZfq1UbUH777bdat26dR3vWrVun3NzcOp/3AwcO1IQJE/T666832vbmCGzMLik1NVVr1671WJaTk6PU1NRA33XAle+JNroJgJuVX4/vFZgzkDrb8pIUo5vgd+Hh4UpOTvb4nK6urtbatWvr/Zxu7HP9pptu0r///W9t3brVfevWrZvuvvvuBq8WunXrVvfwOLOyc58GAHYQiH6tZ8+ecrlcHuuUlZVp48aN7nWOHTsmSXXmQAsNDVV1dWCGC/qD3fs1q/6Ij+axyjkFvDver7vRTTClQPRr0k8B5ddff633339fHTt29Fj/2Wef1b/+9S/3+dyaNWsknb7S+MMPP+yvw6vD50rK8vJyffPNN+5/79mzR1u3blVsbKx69OihWbNmaf/+/VqyZIkkaerUqXr++ed1zz336NZbb9W6dev017/+Ve+++67/jsIAVg6EYF/le6L5MgafZWVl6eabb9bAgQM1aNAgPf300zp69KgmTZokSZo4caK6d++u+fPnS5LuuOMOXXnllXriiSd09dVXa/ny5fr888/10ksvSZI6duxYp5M755xz5HK53BWSubm52rhxo6666iq1b99eubm5mjFjhn77298Gde4u+jQAsB9/92shISG688479dBDD+n8889Xz549dd9996lbt24aPXq0pNMnhB06dNDNN9+sOXPmqHXr1nr55Ze1Z88eXX311UE7dvo1e3mvoA/VlDZAdtB0x/t1V+tt+41uhun4u1+rqqrSDTfcoM2bN2v16tU6deqUe77K2NhYhYeHe4yKk07PoylJvXv3bvH1GRric0j5+eef66qrrnL/u3Y+kptvvlmvvfaavv/+exUUFLj/3rNnT7377ruaMWOGnnnmGZ177rlatGiR0tPT/dB8AGezalDJlzDjjB07VocOHdKcOXNUWFioAQMGKDs72z3ZckFBgUdlyKWXXqply5Zp9uzZ+uMf/6jzzz9fb731lvr169fk+4yIiNDy5cs1b948VVRUqGfPnpoxY0adq9AFGn0aANhPIPq1e+65R0ePHtWUKVNUUlKiIUOGKDs7W5H/N4SzU6dOys7O1r333quhQ4eqqqpKP//5z/X222+rf//+QTt2+jU4FVWUwfNjn/CADfmGd/7u1/bv36933nlHktzTltT64IMP9Mtf/jIox+VNSE1NTY1h995EZWVlio6OVt/l95hijgl+CYEVWDGolGTqoLKivErPD/m7SktLmzR/SENqP9f+ua2b3+c5KT9SrSH9DvilnfC/2ud+9qcjmJMSgKFOlFfpocHvtbi/qP1c+3x7XED6tIE/L6JPM7Ha5/+8Rx4y3ZyUVv0+fCYzfzc2EzOHlMHODwI5J2WtQIeUza2mPFldqfe//x+/9WucqwVf4F+9NkNACauw6mvVzF8wAAAAgGDiu3HjeIwA+yCk9IFVQx84F69ZAAAAAIA//djHf1fi9oaL6DgXIWUTEfbAqqz42uXXUAAAAOA0vhvXj8emriO9q41ugl8QVDoTISXgAASVAAAAcBI7zEcJAE5DSNkEVgx4gLNZ8XVMUAkAAADwvdgbHhNjBXrIt0Q1pRMRUjbCisEOUB9ezwAAAACsjoDSOQgqnYWQsgEEOoDx+AICAAAA8L0Y5hOMako4CyEl4DBWDN/5QgYAAABA4tzAiaimdA5CynpYMcgBmorXNwAAAOzKzhfNcXpA5/Tjb6pgXuE7WNWUBJXOQEjpBQEOnMBqr3O+kAAAAAB8LwZgX2FGN8BsrBbc2EH7XS3PyoP5S5GdlO+JttQvze8V9NGIHvlGNwMAAABAkBHO4ni/7mq9bb/RzUAAUUmJoGq/K7TOzcz7dQKrBfN8OQEAAIDTOe07sVWP12rnWs0VzAvoMOzb3khyzuCUD5BgMjI4JLRsOl77AAAAgLVYNbgDWoqg0r5Ibv4PIY3/mDUYNGu7zMJK7wG+kAEAAMAbK01lhKbhu3/zBHtKtGBWU8K+SGvgF1YLAK3WXtTFlxUAAAA4nd2/E9v9+NB8VFPaEwmNrFVBZjZ2CPrscAz+YrX3Al9aAAAA4HR2/U5s1+Oys2BXUxJU2o/jkxmrhTJmYcdgj+rK03hPAAAAANZit0DPbseDwCGotJcwoxsAa3FKgFd7nMGex8MsyvdEW2Y+n/cK+mhEj3yjmwEAPskpTDS6CZKk4a6dRjcBAPzGKt9f0TACSmv7sU+4OuRXBvU+j/frrtbb9gf1PhEYjg4pqRhrOqeEk2dzclhJUAkAjTNL2NhczW0/4SYAmI8dvhMTUPrXkd7VjjmXP96vu8759x6jm4EWcmxISUDZNE75QGuMU8NKKwWVAOBvVg8gA6kpjw1BJgAEn5WDSgJK+zCimlKSjvftKn0f9LuFHzk2pETjCCjrcmpYaQVW/kIGwDgEkYHT0GNLgAkAgWPF78UElAAkh4aUVFE2jHCyce13hTomqLRSNaUVv5ABCB4CSfOo77kgvATQXFb5vhosVvpeTEBpT0ZVU8LaHBdSElA2jICy6ZxUVWmloBIAJAJJq/L2vBFcAkDzWCGoJKAMPCPnpSSohK8cF1LCO8LJ5nNKVaVVgkorfBkD4H+EkvZ19nNLaAkATVcbAprt+7ETwkkKpADfOSqk5EPCOwLKlnNKVSVBJQCzIJR0rjOfewJLAGgaM30/dkJAiZ9QTQlfOCqkhCfCSf9zSlhpBWb6IgbAPwgmcTaqLAFIzEfZVEZ/PyacBNAYx4SUVFF6IqAMLDsPAbdKNSUAeyCYhC+osgSAhhk1/JuA0lhGzkspUU2JpnNESElA6YmAMjgIKo1n9K/FAJqHYBL+UPs6IqwEgLqCFVYSTqIWQSWawhEhJX5CQBlcdh7+TVAJwN8IJxEIVFcC9maF76NmFoiwkmASQHPZPqSkivInBJTGsXNVJQC0BMEkgonqSgDw7uxg0ZfQklASTUU1JRpj+5AShJNmYcegkmpKAM1FOAkjEVYC9mCF76FWRfBoP0bPS1mLoBINMf4VGkBUURJQmk37XaG2e06s8j7jixZgDjmFiQSUMA1ejwAABN+PfcKNbgJMikpKG7NbGGYndquqtEpFJQDjEATBzKisBAAAMJ5tUyyrVHcFCgGl+dntObLCe45qSsAYBJSwCiorAevgB3LAd2YqlKGaEt7YKyX5P1YISwLJbuGXnfFcBR9BJRA8BD6wKl67AICWcHom0VQElTgbCYnNEHpZj52eMzpjABIBD+yD1zFgTlRRAvZBUIkz2Scd+T9ODknsFHY5jZ0uqGOF9yDVlEDgEOrAbgjdAQB2YqYh37UIKlHLHqkIbBNwOZ1dnkeCSsCZCHJgZ7y+AXOgihKwJ4JKSDYLKa0QjASCXYItnMbzGTwElYB/UGkGp+B1DgBA4BBUgjTE4gi07MkOz6tTfzQAnIbQBk7Dax4wDlWUgH+Ycch3LYJKZ7N+EvJ/nBiI2CHIQv3s8Pxa4X1JNSXQfIQ1cCqqh4HgI6AEAPsLM7oBAOrXfleoqX/lsov3CvpoRI98o5sBWAoBjf/t/a5zwO8j4dxDAb8PJ8kpTNRw106jmwEAgM+O9K42bWFMbTVlh/xKg1uCYLNFSGmFai1/M+uHCfzP6kFl+Z5ofvkGbIaA0jfBCB+bqiltIcj0DUElEHh8lwSc6cc+4QSVDmOLkNJpCCidh6Ay8KimBJqGgLJ+ZgojW6Kh4yDA9I6gEggcs3+HBBBYBJXOYvmQ0mlVlASUzkVQGXgElUDDCCh/YpdA0lfejpvg8jSCSsD/zP7dEfDGShmFmYd8n4mg0jksH1I6iRU+PBBYVg8qAViXkwNKpwaSTXX240NoCQAA/I2g0hksnXpZ6ReKliKgRC0rvxas8J7lat9AXU4MKPd+19l9g2/OfOyc9vg58b0CBApVlEBwWKkIpvaCOrAv66YdgIMRVAYWQSXwE6eELk4O1gLNaY+rU94zZrdgwQIlJCQoMjJSKSkp2rRpU4Prr1ixQomJiYqMjNSFF16oNWvWePy9pqZGc+bMUdeuXdW6dWulpaXp66+/9linuLhYEyZMUFRUlGJiYpSRkaHy8nK/H5sTEFACqA9Bpb1ZNumwQtDhL1YOpBA4Vn5dOOn9C8C8nBaemYFTHnOCSmO98cYbysrK0ty5c7V582b1799f6enpOnjwoNf1N2zYoPHjxysjI0NbtmzR6NGjNXr0aG3bts29zqOPPqpnn31WCxcu1MaNG9W2bVulp6frxIkT7nUmTJig7du3KycnR6tXr9b69es1ZcqUgB+vnbTrWUpACRjAStWU0umgkrDSnqybcjiElYMoBB6vj8ChmhKwb9DihJDMCuweWNr1/WMFTz75pCZPnqxJkyapb9++Wrhwodq0aaNXXnnF6/rPPPOMRo4cqbvvvltJSUl68MEHdfHFF+v555+XdLqK8umnn9bs2bN13XXX6aKLLtKSJUt04MABvfXWW5KkHTt2KDs7W4sWLVJKSoqGDBmi5557TsuXL9eBAweCdeiWRjgJwFcElfZjyYTDKVVYBFBoCqu+TqzwPiaohJPZLWCxeyBmdTw3aExZWZnHraKiwut6lZWVysvLU1pamntZaGio0tLSlJub63Wb3Nxcj/UlKT093b3+nj17VFhY6LFOdHS0UlJS3Ovk5uYqJiZGAwcOdK+Tlpam0NBQbdy4sXkH7SAElIDxrFZNWYuqSnvh6t6ADVj1qt/le6L5UgqYkJ0CSoIvaznz+bLDVcJzChM13LXT6GYEzVtH+iuy5hy/7vNEeZWk9xQfH++xfO7cuZo3b16d9Q8fPqxTp04pLi7OY3lcXJx27vT+XBQWFnpdv7Cw0P332mUNrdOlSxePv4eFhSk2Nta9DurieyAAf/mxT7jabz/R+IowNcuFlFaovvIHq1bHwThWDSrN7r2CPhrRI9/oZgDwEeGk9dU+h1YPK50WVAbKvn37FBUV5f53RESEga2BPxBQAuZzpHe1pbOIkp+FS2uNbgVawrqvPhuz8ocCjGXF144Vfnhg2DecxOpVlAwbth87PKdWf1+ZQVRUlMetvpCyU6dOatWqlYqKijyWFxUVyeVyed3G5XI1uH7tfxtb5+wL85w8eVLFxcX13q9TcXEcAEB9LJVoHP02qvGVLM6KIRPMxYqvISsElYATWDlIsUOQhYbxHKMpwsPDlZycrLVrfyqlqa6u1tq1a5Wamup1m9TUVI/1JSknJ8e9fs+ePeVyuTzWKSsr08aNG93rpKamqqSkRHl5ee511q1bp+rqaqWkpPjt+KyqNpgknITd2eG8htF5MJL10gwAjbJiUGl2dq+mXLBggRISEhQZGamUlBRt2rSpwfVXrFihxMRERUZG6sILL9SaNWs8/j5v3jwlJiaqbdu26tChg9LS0upcOKC4uFgTJkxQVFSUYmJilJGRofLycr8fG+yN4Mp5rPp8W/lHAKvJysrSyy+/rNdff107duzQ7373Ox09elSTJk2SJE2cOFGzZs1yr3/HHXcoOztbTzzxhHbu3Kl58+bp888/V2ZmpiQpJCREd955px566CG98847+uKLLzRx4kR169ZNo0ePliQlJSVp5MiRmjx5sjZt2qRPPvlEmZmZGjdunLp16xb0x8AMCCYBwH/8fb62cuVKjRgxQh07dlRISIi2bt3qdT+5ubkaOnSo2rZtq6ioKF1xxRU6fvy4vw6rDpIMEyFYgpNZ4VfHdd+db3QTAuKNN95QVlaW5s6dq82bN6t///5KT0+vM2yt1oYNGzR+/HhlZGRoy5YtGj16tEaPHq1t27a517ngggv0/PPP64svvtA///lPJSQkaMSIETp06Ke55SZMmKDt27crJydHq1ev1vr16zVlypSAHy+8s1qAQjjpbDz/aMjYsWP1+OOPa86cORowYIC2bt2q7Oxs94VvCgoK9P3337vXv/TSS7Vs2TK99NJL6t+/v95880299dZb6tevn3ude+65R9OnT9eUKVN0ySWXqLy8XNnZ2YqMjHSvs3TpUiUmJmrYsGEaNWqUhgwZopdeeil4B26wtueVEUwCNkE1pbkE4nzt6NGjGjJkiB555JF67zc3N1cjR47UiBEjtGnTJn322WfKzMxUaGjgsquQmpqamoDt3U/KysoUHR2t8x55SKFnfBGwEwJKBIIVOxczf6k9daxCX457VKWlpR6T9zdH7efaP7d1U7v2/n3/lx+p1pB+B5rczpSUFF1yySV6/vnnJZ0eFhcfH6/p06dr5syZddYfO3asjh49qtWrV7uXDR48WAMGDNDChQu93kft8b7//vsaNmyYduzYob59++qzzz7TwIEDJUnZ2dkaNWqUvvvuO1tXndQ+FrM/HaHIdv69Cm5LWCmkJJzC2ax0cR0zXUTnRHmVHhr8Xov7tUB+rvmrjQic2ue/7/J71KoNFzSCs1mh8MIXVsspTlWc0Pb/+aPf+jUznKtJgT1f27t3r3r27KktW7ZowIABHn8bPHiwhg8frgcffNDHo2w+a73iAPjEap0K/KusrMzjVlFRUWedyspK5eXlKS0tzb0sNDRUaWlpys3N9brf3Nxcj/UlKT09vd71Kysr9dJLLyk6Olr9+/d37yMmJsYdUEpSWlqaQkND6wwLR+BZJaCkeg714XUBAACspCnnalJwzte8OXjwoDZu3KguXbro0ksvVVxcnK688kr985//bPI+miMsoHtHkxAkIZDa7wq1VEVl+Z5oU1dT+tvykhRFnPRv1UlFeZWkvys+Pt5j+dy5czVv3jyPZYcPH9apU6fcQ+BqxcXFaedO79U+hYWFXtcvLCz0WLZ69WqNGzdOx44dU9euXZWTk6NOnTq599GlSxeP9cPCwhQbG1tnP4BECIXG1b5GzF5VmVOYaKpqSgAA6nOkd7Wj8wqjz9WkwJ6vNWT37t2STl9r4PHHH9eAAQO0ZMkSDRs2TNu2bdP55wdmKjRCSoM5+Q2P4CGodKZ9+/Z5DCGIiAjuEKyrrrpKW7du1eHDh/Xyyy/rN7/5jfvXOJiH2asoCSfhq73fdTZ9UAkAgFU4PagMFKPP1RpTXX06P7j99tvdF577xS9+obVr1+qVV17R/PnzA3K/vNIAh7Bax2K3+VyMEBUV5XHz1vF16tRJrVq1UlFRkcfyoqIiuVwur/t1uVxNWr9t27b62c9+psGDB2vx4sUKCwvT4sWL3fs4e6LnkydPqri4uN77hfMQUKK5zP7aMfuPAwAAnMlKBS9W0ZRzNSmw52sN6dq1qySpb9++HsuTkpJUUFDQ5P34ylqphc1YLTSC9fGaw9nCw8OVnJystWvXupdVV1dr7dq1Sk1N9bpNamqqx/qSlJOTU+/6Z+63dq6V1NRUlZSUKC8vz/33devWqbq6WikpKc09HPjIzEGJ2UMmmB9zmAIAAKsL5vnamRISEtStWzfl5+d7LP/qq6903nnn+XAEvmG4t0EIi4DGMew7OLKysnTzzTdr4MCBGjRokJ5++mkdPXrUXdY/ceJEde/e3V3Sf8cdd+jKK6/UE088oauvvlrLly/X559/rpdeekmSdPToUT388MP61a9+pa5du+rw4cNasGCB9u/fr1//+teSTv8CN3LkSE2ePFkLFy5UVVWVMjMzNW7cOFtf2RtNQ7AEfzLr8G/mpgQAWAnDvo3j7/M1SSouLlZBQYEOHDggSe4w0uVyyeVyKSQkRHfffbfmzp2r/v37a8CAAXr99de1c+dOvfnmmwE7VkJKwGGYnxJnGzt2rA4dOqQ5c+aosLBQAwYMUHZ2tnuy5YKCAoWG/vSF5NJLL9WyZcs0e/Zs/fGPf9T555+vt956S/369ZMktWrVSjt37tTrr7+uw4cPq2PHjrrkkkv08ccf6+c//7l7P0uXLlVmZqaGDRum0NBQjRkzRs8++2xwD97BzFpFSUCJQDBrUAkAsA8nTFdFUGkMf5+vSdI777zjDjklady4cZI8L+Bz55136sSJE5oxY4aKi4vVv39/5eTkqHfv3gE71pCampqagO3dT8rKyhQdHa3zHnlIoZGRRjenxXhTwwysFFSaJaQ8daxCX457VKWlpR6THDdH7eda5j//UxHt/H/FuOeH/N0v7YT/1T73sz8doUg/P/e+MFtISTiJYDBjUGlkNeWJ8io9NPi9FvcXgfxc81cbETi1z3/f5feoVRtzXfgBCCYnhJS1zJppnKo4oe3/80e/9WucqwUflZSAQ1mpopJqSsC/CCitJ6IgvMnrVvSoDGBLrI2KSgAAWo6KSgQKIWWQ8UaGmRBUAjCa0wNKX8JHf+/TqWGm2YJK5qYEAFgRQSUCgZAyiHgDAwDwEycFlIEII1vKW5ucElyaLagEAMCKCCrhb4SUgMNRTQk4i1mGets9oDRjKNkUTgouCSoBAGg5gkr4EyFlkPCm9Y8O+Q2fKP3Yx5onhUYjqASAlrFqKNkUZx6b3QJLswSVDPkGAFgZQSX8hZASptRYGOnrdoSXjbNSUAmgeaii9C87B5P1sWNgaZagEgAAKyOohD8QUgYBb9TGNTeUbO7+CS2tjWpKwLqsHlA6MZisj50CS4JKAABarrbohQwEzcUrB4bpkF/pvjnpvs2MzgRAIFk5oIwoCCegbEDt42Plx8jo16dZKp0BAGgpRuihuaikDDBCH09mDAXPbBMVltYZ9k01JeAbowMQowOg5rBy4Gak2sfN6tWVAACg+aiqRHPwakFQWKVq0SrtDDSrdCTle6KNbgKAJrBaQGn1ikCzsOLjaLXXKgDAHDgvqZ8VCmBgHtZIIizKKkFPIFk19LNquwEAzWfFUM0KrPa4GhlUGl3xDABAIBzpXU1YiSYhRQsQAkpzDu32lZPDSqu8hvnVEmickcGHFSrTrBaiWZWVHmcrvG4BALAawko0xhopBCzFjsGeHY+pKQgqAbSEFYIeq4RmdmKlsBIAAPgfYSXqY40EwmKsEuz4mxOCPCcc49mc+noGYG8EZcYz++NvVMjOkG8AgFMQVuJspA/wC6cFd04MK82OakrAXMxaRUk4aS5mfz7M+joGAMBOCCtRq1kh5YIFC5SQkKDIyEilpKRo06ZNDa7/9NNPq0+fPmrdurXi4+M1Y8YMnThxolkNNjunVZ05PaxzyrFb5XVNUInmsnO/ZkRVllmDHTOHYU5n9rASsBI792kA7K02rCSwdC6fk4c33nhDWVlZmjt3rjZv3qz+/fsrPT1dBw8e9Lr+smXLNHPmTM2dO1c7duzQ4sWL9cYbb+iPf/xjixsPYzkloGuMU4JaqwSVgK/o15yBAMwazPg8mTV0B7yhTwNgF4SVzuRz6vDkk09q8uTJmjRpkvr27auFCxeqTZs2euWVV7yuv2HDBl122WW68cYblZCQoBEjRmj8+PGN/qJnRU4KcZwQyvnKCY+JFV7jVFPCV/Rr/mW2QIcKPevh+WJeSjQffRoAu6G60ll8ShwqKyuVl5entLS0n3YQGqq0tDTl5uZ63ebSSy9VXl6eu6PbvXu31qxZo1GjRrWg2TCSE8K45nJKVSVgF3bv14IddJgxoIQ1mS1cNttrG/DG7n0aAJwZWBJa2lOYLysfPnxYp06dUlxcnMfyuLg47dy50+s2N954ow4fPqwhQ4aopqZGJ0+e1NSpUxscQlBRUaGKigr3v8vKynxppiGsUGHWUoRvTdchv1I/9jHPyZU/td8VavoOoXxPtNr1LDW6GbCAYPRrVuzT7MBMAReaL6IgXBU9zPH9Y+93nZVw7iGjmwHUi3M1AE5z9nlpmy8Nagj8JuDJ2ocffqg//elPeuGFF7R582atXLlS7777rh588MF6t5k/f76io6Pdt/j4+EA3E40goPSdnR8zK4TyDPtGoPjarzmlTzNLpZnZKvDQcjyfQOBwrgbATsp7mbuYBo3zKWno1KmTWrVqpaKiIo/lRUVFcrlcXre57777dNNNN+m2227ThRdeqP/8z//Un/70J82fP1/V1d5fQLNmzVJpaan7tm/fPl+aCT+zc9gWaAz/BswtGP0afVrwEGbZl1me22CG8cxLCV9xrgYAsDqfQsrw8HAlJydr7dq17mXV1dVau3atUlNTvW5z7NgxhYZ63k2rVq0kSTU1NV63iYiIUFRUlMfNzKxQVdZcBGz+YcfH0Qqve6op0Zhg9GtW69OawwxVlGYJsRA4PMdAwzhXAwBYnU9zUkpSVlaWbr75Zg0cOFCDBg3S008/raNHj2rSpEmSpIkTJ6p79+6aP3++JOnaa6/Vk08+qV/84hdKSUnRN998o/vuu0/XXnutuwOEOdkxWDOSHeepZH5K2IFd+zUnVWERXjmHGeaoZG5KmJld+zTAzCiMAPzH55By7NixOnTokObMmaPCwkINGDBA2dnZ7gmaCwoKPH6Nmz17tkJCQjR79mzt379fnTt31rXXXquHH37Yf0dhICtUkzUHAWVg2DGoBKyOfq1ljK6iJKB0HjMElYBZ0acBAKwspKa+On4TKSsrU3R0tM575CGFRkYa3RwPdgwpCSgDz25BpdmrKSX5pZry1LEKfTnuUZWWlrZ4aFPt51rmP/9TEe3OaXHbzlRRXqXnh/zdL+2E/9U+97M/HaFIPz/3ZwpWJaWRISUBpbMZHVQGq5pyuMv7VZn94UR5lR4a/F6L+4tAfq75q40InNrnv+/ye9SqTYTRzQGCjkpK86g+cULf/mG23/o1ztWCz34JWxARUKK57PY42/G9AKBxBJQwEq8BAAAAeyFZgJvdgjOz4/EOLn7hhJPYfT5KwinUMvK1YPRUBwAAAHbj85yUOI3KMfiDneao5CI6gLMYFdA4NaBsv7dps/McSQgJcEvMhzkqAQAA7IGQEpKo6jNS7WNvh7DSCkElAJhVU4PIluzDriGmUUElV/oGAADwH8oBQUBpEjwPwcGwb6DlqKJsufZ7a+rcjLhfO7HT6+NMdp++AQAAoBaVlM1gp6HeBGPmYofh31RTAggEOwRQZgwFz26T1SstGfoNAABgXfZJ2+AzAkpzssPzYvYgn2pK2Jkdq66sHFBarWrRau01Ay6gAwAA4B9UUvrI7OELgKbhIjpA8wQ7kLFiQGmXgO/M47BShSXVlAAAANZE4uZQdqjWszM7PD8E+gCcxs4ViFY7tmCH21RTAgAAtBwpggPZIQBzAjs8T2YPKhn2DfiGKkrvrBbgtYSVjtUqr5+msOM0DgAAAGczd4JgMmYPXJrCDsGXk/B8AXAqKwRMVgrs/M3Jxw4AAIDAsH7qBtic1YNKs4f7VFMC8BUB3U/M/lgEM+xmyDcAAEDLmDs9MBGzBy1NYfWwy8l47gA0RSCHhAYzgDFrFaXZAzkjmflxMevrCeZQXFysCRMmKCoqSjExMcrIyFB5eXmD25w4cULTpk1Tx44d1a5dO40ZM0ZFRUUe6xQUFOjqq69WmzZt1KVLF9199906efKkxzpLly5V//791aZNG3Xt2lW33nqrfvjhB78fIwAAVmH95A1NQshlfVZ+Ds0e8lNNCZiHWQMlM4dwZkGICyuaMGGCtm/frpycHK1evVrr16/XlClTGtxmxowZWrVqlVasWKGPPvpIBw4c0PXXX+/++6lTp3T11VersrJSGzZs0Ouvv67XXntNc+bMca/zySefaOLEicrIyND27du1YsUKbdq0SZMnTw7YsQIAYHbmTg4AeCCoDByCSgDeELz5zoyPV7DCb4Z8W8uOHTuUnZ2tRYsWKSUlRUOGDNFzzz2n5cuX68CBA163KS0t1eLFi/Xkk09q6NChSk5O1quvvqoNGzbo008/lSS99957+vLLL/WXv/xFAwYM0H/8x3/owQcf1IIFC1RZefq7XG5urhISEvT73/9ePXv21JAhQ3T77bdr06ZNQTt+AADMxtypgUmYPVxpjJWDLdTF8wkg2IIVvJititKMYZtVEO7CCnJzcxUTE6OBAwe6l6WlpSk0NFQbN270uk1eXp6qqqqUlpbmXpaYmKgePXooNzfXvd8LL7xQcXFx7nXS09NVVlam7du3S5JSU1O1b98+rVmzRjU1NSoqKtKbb76pUaNGBeJQAQRQu56lRjcBsA1rp29oFIEWzMTsgT/VlIBxzBRQErD5j5keRzO9xpojkHPOWkFZWZnHraKiosX7LCwsVJcuXTyWhYWFKTY2VoWFhfVuEx4erpiYGI/lcXFx7m0KCws9Asrav9f+TZIuu+wyLV26VGPHjlV4eLhcLpeio6O1YMGCFh8XAABWFWZ0AwD4rkN+pX7sY82Trfa7QnWkd7XRzQAAr8wUqtlF+701OpIQYnQzJJ0OKit6BPYH3L3fdVbCuYcCeh9m9UHRBQorj/DrPk8erZD0nuLj4z2Wz507V/PmzfO6zcyZM/XII480uN8dO3b4qYXN8+WXX+qOO+7QnDlzlJ6eru+//1533323pk6dqsWLFxvaNgAAjEJI2QizV341hCpKe7NyUGlm5XuiGbIBnCEYQ73NUuFGQBk4tY+tWcJKWM++ffsUFRXl/ndERP1h6F133aVbbrmlwf316tVLLpdLBw8e9Fh+8uRJFRcXy+Vyed3O5XKpsrJSJSUlHtWURUVF7m1cLleduSVrr/5du878+fN12WWX6e6775YkXXTRRWrbtq0uv/xyPfTQQ+ratWuD7QcAwI4IKW2KgNIZrBpUmr2akqASVuT0oaAtRUAZHGaoqgxGNSX8LyoqyiOkbEjnzp3VuXPjP7CkpqaqpKREeXl5Sk5OliStW7dO1dXVSklJ8bpNcnKyzjnnHK1du1ZjxoyRJOXn56ugoECpqanu/T788MM6ePCgezh5Tk6OoqKi1LdvX0nSsWPHFBbmeSrWqlUrSVJNDZ9HAABnsm6ZIABJBNIArM0MVZQElMHlhMebq3xbQ1JSkkaOHKnJkydr06ZN+uSTT5SZmalx48apW7dukqT9+/crMTHRXRkZHR2tjIwMZWVl6YMPPlBeXp4mTZqk1NRUDR48WJI0YsQI9e3bVzfddJP+9a9/6R//+Idmz56tadOmuStAr732Wq1cuVIvvviidu/erU8++US///3vNWjQIPd9AwDgNISUDbDqUG9CK1iB2d9fXEQHcAYnBGZmZPTjboZwHOawdOlSJSYmatiwYRo1apSGDBmil156yf33qqoq5efn69ixY+5lTz31lK655hqNGTNGV1xxhVwul1auXOn+e6tWrbR69Wq1atVKqamp+u1vf6uJEyfqgQcecK9zyy236Mknn9Tzzz+vfv366de//rX69OnjsR8AAJyG4d6ADVh12DcAcwt0NZjRQZHRQZnTmWHoNxAbG6tly5bV+/eEhIQ6w68jIyO1YMGCBq/Efd5552nNmjUN3vf06dM1ffp03xoMAICNmbuUyUBmr/KqD1WUzmXF597s7zOqKQH7IqA0ByOfh0CH5IEI+Zl7FgDMifnsAf8wd0IAn1gxpIJ/WfE1YPagEkBgGFlFSUBpLjwfAAAAkAgpAduxYlBpZlRTwqnseuEPAjFzMup5MXrKAQAAAPyEkNImCKZgZVRTAs5iVDBEQGluPD8AAADORjLgBYEJrI7Q2r+opoTZMU9d4wjArMGI5ymQobldK5IBAAACgTTOBgik4I3VXhdm/3GAoBLwDyOqKAkoAQBAoHHxHKDlzJ0KAACCYsGCBUpISFBkZKRSUlK0adOmBtdfsWKFEhMTFRkZqQsvvFBr1qzx+PvKlSs1YsQIdezYUSEhIdq6dWudffzyl79USEiIx23q1Kn+PCw0k52qvwgorcdu1ZQAAAAt5e/ztZqaGs2ZM0ddu3ZV69atlZaWpq+//tpjna+++krXXXedOnXqpKioKA0ZMkQffPCB34/tTISUZzF7NdfZrFYth+Cy2uvD7O+/o99GGd2EgHjjjTeUlZWluXPnavPmzerfv7/S09N18OBBr+tv2LBB48ePV0ZGhrZs2aLRo0dr9OjR2rZtm3udo0ePasiQIXrkkUcavO/Jkyfr+++/d98effRRvx4bAGsiXAYAAL5o17NUbc8rM7oZARGI87VHH31Uzz77rBYuXKiNGzeqbdu2Sk9P14kTJ9zrXHPNNTp58qTWrVunvLw89e/fX9dcc40KCwsDdqzmTgQAtBhBJRrz5JNPavLkyZo0aZL69u2rhQsXqk2bNnrllVe8rv/MM89o5MiRuvvuu5WUlKQHH3xQF198sZ5//nn3OjfddJPmzJmjtLS0Bu+7TZs2crlc7ltUlD2DYJwW7Go1gi5rs8vz5+/KZOagBQDzYsh3cLTrWVrnZmf+Pl+rqanR008/rdmzZ+u6667TRRddpCVLlujAgQN66623JEmHDx/W119/rZkzZ+qiiy7S+eefrz//+c86duyYR9jpb6QBFma18AlAcJWVlXncKioq6qxTWVmpvLw8jzAxNDRUaWlpys3N9brf3NzcOuFjenp6ves3ZOnSperUqZP69eunWbNm6dixYz7vA/DGLgEXgoch3wAAmJMdA8mmnKtJgTlf27NnjwoLCz3WiY6OVkpKinudjh07qk+fPlqyZImOHj2qkydP6n/+53/UpUsXJScnt+jYGxIWsD1bEBVcsKsO+ZX6sY91Tr7a7wrVkd7VRjcjKNZ9d75atYnw6z5PHTvdwcXHx3ssnzt3rubNm+ex7PDhwzp16pTi4uI8lsfFxWnnzp1e919YWOh1fV/L/m+88Uadd9556tatm/7973/rD3/4g/Lz87Vy5Uqf9gNrCGYAREBpH+331uhIQojRzQAAoMna9SzlopstZJYg0uhzNSkw52u1/21onZCQEL3//vsaPXq02rdvr9DQUHXp0kXZ2dnq0KFDE4/Wd4SUFkUVJXxltaASLbdv3z6P4dMREf7tYFtqypQp7v+/8MIL1bVrVw0bNky7du1S7969DWyZs9npojmwh2AGlREF4arowXcsAACCySyhZDCZ/VytpqZG06ZNU5cuXfTxxx+rdevWWrRoka699lp99tln6tq1a0Dul9JBwEGsFG5T2dxyUVFRHjdvHV+nTp3UqlUrFRUVeSwvKiqSy+Xyul+Xy+XT+k2VkpIiSfrmm29atB84G1WU9sTzCgCwEieGbr6w4/BtXzXlXE0KzPla7X8bWmfdunVavXq1li9frssuu0wXX3yxXnjhBbVu3Vqvv/667wfcRKQA/4dABIAThYeHKzk5WWvXrnUvq66u1tq1a5Wamup1m9TUVI/1JSknJ6fe9Ztq69atkhSwX+XsygoX0QjWUG+7BVnRuytafIM5UKEMAHAyQsnmC8T5Ws+ePeVyuTzWKSsr08aNG93r1F4rIDTUMysLDQ1VdXXgpmZjuLcFWakaDuZjpWHfTpqb0khZWVm6+eabNXDgQA0aNEhPP/20jh49qkmTJkmSJk6cqO7du2v+/PmSpDvuuENXXnmlnnjiCV199dVavny5Pv/8c7300kvufRYXF6ugoEAHDhyQJOXn50uS+yreu3bt0rJlyzRq1Ch17NhR//73vzVjxgxdccUVuuiii4L8CADmEIhQ8ex9lvYy11AiXwRr2DdDvgEA/uD0uSkJI/3H3+drISEhuvPOO/XQQw/p/PPPV8+ePXXfffepW7duGj16tKTTQWeHDh108803a86cOWrdurVefvll7dmzR1dffXXAjpWQEgAcbuzYsTp06JDmzJmjwsJCDRgwQNnZ2e6JlAsKCjx+Qbv00ku1bNkyzZ49W3/84x91/vnn66233lK/fv3c67zzzjvuTlOSxo0bJ+mnCaHDw8P1/vvvuzvY+Ph4jRkzRrNnzw7SUcMbK1d7WbWKMtjVjmfen5UDSwAAYC6EkoETiPO1e+65R0ePHtWUKVNUUlKiIUOGKDs7W5GRkZJODzPPzs7Wvffeq6FDh6qqqko///nP9fbbb6t///4BO9aQmpoa03+rLysrU3R0tM575CGF/t8D5m9WGe5NFSX8xSrVlJJMU01ZfeKEvv3DbJWWlnpMctwctZ9rfZffE5Arxn057lG/tBP+V/vcz/50hCLbndPi/flzuHcgQkqGetdltmHYVgsrg1FNGYhKyoRzD/ltX8Nd3q/m6asT5VV6aPB7Le4vaj/XLns7U2Ft/ft6Onm0Qp9c9zx9mokF8jsNYAd2raY0Yyjpr/MgztWMQyWlrBNQAv5kpWHfANAQqwSUZgsna1mtujIYw74Z8g0A8Bc7Dfs2YzAJeyGdsxCqKOFU/JAAoD5WCCitdBEbq7TTivxZqWyFC2YBAH5i1XCPC94g2KikBBzMStWUXEQHsJ5gDfU2K6sGfrXtNnNVZbAuogMAgL/UhnxmrqokiITRCCkBh7NSUAkgcKx40RwzV1FaNaA8kxXCykBiyDcAIBDMNPybUBJm4/iQ0irDSBnqDVBNCcD87BBOni16d4Upg0qqKQEAVmVUVSWhJMzO8SElAKopAfhfoId6m7GK0o4BZS2nV1UCABAIZ4aG/g4sCSRhRYSUFkAVJfATqikBmJGdA8ozma2q0mrVlHu/66yEcw8Z3QwAgAmdHSo2JbQkiITdEFICkEQ1JWBFTr3Cr5mqKJ0STp7JbEFlIDEvJQDAKASQcCJrTMgYIFaZjxIIFqtU7fLeBczNKVf1dmJAWctMx26m0BoAAADNx5m+yVklNAIAWJeVruxtlkDKTCGdUXgMAAAA4E+ElLCN1tv2e9zQPFYJxqmmBGAUwrmfmOWxCGR47ZTKYAAAAKMxJ6WJWSUsCramBpD1rXe8X3d/NgcAECRmqKI0SyhnJk6aoxIAAACB49hSJKqwrMWfFZJUWzbOKgE572PAfOxcdUZAWT8em6az0vQKAAAAwUQlJUwt0EHimfunwhIAUB9CuMYZXVHZfm+NjiSEGHb/AAAAaBnKkEzKKpVsgWJEpSPVlZ6s8hqkmhJwBiOHehNQNp1dHyszVgjnFCYa3QQAAAC/4uwepmKGoNAMbQAAwKqMDCrNMG8pAAAAmoeQEqZhtmCQsJJqSsAJ/Dk/XqCqzaiitB4eNwAAAPjKkWf2Zg80rBIM+YvZw0Azty0YnPZ6BIBaBG0AAABA8Jg7rYPtWSUANHuQCvP/+ADAWggoW86oxzBQlbdmnJcSAADATjirh2GsGPpZsc3+QDUlAKMwx6C1EfZ6589pFgCzGHru10Y3AQBgcYSUMISVwz4rtx0A0DiCNf8y4vEk3AYAALAeQkqTcULFmh1CPicO/7bCa5Mh34Bx7DIUloASAJpvRI98o5sAALAwx53RE2IYy27Bnt2OB4B15BQmGt2EgKMazj4IfwEAANAYEjsEjV0DPbselzdUUwL2wrx4ngjSAivYj28gQm67VAwDAACYEWfzJmKFAKi57B7k2f34AMDuCCgBwD8Y8g0AaC5CSgScUwI8pxynFcJ0qimB4ApEdRlDve2JMBgAAAD14UweAeWU4K6W044XAOyA4AwA/ItqSgBAcxBSImCcGtg54bippgQANFcwQ2EqcgEAAKzDUWfxZg4trBD6oOmcEFQCQKAEM1iiihK+8tf0Bly4CgAAwJN5UztYGiEdj4EZmPmHCQBwMsJhwP4Y8g0A8BVn8PA7wrmf2PmxoPoXgNURlDkDQ77RkOLiYk2YMEFRUVGKiYlRRkaGysvLG9zmxIkTmjZtmjp27Kh27dppzJgxKioq8ljn97//vZKTkxUREaEBAwZ43U9NTY0ef/xxXXDBBYqIiFD37t318MMP++vQAACwHEJKAADQbIG4sjecgZC45XIKE41uguVNmDBB27dvV05OjlavXq3169drypQpDW4zY8YMrVq1SitWrNBHH32kAwcO6Prrr6+z3q233qqxY8fWu5877rhDixYt0uOPP66dO3fqnXfe0aBBg1p8TAAAWFWY0Q2AvSrS7Fw52Fytt+3X8X7djW5GQHTIr9SPfcwdULTfFaojvauNbgZgOmadDy9YVW8EZAB27Nih7OxsffbZZxo4cKAk6bnnntOoUaP0+OOPq1u3bnW2KS0t1eLFi7Vs2TINHTpUkvTqq68qKSlJn376qQYPHixJevbZZyVJhw4d0r///W+v9/3iiy9q27Zt6tOnjySpZ8+eATlOI43oka/3CvoY3QwAgEVQSQm/IaCsH48NAAB1ERbDSLm5uYqJiXEHlJKUlpam0NBQbdy40es2eXl5qqqqUlpamntZYmKievToodzc3Cbf96pVq9SrVy+tXr1aPXv2VEJCgm677TYVFxc3/4AAwOGGnvu10U1ACzkmpOQCGjCaXYNKK1QC8/4HcCaCMefxd4Uu0xwEX1lZmcetoqLl7+PCwkJ16dLFY1lYWJhiY2NVWFhY7zbh4eGKiYnxWB4XF1fvNt7s3r1b3377rVasWKElS5botddeU15enm644QafjwMAnG5Ej3wu1mUTDPeGX9g1gPM3Ow/9BgCgOaJ3V6i0V4TRzYAfFBzopNDWkX7dZ/XxE5Kk+Ph4j+Vz587VvHnzvG4zc+ZMPfLIIw3ud8eOHX5pX3NVV1eroqJCS5Ys0QUXXCBJWrx4sZKTk5Wfn+8eAm4HDPkGEEiEk/ZCSGkwK1ShAY1hbkoA/hCM+SipogSsad++fYqKinL/OyKi/mD7rrvu0i233NLg/nr16iWXy6WDBw96LD958qSKi4vlcrm8budyuVRZWamSkhKPasqioqJ6t/Gma9euCgsLcweUkpSUlCRJKigosFVICQCBQkBpP4SUaDGqKH1DNSUAu2DIK/yFako0JioqyiOkbEjnzp3VuXPjFwdLTU1VSUmJ8vLylJycLElat26dqqurlZKS4nWb5ORknXPOOVq7dq3GjBkjScrPz1dBQYFSU1ObeDTSZZddppMnT2rXrl3q3bu3JOmrr76SJJ133nlN3g8AOBUBpT0xURtgADsGu1QFAwDMLFhXjvfF3u8aD9IQOElJSRo5cqQmT56sTZs26ZNPPlFmZqbGjRvnvrL3/v37lZiYqE2bNkmSoqOjlZGRoaysLH3wwQfKy8vTpEmTlJqa6r6ytyR988032rp1qwoLC3X8+HFt3bpVW7duVWXl6e9LaWlpuvjii3Xrrbdqy5YtysvL0+23367hw4d7VFfaBWECAH/iM8W+qKREi9gxbIN9MeQbcDaGegM429KlS5WZmalhw4YpNDRUY8aM0bPPPuv+e1VVlfLz83Xs2DH3sqeeesq9bkVFhdLT0/XCCy947Pe2227TRx995P73L37xC0nSnj17lJCQoNDQUK1atUrTp0/XFVdcobZt2+o//uM/9MQTTwT4iAHA2ggo7Y2Q0kBWrzwjoGwZhn0DwE/MWOWG4GLIN4wQGxurZcuW1fv3hIQE1dR4fj5FRkZqwYIFWrBgQb3bffjhh43ed7du3fS3v/2tyW0FAKcjoLQ/Rwz3br/LEYcJC7Jb0GuF4J3PA8CZqKKEvzEnKwAAwUNA6QzNOltfsGCBEhISFBkZqZSUFPccLfUpKSnRtGnT1LVrV0VEROiCCy7QmjVrmtVgAAD8zWr9Wk5hYtDuCwBgLWbt0wgYADQXnx/O4XNI+cYbbygrK0tz587V5s2b1b9/f6Wnp+vgwYNe16+srNTw4cO1d+9evfnmm8rPz9fLL7+s7t0Z5mpldqsANJLdHksrVFMCZ6JfA8wj0BWvTCsAu6NPA2A3BJTO4vOclE8++aQmT56sSZMmSZIWLlyod999V6+88opmzpxZZ/1XXnlFxcXF2rBhg8455xxJp+d2AfAT5qcMLi6ggzM5sV9z2hWFGeoNwCmc2KcBsC8CSufxqZKysrJSeXl5SktL+2kHoaFKS0tTbm6u123eeecdpaamatq0aYqLi1O/fv30pz/9SadOnar3fioqKlRWVuZxsxsrV5vZrfIPgHMFo1+za5/mz/n4qG5rmvAd+xq9AXAuztUA2AkBpTP5FFIePnxYp06dUlxcnMfyuLg4FRYWet1m9+7devPNN3Xq1CmtWbNG9913n5544gk99NBD9d7P/PnzFR0d7b7Fx8f70kzAkuwU/lohhOcCOpCC06/Rp6ElfA0g7RBYUvkKNA/nagDsgoDSuQJ+ll5dXa0uXbropZdeUnJyssaOHat7771XCxcurHebWbNmqbS01H3bt8+6X7Ttxk5BGgA0h6/9Gn0amsMfQaPVw0oAgRfsczWCBwCN4XPC2Xyak7JTp05q1aqVioqKPJYXFRXJ5XJ53aZr164655xz1KpVK/eypKQkFRYWqrKyUuHhdYeLRUREKCIiwpemAbZgp7kpO+RX6sc+/hsOCgRCMPo1+jRjWa0qLxChYu0+K5OodpJOTy9wJCHE6GYAfse5GgCrI6CET5WU4eHhSk5O1tq1a93LqqurtXbtWqWmpnrd5rLLLtM333yj6uqfLlLx1VdfqWvXrl47PQAIFoZ8g34NZhLoqkcrVVVaJVz259ysQEvRpwGwMgJKSM0Y7p2VlaWXX35Zr7/+unbs2KHf/e53Onr0qPsKchMnTtSsWbPc6//ud79TcXGx7rjjDn311Vd699139ac//UnTpk3z31E0gBDCfxjqHRw8zkBwWa1fg/0Ec1i2lYJKAL6jTwNgRQSUqOXTcG9JGjt2rA4dOqQ5c+aosLBQAwYMUHZ2tnuC5oKCAoWG/hQMxsfH6x//+IdmzJihiy66SN27d9cdd9yhP/zhD/47CouxwkVFAH9gyDesgH7NWIG8srcVqvGMCA3Dd+xj6LeJ7P2usxLOPWR0M2AT9GkArIaAEmfyOaSUpMzMTGVmZnr924cfflhnWWpqqj799NPm3BXgSHaam9Ls2u8K1ZHe1Y2vCFujX4MRjKxqJKgE7MvsfdqIHvl6r6BP0O4PgHkRUOJsjIVGkzAEGQAA/zHDsGsztKEhVqiEBQAAgP8QUgImZZdg2ArTGzB3LeAbLhbSMmYKB83UFgAA4BxUUcIbzswBAFqwYIESEhIUGRmplJQUbdq0qcH1V6xYocTEREVGRurCCy/UmjVrPP5eU1OjOXPmqGvXrmrdurXS0tL09ddfe6xTXFysCRMmKCoqSjExMcrIyFB5ebnfjw3ORBVe0zkxqAzkXKgAAKBhBJS+c8r5GiElGmWXij4r4rFHMLzxxhvKysrS3LlztXnzZvXv31/p6ek6ePCg1/U3bNig8ePHKyMjQ1u2bNHo0aM1evRobdu2zb3Oo48+qmeffVYLFy7Uxo0b1bZtW6Wnp+vEiRPudSZMmKDt27crJydHq1ev1vr16zVlypSAHy9gJLMGgmZtFwAAsBcCSt856XyNkBJAwDHk29yefPJJTZ48WZMmTVLfvn21cOFCtWnTRq+88orX9Z955hmNHDlSd999t5KSkvTggw/q4osv1vPPPy/p9K9yTz/9tGbPnq3rrrtOF110kZYsWaIDBw7orbfekiTt2LFD2dnZWrRokVJSUjRkyBA999xzWr58uQ4cOBCsQweCiiDQd1TEAgAAp3PS+Zpzz8oNYoWwBuZCNSWaq6yszONWUVH3ZL+yslJ5eXlKS0tzLwsNDVVaWppyc3O97jc3N9djfUlKT093r79nzx4VFhZ6rBMdHa2UlBT3Orm5uYqJidHAgQPd66SlpSk0NFQbN25s/kHDUpw05NYKAaUV2oi6cgoTjW4C4DMqqQBn4r3/k6acq0nOO18LC9ieYQsEZEBgHf02SqGRkX7dZ/X/lejHx8d7LJ87d67mzZvnsezw4cM6deqU4uLiPJbHxcVp586dXvdfWFjodf3CwkL332uXNbROly5dPP4eFham2NhY9zoAgi98xz5VJsU3viLcIgrCVdGDH6EBAGiIFQNKo8/VJOedrxFSAhbQett+He/X3ehmtEiH/Er92MfcVwRuvytUR3pXG90Mv9m3b5+ioqLc/46IiDCwNTCLvd91NroJAWe2IcJUKAIAACezYkAZaJyrecdwbwCwqaioKI+bt46vU6dOatWqlYqKijyWFxUVyeVyed2vy+VqcP3a/za2ztkTPZ88eVLFxcX13i+A4CBUBQAACKymnKtJzjtfI6QEAAcLDw9XcnKy1q5d615WXV2ttWvXKjU11es2qampHutLUk5Ojnv9nj17yuVyeaxTVlamjRs3utdJTU1VSUmJ8vLy3OusW7dO1dXVSklJ8dvxAUYj8Gu5QFXGOmlOVAAAjEIVZcs47XyN4d6oF/NRmgtDvoPDbkO+myIrK0s333yzBg4cqEGDBunpp5/W0aNHNWnSJEnSxIkT1b17d82fP1+SdMcdd+jKK6/UE088oauvvlrLly/X559/rpdeekmSFBISojvvvFMPPfSQzj//fPXs2VP33XefunXrptGjR0uSkpKSNHLkSE2ePFkLFy5UVVWVMjMzNW7cOHXr1s2QxwHAT5ibEgAAtBQBpX846XzN1iFl+10UigJAY8aOHatDhw5pzpw5Kiws1IABA5Sdne2eSLmgoEChoT99nl566aVatmyZZs+erT/+8Y86//zz9dZbb6lfv37ude655x4dPXpUU6ZMUUlJiYYMGaLs7GxFnjHx9NKlS5WZmalhw4YpNDRUY8aM0bPPPhu8AwcCjCpKAAAAtJSTztdsHVICAJomMzNTmZmZXv/24Ycf1ln261//Wr/+9a/r3V9ISIgeeOABPfDAA/WuExsbq2XLlvncVqAhZrtojpVRTQkAAJqLKkr/csr5GqWGgIXYYQh+h/xKo5vQKKqwgfpFFJh7ygazoIoSAAA4FQElmoszcQAAEHRctMQaCFsBAAAQLISUQWSFCrJadqjYsyueGwAAAACAGVFFiZYgpAQALxjyDaC5qD70P+YaBQAAsD/OwgEEnZWqigHA6QhdAQQC1VaA/fC+RksRUgIWxJBvAAAAAIBZEFDCHwgpAaAeDPkG4CuqDtEce7/rbHQTAAAADMcZOABDMOQbgL8xb2Hg2DV85SrzAAC0HFWU8BdCStTBUGIAAAAAAAAEEyElYFGEyQBgLnatNgQAAKgPVZTwJ0JKAGgA81ICABoTURBudBMAAAAsj7NvAIZhXkoAAAAAsCaqKOFvhJSAhTHkGwAQLEYPZ+fCSAAAAPZGSAkAjWDINwAAAAD8hCpKBAJn3gAAAC1kdJUhAFjNewV9jG4CAMBkCCkBGIp5KQEAAADAOqiiRKAQUsIDcxwCAAAAAAAg2AgpAYsjWA4O5qUEAAAA4HRUUSKQOOsGAABB1X5vjdFNQDMx9yYAAAAChZASAAAAAAAADaKKEoFGSAnAcFw8B0BLRe+uMLoJAAAAAFqAkBKwAealDI52u/nIBAAAAOA8VFEiGDjjBgAAAOBIxcXFmjBhgqKiohQTE6OMjAyVl5c3uM2JEyc0bdo0dezYUe3atdOYMWNUVFTk/vu//vUvjR8/XvHx8WrdurWSkpL0zDPP1Lu/Tz75RGFhYRowYIC/DgsAAEsipAQAAADgSBMmTND27duVk5Oj1atXa/369ZoyZUqD28yYMUOrVq3SihUr9NFHH+nAgQO6/vrr3X/Py8tTly5d9Je//EXbt2/Xvffeq1mzZun555+vs6+SkhJNnDhRw4YN8/uxAYC/UEWJYAkzugEAAAAAEGw7duxQdna2PvvsMw0cOFCS9Nxzz2nUqFF6/PHH1a1btzrblJaWavHixVq2bJmGDh0qSXr11VeVlJSkTz/9VIMHD9att97qsU2vXr2Um5urlStXKjMz0+NvU6dO1Y033qhWrVrprbfeCsyBAgBgEVRSAjAFLp4DAADqU1ZW5nGrqGj5xbJyc3MVExPjDiglKS0tTaGhodq4caPXbfLy8lRVVaW0tDT3ssTERPXo0UO5ubn13ldpaaliY2M9lr366qvavXu35s6d28IjsZ73CvoY3QQAgAlRSQkAAACgxcL3hatVZLhf93nqRLUkKT4+3mP53LlzNW/evBbtu7CwUF26dPFYFhYWptjYWBUWFta7TXh4uGJiYjyWx8XF1bvNhg0b9MYbb+jdd991L/v66681c+ZMffzxxwoL45QMgHkx1BvBRI8IAAAAwNT27dunqKgo978jIiLqXXfmzJl65JFHGtzfjh07/Na2hmzbtk3XXXed5s6dqxEjRkiSTp06pRtvvFH333+/LrjggqC0AwAAK7B1SHmkd7Xa72JEO5yh9bb9Ot6vu9HNAAAA8LuoqCiPkLIhd911l2655ZYG1+nVq5dcLpcOHjzosfzkyZMqLi6Wy+Xyup3L5VJlZaVKSko8qimLiorqbPPll19q2LBhmjJlimbPnu1efuTIEX3++efasmWLe47K6upq1dTUKCwsTO+99557vksAMBJVlAg2W4eUAAAAAJylc+fO6ty5c6PrpaamqqSkRHl5eUpOTpYkrVu3TtXV1UpJSfG6TXJyss455xytXbtWY8aMkSTl5+eroKBAqamp7vW2b9+uoUOH6uabb9bDDz/ssY+oqCh98cUXHsteeOEFrVu3Tm+++aZ69uzp0/ECAGAXhJQAAAAAHCcpKUkjR47U5MmTtXDhQlVVVSkzM1Pjxo1zX9l7//79GjZsmJYsWaJBgwYpOjpaGRkZysrKUmxsrKKiojR9+nSlpqZq8ODBkk4P8R46dKjS09OVlZXlnquyVatW6ty5s0JDQ9WvXz+PtnTp0kWRkZF1lgMA4CSMhQZgGlzhGwAABNPSpUuVmJioYcOGadSoURoyZIheeukl99+rqqqUn5+vY8eOuZc99dRTuuaaazRmzBhdccUVcrlcWrlypfvvb775pg4dOqS//OUv6tq1q/t2ySWXBPXYzIorewPWwFBvGIFKSgAAYHmlvSIUvbvC6GYAsJjY2FgtW7as3r8nJCSopqbGY1lkZKQWLFigBQsWeN1m3rx5Pl95vDnbAABgN1RSAgAAAAAAADAUISUAAAAAAAAkMdQbxiGkBAAAQXUkIcToJqCZKpPijW4CAACAV+NiNhrdBLQQISUAAAAAIOC4aA5gflRRwkiElAAAAAAAAAAMRUgJD8f7dTe6CQAAWA7DoAEAAIxzU4cNRjcBfkBICcBUOuRXGt0EAAAAAHAchnrDaISUAAAAAICAYj5KAEBjCCkBG2m9bb/RTQAA2JTRQ9pLe0UYev8AAMCcGOptH7YPKY/0rja6CW4/9gk3ugkAAADws4oeTFUCAADQUrYPKQEAAILB6EpDADArhnoD5sd8lDADQkoAAAAAAAAAhiKkBGzkeL/uRjcBAGBDdq0SPZIQYnQTAABACzAfpb0QUgIAAFvgwiqwqoRzDxndBCBgGOoNmB9DvWEWhJSog2o8AACax64VhwAAAECgEVICAAAAAAAAMBQhJQAAAOpFdSiA5mKoN4BAYj5K+yGkBAAA8CNCPf9jvlEAAAKD+ShhJo4IKY/0rja6CQAA4AxcVdkaCFwBNBdVlAAAXzkipDSTH/uEG90EAACaraJHpdFNAAAAAGBDhJTwiit8AwCsyCzDgqlABOBkVFECAJqDkBIAAAB1ELQCAGBvVp6Pkovm2BMhJQCgyYqLizVhwgRFRUUpJiZGGRkZKi8vb3CbEydOaNq0aerYsaPatWunMWPGqKioyGOd3//+90pOTlZERIQGDBhQZx979+5VSEhIndunn37qz8MD/IqQDwAAAMESqHO1goICXX311WrTpo26dOmiu+++WydPnvRYZ+nSperfv7/atGmjrl276tZbb9UPP/zg8zEQUgIwnQ75zHlnVhMmTND27duVk5Oj1atXa/369ZoyZUqD28yYMUOrVq3SihUr9NFHH+nAgQO6/vrr66x36623auzYsQ3u6/3339f333/vviUnJ7foeAB4Z6aANVBD+Ll4ExAYDPUGAGME4lzt1KlTuvrqq1VZWakNGzbo9ddf12uvvaY5c+a41/nkk080ceJEZWRkaPv27VqxYoU2bdqkyZMn+3wMYT5vAcc43q+7Wm/bb3QzAJjEjh07lJ2drc8++0wDBw6UJD333HMaNWqUHn/8cXXr1q3ONqWlpVq8eLGWLVumoUOHSpJeffVVJSUl6dNPP9XgwYMlSc8++6wk6dChQ/r3v/9dbxs6duwol8vl70MDAqYyKV7hO/YZ3QwAAADYWKDO1d577z19+eWXev/99xUXF6cBAwbowQcf1B/+8AfNmzdP4eHhys3NVUJCgn7/+99Lknr27Knbb79djzzyiM/H4ZhKyiO9q41uAhBQXOwIZysrK/O4VVRUtGh/ubm5iomJcXd6kpSWlqbQ0FBt3LjR6zZ5eXmqqqpSWlqae1liYqJ69Oih3Nxcn9vwq1/9Sl26dNGQIUP0zjvv+H4QABplpipKANZCFSVgHVaej9IOrHKulpubqwsvvFBxcXHuddLT01VWVqbt27dLklJTU7Vv3z6tWbNGNTU1Kioq0ptvvqlRo0b5fBxUUhrgxz7hDGcFIElqtztUrSL8+3vRqYrT+4uP9wwa5s6dq3nz5jV7v4WFherSpYvHsrCwMMXGxqqwsLDebcLDwxUTE+OxPC4urt5tvGnXrp2eeOIJXXbZZQoNDdXf/vY3jR49Wm+99ZZ+9atf+XwsTpZw7iHt/a6z0c0IqNJeEYre3bIvev5kpWpKAkrfVfTgOx0AAHbEudrpdc4MKGv/Xvs3Sbrsssu0dOlSjR07VidOnNDJkyd17bXXasGCBT4fByElANP5sU+40U2whX379ikqKsr974gI7/O6zZw5s9FS/B07dvi1bb7q1KmTsrKy3P++5JJLdODAAT322GOElBZ2JCFE7ffWGN2MoLBSUAlrGe7aaXQTAEnSuu/OV6s2RrcCAKzBTudqX375pe644w7NmTNH6enp+v7773X33Xdr6tSpWrx4sU/7IqREg5iXErCuqKgoj46vPnfddZduueWWBtfp1auXXC6XDh486LH85MmTKi4urneeSJfLpcrKSpWUlHj8QldUVNTiuSVTUlKUk5PTon0A+IkZqygDddEcAABgXTd12GB0E1rMKudqLpdLmzZt8tiu9urftevMnz9fl112me6++25J0kUXXaS2bdvq8ssv10MPPaSuXbs2epy1CCkBwOE6d+6szp0bH/6bmpqqkpIS5eXlua+qvW7dOlVXVyslJcXrNsnJyTrnnHO0du1ajRkzRpKUn5+vgoICpaamtqjdW7du9anDA4xm5mpKMwaUAAAATmf0uVpqaqoefvhhHTx40D2cPCcnR1FRUerbt68k6dixYwoL84wXW7VqJUmqqfFt1BQhJWADXDQHwZCUlKSRI0dq8uTJWrhwoaqqqpSZmalx48a5rxa3f/9+DRs2TEuWLNGgQYMUHR2tjIwMZWVlKTY2VlFRUZo+fbpSU1PdV/aWpG+++Ubl5eUqLCzU8ePHtXXrVklS3759FR4ertdff13h4eH6xS9+IUlauXKlXnnlFS1atCjojwOswWzzUtYyc1AJAACcgYvm2E+gztVGjBihvn376qabbtKjjz6qwsJCzZ49W9OmTXMPUb/22ms1efJkvfjii+7h3nfeeacGDRrk9ariDSGkNAgXzwFgRUuXLlVmZqaGDRum0NBQjRkzRs8++6z771VVVcrPz9exY8fcy5566in3uhUVFUpPT9cLL7zgsd/bbrtNH330kfvftWHknj17lJCQIEl68MEH9e233yosLEyJiYl64403dMMNNwTwaIHAMFtQ6cQqyiMJIUY3AQAAwK8Cca7WqlUrrV69Wr/73e+Umpqqtm3b6uabb9YDDzzgXueWW27RkSNH9Pzzz+uuu+5STEyMhg4d2uhcmt44KqQ80rta7Xf598pMTsC8lABqxcbGatmyZfX+PSEhoU5Jf2RkpBYsWNDg1d0+/PDDBu/35ptv1s033+xTWxE4FT0qFVHABa5awixBpRMDSgAAADsK1LnaeeedpzVr1jR439OnT9f06dN9a7AXJHYAAAAGMDogNPr+G8NFcwAAAJyFkBIAABgmkMNurRByGRUUmj2gBAAAgPM0K6RcsGCBEhISFBkZqZSUlDqXI6/P8uXLFRISotGjRzfnbmEgLsxiXjw3QMvRr8FIwQ4MCSjNJeHcQ0Y3ATZDnwagIVw0B2bmc0j5xhtvKCsrS3PnztXmzZvVv39/paen6+DBgw1ut3fvXv33f/+3Lr/88mY31m5+7MN8XgBgNPo1mEEwgsPKpHjLBJRWqIIFzIg+DQBgZT6HlE8++aQmT56sSZMmqW/fvlq4cKHatGmjV155pd5tTp06pQkTJuj+++9Xr169WtTgljrSu9rQ+wcAmIvV+zXYRyBDRKuEk8HgzykGKnpU+m1fgD/QpwEArMynkLKyslJ5eXlKS0v7aQehoUpLS1Nubm692z3wwAPq0qWLMjIymnQ/FRUVKisr87jBeAwrNh+eE6BlgtGv0acZy4oVef4MK61UPQmgZThXAwBYnU8h5eHDh3Xq1CnFxcV5LI+Li1NhYaHXbf75z39q8eLFevnll5t8P/Pnz1d0dLT7Fh/Pl2sAgP8Fo1+jT0NztSRgJJwEnIdzNQCA1QX06t5HjhzRTTfdpJdfflmdOnVq8nazZs1SaWmp+7Zv374AthK+oHIPgJM1p1+jT2tcIK/wbQe1gWN9wePZf7d6OGnF6lfAijhXAwCYTZgvK3fq1EmtWrVSUVGRx/KioiK5XK466+/atUt79+7Vtdde615WXX16TsiwsDDl5+erd+/edbaLiIhQRIQzvqD+2CdcHfKZzwi+IzAGWi4Y/Zpd+7SKHpWKKLDGBeBKe0UoeneF0c3wG6uHkAACg3M1AIDV+VRJGR4eruTkZK1du9a9rLq6WmvXrlVqamqd9RMTE/XFF19o69at7tuvfvUrXXXVVdq6dathQwO4eA4AQLJPv+arhHMPGd0EAICfObVPA9B0I3rkG90EoEE+VVJKUlZWlm6++WYNHDhQgwYN0tNPP62jR49q0qRJkqSJEyeqe/fumj9/viIjI9WvXz+P7WNiYiSpznJYx/F+3dV6236jmwGb+rGPNSqzYB9W7NeGu3YqpzAxaPcHBEugh3oztQDszop9GgAAtXwOKceOHatDhw5pzpw5Kiws1IABA5Sdne2eoLmgoEChoQGd6hJwPIZ6A/5Dv+YMdhvyDQDe0KcBAKzM55BSkjIzM5WZmen1bx9++GGD27722mvNuUtbs+K8lFRTArAT+jXjHUkIUfu9NUY3A2iyih7W+u4G56BPAwBYFT+jAQAAwHBc1RsAAMDZHBtScvGclmPIsTF43AGgeQjBnI35KOFNcXGxJkyYoKioKMXExCgjI0Pl5eUNbnPixAlNmzZNHTt2VLt27TRmzBiPK2r/8MMPGjlypLp166aIiAjFx8crMzNTZWVl7nVWrlyp4cOHq3PnzoqKilJqaqr+8Y9/BOw4AQCwAseGlAAAoGUY7gp/cWqAnHDuIaOb4HgTJkzQ9u3blZOTo9WrV2v9+vWaMmVKg9vMmDFDq1at0ooVK/TRRx/pwIEDuv76691/Dw0N1XXXXad33nlHX331lV577TW9//77mjp1qnud9evXa/jw4VqzZo3y8vJ01VVX6dprr9WWLVsCdqwAAJhds+akhP9ZcV5Kibkpg40qSgBoGS6gA6DWjh07lJ2drc8++0wDBw6UJD333HMaNWqUHn/8cXXr1q3ONqWlpVq8eLGWLVumoUOHSpJeffVVJSUl6dNPP9XgwYPVoUMH/e53v3Nvc9555+m//uu/9Nhjj7mXPf300x77/dOf/qS3335bq1at0i9+8YsAHC0AAOZHJSUA0/ixT7jRTQBgIIbjAqhPWVmZx62iouU/NuTm5iomJsYdUEpSWlqaQkNDtXHjRq/b5OXlqaqqSmlpae5liYmJ6tGjh3Jzc71uc+DAAa1cuVJXXnllvW2prq7WkSNHFBsb28yjAQDA+hxdSXmkd7Xa7yKnbSmqKYODKkoAgB05dai3HbUvqFGr8Bq/7vNU5en9xcfHeyyfO3eu5s2b16J9FxYWqkuXLh7LwsLCFBsbq8LCwnq3CQ8PV0xMjMfyuLi4OtuMHz9eb7/9to4fP65rr71WixYtqrctjz/+uMrLy/Wb3/ymeQcDAIANkNCZCFVkAAAEHqGY8/i7Spf5WINv3759Ki0tdd9mzZpV77ozZ85USEhIg7edO3cGvM1PPfWUNm/erLffflu7du1SVlaW1/WWLVum+++/X3/961/rhKYAADiJoysp4T9UUwYWVZQA/C3h3EPa+11no5sBhyMwRlNFRUUpKiqqSevedddduuWWWxpcp1evXnK5XDp48KDH8pMnT6q4uFgul8vrdi6XS5WVlSopKfGopiwqKqqzjcvlksvlUmJiomJjY3X55ZfrvvvuU9euXd3rLF++XLfddptWrFjhMYQcAPxtRI98o5sANIqQEn5DUAkAaKkjCSFqv9e/w0W94QI6gH117txZnTs3/iNMamqqSkpKlJeXp+TkZEnSunXrVF1drZSUFK/bJCcn65xzztHatWs1ZswYSVJ+fr4KCgqUmppa731VV1dLksdcmv/7v/+rW2+9VcuXL9fVV1/d5OMDAMCuHB9SMi8lzM4pVZRMdwBYU0WPSkUU8P6F74JVRWnnCzINdwV+yLKdJSUlaeTIkZo8ebIWLlyoqqoqZWZmaty4ce4re+/fv1/Dhg3TkiVLNGjQIEVHRysjI0NZWVmKjY1VVFSUpk+frtTUVA0ePFiStGbNGhUVFemSSy5Ru3bttH37dt1999267LLLlJCQIOn0EO+bb75ZzzzzjFJSUtzzWbZu3VrR0dGGPB4AABiNdM5krB7UOCVQAwBYH0ONASxdulSJiYkaNmyYRo0apSFDhuill15y/72qqkr5+fk6duyYe9lTTz2la665RmPGjNEVV1whl8ullStXuv/eunVrvfzyyxoyZIiSkpI0Y8YM/epXv9Lq1avd67z00ks6efKkpk2bpq5du7pvd9xxR3AOHAAAE3J8JSVgZoS+AJwoWEO+YRwrB8RcNMdeYmNjtWzZsnr/npCQoJoaz8+jyMhILViwQAsWLPC6zVVXXaUNGzY0eL8ffvihz20FAJz2/368VDd1aPhzFtZEJSX8jmDNP3gcASDwrByWwdoSzj1kdBMAAABMhZBSp+elNBOrD/mWCNgAAIB3wQyG7TwfJQAAgN0QUiJgCCqbz2mPnR2CecDJrD78lWpKAAAAwHiElIDJOC2gBABvgl0BR1AZHDzOAAAAqA8h5f9hyHdgELj5hscLQDAxJx6CKdgBJUO9AQAArIWQEgFH8AYAsAKq/NAYq09tAAAAYGaElAgKgsrGOfUxskvVMBBsw107jW5CwFEJZx8EwAAAwJ/+34+XGt0EBAAhpYnZLbxxagjXFDw2AKzOLhVmhGn+Z8RjSsANAABgPYSUZzDbvJRwBgJKAKifEWETQSUCjflgAQAA6iKkNDmqKe3N6Y+H3V7fAOyDoNI/7PQ42qVaGAAAwKwIKRF0Tg/mavE4AADszKiAkqHeAAA4A/NS2g8h5VkY8h0cTg/onH78AOwpUJVmRoVOdqoCDDYeOwAAAPiKkNIC7Dok1qlBnVOPG4A5MTdewwjbrIUqSgAAAOsipIShjvfr7qjQzknH2hi7hu8A7Ieg0jc8XgAAAGgOQkovzDjk2+6BjhPCOyccIwAEitEVcgRvTWPXx8mMF80Z7tppdBMAADAc81LaCyElTMPOIZ6djw0AzmTGMMdf7BrA+YvRj4/RQXZTMcUCAACAd4SUMBW7hXlOG87eVHavDAYQGGYIoYwO4syKxwUAAAAtRUhZD4Z8G8cuwZ4djgEAUBeBnCczPB6BDLDtXB0MAABgJoSUMC2rhnx2CVkDxSlhO2AlVhp+aoZqSskcwZwZ8DgAAACjMS+lfRBSWozTAh6rBX5WaisABIpTKs+cHtCZ5fjNElwDAGBm7xX0MboJQKMIKRtgxiHfTmX2sNLs7QNgT069uq+ZQimzBHXB5tTjBgAAQOAQUlqQ06opz2S2MNBs7TE7J792AdiXkwK70l4Rjjpef1cFW2lqBQAArIQh3/YQZnQDgOaoDQZbb9tv6P0DACCdDu+id1cY3YyAMmM4aaaqWgAAALQMlZSNMOuQbyrSTqutZAxGaBjM+7IjXrOAswR6XkozhlN2rjI043GZ8TUAAACMs7wkxegmoIWopIRtnB0etrTKkjASgJMknHtIe7/rbHQzfHIkIUTt99YY3Yw67FRVacZwMliccgEoAAAAsyCktLAf+4SrQz5foOtDyAgAMEptuGfVsNLs4SRVlAAAAPbDcO8mMOuQb8AqGOoNOFMwKtHMHlZZcQi41drrRMNdO41uAgAAgN8RUloc4Q8AAOZnhbDSCm2UghNMByJg58reAAAADWO4N4CAIkgHEGhmnZvSG7MNA7dCKAkAAABnoJKyicw85JsQCADgD4Go9OLiI97VVi0aFRJapWrybGYf3g8AgJm9V9DH6CYADSKkBBAwBOj2U1xcrAkTJigqKkoxMTHKyMhQeXl5g9ucOHFC06ZNU8eOHdWuXTuNGTNGRUVF7r//8MMPGjlypLp166aIiAjFx8crMzNTZWVlHvv58MMPdfHFFysiIkI/+9nP9NprrwXiEGFRVg6vghFYnnkfVgwnpeA9xwTrAADAigJxriZJv//975WcnKyIiAgNGDDA635qamr0+OOP64ILLlBERIS6d++uhx9+2OdjIKT0AdWUAJxuwoQJ2r59u3JycrR69WqtX79eU6ZMaXCbGTNmaNWqVVqxYoU++ugjHThwQNdff73776Ghobruuuv0zjvv6KuvvtJrr72m999/X1OnTnWvs2fPHl199dW66qqrtHXrVt1555267bbb9I9//CNgxwrrsXJQWevsMLE5gaI/9gEAAABrCcS5Wq1bb71VY8eOrXc/d9xxhxYtWqTHH39cO3fu1DvvvKNBgwb5fAzMSQkgIAjO7WfHjh3Kzs7WZ599poEDB0qSnnvuOY0aNUqPP/64unXrVmeb0tJSLV68WMuWLdPQoUMlSa+++qqSkpL06aefavDgwerQoYN+97vfubc577zz9F//9V967LHH3MsWLlyonj176oknnpAkJSUl6Z///KeeeuoppaenB/KwTW+4a6dyChONbkaDKnpUKqKAz4TmImS0fgDNRXMAAEAgBepcTZKeffZZSdKhQ4f073//2+t9v/jii9q2bZv69Dk9pUDPnj2bdRxUUtoIoRCAM5WVlXncKipadqGO3NxcxcTEuDs9SUpLS1NoaKg2btzodZu8vDxVVVUpLS3NvSwxMVE9evRQbm6u120OHDiglStX6sorr/S47zP3IUnp6en17gPOZfUwC8ZiqDcAAAgGq56rebNq1Sr16tVLq1evVs+ePZWQkKDbbrtNxcXFPh8HlZQ+OtK7Wu13ke0CDSEwb7qYbyoVFubfz5STJ0+fZMfHx3ssnzt3rubNm9fs/RYWFqpLly4ey8LCwhQbG6vCwsJ6twkPD1dMTIzH8ri4uDrbjB8/Xm+//baOHz+ua6+9VosWLfLYT1xcXJ19lJWV6fjx42rdunWzjwueEs49pL3fdfb7foNZTWmlq32jcQTPAADACJyrNc3u3bv17bffasWKFVqyZIlOnTqlGTNm6IYbbtC6det8Og7SNpshHILReA2ax759+1RaWuq+zZo1y+t6M2fOVEhISIO3nTt3Bry9Tz31lDZv3qy3335bu3btUlZWVsDvE4C5EVACAOBfXOHbHKx2rtaQ6upqVVRUaMmSJbr88sv1y1/+UosXL9YHH3yg/Px8n/ZFJWUzmL2a8sc+4eqQz3AlwOmioqIUFRXV6Hp33XWXbrnllgbX6dWrl1wulw4ePOix/OTJkyouLpbL5fK6ncvlUmVlpUpKSjx+oSsqKqqzjcvlksvlUmJiomJjY3X55ZfrvvvuU9euXeVyuepcZa6oqEhRUVFUUcIrqimtL9gBZaCGevt7PsrhLmNPRAAAQMtZ7VytIV27dlVYWJguuOAC97KkpCRJUkFBgXueyqYgpATgN1RRWlPnzp3VuXPjw3tTU1NVUlKivLw8JScnS5LWrVun6upqpaSkeN0mOTlZ55xzjtauXasxY8ZIkvLz81VQUKDU1NR676u6ulqS3HOzpKamas2aNR7r5OTkNLgPmE+wL6BDUAkAAAArM+O52tkuu+wynTx5Urt27VLv3r0lSV999ZWk0xdF9YV5ywFN7kjvaqOb0CDCIsD/ynuZ+30faElJSRo5cqQmT56sTZs26ZNPPlFmZqbGjRvnvlrc/v37lZiYqE2bNkmSoqOjlZGRoaysLH3wwQfKy8vTpEmTlJqa6r5a3Jo1a/Tqq69q27Zt2rt3r959911NnTpVl112mRISEiRJU6dO1e7du3XPPfdo586deuGFF/TXv/5VM2bMMOSxsDs7XYmY4cLWZJcqSgAAgGAI1LmaJH3zzTfaunWrCgsLdfz4cW3dulVbt25VZeXp709paWm6+OKLdeutt2rLli3Ky8vT7bffruHDh3tUVzYFlZQA/IJg3BmWLl2qzMxMDRs2TKGhoRozZoyeffZZ99+rqqqUn5+vY8eOuZc99dRT7nUrKiqUnp6uF154wf331q1b6+WXX9aMGTNUUVGh+Ph4XX/99Zo5c6Z7nZ49e+rdd9/VjBkz9Mwzz+jcc8/VokWLlJ6eHpwDh98Eu5oS1kOwDAAA4LtAnKtJ0m233aaPPvrI/e9f/OIXkqQ9e/YoISFBoaGhWrVqlaZPn64rrrhCbdu21X/8x3/oiSee8PkYCCltjLkpAfhbbGysli1bVu/fExISVFPjObw2MjJSCxYs0IIFC7xuc9VVV2nDhg2N3vcvf/lLbdmyxbcGA2LYt5UYEVAGsorSTlXJQCCU74lu8O/tepYGqSWAs7xX0Ecjevh2QROYXyDO1STpww8/bPS+u3Xrpr/97W9Nbmt9CClbwOwX0JEIKhEcTqiiPNK7WjphdCsA74a7diqnMNHoZjSZEdWUBJXmRwUlYA+NBY/+3hdBJgDYByElgBZxQkAJOFHCuYe097vGJ+m2EoJK8yKgBKzv6LdRCo2MDPr9nh1kEloCgHWZuwzQAsx+AR2JEAkAgFqEYTgTF8wB7Kd8T7T7BgCwFkuFlG3PKzO6CZZFUIlAcMrrygo/RgBWY2Q4RFBpLnZ9PpiPEjAegSVQv/cK+hjdBKAOS4WUZkWAASdySkAJwJ7sGoxZjZHPgxWrKIe7dhrdBMCyCCsBwPwIKR2EUAnwHT9CwMkCXQlmdEhEUGmcIwkhPP4wheLiYk2YMEFRUVGKiYlRRkaGysvLG9zmxIkTmjZtmjp27Kh27dppzJgxKioq8rruDz/8oHPPPVchISEqKSnx+NuHH36oiy++WBEREfrZz36m1157zU9HhYZQXQkA5mW5kNKsEyFbJcggqIQ/8DoCYBcEZcFnhsfc6IAc5jFhwgRt375dOTk5Wr16tdavX68pU6Y0uM2MGTO0atUqrVixQh999JEOHDig66+/3uu6GRkZuuiii+os37Nnj66++mpdddVV2rp1q+68807ddttt+sc//uGX40LTEFQCgLlYLqQEYCwCSgD+ZIawyAyhmVOY4bEOxmuO+SitYceOHcrOztaiRYuUkpKiIUOG6LnnntPy5ct14MABr9uUlpZq8eLFevLJJzV06FAlJyfr1Vdf1YYNG/Tpp596rPviiy+qpKRE//3f/11nPwsXLlTPnj31xBNPKCkpSZmZmbrhhhv01FNPBeRYUT+qKuFkzEsJs7FkSEk1ZcsQMqG5nPbascp7GpACN1ddMMIWgkpn4DGG2eTm5iomJkYDBw50L0tLS1NoaKg2btzodZu8vDxVVVUpLS3NvSwxMVE9evRQbm6ue9mXX36pBx54QEuWLFFoaN1TrtzcXI99SFJ6errHPhBcBJUAYDxLhpRoOaeFTQAANIZ5EgPHLI+rGQJxNE9ZWZnHraKiosX7LCwsVJcuXTyWhYWFKTY2VoWFhfVuEx4erpiYGI/lcXFx7m0qKio0fvx4PfbYY+rRo0e9+4mLi6uzj7KyMh0/fryZR4SWoqoSAIwVZnQDYJwf+4SrQz5f1tE0BNsAAqmiR6UiCszxOXMkIUTt99YY3QzbMEtAGSxOHuodtbdCYWH+fb5PnjwdRsbHx3ssnzt3rubNm+d1m5kzZ+qRRx5pcL87duzwS/u8mTVrlpKSkvTb3/42YPeBwCrfE23a0XuAv71X0EcjeuQb3QxAkoVDynY9S035K9eR3tVqv4sCVdiLEwNKhnoDP0k495D2ftfZ6GYEFUFly5ktnLR6FWWgpnSwin379ikqKsr974iIiHrXveuuu3TLLbc0uL9evXrJ5XLp4MGDHstPnjyp4uJiuVwur9u5XC5VVlaqpKTEo5qyqKjIvc26dev0xRdf6M0335Qk1dSc/izp1KmT7r33Xt1///1yuVx1rgheVFSkqKgotW7dusG2IzgIKgEg+CwbUsI/qKZEY5wYUAIwhpmqKaWfQjbCSt+ZLaCE9UVFRXmElA3p3LmzOndu/IeV1NRUlZSUKC8vT8nJyZJOB4zV1dVKSUnxuk1ycrLOOeccrV27VmPGjJEk5efnq6CgQKmpqZKkv/3tbx5Dtj/77DPdeuut+vjjj9W7d2/3fa9Zs8Zj3zk5Oe59wBxqi2IIKwEgOCxd8mfWzsJqFViEUKiPU18bVnsPA3Zixmo3AremM+u8nsF6XTl5qLcVJSUlaeTIkZo8ebI2bdqkTz75RJmZmRo3bpy6desmSdq/f78SExO1adMmSVJ0dLQyMjKUlZWlDz74QHl5eZo0aZJSU1M1ePBgSVLv3r3Vr18/961nz57u+6udA3Pq1KnavXu37rnnHu3cuVMvvPCC/vrXv2rGjBkGPBJojBlH8AH+xFW+YRaWDinhP04No1A/XhOA9QRyOKjTwxezhm9mYtbHx4zBN8xj6dKlSkxM1LBhwzRq1CgNGTJEL730kvvvVVVVys/P17Fjx9zLnnrqKV1zzTUaM2aMrrjiCrlcLq1cudKn++3Zs6feffdd5eTkqH///nriiSe0aNEipaen++3Y4F8ElQAQeJYf7s3clP7D0G+AKkrADMw27PtMDAGvy6zhJNAUsbGxWrZsWb1/T0hIcM8pWSsyMlILFizQggULmnQfv/zlL+vso3b5li1bfGswDMU8lbAzLqADM7BWimYxVgw7qJ6DxOsAgPHMXv1GMGeN6tJgvo6cXm0MOIUZC2QAwC5sEVLya5Z/EVA5m5Offyv+sAAEEyGMJyuEdIFgleM2e9DtC6df2RswG4JK2BVzU8JotggpzYzQA1bi5IASgPlYJWSqDe2sENy1hBOOsbkI8AEAAFqOkBJeEVY5j9Ofc35QAMzJKkFlLbsFeVYNYK32ugFgPVRTAoD/2SakNPOQb6uGH04PrZyE5xqwj0APC6VirGmsGu7VsnLbCSgBBAtBJeyIId8wkuWv7o3A4orf9kdAad0fEgCnMPPVvpvizLDPrFcFt2ogeTYjAkqCe8DZuOI3APiPbSopJaopA4UQy754bgE0hxGhjF2q486ssDQ6GDRLO/zFLq8RANZDRSXshmpKGIVKSjQJFZX2Q0B5mpV/QACcxuoVld54Cwj9XW1plxDSjIIR2HNlbwAA4BS2Cynb9Sw17S9ZR3pXq/0u6xavElTaBwElgJZKOPeQ9n7XOej3a8eg8myEir6jihKA0Rj2Dbt5r6CPRvTIN7oZcBjrJmYwBOGWtf3YJ5zn8AxUUcKu7F55RSCFMxn1emAuSgBnM2uxDNBcDPtGsNkypDTzL1h2CEUIuqyJ5wyAnRBUQuJ1AAAAYCe2DCnNzg5BpUToZSU8V3XZ5X0IGMnoSjICKmfj+QdgRlRTwm6opkQw2TakNHM1pZ0QfpkfzxEAOyOociajn/dgBfR2n7oBAADgTM0KKRcsWKCEhARFRkYqJSVFmzZtqnfdl19+WZdffrk6dOigDh06KC0trcH1ncJOVVyEYObFc+Odnd5/8A/6teYzuppSMj6wQnDxfAMNo08zHtWUsBuqKREsPoeUb7zxhrKysjR37lxt3rxZ/fv3V3p6ug4ePOh1/Q8//FDjx4/XBx98oNzcXMXHx2vEiBHav39/ixvfGKopg4cwzFyYNxRoOiv1a75wWgUWwZUzmOF5NkMwD9THrn0aAOMRVCIYfA4pn3zySU2ePFmTJk1S3759tXDhQrVp00avvPKK1/WXLl2q//qv/9KAAQOUmJioRYsWqbq6WmvXrm1x463ObtVcBGPmwHPQMLu979By9GstZ5bQxgwBFgLHDM+vWV7rQH3o08yDakrYEUElAs2nkLKyslJ5eXlKS0v7aQehoUpLS1Nubm6T9nHs2DFVVVUpNja23nUqKipUVlbmcWsus1dT2jEwISQzBiFx4+z4fkPLBKNf82efZmZmCW/MEGTB/5z4vDqtGhotZ8VzNbsjqAQA3/gUUh4+fFinTp1SXFycx/K4uDgVFhY2aR9/+MMf1K1bN4/O82zz589XdHS0+xYfH+9LM2EChGXBxeMNNE8w+jX6tOBzYqBlVxU9Kk3zfJoliAfqw7kagGCgmhKBFNSre//5z3/W8uXL9fe//12RkZH1rjdr1iyVlpa6b/v27WvR/VJNaQwq+wKPx7jp7Po+g7Ga0q/5u0/zRbArscwU4pgl2ELz8RwCwWXUuRoA6yGoRKCE+bJyp06d1KpVKxUVFXksLyoqksvlanDbxx9/XH/+85/1/vvv66KLLmpw3YiICEVERPjSNMs70rta7XcFNTMOmh/7hKtDPica/kY42XQElKhPMPo1J/ZpZlEbckUU8HlpNWYLKM0UwAP14VzNnMr3RJu+aAZojvcK+mhEj3yjmwGb8SkVCw8PV3JyssdEyrUTK6empta73aOPPqoHH3xQ2dnZGjhwYPNb2wJ0DMai4s9/eCwB/7Fyv2ZWZgxzzBZ4oX5mGt5tJOajRHPQpwEINioq4W8+l+5lZWXp5Zdf1uuvv64dO3bod7/7nY4ePapJkyZJkiZOnKhZs2a513/kkUd033336ZVXXlFCQoIKCwtVWFio8vJy/x2FTTih2otwrfkIJ5vHCe8rtAz9mv+ZNagk/DI3sz4/Znw9A/WhTzMnLqADOyOohD/5NNxbksaOHatDhw5pzpw5Kiws1IABA5Sdne2eoLmgoEChoT9lny+++KIqKyt1ww03eOxn7ty5mjdvXsta76N2PUtN30HYedh3rdqgjSHgTUc42TwElGgKK/drTTHctVM5hYlGN8M0KnpUMvzbZMwaTkoElLAeu/dpAMyJod/wF59DSknKzMxUZmam1799+OGHHv/eu3dvc+4CDkBY2TjCSSA46Nf8L+HcQ9r7XWejm+EVc1Wah5kDSsCq6NPMibkpYXcElfAHe5fseWGFjsFp1V8MY66Lx6TlnPY+AszI7FVoBGTGscLwe6Nev8xHCQCwKoZ+o6UcF1JahRMDFqcHc7XH7+THwF+c+P4BGkLoUT8rhGV2YpXH2+wBOwAAZkVQiZZwZEhphWpKJ3NaUOe04wXgLFYJe6wSnlkVjy8AcAEdOAdBJZrLkSGlVTi9GszOlYV2PjajOf19A5iRVYJKiTDN36z4eBr5eqXqGQBgFwSVaA7HhpRWqaYkcDnNLqGeHY7BzHi/APUzOvywUlApWTNcMxOrPn5We50CAGBmBJXwVbOu7g0Y6cyQz+xXBieQDB4CSgCBcGbQxtXAG2fFYLIWASWAYOAq33Ca2qCSK3+jKRwdUrbrWWqJeUGO9K5W+12OLXpt0NkhoNGhJaEkANQv4dxD2vtdZ6Ob0WwElt5ZOZisZYaA0uhqZwAAAum9gj4ElWiUo0NKKyGobBpvIWGggksCSfOgihJomuGuncopTDS0DVYPKmvVBnNODSvtEEzWMkNACQCAE1BVicY4PqS0SjWlRFDZXISJ9kZACViPXYJKqW5YZ+fQ0k7BJAAYiSHfcDqqKlEfx4eUkrWCSgA/IaAErMtOQeWZ7BRaOiGUNEsVJUO9YQftdofqWF+jWwHAKqiqhDeElBZDNSVwGgEl0DxmGPJdy65B5Zm8BX1mDC6dEEiezSwBJWAntecpfE8D0FSElTgTIeX/sVI1JUElAMAunBBUnq2+QDDQ4aUTg8j6mCmgpIoSdkRY2TiGfAOeCCshEVJaFkElnIwvvIC9ODGo9IYQMTjMFFACdkdYCcBXhJXORsp1Bqv9kkVnDyfidQ+0nBkrtwiOEAy8zgBjtN8VSoEFAJ+8V9DHHVjCOegpAFgGASVgbwRICJSEcw+Z8vVlxh8MgEAiqATgK8JKZ6GXOAvVlIA58Vo3h+LiYk2YMEFRUVGKiYlRRkaGysvLG9zmxIkTmjZtmjp27Kh27dppzJgxKioq8rruDz/8oHPPPVchISEqKSlxL//www8VEhJS51ZYWOjPw3MUs4YjZgySYG28pgBzoaoSQHPUhpUElvULxLnav/71L40fP17x8fFq3bq1kpKS9Mwzz9S7v08++URhYWEaMGBAs46B3sELgkrAXHiNm8eECRO0fft25eTkaPXq1Vq/fr2mTJnS4DYzZszQqlWrtGLFCn300Uc6cOCArr/+eq/rZmRk6KKLLqp3X/n5+fr+++/dty5durToeGBOhErwFzO/lsz6QwEQLASVssyFWwGzIbD0LhDnanl5eerSpYv+8pe/aPv27br33ns1a9YsPf/883X2VVJSookTJ2rYsGHNPgYunGMTXEgHdkVAaR47duxQdna2PvvsMw0cOFCS9Nxzz2nUqFF6/PHH1a1btzrblJaWavHixVq2bJmGDh0qSXr11VeVlJSkTz/9VIMHD3av++KLL6qkpERz5szR//f//X9e29ClSxfFxMT4/+Acarhrp3IKE41uhle14RIX1EFzmTmgBHBa+12hfNcD0CJnBpVXxm4zsCXGCtS52q233uqxTa9evZSbm6uVK1cqMzPT429Tp07VjTfeqFatWumtt95q1nGQatXDatWUEmEO7IfXdMuUlZV53CoqKlq0v9zcXMXExLg7PUlKS0tTaGioNm7c6HWbvLw8VVVVKS0tzb0sMTFRPXr0UG5urnvZl19+qQceeEBLlixRaGj9XdOAAQPUtWtXDR8+XJ988kmLjgfWQNAEX5l1/skzUUUJ/ITh3wD8Zd135xvdhCaz0rna2UpLSxUbG+ux7NVXX9Xu3bs1d+7cFh0HlZQ2Q0Ul7MIpAWXrL79XWGi4X/d5srpSkhQfH++xfO7cuZo3b16z91tYWFhneHVYWJhiY2PrnRuysLBQ4eHhdaof4+Li3NtUVFRo/Pjxeuyxx9SjRw/t3r27zn66du2qhQsXauDAgaqoqNCiRYv0y1/+Uhs3btTFF1/c7GOCuaspayWce4iKSjSJ2cNJAPWjqhKA2XCuVteGDRv0xhtv6N1333Uv+/rrrzVz5kx9/PHHCgtrWcxISNmAdj1LLTlPCEElAEnat2+foqKi3P+OiIjwut7MmTP1yCOPNLivHTt2+LVtZ5o1a5aSkpL029/+tt51+vTpoz59fhrKcemll2rXrl166qmn9P/+3/8LWNtgHgz/RmOsElBSRQnUz4lBZfmeaEuO4gPQMlY5VzvTtm3bdN1112nu3LkaMWKEJOnUqVO68cYbdf/99+uCCy5o8X0QUjaCoBIIPqd9OQ2UqKgoj46vPnfddZduueWWBtfp1auXXC6XDh486LH85MmTKi4ulsvl8rqdy+VSZWWlSkpKPH6hKyoqcm+zbt06ffHFF3rzzTclSTU1NZKkTp066d5779X999/vdd+DBg3SP//5z0aPD42zQjVlLcJKnM0q4SSApnFiUAnAeaxyrlbryy+/1LBhwzRlyhTNnj3bvfzIkSP6/PPPtWXLFvccldXV1aqpqVFYWJjee+8993yXTUFICcBU+FIafJ07d1bnzo0HPqmpqSopKVFeXp6Sk5MlnQ4Yq6urlZKS4nWb5ORknXPOOVq7dq3GjBkj6fQVugsKCpSamipJ+tvf/qbjx4+7t/nss89066236uOPP1bv3r3rbc/WrVvVtWvXJh8n7IUh4LBiOEkVJdA0BJUAcJrR52qStH37dg0dOlQ333yzHn74YY99REVF6YsvvvBY9sILL2jdunV688031bNnT5+Ol1K7JrBq+T0dO6zkSO9qXrMml5SUpJEjR2ry5MnatGmTPvnkE2VmZmrcuHHuq8Xt379fiYmJ2rRpkyQpOjpaGRkZysrK0gcffKC8vDxNmjRJqamp7it79+7dW/369XPfajuypKQk97wqTz/9tN5++21988032rZtm+68806tW7dO06ZNM+CRsCcrhidWuEAKAsOKz7sV32NOUFxcrAkTJigqKkoxMTHKyMhQeXl5g9ucOHFC06ZNU8eOHdWuXTuNGTNGRUVFXtf94YcfdO655yokJEQlJSUef1u6dKn69++vNm3aqGvXrrr11lv1ww8/+OvQLI9RYQDQdIE6V9u2bZuuuuoqjRgxQllZWSosLFRhYaEOHTr9XSw0NNTjXK5fv37q0qWLIiMj1a9fP7Vt29an4+CT3+YIfWAFvE6tY+nSpUpMTNSwYcM0atQoDRkyRC+99JL771VVVcrPz9exY8fcy5566ildc801GjNmjK644gq5XC6tXLnSp/utrKzUXXfdpQsvvFBXXnml/vWvf+n999/XsGHD/HZssG6IQljpHDzX8LcJEyZo+/btysnJ0erVq7V+/XpNmTKlwW1mzJihVatWacWKFfroo4904MABXX/99V7XzcjI0EUXXVRn+SeffKKJEycqIyND27dv14oVK7Rp0yZNnjzZL8dlFwSVANB0gThXe/PNN3Xo0CH95S9/UdeuXd23Sy65JCDHEFJTO/mXiZWVlSk6Olp9l9+jVm28TyYaDFacm7IWHTzMykoBZfWJE/r2D7NVWlrapPlDGlL7uZbW9faAXDHu/e//xy/thP/VPvezPx2hyHbnGN2cOqwyN2VDGAZuP1YPJs36A8CJ8io9NPi9FvcXtZ9rVwyZo7CwSD+2UDp58oTW//OBgPRpO3bsUN++ffXZZ59p4MCBkqTs7GyNGjVK3333nbvy5EylpaXq3Lmzli1bphtuuEGStHPnTiUlJSk3N9ddeSJJL774ot544w3NmTNHw4YN048//uie8+vxxx/Xiy++qF27drnXf+655/TII4/ou+++8+txBlrt8//z2/+kVhH+ff5rWen7YnNYdeQeYDanjlXoy3GP+q1f41wt+EiufGDlzsPuHTusidclYD5mDVN8QbWdffBcIpByc3MVExPjDiglKS0tTaGhodq4caPXbfLy8lRVVaW0tDT3ssTERPXo0UO5ubnuZV9++aUeeOABLVmyRKGhdU+5UlNTtW/fPq1Zs0Y1NTUqKirSm2++qVGjRvnxCO3D7gUXVi6GAQB/svenPTwQCMFMeD0C5mWHoFIi4LIyOz13dnk/Ga2srMzjVlFR0eJ9FhYWuuc+rhUWFqbY2FgVFhbWu014eLjHVVAlKS4uzr1NRUWFxo8fr8cee0w9evTwup/LLrtMS5cu1dixYxUeHi6Xy6Xo6GgtWLCgxcdlV3YPKgEAXN3bZ+16llr6l64jvavp4GE4AkoAwVQbdjEM3NzsEkqeyWkBZXj+fr8PiwutrpQkxcfHeyyfO3eu5s2b53WbmTNn6pFHHmlwvzt27PBL+7yZNWuWkpKS9Nvf/rbedb788kvdcccdmjNnjtLT0/X999/r7rvv1tSpU7V48eKAtQ0AADMjpGwGgkqg+QgoAWsY7tppi/kpz3RmCEZgaR52DCcl5wWUgbZv3z6PubsiIuqfp/6uu+7SLbfc0uD+evXqJZfLpYMHD3osP3nypIqLi+Vyubxu53K5VFlZqZKSEo9qyqKiIvc269at0xdffKE333xTklR7CYBOnTrp3nvv1f3336/58+frsssu09133y1Juuiii9S2bVtdfvnleuihh9S1a9cG2+9U7XeF8l0SAGyMkNKhCCphBL5UAtZix6CyFoGlsewaTCJwoqKimnyBgc6dO6tz58bf16mpqSopKVFeXp6Sk5MlnQ4Yq6urlZKS4nWb5ORknXPOOVq7dq3GjBkjScrPz1dBQYFSU1MlSX/72990/Phx9zafffaZbr31Vn388cfq3bu3JOnYsWMKC/M8FWvVqpWkn0JNeEdQCQD2RUjZTFavppQIKhFcfJkErMnOQWUtAsvgcFIwSRWlNSQlJWnkyJGaPHmyFi5cqKqqKmVmZmrcuHHuK3vv379fw4YN05IlSzRo0CBFR0crIyNDWVlZio2NVVRUlKZPn67U1FT3lb1rg8hahw8fdt9fbfXltddeq8mTJ+vFF190D/e+8847NWjQIK9XFYcngkoAsCdCSoer7dwJKxEofIEErM8JQWUtAkv/cVIoeSYCSmtZunSpMjMzNWzYMIWGhmrMmDF69tln3X+vqqpSfn6+jh075l721FNPudetqKhQenq6XnjhBZ/u95ZbbtGRI0f0/PPP66677lJMTIyGDh3a6FyaAADYGSFlC9ihmrIWVZUIBAJKAFZ2dshGaNkwp4aSZyKgtJ7Y2FgtW7as3r8nJCTUGX4dGRmpBQsWNPlK3L/85S+9DuGePn26pk+f7luD4UY1JQDYDyFlCxFUAt7xpRGwFydVU9bHWwjn5OCSUNITASUQfASVAGAvhJR+QFAJeOLLImBPBJV1OSG4JIxsHAElYBy7BJXle6LVrmep0c0AAEMRUqIOgko0lx2+IAJoGEFl4xoL9cwYYhJENh8BJQAAgH8QUvqJnaopJYJK+I6AEnAOgsqWaUkgWF/ASchoDAJKwBzsUk0JAE5HSOlHdgwqJa78jcbxpRBwntpwhrAyuAgjzYOAEgAAwL9In9AoAijU50jval4fgMMR1MCJeN0D5kNhBQBYH5/kfmbXyY4JonA2XhMAahHYwEl4vQPmRVAJANbGp3gA2DmoJJgCrwMA3hDcwO6Gu3byOgcAAAggQkr4jIDKuXjuATSEEAd2xesasA6qKQHAuvgEDxC7VlPWIqxyFqonAfiCQAd2QfAOAAAQPISUAeSEoJLgyt54jgE0F+EOrI7XL2BdVFMCgDXx6R1gdg8qJaoq7YrnFYA/EPTAagjYAQAAjBFmdANgD7WBFr9aWh/hJAB/qw18cgoTDW4JUD+CScBe2u8K5XstAFiMpRKloed+bXQTmsUJ1ZS1GB5sXTx3AAKNCjWYEa9LAAAAc7BUSClJI3rkG92EZnFSUClRjWclhJMAgo1QCGbA6xCwP0Z5AYC1MNw7iNr1LFX5nmijmxE0DAE3N4JJAEZjGDiMQDAJAABgTpYMKUf0yNd7BX2MbgaaiLDSXAgnAZjNmaERgSUChXAScCbmpgQA67BkSGllTqumPBNhpbH4cgbACqiuhD8RTAIAAFiHZUNKK1dTOjmolAgrg41wEoAVUV2J5iKYBAAAsCbLhpQSQaXVEVYGFuEkALsgsERjCCYB48V8U6kjP480uhleMeQbAKzB0iEl7IGw0n/48gXA7s4OowgtnYtgEjCfDvmV+rFPuNHNAABYlOVDSqop7YOwsvkIJwE4FaGlcxBKAtZg1qDSCtWU5Xui1a5nqdHNAADDWD6ktDqCyrrO/PJAYFk/s3/JAgAjEFraA4EkYG1mDSoBAOZmi5DSytWUEkFlQwgsPRFMAoBvvIVdBJfmQiAJ2BNBJQDAV7YIKSWCSidwamBJMAkA/lVfKEZ4GViEkYDzmC2otMKQbwBwMtuElHZAUNl0dg4s+eIEAMZoLEQjxGwcQSQAAACay1YhpdWrKdE8Z4d6VgstCSUBwBqaGsDZLcwkeATQEmarpjQzLpoDwOlsFVJK1g8qqaZsOW+hn1mCSwJJALA/Qj0A8GSmoJIh3wBgXrYLKe2AoNL/Gvsi4q8Qky88AAAAQF1mCioBAOZky5DS6tWUEkFlsBEuAgAAAAAAGMccY2DhFXOSAAAAALCLDvmVRjdBknmmggIAeLLtp/OIHvlGN8EvCCoBAAAA2IVZgkoAgPnYNqSUCCoBAAAAAAAAK7B1SGknBJUAAAAA7MAM1ZQM+QYA87HlhXPOZIeL6AAAAAAAgMY1NKKSbAAwN9uHlJJ9gkqu+A0AAADADjrkV+rHPuFGNwMW1pzp3erbxg55AWAHjggp7YSgEgAAAIAdEFTCV4G67sSZ+yWwBIzjmJDSLtWUEkElAAAAALRU+12hOtK72uhmoBHBviAugSVgHEfNFmyXq31LXEgHAAAAgPWZ4SI6MKcRPfINP4c3QxsAJ3FMJaUdUVEJAAAAALATM4aCtW2ishIILEdVUkrm/MBrCSoqgeBpe16Z0U0AAACwHaopUcvs5+tmbx9gdY4LKSX7fbAQVAKBx/sMAADAftrvcuQpselYaVi1ldrqJOV7onX02yijm4EW4hPZJghQgMBo17OU9xcAAECAUU3pXFYN/KzabjtiGjz7cGxIaccPFIIUwL94TwEAAACBYYeKRKu33+rK90QTUNqMY0NKyZ4fKIQqgH/wXgIAAAguqimdw07n4nY6FishnLQnR4eUdkW4ArQM7yEAAADnYF7K4LJjqGeHqlArIaC0L8d/Gtv1g4SQBWge3jsAAADGoZrS3ux6/l3L7sdnBgSU9taskHLBggVKSEhQZGSkUlJStGnTpgbXX7FihRITExUZGakLL7xQa9asaVZjA8WuHySELYBveM80rri4WBMmTFBUVJRiYmKUkZGh8vLyBrc5ceKEpk2bpo4dO6pdu3YaM2aMioqK6qz32muv6aKLLlJkZKS6dOmiadOmefz93//+ty6//HJFRkYqPj5ejz76qN+Oy279GgCgaQLVr4WEhNS5LV++3GOdiooK3XvvvTrvvPMUERGhhIQEvfLKKy0+Jvo0mJGTKg2dcpxGIKBsWCD6tB9++EEjR45Ut27dFBERofj4eGVmZqqsrMy9zsqVKzV8+HB17txZUVFRSk1N1T/+8Y9mHYPPIeUbb7yhrKwszZ07V5s3b1b//v2Vnp6ugwcPel1/w4YNGj9+vDIyMrRlyxaNHj1ao0eP1rZt25rVYPiGKxMDjeN90nQTJkzQ9u3blZOTo9WrV2v9+vWaMmVKg9vMmDFDq1at0ooVK/TRRx/pwIEDuv766z3WefLJJ3Xvvfdq5syZ2r59u95//32lp6e7/15WVqYRI0bovPPOU15enh577DHNmzdPL730UouPiX4NAJwrUP2aJL366qv6/vvv3bfRo0d7/P03v/mN1q5dq8WLFys/P1//+7//qz59+rToeOzSp1FNaS9ODO2ceMyBRkDZuED0aaGhobruuuv0zjvv6KuvvtJrr72m999/X1OnTnWvs379eg0fPlxr1qxRXl6errrqKl177bXasmWLz8cQUlNTU+PLBikpKbrkkkv0/PPPS5Kqq6sVHx+v6dOna+bMmXXWHzt2rI4eParVq1e7lw0ePFgDBgzQwoULm3SfZWVlio6OVuY//1MR7c7xpbk+ea+gZV8KzI43NVCXL+HkqWMV+nLcoyotLVVUVFSL7rf2cy2t6+0KCw1v0b7OdrK6Uu9//z9+aeeZduzYob59++qzzz7TwIEDJUnZ2dkaNWqUvvvuO3Xr1q3ONqWlpercubOWLVumG264QZK0c+dOJSUlKTc3V4MHD9aPP/6o7t27a9WqVRo2bJjX+37xxRd17733qrCwUOHhpx+vmTNn6q233tLOnTtbdFzB7tdqn/vZn45QZAD7NABozInyKj00+L0W9xfuPq1zRmD6tEOL/d6nSYHr16TTlZR///vf6wSTtbKzszVu3Djt3r1bsbGxfjsmI8/VLhs2T2Fhkf45EEk/9vHva6kxR3pXB/X+vLHjj+ZODuvsni8EU1OzjOoTJ/TtH2b7r1/jXM3rfT377LN67LHHtG/fvnrb8/Of/1xjx47VnDlzfDqOMF9WrqysVF5enmbNmuVeFhoaqrS0NOXm5nrdJjc3V1lZWR7L0tPT9dZbb9V7PxUVFaqoqHD/u7T09Id15dEqX5rrsytjt2ndd+cH9D6M1DruoI5+698vd4CVtT2vTKeONX39U8dOfy75+NtOg07WVEp+/k58suZ09cGZJfiSFBERoYiIiGbvNzc3VzExMe5OT5LS0tIUGhqqjf9/e/ceU3X9/wH8icA5B7wBQzioYGEqSJaGkx3RWP4om6bm5nTaGFpkDlqbtpIyOyqlaHzt4iBLU1sjmDZNJ2QSaA5SWwRFQppBkelhQwXxglzO6/eH49SRA3kO58b5PB8bW37O+xxez8DP0/M+t9OnMX/+/G7XKS8vR3t7OxITE03HoqKiEBERYSq+oqIiGI1G/P3334iOjkZLSwumTp2K//3vfwgPDzd970cffdS0QQnc6ZLNmzfj6tWrCAwMtCmTM3qtp067faPDppmJiOyl6zxkr17rT50GOK7XuqSlpSElJQWRkZFYsWIFli1bBi8vLwDAoUOHMHnyZGzZsgWfffYZBg4ciLlz5yIjIwN+fn425XH1fbWOjlab5u7J4DOtaHrAeRuV/tXA9UjXblR2/VvTU8wY+Rtu9/5KU4/m6fsLznJnD+Pezi/G1jvrlNhrju60LhcvXsT+/fuRkJDQ4yxGoxEtLS02PQhn1SZlY2MjOjs7ERoaanY8NDS0x2eyGAwGi+sNBkOP32fTpk1Yv359t+MfzzxsYTURkXNdvnwZQ4f27ZnJKpUKWq0Wxw277TSVuUGDBpk2+Lro9XqsW7fO5ts0GAwICQkxO+bj44OgoKAez+ldz3wMCAgwO/7vHqitrYXRaMTGjRvx/vvv33mW4Rtv4PHHH8fPP/8MlUoFg8GA+++/v9ttdH0PWzcpndFrPXXaO/9XYtPMRET21tde+6fTPrPjVP9wRKcBjus1ANiwYQNmzJgBf39/HD16FKmpqbh+/TpeeuklAHe6r7S0FBqNBgcOHEBjYyNSU1Nx+fJl7N5t278NXH1f7fS3mTZM/R+K7X+T5DzVrh6AFMt+vcb7al0WL16MgwcP4tatW5gzZw527tzZ4yxZWVm4fv06Fi5caHUOqzYpneW1114ze0SvqakJo0aNQn19fZ83BtzZtWvXEB4ejr/++svuL2dxJ0rJCSgnq1JyNjc3IyIiwi4vy9JoNKirq0Nbm2Pec0lETM/W6NLTI3Pp6enYvHlzr7dXU1Njt9nuZjQa0d7ejg8++ABPPPEEACAvLw9arRbHjh0ze2/K/kipnQYo59zAnJ5HKVnt1Wvu1GmA63sNANauXWv670mTJuHGjRt45513TJuURqMRXl5eyM3NNXXB1q1bsWDBAuTk5Nj8bEpnUGqvKeW8ACgnK3N6Hk/sNXfoNAB49913odfrce7cOVMP5OTkdFv3+eefY/369Th48GC3TdN7YdUmZXBwMLy9vbt9el1DQwO0Wq3F62i1WqvWAz0/zXXo0KEe/5cKAIYMGcKcHkYpWZWSc8AAqz9zzCKNRgONxn7v3WSrl19+GUuXLu11TWRkJLRabbc33u/o6MCVK1d67YC2tjY0NTWZPUL37x4ICwsDAIwfP950+bBhwxAcHIz6+nrT7Vjqkq7LbOWMXlN6pwHKOTcwp+dRSlZ79Jq7dBrg+l6zJC4uDhkZGbh9+zbUajXCwsIwYsQIs0296OhoiAguXLiAMWOsf4ko76s5h1LOC4BysjKn5/GkXnOXTtNqtdBqtYiKikJQUBCmT5+OtWvXmu7LAUB+fj5SUlKwb98+s5eQW8Oqn5xKpUJsbCyKi/953r3RaERxcTF0Op3F6+h0OrP1AFBUVNTjeiIicq5hw4YhKiqq1y+VSgWdToempiaUl5ebrltSUgKj0Yi4uDiLtx0bGwtfX1+zHjh79izq6+tNPRAfH2863uXKlStobGzEqFGjANzpkhMnTqC9/Z/3Ji4qKsK4ceNsfqk3wF4jIvJEru41SyorKxEYGGja3IuPj8fFixdx/fo/b9h37tw5DBgwACNHjrQpNzuNiMjzuGOnGY133qjz3+9PnJeXh2XLliEvLw+zZ8+2PbBYKT8/X9RqtezZs0eqq6tl+fLlEhAQIAaDQUREkpKSJD093bS+rKxMfHx8JCsrS2pqakSv14uvr69UVVXd8/dsbm4WANLc3GztuP0Kc3oepWRlTuV48sknZdKkSXL69GkpLS2VMWPGyOLFi02XX7hwQcaNGyenT582HVuxYoVERERISUmJ/PDDD6LT6USn05nd7rx58yQmJkbKysqkqqpKnnrqKRk/fry0tbWJiEhTU5OEhoZKUlKS/PLLL5Kfny/+/v7y0Ucf9TmTs3tNSb9HSsnKnJ5HKVmVkrM3jui1Q4cOyY4dO6Sqqkp+++03ycnJEX9/f3nzzTdNa1paWmTkyJGyYMECOXPmjHz77bcyZswYSUlJ6VMe3ldzHKXkFFFOVub0PErKaokjOq2goEB27dolVVVVUldXJ4cPH5bo6GiJj483rcnNzRUfHx/Jzs6WS5cumb6ampqszmD1JqWIyLZt2yQiIkJUKpVMmTJFTp06ZbosISFBkpOTzdbv3btXxo4dKyqVSmJiYqSgoMCq79fa2ip6vV5aW1ttGbffYE7Po5SszKkcly9flsWLF8ugQYNkyJAhsmzZMmlpaTFdXldXJwDk2LFjpmO3bt2S1NRUCQwMFH9/f5k/f75cunTJ7Habm5vl2WeflYCAAAkKCpL58+dLfX292ZqffvpJpk2bJmq1WkaMGCGZmZl2y+XMXlPS75FSsjKn51FKVqXk7I0jeu2rr76SiRMnyqBBg2TgwIHy8MMPy/bt26Wzs9Pse9fU1EhiYqL4+fnJyJEjZdWqVXLz5s0+Z+J9NcdQSk4R5WRlTs+jpKyWOKLTSkpKRKfTydChQ0Wj0ciYMWNk9erVcvXqVdOahIQEAdDt6+6+uRdeInb6bHYiIiIiIiIiIiIiG9jn0x+IiIiIiIiIiIiIbMRNSiIiIiIiIiIiInIpblISERERERERERGRS3GTkoiIiIiIiIiIiFzKbTYps7Ozcd9990Gj0SAuLg7ff/99r+v37duHqKgoaDQaTJgwAYWFhU6atG+sybljxw5Mnz4dgYGBCAwMRGJi4n/+f3EX1v48u+Tn58PLywtPP/20Ywe0I2uzNjU1IS0tDWFhYVCr1Rg7dmy/+P21Nud7772HcePGwc/PD+Hh4Vi5ciVaW1udNK1tTpw4gTlz5mD48OHw8vLCl19++Z/XOX78OB555BGo1Wo88MAD2LNnj8PnJPenlE4D2Gv/pb/1mlI6DWCv9YS9RpYopdeU0mkAe60n/bXX2GmWsdP6Ies/1Nz+8vPzRaVSya5du+TMmTPy/PPPS0BAgDQ0NFhcX1ZWJt7e3rJlyxaprq6WN954Q3x9faWqqsrJk1vH2pxLliyR7OxsqaiokJqaGlm6dKkMHTpULly44OTJrWNtzi51dXUyYsQImT59usybN885w/aRtVlv374tkydPllmzZklpaanU1dXJ8ePHpbKy0smTW8fanLm5uaJWqyU3N1fq6urk66+/lrCwMFm5cqWTJ7dOYWGhrFmzRvbv3y8A5MCBA72ur62tFX9/f1m1apVUV1fLtm3bxNvbW44cOeKcgcktKaXTRNhrntZrSuk0EfZaT9hrZIlSek0pnSbCXvO0XmOnWcZO65/cYpNyypQpkpaWZvpzZ2enDB8+XDZt2mRx/cKFC2X27Nlmx+Li4uSFF15w6Jx9ZW3Ou3V0dMjgwYPl008/ddSIdmFLzo6ODpk6dars3LlTkpOT+0XpiVif9cMPP5TIyEhpa2tz1oh2YW3OtLQ0mTFjhtmxVatWSXx8vEPntKd7Kb5XX31VYmJizI4tWrRIZs6c6cDJyN0ppdNE2Gue1mtK6TQR9lpP2GtkiVJ6TSmdJsJe87ReY6dZxk7rn1z+cu+2tjaUl5cjMTHRdGzAgAFITEzEyZMnLV7n5MmTZusBYObMmT2udwe25LzbzZs30d7ejqCgIEeN2We25tywYQNCQkLw3HPPOWNMu7Al66FDh6DT6ZCWlobQ0FA8+OCD2LhxIzo7O501ttVsyTl16lSUl5ebXmZQW1uLwsJCzJo1yykzO0t/PBeRYyml0wD2mqf1mlI6DWCv9aa/no/IcZTSa0rpNIC95mm9xk7rWX88FxHg4+oBGhsb0dnZidDQULPjoaGh+PXXXy1ex2AwWFxvMBgcNmdf2ZLzbqtXr8bw4cO7/UVzJ7bkLC0txSeffILKykonTGg/tmStra1FSUkJnnnmGRQWFuL8+fNITU1Fe3s79Hq9M8a2mi05lyxZgsbGRkybNg0igo6ODqxYsQKvv/66M0Z2mp7ORdeuXcOtW7fg5+fnosnIVZTSaQB7zdN6TSmdBrDXesNeo7sppdeU0mkAe83Teo2d1jN2Wv/k8mdS0r3JzMxEfn4+Dhw4AI1G4+px7KalpQVJSUnYsWMHgoODXT2OwxmNRoSEhODjjz9GbGwsFi1ahDVr1mD79u2uHs2ujh8/jo0bNyInJwc//vgj9u/fj4KCAmRkZLh6NCJyE+y1/k8pnQaw14iod57aaQB7zRN7jZ1G7szlz6QMDg6Gt7c3GhoazI43NDRAq9VavI5Wq7VqvTuwJWeXrKwsZGZm4ptvvsFDDz3kyDH7zNqcv//+O/744w/MmTPHdMxoNAIAfHx8cPbsWYwePdqxQ9vIlp9pWFgYfH194e3tbToWHR0Ng8GAtrY2qFQqh85sC1tyrl27FklJSUhJSQEATJgwATdu3MDy5cuxZs0aDBjgGY+P9HQuGjJkCB+ZUyildBrAXvO0XlNKpwHstd6w1+huSuk1pXQawF7ztF5jp/WMndY/ufy3T6VSITY2FsXFxaZjRqMRxcXF0Ol0Fq+j0+nM1gNAUVFRj+vdgS05AWDLli3IyMjAkSNHMHnyZGeM2ifW5oyKikJVVRUqKytNX3PnzsVjjz2GyspKhIeHO3N8q9jyM42Pj8f58+dNxQ4A586dQ1hYmFuWHmBbzps3b3Yrt66yFxHHDetk/fFcRI6llE4D2Gue1mtK6TSAvdab/no+IsdRSq8ppdMA9pqn9Ro7rWf98VxEgFt8und+fr6o1WrZs2ePVFdXy/LlyyUgIEAMBoOIiCQlJUl6erppfVlZmfj4+EhWVpbU1NSIXq8XX19fqaqqclWEe2JtzszMTFGpVPLFF1/IpUuXTF8tLS2uinBPrM15t/7yaXEi1metr6+XwYMHy4svvihnz56Vw4cPS0hIiLz11luuinBPrM2p1+tl8ODBkpeXJ7W1tXL06FEZPXq0LFy40FUR7klLS4tUVFRIRUWFAJCtW7dKRUWF/PnnnyIikp6eLklJSab1tbW14u/vL6+88orU1NRIdna2eHt7y5EjR1wVgdyAUjpNhL3mab2mlE4TYa+x18gaSuk1pXSaCHvN03qNncZO8yRusUkpIrJt2zaJiIgQlUolU6ZMkVOnTpkuS0hIkOTkZLP1e/fulbFjx4pKpZKYmBgpKChw8sS2sSbnqFGjBEC3L71e7/zBrWTtz/Pf+kvpdbE263fffSdxcXGiVqslMjJS3n77beno6HDy1NazJmd7e7usW7dORo8eLRqNRsLDwyU1NVWuXr3q/MGtcOzYMYt/57qyJScnS0JCQrfrTJw4UVQqlURGRsru3budPje5H6V0mgh7TcSzek0pnSbCXhNhr9G9U0qvKaXTRNhrIp7Va+w0dpqn8BLxoOfzEhERERERERERUb/j8vekJCIiIiIiIiIiImXjJiURERERERERERG5FDcpiYiIiIiIiIiIyKW4SUlEREREREREREQuxU1KIiIiIiIiIiIiciluUhIREREREREREZFLcZOSiIiIiIiIiIiIXIqblERERERERERERORS3KQkIiIiIiIiIiIil+ImJREREREREREREbkUNymJiIiIiIiIiIjIpbhJSURERERERERERC71/8kbu5n0ixmmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plotter = Plotter()\n", - "plotter.plot(pinn)" - ], - "outputs": [], - "metadata": {} + "plotter.plot(trainer)" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### The problem solution with extra-features" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Now, the same problem is solved in a different way.\n", "A new neural network is now defined, with an additional input variable, named extra-feature, which coincides with the forcing term in the Laplace equation. \n", @@ -199,12 +241,55 @@ "**NB**: `extra_features` always needs a `list` as input, you you have one feature just encapsulated it in a class, as in the next cell.\n", "\n", "Finally, we perform the same training as before: the problem is `Poisson`, the network is composed by the same number of neurons and optimizer parameters are equal to previous test, the only change is the new extra feature." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPU available: False, used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "\n", + " | Name | Type | Params\n", + "----------------------------------------\n", + "0 | _loss | MSELoss | 0 \n", + "1 | _neural_net | Network | 161 \n", + "----------------------------------------\n", + "161 Trainable params\n", + "0 Non-trainable params\n", + "161 Total params\n", + "0.001 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 999: : 1it [00:00, 112.55it/s, v_num=46, mean_loss=2.73e-7, gamma1_loss=1.13e-6, gamma2_loss=7.1e-8, gamma3_loss=4.69e-8, gamma4_loss=6.81e-8, D_loss=4.65e-8] " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "`Trainer.fit` stopped: `max_epochs=1000` reached.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 999: : 1it [00:00, 92.69it/s, v_num=46, mean_loss=2.73e-7, gamma1_loss=1.13e-6, gamma2_loss=7.1e-8, gamma3_loss=4.69e-8, gamma4_loss=6.81e-8, D_loss=4.65e-8] \n" + ] + } + ], "source": [ "class SinSin(torch.nn.Module):\n", " \"\"\"Feature: sin(x)*sin(y)\"\"\"\n", @@ -216,45 +301,59 @@ " torch.sin(x.extract(['y'])*torch.pi))\n", " return LabelTensor(t, ['sin(x)sin(y)'])\n", "\n", - "model_feat = FeedForward(\n", - " layers=[10, 10],\n", - " output_variables=problem.output_variables,\n", - " input_variables=problem.input_variables,\n", - " func=Softplus,\n", - " extra_features=[SinSin()]\n", - " )\n", "\n", - "pinn_feat = generate_samples_and_train(model_feat, problem)" - ], - "outputs": [], - "metadata": {} + "# make model + solver + trainer\n", + "model_feat = FeedForward(\n", + " layers=[10, 10],\n", + " func=Softplus,\n", + " output_dimensions=len(problem.output_variables),\n", + " input_dimensions=len(problem.input_variables)+1\n", + ")\n", + "pinn_feat = PINN(problem, model_feat, extra_features=[SinSin()], optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8})\n", + "trainer_feat = Trainer(pinn_feat, max_epochs=1000, callbacks=[MetricTracker()])\n", + "\n", + "# train\n", + "trainer_feat.train()" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "The predicted and exact solutions and the error between them are represented below.\n", - "We can easily note that now our network, having almost the same condition as before, is able to reach an additional order of magnitude in accuracy." - ], - "metadata": {} + "We can easily note that now our network, having almost the same condition as before, is able to reach additional order of magnitudes in accuracy." + ] }, { "cell_type": "code", - "execution_count": null, - "source": [ - "plotter.plot(pinn_feat)" + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTEAAAH/CAYAAACPXpkuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgnUlEQVR4nOzde3wV1b3//3dCSIJCEhFIQEDAqqAiKBxDvB41Giv1yCl9FC0VRYRqoVXiUUERqDeq9VYV5XhFv4Vq8VirQKMpiFSJoFF6FAGrgEHtDiiHBFASIPP7g1+2bHLbO5nZs9bM6/l48Gjdmb2z5pL1nvWZNbNTHMdxBAAAAAAAAACGSvW7AQAAAAAAAADQHIqYAAAAAAAAAIxGERMAAAAAAACA0ShiAgAAAAAAADAaRUwAAAAAAAAARqOICQAAAAAAAMBoFDEBAAAAAAAAGI0iJgAAAAAAAACjUcQEAAAAAAAAYDSKmAAAAAAAAACMlnARc/ny5brooovUo0cPpaSk6OWXX27xPcuWLdPJJ5+sjIwM/eAHP9DcuXNb0VQAgFdmz56tPn36KDMzU/n5+Vq1alWzyy9YsED9+/dXZmamBg4cqMWLF8f83HEcTZ8+Xd27d1eHDh1UWFiof/7znzHLfPLJJ7r44ovVpUsXZWVl6fTTT9cbb7zh+ro1h0wDgGAi18g1AAgSP3Jt27ZtGj16tLKyspSTk6Nx48Zp586djf6+Tz/9VJ06dVJOTk6b1rMlCRcxd+3apUGDBmn27NlxLb9x40YNHz5cZ599tlavXq3rrrtOV111lV577bWEGwsAcN8LL7yg4uJizZgxQ++//74GDRqkoqIibdmypdHlV6xYoUsvvVTjxo3TBx98oBEjRmjEiBH66KOPosvcc889euihhzRnzhytXLlShx56qIqKirR79+7oMj/60Y+0d+9eLV26VOXl5Ro0aJB+9KMfKRKJeL7O9cg0AAgeco1cA4Ag8SvXRo8erTVr1qi0tFQLFy7U8uXLNWHChAa/b8+ePbr00kt1xhlnuL/yB3PaQJLz5z//udllbrzxRuf444+PeW3UqFFOUVFRW341AMAlp5xyijNx4sTof+/bt8/p0aOHM2vWrEaX/+lPf+oMHz485rX8/HznF7/4heM4jlNXV+fk5eU5v/vd76I/3759u5ORkeH88Y9/dBzHcbZu3epIcpYvXx5dprq62pHklJaWurZuiSDTACAYyLX9yDUACAY/cu3jjz92JDnvvvtudJm//vWvTkpKivPll1/GfPaNN97o/PznP3eeeeYZJzs7u03r2pI0r4ukZWVlKiwsjHmtqKhI1113XZPvqampUU1NTfS/6+rqtG3bNh1++OFKSUnxqqkA0CzHcbRjxw716NFDqaltf6Tw7t27VVtb60LLGnIcp0F/mZGRoYyMjJjXamtrVV5erqlTp0ZfS01NVWFhocrKyhr97LKyMhUXF8e8VlRUFL1lbePGjYpEIjF9f3Z2tvLz81VWVqZLLrlEhx9+uI499lg999xz0VvY/vu//1vdunXTkCFD2rLqniLTAASJm7lmQqZJ5FqiyDUAQUKu7edGrpWVlSknJ0dDhw6NLlNYWKjU1FStXLlS//mf/ylJWrp0qRYsWKDVq1frpZdeSmxDtILnRcxIJKLc3NyY13Jzc1VdXa3vvvtOHTp0aPCeWbNm6Te/+Y3XTQOAVtm8ebN69uzZps/YvXu3evc+VFu31rnUqlgdO3Zs8LySGTNmaObMmTGvff3119q3b1+j/fS6desa/eym+vX62+Xq/7e5ZVJSUvS3v/1NI0aMUKdOnZSamqpu3bqppKREhx12WGIrm0RkGoAgamuumZJpErmWKHINQBCRa23PtUgkom7dusX8PC0tTZ07d44u88033+iKK67QH/7wB2VlZTW3yq7xvIjZGlOnTo2pGldVVal3795atrKrOnZsWzX95R2D2to8ACFVs2uvfnfuUnXq1KnNn1VbW6utW+u0bGU3dezo7qyFnTsd/Xv+Fm3evDkmTBq7sucXx3E0ceJEdevWTX//+9/VoUMHPfnkk7rooov07rvvqnv37n430TVNZdoNS85RxqFGxjCAkHAr18KeaRK51rt3bw0cdavapWc2+b4dvdp+bNT2cndWVO8eX7v6eQc7s9unnn5+PEZmfeB3E+CD/6k+ye8mSJKWb/mBp59f8VWXmP+u+263viz+LbmWJOPHj9fPfvYznXnmmUn7nZ6PnvLy8lRZWRnzWmVlpbKyshq9sic1PY22Y8dUdewUfxHzxeqTG7yW2THutwNAo9y8Vapjx5SE+rX47L9imJWV1eIVsS5duqhdu3aN9tN5eXmNvqepfr1++fr/raysjBm0VVZWavDgwZL233awcOFC/d///V+0jY8++qhKS0v17LPPasqUKXGua3K5mWkZh6Yps2N7T9oJAIlwK9f8zjSJXEuUm7nWLj2z2SJmu8y2H2cdtmaqprd7hcwv/q+n+vTc6trnHWzFruN1Tu4nnn1+PBbVnaJR2e/52gYkzwtV+2/9NaHusbTyGKUd6u3vSO3QeJ9DrrU91/Ly8hp8cdDevXu1bdu26PuXLl2qV155Rffee6+k/Rf06urqlJaWpscff1xXXnlli+uXKLf3RgMFBQVasmRJzGulpaUqKCjw5Pe9WH1y9B8AoHnp6ekaMmRITD9dV1enJUuWNNlPt9Sv9+3bV3l5eTHLVFdXa+XKldFlvv32W0lq8Kya1NRU1dV5c9uGG5KdaQCAxJBriSHXwuGFqqHR4haCy6R9vLTyGM9/x6Yvunr+O0zgV64VFBRo+/btKi8vjy6zdOlS1dXVKT8/X9L+Z2+uXr06+u+2225Tp06dtHr16ugzM92W8EzMnTt36tNPv58Wv3HjRq1evVqdO3dW7969NXXqVH355Zd67rnnJElXX321HnnkEd1444268sortXTpUv3pT3/SokWL3FsLNT7rEgDQsuLiYl1++eUaOnSoTjnlFD344IPatWuXxo4dK0kaM2aMjjjiCM2aNUuSdO211+qss87Sfffdp+HDh+v555/Xe++9p8cff1zS/iuf1113ne644w4dffTR6tu3r2699Vb16NFDI0aMkLQ/FA877DBdfvnlmj59ujp06KAnnnhCGzdu1PDhw5O27qZmGgCg9cg1M3Ot0+eOdhwZvi/+WVp5jO+zMeu9UDWUWZkBZFLxUqKA6QU/cm3AgAG64IILNH78eM2ZM0d79uzRpEmTdMkll6hHjx7RZQ703nvvKTU1VSeccIJn2yLhIuZ7772ns88+O/rf9c9DufzyyzV37lz961//UkVFRfTnffv21aJFizR58mT9/ve/V8+ePfXkk0+qqKjIhebvRwETAFpv1KhR2rp1q6ZPn65IJKLBgwerpKQk+qDnioqKmJklp556qubPn69p06bp5ptv1tFHH62XX345JqxuvPFG7dq1SxMmTND27dt1+umnq6SkRJmZ+2/56NKli0pKSnTLLbfonHPO0Z49e3T88cfrL3/5iwYNSt6zi03MNABA25Br5FoiNn3R1dNbyiUKmfCGacVLiQKmV/zINUmaN2+eJk2apHPPPVepqakaOXKkHnrooeSteCNSHMdxfG1BHKqrq5Wdna331uQ2eB4BBUwAybJ75x7dMex1VVVVtfnb15rr19pq5446DT2+0pV2wn31+37aO+fzTEwAvnIr18i0cKvf/4Mvu7PZZ2JKcm0mppvPxZTkeRFTkjFFzHoUMu0W1gKm1HwRs+673dp8zUxyLcA8fyYmAAAAAACmSsbMrmQVeOJlYhEMLTP1+aYmFDARDp5/O7mXmIUJAAAAALCBSbeVS98XMpmVaT4TC5f1KGAimZiJCQAAAADwXKfP3XmSWUZFuiufc6AwF0hMLpDB3P2ztPIYCphIOmtnYjILEwAAAABgE9NmY9ZjVqZ5TC1eSsl9PAIFTByImZgAAAAAACSJac/HPJDJhbOwMPW5l/VMPn4RfNbOxAQAAAAAhFNGRbrr31K+6YuuSfmmctMxK9MfJhcu6yW7gMksTBzMypmY3EoOAAAAAPZx67mYtrNhNpsNRbUgMH3mZT0KmDCBlUVMAAAAAADclszCiS2FTBsKbDayadtSwIQpKGICAAAAAKzjxbeUo3G2FNtsYFPxUqKACbNQxAQAAAAA4P/HbMzG2VZ8M42N28+m4xPhwBf7AAAAAACSptPnjnYcmeJ3M4yxtPIYnZP7id/NiBtf/BM/24qWB/KjgMksTLSEmZgAAAAAACt5dUt5sospNs54s3FmYbLYvm0oYMJUzMQEAAAAAACtwszM/WwuWh6IAiZMZl0R88Xqk/1uAgAAAAAArrLttvKDHVjEC0tBMyiFS8m/2cAUMJEI64qYAAAAAAB4bdMXXdWn59ak/k7bC5n1gjw7M0iFy3oUMGELipgAAAAAgKRy88t9MirSVdO71pXPgruCMjsziIXLejY+jxXhRRETViqN9E/67zwvb13SfycAAAAA/zAb0z0HFwJNLmoGuWh5ID8LmMzCRGtQxIQv/ChCtlVb2kwBFABwIFNykHwCADMFtZB5IFOKmmEpWB6MAiZsRBETrjNlYGaSeLYJA0kAsI/tmdfa9pNZAEzj5S3lfszGlMJRyDxQS8XE1hY5w1qkbA4FTNiKIiZaxfZBm4ma26YMFgEg+ci6pnFxDoAb3HwuZlCFrZDZHIqRbef38y+9LmCmb0739PPhP4qYaBYDODM0tR8YIAJA25Bz3uHiHIAg8Ws2JuCWoBcwEQ4UMRGDwZxdGttfDAwBoHFknDm4OAfAC0H9lnJmY6KtwlDAzKhI1z7t9vz3wF8UMUOMwVwwHbxfGRACCCMyzk5cnANgMj9nY1LIRGuFpYCJcKCIGTIM6sKHoiaAMCDfgoscA4KN52LGj0ImEuF38RLwAkXMgGNQh4MdeEwwEARgK/ItvMgxAM3x+pZyv5+NSSET8TClgMksTLiNImYAMbBDvBgIArAJ+YaDMUsTQBhRyERzKGAiyChiBgiDO7QFBU0AJiLbkAiyDEAy+D0bE2iMKcVLiW8ih3coYlqOwR28UH9cMQAE4AeyDW4gywB7uP1czKB+S/mBmI2JA4WxgMkszHCiiGkpBnhIBgaAAJKJbIMXmJ0JwAsmzMakkAmJAibChSKmZRjgwQ8UMwF4hVxDMpFnQHiEYTamRCEzzEwqXkoUMJEcFDEtwSAPJmDwB8At5Br8RJ4BcIMJszElCplhFNYCJkAR03AM8mAiBn8AWotcg0nIM8Acbj8XM2woZIZHmAuYzMIERUxDMciDDRj8AYgXuQaTkWdAMCXjlnJTZmNKFDKDzrTiZbJRwIREEdM4DPJgIwZ/AJpDtsEW5BkA21HIDCZTC5jcRo5kS/W7AfgegzzYjmMYwIFKI/3pF2Aljl0AiTCtkGNqwQuJW1p5jLH7k9vI4Qeripgv7xjkdxM8wYkygoTjGQD9AIKC4xhIrk6fO65/ZliLH6YWvhA/k/chBUz4xaoiZhBxcoyg4tgGwom/fQQNRXkA8TBtNqZkdhEMTTN59qVEARP+oojpI06IEXQc40C48DePIOP4BmAjk4thaMj0/WVisR7hQhHTB1zRR5hwrAPBR64hLDjOATslazaXqQUe0wtjMH/2pZT845tZmGgMRcwk4+QXYUSBAwgu/rYRNhzzgLe8eC4mKGSazIZ9QwETpkjzuwFhwkmvt9zoWPv03OpCS9CU0kh/nZe3zu9mAHAJuYawqj/2yTQAB9v0RVdjxxT1xbJzcj/xuSWQ7CheShQwYRaKmEnCQK91kt1hJvr7TD1BMRmFTCAYyDX3JSPzyC13kWmAPTIq0lXTuzYpv8vkQqa0v3hGIdM/thQvJXMfkYDwooiZBAz0mmdzx9hc200+cfEbgz7AbuRaYkzKuXjaQn4lhkwDYCMKmclnU/FS8uf8hVmYaAlFTI8x0Itl0kDOa42tKwPD7zHoA+xErjUtKBnHBbrEkWmAlLWxRruOzXTlszp97mjHkSmufJZfTJ+NKVHITCYKmC2jgIl4UMT0UNgHekEZzLnp4G1i+okNABwo7Ll2oLBmHBfomkYhEzBfMm8ptwXPyfSWbcVLKbznOLADRUyPhHGgR2eXuLAXNRnwAfYIY67VI9+aF/YsA4Cm2DAbsx6zMt1lY/FS8u+ch1mYiBdFTLQJAzt3hXEgSCETMF8YC5jkW+uFMcvqkWmA+ZiN2TQKmW1na/FSooAJO6T63YAgCvpgb9MXXaP/4K2wbOug/83YYPbs2erTp48yMzOVn5+vVatWNbv8ggUL1L9/f2VmZmrgwIFavHhxzM8dx9H06dPVvXt3dejQQYWFhfrnP/8Zs8y2bds0evRoZWVlKScnR+PGjdPOnTtdXze0TVj+Pg/sb4Pe5yZb2LZrWP5mTEeu2a/T547fTXCFbX3f0spjrC7E+cX27UYB03wm5tr69et19tlnKzc3V5mZmerXr5+mTZumPXv2uLfiB6GI6bKgnriGbQBioqBv/6D+7djghRdeUHFxsWbMmKH3339fgwYNUlFRkbZs2dLo8itWrNCll16qcePG6YMPPtCIESM0YsQIffTRR9Fl7rnnHj300EOaM2eOVq5cqUMPPVRFRUXavXt3dJnRo0drzZo1Ki0t1cKFC7V8+XJNmDDB8/UF6pFtyReWbU6m+YtcA9rO5oJcMtlevJTsK7SHkam51r59e40ZM0avv/661q9frwcffFBPPPGEZsyY4dm2SHEcx/hLXNXV1crOzta0d85XZsf2fjenSUE8YaVDM1vQbtEz/Ra83Tv36I5hr6uqqkpZWVlt+qz6fu29Nbnq2Mnd60k7d9Rp6PGVcbczPz9f//Zv/6ZHHnlEklRXV6devXrpV7/6laZMmdJg+VGjRmnXrl1auHBh9LVhw4Zp8ODBmjNnjhzHUY8ePXT99dfrv/7rvyRJVVVVys3N1dy5c3XJJZdo7dq1Ou644/Tuu+9q6NChkqSSkhJdeOGF+uKLL9SjRw83NoWRbMk0KZi5JpFtJgpantULS66ZlGkSuZZs9fv/zNOnKy0tU1VHZbj22V5+Q3mybym3uZ/jFvOGbC9c1vPznMiLWZj7du/WZ3fdTK75mGvFxcV699139fe//z2h7RIvZmK6JEgDvbDMkgiCoO2nIP0dmaC6ujrmX01NTYNlamtrVV5ersLCwuhrqampKiwsVFlZWaOfW1ZWFrO8JBUVFUWX37hxoyKRSMwy2dnZys/Pjy5TVlamnJycaCBKUmFhoVJTU7Vy5crWrzRcE7S/R7LNbOwbtCSeTJPINZjL5j4uCLMN3RKkbRG0AqZtgphrn376qUpKSnTWWWfFsQVahy/2QZTNwRp29fvO5iu89cL2pQgv7xikTMfd2Xi7d+6R9Lp69eoV8/qMGTM0c+bMmNe+/vpr7du3T7m5uTGv5+bmat26xvdDJBJpdPlIJBL9ef1rzS3TrVu3mJ+npaWpc+fO0WXgnyAVMMk2uxy4v8g0+/idaRK5FjSdPnc8nY2JxNQX78I2MzMoRcsDUcCMz/9Un6TMOi9yrSRQuXbqqafq/fffV01NjSZMmKDbbrut0Xa5gSKmC2wf7DHAC44gFTPRdps3b465RSEjw73buwDTkW32C0qmha2Q6RUyDW7z41vKN33R1fo+TQpPMTOIxUuJcyRTBCnXXnjhBe3YsUP/+Mc/dMMNN+jee+/VjTfe6MnvoogZYnRewWX7wI8BnzuysrJafM5Kly5d1K5dO1VWVsa8XllZqby8vEbfk5eX1+zy9f9bWVmp7t27xywzePDg6DIHP4h679692rZtW5O/F8nBhTmYxvZMk8g1N8STaRK5BiRTEIuZQS1c1vP7PMmmWZheC1Ku1c8qPe6447Rv3z5NmDBB119/vdq1a9fi+iWKZ2K2kY2DPZ47FR4272sb/7ZslJ6eriFDhmjJkiXR1+rq6rRkyRIVFBQ0+p6CgoKY5SWptLQ0unzfvn2Vl5cXs0x1dbVWrlwZXaagoEDbt29XeXl5dJmlS5eqrq5O+fn5rq0fEmPz353N/R3iwz5GPMg1JMKPgkoQ+zHbnxNZ336b1yEefh97yfh767TZ+O+tTphtuVZXV6c9e/aorq4u8ZWNAzMx28DGwZ7fHRf8EYRZLPBOcXGxLr/8cg0dOlSnnHKKHnzwQe3atUtjx46VJI0ZM0ZHHHGEZs2aJUm69tprddZZZ+m+++7T8OHD9fzzz+u9997T448/LklKSUnRddddpzvuuENHH320+vbtq1tvvVU9evTQiBEjJEkDBgzQBRdcoPHjx2vOnDnas2ePJk2apEsuuSTQ3+AK95Fr4WPr7ZjMxkwecs1f2Z/VuPoN5TwX0x4HFgFNn50Z9ILlwfw+X0pKAfNzR/s8/y3+MDXX5s2bp/bt22vgwIHKyMjQe++9p6lTp2rUqFFq397dZ4nWo4gZEn53WjCDbQM/BnzJMWrUKG3dulXTp09XJBLR4MGDVVJSEn3Qc0VFhVJTv5+4f+qpp2r+/PmaNm2abr75Zh199NF6+eWXdcIJJ0SXufHGG7Vr1y5NmDBB27dv1+mnn66SkhJlZmZGl5k3b54mTZqkc889V6mpqRo5cqQeeuih5K04Yth2YY5cCzcuzqE55BpMZ9s5eWuYVtAMW9HyQJwz2c/UXEtLS9Pdd9+tTz75RI7j6Mgjj9SkSZM0efJkz7ZFiuM4xs+3ra6uVnZ2tqa9c74yO3pTzU2UTYM9Oi00xpYTJ5OKmLt37tEdw15XVVVVXM8vaY6X/Zqb7YT7TMw0iVyD3WzJNCmYuUamhVv9/j/z9OlKS9s/+HVzJqYkz2diJvsLfurZ1He5zcvCZpgLlgcz4ZwpWbMwJWlf7W6t/n+3uJZrU8su8CTXZhWUkGutxEzMADOhw4K5bLkCbNJszBGd/qE7/G4E4AFbCpjkGppiS6YBAPaj0Og9E86b+CIfuI0v9mkFGwZ7JnRYMB9fkgDAFvRVaIktmWbDeSRgmvpZVkFjQ58FO5lwbCWrgBnU/gGNo4gZMLacwMMsph8zDPgA75j+90WuIVEcL4D/sj+r8bsJCWG2GILEhBykgAmvUMRMkMmDPRM6K9iL4weAaeiX0FqmHzsmn08CSC7T+yvYheMJQUcRMyDorOAGk2c8MeAD3Gfy35WpfRHsYXKmAUic1zOu/JyNSV8FN5hyHDELE16iiJkAUwd7pnRWCA6OKQB+og+Cm0w9nkw9rwQA2MeUrKOACa9RxLScKZ0VgsfEY4sBH+AeU/+eTOx7YD+OKwCmo59Ca5h01wHPlkUyUMSMk4mDPVM6KwQXxxiAZDHpJBzBZOLxZeL5JRBmfhdhTOynYK6wHi/Mwgy3NL8bgMSFtbM6WDJOMmp613r+O0y36Yuu6tNzq9/NAOAi0won5FrLEsk8sqtpZBqQPNmf1ajqqAxXP7PT5452HJni6mcCNjLt3MnvCwAID4qYljGts0oGPzvE5n53mAaJJg36SiP9dV7eOr+bAcAlYcy1A3mRcfF+Zphy7EAmZZpErgGIZVofBfOYdu6UzPE6szBBETMOps1YCTKbruAc3NagDwY5oQLgNtNOwr1kYr411qagZ1k9Mg1AUzIq0n3vC+mj0BTTzp0oYCLZKGJaxLQOyw0mDupaKwxFTVNOqJi1ArSeKRfmgphpB7I138JU2DQl0wAAiEfQz52AePDFPi1gsOe+jIr06L8gC+p6BulYBAC3HNjnB63fD+p6SeZkminnm4ANkjEby4T+zpT+CWYw8XhgFib8QBHTAiZ2WIkK8gAoHkFb/yAck0AYmVIoCUofErS+PR5BXOegHI+AibI/q/G7CVajf4Jk5nEQpPMA2IXbyQ1nYocVLzq2xh24XYJ6i14ycEs5YCebc00i2w4UpDzj1nIAgGlMPWdK9rkQszBxIGZiNsPvGSumdlotCdoMDS/ZvK1sPT4B+MfmfsPm/joZgjBD0+/j0+/zTgCxTOnP/O6b4A9T9zsFTPiNIqahTO20mmP74MVPtg7+bDxOgbDyu0BiY39ha9/sN7YZAK+FrbBhY4ai9djfQNMoYqLNGKy4y7bt6WfI+l2UARAf207GbeuHTWXjdrTtWAXgLdv6MNjP5BxiFiZMQBGzCX4WR0zuuA5k4+DEJmxfAEgu+l1v2LZduTgHwES2jBHReibvYwqYMAVFTMOY3HHVs20wYjsbtrUNxy0QZlyYax65lhw2bWcbjlvAFl59Q3kYixz0TcG06YuuRu9bW7Ib4UARE3GzafARNDZse7+Cl1krgLlMPiGvZ3rfGkQ2ZBoA1DOtv7IhWxE/9mdDYbxAgfhRxDSIyR2YaeEdVgz8AMAd9Kf+M337c3EOAOAlk8f/9UzPaoQPRcxG+HHyaGoHxiDPTKbuE1OPYwDJZ2p/QK6ZxfT9YepxDCC5TOun6JvsZ8M+9OO4ZxYmWtKqIubs2bPVp08fZWZmKj8/X6tWrWp2+QcffFDHHnusOnTooF69emny5MnavXt3qxqM5DEtrBHL1IGfDYEMHCzIucaFue+Z2GdiP1MzDbBRkDPtYGEueJiatWiZDfuOAiZMlXAR84UXXlBxcbFmzJih999/X4MGDVJRUZG2bNnS6PLz58/XlClTNGPGDK1du1ZPPfWUXnjhBd18881tbnxQmNaJMZCwC/uKW+/QNuRaONBX2sHE/WTaeRrQHFMzzasv9wk7+ie7mP4FPvVMzGKgXsJFzPvvv1/jx4/X2LFjddxxx2nOnDk65JBD9PTTTze6/IoVK3TaaafpZz/7mfr06aPzzz9fl156aYtXBMPCtE6MDstOpu03045roDnkmrtM+/vnwpx92F9cnEPrkWneoW9CW5h2fmQaZmEiXgkVMWtra1VeXq7CwsLvPyA1VYWFhSorK2v0PaeeeqrKy8ujQbhhwwYtXrxYF154YRua7Z0wnzQSzHZj/wGJC3quJTvTTDtBp1+0l2nFZ9OObaAxQc80NI7+yXw27SOTshdoTFoiC3/99dfat2+fcnNzY17Pzc3VunXrGn3Pz372M3399dc6/fTT5TiO9u7dq6uvvrrZWxRqampUU/P9LQfV1dWJNNMaJnVmdFbBUL8fa3rX+tyS/cd3n55b/W4G0Kxk5FpYMs005FowZFSkG5FpErkG84V1rNbpc0c7jkzxtQ1+o38yk0nj/Xj4de7ELEwkwvNvJ1+2bJnuuusuPfroo3r//ff10ksvadGiRbr99tubfM+sWbOUnZ0d/derVy+vmxlaps10gDtM2afJDO4wz6JGciWaa2HJNFNO1Mm14GF/At5hrJYYk/sjU3IY+9m2PyhgwhYJFTG7dOmidu3aqbKyMub1yspK5eXlNfqeW2+9VZdddpmuuuoqDRw4UP/5n/+pu+66S7NmzVJdXV2j75k6daqqqqqi/zZv3pxIM61gQqdmcgij7di/QMuSkWthyDRT0O8Flyn7lotzMBljNZgwxoR9+8GUjAXikVARMz09XUOGDNGSJUuir9XV1WnJkiUqKCho9D3ffvutUlNjf027du0kSY7TeNU9IyNDWVlZMf+SIUwni3RU4WDCfrYtxBEuycg1vzItmUz4Ozehv4O32MdA80wfq3n5DeXJnM1lel9kQiaHlS3fPm4KZmGiNRJ6JqYkFRcX6/LLL9fQoUN1yimn6MEHH9SuXbs0duxYSdKYMWN0xBFHaNasWZKkiy66SPfff79OOukk5efn69NPP9Wtt96qiy66KBqQYeN3x2Z68MJdJj1PDDBRUHONC3MIIhMyjWfPwWRBzTQkhn4q+fwe47cWt5HDNgkXMUeNGqWtW7dq+vTpikQiGjx4sEpKSqIPkK6oqIi5mjdt2jSlpKRo2rRp+vLLL9W1a1dddNFFuvPOO91bC8SNgV44+T3o40QKJiPX2sbvk3ZyLXz8zjTAZGQakHx+nwu1FudQsFGK09R9Agaprq5Wdna2pr1zvjI7tvfs9yRj1oqfHRydFPwc9CWriHleXuPfvumGC1Le09DjK1VVVdXmW4K97Nd279yjO4a97ko74b4gZZpErsE/fhcyg5BrbuUFmRZu9fv/zNOnKy0ts9llq47K8Kwdyf6Gcr/7oHgwicBbthYvJX/PobychbmvdrdW/79bXMu1qWUXeJJrswpKyLVW8vzbyW0R9NvuGOhB8vc4sDnkATSOAib8xDEA4EDcntoQ59/eYdsC/qCImUR+dXSc5ONAHA9A8HFhDmHBxTnALl5+uU+y2ZJF9FXuCsKX9wR1FibCIeFnYgIm6rTJvc5wR5/k3oriB54nBqCtuDCXXPHmXBgy7GBkGgA0j+fTu8P24qUU/AJm1sbgXChB4yhiJgmDPfe4WbBM5PODNjD0Y9DHCRQANM2NfGvpM4KWZfX8KmSSawBsQX/VekEoXkrBrA0gfChiBlhQOimvi5bxOrAdQR0EBkFppL+nX4IAgAtzbvAr2w7+vUHKs6DOyCTXgPh1+txJ6hf82NbvUMhMTFCKl5L/51DJmIWZ/VmN9nr+W+A3ipgK5rPD/O6k2sKUomVzgjIIZDYmAFvYnGv1TMy3oORZPdsKCgCQbPWFOc7HmxekAiYQJBQxkyDZHaCtAz0TB3fxqm+7jYM/BnxAsHBhziy2ZRt3HSSOi3NAuNl6Lk3f1bggFi/9Po9K1ixMhANFTPjKtsFdS2wd/Nl68gUg+bgw17KgZBuZBsAL2Z/VqOqoDL+bAVHIPFAQi5eS/+dRfBs53JbqdwOCjsFe4zptcgIzyGtKGNaxtYJ6kgAg3ILc79u2bsk+HyLXAHNQNEkM/Vdwt4EttQEgERQxA8SGTsq2QZAbbFlnG46feAXxdlrABFyYa5wt/bwbbFpXW46feJBrgNls7282fdE1sIW85gR5vU04JpN1QYFbycOFImZAmNBJNcemQY9XbNgGyTyOgnrCAMAdpueaZEe/7pUwrzsABFVYzs+DXLwEgi70RUwvr2zTMe7HICcWAz8AsBv9+PdM3xZcnAPCyY9bym24+BaPIBf4grxuBzLhWGQWJrwS+iJmEJjQSTXG9IGN30zdNqYeTzDDtm3bNHr0aGVlZSknJ0fjxo3Tzp07m33P7t27NXHiRB1++OHq2LGjRo4cqcrKyphlKioqNHz4cB1yyCHq1q2bbrjhBu3duzdmmXnz5mnQoEE65JBD1L17d1155ZX65ptvXF9HmwXlwpyp/RC51jSTt4upxxPMQK75g8KD+YJS7KsvXAZlfVpC5gXX7Nmz1adPH2VmZio/P1+rVq1qdvkFCxaof//+yszM1MCBA7V48eKYnzuOo+nTp6t79+7q0KGDCgsL9c9//jNmmZYyctmyZbr44ovVvXt3HXrooRo8eLDmzZvn3ko3giImXMcgL36mbqtkhV9YTiaCZPTo0VqzZo1KS0u1cOFCLV++XBMmTGj2PZMnT9arr76qBQsW6M0339RXX32lH//4x9Gf79u3T8OHD1dtba1WrFihZ599VnPnztX06dOjy7z99tsaM2aMxo0bpzVr1mjBggVatWqVxo8f79m6wh+mnnyb2FebxtRMA5pDrgFNs7n4Z3PbW8uUcyhmYbrvhRdeUHFxsWbMmKH3339fgwYNUlFRkbZs2dLo8itWrNCll16qcePG6YMPPtCIESM0YsQIffTRR9Fl7rnnHj300EOaM2eOVq5cqUMPPVRFRUXavXt3dJmWMnLFihU68cQT9T//8z/63//9X40dO1ZjxozRwoULPdsWKY7jGH+2WV1drezsbE1753xldmzv6md7NWslWR2mKR1VPQYvrbejT4rfTYhR07s2Kb+nT8+tnnzueXnrXP/MC1Le09DjK1VVVaWsrKw2fZaX/drunXt0x7DXXWnngdauXavjjjtO7777roYOHSpJKikp0YUXXqgvvvhCPXr0aPCeqqoqde3aVfPnz9dPfvITSdK6des0YMAAlZWVadiwYfrrX/+qH/3oR/rqq6+Um5srSZozZ45uuukmbd26Venp6br33nv12GOP6bPPPot+9sMPP6y7775bX3zxhWvrmAw2ZppEriExpmWaRK41xq28sDHTJHLNLfX7/8zTpystLTPu91UdleFhq6QdR/rTDyWrr/GDV/2bm8JWuKxnyvlTMh/l0FgRc+/e3Vr+1m2u5drUsgs8ybVZBSUJtTE/P1//9m//pkceeUSSVFdXp169eulXv/qVpkyZ0mD5UaNGadeuXTHFxGHDhmnw4MGaM2eOHMdRjx49dP311+u//uu/JO3Pt9zcXM2dO1eXXHJJqzJSkoYPH67c3Fw9/fTTCW2XeDET02KmdFT1GOi1jWkzWEw7vuC/srIy5eTkRENMkgoLC5WamqqVK1c2+p7y8nLt2bNHhYWF0df69++v3r17q6ysLPq5AwcOjA70JKmoqEjV1dVas2aNJKmgoECbN2/W4sWL5TiOKisr9eKLL+rCCy/0YlVxEAqYSJRpmQY0hlwLNj+eixl0ps5uDNst4wjXLMza2lqVl5fH5E5qaqoKCwujuXOwsrKymOWl/TlUv/zGjRsViURilsnOzlZ+fn5MliWakdL+Ymjnzp0TX9E4UcREmzFQcVfYtqVXJxtezkizRXV1dcy/mpq2hX0kElG3bt1iXktLS1Pnzp0ViUSafE96erpycnJiXs/NzY2+JxKJxAz06n9e/zNJOu200zRv3jyNGjVK6enpysvLU3Z2tmbPnt2mdYI5TCpgkmvuMWk7mnSMtUbYc83tTJPINXjD9r4mHiYUDU1ogylMOea4cJCYeHPt66+/1r59+xrNleayqrnl6/+3pWUSzcg//elPevfddzV27NhGf+6GNM8+OcSS0ZEa01EZNDgJkk6bHCNuxcuoSA/0LTEmeKPyGKXtdPd2qr27aiS9rl69esW8PmPGDM2cObPB8lOmTNHdd9/d7GeuXbvWxRYm7uOPP9a1116r6dOnq6ioSP/61790ww036Oqrr9ZTTz3la9sQLOSa+0zJNCk5ubbpi65W3HLpBRMyTSLXgGQ6cOzrZd9HsbJxptQFkimZszCXb/mB0nZ5kWtKKNds8MYbb2js2LF64okndPzxx3v2e0JdxAz7Fe22YqDnLVMGfRQy7bV58+aY56xkZDQewNdff72uuOKKZj+rX79+ysvLa/Dw6L1792rbtm3Ky8tr9H15eXmqra3V9u3bY2atVFZWRt+Tl5fX4Nv16r/ltX6ZWbNm6bTTTtMNN9wgSTrxxBN16KGH6owzztAdd9yh7t27N9t+tB4X5uCG+m1rQq7BTvFmmkSu2SL7sxrPn4uJ5GrqnCGR4ibFyviZcv4kMQuzNeLNtS5duqhdu3bRHKl3YO4cLC8vr9nl6/+3srIyJm8qKys1ePDg6DLxZuSbb76piy66SA888IDGjBnT1Cq7ItRFTFuZ0Fkx0EsOUwqZsFNWVlZcD4vu2rWrunZt+YSxoKBA27dvV3l5uYYMGSJJWrp0qerq6pSfn9/oe4YMGaL27dtryZIlGjlypCRp/fr1qqioUEFBQfRz77zzTm3ZsiV6y0JpaamysrJ03HHHSZK+/fZbpaXFRla7du0kSRZ8P11ScGGubci15DAh17g4Z6d4M00i1/C9Tp87vnzBD/1MLAqT7jOhJlDP7y/zsVW8uZaenq4hQ4ZoyZIlGjFihKT9X+yzZMkSTZo0qdH3FBQUaMmSJbruuuuir5WWlkZzqm/fvsrLy9OSJUuiRcvq6mqtXLlS11xzTfQz4snIZcuW6Uc/+pHuvvvumG8u9wrPxHRZGDpoBnrJZcKz2bwOyTD83QTBgAEDdMEFF2j8+PFatWqV3n77bU2aNEmXXHJJ9NvpvvzyS/Xv3z86AyU7O1vjxo1TcXGx3njjDZWXl2vs2LEqKCjQsGHDJEnnn3++jjvuOF122WX6xz/+oddee03Tpk3TxIkTo1ckL7roIr300kt67LHHtGHDBr399tv69a9/rVNOOaXJb8aDHUw4Cfe7jw2bMGxvcs0O5BoAwAbFxcV64okn9Oyzz2rt2rW65pprtGvXruizJ8eMGaOpU6dGl7/22mtVUlKi++67T+vWrdPMmTP13nvvRYueKSkpuu6663THHXfolVde0YcffqgxY8aoR48e0UJpPBn5xhtvaPjw4fr1r3+tkSNHKhKJKBKJaNu2bZ5tC2ZiWsbvwV4YBh6mMmH2CjBv3jxNmjRJ5557rlJTUzVy5Eg99NBD0Z/v2bNH69ev17fffht97YEHHoguW1NTo6KiIj366KPRn7dr104LFy7UNddco4KCAh166KG6/PLLddttt0WXueKKK7Rjxw498sgjuv7665WTk6NzzjmnxWeeAS0h1/zhd6YxSwr1yDV4hX4GXvG7JnAgZmEmx6hRo7R161ZNnz5dkUhEgwcPVklJSfSLeSoqKpSa+v0cxVNPPVXz58/XtGnTdPPNN+voo4/Wyy+/rBNOOCG6zI033qhdu3ZpwoQJ2r59u04//XSVlJQoMzMzukxLGfnss8/q22+/1axZszRr1qzo62eddZaWLVvmybZIcSy4X6G6ulrZ2dma9s75yuzY3rXP9eLWO6+vvPvZYTHQM4Ofgz4vT8S8eBD4eXnrXP28C1Le09DjK1VVVRX3LW1Nqe/XTvvLJKUd6v7Dot+++BFX2gn3kWnf8/sknFzzX1AzTbIj13bv3KM7hr3e5rwg08Ktfv+fefp0paVltvyGAyTjmZh+3E5ejyIm3Ob3udPBTCti7t27W8vfuo1cCzBuJ7cIBUxIwd0XXhRLeEYggKYEtS+1jZ/7wcZHpZBrQOL4whEEBQVMgCKmq4L6/CMGeqhnWnACsBcX5lCP/QGEV9ALE5w7wy0cS8B+oS1i2nYl269Oi4GFmdgvALzGhTkkk1/7hUEhAACJYxYm/BLaIiZaxkDPbOwfALbiwhwaw/4BEERcLEFbmXYM8YgG+IkipgX86LQYSNjBj/3k5fEY1JlfgNdsu7vAD+SaHcg1AF6g6AJbmVbATDZmYeJgFDFdEqSTVAZ6dmF/AbAJF+YAAGET9kIUWsfE44YLAvAbRUzDJbvjYqBnp2TvNxMDFYB7uDAHPwVtNiYAAIkil4DGUcQEAACAUSg+A+HB7aKAHZI9C5O+AY2hiIkoBgx2C8pszCDNAAMQi7sLkIig7D+3c41n4AKt4/dtsMysQ7w4VoCmUcR0gVdFl2R2XkEZKIQd+7EhBntAONEfIlEMGgEAfjM1i5iFCVNQxAQChoE7ABNxYQ6twb4EECSmFqhgBo4PoGWhLGLaMDOLwR5sQNACwcMjHWCaZJ6nkGsAAD+YnD/MwoRJ0vxuAPwV5AJm9oaWO7+qfhlJaEnyddrkaEefFL+bAQBJF+RcCzNyDYAbOn3uaMeR9CUAYCuKmLBePMXKRN8bhOKmzQO+TV90VZ+eW/1uBmAF7i74XtAKmG3Jt3pByLMgINeA5mV/VqOqo8LRX2VUpKumd63fzYBBmIUJxI8iZht5cdsdg72WuTGwi/fzGQA2jxMxAHCHF9l28GfanGnJujhHrgEAkoUCZixuJUdLKGKGlI0FTK8Ll/H8XtsGfzbPxgSQfDY/D9PGXJOSn202ZxoABAUXSyCZXcAETEURE8bzq3jZmPq2MPADgPhwgt6QKblmY6ZxcQ5AW/FcTJjA9PMjZmHCVKH8dnKTJaMzs2W2SvaGGmMGegczuW0HS8b+Nj2EAQQbudY29e0ysW2NIdcABAH9THix74HWo4gJ49g0kLKprbax+bZWAMljQwHTpqywpZ02cjPXbPhCLwCAnZiFCZNRxGwDG4ssJg/2bBrkHcz0tpu83wEEV9hnGpieDU2xod3kGhA8FDEQBmE/NwLaiiKmQcLcoZk+WIqXyevh9YDP5OOXGStAy7gw5y6T8yBeNhQzvWRyrgEIBvqZcLFhf/sxCxNIBEXMEDFxsBfEAVIQ1wkAEJ8gZoCp62PieQ0AO1CoQbLZUMD0C7OwkYjQFTGZkWUOUwdFbjFx/RjwAUgWr0/WTezPTOz33RLE4iwAmIDiVvDZso8p7sMGoStihpVpg72wDITCsp713A5oG29vBRBOYenvTVtP085vWkKuAQDwPWZhIlEUMVvJ7ZNQW67OtFUYZ3KEcZ0BJEdY7y4wqXAVxj4+TOsblvMzAP6irwkuW/YtszBhC4qYIWDKYC9Mg57GmLL+phwPAILLlhP2tjKlX/eDSetOrgFoDYo28FpYzoeAZKKIiaQwabDjJ7YDABPZdIurKQUr+nO2AQD3cWspgsKmAqZfBX3+3tEaFDEN4GUHZ8Jgj0FOLBO2h5fHhU2BDQCtYUI/bgpTtgW5BsB29DXBwb4EvEMRE54yZXBjGrYLACSOC3NmYpsAALCfbQVMZmHCNhQxA8zvwR6Dmub5vX38Pj7iZdNtrgDsO3lPhN/9tsnYNvEj1wA0JcgZCgBuoIgJTzCYiQ/bCQDsQH/dMr+3kS0X5wCYgy/3gZtsK0Jz/MNGFDFbwc0r6LZ1dHCf34M+L3BcA3CbnwWqIPbTXgnqtjIx10oj/f1uAgAPmNjfoGXst/hxKznagiJmQDHYQzyYtQIAcJuf5wHkGgAg2WwsYDILE7aiiAlXUcBsHbab95ixAjTOhrsLuDBnH7YbgNZilhZsYmMB00/8faOtKGIGkF+DPQYsbePX9mPWCgA0jlwDgOAzcUYahTF4ycRjHohXqIqYzMTyDgM9dwRpO3LyBcBmQeqP/RK0i3PkGgDgQOSCedLXf+l3E+CxUBUxTUOnBwBA85gtbjeKwY1z8zEOAIKJsaLZbN0/fs7C5FZyuIEiZsD4MdhjgOIuP7an6UUCBnsAkolccxe5BgAIElsLmEAQUMRMEMWUWAz0vMF2BWCboJzQ0/8CAEwRlGwNEvaJudLXbva7CUgCipgAAFgoDM95ZjZdcFAcBmAyvugE8bC9gMmt5AgCipg+8aIDTPZgjwGJt5K9fb04fmwPeiDouLsgFrnmLXINQLwoeHyPfgcAvkcREwAAhB4FTAAA0BTbi8lBn23MreThQRETrcJgLznYzgBsEIS7C5Ac5BoAwDa2FzD9xsxquIkiJhLGACS5krm9KRoACCNyDQBgMopo/gnCtg/6LEyEC0XMgKD4BAAAbMDFOQAmotCDgwWhgAkEDUVMJITZKv6webu7Ff58AQkQHsksPNncv8If5BoAP1BQS66gbG+/i/PJuJWc52GGC0XMBLh1shmUDhEAAKA1KB4DAAAgURQxAyBZM1YYcPgrWdufW+/QnG3btmn06NHKyspSTk6Oxo0bp507dzb7nt27d2vixIk6/PDD1bFjR40cOVKVlZUxy/z617/WkCFDlJGRocGDBzf6OY7j6N5779UxxxyjjIwMHXHEEbrzzjvdWjWEELkWDuQamkOuwSZMhkkOtjNMNHv2bPXp00eZmZnKz8/XqlWrml1+wYIF6t+/vzIzMzVw4EAtXrw45ueO42j69Onq3r27OnTooMLCQv3zn/+MWaaljNy9e7euuOIKDRw4UGlpaRoxYoRr69sUipgAgLiNHj1aa9asUWlpqRYuXKjly5drwoQJzb5n8uTJevXVV7VgwQK9+eab+uqrr/TjH/+4wXJXXnmlRo0a1eTnXHvttXryySd17733at26dXrllVd0yimntHmd0Dac6KO1KCK3XWmkv99NsB65BuBAQTqv4Vby4HjhhRdUXFysGTNm6P3339egQYNUVFSkLVu2NLr8ihUrdOmll2rcuHH64IMPNGLECI0YMUIfffRRdJl77rlHDz30kObMmaOVK1fq0EMPVVFRkXbv3h1dpqWM3Ldvnzp06KBf//rXKiws9G4DHCAtKb8F1mOgYYbsDTWq6pfhdzMQUmvXrlVJSYneffddDR06VJL08MMP68ILL9S9996rHj16NHhPVVWVnnrqKc2fP1/nnHOOJOmZZ57RgAED9M4772jYsGGSpIceekiStHXrVv3v//5vo7/7scce00cffaRjjz1WktS3b19P1jMsTH0eH3cXAEgWcs1s2Z/VqOooznsPllGRrpretX43I5CCVMBEsNx///0aP368xo4dK0maM2eOFi1apKefflpTpkxpsPzvf/97XXDBBbrhhhskSbfffrtKS0v1yCOPaM6cOXIcRw8++KCmTZumiy++WJL03HPPKTc3Vy+//LIuueSSuDLy0EMP1WOPPSZJevvtt7V9+3bPtwUzMQE0wK13aExZWZlycnKiISZJhYWFSk1N1cqVKxt9T3l5ufbs2RNzZa5///7q3bu3ysrK4v7dr776qvr166eFCxeqb9++6tOnj6666ipt27at9SsEwHcUk+Encg0H83vmGvwTtAImx3Jw1NbWqry8PCZ3UlNTVVhY2GTulJWVNZgZWVRUFF1+48aNikQiMctkZ2crPz8/ukxrMjIZKGJajmJT+Ng44DPlpCBst91VV1fH/KupaduxE4lE1K1bt5jX0tLS1LlzZ0UikSbfk56erpycnJjXc3Nzm3xPYzZs2KDPP/9cCxYs0HPPPae5c+eqvLxcP/nJTxJeD8DGfhRt4/b5kim5FiZuZ5pErsFe9EHuYnu6Lxm3ktsu3lz7+uuvtW/fPuXm5sa83lzuRCKRZpev/9+Wlkk0I5OB28mTzMYOksEe4J2Kr7ootUOmq59Z993+55j06tUr5vUZM2Zo5syZDZafMmWK7r777mY/c+3ata61rzXq6upUU1Oj5557Tsccc4wk6amnntKQIUO0fv366K14AOzDo1KCw4RMk8g1AAiDZDwP05Rcw/coYgJAQG3evFlZWVnR/87IaLxIcP311+uKK65o9rP69eunvLy8Bg+P3rt3r7Zt26a8vLxG35eXl6fa2lpt3749ZtZKZWVlk+9pTPfu3ZWWlhYd6EnSgAEDJEkVFRUM9gIiGXcXcGEOsFO8mSaRawgHno3pDhsnGbWEW8ntEG+udenSRe3atVNlZWXM683lTl5eXrPL1/9vZWWlunfvHrPM4MGDo8skmpHJEJrbycN2G6lbGOyZif2CeGRlZcX8ayoYu3btqv79+zf7Lz09XQUFBdq+fbvKy8uj7126dKnq6uqUn5/f6GcPGTJE7du315IlS6KvrV+/XhUVFSooKIh7XU477TTt3btXn332WfS1Tz75RJJ05JFHxv05cFcQT/zhD3INLYk30yRyDUB8OI+Bn+LNtfT0dA0ZMiQmd+rq6rRkyZImc6egoCBmeUkqLS2NLt+3b1/l5eXFLFNdXa2VK1dGl2lNRiZDaIqYQcTzMOElE48vU79NOSwGDBigCy64QOPHj9eqVav09ttva9KkSbrkkkui3+D65Zdfqn///lq1apWk/Q+IHjdunIqLi/XGG2+ovLxcY8eOVUFBQfQbXCXp008/1erVqxWJRPTdd99p9erVWr16tWpr988wKCws1Mknn6wrr7xSH3zwgcrLy/WLX/xC5513XswsFgBoCrmGg5FraIxNs9gowrVeULedCccvz8N0X3FxsZ544gk9++yzWrt2ra655hrt2rUr+m3lY8aM0dSpU6PLX3vttSopKdF9992ndevWaebMmXrvvfc0adIkSVJKSoquu+463XHHHXrllVf04YcfasyYMerRo4dGjBghKb6MlKSPP/5Yq1ev1rZt21RVVRXNO69wOzlgKZ4hBj/MmzdPkyZN0rnnnqvU1FSNHDlSDz30UPTne/bs0fr16/Xtt99GX3vggQeiy9bU1KioqEiPPvpozOdeddVVevPNN6P/fdJJJ0na/815ffr0UWpqql599VX96le/0plnnqlDDz1UP/zhD3Xfffd5vMYIEmb7ATgYuQaET1ALmGGSjOdhmmTUqFHaunWrpk+frkgkosGDB6ukpCT6xTwVFRVKTf1+juKpp56q+fPna9q0abr55pt19NFH6+WXX9YJJ5wQXebGG2/Url27NGHCBG3fvl2nn366SkpKlJn5/TNAW8pISbrwwgv1+eefR/+7Pu8cx5uCeorj1Se7qLq6WtnZ2Zr2zvnK7Ni+VZ/R1tvJ3bpS7maH6fWMAgZ75vO6iLmjT4prn+XWM3v69Nzapvefl7eu1e+9IOU9DT2+UlVVVTHPL2mN+n6t12MzPXlY9OZrZrrSTrjPjUyTzMg1mzJNItdsQK4lri25tnvnHt0x7PU25wWZFm71+//M06crLc3d/V91lD8X7Hcc6V5fkQw8GzN+QS9ghmUmZlNFzL11tfrb1qfItQDjdnIASRH0EwYAZqOACbeRawAAk4SlgIlwa1URc/bs2erTp48yMzOVn58ffUZMU7Zv366JEyeqe/fuysjI0DHHHKPFixe3qsE2s+lkl8GeHbzeTyY+Pwzwgm25xpfVAQCaYlumNYeCSHxsGmf6ie0E2C/hZ2K+8MILKi4u1pw5c5Sfn68HH3xQRUVFWr9+vbp169Zg+draWp133nnq1q2bXnzxRR1xxBH6/PPPlZOT40b7Q4viEgC4g1wDzOH18547bXJcvaUcMA2ZBjSOAmZwhO15mIiVcBHz/vvv1/jx46PfgjRnzhwtWrRITz/9tKZMmdJg+aefflrbtm3TihUr1L79/md/9enTp22tBgDAJWHMtbB9IzJ3FwAIizBmGvbLqEjn2ZhNCEMB04RbyYFkSOh28traWpWXl6uwsPD7D0hNVWFhocrKyhp9zyuvvKKCggJNnDhRubm5OuGEE3TXXXdp3759Tf6empoaVVdXx/wDEpW+dnNc/2zH4BxovWTkWlAzzbYv9QmCMGQagNZjrOYeCkLBEYYCpil4/AOSIaEi5tdff619+/ZFv8a9Xm5uriKRSKPv2bBhg1588UXt27dPixcv1q233qr77rtPd9xxR5O/Z9asWcrOzo7+69WrVyLNRBvZXBRrzUCOgR8QXsnINTINbZForgWhoGnzeQjgJ8ZqoGAXKyzbg6I7wsTzbyevq6tTt27d9Pjjj2vIkCEaNWqUbrnlFs2ZM6fJ90ydOlVVVVXRf5s323sijuRwY8Bm+6APQHIkmmtkGlqDXAOQDIzVEFRhKWCGDec1SOiZmF26dFG7du1UWVkZ83plZaXy8vIafU/37t3Vvn17tWvXLvragAEDFIlEVFtbq/T0hp1LRkaGMjK8e6i77bjt7ntedGL1n1k7gKvKEl+CgGBLRq6Raf6ybVYfueY9cg1BxVgNEs/GBBBsCc3ETE9P15AhQ7RkyZLoa3V1dVqyZIkKCgoafc9pp52mTz/9VHV1ddHXPvnkE3Xv3r3RUIS/bBrseX0VxqarPLbsN66IwjTkGkxCrn2PXAMSR6YB+4WpbzblVnKeh4lkSfh28uLiYj3xxBN69tlntXbtWl1zzTXatWtX9BvwxowZo6lTp0aXv+aaa7Rt2zZde+21+uSTT7Ro0SLdddddmjhxontrYYEwdaReS+btcdyKBwQfuQa/JTvXAAQXmQYp3GPPMK87EAYJ3U4uSaNGjdLWrVs1ffp0RSIRDR48WCUlJdEHSFdUVCg19fvaaK9evfTaa69p8uTJOvHEE3XEEUfo2muv1U033eTeWiA0/Bp8pa/dzG14QECRa/7y8hEpNszm8yPXyDSzbPqiq/r03Op3MxAQZBrCjAImEHwJFzEladKkSZo0aVKjP1u2bFmD1woKCvTOO++05lcBUX7PHjF90Je9oUZV/YL/fCIGe/ACuQY/+JlrpmcagNYj09zR6XNHO4609/m5YXs2JgXM4PO7HgAzeP7t5LCHyTNWTOmwTGkHAMBuJuSJCW1ojsnnJQBgg7AU9sKyngfjeZgII4qYcdj0RVe/mwD4ysvbPQHYJ6yDBbeYVDw0qS0AAABAcyhiWiaMxSTTBlimtQcA0BCz+OIXxlwL4/kUgHAK+oXHoK8fgFgUMWE0UwdWprYLAGA2U/PD1HYBALeqoilhLmCacis5kGwUMSHJzBkrpg+oTGyfifsRALCfiblhOnINANouiMW+IK4TmsY5FOpRxAQAAL4I0y29Npx829BGNFQa6e93EwAgqShgmoOZ0kg2ipgwki0DKVvaaRJOOgDAXORa4sg1ADYISl8VlPUA0DoUMWEc2wZQtrUXQLht+qKr303wnGm3IJMTAGCnoD130PYCoO3td0vQjksgERQxk4DOFgAA2IKiKwDANIypAUgUMSGzZqzYOnAyqd1e7c8wPbsOANxiUj7YilwDAPdQDARgM4qYFuFkGwAAJAPFVwCAKSi8fs+kW8mT9aU+nJPgQBQxYQzbOyfb2w8AcBe5AAAwkU1FQZvaCsB7FDEBAEBgmPSIFNtRhAWA4LKhOGhDGwEkF0VMAAAQNwYU8aEACABA63G+AaAxFDFhhKAM9oKyHkFWGunvdxMAiOc824JcA4DgMrVQaGq7APiPImbIcdtdMLFfAQAAALTEtIKhae0xiUlf6gP4hSIm4DJmrQBAuJED7uPiHAAEHwVMe/DN5PALRUz4jo4JAABzkdMAEGwmFA9NaAMA81HEBAAAAACgEWG5hZciIgAbUMQEAABwCbMW0RqbvujqdxMAwLdCJgVUAPGiiAlfBXWwF9T14tuEAZiM5yZ6h1wDAHiBAmZ8wjIjGGhJKIqYpZH+fjehzTjJBgAAAAB4KZlFRQqYABIViiImAACA14I6WxEAEC7JKC5SwATQGhQxgYAK8m2VPDsMAGASBuMAgsbLfo0+E0BrUcQMMb+LXEGfsRL09WsLTlwAAAAAs3lxzs44wH7ZnyWnjsB4Go2hiAkAAIAW+T2Y8PviKwCEkVtFx4yKdAqYANqMIiYAAAAAAGhUW4uPFC8BuIUipsfosAEACD6/ZykCAOCl1o5rGQ+3XafPHb+bABgjze8GmI4vEAEAAAAAhF19QbKmd23cywKAmyhiAgAAAACAuBxcoKzpXUvREkBScDs5fBGW2+7Csp4AAAAAwokCJoBkoYgJAACSqtMmnu1kKy7OAQAAwC8UMQEAAAAAAAAYjSImAACwXvaGGr+bAAAAAMBDFDEBAAAAAABgBB5fg6ZQxAQAxG3btm0aPXq0srKylJOTo3Hjxmnnzp3Nvmf37t2aOHGiDj/8cHXs2FEjR45UZWVl9Of/+Mc/dOmll6pXr17q0KGDBgwYoN///vdNft7bb7+ttLQ0DR482K3VAgCEFLkGALDB7Nmz1adPH2VmZio/P1+rVq1qdvkFCxaof//+yszM1MCBA7V48eKYnzuOo+nTp6t79+7q0KGDCgsL9c9//jNmmXgy8n//9391xhlnKDMzU7169dI999zjzgo3gSImACBuo0eP1po1a1RaWqqFCxdq+fLlmjBhQrPvmTx5sl599VUtWLBAb775pr766iv9+Mc/jv68vLxc3bp10x/+8AetWbNGt9xyi6ZOnapHHnmkwWdt375dY8aM0bnnnuv6ugEAwodcA4D4ZX/G43v88MILL6i4uFgzZszQ+++/r0GDBqmoqEhbtmxpdPkVK1bo0ksv1bhx4/TBBx9oxIgRGjFihD766KPoMvfcc48eeughzZkzRytXrtShhx6qoqIi7d69O7pMSxlZXV2t888/X0ceeaTKy8v1u9/9TjNnztTjjz/u2bZI8+yTAQCBsnbtWpWUlOjdd9/V0KFDJUkPP/ywLrzwQt17773q0aNHg/dUVVXpqaee0vz583XOOedIkp555hkNGDBA77zzjoYNG6Yrr7wy5j39+vVTWVmZXnrpJU2aNCnmZ1dffbV+9rOfqV27dnr55Ze9WVEAQCiQawAAG9x///0aP368xo4dK0maM2eOFi1apKefflpTpkxpsPzvf/97XXDBBbrhhhskSbfffrtKS0v1yCOPaM6cOXIcRw8++KCmTZumiy++WJL03HPPKTc3Vy+//LIuueSSuDJy3rx5qq2t1dNPP6309HQdf/zxWr16te6///4WLwi2FjMxASCgqqurY/7V1LTtymlZWZlycnKiISZJhYWFSk1N1cqVKxt9T3l5ufbs2aPCwsLoa/3791fv3r1VVlbW5O+qqqpS586dY1575plntGHDBs2YMaNN6wEAsI/bmSaRawAA/8Sba7W1tSovL4/JndTUVBUWFjaZO2VlZTHLS1JRUVF0+Y0bNyoSicQsk52drfz8/Ogy8WRkWVmZzjzzTKWnp8f8nvXr1+v//u//EtkccWMmJgD4KH1zutplpre8YAL27a6TJPXq1Svm9RkzZmjmzJmt/txIJKJu3brFvJaWlqbOnTsrEok0+Z709HTl5OTEvJ6bm9vke1asWKEXXnhBixYtir72z3/+U1OmTNHf//53paURXQBgIpsyTSLXAADNMyHXvv76a+3bt0+5ubkxr+fm5mrdunWN/o5IJNLo8vU5Vf+/LS3TUkZGIhH17du3wWfU/+ywww5rtH1tQWICQEBt3rxZWVlZ0f/OyMhodLkpU6bo7rvvbvaz1q5d62rbmvLRRx/p4osv1owZM3T++edLkvbt26ef/exn+s1vfqNjjjkmKe0AAJgl3kyTyDUAwdHpc8fvJsAjieQavkcREwACKisrKyYYm3L99dfriiuuaHaZfv36KS8vr8HDo/fu3att27YpLy+v0ffl5eWptrZW27dvj5m1UllZ2eA9H3/8sc4991xNmDBB06ZNi76+Y8cOvffee/rggw+izxKrq6uT4zhKS0vT66+/Hn0uGQAgmOLNNIlcAwCYL95c69Kli9q1a6fKysqY1xvLnXp5eXnNLl//v5WVlerevXvMMoMHD44u01JGNvV7DvwdbqOICQAh17VrV3Xt2rXF5QoKCrR9+3aVl5dryJAhkqSlS5eqrq5O+fn5jb5nyJAhat++vZYsWaKRI0dKktavX6+KigoVFBREl1uzZo3OOeccXX755brzzjtjPiMrK0sffvhhzGuPPvqoli5dqhdffLHBLQwAgHAj14Kl6ihmJwEIr/T0dA0ZMkRLlizRiBEjJO2/8LVkyZIGXxZXr6CgQEuWLNF1110Xfa20tDSaU3379lVeXp6WLFkSLVpWV1dr5cqVuuaaa6Kf0VJGFhQU6JZbbtGePXvUvn376O859thjPbmVXKKICQCI04ABA3TBBRdo/PjxmjNnjvbs2aNJkybpkksuiX6D65dffqlzzz1Xzz33nE455RRlZ2dr3LhxKi4uVufOnZWVlaVf/epXKigo0LBhwyTtv9XunHPOUVFRkYqLi6PPWGnXrp26du2q1NRUnXDCCTFt6datmzIzMxu8DgBAvMg1AIANiouLdfnll2vo0KE65ZRT9OCDD2rXrl3RbysfM2aMjjjiCM2aNUuSdO211+qss87Sfffdp+HDh+v555/Xe++9p8cff1ySlJKSouuuu0533HGHjj76aPXt21e33nqrevToES2UxpOR9Y9GGTdunG666SZ99NFH+v3vf68HHnjAs21BERMAELd58+Zp0qRJOvfcc5WamqqRI0fqoYceiv58z549Wr9+vb799tvoaw888EB02ZqaGhUVFenRRx+N/vzFF1/U1q1b9Yc//EF/+MMfoq8feeSR2rRpU1LWCwAQTuQaAMB0o0aN0tatWzV9+nRFIhENHjxYJSUl0S/RqaioUGpqanT5U089VfPnz9e0adN088036+ijj9bLL78cc6Hsxhtv1K5duzRhwgRt375dp59+ukpKSpSZmRldpqWMzM7O1uuvv66JEydqyJAh6tKli6ZPn64JEyZ4ti1SHMcx/kmx1dXVys7O1rR3zldmx/YJv7800r/Vv3vTFy3fitKcjAp3vsmq0yb3d1P2hhrXPzNe6Ws3+/a7k612QK+WF/JIVT/3b7/Z0SfFlc+p6V3bpvf36bm11e89L6/xb3FryQUp72no8ZWqqqqK+7lcTanv1466+S61OyAo3LBv9259dtfNrrQT7mtrpkn255oXmSaRa8lCrjXOxlzbvXOP7hj2epvzgkwLt/r9f+bp05WW5u7+l8y4nXzHke70E0CiTPtin+zPknOu1drzqr11tfrb1qfItQBLbXkRAAAAAAAAJBMFdCAWRUwAAAAAAAAARqOICQAAksqt23eRfH7eSg4AAIBwo4gJX4RlEBSW9QQAAAAAAPASRUwAAAAAAAAARqOI2YK2fFOk1PZvqgQAAOZj5j0AAADgLYqYAAAAAAAAAIxGERMAAAAAAACA0ShihlhVvwy/m4CQ4jELAGAfv2+Z57wFAAAg3Chiwjd+D4a85vf6BXmw19Zn1QIA4CYuzgHeqDoquOezAIDEUcQEAABwgd8XrwAAAIAgo4hpiR19UvxuAgAAAAAAAOALipgAAABoVlBnmXKRGEBLdhxJPwEApghFEfO8vHV+NwFNCOqgKKjrxWAPgMmC/CxgBBvPegYA2IDn1MJvoShiAgAAJENQL2IBAAB/MBsY+B5FTAAAAAAAAABGo4gJ3wVt1krQ1gcAEG7kGgAAAEyQ5ncD4K+qfhnK3lDjdzOApOEZuQC8Vjugl9LXbva7GYHC806B8OHZe2ar6V3b7M8zKtKT1BIAYcJMTCCAGOwBMB1fFGYHZmECAA5U07u2xQJmIssBQCIoYsIIQRkkBWU9AKApDEgAAAin1pwDUMwE4CaKmAAAIDBMmYnORS0AQJC0tRBJIbNt+IZyYD+KmDCG7QM+29sPAMCByDUAgOReAZJZmQDaiiImAACABygCAoDdmP3mzQxKCpkAWosipkW8+hIEU269k+wd8NnabgAAGmNSrnl1nsKXSwHm4pvJzeBlsZFCJoDWoIgJBAyDPQAwh0nFQAAA4pWMIiOFTACJooiZBHTOibFtwGdbewEAaA65BgDhlszxK2NlAImgiAkgqThRAfzVp+dWv5vgOZMekyLZVRS0qa2mINcABIkffRr9aHxMeUYrj3uAnyhiwki2DKJsaScAmChMj6kgL+CV8/LW+d0EAGgzCpkA4kERE5LMm7UimT/gM719AAAkwsRcM/H8BACCyu9Cot+/H4D5KGICAcJgDwDMZWKRsJ7JbQMQLqbcqmrKrbvJYkoB0ZR2wF+cl6ApFDFhNFM7L1PbBQDYz9SLOuQHAMA0phUOTWuPScJWXAcORhHTMmF6flg90wZ8prUnGcJ43AGAV0zLEdPakwzkGgCYjUImgMZQxIxDGL7J1XSmDLBMaQcA+ImBRduZkiemtAMA4A+TM93ktgHwB0VMRJl66109vwdafv/+lpi+/9zCRQUAQeF3rvj9+1sSllwDAL/YUCS0oY0AkociJqzi14DL9IEeANjKy9t6bSiCkWsA8D2+1AeNoZBpHlP+VhE+rSpizp49W3369FFmZqby8/O1atWquN73/PPPKyUlRSNGjGjNrwUkJX/gxUAPCD5yDX4i18KNOwzgNjIN8bCtMGhbe71EkR1hlnAR84UXXlBxcbFmzJih999/X4MGDVJRUZG2bNnS7Ps2bdqk//qv/9IZZ5zR6sbajE7XXckagDHQA4KPXIMJkpE3tQN6WZNrNsyiBUxEpiEeto5NbW03APckXMS8//77NX78eI0dO1bHHXec5syZo0MOOURPP/10k+/Zt2+fRo8erd/85jfq169fmxoMbr2r5+VgzKaBnmTPfuPEAyYi12AKr3MN+7l5HkWuwTRkGoKOfhcIt4SKmLW1tSovL1dhYeH3H5CaqsLCQpWVlTX5vttuu03dunXTuHHj4vo9NTU1qq6ujvkHNMXNQZ9txctk8LJoDvgtGblGpvnLlos8ByLXALQGYzXEIwhFwCCsA4DWSaiI+fXXX2vfvn3Kzc2NeT03N1eRSKTR97z11lt66qmn9MQTT8T9e2bNmqXs7Ozov169OPlGy9oyUGOQB4RTMnKNTENrkWsAEmH7WI0vCvFekIp/QVqX1uC5mAgrT7+dfMeOHbrsssv0xBNPqEuXLnG/b+rUqaqqqor+27x5s4etxMFsnLVyoPqBW3MDuHiWsYXt+wuwSWtyjUxrGTO+m9dSZh38c3INQDwYqzWO4hBgBtvPZ+CNtEQW7tKli9q1a6fKysqY1ysrK5WXl9dg+c8++0ybNm3SRRddFH2trq5u/y9OS9P69et11FFHNXhfRkaGMjI4gYU76PwANCUZuRbUTKvpXauMinS/mxGXqn4Zyt5Q43czXEOuAWgMYzU0J4gzF206FwmiqqMylP1ZcM6vYIeEZmKmp6dryJAhWrJkSfS1uro6LVmyRAUFBQ2W79+/vz788EOtXr06+u8//uM/dPbZZ2v16tXcUgcA8FVYc61Pz61+NwEA4LKwZhpaFsQCZr0gr1tLmDWMMEpoJqYkFRcX6/LLL9fQoUN1yimn6MEHH9SuXbs0duxYSdKYMWN0xBFHaNasWcrMzNQJJ5wQ8/6cnBxJavA6ErOjT4o6bXI8+/ygzVoJKq9vueMWT4SBjbl2Xt46lUb6J+33AclCrgFtY2OmSTwPE23DjEwgPBIuYo4aNUpbt27V9OnTFYlENHjwYJWUlEQfIF1RUaHUVE8ftWktOlcAMA+5Fg5cnAMQBmRa2wRxZltYZioy1gbCIeEipiRNmjRJkyZNavRny5Yta/a9c+fObc2vBGC5sJxAwU7kmv+8vsMAcBu5BlORaQgrCplA8HEZLk5hfH4Y3w5qNvYPACBIyDUAcFcYL7aEbZ39nj3MoyCQbBQxLcZznRA2YbyYYJpt27Zp9OjRysrKUk5OjsaNG6edO3c2+57du3dr4sSJOvzww9WxY0eNHDky5ptTv/nmG11wwQXq0aOHMjIy1KtXL02aNEnV1dXRZV566SWdd9556tq1q7KyslRQUKDXXnvNs/VEMFEkCzfOm9AYcs1/FEG8EbZi3oHCvO4INy8yTdr/KJLhw4frkEMOUbdu3XTDDTdo7969McssW7ZMJ598sjIyMvSDH/ygwcz+5cuX66KLLlKPHj2UkpKil19+uVXrSBETzWLAF14M9tCY0aNHa82aNSotLdXChQu1fPlyTZgwodn3TJ48Wa+++qoWLFigN998U1999ZV+/OMfR3+empqqiy++WK+88oo++eQTzZ07V3/729909dVXR5dZvny5zjvvPC1evFjl5eU6++yzddFFF+mDDz7wbF3RMgYJcEtYzze4OOc/cg0IJs5REEZeZNq+ffs0fPhw1dbWasWKFXr22Wc1d+5cTZ8+PbrMxo0bNXz4cJ199tlavXq1rrvuOl111VUxF+d27dqlQYMGafbs2W1ax1Y9E9NGfJMrgiSsgz34a+3atSopKdG7776roUOHSpIefvhhXXjhhbr33nvVo0ePBu+pqqrSU089pfnz5+ucc86RJD3zzDMaMGCA3nnnHQ0bNkyHHXaYrrnmmuh7jjzySP3yl7/U7373u+hrDz74YMzn3nXXXfrLX/6iV199VSeddJIHa4ug4gt+ANQj13Agv2/LdRMFvP3C8ozMHUemqNPnwXyueO2AXkpfu9nvZljBq0x7/fXX9fHHH+tvf/ubcnNzNXjwYN1+++266aabNHPmTKWnp2vOnDnq27ev7rvvPknSgAED9NZbb+mBBx5QUVGRJOmHP/yhfvjDH7Z5PZmJCSA0zstb53cTkqq6ujrmX01N2wo3ZWVlysnJiYaiJBUWFio1NVUrV65s9D3l5eXas2ePCgsLo6/1799fvXv3VllZWaPv+eqrr/TSSy/prLPOarItdXV12rFjhzp37tzKtYGJmAEOoCluZ5pErgFhQEEXprJlrFZWVqaBAwcqNzc3ukxRUZGqq6u1Zs2a6DIHfkb9Mk3lYluEZiamKWy8GsSsFbMwCzNYOlU4apfu7pXTfbX7P69Xr14xr8+YMUMzZ85s9edGIhF169Yt5rW0tDR17txZkUikyfekp6crJycn5vXc3NwG77n00kv1l7/8Rd99950uuugiPfnkk0225d5779XOnTv105/+tHUrA8AY5Fpw2JRpErlmAp6H6T6KdoB7Om22J9e8yrRIJBJTwKz/ef3Pmlumurpa3333nTp06NDq9ToYMzEtx6wVeMHt44qTKX9s3rxZVVVV0X9Tp05tdLkpU6YoJSWl2X/r1nk/i/WBBx7Q+++/r7/85S/67LPPVFxc3Ohy8+fP129+8xv96U9/ahDUQDwomoUPuWa/eDNNIteQuKDcSk7f1LgwbBc/j2EuRrSObWM1UzATE3FhNqYZGHgjEVlZWcrKympxueuvv15XXHFFs8v069dPeXl52rJlS8zre/fu1bZt25SXl9fo+/Ly8lRbW6vt27fHXOGrrKxs8J68vDzl5eWpf//+6ty5s8444wzdeuut6t69e3SZ559/XldddZUWLFjQ4JYFJKZPz63a9EVXv5uBkCPXEK94M00i1wA0ZOMdkQg2W8ZqeXl5WrVqVcz76r+9/MBlDv5G88rKSmVlZbk6C1OiiAkAode1a1d17dpyMaugoEDbt29XeXm5hgwZIklaunSp6urqlJ+f3+h7hgwZovbt22vJkiUaOXKkJGn9+vWqqKhQQUFBk7+rrq5OkmKeDfPHP/5RV155pZ5//nkNHz487vWDXXb0SVGnTd4/nJ6Lc0BwkWt2YPaWu8Iw27CtKGTCRn5nWkFBge68805t2bIlerdAaWmpsrKydNxxx0WXWbx4ccxnl5aWNpuLrcXt5AGQrFvKmS3hL7Y//DZgwABdcMEFGj9+vFatWqW3335bkyZN0iWXXBL9trsvv/xS/fv3j16ty87O1rhx41RcXKw33nhD5eXlGjt2rAoKCjRs2DBJ0uLFi/XMM8/oo48+0qZNm7Ro0SJdffXVOu2009SnTx9J+2+1GzNmjO677z7l5+crEokoEomoqqrKl22B7zFoQmslK9eC/OidsH1hndvINSB8gnzeEpTHIqB1vMq0888/X8cdd5wuu+wy/eMf/9Brr72madOmaeLEicrI2H8ud/XVV2vDhg268cYbtW7dOj366KP605/+pMmTJ0fbt3PnTq1evVqrV6+WJG3cuFGrV69WRUVFQutJETMBfXpu9bsJgOeCPNhD282bN0/9+/fXueeeqwsvvFCnn366Hn/88ejP9+zZo/Xr1+vbb7+NvvbAAw/oRz/6kUaOHKkzzzxTeXl5eumll6I/79Chg5544gmdfvrpGjBggCZPnqz/+I//0MKFC6PLPP7449q7d68mTpyo7t27R/9de+21yVlxBBIXhwCQawhC4SfIhTkvsL3sUjugV8sLQZI3mdauXTstXLhQ7dq1U0FBgX7+859rzJgxuu2226LL9O3bV4sWLVJpaakGDRqk++67T08++aSKioqiy7z33ns66aSTdNJJJ0mSiouLddJJJ2n69OkJrSO3k/vA5mns3H7nDwbaXEQwRefOnTV//vwmf96nTx85TuytwJmZmZo9e7Zmz57d6HvOPvtsrVixotnfu2zZsoTbCnsl65Zy+MfmXGPwGyzkGhBONo/JTVR1VIayP6NO4DcvMk2SjjzyyAa3ix/s3//93/XBBx80+/ODf3drMBMTgKcY7AEwmc3FNNiNi3MIM56H6R7OtVsviNsuCDOLgeZQxAyIZN4CzIAvuZK5vbmVHADgNXINANwRxCIcADSHIiYAAGgT2wdRXJwDgHBi1hpsP4cBwoYiJlqFAV9ysJ0BhFWyZ9DR3yYH2xkAt5K7g+Kbe4K2Lf0qzvO3jWSgiOkTLzpKBnwAgETwTD4kU7LPG7iVHAAQr6AVMoOGbyhHPYqYgKGCMNjjZACATbg4h5aQa0Bw2HwrOX2RN9iugPkoYqJNGPB5g+0KoCXn5a3zuwmeYyZdcJBrACRuN3UDhTZvBWX72lykB5pDETNBpt96x4APAOCHoJz0U2xznx/blPMhAEBrBeWcBggiiphoMwZ87mKw15DpFw8AeMeP/olcg9fINcBfts5So7gG0zHbGl6jiOmjIIUQAz53BGk7Bun4BhA+QeqP/RSk7UiuAW1DcQM2CUKfb2uxHmhOqIqYYXh+mOTfrLogDVT84Nf2M30WJgDATuQaALgnCEU127DNzcI3lEMKWRETQHiF5SIG4CevTva5OGcfth2AA5k0C5PZaUgEhUzALBQx4SoGLa3DdgPgF57N1zz6Z7swCxNAEFFI85fN29+Por1JFy0QPBQxfRa0WSsSA75E+bm9GOwBQMvItcSwvQAAAOAFipitwKyVljGAiU9Qt5PNVysBmMnviy5B7a/dFtTtZGKu8ZgU2MKkWVk23kpuYv8TRjbvBxuPe6ApFDEDjAGf2fzePn4fH/HiogFgF5tP8lvid79tOr+3D7kGIGiCnKk2Yn8A/qOICU/5PaAxFdsFABJnQpGK/rtxbBcAQBhQyIyPVzOw+YZyUMQ0gJcdIQM+87A9AMBu9OOxTNgeXp7vMGAFWo9byVuPvsdcNu4b245/oCkUMZEUJgxwTGDKdmCwB+BANt3easLFOcmc/txvbAcAQBgx5gH8QRETSRP2gU7Y1x9AeITlxD7s/bop629KYRtALGZhtl5YchQAEkURMwRMOrk3ZcCTbCatt0nHA4C2Ceu3E5vUj5nUvydTWNcbAIB6thWbk13M57mY8AJFzFZy+9Y72zrAtgjbwCdM6+v2cWzTLa4AwitM/XxVv4xQrS+5BiDZwjQuDAL2F5BcFDFDwqRZK1J4BkGmraNpxwEABIVp/b0XTFxHcg0wE7eStw4FMTvZtN9s+nsAGkMRE74ycUDkhrAUaQGgKV6f0JtYvApy32/iepl4DAAAAMA7oStimvz8sDAO+CQzB0ZtYer6mLr/k8Hkv3vAFDbe5mpqv2ZqDrRGkAuzLbFpZg1gEpNmYdqEPsdu7L/G0R/AbaErYsJMQRgkBWEd2oLgBoDv2Z4Jprff1AI2ALNw6yySyZbxUBD+Lvhyn/CiiNkGzFpxn+mDpsbY0GbT9zuAYErGybzp/ZsNGXEw29obRtxhAASLLcUvtIx9CXiLIqZhGPDtZ8Ogz4Y22szGiwQA0BQbMsOGNkrJOY/x4nyMXEMYmHTraBBmmwFeSebfh0n9AuyX5ncDgObUD6ayN9T43JLv2TDAO5Ctgz0AiNeOPinqtMnxuxlxMS3XbMs0AAgazqODp6Z3rTIq0v1uBhBIzMQMKRtmYx7IhNkhJrQhUbbtZwD+8mKmGIOzxtVnil+5YmOmSeQaYLLqvub0KbbMwiQjg4t9C3iDmZgG4spN0w4ecHk9k8XGAR4AhJFNszEPdmDWeJVrQcizZBUwGXgCANxg+rh+x5Ep6vS5nedO0v4v90lfu9nvZiDJKGK2UZ+eW7Xpi65+N6NVbB7w1XOzqBmEAd6BGOwBCJsg5pqUeLYFLc8AIIg4h0aYVB2VoezPzHiUDuxGETPkgjDgOxADt2Dgyw+A+J2Xt06lkf5+N6NZps9EMB3ZZv9t5OQakDy23EqOcOAcCHAXz8Q0FFfm0BbMwgQQVrYXu+Avcg1AMtDXhIvJ+5uiP2xDERMM+AKG/QmgLbyaMZbME3j6wWBhfwKIlw0FGZMLWvAO+33/LeVuqx3Qy/XPhNlCWcQ8L2+d300wDgOEYGA/NsTfOwDYi1wDAMBbNhT/gXqhLGK6LQizVoBEeXV88twwAG6g+GW/ZO9DW3KNi3NA42woxDC+Czf2P9B2FDERxYDPbuw/AKZL9sk7/SIAADAJhUygbShiGo4BH+IRlNkqAMwQpBnR5JqdyDUAiWAWJtA2yfob4rmYaCuKmGiAAZ9d2F8AbMIgDi0h1wAEDdmHA3E8AK1HEdMlQZq1IjGAgD+C9ncEwAxkmj382FdeDibJNcB7NszCBA5mYiGTvyXYgCKmBUzs4GCGoA32ALSObV/04Uc/QiHTfOwjAEHEuTMQy4tbyhEeFDHRJAYTZmP/APBSEGeQ0W+ai30DoDWYOQabmVjgtvVviudihkdoi5jMWokPgwoz+bVfTAza5tj2dw7Ae+QaDmRbrgGwC30MWsIxAiQmtEVMLwRx1orEgM80Qd0fQf37AdA4P0/ag9qP2iqo+4NcA8KN4hTQNG4pR2tRxLQIAz74uR84EQMQJOSaGci1xHCHAfA9W297BQ5mWh7Z+rfFLeXhQBETcWPA5y+2P0ywbds2jR49WllZWcrJydG4ceO0c+fOZt+ze/duTZw4UYcffrg6duyokSNHqrKystFlv/nmG/Xs2VMpKSnavn17zM+WLVumk08+WRkZGfrBD36guXPnurRWaIrXM8n8PmmnX/XPjj4pbH8YgVyDF/zON9iHYwZu8CrTKioqNHz4cB1yyCHq1q2bbrjhBu3duzdmmZYybdasWfq3f/s3derUSd26ddOIESO0fv36hNeRIqbLGPDBC35vd7+PO5hj9OjRWrNmjUpLS7Vw4UItX75cEyZMaPY9kydP1quvvqoFCxbozTff1FdffaUf//jHjS47btw4nXjiiQ1e37hxo4YPH66zzz5bq1ev1nXXXaerrrpKr732mivrhfDyu38NIxO2ObmGeuSanWydKQY0x6RsSsbfGLeUu8+LTNu3b5+GDx+u2tparVixQs8++6zmzp2r6dOnR5eJJ9PefPNNTZw4Ue+8845KS0u1Z88enX/++dq1a1dC65iW0NKA9g8+Om1y/G5GaJgw2PMazw2zw9q1a1VSUqJ3331XQ4cOlSQ9/PDDuvDCC3XvvfeqR48eDd5TVVWlp556SvPnz9c555wjSXrmmWc0YMAAvfPOOxo2bFh02ccee0zbt2/X9OnT9de//jXmc+bMmaO+ffvqvvvukyQNGDBAb731lh544AEVFRV5tcpIgpretcqoSPe1DeRa8piQackYJJJrdiDX4AWTClEAwsOrTHv99df18ccf629/+5tyc3M1ePBg3X777brppps0c+ZMpaenx5VpJSUlMb977ty56tatm8rLy3XmmWfGvZ7MxLSQCcFowiAkDEzYziYcbzBDWVmZcnJyoqEoSYWFhUpNTdXKlSsbfU95ebn27NmjwsLC6Gv9+/dX7969VVZWFn3t448/1m233abnnntOqakNo6msrCzmMySpqKgo5jPCzqtn5SWjGGNCP2NCfxt0bGOYhlyzk8mzME3IM9iNY6htao89wu8m+MarTCsrK9PAgQOVm5sbXaaoqEjV1dVas2ZNdJlEM62qqkqS1Llz54TWkyImWo3nWXmHbQs3VFdXx/yrqalp0+dFIhF169Yt5rW0tDR17txZkUikyfekp6crJycn5vXc3Nzoe2pqanTppZfqd7/7nXr37t3k5xwYnPWfUV1dre+++66VawTEou/1jinblcGhvdzONIlcs5HJBUzALaZkFbeUe8uWsVpTeVX/s+aWaSrT6urqdN111+m0007TCSecEP9KKuS3k5+Xt06lkf6uf26fnlu16Yuurn/ugUy4/a4et+G5y5SBnmT3LXe2fINr1qYapaW5u8/37t0fgL16xX5D34wZMzRz5swGy0+ZMkV33313s5+5du1a19p3sKlTp2rAgAH6+c9/7tnvgPnIteAyKdeSIcy3kpuQaRK5Bn+YUngC4J6sjf7nmt+Z5oWJEyfqo48+0ltvvZXwe0NdxLQdA77gMWmgx4mY/TZv3qysrKzof2dkNH6l8/rrr9cVV1zR7Gf169dPeXl52rJlS8zre/fu1bZt25SXl9fo+/Ly8lRbW6vt27fHXOGrrKyMvmfp0qX68MMP9eKLL0qSHGd/X9KlSxfdcsst+s1vfqO8vLwG35JXWVmprKwsdejQodm2o+2ScXHONORa25mUaZL9uWbLxTmvxJtpErkWVMzCRJiYMtbfcWSKOn3O+ZAXbBmr5eXladWqVTHvq8+vA5eJN9MmTZoU/dKhnj17NrtejaGICdfUD1YY9CXOtIEegiErKysmGJvStWtXde3acoGqoKBA27dvV3l5uYYMGSJp/0Ctrq5O+fn5jb5nyJAhat++vZYsWaKRI0dKktavX6+KigoVFBRIkv7nf/4n5jaDd999V1deeaX+/ve/66ijjor+7sWLF8d8dmlpafQzEAymnLDXI9daj1yD2+LNNIlcQ/LZfpEE8FPVURnK/qztjwixjS1jtYKCAt15553asmVL9Hb10tJSZWVl6bjjjosu01KmOY6jX/3qV/rzn/+sZcuWqW/fvi2uU2N4JqZHknUrkYmBycAlMSZur2QdV2G+5c5GAwYM0AUXXKDx48dr1apVevvttzVp0iRdcskl0W+7+/LLL9W/f//o1brs7GyNGzdOxcXFeuONN1ReXq6xY8eqoKAg+g2uRx11lE444YTov/pAGzBgQDQor776am3YsEE33nij1q1bp0cffVR/+tOfNHnyZB+2BLxErtnN1OeKkmtoDLlmD5NnYZqYWwgGU44tk//+8D2vMu3888/Xcccdp8suu0z/+Mc/9Nprr2natGmaOHFidPZoPJk2ceJE/eEPf9D8+fPVqVMnRSIRRSKRhJ8DTRETnjB1EGMSthFsNG/ePPXv31/nnnuuLrzwQp1++ul6/PHHoz/fs2eP1q9fr2+//Tb62gMPPKAf/ehHGjlypM4880zl5eXppZdeSuj39u3bV4sWLVJpaakGDRqk++67T08++aSKiopcW7cg8PJ207AXZ+izW2bq9jFlEAgzkWsATEaGIRFeZFq7du20cOFCtWvXTgUFBfr5z3+uMWPG6LbbbosuE0+mPfbYY6qqqtK///u/q3v37tF/L7zwQkLryO3kAWDa7XcH4plijTN1oCcRlGhe586dNX/+/CZ/3qdPn+izv+plZmZq9uzZmj17dly/49///d8bfEb96x988EFiDYaVTM81iVvMD2RypgEtIdfMZ/IsMM6bAXeE9ZZyt3mVaUceeWSD28UP1lKmNZaDrRH6mZhBmbVicoAye+V7pm+LZB5HXv59hP3LD4AgMDnXJAp3kvmZJgUn1wCYx/ScQnCYcKyZfDEB4RL6IiaSx4bBjlfCvO4AgoMiTayw9u22rLcJgz63cHEOYUXhBNgvSJkGtAVFTI8xG7MhWwY/brBpXW05fgCEhy39Un1fb0t/31phWMfWosAPhIst+QS4yeuLClVHZXj6+QgGnokZMCY/R+xgBw6EgvZsMdsGeck+EWOwByBeNuWaFLxnZtqWZ/UoMAD2M3UWJv0L/GLbORHgBWZiBpCNwRqE2R22zsSx8XgB0DSvbzvlIkR8bM2Eeja3nVwDAASV3xln6sUFhAczMZOgT8+t2vRFV7+bYQXbZmfaOsDzEwUQAImyfeaBDdkWlDzzY3BHrgHuM7VQ4ncBCQg6vqUcLaGIqf2zVkoj/f1uhqtsH/BJDQdUJgz8gjLIqxfEEzG+/ADwnh8X54KQa5JZ2UamATARBUz7uXFxh0lATQvKORHQGhQxk4QBX9v5MfAL2gDvQJyIAbBN0HJNajxn3M63IGeZ35IxC5OLcwBM5lU/ePDnUtQ0x44jU9Tpc/8nGCGcKGIGXBAHfPXiGZS1NBAM68DOrwImt9wBweHXo1KCnGv1wppNbcGFOSAYmIVpBz/O6Slqxgry+RC3lKM5FDFDIMgdXEsYCDbESRgQfEF8TMqBwpxraIgLcwC8xLnzfqb1eQe2J6wFTT/Ph5iNCb/w7eRJ5GfHT/hC8vc4MO3EB4DdyDVIHAdAkJg6CzPs+vTcavx5vA1tRGKqjsrwuwkwFEXM/18YnjfEiX64hWH/h+HvGDCJ3wOGMPRraBr7HwgOUwuYYe1n6ouCfud8omxtd1v4eYya+neLYKOImWR+d6hhDeKw83u/+33cAwguv/s3+MPv/Z6sXOPiHOAfv/sZPwSpABikdWlJGI9VhFeripizZ89Wnz59lJmZqfz8fK1atarJZZ944gmdccYZOuyww3TYYYepsLCw2eXhPTq5cGF/Ay0j11rPhAEC/Vy4sL+B5tmWaczm8l+QC35BXreg45ZyNCbhIuYLL7yg4uJizZgxQ++//74GDRqkoqIibdmypdHlly1bpksvvVRvvPGGysrK1KtXL51//vn68ssv29x4W5nQiTIACAcT9rMJxzvQnKDmWthmcJnQ38F7Juxncg0mC2qmJZsJfU2yhKVPC3ox069jlosQSLaEi5j333+/xo8fr7Fjx+q4447TnDlzdMghh+jpp59udPl58+bpl7/8pQYPHqz+/fvrySefVF1dnZYsWdLmxqNtwhTOYcT+BeJDrrWdKYMC+r1gM2H/mnKsA02xLdNMLICY0NckQ9CLek0J4zoDQZJQEbO2tlbl5eUqLCz8/gNSU1VYWKiysrK4PuPbb7/Vnj171Llz5yaXqampUXV1dcy/ZEjmrBVTOs+whHTYmLJfk3mch23WGdyRjFzzK9OSjVyDl8K4X8k1JCroYzW4I6zFywMFdRsEcTYmt5TjYAkVMb/++mvt27dPubm5Ma/n5uYqEonE9Rk33XSTevToEROuB5s1a5ays7Oj/3r16pVIM5GgMA4Mgoz9CcQvGblGpiUf/WBw1PSuNWZ/BnHAi2CxbazGLMzkox+LFcRiZtCPYSCp307+29/+Vs8//7z+/Oc/KzMzs8nlpk6dqqqqqui/zZs3J7GVyWNSh0lnFwwm7UeTjm/AK/Hkmp+ZluyZXCb93ZvUH6J12IdAciVzrEYBM7mCWKxzE9um7ZiNiWRJS2ThLl26qF27dqqsrIx5vbKyUnl5ec2+995779Vvf/tb/e1vf9OJJ57Y7LIZGRnKyAjHgdqn51Zt+qKr382Q9H1wZ1Sk+9wSJMq0ky5OBGCLZORamDLNNOSavcg1IHGM1dAY+q/41G8nU8bmbVHTu5ZzHwRWQjMx09PTNWTIkJgHPdc/+LmgoKDJ991zzz26/fbbVVJSoqFDh7a+tUnA84fMGzigeewv/m7RemHItWQzcbBEP2kPk24f9xO5htawJdOYhZk8Jmay6dhmrWfi3zaCJ+HbyYuLi/XEE0/o2Wef1dq1a3XNNddo165dGjt2rCRpzJgxmjp1anT5u+++W7feequefvpp9enTR5FIRJFIRDt37nRvLSxnYkcZ1CAPGhP3k4nHM9Accs19JvYDFMfMZ+r+MfF4BppCpiXO1L6nLbh9vG2CsP2CdlxzSznqJXQ7uSSNGjVKW7du1fTp0xWJRDR48GCVlJREHyBdUVGh1NTva6OPPfaYamtr9ZOf/CTmc2bMmKGZM2e2rfXwFLfhmStooQT4Kei5dl7eOpVG+vvdDGNwi5V5TM402wexCB/TM820mVom9z+tRb/lHpMe/dYafpzz7DgyRZ0+d5L6OxEuCRcxJWnSpEmaNGlSoz9btmxZzH9v2rSpNb/CV34M+EzuIBnwmcXkky0/Tpq45Q5uCHqu+cH0XJO4SGcCkzMNsJWpmWZaATOIKGC6z+TzmbCpOipD2Z/V+N0M+Cyp306O5pkcOtyG5z/T94HJxy8Af5jeL5jcpwad6Zkm+Xf8cnEOSA7T+6BEBOH2Z5PZvG2DdJwDEkVMJMiGQUfQsM0BtBVFkabRxyaXLdvb5gErYCLTZmHa0A/Fi/4qOSgUx8+0v3cEC0VMw9jSMdoyCLGZTdvYluMWQPLZ0j/Y1OfaiO0LhBcFDe/YkrFBYuM2D1L+8gU/oIjZBD9nrdjUMTIocZ9t29TP45XZZYAdyLXwsnF7kmtAsNnWJzXFpmwNGhu3fbKPey5ewCsUMQ1lW8do4yDFNDZuQ9uOUyDM/C6O2NZf2Ngnm8TW7WfbcQqYzrRCho390sG4rdkM7AP/MBsz3ChiwlW2Dlr8xDYDAHPV99H00/GxeVsxIAWCzda+6UD0U2axbX8wGxNBQBGzGcxaaT0Gfc0Lwvbx+/j0++8TQOL87jfaKgh9txeCsF1MODbJNQQNBQx3mdBPoSH2C5BcFDENF4RO0faBjZuCsi2CcFwCYWRCkSQo/UdQ+vPWCkLhsl5QjknAJKYVMG3vq+inzGbTLf5BmY3JLeXhleZ3A9CyPj23atMXXf1uRpsd3GFmVKT71JLksv2k6WC2BDQAcwUl16RwZVvQ8gxAONjed3HubQ9bzm9qetcG+nwFwcZMzBaYMGtFCmZ4BWkWx4EOXK+grZspx6Epf5cAWs+U/sRtQcqAIK1LU0w5Dsk1BIlJszBt77tM6aMQP/ZZQ8zGhJuYiWkRW67stIbNM1lsPzmKF4EMBMN5eetUGunvdzMkBTvX6jWWESZmXFiy7EDkGgBT0T/ZzYbzG2ZjwlYUMePAgC/5mhpM+dnRhnGAV8+kEylmqwDBEpZcO5BfGRfmHDsYuQZ4g1mYbWdS/4TWC+P5TXN2HJmiTp87rn9u1VEZyv6sxvXPhbkoYloozB1iPCcjrRkE2nqSkwycSAHwWphz7UBkUXKQa4A3dvRKUTu/G/H/s7U/pX8KFtPPb5iNCRtRxLSU6R2in2w9aTERJ1JAMJl0h0E9cg3JQK4BwWfrWID+KZhMP79JZiHTq9mYCBe+2CdOJt7qQ9DBSyYeXyb+HQJwj4n9DoKhT8+tRh5f5BoAifwLOvavt/iCn3ChiGk5OkR4geMKCD5Tiyf0P3AbxxQQHjbOwqSPCgeT93My/25Mem4u7EQRMwEM+BAGph5Ppv79AXCfqf0Q7GPysUSuAe6igAnTsb+9w2zM8KCIGRCm3iYFe3AMAeFjchGFPgltxfEDhAcFTNjC1P3ObEzYgiJmgkwe8Enmdoowm+nHjel/dwC8Y3r/BPPYUAAn14BwM72PgrdM3f82Xgw4ELMxw4EiZgCZ2inCTBwvQLjZUEyhn0K8OFaA8LGt8EI/BTAbE61HEbMVbBnwEZBoji3HiA1/bwC8Z0ufBf/YcnyQa4B7KGDCVqYeC7b9TR2sui+zMYOOImbAmdo5wl8cFwAOZFNRhWImDsYxAYSTbcUW+ikcLOzHBLMx0RoUMVuJAR9sZNuxYNPfGYDksqkvgzdsyzSJXAPcYlMB08a+Cslj4rFh098XwociZoiY2EEiedj/cMO2bds0evRoZWVlKScnR+PGjdPOnTubfc/u3bs1ceJEHX744erYsaNGjhypysrKRpf95ptv1LNnT6WkpGj79u0xP5s3b54GDRqkQw45RN27d9eVV16pb775xq1VCz0biysMDMPLxv1u499YGJBr8JKNfRWSz8TjJFmFTGZjusurTKuoqNDw4cN1yCGHqFu3brrhhhu0d+/emGWWLVumk08+WRkZGfrBD36guXPnxvz8scce04knnqisrCxlZWWpoKBAf/3rXxNeR4qYbWDjySgDvvCxdZ/b+PcVBqNHj9aaNWtUWlqqhQsXavny5ZowYUKz75k8ebJeffVVLViwQG+++aa++uor/fjHP2502XHjxunEE09s8Prbb7+tMWPGaNy4cVqzZo0WLFigVatWafz48a6sF/az9e/O1n4OiWNfw23kmn1smSVGX4VEcLzADV5k2r59+zR8+HDV1tZqxYoVevbZZzV37lxNnz49uszGjRs1fPhwnX322Vq9erWuu+46XXXVVXrttdeiy/Ts2VO//e1vVV5ervfee0/nnHOOLr74Yq1ZsyahdaSIGVIMAoLP5n1sayEl6NauXauSkhI9+eSTys/P1+mnn66HH35Yzz//vL766qtG31NVVaWnnnpK999/v8455xwNGTJEzzzzjFasWKF33nknZtnHHntM27dv13/91381+JyysjL16dNHv/71r9W3b1+dfvrp+sUvfqFVq1Z5sq6wk839Hppn+74l18xErtmHAiaCzLTjhtmYdvEq015//XV9/PHH+sMf/qDBgwfrhz/8oW6//XbNnj1btbX7j5E5c+aob9++uu+++zRgwABNmjRJP/nJT/TAAw9Ef9dFF12kCy+8UEcffbSOOeYY3XnnnerYsWOD7GwJRcw2sv2k1PZBARpin8IrZWVlysnJ0dChQ6OvFRYWKjU1VStXrmz0PeXl5dqzZ48KCwujr/Xv31+9e/dWWVlZ9LWPP/5Yt912m5577jmlpjaMpoKCAm3evFmLFy+W4ziqrKzUiy++qAsvvNDFNYRkf65J9INBwr6El8g1u1DARBhw/KC1vMq0srIyDRw4ULm5udFlioqKVF1dHZ1FWVZWFvMZ9cscmIsH2rdvn55//nnt2rVLBQUFCa0nRUwXMOCDCYKyD4Pw92SK6urqmH81NTVt+rxIJKJu3brFvJaWlqbOnTsrEok0+Z709HTl5OTEvJ6bmxt9T01NjS699FL97ne/U+/evRv9nNNOO03z5s3TqFGjlJ6erry8PGVnZ2v27NltWic0Lih/h0HpF8MoSPsuKH9PfnM70yRyDe4LSr8F1GM2pndsGatFIpGYAmb9z+t/1twy1dXV+u6776Kvffjhh+rYsaMyMjJ09dVX689//rOOO+64hNYzLaGlEXj1wbvpi64+twTxCtLJUhgHeunrv1Raarqrn5lat/9ko1evXjGvz5gxQzNnzmyw/JQpU3T33Xc3+5lr1651rX0Hmzp1qgYMGKCf//znTS7z8ccf69prr9X06dNVVFSkf/3rX7rhhht09dVX66mnnvKsbQgGss0OQcqzemHLNRMyTSLXgsiGWZhB7MPgjz49txp1zlLTu1YZFe727bYwIdf8zjQ3HXvssVq9erWqqqr04osv6vLLL9ebb76ZUCGTIqZLzstbp9JIf7+b4ZoDQ9ikDhT7cZKEeGzevFlZWVnR/87IyGh0ueuvv15XXHFFs5/Vr18/5eXlacuWLTGv7927V9u2bVNeXl6j78vLy1Ntba22b98ec4WvsrIy+p6lS5fqww8/1IsvvihJchxHktSlSxfdcsst+s1vfqNZs2bptNNO0w033CBJOvHEE3XooYfqjDPO0B133KHu3bs3234kLmi5JpFtpgpqpoWtgOm1eDNNIteChgImwsi0QmYy7DgyRZ0+d/xuRtLYMlbLy8tr8Lzm+m8vP3CZg7/RvLKyUllZWerQoUP0tfT0dP3gBz+QJA0ZMkTvvvuufv/73+u///u/m12/A1HEdFEQB3wSM1hMEuQTJAZ77svKyooJxqZ07dpVXbu2/PddUFCg7du3q7y8XEOGDJG0f6BWV1en/Pz8Rt8zZMgQtW/fXkuWLNHIkSMlSevXr1dFRUX0+Sf/8z//E3Obwbvvvqsrr7xSf//733XUUUdJkr799lulpcVGVrt27SR9PziE+4KaaxIFTb8FOc/gjXgzTSLXgoQCJsLMpEJmmGdjesWWsVpBQYHuvPNObdmyJXq7emlpqbKysqIzKAsKCrR48eKYzy4tLW3xeZd1dXUJ30ZPEdNlDPjgtjCcGFHAtMOAAQN0wQUXaPz48ZozZ4727NmjSZMm6ZJLLlGPHj0kSV9++aXOPfdcPffcczrllFOUnZ2tcePGqbi4WJ07d1ZWVpZ+9atfqaCgQMOGDZOk6ICu3tdffx39ffVXBC+66CKNHz9ejz32WPS2u+uuu06nnHJK9HfDG0HOtXrkW3KEIc/qkWt2INfQVmHq1+APkwqZyRC22Zhu8irTzj//fB133HG67LLLdM899ygSiWjatGmaOHFidPbo1VdfrUceeUQ33nijrrzySi1dulR/+tOftGjRomj7pk6dqh/+8Ifq3bu3duzYofnz52vZsmV67bXXElpPipgeCNuAT2LQ56awnQwx0LPLvHnzNGnSJJ177rlKTU3VyJEj9dBDD0V/vmfPHq1fv17ffvtt9LUHHnggumxNTY2Kior06KOPJvR7r7jiCu3YsUOPPPKIrr/+euXk5Oicc85p8fkwcEcYcq0eBU33hC3P6pFrdiHXzGX6LMyw9nFIPlMKmczGNJ8XmdauXTstXLhQ11xzjQoKCnTooYfq8ssv12233RZdpm/fvlq0aJEmT56s3//+9+rZs6eefPJJFRUVRZfZsmWLxowZo3/961/Kzs7WiSeeqNdee03nnXdeQuuY4lhwv0J1dbWys7M17Z3zldmxvd/NiUtYBnuNMaGDtU2YT4JsGuxdkPKehh5fqaqqqrhvaWtKfb9W2HWc6w+L3ltXq79tfcqVdsJ9NmaaFO5cq0e+NS/MWVbPpkyTpN079+iOYa+3OS/ItHCr3/9H3XyX2mVmuvKZFDCBhkw5D0lGIbO1szH31e7W6v93C7kWYMzE9EiYZq0cjFmaLePEZz/bBntAmIU51+o11neHOePIslhkGuAOCpgAuK0cTaGI6SEGfPuFfdDHiU7jGOwB9iHXGgpDxpFjLSPTAHdQwASaxm3lAEVMzzHga1xTJwAmdMqtxUlN/BjsAfYi11rWUh6YmHVkWOuRaUA40E/CBKYUMpOB2ZhoDEXMJGDAF794Tg786LQ5aXEPgz3AfuRa27QlU5rKQHLKH2Qa4B6TZ2HSx8IkJhQymY0Jv1DETBIGfO7hJMJeDPaA4Kj/eybbkosMNAeZBriHAiaQmLAUMpmNiYOl+t2AMOFkF2HG8Q8EE3/bCCOOe8A9FDABAPFiJmaSMXMFYcNADwg+7jZAmJBrQDhQwEzMObmfePbZSyuP8eyzbcZsTIQRRUyfMOBDGDDQA8KDXEPQkWmA+0ydhUkBs3leFizj/X0UNvcLSyETqEcR00cM+BBkDPaA8OFuAwQVmQa4jwKmPZJdtIzHgW0Ke0HThEKm15iNiXoUMX3GgA9Bw0APABfpEBRkGuANCpjmM7Fw2ZSD2xrGoqbfhUxuK0eyUMQ0BAM+BAGDPQD1uEgH25FpQLhQwLSrcNmc+vUIYzETCDqKmAZhwAdbMdAD0BQu0sE2ZBrgLRNnYYa5gBmUwmVjwnbLObMxEQYUMQ3EgA82YbAHoCVcpIMNyDPAexQwzRDkwmVTwjI7MwyFTIQbRUxDMeCD6RjsAUgU2QYTkWdAclDA9F8Yi5cHC0Mx0+9CpteYjRluFDENx4APpmGwB6CtyDaYgDwDwi1MBUyKlw0FvZjpZyGT28rhJYqYlmDAB78x2APgNrINfiDPgOQzbRZmGAqYFC7jE/Ripl+4rRxeoYhpGQZ8SCYGegCS4cC+hnyDV8g0wB8UMJOL4mXrBLGYyW3lCCKKmJZiwAcvMdAD4Bcu1sFN5BngLwqYyUPx0h3n5H5CIdMl3FYOL1DEDAAGfHADAz0AJuFiHVqLPAPQmKAWMCleui9oszKDXshEuFDEDBAGfGgNBnsATEe+oSVkGWAek2ZhBrGASfHSe0ErZgYVszHDhSJmQB18Ms+gD/UY6AGwGfmGeuQZYC4KmN6igJlcQbjFnNmYCAqKmCHBLJZwY6AHIKgoaoYHWQbYgQKmdyhe+icIszKDXMhkNmZ4UMQMIQZ8wcdAD0BYkXHBQI4BaKsgFTApXprD9lmZQf7G8h1HpuiQf/rdCniNIiYaHSgw6LMHAz0AaBoZZz5yDAgOU2ZhBqWASfHSTLbPyvSrkMlt5XADRUw0ikGfmRjoAUDbNdWXknPeIsOAYKvtVatUZfrdjEAUMCle2sH2WZl+8Py28l4pnn02zEARE3Fj0JccDPIAwB8t9b/kXcvIMAB+ooCJZLO1kBnk28oRbBQx0WbxDFgY+H2PAR4A2Cne/jtomUduAbCB7QVMipf2svX2cm4rh40oYiIpEh0A2TQAZHAHADgQuQAAyWVzAZPiZXDYOCuTQiZsQxETRmIACAAAAKAlFDBhEhsLmX6hkInWSPW7AQAAAAAAJMrWAuY5uZ9QwAww2/atrX9HCCeKmAAAAAAAq9haeLGtwIXWsa1Q7dffU03vWl9+L+xFERMAAAAAYA0bC5i2FbXgDpv2OYVM2IAiJgAAAADACrYWMBFeNu1/G/++EC4UMQEAAAAAxrOtwMLsS9TjOGgeszERL4qYAAAAAACj2VjABA5kyzHBbeUwGUVMAAAAAICxbCpgMvsSzbHl2KCQCVNRxAQAAAAAGMm2AibQElsK3Tb97SE8KGICAAAAAIxjSxHFlqIUzGLDMePH3yCzMdEcipgAAAAAAKPYVMAEWovjp3EUMtEUipgAAAAAAGPYUMBk9iXcYvpxxPMxYRKKmAAAAAAAI9hSwATcZPoxRSETpqCICQAAAABAHEwvNsFeph9bNlxgQPBRxAQAAAAA+M7kIgm3jyMZTD/G+KIf+I0iJgAAAADAV6YXMIFkMf14o5AJP1HEBAAAAAD4hgImEIvjriEKmZAoYgIAAAAAfGJqAZPbx+E3k48/vugHfqGICQAAAABIOpMLmIAJTD4WKWTCD60qYs6ePVt9+vRRZmam8vPztWrVqmaXX7Bggfr376/MzEwNHDhQixcvblVjAcAvP8l63+8mGGHbtm0aPXq0srKylJOTo3Hjxmnnzp3Nvmf37t2aOHGiDj/8cHXs2FEjR45UZWVlzDIpKSkN/j3//PMxy9TU1OiWW27RkUceqYyMDPXp00dPP/20K+tFrgFAOAUx12zJNAqYQHxMPiZN/TsOK68yraKiQsOHD9chhxyibt266YYbbtDevXtjllm2bJlOPvlkZWRk6Ac/+IHmzp3b5O/87W9/q5SUFF133XUJr2PCRcwXXnhBxcXFmjFjht5//30NGjRIRUVF2rJlS6PLr1ixQpdeeqnGjRunDz74QCNGjNCIESP00UcfJdxYAIC/Ro8erTVr1qi0tFQLFy7U8uXLNWHChGbfM3nyZL366qtasGCB3nzzTX311Vf68Y9/3GC5Z555Rv/617+i/0aMGBHz85/+9KdasmSJnnrqKa1fv15//OMfdeyxx7Z5ncg1AAivoOWaLZlmYuGD28dhMpOPTb7oxxxeZNq+ffs0fPhw1dbWasWKFXr22Wc1d+5cTZ8+PbrMxo0bNXz4cJ199tlavXq1rrvuOl111VV67bXXGvy+d999V//93/+tE088sVXrmOI4jpPIG/Lz8/Vv//ZveuSRRyRJdXV16tWrl371q19pypQpDZYfNWqUdu3apYULF0ZfGzZsmAYPHqw5c+bE9Turq6uVnZ2tae+cr8yO7RNpLgC44idZ72vnjjoNPb5SVVVVysrKatPn1fdrhV3HKS013aVW7re3rlZ/2/qUK+080Nq1a3Xcccfp3Xff1dChQyVJJSUluvDCC/XFF1+oR48eDd5TVVWlrl27av78+frJT34iSVq3bp0GDBigsrIyDRs2TNL+GSt//vOfGwzw6pWUlOiSSy7Rhg0b1LlzZ9fWSUp+rpFpAEyxe+ce3THs9TbnhY2ZJgUz1/wcq/V6bKZSO2S2uLypBUzABksrj/G7CU3a9EXXpP/OjIrYzNm3e7c+u+vmUOaaV5n217/+VT/60Y/01VdfKTc3V5I0Z84c3XTTTdq6davS09N10003adGiRTEXwC655BJt375dJSUl0dd27typk08+WY8++qjuuOMODR48WA8++GBC65mWyMK1tbUqLy/X1KlTo6+lpqaqsLBQZWVljb6nrKxMxcXFMa8VFRXp5ZdfbvL31NTUqKamJvrfVVVV+1/ftbeptwCAZ0Z0+od27pB27qyTJCV47adZe51aqc61j/v+M7U/fA+UkZGhjIyMVn9uWVmZcnJyoqEoSYWFhUpNTdXKlSv1n//5nw3eU15erj179qiwsDD6Wv/+/dW7d++YwZ4kTZw4UVdddZX69eunq6++WmPHjlVKSook6ZVXXtHQoUN1zz336P/9v/+nQw89VP/xH/+h22+/XR06dGj1OiUj18g0AKaq74fcyjWbMk0KXq75PVar+253XO3cu6um5YWS6Mxun2p383dbAsY49dA1kqTlW37gc0sa6nnYF6r4qktSf+d3XXcrffP3Rca6mv39UBhzzatMKysr08CBA6MFTGl/TlxzzTVas2aNTjrpJJWVlcV8Rv0yB98uPnHiRA0fPlyFhYW64447WrWeCRUxv/76a+3bty+m8ZKUm5urdevWNfqeSCTS6PKRSKTJ3zNr1iz95je/afD6785dmkhzAcAVB3ev33zzjbKzs9v0menp6crLy9OyyP9r0+c0pWPHjurVq1fMazNmzNDMmTNb/ZmRSETdunWLeS0tLU2dO3dusk+PRCJKT09XTk5OzOsH58Btt92mc845R4cccohef/11/fKXv9TOnTv161//WpK0YcMGvfXWW8rMzNSf//xnff311/rlL3+pb775Rs8880yr1ykZuUamATBdW3PNxkyTgpdrfo/Vviz+bVzt3BzXUsnztt8NAOC6MOaaV5nWVE7U/6y5Zaqrq/Xdd9+pQ4cOev755/X+++/r3XffbfU6SgkWMZNl6tSpMVcEt2/friOPPFIVFRVtLhyYrLq6Wr169dLmzZtdv13GJGFZTyk86xqW9ayqqlLv3r1due0rMzNTGzduVG2tN89zcRwnOtujXlNX9qZMmaK777672c9bu3ata21rzK233hr9/yeddJJ27dql3/3ud9HBXl1dnVJSUjRv3rxoDtx///36yU9+okcffbRNszG9FtZMk8LTN7CewROWdXUr10zKNIlc81pYcy0s/YIUnnVlPYMniLlmQqa11ebNm3XttdeqtLRUmZktP3akOQkVMbt06aJ27do1+KaiyspK5eXlNfqevLy8hJaXmp5Gm52dHfg/OknKyspiPQMmLOsalvVMTU34O9EalZmZ2eZO3A3XX3+9rrjiimaX6devn/Ly8hp8McDevXu1bdu2ZjOgtrZW27dvj7nC11IO5Ofn6/bbb1dNTY0yMjLUvXt3HXHEETGDowEDBshxHH3xxRc6+uijW17RRiQj18KeaVJ4+gbWM3jCsq5u5JopmSaFN9cYqyVHWPoFKTzrynoGT5Byze9My8vL06pVq2LeV58bBy7TWJZkZWWpQ4cOKi8v15YtW3TyySdHf75v3z4tX75cjzzyiGpqatSuXbtm17FeQns2PT1dQ4YM0ZIlS6Kv1dXVacmSJSooKGj0PQUFBTHLS1JpaWmTywMAkqtr167q379/s//S09NVUFCg7du3q7y8PPrepUuXqq6uTvn5+Y1+9pAhQ9S+ffuYHFi/fr0qKiqazYHVq1frsMMOiw6STjvtNH311VfaufP7h1Z98sknSk1NVc+ePVu97uQaAARPWHONTAOA4PE70woKCvThhx/GFEhLS0uVlZWl4447LrpMc1ly7rnn6sMPP9Tq1auj/4YOHarRo0dr9erVcRcwJUlOgp5//nknIyPDmTt3rvPxxx87EyZMcHJycpxIJOI4juNcdtllzpQpU6LLv/32205aWppz7733OmvXrnVmzJjhtG/f3vnwww/j/p1VVVWOJKeqqirR5lqF9QyesKwr6xkeF1xwgXPSSSc5K1eudN566y3n6KOPdi699NLoz7/44gvn2GOPdVauXBl97eqrr3Z69+7tLF261HnvvfecgoICp6CgIPrzV155xXniiSecDz/80PnnP//pPProo84hhxziTJ8+PbrMjh07nJ49ezo/+clPnDVr1jhvvvmmc/TRRztXXXVVm9cp2bkWpuMoLOvKegZPWNY1LOvZnKDlGmM174RlPR0nPOvKegZPmNa1MV5k2t69e50TTjjBOf/8853Vq1c7JSUlTteuXZ2pU6dGl9mwYYNzyCGHODfccIOzdu1aZ/bs2U67du2ckpKSJtt61llnOddee23C65hwEdNxHOfhhx92evfu7aSnpzunnHKK884778Q05PLLL49Z/k9/+pNzzDHHOOnp6c7xxx/vLFq0KKHft3v3bmfGjBnO7t27W9Nca7CewROWdWU9w+Obb75xLr30Uqdjx45OVlaWM3bsWGfHjh3Rn2/cuNGR5LzxxhvR17777jvnl7/8pXPYYYc5hxxyiPOf//mfzr/+9a/oz//61786gwcPdjp27OgceuihzqBBg5w5c+Y4+/bti/nda9eudQoLC50OHTo4PXv2dIqLi51vv/3WlfVKZq6F6TgKy7qynsETlnUNy3o2J4i5xljNG2FZT8cJz7qynsETpnVtjBeZ5jiOs2nTJueHP/yh06FDB6dLly7O9ddf7+zZsydmmTfeeMMZPHiwk56e7vTr18955plnmm1ra4uYKY7j0nfPAwAAAAAAAIAH3Pl2CgAAAAAAAADwCEVMAAAAAAAAAEajiAkAAAAAAADAaBQxAQAAAAAAABjNmCLm7Nmz1adPH2VmZio/P1+rVq1qdvkFCxaof//+yszM1MCBA7V48eIktbRtElnPJ554QmeccYYOO+wwHXbYYSosLGxxu5gi0f1Z7/nnn1dKSopGjBjhbQNdlOi6bt++XRMnTlT37t2VkZGhY445xorjN9H1fPDBB3XssceqQ4cO6tWrlyZPnqzdu3cnqbWts3z5cl100UXq0aOHUlJS9PLLL7f4nmXLlunkk09WRkaGfvCDH2ju3LmetxPmC0umSeRaS2zLtbBkmkSuNYVcQ2PCkmthyTSJXGuKrblGpjWOTAughL/P3APPP/+8k56e7jz99NPOmjVrnPHjxzs5OTlOZWVlo8u//fbbTrt27Zx77rnH+fjjj51p06Y57du3dz788MMktzwxia7nz372M2f27NnOBx984Kxdu9a54oornOzsbOeLL75IcssTk+h61tu4caNzxBFHOGeccYZz8cUXJ6exbZToutbU1DhDhw51LrzwQuett95yNm7c6CxbtsxZvXp1kluemETXc968eU5GRoYzb948Z+PGjc5rr73mdO/e3Zk8eXKSW56YxYsXO7fccovz0ksvOZKcP//5z80uv2HDBueQQw5xiouLnY8//th5+OGHnXbt2jklJSXJaTCMFJZMcxxyLWi5FpZMcxxyrSnkGhoTllwLS6Y5DrkWtFwj0xpHpgWTEUXMU045xZk4cWL0v/ft2+f06NHDmTVrVqPL//SnP3WGDx8e81p+fr7zi1/8wtN2tlWi63mwvXv3Op06dXKeffZZr5roitas5969e51TTz3VefLJJ53LL7/cilB0nMTX9bHHHnP69evn1NbWJquJrkh0PSdOnOicc845Ma8VFxc7p512mqftdFM8wXjjjTc6xx9/fMxro0aNcoqKijxsGUwXlkxzHHItaLkWlkxzHHKtKeQaGhOWXAtLpjkOuRa0XCPTGkemBZPvt5PX1taqvLxchYWF0ddSU1NVWFiosrKyRt9TVlYWs7wkFRUVNbm8CVqzngf79ttvtWfPHnXu3NmrZrZZa9fztttuU7du3TRu3LhkNNMVrVnXV155RQUFBZo4caJyc3N1wgkn6K677tK+ffuS1eyEtWY9Tz31VJWXl0dvY9iwYYMWL16sCy+8MCltThYb+yJ4KyyZJpFrQcu1sGSaRK41x9b+CN4JS66FJdMkci1ouUamNc3GvggtS/O7AV9//bX27dun3NzcmNdzc3O1bt26Rt8TiUQaXT4SiXjWzrZqzXoe7KabblKPHj0a/CGapDXr+dZbb+mpp57S6tWrk9BC97RmXTds2KClS5dq9OjRWrx4sT799FP98pe/1J49ezRjxoxkNDthrVnPn/3sZ/r66691+umny3Ec7d27V1dffbVuvvnmZDQ5aZrqi6qrq/Xdd9+pQ4cOPrUMfglLpknkWtByLSyZJpFrzSHXcLCw5FpYMk0i14KWa2Ra08i0YPJ9Jibi89vf/lbPP/+8/vznPyszM9Pv5rhmx44duuyyy/TEE0+oS5cufjfHc3V1derWrZsef/xxDRkyRKNGjdItt9yiOXPm+N00Vy1btkx33XWXHn30Ub3//vt66aWXtGjRIt1+++1+Nw2AIcg1+4Ul0yRyDUDzgpppErkWxFwj02Az32didunSRe3atVNlZWXM65WVlcrLy2v0PXl5eQktb4LWrGe9e++9V7/97W/1t7/9TSeeeKKXzWyzRNfzs88+06ZNm3TRRRdFX6urq5MkpaWlaf369TrqqKO8bXQrtWafdu/eXe3bt1e7du2irw0YMECRSES1tbVKT0/3tM2t0Zr1vPXWW3XZZZfpqquukiQNHDhQu3bt0oQJE3TLLbcoNTUY10+a6ouysrK4shdSYck0iVwLWq6FJdMkcq055BoOFpZcC0umSeRa0HKNTGsamRZMvh+d6enpGjJkiJYsWRJ9ra6uTkuWLFFBQUGj7ykoKIhZXpJKS0ubXN4ErVlPSbrnnnt0++23q6SkREOHDk1GU9sk0fXs37+/PvzwQ61evTr67z/+4z909tlna/Xq1erVq1cym5+Q1uzT0047TZ9++mk0+CXpk08+Uffu3Y0MRal16/ntt982CL/6kwHHcbxrbJLZ2BfBW2HJNIlcC1quhSXTJHKtObb2R/BOWHItLJkmkWtByzUyrWk29kWIg5/fKlTv+eefdzIyMpy5c+c6H3/8sTNhwgQnJyfHiUQijuM4zmWXXeZMmTIluvzbb7/tpKWlOffee6+zdu1aZ8aMGU779u2dDz/80K9ViEui6/nb3/7WSU9Pd1588UXnX//6V/Tfjh07/FqFuCS6ngez5dvuHCfxda2oqHA6derkTJo0yVm/fr2zcOFCp1u3bs4dd9zh1yrEJdH1nDFjhtOpUyfnj3/8o7Nhwwbn9ddfd4466ijnpz/9qV+rEJcdO3Y4H3zwgfPBBx84kpz777/f+eCDD5zPP//ccRzHmTJlinPZZZdFl9+wYYNzyCGHODfccIOzdu1aZ/bs2U67du2ckpISv1YBBghLpjkOuRa0XAtLpjkOuUauIRFhybWwZJrjkGtByzUyjUwLEyOKmI7jOA8//LDTu3dvJz093TnllFOcd955J/qzs846y7n88stjlv/Tn/7kHHPMMU56erpz/PHHO4sWLUpyi1snkfU88sgjHUkN/s2YMSP5DU9QovvzQLaEYr1E13XFihVOfn6+k5GR4fTr18+58847nb179ya51YlLZD337NnjzJw50znqqKOczMxMp1evXs4vf/lL5//+7/+S3/AEvPHGG43+zdWv2+WXX+6cddZZDd4zePBgJz093enXr5/zzDPPJL3dME9YMs1x/r927uAEgBiGgSDXf9G6DkJ+EfZMEwvCWNeSWV3b0rRE1xJd496Wrm1pWqJryayuaZqmbfElg+6FAQAAAIBxnv/EBAAAAAA4MWICAAAAANWMmAAAAABANSMmAAAAAFDNiAkAAAAAVDNiAgAAAADVjJgAAAAAQDUjJgAAAABQzYgJAAAAAFQzYgIAAAAA1YyYAAAAAEA1IyYAAAAAUO0HD1aNBOINTkUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } ], - "outputs": [], - "metadata": {} + "source": [ + "plotter.plot(trainer_feat)" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### The problem solution with learnable extra-features" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "We can still do better!\n", "\n", @@ -267,12 +366,55 @@ "\n", "where $\\alpha$ and $\\beta$ are the abovementioned parameters.\n", "Their implementation is quite trivial: by using the class `torch.nn.Parameter` we cam define all the learnable parameters we need, and they are managed by `autograd` module!" - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPU available: False, used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "\n", + " | Name | Type | Params\n", + "----------------------------------------\n", + "0 | _loss | MSELoss | 0 \n", + "1 | _neural_net | Network | 161 \n", + "----------------------------------------\n", + "161 Trainable params\n", + "0 Non-trainable params\n", + "161 Total params\n", + "0.001 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 999: : 1it [00:00, 91.07it/s, v_num=47, mean_loss=2.11e-6, gamma1_loss=1.03e-5, gamma2_loss=4.17e-8, gamma3_loss=4.28e-8, gamma4_loss=5.65e-8, D_loss=6.21e-8] " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "`Trainer.fit` stopped: `max_epochs=1000` reached.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 999: : 1it [00:00, 76.19it/s, v_num=47, mean_loss=2.11e-6, gamma1_loss=1.03e-5, gamma2_loss=4.17e-8, gamma3_loss=4.28e-8, gamma4_loss=5.65e-8, D_loss=6.21e-8]\n" + ] + } + ], "source": [ "class SinSinAB(torch.nn.Module):\n", " \"\"\" \"\"\"\n", @@ -290,83 +432,156 @@ " return LabelTensor(t, ['b*sin(a*x)sin(a*y)'])\n", "\n", "\n", - "model_learn = FeedForward(\n", + "# make model + solver + trainer\n", + "model_lean= FeedForward(\n", " layers=[10, 10],\n", - " output_variables=problem.output_variables,\n", - " input_variables=problem.input_variables,\n", - " extra_features=[SinSinAB()]\n", + " func=Softplus,\n", + " output_dimensions=len(problem.output_variables),\n", + " input_dimensions=len(problem.input_variables)+1\n", ")\n", + "pinn_lean = PINN(problem, model_lean, extra_features=[SinSin()], optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8})\n", + "trainer_learn = Trainer(pinn_lean, max_epochs=1000)\n", "\n", - "pinn_learn = generate_samples_and_train(model_learn, problem)" - ], - "outputs": [], - "metadata": {} + "# train\n", + "trainer_learn.train()" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Umh, the final loss is not appreciabily better than previous model (with static extra features), despite the usage of learnable parameters. This is mainly due to the over-parametrization of the network: there are many parameter to optimize during the training, and the model in unable to understand automatically that only the parameters of the extra feature (and not the weights/bias of the FFN) should be tuned in order to fit our problem. A longer training can be helpful, but in this case the faster way to reach machine precision for solving the Poisson problem is removing all the hidden layers in the `FeedForward`, keeping only the $\\alpha$ and $\\beta$ parameters of the extra feature." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, - "source": [ - "model_learn = FeedForward(\n", - " layers=[],\n", - " output_variables=problem.output_variables,\n", - " input_variables=problem.input_variables,\n", - " extra_features=[SinSinAB()]\n", - ")\n", - "\n", - "pinn_learn = generate_samples_and_train(model_learn, problem)" + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPU available: False, used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "\n", + " | Name | Type | Params\n", + "----------------------------------------\n", + "0 | _loss | MSELoss | 0 \n", + "1 | _neural_net | Network | 4 \n", + "----------------------------------------\n", + "4 Trainable params\n", + "0 Non-trainable params\n", + "4 Total params\n", + "0.000 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 999: : 1it [00:00, 149.45it/s, v_num=48, mean_loss=1.34e-16, gamma1_loss=6.66e-16, gamma2_loss=2.6e-18, gamma3_loss=4.84e-19, gamma4_loss=2.59e-18, D_loss=4.84e-19] " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "`Trainer.fit` stopped: `max_epochs=1000` reached.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 999: : 1it [00:00, 117.81it/s, v_num=48, mean_loss=1.34e-16, gamma1_loss=6.66e-16, gamma2_loss=2.6e-18, gamma3_loss=4.84e-19, gamma4_loss=2.59e-18, D_loss=4.84e-19]\n" + ] + } ], - "outputs": [], - "metadata": {} + "source": [ + "# make model + solver + trainer\n", + "model_lean= FeedForward(\n", + " layers=[],\n", + " func=Softplus,\n", + " output_dimensions=len(problem.output_variables),\n", + " input_dimensions=len(problem.input_variables)+1\n", + ")\n", + "pinn_learn = PINN(problem, model_lean, extra_features=[SinSin()], optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8})\n", + "trainer_learn = Trainer(pinn_learn, max_epochs=1000, callbacks=[MetricTracker()])\n", + "\n", + "# train\n", + "trainer_learn.train()" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "In such a way, the model is able to reach a very high accuracy!\n", "Of course, this is a toy problem for understanding the usage of extra features: similar precision could be obtained if the extra features are very similar to the true solution. The analyzed Poisson problem shows a forcing term very close to the solution, resulting in a perfect problem to address with such an approach.\n", "\n", "We conclude here by showing the graphical comparison of the unknown field and the loss trend for all the test cases presented here: the standard PINN, PINN with extra features, and PINN with learnable extra features." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQoAAAIICAYAAAAmMtPdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyLElEQVR4nOzde3wU5d3//3cCJkEhIBIIECBii8FaQaBiVNoKoVitrb/CfaNwFw+I2IJV8W4rVUFbW3uw2qooFk/1vqVYqdqK3NgU6qGCIoncX4sc6iEGlEQsXxJASYDs7w++u2aTPc3uHK6ZeT0fj30om9nZmdnd+cz1mc91XXmRSCQiAAAAAAAAAKGW7/UGAAAAAAAAAPAeiUIAAAAAAAAAJAoBAAAAAAAAkCgEAAAAAAAAIBKFAAAAAAAAAESiEAAAAAAAAIBIFAIAAAAAAAAQiUIAAAAAAAAAIlEIAAAAAAAAQCQKAQAAAAAAAIhEIQAAAAAAAALqxRdf1Pnnn68BAwYoLy9PTz/9tKPvt3fvXl1zzTUaMmSIunXrpjPOOEOvvfaao+9pJxKFAAAAAAAACKT9+/drxIgRWrRokSvvd/nll6u6ulr/9V//pTfeeENf+cpXVFVVpffff9+V989VXiQSiXi9EQAAAAAAAICT8vLy9NRTT+mCCy6IPdfS0qIbbrhBv//977Vnzx6dfPLJ+vnPf64vf/nLltf/ySefqEePHvrTn/6k8847L/b86NGj9dWvflW33nqrDXvhLCoKAQAAAAAAEEpz587VunXrtGzZMv2f//N/9G//9m8655xz9M9//tPyug4dOqTDhw+rqKgo7vlu3brp73//u12b7CgqCgEAAAAAABB4HSsK6+vrNXToUNXX12vAgAGx5aqqqnTaaafppz/9qeX3OOOMM1RQUKClS5eqX79++v3vf6+LL75Yn/nMZ7R161a7dsUxVBQCAAAAAAAgdN544w0dPnxYw4YNU/fu3WOPF154QW+//bYkacuWLcrLy0v5uP7662Pr/K//+i9FIhENHDhQhYWFuuuuu3TRRRcpP98fKbiuXm8AAAAAAAAA4LZ9+/apS5cuqqmpUZcuXeL+1r17d0nS0KFDtXnz5pTrOe6442L/f8IJJ+iFF17Q/v371dzcrP79+2vq1KkaOnSo/TvgABKFAAAAAAAACJ1TTz1Vhw8f1ocffqhx48YlXKagoEAVFRWW133MMcfomGOO0f/9v/9Xzz33nH7xi1/kurmuIFEIAAAAAACAQNq3b5/eeuut2L/fffddbdy4Ub1799awYcM0ffp0zZgxQ7/61a906qmnateuXVq9erVOOeWUuJmLM/Xcc88pEonoxBNP1FtvvaXvfe97qqio0KWXXmrnbjmGyUwAAAAAAAAQSM8//7zOPvvsTs9ffPHFeuSRR3Tw4EHdeuutevTRR/X++++rT58+Ov3003XLLbfo85//vOX3+8Mf/qD58+drx44d6t27tyZPnqyf/OQn6tmzpx274zjLIym++OKLOv/88zVgwADl5eXp6aefTvua559/XqNGjVJhYaE+85nP6JFHHsliUwEATlm0aJHKy8tVVFSksWPHav369SmXf+KJJ1RRUaGioiJ9/vOf18qVK+P+HolEtGDBAvXv31/dunVTVVWV/vnPf8Yts23bNn3jG99Qnz59VFxcrLPOOkt/+9vfbN+3VIhpABBMxDXiGgBEffnLX1YkEun0iJ7vjjrqKN1yyy1699131draqg8++EBPPvlkVklCSfr3f/93vf3222ppadHOnTt1zz332JYk/NnPfqa8vDxdc801tqwvEcuJwv3792vEiBFatGhRRsu/++67Ou+883T22Wdr48aNuuaaa3T55Zfrueees7yxAAD7Pf7445o3b54WLlyo2tpajRgxQpMmTdKHH36YcPm1a9fqoosu0syZM/X666/rggsu0AUXXKB//OMfsWV+8Ytf6K677tLixYv16quv6phjjtGkSZN04MCB2DJf+9rXdOjQIa1Zs0Y1NTUaMWKEvva1r6mhocHxfY4ipgFA8BDXiGsAEESvvfaa7r//fp1yyimOvk9OXY/z8vL01FNP6YILLki6zA9+8AM9++yzcYH2wgsv1J49e7Rq1aqEr2lpaVFLS0vs321tbdq9e7eOO+445eXlZbu5AJCTSCSivXv3asCAAbZMbX/gwAG1trbasGWdRSKRTufLwsJCFRYWdlp27Nix+sIXvqB77rlH0pFz7qBBg3TVVVfp+uuv77T81KlTtX//fq1YsSL23Omnn66RI0dq8eLFikQiGjBggK677jr953/+pySpqalJ/fr10yOPPKILL7xQH330kUpKSvTiiy/GBg3eu3eviouLVV1draqqKtuORaaIaQDCxs64ZkpMk4hrUcQ1AGET1LgmHRlncdSoUbr33nt16623auTIkfr1r3/tyPYpkgNJkaeeeirlMuPGjYtcffXVcc899NBDkeLi4qSvWbhwYUQSDx48eBj52L59ey6nzkgkEol88sknkZKSfMe2sXv37p2eW7hwYaftaGlpiXTp0qXTuXzGjBmRr3/96wm3fdCgQZE777wz7rkFCxZETjnllEgkEom8/fbbEUmR119/PW6ZL37xi5Hvfve7kUgkEmlra4uceOKJkcsvvzyyb9++yMGDByO//OUvI3379o3s3r07q2OaK4mYxoMHj3A+co1rpsS0SIS41p5EXOPBg0c4H0GKa1EzZsyIXHPNNZFIJBL50pe+1OncbSfHZz1uaGhQv3794p7r16+fmpub9cknn6hbt26dXjN//nzNmzcv9u+mpiYNHjxY31s9XoXHMFEzAG+07D+kX05Yox49euS8rtbWVu3a1abnX+2r7t3tvfu+b19EXx77obZv367i4uLY84nuUH300Uc6fPhwwvP0li1bEq4/2Xk92rUq+t9Uy+Tl5emvf/2rLrjgAvXo0UP5+fnq27evVq1apWOPPdbiHruHmAYgSOyKa6bENIm4ZpWdcW3s769Q16MLHN9mJHZ2v21ebwJ87oIe/+v1JuRs3742fXnsrkDFNUlatmyZamtr9dprr9m6LckY2UJJVnJZeExXFXU/yoMtAoBP2dmtpnv3PHXvkXs35nhtkqTi4uK44GOSSCSiOXPmqG/fvnrppZfUrVs3PfDAAzr//PP12muvqX///l5vom2IaQBMZ1dcC2tMk4hrktT16AJ1PSZ5QxfO4poCuVoVGSNJmlJc6/GW5C5IcW379u26+uqrVV1draKiIpu3JTG797iT0tJSNTY2xj3X2Nio4uLihHeoAADu6dOnj7p06ZLwPF1aWprwNcnO69Hlo/9NtcyaNWu0YsUKLVu2TGeeeWZsvI1u3brpd7/7nS375gRiGgCYjbhmDXEtOKobKuL+CyAYampq9OGHH2rUqFHq2rWrunbtqhdeeEF33XWXunbtqsOHD9v+no4nCisrK7V69eq456qrq1VZWen0WwMA0igoKNDo0aPjztNtbW1avXp10vN0uvP68ccfr9LS0rhlmpub9eqrr8aW+fjjjyWp0yDD+fn5amtry33HHEJMAwCzEdesIa4FS/tkYaYPAGabMGGC3njjDW3cuDH2GDNmjKZPn66NGzeqS5cutr+n5a7H+/bt01tvvRX797vvvquNGzeqd+/eGjx4sObPn6/3339fjz76qCTpyiuv1D333KPvf//7uuyyy7RmzRr94Q9/0LPPPmvfXgAAsjZv3jxdfPHFGjNmjE477TT9+te/1v79+3XppZdKkmbMmKGBAwfqtttukyRdffXV+tKXvqRf/epXOu+887Rs2TJt2LBBv/3tbyUdKfW/5pprdOutt+qzn/2sjj/+eN10000aMGBAbObFyspKHXvssbr44ou1YMECdevWTUuWLNG7776r8847z7V9J6YBQPAQ14hrABAUPXr00Mknnxz33DHHHKPjjjuu0/N2sZwo3LBhg84+++zYv6MD2V588cV65JFHtHPnTtXX18f+fvzxx+vZZ5/Vtddeq9/85jcqKyvTAw88oEmTJtmw+QCAXE2dOlW7du3SggUL1NDQoJEjR2rVqlWxwc3r6+vjKiTOOOMMLV26VDfeeKN++MMf6rOf/ayefvrpuED1/e9/X/v379cVV1yhPXv26KyzztKqVati42r06dNHq1at0g033KDx48fr4MGD+tznPqc//elPGjFihGv7TkwDgOAhrhHX0NnE0i2qbqjQxNLEk/oAQFReJBKJeL0R6TQ3N6tnz5668ZWvMEgrAM8c2HdQt57+FzU1NeU8oHr0vLZhUz/bB8jdt7dNYz7XaMt2wn7ENACmsCuuEdPCLfr5n/mnuUxmYiiSg7CL6ROd2BUzwh7XHB+jEAAAAAAAeIOxCGG35c2jvN4EOIhEIQAAAAAAAeZUspAkZDiZXlmI3JAoBAAAAAAg4JxI6tGtOVyWN4+imjAELE9mAgAAAAAA/KFjMo9JTQCkQkUhAAAAAAABlCghSJIQ6Uwpro09rKDaMBioKAQAAAAAwEcSJfuoFITXGLswGEgUAgAAAADgcyQJYZflzaNiST+Sf+FD12MAAAAAAADE0I04vEgUAgAAAAAAwBEkHf2FRCEAAAAAAD5S3VDh9SYgBOxK8NF92V9IFAIAAAAA4DMkC+GGaLIwVdKQisFgYTITAAAAAAB8iJmOkU7Har5sknrtJzfJ5D3gb1QUAgAAAAAAy6hqBIKHikIAAAAAAHzKy6pCqhnN17EaMFH1XyZVhumqChEcJAoBAAAAAABCyo7uyQgOuh4DAAAAAOBjbnYBjr5XdUNF3Pu2fz7ZtnX8/0TrSrbeROu2skyYWU38JascJIEYDlQUwjdMOeFTXg8AyBUxDQDgN5kk76wmC62uN9HrM1mGeGe963D7ZUkQhguJQrjOlMZRtrLdfoITAAQPMQ0AYIpEYxW2fy7dWIZBnkE5130L8rHJxJTi2liy0ImxChn/0CwkCmErvzeYnJTJsQlz8AEA0xDTkiOmAYCZoufn9udgK91ygxz7ct23RMfWb3JJyFlJFpL48zcShbAsyMHDa8mOrZ+DEQCYjJjmnFTHlrgGAM4ivrmv/TE3Oc5Fk33ZJPLaJwvTLZfofUke+gOJQiRFcDEHCUQAyB1xzRzENQCAX2VyPRGE6sNErCT7Oi6b6nXRBCSJRDOQKIQkGk9+lehzC1owAoBsENf8ibgGAAiSoE2qkmo25I5/a5/8yyQJSLLQHCQKQ4oGVHAFLRgBQCaIa8FFXAMASFLdjhKVl+3yejNyYtKkKHYm5TJJAtqxHriDRGFI0IAKLxpYAIKIuBZefhkDCgBgL78nCaNMShY6oX0CksSfP5EoDDAaUUiEBhYAvyKuoSNuhgEAkD26+iIREoUBQyMKVpA0BGA64hqsIK4BAPzApKpCu5OFJB79j0RhANCIgh1oXAEwBXENdgjqjJMAAABOIlHoYzSk4BQaVwC8QFyDE7gRBsALdTtKJAVnXD3Yz6Q2F12Q0R6JQh+iIQW30LgC4DRiGtxkUqMMQHB0nI03miRM9DcgrJY3j5LUuWsySUrz5Hu9AchMdUNF7AF4ge8fADtxToGX+P4BsFvdjpLYI9HfANNFE3nR/9otmgzsuH6ShOYhUWg4LmRhGr6TAHLBOQQm4fsIIFckAZErk+KQU0nCqHRJQaffH5mh67HBTDphAB3RfQuAFcQ0mIyYBsAqEoSwk0mzIHuJ6kIzUFFoIO5uw0/4rgJIh/ME/IJrMACppOpenMlrASRPBlJNaA4qCg3ChSn8ikoMAIkQ1+BXxDUAHdmR6GNiE6QS5qpCJjQxCxWFhqAxhSDgewxAoioLwcH3GEC2FYRANkyJO8ubR7la4UeS0CxUFHrMlBMBYBeqMIBwI64haIhrQHg5kSCkqhCA6ago9BCNKQQZ328gfPjdI8j4fgPh4mQVIRWKSIV4A69RUegRfvwIgzCPswGECTENYUFcA8LBjUQelYWJdTzHZnPe5brEPtHux052DXbjPWANiUKXcdJC2NBlCwg24hrChmQhEFxU+nkvUbIomwSS369PwhRrphTXMuOxYUgUusjvJysgF2EKdkBYENcQVtwEAwB3ZJMkDEpiMUztp2iykKpCM5AodImJJx6/c+OOH90B7BWmYAcEHXHNfsQ1/yGuAcHgVSUh3Y+dE5RkoSmcSuK1Xy/JQnOQKHQBJxxrTCr5z3RbCPCZo1EF+B9xzRq/xTVimjXENcDfvD5HR9+fc+8RqRJFTiaRoutNdk736trHpBjjRhKPJKEZSBQ6jMZUcl4HZTsl2xcCfmImBTwA1hDXkgtKXEu1H8S1xIhrgD8F5bwdJNUNFQmTRW4mqZK9D8lC+1n9TKk4dAeJQgfRmPpUWINwov2mkXVEkAMeEFTEtU8R1z5FXDuCuAb4S1jP436QKBnkVnIo1fskO8eH6frI60QdSUJ3kCh0SJhOFokQeJPreGzC3MCiUQX4R5jjGjEtNeIaAL8x8bzOeIWfil5zpEsKuZ20yvS9nLhmot0EN5EodEAYG1MmBlu/CHsDi6AHmI+4BivCHNeIaQBgj2RdkNNxKnmYap2J/hbkayevqwrhvHyvNwD+VbejJPaAfcJ4XIMcSP1i0aJFKi8vV1FRkcaOHav169enXP6JJ55QRUWFioqK9PnPf14rV66M+3skEtGCBQvUv39/devWTVVVVfrnP/8Zt8zu3bs1ffp0FRcXq1evXpo5c6b27dtn+74hN2H5fbY/94bp/OuGsB3XsPxmTEdcQ3vtzz8mn4tM3jYvLG8elfLvpiarphTXamLplriHHUyKL+k+GzvXZ/d7+c19992nU045RcXFxSouLlZlZaX+53/+x9H3JFFoM5N+vE4I28W+1zjecMPjjz+uefPmaeHChaqtrdWIESM0adIkffjhhwmXX7t2rS666CLNnDlTr7/+ui644AJdcMEF+sc//hFb5he/+IXuuusuLV68WK+++qqOOeYYTZo0SQcOHIgtM336dG3atEnV1dVasWKFXnzxRV1xxRWO7y8QxTnWfWE55kG/HjQdcQ2JhOHcEzTVDRWWk0SmJA+nFNfGPewS1PhitWIzTMrKyvSzn/1MNTU12rBhg8aPH69vfOMb2rRpk2PvmReJRCKOrd0mzc3N6tmzp2585Ssq6n6U15uTVFB/tARU8wS1G5fp3bUO7DuoW0//i5qamlRcXJzTuqLntQ2b+ql7D3vv2ezb26Yxn2vMeDvHjh2rL3zhC7rnnnskSW1tbRo0aJCuuuoqXX/99Z2Wnzp1qvbv368VK1bEnjv99NM1cuRILV68WJFIRAMGDNB1112n//zP/5QkNTU1qV+/fnrkkUd04YUXavPmzTrppJP02muvacyYMZKkVatW6dxzz9WOHTs0YMAAOw6FkfwS0yTiGtxDXPOGXXHNpJgmEdfcFv38z/zTXHU9ptDrzUnIb+f9oJ4TU0k1RuP9w5a6vDX2S5TwzPY6y6TYYloSL5uYkYhpca2j3r1765e//KVmzpxp67ZFUVFokyA2prjrZq6gVmQE8Xfkpebm5rhHS0tLp2VaW1tVU1Ojqqqq2HP5+fmqqqrSunXrEq533bp1cctL0qRJk2LLv/vuu2poaIhbpmfPnho7dmxsmXXr1qlXr16xxpQkVVVVKT8/X6+++mr2Ow3bBO33GNTzZlDw2SCdTGKaRFxDMITxfJgqOTp72zQXt8QZHSsMc0mwmXSNFvZuwbnINK61d/jwYS1btkz79+9XZWWlY9vGZCaIE8ag5HfRzywodx7DNhD803tHqChib1XZgX0HJf1FgwYNint+4cKFuvnmm+Oe++ijj3T48GH169cv7vl+/fppy5bEn0NDQ0PC5RsaGmJ/jz6Xapm+ffvG/b1r167q3bt3bBl4x6QL0FwR1/yl/ecVhLhGTMudlZgmEdcQz48xIAjnPicEcQKN9vHB6rVX2OKLV0yIa5L0xhtvqLKyUgcOHFD37t311FNP6aSTTrJ1u9ojUWiDIDSo/BhEES9oCUPkbvv27XHl7IWFZnYHApxAXPO/oMQ1GnP2IKb5U1B+x27hOCWX7SzIJuu4P37NK9iVxA1iMjgVK3HtxBNP1MaNG9XU1KTly5fr4osv1gsvvOBYspCuxzny6485iq4+wROEz9TvvytTRGfGij4SBZ8+ffqoS5cuamxsjHu+sbFRpaWlCddbWlqacvnof9Mt03FQ+UOHDmn37t1J3xfu8PvvLwjnQMQLwmfq99+VCTKJaRJxDZ/yy3mjvGxX7GFFonOjHfts8nFzqpvr8uZRnneh7ThTciaILf6WaVyTpIKCAn3mM5/R6NGjddttt2nEiBH6zW9+49i2kSgMqSBcdCM1PmNkoqCgQKNHj9bq1atjz7W1tWn16tVJx72orKyMW16SqqurY8sff/zxKi0tjVumublZr776amyZyspK7dmzRzU1NbFl1qxZo7a2No0dO9a2/YM1fr7g5JwXfHzGyARxzSzZJMCQGaeOrZufV6pzeqK/RWdBtjuxFx0z0IRkodXxC025drPj2GX6GXj9OZmgra0tozENs0WiMAem/Cit4CI7fPz6mfvx9+VX8+bN05IlS/S73/1Omzdv1re//W3t379fl156qSRpxowZmj9/fmz5q6++WqtWrdKvfvUrbdmyRTfffLM2bNiguXPnSpLy8vJ0zTXX6NZbb9Wf//xnvfHGG5oxY4YGDBigCy64QJI0fPhwnXPOOZo1a5bWr1+vl19+WXPnztWFF14Y6JkhYT+/nuOQPb9+3sQ19xDX4AdOJPrKy3b56hyZav+T/a26ocKxbsgmdXv1Y2Vhrgm8bJKEYUgazp8/Xy+++KLq6ur0xhtvaP78+Xr++ec1ffp0x96TMQpDxE9BA/ar21Hiuzu6jOvkjqlTp2rXrl1asGCBGhoaNHLkSK1atSo2aHt9fb3y8z+9r3TGGWdo6dKluvHGG/XDH/5Qn/3sZ/X000/r5JNPji3z/e9/X/v379cVV1yhPXv26KyzztKqVatUVFQUW+axxx7T3LlzNWHCBOXn52vy5Mm666673NtxxDHlIjNTxLRwY9wzpEJcg+kxwslzVxjOiya0D5weTy8o4xdmw8qxNSm565QPP/xQM2bM0M6dO9WzZ0+dcsopeu655zRx4kTH3jMvEolEHFu7TZqbm9WzZ0/d+MpXVNTd3hlnsuWnH6rpgRLu89MFhAkXAlEH9h3Uraf/RU1NTXEDz2bDyfOandsJ+5kY0yTiGvyNuJYdu+IFMS3cop//mX+aq67HeD/JjOkxwk/nK5PdP2yp15vgimjSbPa2aWmXNSW+ZJO8i+5n+wrBROtJ9/d9e9s05nONxLUc0fU4CzSm4Hd+6qrnp98b4Fd++Z356dwFd/G9AGA6J7oah/nc57cup5lub8floskwK12RvZbNZxPdz3TJwVzfB5khURhQNKaQCb4jAPyC8xXS8cu1j18S8wDs41QVYZirE/12Ls11spToJCepkoV+OybpRCetSVWhSLLQGSQKLfLDj88PF8kwhx++L3743QF+Zfrvyy/JH5iD7wsAUzDrs7My6Y7rJrtm/k33dz9UF9o9MzXcRaIwYLg4RjZoiAMwEeclZMv0747pCXrAr0z/7QeBacc4XTLKzYSVWxNrRKsLEwlCfAnDBCWmI1Fogck/OhI9sIPJ3yGTf3+AX5n8uzL5fAR/4NoIgFeoJHRPqmuZoFe0JassNPn6LhvpJjCB/UgUBgAXwbAT3ycAXuM8BDuZ+n0KWkMO8Jopv/WgJwhN3L9kCcFo5V1Qk0uZjFvotaAna4OKRKHPmRIQESymfq9oVAH2MfX3ZOr5B/7G9woINlN+4yYm0cKguqHCFwkppxKWiZKFJl3n2fHZ+OHzDRIShRky6YcWZUpARDDx/QLgJrqJwmkmfr9MvL4EnGDi789ubicJw3BMrXD7fGpa4sr0ykI7mHbMg4xEoU8RGFIrrC/I+IHkTPye0agCcmfa78jEc41piGv24LsGBI8Jv2sqCc3gZiLJxO7MHZOFJl3vWf1skh1fkoXu6Or1BviBST8wyYxg6BUnGkCZrrNlcKvt7+0HdTtKuPgB4JgwxzSJuOYF0+JadUNF4KtAAMm8354dvNyfoB1LO1Q3VMSdU1Ml85Y3jzIy2Zer6D5FcxgmxRgmJfEPEoU+E6YGlWlVEcm2JwwNrSBe2AHwHjHNW4m2KQwxTSKuAW5qf67ntwc3VDdU6P5hS1MuE+REVcdkoWmCfOyDgq7HaZj04wpyg8rPXaf8ut1WmfT9M+l3CfiNKb8fk84pTvBrbPBzPLYq6N9BIAy8/B2T8ITJ2ifjTLn2c8ry5lF0SbYZiUKfCOLFbFAbIUFuYAXxewgAdgjyuT+o+yWZE9eC3ogD2jPld5cLkoTmI3GkuKrKaLdsIBMkCn0gCMFUCnYjKpWg7XNQvo9AGJlygRiU80jQzu+ZCOI+B+X7CJjEjd8Vv914Jh8PL7bNlGser5kyPmF7JHHNR6IwBRNOLiaf8DMVtAZFLoLSwDLhe2nC7xOAdSacP3IRlPO4HYJ0LPz+vQRMFP1dJaq+8/NvztRqQlO3S/Ju20hIdZ4JOcj4vO1DotBgfg6gQWo8OMXvx8fP308A3vDzecPv52ynBSHue/395AYYYD6Tk3HojPPqEe2ThaZ0Qc4kqZfNpCdP7x2RzeagAxKFsJXfGwle8PMx87pRBSBzXl8U+vF8EYTklxc4ZkC4dZzl2I/n/0T8nCR06nMw+bONbtvsbdNsWZ/fq9VMrCz0+zENMhKFSdCgsoZGQe5okFrn9e8UQGaIaeHkx+Pot+8qYJpMf0N+Trr5UXnZLkeOucmfY/ttsyNZmE11m2lIFiJTJAoN5KeLVD82AvzAT8fVT99XAEjFT+deP/HbcfUyrnEDDH5W/0Ef197L7d+pyQkxwIogJDzhPBKFhvFL0sVvF/1+5Zdj7JfvLRBWXiYf/HB+IKa5w0/H2Q/fWwDuIEkYDHZ1QQ6CiaVbjLoxRVWheUgUJmDSj8Y0frrIDwq/HHOvGlX8XgFz+SHZ4ofza9D4Ja4BAOwTpPEq/S7aBdmkdtTy5lEkDA1CotAgJp84uaj3Hp8BANiHc6r3TD/+3AADzOTmb5NqQvuYcCypKvxUtAsyMQeJkCg0hOlJQpjD5M/D5O8xAHeZej4gQWgW0z8PU7/HAJxnQmIraEw4plStfSo6sQnJQnREohBJmX7xHmYmfzZeNKoIbkByXvw+TE2umHrehNlxDUD4mJDQgjOC2G7INvnJxCZIJqtE4aJFi1ReXq6ioiKNHTtW69evT7n8r3/9a5144onq1q2bBg0apGuvvVYHDhzIaoOdRoPqCC7W/YHPCbBHkOMajuB86Q8mfk4mXqcBqRDTgoPzj3WZHLMgVRXmui/RqkJTdNwfkpnesJwofPzxxzVv3jwtXLhQtbW1GjFihCZNmqQPP/ww4fJLly7V9ddfr4ULF2rz5s168MEH9fjjj+uHP/xhzhsfBCae/E28SEdyJlZhmPi9BpIhrtnLtN+/iedIpMbnFcyKF7jDDzEtl2o9N2KMSdWEuW6LlzHZq/fO5JhVN1TknGAzJdk4pbg2p2Ra+4lNiD2IspwovOOOOzRr1ixdeumlOumkk7R48WIdffTReuihhxIuv3btWp155pmaNm2aysvL9ZWvfEUXXXRR2jtbcB+NKX/jswOyE+S45vYFn4lJQviTadckpn23gWSCHNNM4afzgRNJz0z336SEayK5XiN5VenmRILStKo9U5KwYWYpUdja2qqamhpVVVV9uoL8fFVVVWndunUJX3PGGWeopqYmFmzeeecdrVy5Uueee27S92lpaVFzc3PcI4hMCjImXYwjeyZ9jm5/v7kDhmy4EdfCEtNMY9L5ENkz6XM06boNSIS2Wu4ySW6ZngDLRN2OkqzPaVb33+5zZy7b3lG6hFSYElamd0GGu7paWfijjz7S4cOH1a9fv7jn+/Xrpy1bEn+xpk2bpo8++khnnXWWIpGIDh06pCuvvDJlOfttt92mW265xcqm2SKsiQaTLsKRu8L6ArUMbvV6MyQdCeRBuJhCcLkR17yKaW4zJYlCTAsek+IaYLKgt9VMiTNBkOz63Ilr90zXF/180y1v5/Z1bP93rKwzrdJOcn6bqhsqjEsawn2Oz3r8/PPP66c//anuvfde1dbW6sknn9Szzz6rH//4x0lfM3/+fDU1NcUe27dvd3ozXWdKoKNBFUymddkCgsRqXAtDTDMF573gMuWzdfP6Law3sOEu2mrBYNe5KYw3+MM8Np/pVXvLm0cZv41BZamisE+fPurSpYsaGxvjnm9sbFRpaWnC19x000361re+pcsvv1yS9PnPf1779+/XFVdcoRtuuEH5+Z1zlYWFhSosLLSyaciCKRfdcI4JVRhUFcJkbsS1MMQ0E25+EdOCz4SYBpgsyG21sE1iYpWftz0qCPvgN+2rE6P/H02cUlUYbpYqCgsKCjR69GitXr069lxbW5tWr16tysrKhK/5+OOPOwWYLl26SJIikYjV7Q0ErxtUVJuFS5g+67DeDUT2ghzXwvR7CNN5LuxM+Ky9vo4DkglyTDMV54PcTCzdkvIRBH6qiGufOAzTdSQ6s1RRKEnz5s3TxRdfrDFjxui0007Tr3/9a+3fv1+XXnqpJGnGjBkaOHCgbrvtNknS+eefrzvuuEOnnnqqxo4dq7feeks33XSTzj///FgQMkFYfggmXGDDfV5XYVBVCJMFNa65xetGEnEtfLyOaYDJiGnZyfY6levb3KQbb8/NNnr0veweA7Dj+pY3jzJy7MOoiaVbQpMbQXKWE4VTp07Vrl27tGDBAjU0NGjkyJFatWpVbNDc+vr6uLtSN954o/Ly8nTjjTfq/fffV0lJic4//3z95Cc/sW8vfMTLBhWNqXCjYQUkRlzzL+JaeHkd09y6AUb3L1hFTAsfu89HHdurmazbynnKynmtfdIq09dYTXK1399qOT9ZiMlJQunI9kWPITEovCwnCiVp7ty5mjt3bsK/Pf/88/Fv0LWrFi5cqIULF2bzVgBs5GXDiqpCmIy4lh1ufsFLXicLAVMR06zx+/WpV7MUt2cl+VXdUJHx8lOKazWluNZyFZ6VZKHfP38n3D9sqWZvm+b1ZsBDWSUKkR0aVDABDSsg+ILeZYSYhihugAGAu6JVftlWmt0/bKnl11hJEiZbNtNrI1O7Bnu1XVQVhhOJwhAIa4OqR136AZj3lue5sCVwE8EMcIdXN7+IaamFMa5xAwzwD5Lr/tL+mjp6jR1NVpmYTItqv23tE2zt2wnJEod2jVXoRGIvOjGK28ee9lX4kCiUO5UXNKjsl2mjKZd1BLXB5VWjiuoLAEiOuJY94hoQXE62o4L4+7XzvNRxFlw/JAmTiY69l8nMvqm6RydKACZ6zulJUZzGpCbhlp9+EfhVkJKEPeoinR5Bfl83BOn7AcBd3PzKnSlxLUiC9P1oj4YagsTLoZg6siuZZtI+Sfbs18TSLZ0qyKL/jla1JZPu725rn2Brv09TimsT7mdU2Mfoix6fKGJRuJAodIEXwSMIF8umNmRM3a5sePE9Me1iCoA/ENecEbTEYRC+JwD8JShVie2TZtFJRNrLtJrQ5GrDRPsUfS5RwjDTpKfJ+5yLjvtFsjA86HocQH6+SPZbI6X99vq1OxdjOwHBEsSLOOKae4IQ19xG92PAGiu/GaduMPv5N2vnOadjhV1YJZtgJVEX5LAdp45dkBmvMBxIFMJzfmtEJUPjKnNON6oIYIBz3K4K9mOSkLjmLW6AAeYjwZ49O49boqRX2BJh7SWqoDN1FuRsBW1/4IzQdz12uvKCBlVyQenmlIjf9s1P3xsAMJXfzv1W+G3f3I5rDKsBwC+iXYztvqluwtiEs7dNs3VswSAWHtiRJAxi7xXEo6IwQPyS7PFTQyNX0X31QyUGFRgA0uHmV2LENTMFKa5RKY8g8qqqMJv3tHNb060rGmudODYTS7fYXk0WTRB6XaW2vHlUrAuxXVVzXu+TCaLHgORguIS+otBJ3F2O57dqBDv5Zd/dbJTz+wCQih+ShH45tzshzPsOwD5+uR60c0zFdOsqL9vlWALVicSXKQmk9vtGgs95pnzucAaJwoAwuUFFY+JTHAsA8D/O5Z8y/VhwAwwwX5B+OyaOu5htV+NMu/B2nAjEiy7Ibr2nCd2rvUBSMHxIFAaA6UlCdGZyw8rk7xOA1Jy8kHOzIWfqecjkc7fXTD4upn6fALjPxESek6JdjaMPq6/NlNfVfG69Z1grFVPNCo1gIlHokCDdGcsGjanMmHqM3GpUOfk7IXA5Y/fu3Zo+fbqKi4vVq1cvzZw5U/v27Uv5mgMHDmjOnDk67rjj1L17d02ePFmNjY1xy9TX1+u8887T0Ucfrb59++p73/ueDh06FLfMY489phEjRujoo49W//79ddlll+lf//qX7fsIb5ma1DH1fG0SYj/8iLhmhkTXhGFvT+UiWkGYS2Kr42tnb5uWc0Xd8uZRSdeR6m92TFCSav1IL1nimDaX82677TZ94QtfUI8ePdS3b19dcMEF2rp1q6PvSaLQ50xrUNFIsI5jBj+ZPn26Nm3apOrqaq1YsUIvvviirrjiipSvufbaa/XMM8/oiSee0AsvvKAPPvhA3/zmN2N/P3z4sM477zy1trZq7dq1+t3vfqdHHnlECxYsiC3z8ssva8aMGZo5c6Y2bdqkJ554QuvXr9esWbMc21dA4hydDROPVxBugMEZxDVz8PuxR/sqQjvdP2xpzuusbqhIuo5U23z/sKU5J/mcOCaAG1544QXNmTNHr7zyiqqrq3Xw4EF95Stf0f79+x17z1AnCv2e/TYxSYjsmXb8TPt+wXubN2/WqlWr9MADD2js2LE666yzdPfdd2vZsmX64IMPEr6mqalJDz74oO644w6NHz9eo0eP1sMPP6y1a9fqlVdekST95S9/0Ztvvqn//u//1siRI/XVr35VP/7xj7Vo0SK1th6ZsXTdunUqLy/Xd7/7XR1//PE666yzNHv2bK1fv961/Q8ztxpvpp13TDsv+wkJVvgBcQ1BEo3VqZJhXlfU5TJ7u9dJPq+PXa6c3H6/51VMt2rVKl1yySX63Oc+pxEjRuiRRx5RfX29ampqHHvPUCcKnRLGu2E0BuwRxuMYxt+LW5qbm+MeLS0tOa1v3bp16tWrl8aMGRN7rqqqSvn5+Xr11VcTvqampkYHDx5UVVVV7LmKigoNHjxY69ati63385//vPr16xdbZtKkSWpubtamTZskSZWVldq+fbtWrlypSCSixsZGLV++XOeee25O+wRzmJQkJMllH5OOo0nfsWyEvSFmd0yTiGsIllljXko6llyU1+cRr5N9YZbrsZ9SXJsy0ev1d8uPso1rTU1NkqTevXs7tm1dHVszHGXKxa5JDYCgiB7TveV5Hm/Jke9Zy+BWrzcj0P7WOExd9xXaus5D+1sk/UWDBg2Ke37hwoW6+eabs15vQ0OD+vbtG/dc165d1bt3bzU0NCR9TUFBgXr16hX3fL9+/WKvaWhoiGtMRf8e/ZsknXnmmXrsscc0depUHThwQIcOHdL555+vRYsWZb0/QCLENfv1qIsYEdMkd+Ja3Y6S0E2YEOWnmCYR10wU1BvITp4XosmbTBJB6RKJXoqOQ2jqNqY7vsubR5EIDSDT4lpbW5uuueYanXnmmTr55JNt3a72qChE1mhMOcuU42tKUhrWbd++XU1NTbHH/PnzEy53/fXXKy8vL+Vjy5bsu4rY4c0339TVV1+tBQsWqKamRqtWrVJdXZ2uvPJKT7crDNxotJlynjHlvBtEVGkiV5nGNIm4hsS8TOA7+d6MvWcGPgOqCq2yEtei5syZo3/84x9atmyZo9tGRaHNwtKg4mLfHSZVYTgpzNUXTiouLlZxcXHa5a677jpdcsklKZcZOnSoSktL9eGHH8Y9f+jQIe3evVulpaUJX1daWqrW1lbt2bMnrvqisbEx9prS0tJOYzJFZ4+MLnPbbbfpzDPP1Pe+9z1J0imnnKJjjjlG48aN06233qr+/fun3c+g4+IsN8Q1d5gQ16iW96dMY5pEXEN45DLmn2lynaU5qKJjC1o5Nk5VN0bXyTWnPazENUmaO3dubNKtsrIyB7eMikJkgcaUu0w43iYkp7NBEMtMSUmJKioqUj4KCgpUWVmpPXv2xA2cu2bNGrW1tWns2LEJ1z169GgdddRRWr16dey5rVu3qr6+XpWVlZKOjNP0xhtvxDXWqqurVVxcrJNOOkmS9PHHHys/Pz5kdenSRZIUiXj/G0H2TDi/mHCeDZMwHO+gdp/0C+IaOgriDelME2vRLr2mC1uSMNPJRbI5Ll4eS9pf9otEIpo7d66eeuoprVmzRscff7zj70mi0Ge8blCF4eLeRBx3mGD48OE655xzNGvWLK1fv14vv/yy5s6dqwsvvFADBgyQJL3//vuqqKiIVVL07NlTM2fO1Lx58/S3v/1NNTU1uvTSS1VZWanTTz9dkvSVr3xFJ510kr71rW/pf//3f/Xcc8/pxhtv1Jw5c1RYeGRMkPPPP19PPvmk7rvvPr3zzjt6+eWX9d3vflennXZa7L2BbHB+9YbXx93r6ymYgbgGv7p/2NKMk0FBqjoMqynFtb6adZlkob3mzJmj//7v/9bSpUvVo0cPNTQ0qKGhQZ988olj7xnaRCFfXuu8vqgPO6+Pv9ONKqov/OGxxx5TRUWFJkyYoHPPPVdnnXWWfvvb38b+fvDgQW3dulUff/xx7Lk777xTX/va1zR58mR98YtfVGlpqZ588snY37t06aIVK1aoS5cuqqys1H/8x39oxowZ+tGPfhRb5pJLLtEdd9yhe+65RyeffLL+7d/+TSeeeGLcemA/p3+XXidrvD6vhh3HHyYgrsFvrCb+wlap5xdWPxc+x/C677771NTUpC9/+cvq379/7PH444879p6MUWijIDeouJg3gwljOyHcevfuraVLk89GV15e3qnLVFFRkRYtWpRyJschQ4Zo5cqVKd/7qquu0lVXXWVtg4EkiGtm8DKuOT1WoRPj71Y3VFAdZDPiWvAFqdtxEMfxY7Zgf8l0nELilX28GI4itBWFyByNKbN4+Xl4Xf0DIDi4+YUoPg8AyIzpCbVsusda3Sc/dcENqkw/M3px+heJQp/wqkHFxbuZ+FwAOC2owwFw/jSTV58LN8AA+IUfqrMSJZCWN48iuQf4DIlCJEVjymxBbFQFNTEBIB43v5AInw8AuwWh2/HE0i1GdTm2mvSrbqiwdduzWVem20xCM3OZJq6pKvQnEoU2cTLB4UWDiot1f+BzAiBxEZYJzpf+4MXnxA0wACabUlxrTJJQsn7Ncf+w5GOAmsak42w6K8eK61T/IVGITmhM+QufV2oEJsAs3PwCACAzfuhunK101XtU95knl8+ENpm/kCg0HGPnIBNuN4L5XgLBFqQqKJKE/hO0qkIA3vB7t2OTuhs7YcmGcWmXmb1tmgtbAqCjUCYKyWYnR4MKXgtSggIAkB2uRwCYKuzXqnZ1JXYzkRvkhKubOI7hEcpEod2CEiy4KPc3qgoBmM7t8wZxzd+C8vnZfZ3IDW8g+NpXEwa1qi5dt+opxbW+Gt8wjKx2jSd++QeJQoO52aAKysV42PE5AsARnA9hFTfAAGTCjUq49pVbXo1TaMIYgSZsA5LLpsKQZKE/kCgEAobGMQATcfML2eCzBJANP49P2DExaCUZY2dizWoSaPa2aZ3ef/a2aXEVke3/nmz96ZZJto/Lm0eRWPRAkCfcCbOuXm8AEqNBBT8orC9Qy+BW29dbt6PE1xd4gJ8FZTgNBEePuoj2lue58l5OxTUAcEN1Q4Vn48gl6ibc8bkpxbVa3jwqbhsznf04+ppk+5fNfnfcFrd5/f52yKZCMPoakozmoqIwR35vUJEkDCY+VwBhxfkvmPhcAfhRJm3F9svkmjjJZEw/r6vuOibGphTXxj2X7u9ObovbMpn52WRef5fgHCoKERg932nJeR1NQwtt2BIzuFWBQfUF4C0/jPXiVpV80JJJxLXgoFIeCI/2v/dMfvfRZdpPYOIkr5NjyZi6XU4qrC/wdVXhlOJaX1yHwjoqCg1EgyozPd9piXuYuk4AADJBXEvNresWJjUBkItsbwrkmiyiuss9dh3r/me879skYVQuVbAkGc1FojCk/JokdLux4/fGlV8/Z7sRhIDM+Hk4Db+e74hrAGAvP1bvZtJl2O8yHYvQD+xK7vmhq3g6U4prGWswgEgUwnimNGpM2Q4TOVF94eeEBYBPUZ3VmSnxxIRtsMqvCWEASCZMSZb2MyBb5WbCzKTknN8rDtOhoMNMoUsU2vlFdCKR4UaDyi8X2SY3YEzeto788nkDQLb8cp4zNXaYkrjMlBufNwluAG6xKxFkYkKpfWIw3faZuP3JpEokmpRkNGlbUiFZaJ7QJQphPj81Vvy0rQAQRH5IEvopVvhlO/3IzhvMNKoAJNKxYi+TRJGVZFIuFYFSbl2srSQSE+2TnUmzVNtiUsLTpG2Bv5AoDBnTG1R+baCY3gik+gKAF8J+XjA9NiTjh+02/XoGADJhd7fjjuvLJFHkZDLJq7EXc92nTF7vl2q9XC1vHhV7JMPNq+AhUWiQMDeo/NAoyYTJ+0CjCkAqfhwX1OTzmsnxIFNBic3ZCvN1GQB32J2ky3Z9uVYKBklYEoCZmlJcG3skOzZhGmczLEgUhoipDaqgNULC3rCykx8TFwDCLYgxwNT9MfW6BgAy4UVyJV1lWDp+TghlmkRNtFyiRGoYu/WGcZ/DikRhlkhg5C6Ijan2TNw3pxtVVF8AiHL6fGBiksjE875dgh6zAQRDedkurzchIxNLt3iSdJlSXJuwm2imXYTDmCha3jzKsy7UfjGluNbXSWR0RqLQEGFrUIWlsRGW/QSAsAvL+d60/TTt+iYdbjQDkLxNuN0/bCnda0OEzxrZIFEI15nWyHCaafvrt0YVgOTCOni0SeexMFbahWl/qZQHYDcTKq/sSFSGJQHl9ypKv2x/WK9pTUWiMARMa1CFURgbkgDCKyzJlTCf103ad5OucwAgigri5MKSZAT8ikQhXGNSo8IrYTgGpiYIuEsFJOenxowpSaEwnM/T4RgAQHKJxkv0U7xNxy+VagCsI1FoACcTKyY0qKimi2fCsTDhe5GpIF1QAQgGE87jpjDlWDgZ10y9AQbAf8rLdnHzWiQZAdORKMwCiYvMmdKAMA3HBQCsM+EmB+fvzjgmAExVt6PEs7YbbUZvhKVbc6r9XN48ytXjYNd7kUQ3R6gShWH74pnQoEJyXjes+H4AcEKQq6+8Pm+bjGOTOZIHgHvKy3Yl7ALsJT+dA/yYdAtLtWKq/ZxSXOvqcYi+nwkT9cAeoUoUmogGVbgF9RgF+XsNIJyCer62k9fHiBtgANyWKumXbIzCwvoCzd42zcnNso0TyaZkycfZ26alTUz6MXEJ+BGJQjjC68YCMkOjCoBfeHm+IqZlLqjHysQbYGHrKQOYKNtqxZ1rB2p58yhLCcOOSTKnk2ZOdV9Nlny8f9jShH9rvw0d/+7XxKFftxvhQaIwoGhQ+QfHCwAQJF7GNW6AAYgysYtv+5sOSzaMy2kbl2wYZ8cmxemYlDOhG2+qbcj2hkmiRJ2bybtsj2vQE4x0XTYHiULYiqRXdjhuALxiZ0PKqaorbn75D8cNgNs6VveZNjZhR1ZjZsfk0qwxL2X0ukyTS8ubR8Ul3qxWPHrh/mFLvd4EIJBIFAaQVw0qGgW58er4OfV9sTNhYOIdYQDBR1wDANgl0fWsG8MaZFp1V91QEZd4M6Ga0CmJ9i3V/ppSyZfuMzFlO+F/JAot8kPlBfyLRikAmIHzce64AQYA6X39ke9l/dpMKv4yqbpb3jwq4XImVuzZlQwjqQYkR6IQtqBB5W+M6QTAVJyf/I3rg8SolAfsZXo341R6vBfJuItv++WmFNfaNqab09WDXiflEr2/lX32S3Wl19tp53cS3iJRGDBeNKhoBNiL4wkA3uI8bC8vjicJZgBea39DoG5HSdKq5L1D8rRz7cDYv6NjAyZKHnZMwrg9KYbXCb9seZ1ACxOOdTCQKAQMFJRGKt20gPAIyu89KOdfAIC3rFY5zt42LZaIiyYEOybmvJ4tt+NkJ36Szfb6bR8Bu5Ao9AgNKpiG6gvAXzIdnNzPOC8FB9cLAJDazrUDVd1QoSnFtZpSXKv7hy3Vkg3jbFl3xwRjtgnH9hWNdlSOpepybceMy4nWkSr5ly4xm2vi0IvEI8lOZINEYYC43aDiot9ZHF8ATmOctHicd53l9vF14rooKDd6Abgr03NHx7j83PjfWEpspZNr0iiaOFvePCr2yESym5v3D1uacB3JJlexYnnzqISJzWQJzuXNo9ImP/3Yrbb9NpM0RKZIFAIGo9FqrzBUYAHIDudbAEB7dt1Ms7KewvqCTlVwqZJTif6WLhmU6u/JxkZMpLqhwpZr60T7YEdCLlqZmYnZ26a5kgT0OtHo9fvDP7p6vQHwJxpUcFvdjhJfz2gHBJkTVVZ0Ow6mnu+0qGloodebAQBp2XXdaTVG7lw7UBqW/ftZTSy2l2kVn5UkXLL1tk9Ypuria1e36USi75Nr9WI270vSrrPqhgpmTTYEFYUWmNxFiwZVcLmZlKWbFoAw4uYXACBbdTtKbG8npqvqC0IX0iUbxsXGZOxoSnFt7O9OsprwtPN9nRCE7wXMQKLQA35PnNCgAgAA2fL7DTAAwZJrkq+8bFfS6sNs171z7cCUSZ8pxbUZJYWsdCV226wxL6Ws5Ov4d5Jg6VGlCLuEJlHI2GT2IEnoDY47gDBxM7nD+RVW2XXD1+SeKkCYdEzy2fnbzOV8kW7G40ySQhNLtxjbldPqxCFWJ+VwOrFI4jIxjkswhCZRCCAzVF8AAJxGghZAkEW7I5etOZD1OhJNbGKVla61Xid47H5/p6vrvKre8/pzchoFXmYgURgAbiV2uKj3FscfAOzFeTUcuAEG+EO21Xd2T3aX6/rqdpSosL5AfV46Sk0n5DZ5U/suyG4kiKKJyVzeK9vkppXEW6rJTzJ5Ptdls2FXF3DTuxdPKa41tooVmSNRCADI2O7duzV9+nQVFxerV69emjlzpvbt25fyNQcOHNCcOXN03HHHqXv37po8ebIaGxvjlvnud7+r0aNHq7CwUCNHjky4nkgkottvv13Dhg1TYWGhBg4cqJ/85Cd27Rqy5Pdxd+EdErW5o/Iid8Q1swQhpkQTjXuH5GnvkLyc17dkw7jYLLl2JLOSrcOuBM/E0i2OjovYcftnb5uWNHnmVlJt9rZpaT+bTI5tUKoFcznuJBk7e/HFF3X++edrwIABysvL09NPP+34e5IoREa4mDeDXz+HIFz04Yjp06dr06ZNqq6u1ooVK/Tiiy/qiiuuSPmaa6+9Vs8884yeeOIJvfDCC/rggw/0zW9+s9Nyl112maZOnZp0PVdffbUeeOAB3X777dqyZYv+/Oc/67TTTst5n8LK1PHRqJIH4CbimnmsXDfaXU1ol5bBrbatq7C+QNUNFbFkYa5SVeNF/5bL+0wprnV0EpKO22ZXYinbfV7ePEoTS7ekfH2mn10u24Dg2r9/v0aMGKFFixa59p5dXXsnSLI/YUJ3GjihR11Ee8tzvwOKYNm8ebNWrVql1157TWPGjJEk3X333Tr33HN1++23a8CAAZ1e09TUpAcffFBLly7V+PHjJUkPP/ywhg8frldeeUWnn366JOmuu+6SJO3atUv/5//8n4Tvfd999+kf//iHTjzxREnS8ccf78h+AnBPz3da1DQ0t655QLaIa3BKedku7awfaNv6dq4dKH3TmUorK8mpbJKVpowVaGXbrSzrZAIQkKSvfvWr+upXv+rqe1JRCPhMmKtgTK2AMlVzc3Pco6Ult+/OunXr1KtXr1hjSpKqqqqUn5+vV199NeFrampqdPDgQVVVVcWeq6io0ODBg7Vu3bqM3/uZZ57R0KFDtWLFCh1//PEqLy/X5Zdfrt27d2e/QwitMJ9Hw8ruG6tUyrvP7pgmEddM5vffmBPXrOlmQe7IiSozqwkvkyrdnEjWmbR/6bp7m7StOMKJuGYXKgqRFg0qwDn1H/RRfrciW9fZ9smRGfYGDRoU9/zChQt18803Z73ehoYG9e3bN+65rl27qnfv3mpoaEj6moKCAvXq1Svu+X79+iV9TSLvvPOO3nvvPT3xxBN69NFHdfjwYV177bWaMmWK1qxZY3lfAJiDqsLg8FNMk4hrcI4Tic7C+oKUlW4d/2ZCFVvHbZi9bVpct+So9tuebB/t6nqdCTurCd0wpbhW1Q0VSY9vdBlY57e4ZhcShRmikgmA32zfvl3FxcWxfxcWJm6IX3/99fr5z3+ecl2bN2+2ddusamtrU0tLix599FENGzZMkvTggw9q9OjR2rp1a6zbFvzNjeE0uPkF+FOmMU0irgVFYX2BrWP9BcGSDeM0Zbw9E3fkkniLVqflknzqODZi+3UmGjcxl/fJZh127GOqddu93omlW5jgymesxDW3kShESjSozORG9QXjFPpfcXFxXPBJ5rrrrtMll1yScpmhQ4eqtLRUH374Ydzzhw4d0u7du1VaWprwdaWlpWptbdWePXviqi8aGxuTviaR/v37q2vXrrHGlCQNHz5cklRfX0+DyiN+7xoGc1BViHQyjWkScQ3eqttRIqfOZoX1BSmrxnLhRsVe++1esmGcyst2xT3XfjKVaFdaOyZYyUY0YWn3cXG6C7CblZfIjZW45jYShT7GRCbwE+4Km6ukpEQlJemrpisrK7Vnzx7V1NRo9OjRkqQ1a9aora1NY8eOTfia0aNH66ijjtLq1as1efJkSdLWrVtVX1+vysrKjLfxzDPP1KFDh/T222/rhBNOkCRt27ZNkjRkyJCM1wMgvEy8AVa3o8TYWVv9jLgWHNEbUlxDfmrn2oGarWlpZ9pNp/1rZ2+bZmn2YDsSUc+N/03KddqVDLXrGOVqefMoVTdUOJLkbS9aVehlspDxEP2PyUwAn6LaE24bPny4zjnnHM2aNUvr16/Xyy+/rLlz5+rCCy+MzQz5/vvvq6KiQuvXr5ck9ezZUzNnztS8efP0t7/9TTU1Nbr00ktVWVkZmxlSkt566y1t3LhRDQ0N+uSTT7Rx40Zt3LhRra1HGgZVVVUaNWqULrvsMr3++uuqqanR7NmzNXHixLhqDCAVzpsA2iOumSPbCvVshofKdUgpE4ak2rl2oOXJTVLJNemI9KYU1zqeJIyiC3Kw7Nu3LxZDJOndd9/Vxo0bVV9f79h7UlHoIr910aJBBaCjxx57THPnztWECROUn5+vyZMn66677or9/eDBg9q6das+/vjj2HN33nlnbNmWlhZNmjRJ9957b9x6L7/8cr3wwguxf5966qmSjgTC8vJy5efn65lnntFVV12lL37xizrmmGP01a9+Vb/61a8c3mO4hSp50P0YXiCu+YOdPVNyreL1sgq4x3tHYuXeIfZWR5Mk9L+OyUGnuqhnIjq5CuyxYcMGnX322bF/z5s3T5J08cUX65FHHnHkPUkUAkjKxG5a8Fbv3r21dGnyi47y8nJFIvEJn6KiIi1atEiLFi1K+rrnn38+7XsPGDBAf/zjHzPeVqA9bn7BbgypEQzENdjBrWEEer7doqYTjtxQic6CLPkr0ZdNAsvEcfdM26b7hy2NjesYZdo2Ijtf/vKXO8Uhp2XV9XjRokUqLy9XUVGRxo4dGyvFT2bPnj2aM2eO+vfvr8LCQg0bNkwrV67MaoNxhNOVFzSo/IHPCbCH3+Iad2kBAMn4LaZJmY1BmKh3lkljfNbtKDkykYmDvch2jC+KqyZcsmGcpS7ITo4d5/a4dB2TYk5uw+xt0zqtu2MCLjrxiUmqGyo82y4rY162xzWuGSwnCh9//HHNmzdPCxcuVG1trUaMGKFJkyZ1mjEsqrW1VRMnTlRdXZ2WL1+urVu3asmSJRo4cGDOGw8AQK6Ia4A5nL4BRhd3BF3QY1ouSTgnxxYsL9vlSdKysL4grrIwHbery5xMUCWqSkyUZLJjG+4ftjTu2CVa55TiWiOr96obKjxJvmV7LLJNMMJelhOFd9xxh2bNmqVLL71UJ510khYvXqyjjz5aDz30UMLlH3roIe3evVtPP/20zjzzTJWXl+tLX/qSRowYkfPGAwCQqzDGNRMGYncT1dcAwiJMMS2bxFy06i9o3E4EJarmS5QYspIssiOhlyjJFJYKtVTHj+QbrLKUKGxtbVVNTY2qqqo+XUF+vqqqqrRu3bqEr/nzn/+syspKzZkzR/369dPJJ5+sn/70pzp8+HDS92lpaVFzc3PcA+4JSoOqYPP2tI8gCMrnBXjBjbgW1JhmZ9cqqrwyE5a4BiA7YWmrZRt/vKr6y0R0kpJs1e0ocbV76f3Dlqbt0mp1e1IlFTPtXp1oHXZM6JGu27EJphTXJk0IepEsNa0bNqyxlCj86KOPdPjwYfXr1y/u+X79+qmhoSHha9555x0tX75chw8f1sqVK3XTTTfpV7/6lW699dak73PbbbepZ8+escegQYOsbCZCzGpjicZVenY24O1ILOR6FzgsdxWRGTfiGjENuQhjXOMGGJAd2mr+lkuy0MlxEVPJ5ro6m+q2WWNesvwaxCNxByuymszEira2NvXt21e//e1vNXr0aE2dOlU33HCDFi9enPQ18+fPV1NTU+yxfbt/L3adQOVFZ3Y0ivzesALgDqtxjZiGbBDXALjBr221wvoCI7sQZ5uw2zskL26Skmx0rLrLJDGUqAtxJmZvm6YpxbUpq/WSVd1lU42XSwVfLvuY7P2XN4/S7G3TYo9cuJXAc7tYwsSqS2Suq5WF+/Tpoy5duqixsTHu+cbGRpWWliZ8Tf/+/XXUUUepS5cuseeGDx+uhoYGtba2qqCg88m0sLBQhYWFVjbNeF7d5Qk6JxpA0XW2DvfP3dGe77SoaWiwfjOAG9yIa0GMaX7it+o04przetRFtLc8twY5YCI/t9XcbCs51f24bkeJ3Iz2Pd6LxCUXC+sLNHvbtFi34ExkO3adn8a8c2IfEyUOs02M2ZlQm1JcmzIhmMt2IlwsVRQWFBRo9OjRWr16dey5trY2rV69WpWVlQlfc+aZZ+qtt95SW1tb7Llt27apf//+CQOPiUy8W+UUPzWonK6SoAoDCL6wxjWYibj2Kb9cj3AjGCYhpoXL3iF5KltzIO65nWsHatKaqzOegdeE5JYV2VTfObWP0WMcfczeNs2I7r2pEpzVDRVGbCPMZ7nr8bx587RkyRL97ne/0+bNm/Xtb39b+/fv16WXXipJmjFjhubPnx9b/tvf/rZ2796tq6++Wtu2bdOzzz6rn/70p5ozZ459e4HQcauxQ7ctIPiIa/Cam7GGmAYEGzHNf3IZm7DphM41jEG+gWHyWOP3D1tqRLVeum0w+RjCHJa6HkvS1KlTtWvXLi1YsEANDQ0aOXKkVq1aFRs0t76+Xvn5n+YfBw0apOeee07XXnutTjnlFA0cOFBXX321fvCDH9i3FwgVLxo5BZu302ULCCjimrecHHfXD1VpxDTU7SgxdiZW+I9fY1rL4FZPE1x2/g47dglOJ5exCZO9Njpunh0z/rpl9rZpmli6JWWiK103YrrWZobjhHQsJwolae7cuZo7d27Cvz3//POdnqusrNQrr7ySzVvBRaY3qLyugjC9YeXkOIWM54SgI67BC17GNdNjGoDsEdOssyNJGE105jopiR12rh2olsGt0jCvtyRzmSQ1M+kOHHaZTK5S3VDBsUJKjs96bALKa2EXr5OVAIBgMCGemLANqZh+AxNAuIVpHHu/Ces4fFb2O6zHCJkJRaIwSJzsomUykxozJm0LAHghyOMfucGkOGLStgAIr2ziitexqGMVYsvgVo+2JLE+Lx3lSjLIlEk8vGB1v+06TsnWM6W4NuNZnqsbKjKqPnQbRV5mIFEI49GICRavL+oAhAPVaJkLY5wN641XwES5XBtS1Zfakg3jEj5vd2LPtOSOW91qrez38uZRts06nG7/Mk0WSmZWFpr2fQojEoUwmqmNF1O3i4YxAJjN1Phh6nYBgOnqdpSobkdJwoRnLjMa52rvkDwV1hckrBqzM5F2/7Clvpo0xU5W9ntKcW1GMyPnWqE5pbjW0uebSVLOxGQinEWiEJLMTDCZ3mgxffsAAGYhblhn4vUJAHOYMGN4YX2B0T1mdq4dGJfoSdfd1MTuqE7rmAjzMjFmpRowGa+6RCM4SBS6wOTAAQCAV8LU/dMPSUI/bCM6o4sWwsqEMQHTdX02YQZkKXkX5ETsSFQF3fLmUY4lVK1WBHYU7eJsBXEEHZEohJH80ljxy3baIUwNegAIqzDFNbtwQxiA6aJdkJc3j4rrLpuokiybJFU2FWmZvMatSreO+5zuGLg1BmI2st02qgrRHolCIEc0qgD4SRgGfjetuypxAgDsZ0KSvrxsl+2VjXaOa1i25kDs//f9fkCnykK7El7t15NpwimT97a6fU4muzqOHWhy5WU2Y0ammmjF5MQonEGi0EfCUtFFgyo3pjWQAQD+QhwGEGZWb6jZNU5iNEFoZ3flHeOLYv8fndwkW3YmADNdn9Vl0r13LonETCYi8btospDqQpAohFGJJb82Tvy63QAAZxEfcufUdUpYbsACQeXUGIXZJP7s2Ba3xjOctObqrF9rZwLJropCOxOTVmTbRdv0JJyd4xXmUnXJuIneIlEIwHfC0HUSALxEghOAyVoGtxox47Ef9XnpqKySVVYn2TAtKZbrJCFB2YZM2JWky2VfTe7aHQYkCmEMvzdK/L79AAB7ERcAAKbZOyRPjz45wfH3mVJcS1WYSxIlZN1OtCVLDJPw8ycShQAAIDBMGk7D70h0AkB6dTtKjJhYxSo3qv2ymVTDC05UP3pdTZlr5WK2VacIBhKFgI1MaVTRUAbgFD82hrxgSjwAADjLr3Gx4wzIHdmZ6DJ1Xe3ZneSy2k3brffKlNVqUJKEwUKiEEagQQUA4cJEEv5AfAaAYCqsL9DsbdM0e9s0rzfFc35OcjlZueh1VSS8Q6IwjaBPmkDlGQAAAACYpcd79txQS7WenWsHaufagY4nhOxMxEXXFaQkVi7Hx8kkZ3VDRaCOMzJHohCwWZCrL+yqAPJrFw0AyESQ44BXuLEJIGz2Dskzaj0maJ+0crMK0C9Vl04k9ZiQJpxIFMJzNKgAADAXcRoAsmdXZaCTEiWDMknEuV1t5ua4f37kVPI0l2NJotGfSBT6BGM5AQAAAIDZOiYG7a7ocyLxmG33Y5OTQHYmzTKdvTmoyUmTP2c4g0Qh4ACqLwAgnDj/IxtBHxMbsJvJw9g43dW3/frtTBo++uQEy6/JNIHmNFMSdEFOqGVyjBMtM7F0ixObA4eRKHSYyUHMBDSoAAB2YRw75wQ1XtNjA/CvoCbYe7wXyTgBaHdSctKaq3N6/fLmUZ4k7exI0Nmx3aYkTp3QcWKTRMfLz7NHI15XrzcAgDN6vtOipqGFXm8GAAAAYLvC+gKpzOutcIYTVYk93oukXW+fl46Sxltf9/LmUZpSXNspURRNJjmdQApygs4k7ROymX6mQa6yDDIqCgEAAGwQ1Ko7ADBRy+BWT6oKnX5PL2cp3jskz9YZfqcU1/omUZQu8eWXmY+Tset765fPE7khURhidNFyFg1GAADCgaFmAPeVl+1SedmunNcT5C7M7WWagMxmYpMpxbVJE2lOVPsl2j4nuzwvbx7VaT9mb5sWezjB74nJKMYo9CcShfAMiTQAAAAAVrUMbs36tR0Tg1aTjXYkJ023ZMM4y6+5f9hS18YntKMrs5VtTdSlemLpltjDif22O8Fm5/eWqsLgY4xCAAAApFWwebtahw/y7P0ZexeAHcKQ6JNy68JcWF8QV9GWaVXglOLa2HiFVuU6nqGV183eNi2nSkc3Ju0wfWKQbD9n+AOJQgAAAAAAELNz7UBJUv8z3rf0OjcSfbli8pPcRasKSRYGE12PAQAAcsRwGgAAvylbcyDtMh2Tam51L/ZaojEC7dr3XMcftGP8QjvG5qQLcnCRKAQcRMMRAAAAgIl2jC/q9FyP9yJxCcTZ26bFJciCVkEW3b+OScBEVYd27Xv7dTuVeE23Xru64IclcRw2JAoBAAAAAMhRx5mGvVpHLu/d8+0WNZ3w6XiwO9cO1JIN4wKREEq2D9UNFapuqLBlH904Tpl0nc5mQppsUFUYTIxRCE9QaQcAAAAgSHKZQMTOdeTy3nuHHKky7PFeJLYthfUF0hjPNss2iSoC7R6vsP17ZDLhh1MVmrPGvORaEi/Zfi5vHkUi0aeoKAQAAK7qUeddtQRyw40+AMiOnZWCblQdOp2wNLlCMdW2WdnuTJNk0XXaMfZglJtdxO2qxoQ5SBQCAAAAAJCEHRM/2Jl467iuXBKHmUxoInXuyjp727TYIxsdE1kmJZpSddu1UiGXabXilOJazd42TXU7Sow6DlYkOi5Tims1sXSLB1uDXJEoBAAAvtfznRavNwEAEFB2TfzgZ4X1BbGk4PLmUZpYuiX2sEPQJkmx6v5hSzVrzEu2rtPtJJ1fk5zojDEKAQAAAAC+UVhfIJV5vRVHKg0L0y/muFyqFRPNfJzMzrUDNVvTbB/XzzSpEnZOJt/sTpZG1+fWOIHR97FjP6obKqhG9BAVhQAAAAAAWFC3o+RIwrKDTLvymiCbLst2dMM2XapEV/RvdlXP2TUeYjJuTyZi1/uRJPQWiUIAQMZ2796t6dOnq7i4WL169dLMmTO1b9++lK85cOCA5syZo+OOO07du3fX5MmT1djYGPv7//7v/+qiiy7SoEGD1K1bNw0fPly/+c1vkq7v5ZdfVteuXTVy5Ei7dgsAEFLENX9qGdxq6/rqdpRYToAlShJKUtMJqWsMe7wXyWlMQTsnMsmmErF9F2QnONl91cq60y1rV/VfJklJv6ELsjMWLVqk8vJyFRUVaezYsVq/fr1j70WiEACQsenTp2vTpk2qrq7WihUr9OKLL+qKK65I+Zprr71WzzzzjJ544gm98MIL+uCDD/TNb34z9veamhr17dtX//3f/61Nmzbphhtu0Pz583XPPfd0WteePXs0Y8YMTZgwwfZ9AwCED3EtnDomBcvLdlkehzBZsjJd8m3vkLycugrbOSlKtknHnWsH2rYNUcubR2l58yhHk2MmJt6CmFSLzoK8vHmU6xWNQfX4449r3rx5WrhwoWprazVixAhNmjRJH374oSPvxxiFABBQzc3Ncf8uLCxUYWH2I+ls3rxZq1at0muvvaYxY8ZIku6++26de+65uv322zVgwIBOr2lqatKDDz6opUuXavz48ZKkhx9+WMOHD9crr7yi008/XZdddlnca4YOHap169bpySef1Ny5c+P+duWVV2ratGnq0qWLnn766az3BQDgL3bHNIm4FlZ2dZ0tL9ulnfX2J8yc1OO9SFyiMVHSseMyyUxac7WeG5+8UtaqTMa3syORmOk6Es3KnMnrnEp2Rqs4rY4PObF0i5ZsGOf6hDwkCNOzEtfuuOMOzZo1S5deeqkkafHixXr22Wf10EMP6frrr7d926goBAAPFWwvUGG9vY+C7Ue6wgwaNEg9e/aMPW677bactnXdunXq1atXrDElSVVVVcrPz9err76a8DU1NTU6ePCgqqqqYs9VVFRo8ODBWrduXdL3ampqUu/eveOee/jhh/XOO+9o4cKFOe0HAMAZfoppEnENzrKzi7CJCusLcqqGS/faRH93KvnU8b2crvLLdf3ZvD7XBHkYxqZMxIS41traqpqamri4k5+fr6qqqpRxJxdUFAJAQG3fvl3FxcWxf+daedHQ0KC+ffvGPde1a1f17t1bDQ0NSV9TUFCgXr16xT3fr1+/pK9Zu3atHn/8cT377LOx5/75z3/q+uuv10svvaSuXQldABA2dsc0ibgGZ9nZRdgumWyTlSrDJRvGacr47Krn0lXdJfq7U7Mtd3yvRO+daZVgNtWKmWg/uUc2r8+1otDtisQwyDSuffTRRzp8+LD69esX93y/fv20ZYszk75QUQgAAVVcXBz3SBZ8rr/+euXl5aV8OBWEOvrHP/6hb3zjG1q4cKG+8pWvSJIOHz6sadOm6ZZbbtGwYcNc2Q4AgFkyjWkScQ2p2ZXwCFOFVbIEo10TmyxvHqX7hy11LBHYXqZJNrfGDrSSgMwmQVjdUEGSz1BW4prbuH0FACF33XXX6ZJLLkm5zNChQ1VaWtppwNxDhw5p9+7dKi0tTfi60tJStba2as+ePXHVF42NjZ1e8+abb2rChAm64oordOONN8ae37t3rzZs2KDXX389NrZTW1ubIpGIunbtqr/85S+xcaIAACCuIR0nEydlaw5ox/gix9Zvmp1rB2p5aW7j8pk4yUgqTk+6ArTXp08fdenSRY2NjXHPJ4o7diFRCAAhV1JSopKS9HfFKysrtWfPHtXU1Gj06NGSpDVr1qitrU1jx45N+JrRo0frqKOO0urVqzV58mRJ0tatW1VfX6/KysrYcps2bdL48eN18cUX6yc/+UncOoqLi/XGG2/EPXfvvfdqzZo1Wr58uY4//nhL+wsACDbiWvAV1hdIZdm9tm5HiS2JwmSTmTSdYE5VkFty6YJsqlSJQD8lCSeWbmFiEZ8rKCjQ6NGjtXr1al1wwQWSjtxcWr16dacJsuxCohAAkJHhw4frnHPO0axZs7R48WIdPHhQc+fO1YUXXhibGfL999/XhAkT9Oijj+q0005Tz549NXPmTM2bN0+9e/dWcXGxrrrqKlVWVur000+XdKRb1vjx4zVp0iTNmzcvNsZTly5dVFJSovz8fJ188slx29K3b18VFRV1eh4AgEwR18LJzmrClsGtR5KW7Zg4NmEqmc5ynEq0C7IbXYfdkGpf/LafJAmDYd68ebr44os1ZswYnXbaafr1r3+t/fv3x2ZBthtjFAIAMvbYY4+poqJCEyZM0LnnnquzzjpLv/3tb2N/P3jwoLZu3aqPP/449tydd96pr33ta5o8ebK++MUvqrS0VE8++WTs78uXL9euXbv03//93+rfv3/s8YUvfMHVfYO/NQ0NXwUHgNwR1/ypZXCrq+/XcTzC6L9NGfutbM2BrF9bsuKtrN8z+pD+XxfkLGYybv83t8YFTCfZ+JNObt/y5lGavW2are9hyvFE7qZOnarbb79dCxYs0MiRI7Vx40atWrWq0wQndqGiEACQsd69e2vp0uR3UcvLyxWJROKeKyoq0qJFi7Ro0aKEr7n55pt18803W9qObF4DAEBHxDVkomNC0JQEYVQuYyLu+tpnbHvPR5+coCmXZNdlN9HfchkLMJoks3OG4CnFtZYq9Kxuf92OEk2xsVqRasJgmTt3rmNdjTuiohAAAAAAABv0eC9i6Xmry1hZLhN2d5WetOZq29aV6wQp2b4+VdfiVH/rWMFnJVE3pbhWs8a8lPHy6d4byAWJQgAA4Kq95f4avwmfah0+yOtNAACjJUu8ZZKQyzRp5+Q4iD3ei+SUiOw4ZqPpol2e7Ui0dUxMZjKWYfv3tXPm6NnbpmW9LoBEITxBQwMAAAAAzNLz7Rb1fLslp3X4KUm1ZMM4VTdUqLqhgqo84P8hUQg4iIQoAAAAgFzY2dU43Xp3jC9S0wm5TRAWndjED4m3WWNe0v3Dlur+YUvjqvKcnrgkKpsqwky6d/tpZmaYh0QhAABAjrgxBABwipNdjZ16vyUbxmnJhnE2bI2zkiXqnJwIJNfjkstYhlHJZnYGJGY9BgAAAAAgdJxMQPptrMKOnKzIyzXRl8tYhlGmzdwNs1BRCAAAAAAIBCqlzOKH7sdW5bpPdiT6nMBvB1EkCgEAAJCW192rm4bmNmYWgHCwWikV1ORI2ZoDrr5fsnEU3ep+7OaYiFOKazV727TYwwl+mhDGCU52/UZ6JApDzOsLbq8bHAAAAHZoGdzq9SYAyFDHxGBQE4u5TkhiVbJuzIX1BbYnvRIlBN2u0ptYuiX2yFXH/VnePMqW9baXyffWpO7Idu8/rCFRCDiERCgAhAvnfQAwX67JkPKyXb5IFmY7/qATMyzvXDtQk9ZcnVHFXybLJEsKTimudbWqMPrIxPLmURlXIFpZb6ZMSgLCfCQKAQAAAAC+4fVEGW4lXXq8F3EkcZeKUxOcFNYXZNSd1ErizQ6puizbmXScUlzr6AQpgJ1IFAIB5XXXcgBAcAS1WnJvuXMzfgJwVt2OEl9U9uWi59st6vl2S0bL2plQdDs5mY1UVYVeriudRMlCt7pNB/33AvuQKHQYY9akFtSGR1D3CwBMxg0S+BVdwgBrWga3qrxsV+B/OzvGF2nH+KKMlnWqEjAVqwlFtxJVVioBTZ2BGPASiUKf4I43AADm40YRAMDvnOx+7MZsvnYn/9wa9xAwBYlCAAAAAAAQk0m1YDYJxZ1rB7qSLLQzubdkwzjb1uWloFfgwj4kCuE5qi8AADAXcRoA3Of1OIFOdmXeuXZgzutIlwi0s6pw1piXbFuXnah0hFNIFAI2C3KDyq4u8IzdCSDIghwHvML4kwDCxosxB92UbVVhNDnm5tiCpo5jaOp2wf9IFKYR9PJcLrwBAF5g7F1/IOkJAMhVourInWsHUhH3/+RyHDiGcAKJQhghKA0RU/aDBDAAp1ARDACAM3q8F8m5y3Eur0/3/tmuO1l1pJtj/0UTaokSa7O3TfM04ZZLZSBVhXACiUIAABAYptwoMeXGEQDAP/YOyUvZ5dipCUYyfX+7ZTML8pTiWi1vHpU2sZdsmUSJtfuHLbW0DaZIdRyoNEQuSBTCGH5vVPl9+wEAaI+4BgDpUWmfm2wmNplSXKvqhoq0y1iptosmIP0k1TFId3z8Luj75zUShQAAAA4g0QYAziisL/B6E2LcHNM+qBOcJKoqTJe0u3/YUkuJvUwSS37rxuvXSkg7TCzd4vUmBBqJQhiFRhUyEfRJhgDAaybFY6e6kzOhDuBv2VSiZaJuR4nl17hZVZjrGIbZvkeP9yIZJyqtbmO2E5tYSezZmVgyafIRJ5Kb2fwGECwkCmHMeE5+ZlKDCgBgDuIDADjD6y6/dTtKYo9cKxzdSP7lyulqRqcnNkmWUHO7u7EfqhYpygCJQh8Jy51vvzWqTNteEr8AgFyYFtcAwE1WkiSF9QW2dIO2koTbOyRPZWsO5Pye6d7D7ddnM7GJU+xMHvpt3ENAIlEIIENhSVQDQReGu8Sm3TDxU+LNT9tqCq+rmgB4w8t42nSCWXHOLtl2Qc5FthV+mSY1vaggNCXhCv8iUQgj+aWh4pftBAAThekGBPECTmFAd/iZSZOSZMOrGwW5VPyl6+bsdTdop7sgJ5JNctLUc68TiVbGLAwfEoUu4E5zdkxvVJm+fQAAWGFiXDOtOhSAOQrrCzxPYJSX7VLL4Nak7T2nuwgHUbQLspuVeB3fK917TymudWT7ljeP0uxt07KuCFzePEpTimsTzobs9W8F/kKiEJK4EAcAwGkmJuKiTN42AMEVhIKK8rJdSbsh7xhf5PLWpJeuGtHpSUsy4dSM1nZb3jzKUgVfumWnFNdqYumWhIm+TESTl4neJwxDz8A+JAphNFMbLqZulx8SvkG4IARgPlPPh6bGDwDwSlCuDU3bD7eqGcvWHHDkvSatudrya9we37C6oSLjysLlzaNU3VCRUbIwF9H3sZPbSUZTu3WHCYlCGM+0RpVp2wMA8BfT4ohp2+OGMI2PCQRVy+BWo6qkTBtv0a1qxqYTCh15r8L6AssVe6kq6rKRbj1WKv+iXYLt6LKcarvsThIinEgU+kxYL2xNacSYsh0A4CXTqib8yJR4Ysp2AAD8ye6uyu0nU1myYZyWbBhnOfFn1/iBXsxYnAlTtwvBEYpEIaWrmTG1m1aU140Zr9/fS2FNUAOAk7yOK16/fzqmX5cACA47JnrgJlpuerwXUY/3InGJx8L6gqwrNd3uhmwKch+wQygShQgOrxo1pjemJBpUAPzJyRsRfjgvEtcAhJ1pXXbhjb1D8tJWJ1qZDTisVXdh3W/Yi0QhfMftxg2NKQCAk4hr4WbSGGtAWPn1d9i+m26QLdkwzlKS0AthrWBEMGWVKFy0aJHKy8tVVFSksWPHav369Rm9btmyZcrLy9MFF1yQzdsCMa3DB7nS0KExBYQDcQ1ecyum+SWu+aEaFDCV32JaULrsup1sTJYkDGLysLC+QDvXDvR6M1JqP6Oxl0lDEpawg+VE4eOPP6558+Zp4cKFqq2t1YgRIzRp0iR9+OGHKV9XV1en//zP/9S4ceOy3liv+PUOUzb8dmHuVIPHT40pALkJY1yDmZyMPcS0T9nZ3T0oCQ4Eh19jWlB+S27uR8+3W2yfSCQXPd6LqGzNAcuJyrI1BxKuy4rZ26Zp9rZpOSfJcn39lOJaLW8e5Wn3X2Y9hh0sJwrvuOMOzZo1S5deeqlOOukkLV68WEcffbQeeuihpK85fPiwpk+frltuuUVDhw5N+x4tLS1qbm6Oe/idnUGDiSXi2dmw8muC0G8JXsAkTse1IMY0P/Hj+ZG4BiBbtNWyZ8eEJm7aMb4o4fNeJQ/3DsnTjvFFlt8/0X60X0f7pGGiz2h58yhNLN2iiaVbck7Q5fL6+4ct9TxJSDUh7GIpUdja2qqamhpVVVV9uoL8fFVVVWndunVJX/ejH/1Iffv21cyZMzN6n9tuu009e/aMPQYN4gIX6eXSGKIhlVzQEtPMBIb23IhrxDRki7gGwAraav6VqKrOD1Jtd7JKQavVgnuH5MXWVVhf0GmswinFtbGHU+yoVgT8pKuVhT/66CMdPnxY/fr1i3u+X79+2rIlceP773//ux588EFt3Lgx4/eZP3++5s2bF/t3c3MzAchFTUML1fOdFq83I2uJGkYFm7enXQbOs6OyNkxDAcB5bsQ1Ylp6e8vz1KMueGMq2aVjzAp6TPNjFShgAtpqmanbUZLwetLLa8xk1YGm6vFeJFZBmMyO8UWx5aKiSb+9Q6ztb9MJn8aFnWsHSsMyf60dVX73D1ua0XJezzhMt2PYxVKi0Kq9e/fqW9/6lpYsWaI+ffpk/LrCwkIVFnKRCPsErRHVHg0qwD3ZxLWgxrSWwa0qrC/wejMy4vcbYB0FOaYBcE/Y2mrRbqvcdHZGx6SglLgbdPukX7rXJzN727SEybtEScHqhgrbE3hedzFOhIpH2MlSorBPnz7q0qWLGhsb455vbGxUaWlpp+Xffvtt1dXV6fzzz48919bWduSNu3bV1q1bdcIJJ2Sz3QAA5Cysca28bJfvxmICAKQWtphWWF8glWW+vBsJQr/cQMuVE+MgWlnnzrUDNWnH1Xpu/G/ink+UFMy0GjAVExODHU0prk1aUZisihZIxtIYhQUFBRo9erRWr14de66trU2rV69WZWVlp+UrKir0xhtvaOPGjbHH17/+dZ199tnauHGjr0rUTeP0uHFUqQEIA7/GNcbaRFA5ff0RtHF3gfb8GtNy4cRNr2zWWbejRHU7SoyfvTnV+IBWxw7sKNNEXzZJxkSv6fPSUZ2esyMpmEy6ir2OYyeahCQhrLLc9XjevHm6+OKLNWbMGJ122mn69a9/rf379+vSSy+VJM2YMUMDBw7UbbfdpqKiIp188slxr+/Vq5ckdXoegHU0qIDcEdfCIWjdjwEgEb/GtGwr8axWFTqlfSKmTiW+qiyMJgi9mi05W3uH5CXtgpyrjhWEU4pr4xKFplcXArmynCicOnWqdu3apQULFqihoUEjR47UqlWrYoPm1tfXKz/fUqEiAACeIa6ZgQlN4DemVw4hnIhp6aXrhpmu+srP3Tj9lgxMZ+fagVpeam+34GSVg+neI13C0qmkZhRjFMJOWU1mMnfuXM2dOzfh355//vmUr33kkUeyectA8NPA7xLVF6ajezhgH+Ia4D3iGmAPU2JaYX1Bxgn1bNtJXiTs/ZokTCY6E7FU6MtE4pIN41RdVmFrEq5jUjDdGIWZjmHoh7EOAcniGIUAkC0qL4Jh9+7dmj59uoqLi9WrVy/NnDlT+/btS/maAwcOaM6cOTruuOPUvXt3TZ48OW6g9X/9618655xzNGDAABUWFmrQoEGaO3eumpubY8s8+eSTmjhxokpKSlRcXKzKyko999xzju0ngolEVLgxnAYSIa6FT9ASfXbYMb7I9fdMNyZipmMmFtYXHKkstKmiLlEiL11yL5Pkn5PVhEDUT37yE51xxhk6+uijY0NJZINEoY9xwQvAbdOnT9emTZtUXV2tFStW6MUXX9QVV1yR8jXXXnutnnnmGT3xxBN64YUX9MEHH+ib3/xm7O/5+fn6xje+oT//+c/atm2bHnnkEf31r3/VlVdeGVvmxRdf1MSJE7Vy5UrV1NTo7LPP1vnnn6/XX3/dsX1FetwAgF3CmsQlYeE94hrs5pff9ZEqwk9ZqSYsW3Og0+sz0T751/Ptlrh19HgvkvLv2cplkhG7JyiJjnVo8sQn8LfW1lb927/9m7797W/ntJ6suh4jPOh+bCY3GlQkotHR5s2btWrVKr322msaM2aMJOnuu+/Wueeeq9tvv10DBgzo9JqmpiY9+OCDWrp0qcaPHy9JevjhhzV8+HC98sorOv3003XsscfGBbMhQ4boO9/5jn75y1/Gnvv1r38dt96f/vSn+tOf/qRnnnlGp556qgN7i6AirgGIIq45z0r3Y7hrx/gi9XgvklV3YzsqENuvo/12RP+/43uk29YlG8ZpyvjOXYYnlm7JavuWN49ypApwSnGtI92PqxsqbF8n/OeWW26RlPswElQUZsgvd4YAIKq5uTnu0dKSW3Jk3bp16tWrV6wxJUlVVVXKz8/Xq6++mvA1NTU1OnjwoKqqqmLPVVRUaPDgwVq3bl3C13zwwQd68skn9aUvfSnptrS1tWnv3r3q3bt3lnsDE3GDAkAydsc0ibgG5/glOer2mITJ3q/985ksk0hhfUGn7scdk3JWuif7aSxBJjLxJyfiml2oKERaVF+YJazds4KqR31EXQrsnen1cOuR9Q0aNCju+YULF+rmm2/Oer0NDQ3q27dv3HNdu3ZV79691dDQkPQ1BQUFncbI6NevX6fXXHTRRfrTn/6kTz75ROeff74eeOCBpNty++23a9++ffr3f//37HYGgDGIa8Hhp5gmEdfc4JeEGYLh0ScnSN9MnuTLNPkXxElH/Dxbt5d6bPdXXLMLFYUusztYUn2BMCG4WbN9+3Y1NTXFHvPnz0+43PXXX6+8vLyUjy1bsuu2YcWdd96p2tpa/elPf9Lbb7+tefPmJVxu6dKluuWWW/SHP/yhUwMPyASJqfCx+3qJ5If7Mo1pEnEN3kt0zZrp5Bx2cPO9TPPUneNzXofdSUIq/uwVlG7WJrfVqChERqgqDBcS0MFQXFys4uLitMtdd911uuSSS1IuM3ToUJWWlurDDz+Me/7QoUPavXu3SktLE76utLRUra2t2rNnT1z1RWNjY6fXlJaWqrS0VBUVFerdu7fGjRunm266Sf37948ts2zZMl1++eV64okn4rp9wbrysl2q21Hi9WYg5EjaIlOZxjSJuGaCwvoC196nTv6olErXdTbb8QIT6fl2i/YOcWYm42gS0u1uy1bM3jYtNr7g7G3TNLF0i2MVgplUHyYaP9FOQUmcZSrbcSdNY3dbzU4kCgEf8WuDisoLs5WUlKikJH3CqLKyUnv27FFNTY1Gjx4tSVqzZo3a2to0duzYhK8ZPXq0jjrqKK1evVqTJ0+WJG3dulX19fWqrKxM+l5tbW2SFDdWx+9//3tddtllWrZsmc4777yM9w/+src8Tz3qnK+E4AYYEFzENW9lkyTMJbFYWF8glWX9ckfU7SiR1av2VIk3K0nEHu9FbJlsJBmTE4TSke3bu3agNOzIv51IErZPDmay7lljXopLXnrBD8l0JJZpTLMTXY+RMb8mqQDYY/jw4TrnnHM0a9YsrV+/Xi+//LLmzp2rCy+8MDYz5Pvvv6+KigqtX79ektSzZ0/NnDlT8+bN09/+9jfV1NTo0ksvVWVlpU4//XRJ0sqVK/Xwww/rH//4h+rq6vTss8/qyiuv1Jlnnqny8nJJR7plzZgxQ7/61a80duxYNTQ0qKGhQU1NTZ4cC3yKGwHIllvXFUGukg9KVYVXiGtIJNdq+/avL1tzINfNkeROcs7r7sp2v//XH/meJDMmJZlSXGvb+bpjN+awd2uubqgIXUVlKvX19dq4caPq6+t1+PBhbdy4URs3btS+ffssrYdEYQAE+QIYnyJRCxM89thjqqio0IQJE3TuuefqrLPO0m9/+9vY3w8ePKitW7fq448/jj1355136mtf+5omT56sL37xiyotLdWTTz4Z+3u3bt20ZMkSnXXWWRo+fLiuvfZaff3rX9eKFStiy/z2t7/VoUOHNGfOHPXv3z/2uPrqq93ZcQQS51UAxDXYrbxsl8rLdqllcKuaTnA/zmSbVPS6UtDK+2eaVHQqiZZN8tGuhGXH9YQ9ScYNs3gLFizQqaeeqoULF2rfvn069dRTdeqpp2rDhg2W1kPXY1hCV63gI/GMVHr37q2lS5N3mygvL1ckEn/xVlRUpEWLFmnRokUJX3P22Wdr7dq1Kd/3+eeft7yt8C+3uh/DO35O0lJFGyzENTO0DG51bVzDjpyaDba8bJd2DhnY6Xk7xyJMJ1rR6GRXZC9kevycHhvQblZnW569bZqDW2O26oaKWJKQZOGnHnnkET3yyCM5ryc0FYUmfXm4wIRVfm5QAYDJOL/CK4wXBZjByd9i/zPe7/Scm5V7O8YXBS5JaEVhfYGjyTS7KxZN6CbtJ9FqyrBXVTohNIlCO5h8QedmFRiNKnf5/XiTGAcAtOdmXKNKHoBVbrb57BrD0CQ93ou4Nt5h2ZoDaY/hzrWdqzqz1TEx2D6x5+RYgWEfhzAVkoTOIFEIIIYGFYBs+P2GgN9vyACAqdzqTpzrBCReybTaz47Em1vJu71D8lyrmsy0YtKuqkKSUggLEoXICo0qd3CcP2XH3V2ThiAAkJrbNy4437qD4wwgmVxuOnk1vmEm7LiZ5vVEI25wMpG5c+1A26rykq0n027D2WyHl12S63aUuJqIz6S9RsLWeSQKkTUu9gHA30weUgPB4/Z1A1XygPsSJezCXlUYnQE5G25VAXql/f51TIbase/tuyUv2TDOlmRhrkk7u5J+2exLNr+R6CzeCBcShR5xopsWF8TBQoMKANzFDTCk4/du9kCQFdYXGJEstGsb7E4S2pGIy3ab7NwXK+tqOuHTuN7npaO0ZMO4nLoh3z8s+Qzpbsumqo6EHzJFohA5oVHljKAcVxpUgHPC0JWeGxjBEZS4BiA1r6/9TOiCbEcypmzNAZWseMuxLsc93ou42p052Xul2gY7tq/jOkz4fgB+QKIwYLxoVHHxDwDwunFoF2Ka/bw4piSZgfAyoaqwI6vJw6YTCtU6fFCn5+3qjpttEs6EsRJz3fa6HSVa3jzK1zMJ+3nbncK4hfYiUQgYhgYVAHyKG2AIIrp/Ac4xtWrMyg21vUPy4rrNSvbNfNxxvam0H+MvKArrC/TokxM8nSAkV14nxUxMxsNeJAot4sIuMRpV9uA4AoAZOB/bI0jHMShVs0AY7Fw70OtNsN3eIXk5V/RZXceO8UU5vR/sRzUh3ECi0ENOXXB6VR0WpMaAFzh+AIAg8SquUSUPQPJ/stCEbr5BNmnN1a6/5/LmUZ0mU8llchWvlJftcr2qsLqhIvZIJAxjd7uJRCEQck41qOxMhFPJC/gDN8AQxbED4DW7Zw3OVXnZLiqTDVJYX5ByrEInKvemFNfq/mFLY++7vHmU5ZmUnex2bCX551T7LFUiMFUy0Ovu2EFDohC2omGQHY4bAK+QiE+N87O/UE0IIGrvkDzXq54Yu81flmwYl/RvicYwtCt5OKW4VtUNFZbHSXS627Ep14Spkn4kC91BojCgvLxQplFljZfHiwYVAKRHXLOG4wWEVy4TiTgxCUlhfQHJOyQVndgk0+6/dk6AYrWSEHATiUKPBbX8nEZCZjhOAJAZr29scL7OTFCPk4nXa4zHBGTGzVmQTanIgjU71w5kkhDDpBqPEM4jURhgNKrMFuTjY2KDCoA7gvz7D/J52w5eHx+vr3syRSIBcJ8pVYWMU4hctE+cpfpO1+0oMeY7D38KVaLQrjuvXOBlzutGg6lMOC5+aVABQJQJ5y0Tzt8m4rgAMJmbVYXpkCz0XqKJbnKpXnOjGrHje6TKSZSX7XIkZ+GH5OPfGod5vQmBEKpEIbxB4yEex8MaEvMATMN5PJ4Jx8PJJDINeiAzBdtzS8Y5/VszKcnhl+vbsjUHvN4ER+wdktdp33auHajZ26alTPol+1t1Q0Xa1+ZiefMo17vhJvq9ePG9pfuxN0gUGsDJoGhC9YVkRiPCBKYcB1O+F25iLCcgOb80WCRzzl+mnM+9xnEA4BdMbGJd0wnBPccn2redawemTEwlm8zk/mFLNbF0C0ktBAaJQrgm7I2JsOw/lRcAwnIeCMt5PRlT9t+U5DEA87nZBdmkpGSirraZLLd3SPLzq9+rDVPtWyrJqganFNcGqjDBpJvIJGDdR6IwBEy6gDalUeE2k/bbpO8DgNwE6YLUCpPOYyad390U1v0GkJ1ME3Ru3GjauXag4+8hpU+0uHlTLdOkmJXkWdMJhRknIDvK9nVuSPf9SFZVmO5vucgkUWZSYtoJ0WNA0tAdJAoNEZbqC+lI4yJMDYww7SsAhFGYzvNhi+F2X5+ZVKEBuM2kCUXcSham4vfzwd4heer5dkvWrzVRNIE5e9u0hH93Y9ISE97TVCQJ3UOiMEt+O7GbVH0RFfSGhomNKae/B2FKeANAe6ad751g4j6aeH0DIDmTkoVeCFrV147xRZLMrhC0Ipr43Ll2YMIEXaKKQScTeV5MYgJIJArhMRMbHXYI6n65zW8JeQCfcvrGgYkJIhNvENnFxP0y8TsAID1TkoUmJO2sxEor4wwGJXHnph7vRWKJT0lasmFc7P9TJQPbJ/KSVSJmy0qSkHYT7ESiMERMvaAOUsPK5H0x9fMHYAY/XmCael4zNQ5kw+S45jSq5AH3uZlENGEWZCux10p3Xbe79praldiKjvtQWF+g2dumaXnzqJRjD94/bKkj20OXY3iJRKFBwn5B6veGiN+3P1dh//4CQHt+T7CZvv2mJokB+Ivb1Y2JEoN2X0MHIWnXUa4Vktm+3upYlnYmDelyDC+RKAwZ0y+sTW+YJOKHbTb9cwcQTG7cQDD9/OaHGNGR37Y3jMI64zmCI1mCzosbzyZUFdq136Z1OS5bc8CW9eSa/Mzl9Us2jLNU3WdSJaDX3234F4nCEDK9USX5o2Hlh20EAJjBDzHDD9souXMd40Sywo/d+4EwMGHMRLvODx0TYl4nDptOMD+mpFNYX2Cpui9VN+VU2o9vaFeykbiDbIUuUWjnHVgnfnh034wXbbSY1HAxbXvS8WuDCgAy5YcbYFGmxRAT4yyAcDAhQRdlQuWVE9fTXndDdvL97apWbC9ZYtVqF+RstM9T0O0YXgtdohBH+KlRFeVlQ8avDSk/fs5R3AED3McNMPd4HVf8GNMkf8c1AJ2Zkiy0c2KTVOtJ9Tc7uyBLziTSTNJ+hmK7pEpsTlpzdafn7OxmHK1ENKnrMsKrq9cbAFjVsWHT850WV94H/sVYTkDw7S3PU486s8ZmylT7eENMS86tJCHJbSB8jlSSFUhlua8r1U03p2+E93gvop5vOxNHMn1/yf1KxrI1BxxJHLZXWF/QaQbkJRvGacr47LoaJ7K8eZTn1YR1O0oo2ACJQhO1DG515e6anxtV7SVq/FhtaAWhAdURDSoAYROEuEZMAxA2hfUFsetJryoMo4ktr5Mk5WW7VKeSrI/D3iF52jukyJXEWbL394Jb+9oxMThrzEudkod+R5IQEonCnJWX7TJiTItsBaFRlQiNJABhMbF0i+d3n9Nx6wZYUBHT/N/lmIYXkFr7ZKHX21EnZ5OF6ZKR5WW7tLM+tzHxgjCJiIkK6ws0e9s03T9sqaQj3YXt6iqcbTWh18ltBBNjFBrKhEAJ/6JBBSCs/H7+g7e4/gK8Y8oNJRO2g3NRel6Nwbhz7UBbxxFc3jwqpy7HtJvgBBKFoFEVMG5+nlzEAMHj1AWnm+cL4lqw8HkCcFvdjpLYw26ZxNlcJzbxogtwshmDs10u3WsSVU26lTxcsmFc7P9z7XZc3VBhfM+QdPzcwxKJkSiEJC7Cg4LPEQAQJMQ1AF6IVhV6PV5hEO0dkmc5WZgo8ZnoObe6XEe7IOPTJCHJwmAhUWgwqrUAAMgOCSb/c/szdOq6y+7G/sTSLbauD0BidEG2xkoVo1MVj25WUtrdBdlvnKq4hRlIFNogKHd7aFT5W1AaVACCy+3zBnENAJCLnWtzm1QkV7l2QQ4zN7oht++CnI1cqxK9TNQlyoGQOAyOUCYK/XQnlkYVMhGkzy0oiXfAz4L0OwzS+TFMuPkFAEd4EZOdHG/QLTvGFzn+Hrl0QbajGtHE6zUqDYMhlIlCpEajyl+8+Lz81KDy040BIAz8dP6AN7gOAWASp5IeVtbbPna6kZxL1oW343t7MWmKabLtguz3CUwQbCQKkRAX6QCAoCCm+UfQbn6ZWO0BwJrC+gLPZj9uv2z0XOV2cq59cpDEYGKPPjlBy5tHZZwwDPPYhvAHEoU2cfJC0KvqCxpW5gtagwpAdvxWOevFeYSYZj4+IwCmMmFiE69uPJAczMySDeO0ZMO4lEnAaDIxCNWE6ZLndD/2NxKFgE8FsUFF5QVgjiD+HoN43gwKPhsApjMh8cENe3MV1heovGyXphTXJl2muqEiEEnCTJnwm0F2SBT6BFWFaM+rz4WLEwB+R1xDe8Q1AJmKdkH2eqbZlsGtnLt8KNfuxiTd4CYShUiLRpVZ+DwABIGXjRzOo2YJ6ucRxKpcIOwK6ws874ZcXrYrbsxCJ5g8m7HJUk1sEqZKwvZIcPoTiUIbOX1BSKMKXn4OTn//aFABcBNxzQxBjmtO8Nt4pEBQmZD8cDJZ6OWEKX5PUi7ZMK7Tc3ZMXmJKW8nrqlq4I7SJQi60rKNR5S2OPwC3BfkGmMR51Ut7y/M4/gB8y6mZkK1yurLQLUGaMKWwvkCzt03T7G3TAjV5SVQ214Ym/FZgTWgThX7ldSDgot4bXh93r7932eKGgP12796t6dOnq7i4WL169dLMmTO1b9++lK85cOCA5syZo+OOO07du3fX5MmT1djYmHDZf/3rXyorK1NeXp727NkT97fnn39eo0aNUmFhoT7zmc/okUcesWmvEGZen1/DyIRj7te4BvsR1+AXyZItplSa2SUoScO6HSWBnLyEpJ+56urqNHPmTB1//PHq1q2bTjjhBC1cuFCtrdaveUgU2ixoJ+pEqAJwF8caJpk+fbo2bdqk6upqrVixQi+++KKuuOKKlK+59tpr9cwzz+iJJ57QCy+8oA8++EDf/OY3Ey47c+ZMnXLKKZ2ef/fdd3Xeeefp7LPP1saNG3XNNdfo8ssv13PPPWfLfsE7JiRsOM+6x4Rj7cZ3LgzXg0FBXIPJOiZlkiVprExwkqprr9+7/Zog+jkQB+KRYHTeli1b1NbWpvvvv1+bNm3SnXfeqcWLF+uHP/yh5XV1dWD74LCWwa2eD6IrHbnY71FHMHGKCY0piQYVPrV582atWrVKr732msaMGSNJuvvuu3Xuuefq9ttv14ABAzq9pqmpSQ8++KCWLl2q8ePHS5IefvhhDR8+XK+88opOP/302LL33Xef9uzZowULFuh//ud/4tazePFiHX/88frVr34lSRo+fLj+/ve/684779SkSZOc2mVfmVi6xZG71uVluxy/uDMhrhHTnGdKXAOiiGvIRWF9gVTm7Hu0v0ZOdb0c/VudStLG01QVe25V8/V4LxKYysH2+p/xvtebYLS6HSW0+xx0zjnn6Jxzzon9e+jQodq6davuu+8+3X777ZbWRUUhcsJFvzM4rrBDc3Nz3KOlpSWn9a1bt069evWKNaYkqaqqSvn5+Xr11VcTvqampkYHDx5UVVVV7LmKigoNHjxY69atiz335ptv6kc/+pEeffRR5ed3Dk3r1q2LW4ckTZo0KW4dQK6omHeOKcfVhApWZMfumCYR15A706qk/DJmYZCShNFqTpKEsMqJuNZRU1OTevfubfl1VBQ6ICzVF1FUYdjLlMaURIPKDcV1Lera1d7P/NChI0Fm0KBBcc8vXLhQN998c9brbWhoUN++feOe69q1q3r37q2GhoakrykoKFCvXr3inu/Xr1/sNS0tLbrooov0y1/+UoMHD9Y777yTcD39+vXrtI7m5mZ98skn6tatW9b7BTMQ14LLpLjmhjBXS/gppknEtbCys5qtsL5AdTKrSqq8bFdGlYWwh5ufvdcVeXbkOKLrMOk3k0rxu/6Ka+299dZbuvvuuy1XE0okCn3NtEaVJBpWOQpbY0ryT5Dwo+3bt6u4uDj278LCwoTLXX/99fr5z3+ecl2bN2+2ddvamz9/voYPH67/+I//cOw9kBs3boCZhmRh7kyLaX6/+RX2CboyjWkScQ2p2V3N5kYXZKuiyUJJnrQXg9q1uD0vYgrtpmCxu61WUfHpEETvv/++zjnnHP3bv/2bZs2aZXnbQp0odGo8pzCjYZUd0xpTkv8bVJCKi4vjgk8y1113nS655JKUywwdOlSlpaX68MMP454/dOiQdu/erdLS0oSvKy0tVWtrq/bs2RNXfdHY2Bh7zZo1a/TGG29o+fLlkqRI5Mg5pE+fPrrhhht0yy23qLS0tNOMko2NjSouLqbqIkBMugEmcRMsFybGNfhbpjFNIq7BfSZWSbUft1ByL2HoRZLQzfdkshLYxe62WtQHH3ygs88+W2eccYZ++9vfZrVtoU4UOsmt6gvTGlUSDSurTGxMBSFJGPbKCytKSkpUUpL+fFVZWak9e/aopqZGo0ePlnSkMdTW1qaxY8cmfM3o0aN11FFHafXq1Zo8ebIkaevWraqvr1dlZaUk6Y9//KM++eST2Gtee+01XXbZZXrppZd0wgknxN575cqVceuurq6OrQPBYWpcI6ZlxsSYJrkX12g4moG4BrfF4pZhlYXSp+elnfUDbUmopVuHiZWEdu4353l7eN2N2k8yjWnSkUrCs88+W6NHj9bDDz+ccIzcTJAoDAATG1USDat0TG1MuYng4C/Dhw/XOeeco1mzZmnx4sU6ePCg5s6dqwsvvDA2M+T777+vCRMm6NFHH9Vpp52mnj17aubMmZo3b5569+6t4uJiXXXVVaqsrIzNDBltNEV99NFHsfeLVmtceeWVuueee/T9739fl112mdasWaM//OEPevbZZ907AD7gZKV8GLsft8dNsPRMjWtBuPkFZxDXECYtg1vV472jvN6MpHJJ5qV7nR1JQinzeNL+eiko7Z0wXwP6xfvvv68vf/nLGjJkiG6//Xbt2vXpdy9ZlXwyJArhKBpWnZnakIqiQYVUHnvsMc2dO1cTJkxQfn6+Jk+erLvuuiv294MHD2rr1q36+OOPY8/deeedsWVbWlo0adIk3XvvvZbe9/jjj9ezzz6ra6+9Vr/5zW9UVlamBx54QJMmTbJt32AOU2+AScS1REyPa0AqxDXYyeQqqfKyXdo5ZGDO63GqYtDESsSovUPy1DK41dJna+r3IBskCf2hurpab731lt566y2VlcWXN0eHwMgUiUIHuVl9YXKjSqJhJfmjIUWSEOn07t1bS5cuTfr38vLyToGoqKhIixYt0qJFizJ6jy9/+csJg9mXv/xlvf7669Y2GL7lh7gW5pgmEdc6ClKjMEyIa7CTiRObtNfxnGhynDVB9HgV1hdknSQ0OXmcqbD3KvGLSy65JO1YhpnKrsMyjOSHJM/e8jxfNCzsFMZ9zoTfAyYQRvxu44X1/O6X/fbDdVGmGHcX8A/TEyrlZbtijyCdJ+0WrSDM9donCNdOTnyng3Bcgiz0iUIuvLzhl0ZGLvy2j1woADCNX85L0fO9n8752QjDPmaLBg8QTNGx6aworC+wLbFid4Km47kqmiyMPrxQtuZAp+eyOe52aH8s2h8rp46N6UllhBddjx3mdpmu6V21Ogpil2Q/NqLcvjBwukHFDQAgOIhr3vJjTJP8k2QGYLZsx82zqwuyGzch4rrJqsT1mLtjfFGn57wYrzDVGIROfQ5+uMlEMjOcQl9RGER+vDj2ezWGn7ffj98XAMk5nSj3w0WtCfwcFyR/Vw8S1wCYoG5HiWtJFjvfp31VXdDPp8kqCP0i3edOkg/ZoqLQBV4M/um3Coz22jdMTK7I8GsDCgD8xs8xTfJHXAtKTPOiUevHxiUA5xXWF7h2TrLzPNRxXTvrc58p2VR+P3+n236/7x+8Q6IQRuvYcPGygRWURlR7NKgAZIMbYNkjrjkn6JUvAPzH9FmQM9H/jPfjYr4fY3H7+JCsLRKE2YntRkVieJEo1JFuWtUNFV5vhu2C0qhqL1mjxu6GVtAaT4nQoALgN2GJa8Q0/3CjUcm4u4C/BSEBlWwcw2h7omNs7vFexLFxBtOtO9E2+f34A24jUegSL6ovpGA2qhKhEWSNV0lCgjQQHMQ15xDTrOPmFwBT+amq0Oq1enT5jt2TnZyMJF2SMLpNVidmCUI7xc6ktJPXeEE41kFHojAEwtCoQuaC3pii8gIIbqV8FHEN7XHzC4DpnKoq9KJasbxsl3bWD4w79+ZyHk4Wz7NZZ/tjUV62y5NZnKVgVJE6hePiDyQKXeRV9YVEowpHeJkkJCgAsBNxDVLwb34BCIbC+gLVyf7kkVfX17EYXJb7diSbLMWOfYsmC93kZZKQ9hbsku/1BsA9XEyHG58/ALt5fUHKeS3c+PwB+ElhfUFgJocoL9ullsGttuxP9FzeMrg17v/t4kXFpd8F5XuK7JEo/H/c6q7o9YmDi+pw8vpz9/p7DyC4vD6/wRtef+5uxTWG0wCCJdNkoR8SNeVlu2yr+ouOLdj+/53gh+MKmCCrROGiRYtUXl6uoqIijR07VuvXr0+67JIlSzRu3Dgde+yxOvbYY1VVVZVyeTjP64truCtMnzcNKmSLuJY9E24EhOk8Bz5vIB1imnt6vGd9lvpMkoUmxFY3dRxb0I33cYvfkpN+2144w3Ki8PHHH9e8efO0cOFC1dbWasSIEZo0aZI+/PDDhMs///zzuuiii/S3v/1N69at06BBg/SVr3xF77//fs4b71cmnPi5yA4HEz5nE77vQCpBjWthS5ybcL6D80z4nIlrMFlQY5qpsp3d17Qxdp1MDvkt8WT39vopZjj9WfnpWISd5UThHXfcoVmzZunSSy/VSSedpMWLF+voo4/WQw89lHD5xx57TN/5znc0cuRIVVRU6IEHHlBbW5tWr16d88YjNyZcbMM5fL5AZohruTPlwo/zXrCZ8Pma8l0HkiGm+YdJCTQ/nduCmswy6fsAWEoUtra2qqamRlVVVZ+uID9fVVVVWrduXUbr+Pjjj3Xw4EH17t076TItLS1qbm6OewSNKSdjEy66YT9TPldTvudAMm7EtTDENMmc37sp5z/YK4yfa9iqgpE72mowUVBmenZKNEEYtP2Cv1lKFH700Uc6fPiw+vXrF/d8v3791NDQkNE6fvCDH2jAgAFxAayj2267TT179ow9Bg0aZGUzsxbWC7L2M0zB/8L6WYb194vcuBHXvIppYRbW82AQmXSNQiMOpgt6Ww0IImILTOTqrMc/+9nPtGzZMj311FMqKipKutz8+fPV1NQUe2zfvt3FrXSPaScFUy7EkR2TGlOSed9vwAmZxDUvY5rbCXSTfvcmnQ+RHT5DwF201dyV6QzIgBv4LqK9rlYW7tOnj7p06aLGxsa45xsbG1VaWprytbfffrt+9rOf6a9//atOOeWUlMsWFhaqsLDQyqb5VnnZLqN+lC2DW40bXBfp0ZgCsuNGXAtTTDNN9NxIXPMf0+KaSUlwIBnaav5TWF8glXm9FfCzuh0lOccoN/IRxFF/sVRRWFBQoNGjR8cNbhsd7LaysjLp637xi1/oxz/+sVatWqUxY8Zkv7VwhWmVaUjNxM+KQAC/IK7Zz8Tfv4nnSSTGNcgRDKeBbBDT3NXjvYgt60mVpDGpoMRPOG5Abix3PZ43b56WLFmi3/3ud9q8ebO+/e1va//+/br00kslSTNmzND8+fNjy//85z/XTTfdpIceekjl5eVqaGhQQ0OD9u3bZ99e2MiLCzMTG1USDSvTmdqY8uL7TIMKuQh6XPOCiXHN1HMmPmXq52Pi9xlIhpjmnr1D8mxZT6ouyJx/shOm4+aHakL4j6Wux5I0depU7dq1SwsWLFBDQ4NGjhypVatWxQbNra+vV37+p/nH++67T62trZoyZUrcehYuXKibb745t60PENO6IEfRFdlMpjamAD8KelybWLpF1Q0VXm+GMYhr5jE5poWpsYlgCHpMC6rC+gLVKfcupIAVJuYfYAbLiUJJmjt3rubOnZvwb88//3zcv+vq6rJ5CxiEMZ7MYXJjSqJBBf8irtnP1BtgEnHNJKbHNcCPiGne6vFeJKtqw+h4hXaMOQek4+Y1Gt9n/3F11mO/8Kobo+k/ILpteccPx9707y8A95l+XjD9vBpkxLXkGE4D8LdcuiSbeoMNQLiQKDSM6Y0qyR8X90HCsU6NBhWQHr+T5Ihp7vLL8fbD9RiA4KHSHW4gIY10SBQia3652PcrPx1fGlQAkvHL+cFP51w/4vgCgLdIDuWOY2idX64DEY9EYRJeVl/47cfExb+9/HY8/fZ9BeA+P50n/HYONp0fj6eX31eqfwE4UVUYTXDZnegyOXFm8rZ5ieOCTJAoNJSfGlVRfmwMmCJ67Px2/Lz+ntKgAjLn9e/F6/OFVX48J5vEr8fPb99TAMFkdzKnvGxX2vNbNu9p8jnT7m1jkhmECYlCg/n1ROTXxoEXOFYAYDa/3sjxip+PlV+vuwAET2F9gSOVX6nOc5wDU8v0+JhasVe3o8TYbYN5SBSm4HX1heTvEzaNq8SCclz8/N0E4A2/nzeCcv62WxCOiwnfTROuOwGYI6wTm/g9mWVCPOnIq2Nq4rFAZkgUwhVBaETkImj7b8JJnwYVYJ0JvxsTzh92CNI5PRtBimtB+U4CCB4rCZ4wjT8IwFkkCn0gaBewQWpcpBLU/Qza9xGA+4J0Hml/rg/a+b6jsOwnAJjCShdku2Nr+/UFKWkYpH3JRNj2F/YgUZiGCdUXUrAaVe0FqYEVpH1JJqjfQwDuC+r5JEixIEj7kowp30NTrjcBmCdsXZCdPi9bXX/7RJvfkm5ebq8p8RXZ6er1BiBz5WW7fHdysipRQ8TE4BjUBlMqJp3saVAB2ZtYukXVDRVeb4Yk4ppJiGsAYC6vZ9zN5b293vZc+XnbgWyRKPSZMDSqOkrVeHG6sRXGhlMiBEgATiGufYqY5h6T4ho3vwCkU1hfIJV5vRXZMel8myu/7EvYrqtgPxKFGTCp+kIKZ6MqGRo9zjMtINKgAoKHuHYEMc0dpsU1AMiE3yvz4A4Trqf4nvofYxT6FD8+uIHvGRBMJibcOd/ADXzPAPiVlYlNACAXJAozRKMKYWPi98vE3yEA+5h43kEwlJftMvL7RVwDYIVJyUI7t6NuR0nsgeyZcPxMjLWwjkShz5l64Qt/4zsFBJ+pCQrOP7Ab3ykAQeLEeLbZJJjsPLeWl+0yZqIvE5JtVpFkhd1IFFpgaqNK4iIY9iDxDMAEnIdgF5O/SyZfVwKwV4/3Irauz+mkkN3VgpnwYpzeRAk2k+OG6Th2wcFkJgHCYPDIhekndhpUgP1Mm6yrveg5ibiGbJke1wCEx94hebauz+5ZkNufL+2eNCXTdXlxzvZ7nDDpGsnvxxLxqCi0yPRkBT9QZIPvDQBTcX6CVX6ojjf9ehKA+UxKEpkmDMcmDPsI75AoDCA/XCDDDH75rtCgApzjh9+XH85TMAPfFQBhYdLEJqaxGgv8chyZ9AVuIVGYBT80qiQulpEa3w8AfuKXGxvwjl++H365jgRgPicmAPHLudROfthnkoNwE4nCgKNhhY789p2gQQU4z0+/M7+dw+A8vhMAwizsCSRT99+u7TJ1/zryy3YiM0xmkiWTB4BPhEHhIfnjbll7fkpeAHAXE3jBbzFNIq4BsNeR2ZTtndjEb0yNBXZul8nXO6Yef+SGisKQ4YccTlRbAEjHjwkMzm3h5cfP3Y+/MQBmi86mbHIiCYD/kCjMgV8v+GhYhYefP2u//r6Cbvfu3Zo+fbqKi4vVq1cvzZw5U/v27Uv5mgMHDmjOnDk67rjj1L17d02ePFmNjY0Jl/3Xv/6lsrIy5eXlac+ePXF/e+yxxzRixAgdffTR6t+/vy677DL961//smvXIP/+7vx8roM1fNawG3ENQcDEJsHDpCXIxte//nUNHjxYRUVF6t+/v771rW/pgw8+sLweEoU58mujSuJiO8j4bOGU6dOna9OmTaqurtaKFSv04osv6oorrkj5mmuvvVbPPPOMnnjiCb3wwgv64IMP9M1vfjPhsjNnztQpp5zS6fmXX35ZM2bM0MyZM7Vp0yY98cQTWr9+vWbNmmXLfiEYOPcFl98/Wz9fLwYdcQ2mO9K9OL0+Lx1FYikASBAiF2effbb+8Ic/aOvWrfrjH/+ot99+W1OmTLG8HhKF8P3FNz4VlM+SBpWZNm/erFWrVumBBx7Q2LFjddZZZ+nuu+/WsmXLkt6pampq0oMPPqg77rhD48eP1+jRo/Xwww9r7dq1euWVV+KWve+++7Rnzx7953/+Z6f1rFu3TuXl5frud7+r448/XmeddZZmz56t9evXO7KvYRaE319QzoXgs4SziGvwg2j34kw4MQsyMpdLgs+PCULis3muvfZanX766RoyZIjOOOMMXX/99XrllVd08OBBS+shUWiDIDSqJC7G/SxIn11Qfk8maG5ujnu0tLTktL5169apV69eGjNmTOy5qqoq5efn69VXX034mpqaGh08eFBVVVWx5yoqKjR48GCtW7cu9tybb76pH/3oR3r00UeVn985NFVWVmr79u1auXKlIpGIGhsbtXz5cp177rk57RMSC8rvMEjnxrAJ0mcXlN+T1+yOaRJxDcHi1XiFfktuOSkocSudIMVoLzkR19rbvXu3HnvsMZ1xxhk66qijLL2WWY9t4rdZkFNp/6PnxG8uTs7BULD1fXXNt/fub35bqyRp0KBBcc8vXLhQN998c9brbWhoUN++feOe69q1q3r37q2GhoakrykoKFCvXr3inu/Xr1/sNS0tLbrooov0y1/+UoMHD9Y777zTaT1nnnmmHnvsMU2dOlUHDhzQoUOHdP7552vRokVZ7w/CI3q+JKaZLYhxLWxJQj/FNIm4hmAqrHd3FuQgnrvdwnWJ+fwW1yTpBz/4ge655x59/PHHOv3007VixQrr25jzViDQuFtgniB/JmFrUDlt+/btampqij3mz5+fcLnrr79eeXl5KR9btjj32cyfP1/Dhw/Xf/zHfyRd5s0339TVV1+tBQsWqKamRqtWrVJdXZ2uvPJKx7Yr7IL4e4yeP4N6DvWroH4mQfwNeSnTmCYR1wASUGaKdi/2YzfjqCDGa6841Vb73ve+p9dff11/+ctf1KVLF82YMUORSGZjnUZRUWijIFUVdkSVobfCcEKmQWW/4uJiFRcXp13uuuuu0yWXXJJymaFDh6q0tFQffvhh3POHDh3S7t27VVpamvB1paWlam1t1Z49e+KqLxobG2OvWbNmjd544w0tX75ckmKBrE+fPrrhhht0yy236LbbbtOZZ56p733ve5KkU045Rcccc4zGjRunW2+9Vf3790+7n7COuAanhCGuwV6ZxjSJuAa4XVWIT9XtKEkY44JyrZFs/2Cd3W21qD59+qhPnz4aNmyYhg8frkGDBumVV15RZWVlxttGotBmQW5URdG4ckeYTsAkCb1VUlKikpL0v+XKykrt2bNHNTU1Gj16tKQjjaG2tjaNHTs24WtGjx6to446SqtXr9bkyZMlSVu3blV9fX0sWP3xj3/UJ598EnvNa6+9pssuu0wvvfSSTjjhBEnSxx9/rK5d40NWly5dJMnyHTJYQ1yDXYhrcAtxDSCh44XoNUQQryX4Lnkn05iWSFtbmyRZHv+QRKEDwtCoiup4wgjiSdFNYTwB05jyj+HDh+ucc87RrFmztHjxYh08eFBz587VhRdeqAEDBkiS3n//fU2YMEGPPvqoTjvtNPXs2VMzZ87UvHnz1Lt3bxUXF+uqq65SZWWlTj/9dEmKNZqiPvroo9j7Ras1zj//fM2aNUv33XefJk2apJ07d+qaa67RaaedFntvOCescY2YlpswxjSJuOYnxDUEWWF9gepEshC54zvkD6+++qpee+01nXXWWTr22GP19ttv66abbtIJJ5xgqZpQIlHomDA1qtojcWhN2E+6NKb857HHHtPcuXM1YcIE5efna/Lkybrrrrtifz948KC2bt2qjz/+OPbcnXfeGVu2paVFkyZN0r333mvpfS+55BLt3btX99xzj6677jr16tVL48eP189//nPb9g3oiJhmTdhjmkRc8yPiGoKMLsjuCPL1AbHdP44++mg9+eSTWrhwofbv36/+/fvrnHPO0Y033qjCwkJL68qL+KC2vbm5WT179tSNr3xFRd2tTevstTAmC1MJ8kk0HU6ynfmtQXVg30Hdevpf1NTUlPE4SclEz2tVJTNtn0nrUFur/rrrQVu2E/YjpgULcQ1Rfotpkn1xjZgWbtHP/4Qf/lRdioq83hx00DK4Ne7fnLvtF+RrAb99Xw7tb9HL37iHuJYjKgodFtbKwmSSnWiCdnL12wnVC35sUAFhR0zrLMgDlkcR09IjpgEwVWF9fJKD7sjZCVpszwTfk/AiUegCGlbppToJmXhS5qSZGxpUgH8R09JLFyOIa8FCTAPgJ9GxCxPJNH75LWZkOrELE8AcwTEAiUKX0LDKXq4nqmQNMk6A7qMxBQQDMS03ucQfYppZiGsA/KhjlWFUumrD2Ot8MO5h+6RfJhO7BHnGYsAqEoUuomHlDRpPZqAxBQRL9DdNXHMXMc0cxDUAQZOq2lCSotMhtE+meRWX0lX/td+XQiXfN+JqPI4HJBKFriNZiDCiMQUEF3ENYURcAxBUyaoNky2TrFKvY2VedJn23ZeTdWVOtUzdjhIV1heoMMV771w7MOG+dPx3y+BWKgjbIUmIKBKFHqBRhTChMQUEH3ENYUJcA4BPFdYXaGf9wM7Pd/h3dJnCdv8u7PC3jq9NtEz79SZ770wV1hd0mhU6bEgOIpF8rzcgrCaWbuFCE4HHdxwID37vCDqu3QAgeDKpoATChopCj1GFgSCiIQWEE+MWIqiIawCAIKGSEKlQUWgALj4RJHyfAXAeQFBQRQgAwRemqsLysl0kCZEWFYWGoAoDfkdDCkB7xDX4HXENAACEEYlCw9Cwgh/RmAKQDENswG+IaQAQPkGf2IQqQlhBotBQNKzgBzSmAGSCm2DwA2IaAIRbUJOFJAlhFYlCg9GwgqloTAHIBnENJiKmAQCigpAsJDGIXJEo9AEaVjAFjSkAdiCuwQTENABA0JAkhB1IFPpI+wtaGldwE40pAE4gYQgvENMAAEFEkhB2IVHoUzSu4DQaUgDcwo0wuIG4BgDIhB+7H5MkhJ1IFPocjSvYjYYUAC9xIwx2IqYBALJherKQxCCcRKIwQGhcIVs0pACYhhthyBYxDQAQVCQI4QYShQHU8QKZBhYSoSEFwC9IGiIdYhoAwG6mVxUCTiFRGAI0sCDRiAIQDNwMQxRxDQDgNJOShVQTwi0kCkOGBlZ40IACEAbEtfAgrgEAvGBKsrBuRwnJQriCRGHI0cAKDhpQAEBcCwpiGoCw65iYap+sKqwv8GKTAIQEiULESXRhTiPLPDSgACAzxDXzEdMAIF6i6rX2z7UMbiVZGFJUFcINJAqRVqoLeBpbzqLxBAD2S3ZuJaY5i5gGAPZpX12YrlssScXcmdL9WCJZCOeRKEROSCLmhkYTAJgj3TmZuJYecQ0AcmclKZXJcpkkFRP9rX2CMQhVjOmOg0nJwHRIFsJJJArhGCuNhSA1vmgkAUAwZXp+D1JMk4hrABAUqZJgybo7+yl5lkrHrtvplgHCjEQhjEAjBAAQFMQ0AECuTEnQJRsbMd1kK5l0h060fPT/s9l/U46ZW6gqhFPyvd4AAAAAAAAQz8SuvplU41npDp3s/7NJ+IUpSQg4iUQhAAAAAADICAk5c9TtKPF6ExBAJAoBAAAAADCQiVWFCB4SjmiPRCEAAAAAAIYiWYhUrCb5Oi5PkhAdkSgEAAAAAMBgJAuRSjbJwugj23UguJj1GAAAAAAAICCyTfpFX8dsyuFGRSEAAAAAAIajqhCpRJN8VAYiVyQKAQAAAAAAfI4kIexAohAAAAAAAB+gqhCA00gUAgAAAAAAQBKViWFHohAAAAAAAJ9IVlVItSHsRLIwvJj1GAAAAAAAH8k0WdgyuNWNzYHPlZftiksMMutxuFFRCAAAAAAAAJKEoKIQAAAAAIAgyqQ7MlWHkEgQ4lNUFAIAAAAAEFKMbYiO4xEyPmG4kSgEAAAAAACAJKoLw46uxwAAAAAAhARdjQGkQkUhAAAAAAAhQJIQiVBBiPZIFAIAAAAAAIQQSUJ0RNdjAAAAAAB8rGOlYGF9AdWDALKSVUXhokWLVF5erqKiIo0dO1br169PufwTTzyhiooKFRUV6fOf/7xWrlyZ1cYCALy1e/duTZ8+XcXFxerVq5dmzpypffv2pXzNgQMHNGfOHB133HHq3r27Jk+erMbGxrhl8vLyOj2WLVsWt0xLS4tuuOEGDRkyRIWFhSovL9dDDz1ky34R1wAgnIIY14hp4ZMoIUiSEJmgmjCYWlpaNHLkSOXl5Wnjxo2WX285Ufj4449r3rx5WrhwoWprazVixAhNmjRJH374YcLl165dq4suukgzZ87U66+/rgsuuEAXXHCB/vGPf1jeWACAt6ZPn65NmzapurpaK1as0Isvvqgrrrgi5WuuvfZaPfPMM3riiSf0wgsv6IMPPtA3v/nNTss9/PDD2rlzZ+xxwQUXxP393//937V69Wo9+OCD2rp1q37/+9/rxBNPzHmfiGsAEF5Bi2vEtHBpGdxKQhBAJ9///vc1YMCArF+fF4lEIlZeMHbsWH3hC1/QPffcI0lqa2vToEGDdNVVV+n666/vtPzUqVO1f/9+rVixIvbc6aefrpEjR2rx4sUJ36OlpUUtLS2xfzc1NWnw4MH63urxKjyG3tIAvNGy/5B+OWGN9uzZo549e+a0rubmZvXs2VNf7vMtdc0rsGkLjzgUadXzH/2Xtm/fruLi4tjzhYWFKiwszHq9mzdv1kknnaTXXntNY8aMkSStWrVK5557rnbs2JEwGDU1NamkpERLly7VlClTJElbtmzR8OHDtW7dOp1++umSjlRePPXUU50aUVGrVq3ShRdeqHfeeUe9e/fOeh8ScTquEdMAmMquuObHmCYFM6552VY7/roFyi8ssm1fkF7rIJKEyM3gAR95vQm2OvRxq1696LehjWuS9D//8z+aN2+e/vjHP+pzn/ucXn/9dY0cOdLaSiIWtLS0RLp06RJ56qmn4p6fMWNG5Otf/3rC1wwaNChy5513xj23YMGCyCmnnJL0fRYuXBiRxIMHDx5GPt5++20rp86EPvnkk0hpaalj29i9e/dOzy1cuDCnbX7wwQcjvXr1invu4MGDkS5dukSefPLJhK9ZvXp1RFLk//7f/xv3/ODBgyN33HFH7N+SIgMGDIgcd9xxkS984QuRBx98MNLW1hb7+7e//e3IhAkTIj/4wQ8iAwYMiHz2s5+NXHfddZGPP/44p31yI64R03jw4GH6I9e45seYFokEL67RVuPBgwePI4+wxrWGhobIwIEDI6+99lrk3XffjUiKvP7665bXY6mU4aOPPtLhw4fVr1+/uOf79eunLVu2JHxNQ0NDwuUbGhqSvs/8+fM1b9682L/37NmjIUOGqL6+PucqHpM1Nzdr0KBBnTLLQROW/ZTCs69h2c/oHXM77vwXFRXp3XffVWurM3eCI5GI8vLy4p7L9Q5VQ0OD+vbtG/dc165d1bt376Tn9IaGBhUUFKhXr15xz3eMAz/60Y80fvx4HX300frLX/6i73znO9q3b5+++93vSpLeeecd/f3vf1dRUZGeeuopffTRR/rOd76jf/3rX3r44Yez3ic34lpYY5oUnnMD+xk8YdlXu+KaH2OaFLy4RlvNWWE5L0jh2Vf2M3jCHNcikYguueQSXXnllRozZozq6uqyXpeRfZ6SlVz27Nkz8F9sSSouLmY/AyYs+xqW/czPz2oeqE6KiopUVOR9F53rr79eP//5z1Mus3nzZke34aabbor9/6mnnqr9+/frl7/8ZaxB1dbWpry8PD322GOxRsgdd9yhKVOm6N5771W3bt0c3b5chD2mSeE5N7CfwROWfbUjrpkS0yTimtPCHtfCcl6QwrOv7GfwBCmuZRrT/vKXv2jv3r2aP39+zu9pKVHYp08fdenSpdOsXo2NjSotLU34mtLSUkvLAwDcdd111+mSSy5JuczQoUNVWlraaTD0Q4cOaffu3SljQGtrq/bs2RNXfZEuDowdO1Y//vGP1dLSosLCQvXv318DBw6Mq1QYPny4IpGIduzYoc9+9rPpdzQB4hoABE9Y4xoxDQCCJ9OYtmbNGq1bt67TjZwxY8Zo+vTp+t3vfpfxe1pKsxYUFGj06NFavXp17Lm2tjatXr1alZWVCV9TWVkZt7wkVVdXJ10eAOCukpISVVRUpHwUFBSosrJSe/bsUU1NTey1a9asUVtbm8aOHZtw3aNHj9ZRRx0VFwe2bt2q+vr6lHFg48aNOvbYY2OB7swzz9QHH3ygffv2xZbZtm2b8vPzVVZWlvW+E9cAIHjCGteIaQAQPJnGtLvuukv/+7//q40bN2rjxo1auXKlJOnxxx/XT37yE2tvanVQw2XLlkUKCwsjjzzySOTNN9+MXHHFFZFevXpFGhoaIpFIJPKtb30rcv3118eWf/nllyNdu3aN3H777ZHNmzdHFi5cGDnqqKMib7zxRsbveeDAgcjChQsjBw4csLq5vsJ+Bk9Y9pX9DI9zzjkncuqpp0ZeffXVyN///vfIZz/72chFF10U+/uOHTsiJ554YuTVV1+NPXfllVdGBg8eHFmzZk1kw4YNkcrKykhlZWXs73/+858jS5YsibzxxhuRf/7zn5F77703cvTRR0cWLFgQW2bv3r2RsrKyyJQpUyKbNm2KvPDCC5HPfvazkcsvvzznfXI7roXpexSWfWU/gycs+xqW/UwlaHGNtppzwrKfkUh49pX9DJ4w7Ws6uUxmYjlRGIlEInfffXdk8ODBkYKCgshpp50WeeWVV2J/+9KXvhS5+OKL45b/wx/+EBk2bFikoKAg8rnPfS7y7LPPZvO2AACP/etf/4pcdNFFke7du0eKi4sjl156aWTv3r2xv0cD0t/+9rfYc5988knkO9/5TuTYY4+NHH300ZH/7//7/yI7d+6M/f1//ud/IiNHjox07949cswxx0RGjBgRWbx4ceTw4cNx77158+ZIVVVVpFu3bpGysrLIvHnzcp71OIq4BgDhFMS4RkwDAOSSKMyLRCIRmysjAQAAAAAAAPiMPVN3AgAAAAAAAPA1EoUAAAAAAAAASBQCAAAAAAAAIFEIAAAAAAAAQAYlChctWqTy8nIVFRVp7NixWr9+fcrln3jiCVVUVKioqEif//zntXLlSpe2NDdW9nPJkiUaN26cjj32WB177LGqqqpKe1xMYfXzjFq2bJny8vJ0wQUXOLuBNrK6r3v27NGcOXPUv39/FRYWatiwYb74/lrdz1//+tc68cQT1a1bNw0aNEjXXnutDhw44NLWZufFF1/U+eefrwEDBigvL09PP/102tc8//zzGjVqlAoLC/WZz3xGjzzyiOPbCfOFJaZJxLV0/BbXwhLTJOJaMsQ1JBKWuBaWmCYR15Lxa1wjpiVGTMuS3VMwZ2PZsmWRgoKCyEMPPRTZtGlTZNasWZFevXpFGhsbEy7/8ssvR7p06RL5xS9+EXnzzTcjN954Y+Soo46KvPHGGy5vuTVW93PatGmRRYsWRV5//fXI5s2bI5dcckmkZ8+ekR07dri85dZY3c+od999NzJw4MDIuHHjIt/4xjfc2dgcWd3XlpaWyJgxYyLnnntu5O9//3vk3XffjTz//PORjRs3urzl1ljdz8ceeyxSWFgYeeyxxyLvvvtu5Lnnnov0798/cu2117q85dasXLkycsMNN0SefPLJiKTIU089lXL5d955J3L00UdH5s2bF3nzzTcjd999d6RLly6RVatWubPBMFJYYlokQlwLWlwLS0yLRIhryRDXkEhY4lpYYlokQlwLWlwjpiVGTMueEYnC0047LTJnzpzYvw8fPhwZMGBA5Lbbbku4/L//+79HzjvvvLjnxo4dG5k9e7aj25krq/vZ0aFDhyI9evSI/O53v3NqE22RzX4eOnQocsYZZ0QeeOCByMUXX+yLwBOJWN/X++67LzJ06NBIa2urW5toC6v7OWfOnMj48ePjnps3b17kzDPPdHQ77ZRJ8Pn+978f+dznPhf33NSpUyOTJk1ycMtgurDEtEiEuBa0uBaWmBaJENeSIa4hkbDEtbDEtEiEuBa0uEZMS4yYlj3Pux63traqpqZGVVVVsefy8/NVVVWldevWJXzNunXr4paXpEmTJiVd3gTZ7GdHH3/8sQ4ePKjevXs7tZk5y3Y/f/SjH6lv376aOXOmG5tpi2z29c9//rMqKys1Z84c9evXTyeffLJ++tOf6vDhw25ttmXZ7OcZZ5yhmpqaWMn7O++8o5UrV+rcc891ZZvd4sdzEZwVlpgmEdeCFtfCEtMk4loqfj0fwTlhiWthiWkScS1ocY2Ylpwfz0Wm6Or1Bnz00Uc6fPiw+vXrF/d8v379tGXLloSvaWhoSLh8Q0ODY9uZq2z2s6Mf/OAHGjBgQKcvu0my2c+///3vevDBB7Vx40YXttA+2ezrO++8ozVr1mj69OlauXKl3nrrLX3nO9/RwYMHtXDhQjc227Js9nPatGn66KOPdNZZZykSiejQoUO68sor9cMf/tCNTXZNsnNRc3OzPvnkE3Xr1s2jLYNXwhLTJOJa0OJaWGKaRFxLhbiGjsIS18IS0yTiWtDiGjEtOWJa9jyvKERmfvazn2nZsmV66qmnVFRU5PXm2Gbv3r361re+pSVLlqhPnz5eb47j2tra1LdvX/32t7/V6NGjNXXqVN1www1avHix15tmq+eff14//elPde+996q2tlZPPvmknn32Wf34xz/2etMAGIK45n9hiWkScQ1AakGNaRJxLYhxjZiGdDyvKOzTp4+6dOmixsbGuOcbGxtVWlqa8DWlpaWWljdBNvsZdfvtt+tnP/uZ/vrXv+qUU05xcjNzZnU/3377bdXV1en888+PPdfW1iZJ6tq1q7Zu3aoTTjjB2Y3OUjafaf/+/XXUUUepS5cuseeGDx+uhoYGtba2qqCgwNFtzkY2+3nTTTfpW9/6li6//HJJ0uc//3nt379fV1xxhW644Qbl5wfjHkWyc1FxcTF3qEIqLDFNIq4FLa6FJaZJxLVUiGvoKCxxLSwxTSKuBS2uEdOSI6Zlz/NvQEFBgUaPHq3Vq1fHnmtra9Pq1atVWVn5/7d3xy7JxHEcx78P1RmB0BQ0WKAQQUtDFNEg/QONbeLWEK2B2wUVRERLNNdWRGOB1NBUuJ0gJEUItdTWILQUfJ5JeXqqB8+n7tR7v+AmT/h9ke4NX0I/fc/09PS7+83Mzs/Pv7y/FTQzp5nZ5uamra6uWj6ft4mJiSCO+l/8zjk6OmqlUsmKxWL9mpubs9nZWSsWi5ZIJII8vi/NfKYzMzN2d3dXj6uZ2e3trQ0ODrZkeMyam/Pl5eVDYGrBlfRzhw1YOz6L8LOi0jQzutZpXYtK08zo2r+06/MIPycqXYtK08zoWqd1jaZ9rR2fRS0jzF9SqTk8PFQsFtP+/r6ur6+1sLCg/v5+PT09SZIymYxyuVz9/svLS3V3d2tra0vlclmu66qnp0elUimsERrid86NjQ05jqPj42M9Pj7Wr2q1GtYIDfE759/a5Ve0JP+zPjw8KB6Pa2lpSTc3Nzo5OdHAwIDW1tbCGqEhfud0XVfxeFwHBweqVCo6OztTKpXS/Px8WCM0pFqtyvM8eZ4nM9P29rY8z9P9/b0kKZfLKZPJ1O+vVCrq6+vT8vKyyuWydnd31dXVpXw+H9YIaAFRaZpE1zqta1FpmkTX6Br8iErXotI0ia51WtdoGk37bi2xKJSknZ0dDQ0NyXEcTU5OqlAo1F9Lp9PKZrPv7j86OtLIyIgcx9HY2JhOT08DPnFz/Mw5PDwsM/twua4b/MF98vt5/qldwlPjd9arqytNTU0pFospmUxqfX1db29vAZ/aPz9zvr6+amVlRalUSr29vUokElpcXNTz83PwB/fh4uLi07+52mzZbFbpdPrDe8bHx+U4jpLJpPb29gI/N1pPVJom0TWps7oWlaZJdE2ia2hcVLoWlaZJdE3qrK7RNJr2nX5JHfS/pQAAAAAAAACaEvp3FAIAAAAAAAAIH4tCAAAAAAAAACwKAQAAAAAAALAoBAAAAAAAAGAsCgEAAAAAAAAYi0IAAAAAAAAAxqIQAAAAAAAAgLEoBAAAAAAAAGAsCgEAAAAAAAAYi0IAAAAAAAAAxqIQAAAAAAAAgJn9Bii2eQWSkhE0AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "plotter.plot(pinn_learn)" - ], - "outputs": [], - "metadata": {} + "plotter.plot(trainer_learn)" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTAAAAINCAYAAAAJLlCfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADOCklEQVR4nOzdd3xV9f3H8de5I8nNXkASSAgzbMIWHAzZskWxWotacVJr6VBr69ZqrbNqXT+LrVq34kSGogxlh01YYZMwQhKy7/r9cZKbhIQp5Ga8n4/H6T3je879nDQH9c33fL+G1+v1IiIiIiIiIiIiIlIHWfxdgIiIiIiIiIiIiMiJKMAUERERERERERGROksBpoiIiIiIiIiIiNRZCjBFRERERERERESkzlKAKSIiIiIiIiIiInWWAkwRERERERERERGpsxRgioiIiIiIiIiISJ2lAFNERERERERERETqLJu/C6ivPB4P+/fvJywsDMMw/F2OiIiIiIiIiIhIveL1ejl27BgJCQlYLCfuZ6kA8yzt37+fxMREf5chIiIiIiIiIiJSr+3Zs4cWLVqc8LgCzLMUFhYGmD/g8PBwP1dz7jmdTubMmcPw4cOx2+3+LkekUdJzKOJ/eg5F/EvPoIj/6TkU8b+G/Bzm5eWRmJjoy9lORAHmWSp/bTw8PLzBBpjBwcGEh4c3uIdDpL7Qcyjif3oORfxLz6CI/+k5FPG/xvAcnmp4Rk3iIyIiIiIiIiIiInWWAkwRERERERERERGpsxRgioiIiIiIiIiISJ2lMTBFREREREREROoIr9eLy+XC7Xb7uxSpI5xOJzabjeLi4nr3e2G1WrHZbKcc4/JUFGCKiIiIiIiIiNQBpaWlHDhwgMLCQn+XInWI1+slLi6OPXv2/Owg0B+Cg4OJj48nICDgrK+hAFNERERERERExM88Hg8ZGRlYrVYSEhIICAiol2GVnHsej4f8/HxCQ0OxWOrPaJBer5fS0lIOHTpERkYG7dq1O+v6FWCKiIiIiIiIiPhZaWkpHo+HxMREgoOD/V2O1CEej4fS0lKCgoLqVYAJ4HA4sNvt7Nq1y3cPZ6N+3bWIiIiIiIiISANW3wIqkVM5F7/TeipERERERERERESkzlKAKSIiIiIiIiIiInWWAkwREREREREREWkQdu7ciWEYpKWl1atry8kpwBQRERERERERkbN26NAhbr31VpKSkggMDCQuLo4RI0awePFiAAzD4NNPP/VvkVKvaRZyERERERERERE5a5dffjmlpaW8+eabtG7dmqysLObPn8+RI0f8XdpZKS0tJSAgwN9lSCXqgSkiIiIiIiIiUgd5vV4KS121vni93tOuMScnh4ULF/LEE08wePBgWrZsSd++fbnnnnsYN24cycnJAEycOBHDMHzb27dvZ/z48TRr1ozQ0FD69OnDvHnzqlw7OTmZxx57jBtuuIGwsDCSkpJ49dVXq7RZtmwZPXr0ICgoiN69e7N69eoqx91uN7/+9a9p1aoVDoeDlJQUnnvuuSptrrvuOiZMmMCjjz5KQkICKSkpp3VtqT3qgSkiIiIiIiIiUgcVOd10uu+bWv/ejQ+NIDjg9CKj0NBQQkND+fTTT7ngggsIDAyscnz58uU0bdqUf//734wcORKr1QpAfn4+o0eP5tFHHyUwMJD//Oc/jB07lvT0dJKSknznP/XUUzz88MP8+c9/5sMPP+TWW29l4MCBpKSkkJ+fz5gxYxg2bBhvvfUWGRkZ/Pa3v63y/R6PhxYtWvDBBx8QExPDkiVLuOmmm4iPj+fKK6/0tZs/fz7h4eHMnTvXV9+pri21RwGmiIiIiIiIiIicFZvNxsyZM5k2bRovv/wyPXv2ZODAgVx11VV069aNJk2aABAZGUlcXJzvvO7du9O9e3ff9sMPP8wnn3zCZ599xvTp0337R48ezW233QbAXXfdxTPPPMN3331HSkoK77zzDh6Ph//7v/8jKCiIzp07s3fvXm699Vbf+Xa7nQcffNC33apVK3788Ufef//9KgFmSEgIr7/+uu/V8VdfffWU15baowBTanQgt5gFBwwGlriItNv9XY6IiIiIiIhIo+OwW9n40Ai/fO+ZuPzyy7nssstYuHAhP/30E19//TV///vfef3117nuuutqPCc/P58HHniAL7/8kgMHDuByuSgqKmL37t1V2nXr1s23bhgGcXFxHDx4EIBNmzbRrVs3goKCfG369+9f7btefPFF3njjDXbv3k1RURGlpaWkpqZWadO1a9cq416e7rWldijAlBr96t8r2HnEysAth5nQM9Hf5YiIiIiIiIg0OoZhnPar3P4WFBTEsGHDGDZsGH/961+58cYbuf/++08YYP7hD39g7ty5/OMf/6Bt27Y4HA4mT55MaWlplXb24zpVGYaBx+M57breffdd/vCHP/DUU0/Rv39/wsLCePLJJ1m6dGmVdiEhIad9Tal9msRHajSyczMAvlqf6edKRERERERERKS+6dSpEwUFBYAZQrrd7irHFy9ezHXXXcfEiRPp2rUrcXFx7Ny584y+o2PHjqxdu5bi4mLfvp9++qna9wwYMIDbbruNHj160LZtW7Zv335Ori21RwGm1Kg8wPx+y2EKSlx+rkZERERERERE6qIjR44wZMgQ3nrrLdauXUtGRgYffPABf//73xk/fjxgziY+f/58MjMzOXr0KADt2rXj448/Ji0tjTVr1nD11VefUc9KgKuvvhrDMJg2bRobN27kq6++4h//+EeVNu3atWPFihV88803bNmyhb/+9a8sX778nFxbao8CTKlRp/gwYgO9lLg8fLv5oL/LEREREREREZE6KDQ0lH79+vHMM89wySWX0KVLF/76178ybdo0XnjhBcCcSXzu3LkkJibSo0cPAJ5++mmioqIYMGAAY8eOZcSIEfTs2fOMv/vzzz9n3bp19OjRg3vvvZcnnniiSpubb76ZSZMmMWXKFPr168eRI0d8kwL93GtL7TG8Xq/X30XUR3l5eURERJCbm0t4eLi/yznnnE4nt/xrNvP3W5iQmsCzV/Xwd0kijY7T6eSrr75i9OjR1cZ9EZHaoedQxL/0DIr4n57D2lNcXExGRgatWrWqMnGMiMfjIS8vj/DwcCyW+tcX8WS/26ebr9W/u5Za0ynS7Lr9w9bDuD3KuUVEREREREREpPYpwJQTahUGoYE2sgtKWbs3x9/liIiIiIiIiIhII6QAU07IaoEL20QDsCD9kJ+rERERERERERGRxkgBppzUwPaxACzYogBTRERERERERERqnwJMOamL25kB5tq9ORzJL/FzNSIiIiIiIiIi0tgowJSTigsPokNcGF4vLNx62N/liIiIiIiIiIhII6MAU05pUEpTAL5LP+jnSkREREREREREpLFRgCk1OlJ0hAXFC/B6vQxs3wSAxduO4PV6/VyZiIiIiIiIiIg0Jo06wJw4cSJRUVFMnjzZ36XUKaXuUqbNn8a84nm8sOYFeraMJMhu4XB+CVsP5vu7PBERERERERFpxGbOnElkZKS/y5Ba1KgDzN/+9rf85z//8XcZdU6ANYBrO1wLwL83/pv30t+mT3I0AIu3aRxMEREREREREalw6NAhbr31VpKSkggMDCQuLo4RI0awePFiXxvDMPj000/P+NrJyck8++yzVfZNmTKFLVu2nHW9M2fOxDCMasvrr79+1tesbOfOnRiGQVpa2jm5noDN3wX406BBg1iwYIG/y6iTJradyE9rf2Ju8VyeXPEklzb7LWyNZ/G2I1x/YSt/lyciIiIiIiIidcTll19OaWkpb775Jq1btyYrK4v58+dz5MiR8/J9DocDh8Pxs64RHh5Oenp6lX0RERE/65rnQ2lpKTZbo47vgDrcA/OHH35g7NixJCQknDClf/HFF0lOTiYoKIh+/fqxbNmy2i+0Absk8BKuTrkagAXZL2ANSWfpjiO43B4/VyYiIiIiIiIidUFOTg4LFy7kiSeeYPDgwbRs2ZK+fftyzz33MG7cOMDsRQnmUH6GYfi2t2/fzvjx42nWrBmhoaH06dOHefPm+a49aNAgdu3axe9+9ztfL0mo+RXyzz//nD59+hAUFERsbCwTJ048ad2GYRAXF1dlKQ9F169fz6hRowgNDaVZs2Zce+21HD5c8Ubq7Nmzueiii4iMjCQmJoYxY8awfft23/FWrcyOXz169MAwDAYNGuS7nzvvvLNKHRMmTOC6667zbScnJ/Pwww/zq1/9ivDwcG666SYAfvzxRwYOHIjD4SAxMZE77riDgoIC33kvvfQS7dq1IygoiGbNmjW44RLrbIBZUFBA9+7defHFF2s8/t577zFjxgzuv/9+Vq1aRffu3RkxYgQHD1bMlJ2amkqXLl2qLfv376+t26jXDMNgRs8ZXNb6MtxeN8Et3qLAsp31+/P8XZqIiIiIiIhIw+f1QmlB7S9nMIFvaGgooaGhfPrpp5SUlNTYZvny5QD8+9//5sCBA77t/Px8Ro8ezfz581m9ejUjR45k7Nix7N69G4CPP/6YFi1a8NBDD3HgwAEOHDhQ4/W//PJLJk6cyOjRo1m9ejXz58+nb9++Z/KT9snJyWHIkCH06NGDFStWMHv2bLKysrjyyit9bQoKCpgxYwYrVqxg/vz5WCwWJk6ciMdjdvgq72A3b948Dhw4wMcff3xGNfzjH/+ge/furF69mr/+9a9s376dK664gkmTJrF27Vree+89Fi1axPTp0wFYsWIFd9xxBw899BDp6enMnj2bSy655Kzuv66qs31QR40axahRo054/Omnn2batGlcf/31ALz88st8+eWXvPHGG9x9990A53SsgZKSkioPYl6eGeI5nU6cTuc5+566ovye3C439/W9j5yiHBYfWExw4kxmrW9P57iBJzzX6/WSmVeCy+OhRaTD9zckInJmyp/DhvhnjEh9oedQxL/0DIr4n57D2uN0OvF6vXg8Hl8QRmkBlsdb1Hotnrv3QkDIabW1WCy88cYb3Hzzzbz88sv07NmTSy65hClTptCtWzcAYmJiAPO17aZNm5rf4fHQtWtXunbt6rvWgw8+yCeffMKsWbO4/fbbiYyMxGq1EhoaWuW88p9P+eejjz7KlClTuP/++33X6tq1a8XP8fj783jIzc0lNDTUty80NJT9+/fzz3/+k9TUVB555BHfsddff52WLVuyefNm2rdvX6135+uvv06zZs1Yv349Xbp08d1vVFRUlboB3//H5bxeb7V9gwcP5ne/+51ve9q0aUyePJk77rgDwzBo06YNzz77LIMHD+bFF19k586dhISEMHr0aMLCwkhMTKR79+4nvP/a5vF48Hq9OJ1OrFZrlWOn+2dLnQ0wT6a0tJSVK1dyzz33+PZZLBaGDh3Kjz/+eF6+829/+xsPPvhgtf1z5swhODj4vHxnXTB37lwALvVeynrPbnKte/j4wH3Ef34dzazNqrXflgfv77CSVWSGlpEBXka28NCvqReLckyRs1L+HIqI/+g5FPEvPYMi/qfn8Pyz2WzExcWRn59PaWmpudNZSKQfask7dgzs7tNuP2zYMDZu3MiPP/7IihUrmDt3Lk8++STPP/88V199ta9dUVGRr0MYmD0wn3jiCebMmUNmZiZut5uioiK2bt3qa+fxeCguLq5yXnFxMV6v17cvLS2Na665pkqbkykuLiYsLKzKvCgWi4W8vDxWrlzJggULCA8Pr3beunXriIuLY/v27Tz22GOsXLmS7OxsX1C4efNmkpKSyM/PB8yempVrcrlclJaWVtvndDqr3G+XLl2qtFm9ejUbNmzgww8/9O0rDz3XrVtHv379aNGiBW3atOHSSy/l0ksvZcyYMXUmryotLaWoqIgffvgBl8tV5VhhYeFpXaNeBpiHDx/G7XbTrFnVAK1Zs2Zs3rz5tK8zdOhQ1qxZQ0FBAS1atOCDDz6gf//+Nba95557mDFjhm87Ly+PxMREhg8fXuMvdX3ndDqZO3cuw4YNw263A9ByX1+u++ZGCMrkzZL/8MKgf9IltovvnPmbD/LiO2l4vGC1GFgMyCmFd3dYORLYlCcv70JIYL38lRPxi5qeQxGpXXoORfxLz6CI/+k5rD3FxcXs2bOH0NBQgoKCzJ3eMLM3ZC0LtwfDGb5NGR4ezvjx4xk/fjwPP/ww06ZN44knnuCWW27xtXE4HFUylLvuuot58+bx97//nbZt2+JwOLjyyisxDMPXzmKxEBQUVOW8oKCgKm0cDke1NicTFBSExWIhNTW12rHi4mLGjBnD448/Xu1YfHw8ISEhXHPNNSQlJfHaa6+RkJCAx+OhW7du2Gw2wsPDfT07Q0JCqtQUEBCA3W6vss/r9VbZZ7FYiImJqdKmqKiI6667jhkzZlR7yzUpKYmAgABWr17NggULmDt3Lk888QRPPvkkS5curTZWqD8UFxfjcDi45JJLKn63y5xu6Nyo06TKA8OeSmBgIIGBgdX22+32Bv2HeOX769MyieAj0ymMfoU89nDztzfzyIWPMDx5ONsO5vO799fh8cKYbvE8OrErgTYLb/20i7/PTmfupoPc/HYaM6/viyPAeopvFZHKGvqfMyL1gZ5DEf/SMyjif3oOzz+3241hGFgsFiyWSlOWWMP8V9TP0LlzZ2bNmuW7F7vdjtfrrXJvS5Ys4brrruPyyy8HzB6ZO3fuZNCgQb52AQEBeDyeKueVr5d/duvWje+++45f//rXp1Xb8edX1qtXLz766CNat25d4+zfR44cIT09nddee42LL74YgEWLFvmuVx64AtXut0mTJmRmZvr2ud1uNmzYwODBg6u0K/89KNejRw/S09Np165djTWD+XMaPnw4w4cP54EHHiAyMpIFCxYwadKk0/qZnE8WiwXDMGr8c+R0/1yps5P4nExsbCxWq5WsrKwq+7OysoiLi/NTVQ2fYRhc2DqJwl03Eh/QjSJXEb///vc8sewJ7vtsDUVONxe2jeGZKalEOOwE2a3ceHFr/ndTP0IDbSzNyObmt1ZS4jr9bugiIiIiIiIiUncdOXKEIUOG8NZbb7F27VoyMjL44IMP+Pvf/8748eN97ZKTk5k/fz6ZmZkcPXoUgHbt2vHxxx+TlpbGmjVruPrqq6uN25icnMwPP/zAvn37qswEXtn999/P//73P+6//342bdrEunXreOKJJ87qfm6//Xays7P5xS9+wfLly9m+fTvffPMN119/PW63m6ioKGJiYnj11VfZtm0b3377bZU3dgGaNm2Kw+HwTQCUm5sLwJAhQ/jyyy/58ssv2bx5M7feeis5OTmnrOlPf/oTy5Yt4ze/+Q1paWls3bqVWbNm+Sbx+eKLL3j++edJS0tj165d/Oc//8Hj8ZCSknJWP4O6qF4GmAEBAfTq1Yv58+f79nk8HubPn3/CV8Dl3LiwTSx4Awk5ejPXdzEnUHpr01ukuR8iMDiLv03sht1a9deqV8to/n19Hxx2Kz9sOcT0d1ZT6qobA8mKiIiIiIiIyNkLDQ2lX79+PPPMM1xyySV06dKFv/71r0ybNo0XXnjB1+6pp55i7ty5JCYm0qNHD8CcoDkqKooBAwYwduxYRowYQc+ePatc/6GHHmLnzp20adOGJk2a1FjDoEGD+OCDD/jss89ITU1lyJAhvpnAz1RCQgKLFy/G7XYzfPhwunbtyp133klkZKSvh+W7777LypUr6dKlC7/73e948sknq1zDZrPx/PPP88orr5CQkOALcm+44QamTp3Kr371KwYOHEjr1q0ZPHjwKWvq1q0bX3zxBVu2bOHiiy+mR48e3HfffSQkJAAQGRnJxx9/zJAhQ+jYsSMvv/wy//vf/+jcufNZ/QzqIsPr9Xr9XURN8vPz2bZtG2B2lX366acZPHgw0dHRJCUl8d577zF16lReeeUV+vbty7PPPsv777/P5s2bq42NeT7k5eURERFBbm5ugx0D86uvvmL06NFVuvPuPVrIRU98h9VisPIvQ1ma9QN/XPAXvJYCLNi4o+d0rut8HVZL9dfEF287zPUzl1Pq8jCiczNeuLpntbBTRCqc6DkUkdqj51DEv/QMivifnsPaU1xcTEZGBq1atao2TqA0bh6Ph7y8PMLDw0/4CnlddrLf7dPN1+rsGJgrVqyokkKXd8edOnUqM2fOZMqUKRw6dIj77ruPzMxMUlNTmT17dq2El41Zi6hgOsaHs+lAHv/9cRclrkSObbuTiKRPcQdt4NlVz/Ltnm959MJHSY5IrnLuhW1jefXaXtz0n5V8syGL299exdNTUgmtYWKfw/klLNx6iM0HjrH3aBFHC0sJDbQRGWynfbMwurWIpEvzcIID6uyvsIiIiIiIiIiInAN1Nv0ZNGgQp+ocOn36dN/7/nJuGbt/JPnQPMjtCrGtqxy7ZWBrfvtuGk/N3VK2J4zH+j9NafAynlj2BGsPreWKz6/gzl538osOv8BiVPztwKCUprxybS9u/u9K5mzMYtRzPzDt4tZ0Tggnp9DJ0oxsFm87zIb9p56FymYx6Nw8gj4to+jZMopWsSEkRgcTbLdisZizcnm9XlweL063B6fbi8vt8W273F7sNgshAVYcAVYCrJZqs3mJiIiIiIiIiIh/1dkAU/zL8t0jdN+7FNfei6oFmGO6JfDcvK3sOFwAwFV9EhndLQGYQL+4fty35D5+OvATjy97nG93f8sTlzxBrCPWd/7gDk15Z1o/7vjfavZkF3HfrA011tA5IZw+ydEkRgcTGxrAsWIXh/NL2Lg/jzV7c8jKK2HNnhzW7MmBRRlVzg2wWvCUhZeny2oxCLabYWZwgJXgABvBAVZsVgOrxcBiVHya6xy3bX7aLAZWa9mnpfzTUnXbeoL9FqPs+yzYLQY2qwW71SDAasFuM9varRYCalq3Wcx2VgtWi4JYEREREREREWkYFGBKzaJbw96lGNk7qh2yWgzevKEv36UfxOPxclXfJN+x+NB4Xhn2Cu+nv8/TK59mWeYyfvnVL/nX0H/RKqKVr13v5GjmzBjIu8t2M3djFnuPFhEaaCM1MZIBbWPo3yaGpmEnHvPD6/WyL6eI5TuzWZZxlI0H8th9pICjhU4ASt0nniTIVhYS2iwWSl0eX1u3x8uxEhfHSlxn/OOqawwDM9y0WrBZjWrr5cGnw24hyG7FYbcS5Fssvm1H2XZQlW0rjgALIYE2QgNthAXaCQm0YtN4piIiIiIiIiJyHijAlBp5o81el8bR6gEmQGJ0ML/qn1zjMYth4aoOV9E3vi+3z7udvfl7ufbra3np0pfo1qSbr11ooI0bL27NjRe3rvE6J2MYBi2igmkRFczEHi18+wtLXRSVuilxeczekL7Azgws7Vaj2mviLreHQqebwhI3haUuCkvdZYt5LafHi8fjxeP14vZ9gsdbsc/t8eL1grvStsvjxe0xX1l3u8u3j9tfvu324qq8r2zb6a543d3pNsPW8u3K68f3NPV6McPZWpzt3WG3EhZkIzTIRlig+RkaaCM00E5YkI3wIBtRIQFEhwQQGRxAdHAAUSF2okMCcNiten1fRERERERERGqkAFNqVB5gUkMPzNPVOqI1b41+i998+xvWHV7HzXNv5pVhr1QJMc8187XvM/u1tlkthFsthAfV3xn1PB4vTs/xQac55qfT7aHUVR6ImutOt4cSl4dip5sip5uSss9ip6fss3zxUFTqptjlLvv0UFxqti0sdZFX7PKFpEVl1zh4rOSM6w+wWcoCzQBiQgJoGhZI0/AgmoYF0iw8iKbhgTQLMz+D7NVnuBcRERERERGRhksBptTIG1XWA/NnBJgAMY4YXh/+OrfPv50VWStqJcRsjCwWg0CLlRomdD/vSlxuCkrc5Be7OFbi5Fixi/xiF/llr+PnF7s4Vuwkt8hJTqGTo4WlZBeUcrSwlKMFTkrdZk/RzLxiMvOKT/l94UE24iKCaB7poEVUMM2jHLSIcvi2Y0MD1JtTREREREREpAFRgCk1i0oGwCjKhqKj4Ig660sF24N58dIXuW3+bazMWsnNc2/m1WGv0rVJ13NUrPhToM1KoM1KdEjAGZ/r9XopLHWTXVBKTqGT7MJSjuSXcPBYCVl5xRw8VsLBvGKy8sztEpeHvGIXecX5bMnKP0E9lrJQM5ikaAeJUcEkRQeTGB1MUkxwve5pKyIiIiIiItIYKcCUmgWGUWyLIMiVa75G3rzXz7pcsD2Yly59iVvn3cqqg6u4ae5N6okpGIZBSKCNkEAbidEnb+v1eskrdnEwr5gDucXsyyli39Ei9h4tZO/RIvblFJFZFnLuOFTAjkMFNV4nwmEnKdoMNVtEO3zrSdHBJEQ6sGsyIhEREREREZE6RQGmnFB+YJwZYB75+QEmmCHmv4b+yxdi3jz3Zl4e9jLdm3Q/B9VKQ2cYBhEOOxEOO+2ahdXYptTl4UCuGWzuOVrInuwidmcXlq0Xcji/lNwiJ+v25bJuX2618y0GxEc4ynpsOip6bpZ9xoTo9XQREREREZGGZMGCBQwePJijR48SGRlZY5uZM2dy5513kpOTU6u1SQUFmHJCBYFNiS1I/1kT+RyvPMSsPCbmy0NfJrVp6jn7Dmm8AmwWWsaE0DImpMbjBSWuqsFmdmGVzxKXx+zZmVPEjzX82gcHWM2em1HlvTYdNI8KJirYTmRwAJHBdiIddmzqxSkiIiIiIo3IddddR05ODp9++qm/S6mzHnjgAR588MFq++fOncvQoUN/9vVPJ4itzxRgygkVBcSYK8f2n9Prlo+JOf3b6SzPXM7Nc2/mHwP/wcUtLj6n3yNyvJBAGx3iwukQF17tmNfr5dCxEvYcNcPM3Ueq9t7MzCumsNTN5sxjbM48dtLvCQu0ERliJyzQjiPAisNuJchuLVu3mNsB1rLxQy3YrQZ2qwW71UKA1YLdZm5b8bLxqEHk9iM4AgN87QJs5e3McwPKzjUXQ71ERURERESkwXM6ndjt9WuOg86dOzNv3rwq+6KjTzGemh/UxZ+tAkw5oWJ72cQ9eQfO+bXLQ8zfzP8NSzOXMv3b6dzZ806u63ydwhfxC8MwaBoeRNPwIHq1rP4PkBKXm31HK3pu7jlaxO4jhRzILeJooZOcwlLyil0AHCubgR2KzkFlVl7ZvPKMzggoCzLNgNNSsV0Wfpbvs1oMbFYDm8XAajHbWC01b9uslrL9VdfNNjVvV752xXpZOFt2XYth7rOWrZe3sVgMrIaBxQJWw8BmsZjrlc8xzHYiIiIiIlK3rV+/nj/+8Y8sXLiQkJAQhg8fzjPPPENsbCwAs2fP5pFHHmH9+vVYrVb69+/Pc889R5s2bQDYuXMnrVq14t133+Wll15i6dKlvPzyyyxYsICcnBwuuuginnrqKUpLS7nqqqt49tlnfQHcf//7X5577jnS09MJCQlhyJAhPPvsszRt2rRKjYsXL+aee+5hy5YtpKam8vrrr9OlS5cT3tOsWbN48MEH2bhxIwkJCUydOpV7770Xm+3EUZvNZiMuLq7GY4sWLeKee+5hxYoVxMbGMnHiRP72t78REmK+Yfjuu+/y+uuv13gfO3fuZPDgwQBERZlZztSpU5k5cybJycnceeed3Hnnnb7vSk1NZcKECTzwwAOA+d/DL730El9//TXz58/nj3/8Iw888MBJ79Hr9fLggw/yxhtvkJWVRUxMDJMnT+b5558/4f3/HAow5YR8AeY57oFZzmFz8NLQl3hs6WN8tPUjnl75NMsyl3Fvv3tpEdbivHynyNkKtFlp3SSU1k1CT9jG5TZnST9aaM6qfqzYSbHTQ7HTTZHTTVGp+VnsdFNY6qbU5cHp9lDq9uB0eyl1uXG6veY+l4dSl5vD2TkEh4aZx91me6fbi9Nlnlfq9uD1Vq3D3A/m/zRshoEvyLRWCkMrgs6K4zZL1XaW49r7AtOy0NVqVA1My69R+fssFgNLpXaV6/GtG2YbS6VrGQbmulFpvexaxvHrZXVZfNcy78uoad2ofo3y77UYla5R9nMxjBrqP/5eKt3nierXXzyJiIiInB9er5ci17noGHFmHDbHOft3vJycHIYMGcKNN97IM888Q1FREXfddRdXXnkl3377LQAFBQXMmDGDbt26kZ+fz3333cfEiRNJS0vDYqkYouvuu+/mqaeeokePHgQFBbFgwQK+++474uPj+e6779i2bRtTpkwhNTWVadOmAWZvwocffpiUlBQOHjzIjBkzuO666/jqq6+q1PnHP/6R5557jri4OP785z8zduxYtmzZUmNPxIULF/KrX/2K559/nosvvpjt27dz0003AXD//fef8c9o+/btjBw5kkceeYQ33niDQ4cOMX36dKZPn86///1vAFwuFw8++CAdO3asdh+JiYl89NFHXH755aSnpxMeHo7D4TijGh544AEef/xxnn32WWw22ynv8aOPPuKZZ57h3XffpXPnzmRmZrJmzZozvvfTpQBTTqjoPPbALBdgDeD+/vfTPqo9/1jxDxbtW8TEWRO5vsv1XNPxGiICI87bd4ucazarheiQAKJDAs7J9ZxOJ1999RWjRw84afd9V3kA6gs4PThdFdvHB6Xl4afL48Xt8eBye3F5yha3B3eldbONF6e7rK3H62tf+VyzTaVzy465PV6cNbStfNzjNT/NdXB5PHg84C7bfzJeL7i8XjhFOzm/KoedlUPQqgHqCULQGgLRms6vfMw8x/CFzOVBb/m1rJaqYW95CGutdM2KALpqiOs7p2wbr4f0AwaHftxFgN1W6buo8XvLg+HKAXJFEEyV77VWCoYrAvWar1u5zQmvq17JIiIiDU6Rq4h+7/Sr9e9devVSgu3B5+RaL7zwAj169OCxxx7z7XvjjTdITExky5YttG/fnssvv7zKOW+88QZNmjRh48aNVXpB3nnnnUyaNKlK26ioKF544QWsVisdOnTgsssuY/78+b4A84YbbvC1bd26Nc8//zx9+vQhPz+f0NCKDir3338/w4YNA+DNN9+kRYsWfPLJJ1x55ZXV7unBBx/k7rvvZurUqb7rPvzww/zpT386aYC5bt26Kt/ZqVMnli1bxt/+9jeuueYaXy/Jdu3a8fzzzzNw4ED+9a9/ERAQwC9/+UvCw8OxWCw13kf5q+hNmzY9qzEwr776aq6//nrf9g033HDSe9y9ezdxcXEMHToUu91OUlISffv2PePvPV0KMOWEfD0wCw+DqwRsgeflewzD4OqOV9M/oT8P//QwyzOX8681/+LNDW8yuf1krky5kpbhLc/Ld4s0BDarBZsVHFj9Xcp54fF4fWGmu2zdU2W9euhZORQ96TleL24PVc7xeM2Q1ndOpXNdvnbgqXzca/7teHkIW3nd4/X6FrfHPFZtvaxdlfM85edVukbZPXrL9rs9VdfNa1BWk7fsGlRfr3Rd8xpV18vPP75374n4gmQaapBs5ZOd6f4u4rRVD2QrQk/fUBBlwzLYLFWHdLBVGjqiYttSsW0xsForeiOXD0Vh9W1bjtuu6P1c8d3lYa2l0vrxxyrqrOl4+bAUdqsFm9WC3VI2vIXVwF5p2Ar1DhYREfG/NWvW8N1331UJ7spt376d9u3bs3XrVu677z6WLl3K4cOH8Xg8AOzevbtKgNm7d+9q1+jcuTNWa8V/C8XHx7Nu3Trf9sqVK3nggQdYs2YNR48erXLtTp06+dr179/ftx4dHU1KSgqbNm064T0tXryYRx991LfP7XZTXFxMYWEhwcE1h78pKSl89tlnvu3AwEDf9dauXcvbb7/tO+b1evF4PGRkZJCSkkJaWhr/+Mc/WLt27Unv42wd/7M91T1eccUVPPvss7Ru3ZqRI0cyevRoxo4de9JX6H8OBZhyQqW2MLzWAAx3KRzLhKjzGyK2imjF/w3/P77Z9Q2vrX2NLUe38J+N/+E/G/9Dv7h+TE6ZzKWJl2K31q2BZEXk/LJYDCwY2BtmPluneWsIUGtad5cHp5VD1BMEsJUD1OMDWK+3IhCuHLpWXKsiZK4c5rqrrFcNYn3XPb7N8XVWCqPLA2uPF1xuN3v27iM+PgGvQZWAuXL7KrVVq7lSmxPeF77799Xvq7OintPh8YLH3ZAD5dNXEXKWfVbaLl+3Hx98+gLRinVfUGo1Q1W7tTxELV+vmEitfF+AzUKgrXziNav5WTYJW4DNqLrPVjFesUJXERGpzGFzsPTqpX753nMlPz+fsWPH8sQTT1Q7Fh8fD8DYsWNp2bIlr732GgkJCXg8Hrp06UJpaWmV9uXjQVZ2/NtqhmH4wr2CggJGjBjBiBEjePvtt2nSpAm7d+9mxIgR1a59pvf04IMPVusNChAUFHTC8wICAmjbtm2N17v55pu54447qh1LSkqioKCAyy+//Kzuw2Kx4D2uZ4LT6azW7vif7anuMTExkfT0dObNm8fcuXO57bbbePLJJ/n+++/PywRACjDlxAwDQuMgd3etBJjmVxqMTB7JiJYjWLhvIf/b/D8W71vM0sylLM1cSnRQNJe1vowxrcfQMbqj/iVfROQ88r2mTeP9s9YcymEPo0d38/tMjF7v8cHs8SFt1Z61lYPear2SK/UoLh/OobxXcsV21eNub9kwEGXDS3h82xXBq6vad3iqfN/x33982/Le0adq7/KYQ2K43B6cHvOzpoDXHNLCDdX/Hb3OCrBZCLRasPvCzsrBp6UiGK08MVulNoF2C4E2Kw67lSC7haDyT5uVILuVwPJ9NnO/I8Baccxm0TAEIiJ1jGEY5+xVbn/p2bMnH330EcnJyTX2zjty5Ajp6em89tprXHzxxYA5oc25sHnzZo4cOcLjjz9OYmIiACtWrKix7U8//URSUhIAR48eZcuWLXTs2LHGtj179iQ9Pb3GMPJs9OzZk40bN57wemvWrCE7O5u//e1vtGxpZjPH30dAgDmUmdtddS6EJk2acOBAxdCAeXl5ZGRknFZNp7pHh8PB2LFjGTt2LLfffjsdOnRg3bp19OzZ85TXP1MKMOWkvGHxGLm7q0/kk7ke9q2E7ledl1fLDcPgkhaXcEmLS9iXv4+PtnzEJ9s+4XDRYf678b/8d+N/aR3RmmEth9E/oT/dYrupZ6aIiDRoRvmkT+qRXCOPx4uzfLxdt7nudJvbzrLQtXy7IgD1+sYOrvl42djBvutWBKZOd8V4vqXHnVcxGVvZhGtl6yXHbZd/b2Xlxyjxz88xwGYhyFYefFYOQcsWmxl6BgfYCAmwEhx43GeAjZDAis+QABvBAVZCAm0E2iz6y2cRkQYsNzeXtLS0KvtiYmK4/fbbee211/jFL37Bn/70J6Kjo9m2bZtvVu2oqChiYmJ49dVXiY+PZ/fu3dx9993npKakpCQCAgL45z//yS233ML69et5+OGHa2z70EMPERMTQ7Nmzbj33nuJjY1lwoQJNba97777GDNmDElJSUyePBmLxcKaNWtYv349jzzyyBnXedddd3HBBRcwffp0brzxRkJCQti4cSNz587lhRde8N3HCy+8wK233lrjfbRs2RLDMPjiiy8YPXo0DoeD0NBQhgwZwsyZMxk7diyRkZHcd999VV65P5FT3ePMmTNxu93069eP4OBg3nrrLRwOhy9gPdcUYMrJhcWZn5Un8snbDzNHQ3EurHgDrv0EgqPPWwnNQ5tzR887uDX1VhbtXcSXGV/y3e7v2JG7g1fWvsIra1/BbrHTMrwlLcNbEhkYSVhAGGEBYYTaQwkNCDU/7aGEB4YTHxJPeEC4/gVaRESkAbFYDAItVgLr2b/dlk+CVlJD4Gluuyktm5it6r6aQ9FSl4dil5tip4dip/lZ4nJTVOquvt9p7nO6K0LU8mvkFbvO+b1aDMxAsyzgDA6w+rbDguyEBdkIC7IRXmndYTPYlgebDhwjKjSIcIed0EAbVvUUFRGpcxYsWECPHj2q7Pv1r3/N66+/zuLFi7nrrrsYPnw4JSUltGzZkpEjR2KxmH+59e6773LHHXfQpUsXUlJSeP755xk0aNDPrqlJkybMnDmTP//5zzz//PP07NmTf/zjH4wbN65a28cff5zf/va3bN26ldTUVD7//HNfr8bjjRgxgi+++IKHHnqIJ554ArvdTocOHbjxxhvPqs5u3brx/fffc++993LxxRfj9Xpp06YNU6ZM8d3Hiy++yKOPPso///nPGu+jefPmvsmFrr/+en71q18xc+ZM7rnnHjIyMhgzZgwRERE8/PDDp9UD81T3GBkZyeOPP86MGTNwu9107dqVzz//nJiYmLP6GZyK4T3+RXg5LXl5eURERJCbm0t4eLi/yznnymc/HmNfgnXZyzDgNzC87G8R3pkCW2ZXNL5oBgw98Sxb58Ox0mPM3z2fxfsWsyxzGdnF2Wd0fqg9lITQBJqHNicpLInkiGRaRbSiVUQrogKjFG5KnVAxC/lov7+6KtJY6TmUxsBVFqAWO90UOStCzpLjAs/issCzqNRNYambglIXhSXHfZa6KSgxPwtLXRSUmNc810IDbb6QsyL8ND8jHXYiHHYig+1EOAKIDDbXI8vWg9SFWeSM6J+Ftae4uJiMjAxatWp10nEUpfHxeDzk5eX5ZiGvb072u326+Vo9+ztqqXXlPTCPZZmfxbmw5RtzffBf4LtHYPV/YdA9YKv5bybOS1kBYUxoO4EJbSfg8XrYn7+fjNwM9hzbQ15pHsdKj3Gs9Bj5znwKnAXkl+aT78wnpySH7OJs8p35bDm6hS1Ht1S7dnhAuC/MTA6vCDZbhLXAbtE/sEVERKRhsZVNUhRynrqvuj1eipxuCktcFFQKOH3BZ4mLvGInx4pdZUvZeomTvCInmUdy8VgDOVbiMl+vB/JLXOSXuDiQe+b1BNgsRDoqQs2IYLtvO8JhJyI4oMrxyGA7EcF2wgJt+ktuERERP1GAKSflDY41VwoPm5/7VgFeiGwJF90Jy1+H/EzY/AV0qT4zVW2wGBZahLWgRViL02pf5CriQP4B9uXvY1/+Pnbl7SIjL4OduTvZn7+fvNI81hxaw5pDa6qcZzNstAhr4Qs020a2pV1UO1pFtCLQeu7HARURERFpCKwWg9BAG6FnEZBW9PwahN1up8TlrhJ05hVVBJ7lIWhukZPcIic5haXklK3nFjrJKXLi9ngpdXk4eKyEg8fObKBRq8Xw9eyMdNiJCi4PPwOIKuvlGRFctl6p52eogk8REZGfTQGmnFxw2dgFBeUBZtksVy16g9VuTuKz+FnzlXI/BZhnymFz0DqyNa0jW1c7Vuwq9gWaGblmqJmRm8HOvJ0UuYrYmbeTnXk7+W7Pd75zLIaFpLAk2kW1o11kO9pGtaVtZFuSwpKwWvSKkoiIiMi5EmizEhhqJTb0zP/y2Ov1kl/iIqfQWSnkdJJTVFqx77jt8uPFTg9uj5fsglKyC0rP6HttFsPXuzMqOMD3avvJQs/I4ABCAqwKPkVERMoowJSTKw8wC4+Yn/tWmZ/Ne5ufbQabAWbGQvB6oZ7/S1aQLYiU6BRSolOq7Pd6vWQVZvnCzO0529mWs42tR7eSV5rnCzbn7prrOyfQGkjriNa0iWxDm8g2vvUWoS0UbIqIiIjUMsMwysbJtJN4hucWO93kFjk5WmiGm+Zi9vA8WlhqBp+FZetl+44WOil1mTPNH84v5XB+KVBw2t9ptxpVg85K65FlQWh578+Isn1RwXYcdgWfIiLS8CjAlJPyhjQxVwoOmQHl3rIemM17mZ+J/cAaAMf2Q/YOiGnjn0LPM8MwiAuJIy4kjv4J/X37vV4vh4sOs/XoVrbmbPWFmttztlPsLmZT9iY2ZW+qcq0ASwDJEcm0iWhD68iKgDMxLFFjbIqIiIjUQUF2K0F2K83Cz2xSjWKn2xd6+oLOSqGnLxAtf+W9LAgtdXtwur0czi/hcP6ZveoeYLUQEWz39eqMCLb7Zncvn/wotHzSo+O2y1/11yzvIiJS1yjAlJMr74HpLoUj26HgIBgWiO9m7rc7oEUf2LUYdi5ssAHmiRiGQZPgJjQJbsKA5gN8+z1eD/uO7WNLzhYycjPYnrOd7Tnb2ZG7gxJ3SY0TCNksNpLDk309NVtHtqZNRBtahrckwFp7EySJiIiIyLkRZLcSH+EgPsJx2ud4veakR5VDz6OVXm3PqSH0PFroJLeoFKfbS6nbw6FjJRw6wzE+KwsJsPpmda8cdgYHWAkJtOEIsBISYMURYCMkwEpwoI1gu5XgQCshAWa74EBbWRsrAVaLeoWKnAGv1+vvEkTOqXPxO60AU07OHmwuzkLYv9rcF5ZgBpflki82A8xdS6DXdX4ps66xGBYSwxNJDK/6gpLb42Z/wX525Oxge25ZqFm2XuQqYlvONrblbINdFedYDSuJYYlVXkNvE9mG5PBkgmxn1gtAREREROo2wzAIDrARHGAjIfLMgs/CUnfV19zLQs9jxS7yS5zkl0+AVGJOfpRfYm6X7y91m7O8F5S6KSh1k5l3bu7JZjHKQk8bwYFWM+AMsOGwW3HYrQTZLTgCrATazMAzyGbFEWDx9XwNqtyu8r4AK0E2i+8ci3qOSj1nt5tv5BUWFuJwnP7zL1LXFRYWAhW/42dDAaacWnAs5O6uCDAjjxs1KKGH+Zm5rnbrqoesFjOMTAxLZGDiQN9+j9dDVkFWRaiZu8PXazPfme8bY3M+833nGBi0CGthBpoRbXy9NluFtyLYHuyP2xMRERERPzEMg5BAGyGBNlpEnd01SlxuX5iZX2LO7F55u6DURVGpm4ISN4WlLgpLzc+CEjeFTjeFJZX2lbopdZmBqMvj9c0efz4F2CwVgWZZ6Blot+KwWyqFoOVL5TC0LCy1WQkqC0VrahdYqZ3daqhXqZxzVquVyMhIDh48CEBwcLB+zwQAj8dDaWkpxcXFWCwWf5dz2rxeL4WFhRw8eJDIyEis1rOfD0QBppxaSIwZYB5IM7cjWlQ9HtfF/Dy8BVwlYDvzWSEbO4thIT40nvjQeC5qfpFvv9fr5VDRoWqh5vbc7eSW5LLn2B72HNvDgj0LqlyveWjzilfRI1rTPro9bSLaqMemiIiIiJxQ+SzvMWcxy3tNXG5PWbDprhR+miFnQamLYqeHIqebEqebolI3RU531X1ON8XOiv3Fx20XOStCUoBSl4dSl4e88xyUAlgtRpWgM/D4QNRWNSytvN8RYAarlc93HNfO1xu1rJ3NWn8CC/l54uLiAHwhpgiUDS9SVITD4aiXoXZkZKTvd/tsKcCUUwuONT/Le2BGHNcDM7w5BEVCcQ4c2gzx3WuzugbNMAyaBjelaXDTapMHHSk+UvVV9LKAM7s4m335+9iXv4+F+xb6zrEYFlqGt6R9VPsqS3xIfL38A1BERERE6jab1UK41UJ40PmbqNLt8VLiqgg0i8vC0GLncfuqhKIV+4udniphabHTQ7GramBaeX/5MG5uj9f3qn1tsFmMGgNRX+9QW8X+qmGolcBKr9kHHXesyrpex68TDMMgPj6epk2b4nQ6/V2O1BFOp5MffviBSy655Ge9hu0Pdrv9Z/W8LKcAU04tpCzAdJpjFlR7hdwwIK6rOYlP5joFmLXAMAxiHbHEOmLpG9+3yrGjxUd9YeaO3B1sO7qNLUe3cLTkKBm5GWTkZvDNzm987UPtobSPak+7qHa+ULNdVDtC7CG1fVsiIiIiImfEaikfM/T8f5fX66XE5aHEF3JW7x1aLfh0eSoFqFXbFVVqU1JDb9OSSr1LXR4v+SXmq/y1IcBqqfTKvAVnsZXXd/+Ew26r3tv0uFfzKwelNb1+b/YsrWgXaLMoMK2B1Wo9J6GPNAxWqxWXy0VQUFC9CzDPFQWYcmrlAWa543tgAjTrUhZgrq/5GgfWwsKnwBpgTvSTfOE5L1NMUUFR9ArqRa9mvXz7yntsbsne4psBfcvRLWzPNcfYXHVwFasOrqpynRahLcxAM7qit2aL0BZYLfqHqIiIiIg0PoZR0QsygvMfIHg85qzyRaXuar1CqwSi5T1QK7WrKRAtD1NrDls9vkmcAErd5nbFuKUGmfvO0axONQi0WaoGotXGI606jmlgpdfxjx+ztKZAtbxnaaDdQqDNojfQROohBZhyasGnEWCWj4OZVUOAuXMRvH1FRQ/ODZ/AVe9A++Hntk45IV+PzeaxDGg+wLff6XayM29nlVBzy9EtHCw8yN78vezN38u3e771tXfYHLSNbEu7qHakRKXQMaYjKVEpmjRIREREROQcs1gMgixmEFcbKr+OXxF+uikoKuX7xT/SvWdvnB6jSmhaYyDqMsPUElcNvU3Lw1WXG6fb6/vuEpeHEpeH3KLzf5+GYQamlSd1Kg9Qj3/9vlqoardUCUOrTg5VOXzVhE8i55oCTDm1aj0wW1Rv06wswMxcB16v+U8FAI8bvvy9GV62Hgx2B6R/BR/dCL9Ng+Do81q6nJzdaqddVDvaRbXjMi7z7c8pzmFrztaKUDN7C9tytlHkKmLd4XWsO1wx47yBQVJ4Eh2iO9AhugMdozvSIboDMY4Yf9ySiIiIiIichRO9ju90Ojmw3svglCbn9NVVl9tzXK/QGtZdZWOaVnrN/vhAtNhVdXzTGq/n8uD2mIGp10vZMQ9w/seYtBhUDUsr9wo9wwmfqr+6f1zYqgmfpAFTgCmn1npQ1e3A0OptmnQAi82cyCdvX0XIufZ9c2KfoEi4YiYEhMBrg82g84d/wMjHzm/tclYigyLpE9eHPnF9fPvcHjd7ju1hy9EtpB9NJz07nU3ZmzhYeJBdebvYlberytiaTR1N6RDTwddTs0N0B1qEttDfPoqIiIiICDarhVCrhdDA2oklnO6axiP1VISkJ33N3uObCOq0XtmvNOGTx0utTvhktxplPURrntgpsNqr9yd57b5svfxajhraafxSqS0KMOXUIlrALYvhk1ug7ZCa29iDILY9HNxojoNZHmAuf938vPC34Ig014c+CG9NguWvwUW/g9Am5/0W5OezWqwkRySTHJHM8OSK1/+zi7PZfGQzm7I3sTl7M5uzN7MrbxcHiw5ycO9Bftj7g69tmD2MlOgUs6dmWajZKqIVdkvjHIRYRERERERqh91qwW61EBZ0/v/bw+s1xy8tLq2Y8On4V/OLnR5KagxPq4eoZzLhk9Ptxel2cay2JnyyWSp6iPpmu7eUhZ5WHMe9gh/ka1M9YA08wURPFeGrxi9tzBRgyumJ6wK3Ljp5m2ZdzAAzax2kjIScPbBvBWBA6jUV7dpeCgk9YP9qWPc+9L/9vJYu51d0UDQDmg+oMrZmobOQLUe3+ELNTUc2sS1nG8ecx1iRtYIVWSt8bQMsAbSPak+nmE50ju1M55jOtI5srVBTRERERETqJcMwCLSZvR1ra8KnElfVSZ0qh6UlVbart6spLC2p3Du1UtuS4yd8cnkodXnIKz7/gWn5+KVVJnSq1JO0Wg9R36v1VcPSwErHqox7elzIqvFL6xYFmHLuxHUxA8nymcg3zjI/W14IYc2qtu3xSzPAXP02XHBbxZiZ0iAE24NJbZpKatNU3z6nx8mOnB2+XpqbsjeRnp1OvjOf9UfWs/7Iethitg20BpISnUKn6IpQs1VEK2wW/ZElIiIiIiJSmcVi4Agwey7WBrfHW2V80fJepNUngTrRRE/HvZZ/gt6p5W1qGr80p5bGL60Slvp6hVoq9TY19zuOe7X++PFLq08SpfFLz5TSADl3fBP5rDU/ywPMTuOrt+0yGWb/GQ5uMGcuj+taOzWK39gtdlKiU0iJTmE85u+Ex+th37F9bMjewMYjG9l4eCMbj2zkmPMYaw+tZe2htZBunu+wOUiJSvEFmp1jOtMyvCVWS+38Q1pERERERETMCZ9CAm2E1PL4pdUmaSp7Pb98oqdiZ00TOpW1O64naXmbkuOD2OPGLy0sdVNYS+OX2ixGWQ/R6hM6XdQ2hla1UkXdpQBTzp3mPcGwQPYO2LMM9i4DDOg0rnpbR6T5Knn6V5A+WwFmI2UxLCSGJ5IYnsjI5JGAGWruObaHDYfNUHPDEfOz0FVI2qE00g6l+c4PtgXTIbpDlVAzKTwJi6G/uRIREREREWkIKsYvPf/f5Ru/tIYZ7av3EK0antbY49RV0eZU45e6PF6OldQ8fmlitINWtXD/dZkCTDl3HFHQvBfsXQ6f32nuS+oPYXE1t28/0gwwt3wNA/9Ya2VK3WYxLLQMb0nL8JaMbj0aMEPNnXk7zUCzLNjclL2JQlchqw6uYtXBVb7zQ+2hdIzpSNfYrnSL7UbXJl1pGtzUX7cjIiIiIiIi9USV8UsdtTN+aanbU22sUd9YpGXBZ2yInX1rd5/3euqyRhtg5uTkMHToUFwuFy6Xi9/+9rdMmzbN32XVf22GmAHmwQ3mdk2vj5drP8L83LcSjmVVHydTpIzFsNA6ojWtI1ozpvUYANweNzvzdrLhyAY2HN7AhiMb2Jy9mXxnPsszl7M8c7nv/KbBTX1hZtfYrnSO6UywPdhftyMiIiIiIiKCxWIQZDHHwTwZp9PJvrW1VFQd1WgDzLCwMH744QeCg4MpKCigS5cuTJo0iZiYGH+XVr+1GQLfP2GuB4RC5wknbhsWVzEb+dZvoOevaqVEaRisFittItvQJrIN49qYwxS4PC525O5g/eH1rD20lnWH17EtZxsHCw8yb/c85u2eB5iBaNvItnSNNQPNrk260iaijcbTFBEREREREamDGm2AabVaCQ42e2CVlJTg9Xrxlo/UKmeveW9I6AmuYpjwrxO/Pl6u/SgzwEyfXXOAmbEQ1n8IXg/0/w00aX9+6pYGwWax0T6qPe2j2jOp3SQACp2FbDiygfWH17Pu8DrWHlpLVmEWW45uYcvRLXy09SPAHE+zc2xnvXouIiIiIiIiUsfU2QDzhx9+4Mknn2TlypUcOHCATz75hAkTJlRp8+KLL/Lkk0+SmZlJ9+7d+ec//0nfvn1P+ztycnIYOHAgW7du5cknnyQ2NvYc30UjZLXBtG/NdcM4dfuUkbDgMdjxHTiLwV5pVNrVb8Nn083wEmDNu3Dlf81zRE5TsD2YPnF96BPXx7fvYOFB1h1ax9rDZi/NDYc3UOgqrPHV8+5NuvuWTjGdCLAG+OM2RERERERERBqtOhtgFhQU0L17d2644QYmTZpU7fh7773HjBkzePnll+nXrx/PPvssI0aMID09naZNzV5TqampuFzVZ2+aM2cOCQkJREZGsmbNGrKyspg0aRKTJ0+mWTONw/iznU5wWS6uG4QlwLH9kPEDtB9u7s/aCJ/9xgwvO42HknzYPh8+uQluXghRLc9P7dIoNA1uyqUtL+XSlpcC5niaO3J3+HpoVn71fO6uuczdNRcAu8VO55jOdG/SndSmqaQ2TSXWob/4EBERERERETmf6myAOWrUKEaNGnXC408//TTTpk3j+uuvB+Dll1/myy+/5I033uDuu+8GIC0t7bS+q1mzZnTv3p2FCxcyefLkGtuUlJRQUlLi287LywPMgVSdTudpfU99Un5PtXFvlvYjsa58A8/a93G3GgxeD9YvfofF68bTbiTuCa+Dx4n1P2Ox7F+J5+u7cF/x3/NelzQuyaHJJIcmMzZ5LGC+er4pexPrjpg9NdccWsPRkqOkHUoj7VAab258E4DmIc3p1qQb3WO70y22G20j22KznJs/WmvzORSRmuk5FPEvPYMi/qfnUMT/GvJzeLr3ZHjrwcCPhmFUeYW8tLSU4OBgPvzwwyqvlU+dOpWcnBxmzZp1ymtmZWURHBxMWFgYubm5XHjhhfzvf/+ja9euNbZ/4IEHePDBB6vtf+edd3xjacrZiSrYxiVbHsJlBPBN138Sn7OCnrtfw2UJ4NuOj1MUYPZwCy3ex5BNf8bAy/cpD5AT3NrPlUtj4vV6yfZks9u9mz2uPex27SbLk4WXqn+EBhBAC1sLkqxJJNmSSLQm4rA4/FS1iIiIiIiISN1VWFjI1VdfTW5uLuHh4SdsV2d7YJ7M4cOHcbvd1V73btasGZs3bz6ta+zatYubbrrJN3nPb37zmxOGlwD33HMPM2bM8G3n5eWRmJjI8OHDT/oDrq+cTidz585l2LBh2O328/tlXi/eV97BdmQbI0M3Ytn2MQDGoHsY3L/qxD7ez1ZjrHufiz0/4h49/fzWJXIK+c58c8bzw2tZc3gN6w6vI9+Zzw7XDna4dkBZp+1W4a3o3sTsoZnaJJWWYS0xTmOohVp9DkWkRnoORfxLz6CI/+k5FPG/hvwclr/hfCr1MsA8F/r27Xvar5gDBAYGEhgYWG2/3W5vcL88ldXa/fW+Ab75M9Ylz5nbTTthvfA3WK3HfffAP8G697FsnYMlbzfEtDn/tYmcQJQ9iouTLubipIsB8Hg9bM/ZTtqhNNYcXMOaQ2vYmbeTjLwMMvIy+HT7pwBEB0XTs2lPejYzl5SolJO+dt7Q/5wRqQ/0HIr4l55BEf/Tcyjifw3xOTzd+6mXAWZsbCxWq5WsrKwq+7OysoiLi/NTVfKz9LsFjmyDFW9A005wzQdwfHgJENsO2g2HrXNg2asw6onar1XkBCyGhXZR7WgX1Y4r2l8BQHZxNmsPrSXtYBqrD65m/eH1ZBdnM2/3PObtngdAsC2Y1KapvlCza2xXgmxB/rwVERERERERkTqjXgaYAQEB9OrVi/nz5/vGwPR4PMyfP5/p0/Vacb1kscJlT0OfGyG6DdhPEt70u8UMMFe/DYPvhaCG9wq/NBzRQdEMShzEoMRBAJS6S9lwZAMrs1ayKmsVaQfTOOY8xpL9S1iyfwkANouNLjFd6B7bHbfTzUWlFxFjj/HjXYiIiIiIiIj4T50NMPPz89m2bZtvOyMjg7S0NKKjo0lKSmLGjBlMnTqV3r1707dvX5599lkKCgp8s5JLPWQY0Kzzqdu1GQKxKXA4HVa/Bf1vq97mWCZ43BAWDxbLua9V5CwFWAPo0bQHPZr2gK7g9rjZlrPNDDQPrmJV1ioOFR3yzXYO8PaHb9M2qi09m/akV7Ne9Gzak2YhzU7+RSIiIiIiIiINRJ0NMFesWMHgwYN92+UT6EydOpWZM2cyZcoUDh06xH333UdmZiapqanMnj272sQ+0gAZBvS7Gb6cAUv/BX1+Dbay8UmzNsLXf4KdC83t2PYw+kloPchv5YqcjNViJSU6hZToFK7ueDVer5e9x/ay6uAqVmSuYFHGIg57DrP16Fa2Ht3Ke+nvAdA8tDm9m/WmT1wf+sT1ISE0wc93IiIiIiIiInJ+1NkAc9CgQXi93pO2mT59ul4Zb6y6XwXfPwE5u2HJ83DJH2H9RzBrOjgLAQMMCxzeAv+dBFfMhE7j/F21yCkZhkFieCKJ4YmMbjmar458Rb/B/Vh3dB2rslaxMmsl6UfT2Ze/j335+5i1fRagQFNEREREREQarjobYIqcVEAIDH8UPr4RFjwO276F3eb4gbQeBONeMMfG/PL3sO4D+PAGuHEeJKT6s2qRsxLjiGFY+DCGtRwGQH5pPmsOrWFF1gqWZy5nw+ENCjRFRERERESkwVKAKfVX18mwfT6s+V9FeHnR72DIX81JgQAmvgKlBZD+FXx0I9z8vRl+itRjoQGhXNj8Qi5sfiEAhc5CVh9czfLM5SzPUqApIiIiIiIiDYsCTKm/DAMmvgzdroRD6ebkPk1SqraxWGH8i/CvAXBkK3z7CIz8m3/qFTlPgu3BCjRFRERERESkwVKAKfVfmyHmciLB0eYr5W9fDj/9CzqOg5b9a68+kVp2fKBZ4Cwg7WDaKQPNC+IvoF98P/rG9SXGEePPWxARERERERHxUYApjUO7oZD6S0h7C2bdDrcsgoBgf1clUitC7CGnFWh+tPUjPtr6EQDto9rTL74fF8RfQK9mvQixa+gFERERERER8Q8FmNJ4jHjUHDMzezt8egtc/gZYbeAqhd0/wtEMCAyHtkPNCYBEGqiaAs2VWStZemApPx34iS1Ht/iW/278LzbDRpfYLvSL70e/+H50b9KdAGuAn+9CREREREREGgsFmNJ4OCLNMTPfmgwbZ0HWBRCZCHuWQ+mxinY2Bwz5C1xwG1gsfitXpLaE2EO4pMUlXNLiEgCOFB1heeZyfjrwE0sPLGVv/l7SDqWRdiiNV9a+gsPmoGfTnr5As0N0ByyGnhURERERERE5PxRgSuPSehBMeQs+nmZO6nNkq7k/pCk07wlHtpv75twLWRvMCYAUYkojE+OIYWSrkYxsNRKAffn7fL0zlx5YSnZxNov3L2bx/sUARARG0DeuL/3i+nFBwgUkhSVhGIY/b0FEREREREQaEAWY0vikjITfbYD0r8HjhKadID7VDCq9XljxBnz1R1jzDtiD4LKnzRnPRRqp5qHNmdRuEpPaTcLr9bI1ZytLDyxl6YGlrMhaQW5JLnN3zWXurrkAxIfEMyBhAP0T+nNB/AVEBEb4+Q5ERERERESkPlOAKY1TUDh0n1J9v2FAn19DUAR8dKMZZtqCYMRjCjFFAMMwaB/VnvZR7bm207U4PU42HN7g66G55tAaDhQc8E0IZGDQJbYLAxIGMCBhAF2bdMVusfv7NkRERERERKQeUYApUpOuk8FVbM5Y/tNLYFhg2ENgsfq7MpE6xW6xk9o0ldSmqdzc/WaKXEWsylrF4v2L+XH/j2zL2ca6w+tYd3gdr6x9hVB7KH3j+voCzcTwRH/fgoiIiIiIiNRxCjBFTqTHL80Q88vfw48vwL6V0O9miGkH1gCwBUB4C3MmcxEBwGFzVJnhPKsgix8P/MiSfUv48cCP5JTk8O2eb/l2z7cAtAhtwYXNL6R/Qn/6xvUlLCDMn+WLiIiIiIhIHaTkReRk+twIgRHw+R2w+0dzqczmgPbDYcBvoUUv/9QoUoc1C2nGhLYTmNB2Ah6vh03Zm1iybwlL9i8h7WAae/P38l76e7yX/h5Ww0r3Jt3pn9CfAQkD6BzTGat6PYuIiIiIiDR6CjBFTqXbFZDYF5a9Chk/QN5+8LjAWQSuItg4CzZ+Zo6dOfxRc+IfEanGYljoHNOZzjGdmdZtGgXOAlZkrvC9br4zbyerDq5i1cFVvJj2IuEB4VwQfwEXNb+Ii5pfRJPgJv6+BREREREREfEDBZgipyOqJYx4tOo+jwey1sGPL8Had2H567BnGVz5JkS39k+dIvVIiD2EgYkDGZg4EIB9+fv4cf+PLNm/hJ8O/EReaR5zds1hzq45AHSI7sDFzS/mouYX0a1JN2wW/SNMRERERESkMdB//YmcLYsF4rvDpFeg25Xw8TTIXAuvDIIJL0LHsf6uUKReaR7anMntJzO5/WRcHhcbjmxg8b7FLNq3iPWH17M5ezObszfz2rrXCAsIY0DCAF/vzFhHrL/LFxERERERkfNEAabIudD2Urh5IXx4PexZCu/9EjqMgb7TIKk/2AL9XaFIvWKz2OjepDvdm3TnttTbyC7OZvG+xSzct5Al+5eQW5LLNzu/4Zud3wDQMbojF7e4mIubX0zX2K4aO1NERERERKQBUYApcq5ENIfrvoT5D8KPL8LmL8zFYodmnSChB7S8CFJGQWCov6sVqVeig6IZ22YsY9uMxe1xs+7wOhbtW8TCfQvZeGQjm7I3sSl7E6+ufZWIwAgGxA/gohYXcWHChcQ4YvxdvoiIiIiIiPwMCjBFziWrHYY/Aqm/hJ9egs1fQuFhOLDGXFbONGc1v/h30O8WsDv8XbFIvWO1WEltmkpq01Sm95jO4aLDLNm/hIV7K3pnfr3za77e+TUAnWM6c1Hzi7i4xcV0iemi3pkiIiIiIiL1jAJMkfOhaQcY9zyMfQ5y98D+1bBvpTlb+dEMmPcALH3VnBio80QwDH9XLFJvxTpiGddmHOPajMPlcbHu8DoW7l3Ion2L2JS9iQ1HNrDhyAZeWfsK0UHRXNT8IgYlDqJ/fH9CA9QbWkREREREpK5TgClyPhkGRCaZS6fxcOn9sO4D+PYRM9j88HpY/V8Y+Tg0SfF3tSL1ns1io0fTHvRo2oM7et7BocJDLN6/mIV7F/Lj/h/JLs7ms+2f8dn2z7BZbPRp1secCb3FQFqEtfB3+SIiIiIiIlIDBZgitclihe5XQacJsPhZWPgUbP8WXuwHbYdC18mQMhqCwv1dqUiD0CS4CRPaTmBC2wk4PU5WZ63m+73f8/3e79mVt4sfD/zIjwd+5PFlj9Mmoo0vzOzepLteNRcREREREakjFGCK+IM9CAbdDV0mw7z7zcl+ts01F4vNnLm8/QjodhWENvF3tSINgt1ip298X/rG9+WPff7IztydvjBzVdYqtuduZ3vudt5Y/waRgZFc1PwiBiYO5MKECwkLCPN3+SIiIiIiIo2WAkwRf4ptC1e9DYe3wfoPYf1HcHgL7FxoLvMfMl89H3AHxHfzd7UiDUpyRDLJEclM7TyV3JJcluxfwoI9C1i0bxE5JTl8seMLvtjxBTbDRq9mvXy9M5PCk/xduoiIiIiISKOiAFOkLohta/bIHHQ3ZO+ArfNg7bvmxD/rPjCXlMtg0F0Q393f1Yo0OBGBEYxqNYpRrUbh8rhIO5jm652ZkZvB0sylLM1cyt+X/51WEa0Y2GIggxMH61VzERERERGRWqAAU6SuiW4N/W4yl32r4McXYP3HkP6lubQfBRfPgBZ9NHu5yHlgs9joHdeb3nG9+X3v37M7b7cZZu75npVZK8nIzSAjN4OZG2YSHRTtCzP7J/QnyBbk7/JFREREREQaHAWYInVZ854w+Q0YeBf88A/zNfMtX5tLZEvoMgm6XA7NuijMFDlPksKTuLbTtVzb6VqOlR5j8f7FfL/ne37Y+wPZxdl8su0TPtn2CQ6bgwEJAxicOJiBLQYSGRTp79JFREREREQaBAWYIvVBkxS4/DUY+CdY9Axs+ARydpnri54xA8zUq81Jf0Ji/F2tSIMVFhDGyOSRjEweidPjZFXWKr7b8x3f7v6WAwUHmL97PvN3z8dqWOnZrCeDEwczOHEwLcJa+Lt0ERERERGReksBpkh9EtsOJrwEo5+ELd/Aho9hyxzIWg/f/BnmPQhdJ0PfmyAh1d/VijRodoudfvH96Bffj7v63MXm7M2+MDP9aDrLM5ezPHM5f1/+d1KiUhicNJghiUPoEN0BQz2mRURERERETpsCTJH6KCCk7PXxSVB01Bwjc9V/4EAapL1tLon9zCCz03iw2v1dsUiDZhgGHWM60jGmI7el3sbeY3tZsGcB3+75lpVZK0k/mk760XReXvMy8SHxDE4czJCkIfRs1hO7Rc+niIiIiIjIySjAFKnvHFHQ59fQ+wbYuxyWvgIbP4U9S83lm3vNY6lXQ2Siv6sVaRRahLXgl51+yS87/ZKc4hx+2PcD3+7+liX7l3Cg4ADvbH6Hdza/Q3hAOJe0uIRLky7lwuYX4rA5/F26iIiIiIhInaMAU6ShMAxI7Gsuxx6FFf+GFW9AfiYseMxcWl4E3aeYvTKDIvxdsUijEBkUybg24xjXZhzFrmJ+OvAT3+7+lu/3fk92cTZf7PiCL3Z8QZA1iIuaX8TQlkMZ2GIgoQGh/i5dRERERESkTlCAKdIQhcXB4Hvg4t/DxlmwcibsWlSxfH0XdJ4Iva6DFn00g7lILQmyBTEocRCDEgfh9rhZc2iNb+Kfffn7mLd7HvN2z8NusdM/oT9Dk4YyOHGwZjQXEREREZFGTQGmSENmC4BuV5hLzh5Y9wGseRcOp1eMldmkI/SaCt2mQHC0vysWaTSsFnOm8p7NevKH3n9gc/Zm5u6ay7zd88jIzeCHvT/ww94fsBpWesf1ZljSMIYkDaFJcBN/ly4iIiIiIlKrFGCKNBaRiXDxDLjod7Bnmdkrc8MncGgTzL4b5t5vvlreayq0vFC9MkVqUeVJgO7oeQfbc7Yzd9dc5u+ez+bszSw9sJSlB5by6NJHSW2aytCkoQxtOZSE0AR/ly4iIiIiInLeKcAUaWwMA5L6mcvIv5m9Mle+CVnrYN375hLdxpz0p/svIKK5vysWaXTaRLahTWQbbul+C3vy9pivlu+ax9rDa1l9cDWrD67myRVP0jmmM0NbDmVo0lCSI5L9XbaIiIiIiMh5oQBTpDFzRELfadDnRti/ygwy138E2dvh24fhu0eh9WDocQ2kXAb2IH9XLNLoJIYncn2X67m+y/VkFmQyf/d85u2ax6qDq9hwZAMbjmzguVXP0TayLcNaDmNoy6G0i2yHoV7UIiIiIiLSQCjAFBGzV2bzXuYy4jFz4p+0t2HXYtg+31yCIqHrFWaYGZ+qV8xF/CAuJI5rOl7DNR2v4UjREb7d8y3zd81n6YGlbMvZxracbfxrzb9oFdGKEckjGNFyBG2j2vq7bBERERERkZ9FAaaIVBUYaoaUPa6B7B2Q9g6k/Q/y9sLy18ylaWfzFfOuV0BYM39XLNIoxThiuKL9FVzR/gpyS3L5fu/3zN01lyX7lpCRm8HLa17m5TUv0yaijRlmJo+gdWRrf5ctIiIiIiJyxhRgisiJRbeGIX+BQfdAxvew+i3Y9AUc3ABz7oW5f4U2Q6DbVdDhMggI9nfFIo1SRGAE49qMY1ybceSX5rNg7wK+2fkNi/ctZnvudl5a8xIvrXmJtpFtGZE8guHJw2kdoTBTRERERETqh0YdYCYnJxMeHo7FYiEqKorvvvvO3yWJ1E0WqxlUthkCRUfNcTLXvAd7l8G2eeYSEGrOYt79Kmh5EVgs/q5apFEKDQhlTOsxjGk9hmOlx1iwpyzM3L/YfM08bRsvpr1I+6j2ZpjZcrgmABIRERERkTqtUQeYAEuWLCE0NNTfZYjUH44oc9KfPjfCke2w9j1Y8y7k7DLHzUx7G8JbQLcrzJ6ZTTv4u2KRRissIIyxbcYyts1Y8krz+G73d3yz8xt+3P8jW45uYcvRLfxz9T9JiUrxvWaeFJ7k77JFRERERESqaPQBpoj8DDFtYPCfzVfMd/8Ea/4HGz41x8tc9Iy5xKdC919Al8shtIm/KxZptMIDwhnfdjzj244ntySXb3d/yze7vmHp/qWkH00n/Wg6z69+no7RHRmePJwRLUeQGJ7o77JFRERERESos+94/vDDD4wdO5aEhAQMw+DTTz+t1ubFF18kOTmZoKAg+vXrx7Jly87oOwzDYODAgfTp04e33377HFUu0ggZBrTsD+Oehz9sgSvehPajwGKDA2kw+y54KgXevgLWfgClBf6uWKRRiwiMYGK7ibw89GW+u/I7HhzwIAMSBmA1rGzK3sRzq55j9CejmfLFFGaun0lmQaa/SxYRERERkUaszvbALCgooHv37txwww1MmjSp2vH33nuPGTNm8PLLL9OvXz+effZZRowYQXp6Ok2bNgUgNTUVl8tV7dw5c+aQkJDAokWLaN68OQcOHGDo0KF07dqVbt26nfd7E2nQ7EHQeYK5FBwuGy/zXdi/CrbOMRd7CHQcA12vhNaDwFpn/ygSafAigyKZ1G4Sk9pN4mjxUebvns83O79hWeYyNh7ZyMYjG3lq5VP0bNqT0a1GMzx5OFFBUf4uW0REREREGpE6mxqMGjWKUaNGnfD4008/zbRp07j++usBePnll/nyyy954403uPvuuwFIS0s76Xc0b94cgPj4eEaPHs2qVatOGGCWlJRQUlLi287LywPA6XTidDpP+77qi/J7aoj3JrUoIAJ63mAuR7ZiWf8hlvUfYeTsNMfOXPse3pAmeDpNxNt5Mt6EHmZvTgH0HErtC7WGMr7VeMa3Gs/R4qPM2zOP2Ttns/rQalYdXMWqg6v427K/0S+uHyOTRzK4xWBC7CH+Lvu80nMo4l96BkX8T8+hiP815OfwdO/J8Hq93vNcy89mGAaffPIJEyZMAKC0tJTg4GA+/PBD3z6AqVOnkpOTw6xZs055zYKCAjweD2FhYeTn5zNw4EBefvll+vTpU2P7Bx54gAcffLDa/nfeeYfg4OCzui+RRsnrJapwGy2yf6R5zlICXcd8h/IDm7E3agB7owdQENjMj0WKSGU5nhzWl65nrXMt+937fftt2Eixp9DN3o329vbYDbsfqxQRERERkfqmsLCQq6++mtzcXMLDw0/Yrs72wDyZw4cP43a7adasasDRrFkzNm/efFrXyMrKYuLEiQC43W6mTZt2wvAS4J577mHGjBm+7by8PBITExk+fPhJf8D1ldPpZO7cuQwbNgy7Xf9BKufDb8HtxJWxAMv6DzDSvya0JIsOmZ/QIfMTPAm98HaZjKfTBAhpnJP/6DmUumhn3k6+2fUN3+z6hp15O9ng3MAG5wZC7aEMbjGYES1H0DeuLzZLvfxXjGr0HIr4l55BEf/Tcyjifw35OSx/w/lUGsZ/XZyF1q1bs2bNmtNuHxgYSGBgYLX9dru9wf3yVNbQ70/8zG6HjqPNpeQYbP4S1r4PO77Dsn8l7F+Jde5foM0Q6HYldLgMAhr266o10XModUm7mHa0i2nH7T1uZ3P2Zr7O+Jqvd35NZkEmn2d8zucZnxMdFM2wlsMY3Wo0qU1TsRh1ds7A06bnUMS/9AyK+J+eQxH/a4jP4eneT70MMGNjY7FarWRlZVXZn5WVRVxcnJ+qEpGfJTAMul9lLseyYMPHZpi5fxVsm2su9hAzxOxWPvlPw/qDW6Q+MQyDjjEd6RjTkTt73cnqg6v5OuNr5uycQ3ZxNu+lv8d76e8RFxLHqORRjGo1ig7RHTA0zq2IiIiIiJyhetklIiAggF69ejF//nzfPo/Hw/z58+nfv78fKxORcyKsGVxwK9z0HUxfCQPvgqhW4CyAde/D25PhqRT44newczF4PP6uWKRRsxgWejXrxV8u+Avzr5zPv4b+i3FtxhFiDyGzIJN/b/g3V35xJRNnTeT1da+zP3//qS8qIiIiIiJSps72wMzPz2fbtm2+7YyMDNLS0oiOjiYpKYkZM2YwdepUevfuTd++fXn22WcpKCjwzUouIg1EbFsY/GcYdA/sW2nOXr7+Yyg8DCveMJfw5tB5InSdDPGpmslcxI/sFjsXNb+Ii5pfxF9df2XhvoV8nfE13+/5nu2523lu1XM8t+o5ejfrzZjWYxiWPIzwgIY3lrSIiIiIiJw7dTbAXLFiBYMHD/Ztl0+gM3XqVGbOnMmUKVM4dOgQ9913H5mZmaSmpjJ79uxqE/uISANhGNCit7mM+BtkfA/rP4JNn0PePvjxBXOJbgNdLjfDzCYp/q5apFELsgUxrOUwhrUcxrHSY8zbNY8vdnzB8szlrMhawYqsFTy69FEGJQ7istaXcXHziwmwBvi7bBERERERqWPqbIA5aNAgvF7vSdtMnz6d6dOn11JFIlJnWG3Q9lJzuexp2DYP1n8I6bMhezv88HdzadYVul5uBpqRSf6uWqRRCwsIY2K7iUxsN5HMgky+3PElX+z4gm0525i7ay5zd80lPCCckckjGdNmDKlNUjVepoiIiIiIAHU4wBQROS32IOg4xlxKjkH617DuQ9g+H7LWmcu8ByCxH3SZDJ0nQGhTf1ct0qjFhcTx666/5oYuN7Dl6Ba+2PEFX+34ioNFB3l/y/u8v+V9moc257LWlzGm9RhaRbTyd8kiIiIiIuJHCjBFpOEIDDNnKO92JRRmw8ZZ5mvmOxfBnqXmMvsuaHWJGWZ2HAuOSH9XLdJoGYZBSnQKKdEp3NnzTpZlLuOLHV8wb9c89uXv49W1r/Lq2lfpEtOFMW3GMDJ5JDGOGH+XLSIiIiIitUwBpog0TMHR0Pt6c8k7ABs+MV8z37cSdiwwly9nQNth0GUSpIyCgBB/Vy3SaFktVvon9Kd/Qn/+csFfWLBnAZ9v/5wl+5ew/sh61h9Zz5PLn2RAwgDGtB7D4KTBOGwOf5ctIiIiIiK1QAGmiDR84fHQ/zZzyd5h9spc9xEc2gTpX5qLzQHtR5ivmLcbrjBTxI8cNgejWo1iVKtRHCk6wuyds/lyx5esO7yOhfsWsnDfQkLsIYxIHsG4NuPo2bSnxssUEREREWnAFGCKSOMS3Rou+aO5ZG00e2Wu/wiO7oSNn5qLPdgMMTtPLAszg/1ctEjjFeOI4ZqO13BNx2vYmbuTL3Z8wRc7vmBf/j4+3voxH2/9mBahLRjXdhzj2oyjeWhzf5csIiIiIiLnmAJMEWm8mnWCZvfBkL/CgTTY8Kn5qnnOrqphZvsR0GmCwkwRP0uOSGZ6j+nclnobq7JWMWv7LObsnMPe/L28lPYSL6W9RO9mvRnfdjzDWw4n2K7nVURERESkIVCAKSJiGJDQw1yGPgD7V5vh5YZPzTBzwyfmUh5mdp5ojp2pMFPELyyGhd5xvekd15t7+t7D/N3zmbV9FssOLGNF1gpWZK3gsaWPMazlMMa1GUefuD5YDIu/yxYRERERkbOkAFNEpDLDgOY9zWXog5XCzE8gZ3elMDOkYsxMhZkifhNsD2Zsm7GMbTOWA/kH+GLHF8zaPotdebv4bPtnfLb9M+JD4hnbZizj2oyjZXhLf5csIiIiIiJnSAGmiMiJVAszV5W9Zv4p5O6GDR+biz0E2g2FDmOh/XAIivB35SKNUnxoPNO6TePGrjey5tAaPtv+GbMzZnOg4ACvrn2VV9e+SmqTVMa3Hc+I5BGEBYT5u2QRERERETkNCjBFRE6HYUDzXuYy7KGyMPMT2DDLDDM3zjIXix1aXQwdxkCHyyAszt+VizQ6hmGQ2jSV1Kap/KnPn1iwZwGzts9iyf4lpB1KI+1QGo8ve5whiUMY13Yc/eP7Y7VY/V22iIiIiIicgAJMEZEzVSXMfNh8zXzzF7DpCzicDtu/NZcvfw8t+kDHMWagGdPG35WLNDpBtiBGthrJyFYjOVh4kC93fMmsbbPYnrudr3d+zdc7v6ZpcFPGtxnPxLYTSQxP9HfJIiIiIiJyHAWYIiI/R+XXzC+9Dw5vhU2fm4HmvpWwd5m5zL0PmnYye2V2GAPx3c1zRaTWNA1uyvVdrue6ztex8chGZm2fxVcZX3Gw8CCvrXuN19a9Rp+4PkxsO5GhLYfisDn8XbKIiIiIiKAAU0Tk3IptBxfPMJe8/bD5SzPM3LkIDm40lx+ehPAW0G6YORFQq4GaBEikFhmGQefYznSO7cwfev+B7/Z8xydbP2HJ/iUsz1zO8szlPLb0MUa3Gs3YVmPxer3+LllEREREpFFTgCkicr6EJ0DfaeZSdBS2fGP2ztw2H/L2wsp/m4s10Bw3s90IcxKgqGR/Vy7SaARYAxiRPIIRySM4kH+AWdtn8em2T9mXv4/3t7zP+1vep5mlGTmbcxjfbjxRQVH+LllEREREpNFRgCkiUhscUdD9KnNxFkHGQtj6DWyZY04CtG2euXz9R4hNgfYjMFpfiuF1+btykUYjPjSeW7rfwk3dbmJ55nI+3vox83bNI8uTxVOrnuK5tOcYnDiYSe0maeIfEREREZFapABTRKS22R1mT8v2w2G0Fw5thi2zzTBzz1JzIqDD6diWPM8oiwNrwfvQ9lJoMxhi2mrsTJHzzGJY6Bffj37x/ThScISnvnyKrUFb2Xx0M3N3zWXurrk0C27G+LbjmdB2AolhmvhHREREROR8UoApIuJPhgFNO5rLRb8zXzXfNh+2zsG7dS72omzYOttcwBw7s/WgiiW0iR+LF2n4wgPC6RfYjwdHPcj2Y9v5ZOsnfLHjC7IKs3h17au8uvZV+sX1Y0K7CQxNGkqQLcjfJYuIiIiINDgKMEVE6hJHFHSdDF0n4yopZsnH/+KiBDfWnd/D7p/MsTPT3jIXgGZdofVAaDkAkvpDcLR/6xdpwDpEd+Cefvcwo/cMvtv9HR9v/ZifDvzE0sylLM1cymP2xxjdejRXtL+ClOgUf5crIiIiItJgKMAUEamrLFZyglvjGTAa68A/QGkh7P4RdnwH2xdA1rqK5ccXzHOadDTDzPIlPMGvtyDSEAVaAxnZaiQjW41kf/5+Zm0zJ/7ZX7Cf99Lf47309+ga25XL213OqFajCLYH+7tkEREREZF6TQGmiEh9ERBsjoXZ9lJzO/8QZHwPOxfBriXm2JmHNpnLiv8z20QlQ+IF0KI3NO8FzbqALcBvtyDS0CSEJnBr6q3c3P1mlh5YykdbP2L+7vmsO7yOdYfX8fflf+ey1pcxuf1kOsV08ne5IiIiIiL1kgJMEZH6KrSJ73VzAAoOmz00dy2BXYshcx0c3Wkua98121gDIb4bNO9dFmr2hKhWmhhI5GeyGBb6J/Snf0J/jhQd4bPtn/Hhlg/ZfWw3H2z5gA+2fEDH6I5Mbj+Z0a1GExoQ6u+SRURERETqDQWYIiINRUgsdBxrLgDFebBnGexdDvtWwL6V5iRBe5eby9Ky84IizLE047qYPTTjupivots1GYnI2YhxxHB9l+u5rvN1rMhawQdbPmDernlsyt7Ewz89zD9W/IPRrUYzuf1kOsd0xtBfIIiIiIiInJQCTBGRhiooHNoNNRcArxeyd5hB5t4VZqiZuQ6Kc2HXInMpZ1ghtp0ZaDbtCLHtzSW6FdgC/XM/IvWMYRj0ietDn7g+HC0+6uuVuTNvJx9t/YiPtn5ESlQKk9tP5rLWlxEWEObvkkVERERE6iQFmCIijYVhQEwbc+l2pbnPVQKH0iFrPWSuNycEylwPRdlwaLO5VLmGxRxXM7a9GXDGtDNDzciWEN4crPrHikhNooKimNp5Kr/q9CtWZq3ko60fMWfnHNKPpvPo0kd5euXTjEgeweT2k+kW2029MkVEREREKtF/aYqINGa2sjEx47tV7PN6IW+/GWpmrYdDW+DIVvOz9JjZizN7B2yZXfVaFpsZYka1NAPNqJYQmWzOhB4WB2Hx5kREIo2YYRj0jutN77je3N33bj7f/jkfbvmQ7bnb+XTbp3y67VPaRrZlcvvJjGk9hojACH+XLCIiIiLidwowRUSkKsOAiObm0n5ExX6vF/Kz4PCWsmWruRzdCbl7wF0KObvM5USCIswg07eUBZshsRAcU2mJ1qvq0uBFBEbwy06/5JqO15B2KI0Pt3zINzu/YVvONh5f9jjPrHyGkckjuarDVXSJ7eLvckVERERE/EYBpoiInB7DKAsc46DVJVWPeTxw7IAZXh7dVelzNxzbD3kHwFVkjrdZnFv91fSaBISZQWblYDMowhzbMzAMAsPL1iPM7aDwin32ELBYzs/PQeQcMwyDHk170KNpD/7U5098ueNLPtjyAdtytjFr+yxmbZ9Fp5hOTEmZwsjkkQTb1ZNZRERERBoXBZgiIvLzWSwVvTZbDqh+3OuFkjwzyDx2AI5lln2WLYXZUHikbMkGr9t8Xb302Ml7dJ6QAQGhYHeYr63byxeH+Rlw3HbldVsgWAPAFgDWwErblT8DKx2v1M5i/dk/SmncIgIjuLrj1fyiwy9IO5TGe+nvMWfnHDYe2cj9S+7nH8v/wbi247iy/ZW0jmzt73JFRERERGqFAkwRETn/DKOs92QENO1w8rYeD5TkHhdqli3FuVByDIrzzEC05FjZvryK/R4n4K0IQAtq5Q5NhqUi1LTYwWo3Py3WE6zbzImPqqzbKp1rrbReduxE64albN1qziLvW7eUXcdWtt9aqU3l/Zbj2thOcO4J9hsW8/9nOSeO75U5a9ss3k9/n735e3l709u8velt+sT14cqUK7k08VLsVru/SxYREREROW8UYIqISN1isYAjylxi2pzZuV4vuIrNILM0H5xFZUuB+VlacOp9rlJwl1T6LDHH93SX1nwMb6Xv95ivyruKzumPpN44VShaLUCtHLJWCkYNS8X5vvVK+w2j4honO8d3rPI5NVzvJOdYvNDy8AaMtKNgDzjzGqrUbSk7diZ1W4i2WLi+7SSmtr2cH7NW8N62j/l+30KWZy5neeZyYoJimNRuEle0v4L40Hh//xaIiIiIiJxzCjBFRKThMIyyV8EdQLPz/31eL3hcFSGnq6Qi4PS4zN6gblfFusdVtl2+XvbpW3eCx11p/fj2NZzrdpqv3HvcZoDqcZWtu8vWPZXW3RVtq7QpP7dsu1qbSvtP+vNwg9tt/iwaCCuQCrDHv3UAWIALy5ZMq5UPw0L5KCyUw8VHeG3da/zf2le5pLiUKwtKubDUjcUwykJRC1Bpvcpyov21dfx8X8M4R9c5w2v4ft7GcT//ytvl65xB2/L1021rqWgvIiIiUo8pwBQRETlbhmG+xt2YXt/1eI4LOV0nCD9PtL+GUNR3zbKwtfw8r+e4dXfV/b5j7uPWvefsHI/bRVbmAZo1jcWC9wS1/dyavce1K1uv3Lv3OHFuN9Nzcrk5J5dvgx28Hx7GMkcQCxyBLHAE0tzp4opjx5h47BjRHk/t/X5IHXaSULVa2OnvthXBrhXof/gI1v/NLOuZXNsh8JkGxlQ9Vu0ejZq/A86w/fHHzqR95etzhu1P8Z11/n4rfb+IiNQrCjBFRETk9FksYAnwdxW1xu10suyrrxg9ejQWey0H1V7vKYNSu8fNCK+HEV43O/J28cHOr5i1Zz77KODZ6ChejG3CsGYXMCVpGD0i2mFQ6ZqVr3/C5Ty24fh9p7rOuajldI+frN1p1sFx16px23v6bX/+L1TZ79A5uFQtsgBNAY75uRBpeGotsOUM2/srXOaE7a1eLz33H8A667OK4U9qrFXh+1nd71n9Hp3JfXMadZ2Pmit9v8g5oABTREREpC4yDDCsgPW0evm2jmjBXYkXcofrL8zOmM176e+x4cgGvjqwiK8OLKJDdAd+0eEXjGo1CofNcf7rl3OrPOw8PuA8afh5ouMnCko5zdD1uAD2hG2Pr5FTtz3u2i63kzVpaXTv1g2bxTjN+z2Nms7lz+aU4fRx+6nh+337OMP2lc87wbGTXoszbF++zmm0r+kYJ7+PE13rfPD9/3p+Lt+QWIBEgKN+LkTqsbMJm6nF0PVE7U+nZs6grjMMwysdMxJ6A03O2/9D9YECTBEREZEGxGFzMLHdRCa2m8iGwxt4f8v7fLXjKzZnb+b+Jffz1IqnmNRuElNSptAirIW/y5XT5fsPLIu/K6lVXqeTvbtD6NZtNNR2L2ipO44PhM82GD6b8PRnfTenef1z/d2cYfuTB+Jut4uNGzfSqWMHrIZxkmtxFrUe9/9Rvfg51fbv05n8XCsfO/6806z1vKj8XXI2LB4P2C7zdxl+pQBTREREpIHqHNuZB2MfZEavGXyy9RPeTX+Xffn7mLlhJm9ueJOBLQbyiw6/4IKEC7AYjSsYE5F6RK+i+pXH6WTH4a/o0G80Vv1FQuPgPYPA81TB8BkHvZzld3MG7Ws6xlnUerah9JkH4p7odrDVdW7/f65nFGCKiIiINHARgRFc1+U6ru10LYv2LeKdze+wZP8SFuxdwIK9C0gOT+aqDlcxvs14QgNC/V2uiIiI+JNvGBupK7xOJ2z9yt9l+JX+ql1ERESkkbBarAxMHMgrw17hswmfcU3Hawixh7AzbyePL3ucSz+4lEd+eoQdOTv8XaqIiIiIiI8CTBEREZFGqFVEK+7uezfzr5jPvf3upXVEawpdhbyX/h7jZ43nxjk3Mn/3fNwet79LFREREZFGTq+Qi4iIiDRiIfYQrupwFVNSprA0cyn/2/Q/FuxdwNIDS1l6YCnxIfFMSZnCpHaTiAqK8ne5IiIiItIINdoemOnp6aSmpvoWh8PBp59+6u+yRERERPzCMAwuiL+A54Y8x9eTvubXXX5NZGAkBwoO8OyqZxn6wVD+sugvbDyy0d+lioiIiEgj02h7YKakpJCWlgZAfn4+ycnJDBs2zL9FiYiIiNQBCaEJ3NnrTm7pfguzd87mnU3vsCl7E7O2z2LW9ln0aNqDX3b8JUOShmCzNNp/nRQRERGRWqJ/4wQ+++wzLr30UkJCQvxdioiIiEidEWQLYkLbCYxvM541h9bwv83/Y86uOaw+uJrVB1cTHxLPLzr8gkntJhERGOHvckVERESkgTonr5Dn5eXx6aefsmnTpnNxOQB++OEHxo4dS0JCAoZh1Ph694svvkhycjJBQUH069ePZcuWndV3vf/++0yZMuVnViwiIiLSMBmGQWrTVJ645Am+ufwbbup2E1GBURwoOMDTK59m2IfDeOSnR8jIzfB3qSIiIiLSAJ1VgHnllVfywgsvAFBUVETv3r258sor6datGx999NE5KaygoIDu3bvz4osv1nj8vffeY8aMGdx///2sWrWK7t27M2LECA4ePOhrk5qaSpcuXaot+/fv97XJy8tjyZIljB49+pzULSIiItKQNQ1uym96/Ia5V8zloQEP0T6qPUWuIt5Lf49xn47j1nm3smTfErxer79LFREREZEG4qxeIf/hhx+49957Afjkk0/wer3k5OTw5ptv8sgjj3D55Zf/7MJGjRrFqFGjTnj86aefZtq0aVx//fUAvPzyy3z55Ze88cYb3H333QC+MS5PZtasWQwfPpygoKCTtispKaGkpMS3nZeXB4DT6cTpdJ7ye+qb8ntqiPcmUl/oORTxPz2HJ2bBwpjkMVzW8jJWHFzBO5vf4Yd9P7Bo3yIW7VtEq/BW/CLlF1zW6jIcNoe/y5V6Ss+giP/pORTxv4b8HJ7uPRnes/jrcYfDwZYtW0hMTORXv/oVCQkJPP744+zevZtOnTqRn59/xgWftEjD4JNPPmHChAkAlJaWEhwczIcffujbBzB16lRycnKYNWvWaV977Nix3HTTTYwdO/ak7R544AEefPDBavvfeecdgoODT/v7RERERBqqI+4j/FTyE6tKV1GC+Re/DsNB74De9AvsR6Ql0r8FioiIiEidUlhYyNVXX01ubi7h4eEnbHdWPTATExP58ccfiY6OZvbs2bz77rsAHD169JQ9Gc+Fw4cP43a7adasWZX9zZo1Y/Pmzad9ndzcXJYtW3Zar73fc889zJgxw7edl5dHYmIiw4cPP+kPuL5yOp3MnTuXYcOGYbfb/V2OSKOk51DE//QcnrlruZZ8Zz6fbf+Md7e8y978vSwsWciS0iUMSRzC1SlX0y22G4Zh+LtUqQf0DIr4n55DEf9ryM9h+RvOp3JWAeadd97JNddcQ2hoKC1btmTQoEGA+Wp5165dz+aSfhEREUFWVtZptQ0MDCQwMLDafrvd3uB+eSpr6PcnUh/oORTxPz2HZybKHsXUrlP5Zedf8v3e73lr01ssz1zO3N1zmbt7Ll1ju3JNx2sY3nI4dqt+rnJqegZF/E/PoYj/NcTn8HTv56wCzNtuu42+ffuyZ88ehg0bhsVizgXUunVrHnnkkbO55BmJjY3FarVWCx+zsrKIi4s7798vIiIiIqdmtVgZkjSEIUlDSM9O561Nb/Hlji9Zd3gddy+8m6dXPM0vOv6CK9pfQURghL/LFREREZE66qxmIQfo3bs3EydOJDQ0FLfbTVpaGgMGDODCCy88l/XVKCAggF69ejF//nzfPo/Hw/z58+nfv/95/34REREROTMp0Sk8fOHDzJ08l9tTbyfWEcvBooM8t+o5hn04jMeWPsaevD3+LlNERERE6qCzCjDvvPNO/u///g8At9vNwIED6dmzJ4mJiSxYsOCcFJafn09aWppvJvGMjAzS0tLYvXs3ADNmzOC1117jzTffZNOmTdx6660UFBT4ZiUXERERkbonxhHDLd1vYc7lc3j0okdpH9WeIlcR/9v8Py775DJ+993vSDuY5u8yRURERKQOOatXyD/88EN++ctfAvD555+TkZHB5s2b+e9//8u9997L4sWLf3ZhK1asYPDgwb7t8gl0pk6dysyZM5kyZQqHDh3ivvvuIzMzk9TUVGbPnl1tYh8RERERqXvsVjvj2oxjbOux/HTgJ97c+CaL9y1m3u55zNs9j25NujG101QuTboUq8Xq73JFRERExI/OKsA8fPiwb6zJr776iiuuuIL27dtzww038Nxzz52TwgYNGoTX6z1pm+nTpzN9+vRz8n0iIiIiUvsMw6B/Qn/6J/Rn29Ft/Gfjf/hixxesPbSW33//e5qHNufaTtcyse1Egu3B/i5XRERERPzgrF4hb9asGRs3bsTtdjN79myGDRsGQGFhIVar/oZcRERERM5c26i2PHThQ8yZPIebut1EZGAk+/L38fiyxxn64VCeWfkMWQVZp76QiIiIiDQoZxVgXn/99Vx55ZV06dIFwzAYOnQoAEuXLqVDhw7ntEARERERaVxiHbH8psdvmDN5Dn/p9xdahrfkWOkx3lj/BiM/HsmfF/6Z9Ox0f5cpIiIiIrXkrF4hf+CBB+jSpQt79uzhiiuuIDAwEACr1crdd999TgsUERERkcbJYXMwpcMUrki5ggV7FvDmhjdZdXAVn+/4nM93fE6/+H5M7TSVi5pfhGEY/i5XRERERM6TswowASZPnlxt39SpU39WMSIiIiIix7MYFoYkDWFI0hDWH17PmxveZO6uuSw9sJSlB5bSJqINv+r8Ky5rfRmB1kB/lysiIiIi59hZvUIO8P333zN27Fjatm1L27ZtGTduHAsXLjyXtYmIiIiIVNEltgtPDnySryZ9xbWdriXEHsL23O3cv+R+Rn40ktfXvU5eaZ6/yxQRERGRc+isAsy33nqLoUOHEhwczB133MEdd9yBw+Hg0ksv5Z133jnXNYqIiIiIVJEQmsCf+vyJuZPn8vtev6dZcDMOFx3muVXPMfzD4Ty14ilN+CMiIiLSQJzVK+SPPvoof//73/nd737n23fHHXfw9NNP8/DDD3P11VefswJFRERERE4kLCCM67pcxzWdrmF2xmzeWP8G23K2MXPDTN7a9BZjWo/hus7X0Sayjb9LFREREZGzdFY9MHfs2MHYsWOr7R83bhwZGRk/uygRERERkTNht9gZ22YsH4/7mBcvfZFezXrh8rj4dNunTJg1gd/M/w2rD672d5kiIiIichbOKsBMTExk/vz51fbPmzePxMTEn12UiIiIiMjZMAyDS1pcwsyRM3lr9FsMTRqKgcGCvQv41de/4tqvruW73d/h8Xr8XaqIiIiInKazeoX897//PXfccQdpaWkMGDAAgMWLFzNz5kyee+65c1qgiIiIiMjZ6N6kO88MfoaM3Aze3PAmn23/jLRDadzx3R20jmjNdZ2vY0zrMditdn+XKiIiIiIncVYB5q233kpcXBxPPfUU77//PgAdO3bkvffeY/z48ee0QBERERGRn6NVRCseGPAAt6feztub3ub99PfZkbuD+5bcxwurX+DaTtcyuf1kQgNC/V2qiIiIiNTgrAJMgIkTJzJx4sRzWYuIiIiIyHnTJLgJd/a6kxu73siHWz7kvxv/y8Gigzy18ileXfsqV6ZcyS87/ZJYR6y/SxURERGRSs5qDEwRERERkfoqNCCU67pcx+zLZ/PQgIdoFdGKY85j/N/6/2P4h8N5YMkD7Mzd6e8yRURERKTMaffAjIqKwjCM02qbnZ191gWJiIiIiNQGu9XOxHYTGd92PN/v+Z5/b/g3qw+u5qOtH/Hx1o8Z1nIYN3a9kY4xHf1dqoiIiEijdtoB5rPPPnseyxARERER8Q+LYWFw0mAGJw1m9cHVvLH+DRbsWcCcXXOYs2sOFzW/iGldp9GzWU9/lyoiIiLSKJ12gDl16tQzvvjjjz/OLbfcQmRk5BmfKyIiIiJS23o07cE/h/yTrUe38n/r/4+vM75m0b5FLNq3iJ5Ne3Jj1xu5qPlFp/1mkoiIiIj8fOd1DMzHHntMr5OLiIiISL3TLqodj1/8OF9M+IIr2l+B3WJn1cFV3Db/Nq784kq+2fkNbo/b32WKiIiINArnNcD0er3n8/IiIiIiIudVYngi9/W/j9mXz2Zqp6k4bA42Z2/mD9//gQmzJvDJ1k9wup3+LlNERESkQdMs5CIiIiIip9A0uCl/6PMH5lw+h1u730p4QDg783Zy35L7GPXxKN7e9DZFriJ/lykiIiLSICnAFBERERE5TZFBkdyWehtzJs/hD73/QBNHE7IKs3h82eOM+HAEr619jbzS/2/vzuOyqPf3j1/3zY6CGwouKG65i2uKWmpumfuSa+XJUjMti1YzrfSkbXo6mWlZZptruUsqWmqau+KKW6K4ISoCCsh2z+8Pf9xfOVgBoXMDr+d58DgwM/fnvqZ8H/U6c8/Emx0TAACgQKHABAAAAHKoiEsRDakzRD/3+Vnjm49X+aLldS35mj7Z94k6/dhJH+/5WFeSrpgdEwAAoECgwAQAAAByyc3JTf1q9NOqXqs05YEpqla8mm6k3tBXh77Swz89rMk7JisqIcrsmAAAAPnaXS0wH3jgAXl4eNzNtwAAAABM52x1VtcqXfVT95/037b/VT2fekpOT9b8o/PVeUlnvf372zp3/ZzZMQEAAPIl59y+0Gaz6eTJk4qOjpbNZsu078EHH5QkhYSE/LN0AAAAQD5itVj1UMWH1Na/rXZE7dAXB77Qrqhd+unET1p2cpm6VumqYfWHqZJ3JbOjAgAA5Bu5KjC3b9+uQYMG6cyZMzIMI9M+i8Wi9PT0PAkHAAAA5EcWi0XNyzZX87LNtefSHn2+/3Ntu7hNy/9YrpWnVurhgIc1vP5wVS1e1eyoAAAADi9XHyF/5pln1KRJEx06dEgxMTG6du2a/SsmJiavMwIAAAD5VmPfxvqi4xf64ZEf9GCFB2UzbAqJCFGv5b300saXdCzmmNkRAQAAHFqursA8ceKEfvzxR1WrVi2v8wAAAAAFUv3S9TWj3QwduXpEXxz4QhsiN2jdmXVad2ad2vq31YjAEapTqo7ZMQEAABxOrq7AbNasmU6ePJnXWQAAAIACr3ap2vq47cf6qftP6hTQSRZZ9OvZXzVg1QCNXD9SYdFhZkcEAABwKLm6AvO5557TSy+9pKioKNWrV08uLi6Z9tevXz9PwgEAAAAF1X0l7tNHrT/SqcBTmn1wtkIiQrTl/BZtOb9Fzco204j6I9TUr6nZMQEAAEyXqwKzT58+kqShQ4fat1ksFhmGwUN8AAAAgByoUryKpjwwRSMDR+rLg19q5R8rtePiDu24uEONfRtrRP0Ral62uSwWi9lRAQAATJGrAjMiIiKvcwAAAACFWkXviprYcqJGBI7QnINztPTkUu25tEfDQ4crsHSgRgaOVItyLSgyAQBAoZOrArNSpUp5nQMAAACApPJFy2t80HgNqz9MXx/6Wj+d+En7L+/XM+ufUWDpQD0b+KyCygVRZAIAgEIjVwVmhiNHjigyMlIpKSmZtnfv3v0fhQIAAAAKO78ifhrbbKyG1R+mOYfmaNGxRdp/eb9GrB+hBqUbaGSDkQoqS5EJAAAKvlwVmKdOnVKvXr108OBB+70vJdn/8MQ9MAEAAIC84ePho1ebvqon6zypOYfmaPHxxQq7HKYRoSPUsExDjQwcyT0yAQBAgWbNzYvGjBmjypUrKzo6Wp6enjp8+LA2b96sJk2aaOPGjXkcEQAAAEBpz9J67f7X9HPvn/VYrcfkanXVvuh9Gh46XP9a8y9tv7jdfmEBAABAQZKrAnPbtm2aOHGifHx8ZLVaZbVa1apVK02ZMkXPP/98XmcEAAAA8P/Zi8w+P2twrcFytbpqb/ReDVs3TP9a8y/tuLiDIhMAABQouSow09PT5eXlJUny8fHRhQsXJN16uM+xY8fyLh0AAACAOyrjWUav3/+6QnqHaFDNQfYi8+l1T+vJtU9qV9QusyMCAADkiVwVmHXr1tX+/fslSc2aNdMHH3ygrVu3auLEiapSpUqeBgQAAADw53yL+Gpss7EK6R2igTUHysXqoj2X9mjo2qEaunYoRSYAAMj3clVgvvnmm7LZbJKkiRMnKiIiQg888IBCQkL0ySef5GlAAAAAAH/Pt4iv3mj2hkJ6h2hAjQFysbpoV9QuDV07VE+tfUq7o3abHREAACBXcvUU8k6dOtm/r1atmo4ePaqYmBiVKFGCpx8CAAAAJvIr4qdxzcfpqXpP6cuDX2rJiSXaGbVTO6N2qplfM41qOEoNyzQ0OyYAAEC25eoKzAwnT57U2rVrlZSUpJIlS+ZVpnvmo48+Up06dVS3bl19//33ZscBAAAA8oxfET+92fxNhfQOUf8a/eVsddaOqB164ucnNHL9SB2+etjsiAAAANmSqwLz6tWrateune677z498sgjunjxoiTpqaee0ksvvZSnAe+WgwcPat68edqzZ4927dqlTz/9VLGxsWbHAgAAAPKUvcjsFaI+1fvIyeKkLee3aMCqAXrh1xd0/NpxsyMCAAD8pVwVmC+++KJcXFwUGRkpT09P+/b+/ftrzZo1eRbubgoPD1dQUJDc3d3l4eGhwMDAfJMdAAAAyKmyRcvq7RZva0XPFepWpZsssmhD5Ab1XdFXr25+VafjTpsdEQAA4I5yVWCuW7dO77//vipUqJBpe/Xq1XXmzJk8CbZ582Z169ZN5cqVk8Vi0bJly7IcM2PGDAUEBMjd3V3NmjXTzp07s71+3bp1tXHjRsXGxuratWvauHGjzp8/nyfZAQAAAEdV0buiJj8wWUt7LFXHSh1lyNDPET+rx/IeGr91vM7f4M/EAADAseTqIT4JCQmZrrzMEBMTIzc3t38cKuM9AgMDNXToUPXu3TvL/oULFyo4OFizZs1Ss2bN9PHHH6tTp046duyYypQpI0lq0KCB0tLSsrx23bp1ql27tp5//nk99NBDKlasmJo3by4nJ6c8yQ4AAAA4uqrFq2pqm6k6GnNUM/bN0MZzG7Xs5DKtOrVKfar30bB6w+RbxNfsmAAAALkrMB944AF9++23mjRpkiTJYrHIZrPpgw8+UNu2bfMkWOfOndW5c+c/3T9t2jQNGzZMTz75pCRp1qxZWr16tebMmaPXX39dkhQWFvaX7zFixAiNGDFCkvT000+revXqf3pscnKykpOT7T/Hx8dLklJTU5Wampqtc8pPMs6pIJ4bkF8wh4D5mEMUBlW9qmrag9N08MpBzTwwU9ujtmvhsYVaemKpHq3+qJ6s86RKupvzwE5mEDAfcwiYryDPYXbPyWIYhpHTxQ8dOqR27dqpUaNG+uWXX9S9e3cdPnxYMTEx2rp1q6pWrZrjwH8Z0mLR0qVL1bNnT0lSSkqKPD099eOPP9q3SdKQIUMUGxur5cuXZ2vd6OholSlTRseOHdOjjz6qvXv3ytn5zp3u22+/rXfeeSfL9nnz5t3xalQAAAAgP4pIi9D6pPU6k37r1lAuclGQW5BaubWSp5U/9wIAgLyTmJioQYMGKS4uTt7e3n96XK6uwKxbt66OHTumGTNmyMvLSzdu3FDv3r01atQolS1bNtehs+vKlStKT0+Xr2/mj7T4+vrq6NGj2V6nR48eiouLU5EiRfT111//aXkpSWPHjlVwcLD95/j4ePn7+6tjx45/+Q84v0pNTVVoaKg6dOggFxcXs+MAhRJzCJiPOURh9azxrLZHbddn+z/T4ZjD2py8WXtte/VYzcc0qOYgFXUpek9yMIOA+ZhDwHwFeQ4zPuH8d3JVYEqSu7u7OnTooMDAQNlsNknSrl27JEndu3fP7bL31LZt27J9rJub2x3v7+ni4lLgfvHcrqCfH5AfMIeA+ZhDFEYPVnxQD/g/oI1nN+rTsE91/NpxzTo4S/OPz9eTdZ7UoFqD5OHscU+yMIOA+ZhDwHwFcQ6zez65KjDXrFmjxx9/XDExMfrfT6BbLBalp6fnZtls8/HxkZOTky5dupRp+6VLl+Tn53dX3xsAAAAoLCwWi9pWbKvW/q217sw6zdg3Q6fjT+vjvR/rh/Af9EzgM+pVvZdcrAXrL1MAAMCxWHPzoueee079+vXThQsXZLPZMn3d7fJSklxdXdW4cWNt2LDBvs1ms2nDhg0KCgq66+8PAAAAFCZWi1UPBzyspT2W6t8t/63yRcvrctJlTdo+ST2W9dDqU6tlM2xmxwQAAAVUrgrMS5cuKTg4OMs9KPPSjRs3FBYWZn+SeEREhMLCwhQZGSlJCg4O1uzZs/XNN98oPDxcI0eOVEJCgv2p5AAAAADylrPVWT2q9dCKnis09v6xKuleUmevn9Xrv72ufiv7afO5zVk+oQUAAPBP5eoj5H379tXGjRvz/Gnjt9u9e7fatm1r/znjATpDhgzR3Llz1b9/f12+fFkTJkxQVFSUGjRooDVr1tzVUhUAAACA5OrkqkG1BqlntZ767sh3mnt4ro5dO6ZRG0apUZlGGtNojBr5NjI7JgAAKCByVWB++umnevTRR/Xbb7+pXr16WW64+fzzz//jYG3atPnb//d29OjRGj169D9+LwAAAAA55+niqRGBI9S/Rn/NOTRH847O097ovRqyZogerPCgnm/4vGqUrGF2TAAAkM/lqsCcP3++1q1bJ3d3d23cuFEWi8W+z2Kx5EmBCQAAACB/KO5eXMFNgjW41mDNOjBLS08s1eZzm/Xbud/UuXJnjW4wWv7e/mbHBAAA+VSu7oE5btw4vfPOO4qLi9Pp06cVERFh/zp16lReZwQAAACQD/gW8dVbQW9pWY9l6hTQSYYMhUSEqPuy7vr39n/rcuJlsyMCAIB8KFcFZkpKivr37y+rNVcvBwAAAFCABRQL0EetP9LCrgvVsnxLpRlpWnhsoR5Z8og+3vOx4pLjzI4IAADykVw1kEOGDNHChQvzOgsAAACAAqR2qdqa1X6W5nSao8DSgbqZflNfHfpKnZd01pcHv1RSWpLZEQEAQD6Qq3tgpqen64MPPtDatWtVv379LA/xmTZtWp6EAwAAAJD/NfVrqu86f6eNZzfqk32f6GTsSf137381L3yengl8Rr2r95azNVd/NQEAAIVArv6UcPDgQTVs2FCSdOjQoUz7bn+gDwAAAABIt/6e0LZiWz1Y4UGFRIRoRtgMnb9xXpO2T9J3R77TC41e0EMVH+LvEwAAIItcFZi//vprXucAAAAAUAg4WZ3UrWo3PRzwsBYdX6TP93+u0/Gn9cLGF9SgdAMFNwlWwzINzY4JAAAcCE/hAQAAAHDPuTi5aHCtwVrde7WG1Rsmdyd3hV0O0xM/P6Exv4zRqbhTZkcEAAAOggITAAAAgGm8XL30fKPntarXKvWp3kdWi1W/nP1FvZf31r93/lvXbdfNjggAAExGgQkAAADAdL5FfPV2i7e1pPsStfFvo3QjXUtOLtG0+Gn6bP9nupFyw+yIAADAJBSYAAAAABxG1eJVNf2h6frm4W9Ur1Q9pSpVXx7+Ul2WdtEP4T8oNT3V7IgAAOAeo8AEAAAA4HAa+TbS3I5zNdBzoCp5VVLMzRi9t/M99VjeQ2si1sgwDLMjAgCAe4QCEwAAAIBDslgsquNaR4u6LNL45uNVyr2Uzl4/q1c2v6KBqwdq58WdZkcEAAD3AAUmAAAAAIfmYnVRvxr9FNI7RM82eFaezp46fPWwnlr3lJ5d/6yOXztudkQAAHAXUWACAAAAyBc8XTw1MnCkVvderQE1BsjZ4qzfzv+mviv6asLWCYpOjDY7IgAAuAsoMAEAAADkKz4ePhrXfJyW9VymjpU6ypChpSeXquvSrpoZNlOJqYlmRwQAAHmIAhMAAABAvlTJu5Kmtpmq7x/5XoGlA5WUlqTP9n+mrku7aumJpUq3pZsdEQAA5AEKTAAAAAD5WmDpQH3X+Tt91PojlS9aXpeTLmvC7xPUb1U/bbuwzex4AADgH6LABAAAAJDvWSwWdQropBU9V+jlJi/Ly9VLx68d1/DQ4Rq5fqROXjtpdkQAAJBLFJgAAAAACgxXJ1cNqTNEIb1C9Fitx+RscdaW81vUZ2UfTdw2UVeSrpgdEQAA5BAFJgAAAIACp7h7cb12/2ta1nOZ2ldsL5th0+Lji9VlSRd9ceALJaUlmR0RAABkEwUmAAAAgAKrkncl/aftfzT34bmqW6quEtMSNX3fdHVb2k0r/1gpm2EzOyIAAPgbFJgAAAAACrzGvo31Q5cf9N4D76lskbK6lHhJb2x5QwNWDdCuqF1mxwMAAH+BAhMAAABAoWC1WNWlShet7LVSLzR6QUVdiio8JlxD1w7Vc788p4i4CLMjAgCAO6DABAAAAFCouDm56al6T2l179XqX6O/nCxO2nh2o3ot76UpO6YoLjnO7IgAAOA2FJgAAAAACqWS7iX1ZvM3taTHErWp0EbpRrrmHZ2nLku7aF74PKXaUs2OCAAARIEJAAAAoJCrUqyKprebri86fKFqxaspLjlOU3ZOUd8VfbX1/Faz4wEAUOhRYAIAAACApKByQVrcbbHGNx+vEm4ldCrulJ5Z/4yeXf+sTsWdMjseAACFFgUmAAAAAPx/zlZn9avRT6t6r9ITtZ+Qs8VZv53/TX2W99H7O9/n/pgAAJiAAhMAAAAA/oe3q7deafqKlvZYqjYV2ijNSNP34d+ry9Iumn90vtJsaWZHBACg0KDABAAAAIA/EVAsQNPbTdfn7T+33x9z8o7J6ruir34//7vZ8QAAKBQoMAEAAADgb7Qo30KLuy3WuGbjVNytuP6I+0Mj1o/Q6A2jFREXYXY8AAAKNApMAAAAAMgGZ6uzBtQcoFW9VumxWo/J2eKsTec2qffy3vpg1wfcHxMAgLuEAhMAAAAAcqCYWzG9dv9rWtJjiR6s8KDSjDR9d+Q7dV3aVQuOLuD+mAAA5DEKTAAAAADIhcrFKmtGuxma1X6WqharqtjkWL274109uvJRbb+43ex4AAAUGBSYAAAAAPAPtCzfUj92/1FvNHtDxdyK6WTsSQ1bN0zBG4N1/sZ5s+MBAJDvUWACAAAAwD/kbHXWwJoDtbrXag2qOUhOFieFnglVj2U99FnYZ0pKSzI7IgAA+RYFJgAAAADkkWJuxTS22Vgt6rZITf2aKjk9WTP3z1SPZT0UeiZUhmGYHREAgHyHAhMAAAAA8th9Je7TVx2/0ketP5JfET9dTLio4I3BGrZumE5eO2l2PAAA8hUKTAAAAAC4CywWizoFdNKKniv0TOAzcrW6akfUDvVd2Vfv7XxP8SnxZkcEACBfKBQFZq9evVSiRAn17ds3R/sAAAAA4J/ycPbQqAajtLzncrWr2E7pRrp+CP9BXZd01U/Hf1K6Ld3siAAAOLRCUWCOGTNG3377bY73AQAAAEBeqeBVQR+3/Vifd/hcVYpV0bXka3p729saFDJIYdFhZscDAMBhFYoCs02bNvLy8srxPgAAAADIay3KtdCP3X/Uq01fVVGXojpy9Yge//lxjdsyTpcTL5sdDwAAh2N6gbl582Z169ZN5cqVk8Vi0bJly7IcM2PGDAUEBMjd3V3NmjXTzp07731QAAAAAMgjLlYXPV77ca3stVK9qvWSJK34Y4W6Lu2qrw99rdT0VJMTAgDgOEwvMBMSEhQYGKgZM2bccf/ChQsVHByst956S3v37lVgYKA6deqk6Oho+zENGjRQ3bp1s3xduHDhXp0GAAAAAOSYj4ePJracqHmPzFM9n3pKTEvUtD3T1HtFb209v9XseAAAOARnswN07txZnTt3/tP906ZN07Bhw/Tkk09KkmbNmqXVq1drzpw5ev311yVJYWFhdz1ncnKykpOT7T/Hx996YmBqaqpSUwve/zuacU4F8dyA/II5BMzHHALmKkwzWLN4TX3d4Wutilil6WHTdTr+tJ5Z/4za+bdTcKNglS1S1uyIKKQK0xwCjqogz2F2z8n0AvOvpKSkaM+ePRo7dqx9m9VqVfv27bVt27Z7mmXKlCl65513smxft26dPD0972mWeyk0NNTsCEChxxwC5mMOAXMVphl0lrNGuo3UL8Yv2p68XRvObtDms5vVxr2NWrq1lLPFof8KhwKsMM0h4KgK4hwmJiZm6ziH/t3vypUrSk9Pl6+vb6btvr6+Onr0aLbXad++vfbv36+EhARVqFBBixcvVlBQ0N/uu93YsWMVHBxs/zk+Pl7+/v7q2LGjvL29c3mGjis1NVWhoaHq0KGDXFxczI4DFErMIWA+5hAwV2Gewd7qrROxJ/Terve07/I+hd4M1QnXE3q10atqXra52fFQiBTmOQQcRUGew4xPOP8dhy4w88r69etzte92bm5ucnNzy7LdxcWlwP3iuV1BPz8gP2AOAfMxh4C5CusM1i5dW990/karTq3S1N1TdTr+tJ799Vl1rNRRrzR9RX5F/MyOiEKksM4h4EgK4hxm93xMf4jPX/Hx8ZGTk5MuXbqUafulS5fk58dv1gAAAAAKNovFom5Vu2llr5V6rNZjslqsWndmnbov6645h+bwtHIAQKHg0AWmq6urGjdurA0bNti32Ww2bdiw4Y4f8wYAAACAgsjL1Uuv3f+aFnVdpEZlGikpLUn/2fMf9VnZR9svbjc7HgAAd5XpBeaNGzcUFhZmf5J4RESEwsLCFBkZKUkKDg7W7Nmz9c033yg8PFwjR45UQkKC/ankAAAAAFBY1ChZQ3Mfnqt3W72rku4lFREXoWHrhunlTS/rUsKlv18AAIB8yPR7YO7evVtt27a1/5zxoJwhQ4Zo7ty56t+/vy5fvqwJEyYoKipKDRo00Jo1a7I82AcAAAAACgOLxaLuVburjX8bzdg3QwuOLdDa02u1+dxmjQwcqcdqPSYXp4J1jzQAQOFm+hWYbdq0kWEYWb7mzp1rP2b06NE6c+aMkpOTtWPHDjVr1sy8wAAAAADgALxdvTW22Vgt7LpQDUo3UFJakqbtmaa+K/tqx8UdZscDACDPmF5gAgAAAAByr2bJmvqm8zf6d8t/q6R7SZ2KO6Wn1z2tVze9qujEaLPjAQDwj1FgAgAAAEA+Z7VY1aNaD63stVIDaw6U1WLVz6d/Vvdl3fVD+A9Kt6WbHREAgFyjwAQAAACAAsLb1VtvNHtDC7osUH2f+kpITdB7O9/ToJBBOnzlsNnxAADIFQpMAAAAAChgapWqpe8e+U7jm4+Xl6uXjlw9ooGrB+rd7e/qesp1s+MBAJAjFJgAAAAAUABZLVb1q9FPK3quUNcqXWXI0IJjC9R9WXeFnAqRYRhmRwQAIFsoMAEAAACgAPPx8NGUB6boy45fKsA7QFeSrui1317T8NDhOhN/xux4AAD8LQpMAAAAACgEmpVtpp+6/6TRDUbL1eqq7Re3q/fy3poZNlPJ6clmxwMA4E9RYAIAAABAIeHq5KoRgSO0tMdStSjXQim2FH22/zP1Xt5bv1/43ex4AADcEQUmAAAAABQyFb0ralb7Wfqw9Ycq7VFakdcjNSJ0hF7d/KquJF0xOx4AAJlQYAIAAABAIWSxWPRwwMNa3nO5BtUcJKvFqp8jfla3pd00/+h8pdvSzY4IAIAkCkwAAAAAKNS8XL00ttlYzesyT3VK1dGN1BuavGOyBocM1uGrh82OBwAABSYAAAAAQKpTqo5+eOQHvdHsDRV1KarDVw9r0OpBen/n+0pMTTQ7HgCgEKPABAAAAABIkpysThpYc6BW9FyhzgGdZTNs+j78e/Vc3lObzm4yOx4AoJCiwAQAAAAAZFLas7Q+aP2BZrafqfJFy+tiwkWN/mW0Xtr4ki4nXjY7HgCgkKHABAAAAADcUavyrbSk+xL9q86/5GRx0roz69RjWQ8tPr5YNsNmdjwAQCFBgQkAAAAA+FOeLp56qclLmt9lvmqXqq3rqdc1cdtE/WvNv/RH7B9mxwMAFAIUmAAAAACAv1WrVC3Ne2SeXmv6mjycPbQvep/6ruyrT/d9quT0ZLPjAQAKMApMAAAAAEC2OFmd9Fjtx7S8x3K1rtBaabY0fX7gc/Vd0Ve7onaZHQ8AUEBRYAIAAAAAcqRs0bKa/tB0TW09VT4ePjodf1pD1w7VhK0TFJccZ3Y8AEABQ4EJAAAAAMgxi8WijgEdtbzncvW7r58kaenJpeq+rLtCToXIMAyTEwIACgoKTAAAAABArnm7emt80Hh98/A3qlqsqmJuxui1317TyA0jde76ObPjAQAKAApMAAAAAMA/1si3kRZ3W6zRDUbLxeqiree3qtfyXpp7aK7SbGlmxwMA5GMUmAAAAACAPOHi5KIRgSO0pPsSNfVrqpvpNzV1z1QNDhmsYzHHzI4HAMinKDABAAAAAHkqoFiAvur4lSa2mCgvVy8duXpEA1YN0Cd7P1FyerLZ8QAA+QwFJgAAAAAgz1ksFvWq3ksreq5Qh0odlGakafbB2eq7oq/2XtprdjwAQD5CgQkAAAAAuGt8PHw0rc00/afNf+Tj4aPT8ac1ZM0Qvbv9XSWkJpgdDwCQD1BgAgAAAADuuvaV2mtZj2XqXb23JGnBsQXqubynfjv3m8nJAACOjgITAAAAAHBPFHMrpndavKPZHWerQtEKikqI0rMbntXY38bq2s1rZscDADgoCkwAAAAAwD3VvGxz/dT9Jz1R+wlZLVatOrVKPZf31M8RP8swDLPjAQAcDAUmAAAAAOCe83Tx1CtNX9H3nb9XteLVFHMzRq9uflXP/fKcohKizI4HAHAgFJgAAAAAANPUK11Pi7ou0rMNnpWz1Vmbzm1Sz+U9tejYItkMm9nxAAAOgAITAAAAAGAqFycXjQwcqcVdF6t+6fpKSE3QpO2TNHTtUJ2OO212PACAySgwAQAAAAAOoVqJavr24W/1+v2vy8PZQ3su7VGfFX301cGvlGZLMzseAMAkFJgAAAAAAIfhZHXS4FqDtbTHUrUo10IpthR9vPdjPR7yuE5eO2l2PACACSgwAQAAAAAOp3zR8prVfpYmtZwkL1cvHbp6SP1W9dMXB75Qqi3V7HgAgHuIAhMAAAAA4JAsFot6VuupZT2WqXWF1kq1pWr6vukavHqwjsUcMzseAOAeocAEAAAAADi0Mp5lNP2h6ZrcarK8Xb0VHhOuAasHaNb+WVyNCQCFAAUmAAAAAMDhWSwWdavaTct6LFNb/7ZKs6VpRtgMDVo9SEdjjpodDwBwF1FgAgAAAADyjdKepfXftv/V+w+8r2JuxXQ05qgGrhqoz8I+U2o6V2MCQEFEgQkAAAAAyFcsFoseqfKIlvVYpvYV2yvNSNPM/TM1YPUAHbl6xOx4AIA8VigKzF69eqlEiRLq27dvpu2xsbFq0qSJGjRooLp162r27NkmJQQAAAAA5JSPh4+mtZmmD1t/qBJuJXT82nENWj1I0/dNV0p6itnxAAB5pFAUmGPGjNG3336bZbuXl5c2b96ssLAw7dixQ5MnT9bVq1dNSAgAAAAAyA2LxaKHAx7Wsp7L1Cmgk9KNdH1x4Av1X9Vfh68cNjseACAPFIoCs02bNvLy8sqy3cnJSZ6enpKk5ORkGYYhwzDudTwAAAAAwD9U0r2kPmr9kaa2nqqS7iV1MvakBocM1n/3/perMQEgnzO9wNy8ebO6deumcuXKyWKxaNmyZVmOmTFjhgICAuTu7q5mzZpp586defb+sbGxCgwMVIUKFfTKK6/Ix8cnz9YGAAAAANxbHQM6almPZeoc0FnpRrq+PPil+q3sx9WYAJCPmV5gJiQkKDAwUDNmzLjj/oULFyo4OFhvvfWW9u7dq8DAQHXq1EnR0dH2YzLuYfm/XxcuXPjb9y9evLj279+viIgIzZs3T5cuXcqzcwMAAAAA3Hsl3Evog9Yf6OM2H6uUeyn9EfeHBocM1oywGTypHADyIWezA3Tu3FmdO3f+0/3Tpk3TsGHD9OSTT0qSZs2apdWrV2vOnDl6/fXXJUlhYWH/OIevr68CAwP122+/ZXnYj3TrI+bJycn2n+Pj4yVJqampSk0teL8BZpxTQTw3IL9gDgHzMYeAuZhB/FMPlntQix5ZpPd3v691kes0a/8s/Rr5qyYGTVT14tXNjpcvMIeA+QryHGb3nEwvMP9KSkqK9uzZo7Fjx9q3Wa1WtW/fXtu2bfvH61+6dEmenp7y8vJSXFycNm/erJEjR97x2ClTpuidd97Jsn3dunX2+2gWRKGhoWZHAAo95hAwH3MImIsZxD/1oB5UCc8SWpG0QseuHdOgkEF6yP0htXJrJSeLk9nx8gXmEDBfQZzDxMTEbB3n0AXmlStXlJ6eLl9f30zbfX19dfTo0Wyv0759e+3fv18JCQmqUKGCFi9erKCgIJ05c0bDhw+3P7znueeeU7169e64xtixYxUcHGz/OT4+Xv7+/urYsaO8vb1zd4IOLDU1VaGhoerQoYNcXFzMjgMUSswhYD7mEDAXM4i89Ige0VNJT+ndne9q0/lNCr0ZqotFLmpi0EQFeAeYHc9hMYeA+QryHGZ8wvnvOHSBmVfWr19/x+33339/tj9+7ubmJjc3tyzbXVxcCtwvntsV9PMD8gPmEDAfcwiYixlEXinrUlbT203Xij9W6P2d7+vQ1UMa+PNAjWk0RoNrDZbVYvpjIhwWcwiYryDOYXbPx6H/19nHx0dOTk5ZHqxz6dIl+fn5mZQKAAAAAJBfWSwW9ajWQ0t6LFFQ2SAlpyfrg10faOjaoTp7/azZ8QAAd+DQBaarq6saN26sDRs22LfZbDZt2LBBQUFBJiYDAAAAAORnfkX89HmHzzW++Xh5OHtoz6U96rOijxYdWyTDMMyOBwC4jekF5o0bNxQWFmb/KHdERITCwsIUGRkpSQoODtbs2bP1zTffKDw8XCNHjlRCQoL9qeQAAAAAAOSGxWJRvxr99FP3n9TYt7GS0pI0afskPbP+GUUlRJkdDwDw/5leYO7evVsNGzZUw4YNJd0qLBs2bKgJEyZIkvr376+PPvpIEyZMUIMGDRQWFqY1a9ZkebAPAAAAAAC54e/lrzmd5ujVpq/KzclNv1/4Xb2W99Lyk8u5GhMAHIDpD/Fp06bN3/6GMHr0aI0ePfoeJQIAAAAAFDZWi1WP135crcq30ptb3tSBKwf05tY3tf7Mer3V4i35ePiYHREACi3Tr8AEAAAAAMBRVC5WWd90/kZjGo2Rs9VZG89tVM/lPbXm9BqzowFAoUWBCQAAAADAbZytznq63tNa2HWhapasqbjkOL2y6RW9tvk1xSXHmR0PAAodCkwAAAAAAO7gvhL3ad4j8zS8/nBZLVaFRISo94re2nZhm9nRAKBQocAEAAAAAOBPuDi56LmGz+nbzt+qoldFRSdGa3jocL2/833dTLtpdjwAKBQoMAEAAAAA+BuBpQO1uNti9buvnyTp+/Dv1X9Vfx2+etjkZABQ8FFgAgAAAACQDZ4unhofNF4z2s2Qj4ePTsWd0mOrH9Pn+z9Xmi3N7HgAUGBRYAIAAAAAkAMPVnhQS7ovUYdKHZRmpOnTsE81ZM0QnYk/Y3Y0ACiQKDABAAAAAMihEu4lNLX1VE1uNVlFXYrqwOUDenTlo1p0bJEMwzA7HgAUKBSYAAAAAADkgsViUbeq3bSk+xI19WuqpLQkTdo+SaM2jNLlxMtmxwOAAoMCEwAAAACAf6Bs0bL6suOXeqXJK3K1uuq387+p94reCj0TanY0ACgQKDABAAAAAPiHrBarnqjzhBZ0XaAaJWooNjlWwRuDNW7LOF1PuW52PADI1ygwAQAAAADII9VLVNf8LvP1dL2nZbVYteKPFeqzoo92Re0yOxoA5FsUmAAAAAAA5CEXJxeNaTRGcx+eqwpFK+hiwkU9tfYpfbjrQyWnJ5sdDwDyHQpMAAAAAADugoZlGurH7j+qT/U+MmTo2yPfasCqAToWc8zsaACQr1BgAgAAAABwlxRxKaK3W7yt6Q9NV0n3kjoZe1IDVw/UN4e/kc2wmR0PAPIFCkwAAAAAAO6yNv5ttKT7ErWp0EaptlR9tPsjDV83XFEJUWZHAwCHR4EJAAAAAMA9UMqjlD556BONbz5e7k7u2hG1Q31W9NHa02vNjgYADo0CEwAAAACAe8RisahfjX5a1G2R6pSqo/iUeL286WWN2zJON1JumB0PABwSBSYAAAAAAPdY5WKV9d0j32lYvWGyWqxa8ccK9V3ZV3sv7TU7GgA4HApMAAAAAABM4GJ10fONntfXnb5W+aLldf7GeT259kl9svcTpdpSzY4HAA6DAhMAAAAAABM18m2kH7v9qO5Vu8tm2DT74Gw9HvK4TsedNjsaADgECkwAAAAAAExW1LWo3m31rj5s/aG8Xb11+Oph9VvVT4uPL5ZhGGbHAwBTUWACAAAAAOAgHg54WD91/0nNyjZTUlqSJm6bqOd/eV4XblwwOxoAmIYCEwAAAAAAB+JXxE9fdPhCrzR5RS5WF208t1Fdlna5dW/MdO6NCaDwocAEAAAAAMDBWC1WPVHnCc3vMl/NyjZTmi1Nsw/O1uCQwfoj9g+z4wHAPUWBCQAAAACAg6pRsoa+7PilpraeqmJuxRQeE65+K/vp28PfymbYzI4HAPcEBSYAAAAAAA6uY0BHLe2+VK3Kt1KKLUUf7v5Qw9YN08UbF82OBgB3HQUmAAAAAAD5QGnP0vqs3Wca33y8PJw9tDNqp/qs6KN90fvMjgYAdxUFJgAAAAAA+YTFYlG/Gv20uNti1fOpp+up1zUidITWnl5rdjQAuGsoMAEAAAAAyGcqeVfSV52+UvOyzZWUlqSXN72scVvG6XrKdbOjAUCeo8AEAAAAACAf8nD20GftPtOwesNktVi14o8V6ruir/Zc2mN2NADIUxSYAAAAAADkUy5OLnq+0fOa+/BclS9aXhcSLujJNU/qv3v/q9T0VLPjAUCeoMAEAAAAACCfa1imoX7s9qN6VO0hQ4a+PPilBocM1qnYU2ZHA4B/jAITAAAAAIACoKhrUf271b81rc00FXMrpvCYcPVb1U/zj86XYRhmxwOAXKPABAAAAACgAOlQqYOWdF+iFuVaKDk9WZN3TNbIDSN1OfGy2dEAIFcoMAEAAAAAKGDKeJbRzPYz9fr9r8vNyU1bz29V7xW9teHMBrOjAUCOUWACAAAAAFAAWS1WDa41WAu7LlTNkjUVmxyrFza+oAlbJyghNcHseACQbRSYAAAAAAAUYFWLV9W8R+bpqbpPySKLlp5cqr4r+iosOszsaACQLc5mBwAAAAAAAHeXi5OLXmj8glqVb6VxW8bp3I1zGrJmiB4s/6DKFi2rp+s9rTKeZcyOCQB3xBWYAAAAAAAUEk38mujH7j+qW5Vushk2bTy3UfOPzlePZT00/+h8pdvSzY4IAFkUigKzV69eKlGihPr27ZtlX0BAgOrXr68GDRqobdu2JqQDAAAAAODe8XL10uQHJmt2x9l6temrqudTTzdSb2jyjsl6/OfHdTTmqNkRASCTQlFgjhkzRt9+++2f7v/9998VFhamX3/99R6mAgAAAADAPM3LNtfjtR/Xd52/07hm41TUpagOXjmoAasGaOruqUpMTTQ7IgBIKiQFZps2beTl5WV2DAAAAAAAHI6T1UkDag7Q8p7L1bFSR6Ub6Zp7eK5GbRglwzDMjgcA5heYmzdvVrdu3VSuXDlZLBYtW7YsyzEzZsxQQECA3N3d1axZM+3cuTPP3t9isah169Zq2rSpfvjhhzxbFwAAAACA/KSMZxlNbTNVM9rNkIezh3Zf2q2Q0yFmxwIA8wvMhIQEBQYGasaMGXfcv3DhQgUHB+utt97S3r17FRgYqE6dOik6Otp+TIMGDVS3bt0sXxcuXPjb99+yZYv27NmjFStWaPLkyTpw4ECenRsAAAAAAPnNgxUe1PD6wyVJk3dN1vbk7bIZNpNTASjMnM0O0LlzZ3Xu3PlP90+bNk3Dhg3Tk08+KUmaNWuWVq9erTlz5uj111+XJIWFheX6/cuXLy9JKlu2rB555BHt3btX9evXz3JccnKykpOT7T/Hx8dLklJTU5Wamprr93dUGedUEM8NyC+YQ8B8zCFgLmYQMM/A6gP1+/nftevSLq1KW6XIdZF6q/lbqlysstnRgEKnIP9+mN1zMr3A/CspKSnas2ePxo4da99mtVrVvn17bdu27R+vn5CQIJvNJi8vL924cUO//PKL+vXrd8djp0yZonfeeSfL9nXr1snT0/MfZ3FUoaGhZkcACj3mEDAfcwiYixkEzNHN6CY/Dz+tTVqrA1cPqN/qfmrr3lYPuD0gJ4uT2fGAQqcg/n6YmJi9h4U5dIF55coVpaeny9fXN9N2X19fHT16NNvrtG/fXvv371dCQoIqVKigxYsXKygoSJcuXVKvXr0kSenp6Ro2bJiaNm16xzXGjh2r4OBg+8/x8fHy9/dXx44d5e3tnYuzc2ypqakKDQ1Vhw4d5OLiYnYcoFBiDgHzMYeAuZhBwHydUjupxtoa2uq5Vduitmn9zfU6435GbzV/S7VL1jY7HlAoFOTfDzM+4fx3HLrAzCvr16+/4/YqVapo//792VrDzc1Nbm5uWba7uLgUuF88tyvo5wfkB8whYD7mEDAXMwiYq7i1uD5t+6nWnVun93e+rxOxJ/TE2ic0pPYQjWwwUh7OHmZHBAqFgvj7YXbPx/SH+PwVHx8fOTk56dKlS5m2X7p0SX5+fialAgAAAACgcLFYLOpapauW91yuzpU7y2bY9PXhr9VreS9tPrfZ7HgACjiHLjBdXV3VuHFjbdiwwb7NZrNpw4YNCgoKMjEZAAAAAACFT0n3kvrgwQ/06UOfytfTV+dvnNeoDaP0/C/P6/yN85mOTUhNULot3aSkAAoS0wvMGzduKCwszP4k8YiICIWFhSkyMlKSFBwcrNmzZ+ubb75ReHi4Ro4cqYSEBPtTyQEAAAAAwL3V2r+1VvRcoSfrPClni7N+Pfurei7rqS8OfKGU9BTtjtqtBxY8oIeXPKwvDnyhq0lXzY4MIB8z/R6Yu3fvVtu2be0/ZzwoZ8iQIZo7d6769++vy5cva8KECYqKilKDBg20Zs2aLA/2AQAAAAAA946ni6eCmwSre9XumrxzsnZF7dL0fdO1/ORyRV6/dVFSVEKUpu+brpn7Z6pjpY4aWHOgAksHymKxmJweQH5ieoHZpk0bGYbxl8eMHj1ao0ePvkeJAAAAAABAdlUrUU1fdfxKIREh+mj3R/bysohLEb3c5GUtPbFUB64cUEhEiEIiQlSrZC191v4z+Xj4mJwcQH5h+kfIAQAAAABA/maxWNSlShet6LlC/6rzL5V0L6lXm76qvvf11Q9dftCCrgvUs1pPuTu5KzwmXPOPzjc7MoB8hAITAAAAAADkCS9XL73U5CVt6r9Jvav3tm+vU6qOJrWcpHHNx0mStpzfYlZEAPkQBSYAAAAAALgnWpVvJUk6cvWIriRdMTkNgPyCAhMAAAAAANwTPh4+qlWyliRpZthMxd6MzfEahmHoatJV2QxbHqcD4KhMf4gPAAAAAAAoPLpV7abwmHAtOr5IK0+tVO/qvfVE7SdUrmi5bL1+4vaJ+vH4j/Jw9lCAd4AqF6usKsWqqHKxyrrf734Vdy9+d08AwD1HgQkAAAAAAO6Zx2o9ptIepTXn0ByFx4Trh/AftODoAnUK6KQBNQeoQekGslgsd3ytYRhaf2a9JCkpLUnhMeEKjwm376/oVVGreq3609cDyJ8oMAEAAAAAwD1jsVj0cOWH1Smgk7Zd3KY5h+Zox8UdCokIUUhEiKqXqK5+9/VT1ypdVdS1aKbXnr1+VrHJsXK1umph14WKvB6pU3GnFBEXoVWnVinyeqSuJF1Rac/SOcoUczNGwRuDFZccJ09nT3k4e9i/fIv46pnAZ1TEpUiOz/V6ynUduXpEFllksVjkZHGSm5ObapSsIWdrzioZwzB0MeGi0mxpkiSLLJJFKl+0vKyWnN8hMPZmrG6m38y0rZR7Kbk4ueR4rcTURF1PuZ5pm7ebtzycPXK8Vkp6iq7dvJZpm6eLp7xcvXK8VrotPcu9Vl2dXFXCvUSO1zIMQ1eSrmS6dYHVYpWPh0+OC/MrSVeUbku3/2yxWFTaozTF+1+gwAQAAAAAAPecxWJRi3It1KJcCx2+elgLjy7UzxE/68S1E3p3x7uatmea2ldsr0eqPKLmZZvL2eqs/Zf3S5Jql6qtaiWqqVqJanpID0mSDl45qIi4CB2/djzHBeavkb9qz6U9f7rf38tf/Wr0y/E5PhP6jA5cOZBle/8a/fVm8zdztNZ/9v5HXx/6Osv2VuVbaWb7mTlaa03EGr26+VUZMjJt9/fy1/Iey3NUYh6/dlwDVw1Uii0l03ZPZ08t77lcfkX8sr3WjZQb6rq0q67evJppu5PFSbM6zFLzss2zvZYkDVkzxP5r5nav3/+6BtcanKO1Jm2fpMXHF2fZ3qd6H73d4u1srzNt9zR9fTjrv8dOAZ30UeuPcpSpMKHABAAAAAAApqpTqo4mtpyol5q8pFWnVmnhsYWKiIvQylMrtfLUSpV0L6kOlTpoX/Q+SVL90vWzrHFfifvsBWbL8i1z9P5/xP0hSepYqaO6VOmipLQkJaUlaX3kem09v1UnY0/m+JxS01N16OohSVLlYpVlGIaS0pJ0KfGS9kbvzfF62y5skyS5O7nLyeokm2FTUlqStl/crjRbWo6u6NxyfosMGXKyONmv3ky1pers9bM6E39G1UpUy/ZaOy/uVIotRRZZ5GR1kiSl2dKUmJaovZf26pEqj2R7rfCYcHt56Wy5dT7pRrrSjXRtu7AtRwVmXHKcvbzMWMsmm2yGTb+d/y3HBebmc5sl3SpTLbLIkKF0I92+PafrWC1WWWXNtI5hGFyF+ScoMAEAAAAAgEMo5lZMg2sN1qCag7T/8n6FRIRo7em1irkZo4XHFtqPu1OBWb14da3VWp24diLH73sq7pQkKahckB6q+JB9u5PFSVvPb9XpuNM5XvPsjbOyGbZbVyL2WC6LxaLI+Eh1WdpFZ+Nv7cvuR78Nw9CZ+DOSpIXdFqpKsSqyGTY1/b6pUmwpuphwUf5e/tnOFnk9UpI05YEp6ly5syRpwKoBOnz1sM5cz1mBeTr+tCRpaN2heqHxC5KkCVsnaOnJpfbM2ZVx/O1XlX5/5Hu9v+t9RcZH5mitjOPLeJTRhn4bJEm7onZp6NqhOV4ro3iWpF/7/aoS7iUUlxynVgta6XLSZSWmJsrTxfNv17EZNp29flaStKrXKvl7+Ss1PVVNfmiipLSkXN3+oLDI+U0SAAAAAAAA7iKLxaIGZRrojWZvaMOjGzSr/Sx1r9pdXq5eKuleUs38mmV5zX0l7pN06yPNORURGyFJqlKsSqbtAcUCJP1fSZcTZ+JulXGVvCvZr6orV7ScnC3Oupl+U9GJ0dle60rSFSWlJclqscq/6K2i0mqxqqJ3xVvvlcuiMOP1t3+f26KwknelLGuduZ67XLevlfF9Tv8dZBxfqVjWtc7fOK/U9NRsr5VROnq7equ4W3FJt8r2Em637qWZUQj/naiEKKXYUuRsdVa5IuUkSS5OLvbvc/rvsTChwAQAAAAAAA7L2eqsluVb6t1W72pz/836td+vKu5ePMtx95W8VWCejD2plze9rC8Pfqmt57fqatLVLMfeLjE1URcSLki6Q4HpHSBJuphwUUlpSTnKnVFGZayRcS4VvCpIylkhl3FsuSLlMt2fsqJXzgvMGyk3FHMzRpJUyStruZfTEi2jvLu9DM1YK6dlqL1Y9cq61tnrZzM9QCfbuW5bq7RHaXk4e8hm2HTuxrnsr3VbSXv7R7xzWiBnHOfv5W//uH3GurdnRlZ8hBwAAAAAAOQLf3Wfx3JFyinAO0Cn409r7em1Wnt6rX1fMbdiquRVSZW8K6mid0UFeAfI39tffp5+ikqIkiSVdC+ZpRgt4V5CxdyKKS45TpHxkapRska2s97pCkDpVul1Ov60IuMjs31Pxztd5Xj7zzkpCjOuiizpXjLTU94zir6clGgp6bc+vv6/2XJTrEp3Ps+Mq1aT05MVnRid7YcC3elqTovFoopeFXXs2jFFxkeqcrHKOVrr9pI2Y+39l/dn+5+//fy8sv6a2HphK1dg/gUKTAAAAAAAkO9ZLBYt7LpQYZfDdDTmqI5eParwmHCdiT+juOQ4HUg+cMcngmfch/J/r77MEOAdoP2X92v3pd3ydvWWp4unPF085WL96yd136lAu/3nnFyBmVE63qlAu31/dvxdGZqTEu3c9XP2+3yWci9l356RMz4lXrE3Y+94xez/uv3+kLefp7PVWeW9yutM/BmdiT+T7QIz4zz/959ZRe9bBWZOzjOj1M1SPOawqP27f485vWK1MKHABAAAAAAABYKni6dalGuhFuVa2LclpSUpMj5SkdcjdSb+jE7HnVbk9UidvX5WV5Ou2j+W3MSvyR3XzCgw39v5nt7b+Z59u4vVRUVcisjT2VMezh5yc3aTm5ObXJ1c5Wp11eGrh+2vv11GCbbl/BZ5OHvceqq1xWJ/IrjVYrU/6drJeuu/d1zcceu13lmv3JOkEzEntPKPlZn2ZXzU2fL//5Ox7dezv95xrYyfoxOj9XPEz3KyOOnvHI05an/t7R+t9nD2UBnPMopOjNayk8vsH5v/K/Ep8fb7Q5YtUjbzeXpV1Jn4M1p/Zr2up1z/27Wk2wpkrzuf546oHSpXtFy21jp05dbT5P+seDx89bDWn1n/t+vsj96f6XUZMorQozFH77hOaTce7EOBCQAAAAAACiwPZw/VKFnjjh//Tk1PVXRStG6k3FDV4lXv+Ppe1Xtp/+X9upZ8TYmpiUq13Xr4S6otVbHJsYpNjv3T93ZzcstSYGa8T0RchL448EWOzqWyd+aPPGesHZ0UrTe2vJGjtf63RCvmVkzF3YorNjlWr25+9R+tlZEtOjFaU/dMzdFa/l7+WW4VUMm7kn47/5sWHFugBccWZHstq8Uqf+/MT2fPyLr53GZtPrc5R9mylNH/f62TsSf14sYXs73O//7zylj33I1zd1ynS0AXBSkoR1kLGgpMAAAAAABQKLk4uah80fJ/eUxj38Za2ev/rm5MTU9VYlqiElMTM/13cnqyUtNTlZyebP+qWbJmpvtMZqz3WtPXdO7GrY9f3/6VbqRn2Zbx5VfET/eXvT/TWqU9S+v5hs9rT/Qeybi1zZAhwzD+7/v/22H/3tvVW92qdMtyrsGNg7XijxX/95rbZKz5v9yc3PR47cezbH+63tOSpDRb2h1fdycWi0WDag7Ksv3RGo/qdPxpJaYmZnstQ4ba+LeRm5Nbpu3tKrbT5nObdSXpSrbXkm4Vz7VK1cq0rUbJGupfo3+Onnzv7+WvRr6NMm2r4FVBT9R+QgevHLzjayp6VZRicxS3wKHABAAAAAAAyCYXJxcVcyqmYm7FcvV6i8Wix2o/lmd5htUfpmEalidr9areS72q98qTtYLKBSmoXN5cNVilWBXNbD8zT9bycvXStDbT8mQtq8WqN5u/+Y/XsVgseqXpK3+6PzU1VSFnQ/7x++RnVrMDAAAAAAAAAMCfocAEAAAAAAAA4LAoMAEAAAAAAAA4LApMAAAAAAAAAA6LAhMAAAAAAACAw6LABAAAAAAAAOCwKDABAAAAAAAAOCwKTAAAAAAAAAAOiwITAAAAAAAAgMOiwAQAAAAAAADgsCgwAQAAAAAAADgsCkwAAAAAAAAADosCEwAAAAAAAIDDosAEAAAAAAAA4LAoMAEAAAAAAAA4LApMAAAAAAAAAA6LAhMAAAAAAACAw6LABAAAAAAAAOCwnM0OkF8ZhiFJio+PNznJ3ZGamqrExETFx8fLxcXF7DhAocQcAuZjDgFzMYOA+ZhDwHwFeQ4zerWMnu3PUGDm0vXr1yVJ/v7+JicBAAAAAAAA8q/r16+rWLFif7rfYvxdxYk7stlsunDhgry8vGSxWMyOk+fi4+Pl7++vs2fPytvb2+w4QKHEHALmYw4BczGDgPmYQ8B8BXkODcPQ9evXVa5cOVmtf36nS67AzCWr1aoKFSqYHeOu8/b2LnDDAeQ3zCFgPuYQMBczCJiPOQTMV1Dn8K+uvMzAQ3wAAAAAAAAAOCwKTAAAAAAAAAAOiwITd+Tm5qa33npLbm5uZkcBCi3mEDAfcwiYixkEzMccAuZjDnmIDwAAAAAAAAAHxhWYAAAAAAAAABwWBSYAAAAAAAAAh0WBCQAAAAAAAMBhUWACAAAAAAAAcFgUmLijGTNmKCAgQO7u7mrWrJl27txpdiSgQJgyZYqaNm0qLy8vlSlTRj179tSxY8cyHXPz5k2NGjVKpUqVUtGiRdWnTx9dunQp0zGRkZHq0qWLPD09VaZMGb3yyitKS0u7l6cCFAjvvfeeLBaLXnjhBfs2ZhC4+86fP6/HHntMpUqVkoeHh+rVq6fdu3fb9xuGoQkTJqhs2bLy8PBQ+/btdeLEiUxrxMTEaPDgwfL29lbx4sX11FNP6caNG/f6VIB8KT09XePHj1flypXl4eGhqlWratKkSbr9Gb/MIZC3Nm/erG7duqlcuXKyWCxatmxZpv15NXMHDhzQAw88IHd3d/n7++uDDz6426d2T1BgIouFCxcqODhYb731lvbu3avAwEB16tRJ0dHRZkcD8r1NmzZp1KhR2r59u0JDQ5WamqqOHTsqISHBfsyLL76olStXavHixdq0aZMuXLig3r172/enp6erS5cuSklJ0e+//65vvvlGc+fO1YQJE8w4JSDf2rVrlz7//HPVr18/03ZmELi7rl27ppYtW8rFxUU///yzjhw5oqlTp6pEiRL2Yz744AN98sknmjVrlnbs2KEiRYqoU6dOunnzpv2YwYMH6/DhwwoNDdWqVau0efNmDR8+3IxTAvKd999/XzNnztSnn36q8PBwvf/++/rggw80ffp0+zHMIZC3EhISFBgYqBkzZtxxf17MXHx8vDp27KhKlSppz549+vDDD/X222/riy++uOvnd9cZwP+4//77jVGjRtl/Tk9PN8qVK2dMmTLFxFRAwRQdHW1IMjZt2mQYhmHExsYaLi4uxuLFi+3HhIeHG5KMbdu2GYZhGCEhIYbVajWioqLsx8ycOdPw9vY2kpOT7+0JAPnU9evXjerVqxuhoaFG69atjTFjxhiGwQwC98Jrr71mtGrV6k/322w2w8/Pz/jwww/t22JjYw03Nzdj/vz5hmEYxpEjRwxJxq5du+zH/Pzzz4bFYjHOnz9/98IDBUSXLl2MoUOHZtrWu3dvY/DgwYZhMIfA3SbJWLp0qf3nvJq5zz77zChRokSmP5O+9tprRo0aNe7yGd19XIGJTFJSUrRnzx61b9/evs1qtap9+/batm2bicmAgikuLk6SVLJkSUnSnj17lJqammkGa9asqYoVK9pncNu2bapXr558fX3tx3Tq1Enx8fE6fPjwPUwP5F+jRo1Sly5dMs2axAwC98KKFSvUpEkTPfrooypTpowaNmyo2bNn2/dHREQoKioq0xwWK1ZMzZo1yzSHxYsXV5MmTezHtG/fXlarVTt27Lh3JwPkUy1atNCGDRt0/PhxSdL+/fu1ZcsWde7cWRJzCNxreTVz27Zt04MPPihXV1f7MZ06ddKxY8d07dq1e3Q2d4ez2QHgWK5cuaL09PRMfymTJF9fXx09etSkVEDBZLPZ9MILL6hly5aqW7euJCkqKkqurq4qXrx4pmN9fX0VFRVlP+ZOM5qxD8BfW7Bggfbu3atdu3Zl2ccMAnffqVOnNHPmTAUHB+uNN97Qrl279Pzzz8vV1VVDhgyxz9Gd5uz2OSxTpkym/c7OzipZsiRzCGTD66+/rvj4eNWsWVNOTk5KT0/Xu+++q8GDB0sScwjcY3k1c1FRUapcuXKWNTL23X67lvyGAhMATDJq1CgdOnRIW7ZsMTsKUGicPXtWY8aMUWhoqNzd3c2OAxRKNptNTZo00eTJkyVJDRs21KFDhzRr1iwNGTLE5HRA4bBo0SL98MMPmjdvnurUqaOwsDC98MILKleuHHMIwCHxEXJk4uPjIycnpyxPW7106ZL8/PxMSgUUPKNHj9aqVav066+/qkKFCvbtfn5+SklJUWxsbKbjb59BPz+/O85oxj4Af27Pnj2Kjo5Wo0aN5OzsLGdnZ23atEmffPKJnJ2d5evrywwCd1nZsmVVu3btTNtq1aqlyMhISf83R3/151E/P78sD5hMS0tTTEwMcwhkwyuvvKLXX39dAwYMUL169fT444/rxRdf1JQpUyQxh8C9llczV5D/nEqBiUxcXV3VuHFjbdiwwb7NZrNpw4YNCgoKMjEZUDAYhqHRo0dr6dKl+uWXX7Jc3t+4cWO5uLhkmsFjx44pMjLSPoNBQUE6ePBgpt+8QkND5e3tneUvhAAya9eunQ4ePKiwsDD7V5MmTTR48GD798wgcHe1bNlSx44dy7Tt+PHjqlSpkiSpcuXK8vPzyzSH8fHx2rFjR6Y5jI2N1Z49e+zH/PLLL7LZbGrWrNk9OAsgf0tMTJTVmrkOcHJyks1mk8QcAvdaXs1cUFCQNm/erNTUVPsxoaGhqlGjRr7++LgknkKOrBYsWGC4ubkZc+fONY4cOWIMHz7cKF68eKanrQLInZEjRxrFihUzNm7caFy8eNH+lZiYaD/mmWeeMSpWrGj88ssvxu7du42goCAjKCjIvj8tLc2oW7eu0bFjRyMsLMxYs2aNUbp0aWPs2LFmnBKQ793+FHLDYAaBu23nzp2Gs7Oz8e677xonTpwwfvjhB8PT09P4/vvv7ce89957RvHixY3ly5cbBw4cMHr06GFUrlzZSEpKsh/z8MMPGw0bNjR27NhhbNmyxahevboxcOBAM04JyHeGDBlilC9f3li1apURERFhLFmyxPDx8TFeffVV+zHMIZC3rl+/buzbt8/Yt2+fIcmYNm2asW/fPuPMmTOGYeTNzMXGxhq+vr7G448/bhw6dMhYsGCB4enpaXz++ef3/HzzGgUm7mj69OlGxYoVDVdXV+P+++83tm/fbnYkoECQdMevr7/+2n5MUlKS8eyzzxolSpQwPD09jV69ehkXL17MtM7p06eNzp07Gx4eHoaPj4/x0ksvGampqff4bICC4X8LTGYQuPtWrlxp1K1b13BzczNq1qxpfPHFF5n222w2Y/z48Yavr6/h5uZmtGvXzjh27FimY65evWoMHDjQKFq0qOHt7W08+eSTxvXr1+/laQD5Vnx8vDFmzBijYsWKhru7u1GlShVj3LhxRnJysv0Y5hDIW7/++usd/y44ZMgQwzDybub2799vtGrVynBzczPKly9vvPfee/fqFO8qi2EYhjnXfgIAAAAAAADAX+MemAAAAAAAAAAcFgUmAAAAAAAAAIdFgQkAAAAAAADAYVFgAgAAAAAAAHBYFJgAAAAAAAAAHBYFJgAAAAAAAACHRYEJAAAAAAAAwGFRYAIAAAC32bhxoywWi2JjY82OAgAAAFFgAgAAAAAAAHBgFJgAAAAAAAAAHBYFJgAAAByKzWbTlClTVLlyZXl4eCgwMFA//vijpP/7ePfq1atVv359ubu7q3nz5jp06FCmNX766SfVqVNHbm5uCggI0NSpUzPtT05O1muvvSZ/f3+5ubmpWrVq+uqrrzIds2fPHjVp0kSenp5q0aKFjh07dndPHAAAAHdEgQkAAACHMmXKFH377beaNWuWDh8+rBdffFGPPfaYNm3aZD/mlVde0dSpU7Vr1y6VLl1a3bp1U2pqqqRbxWO/fv00YMAAHTx4UG+//bbGjx+vuXPn2l//xBNPaP78+frkk08UHh6uzz//XEWLFs2UY9y4cZo6dap2794tZ2dnDR069J6cPwAAADKzGIZhmB0CAAAAkG5dGVmyZEmtX79eQUFB9u1PP/20EhMTNXz4cLVt21YLFixQ//79JUkxMTGqUKGC5s6dq379+mnw4MG6fPmy1q1bZ3/9q6++qtWrV+vw4cM6fvy4atSoodDQULVv3z5Lho0bN6pt27Zav3692rVrJ0kKCQlRly5dlJSUJHd397v8TwEAAAC34wpMAAAAOIyTJ08qMTFRHTp0UNGiRe1f3377rf744w/7cbeXmyVLllSNGjUUHh4uSQoPD1fLli0zrduyZUudOHFC6enpCgsLk5OTk1q3bv2XWerXr2//vmzZspKk6Ojof3yOAAAAyBlnswMAAAAAGW7cuCFJWr16tcqXL59pn5ubW6YSM7c8PDyydZyLi4v9e4vFIunW/TkBAABwb3EFJgAAABxG7dq15ebmpsjISFWrVi3Tl7+/v/247du327+/du2ajh8/rlq1akmSatWqpa1bt2Zad+vWrbrvvvvk5OSkevXqyWazZbqnJgAAABwXV2ACAADAYXh5eenll1/Wiy++KJvNplatWikuLk5bt26Vt7e3KlWqJEmaOHGiSpUqJV9fX40bN04+Pj7q2bOnJOmll15S06ZNNWnSJPXv31/btm3Tp59+qs8++0ySFBAQoCFDhmjo0KH65JNPFBgYqDNnzig6Olr9+vUz69QBAADwJygwAQAA4FAmTZqk0qVLa8qUKTp16pSKFy+uRo0a6Y033rB/hPu9997TmDFjdOLECTVo0EArV66Uq6urJKlRo0ZatGiRJkyYoEmTJqls2bKaOHGi/vWvf9nfY+bMmXrjjTf07LPP6urVq6pYsaLeeOMNM04XAAAAf4OnkAMAACDfyHhC+LVr11S8eHGz4wAAAOAe4B6YAAAAAAAAABwWBSYAAAAAAAAAh8VHyAEAAAAAAAA4LK7ABAAAAAAAAOCwKDABAAAAAAAAOCwKTAAAAAAAAAAOiwITAAAAAAAAgMOiwAQAAAAAAADgsCgwAQAAAAAAADgsCkwAAAAAAAAADosCEwAAAAAAAIDDosAEAAAAAAAA4LD+HzBt8xyc7TsIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "plt.figure(figsize=(16, 6))\n", - "plotter.plot_loss(pinn, label='Standard')\n", - "plotter.plot_loss(pinn_feat, label='Static Features')\n", - "plotter.plot_loss(pinn_learn, label='Learnable Features')\n", + "plotter.plot_loss(trainer, label='Standard')\n", + "plotter.plot_loss(trainer_feat, label='Static Features')\n", + "plotter.plot_loss(trainer_learn, label='Learnable Features')\n", "\n", "plt.grid()\n", "plt.legend()\n", "plt.show()" - ], - "outputs": [], - "metadata": {} + ] } ], "metadata": { + "interpreter": { + "hash": "56be7540488f3dc66429ddf54a0fa9de50124d45fcfccfaf04c4c3886d735a3a" + }, "kernelspec": { - "name": "python3", - "display_name": "Python 3.9.16 64-bit ('dl': conda)" + "display_name": "Python 3.9.16 64-bit ('dl': conda)", + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -379,11 +594,8 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" - }, - "interpreter": { - "hash": "56be7540488f3dc66429ddf54a0fa9de50124d45fcfccfaf04c4c3886d735a3a" } }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} diff --git a/tutorials/tutorial2/tutorial.py b/tutorials/tutorial2/tutorial.py index 242e473..c3aee33 100644 --- a/tutorials/tutorial2/tutorial.py +++ b/tutorials/tutorial2/tutorial.py @@ -5,7 +5,7 @@ # ### The problem definition -# This tutorial presents how to solve with Physics-Informed Neural Networks a 2D Poisson problem with Dirichlet boundary conditions. +# This tutorial presents how to solve with Physics-Informed Neural Networks a 2D Poisson problem with Dirichlet boundary conditions. Using extrafeatures. # # The problem is written as: # \begin{equation} @@ -18,7 +18,7 @@ # First of all, some useful imports. -# In[ ]: +# In[1]: import torch @@ -27,35 +27,37 @@ from torch.nn import Softplus from pina.problem import SpatialProblem from pina.operators import laplacian from pina.model import FeedForward -from pina import Condition, Span, PINN, LabelTensor, Plotter +from pina.solvers import PINN +from pina.trainer import Trainer +from pina.plotter import Plotter +from pina.geometry import CartesianDomain +from pina.equation import Equation, FixedValue +from pina import Condition, LabelTensor +from pina.callbacks import MetricTracker # Now, the Poisson problem is written in PINA code as a class. The equations are written as *conditions* that should be satisfied in the corresponding domains. *truth_solution* # is the exact solution which will be compared with the predicted one. -# In[ ]: +# In[2]: class Poisson(SpatialProblem): output_variables = ['u'] - spatial_domain = Span({'x': [0, 1], 'y': [0, 1]}) + spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) def laplace_equation(input_, output_): force_term = (torch.sin(input_.extract(['x'])*torch.pi) * torch.sin(input_.extract(['y'])*torch.pi)) - delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y']) - return delta_u - force_term - - def nil_dirichlet(input_, output_): - value = 0.0 - return output_.extract(['u']) - value + laplacian_u = laplacian(output_, input_, components=['u'], d=['x', 'y']) + return laplacian_u - force_term conditions = { - 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1}), function=nil_dirichlet), - 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0}), function=nil_dirichlet), - 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1]}), function=nil_dirichlet), - 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1]}), function=nil_dirichlet), - 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1]}), function=laplace_equation), + 'gamma1': Condition(location=CartesianDomain({'x': [0, 1], 'y': 1}), equation=FixedValue(0.)), + 'gamma2': Condition(location=CartesianDomain({'x': [0, 1], 'y': 0}), equation=FixedValue(0.)), + 'gamma3': Condition(location=CartesianDomain({'x': 1, 'y': [0, 1]}), equation=FixedValue(0.)), + 'gamma4': Condition(location=CartesianDomain({'x': 0, 'y': [0, 1]}), equation=FixedValue(0.)), + 'D': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1]}), equation=Equation(laplace_equation)), } def poisson_sol(self, pts): @@ -66,52 +68,44 @@ class Poisson(SpatialProblem): truth_solution = poisson_sol +problem = Poisson() + +# let's discretise the domain +problem.discretise_domain(25, 'grid', locations=['D']) +problem.discretise_domain(25, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) + # ### The problem solution -# After the problem, the feed-forward neural network is defined, through the class `FeedForward`. This neural network takes as input the coordinates (in this case $x$ and $y$) and provides the unkwown field of the Poisson problem. The residual of the equations are evaluated at several sampling points (which the user can manipulate using the method `span_pts`) and the loss minimized by the neural network is the sum of the residuals. +# After the problem, the feed-forward neural network is defined, through the class `FeedForward`. This neural network takes as input the coordinates (in this case $x$ and $y$) and provides the unkwown field of the Poisson problem. The residual of the equations are evaluated at several sampling points (which the user can manipulate using the method `CartesianDomain_pts`) and the loss minimized by the neural network is the sum of the residuals. # # In this tutorial, the neural network is composed by two hidden layers of 10 neurons each, and it is trained for 1000 epochs with a learning rate of 0.006. These parameters can be modified as desired. -# The output of the cell below is the final loss of the training phase of the PINN. -# We highlight that the generation of the sampling points and the train is here encapsulated within the function `generate_samples_and_train`, but only for saving some lines of code in the next cells; that function is not mandatory in the **PINA** framework. -# In[ ]: +# In[3]: -def generate_samples_and_train(model, problem): - pinn = PINN(problem, model, lr=0.006, regularizer=1e-8) - pinn.span_pts(20, 'grid', locations=['D']) - pinn.span_pts(20, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4']) - pinn.train(1000, 100) - return pinn - -problem = Poisson() +# make model + solver + trainer model = FeedForward( layers=[10, 10], func=Softplus, - output_variables=problem.output_variables, - input_variables=problem.input_variables + output_dimensions=len(problem.output_variables), + input_dimensions=len(problem.input_variables) ) +pinn = PINN(problem, model, optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8}) +trainer = Trainer(pinn, max_epochs=1000, callbacks=[MetricTracker()]) -pinn = generate_samples_and_train(model, problem) - - -# The neural network of course can be saved in a file. In such a way, we can store it after the train, and load it just to infer the field. Here we don't store the model, but for demonstrative purposes we put in the next cell the commented line of code. - -# In[ ]: - - -# pinn.save_state('pina.poisson') +# train +trainer.train() # Now the *Plotter* class is used to plot the results. # The solution predicted by the neural network is plotted on the left, the exact one is represented at the center and on the right the error between the exact and the predicted solutions is showed. -# In[ ]: +# In[4]: plotter = Plotter() -plotter.plot(pinn) +plotter.plot(trainer) # ### The problem solution with extra-features @@ -131,7 +125,7 @@ plotter.plot(pinn) # # Finally, we perform the same training as before: the problem is `Poisson`, the network is composed by the same number of neurons and optimizer parameters are equal to previous test, the only change is the new extra feature. -# In[ ]: +# In[5]: class SinSin(torch.nn.Module): @@ -144,24 +138,28 @@ class SinSin(torch.nn.Module): torch.sin(x.extract(['y'])*torch.pi)) return LabelTensor(t, ['sin(x)sin(y)']) -model_feat = FeedForward( - layers=[10, 10], - output_variables=problem.output_variables, - input_variables=problem.input_variables, - func=Softplus, - extra_features=[SinSin()] - ) -pinn_feat = generate_samples_and_train(model_feat, problem) +# make model + solver + trainer +model_feat = FeedForward( + layers=[10, 10], + func=Softplus, + output_dimensions=len(problem.output_variables), + input_dimensions=len(problem.input_variables)+1 +) +pinn_feat = PINN(problem, model_feat, extra_features=[SinSin()], optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8}) +trainer_feat = Trainer(pinn_feat, max_epochs=1000, callbacks=[MetricTracker()]) + +# train +trainer_feat.train() # The predicted and exact solutions and the error between them are represented below. -# We can easily note that now our network, having almost the same condition as before, is able to reach an additional order of magnitude in accuracy. +# We can easily note that now our network, having almost the same condition as before, is able to reach additional order of magnitudes in accuracy. -# In[ ]: +# In[6]: -plotter.plot(pinn_feat) +plotter.plot(trainer_feat) # ### The problem solution with learnable extra-features @@ -178,7 +176,7 @@ plotter.plot(pinn_feat) # where $\alpha$ and $\beta$ are the abovementioned parameters. # Their implementation is quite trivial: by using the class `torch.nn.Parameter` we cam define all the learnable parameters we need, and they are managed by `autograd` module! -# In[ ]: +# In[7]: class SinSinAB(torch.nn.Module): @@ -197,29 +195,37 @@ class SinSinAB(torch.nn.Module): return LabelTensor(t, ['b*sin(a*x)sin(a*y)']) -model_learn = FeedForward( +# make model + solver + trainer +model_lean= FeedForward( layers=[10, 10], - output_variables=problem.output_variables, - input_variables=problem.input_variables, - extra_features=[SinSinAB()] + func=Softplus, + output_dimensions=len(problem.output_variables), + input_dimensions=len(problem.input_variables)+1 ) +pinn_lean = PINN(problem, model_lean, extra_features=[SinSin()], optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8}) +trainer_learn = Trainer(pinn_lean, max_epochs=1000) -pinn_learn = generate_samples_and_train(model_learn, problem) +# train +trainer_learn.train() # Umh, the final loss is not appreciabily better than previous model (with static extra features), despite the usage of learnable parameters. This is mainly due to the over-parametrization of the network: there are many parameter to optimize during the training, and the model in unable to understand automatically that only the parameters of the extra feature (and not the weights/bias of the FFN) should be tuned in order to fit our problem. A longer training can be helpful, but in this case the faster way to reach machine precision for solving the Poisson problem is removing all the hidden layers in the `FeedForward`, keeping only the $\alpha$ and $\beta$ parameters of the extra feature. -# In[ ]: +# In[8]: -model_learn = FeedForward( +# make model + solver + trainer +model_lean= FeedForward( layers=[], - output_variables=problem.output_variables, - input_variables=problem.input_variables, - extra_features=[SinSinAB()] + func=Softplus, + output_dimensions=len(problem.output_variables), + input_dimensions=len(problem.input_variables)+1 ) +pinn_learn = PINN(problem, model_lean, extra_features=[SinSin()], optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8}) +trainer_learn = Trainer(pinn_learn, max_epochs=1000, callbacks=[MetricTracker()]) -pinn_learn = generate_samples_and_train(model_learn, problem) +# train +trainer_learn.train() # In such a way, the model is able to reach a very high accuracy! @@ -227,21 +233,21 @@ pinn_learn = generate_samples_and_train(model_learn, problem) # # We conclude here by showing the graphical comparison of the unknown field and the loss trend for all the test cases presented here: the standard PINN, PINN with extra features, and PINN with learnable extra features. -# In[ ]: +# In[9]: -plotter.plot(pinn_learn) +plotter.plot(trainer_learn) -# In[ ]: +# In[10]: import matplotlib.pyplot as plt plt.figure(figsize=(16, 6)) -plotter.plot_loss(pinn, label='Standard') -plotter.plot_loss(pinn_feat, label='Static Features') -plotter.plot_loss(pinn_learn, label='Learnable Features') +plotter.plot_loss(trainer, label='Standard') +plotter.plot_loss(trainer_feat, label='Static Features') +plotter.plot_loss(trainer_learn, label='Learnable Features') plt.grid() plt.legend() diff --git a/tutorials/tutorial3/tutorial.ipynb b/tutorials/tutorial3/tutorial.ipynb index fef4a17..efd03c4 100644 --- a/tutorials/tutorial3/tutorial.ipynb +++ b/tutorials/tutorial3/tutorial.ipynb @@ -2,22 +2,23 @@ "cells": [ { "cell_type": "markdown", + "metadata": {}, "source": [ - "# Tutorial 3: resolution of wave equation with custom Network" - ], - "metadata": {} + "# Tutorial 3: resolution of wave equation with hard constraint PINNs." + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### The problem solution " - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "In this tutorial we present how to solve the wave equation using the `SpatialProblem` and `TimeDependentProblem` class, and the `Network` class for building custom **torch** networks.\n", + "In this tutorial we present how to solve the wave equation using hard constraint PINNs. For doing so we will build a costum torch model and pass it to the `PINN` solver.\n", "\n", "The problem is written in the following form:\n", "\n", @@ -30,68 +31,69 @@ "\\end{equation}\n", "\n", "where $D$ is a square domain $[0,1]^2$, and $\\Gamma_i$, with $i=1,...,4$, are the boundaries of the square, and the velocity in the standard wave equation is fixed to one." - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "First of all, some useful imports." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, + "metadata": {}, + "outputs": [], "source": [ "import torch\n", "\n", "from pina.problem import SpatialProblem, TimeDependentProblem\n", - "from pina.operators import nabla, grad\n", - "from pina.model import Network\n", - "from pina import Condition, Span, PINN, Plotter" - ], - "outputs": [], - "metadata": {} + "from pina.operators import laplacian, grad\n", + "from pina.geometry import CartesianDomain\n", + "from pina.solvers import PINN\n", + "from pina.trainer import Trainer\n", + "from pina.equation import Equation\n", + "from pina.equation.equation_factory import FixedValue\n", + "from pina import Condition, Plotter" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Now, the wave problem is written in PINA code as a class, inheriting from `SpatialProblem` and `TimeDependentProblem` since we deal with spatial, and time dependent variables. The equations are written as `conditions` that should be satisfied in the corresponding domains. `truth_solution` is the exact solution which will be compared with the predicted one." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, + "metadata": {}, + "outputs": [], "source": [ "class Wave(TimeDependentProblem, SpatialProblem):\n", " output_variables = ['u']\n", - " spatial_domain = Span({'x': [0, 1], 'y': [0, 1]})\n", - " temporal_domain = Span({'t': [0, 1]})\n", + " spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})\n", + " temporal_domain = CartesianDomain({'t': [0, 1]})\n", "\n", " def wave_equation(input_, output_):\n", " u_t = grad(output_, input_, components=['u'], d=['t'])\n", " u_tt = grad(u_t, input_, components=['dudt'], d=['t'])\n", - " nabla_u = nabla(output_, input_, components=['u'], d=['x', 'y'])\n", + " nabla_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])\n", " return nabla_u - u_tt\n", "\n", - " def nil_dirichlet(input_, output_):\n", - " value = 0.0\n", - " return output_.extract(['u']) - value\n", - "\n", " def initial_condition(input_, output_):\n", " u_expected = (torch.sin(torch.pi*input_.extract(['x'])) *\n", " torch.sin(torch.pi*input_.extract(['y'])))\n", " return output_.extract(['u']) - u_expected\n", "\n", " conditions = {\n", - " 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1, 't': [0, 1]}), function=nil_dirichlet),\n", - " 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0, 't': [0, 1]}), function=nil_dirichlet),\n", - " 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet),\n", - " 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet),\n", - " 't0': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': 0}), function=initial_condition),\n", - " 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), function=wave_equation),\n", + " 'gamma1': Condition(location=CartesianDomain({'x': [0, 1], 'y': 1, 't': [0, 1]}), equation=FixedValue(0.)),\n", + " 'gamma2': Condition(location=CartesianDomain({'x': [0, 1], 'y': 0, 't': [0, 1]}), equation=FixedValue(0.)),\n", + " 'gamma3': Condition(location=CartesianDomain({'x': 1, 'y': [0, 1], 't': [0, 1]}), equation=FixedValue(0.)),\n", + " 'gamma4': Condition(location=CartesianDomain({'x': 0, 'y': [0, 1], 't': [0, 1]}), equation=FixedValue(0.)),\n", + " 't0': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1], 't': 0}), equation=Equation(initial_condition)),\n", + " 'D': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), equation=Equation(wave_equation)),\n", " }\n", "\n", " def wave_sol(self, pts):\n", @@ -102,128 +104,167 @@ " truth_solution = wave_sol\n", "\n", "problem = Wave()" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "After the problem, a **torch** model is needed to solve the PINN. With the `Network` class the users can convert any **torch** model in a **PINA** model which uses label tensors with a single line of code. We will write a simple residual network using linear layers. Here we implement a simple residual network composed by linear torch layers.\n", + "After the problem, a **torch** model is needed to solve the PINN. Usually many models are already implemented in `PINA`, but the user has the possibility to build his/her own model in `pyTorch`. The hard constraint we impose are on the boundary of the spatial domain. Specificly our solution is written as:\n", "\n", - "This neural network takes as input the coordinates (in this case $x$, $y$ and $t$) and provides the unkwown field of the Wave problem. The residual of the equations are evaluated at several sampling points (which the user can manipulate using the method `span_pts`) and the loss minimized by the neural network is the sum of the residuals." - ], - "metadata": {} + "$$ u_{\\rm{pinn}} = xy(1-x)(1-y)\\cdot NN(x, y, t), $$\n", + "\n", + "where $NN$ is the neural net output. This neural network takes as input the coordinates (in this case $x$, $y$ and $t$) and provides the unkwown field of the Wave problem. By construction it is zero on the boundaries. The residual of the equations are evaluated at several sampling points (which the user can manipulate using the method `discretise_domain`) and the loss minimized by the neural network is the sum of the residuals." + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, + "metadata": {}, + "outputs": [], "source": [ - "class TorchNet(torch.nn.Module):\n", - " \n", - " def __init__(self):\n", + "class HardMLP(torch.nn.Module):\n", + "\n", + " def __init__(self, input_dim, output_dim):\n", " super().__init__()\n", - " \n", - " self.residual = torch.nn.Sequential(torch.nn.Linear(3, 24),\n", - " torch.nn.Tanh(),\n", - " torch.nn.Linear(24, 3))\n", + "\n", + " self.layers = torch.nn.Sequential(torch.nn.Linear(input_dim, 20),\n", + " torch.nn.Tanh(),\n", + " torch.nn.Linear(20, 20),\n", + " torch.nn.Tanh(),\n", + " torch.nn.Linear(20, output_dim))\n", " \n", - " self.mlp = torch.nn.Sequential(torch.nn.Linear(3, 64),\n", - " torch.nn.Tanh(),\n", - " torch.nn.Linear(64, 1))\n", + " # here in the foward we implement the hard constraints\n", " def forward(self, x):\n", - " residual_x = self.residual(x)\n", - " return self.mlp(x + residual_x)\n", - "\n", - "# model definition\n", - "model = Network(model = TorchNet(),\n", - " input_variables=problem.input_variables,\n", - " output_variables=problem.output_variables,\n", - " extra_features=None)" - ], - "outputs": [], - "metadata": {} + " hard = x.extract(['x'])*(1-x.extract(['x']))*x.extract(['y'])*(1-x.extract(['y']))\n", + " return hard*self.layers(x)" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "In this tutorial, the neural network is trained for 2000 epochs with a learning rate of 0.001. These parameters can be modified as desired.\n", - "We highlight that the generation of the sampling points and the train is here encapsulated within the function `generate_samples_and_train`, but only for saving some lines of code in the next cells; that function is not mandatory in the **PINA** framework. The training takes approximately one minute." - ], - "metadata": {} + "In this tutorial, the neural network is trained for 3000 epochs with a learning rate of 0.001 (default in `PINN`). Training takes approximately 1 minute." + ] }, { "cell_type": "code", - "execution_count": null, - "source": [ - "def generate_samples_and_train(model, problem):\n", - " # generate pinn object\n", - " pinn = PINN(problem, model, lr=0.001)\n", - "\n", - " pinn.span_pts(1000, 'random', locations=['D','t0', 'gamma1', 'gamma2', 'gamma3', 'gamma4'])\n", - " pinn.train(1500, 150)\n", - " return pinn\n", - "\n", - "\n", - "pinn = generate_samples_and_train(model, problem)" + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "GPU available: False, used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "\n", + " | Name | Type | Params\n", + "----------------------------------------\n", + "0 | _loss | MSELoss | 0 \n", + "1 | _neural_net | Network | 521 \n", + "----------------------------------------\n", + "521 Trainable params\n", + "0 Non-trainable params\n", + "521 Total params\n", + "0.002 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2999: : 1it [00:00, 79.33it/s, v_num=5, mean_loss=0.00119, D_loss=0.00542, t0_loss=0.0017, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000] " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "`Trainer.fit` stopped: `max_epochs=3000` reached.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2999: : 1it [00:00, 68.62it/s, v_num=5, mean_loss=0.00119, D_loss=0.00542, t0_loss=0.0017, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000]\n" + ] + } ], - "outputs": [], - "metadata": {} + "source": [ + "pinn = PINN(problem, HardMLP(len(problem.input_variables), len(problem.output_variables)))\n", + "problem.discretise_domain(1000, 'random', locations=['D','t0', 'gamma1', 'gamma2', 'gamma3', 'gamma4'])\n", + "trainer = Trainer(pinn, max_epochs=3000)\n", + "trainer.train()" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ - "After the training is completed one can now plot some results using the `Plotter` class of **PINA**." - ], - "metadata": {} + "Notice that the loss on the boundaries of the spatial domain is exactly zero, as expected! After the training is completed one can now plot some results using the `Plotter` class of **PINA**." + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAH/CAYAAABU5TMMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACe9klEQVR4nOzdfXgU9b3//1duTAJCAgokgYIBVEC5qyAx3lQ9RkP1q8ZaD1KPaA7F1hqrpNWKIkH0iLVKsZWWSuVoPbVQrOX0KFeUpqU9lAhHIJdSARXBgJIAKglESSTZ3x/+srJkk+xu5uYzM8/Hde2lTGZnP7MzO+/9vPYzM0mhUCgkAAAAAAAAAHBBstsNAAAAAAAAABBcBJQAAAAAAAAAXENACQAAAAAAAMA1BJQAAAAAAAAAXENACQAAAAAAAMA1BJQAAAAAAAAAXENACQAAAAAAAMA1BJQAAAAAAAAAXENACQAAAAAAAMA1BJQAAAAAAAAAXBN3QPn3v/9dV155pQYOHKikpCStXLmyy+esWbNGZ511ltLT03XqqafqmWeeSaCpAAA72HFcnzt3rpKSkiIeI0eOtGcFuoGaBgD+Q12jrgGA3yxatEh5eXnKyMhQfn6+NmzY0On8K1as0MiRI5WRkaExY8Zo1apVEX+vq6vTzTffrIEDB6pnz56aPHmy3nnnnYh5jhw5ottuu00nn3yyevXqpWuvvVZ1dXWWr1ubuAPKxsZGjRs3TosWLYpp/p07d+qKK67QxRdfrOrqat1555369re/rVdeeSXuxgIArGfXcf3MM8/U3r17w4+1a9fa0fxuoaYBgP9Q16hrAOAny5cvV1lZmcrLy7Vp0yaNGzdORUVF2rdvX9T5161bp6lTp2r69OnavHmziouLVVxcrC1btkiSQqGQiouL9d577+m///u/tXnzZp1yyikqLCxUY2NjeDkzZ87U//zP/2jFihX629/+pg8//FDf+MY3bFvPpFAoFEr4yUlJ+uMf/6ji4uIO5/nRj36kl19+OfxGSNL111+vgwcPqqKiItGXBgDYwKrj+ty5c7Vy5UpVV1fb3GLrUNMAwH+oa9Q1APC6/Px8nX322XryySclSa2trRo8eLBuv/123XPPPe3mnzJlihobG/XSSy+Fp51zzjkaP368Fi9erLffflsjRozQli1bdOaZZ4aXmZOTo4cffljf/va3VV9fr/79++v555/XN7/5TUnStm3bNGrUKFVVVemcc86xfD1TLV/icaqqqlRYWBgxraioSHfeeWeHz2lqalJTU1P4362trfr444918sknKykpya6mAkCnQqGQDh06pIEDByo5ufuX8D1y5Iiam5staFl7oVCo3fEyPT1d6enp3V52rMf1d955RwMHDlRGRoYKCgo0f/58DRkypNuv7yZqGgA/sbKuebWmSdQ16hoAv/BjXWtubtbGjRs1a9as8LTk5GQVFhaqqqoq6vKrqqpUVlYWMa2oqCh82Y+2Y3hGRkbEMtPT07V27Vp9+9vf1saNG/X5559H1IiRI0dqyJAh3g0oa2trlZ2dHTEtOztbDQ0N+uyzz9SjR492z5k/f74eeOABu5sGAAnZvXu3vvKVr3RrGUeOHNHgISfqwP5Wi1oVqVevXjp8+HDEtPLycs2dO7fby47luJ6fn69nnnlGI0aM0N69e/XAAw/oggsu0JYtW9S7d+9ut8Et1DQAftTdunbkyBENGXKi9nuwpknUNeoaAL+xoq6Z0lc7cOCAWlpaoh6rt23bFnX5HR3ba2trJX0ZNM6aNUu/+tWvdOKJJ+qnP/2p9uzZo71794aXkZaWpj59+nS4HKvZHlAmYtasWRFpb319vYYMGaKLskuUmpzmYssABNnR1matqftPSzoizc3NOrC/Va+8lqMTe3V/NOaxGg+3quicWu3evVuZmZnh6VaNNInF17/+9fD/jx07Vvn5+TrllFP0+9//XtOnT3esHSboqKade86PlJrq3DYBgOMdPdqkda/9uNt1rbm5Wfv3t2rN+gHq1cvaEXSHD4d0Uf4+V2uaRF07Vkd1Lf/Ce5SamtHJMwHAXkePHtH6vz1iSV3zc1/thBNO0Isvvqjp06frpJNOUkpKigoLC/X1r39d3bgKZLfZHlDm5OS0u8tPXV2dMjMzo/4iJ3U8tDU1OY2AEoDrrDx96cReyerV29qi1yYzMzOi6FklkeN6nz59dPrpp+vdd9+1vD1OsrSmpabTkQNgBKvqWq9eSTbUtC9Gr9hV0yTqmnV1LYO6BsAIVtU1E/pq/fr1U0pKStRjdU5OTtTndHRsP3b+CRMmqLq6WvX19Wpublb//v2Vn5+viRMnhpfR3NysgwcPRoyi7Ox1u8ued/oYBQUFqqysjJi2evVqFRQU2P3SAAAbJHJcP3z4sHbs2KHc3Fy7m2crahoA+A91jboGAKZKS0vThAkTIo7Vra2tqqys7PBYHc+xPSsrS/3799c777yj119/XVdffbWkLwLME044IWI527dvV01NjW01Iu6A8vDhw6qurg7fwW7nzp2qrq5WTU2NpC+G/E+bNi08/3e/+1299957uvvuu7Vt2zb94he/0O9//3vNnDnTmjUAAHSLHcf1H/7wh/rb3/6mXbt2ad26dbrmmmuUkpKiqVOnOrpuXaGmAYD/UNeoawDgJ2VlZVqyZImeffZZbd26VbfeeqsaGxtVUlIiSZo2bVrETXTuuOMOVVRU6PHHH9e2bds0d+5cvf766yotLQ3Ps2LFCq1Zs0bvvfee/vu//1uXXnqpiouLddlll0n6IricPn26ysrK9Ne//lUbN25USUmJCgoKbLlBjpTAKd6vv/66Lr744vC/264/ctNNN+mZZ57R3r17wwVQkoYOHaqXX35ZM2fO1BNPPKGvfOUr+vWvf62ioiILmg8A6C47jut79uzR1KlT9dFHH6l///46//zz9dprr6l///7OrVgMqGkA4D/UNeoaAPjJlClTtH//fs2ZM0e1tbUaP368KioqwjfCqampibhr+bnnnqvnn39es2fP1r333qvTTjtNK1eu1OjRo8Pz7N27V2VlZaqrq1Nubq6mTZum+++/P+J1f/rTnyo5OVnXXnutmpqaVFRUpF/84he2rWdSyM0rYMaooaFBWVlZKsz9DtegBOCao63N+vPeX6m+vr7b18FqO66t3TLQ8uuaHD7UqvNHf2hJO2G9tm3/tfPncK0uAK46evSI/r52XrfrRdtx7fV/ZttS0yaeWUdNM1jb9j/vkrnUNQCuOnr0iP5ROdeyukZfzVm2X4MSAAAAAAAAADpCQAkAAAAAAADANQSUAAAAAAAAAFxDQAkAAAAAAADANQSUAAAAAAAAAFxDQAkAAAAAAADANQSUAAAAAAAAAFxDQAkAAAAAAADANQSUAAAAAAAAAFxDQAkAAAAAAADANQSUAAAAAAAAAFxDQAkAAAAAAADANQSUAAAAAAAAAFxDQAkAAAAAAADANQSUAAAAAAAAAFyT6nYDAAAA/K5+eLrbTYhJ1o4mt5sAAACAACKghG98NnqQpcvrseUDS5cHAPAHr4SNiUhk3Qg1AQAA0F0ElHCV1aGilaxsG2EnAHiDn8NHu8TynhFiAgAAoDMElLCFycGjG2J5PwgxAcA5BJHO6uz9JrwEAAAAASUSRghpra7eTwJMAIgfQaT5om0jQksAAIBgIaBElwgizRBtOxBaAsCXCCP9g9ASAAAgWAgoEYEw0lsILQEEGYFksBy/vQksAQAA/IOAMuAIJP2H0BKAXxFI4lgElgAAAP5BQBkwBJLBdPx2J7AE4BWEkojVsfsKYSUAAIC3EFD6HIEkojl2vyCsBGAaQkl0F2ElAACAtxBQ+hChJOJBWAnABISSsAthJQAAgPkIKH2CUBJWIKwE4DSCSTiJsBIAAMBMBJQeRzAJu7TtWwSVAOxAMAm3te2DBJUAAADuI6D0IEJJOIlRlQCsRDAJ0xBUAkDnPhmRZuny+m5vtnR5APyBgNJDCCbhNkZVAkgUwSRMR1AJIEisDh3tfG0CTSAYCCg9gGASpiGoBBArgkl4DUElAL9wM4S0UlfrQYAJ+AMBpcEIJmE6gkoAHSGYhNfVD08npATgCX4JIhMVbf0JLQHvIaA0EMEkvOaz0YMIKQFIIpiEvzCaEoCJgh5IxoLQEvAeAkrDEE7CqxhNCYBwEn5FUAnATQSS1iC0BMxGQGkIgkn4BUElEDwEkwgKTvsG4BRCSWcc+z4TVgLuIqA0AOEk/IjTvoFgIJxE0BBSArALoaS7jn//CSwBZxFQuohgEn5HSAn4G+EkgopTvgFYhVDSXIyuBJxFQOkSwkkEBad8A/5EOAkwmhJA4ggmvYWwErAfAaULCCcRRIymBPyDcLJ7Dp2S5HYT2un9fsjtJngWISWAWBFK+kPbdiSoBKxFQOkwwkkEGSEl4G0Ek7ExMYDsSldtJsDsHCElgM4QTPoToyoBaxFQOoRgEvgCISXgTYST7XkxiExUR+tKcPklQkoAxyOYDA5GVQLdR0DpAMJJ65hS5Ck83UNICXgL4WSwwsh4HP++BD2wJKQEIJnTZ4HzCCqBxBFQ2oxwMj5eKeZdtZOC1DVCSgAmI5BMTLT3LWihJSElEGxe6c/AXgSVQPwIKG1EONkxvxfujtaPAhWJkBIwX1BGTxJI2ufY9zYoYSUhJRA8fu/fIDEElUDsCChtQjj5JYr1l45/LyhUhJSAyfweThJKOi9IYSUhJRAc9HfQFYJKoGsElLAcBTp2BJZfIKQEzOPXcJJQ0hxBCCsJKQF/o9+DeBFUAh0joLRBEEdPUpytEeTAkpASMIcfw0mCSbMFIawE4C/0f9AdBJVAe8luN8BvghJOfjIiLeIBewTtPQ7K5wcwmZ/CyUOnJIUf8A6/bTM/faa8ZNGiRcrLy1NGRoby8/O1YcOGDuf9/PPPNW/ePA0fPlwZGRkaN26cKioqurVM+FeQvpvDfuxLwJcIKC3k93AlaGGZaXj/ASA2fgu4gspPATMhpbOWL1+usrIylZeXa9OmTRo3bpyKioq0b9++qPPPnj1bv/rVr/Tzn/9cb731lr773e/qmmuu0ebNmxNeJvyJ7+GwA3084AsElBbxczjJAdM8fg4r/fxZAkzn9RDFL2EW2mPbIh4LFizQjBkzVFJSojPOOEOLFy9Wz549tXTp0qjzP/fcc7r33nt1+eWXa9iwYbr11lt1+eWX6/HHH094mfAfP37vhlnYxxB0BJSIys8BmN/4cTsRUgLO83I4SXgVHF7e1l7+jJmgoaEh4tHUFP3mQ83Nzdq4caMKCwvD05KTk1VYWKiqqqqoz2lqalJGRkbEtB49emjt2rUJLxP+4rfv2jCXH/t2QKy4SY4F/BSmcDD0Li60DCBovBpUofvatr3Xbqjj97t6rzw0ThmhEyxd5pHDn0t6VYMHD46YXl5errlz57ab/8CBA2ppaVF2dnbE9OzsbG3bti3qaxQVFWnBggX62te+puHDh6uyslIvvviiWlpaEl4m/IP+EdzwyYg0+nUIHALKbvJLOEnh9Q+/BJXc1RtwjtdGdhFMos2hU5I8F1IiMbt371ZmZmb43+np1h23nnjiCc2YMUMjR45UUlKShg8frpKSEk7fBn0kuMov/TogVpziHXAMIfcvP2xbv/wAAMAaXj69F/bx2n7htR8ETJGZmRnx6Cig7Nevn1JSUlRXVxcxva6uTjk5OVGf079/f61cuVKNjY16//33tW3bNvXq1UvDhg1LeJnwPq9/j4Z/sC8iKAgou8HL4YkfwivEhm0NoDNeCUu8FEDBHV4KKr3yufOitLQ0TZgwQZWVleFpra2tqqysVEFBQafPzcjI0KBBg3T06FH94Q9/0NVXX93tZcKb+O4M07BPIggIKBPk1XCSsCq4vLrtvfpZ85pFixYpLy9PGRkZys/P14YNGzqc9/PPP9e8efM0fPhwZWRkaNy4caqoqOjWMuEOL4QkXgqdYAb2F5SVlWnJkiV69tlntXXrVt16661qbGxUSUmJJGnatGmaNWtWeP7169frxRdf1Hvvvaf//d//1eTJk9Xa2qq777475mXCP7z4fRnBwL4ZbPH2rVasWKGRI0cqIyNDY8aM0apVqyL+npSUFPXxk5/8JDxPXl5eu78/8sgjtqyfREAZKBzQIHk3qIR9li9frrKyMpWXl2vTpk0aN26cioqKtG/fvqjzz549W7/61a/085//XG+99Za++93v6pprrtHmzZsTXiYQDUETEuWFYNsLPxB41ZQpU/TYY49pzpw5Gj9+vKqrq1VRURG+yU1NTY327t0bnv/IkSOaPXu2zjjjDF1zzTUaNGiQ1q5dqz59+sS8TPgD35FhOvbRYIq3b7Vu3TpNnTpV06dP1+bNm1VcXKzi4mJt2bIlPM/evXsjHkuXLlVSUpKuvfbaiGXNmzcvYr7bb7/dtvVMCoVCxl9ZvKGhQVlZWSrM/Y5Sk93/QHptRBcHMXTESxdcNuGGOUdbm/Xnvb9SfX19xIX6E9F2XFu7ZaB69bb2t6LDh1p1/ugPY25nfn6+zj77bD355JOSvjhtbfDgwbr99tt1zz33tJt/4MCBuu+++3TbbbeFp1177bXq0aOH/uu//iuhZQZJ27b/2vlzlJqa4Vo7TA9HTA+X4B0m30TH7Tt6Hz16RH9fO6/bda3tuDb7tcuU0cv6u3g/dM6rltRe2KNt+593yVxX61p30WeCl3ipH+eko0eP6B+Vcy2rayb01aT4+1ZTpkxRY2OjXnrppfC0c845R+PHj9fixYujvkZxcbEOHToUcTmTvLw83XnnnbrzzjvjWMPEMYLS5yi06AyjKf2toaEh4tHU1L4j3NzcrI0bN6qwsDA8LTk5WYWFhaqqqoq63KamJmVkRHZAevToobVr1ya8TKCNF0a+wVtM3p9M/6EACAq+D8Nr2Ge9L5a+mpRY36qqqipifkkqKirqcP66ujq9/PLLmj59eru/PfLIIzr55JP11a9+VT/5yU909OjRWFcxbqm2LdmnvDJ6kgMW4vHJiDTjf4X7bPQgI0ZRWm3ZwXylH7V2tEnT4c8l/VGDBw+OmF5eXq65c+dGTDtw4IBaWlranaKWnZ2tbdu2RV1+UVGRFixYoK997WsaPny4Kisr9eKLL6qlpSXhZcJZpoYiJgdJ8La2fcvk0ZQA3EG/CV7Vtu+a3o/zMrf7alJifava2tqo89fW1kad/9lnn1Xv3r31jW98I2L697//fZ111lk66aSTtG7dOs2aNUt79+7VggULuljLxBBQ+hBFFonwQkiJ+OzevTvitIH0dGtCqSeeeEIzZszQyJEjlZSUpOHDh6ukpERLly61ZPkIJsJJOOHQKUnGhZT1w9NdP9UbAOBd9OO8ya6+WiKWLl2qG264od1ZcmVlZeH/Hzt2rNLS0vSd73xH8+fPt6W9BJRxMH30JMEkusv0X+H8OorSLpmZmV1e16Rfv35KSUlRXV1dxPS6ujrl5OREfU7//v21cuVKHTlyRB999JEGDhyoe+65R8OGDUt4mXCOiaMnCSdj0zSk62Nzeg3fBbpiYkgJwB30nwC4JZa+mpRY3yonJyfm+f/3f/9X27dv1/Lly7tsS35+vo4ePapdu3ZpxIgRXc4fLwJKn6C4wkr8ChccaWlpmjBhgiorK1VcXCzpi4suV1ZWqrS0tNPnZmRkaNCgQfr888/1hz/8Qf/6r//a7WUieIIcTsYSONq5zCCHmYSUAOg/xe7Q8FZbltt7B7fEsAr9N/9KpG9VUFCgysrKiJvbrF69WgUFBe3mffrppzVhwgSNGzeuy7ZUV1crOTlZAwYMSGhdukJAGSOTR09SXGEHU4scoyitV1ZWpptuukkTJ07UpEmTtHDhQjU2NqqkpESSNG3aNA0aNEjz58+XJK1fv14ffPCBxo8frw8++EBz585Va2ur7r777piXCQQpmLQjiLRCR+0KSnBpUkjJad6As+g/tWdXCJnoaxJexs/U/hu6L97+2h133KELL7xQjz/+uK644gotW7ZMr7/+up566qmI5TY0NGjFihV6/PHH271mVVWV1q9fr4svvli9e/dWVVWVZs6cqX/7t39T3759bVlPAkqPo7jCThS5YJgyZYr279+vOXPmqLa2VuPHj1dFRUX4wso1NTVKTv7yS+KRI0c0e/Zsvffee+rVq5cuv/xyPffcc+rTp0/My4Q7TDm92+/hpKmBZKyitd+voaVJISUAOMmNQDIe0dpHaNk1+m/+FG9/7dxzz9Xzzz+v2bNn695779Vpp52mlStXavTo0RHLXbZsmUKhkKZOndruNdPT07Vs2TLNnTtXTU1NGjp0qGbOnBlxXUqrJYVCIeO/lTU0NCgrK0uFud9RarLzX5BNHT1JOAmnmFjk3BhFebS1WX/e+yvV19fHdL2QzrQd10rXXqP0XtbfGe7J8/9oSTthvbZt/7Xz5yg1NaPrJ1iIgNIeXg8kE+G3wNKUkNLpUZRHjx7R39fO63a9aDuuzX7tMmVYXNOOHP5cD53zKjXNYG3b/7xL5jpe1xIR1D6U6YFkIggsO2Zi/80JR48e0T8q51pW1+irOYsRlB4V1MIKd/BLHOB9hJPWCmIoeaxj198PYSUjKQH4kR9DyWMdv34Ell+i/wYvIqD0IMLJLzhZcCl2FDkA3ef1cDLooWRH/BJWElIC/heEfpTfQ8nOHLvu9N/ov8F7CCi7YNrp3UEoqsczochyAecvmFTkuFkO4C1eDScJJePT9n55Nah0O6TkZjmAffzcjzKhv2QawsovmNR/A7pCQOkhfi6qbbxYXIN2agFFDvAet0/v9mI4STDZPV4eVel2SAkAsfJi38kNbe+T3/tpgNcRUHqEn8NJvxXWIASWpoSUjKIEzOelcJJQ0h5eH1XpNEZRAtbzW1/Kb/0npwR1VKUpfTegKwSUnTDl9G4Kqrf5tRBS6AB0xSvhJMGkM7wUVDKKEoCJgtaPslPQRlXSd4MXEFAazi/hJMX0C34LKyl0gPncPr3bZAST7vBKUElICfiDH/pT9KXsE7SgEjAZn8IOmDB60i/FlIIaXdt7w/vTPSZ8VgG0Z/roScJJ9zUNaTZ+O5i+HwPwP/oKzghCv8wP+QL8jRGUsJzfD+x28PIvd4yiBHA8k0Md0wOxIPLKiEoncR1KwBpeDmToU7nDy/2yWNB3g8n8+anzAS8W0yD86mQ3r76HXtxfgSBw4/RuU8NJL4zWCzpTt4+p+zQA//Jif8Bv/LwN6LvBVASUUbh9yqjXDhheDdVM5sX31M391u3PLACzmRp8oT1Tg2RCSsB7vNankrzZB/AztgfgLAJKw3ipkHLAth/vMQAvMS3EMTXsQtfYbtzgCggavvOby499Mi/lDggOAkrEzY8HaNN55T2n0AHBZWI4CW8zLWA2bR8H0DEvfSf1yvd8ECIDdiOgNIgXCikHZXd54QuMF/ZjIAiCPPrKpFAL3WfS9iSkBGAl07/Xoz0v9MdiRb8NpiGgPI5b17Iz/eDgpwOxH7At2uM6lIB7TAltTBtxB+uwXQHEyvR+VRu+z3ubX7afVz4vCIaEAspFixYpLy9PGRkZys/P14YNGzqdf+HChRoxYoR69OihwYMHa+bMmTpy5EhCDYazCCbNZfK2odDBa6hr3keA5X+mbGMnA/kgj4RG4qhp5jP1OzziY3J/DPCiuAPK5cuXq6ysTOXl5dq0aZPGjRunoqIi7du3L+r8zz//vO655x6Vl5dr69atevrpp7V8+XLde++93W68X5ga5nCw9QZTt5Op+zVwPOpa95gwetKU4Ar2Y5Qs0DlqmvlM/e6OxHl9m9JvgyniDigXLFigGTNmqKSkRGeccYYWL16snj17aunSpVHnX7dunc477zx961vfUl5eni677DJNnTq1y1/ygsLUg4HXD7JBw693QOL8WNeCNOqKsCqY3N7uJgTzQDR+rGnxMLVv1Ybv6/7FtgW6L66Asrm5WRs3blRhYeGXC0hOVmFhoaqqqqI+59xzz9XGjRvDRe69997TqlWrdPnll3ej2fbgGnYEXV5n2rZz+ksin2HEy+91zW5uhzRuh1RwF9sfiERNM5tp39NhPS9vY9PDfQRDajwzHzhwQC0tLcrOzo6Ynp2drW3btkV9zre+9S0dOHBA559/vkKhkI4eParvfve7nZ420NTUpKampvC/Gxoa4mmmZ5h2EPDyARVfOjS8Vb13cP8rIBZO1LWg1DSnEU5B+mI/SK9x5/vUoVOS1Pv9kO2vUz88XVk7mrqeEYEX9L6aaX2rY9HPCo62bU1/DIif7Z+aNWvW6OGHH9YvfvELbdq0SS+++KJefvllPfjggx0+Z/78+crKygo/Bg8ebHczA4+i6S8mbU+TvywCiYi3rvm1prk5epJwEsdifwASR1/NfiZ9L4dzvLjd6bfBbXGNoOzXr59SUlJUV1cXMb2urk45OTlRn3P//ffrxhtv1Le//W1J0pgxY9TY2KhbbrlF9913n5KT22eks2bNUllZWfjfDQ0Nvit8Jn34vXjwRNcYSQl0zYm65nRN8/v1J4McRuV9ZX+nf9+1p79DLTGPWyMpnRpFCcSCvpp56GcFG/0xID5xBZRpaWmaMGGCKisrVVxcLElqbW1VZWWlSktLoz7n008/bVfYUlJSJEmhUPQvdOnp6UpPd7aDFdRr11E0/c2UUww+GZGmvtudCRU+Gz1IPbZ84MhrwfucqGtu1DS7uTV60s/hZFfho5XL8GuQ6ebp3oAJ/NxX64pJgz/a0M+C5L2Q0sl+G3C8uAJKSSorK9NNN92kiRMnatKkSVq4cKEaGxtVUlIiSZo2bZoGDRqk+fPnS5KuvPJKLViwQF/96leVn5+vd999V/fff7+uvPLKcPELGlMKKEUzOLxWGAEnUde8wU/hpBVhpJWv76fA0o2Q0olRlFyHErGippmBfhaORV8MiE3cAeWUKVO0f/9+zZkzR7W1tRo/frwqKirCF2OuqamJ+BVu9uzZSkpK0uzZs/XBBx+of//+uvLKK/Uf//Ef1q0F4kLBDCa3CyO/xsFU1LX4uDF60uvhpNuBZFf8FlgykhJBRk1zH30tRON2Xywe9NvglqRQR2P3DdLQ0KCsrCwV5n5Hqcn2fOF06hRvt0dPUjDhZmF0qtDZdYr30dZm/Xnvr1RfX6/MzMxuLavtuFa69hql9zrBohZ+oenw53ry/D9a0k5Yr23bf+38OUpNzbB8+XZfg9LpgNKr4aTpoWSsvBpWuhFQ2j2K0o4RlEePHtHf187rdr1oO67Nfu0yZVhc044c/lwPnfMqNc1gbdv/vEvm2lLXuuJ2/+p49LfQGa+ElF4NKI8ePaJ/VM61rK7RV3OWNz4dNgvq9ScRTG5+aTLtCyTgN4ST7sr7yv7wwy+8uk5e23cA+APhJLrilX2EfhvcQEDpILc/5F45GALdxY8OgPd5KWDyYoCXCK+FlU7vQ27dPAqAGehrIVbsK0B0BJQBwUEQx2IUJYB4Eb6056WwzmpeWXcvBd1dsXuENOBFpnyvpK+FeHlhnzHl84XgIKB0iJsfbi8c/OA89gsApjI9VPJKOOcEL7wXpu9PAIBgoj8GRIr7Lt7wliAd9HoNrbd0eYd3Zlm6PBO5dTc57gwHoCMmh0mmB3FuantvvHpTHascOiXJ9pvlADBLUPpbVve1jhWEfldHTL+7N/02OCnwAaUT16pza/SkX4ulncUxltfxWwE1vSgCiI2dp386dXq3qeEkwWTs8r6y38iQsmlIsyt39gbgb37tb0nO9bk6ei2/9bk6Q38M+ELgA0q/8lOxdLI4xuLY9vilcPqxKH42epB6bPnA7WYA8DCCycSYOprSqZCSUZSAM7g+nrVM7nNJ/ul3dcSP/TEgXgSUMJJpBbIjQSucVuJ0AcAbgjp6knCy+0wNKgHACn4YEOKVPpfkz0EiXkG/DU4hoLSZG7/sebVYeqlAdqRtHbxYNPnVDoBbTAonCSatZ9Jp314/1bt+eLqydjS53Qwg8Lza32rj9X6XX8NK+mMIOvZ+n/Fisew1tN7zRfJ4bevktfVyev/h1BwAJiGctI9Jd/t2IhB3auQxAMTDi/2TrvhtnUztz9NvgxMIKG3k9IfY1INZR/xWTDoSlPUE4D9OhCymjJ40JTzzO95nAFZwMyzxWp9LCkZ/xE/r6MV9DLBCoE/xduIO3mjPL4UjXl45/ZtTCwDvsfMO3n5HYOY8E0759vqp3gAQiyD2u7zS5wLQHimET3jhVxY//arVHV54H5zcn+z8BZwfIQCzuT16knDSPUF47znN212LFi1SXl6eMjIylJ+frw0bNnQ470UXXaSkpKR2jyuuuCI8z80339zu75MnT3ZiVWAQL/S5JG/0N+zm9ffAxH2N07xhNwJKmzj54TXx4HUsrxcHu/CeADCZ3eEK4STc3gZu74Owz/Lly1VWVqby8nJt2rRJ48aNU1FRkfbt2xd1/hdffFF79+4NP7Zs2aKUlBRdd911EfNNnjw5Yr7f/e53TqwODGF6n0ui3xWNl98TL+xzgJUIKGErrxYDp5hcMCmIAPzK7WAMX3L75jmElP60YMECzZgxQyUlJTrjjDO0ePFi9ezZU0uXLo06/0knnaScnJzwY/Xq1erZs2e7gDI9PT1ivr59+zqxOjgOo7iiM7VPYQqT+12doU+GICGg9DhTD1heLQBuMfW9cmr/4osmECxuhkKEk2by63axYyQy15ztXHNzszZu3KjCwsLwtOTkZBUWFqqqqiqmZTz99NO6/vrrdeKJJ0ZMX7NmjQYMGKARI0bo1ltv1UcffWRp22EuU/tcbUztS5iIfmr30G+DnQgobRD0Dy0H/MRQLAHAXn4NwfzCre3DKEpvaGhoiHg0NTVFne/AgQNqaWlRdnZ2xPTs7GzV1tZ2+TobNmzQli1b9O1vfzti+uTJk/Wb3/xGlZWV+vGPf6y//e1v+vrXv66WlpbEVwroJvoPifPS+2Z6QA5YJdB38fY60w5UXjrIm6zX0Hqj7jrHXb2B4LHz+pNuhUGEk95gwh2+kbi/1p2u1MPWjvA82tgk6VUNHjw4Ynp5ebnmzp1r6WtJX4yeHDNmjCZNmhQx/frrrw///5gxYzR27FgNHz5ca9as0SWXXGJ5O2AO0/pcbeh7dZ+X7vhtUp/skxFp6rudH/dgPTP2cBd4/e6+phVKCqS1gvh+Bn3kMZAoTvfsGuGkt7ixvewMzrmbtzV2796t+vr68GPWrFlR5+vXr59SUlJUV1cXMb2urk45OTmdvkZjY6OWLVum6dOnd9meYcOGqV+/fnr33XdjXwl0G98XvxDEvoKdeD8BMwQ2oLRLEIsmB3R7mHTKhmmBeDy8/mME4CdujJ4knPQmthuOl5mZGfFIT4/+40xaWpomTJigysrK8LTW1lZVVlaqoKCg09dYsWKFmpqa9G//9m9dtmfPnj366KOPlJubG9+KwFNM/A5sSv/Ab7zwvpq4PwJWIqD0IJMOTF44kHsd7zEAJ/lptBchF+LBtSj9o6ysTEuWLNGzzz6rrVu36tZbb1VjY6NKSkokSdOmTYs6AvPpp59WcXGxTj755Ijphw8f1l133aXXXntNu3btUmVlpa6++mqdeuqpKioqcmSdAJMGL/iVF95jU7KAIA7Mgv24BiUSZvrB209MuC6lSdc9AeA9Toc/hJPex/UokagpU6Zo//79mjNnjmprazV+/HhVVFSEb5xTU1Oj5OTI7zTbt2/X2rVr9eqrr7ZbXkpKit544w09++yzOnjwoAYOHKjLLrtMDz74YIcjOQEr0e9ylgl9LyCICCg9xoRfTCiQ7ghCoeSCywCsQDjpH06HlE1DmpVeY/2okEOnJKn3+yHLllc/PF1ZO6LfxRpfKC0tVWlpadS/rVmzpt20ESNGKBSKvo169OihV155xcrmwQNM6HdJ9L3cYnLfi4Ej8Cv2agsFYZgzBdJdbr//pnxRAwAEB4EzACkYfa3juf3dP+h4/wFnEVB6iNvhEAdoM7AdANjFrutPOnl6N2GWP7FdATjJ7X4XzGFq38uEfTSIPxrAXoEMKLmrb/xMPTAHlZvbw4RiCADREGLBCtwsB4AJ6H+Zw9Sb59Avg99wDUqP4OCD45l8XZTu4DqUQOzqh5t/cwanwh4/hZOX5myzfJmra0davkynef2mOVZfhxKAPUzod5kYhsG//S/AFASUFvHz8GYKpLncKpJeuzDzZ6MHqceWD9xuBgBEZUcg2dVreDWwdCqktOtmOQDQFfpeZjMtpHS7X8bgEliJgBKdokACQDDYcf1JRk92zIlQMtbX91pY6fWRlADQEfpe3mBaSAn4hXeGQAWYW6cZUCC9wa3tZMLpL7DOokWLlJeXp4yMDOXn52vDhg0dznvRRRcpKSmp3eOKK64Iz3PzzTe3+/vkyZOdWBUEjJfCyUtztoUfJjG1XQDQxqmz1dz8fkvfy1tM2l70y4Ihnv6aJK1YsUIjR45URkaGxowZo1WrVrWbZ+vWrbrqqquUlZWlE088UWeffbZqamrCfz9y5Ihuu+02nXzyyerVq5euvfZa1dXVWb5ubQgoEZVJB1x0zW/by8+XTDDR8uXLVVZWpvLycm3atEnjxo1TUVGR9u3bF3X+F198UXv37g0/tmzZopSUFF133XUR802ePDlivt/97ndOrA5gHC+Ff15pqxPBtB0jgO0YqQwAcIff+mCJou9mv3j7a+vWrdPUqVM1ffp0bd68WcXFxSouLtaWLVvC8+zYsUPnn3++Ro4cqTVr1uiNN97Q/fffr4yMjPA8M2fO1P/8z/9oxYoV+tvf/qYPP/xQ3/jGN2xbTwJKC9j5gXTj1xAOtN7EdkOiFixYoBkzZqikpERnnHGGFi9erJ49e2rp0qVR5z/ppJOUk5MTfqxevVo9e/ZsF1Cmp6dHzNe3b18nVgeGcOL0btNHT3ol7IvGC203ffvbzQs3yQIQG77Ho7sYRelv8fbXnnjiCU2ePFl33XWXRo0apQcffFBnnXWWnnzyyfA89913ny6//HI9+uij+upXv6rhw4frqquu0oABAyRJ9fX1evrpp7VgwQL9y7/8iyZMmKD//M//1Lp16/Taa6/Zsp4ElAASRiE0W0NDQ8Sjqamp3TzNzc3auHGjCgsLw9OSk5NVWFioqqqqmF7n6aef1vXXX68TTzwxYvqaNWs0YMAAjRgxQrfeeqs++uij7q0QcAyTwykvhHux8tO6JMKp66gCcB+X1UIi2H5IVCx9NSmx/lpVVVXE/JJUVFQUnr+1tVUvv/yyTj/9dBUVFWnAgAHKz8/XypUrw/Nv3LhRn3/+ecRyRo4cqSFDhsTcT4wXN8kxGKMnES8u2Ow9f9lzmlJ6WjsKpuXTL4rb4MGDI6aXl5dr7ty5EdMOHDiglpYWZWdnR0zPzs7Wtm1dhxIbNmzQli1b9PTTT0dMnzx5sr7xjW9o6NCh2rFjh+699159/etfV1VVlVJSUhJYK9iJ006t4ecg79KcbUbeTIcb5gDwMvpe/mBKH8ztO3r7kdt9NSmx/lptbW3U+WtrayVJ+/bt0+HDh/XII4/ooYce0o9//GNVVFToG9/4hv7617/qwgsvVG1trdLS0tSnT58Ol2O1wAWUn40e5HYTjEWB9AenC6RdhfCTEWnqu52RK92xe/duZWZmhv+dnm796YBPP/20xowZo0mTJkVMv/7668P/P2bMGI0dO1bDhw/XmjVrdMkll1jeDpjF7lFnJo6e9HM42aZtHU0MKgEAcJMpIaVb6LvFz4m+WkdaW78YDHf11Vdr5syZkqTx48dr3bp1Wrx4sS688ELH2nIs4vVu8ssFYQkn/YXtCUnKzMyMeEQrev369VNKSkq7u7HV1dUpJyen0+U3NjZq2bJlmj59epdtGTZsmPr166d33303vpUADBfEU6BNW1+7A2urA3dGLAPxcaK/xZlrsIIJ25RLcHlHLH01KbH+Wk5OTqfz9+vXT6mpqTrjjDMi5hk1alT4Lt45OTlqbm7WwYMHY37d7iKgNBQHFgBOSEtL04QJE1RZWRme1traqsrKShUUFHT63BUrVqipqUn/9m//1uXr7NmzRx999JFyc3O73WZ8Iag3yDBp9KRpQZ2TghjMAoBVTAiyYA+2LayWSH+toKAgYn5JWr16dXj+tLQ0nX322dq+fXvEPG+//bZOOeUUSdKECRN0wgknRCxn+/btqqmp6bKfmKjAneKN9jiI+pOTpxl44Xonn40epB5bPnC7GUYqKyvTTTfdpIkTJ2rSpElauHChGhsbVVJSIkmaNm2aBg0apPnz50c87+mnn1ZxcbFOPvnkiOmHDx/WAw88oGuvvVY5OTnasWOH7r77bp166qkqKipybL3gjiDcVIRg7kumXJuSa1ECAEzh9uneXuibIT7x9tfuuOMOXXjhhXr88cd1xRVXaNmyZXr99df11FNPhZd51113acqUKfra176miy++WBUVFfqf//kfrVmzRpKUlZWl6dOnq6ysTCeddJIyMzN1++23q6CgQOecc44t60lACQABN2XKFO3fv19z5sxRbW2txo8fr4qKivCFlWtqapScHPklZ/v27Vq7dq1effXVdstLSUnRG2+8oWeffVYHDx7UwIEDddlll+nBBx909NoqiI2XTjc1YfQk4WR7QQgpm4Y0K73GH5f1ARDJ6TPXGBwCv+I6lPaJt7927rnn6vnnn9fs2bN177336rTTTtPKlSs1evTo8DzXXHONFi9erPnz5+v73/++RowYoT/84Q86//zzw/P89Kc/VXJysq699lo1NTWpqKhIv/jFL2xbTwJKAzlZJCmQ/ub2r3fdRZFzTmlpqUpLS6P+re1XtGONGDFCoVAo6vw9evTQK6+8YmXzAMJJw5kSUgIAnHfZkO1dz3ScV2tG2NASc7jdD2MUpf/E21+77rrrdN1113W6zH//93/Xv//7v3f494yMDC1atEiLFi2Kq62JIqDsBq/fIMdv4WQihbEjfiqYThVHiiAAP5/eTTjZNRPu8u2VU70PnZKk3u9H/5EHgH/5of9lVZ8r2nL81AeT3A8pAa8hoISnWRlKdrZcvxVLAPASt0dPEk7Gh9GUALyCM9diY1efq6vX8UMfjJASiB0BpWGcKpIUyMRf04uFksIIAIkhnEyMH0NKE69DWT88XVk7mtxuBmAbr5+x5mVu9Lk6a4MX+2Buc+MMNy7Rhe4goIQnmFAg27S1hSLZHqd5A95i5Q1y/Hh6N+Fk97gVUnrlNG8AweGlwSEm9buO5eU+GINFgNiQJASQ1wqkyUXS1LZF46XtDgBt3Dq9m3DSGryPAOANXunbeKWdx3OrL+b0XeqB7gjUCMrPRg+ybFl2nG7AweNLXio6Xv41zws4TQCA0wjVvM+uUZQmnuYNIDFcWusLXup3HYs+GOA/jKAMGNMLpOTtIml6272w/QGgjRujJwknrcd7Gp2Vl1gAgESY3neJhRf6YG0YRQl0joASxvBScemMH9ahOyiAQPD45fqTBGn2ceO9dfvu7wBg6uAAv/S7juWVdTJ1n7ASN7dCoggoDeFEqGPywdALxSQeJq+PyfsBgNjUD093uwm2I1zyHwJgAKYI8g/qJvdTrOD39QP8jIASrvNrEfHKr3hBYuV1aAH4C+GZM5x+n+0Iuv0yYhiAvUwcFBCUvonp/TA39o0gh/LwDgLKgDC1QJpcOKxi4jqauD8AcBbXv/sS4SQAmIfTRK0TlH7X8UxeZ/pjQHsElAmgWHafycXCDkFbX6t/oeMzB5jLjtFkTp7eTTjpPN5zAHBO0PohxwtqOAt4EQGlAewebm3arzNBLRCmrbdp+wUAIDicDCm5nimAYwXp2v+m9T/cZOJ74fR+4uRp3gwwQSIIKOEoEwuDk4K+/gDQFUZPwgusGjnMpRYA2IV+R3u8J4DZCCh9zpRf7yQKQhveBwBwH+Gk+9gGAPzIhP4X/Y2Omfbe+HkUJRAvAko4wrRC4DZT3g87CyLFD/A/7maM7nIqpOQ0bwBBYUo/w2S8R4CZCChdFoQQhwIQHe8LAERyKkRi5B78pH54uttNAPD/c3v0JP2L2Jn0Xrm93wCmIKD0MRMOdCYd+E3E+wPADVz3DiYhMAbgFD8PDqFfEb+gvmdOfQ64UQ7iFZiA8rPRgyxZDh+y2AX1gB8vt98nE4LsWPDZA2AFwjAzObFdrB6hyyUOAMD73O6LtfFKnwywU2ACyqDhAAcT+PlXagDWcuL0bsJJAIBd3Ox/mRKyeRXvH2AGAkrYgoN8fNx+vwi0AcSL0WOwGgEygDacORM7t/sRfmHC++hkn4yBJDARAaWL/HpQMOHg7kW8bwBgH8IvSGbezZtrwgJIFP0Ha/F+Au4ioPQhTi/wLt4/AECQESQDsIudg0Pc6H/Rb7CH2++r385sYzQ04kFACUCS/4ohAO+we1QboRfswqUOAMB/3A4pgaAioIRlOJBbw2/vo18vZQC4pX54uttNAGxld6Bs4mneABAPv/UXTOTme+zUwBH6aTANAaXPuDUKjiJpLd5P+3w2epDbTQBcFbTr3fl19OQ3MzeFHwAA9zjd/6KfAMCvUt1ugJdYef0Efq0A4vfJiDT13c7pdIDbrDytldFsHYs1fOxovhcazrKyOY66NGebVteOdLsZAIAAu2zIdr1aM8KV1+41tF6Hd2a58tqAWwgo0W38imcPNwoihRCAn3hx9KSVIyKPXZaXw0oA6C6/DA6h3+U8N0NKJxwa3qreOzixFmZgTwQAAHCZ3adrc0p4JEbuArACN5kMBreCYb/sX9zJG7EioPQRNw5g/IpnL95fAPA3N0JDr4SUXhkBy528ATiBfgEAvyOgBBDBjqDbL6fVALCWnaPYTA+33B7N6PbrI1LQbl7lhEWLFikvL08ZGRnKz8/Xhg0bOp3/4MGDuu2225Sbm6v09HSdfvrpWrVqVbeWCcA/GEUJ2I+A0gV+CWv4Fc8ZvM8A4C8mBYOmB5WmB80w0/Lly1VWVqby8nJt2rRJ48aNU1FRkfbt2xd1/ubmZl166aXatWuXXnjhBW3fvl1LlizRoEGDEl4mEsfpoO3RHzCDX7eDX/IJeB8BpU/wywoAwAleOJ3V5FDL1DDQ1HbZietQ+teCBQs0Y8YMlZSU6IwzztDixYvVs2dPLV26NOr8S5cu1ccff6yVK1fqvPPOU15eni688EKNGzcu4WXC/5zqf/k1FPMqtgdgHwJKJIQDs7N4vwHA20wfqSgFM6SE/zQ3N2vjxo0qLCwMT0tOTlZhYaGqqqqiPudPf/qTCgoKdNtttyk7O1ujR4/Www8/rJaWloSXCXMwOgxex2AkBAUBJYB2KIIA7Bak0WteCv5MbKvJI2LhnIaGhohHU1NT1PkOHDiglpYWZWdnR0zPzs5WbW1t1Oe89957euGFF9TS0qJVq1bp/vvv1+OPP66HHnoo4WUCVmCQgpn8uF0I8mGCVLcbAO/x4wHZCy4bsl2v1oxwuxkAPCwIN+IwLcwyMfDryjczN+mFhrPcboanNA1pVnqNe9fNqx+erqwd0QM7J9V82E/JPTIsXWbrZ0ckSYMHD46YXl5errlz51rzGq2tGjBggJ566imlpKRowoQJ+uCDD/STn/xE5eXllrwG/IUf8+G0XkPrdXhnltvNSNgnI9LUd7v5lwmCuwgoY2TyxZopkPCCQ8Nb1XsHg7YBBIcXw8k2hJQwze7du5WZmRn+d3p6etT5+vXrp5SUFNXV1UVMr6urU05OTtTn5Obm6oQTTlBKSkp42qhRo1RbW6vm5uaElgnA3xg8AliPtMBhXh86zehJd/H+m/1jAQC08XI42cakdbBrZGyQLjXgdZmZmRGPjgLKtLQ0TZgwQZWVleFpra2tqqysVEFBQdTnnHfeeXr33XfV2vrl9/S3335bubm5SktLS2iZQHfxvd98bCPAWoEIKD8bPcjtJgCew8hcAF5jyundJgV73eWndUFwlJWVacmSJXr22We1detW3XrrrWpsbFRJSYkkadq0aZo1a1Z4/ltvvVUff/yx7rjjDr399tt6+eWX9fDDD+u2226LeZkAYDe7+2deH0wF7+MUb8SMX4gAINiahlhz7SA/j1rzY6DH6d7wmilTpmj//v2aM2eOamtrNX78eFVUVIRvclNTU6Pk5C/HaQwePFivvPKKZs6cqbFjx2rQoEG644479KMf/SjmZSI4nPgRn36Xd3CqN2AdAkrAYyiCAACnmRBSXpqzTatrR7raBnhHaWmpSktLo/5tzZo17aYVFBTotddeS3iZMBMjwgDAOwJxirefcRouAABmnN7tx9GTx/L7+rnt0ClJbjcBgAEYPek9Tm4z+v/ws4QCykWLFikvL08ZGRnKz8/Xhg0bOp3/4MGDuu2225Sbm6v09HSdfvrpWrVqVUINhjsolGZhewDWoq6huwjvvMvPlxxAMFHT4JYb+65L6AFz2DnqmJudoitxn+K9fPlylZWVafHixcrPz9fChQtVVFSk7du3a8CAAe3mb25u1qWXXqoBAwbohRde0KBBg/T++++rT58+VrQfgI16Da3X4Z1ZbjcDsBV1DYid26d6m3yad9OQZqXX0PmCu6hpcJoVAeOxy3juk3O7vTw3cBkuoPviDigXLFigGTNmhO9Yt3jxYr388staunSp7rnnnnbzL126VB9//LHWrVunE044QZKUl5fXvVYD8KRDw1vVewdXloBZqGvO8uNotaCNnnQ7pATQMWqavew+vdZLZ0nZNfLRD2Gl3RhEAr+KKylobm7Wxo0bVVhY+OUCkpNVWFioqqqqqM/505/+pIKCAt12223Kzs7W6NGj9fDDD6ulpaXD12lqalJDQ0PEww+8epFmLxXKIGG7AN3nRF3za00ziZvXnwxaOAnAXPTV4AQnT8v22ing9M+A7okroDxw4IBaWlqUnZ0dMT07O1u1tbVRn/Pee+/phRdeUEtLi1atWqX7779fjz/+uB566KEOX2f+/PnKysoKPwYPHhxPMwODC+QCQPc4UdeoafAjglnAPH7oq3GNOnO5GRZ6LagEkBjbz7VsbW3VgAED9NRTT2nChAmaMmWK7rvvPi1evLjD58yaNUv19fXhx+7du+1uJgAAMYm3rvmlpjUNaXa7CcYhpHOHHSNm/XjpASAW9NXMYfLoO1PCQVPa0RmntqOdg5W8euYnvC+ua1D269dPKSkpqquri5heV1ennJycqM/Jzc3VCSecoJSUlPC0UaNGqba2Vs3NzUpLa/8rWXp6utLT0+Npmq2C/EueyYUSALrLibpmZU2rH25ObQS4FiVglqD21TpCyGIN00LBtvZwfUrAf+IaQZmWlqYJEyaosrIyPK21tVWVlZUqKCiI+pzzzjtP7777rlpbvywQb7/9tnJzc6MWPACxcyJA5lIC8LMg1bVDpyS53QRbuHX9SUZPAjBNkGqaG4L2ndj006pNbhuDfIDExH2Kd1lZmZYsWaJnn31WW7du1a233qrGxsbwneKmTZumWbNmhee/9dZb9fHHH+uOO+7Q22+/rZdfflkPP/ywbrvtNuvWAgDi8NnoQW43AQahrgGJI6gFzEJN8ybTAi2Tw79jeaWddvFiaB7ks1PRtbhO8ZakKVOmaP/+/ZozZ45qa2s1fvx4VVRUhC/GXFNTo+TkL3PPwYMH65VXXtHMmTM1duxYDRo0SHfccYd+9KMfWbcWAeTEwci0Qgm0+WREmvpu53p4sAZ1zTl+uc4foZz7Ls3ZptW1I91uBmAcahq6y2uh34191xl5uvdlQ7br1ZoRbjcD8JS4A0pJKi0tVWlpadS/rVmzpt20goICvfbaa4m8FIAuUPyA7qOuAYnjWpRfahrSrPQaRofAXdQ0JMpr4WQbU0NKLzs0vFW9d9h+T2UgAnscAEdxwXIAVnHj+pOMngQAWImz1qxhYrjKtgXiQ0DpEEIZAADgV34Ibv1yCQIASISJAV+8/LAO8fLidSiBjhBQIip+7QGCZdGiRcrLy1NGRoby8/O1YcOGTuc/ePCgbrvtNuXm5io9PV2nn366Vq1a1a1lAqbzQwgHAIif30MgPwV7floX4Fjx9q1WrFihkSNHKiMjQ2PGjGnXVzvWd7/7XSUlJWnhwoUR0/Py8pSUlBTxeOSRR6xYnagIKAF0ye9fyoJu+fLlKisrU3l5uTZt2qRx48apqKhI+/btizp/c3OzLr30Uu3atUsvvPCCtm/friVLlmjQoEEJLxOA9zkd4Lpxij8AWMmEQSF+DPRMWicTtjG8L96+1bp16zR16lRNnz5dmzdvVnFxsYqLi7Vly5Z28/7xj3/Ua6+9poEDB0Zd1rx587R3797w4/bbb7d03Y5FQAn4AIUP3bFgwQLNmDFDJSUlOuOMM7R48WL17NlTS5cujTr/0qVL9fHHH2vlypU677zzlJeXpwsvvFDjxo1LeJkAAOnQKUluNwFAgJgU5FnNz+t2PLsGk3CZOnPE27d64oknNHnyZN11110aNWqUHnzwQZ111ll68sknI+b74IMPdPvtt+u3v/2tTjjhhKjL6t27t3JycsKPE0880fL1a0NACQA+1dDQEPFoampqN09zc7M2btyowsLC8LTk5GQVFhaqqqoq6nL/9Kc/qaCgQLfddpuys7M1evRoPfzww2ppaUl4mTBb05Dmbi/D6uv7OT16jtO7AcA7CFYgmRNSMpgE0cTSV5MS61tVVVVFzC9JRUVFEfO3trbqxhtv1F133aUzzzyzw3Y+8sgjOvnkk/XVr35VP/nJT3T06NF4VjMuqbYtGbbhdFvAPxrfz1RyRoaly2w9ckSSNHjw4Ijp5eXlmjt3bsS0AwcOqKWlRdnZ2RHTs7OztW1b9ADovffe01/+8hfdcMMNWrVqld59911973vf0+eff67y8vKElgnAH76ZuUkvNJzldjMAAF0wJbyz24191+m5T851uxk4xicj0tR3e/d//HaC2301KbH+Wm1tbdT5a2trw//+8Y9/rNTUVH3/+9/vsK3f//73ddZZZ+mkk07SunXrNGvWLO3du1cLFizodB0TRUCJdviFB/CH3bt3KzMzM/zv9PR0S5bb2tqqAQMG6KmnnlJKSoomTJigDz74QD/5yU9UXl5uyWsAAAD4GX0uINjs6qvFYuPGjXriiSe0adMmJSV1fHmZsrKy8P+PHTtWaWlp+s53vqP58+fb0l5O8QYAn8rMzIx4RCsi/fr1U0pKiurq6iKm19XVKScnJ+pyc3NzdfrppyslJSU8bdSoUaqtrVVzc3NCywRMxund5uJGOQDs5sez14IyerKNCetrdyDtx/3U72Lpq0mJ9ddycnI6nf9///d/tW/fPg0ZMkSpqalKTU3V+++/rx/84AfKy8vrsM35+fk6evSodu3aFfuKxoGAEoFwY9917R5+w6+wSERaWpomTJigysrK8LTW1lZVVlaqoKAg6nPOO+88vfvuu2pt/fL6Tm+//bZyc3OVlpaW0DIB+AeBLgCYy4/9oFgEdb3hfYn0rQoKCiLml6TVq1eH57/xxhv1xhtvqLq6OvwYOHCg7rrrLr3yyisdtqW6ulrJyckaMGCABWvWHqd4w7e6KkLH/p3rkiDIysrKdNNNN2nixImaNGmSFi5cqMbGRpWUlEiSpk2bpkGDBmn+/PmSpFtvvVVPPvmk7rjjDt1+++1655139PDDD0dcv6SrZQKAifK+sl+79vR3uxkAABjh0PBW9d7BuDa3xdtfu+OOO3ThhRfq8ccf1xVXXKFly5bp9ddf11NPPSVJOvnkk3XyySdHvMYJJ5ygnJwcjRgxQtIXN9pZv369Lr74YvXu3VtVVVWaOXOm/u3f/k19+/a1ZT0JKOE7ifw61vYcgkoE0ZQpU7R//37NmTNHtbW1Gj9+vCoqKsIXVq6pqVFy8pdfTAYPHqxXXnlFM2fO1NixYzVo0CDdcccd+tGPfhTzMgGvYDQgAMAvgj6K0O0b5lw2ZLterRnh2uvDu+Ltr5177rl6/vnnNXv2bN1777067bTTtHLlSo0ePTrm10xPT9eyZcs0d+5cNTU1aejQoZo5c2bEdSmtRkCJCF4/Tbi7RdftomWyXkPrdXhnltvNgE1KS0tVWloa9W9r1qxpN62goECvvfZawssEuoPrDsJkTUOalV6T5nYzABjM630uL/Nzf4/+mr/F21+77rrrdN1118W8/OOvK3nWWWd12d+zGmN14RtW/SIY9F8WAQDoLkaeAoBZ6OMAMB0BpQMODW/teiZ0i9UFlwIOAAAAAP7jZl+P0bNAxwgou/DJCLNO0ek1tN7tJhjHrgLjxZDSKwWP0B6AFzAKEAAAAHAGASU8ze4Q0YshJQCYJu8r+91uAnyMa5IC/mDawBDJP4ND6NO0x3sSOzsGl5j4eYf7CCgBAPC5Q6ckud0EBBAjUAGgPa+c8QT72LkP+CVURzARUMKznPrVi1/XAACA6eqHp7vdBMAIXEooEn2ZjvHeAGYhoESYl37No5gAAAAAAAD4AwElEAMCUQAwg1PXG+T0ZAAA/I9+HmAOAkoAAAAAAHyG8M1cXjp7EXAKASU8x61CS4EHAAAAAH/xWz+PG+XAqwgoAQBAh5qGNLvdBHgYp8oDAOB93HwKTvB9QPnZ6EFuNwEW8tuvWwAAwCx5X9nvdhMA+JSTp/XSb4oP7xfgPt8HlICVKFwAAAAAgO7iOpRAJAJKwGcodAAAAAAAwEsIKAEAAI7BdRO959KcbW43AQDgcX46W44b5cCLCCjhGX4qGOi+T0akud0EAAAA+JSXAx76TfAC+nM4HgElAAAAAACAw7g8F/AlAkogTvwiCQAAAAD+Q18PcA8BJQAAAAAAADp0aHir202AzxFQAgAAAAAAAHANASUAAAAAADZy6lqDnKLcfbyHgDsIKAHEzMt3MwQAuOObmZvcbgIAAMayK7ym7wavIaAEAAAA4CuLFi1SXl6eMjIylJ+frw0bNsT0vGXLlikpKUnFxcUR02+++WYlJSVFPCZPnmxDywEACCYCSgAAAAC+sXz5cpWVlam8vFybNm3SuHHjVFRUpH379nX6vF27dumHP/yhLrjggqh/nzx5svbu3Rt+/O53v7Oj+QAABBIBJSQ5d00UAAAAwE4LFizQjBkzVFJSojPOOEOLFy9Wz549tXTp0g6f09LSohtuuEEPPPCAhg0bFnWe9PR05eTkhB99+/a1axUAuIzrUALOI6AEELPDO7PcbgIAAAighoaGiEdTU1PU+Zqbm7Vx40YVFhaGpyUnJ6uwsFBVVVUdLn/evHkaMGCApk+f3uE8a9as0YABAzRixAjdeuut+uijjxJfIQAAECHV7QbADK/WjGAUJQAAABKWtjtNKRlpli6z5UirJGnw4MER08vLyzV37tx28x84cEAtLS3Kzs6OmJ6dna1t27ZFfY21a9fq6aefVnV1dYftmDx5sr7xjW9o6NCh2rFjh+699159/etfV1VVlVJSUuJbKQAA0A4BJQAAAACj7d69W5mZmeF/p6enW7LcQ4cO6cYbb9SSJUvUr1+/Due7/vrrw/8/ZswYjR07VsOHD9eaNWt0ySWXWNIWoLs4Ldm7LhuyXa/WjHC7GV06NLxVvXdwIi7sQUAJAAAAwGiZmZkRAWVH+vXrp5SUFNXV1UVMr6urU05OTrv5d+zYoV27dunKK68MT2tt/WLUZmpqqrZv367hw4e3e96wYcPUr18/vfvuuwSUgE/d2HednvvkXLeb0S29htZzmS54BtE3AE/qu73Z7SYAAADDpKWlacKECaqsrAxPa21tVWVlpQoKCtrNP3LkSL355puqrq4OP6666ipdfPHFqq6ubndqeZs9e/boo48+Um5urm3rAgBAkDCCEgAAAIBvlJWV6aabbtLEiRM1adIkLVy4UI2NjSopKZEkTZs2TYMGDdL8+fOVkZGh0aNHRzy/T58+khSefvjwYT3wwAO69tprlZOTox07dujuu+/WqaeeqqKiIkfXDQAAvyKgBOLk9WH+AAAAfjZlyhTt379fc+bMUW1trcaPH6+KiorwjXNqamqUnBz7iWQpKSl644039Oyzz+rgwYMaOHCgLrvsMj344IOWXQsTAILokxFpnBmHMAJKAAAA2OaFhrPcbgICqLS0VKWlpVH/tmbNmk6f+8wzz0T8u0ePHnrllVcsahkAAIiGa1ACPuOFu78BAAAAgOm4MzrgHAJKeAanVgMAAAAA/OiyIdvdbgLgKgJKAAAAAAAAAK4hoATiwChOAAAAAAAAaxFQwlMICAEAAAAAAPyFgBIAAOAY3HUaAAD4Ra+h9W43AYiJ7wPKHls+cLsJ8AlGbwIAYKbVtSPdbgIAAAC6wfcBJfyHoBAAAAAA4IQb+65zuwlGOTS81e0mwKcIKIEYEIoCABAMu/b0d7sJAAAAgUNACU8iMAQAZ6TXpLndBHgY1/MEAABALAgoEfZqzQi3m2AkwlDr9d7BoQcAAAAAAHyBlACe5URw6LVwkpAZAAAAAAB4DQElPM1rASIAoHu4WzMAAPCry4Zsd7sJgGsIKIEOEH5GOrwzy+0mAIBjuHYiAAAA4BwCSnieHUEi4SQAAPCSrB1NbjcBAAAgYQSUXei7vdntJkRgFFt0VgaKhJMA/Kb3+yG3m4AAYhQqAAAAYkVA6QDuWOyM5z45t9vhIuEkAAAAAACAs0jOEMEPd4FOJGS0ItwEAES3a09/t5uQEEYAegM3TgIAAPC+VLcbANjh2LDxxr7rupzHD/wQLgMAAAAAgOAhoITv+S2IBAAAAAAA8BNO8QYAAIClgnx6fHpNmttNAAAA8BwCSgAA4ClOXnMwyEEbAMBbOHMMHek1tN7tJgBdIqAEAGjRokXKy8tTRkaG8vPztWHDhpiet2zZMiUlJam4uDhi+s0336ykpKSIx+TJk21oOQBYx6s3dAIAwKs+GcGZB7GIt7+2YsUKjRw5UhkZGRozZoxWrVoV8fe5c+dq5MiROvHEE9W3b18VFhZq/fr1EfN8/PHHuuGGG5SZmak+ffpo+vTpOnz4sOXr1oaAEu1wsxXvsXubHd6ZZevy4a7ly5errKxM5eXl2rRpk8aNG6eioiLt27ev0+ft2rVLP/zhD3XBBRdE/fvkyZO1d+/e8ON3v/udHc0HYBhGnQIAAFgn3v7aunXrNHXqVE2fPl2bN29WcXGxiouLtWXLlvA8p59+up588km9+eabWrt2rfLy8nTZZZdp//794XluuOEG/fOf/9Tq1av10ksv6e9//7tuueUW29aTgNKDCIsAWGnBggWaMWOGSkpKdMYZZ2jx4sXq2bOnli5d2uFzWlpadMMNN+iBBx7QsGHDos6Tnp6unJyc8KNv3752rQKAgHLydH8A6A4GgQBIVLz9tSeeeEKTJ0/WXXfdpVGjRunBBx/UWWedpSeffDI8z7e+9S0VFhZq2LBhOvPMM7VgwQI1NDTojTfekCRt3bpVFRUV+vWvf638/Hydf/75+vnPf65ly5bpww8/tGU9CSgBOKr3Dg47TmloaIh4NDU1tZunublZGzduVGFhYXhacnKyCgsLVVVV1eGy582bpwEDBmj69OkdzrNmzRoNGDBAI0aM0K233qqPPvqoeysEuIQRgQAAALBSLH01KbH+WlVVVcT8klRUVNTh/M3NzXrqqaeUlZWlcePGhZfRp08fTZw4MTxfYWGhkpOT250KbpVUW5YKADbqu725W8/vseUDi1rSfb3eS1ZKurWhbUvTF8sbPHhwxPTy8nLNnTs3YtqBAwfU0tKi7OzsiOnZ2dnatm1b1OWvXbtWTz/9tKqrqztsw+TJk/WNb3xDQ4cO1Y4dO3Tvvffq61//uqqqqpSSkhL/SgHwBMJcAH5xeGcWNxYBAs7tvpqUWH+ttrY26vy1tbUR01566SVdf/31+vTTT5Wbm6vVq1erX79+4WUMGDAgYv7U1FSddNJJ7ZZjFQJKRPVqzQhdNmS7281ADDhdBB3ZvXu3MjMzw/9OT0/v9jIPHTqkG2+8UUuWLAkXr2iuv/768P+PGTNGY8eO1fDhw7VmzRpdcskl3W4HnJVek6amId37YWDXnv7K+8r+rmeM0erakbo0J/qXMgAAAMBkdvTV4nXxxRerurpaBw4c0JIlS/Sv//qvWr9+fbtg0imcawkAPpWZmRnxiFb0+vXrp5SUFNXV1UVMr6urU05OTrv5d+zYoV27dunKK69UamqqUlNT9Zvf/EZ/+tOflJqaqh07dkRty7Bhw9SvXz+9++671qwc4DBGBsIJvd8Pud0EAB733Cfnut0EADGIpa8mxd9fk6ScnJyY5j/xxBN16qmn6pxzztHTTz+t1NRUPf300+FlHH8TnqNHj+rjjz/u8HW7i4DSIVx3D4CJ0tLSNGHCBFVWVoantba2qrKyUgUFBe3mHzlypN58801VV1eHH1dddVX417fjT1Vos2fPHn300UfKzc21bV0AuIsQFwCAYDg0vNXtJgRGvP01SSooKIiYX5JWr17d4fzHLrftWpgFBQU6ePCgNm7cGP77X/7yF7W2tio/Pz/R1ekUp3gD6BR3jfe/srIy3XTTTZo4caImTZqkhQsXqrGxUSUlJZKkadOmadCgQZo/f74yMjI0evToiOf36dNHksLTDx8+rAceeEDXXnutcnJytGPHDt1999069dRTVVRU5Oi6AVZ6oeEsfTNzk9vNwP+PO3gDAIAgiKe/Jkl33HGHLrzwQj3++OO64oortGzZMr3++ut66qmnJEmNjY36j//4D1111VXKzc3VgQMHtGjRIn3wwQe67rrrJEmjRo3S5MmTNWPGDC1evFiff/65SktLdf3112vgwIG2rCcBJTrEdSjNx/UnYYUpU6Zo//79mjNnjmprazV+/HhVVFSEL6xcU1Oj5OTYR4GnpKTojTfe0LPPPquDBw9q4MCBuuyyy/Tggw+6cm0VAIjFrj393W4CAMBAnDYPt8XbXzv33HP1/PPPa/bs2br33nt12mmnaeXKleEBJSkpKdq2bZueffZZHThwQCeffLLOPvts/e///q/OPPPM8HJ++9vfqrS0VJdccomSk5N17bXX6mc/+5lt60lA6VHcVQ6AlUpLS1VaWhr1b2vWrOn0uc8880zEv3v06KFXXnnFopYBHeNGOebg9G4AAAD7xNtfu+6668KjIY+XkZGhF198scvXPOmkk/T888/H1c7u4MKIAAAAMSKIQ2fSa9LcbgIAgzl19hMj/gB4EQEl4FGc3g0AMAGhLQCTcHNSAPCmhI7eixYtUl5enjIyMpSfn68NGzbE9Lxly5YpKSlJxcXFibysa/pub3a7Ca4hBIOV+MIIUwWtrrnFL9f4I5BzHzfIATpGTQMAeFHcacHy5ctVVlam8vJybdq0SePGjVNRUZH27dvX6fN27dqlH/7wh7rgggsSbiwAZ3EHbwQBdQ1IHGEtYBYv17QgDwoBACQQUC5YsEAzZsxQSUmJzjjjDC1evFg9e/bU0qVLO3xOS0uLbrjhBj3wwAMaNmxYtxqMLxEeBRcjWwHreKmuZe1oSvi5vd8PWdgSc7g1ko5gDoCJvFTTYC+uQ2kN3kfAOXEFlM3Nzdq4caMKCwu/XEBysgoLC1VVVdXh8+bNm6cBAwZo+vTpMb1OU1OTGhoaIh5wD2EYAL9yoq75paZx8w8cz08hrV8uP4Bgo69mPQaEwGn0vRFkcQWUBw4cUEtLi7KzsyOmZ2dnq7a2Nupz1q5dq6efflpLliyJ+XXmz5+vrKys8GPw4MHxNNNYXH8PAMziRF3za02DvwI6L+H6k0B09NW8gQAKAKKzNTE7dOiQbrzxRi1ZskT9+vWL+XmzZs1SfX19+LF7924bWwl4C19qAPckUteoaf4W1JAyqOsN+Al9Nf/j9GQAXpIaz8z9+vVTSkqK6urqIqbX1dUpJyen3fw7duzQrl27dOWVV4antba2fvHCqanavn27hg8f3u556enpSk9Pj6dpsNmrNSN02ZDtbjcDDjL1lBYuoA4rOVHXqGmRdu3pr7yv7Ld0matrR+rSnG2WLhMdI5wEzERfDQDgZXGNoExLS9OECRNUWVkZntba2qrKykoVFBS0m3/kyJF68803VV1dHX5cddVVuvjii1VdXc3pABYwNUQCjsclDmAi6hqsQGAHwATUNMBajEAFnBXXCEpJKisr00033aSJEydq0qRJWrhwoRobG1VSUiJJmjZtmgYNGqT58+crIyNDo0ePjnh+nz59JKnddJiPUZTu4/RuwHrUNVjhhYaz9M3MTW43w3Zuh7EmX3+SG0nBBNQ0HO+5T87VjX3Xud0MuIyBTfCCuAPKKVOmaP/+/ZozZ45qa2s1fvx4VVRUhC/GXFNTo+RkRkoBALyBuuYPnOZtP7fDSbuYcgfv3u+H3G4CfICaBgDwqrgDSkkqLS1VaWlp1L+tWbOm0+c+88wzibwkEHhOjp7kFzYEDXUNVvDzKEq/hpOAH1HTzMeZaQDQXiB+Puux5QO3mxDm9evwcYoxAKC7TBmxZgeCPPuYfHo3AP/yww/3XEsxfrxngPO8nZZBkj+KJjpHMAzABKZfY8+UAMtvIaXf1gfBsGjRIuXl5SkjI0P5+fnasGFDh/O++OKLmjhxovr06aMTTzxR48eP13PPPRcxTygU0pw5c5Sbm6sePXqosLBQ77zzjt2rAQBAYBBQxqjv9ma3m2AMwjIAADrnl1DPL+uBYFm+fLnKyspUXl6uTZs2ady4cSoqKtK+ffuizn/SSSfpvvvuU1VVld544w2VlJSopKREr7zySnieRx99VD/72c+0ePFirV+/XieeeKKKiop05MgRp1YLcfD6WWt2YESg+ehnI+g4cgOGc7pQ2TEily+JAILI6+GeSe23a3Ssny83EGQLFizQjBkzVFJSojPOOEOLFy9Wz549tXTp0qjzX3TRRbrmmms0atQoDR8+XHfccYfGjh2rtWvXSvpi9OTChQs1e/ZsXX311Ro7dqx+85vf6MMPP9TKlSsdXDP4CWGUuQhzAXeQGiAhFFQA8J4g3CXYlNO825gU8sXDq+12i+mXP/CDhoaGiEdTU1PU+Zqbm7Vx40YVFhaGpyUnJ6uwsFBVVVVdvk4oFFJlZaW2b9+ur33ta5KknTt3qra2NmKZWVlZys/Pj2mZgCkI3mAVBqDADgndxRvmObwzS72G1rvdDFiMIDgSl1oA/GPXnv7K+8p+t5vhCK/d3Ztw0nuydkQP65zWe3dIKWnW/hDS0vzF8gYPHhwxvby8XHPnzm03/4EDB9TS0qLs7OyI6dnZ2dq2bVuHr1NfX69BgwapqalJKSkp+sUvfqFLL71UklRbWxtexvHLbPsbAH8gxAXcQ0Dpgt47knVoeKvbzei2V2tG6LIh291uBhCXHls+cLsJAALIKyGlieGkaaNi4Y7du3crMzMz/O/09HRLl9+7d29VV1fr8OHDqqysVFlZmYYNG6aLLrrI0teBN/lpMMhzn5yrG/uuc7sZANAO43IBQ7kxepI7wgPwA1MDLRPDvzYvNJxldPvswPUnvSUzMzPi0VFA2a9fP6WkpKiuri5iel1dnXJycjpcfnJysk499VSNHz9eP/jBD/TNb35T8+fPl6Tw8+JdJtAVzpYCgC8RUPqIG+ESRRUAgoVr7XWPiUGgae05lqlhM8yVlpamCRMmqLKyMjyttbVVlZWVKigoiHk5ra2t4etcDh06VDk5ORHLbGho0Pr16+NaJmAKTmOOjvcFcBeneKPbONXben4KfrmAMgC0Z8Ip3yYHk0B3lJWV6aabbtLEiRM1adIkLVy4UI2NjSopKZEkTZs2TYMGDQqPkJw/f74mTpyo4cOHq6mpSatWrdJzzz2nX/7yl5KkpKQk3XnnnXrooYd02mmnaejQobr//vs1cOBAFRcXu7WaAHzET/0/IFEElAAkcXo3AOfZeaOc1bUjdWlOxzfEMEFbQOhGUEk4aZbe71t7Y5mgmzJlivbv3685c+aotrZW48ePV0VFRfgmNzU1NUpO/vIH1MbGRn3ve9/Tnj171KNHD40cOVL/9V//pSlTpoTnufvuu9XY2KhbbrlFBw8e1Pnnn6+KigplZGQ4vn6AFbgWZSRGTwLuI6CEJRhFaR1+PQOAYHEyqPRSMOmV07u57IGZSktLVVpaGvVva9asifj3Qw89pIceeqjT5SUlJWnevHmaN2+eVU2EzbxyY1L6UbAbA1HgFZx7GYe+25stW5Zdp71y8PE2wkkAsI5XAq42dl2fsm25Xgon7cYNcgAzWdnfspof+1mMGvwC7wNgBkZQwjL8+uddfvzCBcAb7DzN26uODxLjHVnphyDSa+EyAHgVp3oDMAUBJSxFSJk4P46etHKksMm/qANe0vv9kA6dktStZaTXpKlpiDc+k164FmVX/BA4AgA6Rh/KPSaMnvRjPxBIBKd4+5Dbo+E4wMaP9wxArLJ2NLndBMBWdo+e5PRuAIhkQkjnhqCuN2AqAkrAZW6Hk24H2gBgN04XBgCgc4R1ANxGQOkiu26UYwK3QzcAgHcwog1tvBYmcwdvIFjs/GHfhP5TkELKIK0r4BX+TcgCzoRRcSYUWdP5+T3ycwAPwHu8FnwBAOCGIAR3Jq2jn/uDQLwCkyD02PKB200IJA64HTPhvTEhyAbgTYwcg9WcCJFNHK3b+/2Q200AfIsfzHE8k8JJAJE4YsfJS3cSNiV8MiGIMw3vCQBEciI4YhQlAMBkpvQRCPH8w5RMAIgFAaXLgvKrninF1gSmvBdeKlZe+mEAABA/wmMAXuGl79Dd4ceQ0rR1MqVfCJgiGOkYjMABODjvganBO5d6AEAQFlxWj9LlMgcA7GBSf8G0QK87/LQugF+ZmSLAMqb9wmdSwXVakNcdgFlMveadidcHhP0IjQHAXM99cq7nwz2vtx8ICgJKOC6IQZ1p62xacA3Am7w6goxAzBxsi+7L2tHkdhMABIBXQz6vtttkpp4tB+9jzzKA3R9wE8Mo0wI7OwVpXQHAKwjGgoXRuQCsZHf/ytT+g5fCPtNHfpq6jQE3EVDCNUE4KJu4jnZ/oeIXNQDdQZAUHF4Oib06ehgIIr6bWsvk0K+NF9roBBMHKgGd4WidAC/eUdjUg5OJAZ4VXq0Z4dt1AwC/8HJA5nW8918w9XqwgJu82Neyg8l9CZNHJ5raLgBdI6CE6/wW5pm8LqYG1Z3hSypgNq+PJCMo8z9G5QKAPUwKKk1qS1dM7i+6gf4e2hBQGoJTD7x/oPZb0AoAbiFQ8jdCYQB+4MQP/17pW7gZDnopmATQOVKxAPHC6DmvhnxeaLMT25+gHfAOTi39EoGZc5x+r+0Iu70+ahgA7OJkWOjVYNIL/UbALaluNwCIpu3AfdmQ7S63pHMUGABuyNrRpPrh6W43w1a79vRX3lf2O/Z6q2tH6tKcbY69HgDAOb13JOvQ8Fa3m5GQV2tGGN8nOt6xweGNfdfZslwA/kNAGTCHd2ap19B6t5sRM1ODSq8Fk14YPQvAu9Jr0tQ0xPvXDyKktBcjVQH4jdf6Vm44PlSMJ7AkkEwc/T94UaACyh5bPtBnowdZsqy+25v1yQhrT/Fx6pc9LxZSE4JKr4WSTrPj9G4umAzAaYSU9nAjnDT9WqZcZgFArLw4irIjQQ4d6U8CnQtUQAnvO/ag7kSR9kMR4dczAF7l9GnesIefRk5y/UkAAAB7EFAGlBdHUR7v+PDQqsDSD6Ek2uux5QO3mwDAIxhFaR23wknTR08C8A+n+lV+GkUZRH7pY3JTVNiJgNIwXr6As9v8ctC3klOjJylUgDf1fj+kQ6ckWbIsu65D6dYoSkLK7vPTyEkAALyCM+jgVaQKAcaBy9/YvgDQPQRsiXPzvWP0JIBo/PCDOgMyvIntBsTG+0dpF3EDD8A+fL4AtHEzcCKkjJ9f3zMTrz+ZtaPJ7SYAtvDa90AGBgBA9xFQGsjJX/copv7k5Hb1w6/RANAZvwZudnD7vfLK6Enu4A0gUYzG8xa2FxA7kgUQUgIALGHnCDO3g6fVtSNdD99Mx/sDAM4g9EJH6NvDywgoAZ+hKAGAfQjhojPhfbEzxDbx9G4A8bPzzB++g+N4BMlAfAgoDeX0abMUVH9wejtyerd/LFq0SHl5ecrIyFB+fr42bNjQ4bwvvviiJk6cqD59+ujEE0/U+PHj9dxzz0XMEwqFNGfOHOXm5qpHjx4qLCzUO++8Y/dqIAFeOtXU7VGUbUwI40zC+wEAziP8MhvbB1aLp78mSStWrNDIkSOVkZGhMWPGaNWqVRF/f/HFF3XZZZfp5JNPVlJSkqqrq9st46KLLlJSUlLE47vf/a6VqxWBdKGbvHYB584QUnqbn7afnz5XXrB8+XKVlZWpvLxcmzZt0rhx41RUVKR9+/ZFnf+kk07Sfffdp6qqKr3xxhsqKSlRSUmJXnnllfA8jz76qH72s59p8eLFWr9+vU488UQVFRXpyJEjTq2W75l6c4ygjDQjlDPrtHdTwmsAcBIhGJzE4BT3xNtfW7dunaZOnarp06dr8+bNKi4uVnFxsbZs2RKep7GxUeeff75+/OMfd/raM2bM0N69e8OPRx991NJ1O1bg9rAeWz5wuwkx4wAAk7F/+seCBQs0Y8YMlZSU6IwzztDixYvVs2dPLV26NOr8F110ka655hqNGjVKw4cP1x133KGxY8dq7dq1kr4YPblw4ULNnj1bV199tcaOHavf/OY3+vDDD7Vy5UoH1wx+ZFIQZVJA57QgrbfVobuXRi0DiI8bAwYIKc3j1jbx04AVRIq3v/bEE09o8uTJuuuuuzRq1Cg9+OCDOuuss/Tkk0+G57nxxhs1Z84cFRYWdvraPXv2VE5OTviRmZlp6bodi4QBETioeRPbrXNe+mHCSg0NDRGPpqb2I+6am5u1cePGiMKUnJyswsJCVVVVdfkaoVBIlZWV2r59u772ta9Jknbu3Kna2tqIZWZlZSk/Pz+mZQJeE6SwzsRQ1qTQGoD5+JEdgAli6atJifXXqqqq2gWPRUVFCfXFfvvb36pfv34aPXq0Zs2apU8//TTuZcQq1bYlw7MO78xSr6H1bjcDMSKc9LY+7zYrNdXaL8pHj35xivzgwYMjppeXl2vu3LkR0w4cOKCWlhZlZ2dHTM/Ozta2bds6fI36+noNGjRITU1NSklJ0S9+8QtdeumlkqTa2trwMo5fZtvf4G/pNWlqGmLfpRp27emvvK/st235iWgL7S7N6fhz43WmBZMS4SQA87jRl3q1ZoQuG7Ld0ddEdIxo9Re3+2pSYv212tpaS/pi3/rWt3TKKado4MCBeuONN/SjH/1I27dv14svvhjXcmJFQGmBvtub9ckIe6651XtHsg4Nb7Vl2Z0hpPQGt8JJO3955vqT1tm9e3fEEPz09HTLlt27d29VV1fr8OHDqqysVFlZmYYNG6aLLrrIsteAc3q/H9KhU5LcbkZcTAwpJX8GlSYGk04JyjVVARPZ2cfyI0JK97kZTjJoxXvs7KtZ5ZZbbgn//5gxY5Sbm6tLLrlEO3bs0PDhwy1/Pca3o0Mc5ABvy8zMjHhEK3r9+vVTSkqK6urqIqbX1dUpJyenw2UnJyfr1FNP1fjx4/WDH/xA3/zmNzV//nxJCj8v3mXCX4Ie7Pgh1DPxdO5jMXoSgKnc6kcxes89vPeIVyx9NSmx/lpOTo4tfbH8/HxJ0rvvvtut5XSEgNIDuE4KovHj6Ek4Ly0tTRMmTFBlZWV4WmtrqyorK1VQUBDzclpbW8PXTRk6dKhycnIiltnQ0KD169fHtUygK6YHVG0Bn8khXzRebLNXWHmDnKwd0a9VBaBrfv4+S1AGO9j1meHsua4l0l8rKCiImF+SVq9e3e2+WHV1tSQpNze3W8vpCKd4o1Oc6m0mRrfCSmVlZbrppps0ceJETZo0SQsXLlRjY6NKSkokSdOmTdOgQYPCIyTnz5+viRMnavjw4WpqatKqVav03HPP6Ze//KUkKSkpSXfeeaceeughnXbaaRo6dKjuv/9+DRw4UMXFxW6tJnzK1FO9j2f6qd9eCySdCKeDPgoYABAbt0Nh+ob+F29/7Y477tCFF16oxx9/XFdccYWWLVum119/XU899VR4mR9//LFqamr04YcfSpK2b//iEhFtd+vesWOHnn/+eV1++eU6+eST9cYbb2jmzJn62te+prFjx9qyngSUFrH7GiluXYtSIqQ0jZsFyO5fm/kFzR1TpkzR/v37NWfOHNXW1mr8+PGqqKgIX1i5pqZGyclfbvvGxkZ973vf0549e9SjRw+NHDlS//Vf/6UpU6aE57n77rvV2NioW265RQcPHtT555+viooKZWRkOL5+iI0d16G0+2Y5XnRsEGhCWOm1YFIyf+QsAEju9qG4HqVz3A4nEQzx9tfOPfdcPf/885o9e7buvfdenXbaaVq5cqVGjx4dnudPf/pTOOCUpOuvv17SlzfrSUtL05///OdwGDp48GBde+21mj17tm3rSUCJmBBSmoFfx2CX0tJSlZaWRv3bmjVrIv790EMP6aGHHup0eUlJSZo3b57mzZtnVROBDnllFOXx3AgrvRhIuoHRkwC8jpDSfiaEk/QPgyOe/pokXXfddbruuus6XN7NN9+sm2++ucO/Dx48WH/729/ibWa3BDKg7LHlA302epDbzfAcQkp3uV18vHqtnh5bPnC7CYBtsnY0qX64eXf8c4NXQ8o20YLD7oaWfgwjGT0JwCpOnKHmdv+JkNI+JoSTgN8EMqD0KjdP827jdpENKrfDSQBIFKd5J86PAWN3eD2ctPIGOQAQK0JK6xFOAvbw5pAoQwXl+nmEZc4y4f12YvRkUD4/AOzj9QALHXNy23J6N2AOP3w/NOG7PIGadUx6L53at7x6Jh28hz3NY0w5OJhQaIOA9xmAk+wa4eVk4ENICQCIlSl9Kye8WjPCqHDNi3j/AHsF54jsI6YU0sM7swjQbGLSe2vK/gYAsSKk9BdGT7aXtaPJ7SYAiIMp3+slQrZEmfa+mbRPAVYheUC3cXC0VhDfTz+cvgOgc04HP4SU/uCX7cj1J523aNEi5eXlKSMjQ/n5+dqwYUOH8/7zn//Utddeq7y8PCUlJWnhwoXt5pk7d66SkpIiHiNHcp1YxM6k7/imhW2m4/0CnEFAaTGnghbTRrWZVHC9zLT30bT9DID9CFJgCqfDSa+MnkTXli9frrKyMpWXl2vTpk0aN26cioqKtG/fvqjzf/rppxo2bJgeeeQR5eTkdLjcM888U3v37g0/1q5da9cqALYjdIuNie+Tk31G+oNwUmD3th5bPnC7Cb5jWrjmNbx/APyOUZSIFdsO3bFgwQLNmDFDJSUlOuOMM7R48WL17NlTS5cujTr/2WefrZ/85Ce6/vrrlZ6e3uFyU1NTlZOTE37069fPrlWAg5wMYEz7vs91KTvGewM4L7ABpR+Y+GuGSddO9ApT3zOn9i87Rx3zQwSCgGvRdY6gy3vc2GZ2hueMSnZWc3OzNm7cqMLCwvC05ORkFRYWqqqqqlvLfueddzRw4EANGzZMN9xwg2pqarrbXMSASwHZjyAuksnvh4n9RsAq5iVcPkAR5cAZK94nAEHjxmm0hJTewbZCRxoaGiIeTU3Rf5w5cOCAWlpalJ2dHTE9OztbtbW1Cb9+fn6+nnnmGVVUVOiXv/yldu7cqQsuuECHDh1KeJkwR5BHUbZhxOAXeA+cQ26C46W63QB0T+8dyTo0vNXtZkTVVnx7Da13uSXmMfWLSRsTR+cCcE7v90M6dEqS282w1K49/ZX3lf1uNwOdcCuc5NqT1snc2aTUVGuPHUePfhFEDh48OGJ6eXm55s6da+lrdebrX/96+P/Hjh2r/Px8nXLKKfr973+v6dOnO9YO+MPhnVnG9pFerRmhy4Zsd7sZjvNCMOl0H5I+IZxGQOkDJoeUEkHlsUwPJiVnCxG/mgHBlF6TpqYhzn/+CSnNxchJdGX37t3KzMwM/7uja0X269dPKSkpqquri5heV1fX6Q1w4tWnTx+dfvrpevfddy1bJmCKtrAuCEGlF4JJICiIxG1C8NKeqddadEKQ1x0ATEIQZh43t4ndoyftuP5kUK87m5mZGfHoKKBMS0vThAkTVFlZGZ7W2tqqyspKFRQUWNaew4cPa8eOHcrNzbVsmXCX06PFvNA38PNp315bNy/sL0B3MYLSJ0wfRXmsII2o9FohYRg/gDZ2n+bt1ihK6ctAjNGU7iMwhh3Kysp00003aeLEiZo0aZIWLlyoxsZGlZSUSJKmTZumQYMGaf78+ZK+uLHOW2+9Ff7/Dz74QNXV1erVq5dOPfVUSdIPf/hDXXnllTrllFP04Ycfqry8XCkpKZo6dao7KwlfMPlU72P5aUSll0JJIGgCHVD22PKBPhs9yO1mWMZLIaXk76DSa8Gk5Hw4afcoY+7gDaArnPLtLrfDSa496V9TpkzR/v37NWfOHNXW1mr8+PGqqKgI3zinpqZGyclffu/58MMP9dWvfjX878cee0yPPfaYLrzwQq1Zs0aStGfPHk2dOlUfffSR+vfvr/PPP1+vvfaa+vcnZHdC3+3N+mQEn1m3HRvueS2s9HIw6UbfkoErcEOgA0q7UUhj46eg0ovBJADvy9rRpPrh0U93NJmboyjbEFK6w+1w0gl2nN6N2JWWlqq0tDTq39pCxzZ5eXkKhTrfXsuWLbOqaTCYGwM+vDKK8nheCCu9HEq2oX+JICGg9BmvjaI81rEHXy8VaT8UDX4hAxCNE3fzJqQMFlOCSUZPAjCJV0PKNiaFlX4IJYGgIqC0mRujKL0cUrYxPaz0QyjZxo1wkptIATAN16W0H+EkAC/wQ1/KTccHhHYHln4OJN3qczJ4BW4hoPQpPxXWaAdmJ0NLP4WRx6P4ADCBCaMo2zCa0nqmBJNO4vRuAPHy+ijKjnQVIHYVYPo5gOyMn/ugEgNWEB0BJTypowN2d4q634vA8dwKJ50oRtwgB7COE6d5m4bRlNYxLZz0+ujJrB1NbjcBcE0Qru/v15CyM0ENIAG0F/iA0ok7ebtVTP00ijJWQQsZAcAvTBpF2YbRlIkzLZiUnAsnGT0JeJ+b/agghpSI5GafljPs4Cb2Pp/jAINo2C8AmMjE0W279vQ3MmwzGe8XAHQPgy6Ci22PICOlcIib11ggjMKx3NwfuNYIYB87T/10ckSYiSGlRFAZC5PfI1P3KwDmcrsPRVAVPGxzBB3JVUC4XWBhBvYDAOgek0M4t5j+njgZTnJ6NwArEVjBSfQV4Tb2QAe5PXqMA06wub39ndr/uUEOYA9GUUYyPZRzghfeAy/sS7HiBjmA8/0pt78/S4SUQcF2BggoJQUr0DChyMJ5bHcAXuOVYMkLIZ2V2tY3SOscK0ZPArAL4ZW/BW37uj1wC+YitXCYCR9GwqpgMWF7m7DfA/Aer4SUkv+DOy+um5f2HwDmMuG7tBS8ECsoTNmupuznCDb2woDiABQMbGcgWOw+BZQRYrHxYpgXjZdDV8JJAH5kSpgFa7A9gUikFy4wZTQZ4ZW/mbJ9TdnfAXiTl4OmYwM+r4R8XmtvNG7sM4T3gHPc+G5pyvdqiVDLL0zajibt3wi2hPbERYsWKS8vTxkZGcrPz9eGDRs6nHfJkiW64IIL1LdvX/Xt21eFhYWdzu+WIF2H8lgcjPwpqNs1qJ9jdJ8f65pd3AhivBxSHsu0wPL49pjQpu7yy75yPG6Qg3hQ0/zPpHAL8WP7AdHFnWIsX75cZWVlKi8v16ZNmzRu3DgVFRVp3759Uedfs2aNpk6dqr/+9a+qqqrS4MGDddlll+mDD4IdJJg0qiyoYZZfmbQ9TdrPgY5Q17zBj8FTtIDQjpDQqddxm1v7CKMnYRJqmn1M+o4tEXJ5FdsN6FhqvE9YsGCBZsyYoZKSEknS4sWL9fLLL2vp0qW655572s3/29/+NuLfv/71r/WHP/xBlZWVmjZtWoLNhtV670jWoeGtbjcD3WDalybAK6hr8ev9fkiHTkly/HXTa9LUNMT/P3z4MTy0mx8DbCAR1DR7mdZnOrwzS72G1rvdDMTIxHDS6T4kA1jQmbj2xubmZm3cuFGFhYVfLiA5WYWFhaqqqoppGZ9++qk+//xznXTSSR3O09TUpIaGhoiHH5n24ey9I5mQy6NM3G6m7d9ANE7UNadrmt9PBSWIwvHc3CcYPQmTBKmvxvfMLx3emWVk8IUvsY2A2MSVahw4cEAtLS3Kzs6OmJ6dna3a2tqYlvGjH/1IAwcOjCicx5s/f76ysrLCj8GDB8fTTHSTiWEXOmbi9nLjSyPXn0QinKhrfq1pbgYzhJRow74AfIm+mjNM/O4tmTk6D2ZvF1P3ZQSXo3vkI488omXLlumPf/yjMjIyOpxv1qxZqq+vDz92797tSPvcCDhM/fWPg5X5GPEKuC+WuuZWTfM7gim4vQ84FdL7fVQ0zGF6Xw1dY6SeWdgWQHziugZlv379lJKSorq6uojpdXV1ysnJ6fS5jz32mB555BH9+c9/1tixYzudNz09Xenp6fE0DTZoC79Mus4KvmByMGlq6A5E40Rd83NNc+talG2Cck1KtOd2OAmYiL6ac0y7FuXxuDalu7wQTJrcn0RwxbVXpqWlacKECaqsrAxPa21tVWVlpQoKCjp83qOPPqoHH3xQFRUVmjhxYuKt9SnTAx0OXuYwfdSk6fsycDy/1rUgjbgiqAoeE7Y5156Eifxa0zri9vdOk7+TS4ymdIsX3nPT910EV9x38S4rK9NNN92kiRMnatKkSVq4cKEaGxvDd4qbNm2aBg0apPnz50uSfvzjH2vOnDl6/vnnlZeXF77+Sa9evdSrVy8LV8UaPbZ8oM9GD3L8dftub9YnI9z/wt0RRlO6j0LSMa4/ie7we12zm9ujKKUvAytGU/qfCeEkYDJqGo7HaEpneCGYdJvbPyrAfHEHlFOmTNH+/fs1Z84c1dbWavz48aqoqAhfjLmmpkbJyV8GKb/85S/V3Nysb37zmxHLKS8v19y5c7vXejiOoNJ5XgkmKTjwKupa95kQUkqc8u13poSTTo6eDNJoaFiDmuYs00/1btMWnhFUWs9rwaRX+pYIprgDSkkqLS1VaWlp1L+tWbMm4t+7du1K5CUCyfRRlMciqLSfl4oH4SS8jrrmH4SU/mNKMClxaje8IUg1zYT+k1dCSomg0mpeCycB03knAQkIrwU9XgrRvML060yahtO7geicHnllUnBjUqCF7mFbAvACr3135/qU3ePV989r+ymCJ6ERlH7n1nUo25jwS2A8jj3QeeXXQxN5tWB4LVQHEAxcl9L7TAsnTQrhAcAKjKiMnRcDyWO53dekz4hYEFDCUpz6HT+3i0V3UGgAHMuUa1Eei1O+vce0YFJyJ5zk+pNAbEwZ3OGlU72Pd2z4RlgZyevBJOAl3k1GfM7rwQ+nKXeu7f3x8ntkwj7K6d1A59wIOEwcZZZek2Zk6IX22E4AvMzL3+3bePX0Zav56X3ww36JYGAEZQfcPs1bMufXwO7g9O8vURgAwF2c9m0uk4NJE0N3AOby8kjKYwVxVKVfAslj0QeFlxBQGs4PIWWbIIaVfi0IJoyeBGAuE0/1PhanfZvD5GBSci+c5PRuID6m9Zn8ElK2OT6480tg6cdA0kT0HRErAkoPMK3gWuH44M5PBdyvoWQbUwoMp3cDZvNCSCkxmtItpgeTANBdfgspj+XVwDJogaTf+6XwHwLKTphwmncbP4aUx/JyYBmkA78p4SSA2GXtaFL98HRXXtv0kFIiqHSal4JJTu0GvMXE/pKfQ8pjRQv+3A4tgxZGHi9IfVT4BwEljBTtgOp2cQ/6QZ5wEoCfEVTay0vBpORuOMnp3YC/BCWkPF5XAWF3A8ygB5CdCXq/Fd5FQOkhJv4q6KRYD7SJfAHgIN4508JJTu8GvMMLoyiPdWyQRljZfV4LJiVGTgKwXlBDys4QMNrDtH6taf1ImI2AsgsmneYtEVLGwrSDstdRVADvc/M0b8l7IWUbRlUmxouhZBvCScDbTO4rEVLCbvSD4XXswR5EYASnmLivMXoS8CYvBz/pNWnhBzrm9ffIhH2U07sBfyNAgl3Yt+AH7MUxMDEQ6bu92cjwCP7B/gX4iwnBhwkBUHcRVn7p2PeC9wOAKUz/DkuQBKuZuk+Z/lmEeczckxEzPvSwg6n7lYk/FgCIjx9CyjZBDOf8us5+2i8BmM/UQAnew74EP2FvjpHJwYipYRK8if0JgN38GAYdP5rQLwGeH9fpeKbsjyaMcgb8wgvfZwmW0F3sQ/Ab9mif8EIRhtm4bECwLVq0SHl5ecrIyFB+fr42bNjQ4bz//Oc/de211yovL09JSUlauHBhu3nmzp2rpKSkiMfIkSNtXAPEwqQAxJRQyE5eCy291l4rBGE/BGCu3juSCZmQENP3G/qV1ounvyZJK1as0MiRI5WRkaExY8Zo1apVEX8PhUKaM2eOcnNz1aNHDxUWFuqdd96JmOfjjz/WDTfcoMzMTPXp00fTp0/X4cOHLV+3Nmbv1YYxeRSlxEEAifPCvmP658/Lli9frrKyMpWXl2vTpk0aN26cioqKtG/fvqjzf/rppxo2bJgeeeQR5eTkdLjcM888U3v37g0/1q5da9cqwKOCGA5FCwGdDAPdfn1T9H4/ZNT+Z9KPB4BfeOH7bRvTwyaYhf0leOLtr61bt05Tp07V9OnTtXnzZhUXF6u4uFhbtmwJz/Poo4/qZz/7mRYvXqz169frxBNPVFFRkY4cORKe54YbbtA///lPrV69Wi+99JL+/ve/65ZbbrFtPVNtWzJc0VaIPxkRrI4GEuelL2+wx4IFCzRjxgyVlJRIkhYvXqyXX35ZS5cu1T333NNu/rPPPltnn322JEX9e5vU1NROA0y4I2tHk+qHp7vdjLDe74d06JQkt5thhKCFhG4xKZgEgDZtodOh4a0utwSm8kowSf/SevH215544glNnjxZd911lyTpwQcf1OrVq/Xkk09q8eLFCoVCWrhwoWbPnq2rr75akvSb3/xG2dnZWrlypa6//npt3bpVFRUV+r//+z9NnDhRkvTzn/9cl19+uR577DENHDjQ8vX0xh5uEK+M4uKggK546ZRur3zuTNPQ0BDxaGpqP0KnublZGzduVGFhYXhacnKyCgsLVVVV1a3Xf+eddzRw4EANGzZMN9xwg2pqarq1PPgXgRGcYuK+xuhJwD5e+a57LK+EUHAW+4X/xNJXkxLrr1VVVUXML0lFRUXh+Xfu3Kna2tqIebKyspSfnx+ep6qqSn369AmHk5JUWFio5ORkrV+/PrGV7gIjKH2M0ZToiJe+rPk9nOzx1l6lJlv7GT3a+sX2HTx4cMT08vJyzZ07N2LagQMH1NLSouzs7Ijp2dnZ2rZtW8JtyM/P1zPPPKMRI0Zo7969euCBB3TBBRdoy5Yt6t27d8LLhTVMG0UpfRkcMZoSdjExnASAaBhNiWMRTrrH7b6alFh/rba2Nur8tbW14b+3TetsngEDBkT8PTU1VSeddFJ4HqsRUCagx5YP9NnoQW43I2Z9tzcTUkKSt4JJdN/u3buVmZkZ/nd6unOB1Ne//vXw/48dO1b5+fk65ZRT9Pvf/17Tp093rB3wHk75hh1MDScZPQnYz8t9od47kgkpA8yLwST9zdi52Vczlff2eCTES6fzwh5e3P5+Hz1pt8zMzIhHtKLXr18/paSkqK6uLmJ6XV2dpdeP7NOnj04//XS9++67li0T3WNyMGJqmATvMe1mOADc4cXvwW2403cwsc39L5a+mpRYfy0nJ6fT+dv+29U8x9+E5+jRo/r4449tu88Ae32CvBqceLk4IzGE0+hMWlqaJkyYoMrKyvC01tZWVVZWqqCgwLLXOXz4sHbs2KHc3FzLlgl/I1hCd5m+/5j8IwEA8xBUBoOXtzN9Tnsk0l8rKCiImF+SVq9eHZ5/6NChysnJiZinoaFB69evD89TUFCggwcPauPGjeF5/vKXv6i1tVX5+fmWrd+xvLnno1sIrILB69vZqz8CeFFZWZmWLFmiZ599Vlu3btWtt96qxsbG8F3ipk2bplmzZoXnb25uVnV1taqrq9Xc3KwPPvhA1dXVEaMjf/jDH+pvf/ubdu3apXXr1umaa65RSkqKpk6d6vj6oWNeCEhMD5lgJvYbLFq0SHl5ecrIyFB+fr42bNjQ6fwrVqzQyJEjlZGRoTFjxmjVqlURfw+FQpozZ45yc3PVo0cPFRYW6p133rFzFWAxL38vPpaXAyx0jO2KzsTbX7vjjjtUUVGhxx9/XNu2bdPcuXP1+uuvq7S0VJKUlJSkO++8Uw899JD+9Kc/6c0339S0adM0cOBAFRcXS5JGjRqlyZMna8aMGdqwYYP+8Y9/qLS0VNdff70td/CWuAZlt3jtWpTH4yY6/uSXL19wzpQpU7R//37NmTNHtbW1Gj9+vCoqKsIXTa6pqVFy8pdfmD788EN99atfDf/7scce02OPPaYLL7xQa9askSTt2bNHU6dO1UcffaT+/fvr/PPP12uvvab+/fs7um7wB26gg1h5JZj0wo8DXrZ8+XKVlZVp8eLFys/P18KFC1VUVKTt27e3u+C/JK1bt05Tp07V/Pnz9f/+3//T888/r+LiYm3atEmjR4+WJD366KP62c9+pmeffVZDhw7V/fffr6KiIr311lvKyMhwehWRIC9fj/J43EjHH/wSStIHtVe8/bVzzz1Xzz//vGbPnq17771Xp512mlauXBmuaZJ09913q7GxUbfccosOHjyo888/XxUVFRE17be//a1KS0t1ySWXKDk5Wddee61+9rOf2baeSaFQyPhvcg0NDcrKylJh7ncsv4OSFbwcUh7LL8U6qPxUFEwdPXm0tVl/3vsr1dfXR1zQOBF2HtesbCes17btv3b+HKWmmtGpNe2O3p0hpEQ0Xgkm25gSUB49ekR/Xzuv2/XCzuNaIm3Mz8/X2WefrSeffFLSF6fCDR48WLfffrvuueeedvNPmTJFjY2Neumll8LTzjnnHI0fP16LFy9WKBTSwIED9YMf/EA//OEPJUn19fXKzs7WM888o+uvv96CNfWutu1/3iVzjalrnfFrn4eg0lv8Eky2MaUvevToEf2jcq5ldY2+mrP89alAt7SdEmzKwQWx8ds2MzWcBGAGrk2J43ltfzAlnPSr5uZmbdy4UYWFheFpycnJKiwsVFVVVdTnVFVVRcwvSUVFReH5d+7cqdra2oh5srKylJ+f3+EyYS4/fW8+FqcIe4Mft5NfP1NwHqd4W8Drp3pHw+nfZvNrESCcBNyRtaPJU6MoJU77hveCSYlwsjsaGhoi/p2enh71jqcHDhxQS0tL+LS3NtnZ2dq2bVvUZdfW1kadv7a2Nvz3tmkdzQNv8dOp3sc7NvxiVKUZ/BZIAnYhoLSIH0NKiaDSNH4NJgG4z4shpURQGUReDCaDIu3tDy0/FS659YvvPoMHD46YXl5errlz51r6WggWP4eUbQgr3RWEYJL+KaxEQImYHHvg8XshN01QDvqMngTQHQSV/uf1YJLRk92ze/fuiGt1RRs9KUn9+vVTSkqK6urqIqbX1dUpJycn6nNycnI6nb/tv3V1dcrNzY2YZ/z48XGvC+AGwkpnBCGUbBOUfiqcE5xPjwOCErBwrUr7Be09DspnBzCdHwIUrlHpP37Ypn74bLktMzMz4tFRQJmWlqYJEyaosrIyPK21tVWVlZUqKCiI+pyCgoKI+SVp9erV4fmHDh2qnJyciHkaGhq0fv36DpcJbwjKd+3jtV0HMUhhml2OfS95P4HuYQSlxfx6qndHji/qjK5MTFC/HEmEk4BpvHqq9/EYUeltXg8k4a6ysjLddNNNmjhxoiZNmqSFCxeqsbFRJSUlkqRp06Zp0KBBmj9/viTpjjvu0IUXXqjHH39cV1xxhZYtW6bXX39dTz31lCQpKSlJd955px566CGddtppGjp0qO6//34NHDhQxcXFbq0mLBKEU707c3yoxujKrhFEBrv/CvsQUNogaCHlsQgsY8MB/QuEk4CZ/BJSSpFBF2Gl+fwYTDJ60nlTpkzR/v37NWfOHNXW1mr8+PGqqKgI3+SmpqZGyclfBgznnnuunn/+ec2ePVv33nuvTjvtNK1cuVKjR48Oz3P33XersbFRt9xyiw4ePKjzzz9fFRUVysjIcHz9YL2gh5THIrBsj0AyEn1Z2IWA0iZBDimPRWD5BQ7iAOA+wkoz+TGUbEM46Z7S0lKVlpZG/duaNWvaTbvuuut03XXXdbi8pKQkzZs3T/PmzbOqiTAMIWV00cI5v4aWBJFdo18LOxFQ2oiQsr2ODmh++TLAATt2jJ4EzOanUZTREFa6y8+hZBvCScB7CClj01mQ54XwkiASMBMBpc0IKWPTVbBnyhcFAkhrEE4C3uD3kLINYaUzghBKtiGcBLyLkLJ74gn/rAozCRydQV8YdiOgdAAhZfdxMPQPwknAW4ISUrY5PkQjsExckAJJAP5CSOkMgkXvoD8OJxBQOoSQEkFHMAl4V9BCymMRWMaGMPJLjJ4E/IGQEvgC4SScQkDpIEJKBBXhJOB9QQ4pjxUtiAtaaEkY2THCScBf2oIZgkoEFeEknERA6TBCSgQN4STgH4SU0XUW2Hk5vCSIjA/hJOBfjKZEEBFOwmkElC4gpERQEE4C/kNIGZ9YQz4ng0yCR2sRTALBQEiJICGchBsIKF3SFtwQVMKPCCYBfyOktB6hoTcRTgLBwinf8DuCSbiJ22a5jCAHfsM+DQQDwQyCjs8AEFyEOPAj9mu4jYDSAD22fECoA19gPwaCJWtHEyENAon9HkDf7c0EOvAN9mWYgIDSIIQ78CpCdiDYCGsQFITyAI5HsAMvI2iHSbgGpWG4NiW8hFASQJu20IZrU8KvCCYBdIRrU8KLCCZhGgJKQxFUwmQEkwA6wg104DcEkwBiRVAJLyCYhKk4xdtwBEEwDfskgK5wGiz8gv0YQCI4bRYmYr+E6RhB6QGMpoTbCCUBJILTvuFVBJMArMCISpiAUBJeQUDpIceGRISVcALBJAArcNo3vIJgEoAdjg2ICCvhFIJJeA0BpUcxqhJ2IpgEYDVGU8JkBJMAnMKoStiNYBJeRUDpcYyqhFUIJQE44dggiLASbiOYBOAWRlXCSoSS8AMCSh9hVCXiRSgJwE2MqoQbCCUBmIawEokimISfEFD60PGhE4EljkUoCcA0jKqEEwgmAXgBYSW6QigJvyKgDABOAwehJACvYFQlrEQoCcDLjg+iCCyDiUASQUFAGTCMrgwGAkkAXnd8sERgiVgRSgLwKwLLYCCQRFARUAYcgaU/EEgC8DtOA0dnCCUBBFG0IIvQ0nsIJIEvEFAiQrSgi9DSHASRAMDoShBIAkBHOgq7CC7dRxAJdI6AEl3qKBQjuLQPQSQAxI7A0t8IIwGg+wgunUMQCSSGgBIJ6ypEI8DsHCEkANgjWqBFaOkNhJEA4KxYwjRCzC8RPgL2IaCEbWIN4PwUZBI6AoCZOgq+CC7dQRAJAN6RSCjnhVCTsBEwCwElXEeoBwBwS1dBGQFm4gghASC4CP8AxIuAEgAAoAOxhmxBCTIJHQEAAGAHAkoAAIBusjK4szrsJFQEAACA6QgoAQAADEKgCAAAgKBJdrsBAAAAAAAAAIKLgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAaxIKKBctWqS8vDxlZGQoPz9fGzZs6HT+FStWaOTIkcrIyNCYMWO0atWqhBoLALCH1cf1UCikOXPmKDc3Vz169FBhYaHeeecdO1ehW6hrABBMH3/8sW644QZlZmaqT58+mj59ug4fPtzpc5566ilddNFFyszMVFJSkg4ePNhunry8PCUlJUU8HnnkEZvWIhI1DQCCKZGaduTIEd122206+eST1atXL1177bWqq6uLmOf73/++JkyYoPT0dI0fP77dMnbt2tWu5iUlJem1116Lq/1xB5TLly9XWVmZysvLtWnTJo0bN05FRUXat29f1PnXrVunqVOnavr06dq8ebOKi4tVXFysLVu2xPvSAAAb2HFcf/TRR/Wzn/1Mixcv1vr163XiiSeqqKhIR44ccWq1YkZdA4DguuGGG/TPf/5Tq1ev1ksvvaS///3vuuWWWzp9zqeffqrJkyfr3nvv7XS+efPmae/eveHH7bffbmXTo6KmAUBwJVLTZs6cqf/5n//RihUr9Le//U0ffvihvvGNb7Sb79///d81ZcqUTpf15z//OaLuTZgwIa72J4VCoVA8T8jPz9fZZ5+tJ598UpLU2tqqwYMH6/bbb9c999zTbv4pU6aosbFRL730UnjaOeeco/Hjx2vx4sUxvWZDQ4OysrJUmPsdpSanxdNcALDM0dZm/Xnvr1RfX6/MzMxuLcvO41q87bT6uB4KhTRw4ED94Ac/0A9/+ENJUn19vbKzs/XMM8/o+uuvt2hNreF0XWvb9l87f45SUzOsWxEAiNPRo0f097Xzul3XwjVtwLftqWn7fm1J7T3e1q1bdcYZZ+j//u//NHHiRElSRUWFLr/8cu3Zs0cDBw7s9Plr1qzRxRdfrE8++UR9+vSJ+FteXp7uvPNO3XnnnZa2uStu9tXOu2QudQ2Aq44ePaJ/VM61rq4Z0FeLVSI1rb6+Xv3799fzzz+vb37zm5Kkbdu2adSoUaqqqtI555wTMf/cuXO1cuVKVVdXR0zftWuXhg4dqs2bN0cdYRmr1Hhmbm5u1saNGzVr1qzwtOTkZBUWFqqqqirqc6qqqlRWVhYxraioSCtXruzwdZqamtTU1BT+d319vaQvNiQAuKXtGBTn7zqdLzPULLVatrgvl6kvCuux0tPTlZ6eHjHNjuP6zp07VVtbq8LCwvDfs7KylJ+fr6qqKqMCSifqWoc17WhT1PkBwCltxyGr6prbNS1eVVVV6tOnT7gjJ0mFhYVKTk7W+vXrdc0113Rr+Y888ogefPBBDRkyRN/61rc0c+ZMpabG1f2Ki+t9taPmnSUBIFjajkNBrGuJ1LSNGzfq888/j+i3jRw5UkOGDIkaUHblqquu0pEjR3T66afr7rvv1lVXXRXX8+OqkAcOHFBLS4uys7MjpmdnZ2vbtm1Rn1NbWxt1/tra2g5fZ/78+XrggQfaTV9T95/xNBcAbPHRRx8pKyurW8tIS0tTTk6O1tTac1zr1auXBg8eHDGtvLxcc+fOjZhmx3G97b/xHvvd4ERd66imrXvtxwm2GgCs1d269mVN+42FrfpSrDUtXrW1tRowYEDEtNTUVJ100kndrlff//73ddZZZ+mkk07SunXrNGvWLO3du1cLFizo1nI743Zfbf3fnLnGJgB0xbq65m5fLR6J1LTa2lqlpaW1Owsg3n5br1699Pjjj+u8885TcnKy/vCHP6i4uFgrV66MK6S07ye8bpg1a1bEL3kHDx7UKaecopqamm6HAiZraGjQ4MGDtXv3bstPYTFJUNZTCs66BmU96+vrNWTIEJ100kndXlZGRoZ27typ5mZ7RoaHQiElJSVFTOvuSBMkJqg1TQrOsYH19J+grKtVdc20mnbPPffoxz/u/EegrVu3WtK2jhx73B87dqzS0tL0ne98R/Pnz/d8PQ5qXQvKcUEKzrqynv7jx7pmQk3rSr9+/SLqwtlnn60PP/xQP/nJT+wLKPv166eUlJR2d/Spq6tTTk5O1Ofk5OTENb/U8dDWrKws33+gJCkzM5P19JmgrGtQ1jM5Oe77i0WVkZGhjAx3r9Vkx3G97b91dXXKzc2NmKc71ySxgxN1Leg1TQrOsYH19J+grKsVdc2EmtbmBz/4gW6++eZO5xk2bJhycnLa3Tzm6NGj+vjjjzvtqyQiPz9fR48e1a5duzRixAhLl92GvpozgnJckIKzrqyn//iprtlZ03JyctTc3KyDBw9GjKLsqg7EIj8/X6tXr47rOXFttbS0NE2YMEGVlZXhaa2traqsrFRBQUHU5xQUFETML0mrV6/ucH4AgHPsOK4PHTpUOTk5EfM0NDRo/fr1xh37qWsA4D/9+/fXyJEjO32kpaWpoKBABw8e1MaNG8PP/ctf/qLW1lbl5+db2qbq6molJye3O/3OStQ0APAfO2vahAkTdMIJJ0TUge3bt6umpqbbdaC6ujpisEpMQnFatmxZKD09PfTMM8+E3nrrrdAtt9wS6tOnT6i2tjYUCoVCN954Y+iee+4Jz/+Pf/wjlJqaGnrsscdCW7duDZWXl4dOOOGE0Jtvvhnza9bX14ckherr6+Ntrqewnv4TlHVlPb3NjuP6I488EurTp0/ov//7v0NvvPFG6Oqrrw4NHTo09Nlnnzm+fl1xuq75dT+KJijrynr6T1DWNSjr2ZnJkyeHvvrVr4bWr18fWrt2bei0004LTZ06Nfz3PXv2hEaMGBFav359eNrevXtDmzdvDi1ZsiQkKfT3v/89tHnz5tBHH30UCoVCoXXr1oV++tOfhqqrq0M7duwI/dd//Veof//+oWnTptm+PvTV7BOU9QyFgrOurKf/BGldo0mkpn33u98NDRkyJPSXv/wl9Prrr4cKCgpCBQUFEct95513Qps3bw595zvfCZ1++umhzZs3hzZv3hxqamoKhUKh0DPPPBN6/vnnQ1u3bg1t3bo19B//8R+h5OTk0NKlS+Nqf9wBZSgUCv385z8PDRkyJJSWlhaaNGlS6LXXXgv/7cILLwzddNNNEfP//ve/D51++umhtLS00Jlnnhl6+eWX43q9I0eOhMrLy0NHjhxJpLmewXr6T1DWlfX0PquP662traH7778/lJ2dHUpPTw9dcskloe3btzuxKglxsq75eT86XlDWlfX0n6Csa1DWszMfffRRaOrUqaFevXqFMjMzQyUlJaFDhw6F/75z586QpNBf//rX8LTy8vKQpHaP//zP/wyFQqHQxo0bQ/n5+aGsrKxQRkZGaNSoUaGHH37YsfeZvpo9grKeoVBw1pX19J8grWs0idS0zz77LPS9730v1Ldv31DPnj1D11xzTWjv3r0Ry73wwguj1r2dO3eGQqEvAspRo0aFevbsGcrMzAxNmjQptGLFirjbnxQKWXT/dQAAAAAAAACIkzV3egAAAAAAAACABBBQAgAAAAAAAHANASUAAAAAAAAA1xBQAgAAAAAAAHCNMQHlokWLlJeXp4yMDOXn52vDhg2dzr9ixQqNHDlSGRkZGjNmjFatWuVQS7snnvVcsmSJLrjgAvXt21d9+/ZVYWFhl++LKeLdnm2WLVumpKQkFRcX29tAC8W7rgcPHtRtt92m3Nxcpaen6/TTT/fE/hvvei5cuFAjRoxQjx49NHjwYM2cOVNHjhxxqLWJ+fvf/64rr7xSAwcOVFJSklauXNnlc9asWaOzzjpL6enpOvXUU/XMM8/Y3k6YLyg1TaKudcVrdS0oNU2irnWEuoZoglLXglLTJOpaR7xa16hp0VHTPCaBO5dbbtmyZaG0tLTQ0qVLQ//85z9DM2bMCPXp0ydUV1cXdf5//OMfoZSUlNCjjz4aeuutt0KzZ88OnXDCCaE333zT4ZbHJ971/Na3vhVatGhRaPPmzaGtW7eGbr755lBWVlZoz549Drc8PvGuZ5udO3eGBg0aFLrgggtCV199tTON7aZ417WpqSk0ceLE0OWXXx5au3ZtaOfOnaE1a9aEqqurHW55fOJdz9/+9reh9PT00G9/+9vQzp07Q6+88kooNzc3NHPmTIdbHp9Vq1aF7rvvvtCLL74YkhT64x//2On87733Xqhnz56hsrKy0FtvvRX6+c9/HkpJSQlVVFQ402AYKSg1LRSirvmtrgWlpoVC1LWOUNcQTVDqWlBqWihEXfNbXaOmRUdN8x4jAspJkyaFbrvttvC/W1paQgMHDgzNnz8/6vz/+q//GrriiisipuXn54e+853v2NrO7op3PY939OjRUO/evUPPPvusXU20RCLrefTo0dC5554b+vWvfx266aabPFHwQqH41/WXv/xlaNiwYaHm5manmmiJeNfztttuC/3Lv/xLxLSysrLQeeedZ2s7rRRL0bv77rtDZ555ZsS0KVOmhIqKimxsGUwXlJoWClHX/FbXglLTQiHqWkeoa4gmKHUtKDUtFKKu+a2uUdOio6Z5j+uneDc3N2vjxo0qLCwMT0tOTlZhYaGqqqqiPqeqqipifkkqKirqcH4TJLKex/v000/1+eef66STTrKrmd2W6HrOmzdPAwYM0PTp051opiUSWdc//elPKigo0G233abs7GyNHj1aDz/8sFpaWpxqdtwSWc9zzz1XGzduDJ9a8N5772nVqlW6/PLLHWmzU7x4LIK9glLTJOqa3+paUGqaRF3rjFePR7BPUOpaUGqaRF3zW12jpnXMi8eioEt1uwEHDhxQS0uLsrOzI6ZnZ2dr27ZtUZ9TW1sbdf7a2lrb2tldiazn8X70ox9p4MCB7T5kJklkPdeuXaunn35a1dXVDrTQOoms63vvvae//OUvuuGGG7Rq1Sq9++67+t73vqfPP/9c5eXlTjQ7boms57e+9S0dOHBA559/vkKhkI4eParvfve7uvfee51osmM6OhY1NDTos88+U48ePVxqGdwSlJomUdf8VteCUtMk6lpnqGs4XlDqWlBqmkRd81tdo6Z1jJrmPa6PoERsHnnkES1btkx//OMflZGR4XZzLHPo0CHdeOONWrJkifr16+d2c2zX2tqqAQMG6KmnntKECRM0ZcoU3XfffVq8eLHbTbPUmjVr9PDDD+sXv/iFNm3apBdffFEvv/yyHnzwQbebBsAQ1DXvC0pNk6hrADrn15omUdf8WNeoaTCV6yMo+/Xrp5SUFNXV1UVMr6urU05OTtTn5OTkxDW/CRJZzzaPPfaYHnnkEf35z3/W2LFj7Wxmt8W7njt27NCuXbt05ZVXhqe1trZKklJTU7V9+3YNHz7c3kYnKJFtmpubqxNOOEEpKSnhaaNGjVJtba2am5uVlpZma5sTkch63n///brxxhv17W9/W5I0ZswYNTY26pZbbtF9992n5GR//DbS0bEoMzOTX+QCKig1TaKu+a2uBaWmSdS1zlDXcLyg1LWg1DSJuua3ukZN6xg1zXtc3/PS0tI0YcIEVVZWhqe1traqsrJSBQUFUZ9TUFAQMb8krV69usP5TZDIekrSo48+qgcffFAVFRWaOHGiE03tlnjXc+TIkXrzzTdVXV0dflx11VW6+OKLVV1drcGDBzvZ/Lgksk3PO+88vfvuu+GiLklvv/22cnNzjSx4UmLr+emnn7YrbG2FPhQK2ddYh3nxWAR7BaWmSdQ1v9W1oNQ0ibrWGa8ej2CfoNS1oNQ0ibrmt7pGTeuYF49FgefmHXraLFu2LJSenh565plnQm+99VbolltuCfXp0ydUW1sbCoVCoRtvvDF0zz33hOf/xz/+EUpNTQ099thjoa1bt4bKy8tDJ5xwQujNN990axViEu96PvLII6G0tLTQCy+8ENq7d2/4cejQIbdWISbxrufxvHJXuFAo/nWtqakJ9e7dO1RaWhravn176KWXXgoNGDAg9NBDD7m1CjGJdz3Ly8tDvXv3Dv3ud78Lvffee6FXX301NHz48NC//uu/urUKMTl06FBo8+bNoc2bN4f+v3bumCW1MADjuBfhGH4HCwxaXJpsPJ8k3NsDt1pcW6TZvV1wcwu3xragT9AHKHiainvpDvfcwbfO+f3ASYX3ReQPD2Kv18vNzU0eHh7y/PycJJnP5zk/P/98/dPTU4bDYS4vL/P4+Jjb29v0+/1sNptSV+Ab6ErTEl1rW9e60rRE13SNJrrSta40LdG1tnVN0zStLb7FQJkky+Uyh4eHqaoq0+k0u93u87m6rjObzf54/d3dXU5OTlJVVSaTSdbr9Z5P/H+a3PPo6Ci9Xu/L4+rqav8Hb6jp5/m7nxK8D03ven9/n7OzswwGg4zH4ywWi7y9ve351M01uefr62uur69zfHycg4ODjEajXFxc5OXlZf8Hb2C73f71O/dxt9lslrquv7zn9PQ0VVVlPB5ntVrt/dx8P11pWqJrSbu61pWmJbqW6Br/ritd60rTEl1L2tU1TdO0NviVtOg3vAAAAADAj1L8PygBAAAAgO4yUAIAAAAAxRgoAQAAAIBiDJQAAAAAQDEGSgAAAACgGAMlAAAAAFCMgRIAAAAAKMZACQAAAAAUY6AEAAAAAIoxUAIAAAAAxRgoAQAAAIBiDJQAAAAAQDHvVaiXXhH2bqUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAH/CAYAAABU5TMMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/8klEQVR4nOzde3hU1d02/jtDyEkYQjhkEggEkJogCAVKDKKiBBLhsvIUETAFoSlUX2LVWC0oEgQtVQERpM3rAZVXUnjwQBF50qakSJUYMAErGGilYDDpBHjSEJJAzr8/+GXMJDOTmcw+rLX3/bmuuZSZPXvWPmT2zD3ftVZAS0tLC4iIiIiIiIiIiIh0YNG7AURERERERERERGReDCiJiIiIiIiIiIhINwwoiYiIiIiIiIiISDcMKImIiIiIiIiIiEg3DCiJiIiIiIiIiIhINwwoiYiIiIiIiIiISDcMKImIiIiIiIiIiEg3DCiJiIiIiIiIiIhINwwoiYiIiIiIiIiISDcMKImIiIiIiIiIiEg3PgeUBw8exN13343o6GgEBARg9+7dnT7nwIEDGDt2LIKDg3H99dfj7bff7kJTiYhILVu2bEFsbCxCQkKQkJCAw4cPe1x+165diIuLQ0hICEaNGoV9+/Y5Pd7S0oKVK1ciKioKoaGhSEpKwj//+U81N6FLeE0jIjImpa9r1dXVSE9Px8CBAxEaGooRI0YgKytLzU3oEl7XiIiMScnrWkNDA379619j1KhRuO666xAdHY0FCxagrKzMaR3PP/88Jk6ciLCwMISHh6uxWU58DihramowevRobNmyxavlz5w5gxkzZuCOO+7AsWPH8Oijj+LnP/85/vSnP/ncWCIiUt7OnTuRkZGBzMxMFBUVYfTo0UhOTsb58+ddLn/o0CHMmzcPaWlpOHr0KGbOnImZM2fi+PHjjmVefPFFbNq0CVlZWSgoKMB1112H5ORkXL16VavN8gqvaURExqPGdS0jIwM5OTl49913UVxcjEcffRTp6enYs2ePVpvlFV7XiIiMR+nrWm1tLYqKivDMM8+gqKgIH3zwAU6dOoUf//jHTuupr6/H7Nmz8dBDD6m+jQCAFj8AaPnwww89LvPkk0+23HjjjU73zZkzpyU5OdmflyYiIoVMmDChZenSpY5/NzU1tURHR7esXbvW5fL33Xdfy4wZM5zuS0hIaPnFL37R0tLS0tLc3Nxis9laXnrpJcfjlZWVLcHBwS1/+MMfVNgCZfCaRkRkDEpf11paWlpuvPHGltWrVzstM3bs2Jann35awZYri9c1IiJjUOO61t7hw4dbALR8++23HR576623Wnr16tW1xvsgUO0AND8/H0lJSU73JScn49FHH3X7nLq6OtTV1Tn+3dzcjIqKCvTp0wcBAQFqNZWIyKOWlhZcvnwZ0dHRsFj8H8L36tWrqK+vV6BlHbW0tHR4vwwODkZwcLDTffX19SgsLMTy5csd91ksFiQlJSE/P9/luvPz85GRkeF0X3JysqMb2ZkzZ2C3253e+3v16oWEhATk5+dj7ty5/myarnhNIyIjUfK6JsI1DVDnugYAEydOxJ49e/Czn/0M0dHROHDgAP7xj3/g5Zdf9mPL9MfrGhEZCa9r13hzXWvv0qVLCAgI0KQrtzuqB5R2ux2RkZFO90VGRqKqqgpXrlxBaGhoh+esXbsWzz77rNpNIyLqknPnzmHgwIF+rePq1asYNOg6XLjQrFCrnPXo0QPV1dVO92VmZmLVqlVO9128eBFNTU0u36dPnjzpct3u3tftdrvj8db73C0jK17TiMiI/L2uXb16FYMGX4cL5/W9pgHqXNcAYPPmzViyZAkGDhyIwMBAWCwWvP7667jtttu6uFVi4HWNiIyI17XOr2ttXb16Fb/+9a8xb948WK1WH7ZEWaoHlF2xfPlyp7T30qVLGDRoEA4U9EOPHpx4nIj0UV3djMkJF9CzZ0+/11VfX48LF5pxoKA/evRQttqguroFkxPO49y5c04XGFe/yJH63F3TVv31FoT0EPIyTEQmcbW6Eavu+Mzv61p9fT0unG/GwcPqXNNum6D/NW3z5s34/PPPsWfPHgwePBgHDx7E0qVLER0d3aEC0ejcXdcmjf0VArvxs4bsLsd2DKWJZNHUcBXHdj/H65oPGhoacN9996GlpQW///3vdWlDK9W/GdlsNpSXlzvdV15eDqvV6vIXOcB9aWuPHhb06MmAkoj0pWT3pR49AlR4X7v2S5/Vau30F7C+ffuiW7duLt+nbTaby+e4e19vXb71v+Xl5YiKinJaZsyYMT5tiWiUvKaF9AhkQElEQlDquqb3NQ1Q57p25coVPPXUU/jwww8xY8YMAMBNN92EY8eOYd26dVIHlEpe1wK7BSMwMESVdpJ2ArvzGJL8eF3zfF1r1RpOfvvtt8jLy9O1ehLowizevkpMTMT+/fud7svNzUViYqLaL01ERJ0ICgrCuHHjnN6nm5ubsX//frfv0529rw8ZMgQ2m81pmaqqKhQUFEj/3s9rGhGR2NS4rjU0NKChoaHDeGbdunVDc7M63f+0wusatXV5CKsniUSjxnUN+D6c/Oc//4m//OUv6NOnjzob4AOfSzeqq6vxzTffOP595swZHDt2DBERERg0aBCWL1+O0tJSbNu2DQDw4IMP4tVXX8WTTz6Jn/3sZ8jLy8N///d/4+OPP1ZuK4iIqMsyMjLwwAMPYPz48ZgwYQI2btyImpoaLFq0CACwYMECDBgwAGvXrgUAPPLII7j99tuxfv16zJgxAzt27MAXX3yB1157DcC1XywfffRRPPfccxg+fDiGDBmCZ555BtHR0Zg5c6Zem+kSr2lERMaj9HXNarXi9ttvxxNPPIHQ0FAMHjwYn3zyCbZt24YNGzbotp2u8LpGRGQ8Sl/XGhoacO+996KoqAh79+5FU1OTY3zKiIgIBAUFAQBKSkpQUVGBkpISNDU14dixYwCA66+/Hj169FB8O30OKL/44gvccccdjn+3jj/ywAMP4O2338a///1vlJSUOB4fMmQIPv74Yzz22GN45ZVXMHDgQLzxxhtITk5WoPlEROSvOXPm4MKFC1i5ciXsdjvGjBmDnJwcx8DKJSUlTlUjEydORHZ2NlasWIGnnnoKw4cPx+7duzFy5EjHMk8++SRqamqwZMkSVFZWYtKkScjJyUFIiFjdhnhNIyIyHjWuazt27MDy5cuRmpqKiooKDB48GM8//zwefPBBzbfPE17XqKtYPUkkLqWva6WlpdizZw8AdBiC669//SsmT54MAFi5ciXeeecdx2M//OEPOyyjpICWlpYWxdeqsKqqKvTq1QtfnIjkGJREpJvqy80Yf2M5Ll265Pf4HGq+rynZTlJe67H/7ZHbOQYlEenqanUjlv3oE7+vF63va0Vfq3NNGzuC1zSRtR7/yT96mmNQSorhJBlFY8NVFO5aweuapJj2EREREREREZkQw0kiEgUDSiIiIiIiIiKTYThJRCJhQElERERERERkIgwniUg0DCiJiIiIiIiIiIhINwwoiYiIiIiIiEyC1ZNEJCIGlEREREREREQmwHCSiETFgJKIiIiIiIjI4BhOEpHIGFASERERERERGRjDSSISHQNKIiIiIiIiIoNiOElEMmBASURERERERGRADCeJSBYMKImIiIiIiIgMhuEkEcmEASURERERERGRgTCcJCLZBOrdACIiIiIiIiLyH4NJIpIVA0qSyntVY/VuAu61FundBCIiMpC8i3Gav+adfU9q/ppERKQuhpNEJDMGlKQZEcJFJfi7HQw4iYiMQY9gUSlKtJ0hJxGROBhOEpHsGFCS34wSPGrF2/3FIJOISB8yB49a8nY/McgkIlIXw0kiMgIGlOQVhpDa62yfM8AkIuoaBpDa6mx/M8AkIuo6hpNEZBQMKMkJg0h5uDtWDC6JiK5hECkHd8eJwSURkWcMJ4nISBhQmhjDSGNydVwZWhKR0TGMNB5Xx5ShJRHRNQwnichoGFCaBMNIc2t//BlYEpHsGEiaE0NLIjI7BpNEZFQMKA2KgSR5wsCSiGTDQJLcaX9uMLAkIqNiOElERsaA0kAYSlJXMbAkItEwkKSuanvuMKwkIqNgOElERseAUnIMJUkNbc8rhpVEpBWGkqQ0hpVEZAQMJ4nIDBhQSoihJGmp9XxjUElEamAoSVphWElEsmEwSURmwoBSEgwlSW+sqiQiJTGYJD0xrCQi0TGcJCKzYUApOAaTJCJWVRJRVzCUJBG1npcMKolIFAwniciMGFAKisEkyYBBJRF5g8EkyYBBJRGJgOEkEZkVA0rBMJgkGTGoJCJXGEySjBhUEpEeGEwSkdkxoBQEg0kyAgaVRAQwmCRjYFBJRFphOElExIBSdwwmyYgYVBKZF8NJMhoGlUSkJoaTRETXMKDUEcNJMjoGlUTmwWCSjC7vYhxDSiJSDINJIiJnFr0bYEbvVY1lOEmmwvOdyNgYTpJZ5F2M4/lORH5jOElE1BEDSo0xqCGz4rlPZDwMa8iseN4TUVcxnCQico1dvDXCcEYZuXb9vxBMtbF7V1exyzeRcTCgUVaxPVKT14m3lWvyOmbAsSmJyFcMJ4mI3GNAqQGGk94RIXz0hjftZIjp2XtVYxlSEkmM4aR3tAodfeFLmxhmeodjUxJRZxhMEhF1jgGlyhhOOpMlhPSXp+1keHkNQ0oi+TCY7EjEEFIpnraN4aUzhpRE5A7DSSIi7zCgVJGZw0mzBJFd4WrfmDW0ZEhJJA+Gk8YOI33lbl+YObhkSElE7TGcJCLyHgNKlZgtnGQg6R8zh5YMKYnEZ8ZwkmFk17Tfb2YLLBlSEhHAYJKIqCsYUKrADOEkA0n1td/HRg4sGVISicss4SQDSXWYMbBkSElkbgwniYi6hgGlwowcTjKU1Ffb/W/EsJIhJZF4jBxOMpDUh1kCS4aURObEcJKIqOssejfASIwWTuba45xuJA6jHhej/Q0RycyI4WSxPdJxIzEY+ZgY8W9IJlu2bEFsbCxCQkKQkJCAw4cPe1x+165diIuLQ0hICEaNGoV9+/Y5Pd7S0oKVK1ciKioKoaGhSEpKwj//+U81N4EkcnlIKMNJIlKV0te1Dz74ANOmTUOfPn0QEBCAY8eOdViH3W7H/PnzYbPZcN1112Hs2LF4//33ldwsJwwoFWKkYMWIwZeRGS2sNNLfEpGsjBSsGDkAMxojHisj/S3JZOfOncjIyEBmZiaKioowevRoJCcn4/z58y6XP3ToEObNm4e0tDQcPXoUM2fOxMyZM3H8+HHHMi+++CI2bdqErKwsFBQU4LrrrkNycjKuXr2q1WaRoBhMEpHa1Liu1dTUYNKkSXjhhRfcvu6CBQtw6tQp7NmzB1999RV+8pOf4L777sPRo0cV30YACGhpaWlRZc0KqqqqQq9evfDFiUj06ClepmqEQMUo4RZ9T/Zu4CJ2966+3IzxN5bj0qVLsFqtfq1Lzfc1JdtJyms99r89cjtCeog50ooRQhUjhVxmZ4Ru4KJ2975a3YhlP/rE7+tF6/ta0dfqXNPGjvDtmpaQkIAf/ehHePXVVwEAzc3NiImJwcMPP4xly5Z1WH7OnDmoqanB3r17HffdfPPNGDNmDLKystDS0oLo6Gg8/vjj+NWvfgUAuHTpEiIjI/H2229j7ty5CmypvFqP/+QfPY3AwBC9m6MphpNEYmlsuIrCXSt4XevkutbW2bNnMWTIEBw9ehRjxoxxeqxHjx74/e9/j/nz5zvu69OnD1544QX8/Oc/93aTvSZe2icZmcNJo1XekTPZj63Mf1tEMpM5nDRiBR7BEMdU5r8r2dTX16OwsBBJSUmO+ywWC5KSkpCfn+/yOfn5+U7LA0BycrJj+TNnzsButzst06tXLyQkJLhdJxkbu3QTkVbUuK55a+LEidi5cycqKirQ3NyMHTt24OrVq5g8ebLP2+ENMUs3JCFrgCJzaEW+az3esldUEpH6ZA1RZA+vyDutx9kIFZXku6qqKqd/BwcHIzg4uMNyFy9eRFNTEyIjnd8XIiMjcfKk689Cdrvd5fJ2u93xeOt97pYh82AwSURK0PO65q3//u//xpw5c9CnTx8EBgYiLCwMH374Ia6//nqf1uMtBpQmwmDS3GScBZwzexNpR8ZwksGkObU97jKFlWaY2fvPNXEICVD268XVmkYA5YiJiXG6PzMzE6tWrVL0tYg6w3CSyFzMfl175plnUFlZib/85S/o27cvdu/ejfvuuw9/+9vfMGrUKMVfjwFlF8lUPclgktqTqaqSISURtcdgklrJVlVphpBSLefOnXMaq8tVlQkA9O3bF926dUN5ufM5UV5eDpvN5vI5NpvN4/Kt/y0vL0dUVJTTMu3H6yJjYjBJRErT87rmjdOnT+PVV1/F8ePHceONNwIARo8ejb/97W/YsmVLh7EslcAxKLtAlnBS9jEISX2ynB+y/M2ZQUVFBVJTU2G1WhEeHo60tDRUV1d7fM7Vq1exdOlS9OnTBz169MCsWbM6XDCPHDmCKVOmIDw8HL1790ZycjK+/PJLNTeF2pCletIIYxGSOmQ6L2T5exON1Wp1urn7IhcUFIRx48Zh//79jvuam5uxf/9+JCYmunxOYmKi0/IAkJub61h+yJAhsNlsTstUVVWhoKDA7TrJOBhOEpEa9LyueaO2thbAtfEu2+rWrRuam5u9Xo8vGFAalCzBE+mPQTb5IjU1FSdOnEBubi727t2LgwcPYsmSJR6f89hjj+Gjjz7Crl278Mknn6CsrAw/+clPHI9XV1cjJSUFgwYNQkFBAT799FP07NkTycnJaGhoUHuTTE+GsITBJHmD5wm1ysjIwOuvv4533nkHxcXFeOihh1BTU4NFixYBABYsWIDly5c7ln/kkUeQk5OD9evX4+TJk1i1ahW++OILpKenAwACAgLw6KOP4rnnnsOePXvw1VdfYcGCBYiOjsbMmTP12ETSCMNJIhKB0tc14FrhybFjx/D1118DAE6dOoVjx445xqmMi4vD9ddfj1/84hc4fPgwTp8+jfXr1yM3N1e1ax+7ePtI9EouBk3UVaJ3+2ZXb/0VFxcjJycHR44cwfjx4wEAmzdvxvTp07Fu3TpER0d3eM6lS5fw5ptvIjs7G3feeScA4K233kJ8fDw+//xz3HzzzTh58iQqKiqwevVqx1gsmZmZuOmmm/Dtt9+qNggzyYGBE/lKhm7f7Oqtrjlz5uDChQtYuXIl7HY7xowZg5ycHMeEASUlJU4VIRMnTkR2djZWrFiBp556CsOHD8fu3bsxcuRIxzJPPvkkampqsGTJElRWVmLSpEnIyclBSEiI5ttH6mMwSUQiUeO6tmfPHkfACQBz584F8P1YmN27d8e+ffuwbNky3H333aiursb111+Pd955B9OnT1dlOxlQ+kDkcJLBJCkl1x4nbEhJvvF2Zjhv5efnIzw83BFOAkBSUhIsFgsKCgrwX//1Xx2eU1hYiIaGBiQlJTnui4uLw6BBg5Cfn4+bb74ZN9xwA/r06YM333wTTz31FJqamvDmm28iPj4esbGxXW4vdU7k6kkGk+SvYnuk0CElqSs9Pd2pUqStAwcOdLhv9uzZmD17ttv1BQQEYPXq1Vi9erVSTSRBMZwkIhEpfV1buHAhFi5c6PE1hw8fjvfff9+XZvqFAaUBMJwkpYlaTWnEKsrdl0cjpKW7ouu8Wt0A4M+Kzwxnt9vRv39/p/sCAwMRERHh6Arg6jlBQUEIDw93uj8yMtLxnJ49e+LAgQOYOXMm1qxZA+DaxfBPf/oTAgN5mTIjhpOkFJGrKVlFSSQehpNERPrhGJReErF6kmMHktp4fsnt3LlzuHTpkuPWdlyStpYtW4aAgACPt5Mn1fsSfeXKFaSlpeGWW27B559/js8++wwjR47EjBkzcOXKFdVe1+xErJ7kGIKkFlHPKxH/DonM6PKQUIaTREQ6Y2mKpBgcdXT2u36KrSt24AXF1iU70bp8G7GKUi2tM8J15vHHH++0vH/o0KGw2Ww4f/680/2NjY2oqKiAzWZz+TybzYb6+npUVlY6VVGWl5c7npOdnY2zZ88iPz/fMXZKdnY2evfujT/+8Y+O8VBIOSKGIqIGSGQcIldTEpF+GEySL6oHKFvj1aNUndmQiWTEgNILolVPmjGcVDJ8VPL1zBJkitrlm5TRr18/9OvX+TmfmJiIyspKFBYWYty4cQCAvLw8NDc3IyEhweVzxo0bh+7du2P//v2YNWsWgGszxJWUlCAxMREAUFtbC4vFgoCAAMfzWv/d3MwPbWZg9nCysSxM89cMjK7V/DVFIdrYlOzqTaQfhpPUntIBpD+vx/CSzIYBpWSMHk5qHUT6y1V7jRxailJNySpKfcTHxyMlJQWLFy9GVlYWGhoakJ6ejrlz5zpm8C4tLcWUKVOwbds2TJgwAb169UJaWhoyMjIQEREBq9WKhx9+GImJibj55psBAFOnTsUTTzyBpUuX4uGHH0ZzczN++9vfIjAwEHfccYeem2xIIlVPmimY1COE9MRTe8wQXooWUhKR9hhOmpvWQWRXtG8jA0syOgaUnRCletKIwaRsYaS3jB5aihJSkj62b9+O9PR0TJkyBRaLBbNmzcKmTZscjzc0NODUqVOorf0+4Hj55Zcdy9bV1SE5ORm/+93vHI/HxcXho48+wrPPPovExERYLBb88Ic/RE5ODqKiojTdPtKOUcNJ0YLIrnC1DUYMLUUKKVlFSaQdBpPmJEMg2RkGlmR0DCglYJRw0qiBpDfab7vsgaUIISWrKPURERGB7Oxst4/HxsaipaXF6b6QkBBs2bIFW7Zscfu8qVOnYurUqYq1k8RmpHDSCIGkN9pvp1ECS45LSWQuDCfNwwiBZGfabiPDSjICBpQeiFA9KXs4aeZQ0pO2+0XWsFKEkJKIfCNC924jhJNmCSU9MVpgKVI1JRGpg+GksZkhkPSkdfsZVJLMGFAKTNZwkqGkb2QOK/UOKVlFSSQXWcNJBpKda7uPZA0r9Q4p2c2bSB0MJo3L7KGkK6yqJJkxoBSUbOEkQ0llyBhW6h1SEpF39K6elDGcZDDZNTKHlXqHlESkLIaTxsNQ0nusqiTZ8K/bDT27d8sSTp79rp/jRsqTaf/qec6KMBQDEXkmUzjZWBbmuJH/ZNyfep6vev+QQGQkDCeNo3qAxXEj33G/kSx4pgpGhnBSltDMSGTY5zKcu0RmpWfoIUs4KVuIJiOZ9rEs5y0RucZwUn4MJZXFfUkyYBdvF/SqyBI94BE9IDOD1mMgavdvdvcmorZED3lkCcuMpnW/y9b9m4jEx2BSfgzR1MVu3yQy/vVTp2So3jMbkY+JHkE7u3kTiUfkcFKmSj4jE/046HUOs5s3UdcwnJQXqyW1x31NIuJZKQgRqydFDsHoGlGPkYjnM5FZ6RF2iBpOih6ImZXIx0XUc5mInDGclBNDSX1x35No2MW7HT0qsUQLc0QMvMgz0bt+ExHpSdTwi5yJ2vWbM3sTiY3hpHwYjImDXb5JJHxn0BnDSVKSSMdP63Ob3byJxCBaxRnDSfmIWFGp9XnNbt5E3mE4KQ924xYbjwuJgBWUOhIpnBQp2CL/iFRNyUlziPSldcghUjgpWsBFvmssCxOumpKIxMBgUh4MvuRRPcDCSkrSFd8t2jBjBZaoYxiS/0Q5riIF8USkHoaTpAaRqilFOseJzIzhpBxYLSknHjPSE88+nYgQ2ogSYJF6zBZAm/FHBiL6nkhhFilLlOOqZUjJbt5EHTGcFB+DSfnx+JFeeObpgOEkaU3v4y3COU9kNlqGGyJUlokSYJF6GEATmRvDSbExmDQWHkvSA886kzFbRR19T+9jz5CSyJj0DicZWpmP3sdb73OeyIwYToqNYZYx8biS1njG/f+06hqqZ0jDYJIAngdEZBx6B1WkH72PvVYhJbt5k9ldHhLKcFJgrJo0Ph5f0hLPNg0xnCRR6HU+aPE3wHEoibSjZyWZ3gEV6Y/Vs0TGxmBSXAwmzYXHmrQSqHcDSH1GDSeDS4I0e626QfWavZZWzn7XD7EDL+jdDCJSgdGrrhhKUVuNZWEIjK7V/HWL7ZGIt5Vr/rpEZsBwUkwMqohITQwooU3FlR7Vk0YKJrUMI315fdmDSz1Cylx7HKbaTmr6mkSkPL2qJ40cToZ9p/4Xv9qBzaq/hh4YUhIZB8NJMTGcNLfqARb0KDXmZwgSBwNKg5I5nNQ7jPRF+7bKGFgaMaR8r2os7rUWqbZ+IrPTI5w0UjCpRRDpy2sbJbTUK6RUW97FONzZlz/skTkwnBQPg0lqxZCS1MaAUgNaV0/KGE7KFEp60nY7ZAor2d2biEQmezipZyDpDSOFlnqElKyiJFIGw0mxMJgkVxhSkpoYUBqMTOGkUUJJd2SrrtQ6pGRXbyJ1qD3+pNbVkzKGk6IHkt5ouw2yhZVGraQkMioGk+JhOElEejD9O4/a409qWT0pQzgZXBLkuJmNDNstwzlEROYhUzgZ9p3FcTMaGbdN63NHzxntiWTGcFIsnJ2bvMFzhNTSpTNry5YtiI2NRUhICBISEnD48GGPy2/cuBE33HADQkNDERMTg8ceewxXr17tUoPJNdGDJRnCOa2IHtJqeS7pMXkUkSu8rnlHyxBGhnBSxuDOXzJtswznkLfUrowmY5HlmsZwUiwMncgXPF9IDT6fVTt37kRGRgYyMzNRVFSE0aNHIzk5GefPn3e5fHZ2NpYtW4bMzEwUFxfjzTffxM6dO/HUU0/53XjRmT18ET2IE4Go+0f0wNsbaldHk3Hwuka+kiWgU5sMYaWWISWrKEkEslzTGE6KhWETEYnA53eiDRs2YPHixVi0aBFGjBiBrKwshIWFYevWrS6XP3ToEG655Rbcf//9iI2NxbRp0zBv3rxOf8kj74kWJokauolMxH2m1Xll9iCf9Gek65qaVVasnmQw6YnI+0bU84lIDTJc0xhOioNduskfPHdIaT6dUfX19SgsLERSUtL3K7BYkJSUhPz8fJfPmThxIgoLCx0XuX/961/Yt28fpk+f7kezxadV6CJSOCliyCYb0fahSOcXkRp4XROPiGGSyOGbaETdV1qdV6yiJD3JcE1jOCkOhkvOagc2K3Yjoq7xaRbvixcvoqmpCZGRzh++IiMjcfKk69l477//fly8eBGTJk1CS0sLGhsb8eCDD3rsNlBXV4e6ujrHv6uqqnxpptdk7wIqSngkUqBmFK37VISZv7We3ZtIS1pc17S6pqlJq9BFtHBSxKBNFq37jl/UiLQj+nc1hpNiMHMwqdU1yd3rGPFzRfUAC3qU8lpPylD9L+TAgQP4zW9+g9/97ncoKirCBx98gI8//hhr1qxx+5y1a9eiV69ejltMTIzazVSUFtWTDCfNwSz7l928SSa+Xtdkv6ZpRaRwUtQqQBmJtC9lr6LkRDmkBq2+qzGcFIOZwkkRKxtFaw+RaHx6h+rbty+6deuG8vJyp/vLy8ths9lcPueZZ57B/Pnz8fOf/xyjRo3Cf/3Xf+E3v/kN1q5di+Zm13+Uy5cvx6VLlxy3c+fO+dJMwxMhnBStK7KRibCvRTjnukL2KmlSnxbXNV7TOidKOClSmGY0ouxXUc41IjWI+F3t8pBQhpOCMEM4KVv4J1t73THDuUXa8OlMCgoKwrhx47B//37Hfc3Nzdi/fz8SExNdPqe2thYWi/PLdOvWDQDQ0tLi8jnBwcGwWq1ON1mYoRJM77DMrPQOKtUOKc3wt0Pi0eK6ptU1Ta3qKrOMqSdKgGZkogTADCnJqET7rsZgUhxGDZCMVJFolO0g8odPY1ACQEZGBh544AGMHz8eEyZMwMaNG1FTU4NFixYBABYsWIABAwZg7dq1AIC7774bGzZswA9/+EMkJCTgm2++wTPPPIO7777bcfEj7+lZycZgUgzBJUG6jU3J8SjJiHhd05feYZEIgZnZhH1n0f0LWGNZGAKja1Vbf7E9EvG28s4XJFKYKNc0hpNiMGIwqff1Qwut2yjTZxSORUlK8DmgnDNnDi5cuICVK1fCbrdjzJgxyMnJcQzGXFJS4vQr3IoVKxAQEIAVK1agtLQU/fr1w913343nn39eua3oAhm7fjKcpFZ6hpRqyrXHYarN9SDuRGoxynVNDWpXTzKcNC9OokOkDhGuaQwnxWCkcNKs1woZg0oifwS0uKvdF0hVVRV69eqFL05EokdPZf441Qgo1e6iqkdAyWBSfHoElWpWUSodUN5rLVJsXdWXmzH+xnJcunTJ7266re9rKz6fhpAe3RVq4TVXqxvw3M1/VqSdpLzWY//bI7cjpIfPvxO6pUYXb6MGlPygLxY9v3iqWUUJQJUqyjv7KnedvFrdiGU/+sTv64Va72uAcm0k9bQe/8k/ehpXhvfWuzkE44STZg0m3ZHh84veVZSNDVdRuGsFr2uSEv8MJwAMJ8k9PY6TTJPmyFgtTWQGDCeplZ7HRO8qXtJfRUUFUlNTYbVaER4ejrS0NFRXV3t8ztWrV7F06VL06dMHPXr0wKxZszpMTHPkyBFMmTIF4eHh6N27N5KTk/Hll1+quSm6uxzLykkRyB5OcixG97hfzG3Lli2IjY1FSEgIEhIScPjwYY/L79q1C3FxcQgJCcGoUaOwb98+p8c/+OADTJs2DX369EFAQACOHTvWYR2TJ09GQECA0+3BBx9UcrOcyP3uJRA1qycZTlJnjHS8OFkOkRjUrJ5kOEntiTKBDplPamoqTpw4gdzcXOzduxcHDx7EkiVLPD7nsccew0cffYRdu3bhk08+QVlZGX7yk584Hq+urkZKSgoGDRqEgoICfPrpp+jZsyeSk5PR0NCg9iaRickcTjJ8857I+0nmc1BkO3fuREZGBjIzM1FUVITRo0cjOTkZ58+fd7n8oUOHMG/ePKSlpeHo0aOYOXMmZs6ciePHjzuWqampwaRJk/DCCy94fO3Fixfj3//+t+P24osvKrptbfHsoQ6MFHaZidbHTaYqSiKjU2sGbyNh+CUHPY6TmoG52sMkkH+Ki4uRk5ODN954AwkJCZg0aRI2b96MHTt2oKyszOVzLl26hDfffBMbNmzAnXfeiXHjxuGtt97CoUOH8PnnnwMATp48iYqKCqxevRo33HADbrzxRmRmZqK8vBzffvutlptIJlE9wCJtMMRgsmu438xlw4YNWLx4MRYtWoQRI0YgKysLYWFh2Lp1q8vlX3nlFaSkpOCJJ55AfHw81qxZg7Fjx+LVV191LDN//nysXLkSSUlJHl87LCwMNpvNcVOzW7qc72ImonUIxHBSbjx+RKQEI1VPsjJPPjxe5EpVVZXTra6uzu915ufnIzw8HOPHj3fcl5SUBIvFgoKCApfPKSwsRENDg9MXuri4OAwaNAj5+fkAgBtuuAF9+vTBm2++ifr6ely5cgVvvvkm4uPjERsb63e7idpiMGlu3Ify8va6Vl9fj8LCQqfrjsViQVJSkuO6015+fn6H4DE5Odnt8p5s374dffv2xciRI7F8+XLU1qo3freyo31KQukx6dTqkspwkrpCyxm+z37XT5UJczibN5Ex6RFOkpzCvrNo+qWrsSxM9QlzzOCT//0Bul9V9vNkQ009gE8QExPjdH9mZiZWrVrl17rtdjv69+/vdF9gYCAiIiJgt9vdPicoKAjh4eFO90dGRjqe07NnTxw4cAAzZ87EmjVrAADDhw/Hn/70JwQGmvLrF6lExnCSgZryagc2C/WZp3qARffJcpQiwnXt4sWLaGpqQmSkcwFBZGQkTp50/Z3Zbre7XN7dtc2d+++/H4MHD0Z0dDT+/ve/49e//jVOnTqFDz74wKf1eItXSALAcNJojBBSEhH5Q6QP6tQ1Rgkpi+2Ris7mnXcxTtGZvGVx7tw5p25lwcHBbpddtmxZp2NqFRcXK9a29q5cuYK0tDTccsst+MMf/oCmpiasW7cOM2bMwJEjRxAayslkyH+yhZMMJtXVun/5+UcevlzX9NJ2TOZRo0YhKioKU6ZMwenTpzFs2DDFX48BpaC0rJ40SjjZ89sWxdZ1eXCAYuvSi5YhpejeqxqLe61FejeDSApqde/WsnqSH86NQ+uQksRltVq9Hvfq8ccfx8KFCz0uM3ToUNhstg4TDDQ2NqKiogI2m83l82w2G+rr61FZWelURVleXu54TnZ2Ns6ePYv8/HxYLBbHfb1798Yf//hHzJ0716vtIHJHpnCS7+HaEq2aktzz9rrWt29fdOvWDeXlzj92tr3utGez2Xxa3lsJCQkAgG+++UaVgJJnrp9kn3FY1nCy57ctHW5qr1/p19CCVsdXjUBd9r8tItIHP5Qbj5bHVK8Z5klZ/fr1Q1xcnMdbUFAQEhMTUVlZicLCQsdz8/Ly0Nzc7PgS1t64cePQvXt37N+/33HfqVOnUFJSgsTERABAbW0tLBYLAgK+/8G79d/NzQxryD8MJ6kzIux3mc5T0QUFBWHcuHFO153m5mbs37/fcd1pLzEx0Wl5AMjNzXW7vLeOHTsGAIiKivJrPe6wglJAWlVPyhROihIOtm+HDJWWrKQkMjYZZvDWKvQxUjip1NhNRvmCIHslpdLdvEkZ8fHxSElJweLFi5GVlYWGhgakp6dj7ty5iI6OBgCUlpZiypQp2LZtGyZMmIBevXohLS0NGRkZiIiIgNVqxcMPP4zExETcfPPNAICpU6fiiSeewNKlS/Hwww+jubkZv/3tbxEYGIg77rhDz00mycnyni7z+7VRsJLSWDIyMvDAAw9g/PjxmDBhAjZu3IiamhosWrQIALBgwQIMGDAAa9euBQA88sgjuP3227F+/XrMmDEDO3bswBdffIHXXnvNsc6KigqUlJSgrKwMwLUf2wA4Zus+ffo0srOzMX36dPTp0wd///vf8dhjj+G2227DTTfdpMp2MqA0KRnCSVFCSU/atlHksFKLkJJjURKRnmT+EK7mQPLu1i3Ll9y2tAopOWGOuWzfvh3p6emYMmUKLBYLZs2ahU2bNjkeb2howKlTp5xmLX355Zcdy9bV1SE5ORm/+93vHI/HxcXho48+wrPPPovExERYLBb88Ic/RE5OjmpVJ2R8MrxvM5gUC0NK45gzZw4uXLiAlStXwm63Y8yYMcjJyXFMhFNSUuIYUgQAJk6ciOzsbKxYsQJPPfUUhg8fjt27d2PkyJGOZfbs2eMIOAE4hh9pnawnKCgIf/nLXxxhaExMDGbNmoUVK1aotp2mCyiVnMFbjS6oWlRPihxOyhBKutPadlGDShkrKTmbN5G21Bh/UovqSdk+fIsws2XbNsjwpbeV7JWUJJ6IiAhkZ2e7fTw2NhYtLc6fT0NCQrBlyxZs2bLF7fOmTp2KqVOnKtZOMjcZ3qf53iwmPUNKI83mLYL09HSkp6e7fOzAgQMd7ps9ezZmz57tdn0LFy70OF5zTEwMPvnkE1+b6Rfx3+lIUaKGk7KO8eiKyGNWqn38tZzciYhIJj1Kmx030bRtm4jta0+LL1pqBOtqTUBFRMYmejhZO7CZ4aTgeHxIFmK/25mM2uGOaOGkyEGeUkTcPtHOA5JLRUUFUlNTYbVaER4ejrS0NFRXV3t8zmuvvYbJkyfDarUiICAAlZWVLpf7+OOPkZCQgNDQUPTu3RszZ85UfgNIU2avnpQp9GtLhjaLfNy1IMPYs0TkPxnCSZIDjxXJQOx3PFKMSKGUiKGd2sy0zaJWUSo5vIOZpaam4sSJE8jNzcXevXtx8OBBLFmyxONzamtrkZKSgqeeesrtMu+//z7mz5+PRYsW4csvv8Rnn32G+++/X+nmkwcyVneJGlLJEPB5Q/SAVe3jzxm9iYhcY9WknPQ4ZqKH7CQW041BqRSlx58UNdRRmllCOndEGadSpvEoOQ6lOIqLi5GTk4MjR45g/PjxAIDNmzdj+vTpWLdunWPG0/YeffRRAK7HRgGAxsZGPPLII3jppZeQlpbmuH/EiBGKtp+0pXa4I2I4KWqQp4TWbeMXDSIibYj6fstgkojUIua7HilKhOpJM1UQekOEfaHmeWGWwN1s8vPzER4e7ggnASApKQkWiwUFBQVdXm9RURFKS0sds5xGRUXhrrvuwvHjx5VoNhmQaOGkyFWGShNtW2WropSxUpmItMdwktTCY0giE/Odz2TUDHP0DicZTLonwr7R+/wgdVVVVTnd6urq/Fqf3W5H//79ne4LDAxEREQE7HZ7l9f7r3/9CwCwatUqrFixAnv37kXv3r0xefJkVFRU+NVmoxN1HDqzdI0VLazTkkjbLVpgTUTkDxHDSbN16Q6MrkVgdK3ezVCN1sdSxHOaxMQu3qQavcM3WYjS7Zv08dfyHyCwOljRdTbW1AH4M2JiYpzuz8zMxKpVqzosv2zZMrzwwgse11lcXKxgC501N1/7kPT0009j1qxZAIC33noLAwcOxK5du/CLX/xCtdema2Sq6hIhjBIpnNOTWbp9N5aFGfqLKhGJQ8T3U6MEk115H/f2OTL+MFs7sFmIz1REbZkqoFRqkgylx59Ui17VcQwmu6bnty26hJRqjUd59rt+iB14QZF1cRzKrjl37hysVqvj38HBroPQxx9/HAsXLvS4rqFDh8Jms+H8+fNO9zc2NqKiogI2m63L7YyKigLgPOZkcHAwhg4dipKSki6vl4xHhA/SDCc7EiGoDPvOYpgv0URkTgwnlaXlD0uuXkvG0JJIb6YKKEWkVvduhpNyMlpISfqyWq1OAaU7/fr1Q79+nb8XJSYmorKyEoWFhRg3bhwAIC8vD83NzUhISOhyO8eNG4fg4GCcOnUKkyZNAgA0NDTg7NmzGDx4cJfXS/ow6gdyBpOd61HazJDSC8X2SMTbyvVuBhGRRzK8n7YlWqV72/aI+tmIVZQkGp6NpBiGk8oQYWxKpXCyHGOJj49HSkoKFi9ejMOHD+Ozzz5Deno65s6d65jBu7S0FHFxcTh8+LDjeXa7HceOHcM333wDAPjqq69w7Ngxx/iSVqsVDz74IDIzM/HnP/8Zp06dwkMPPQQAmD17tsZbSaLS8wM0w0nv6T0up1rniYhfLkUdg5aIfCda9aQs4WTrWJGihZPtidxOrY61aOc4iYkVlDoyUvWkUQI1kWhdTckqSvLG9u3bkZ6ejilTpsBisWDWrFnYtGmT4/GGhgacOnUKtbXffwDLysrCs88+6/j3bbfdBuDaOJOtXctfeuklBAYGYv78+bhy5QoSEhKQl5eH3r17a7NhJqbk+JNqhTgMJ+WjdzUlEZEsRHuvFD2cFDHk80Vr+0X84YtIbwwofST6+JNah5MMJtXFkPJ7SoxD+V7VWNxrLVKoReYUERGB7Oxst4/HxsaipcX5fWHVqlUuJ+dpq3v37li3bh3WrVunRDOJ/MZg0n96hZRqdfXmZDlEpDSRwkkGk9oSKahkV28SBc9C6jKGk9qQfT+zmzcR+UOPD8wMJ5XDfemakpXLRET+EjWcFLlrtFKMvn1EvmBAqRM1QhstqydlD81ko+X+1muCJSLyjWjjz4lQAaAEBmrK02NcSlaCEJHoRKmeFDGcNGNop/f2anEeiHLOk7h4hpDPGE7qg/udiJQmehWX1iETw0l1GSGkNEoQT0T6EiWoES2cNGMw2ZbZt59IjHdGSYg8/qRWVW8MyfSl1f5X+nxiN28i8hXDSWPifiYis2M42RGDOWd67QuRzgkyJzHeHTXwXtVYvZvgoHRYw3DSXMx8HET+kYDIzGSvKmNopi0t9ze7ehMRdSRSEMVg0jWGtmRG/NRGXjFzKCYiLY4Hx6IkIr1oGSoxnNSHzPtdqUBe9CEWiEh5IlRPihJOMoDzjtb7SJTzg8xJ/3dI8osWIRLDSTHJdlzYzZuIRCNzSGYEWu1/I1dRijZZFhFRZxhM+s5I+0uEkJ7ExbNDY7KFNLKFYGaj9vFhFSWRcSlVvaV0926twiSGk2LgcSAisxAhmNG7Os5IQZvWtNx3ep8nZF76v0tKQsSx7xgeEcAQmYjIVwzFzEfp4Fv2cVeJSFtmDydZNakM7kMyOv3fKUlYRgy+ep2u07sJ0lEyCFeigtjfHwtEmjCLiJxpUT3JcFI8PCZEROrSO5wk5Wi1P1lFSXoI1LsBZqJk9261qydlDCe9DR+9We7SsGB/m6Opnt+24PLgAL2bQUQmI1sVGYMwcfUobVa9wijsO4twX7iK7ZGIt5Xr3QwiUpHe1ZMMJ40nMLpWus9gRN5gQEkdyBJOqlkN2X7dMgSWaoaUwSVBqBtUr8q6iYgAY09kQt7RIqRUUmNZGL98E5HQ9Aon+d6oPi1CytqBzap8PqseYOGPxuSSPJ8CiXAtOGy9meF1fSVDuCzbRFFEIuLMvb7jB2E5qH2cGIQTkZZk+tFFKQwntcN9TUbDCkqNyNK9W9SAS6RgsG1bZKisVAqrKImMQ4kZvGXqWmSUcLLnmSseH788JFSjlhARUWf0Dif1qJ5kYKY9dvcmI2FA6QURZ/BWg4jhpEjBpCut7RMpqOR4lEQkGzWr2mQMJzsLIn19nmzBpWxdvYmIRMNwkpSiVjdvIld4pklG7clxRCFDd+q2RGuviGGzkszyowERmUfPM1ccNzXXrcb61aBmsKzkFy1WrRCRK3r+yMJw0ny4/8koTBFQvlc1Vu8mCE+UQEu0oM9Xsre/M0oF5ByHkohambl6Uq/QULaw0uiUGHKBiEgPgdG1DMcEoeZx0HMmeDIXdvHWgOhhjAjhpNFCvV6n63Tv9s2u3kSkFhmqxkQOJ0UKBlvbImI3cDW7eod9Z+EXLiJShVmqJ2UKJuNt5YqtS+QflWQaj5IzeZMrDCglYtTu3UYLJ1uJMD6lGiElJ8shIqWYaUwjkUJJV0QNKjkeZefyLsbhzr4n9W4GEemM4eT3lAwkO1u3yIElkWwYUJqcntWTRg0m2xOhmpKIqJUZPkiL9ou86OFkW6IGlSJrLAsT/ss6EWlDrx9UGE6qG0p6+7oifMZSq4qSk+WQFhhQdkKUyTjUqJ5kOKkdPaspRe3qffa7fogdeEHvZhARqUamYLI9kYJKtaoo2c2biMg3ooWTeoWS7ogSVsrU1ZuoLUbgKhN9/Ek9mC2cbMso2y7CcAOi/HhAZDZKfeBV61d4EaonjTQBjSjbIcJxJSLyxAzVk6KIt5ULF062J0MbiUTDgNKk9KqeNEpA5w899oEIEyGJ5L2qsXo3gYhUIEKIJUqgpyQjBa7tidJdTYRugUREnohQPSlj6KdXe9U4XmYMw0lbYnwqI49EqFZTAsPJ73FfEBEZj1FDvFZ6b58IAbQ77EpHRHrQKjDSO5yUMZhsS/b2E2mFAaUJaV1N1+t0HQM5F7TeJ0ofdyWCcw6BQGROalSt6RleGbnCsD2zbCcRkS/06N5thnDSaMGe1tuid7DcGb2GRSBx8YxQEcMXVgp2hvuHiGTCKrGOzBjY6bnNagTRonTzJiISjV4Bl9GCybaMvG1E/uInMsEp3b1by+pJhm/e0XI/cSxKIvnlXez6BFFGHedOr+pJM4aTrcy87UREbRm1elLPcNIMtNpOpY8jx6EkNTGg9ICzBJNWZA1zjTI+KhFpxyjVagzo9NsHIo9FSUREXWPGykKzbS9RZ4zxLYG8wupJsWm1z1hFSURGokdYxXDye2Yaf7MzHAJBThUVFUhNTYXVakV4eDjS0tJQXV3t8TmvvfYaJk+eDKvVioCAAFRWVrpc7uOPP0ZCQgJCQ0PRu3dvzJw5U/kNIF2xelIZZg7qtNh20ceiJO9s2bIFsbGxCAkJQUJCAg4fPuxx+V27diEuLg4hISEYNWoU9u3b5/T4Bx98gGnTpqFPnz4ICAjAsWPHnB6vqKjAww8/jBtuuAGhoaEYNGgQfvnLX+LSpUtKb5oDA0qByVqdxnCy68y47/wZq5VVzkSkNYZxYlA6mDZKZS/5LjU1FSdOnEBubi727t2LgwcPYsmSJR6fU1tbi5SUFDz11FNul3n//fcxf/58LFq0CF9++SU+++wz3H///Uo3n0hxDCe1J9s+YDdv7e3cuRMZGRnIzMxEUVERRo8ejeTkZJw/f97l8ocOHcK8efOQlpaGo0ePYubMmZg5cyaOHz/uWKampgaTJk3CCy+84HIdZWVlKCsrw7p163D8+HG8/fbbyMnJQVpamirbCACBqq1ZEO9VjdXldUWbIEerqjkzBmxK63W6DpeGBav6Gj2/bcHlwQGqvgYRGYsS1WFKh0BaV08ynHSv55kruDwkVO9mSK3YHindl1TZFRcXIycnB0eOHMH48eMBAJs3b8b06dOxbt06REdHu3zeo48+CgA4cOCAy8cbGxvxyCOP4KWXXnL6IjdixAhF20/mo3YwpGU4yfc7Z/G2clXHCg+MrmWlv8Q2bNiAxYsXY9GiRQCArKwsfPzxx9i6dSuWLVvWYflXXnkFKSkpeOKJJwAAa9asQW5uLl599VVkZWUBAObPnw8AOHv2rMvXHDlyJN5//33Hv4cNG4bnn38eP/3pT9HY2IjAQOXjRP5cTIphOGlOslb6EhH5guFk57TeRxyL0lyqqqqcbnV1/n/uzM/PR3h4uCOcBICkpCRYLBYUFBR0eb1FRUUoLS2FxWLBD3/4Q0RFReGuu+5yqlwh+enRvdsoGE66xv1iLt5e1+rr61FYWIikpCTHfRaLBUlJScjPz3f5nPz8fKflASA5Odnt8t66dOkSrFarKuEkYIIKStIGw0llsYqSiMgzLcMphpPek7mSMuw7C7ut+elUeT90CwtRdJ1NtVcBADExMU73Z2ZmYtWqVX6t2263o3///k73BQYGIiIiAna7vcvr/de//gUAWLVqFTZs2IDY2FisX78ekydPxj/+8Q9ERET41W4yJ6NUTzKE80zNSkoRqyirB1iE/sFRhOvaxYsX0dTUhMhI5/MiMjISJ0+edPkadrvd5fL+XNsuXryINWvWdDoMij8YUApKyao0TooiJy1CSiIiIqXJHFL6q7EsjJMRqOTcuXOwWq2OfwcHu/+MtGzZMrdjarUqLi5WrG3tNTdf+7L99NNPY9asWQCAt956CwMHDsSuXbvwi1/8QrXXJuoKhpNiUbu7txJqBzZz/GY/+XJd01tVVRVmzJiBESNG+P3joCcMKMlvrJ5UjywhZXBJEOoG1Xf5+We/64fYgRcUbBERtaf3B11ZP8SyerJrtAope5Q2s5slgLyLcbizr+sqCqOwWq1OX+Q8efzxx7Fw4UKPywwdOhQ2m63DBAONjY2oqKiAzWbralMRFRUFwHnMyeDgYAwdOhQlJSVdXi+JQ+v3HSNUdzOc9I1aIaWIVZRm5e11rW/fvujWrRvKy53/hsrLy91eq2w2m0/Le3L58mWkpKSgZ8+e+PDDD9G9e3ef1+EtfqJTgUgT5KhdPclwUm6sriUib4j2QVarrkAMJ/3D/Ud66devH+Li4jzegoKCkJiYiMrKShQWFjqem5eXh+bmZiQkJHT59ceNG4fg4GCcOnXKcV9DQwPOnj2LwYMH+7VtRErTonqS4WTXcL8RAAQFBWHcuHHYv3+/477m5mbs378fiYmJLp+TmJjotDwA5Obmul3enaqqKkybNg1BQUHYs2cPQkKU7e7eHiso3ci1x+n22px0hNqSpYqSiMhIGK7JQ8kqSo5DaS7x8fFISUnB4sWLkZWVhYaGBqSnp2Pu3LmOGbxLS0sxZcoUbNu2DRMmTABwbWwvu92Ob775BgDw1VdfoWfPnhg0aBAiIiJgtVrx4IMPIjMzEzExMRg8eDBeeuklAMDs2bP12ViSluzvSQzZiPyXkZGBBx54AOPHj8eECROwceNG1NTUOGb1XrBgAQYMGIC1a9cCAB555BHcfvvtWL9+PWbMmIEdO3bgiy++wGuvveZYZ0VFBUpKSlBWVgYAjh/VbDYbbDabI5ysra3Fu+++65jMB7j2Q2C3bt0U304GlNRlrJ7UDkNK93LtcZhqM3a3NiL6nsgDqVNHZh6PkuSwfft2pKenY8qUKbBYLJg1axY2bdrkeLyhoQGnTp1Cbe33VWZZWVl49tlnHf++7bbbAFwbZ7K1a/lLL72EwMBAzJ8/H1euXEFCQgLy8vLQu3dvbTaMVGOkYSXUrp5kOOk/Nbp6s5u3fObMmYMLFy5g5cqVsNvtGDNmDHJychwT4ZSUlMBi+f69aeLEicjOzsaKFSvw1FNPYfjw4di9ezdGjhzpWGbPnj2OgBMA5s6dC+D7yXqKiopQUFAAALj++uud2nPmzBnExsYqvp0MKA1Mze67DCeNQ6nZvP0dh5KIjEu28SdZPakss4WU/kyUU2yP5Bd6jUVERCA7O9vt47GxsWhpcf5MvWrVqk4nCejevTvWrVuHdevWKdFMIsUxnJSHqJPmcKIcbaWnpyM9Pd3lYwcOHOhw3+zZsz1W7S9cuNDjeM2TJ0/ucP1TG88mIkkwFCYiUh/DSTmxspaIjEjW7t0MJ4moKxhQGhSrJ8kXIkyWo/XkUu9VjdX09YjIfwyh5CVT8MtqECIyOi0mxiFlKR368hwgEfETmGA4QQ55wnCYiLRmpjGKZArRZKT2/mWATURq03L8SVZPUnvct2R0HINSYVpXgWmNARl5wnEoiag9WarRGE4SEZEZqFk5J3KAdmffrk2qmXcxTuGWUHvVAyz8kZEAMKA0JBG665J61JrRW6nJcoiI1MAPrsZgtglziIjMQrRwsquBpKf1iBBWKjlhjhKzeXOiHFISA0rymozVk0HF57xarj4+RuWWEBH5r6sfjEWc+VEkrJ40jh6lzYp0wQz7ziJt90oikp9a7z9mGHdQqWCys3WLEFYSGQ0DSoGIPP6kLOGkt4FkZ88TPbBUq4qSiIhIbWaoomwsCzNFEEBkJlqOPykbEaon1QwmPb2eHkGlklWURCJhQOlCrp2/hsimq8FkZ+sTPagkIhKZUl1+1OzezepJIiIyA7V+NNE7nNQ6mHT3+rJWVCrRzZtIKfwZyGDMNv5kUPE5xcNJLdfvDzWqWpU4f/ypBDb6JFNGUFFRgdTUVFitVoSHhyMtLQ3V1dUel3/44Ydxww03IDQ0FIMGDcIvf/lLXLp0yeXy//u//4uBAwciICAAlZWVKm0FEemNwTARkWscXsI7d/Y9qXs42ZbWbdE7GCZSAwNKBRk1XBGxe7fWwaHIQSWx6llLqampOHHiBHJzc7F3714cPHgQS5Yscbt8WVkZysrKsG7dOhw/fhxvv/02cnJykJaW5nL5tLQ03HTTTWo1n3xk9F/UGZIZEydUIiLShh4hmWjBZFsit41IBgwoSSp6B4V6v357IobHZFzFxcXIycnBG2+8gYSEBEyaNAmbN2/Gjh07UFZW5vI5I0eOxPvvv4+7774bw4YNw5133onnn38eH330ERobG52W/f3vf4/Kykr86le/0mJzSBIMm4xL9IBYr1lJOa4YESnNKGPiyhL+adVOUaooWfVLSmFAKQglJshRo3u3SAGYSMGgSG1RmtmGCSDv5efnIzw8HOPHj3fcl5SUBIvFgoKCAq/Xc+nSJVitVgQGfj8M8tdff43Vq1dj27ZtsFh4aSL1iR6OERERiUzrcEyWcLKVTO01SoBN8jP0t8D3qsbq3QRSiIiBoChtEilEJrFUVVU53erq/DtX7HY7+vfv73RfYGAgIiIiYLfbvVrHxYsXsWbNGqdu4XV1dZg3bx5eeuklDBo0yK82kjj0qj4juagVFLPyloiUpNUM3rJUojGc9I4W7RalipJICZzFm9wSIfgSJQR0h7N9k79KyvrCEhqi6Dqbr1wFAMTEOJ+XmZmZWLVqVYflly1bhhdeeMHjOouLi/1uV1VVFWbMmIERI0Y4tWP58uWIj4/HT3/6U79fg8gbMldPBp4udXl/47ABGreEOtNYFsaqFCLSnezvQ7KGk63u7HtS2hm+ibTGgJKEJXo42VZQ8TmGlG0ElwShblC93s0wvXPnzsFqtTr+HRwc7HK5xx9/HAsXLvS4rqFDh8Jms+H8+fNO9zc2NqKiogI2m83j8y9fvoyUlBT07NkTH374Ibp37+54LC8vD1999RXee+89AEBLy7VhBvr27Yunn34azz77rMd1k3GxCs59INnZcjIFlj3PXMHlIaF6N4OIiLygZcWe7OFkK4aURN5hQGkQRhs3UKZwspWeIWWv03W4NMx1+NQVPb9tweXBAYqtj/RhtVqdAkp3+vXrh379+nW6XGJiIiorK1FYWIhx48YBuBYuNjc3IyEhwe3zqqqqkJycjODgYOzZswchIc4Vo++//z6uXPm+ou3IkSP42c9+hr/97W8YNmxYp+0iMhpvQ0lv1yFTWCmasO8s0nS5JCIyEqOEk63UDCnjbeV+T7AWGF2LxrIwhVpE1DUcIIpc0rN7t4zhZCuZ2y6Ks991HpSRPuLj45GSkoLFixfj8OHD+Oyzz5Ceno65c+ciOjoaAFBaWoq4uDgcPnwYwLVwctq0aaipqcGbb76Jqqoq2O122O12NDU1AQCGDRuGkSNHOm5DhgxxvF77MS+J/CVy9+7A06WKhJNarVd0rMAlIpmo8WOIrN27jRZOtjLqdilBq3FeSWw8CwSgxAzeRmGEgE+vbRBhzFAyvu3btyMuLg5TpkzB9OnTMWnSJLz22muOxxsaGnDq1CnU1l77QFxUVISCggJ89dVXuP766xEVFeW4nTsn/9+7DLr6izp/RdeWFgGiyEGlyMExERFdo0X3boZ4cmJvA1ICu3grxEhVXwy6iMidiIgIZGdnu308NjbWMYYkAEyePNnp397oynNILErM4K1G9ZuIIZgegWHg6VJ2+zagvItx/GJPRFIzw3uYWl29lejmTaQ3VlAagFHGnzRC9WQrI20LERGpQ89qRhGrKUUMkImIZO16qnT3brWrJ80QTrYSdVtlHRKAjKNL77ZbtmxBbGwsQkJCkJCQ4BhrzJ3KykosXboUUVFRCA4Oxg9+8APs27evSw1WW66ds2vpwYiBnh7bpGT1q7/BN4cuIJkY+bpGYhIlHBSlHWrhOJRkRrymERGRjHwOKHfu3ImMjAxkZmaiqKgIo0ePRnJyMs6fP+9y+fr6ekydOhVnz57Fe++9h1OnTuH111/HgAHsWkTXGDGcbGXkbSMyCl7XzEGk6jzRQkHR2iMaJYYsINIKr2mkBlZPKk+NbdZijFAiNfk8BuWGDRuwePFiLFq0CACQlZWFjz/+GFu3bsWyZcs6LL9161ZUVFTg0KFD6N69O4BrY5SRmDj+JBGZDa9rpCVRw0BRxqXseeYKLg8J1bsZimksC2OXOdIUr2lyMvMEI2YMJ1upNR4lkax8+km4vr4ehYWFSEpK+n4FFguSkpKQn5/v8jl79uxBYmIili5disjISIwcORK/+c1v0NTU5PZ16urqUFVV5XQzKrN3gzVDhaHW22jWkJnDM1BXaHFdM9M1TSlG7ZYrajjZSvT2EZFn/K5GrfjDCBHJyKeA8uLFi2hqakJkpPPsUJGRkbDb7S6f869//QvvvfcempqasG/fPjzzzDNYv349nnvuObevs3btWvTq1ctxi4mJ8aWZpiLzBDlmCCdbybqtMp9fRN7Q4rrGa5r+ROjeLUv4J0s7jY4zsVJX8LsaqUHNbsNmrp5spfQ+YDdvkpnqg+o0Nzejf//+eO211zBu3DjMmTMHTz/9NLKystw+Z/ny5bh06ZLjdu6cnOGObMxaeUdE5Atfr2tmu6ZxvL6OZAv9ZGtvZ4xakUukBH5XI70wnBQTq29JTz6NQdm3b19069YN5eXOqXx5eTlsNpvL50RFRaF79+7o1q2b4774+HjY7XbU19cjKKhjF+fg4GAEBwf70jSSjKwVhf4IKj6H+nj+wkwkEi2ua7ymmZvRwj4tGG0cSiKt8LsakZyMMhZl7cBm/lBNfvHp7AkKCsK4ceOwf/9+x33Nzc3Yv38/EhMTXT7nlltuwTfffIPm5u9/vf7HP/6BqKgolxc8IvKfKNWwXR1j9ex3/RRuCZFrvK651lgWpncTFKNn926Zw0mZ205kVrymkSxYPUlErvgcb2dkZOD111/HO++8g+LiYjz00EOoqalxzBS3YMECLF++3LH8Qw89hIqKCjzyyCP4xz/+gY8//hi/+c1vsHTpUuW2QmcMU3xjxurJVmbediJR8bomFnbHFQdDSiL58JpGSnbR5XiGcuJxI1n51MUbAObMmYMLFy5g5cqVsNvtGDNmDHJychyDMZeUlMBi+T73jImJwZ/+9Cc89thjuOmmmzBgwAA88sgj+PWvf63cVpDftKq4Y0BHInmvaizutRbp3QzSGa9rpAaGe/4RrZt32HcW1A5keE7i4zWNSE5G6eZN5A+fA0oASE9PR3p6usvHDhw40OG+xMREfP755115KfKAMyzLSbaxKHt+24LLgwP0bgaRqnhdIyUZKZwMPF2KxmED9G4GEfmA1zS5mO3HD3bvJiJ3OIKpjro6Ph+RN0QZh5KISC96jj9pJEYIXDl0ABERiY7hLZkdA0rSDLt3f4/7gojImIwQ5hEREakxjiEDODkoOY4pkS8YUBIr7YiISBFh3/FjhVHpEbyyApaIiKhrOFEOyYjfJEgTrBjsiPuEiNRWbI/Uuwk+kb0bLqsnyZXGsjC9m0BERJJglSmZGQNKIgNjdSwRmRWr75THAJaIiLqKwRsRdYYBJamOlYLmxsmgiMgMGN4REZHeOHYgEcmMAaWken7boncTSAGyhLc834j0l3cxTu8mEEkdxMo+hAAREZkDq03JrBhQmhy7ABMREflH5tBOdCJ11eckUERkFpxghYj0wE9abeTaWZ2iNFkqBImIiIiIiEh5rAjUB4Nmkg0DSiKdMcQlIlKWSFV3RsSKUTKSiooKpKamwmq1Ijw8HGlpaaiurva4/MMPP4wbbrgBoaGhGDRoEH75y1/i0qVLLpf/3//9XwwcOBABAQGorKxUaSuIiMRQO5DDqahly5YtiI2NRUhICBISEnD48GGPy+/atQtxcXEICQnBqFGjsG/fPqfHW1pasHLlSkRFRSE0NBRJSUn45z//6bRMUVERpk6divDwcPTp0wdLlizxeI30FwNKIoOTtRv/2e/66d0EIlNqLAvT5XVlHR+QYR2R3FJTU3HixAnk5uZi7969OHjwIJYsWeJ2+bKyMpSVlWHdunU4fvw43n77beTk5CAtLc3l8mlpabjpppvUaj4REZnAzp07kZGRgczMTBQVFWH06NFITk7G+fPnXS5/6NAhzJs3D2lpaTh69ChmzpyJmTNn4vjx445lXnzxRWzatAlZWVkoKCjAddddh+TkZFy9ehXAtetdUlISrr/+ehQUFCAnJwcnTpzAwoULVdtOBpQ64czGREREJCsGs2QExcXFyMnJwRtvvIGEhARMmjQJmzdvxo4dO1BWVubyOSNHjsT777+Pu+++G8OGDcOdd96J559/Hh999BEaGxudlv3973+PyspK/OpXv9Jic4jIQPTuFs8Z4cWyYcMGLF68GIsWLcKIESOQlZWFsLAwbN261eXyr7zyClJSUvDEE08gPj4ea9aswdixY/Hqq68CuFY9uXHjRqxYsQL33HMPbrrpJmzbtg1lZWXYvXs3AGDv3r3o3r07tmzZghtuuAE/+tGPkJWVhffffx/ffPONKtvJgNJPrPJyj12Xvcd9RURE5Bq77JNa8vPzER4ejvHjxzvuS0pKgsViQUFBgdfruXTpEqxWKwIDAx33ff3111i9ejW2bdsGi4VfuYiIOlM9gO+VrtTX16OwsBBJSUmO+ywWC5KSkpCfn+/yOfn5+U7LA0BycrJj+TNnzsButzst06tXLyQkJDiWqaurQ1BQkNM1LDQ0FADw6aefKrNx7fAMMDFZu/4SEZF4zDjDMasIibRTVVXldKur8/9zrN1uR//+/Z3uCwwMREREBOx2u1fruHjxItasWePULbyurg7z5s3DSy+9hEGDBvndTtKXrEOQiELvSkAiUXl7Xbt48SKampoQGRnpdH9kZKTba5Xdbve4fOt/PS1z5513wm6346WXXkJ9fT3+85//YNmyZQCAf//73z5urXcCO1+EiIiIiMhZ4OlSNA4boHczSCBN9jC0hIQous7mq9d+/IiJiXG6PzMzE6tWrXL5nGXLluGFF17wuN7i4mK/21ZVVYUZM2ZgxIgRTm1Zvnw54uPj8dOf/tTv1yAidUzv8bXL+/dVj9C4JSQyUa5rerjxxhvxzjvvICMjA8uXL0e3bt3wy1/+EpGRkar1DGBAKaGe37bo3QQyoZ7ftuDy4AC9m+FRrj0OU238lZbIzNgdmDzpUdrMLmSSOnfuHKxWq+PfwcHBbpd9/PHHOx3Ef+jQobDZbB0mGGhsbERFRQVsNpvH51++fBkpKSno2bMnPvzwQ3Tv3t3xWF5eHr766iu89957AK6N9QUAffv2xdNPP41nn33W47qJSD3ugsn2jzOoJLV5e13r27cvunXrhvLycqf7y8vL3V6rbDabx+Vb/1teXo6oqCinZcaMGeP49/3334/7778f5eXluO666xAQEIANGzZg6NCh3m+oDxhQkio4pqLvgorPoT4+pvMFiYhId+zeTaQtq9Xq9EXOk379+qFfv87HiU9MTERlZSUKCwsxbtw4ANfCxebmZiQkJLh9XlVVFZKTkxEcHIw9e/YgpF11zfvvv48rV77/seTIkSP42c9+hr/97W8YNmyYV9tA5hH2nQW1A9mNXAudhZPtl2VISWry9roWFBSEcePGYf/+/Zg5cyYAoLm5Gfv370d6errL5yQmJmL//v149NFHHffl5uYiMTERADBkyBDYbDbs37/fEUhWVVWhoKAADz30UIf1tXYF37p1K0JCQjB16lQfttR7DCiJTKDX6TpcGua+0oCIiIjEUmyPRLytvPMFqcvi4+ORkpKCxYsXIysrCw0NDUhPT8fcuXMRHR0NACgtLcWUKVOwbds2TJgwAVVVVZg2bRpqa2vx7rvvOsYOA64Fo926desQQl68eNHxeuHh4ZpuIxFd40s42fY5eoaUd/Y9ibyLcbq9PokjIyMDDzzwAMaPH48JEyZg48aNqKmpwaJFiwAACxYswIABA7B27VoAwCOPPILbb78d69evx4wZM7Bjxw588cUXeO211wAAAQEBePTRR/Hcc89h+PDhGDJkCJ555hlER0c7QlAAePXVVzFx4kT06NEDubm5eOKJJ/Db3/5WtWsZA0oiIiIi6hKOQ0my2759O9LT0zFlyhRYLBbMmjULmzZtcjze0NCAU6dOoba2FgBQVFTkmOH7+uuvd1rXmTNnEBsbq1nbicg7XQknjSLeVo5ie2TnC5LQ5syZgwsXLmDlypWw2+0YM2YMcnJyHJWNJSUlTuNCTpw4EdnZ2VixYgWeeuopDB8+HLt378bIkSMdyzz55JOoqanBkiVLUFlZiUmTJiEnJ8epV8Dhw4eRmZmJ6upqxMXF4f/+3/+L+fPnq7adDCiJSHXBJUGoG1SvdzOIiEhSPc9cweUhoXo3gwwoIiIC2dnZbh+PjY11jCEJAJMnT3b6tze68hwiEoPeVZRErdLT09126T5w4ECH+2bPno3Zs2e7XV9AQABWr16N1atXu11m27ZtPrfTHxwlnIiIiMgHHH+SiIhIDmauniSSDQNKk+p1uk61dXOCnK7jviMiM+pRyskBSA5h3/GjM5EZyXKdaiwL07sJhsSQk0gb/JRFRERERKQihgZEREREnjGgJCIiIqIuY5d3IiIiIvIXA0oiIiIyhJ5nrujdBCIiIjIgdvMmUh8DSiIiIiIvsVqQiIiUxvFtiYgYUBIRERERERF5JMtEOUREsmJASURERERERERERLphQEmKCio+p3cTyI1ep+v0bgIREREREQmu2B6pdxOIyIQYUBIJhiEvERHJhmNzEhGJobEsTO8mOMm7GKd3E4hIEgwoiYiIiIiIiDrBcSjNa1/1CL2bQGR4DCiJiIiIyDQYMBCRiDiTN5kdr8/Ed0EiIiIiEl7PM1f0bgIREUmGlY9E8mBASURe6/lti95NICIiIiIiIiKDYUBJRERERERE5AWzdEM10kze/lZRsgqTSBsMKCXDCjYi0lNFRQVSU1NhtVoRHh6OtLQ0VFdXe3zOL37xCwwbNgyhoaHo168f7rnnHpw8edLx+Jdffol58+YhJiYGoaGhiI+PxyuvvKL2phAREREJRalxKDmTd0cMGYnEx4CSiIi8lpqaihMnTiA3Nxd79+7FwYMHsWTJEo/PGTduHN566y0UFxfjT3/6E1paWjBt2jQ0NTUBAAoLC9G/f3+8++67OHHiBJ5++mksX74cr776qhabROS1wNOlejeBiIiINMRgk0g7gXo3gIiI5FBcXIycnBwcOXIE48ePBwBs3rwZ06dPx7p16xAdHe3yeW0DzNjYWDz33HMYPXo0zp49i2HDhuFnP/uZ0/JDhw5Ffn4+PvjgA6Snp6u3QURERERd0KO0GdUDWOsjm9awcXqPr31aXmZG6qpPxsd3VSIig6qqqnK61dXV+bW+/Px8hIeHO8JJAEhKSoLFYkFBQYFX66ipqcFbb72FIUOGICYmxu1yly5dQkREhF/tJSIiIiJqz5vg0QjhJJFsWEFJRKSjoHNB6BYSpOg6m65eG7y9fQCYmZmJVatWdXm9drsd/fv3d7ovMDAQERERsNvtHp/7u9/9Dk8++SRqampwww03IDc3F0FBrrf70KFD2LlzJz7++OMut5WIiIhIRmHfWVA70P+JeBrLwhAYXevXOortkYi3lfvdFuDaOJR39j3Z+YIaYQBJJB5WUErm8uAAvZtARJI4d+4cLl265LgtX77c5XLLli1DQECAx1vbSW26IjU1FUePHsUnn3yCH/zgB7jvvvtw9erVDssdP34c99xzDzIzMzFt2jS/XpOIiIhILWaZzZv0I8LkQr5SaqInMidWUBIRGZTVaoXVau10uccffxwLFy70uMzQoUNhs9lw/vx5p/sbGxtRUVEBm83m8fm9evVCr169MHz4cNx8883o3bs3PvzwQ8ybN8+xzNdff40pU6ZgyZIlWLFiRaftJiIiIiIiImNgQElEZHL9+vVDv379Ol0uMTERlZWVKCwsxLhx4wAAeXl5aG5uRkJCgtev19LSgpaWFqcxMU+cOIE777wTDzzwAJ5//nnfN4JIA43DBnAmbyIiUp1S3byVYORu3uReY1mY3k0gE2L9LREReSU+Ph4pKSlYvHgxDh8+jM8++wzp6emYO3euYwbv0tJSxMXF4fDhwwCAf/3rX1i7di0KCwtRUlKCQ4cOYfbs2QgNDcX06dMBXOvWfccdd2DatGnIyMiA3W6H3W7HhQsXdNtWIiIios6I3s2bIRMRyYQBJRF5jWOg0vbt2xEXF4cpU6Zg+vTpmDRpEl577TXH4w0NDTh16hRqa68Nyh4SEoK//e1vmD59Oq6//nrMmTMHPXv2xKFDhxwT7rz33nu4cOEC3n33XURFRTluP/rRj3TZRiIiIiIiItIWu3gTEZHXIiIikJ2d7fbx2NhYtLS0OP4dHR2Nffv2eVznqlWr/JpdnIiIiMho2M2biMyGFZREREREREREXcBu3qQGGWfwJvIXA0pSVH18jN5NICIiIgO6PCRU7yYQERFJo9geqXcTiHzCgJJIMAx5iYiI1FM9gB9/iUhZalVRhn0nzvuVkmEXqwOJyBVx3vGISFWXhgXr3QQiIjKoxmED9G4CERG5wW7eRCQDBpREREREREREfhB9LErRsIrSPe4bMisGlEREREREROSXnmevoOeZazdSjlG7eRMRtSfOux0RERERERFJrzWoZFgpDhG7ebNSUEwinitkDgwoiYiIiLzEsRaJiHxjpqDSDN28WUWpLqVCWx4nkhEDSpPihClERGQ0l4eE6t0EIiJyw0xBpdKU6uYtYmUcqyiNQ6ThCEhOPINIcfXxMXo3gYiIiIiIBGT0oNIMVZRKY0hJRAADSiKhMNwlIiLZsNs7EXWF0YNKpYlURcnuw+pgUEtmx4CSiIiIdFU9gB9HSA61A7tWGRUYXatwS4iMw4hBJasofcdwztz4N0MAA0oi0kDdoHq9m0BEpBhWDBIRKc+IQaXSRBrjT40qSjOHlEpuOytcSVbivMMREREREbnACZCIzMMoIaXIFWEiTpZDYuC5QXpiQCmhy4MD9G5CpziWolg4azsRERERyYLVlO6xitJ4zLjNRK6I8+5GZHIMdYmISDbs7k6yq6ioQGpqKqxWK8LDw5GWlobq6mqPz/nFL36BYcOGITQ0FP369cM999yDkydPOh7/8ssvMW/ePMTExCA0NBTx8fF45ZVX1N4UQ5I9qGQVZdcwsCPqaMuWLYiNjUVISAgSEhJw+PBhj8vv2rULcXFxCAkJwahRo7Bv3z6nx1taWrBy5UpERUUhNDQUSUlJ+Oc//9lhPR9//DESEhIQGhqK3r17Y+bMmUpulhMGlH6KHXhB7yZ0GavqyBcyVO5OtZ3sfCEiIiIJxNvK9W6CKaSmpuLEiRPIzc3F3r17cfDgQSxZssTjc8aNG4e33noLxcXF+NOf/oSWlhZMmzYNTU1NAIDCwkL0798f7777Lk6cOIGnn34ay5cvx6uvvqrFJhmSzCGlGoxeRWkmSoexPB7GtHPnTmRkZCAzMxNFRUUYPXo0kpOTcf78eZfLHzp0CPPmzUNaWhqOHj2KmTNnYubMmTh+/LhjmRdffBGbNm1CVlYWCgoKcN111yE5ORlXr151LPP+++9j/vz5WLRoEb788kt89tlnuP/++1XbTnHe2UyGk4YQEREpT6uxClk5KCfOGE9tFRcXIycnB2+88QYSEhIwadIkbN68GTt27EBZWZnb5y1ZsgS33XYbYmNjMXbsWDz33HM4d+4czp49CwD42c9+hldeeQW33347hg4dip/+9KdYtGgRPvjgA422zJhkraY0QxUlu3qTSKG5EW3YsAGLFy/GokWLMGLECGRlZSEsLAxbt251ufwrr7yClJQUPPHEE4iPj8eaNWswduxYxw9lLS0t2LhxI1asWIF77rkHN910E7Zt24aysjLs3r0bANDY2IhHHnkEL730Eh588EH84Ac/wIgRI3Dfffeptp08i0g17LJMRERkXAxpSUtVVVVOt7q6Or/XmZ+fj/DwcIwfP95xX1JSEiwWCwoKCrxaR01NDd566y0MGTIEMTHuP/teunQJERERfreZWE3ZygyBkNFDStG2T+Ru/0bk7XWtvr4ehYWFSEpKctxnsViQlJSE/Px8l8/Jz893Wh4AkpOTHcufOXMGdrvdaZlevXohISHBsUxRURFKS0thsVjwwx/+EFFRUbjrrrucqjCVFqjamonIawxziUh2tQObTfFliYjcCy21oFuwsu8DTXXX1tc+/MvMzMSqVav8Wrfdbkf//v2d7gsMDERERATsdrvH5/7ud7/Dk08+iZqaGtxwww3Izc1FUFCQy2UPHTqEnTt34uOPP/arvfS9nmeuaFYxr4Qepc3CVnA3loUhMLrW7/UU2yNVGZoi72Ic7uzLYZy8we7dyhPhunbx4kU0NTUhMtL5+EZGRjqNf9yW3W53uXzrta31v56W+de//gUAWLVqFTZs2IDY2FisX78ekydPxj/+8Q9VfnQT811SJxy/joiIiLzFCkJtyBRCkHrOnTuHS5cuOW7Lly93u+yyZcsQEBDg8ebuS523UlNTcfToUXzyySf4wQ9+gPvuu89p3K5Wx48fxz333IPMzExMmzbNr9ckZ7J1+Vajq7dZfhgUrdJQCUbcJvKNL9c1PTQ3X3vPevrppzFr1izH+MsBAQHYtWuXKq/JCkpSVX18DIKKz+ndDFOTdTIkmSegIiIyOoazpDWr1Qqr1erVso8//jgWLlzocZmhQ4fCZrN1mGCgsbERFRUVsNlsHp/fq1cv9OrVC8OHD8fNN9+M3r1748MPP8S8efMcy3z99deYMmUKlixZghUrVnjVdvKdbNWUIhK9ihIwViUlw0kCvL+u9e3bF926dUN5ufPfVnl5udtrlc1m87h863/Ly8sRFRXltMyYMWMAwHH/iBEjHI8HBwdj6NChKCkp6bTdXWGOn1zILVnDKyNh924iEokSX1C6QtSub0Qkn379+iEuLs7jLSgoCImJiaisrERhYaHjuXl5eWhubkZCQoLXr9fS0oKWlhan8cNOnDiBO+64Aw888ACef/55RbePOpKlmlLkKkqRJ8xpZYRgT61tYPdu4woKCsK4ceOwf/9+x33Nzc3Yv38/EhMTXT4nMTHRaXkAyM3NdSw/ZMgQ2Gw2p2WqqqpQUFDgWGbcuHEIDg7GqVOnHMs0NDTg7NmzGDx4sGLb1xa/DUjq8uAAvZtAREQkJC0raVhJSCSv+Ph4pKSkYPHixTh8+DA+++wzpKenY+7cuYiOjgYAlJaWIi4uDocPHwZwbUyutWvXorCwECUlJTh06BBmz56N0NBQTJ8+HcC1bt133HEHpk2bhoyMDNjtdtjtdly4wN4hapMhpCT/yBxSitx2TpAjtoyMDLz++ut45513UFxcjIceegg1NTVYtGgRAGDBggVOXcQfeeQR5OTkYP369Th58iRWrVqFL774Aunp6QCAgIAAPProo3juueewZ88efPXVV1iwYAGio6Mxc+ZMANcqPB988EFkZmbiz3/+M06dOoWHHnoIADB79mxVtpNdvEl17OZNRERkHAxlyUi2b9+O9PR0TJkyBRaLBbNmzcKmTZscjzc0NODUqVOorb1WXR4SEoK//e1v2LhxI/7zn/8gMjISt912Gw4dOuSYcOe9997DhQsX8O677+Ldd991rGvw4ME4e/aspttnRqJ3+VZjwpyw7yyoHeh/daYMXb0BY3X3NgJ/q3jVqCw2mjlz5uDChQtYuXIl7HY7xowZg5ycHMckNyUlJbBYvj8OEydORHZ2NlasWIGnnnoKw4cPx+7duzFy5EjHMq0TvS1ZsgSVlZWYNGkScnJyEBIS4ljmpZdeQmBgIObPn48rV64gISEBeXl56N27tyrbyYCSSEeydO9mxS4RkXuNwwYg8HSp3s0glSnx5Z/EExERgezsbLePx8bGoqWlxfHv6Oho7Nu3z+M6V61a5fcM4+QfM4aUotEipAQgTVCpZvUku3ebQ3p6uqMCsr0DBw50uG/27NkeKx0DAgKwevVqrF692u0y3bt3x7p167Bu3Tqf29sVxn5XJDI5EcYYrRtUr3cTiIhIIVpXTyoZMBg9DCAiZ7KMS6kU0cai1IrI3aZbydBGIhHwkxppEmLJUimoJe4TIvKFLBUCREREIhE1pDRDt1atKvtEDQDzLsap3jYl9rFsoTQZFwNKHbGyjIiISB1ad+3juIxEROISNaRUmohVlFqGlCIFlSK1hUgWDChJM6wYJCIikhdDWCKSmYghpRpVlGYOKQExgkqtXp9jT5LRMKCUGCcukRfDWiLSgpqD07vi7yQiso8RyACPXFFiRlwiUoaI41Kaoas3oH2YpkdQKUI46it/g2ilAnEigAGlImIHXtC7CX7TajIVBnPaEWGCHCIiszFqSKnHdok8Ay8RyU20kFJpIlZR6kWL0FCPYJLVk2REgXo3gMhsZAtpjVype6+1SO8mEBEJz6ihKxGZW88zV4T5IaRHabPivQjCvrP43bMBuBZSKlUJXmyP1Lx3R6u2AaISEw/KVilJJAMGlKS5+vgYBBWf07sZRERkcJeHhOpSJdM4bAACT5dq/rrknuzDBxCROoweUopIz5CylatwsbPQUqRA0kjVk2YZ4oC8w4CSSEOyVU8SEZG56VU9KUpgQETGJ1JIqTQRqygBMULK9kQKILXC8SdJNF06o7Zs2YLY2FiEhIQgISEBhw8f9up5O3bsQEBAAGbOnNmVlyUXlOx+q+WYhQzq1CXK+JN1g+q79DwjjOtKcuF1jZRmhG7RRtgGpSjxBZ9IK7ym+U6UMSnNMqs3YKwqQC1xv5GR+fxutXPnTmRkZCAzMxNFRUUYPXo0kpOTcf78eY/PO3v2LH71q1/h1ltv7XJjjairAY4RmC2kNNv2EsmC17WO9Jx1WOnubXpWxTDgIyKt8ZrWdUYOKZXCkJKI1OTzt4ANGzZg8eLFWLRoEUaMGIGsrCyEhYVh69atbp/T1NSE1NRUPPvssxg6dKhfDSaSkazhpJEnyCFqxesaqUnWkFLWdhOZHa9p/ul55oowQaWSRO6Ky5DSe0ruKyPM0E7G49M7VX19PQoLC5GUlPT9CiwWJCUlIT8/3+3zVq9ejf79+yMtLc2r16mrq0NVVZXTjYxJ1uBOZKJ07yaSgRbXNV7TSDZ6h5NKV72aYdIJIoDf1ZSkd0hppq7eAENKb3AfkRn49C518eJFNDU1ITLS+Y8jMjISdrvd5XM+/fRTvPnmm3j99de9fp21a9eiV69ejltMDEMsregRbhk9pDT69oliqs3zzHtErmhxXTPbNY1j9XWkd+DnC5naamSiTR5BcuB3NWUZMaRUCkNKuSlx/ESuyiV5qXpWXb58GfPnz8frr7+Ovn37ev285cuX49KlS47buXPnVGylMxlDDnbDFRfDSSJj6cp1Tc9rGl0jwuysMgR/MrSRiJQj43c1rRktpFQyVGJIqR3uFzKLQF8W7tu3L7p164bycudfdcvLy2Gz2Tosf/r0aZw9exZ33323477m5mtvsoGBgTh16hSGDRvW4XnBwcEIDmY3VTOpj49BULFxP9wQkZi0uK7xmua76gEWoStHuqpx2AAEni7VuxkuiRJOihAmE8mK39XU0fPMFUO9N4V9Z1Gst0NjWZjiE+sV2yNZRd6GkcNJI37WI//49BNKUFAQxo0bh/379zvua25uxv79+5GYmNhh+bi4OHz11Vc4duyY4/bjH/8Yd9xxB44dO2ao7gCxAy/o3QTF6DWGodGqDfXYHiWPnb+VuWaeoZ7kwesaaU2UILAtEdskEn++yCv9xZ3IE17T1KNnJaUZQxwjh3K+UGM/cHIcEplPFZQAkJGRgQceeADjx4/HhAkTsHHjRtTU1GDRokUAgAULFmDAgAFYu3YtQkJCMHLkSKfnh4eHA0CH+82sblA9gkuC9G6GEIxSSWm0sJXIyHhdM4fLQ0J176rXSqRKSqOHk5wgh8yG1zT16FlJ2aO0WdH3M9GrKIHvwzmzVlOKHNJy/ElSi88B5Zw5c3DhwgWsXLkSdrsdY8aMQU5OjmMw5pKSElgsPGFld2lYMHqdrtPltWUPKfUKJzl7N1HX8LpGehAhpBQtnDRSF0oivfCapi6GlK6pFVIC5uzyrVY4yepJEp3PASUApKenIz093eVjBw4c8Pjct99+uysvSZ24PDgAPb9t0bsZipE1pGTlpP+MNFwCyYPXNWXVDmz2+9d1NcahFKmKEvg+INQjqBQtnCQi5fCapi4jjUnJkFI8IldOEqmNP5+RsGQL+2RrLxGRJxw7TztahoWNwwYwnDSoO/ue1LsJRKah149doo9HqWaFXrE90vDhnZrbp9SxYfduUhPPLnJLhC7DsoR+erdT6WPl7wQ5ZFwVFRVITU2F1WpFeHg40tLSUF1d7dVzW1pacNdddyEgIAC7d+92eqykpAQzZsxAWFgY+vfvjyeeeAKNjY0qbIH5mKXiQHZqB4eiB5NqVCNx/EkiUpNRQkqlAye1uxEbNaQ06na5I3rYTvow9Ce3e61FejeBFKB3+NcZ0dunB87gbVypqak4ceIEcnNzsXfvXhw8eBBLlizx6rkbN25EQEDH8LupqQkzZsxAfX09Dh06hHfeeQdvv/02Vq5cqXTziYTvlqd0kCh6MCk6pbo+EpEx9TxzRZegkiGlsaop1d4Wjj1JsjB0QCkTJQIdNareRKiiBMQNAUVtF5EaiouLkZOTgzfeeAMJCQmYNGkSNm/ejB07dqCsrMzjc48dO4b169dj69atHR7785//jK+//hrvvvsuxowZg7vuugtr1qzBli1bUF/PsNvMzFwB1xosdiVg7Orz9CJ6aExE1BmRxjfuKtlCSsAYVYcybQO7d5PaeIYpiJN7qEukMLA+PkaY9rB7N7lTVVXldKurq/Nrffn5+QgPD8f48eMd9yUlJcFisaCgoMDt82pra3H//fdjy5YtsNlsLtc7atQoxwyjAJCcnIyqqiqcOHHCrzYTuSJjINY+sPR0IzFwHFcic9E6pFSji6ysIaVMIV8rrdrN6kmSSZdm8SbSS2soqOcM36IEk2QMPc+1oFtQi6LrbKq/tr6YGOdzNTMzE6tWreryeu12O/r37+90X2BgICIiImC3290+77HHHsPEiRNxzz33uF1v23ASgOPfntZLYlNiJm+irjJz9S0R6UfrGb57lDYL/36n5uzebbWGfTKMvS1joEqkBQaUBnN5cAB6fqts2HFpWDB6nfav8kppegSVIgaTonTBJzGdO3cOVqvV8e/gYNfny7Jly/DCCy94XFdxcXGX2rBnzx7k5eXh6NGjXXo+ERmbjNWsRESeyB5Shn1nUXz8Xa1CSkDsoFLrYFLJ6kn+6ExaYEDpwlTbSeTa4/RuBnlBi6BSxGDSqLo6TMJU20mFW2IMVqvVKaB05/HHH8fChQs9LjN06FDYbDacP3/e6f7GxkZUVFS47LoNAHl5eTh9+jTCw8Od7p81axZuvfVWHDhwADabDYcPH3Z6vLz82odKd+sl86geYFGlG9vlIaGGGDOMjEfEL9VE5BuGlB1pGVICYgWVelRMity1mzN4kzsMKAVSN6gewSVBejfDJRGrKNtSOqiUIZRUo3pSifEnOYO3fPr164d+/fp1ulxiYiIqKytRWFiIcePGAbgWQDY3NyMhIcHlc5YtW4af//znTveNGjUKL7/8Mu6++27Hep9//nmcP3/e0YU8NzcXVqsVI0aM8GfTyE+B0bVCf8AluYlePckZvInIH1qHlEozQkgJOIeDWoeV7MpN5BsGlGQo7YNFXwJLGUJJIj3Fx8cjJSUFixcvRlZWFhoaGpCeno65c+ciOjoaAFBaWoopU6Zg27ZtmDBhAmw2m8sqyEGDBmHIkCEAgGnTpmHEiBGYP38+XnzxRdjtdqxYsQJLly512y2dSAmsojQm0cdjIyLz0DKkVGM8SqOElK3aB4ZqBJYihJJK/7jM7t2kFQaUBqTGOJSA+FWUrhg1dOTYk6SX7du3Iz09HVOmTIHFYsGsWbOwadMmx+MNDQ04deoUamu9/+DZrVs37N27Fw899BASExNx3XXX4YEHHsDq1avV2ATSkFIT5ajVzZv0I3NVERGRLxhSdqRnSNmWqzDRl9BShDCyPfZ8IZkxoFRY7MALOPtd510liUSjRPduMr6IiAhkZ2e7fTw2NhYtLZ5/IHH1+ODBg7Fv3z6/20fkK1ZREhGR2hhSdiRKSNmeiKEjkVmwVlcwoo/fx8o9/Yl8DEQ/f4lkd2dfTghF8lPzS7oo3btF/NJNRPrS8scwNXodqNHNl9V+ylJjfyp93NkjhjwR41McKU7NajiRAzIiIupIhBksRcbuxtqRZV9zghwiUgNDyo4ay8IYVCqA+5CMgAElkUTUCodF6N4dO/CC3k0gIoGpXRknS3BGRERyY0jpGgO2rlNr33FyHNIazzgDYxUlkXv3Wov0bgKRFPztqspKNGqldggsSvduIqLOcOxj1xhS+o77jIyEn+SIJMFQmIhIXayiJCIirWgVUspURQkwcPOFmvtKjWPM8SepMwwo3Zhq6/pEBP52VZVlohEGZtpRc18rVWmr13nrz98qEclFiwo5hpTqkGm/suqXiLTCkNI1jkvZOe4fMiIGlAan9tiCDCmJiIjIEy3CSZG6d/szLAIntCIyH4aU7jGEc03t/cKxJ0kvPPOIBMcQmIhkp2RFGqsoiYjIaBhSusdqSmfcF2RkDCgFJUs3b4ABmprU3rcizN4NcAZvIhIPQ0plmK16kuRTUVGB1NRUWK1WhIeHIy0tDdXV1V49t6WlBXfddRcCAgKwe/dup8dKSkowY8YMhIWFoX///njiiSfQ2NiowhaQUcgeUrKaUn1a7AO1jiPHn/Tfli1bEBsbi5CQECQkJODw4cMel9+1axfi4uIQEhKCUaNGYd++fU6Pt7S0YOXKlYiKikJoaCiSkpLwz3/+02mZH//4xxg0aBBCQkIQFRWF+fPno6ysTPFta8VPdCagRQjFkNLcZArUich3/s7kTeYkY8jL8SfNJzU1FSdOnEBubi727t2LgwcPYsmSJV49d+PGjQgI6Pg5u6mpCTNmzEB9fT0OHTqEd955B2+//TZWrlypdPPJYGQOKQFWU6rJrNtN1+zcuRMZGRnIzMxEUVERRo8ejeTkZJw/f97l8ocOHcK8efOQlpaGo0ePYubMmZg5cyaOHz/uWObFF1/Epk2bkJWVhYKCAlx33XVITk7G1atXHcvccccd+O///m+cOnUK77//Pk6fPo17771Xte1kQEmKYUipLLNUTxIR+UqrijkZAzZRcN+RDIqLi5GTk4M33ngDCQkJmDRpEjZv3owdO3Z0WiFy7NgxrF+/Hlu3bu3w2J///Gd8/fXXePfddzFmzBjcddddWLNmDbZs2YL6ev6oS54xpOyc2YJKrbaVY0+Ka8OGDVi8eDEWLVqEESNGICsrC2FhYS6vQQDwyiuvICUlBU888QTi4+OxZs0ajB07Fq+++iqAa9WTGzduxIoVK3DPPffgpptuwrZt21BWVubUI+Cxxx7DzTffjMGDB2PixIlYtmwZPv/8czQ0NKiynYY/A++1FunyuqJ1WWUYJReGvUSkNL0n35C1Mo1Bm9jYvfuaO/ue1LsJqquqqnK61dXV+b3O/Px8hIeHY/z48Y77kpKSYLFYUFBQ4PZ5tbW1uP/++7FlyxbYbDaX6x01ahQiIyMd9yUnJ6OqqgonTpzwu91kfAwpvWP0oNLo22d23l7X6uvrUVhYiKSkJMd9FosFSUlJyM/Pd/mc/Px8p+WBa9eh1uXPnDkDu93utEyvXr2QkJDgdp0VFRXYvn07Jk6ciO7du/u0rd4KVGWtpIi6QfUILgnSuxk+uTQsGL1O+/+B0cxkCyfZvZuI9FA9wKLZeEaXh4Rq9mXRCMwc6pp9OITr/t2MwO7K/l02NlxbX0xMjNP9mZmZWLVqlV/rttvt6N+/v9N9gYGBiIiIgN1ud/u8xx57DBMnTsQ999zjdr1tw0kAjn97Wi9RWz3PXNHk/bRHabMqP/aEfWfR7MfJ1hDPSO/BWgeTaobKMo8/KcJ17eLFi2hqanJ5XTl50vUPlO6uQ63XoNb/elqm1a9//Wu8+uqrqK2txc0334y9e/d2soVdx5+dTUSrKkrZAjaRaLXvWFFLROQbM4duvtByPyn9hVrWKl+zOHfuHC5duuS4LV++3O2yy5YtQ0BAgMebuy91ndmzZw/y8vKwcePGLm4JkfdYSekbI1Qc6rEN7NqtD1+ua3p64okncPToUfz5z39Gt27dsGDBArS0tKjyWqyg9GCq7SRy7XF6N0NKrKQkb/kzHMJUm/G7tBEZSe3AZkU/BGtZRQmwkrIzDHFJTVarFVar1atlH3/8cSxcuNDjMkOHDoXNZuswwUBjYyMqKipcdt0GgLy8PJw+fRrh4eFO98+aNQu33norDhw4AJvN1mF21fLya8NsuFsvkTuspPSdjBWVsger5Dtvr2t9+/ZFt27dHNeRVuXl5W6vKTabzePyrf8tLy9HVFSU0zJjxozp8Pp9+/bFD37wA8THxyMmJgaff/45EhMTO227rxiVC07p7rNaVs6xktI3rJ4kIpHJ9CGftKd1OGnEsSf1HifWSPr164e4uDiPt6CgICQmJqKyshKFhYWO5+bl5aG5uRkJCQku171s2TL8/e9/x7Fjxxw3AHj55Zfx1ltvAQASExPx1VdfOYWfubm5sFqtGDFihHobTobFSsquaa1GFDn807t9ah8bmbt3iyIoKAjjxo3D/v37Hfc1Nzdj//79bkPCxMREp+WBa9eh1uWHDBkCm83mtExVVRUKCgo8Bo/NzdeOpxLjQLvCCkoVxQ68gLPf9dO7GbpiJaV3ZA1zOf4kEemNVZT6M0LlJLt3m1N8fDxSUlKwePFiZGVloaGhAenp6Zg7dy6io6MBAKWlpZgyZQq2bduGCRMmwGazuaxYGTRoEIYMGQIAmDZtGkaMGIH58+fjxRdfhN1ux4oVK7B06VIEB8v5mY/0Z4RKSkC/91vRqipFDk1JPBkZGXjggQcwfvx4TJgwARs3bkRNTQ0WLVoEAFiwYAEGDBiAtWvXAgAeeeQR3H777Vi/fj1mzJiBHTt24IsvvsBrr70GAAgICMCjjz6K5557DsOHD8eQIUPwzDPPIDo6GjNnzgQAFBQU4MiRI5g0aRJ69+6N06dP45lnnsGwYcNUqZ4EGFCa0uXBAej5rTpjBrjCkNIzLcNJVk8SEfmPIeX39AgnRa2eFOVLL/lm+/btSE9Px5QpU2CxWDBr1ixs2rTJ8XhDQwNOnTqF2lrvj2+3bt2wd+9ePPTQQ0hMTMR1112HBx54AKtXr1ZjE8hEZA8pAX26fLfVPhjU8r1btFCSY0/KY86cObhw4QJWrlwJu92OMWPGICcnxzHJTUlJCSyW74/nxIkTkZ2djRUrVuCpp57C8OHDsXv3bowcOdKxzJNPPomamhosWbIElZWVmDRpEnJychASEgIACAsLwwcffIDMzEzU1NQgKioKKSkpWLFihWo/tjGglICMs3m3x5DSNVkrJ4mIukrpcSgB7asoge+DOTMHlUaonCSKiIhAdna228djY2M7nQzA1eODBw/Gvn37/G4fUXsMKZWlZmApWiDZlhbhJLt3Kys9PR3p6ekuHztw4ECH+2bPno3Zs2e7XV9AQABWr17t9sezUaNGIS8vr0tt7SoGlCaldRUlwJCyPa3DSaWrJ5Xo3u3PBDlEZnVn35PIu9i1CdzibeUotkd2+bUDo2uF/rCtB7NWU+oVTqrxZVmUL8lERN5iSKkeM3zOYeUkiYpnpsoYwDhjxeA13A/6utdapHcTiEhhenb7NVslodm2l4hIRLJPnANcC8oYlhFRK74bdGKq7aTeTQCgzmQkeo1HaOZw7tKwYF22n2NPEpFIRKyY8JcZQrvLQ0J13U5Rx54kItKLEUJKgBV9WtJqX7N7N3UF3wlIF3oFdXoy0vaKMHu3KD8eEJE49A6w9A7w1GTU7VIqLPd3zLJ4W7ki7SAi82FISd7iPibR8Qw1Ob0r64wU2nmi53bqfYzd4fAHROZmxCrKVkYK80QJXfUOn4mIRGakkJIhmjq03K+snqSu4l+/BpQKYtSqWtM7wDJySKl3pagax1aE6kki0o+Ss1uqQZQgS5Rgzx+yt5+IyEyMElICrPRTGvcnyYJnKglB7yBPDUbbHiIi8p2MIZ9o4apaobORq3iJyJyMFlIyWPMf9yHJxBRnq5Fm7DVqFWUrIwSVomyDKMeUiMQi0lh3agVEolRRthIt8HNHxHaKdixd0buq+M6+HJOZiL5npJASYMDmDz32Hbt3kz/41+4FTsahPVFCPl/I2GZfKRWQc/xJIlKbiMFWawAoWggoYpvUxupJIjIyI4aUDCp9w/1FMuJZqxEZAhkRK+5kCP1EbKOIx1JJ/NGASF96V4wZgd6hoKhhaVsihsxERLIwWkgJMKj0ll77iNWT5C/+dUtIzUlKRA22RAwBRWwTIO4xJCJyRc1KNhkCLi2DQhlCyVYyHDuliDTsAhEZixFDSoDVge4wwCXZBerdABLP5cEB6Plti97NcKltINjrdJ2ury8iNcNJzt5NRDKqHmCR5hf99sGhv18sZQgi9aBkKM5qYiISXc8zVzS5HvQobdb0x6XWII5DdlyjdzApy2ctEhsDSknVDapHcEmQ3s3QlVZhpeihpGxkGO6AiDoXGF2LxrIwRdZVO7BZ9w/WIjJrwGim6kkiIi1oGVIC2r6PM6jUP5wkUgrPZA3JFMzI1k24tbt125ue69EDqyeJzMPfWXvN1qWUgZc81D5WZv4CS0TmplV3b0Cfajozdm8WZZtZPUlKYQWll6baTiLXHqd3M5yoXUUpcldvb8gULvpLtkBZT/dai/RuAhG5oHYVpUxdvc1KtiCZ3buJSDatIaURu3y3MktFpQjBJJHSeFaTRwy+xKf2MVKyelKJKmLO4E1EXSVbAEbKMvqXVSIibxl18py2WqsLjRbkibZN/PGXlCTOmW0SSnfz1qLrLUNKIiJyRekKMi0CJIaUYjLrcTHbcAtEJA4zhJStRAv1usII20DUGXbxJpKYTNWTRERErmgRTiodfrN7N5H5BJ4u7XBf47ABOrREOUaePMeVtgGfLFX1IoeSIoTPZCzinu0KM/K4c6yiNCfZjolMk0QRmYGolVusojQXHgsiElng6VLHrbPHPS0nMqNPnuOOyF3ARW4bkZp4xvtAqbHvZA1qZAvEjEyLY8HqSSLyhqyVZAzG9KfVMZClSqYr7uzLcZmJ1OBP2ChjUGnWkLJV20BQr1BQ79f3lYjHkeTHLt4GofaM3q1kn9nbCMwcFHOCHCJzUHtG71ac2Vs/DIiJSERKBott1yVDV3CtunsD+s3w7S1Xn0GU/LFLlhDSHX52IrUwoCSfMaTUj1bhpNLVk7JWDROR8TGk1J6WX0rVqJ5UqmpY1GEWiMxKzarH1nWLHlRqHVIC8vxgJXuoSCQD/pXpRI3ARssuuWau4tML9zkRiUqNbt5adsuV5cuREXBfE5GItOqSLUPXby27ewOsxpMNjxepiZ8SqcsYmGlHy33NsSeJzIMVXN9jcKY+rfexyNWTRCQOrUNDGcao1COkZPAlPh4jUhs/jftIyTHwZK+iBK4FZwwq1SX7/mX3biJ1mGFyDK0nN2FIqR7uWyIiZ6IHlVqHlAADMCKz46dFA9KjAk72EE1UWu9Xkasnlfhx4F5rkQItISJXjFJZVj3AwjBNYXrsTyPP3E1EyhEhIBShDe4wpKRWPC6kBX4CJ8UwpFSOHpWpIoeTRGReegVNDCmVYaT9qGQIz+EViPQnUjAocjWlXiElAzFx8FiQVozzqVFSanV/1StsYkjpPyPtQ3bvNp6KigqkpqbCarUiPDwcaWlpqK6u9uq5LS0tuOuuuxAQEIDdu3c7PXbkyBFMmTIF4eHh6N27N5KTk/Hll1+qsAWkJrWqKBlSykfPSlRWTxKRrBhSOmMwpj8eA9KSqT55K9W9U8lxKNWkZ0hppJBNS3rtN1ZPkrdSU1Nx4sQJ5ObmYu/evTh48CCWLFni1XM3btyIgICO53h1dTVSUlIwaNAgFBQU4NNPP0XPnj2RnJyMhoYGpTeB2mEll2cMKX2n5z5jOElE3hA1CATEbZueISVDMn1wv5PW+KlbAEatMmNI6T09Q121wkklz2tZfhQwuuLiYuTk5OCNN95AQkICJk2ahM2bN2PHjh0oKyvz+Nxjx45h/fr12Lp1a4fHTp48iYqKCqxevRo33HADbrzxRmRmZqK8vBzffvutWptDktEzeOK4lN4z6n4ScYxVM0yURWRWonb51iukBBiWEZmBMT9FkoPelXGspuwc9w/JIj8/H+Hh4Rg/frzjvqSkJFgsFhQUFLh9Xm1tLe6//35s2bIFNputw+M33HAD+vTpgzfffBP19fW4cuUK3nzzTcTHxyM2NlaNTSEVqRnk6F0dZ9TwTQkihLh6nx/eYtUykb5EDP7cEbGteoeUDCq1wf1MeuAnbRPQO6QEGMK5IkJ4K8K5QeqpqqpyutXV1fm1Prvdjv79+zvdFxgYiIiICNjtdrfPe+yxxzBx4kTcc889Lh/v2bMnDhw4gHfffRehoaHo0aMHcnJy8D//8z8IDAz0q81EShMhiBOJKPtDzXBSxOpJIjIPhpQdMahUF/ct6UX/T5SSUrrLqdrdvEUIokQI5EQhwn5Q85ww6rAFarCeqUOv08rerGeuBZExMTHo1auX47Z27VqXbVi2bBkCAgI83k6e7Np73p49e5CXl4eNGze6XebKlStIS0vDLbfcgs8//xyfffYZRo4ciRkzZuDKFX0/AJuF0hVdRq6ibCVKMKcnUbZflHOCiEgtooaUIgSVpCzuU9ITS1NIc63hXM9vW3RuifZECCYBMQJrbyn1Y4BSk2TJ5Ny5c7BarY5/BwcHu1zu8ccfx8KFCz2ua+jQobDZbDh//rzT/Y2NjaioqHDZdRsA8vLycPr0aYSHhzvdP2vWLNx66604cOAAsrOzcfbsWeTn58NiuRZ4ZGdno3fv3vjjH/+IuXPndrKl5nVn35PIuxindzM0VzuwGWHfiRGOtYZ0ZvpAL0owqQVWTxIZi4hBn7da2944bIDOLXHW88wVXB4Sqtvrt15/zXRtUouZPsuQmBhQCiR24AWc/a6fauuvG1SP4JIg1dbvKzMFlaIEk1pg9aQ4rFarU0DpTr9+/dCvX+fvPYmJiaisrERhYSHGjRsH4FoA2dzcjISEBJfPWbZsGX7+85873Tdq1Ci8/PLLuPvuuwFcG6PSYrE4zfDd+u/mZn5QItdECikBcwSVIn75k616kuNPEpG/Ak+XMqR0gUFl1xn5swvJhX+9fpBxZmERK+eM3PVbxG0T8RwgOcTHxyMlJQWLFy/G4cOH8dlnnyE9PR1z585FdHQ0AKC0tBRxcXE4fPgwAMBms2HkyJFONwAYNGgQhgwZAgCYOnUq/vOf/2Dp0qUoLi7GiRMnsGjRIgQGBuKOO+7QZ2NNSKZu3iIzYtdvUbdJtnCSiEgpIlaC6t3duxXHp/QN9xWJRLxPmyoTvZunFtVnogZUrWGeaIGer0TeDrWPPasnjW/79u2Ii4vDlClTMH36dEyaNAmvvfaa4/GGhgacOnUKtbXeh1NxcXH46KOP8Pe//x2JiYm49dZbUVZWhpycHERFRamxGWQQIgdUooZ63mptv6jboMWxN2vITkRyYEjpGYPKznH/kGjYxdukROvu3Z5s3b9FDCPbEzWY9kTGKmWji4iIQHZ2ttvHY2Nj0dLi+e/W1eNTp07F1KlT/W4fiSUwuhaNZWGqvoZoXb3baxvwif5FQNQwsj2Rg2lPlKxSvrMvr49EvhIx0PMXu3t3jl2/OxL98wiZFwNKAak9FmUr0UNKoGPwJ1JgKUMo2UqLcJLVk0SkF9FDylbtvxyJ8AWBX9hcY/UkEcmCIaV3GFReI8JnDyJ3GFD6aartJHLt8s6gKkNI2ZaegaVMgWRbMlZOEpE+4m3lKLZHKrpOLaooAXlCyra0DiyN8KVM1upJIiI1MaT0nlmDSgaTJANz/VVKhNVo3mk73qNSYz+qsU69aBVOqnG+sns3kXfY1fN7sodXbcd9bH/Tch2i0ur4snrSXCoqKpCamgqr1Yrw8HCkpaWhurraq+e2tLTgrrvuQkBAAHbv3u302JEjRzBlyhSEh4ejd+/eSE5OxpdffqnCFhBdI2IXdpHGpGyvdYxKMwR3ZthGM9iyZQtiY2MREhKChIQEx6Sk7uzatQtxcXEICQnBqFGjsG/fPqfHW1pasHLlSkRFRSE0NBRJSUn45z//6bSMP9fIrpD/0yr5zYgVdu5CRm9uRmHE49pVok+ORWR0WgY+soeU7ngKHo0UQrojezip5PiTpKzU1FScOHECubm52Lt3Lw4ePIglS5Z49dyNGzciIKDjZ8fq6mqkpKRg0KBBKCgowKeffoqePXsiOTkZDQ0NSm8CkYOoIaXIQSVg3LDSiNtkVjt37kRGRgYyMzNRVFSE0aNHIzk5GefPn3e5/KFDhzBv3jykpaXh6NGjmDlzJmbOnInjx487lnnxxRexadMmZGVloaCgANdddx2Sk5Nx9epVxzL+XCO7wrifZD1QOqxQq9JLyyrKukH1DLQMRMtjyWpfImNRK0hhSEldxeNJaikuLkZOTg7eeOMNJCQkYNKkSdi8eTN27NiBsrIyj889duwY1q9fj61bt3Z47OTJk6ioqMDq1atxww034MYbb0RmZibKy8vx7bffqrU5RADEDCkBsasp25I9rJS9/eTahg0bsHjxYixatAgjRoxAVlYWwsLCXF6DAOCVV15BSkoKnnjiCcTHx2PNmjUYO3YsXn31VQDXqic3btyIFStW4J577sFNN92Ebdu2oayszNEjwJ9rZFeZMqCUidbhD0NK+RnhGLJ7NxH5i6GWMWh5HNm123zy8/MRHh6O8ePHO+5LSkqCxWJBQUGB2+fV1tbi/vvvx5YtW2Cz2To8fsMNN6BPnz548803UV9fjytXruDNN99EfHw8YmNj1dgUIicMKZUhU9gnSzvJd/X19SgsLERSUpLjPovFgqSkJOTn57t8Tn5+vtPyAJCcnOxY/syZM7Db7U7L9OrVCwkJCY5lunqN9AcDSurACAGXWWl97Fg9SUS+0DoAYkgpN6McP6Wrks067mxVVZXTra6uzu912u129O/f3+m+wMBAREREwG63u33eY489hokTJ+Kee+5x+XjPnj1x4MABvPvuuwgNDUWPHj2Qk5OD//mf/0FgIOco1YOogZ2aRN1m2ULKVm3DShGCQNHaQ77z9rp28eJFNDU1ITLSeSLLyMhIt9cqu93ucfnW/3a2TFeukf7gFVIhas7mHTvwAs5+10+Vdbsj2+zexHCSiJSjxmzeepFxdm/SPpxk9aQyep69gsDAFkXX2dh4bSysmJgYp/szMzOxatUql89ZtmwZXnjhBY/rLS4u7lJ79uzZg7y8PBw9etTtMleuXEFaWhpuueUW/OEPf0BTUxPWrVuHGTNm4MiRIwgNFW9mYzImEWf3BsSd4dsXrkJBNceCZgipD1Gua2bBgFISDCnJEyNVvbJ7N5GxBUbXorEsTNPXZEgpD6NUTZLyzp07B6vV6vh3cHCw22Uff/xxLFy40OP6hg4dCpvN1mGCgcbGRlRUVLjsug0AeXl5OH36NMLDw53unzVrFm699VYcOHAA2dnZOHv2LPLz82GxXHvvyc7ORu/evfHHP/4Rc+fO9dg2IiUxpNSOtyFi2yCTwaN5eXtd69u3L7p164bycuceGeXl5W6vVTabzePyrf8tLy9HVFSU0zJjxoxxLOPrNdJf/LSuICMGK0YKvoxKj2MkU/UkZ/AmM5Cty6ce1WoMvsSn1zFS83zk7N3KsVqtTjdPAWW/fv0QFxfn8RYUFITExERUVlaisLDQ8dy8vDw0NzcjISHB5bqXLVuGv//97zh27JjjBgAvv/wy3nrrLQDXxqi0WCxOM3y3/ru5me9FpD129xYLu2YT4P11LSgoCOPGjcP+/fsd9zU3N2P//v1ITEx0+ZzExESn5QEgNzfXsfyQIUNgs9mclqmqqkJBQYFjma5cI/1l2oBSxtBCr1CIM3yLi+EkEanFiMFK7cBmBpWCMmI4SeKLj49HSkoKFi9ejMOHD+Ozzz5Deno65s6di+joaABAaWkp4uLicPjwYQDXKkpGjhzpdAOAQYMGYciQIQCAqVOn4j//+Q+WLl2K4uJinDhxAosWLUJgYCDuuOMOfTaWTE/kkNKsQSWRtzIyMvD666/jnXfeQXFxMR566CHU1NRg0aJFAIAFCxZg+fLljuUfeeQR5OTkYP369Th58iRWrVqFL774Aunp6QCAgIAAPProo3juueewZ88efPXVV1iwYAGio6Mxc+ZMAN5dI5Vm2oBSVnqGQwwpxWHU0NiIVchE5JqewRBDSrEY9XgYMeQ3ou3btyMuLg5TpkzB9OnTMWnSJLz22muOxxsaGnDq1CnU1nr/nhUXF4ePPvoIf//735GYmIhbb70VZWVlyMnJcepKR6Q1UUNKwLzVlETemDNnDtatW4eVK1dizJgxOHbsGHJychyT3JSUlODf//63Y/mJEyciOzsbr732GkaPHo333nsPu3fvdvyoBgBPPvkkHn74YSxZsgQ/+tGPUF1djZycHISEhDiW6ewaqTSOQakwNSfLEQHHpdSfnsEkqyeJSEl6jEfZiuNS6k/vYFLG6knZhnOQQUREBLKzs90+Hhsbi5YWzxMkuHp86tSpmDp1qt/tIzITI45LSaSU9PR0RwVkewcOHOhw3+zZszF79my36wsICMDq1auxevVqt8t0do1UWpc+mW/ZsgWxsbEICQlBQkKCo8uDK6+//jpuvfVW9O7dG71790ZSUpLH5alzeodERq3eE53e+13t847Vk6QnXtdcM3oFGLt860fv/S5jOEnkLV7TyBORqygBVlISmZnPAeXOnTuRkZGBzMxMFBUVYfTo0UhOTu4wu0+rAwcOYN68efjrX/+K/Px8xMTEYNq0aSgtFfuN0R9aBC16h5SA/oGZmXA/E6nHKNc1WSurRAiK9A7LzESEUFiLc87o4T6JyyjXNFIXQ0oiEpHPAeWGDRuwePFiLFq0CCNGjEBWVhbCwsKwdetWl8tv374d/+f//B+MGTMGcXFxeOONNxwzDpF/RAgpAYZnahIlBBblXPOVjJNhkfZ4XfNMi6BFlJBS7+DM6Lh/idTHaxp5S4aQkkElkbn4FFDW19ejsLAQSUlJ36/AYkFSUhLy8/O9WkdtbS0aGhoQERHhdpm6ujpUVVU53dTA8EI5ogRpRiHS/tQinGT3btKLFtc1ra5pshMhpAQYVKpBpH3K6kkyMqN9VyP1iR5SAqymJDITnwLKixcvoqmpyTFTUKvIyEjY7Xav1vHrX/8a0dHRThfO9tauXYtevXo5bjExMb40UwhaBS6iVbaJFKzJSLT9J9r5RaQ0La5rRrimmTFwESlUk5Vo+1CUELyrZB3GgbTD72rUFQwpiUgUmk5f+dvf/hY7duzAhx9+6DR1eXvLly/HpUuXHLdz585p2Er5iBgiiRa0iU7E/aXVecXqSZKZN9c1XtO8J2KAJFrIJgMR95lW55YZw3wyDiN/V2scNkDvJpCfGFISGV+gLwv37dsX3bp1Q3m584ev8vJy2Gw2j89dt24dfvvb3+Ivf/kLbrrpJo/LBgcHIzg42JemCWmq7SRy7XGavFbswAs4+10/TV7LF62hW3BJkM4tEZNooWQrEUNvIjVocV3T8pp2Z9+TyLuoznUn3laOYntk5wv6KTC6Fo1lYaq/jq9aA7ew7zT9bVcqooWSrUQMvonUwO9q1FWBp0ulCHFbQ8rLQ0J1bgkRqcGnT9lBQUEYN26c06DJrYMoJyYmun3eiy++iDVr1iAnJwfjx4/vemtVYKRxKEUOlVorBEUN5LTGfXGNmtWTRvrbJvUY8bpmBCIHSiJWB+qpdX9wn7B6kvTHaxr5Q4au3q1YTUlkTD6XAWRkZOD111/HO++8g+LiYjz00EOoqanBokWLAAALFizA8uXLHcu/8MILeOaZZ7B161bExsbCbrfDbrejurpaua0QmNbdV0UOKVuZNZyTJaSV4RwiUhKva2ISOaQEGMzJsu2in0dESuM1jfzBkJKI9ORTF28AmDNnDi5cuICVK1fCbrdjzJgxyMnJcQzGXFJSAovl+9zz97//Perr63Hvvfc6rSczMxOrVq3yr/XkkqjdvdtrG9QZtQu46GFke1qGkxx7kkTB65r3tOrm3UrU7t7tmaX7twyBZFtahpNqV09yghzyFq9pZCY9z1xhd28iA/E5oASA9PR0pKenu3zswIEDTv8+e/ZsV17CULQci7KVLCFlq/ZBnsyBpWyhZCtWTpKZ8brmPYaU7rUP8IwQWMoWSrZi5SSZGa9p5A9ZxqNsxXEpiYxD/k/OCtBirDo9qsVkDpzadocWPfCTqa3uaH2uqP33wPEnycyMWGkla9gkYzfwtm2Wqd1taX2+cOxJIjIambp6t2KXbyL5damCkuQhWyWlO66CP62rLGUNHzsjc5BNRPrQuooSkKuS0hVXYZ/eFZayBpCeyBpmE5H6GocNkDJ4I++xyzeR3BhQakiPrt6AcULK9nwJDD2FmUYNHjujVzDJsSeJqKtkDynb6ywgVCLANGII6YpewaQW1ZNGrIomIvHJ1tW7FUNKInkxoDQJo4aU3jJrCOkOw0ki8pceVZSA8UJKT8wSLvqLVZNERNQWx6UkkhPHoPz/aTVmnZ4BTezAC+zOS4Y/Bzj+JJHxK64YSFErPc8Fjj1JREYne5d4jktJJBcGlDrQu4rM6AEVuafnsdf7vCci5ekZ0ARG1zKoNDmGk0RE6mNISURaYUBpUgwpzYXVs0SkFr2DGoaU5mSW4270amgirck4piL5r+eZKwwqiSTAgLINLbuGilBNxtDKHEQ4xlqd7+zeTfQ9MwUbZgmrSIzKWb1DeSIircleRdmKISWR2BhQ6kiEkBIQI8AidYhwbEU5z4lIPSIENiIEV6QuHl8iIvIXQ0oicTGgJACspjQaHk8i0poIISXAEMuIRAqftTzPzVQFTaQldvPuGqNUUQLs8k0kKgaUOhOtuozBltxEO36ind9EZA4iBVrkH5GOoyghPBERKYMhJZFYGFC2o8cYdiKGOCKFXOQd0Y6Z1uc1x58k6kjrCizRAhwGlfIS7diJdm4TEenBSFWUrRhSEomDAaUgRA0pRQu9qCMRj5OI5zMRaUPEIEekoIs8Ey2Y1Au7dxOpi928qS12+SYSAwNKF/SqxBI11BExACNxj4uo5zGRWekRdIgaUjL4EpfIx0fE85mIiJTHkJJIXwwoyWuiBmJmw+PQEbt3E4lH1FBH5CDMjEQ/HqKex0REejFiN++2GFIS6YcBpWBkqD5jQKYPGfa7DOcvEREgfjBmdDLsf73CSXbvJtIGu3mTO+zyTaQPBpRu6FmRJUvI0xqYiR6ayUymfazXecvqSaLO6RV4yFB91hqUiR6WGYUs+1qGc5eIiNTFkJJIWwwoBSVLSNlKlhBNFrLtT9nOVyLSjkxBjyzhmWxkC4H1PGdZPUmkLVZRUmdYTUmkHQaUApMx9JGp4k80su47Gc9TItKWTCElIF+gJioZ96Fs5yoRkR6MPg6lKwwpidTHgNIDEbqOyhz+tA3cZAvdtCL7/tH7/BThb5RIFnpXZska/DCs9I3M+0vWc5SI/MMqSvIWQ0oidQXq3QDq3FTbSeTa4/Ruht/ahnBnv+unY0v0I2sQ6Yre4SQRySfeVo5ie6TezeiytqFbY1mYji0Rh4xBpCsihJN6/4hARESdaw0pLw8J1bklRMbDgLIT91qL8F7VWL2b4QiDjBBUAh2DOqMGlkYKJNsSIZxk9SSR7+7sexJ5F/W9jsgeUrZqH8yZJbA0SiDZlgjhJBHpq3HYAFN2W6au63nmCkNKIoUxoJSMUaop23MX5MkUXBo1jGxPhHCSiOTWGggZIahs5Sq4M0JoacRAsi1RwklWTxLpjyEl+YohJZGyOAalF0Sr1DJTQNR+HEu9x2wUrT1ammo7Kcy5J9rfpJlUVFQgNTUVVqsV4eHhSEtLQ3V1tcfnTJ48GQEBAU63Bx98sMNyb7/9Nm666SaEhISgf//+WLp0qVqbYWoiBSGihENqaTseo+jjMrpqq8jtVYLRzz8iIlIfx6UkUg4rKCVl1EpKX5ghFBSFKMEk6S81NRX//ve/kZubi4aGBixatAhLlixBdna2x+ctXrwYq1evdvw7LMy5smzDhg1Yv349XnrpJSQkJKCmpgZnz55VYxNIMEbp8u0tb0M/JasvjR40+kq0YFKkHw2IzI5VlNQVHJeSSBkMKL0kyliUbRltXEoSk2jhJKsn9VNcXIycnBwcOXIE48ePBwBs3rwZ06dPx7p16xAdHe32uWFhYbDZbC4f+89//oMVK1bgo48+wpQpUxz333TTTcpuADmIMBZlW2YLKb3BUFEdooWTRCQehpTUVezyTeQfdvE2ANECJDIGkbp0kxjy8/MRHh7uCCcBICkpCRaLBQUFBR6fu337dvTt2xcjR47E8uXLUVv7ffiSm5uL5uZmlJaWIj4+HgMHDsR9992Hc+fOqbYtJJ54WznDI1KViOcXqyeJSEaNwwbo3QRhscs3UdcxoPSByJVbDJNISaKeSyL/DYqoqqrK6VZXV+fX+ux2O/r37+90X2BgICIiImC3290+7/7778e7776Lv/71r1i+fDn+3//7f/jpT3/qePxf//oXmpub8Zvf/AYbN27Ee++9h4qKCkydOhX19fV+tZncEzUYETFEIrkx/CYiXzGAI38wpCTqGnbx9pGIXb3b4tiU5A9Rg0kjCzpVikBLkKLrtDRfC/ViYmKc7s/MzMSqVas6LL9s2TK88MILHtdZXFzc5fYsWbLE8f+jRo1CVFQUpkyZgtOnT2PYsGFobm5GQ0MDNm3ahGnTpgEA/vCHP8Bms+Gvf/0rkpOTu/zaJCcjzvJN+hA5mBT1RwIiuoZdvckfHJeSyHcMKA2IY1NSV4geTrJ60nfnzp2D1Wp1/Ds4ONjlco8//jgWLlzocV1Dhw6FzWbD+fPnne5vbGxERUWF2/ElXUlISAAAfPPNNxg2bBiioqIAACNGjHAs069fP/Tt2xclJSVer5d8J9pYlO1xbErqKpGDSSKSB0PKjlhd6huOS0nkPXbx7gJZghJ2+yZvyHCeyPI3Jxqr1ep0cxdQ9uvXD3FxcR5vQUFBSExMRGVlJQoLCx3PzcvLQ3NzsyN09MaxY8cAwBFM3nLLLQCAU6dOOZapqKjAxYsXMXjwYF83m3wkehUXu+eSL2Q5X0T/uzOTiooKpKamwmq1Ijw8HGlpaaiurvb4nMmTJyMgIMDp9uCDD3ZY7u2338ZNN92EkJAQ9O/fH0uXLlVrM0hFDOTIX+zyTVrpyjXt6tWrWLp0Kfr06YMePXpg1qxZKC93/ixVUlKCGTNmICwsDP3798cTTzyBxsZGx+OffvopbrnlFvTp0wehoaGIi4vDyy+/7HP7GVB2kUyBiQwBFGmP5wX5Kj4+HikpKVi8eDEOHz6Mzz77DOnp6Zg7d65jBu/S0lLExcXh8OHDAIDTp09jzZo1KCwsxNmzZ7Fnzx4sWLAAt912m2OW7h/84Ae455578Mgjj+DQoUM4fvw4HnjgAcTFxeGOO+7QbXtJLLIET6QfWc4PhpNiSU1NxYkTJ5Cbm4u9e/fi4MGDTkOTuLN48WL8+9//dtxefPFFp8c3bNiAp59+GsuWLcOJEyfwl7/8hUOWSIwh5TXcD13HkJK00JVr2mOPPYaPPvoIu3btwieffIKysjL85Cc/cTze1NSEGTNmoL6+HocOHcI777yDt99+GytXrnQsc9111yE9PR0HDx5EcXExVqxYgRUrVuC1117zqf3s4m0i7PpNgPhduduT6ccAM9i+fTvS09MxZcoUWCwWzJo1C5s2bXI83tDQgFOnTjlm6Q4KCsJf/vIX/H/t3XtwVPX9//EXIdkEhCQikAQJUBAMIC2USIioKESwUG/FQZFhwC+KCtgOOEooaZNKEWQYtVIsowWR/kAqLTqKmMpFUSRcGpOKEKMQLKJuEJAQUHJhP78/mGxZSEJ2s9dzno+Z/OHZczaftwn7mrz2s7vPPfecTp8+rdTUVI0ZM0Y5OTke97ty5UrNmDFDo0ePVlRUlIYOHar8/HzFxMQEdT67CveXep+P96fEhSKlmET4KSkpUX5+vnbv3q309HRJ0uLFizVq1CgtWrTI/eRbfVq3bt3g25t8//33ysnJ0VtvvaXhw4e7j9c9MYfIxMu90Vy83BuB5EumVVRUaNmyZVq9erWGDRsmSXr55ZfVu3dv7dixQ4MHD9a7776rffv2adOmTUpKSlL//v01d+5czZo1S3l5eXI4HBowYIAGDBjgvt9u3bpp3bp1+vDDD5v0pF8ddlA2Q6QWJ+ycs6dI/LlH6r8xK2vXrp1Wr16tyspKVVRUaPny5WrTpo379m7duskYo5tuuknSuQ/q2bp1q44dO6YzZ87oiy++0MKFCz3eG1M693L0ZcuW6fvvv9exY8e0bt26iz7kB4EVabu62FGJSPwdiLR/Z+Hk5MmTHl9VVVXNvs+CggIlJia6/5CTpKysLEVFRWnnzp2NXrtq1Sq1b99e11xzjWbPnu1+Yk6SNm7cKJfLpa+//lq9e/dW586dNXbsWH311VfNXjNCy847CO08uz+xkxJ1/J1rvmRaYWGhampqlJWV5T6WlpamLl26qKCgwH2//fr1U1LS/zYHjBw5UidPntTevXvrvd+ioiJt375dQ4cO9WoGdlA2U7h/qndj2FFpD5FWSgKAN9hRaS+RVkiezw7lZPTBbxUd5fDvnbqqJemiJ61yc3OVl5fXrLt2Op3q2LGjx7Ho6Gi1a9dOTqezwevuu+8+de3aVZ06ddInn3yiWbNmqbS0VOvWrZMklZWVyeVy6amnntKf/vQnJSQkKCcnR7fccos++eQTORx+/n+EoKor6uy0m5Jy0r/YSRk5IinXfMk0p9Mph8OhxMREj+NJSUnua5xOp0c5WXd73W3n69y5s7777jvV1tYqLy9PDzzwgFczUFD6QSSXlBJFpRVZoZRk9yQQfJH0Uu8LUVRaWyQXk5I9yslA++qrrzx23zf0wW+SlJ2draeffrrR+yspKfF5Lee/XK1fv35KSUnR8OHDdeDAAfXo0UMul0s1NTV6/vnnNWLECEnSq6++quTkZL333nu8F6VF2OUl35STgUFJiabmWqAzzZ8+/PBDnTp1Sjt27FB2drauuuoqjRs3rsnXU1DC7fxSi7IyMlmhmJQoJ4FQiuSSUvIssigrI1+kF5Pwn/j4+IveHqQhjz32mCZNmtToOd27d1dycrKOHDnicby2tlbHjx9v8P0l65ORkSFJ2r9/v3r06KGUlBRJUp8+fdzndOjQQe3bt9ehQ4eafL8If1bfTUk5GViUlPbW1FwLZKYlJyerurpaJ06c8NhFWV5e7r4mOTnZ/QGo599ed9v5fvKTn0g69+RdeXm58vLyKChDIdJ3UV6IsjJyWKWUrEM5CYRepJeUdSgrI5PVSkl2TwZfhw4d1KFDh0uel5mZqRMnTqiwsFADBw6UJG3ZskUul8tdOjZFcXGxJLmLySFDhkiSSktL1blzZ0nS8ePHdfToUXXt2tWbURAhrLibknIyOCgpcSmBzLSBAwcqJiZGmzdv1pgxYySdy65Dhw4pMzPTfb/z5s3TkSNH3C8h37hxo+Lj4z2eiLuQy+Xy+n01KSj9yGolZR3KyvBjtVKyDuUkED6sUlLWoawMb1YrJetQToa33r1769Zbb9WDDz6opUuXqqamRtOnT9e9997r/rTTr7/+WsOHD9fKlSs1aNAgHThwQKtXr9aoUaN0xRVX6JNPPtGMGTN04403uj+lu1evXrrjjjv0m9/8Ri+++KLi4+M1e/ZspaWl6eabbw7lyAggq+ympJgMPkpK+IMvmZaQkKDJkydr5syZateuneLj4/Xoo48qMzNTgwcPliSNGDFCffr00YQJE7Rw4UI5nU7l5ORo2rRp7pelL1myRF26dFFa2rm/HT744AMtWrRIv/71r72agYLSz6xaUta5sBijsAwOqxaS56OcBMKP1UrKOpSVoWfVQvJ8lJORYdWqVZo+fbqGDx+uqKgojRkzRs8//7z79pqaGpWWlro/pdvhcGjTpk167rnndPr0aaWmpmrMmDHKycnxuN+VK1dqxowZGj16tKKiojR06FDl5+crJiYmqPMh+CK1qKSYBCKft5kmSc8++6z73KqqKo0cOVIvvPCC+/aWLVtq/fr1euSRR5SZmanLLrtMEydO1JNPPuk+x+Vyafbs2Tp48KCio6PVo0cPPf3003rooYe8Wn8LY4xpxvxBcfLkSSUkJOjfe5PUpm1UqJfTJFYuKRtDYek/digl60RKOXmq0qX0vuWqqKho8vtgNaTucS2rw2S/fzJcratam75b5pd1wv/qfvYLdg9VXJvIeJ7QiiVlQygsA8cOpWSdSCknz5yqVfa1W5udF+5Ma/9/gcm0o8vJtDBW9/O/6do5io6OC/VywlI4l5UUk+GDXZTNV1tzRoVrc8i1CBUZfxlFIKvvpGwIOyx9Y6cy8kKRUk4CdmbVnZT1ubBEo7D0jZ3KyAtFSjkJIHjOLwHDpaykmAw/vNQbdkdBGUB2LSnP11DxZufi0s5l5IUoJ4HIYaeS8nz1FW2Ulp7sXEZeiHISwKWEqqykkAQQ7igoA6yugLF7UXmhxko6K5SXlJCXRjkJRB67lpQXaqiQs3pxSRHZOMpJAN6qrzT0V2lJIRmZ2EUJO6OgDBJ2UzZdU8u9UBSZFI/+QTkJRC5KyoZdqsAL9wKTAtI3FJMA/IliEZSUsCsKyiCipPQvysLIRDkJRD5KSt9QAFoP5SQAAIB/UFAGGS/5hl1RTALWUlfMUFTCrignAQCBwi5K2FFUqBdgV5Q1sBN+3wHroqSB3Qxr/xm/9wAAAH7GDsoQYjclrI5iErAHdlPCLigmAQAAAoMdlGGAEgdWxO81YD/sLINV8bsNAAi2tgd/DPUSgKBiB2WYYDclrIJiEgAfogOroJQEAAAIDgrKMENRiUhFMQngfLzsG5GMYhIAACC4KCjD1PllD2UlwhnFJIDGUFQiklBMAgDCCZ/mDTuhoIwA7KpEuKGUBOCt84sfykqEG4pJAACA0KKgjCAUlQg1ikkA/sCuSoQLikkAAIDwQEEZgXj5N4KJUhJAoLCrEqFAKQkAABB+KCgjHGUlAoFSEkCwUVYikCglAQAAwhsFpYVcWCpRWMIblJIAwgVlJfyBUhIAACByUFBaGLsr0RgKSQCR4MKSicISDaGQBAAAiFwUlDZRXxlFaWkvFJIArIDCEnUoJAEAAKyDgtLGKC2tizISgF1QWNoDZSQAAIC1UVDCQ0PFFsVleKKIBABPDRVZFJeRgzISAADAfigo0SSNFWGUl4FFCQkAzddY6UV5GXyUkAAAADgfBSWarSkFGiVm/SgfASD0LlWWUWB6h/IRAAAA3qKgRFD4WsRFSrFJ0QgA1uVt4Wa1QpPCEQAAAIFGQYmwRvEHAIg0FHoAAACAd6JCvQAAAAAAAAB4qvxJq1AvAQgaCkoAAAAAAAAAIUNBCQAAAAAAACBkKCgBAAAAAAAAhAwFJQAAAAAAQBjh/SdhNxSUAAAAAAAAAEKGghIAAAAAAABAyFBQAgAAAAAAhAle3g07oqAEAAAAAAAAEDIUlAAAAAAAAABChoISAAAAAAAgDPDybtgVBSUAAAAAAACAkKGgBAAAAAAACDF2T8LOKCgBAAAAAAAAhAwFJQAAAAAAQAixexJ251NBuWTJEnXr1k1xcXHKyMjQrl27Gj1/7dq1SktLU1xcnPr166cNGzb4tFgAQGgdP35c48ePV3x8vBITEzV58mSdOnXqktcVFBRo2LBhuuyyyxQfH68bb7xRP/7440XnVVVVqX///mrRooWKi4sDMEH9yDUAsCcr5hqZBgD25EumnTlzRtOmTdMVV1yhNm3aaMyYMSovL/c459ChQxo9erRat26tjh076vHHH1dtba3HOVVVVZozZ466du2q2NhYdevWTcuXL/dq/V4XlH//+981c+ZM5ebm6uOPP9bPfvYzjRw5UkeOHKn3/O3bt2vcuHGaPHmyioqKdOedd+rOO+/Up59+6u23BgCE2Pjx47V3715t3LhR69ev1wcffKApU6Y0ek1BQYFuvfVWjRgxQrt27dLu3bs1ffp0RUVdHEFPPPGEOnXqFKjl14tcAwD7slqukWlAZGL3JPzBl0ybMWOG3nrrLa1du1Zbt27VN998o1/96lfu28+ePavRo0erurpa27dv1yuvvKIVK1bo97//vcf9jB07Vps3b9ayZctUWlqqV199VVdffbVX629hjDHeXJCRkaFrr71Wf/7znyVJLpdLqampevTRR5WdnX3R+ffcc49Onz6t9evXu48NHjxY/fv319KlS5v0PU+ePKmEhAT9e2+S2rTlVekAQuNUpUvpfctVUVGh+Pj4Zt1X3eNaVofJio5y+GmF59S6qrXpu2V+Wef5SkpK1KdPH+3evVvp6emSpPz8fI0aNUqHDx9u8A+wwYMH65ZbbtHcuXMbvf933nlHM2fO1D//+U/17dtXRUVF6t+/v9/W35Bg51rdz37B7qGKaxPtv0EAwEtnTtUq+9qtzc4Ld6a1/7/AZNrR5X7PNMmauRbKv9VuunaOoqPj/DMIYDMUlP5RW3NGhWtzbJlrvmRaRUWFOnTooNWrV+vuu++WJH322Wfq3bu3CgoKNHjwYL3zzjv65S9/qW+++UZJSUmSpKVLl2rWrFn67rvv5HA4lJ+fr3vvvVdlZWVq166dzzN49ZdRdXW1CgsLNXv2bPexqKgoZWVlqaCgoN5rCgoKNHPmTI9jI0eO1BtvvNHg96mqqlJVVZX7vysqKiRJp065vFkuAPhV3WOQl8/rNKrWVEt+fmirNdWSzgXr+WJjYxUbG+vz/RYUFCgxMdEdeJKUlZWlqKgo7dy5U3fddddF1xw5ckQ7d+7U+PHjdd111+nAgQNKS0vTvHnzdP3117vPKy8v14MPPqg33nhDrVu39nmN3gpGrjWUaWdO1dZ7PgAES93jkL9yLZIyTbJeroX6b7Xas1UNXQLgEmprWoR6CZZwtuaMJHvmmi+ZVlhYqJqaGmVlZbmPpaWlqUuXLu6CsqCgQP369XOXk9K5nHjkkUe0d+9eDRgwQG+++abS09O1cOFC/e1vf9Nll12m22+/XXPnzlWrVk0v370qKI8ePaqzZ896LEySkpKS9Nlnn9V7jdPprPd8p9PZ4PeZP3++/vCHP1x0/KaM77xZLgAExLFjx5SQkNCs+3A4HEpOTtb7zr/5aVWe2rRpo9TUVI9jubm5ysvL8/k+nU6nOnbs6HEsOjpa7dq1a/AxvaysTJKUl5enRYsWqX///lq5cqWGDx+uTz/9VD179pQxRpMmTdLDDz+s9PR0ffnllz6v0VvByLWGMi3v5o98XDUA+Fdzc+1/mfb//Liq/wlEpknWy7VQ/6227eNFPqwagCRpd6gXYC12zDVfMs3pdMrhcCgxMdHj+Pk50FBO1N0mncvGbdu2KS4uTq+//rqOHj2qqVOn6tixY3r55ZebPENYvrZs9uzZHs/knThxQl27dtWhQ4eaXQqEs5MnTyo1NVVfffWV31/CEk7sMqdkn1ntMmdFRYW6dOnSrG3rdeLi4nTw4EFVV1f7YWUXM8aoRQvPZ2IbekYuOztbTz/9dKP3V1JS4tM6XK5zTzk+9NBDuv/++yVJAwYM0ObNm7V8+XLNnz9fixcvVmVlpceODyuxa6ZJ9nlsYE7rscus/sq1cMo0iVwLNLvmml0eFyT7zMqc1mPFXAtkpvmLy+VSixYttGrVKncOPPPMM7r77rv1wgsvNHkXpVcFZfv27dWyZcuLPtGnvLxcycnJ9V6TnJzs1flSw1tbExISLP8PSpLi4+OZ02LsMqtd5qzvTfB9ERcXp7i40L9X02OPPaZJkyY1ek737t2VnJx80Zvs19bW6vjx4w0+pqekpEiS+vTp43G8d+/eOnTokCRpy5YtKigouOhxPz09XePHj9crr7zizTheCUau2T3TJPs8NjCn9dhlVn/kWrhkmmTfXONvteCwy+OCZJ9ZmdN6rJRrgcy05ORkVVdX68SJEx67KM/PgeTkZO3atcvjurrcqDsnJSVFV155pceTVL1795YxRocPH1bPnj2bNKtXPzWHw6GBAwdq8+bN7mMul0ubN29WZmZmvddkZmZ6nC9JGzdubPB8AEBwdejQQWlpaY1+ORwOZWZm6sSJEyosLHRfu2XLFrlcLmVkZNR73926dVOnTp1UWlrqcfzzzz9X165dJUnPP/+8/vOf/6i4uFjFxcXasGGDpHOfRDpv3rwATX0OuQYA1mPXXCPTAMB6AplpAwcOVExMjEcOlJaW6tChQ+4cyMzM1J49ezzKz40bNyo+Pt79ZN2QIUP0zTff6NSpU+5zPv/8c0VFRalz585NH9Z4ac2aNSY2NtasWLHC7Nu3z0yZMsUkJiYap9NpjDFmwoQJJjs7233+Rx99ZKKjo82iRYtMSUmJyc3NNTExMWbPnj1N/p4VFRVGkqmoqPB2uRGFOa3HLrMyp33ceuutZsCAAWbnzp1m27ZtpmfPnmbcuHHu2w8fPmyuvvpqs3PnTvexZ5991sTHx5u1a9eaL774wuTk5Ji4uDizf//+er/HwYMHjSRTVFQU6HGMMcHPNTv9HtllVua0HrvMapc5G2O1XONvtcCxy5zG2GdW5rQeO81aH18y7eGHHzZdunQxW7ZsMf/+979NZmamyczMdN9eW1trrrnmGjNixAhTXFxs8vPzTYcOHczs2bPd51RWVprOnTubu+++2+zdu9ds3brV9OzZ0zzwwANerd/rgtIYYxYvXmy6dOliHA6HGTRokNmxY4f7tqFDh5qJEyd6nP/aa6+ZXr16GYfDYfr27Wvefvttr77fmTNnTG5urjlz5owvy40YzGk9dpmVOe3j2LFjZty4caZNmzYmPj7e3H///aaystJ9e90fYe+9957HdfPnzzedO3c2rVu3NpmZmebDDz9s8HsEu6A0Jri5ZqffI7vMypzWY5dZ7TJnY6yYa/ytFhh2mdMY+8zKnNZjp1nr40um/fjjj2bq1Knm8ssvN61btzZ33XWX+fbbbz3u98svvzS/+MUvTKtWrUz79u3NY489ZmpqajzOKSkpMVlZWaZVq1amc+fOZubMmeaHH37wav0tjPHT568DAAAAAAAAgJf880kPAAAAAAAAAOADCkoAAAAAAAAAIUNBCQAAAAAAACBkKCgBAAAAAAAAhEzYFJRLlixRt27dFBcXp4yMDO3atavR89euXau0tDTFxcWpX79+2rBhQ5BW2jzezPnSSy/phhtu0OWXX67LL79cWVlZl/z/Ei68/XnWWbNmjVq0aKE777wzsAv0I29nPXHihKZNm6aUlBTFxsaqV69eEfH76+2czz33nK6++mq1atVKqampmjFjhs6cOROk1frmgw8+0G233aZOnTqpRYsWeuONNy55zfvvv6+f//znio2N1VVXXaUVK1YEfJ0If3bJNIlcu5RIyzW7ZJpErjWEXEN97JJrdsk0iVxrSKTmGplWPzItwnj7seWBsGbNGuNwOMzy5cvN3r17zYMPPmgSExNNeXl5ved/9NFHpmXLlmbhwoVm3759Jicnx8TExJg9e/YEeeXe8XbO++67zyxZssQUFRWZkpISM2nSJJOQkGAOHz4c5JV7x9s56xw8eNBceeWV5oYbbjB33HFHcBbbTN7OWlVVZdLT082oUaPMtm3bzMGDB837779viouLg7xy73g756pVq0xsbKxZtWqVOXjwoPnXv/5lUlJSzIwZM4K8cu9s2LDBzJkzx6xbt85IMq+//nqj55eVlZnWrVubmTNnmn379pnFixebli1bmvz8/OAsGGHJLplmDLlmtVyzS6YZQ641hFxDfeySa3bJNGPINavlGplWPzIt8oRFQTlo0CAzbdo093+fPXvWdOrUycyfP7/e88eOHWtGjx7tcSwjI8M89NBDAV1nc3k754Vqa2tN27ZtzSuvvBKoJfqFL3PW1taa6667zvz1r381EydOjIjAM8b7Wf/yl7+Y7t27m+rq6mAt0S+8nXPatGlm2LBhHsdmzpxphgwZEtB1+lNTQu+JJ54wffv29Th2zz33mJEjRwZwZQh3dsk0Y8g1q+WaXTLNGHKtIeQa6mOXXLNLphlDrlkt18i0+pFpkSfkL/Gurq5WYWGhsrKy3MeioqKUlZWlgoKCeq8pKCjwOF+SRo4c2eD54cCXOS/0ww8/qKamRu3atQvUMpvN1zmffPJJdezYUZMnTw7GMv3Cl1nffPNNZWZmatq0aUpKStI111yjp556SmfPng3Wsr3my5zXXXedCgsL3S8tKCsr04YNGzRq1KigrDlYIvGxCIFll0yTyDWr5ZpdMk0i1xoTqY9HCBy75JpdMk0i16yWa2RawyLxscjuokO9gKNHj+rs2bNKSkryOJ6UlKTPPvus3mucTme95zudzoCts7l8mfNCs2bNUqdOnS76RxZOfJlz27ZtWrZsmYqLi4OwQv/xZdaysjJt2bJF48eP14YNG7R//35NnTpVNTU1ys3NDcayvebLnPfdd5+OHj2q66+/XsYY1dbW6uGHH9Zvf/vbYCw5aBp6LDp58qR+/PFHtWrVKkQrQ6jYJdMkcs1quWaXTJPItcaQa7iQXXLNLpkmkWtWyzUyrWFkWuQJ+Q5KNM2CBQu0Zs0avf7664qLiwv1cvymsrJSEyZM0EsvvaT27duHejkB53K51LFjR7344osaOHCg7rnnHs2ZM0dLly4N9dL86v3339dTTz2lF154QR9//LHWrVunt99+W3Pnzg310gCECXIt8tkl0yRyDUDjrJppErlmxVwj0xCuQr6Dsn379mrZsqXKy8s9jpeXlys5Obnea5KTk706Pxz4MmedRYsWacGCBdq0aZN++tOfBnKZzebtnAcOHNCXX36p2267zX3M5XJJkqKjo1VaWqoePXoEdtE+8uVnmpKSopiYGLVs2dJ9rHfv3nI6naqurpbD4Qjomn3hy5y/+93vNGHCBD3wwAOSpH79+un06dOaMmWK5syZo6goazw30tBjUXx8PM/I2ZRdMk0i16yWa3bJNIlcawy5hgvZJdfskmkSuWa1XCPTGkamRZ6Q/+Y5HA4NHDhQmzdvdh9zuVzavHmzMjMz670mMzPT43xJ2rhxY4PnhwNf5pSkhQsXau7cucrPz1d6enowltos3s6ZlpamPXv2qLi42P11++236+abb1ZxcbFSU1ODuXyv+PIzHTJkiPbv3+8OdUn6/PPPlZKSEpaBJ/k25w8//HBRsNUFvTEmcIsNskh8LEJg2SXTJHLNarlml0yTyLXGROrjEQLHLrlml0yTyDWr5RqZ1rBIfCyyvVB+Qk+dNWvWmNjYWLNixQqzb98+M2XKFJOYmGicTqcxxpgJEyaY7Oxs9/kfffSRiY6ONosWLTIlJSUmNzfXxMTEmD179oRqhCbxds4FCxYYh8Nh/vGPf5hvv/3W/VVZWRmqEZrE2zkvFCmfCmeM97MeOnTItG3b1kyfPt2Ulpaa9evXm44dO5o//vGPoRqhSbydMzc317Rt29a8+uqrpqyszLz77rumR48eZuzYsaEaoUkqKytNUVGRKSoqMpLMM888Y4qKisx///tfY4wx2dnZZsKECe7zy8rKTOvWrc3jjz9uSkpKzJIlS0zLli1Nfn5+qEZAGLBLphlDrlkt1+ySacaQa+QavGGXXLNLphlDrlkt18g0Ms0qwqKgNMaYxYsXmy5duhiHw2EGDRpkduzY4b5t6NChZuLEiR7nv/baa6ZXr17G4XCYvn37mrfffjvIK/aNN3N27drVSLroKzc3N/gL95K3P8/zRUrg1fF21u3bt5uMjAwTGxtrunfvbubNm2dqa2uDvGrveTNnTU2NycvLMz169DBxcXEmNTXVTJ061Xz//ffBX7gX3nvvvXr/zdXNNnHiRDN06NCLrunfv79xOByme/fu5uWXXw76uhF+7JJpxpBrxlgr1+ySacaQa8aQa2g6u+SaXTLNGHLNGGvlGplGpllBC2MstIcXAAAAAAAAQEQJ+XtQAgAAAAAAALAvCkoAAAAAAAAAIUNBCQAAAAAAACBkKCgBAAAAAAAAhAwFJQAAAAAAAICQoaAEAAAAAAAAEDIUlAAAAAAAAABChoISAAAAAAAAQMhQUAIAAAAAAAAIGQpKAAAAAAAAACFDQQkAAAAAAAAgZCgoAQAAAAAAAITM/weHTYRt4y0RigAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSgAAAH/CAYAAABU5TMMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsXElEQVR4nOzde3yU5Z3//3ciJMFCEsJpQIgB2yVRi2ioIZZakEiyuO1a6a4oWqUprF2wFfitBU9QbWstKB4Wy1pRq4WWWm3XU5EIRatEoLFUoSFdFBoODoeGJAQkCSS/P/hmzJDjJPfhuu/79Xw88lBm7vue6z5krsx7Ptd1xzU2NjYKAAAAAAAAAFwQ73YDAAAAAAAAAAQXASUAAAAAAAAA1xBQAgAAAAAAAHANASUAAAAAAAAA1xBQAgAAAAAAAHANASUAAAAAAAAA1xBQAgAAAAAAAHANASUAAAAAAAAA1xBQAgAAAAAAAHANASUAAAAAAAAA18QcUL711lv6yle+oiFDhiguLk6/+93vOlxnw4YNuuSSS5SYmKjPfvazeuaZZ7rQVACAXZYtW6aMjAwlJSUpJydHmzdvbnf5559/XpmZmUpKStLnP/95vfbaa1HPNzY26p577tHgwYPVq1cv5eXl6f/+7/+ilqmoqNC0adOUnJys1NRUFRYWqqamxvJ9aw99GgD4k9X9WnO33HKL4uLi9PDDD1vc6u6jXwMAf7K6X3vxxRc1adIk9evXT3Fxcdq6dWuLbYwfP15xcXFRP7fccouVuxUl5oDy2LFjuuiii7Rs2bJOLb9r1y5dddVVmjBhgrZu3arbbrtN3/rWt/T666/H3FgAgPVWr16tuXPnauHChXrvvfd00UUXKT8/XwcPHmx1+Y0bN+q6665TYWGh/vznP+vqq6/W1VdfrW3btkWW+clPfqJHH31Uy5cv16ZNm/SZz3xG+fn5OnHiRGSZadOmafv27SoqKtIrr7yit956SzNnzrR9f5ujTwMA/7GjX2vy29/+Vu+++66GDBli9250Cf0aAPiPHf3asWPHNG7cOD3wwAPtvvaMGTP08ccfR35+8pOfWLpvURq7QVLjb3/723aXuf322xsvuOCCqMeuvfbaxvz8/O68NADAIpdeemnjrFmzIv8+depU45AhQxrvv//+Vpf/93//98arrroq6rGcnJzG//iP/2hsbGxsbGhoaAyFQo2LFy+OPF9ZWdmYmJjY+Mtf/rKxsbGx8a9//WujpMYtW7ZElvn973/fGBcX17hv3z7L9i0W9GkA4A9W92tN9u7d23jOOec0btu2rfHcc89tXLp0qeVttxL9GgD4g139WmNjY+OuXbsaJTX++c9/bvHcl7/85cbvfve73Wp7LHrYF32eVlxcrLy8vKjH8vPzddttt7W5Tm1trWprayP/bmhoUEVFRaT0FADc0NjYqKNHj2rIkCGKj+/+FL4nTpxQXV2dBS1rqbGxscX7ZWJiohITE6Meq6urU0lJiRYsWBB5LD4+Xnl5eSouLm5128XFxZo7d27UY/n5+ZFhZLt27VI4HI56709JSVFOTo6Ki4s1depUFRcXKzU1VWPGjIksk5eXp/j4eG3atElf+9rXurTfdqNPA+AnVvZrJvRpkj39mnT6vfvGG2/Uf/3Xf+mCCy7oxt6YhX4NgJ/Qr53WmX6ts1auXKlf/OIXCoVC+spXvqK7775bZ599dszb6QzbA8pwOKxBgwZFPTZo0CBVV1frk08+Ua9evVqsc//99+v73/++3U0DgC7Zs2ePhg4d2q1tnDhxQsPSP6PDhxosalW03r17t5jPceHChVq0aFHUY4cPH9apU6dafZ/esWNHq9tu6309HA5Hnm96rL1lBg4cGPV8jx49lJaWFlnGRPRpAPyou/3aiRMnlJ7+GR1yuU+T7OnXJOmBBx5Qjx499J3vfKeLe2Em+jUAfmRFv2bCZzXJvn6tM66//nqde+65GjJkiN5//31973vfU1lZmV588cWYttNZtgeUXbFgwYKotLeqqkrp6el6/d2QPtObG48DcMexmgbljw2rT58+3d5WXV2dDh9qsOV9ramde/bsUXJycuTx1r6Rg/3a6tP+a90VSvyMkd0wgICoPXZSiyeu73a/VldXp0OHGrRh00D17m1tBV1NTaPG5xx0tU8rKSnRI488ovfee48KQdGvATCXlf3a4UMNWrdpkC392sScA574rNb8/gCf//znNXjwYE2cOFEffvihzjvvPMtfz/YeJBQK6cCBA1GPHThwQMnJya1+Iye1Xdr6md7x6t2HgBKAu6z8cGLn+1pycnJUp9ea/v3766yzzmr1fToUCrW6Tlvv603LN/33wIEDGjx4cNQyo0ePjixz5qTOJ0+eVEVFRZuvawIr+7TEz/RQUu+etrQTAGJhVb/Wu3ecDX3a6eqVzvRpkj392h//+EcdPHhQ6enpkedPnTqlefPm6eGHH9bu3btj2SGj0K8B8CP6tfb7ta7KycmRJO3cudOWgNL2tC83N1fr1q2LeqyoqEi5ubl2vzQAoAMJCQnKzs6Oep9uaGjQunXr2nyf7uh9ffjw4QqFQlHLVFdXa9OmTZFlcnNzVVlZqZKSksgy69evV0NDQ6TjMxF9GgCYzY5+7cYbb9T777+vrVu3Rn6GDBmi//qv//L83a7p1wDAbHb0a121detWSYoqQrFSzBWUNTU12rlzZ+Tfu3bt0tatW5WWlqb09HQtWLBA+/bt07PPPitJuuWWW/Tf//3fuv322/XNb35T69ev169//Wu9+uqr1u0FAKDL5s6dq5tuukljxozRpZdeqocffljHjh3T9OnTJUnf+MY3dM455+j++++XJH33u9/Vl7/8ZT344IO66qqr9Ktf/Up/+tOf9MQTT0g6/Y3lbbfdph/84Af63Oc+p+HDh+vuu+/WkCFDdPXVV0uSsrKyVFBQoBkzZmj58uWqr6/X7NmzNXXqVA0ZMsSxfadPAwD/sbpf69evn/r16xf1Gj179lQoFNLIkSOd3bkO0K8BgP9Y3a9JUkVFhcrLy7V//35JUllZmaTT1ZehUEgffvihVq1apcmTJ6tfv356//33NWfOHF1++eUaNWqULfsZc0D5pz/9SRMmTIj8u2n+kZtuuknPPPOMPv74Y5WXl0eeHz58uF599VXNmTNHjzzyiIYOHaonn3xS+fn5FjQfANBd1157rQ4dOqR77rlH4XBYo0eP1po1ayITK5eXl0fdBe+yyy7TqlWrdNddd+mOO+7Q5z73Of3ud7/ThRdeGFnm9ttv17FjxzRz5kxVVlZq3LhxWrNmjZKSkiLLrFy5UrNnz9bEiRMVHx+vKVOm6NFHH3Vux0WfBgB+ZEe/5hX0awDgP3b0ay+99FIk4JSkqVOnSvr0Zj0JCQl64403ImHosGHDNGXKFN1111227WdcY2Njo21bt0h1dbVSUlL09rYhzEEJwDU1Rxs07sL9qqqq6tR8Ie2x833NynbCek3n/q53JzFXFwBXnaip1w/Gru12f9H0vvan7YNs6dPGXHCAPs1g9GsATGF1v7Zpe8iWfi3ngjD9WitI+wAAAAAAAAC4hoASAAAAAAAAgGsIKAEAAAAAAAC4hoASAAAAAAAAgGsIKAEAAAAAAAC4hoASAAAAAAAAgGsIKAEAAAAAAAC4hoASAAAAAAAAgGsIKAEAAAAAAAC4hoASAAAAAAAAgGsIKAEAAAAAAAC4hoASAAAAAAAAgGsIKAEAAAAAAAC4hoASAAAAAAAAgGsIKAEAAAAAAAC4pofbDQCae+7IZW43oUtu7LvR7SYAAAAAAAB4EgElbOXVwDFWse4ngSYABE9RONPtJrTrytAOt5sAAACAgCKgRJcFJXy0Q2eOHSEmAJjL9LCxK7q6TwSbAAAA6C4CSnSIINIdbR13gksAsJcfw0c7dXS8CDABILheD2c59lr5oVLHXguA9QgoEYUw0nwElwDQfYSQzmnvWBNeAoC5nAwXrdDd9hJwAu4ioAwwwkh/OfN8ElgCwGmEkeZq69wQXAKAfbwWPDqlM8eFEBOwDwFlgBBIBktr55vQEoDfEUb6w5nnkcASAGJDCGmP9o4r4SXQPQSUPkYgiTM1vyYIKwH4AYFkMLR2ngktAYAg0iStnQtCS6DzCCh9hlASncWQcABeRCCJJs2vBcJKAEFAGOk9hJZA5xFQ+gChJKxAdSUAUxFKoiMMCQfgN4SR/nXmuSWwBE4joPQwgknYpenaIqgE4BZCSXQH1ZUAvIhQMpgILIHTCCg9hlASTqKqEoCTCCVhh6briqASgGkIJNGa5tcFYSWChIDSIwgm4TaqKgHYhWASTqCqEoAJCCURC8JKBAkBpeEIJmEagkoAViGYhFuoqgTgJEJJWIGwEn5HQGkogkmYjqASQFcQSsIkBJUA7EIoCTs1XV8ElfATAkrDEEzCawgqAXQGwSRMRlAJwCoEk3ASVZXwEwJKgxBOwssIKgG0hXASXkFQCaCrCCbhNqoq4XUElAYgmISfPHfkMkJKAJIIJuFdBJUAOotgEqYhqIRXEVC6iGASfkU1JRBsBJPwi6JwJiElgFYRTMJ0BJXwmni3GxBUhJMIAq5zIHgIJ+E3ReFMrmsAEa+Hswgn4Slcr/AKAkoXENogSLjegWAgxIHfcX0DwUYwCS/j+oUXMMTbYYQ13be2fKTtrzEpvcz21wgShnwD/kZwg6BgyDcQTAQ78IvXw1kM+YaxCCgdQjDZMSeCx86KpS2EmZ3HDXQA/yGcRNBwAx0gOAgm4UfMTQlTEVA6gHDyUyaFkFZpb58IL1sipAT8g3ASQUY1JeBvhJPwO6opYRoCSpsFOZz0YxgZq9aOAaElISXgdQST3bd77wC3mxCRMfSQ203wLEJKwJ8IJxEUVFPCJASUNgpaOEkg2TmElqcRUgLeRDjZOSYFkB3pqK0EmO0jpAT8hXASQUQ1JUxAQGmTIISTBJLWaX4sgxRWElIC3kI42ZKXgsiuamsfCS4/RUgJeB/BJIKOkBJuI6C0gZ/DSUJJ+515jP0eWBJSAt5AOBmMMDIWZx6PoAeWhJSAdxFOAqcRUsJNBJQW82M4SSjpriBUVxJSAmYLajhJIBmb1o5X0EJLQkrAewgngWiElHALAaWF/BROEkqayc9hJSElALcRSFqv+TENSlhJSAl4B+Gkvcr39nf19dOHHnb19b2MkBJuIKBEBKGktzSdL78FlQDM4vfqSUJJ5wQprCSkBMxHONl9bgeQHemofQSY7SOkhNMIKC3i5epJgklv81NVJVWUgFn8Gk4SSrovCGElISUAvzA9iOyq1vaL0DIaISWcFO92A/zAq+Hk2vKRhJM+44dz6tXfJ8Bv/BhO7t47gHDSQE3nhXMDKy1btkwZGRlKSkpSTk6ONm/e3O7yzz//vDIzM5WUlKTPf/7zeu2116Keb2xs1D333KPBgwerV69eysvL0//93//ZuQuwEdWTbSvf27/FT5AEff9bw++LGdzo1yoqKjRt2jQlJycrNTVVhYWFqqmpsXzfmhBQdpMXwxQ/hFhon9fPsRd/rwA/8VM4SfjlLX47V376XfKS1atXa+7cuVq4cKHee+89XXTRRcrPz9fBgwdbXX7jxo267rrrVFhYqD//+c+6+uqrdfXVV2vbtm2RZX7yk5/o0Ucf1fLly7Vp0yZ95jOfUX5+vk6cOOHUbsEihC3RCOM6xjHi98ZtbvVr06ZN0/bt21VUVKRXXnlFb731lmbOnGnbfhJQBojXQyvEjnMOIKj8FnQFjZ+CZUJK5z300EOaMWOGpk+frvPPP1/Lly/X2WefraeeeqrV5R955BEVFBTov/7rv5SVlaX77rtPl1xyif77v/9b0ukqk4cfflh33XWX/vVf/1WjRo3Ss88+q/379+t3v/udg3uG7iJkIWyzAscPTnOjXystLdWaNWv05JNPKicnR+PGjdNjjz2mX/3qV9q/f78t+0lA2Q1eqfIipIIXrwGv/H4BfuP1MMUvoRY+5Ydz6vXfKxNUV1dH/dTW1ra6XF1dnUpKSpSXlxd5LD4+Xnl5eSouLm51neLi4qjlJSk/Pz+y/K5duxQOh6OWSUlJUU5OTpvbhHmCHE4SqNknSMc2yL9DdjC9XysuLlZqaqrGjBkTWSYvL0/x8fHatGlT13a6A9wkp4u8EJ54LZCC/bx2529umgM4y8shitcDLHSs6Rz79aY6fvC7oxcpqbGnpds8UVMvaa2GDRsW9fjChQu1aNGiFssfPnxYp06d0qBBg6IeHzRokHbsaP2mReFwuNXlw+Fw5Pmmx9paBjBNEAIz0zQ/5n692U7Qbprz8tFRNvVrYeP7tXA4rIEDB0Y936NHD6WlpdnW9xFQ+hThJNqztnykZ0JKAGgPwWTweDWo5K7e3bNnzx4lJydH/p2YmOhia+A1Qan8IpQ0RxDCSnQP/VpLDPHuApOrJ704lBfu8Mq1YvLvG+AnXque9MOwX3QP5z9YkpOTo37a+iDXv39/nXXWWTpw4EDU4wcOHFAoFGp1nVAo1O7yTf+NZZswRxDCyaAMMfYqv52fIPxOOcH0fi0UCrW4Cc/JkydVUVFhW99HQOkjXgibYB6vBJUA7OOlcJJgEs157Xrw0u+aVyUkJCg7O1vr1q2LPNbQ0KB169YpNze31XVyc3OjlpekoqKiyPLDhw9XKBSKWqa6ulqbNm1qc5uAE/wWfPmdn84XIaVz3OrXcnNzVVlZqZKSksgy69evV0NDg3Jycizbv+YIKGNkYjUXAROsYPI1ZOLvXVBVVFRo2rRpSk5OVmpqqgoLC1VTU9PuOidOnNCsWbPUr18/9e7dW1OmTIn6tu4vf/mLrrvuOg0bNky9evVSVlaWHnnkkahtbNiwQXFxcS1+mPsrWLwURMFZXgoqCSntN3fuXP3sZz/Tz3/+c5WWlurb3/62jh07punTp0uSvvGNb2jBggWR5b/73e9qzZo1evDBB7Vjxw4tWrRIf/rTnzR79mxJUlxcnG677Tb94Ac/0EsvvaQPPvhA3/jGNzRkyBBdffXVbuwiOsmvIYqfgq4g4vwhVm70a1lZWSooKNCMGTO0efNmvfPOO5o9e7amTp2qIUOG2LKfzEEZAxNDEpNDJXgPc1OiI9OmTdPHH3+soqIi1dfXa/r06Zo5c6ZWrVrV5jpz5szRq6++queff14pKSmaPXu2rrnmGr3zzjuSpJKSEg0cOFC/+MUvNGzYMG3cuFEzZ87UWWedFelEm5SVlUXN1XLmxM2InRfCEq8ET3Df7r0DPDc3Jax37bXX6tChQ7rnnnsUDoc1evRorVmzJnIzgPLycsXHf1qncdlll2nVqlW66667dMcdd+hzn/ucfve73+nCCy+MLHP77bfr2LFjmjlzpiorKzVu3DitWbNGSUlJju8fOseP4SShlr80nU+vzlEZtBvmuMmtfm3lypWaPXu2Jk6cqPj4eE2ZMkWPPvqobfsZ19jY2Gjb1i1SXV2tlJQUvb1tiHr3ca/o07SAknASdjIxqHT7jt41Rxs07sL9qqqqigrJusLO9zUr29lcaWmpzj//fG3ZskVjxoyRJK1Zs0aTJ0/W3r17W/0mraqqSgMGDNCqVav09a9/XZK0Y8cOZWVlqbi4WGPHjm31tWbNmqXS0lKtX79e0ukKygkTJujIkSNKTU21bJ/c0HTu73p3kpJ6W3tXwK4wPaAknERXmR5UmnDDnBM19frB2LXd7i/sfF+zqo2wj2n9WhM/BZQEk8Hg1aDSpJCSfs3bqKDsJJPCSYLJttXsSun0sr2HV9nYEu+jmtL7qquro/6dmJjYrbvDFRcXKzU1NRJOSlJeXp7i4+O1adMmfe1rX2uxTklJierr65WXlxd5LDMzU+np6e0GlFVVVUpLS2vx+OjRo1VbW6sLL7xQixYt0he/+MUu7w/MDicJJtFdVFMCweWXcJJgMli8XlEJdBcBpccEMZyMJXS0a7tBDTNNCymfO3KZ61WUVvtVZY4ST1r7rVxtTb2k32rYsGFRjy9cuFCLFi3q8nbD4XCLIdU9evRQWlpam3NBhsNhJSQktKh6HDRoUJvrbNy4UatXr9arr74aeWzw4MFavny5xowZo9raWj355JMaP368Nm3apEsuuaTL+wQzEU7CKiaHlEXhTCOqKAGYh2Ay2Mr39vdUSMlQb1iFgNJD/B5O2hVEWqGttgUhuDQtpETn7dmzJ2rYQFvVk/Pnz9cDDzzQ7rZKS535o2Pbtm3613/9Vy1cuFCTJk2KPD5y5EiNHPnpe+Bll12mDz/8UEuXLtVzzz3nSNv8xtTqScJJWK3pmjI1qARgLa9XTxJOQqKaEsFEQNkJJgzv9mM4aXIg2Vln7oNfA0uTQko/VlHaJTk5uVPzmsybN08333xzu8uMGDFCoVBIBw8ejHr85MmTqqioUCgUanW9UCikuro6VVZWRlVRHjhwoMU6f/3rXzVx4kTNnDlTd911V4ftvvTSS/X22293uBy8g3ASdjKxmpIqSgBNCCbRGq9UU1JFCSsQUHqAX8JJPwSSHfFzYGlSSAlrDRgwQAMGdBwM5ebmqrKyUiUlJcrOzpYkrV+/Xg0NDcrJyWl1nezsbPXs2VPr1q3TlClTJJ2+E3d5eblyc3Mjy23fvl1XXHGFbrrpJv3whz/sVLu3bt2qwYMHd2pZRDOxepJwEk4wMaQEYB2vVk8STqI9VFMiKAgoO+B29aTXw8kghJLtab7/fggrTQkpqaJ0R1ZWlgoKCjRjxgwtX75c9fX1mj17tqZOnRq5g/e+ffs0ceJEPfvss7r00kuVkpKiwsJCzZ07V2lpaUpOTtatt96q3NzcyA1ytm3bpiuuuEL5+fmaO3duZG7Ks846KxKcPvzwwxo+fLguuOACnThxQk8++aTWr1+vtWvXunMwYBmCSSmxPMHx16xNr3P8NU1hWkhJFSUQXASTiIXp1ZRUUaK7CCgN5tVwMuihZFv8ElaaElLCHStXrtTs2bM1ceJExcfHa8qUKXr00Ucjz9fX16usrEzHjx+PPLZ06dLIsrW1tcrPz9fjjz8eef43v/mNDh06pF/84hf6xS9+EXn83HPP1e7duyVJdXV1mjdvnvbt26ezzz5bo0aN0htvvKEJEybYv9OwTZDCSTdCyPa01Z6gBJemhZQAus9r1ZOEk+gK00NKoDsIKNvhZvWk18JJQsnYeD2sJKQMrrS0NK1atarN5zMyMtTY2Bj1WFJSkpYtW6Zly5a1us6iRYs6vLv47bffrttvvz3m9qIlU4Z3+z2cNC2Q7KzW2u3X0JKQEoBbCCfRHSaHlFRRojvi3W4AWvJSOFmzK4VwspuajqHXjqPb16nb0y8A6Do/hpOJ5QlRP37i530z5Vo05YsDAPYq39ufcBKW4DqCH1FBiZh5LUjzkqZj65WqSiopAW8hBLGW38K6zmq+336orqSSEvA+LwzvJlCC1bh5DvyGCso2uFWd5XZVWnu8WOXnVV461m5es1RRAt5jSsVaV/m1krCr/HI8TLgu+QIB8C/CSdjJtOvLC18YwEwElAYxNZz0UljmN1459qZeuwDMYkII1BV+CeHs5vVj5NXrE4DZTAuP4E9cZ/ADAkpDmBjweCUcCwLOBYDucrs6y4vhj9cDN7d4OdD14nUKBJ3J1VqERnCSSdebyb+XMBdzULbC6WGjpoaTMI/Jc1S6NR/lc0cu0419Nzr+ugA6z0uhjxdDNZM1HU8/zFXphKJwpq4M7XC7GQAsYFJYZAKn+9eg9jsm3+Eb6AgBJaIQTHpDza4UQkoAnuCVcJJg0l5eCiq5aQ7gHaZWaQU5nDSlP22rHV7oh7qLkBJeRUDpMpOqJwknvcXkakoAZnF7eLfJTPkgFRReCSoJKQF0VdDCSa/1o2e21/T+yMteD2cpP1TqdjPgIcxBeQYnh3ebEk4yv6G3mXbu3LiuuZs3YCbTqye99qHKT7wwR6Vb1y9fKADeFYRwsvk8w6a/j3eGn/aluSBci/AfAsqAMy3cQteYFjKbEr4DcI/J4aQfP4h4FecCgF/4ORDya4h3Jr+Fr36+JuFPBJQucTvAMS3QgjU4pwDO5EY1lqnhpF8+cPiRqefF1GsZgLnzT/qFn4K6rvLD/rsdUvJ7ilgQUDbj1DBRE8JJ+Jcp59ft6xwAmvP6B4wgMPWDICElgI64HQJZydT3Yjd5Paz10/UJfyOgDBhTwivYy5QKWSdDSuahBMxgWpjj5Q8UQcX5Yh5KwEv8EP54PYBzEscJsA8BpcPcrCozIbCCszjnQLA5HXKYGE7Cm0z7AGjatQ0EnSnDRr0eTpr2XuslXjt2bl6rpvy+wnwElAFBUBVcbp97hnoDcIOXPjSgbSadR0JKAH7htXDNZF46ll4P1OF/XQooly1bpoyMDCUlJSknJ0ebN29ud/mHH35YI0eOVK9evTRs2DDNmTNHJ06c6FKD7eLE8FC3ghq3Ayq4j2sAaJ8f+zWnmRLeeOmDAjonqOeTYd7oKvo0Z3gx7KGPtI9Xjq0Xr1sER8wB5erVqzV37lwtXLhQ7733ni666CLl5+fr4MGDrS6/atUqzZ8/XwsXLlRpaalWrFih1atX64477uh2472EcBJuc/NacOr6Zx5KdAX9mn944YMBusaUc2tKEA+0hT7NGV4LebwSnvkBx7p1DPNGZ/SIdYWHHnpIM2bM0PTp0yVJy5cv16uvvqqnnnpK8+fPb7H8xo0b9cUvflHXX3+9JCkjI0PXXXedNm3a1M2moyN+DSf7fGjfzARHz2uwbdsmqNmVot7Dq9xuBmAUv/ZrTlZfmRDa8GHA/5rOcW16ncstAczl1z6tOYKO2NA/uiOxPMHY/qp8b3+lDz3sdjOAFmJKeurq6lRSUqK8vLxPNxAfr7y8PBUXF7e6zmWXXaaSkpLI0IKPPvpIr732miZPntyNZnuLG9WTfgkn+3wY3+LH6dez+zWd5ta1wVyUMBH9mj/w4StY3D7fJgTyQGvo05zhlepJKvncZ/I58Mp1jGCJqYLy8OHDOnXqlAYNGhT1+KBBg7Rjx45W17n++ut1+PBhjRs3To2NjTp58qRuueWWdocN1NbWqra2NvLv6urqWJoZM78NC/VyOGlqGHhmu7xeaUklJXCaE/2a032a09wOa0z9wx/2crsyZffeAcoYesj21ykKZ+rKUOvvRcCZ/PpZzSReCXXoG83idp8FeIXtadCGDRv0ox/9SI8//rjee+89vfjii3r11Vd13333tbnO/fffr5SUlMjPsGHD7G6mbZyuGvNaOOnVSkUvtvlMblwrTvw++O0LB5gn1n7NT33amQgn4SbOP9B9Qf+s5jcmV+wFnYnnxunAnekZ0JGY0pX+/fvrrLPO0oEDB6IeP3DggEKhUKvr3H333brxxhv1rW99S5///Of1ta99TT/60Y90//33q6Gh9Sq0BQsWqKqqKvKzZ8+eWJoZWF4JJ/0Q7jXn5f3xyjUD2MWJfo0+zR6m/ZEPd7h5Hbgd0ANnCsJnNTcDDtOrJ+kXvYHzBLQtpkQlISFB2dnZWrduXeSxhoYGrVu3Trm5ua2uc/z4ccXHR7/MWWedJUlqbGxsdZ3ExEQlJydH/aB9XgiavBrixcKLYaXT1w5zUcIkTvRrbvRpTtwgx81whj/u0RzXA3Aan9XsY3I4aWJlHtpn0vky+dpG8MR8F++5c+fqpptu0pgxY3TppZfq4Ycf1rFjxyJ3ivvGN76hc845R/fff78k6Stf+YoeeughXXzxxcrJydHOnTt199136ytf+Uqk83OTncNBnQpiTA8nvRTWWalpv70wXyVzUiLI/Nav+Z1Jf9Tboc/fWw8ErHD03Djbtu02t+b3cmouSqCz6NOCxe99op8xLyXQUswB5bXXXqtDhw7pnnvuUTgc1ujRo7VmzZrIZMzl5eVR38LdddddiouL01133aV9+/ZpwIAB+spXvqIf/vCH1u1FgJkaTgY1lGyNl4JKp6wtH6lJ6WVuNwOQRL/mJX76IGZnEBnLa/optPTrhz1ulINY0KdZz9QKMz/1iUHVdA7d7rvK9/ZX+tDDjrzW6+Es5YdKHXkteE9cY1u1+waprq5WSkqK3t42RL37WBt82VVBGdTqSYLJjpkcVDpZRWl3QHlj342Wb7PmaIPGXbhfVVVV3R7O1PS+Nvvtrymxd0+LWnhabU29/nvcby1pJ6zXdO7veneSkiw+903sHuLtxvBuP3wQcyOUjJUfAkunP+g5UUFpV0B5oqZePxi7ttv9hZ3va1a1EfZxol9r4sYclCYGlH7oExHN7ZDSqYBSkq0BJf2at5EmeRjhpDeZPEelk9cUc1EC9nBi/kmnefWDWJ+/N0b9eIHX2msCbpYDOINw8jSv9olon9vn1cRrHcFjZkricU4ELyaFkyYHbiYz9biZdG0BMI/TYYzbf7B3hV8CPq+GlV68ZgCgM3h/8zfOL4LOvHTEQXbeIMdOpgRIpgZsXsMxBIDWeekPda+GeZ3ltX1z+tqhihLwH9MqyrzUJ6Lr3DzPpl3zCB6SEXQJoZq1TAt7nQrBGeYNeAshTEteC+66y0tBrJ8+zPtx6gYAneen9zN0zO/n243pGuAN5iQiPmF34OJ29aRpQZrfmHRs3b7WAASb6X+ceyWks5MXjoGT1xEBPuAfJlWSmd4fwh5unXeTrn0EjzlpCDrkdmBkUnjmZ4TA1vDqFA4AzP4w5oVQzmkcEwB2C2rFlcn9IezH+UfQkIKgUwjMnGfCMXciFGeYN2AdO4eBOlUdZuof44RwHTP1+Jh6TQFAe3jvgluoooRb3E9AfMTOoMXN6kkTgrKgMuHYu125CwBuIpiMjanHy6kP+gzzBrzPhHCGcBJNuBYQJD3cboBbGP7ZMRPCMXx6Ho6e1+ByS+yztnykJqWXud0MAG0IavWkiUGbVzQdu6PnxrncEgDwFtP6Qrv02W1PH3s0w3/9TmJ5gmrT6xx9zfK9/ZU+9LBt2389nKX8UKlt24c3kUBZxG/Vk4ST5nHznFBFCcBuJn0gM7UK0ItMOo4mXWNdwZ28Afu5XT3p9feptvTZ3djixw+v5SS/XhtAc6RQhiOcRHOcGwCwl0mBml+YdEyd+IDHMG8AXeG3AMqkgNCktnSH364R4EykHYhCAGY+t86RF6somcoB6D4nwhZT/uA2KUjzG6pSAXRVUO/g7UVeCAK90EZTuF1RjOAhjbKAXcO7nQ6ECCe9w4/nirt5A93D8M+uIzxzjgnH2ZRAHGaoqKjQtGnTlJycrNTUVBUWFqqmpqbddU6cOKFZs2apX79+6t27t6ZMmaIDBw60uuw//vEPDR06VHFxcaqsrLRhD2AVN8MYL78veTnw82LbvXytwH529Wnf+c53lJ2drcTERI0ePbrFNnbv3q24uLgWP++++25M7fdfyoEu8WPg5XdunDMvVlECMJvbf2ibEJgFTRCOOcO8vWPatGnavn27ioqK9Morr+itt97SzJkz211nzpw5evnll/X888/rzTff1P79+3XNNde0umxhYaFGjRplR9PhE273g13ltWCvI17aHyevGaoovcXOPu2b3/ymrr322na39cYbb+jjjz+O/GRnZ8fU/kDexdsLwz6dDIIIJ72rz4fxjt/du2ZXinoPr3L0NQG4w+6Qxe0PZUEIykzV5++Nrt7h2407osI8paWlWrNmjbZs2aIxY8ZIkh577DFNnjxZS5Ys0ZAhQ1qsU1VVpRUrVmjVqlW64oorJElPP/20srKy9O6772rs2LGRZX/605+qsrJS99xzj37/+987s1PoErdCGLf7wa7wSojXVU3758e7gZuGO3lby84+7dFHH5UkHTp0SO+//36bbejXr59CoVCX94FkKuAIJ73PT+eQYd4AnEI46T63h9Z7MRhgKgdrFRcXKzU1NfJBTpLy8vIUHx+vTZs2tbpOSUmJ6uvrlZeXF3ksMzNT6enpKi4ujjz217/+Vffee6+effZZxcf75281BJeXKgytYPr+erEPg73s7NM666tf/aoGDhyocePG6aWXXop5fXrLbrIjUHGqetJPwVbQcS4BeI2bf1gTTprFr+eDYd7Wqq6ujvqpra3t9jbD4bAGDhwY9ViPHj2UlpamcDjc5joJCQlKTU2NenzQoEGRdWpra3Xddddp8eLFSk9P73Y74U9eCZhMD+rsZvL+O3UNMczbHlb3a3b1aZ3Ru3dvPfjgg3r++ef16quvaty4cbr66qtjDikDOcQb8CMnh3szzBuAV/k1DPM6t4Z8M9TbWn848E/qUZNo6TZPHquVtFbDhg2LenzhwoVatGhRq+vMnz9fDzzwQLvbLS21b1jhggULlJWVpRtuuMG214B13AhfvBBOmhrKuYWh38G07sBI1/s1t/u0zujfv7/mzp0b+fcXvvAF7d+/X4sXL9ZXv/rVTm+HgNIwVE8i6NaWj9Sk9DLLtvfckct0Y9+Nlm0PCAo7q7/c+mBGOGk2t+elhNn27Nmj5OTkyL8TE9v+wDhv3jzdfPPN7W5vxIgRCoVCOnjwYNTjJ0+eVEVFRZtzaIVCIdXV1amysjKq4uTAgQORddavX68PPvhAv/nNbyRJjY2n33v69++vO++8U9///vfbbRs+9Xo4y+0mBBLhZNv67G40KqTkizbv6my/5naf1lU5OTkqKiqKaR0Cym7w6nx5fggn+5ZZ+yZ8ZKT532J2BlWUQDAxL13HCCe9wY2Q0s4Pd7v3DlDG0EO2bDtokpOToz7ItWfAgAEaMKDjL1lyc3NVWVmpkpKSyJ1G169fr4aGBuXk5LS6TnZ2tnr27Kl169ZpypQpkqSysjKVl5crNzdXkvTCCy/ok08+iayzZcsWffOb39Qf//hHnXfeeZ3aB/iXydWTBJOdY1o1pRMhZfne/kofetjW1wiazvZrbvdpXbV161YNHjw4pnUIKAPGq+Gk1YFkR9v3cmDpxp29AaCz3PhgRjgJoDVZWVkqKCjQjBkztHz5ctXX12v27NmaOnVq5G6n+/bt08SJE/Xss8/q0ksvVUpKigoLCzV37lylpaUpOTlZt956q3JzcyN3Oz0zhDx8+HDk9c6c5wvuYm69TxFOxs60akov4k7e1rGrT5OknTt3qqamRuFwWJ988om2bt0qSTr//POVkJCgn//850pISNDFF18sSXrxxRf11FNP6cknn4xpHwIXUD535DK3m9Amu4d3ey2ctDuU7OxrezGsdCqkpIoS8Cc/3dyDcNJ7/FZFCbOtXLlSs2fP1sSJExUfH68pU6bo0UcfjTxfX1+vsrIyHT9+PPLY0qVLI8vW1tYqPz9fjz/+uBvNh8eYWD1JMNk9poSU9GOQ7OvTvvWtb+nNN9+M/LspiNy1a5cyMjIkSffdd5/+/ve/q0ePHsrMzNTq1av19a9/Pab2By6ghNncDCXb4vWw0ousnocSgBmc/mBGOOldzEcJp6SlpWnVqlVtPp+RkRGZQ7JJUlKSli1bpmXLlnXqNcaPH99iGwgewkn/MiWktBvDvM1nV5+2YcOGdl/3pptu0k033RRTW1vjrZI6g1g9/2TQqyf7ltUZGU6eqamdXmirU+fcqRs7AUAsCCe9z+lzaFd4YHVFMnPOArAC4aS1+uxudP2YmhiCA7EwO7WCJUwNJ70U9rXGC2039dwDANAZBM0A7OLk/JOmBUduB2l+xrEFuo70wgBBrEAzPdiLhReCSgDoLLvmn3Tywxmhlr9wPgHAOgRo9nPzGJsWhgOxIKD0OdMq6Pwc5pm6X05cA0EM2QGYiTAL3cEHO8Acr4ez3G6CJUx5XzFhCHKQ+PVYO1l5jODhJjk+ZlI4aWp4Z7Wm/TTtZjpO3dXbSlbeKOe5I5fpxr4bLdkWYBovzEfn1Iczv4WTKR/WdnsbVeclWtAS93n9pjm79w5QxtBDbjcDwP8TtJDFr2GZ6dy6eQ539IZXEVB2gZU3yAlC5VlQwsnmTA0q7VSzK0W9h1e53QwA8CQrwsjObNfLgaVTISUf7ABYxYTqScJJdwXlDt/d8Xo4S/mhUrebAQOYU2IHS5lQPenn4dydZdL+m3BNwPsqKio0bdo0JScnKzU1VYWFhaqpqWl3nRMnTmjWrFnq16+fevfurSlTpujAgQNRy8TFxbX4+dWvfhW1zIYNG3TJJZcoMTFRn/3sZ/XMM89YvXuBZ8f8k1RPti3lw9rIjxuv6eTrWsWL5xkA3EI4aQY3zoOdf38FrQIZzglUYvHckcvcbkJgmBTMuc2kY0FIie6aNm2atm/frqKiIr3yyit66623NHPmzHbXmTNnjl5++WU9//zzevPNN7V//35dc801LZZ7+umn9fHHH0d+rr766shzu3bt0lVXXaUJEyZo69atuu222/Stb31Lr7/+utW7CA/yUmhlWjhoUlsAwE9MqJ6EOQiLgY4xxNtFdg3vdjuEMimQM0VQhnxbPczbynko0X2lpaVas2aNtmzZojFjxkiSHnvsMU2ePFlLlizRkCFDWqxTVVWlFStWaNWqVbriiisknQ4is7Ky9O6772rs2LGRZVNTUxUKhVp97eXLl2v48OF68MEHJUlZWVl6++23tXTpUuXn51u9q4DlTA8Bm7fP9GHgTgz1tmOYN/NQAmYISvUXgZh5nB7uzZQl8BrKqWJk5fyTfsOQ7o6ZcHzcDrDhnOrq6qif2truBSTFxcVKTU2NhJOSlJeXp/j4eG3atKnVdUpKSlRfX6+8vLzIY5mZmUpPT1dxcXHUsrNmzVL//v116aWX6qmnnlJj46d/WBcXF0dtQ5Ly8/NbbANmcaJ6xPTqSS9WKHqxzUHjhZtjAUHmdvUk4SQAL6KC0mfcCp9MCN68om9Zne8rKdF56/d+TmedbW210qnjp4OFYcOGRT2+cOFCLVq0qMvbDYfDGjhwYNRjPXr0UFpamsLhcJvrJCQkKDU1NerxQYMGRa1z77336oorrtDZZ5+ttWvX6j//8z9VU1Oj73znO5HtDBo0qMU2qqur9cknn6hXr15d3i94l8nhpB8CvpQPa42tpvRqFSUA2I1w0mx+qaIs39tf6UMPW75dBBsBpUvsGN5NOOkdboeUfT6M19HzGmzZNnfzNseePXuUnJwc+XdiYutBw/z58/XAAw+0u63SUnvvrHf33XdH/v/iiy/WsWPHtHjx4khACfvZcYOcIPJDMNlc0/6YGFQ6dVdvAPAKwklv4M7eQOsIKNEthJNd53ZICf9LTk6OCijbMm/ePN18883tLjNixAiFQiEdPHgw6vGTJ0+qoqKizbkjQ6GQ6urqVFlZGVVFeeDAgTbXkaScnBzdd999qq2tVWJiokKhUIs7fx84cEDJyclUTxrK7uFtJlZP+i2cbM7koBKA/7weznK7CV3m1vBuwklvcTKkZEQAvIKA0ifcqJ4knOw+N0NKO6so4S0DBgzQgAEdV8/l5uaqsrJSJSUlys7OliStX79eDQ0NysnJaXWd7Oxs9ezZU+vWrdOUKVMkSWVlZSovL1dubm6br7V161b17ds3UvWZm5ur1157LWqZoqKidrcBOMXPweSZTBv2bXcVpdUf6rhRDuCuoNwgBwC8iLtlxMCqG+TYdfduJxFOWodj2T5uTGWOrKwsFRQUaMaMGdq8ebPeeecdzZ49W1OnTo3cwXvfvn3KzMzU5s2bJUkpKSkqLCzU3Llz9Yc//EElJSWaPn26cnNzI3fwfvnll/Xkk09q27Zt2rlzp37605/qRz/6kW699dbIa99yyy366KOPdPvtt2vHjh16/PHH9etf/1pz5sxx/kAYJKg3yjCpejJI4WQTbqIDAK2jehKx8Pp5szLw93LVNKxDQImYEahZz61jalflrYkh/HNHLnO7Cb6wcuVKZWZmauLEiZo8ebLGjRunJ554IvJ8fX29ysrKdPz48chjS5cu1b/8y79oypQpuvzyyxUKhfTiiy9Gnu/Zs6eWLVum3NxcjR49Wv/zP/+jhx56SAsXLowsM3z4cL366qsqKirSRRddpAcffFBPPvmk8vPzndlxxMTtu5c6JeghnSn7b1JgDQBO83rIFXROnb+g/G0Gb2OItw84ObybcNI+zEkJL0hLS9OqVavafD4jI0ONjdF/aCUlJWnZsmVatmxZq+sUFBSooKCgw9ceP368/vznP8fWYHSKl26QY0IYZUowZwLThnzbgbm7AJiKcNIfuGkOcFpgKihNqZ4ysbIM5nAjAHbr7u8AECvCSTOZcExMuDYAmM3u+SepUAOA7qGC0uOonvQfv1RS1uxKUe/hVW43A4DD/PwBzYQgzlRBqKS0CjfKAWAFP1dPpnzU+f62aoQ/+h4nqigZEQDTEVCiUwgnAQBBRjjZMbdDSrvv6A0ApvBTOBlLGNnZ9f0SWnpB+d7+Sh962O1mwCcY29lJJt5J2KnqScJJ5zl9zE0f5m3i7x8AZ7k5hJdwsvP8eqxMrAwuCme63QQA/4+J7xGmSvmoNurH7tfwEieCZ65VmMzsVMJnvDj/JOGkezj2AJxg5Q1y/PhHr18DNzu5ecyYixKA33m1etKtwNBrYaVXzy9gBQJKwGBOhpR2VFF6MZQHYB63QifCya7j2AEATAsHTWoLgJYIKD3KiSG5VPABAIKKgK373DqGdgXafqwQBoLCzjt4O/ne4JXqOtODQNPbZ/d5pj+DqQgo0SrCSXNwLgAEmRvVk4ST1uFYts7KqRUAv3k9nOV2E9BFpgd/Z/Jae01l1RcA/O6DgNIhVg51Nf2GJrCeUyEl1xaAruLbeLTFjZCSuSgB+I3p1ZNeDvpMbLvp5xuwA2lEJwTtDsJU7MFKVoXzQfs9BDoShDv4Uj3pHxxXAH7k1JdzJodVfqlC9Mt+AF5GQIkohJPmoooSgNUYZhqNEM1efji+VAoDwKf8GOiZtE92BtP0ZzARSYTHEB4FGwEyANjDD+EZojHMG4Bk7w1ynGBq9aRJQZ7V/LxvgMlIuxxg5fyTdiL8gt89d+Qyt5sA+JId38I7GS4RTjqHYw3AL4JagRaUodCm7KepAfWZvP5FAMwQiICSUAJ+4kSQTKUuAMAuToaUVFEC8DLTwikTAjun+Xmfgxqyw1ykEB5iZ2hE9STs5JUqYgBmoHoSJrPqAx1zwALwEj8HdR1xe99NC6oBu/RwuwFAd/Xati+m5T+58BybWuKcvmV1OjKSb7wAoDsIJ92T8mGtqs5LdLsZAIBOcDugM0HKR7WqGkG/BdiJgBKeq56MNZDsaH0/BJYAAHiNUyFln7836ui5cba/jhuKwpm6MrTD7WYAgePE0FhTquYIJz/lZkjZZ3ejjmb4sy8DmjDEuwNry0d2a32rhrYyJ+DpYLG74WR727Vj23ayO1g28Zrr7u8jAOtZ/SHNqeHdVE8CANA+wsmW/HZMmIcSJqGCMuBMr550OjRsej2qKgH4HfPfwQQM9QZgJ6/eWdiE6km/BXFWcquSkipK+J15JVLA/+NmRaNXKipND5ib40Y5AExB9WTwWF2ZS8UJAD8jnERXePULAZiDgNID7Bpqa2q4ZVI4aFJb3GDiMG8A/uXk3bthDgJjAF5i9xcUbldPEk52DsfJHq+Hs9xuAlxE+gBjmBwGmtouydygGYD/ebGKjDDMTJwXAIDXuBFS2hFge/HvOfgTAaWNTB7SalqoZXIA2MQLbQQAtI0QLNhMrNBlLlgAJqEqMHYcM8A6BJRwnZeCP1OrPE0LnAEAiBUBMoCgD+90c3g3QVvXOX3s3J4GALALAaXh7JgD0KQwy8SwrzO82u6uYB5KAE6wu7qN8AtWY0gcEDx+/b0nnARgApKHdqwtH+l2E3zN6yGf19vvBpOnPQC8pCic6XYTAFvYHSSbOMwbAOB9Xg95/Rq+w1sIKOE4U4dJd4VJ+2FSZSwAswVt3juqJwEgeMr39ne7CTFxa9iu14M1kzh5LE0d5u213zuYpYfbDYCz3A6xTAr0rNJr2z59cuE5bjcjMNaWj9Sk9DK3mwEEnpXftFPV1rGEHXs7vWxd5lAbWwIA8AvCSQAmIaC0iRVDWZn7zzv8HlL2+TBeR89rcLsZABAYsQSS7a3rxbAy5cNaVZ2X6HYzAACIWcpHtaoaQR8GdAUJGBzjx+rJ5kzYP7crZAHANF4b3p2wY2+3wsm2tmflNr2Oil0AXWHnHH1uDNeletI+Th1bq68b5qGE2wgoA8TN8MqE8M4JQdlPAIC1nAgRvRRUeiVY5sOc91VUVGjatGlKTk5WamqqCgsLVVNT0+46J06c0KxZs9SvXz/17t1bU6ZM0YEDB6KW2bJliyZOnKjU1FT17dtX+fn5+stf/mLnrgAAAs6OPu0f//iHCgoKNGTIECUmJmrYsGGaPXu2qquro7azYcMGXXLJJUpMTNRnP/tZPfPMMzG33/cB5XNHLnO7CYFHaOcsqijbx3sCYBY7q9m8EHK5ERp6KagMgqDdtMo006ZN0/bt21VUVKRXXnlFb731lmbOnNnuOnPmzNHLL7+s559/Xm+++ab279+va665JvJ8TU2NCgoKlJ6erk2bNuntt99Wnz59lJ+fr/r6ert3CegQ1ZP24xjDDXb0afHx8frXf/1XvfTSS/rb3/6mZ555Rm+88YZuueWWyDK7du3SVVddpQkTJmjr1q267bbb9K1vfUuvv/56TO1nDkrYKojhpN/no+yuml0p6j28yu1mAICrTAgIE3bsNXqOSuaihN1KS0u1Zs0abdmyRWPGjJEkPfbYY5o8ebKWLFmiIUOGtFinqqpKK1as0KpVq3TFFVdIkp5++mllZWXp3Xff1dixY7Vjxw5VVFTo3nvv1bBhwyRJCxcu1KhRo/T3v/9dn/3sZ53bSRjP6eHdBGf+0md3o45mxLndDBjArj6tb9+++va3vx1Z59xzz9V//ud/avHixZHHli9fruHDh+vBBx+UJGVlZentt9/W0qVLlZ+f3+l98H0FpVdZfYMcquqc5cdglps2AWjCsNbuMSGcbGJSW5zEPJSQpOLiYqWmpkY+yElSXl6e4uPjtWnTplbXKSkpUX19vfLy8iKPZWZmKj09XcXFxZKkkSNHql+/flqxYoXq6ur0ySefaMWKFcrKylJGRoat+wTAHITBcJJdfdqZ9u/frxdffFFf/vKXo167+TYkKT8/v81ttIXEAbbxY0gXi6DvPwC4ydTh3SYGggz5hhdUV1dH/dTWdv93PBwOa+DAgVGP9ejRQ2lpaQqHw22uk5CQoNTU1KjHBw0aFFmnT58+2rBhg37xi1+oV69e6t27t9asWaPf//736tGDAWxwD4EZOmLFl9Dle/tb0BL/s7pfs6tPa3Ldddfp7LPP1jnnnKPk5GQ9+eSTUdsZNGhQi21UV1frk08+6fQ+0EO2YW35yC6vW7MrxcKWeBPhnLv6ltXpyEgqnACYLWhVbKaHgCYO+WaYd8eKwpm6MrTD7WZIksr391d8ryRLt9nwyQlJigyVbrJw4UItWrSo1XXmz5+vBx54oN3tlpaWWtK+1nzyyScqLCzUF7/4Rf3yl7/UqVOntGTJEl111VXasmWLevXqZdtr4zSrAxJGDqCrUj6qVdUI+jGv2ru/n+v9mtt9WpOlS5dq4cKF+tvf/qYFCxZo7ty5evzxxy19DQLKAGB4t3uYjxKAaYJwQw4TqydNDyebmBhSmi6xPEG16fytZbc9e/YoOTk58u/ExLY/8M+bN08333xzu9sbMWKEQqGQDh48GPX4yZMnVVFRoVAo1Op6oVBIdXV1qqysjKo4OXDgQGSdVatWaffu3SouLlZ8fHzksb59++p///d/NXXq1HbbhuBwcv5Jqif9y2/zUL4ezlJ+yP7AzW2d7dfc7tOaLxsKhZSZmam0tDR96Utf0t13363BgwcrFApF3fm7aRvJyckxfSlHQAnLUT0JAMCnvBJONiGkhImSk5OjPsi1Z8CAARowoOMvY3Jzc1VZWamSkhJlZ2dLktavX6+Ghgbl5OS0uk52drZ69uypdevWacqUKZKksrIylZeXKzc3V5J0/PhxxcfHKy7u08Cg6d8NDQ2d2gcA/kEVJVrT2X7N7T6tNU19WdOw9NzcXL322mtRyxQVFbW7jdYwB6WBvHwzEsLJltw6JnZUznr52gQAN3gtnGxiUrvtqogN2hQDaCkrK0sFBQWaMWOGNm/erHfeeUezZ8/W1KlTI3c73bdvnzIzM7V582ZJUkpKigoLCzV37lz94Q9/UElJiaZPn67c3FyNHTtWknTllVfqyJEjmjVrlkpLS7V9+3ZNnz5dPXr00IQJE1zbXwQX1ZOA/9nVp7322mt6+umntW3bNu3evVuvvvqqbrnlFn3xi1+M3Pjtlltu0UcffaTbb79dO3bs0OOPP65f//rXmjNnTkz7QNrgcwzvNgPBLQA4w6Th3SaFfF3h9fYDnbFy5UplZmZq4sSJmjx5ssaNG6cnnngi8nx9fb3Kysp0/PjxyGNLly7Vv/zLv2jKlCm6/PLLFQqF9OKLL0aez8zM1Msvv6z3339fubm5+tKXvqT9+/drzZo1Gjx4sKP7B8AMdofETk4XAHPZ0af16tVLP/vZzzRu3DhlZWVpzpw5+upXv6pXXnklsszw4cP16quvqqioSBdddJEefPBBPfnkk8rPz4+p/QzxhmUI4dBZNbtS1Ht4VZfXX1s+UpPSyyxsEYDOsupGAX6vXvNLuMdwb/hdWlqaVq1a1ebzGRkZamyMfr9KSkrSsmXLtGzZsjbXu/LKK3XllVda1k74D4ESTMXcyt5lR582YcIEbdy4scPXHj9+vP785z/H1uAzUEEJOIQAFwCCwS/hpElMqowFECxev4M3w7vNwbkA2telgHLZsmXKyMhQUlKScnJyIuPX21JZWalZs2Zp8ODBSkxM1D/90z+1mEAT3kb4ZiaG+AOdQ78Gq/gxnPTjPplm996OJ78HOos+DQDgRTEHlKtXr9bcuXO1cOFCvffee7rooouUn5/f4nbmTerq6nTllVdq9+7d+s1vfqOysjL97Gc/0znnnNPtxpuoZldKt9a38iYkhFPmIcgFzEO/5h9U2dnHryGl36caQPDQp6E5KvaCxaRpA8r39ne7CfCgmOegfOihhzRjxgxNnz5dkrR8+XK9+uqreuqppzR//vwWyz/11FOqqKjQxo0b1bNnT0mK3OkH/kDoFix9PozX0fMa3G4GYBn6NVjFryFeE7fno0z5sFZV5yW69vrtYb4umII+zRtMCpLgrJSPalU1wsy+DHBbTOV6dXV1KikpUV5e3qcbiI9XXl6eiouLW13npZdeUm5urmbNmqVBgwbpwgsv1I9+9COdOnWqzdepra1VdXV11A/gFwS6gDmc6Nfo04LB7+EkAPPxWQ0A4GUxBZSHDx/WqVOnNGjQoKjHBw0apHA43Oo6H330kX7zm9/o1KlTeu2113T33XfrwQcf1A9+8IM2X+f+++9XSkpK5GfYsGGxNBMOImwzH0P9gbY50a/Rp7Vkx7Bahnc7gyAWMBef1dAcw7vN5YVz4/WbQ8GbbL+Ld0NDgwYOHKgnnnhC2dnZuvbaa3XnnXdq+fLlba6zYMECVVVVRX727NljdzN9h1AKAOwRa79Gn+Z/QQvtgra/gJ+Z9Fnt9XCWJdsBAHhTTHNQ9u/fX2eddZYOHDgQ9fiBAwcUCoVaXWfw4MHq2bOnzjrrrMhjWVlZCofDqqurU0JCy2Q+MTFRiYnMywD/6rVtnz65kMnHAbc50a/5qU/j2/SWCOucZfI8lIDb+Kx2Gjfn8I+E0vbD77osqnfP1Gd3o45mxLndDKBLYqqgTEhIUHZ2ttatWxd5rKGhQevWrVNubm6r63zxi1/Uzp071dDw6U01/va3v2nw4MGtdngmWFs+0u0meALDuwF4nRf7taJwpu2vAXTET8Esd/KGX3ixTzOdHV/MOXGDHC8MIW5LQumeyI+Vy5rGy+cIsEvMQ7znzp2rn/3sZ/r5z3+u0tJSffvb39axY8cid4r7xje+oQULFkSW//a3v62Kigp997vf1d/+9je9+uqr+tGPfqRZs2ZZtxc+0edD20fcAwDOEKR+bffeAW43wRZuzT/pp5AOgD8EqU+Dv3Q3aPRyWAngtJiGeEvStddeq0OHDumee+5ROBzW6NGjtWbNmshkzOXl5YqP/zRoGzZsmF5//XXNmTNHo0aN0jnnnKPvfve7+t73vmfdXsBxVE92n5PDvPuW1enISLO+Ba/ZlaLew6vcbgZAvwZ0UcKOvarLHOp2MwA0Q58Gr7EjUEwo3cPwb8CDYg4oJWn27NmaPXt2q89t2LChxWO5ubl69913u/JS6AJukAO79fkwXkfPa+h4QcAj6Nec45fhtFRPuod5KIH20acFm5eGDttZ7di0bZODypSPalU1gv4MaMKYYgvV7EpxuwkAAACOIaj9FDeRAoDOcXIodhCHfDsxzylgBwJKxIzh3dbhWAKA9xDKAQDQNW4EhkEMKa3Q3S/eyvf2t6glCAoCSgBAp1VUVGjatGlKTk5WamqqCgsLVVNT0+46J06c0KxZs9SvXz/17t1bU6ZM0YEDByLPP/PMM4qLi2v15+DBg5JOD0lr7flwOGzr/sJ8bt0gBwCAWAW9ss3NoNDUG+h4aUg+YDcCSgBAp02bNk3bt29XUVGRXnnlFb311luaOXNmu+vMmTNHL7/8sp5//nm9+eab2r9/v6655prI89dee60+/vjjqJ/8/Hx9+ctf1sCBA6O2VVZWFrXcmc8DcJ4fKkr9MjcqgGAzOewyJRw0pR0AWurSTXJgLrtvkMOQZOs5dTdvE+/kDW8pLS3VmjVrtGXLFo0ZM0aS9Nhjj2ny5MlasmSJhgwZ0mKdqqoqrVixQqtWrdIVV1whSXr66aeVlZWld999V2PHjlWvXr3Uq1evyDqHDh3S+vXrtWLFihbbGzhwoFJTU+3ZQaAT/BDG+QE3ygEA7yAUBNAZVFAaos+HnAoA1qquro76qa3t3rfqxcXFSk1NjYSTkpSXl6f4+Hht2rSp1XVKSkpUX1+vvLy8yGOZmZlKT09XcXFxq+s8++yzOvvss/X1r3+9xXOjR4/W4MGDdeWVV+qdd97p1v4AsA7BLQCgNSaGkya2yWpBn04A3uTrCsrnjlzmdhMAoF3H/p6s+KQkS7fZcOKEJGnYsGFRjy9cuFCLFi3q8nbD4XCLIdU9evRQWlpam3NBhsNhJSQktKh6HDRoUJvrrFixQtdff31UVeXgwYO1fPlyjRkzRrW1tXryySc1fvx4bdq0SZdcckmX9wmdxx2KCeFgr917Byhj6CG3mwHg/6Hf87eE0j2qyxrW8YIOSPmoVlUjGBXQ3OvhLOWHSt1uBhzm64ASgH+tLR+pSellbjfDaHv27FFycnLk34mJrf/hM3/+fD3wwAPtbqu01Jk/EIqLi1VaWqrnnnsu6vGRI0dq5MiRkX9fdtll+vDDD7V06dIWy8JcVs/zxw1yAAA4zcT5J02vVDQppARAQIkYMP+kfZyahxLBkpycHBVQtmXevHm6+eab211mxIgRCoVCkbtqNzl58qQqKioUCoVaXS8UCqmurk6VlZVRVZQHDhxodZ0nn3xSo0ePVnZ2doftvvTSS/X22293uBwAZyTs2Ku6zKFuNwMAYADTw8kmhJSAOQgoASDgBgwYoAEDBnS4XG5uriorK1VSUhIJENevX6+Ghgbl5OS0uk52drZ69uypdevWacqUKZJO34m7vLxcubm5UcvW1NTo17/+te6///5OtXvr1q0aPHhwp5YFAABwE3MCAkD7uDMLgC7hxk7Bk5WVpYKCAs2YMUObN2/WO++8o9mzZ2vq1KmRO3jv27dPmZmZ2rx5syQpJSVFhYWFmjt3rv7whz+opKRE06dPV25ursaOHRu1/dWrV+vkyZO64YYbWrz2ww8/rP/93//Vzp07tW3bNt12221av369Zs2aZf+OA2L+SRMxxB8AzOSV6skmJrTXxCH6EnOxwllUUPpI37I6t5sAwOdWrlyp2bNna+LEiYqPj9eUKVP06KOPRp6vr69XWVmZjh8/Hnls6dKlkWVra2uVn5+vxx9/vMW2V6xYoWuuuabFDXUkqa6uTvPmzdO+fft09tlna9SoUXrjjTc0YcIEW/YTQNcwzBsAnGdSuGVC2AfAmwgo0SnMPwlAktLS0rRq1ao2n8/IyFBjY/QQpqSkJC1btkzLli1rd9sbN25s87nbb79dt99+e2yNBYAY9Pl7o46eG+d2MwAALvDjXJR9djfqaAb9GryDMZqAIZwIgamyBeAXTg7vZXg3AAAdo3oSQHcQUFqkZleK200AAACAi5irCwC8i4AVcBcBpQG42QgAAPALKk4BuKV8b3+3mxBYhHvdZ9JcooAbSMYAAAAAAEDgEbQC7iGgPMPa8pFuNwEIDKZGAGA6qgHN5uRcpABgIqruYDKqmhELAkp0iDt4AwC6q8/fGzteCAAAeI7fqg79tj+AVxBQAgYhDAZgl917B7jdBAAAAqnPbr6kA4COEFD6RN+yOrebAAAAIImh8U4rCme63QQA8BW3qiitHrJPOA4vIaAEAAAAAAAxYzi0/yWWJ7jdBAQEASUAAEArqAIEAAAAnEFACQAAPIU7NwMAALtRHQo4i4ASAAAAAADEhAAPgJUIKNEu7ioNAGDuIQBAkNDvAYDzCCgBAABgOebwBAB7WX3HZwBwEwElAAAAIKnP3xvdbgIAwCBuDGMneEZQEVACAAAAAAAAcA0BJQAAAAAA6DRukAPAagSUAAAA8KyUDxkKBwAA4HUElAAAAGfgBi8AAEDyfrVon93MrwxvIKAEAAAAAAAA4BoCSgAAAAAAAACuIaAEAAAAAAAA4BoCSgAAAACBVFFRoWnTpik5OVmpqakqLCxUTU1Nu+s88cQTGj9+vJKTkxUXF6fKysqo53fv3q3CwkINHz5cvXr10nnnnaeFCxeqrq7Oxj0BnOP1ORkBv+pKn3bixAnNmjVL/fr1U+/evTVlyhQdOHCg1WX/8Y9/aOjQoS36vg0bNiguLq7FTzgcjqn9BJQAAAAAAmnatGnavn27ioqK9Morr+itt97SzJkz213n+PHjKigo0B133NHq8zt27FBDQ4P+53/+R9u3b9fSpUu1fPnyNpcHAMAKXenT5syZo5dfflnPP/+83nzzTe3fv1/XXHNNq8sWFhZq1KhRbW6rrKxMH3/8ceRn4MCBMbW/R0xLAwAAAIAPlJaWas2aNdqyZYvGjBkjSXrsscc0efJkLVmyREOGDGl1vdtuu03S6YqR1hQUFKigoCDy7xEjRqisrEw//elPtWTJEkv3AYAzEkr3qC5rmNvNANrUlT6tqqpKK1as0KpVq3TFFVdIkp5++mllZWXp3Xff1dixYyPL/vSnP1VlZaXuuece/f73v2+1DQMHDlRqamqX94EKSgAAAABGq66ujvqpra3t9jaLi4uVmpoa+SAnSXl5eYqPj9emTZu6vf3mqqqqlJaWZuk2AfhXykfdf4+D2azu17rSp5WUlKi+vl55eXmRxzIzM5Wenq7i4uLIY3/9619177336tlnn1V8fNsx4ujRozV48GBdeeWVeuedd2LeByooAQAAAHRbwp4EnZWUYOk2T51okCQNGxZdubRw4UItWrSoW9sOh8Mthp/16NFDaWlpMc+b1Z6dO3fqscceo3oSADzGS/1aV/q0cDishISEFlWPgwYNiqxTW1ur6667TosXL1Z6ero++uijFtsZPHiwli9frjFjxqi2tlZPPvmkxo8fr02bNumSSy7p9D4QUAIAAAAw2p49e5ScnBz5d2JiYpvLzp8/Xw888EC72ystLbWsbe3Zt2+fCgoK9G//9m+aMWOGI68JAFZLLE9QbTo3+rJSZ/s1t/u0BQsWKCsrSzfccEOby4wcOVIjR46M/Puyyy7Thx9+qKVLl+q5557r9GsRUAIAAAAwWnJyctQHufbMmzdPN998c7vLjBgxQqFQSAcPHox6/OTJk6qoqFAoFOpqUyP279+vCRMm6LLLLtMTTzzR7e0BAPyjs/2anX1aKBRSXV2dKisro6ooDxw4EFln/fr1+uCDD/Sb3/xGktTY2ChJ6t+/v+688059//vfb3Xbl156qd5+++0O9685AkoAAAAAvjFgwAANGDCgw+Vyc3NVWVmpkpISZWdnSzr9QayhoUE5OTndasO+ffs0YcIEZWdn6+mnn253zi4AANpiZ5+WnZ2tnj17at26dZoyZYqk03fiLi8vV25uriTphRde0CeffBJZZ8uWLfrmN7+pP/7xjzrvvPPabM/WrVs1ePDgTu+nREAJwEW9h1e53QQAABBQWVlZKigo0IwZM7R8+XLV19dr9uzZmjp1auRup/v27dPEiRP17LPP6tJLL5V0es6ucDisnTt3SpI++OAD9enTR+np6UpLS9O+ffs0fvx4nXvuuVqyZIkOHToUeU0rKjMBADhTV/q0lJQUFRYWau7cuUpLS1NycrJuvfVW5ebmRu7gfWYIefjw4cjrNVVdPvzwwxo+fLguuOACnThxQk8++aTWr1+vtWvXxrQPBJQAAAAAAmnlypWaPXu2Jk6cqPj4eE2ZMkWPPvpo5Pn6+nqVlZXp+PHjkceWL18eNaTt8ssvlyQ9/fTTuvnmm1VUVKSdO3dq586dGjp0aNTrNQ2NAwDAal3p05YuXRpZtra2Vvn5+Xr88cdjet26ujrNmzdP+/bt09lnn61Ro0bpjTfe0IQJE2LaDgElAAAAgEBKS0vTqlWr2nw+IyOjRai4aNGidu+0evPNN3c4XxjMVptep8Rya+/cCwB260qflpSUpGXLlmnZsmWdeo3x48e32Mbtt9+u22+/PfYGn4HJUAAAAAAAAAC4hoASAAAAAAAAgGsIKAGDfHLhOW43AQAgqS5zaMcLwQhV5yW63QQAANCG8r393W4CPIKAEgAAAAAAAIBrCCgBAAAAAJ6XPvSw200IhLqsYW43AYAPEVAC8KRJ6WVuNwEAAAAAAFiAgBIIkCMjE9xuAgAAxjp6bpzbTQAAAAgkAkq0i5u2oC1Hz2twuwkAHFKbXud2E+BB3GgIAAAAnUVACQAAAACAx1SNSHS7CQBgGQJKwBBUqwIAAAAAgCAioAQAAJ5SdZ4zFSMMUQYAWOFoBvPbAkBHCCgBAAAAAECn1WUNc7sJAHyGgBIAAAAAAACAawgoAQAAYCmGxzvrytAOt5sAAL5GxShgPwJKdIibt9iPYwzAbhlDD7ndBAAAAABoFQGlTxwZmeB2E2A4rhEAbjp6rjdvEEAloNmcumESAAAA7EVACQAAAACAB1WNcO+LGoY9A7ASASUAV/QeXuV2EwAAAADAOG4Gz4BbCCgBl3lx/smj5zW43QQAgKEYFg/AD2rT69xuAgAECgElOsWLIRoAwL+YexAmItAAEDRBGOYdhH20U/rQw243AR5BQAkAANAOKgIBwH75oVK3m2CroxnevFkcADiFgNIADJeF3biDNwDACV4Oc716p3kAAAA/IKAEXMTQeXhNRUWFpk2bpuTkZKWmpqqwsFA1NTXtrvPEE09o/PjxSk5OVlxcnCorK7u03ffff19f+tKXlJSUpGHDhuknP/mJlbsGAACALmAItP8xhQmcQEB5hknpZW43wViEaQCmTZum7du3q6ioSK+88oreeustzZw5s911jh8/roKCAt1xxx1d3m51dbUmTZqkc889VyUlJVq8eLEWLVqkJ554wrJ9A9rj5cpAv2IeUgA4jTs+24fwFXBOD7cbAOscGZmgvmV8swHAHqWlpVqzZo22bNmiMWPGSJIee+wxTZ48WUuWLNGQIUNaXe+2226TJG3YsKHL2125cqXq6ur01FNPKSEhQRdccIG2bt2qhx56qMOAFAAAAABgNiooLdJ7eJXbTYDHUJEKu1VXV0f91NbWdmt7xcXFSk1NjYSIkpSXl6f4+Hht2rTJ1u0WFxfr8ssvV0LCp/Op5ufnq6ysTEeOHOnyawOwDlWmAEzAHYPdQaUhgO6ighLwOatvkGPCTZ38NBVD74/idVaitd8Vnao9vb1hw6L/UFy4cKEWLVrU5e2Gw2ENHDgw6rEePXooLS1N4XDY1u2Gw2ENHz48aplBgwZFnuvbt2+XXx+dU5tep8Ty7r2fHD03Tn3+3mhRi04P8U35sHvBeyzqMocqYcdex14PAAC4h9AVcBYVlIgJVX/W4DjCCXv27FFVVVXkZ8GCBa0uN3/+fMXFxbX7s2PHDodbD8BLqJ7svoyhh9xuAgCbHc2Ic7sJtiLQswZziiKoqKAE4DimRHBGcnKykpOTO1xu3rx5uvnmm9tdZsSIEQqFQjp48GDU4ydPnlRFRYVCoVCX29mZ7YZCIR04cCBqmaZ/d+e1AXgTN8gB4AQrRg84pWpEolI+cm5UAbzD78E4/IOAEgACbsCAARowYECHy+Xm5qqyslIlJSXKzs6WJK1fv14NDQ3Kycnp8ut3Zru5ubm68847VV9fr549e0qSioqKNHLkSIZ3w1EM8wYAoG11WcOUULrH7WZ0G9WggPMY4u0zVs832BqGJ3cPxw9elZWVpYKCAs2YMUObN2/WO++8o9mzZ2vq1KmRO3jv27dPmZmZ2rx5c2S9cDisrVu3aufOnZKkDz74QFu3blVFRUWnt3v99dcrISFBhYWF2r59u1avXq1HHnlEc+fOdfgoADiTH4Z3Hz2X6hIAAAA3EVACPuZEYI1gWblypTIzMzVx4kRNnjxZ48aN0xNPPBF5vr6+XmVlZTp+/HjkseXLl+viiy/WjBkzJEmXX365Lr74Yr300kud3m5KSorWrl2rXbt2KTs7W/PmzdM999yjmTNnOrDXMJkbQ339EMgBAGAXr1cfer39gFcxxNsQR89rUJ8PyYv9jupJ993Yd6PbTfC0tLQ0rVq1qs3nMzIy1NgYfZfmRYsWdXj38I62K0mjRo3SH//4x063FYD9CGs/VZte53YTAAQc81AC8DISMXQJQVswHT2vwe0mAPA4vwylJZhzDzfIAeBlQblhiVerEL3absAPCCgBAAAQM0JaAACsVTWCL+EQXF0KKJctW6aMjAwlJSUpJycn6mYI7fnVr36luLg4XX311V152ZgxlBMmcbrqlPkngc7zSr+G1rlVUUdAB8BE9GkwhdeqEb3WXsBvYg4oV69erblz52rhwoV67733dNFFFyk/P18HDx5sd73du3fr//v//j996Utf6nJj0TlOBVMM8wbgB17r164M7ejyuhlDD1nYEgQZ4SxgJq/1aV7gtfllTavAI/QD0FkxB5QPPfSQZsyYoenTp+v888/X8uXLdfbZZ+upp55qc51Tp05p2rRp+v73v68RI0Z0q8GAFxHmfqr38Cq3mwBEoV/rPK99SHMCQZ2z7KiW9cu8qIBEn9Ykfehht5uAZrwQUnqhjYDfxRRQ1tXVqaSkRHl5eZ9uID5eeXl5Ki4ubnO9e++9VwMHDlRhYWGnXqe2tlbV1dVRP14QxOCF4K1jfjlG3CAHfuREv+bVPg1oC6EsYCY+q3lHUG6U4xV+Die51uAlMQWUhw8f1qlTpzRo0KCoxwcNGqRwONzqOm+//bZWrFihn/3sZ51+nfvvv18pKSmRn2HD/PuGAdjBz/NPTkovc7sJ8BEn+jX6NGe4eWdnAjsAJuCzGpqYNsxbMjcENKldJp43wEm23sX76NGjuvHGG/Wzn/1M/fv37/R6CxYsUFVVVeRnz549NrbSHFZWqDkZUPmlQtAOHBvAX7rSrwW1T2sPQ2q9izAW8A8+q8FpJoWBAMzTI5aF+/fvr7POOksHDhyIevzAgQMKhUItlv/www+1e/dufeUrX4k81tBwOoTr0aOHysrKdN5557VYLzExUYmJfHsAALCXE/0afVow1GUOVcKOvW43w1Zuh5NuVskCXsBnNXhBXdYwJZSaEWoTmHYOc5DDKTFVUCYkJCg7O1vr1q2LPNbQ0KB169YpNze3xfKZmZn64IMPtHXr1sjPV7/6VU2YMEFbt25lOICPUCnYklvHxM/DuwGr0a/BSm4HeHAPH95gAvo0NGfycGETgkET2gAgWkwVlJI0d+5c3XTTTRozZowuvfRSPfzwwzp27JimT58uSfrGN76hc845R/fff7+SkpJ04YUXRq2fmpoqSS0eB/zEb4EtN8iBn9Gv+UfVeYlK+bDW1Tb4tZLSr+GrKdMNZAw95HYT4BP0afaoTa9TYrm1RQBHM+LUZ3ejpdv0EjcrKU0MJ00OlAGnxBxQXnvttTp06JDuuecehcNhjR49WmvWrIlMxlxeXq74eFuntrTdpPQyrS0f6XYzuu3IyAT1LXPuG/1PLjxHvbbtc+z14D1BvNM9zBeEfg3oDr+Gk4Af0afBS5qCQieDShPDSQCnxRxQStLs2bM1e/bsVp/bsGFDu+s+88wzXXlJeAQhpbvVkwzvBrqGfs15R8+NU5+/+7NyxE9VlKaEk8w/CXSel/u0/FCpXg9nudoGP6kakaiUj9wdWdAZTlRTEkwC5uPrM8MwlNbb/Da0GwDOZPpce6YEWaYEe93hh30AAHhDXdYw20LEoIaTRzPMmMYE6CwCSliOkA4AAAI+wAsqKio0bdo0JScnKzU1VYWFhaqpqWl3nSeeeELjx49XcnKy4uLiVFlZ2epyr776qnJyctSrVy/17dtXV199tfU7gDalDz3sdhM65ESA5LW5Da0MKu0MPa3ktXMEc3WlTztx4oRmzZqlfv36qXfv3poyZYoOHDjQYrlnnnlGo0aNUlJSkgYOHKhZs2ZFPf/+++/rS1/6kpKSkjRs2DD95Cc/ibn9BJQWM22OPbeG/AYxpHR7n+0611T1AkDXeTWkNKnddlXFmnKDHLhr2rRp2r59u4qKivTKK6/orbfe0syZM9td5/jx4yooKNAdd9zR5jIvvPCCbrzxRk2fPl1/+ctf9M477+j666+3uvlwkOkjCPymq+Fi03peCCYBq3WlT5szZ45efvllPf/883rzzTe1f/9+XXPNNVHLPPTQQ7rzzjs1f/58bd++XW+88Yby8/Mjz1dXV2vSpEk699xzVVJSosWLF2vRokV64oknYmp/l+agBBDN7XAyKCall7ndBMDzMoYe0u69A9xuhq1MuJt3c16bk9KkcNILCC28q7S0VGvWrNGWLVs0ZswYSdJjjz2myZMna8mSJRoyZEir6912222S2p7P8eTJk/rud7+rxYsXq7CwMPL4+eefb2n7gSBoLWhsPl8lQaTZvFDJ7Bdd6dOqqqq0YsUKrVq1SldccYUk6emnn1ZWVpbeffddjR07VkeOHNFdd92ll19+WRMnToysO2rUqMj/r1y5UnV1dXrqqaeUkJCgCy64QFu3btVDDz3UYUDaHBWUsE1QQrug7Gd3mVZdDMB9Qapg80LoV5c51BPtRLQrQzvcboIjqquro35qa7v/JURxcbFSU1MjH+QkKS8vT/Hx8dq0aVOXt/vee+9p3759io+P18UXX6zBgwfrn//5n7Vt27ZutxnoCr8NIfZTlaTfzg06z+p+rSt9WklJierr65WXlxd5LDMzU+np6SouLpYkFRUVqaGhQfv27VNWVpaGDh2qf//3f9eePZ9+UVBcXKzLL79cCQmfjurMz89XWVmZjhw50ul9oIIyAI6MTFDfMne+3ff7Xb1NCSe5ezcAmM/kSkpTg0lTbnqEzumzp1FnJTRaus1Tdae3N2xYdBCxcOFCLVq0qFvbDofDGjhwYNRjPXr0UFpamsLhcJe3+9FHH0mSFi1apIceekgZGRl68MEHNX78eP3tb39TWlpat9oNfzmaEac+u639vQFgjT7l3unXutKnhcNhJSQkKDU1NerxQYMGRdb56KOP1NDQoB/96Ed65JFHlJKSorvuuktXXnml3n//fSUkJCgcDmv48OEtttH0Gn379u3UPlBBaSC/zflnSohnNb/uV3N+uxYBBIepwZaJVYqmtccJQare9Ys9e/aoqqoq8rNgwYI2l50/f77i4uLa/dmxw77K04aG038/3XnnnZoyZYqys7P19NNPKy4uTs8//7xtrwu0h0q9YLHqBkxMY2KfzvZrJvRp9fX1evTRR5Wfn6+xY8fql7/8pf7v//5Pf/jDHyx9LSoo4Qi/VVKaFE5SPdl5N/bd6HYTAF+oTa9TYjnvPd1hQjWl6cGkqSEz3JGcnKzk5OROLTtv3jzdfPPN7S4zYsQIhUIhHTx4MOrxkydPqqKiQqFQqKtN1eDBgyVFzzmZmJioESNGqLy8vMvbhfvo/wBYpbP9mp19WigUUl1dnSorK6OqKA8cOBBZp7U+bcCAAerfv3+kTwuFQi3u/N3071j6UwLKgHBzmHcTv4SUJoWTAOB1R8+NU5+/2zO0zbSb5ZypKSB0I6g0PZwEumPAgAEaMKDjm4Hl5uaqsrJSJSUlys7OliStX79eDQ0NysnJ6fLrZ2dnKzExUWVlZRo3bpwkqb6+Xrt379a5557b5e3Cv5wa5l01IlEpH5nbLwYNVa3oDDv7tOzsbPXs2VPr1q3TlClTJEllZWUqLy9Xbm6uJOmLX/xi5PGhQ0///VhRUaHDhw9H+rTc3Fzdeeedqq+vV8+ePSWdnrty5MiRnR7eLTHEGw7zerhnWvvtrJ5keDcAOMPJYd8mDjEPuoyhh9xuQmBlZWWpoKBAM2bM0ObNm/XOO+9o9uzZmjp1auRup/v27VNmZqY2b94cWS8cDmvr1q3auXOnJOmDDz7Q1q1bVVFRIel0Vcwtt9yihQsXau3atSorK9O3v/1tSdK//du/ObyXwcYdhAEERVf6tJSUFBUWFmru3Ln6wx/+oJKSEk2fPl25ubkaO3asJOmf/umf9K//+q/67ne/q40bN2rbtm266aablJmZqQkTJkiSrr/+eiUkJKiwsFDbt2/X6tWr9cgjj2ju3Lkx7QMBpQ2suFuxn8Mh00K+zvJqu03AHbwBoGN2hodeCybtHN5t5fyTzM3lfStXrlRmZqYmTpyoyZMna9y4cXriiSciz9fX16usrEzHjx+PPLZ8+XJdfPHFmjFjhiTp8ssv18UXX6yXXnopsszixYs1depU3XjjjfrCF76gv//971q/fn1MlSSAHajaMwPnAXboSp+2dOlS/cu//IumTJmiyy+/XKFQSC+++GLUdp999lnl5OToqquu0pe//GX17NlTa9asiVRLpqSkaO3atdq1a5eys7M1b9483XPPPZo5c2ZM7WeIdxsmpZdpbflIt5thKROGeTfx2nBvwkkA8CbTh3m3pnmQ2J3h314KJAG3pKWladWqVW0+n5GRocbG6KG3ixYt6vBOqz179tSSJUu0ZMkSK5qJAOBu3rCKVTfIgfd0pU9LSkrSsmXLtGzZsjbXS05O1ooVK7RixYo2lxk1apT++Mc/xt7oZggo4RovhJQmB5NBuznOpPQyt5sAwCZ2zkPpda2FjK2Fln4KI7k5DgCT+eFGOcxFCcBEBJRwlckhpcnhpN38PMUAAGt46QOaF6so2+OnMBIAgKBheDfQOuagDBgTq+4+ufAco8JA09rTGhPPIwDv4KYcMJXd1ZNWzj8JwB75oVK3m+AaJ4fmEpKhI8yzDKcRUBosaFVsbgeDbr++X3GDHMB6V4Z2uN0Ez2HYMAAEE3fyhknsDoaZfxJeRkAZQKZX3zkdFHotmLT7/AUtGAdgBirb4LUQmcoSILj88vtPFSUAk/g+oLyx70ZXXpeqse6zOzj0WjAJAOgerwVgAIDgoQLOv4IWCHenejnIUz0EGTfJCagjIxPUt8wb3/w1DxG7c0MdP4SRple/AggWL90oB2ZzIjw2sUqX+WABuI07egMwBQGl4Y6e16A+H/q+0LXT/BAydpUT4aTVw7utqiSelF5myXYAmO3ouXHq8/dGW1/Db3f0BgCguwgp7edE9STVt/A6ki8AAAC4hqH3ALzIznkoCZoABBEBZTv8XrXFcGHv4Fx1n1vz0QIwD4FY8Fg9vNsvN8gAgoI7eXcsaPMjOsmLx5Z+Dm4goPQA7qoMJ3CdAcFi6tx3Ts0TSEhpBs4DALTOjSpKLwZpAPyDgNJGXriTN5V55vPqOfLC9Q+g+/iGHV1FONl9V4Z2uN0EAEA7nAp9mRYAfkBACc8GYEHg1LmhehJAEBGQBYOJd+8G4A9+/JKOKkoAbiGgBAAARiFQ8j8vh8N+DCQAmMmtqjhCSmtwHIHYEFB6hN0VblRRmodzcprfb1YFwF1eDsq8ysljbnLYbeo8sIAJ8kOlbjch8AjXusfJ42d1kM0XcXALASVgICfDSTvCb+afBILF63/IElICgP/ZdSdvu/tAN+cWJKQE4CQCSpt5KaihYg8AYAqnK98IKZ3BcQYA+B3Brn1fCMDfCCg9hBuZBIPXqycBeAdDTOEkp8NJO0Jur1cLA/Amqii9w+njxd274ScElB0I2vx3VFG6i+MPAJ+iitI/OLYA/MzvX14QUgJwAgElWiAkc4dfjruV0xoE7QsCIBZXhna43YQofvlwRpDmDybfHAcAusLtSjlCyo754Rj55e85eBMBpQOsDGycGpLrl7DMK9w43gzvBoDWEVJai+PZEtMrAO5gXrzu8UMAZxc3jo3boTVgNQJKAL53Y9+NbjcBQBe5VQlHqGYNPx1HqkoAtMeJ9wgTAilCypY4JoA1CCg9iCpKf/FT9aSX7loPAB3xU7jmBreOH8O7AcBeBHKf4lgA1glEQEn1VNcRUtqL4wvAbVYONbWreoTAyXsIdwHAHiZUUUoEc5K7x8CU6wCwUiACSnQPIZo93DquzD0JAJ1H0BY7N48ZYTbgH/mhUlu2a+c8lEGbCiLIIaUf992q65e5XtFVBJSdYMWdhK0e+krI5G1+DH2tvsa5gzeA5twMnggpO8+vx8rE0OHK0A63mwDAJSZVz1WNSPRlWNcet/fXpPMPWImAEp3ix0DNLW4eS4JtAOiaqvMSfRu+WcXt4+OV6knu4A34m1NfaJgWUrkd2jklKPsJuIGA0sOcDpsIKbuPYwjA7+z8YGZCAOV2CGcqjgsAwO/hnd/3zxR2Te8A8xFQOsgPdzgmYOs6t4+dnYG2H65tAOgswrhoJhwPO8NrE4d3A+gev8yRZ1oVpeTfId+m7JNd55y+DiYgoETM3A7avMjtY+a1od3MPwk4y0tDTk2oopTMCOXcxrB3AGgdYY85gV53+TVwBUxEQOlxbgVPbgduXnFkZALHymU39t3odhN8paKiQtOmTVNycrJSU1NVWFiompqadtd54oknNH78eCUnJysuLk6VlZVRz+/evVuFhYUaPny4evXqpfPOO08LFy5UXV1d1DJxcXEtft599107dhPdFJQPZkEO50zad1NCawBwg4lVlE28Hu6Z1naTzzVgBQLKTqKiqyWCt/aZcnzsDrEZ3h0s06ZN0/bt21VUVKRXXnlFb731lmbOnNnuOsePH1dBQYHuuOOOVp/fsWOHGhoa9D//8z/avn27li5dquXLl7e6/BtvvKGPP/448pOdnW3JfnlVUO/ia1IgFcQqwiDtb1DCdgDWc/L9w/TgymtBpdfaaxK/TJ8Ad/RwuwFB03t4lWp2pVi6zaPnNajPh+5kzUdGJqhvGX+8n8mUcBKwUmlpqdasWaMtW7ZozJgxkqTHHntMkydP1pIlSzRkyJBW17vtttskSRs2bGj1+YKCAhUUFET+PWLECJWVlemnP/2plixZErVsv379FAqFur8zgMWqzktUyoe1bjfDViYGkyaF1Z3hpekUABPkh0r1ejjLlm2nDz2s8r39bdk2WtcU+qV8ZGZ/aXIoaWcIzZdxMAUVlOg2hjFHM+lYeG3uSViruro66qe2tnt/DBYXFys1NTUSTkpSXl6e4uPjtWnTpu42N0pVVZXS0tJaPP7Vr35VAwcO1Lhx4/TSSy9Z+pqwlt1/7JoYTPm1mtLU/TLxGgAAt5heRdmcaRWKprUHCCoqKH3CzSrKJkGvpjQpmJScCSftGN4dtOkUUnfWqUcPa393T548/Xs4bNiwqMcXLlyoRYsWdXm74XBYAwcOjHqsR48eSktLUzgc7vJ2z7Rz50499thjUdWTvXv31oMPPqgvfvGLio+P1wsvvKCrr75av/vd7/TVr37VstcOsoyhh7R77wC3mxGTo+fGqc/fG91uRgtNYZ4fKipNDCadQkUJgO6qTa9TYrlznxGOZsSpz27z+sW2NA8F3aiq9Eoo6aXwGegOAkoX2DHM2xRBDSlNCycBSdqzZ4+Sk5Mj/05MbP2PsPnz5+uBBx5od1ulpaWWtq0t+/btU0FBgf7t3/5NM2bMiDzev39/zZ07N/LvL3zhC9q/f78WL15MQGkwpz+YmcbLQaXpwSTVkwDQOq+FlE2cCiu9Eko6hS/jYJLABJQ39t2o545c5nYzbGVCFaX0aVgXhKDS1GDSq9WTsFZycnJUQNmWefPm6eabb253mREjRigUCungwYNRj588eVIVFRWWzAu5f/9+TZgwQZdddpmeeOKJDpfPyclRUVFRt18X3mZqFWVzXgoqTQ8mvczK+SeDeoMswGpOzEMZ9C/ruuLMELGrgaUfwkiqJxEkgQkorTApvUxry0e63Yx2mRJSSv4OKk0NJiXmnUTsBgwYoAEDOh7am5ubq8rKSpWUlETunr1+/Xo1NDQoJyenW23Yt2+fJkyYoOzsbD399NOKj+/4fWzr1q0aPHhwt14X/uCFkFIyN6j0WijpRPUkFSUAvMyrVZRt8UPQ2BWEkwgaAkqX+HmY95n8NOzb5GDSD4I2/6TXZGVlqaCgQDNmzNDy5ctVX1+v2bNna+rUqZE7eO/bt08TJ07Us88+q0svvVTS6bkrw+Gwdu7cKUn64IMP1KdPH6WnpystLU379u3T+PHjde6552rJkiU6dOjTKqOmysyf//znSkhI0MUXXyxJevHFF/XUU0/pySefdPIQ+J4d81BSOdJS80DQrbDSa6FkE4Z2A/AiN/pCv4WUsJ7VX8alDz1s6fYQPASUPmRSFWUTr1dTeiWYdKp60ivDu2/su9HtJvjOypUrNXv2bE2cOFHx8fGaMmWKHn300cjz9fX1Kisr0/HjxyOPLV++XN///vcj/7788sslSU8//bRuvvlmFRUVaefOndq5c6eGDh0a9XqNjZ/+YX3ffffp73//u3r06KHMzEytXr1aX//61+3aVXiMV6ooz3RmUGhXYOnVQNINVE8CweLEMG+3EFJ6F9WTCCICSjjKa0GlV4JJiaHdcEZaWppWrVrV5vMZGRlRoaIkLVq0qN27h998880dzoF500036aabboqlqYFxZWiHisKZbjfDCF4NKZtrK0iMJbj0axhJ9SQQTPmhUr0eznK7Gd3m1ogCQkoAXkFA6SI7h3mbWEXZXPPgz7Sw0kuhZBMnw0m7qicZ3g34F8O8u8+voWNneT2ctPIGOQAAf3OietLU0QL5oVK3mwAXmZtgGcpLIYpXKuqOjEyI/AS5DQCA7vN6kIWWnDynpn5gA2Avp+bOc+s9huHC3sG5QpBRQQmjnBkQ2lVd6acg0g/VkwDMYceNciRnqyj9MNQbAAArMdTbfF4OJ7lBDqxAQOkyu+/mbfpQ7460FyR2FF76KYRsi1eqZAHAaYSU/kD1JAC/cXPaE0JKSPR3MBcBZQB4PaRsSxACyPY4HU7aWT3ppakTAHSd0x/KCCm9zS/D9a2ef/LK0A5LtwfgND/fzbs5Qkozebl6ErCK/1KrdtzYd6Ml2/FimEKlnb9wPjtm1e87EER+uqGHX0KuoHH6vFFNElwVFRWaNm2akpOTlZqaqsLCQtXU1LS7/K233qqRI0eqV69eSk9P13e+8x1VVUV/kVteXq6rrrpKZ599tgYOHKj/+q//0smTJ+3eHd/y240z3H7PIQwzC+cDVom1T5OkEydOaNasWerXr5969+6tKVOm6MCBA5Hnn3nmGcXFxbX6c/DgQUnShg0bWn0+HA7H1P5ABZSmYl4/xMKNcJJrFIBV3P5QBvMRKsNJ06ZN0/bt21VUVKRXXnlFb731lmbOnNnm8vv379f+/fu1ZMkSbdu2Tc8884zWrFmjwsLCyDKnTp3SVVddpbq6Om3cuFE///nP9cwzz+iee+5xYpfgEW73h4RiZnD6PLh93cFesfZpkjRnzhy9/PLLev755/Xmm29q//79uuaaayLPX3vttfr444+jfvLz8/XlL39ZAwcOjNpWWVlZ1HJnPt8RhngHiF+HegeJHysnvViRDMBbGOrtHW6Ek3Z+WPNTNbIflZaWas2aNdqyZYvGjBkjSXrsscc0efJkLVmyREOGDGmxzoUXXqgXXngh8u/zzjtPP/zhD3XDDTfo5MmT6tGjh9auXau//vWveuONNzRo0CCNHj1a9913n773ve9p0aJFSkgI9jRFJgvKMO8mDPd2l19CYm6QY4au9GlVVVVasWKFVq1apSuuuEKS9PTTTysrK0vvvvuuxo4dq169eqlXr16RdQ4dOqT169drxYoVLbY3cOBApaamdnkfSKsM4VSFmh8DrqBw69xRPQmYz2tz0rnx7T1VeebjHMFpxcXFSk1NjXyQk6S8vDzFx8dr06ZNnd5OVVWVkpOT1aNHj8h2P//5z2vQoEGRZfLz81VdXa3t27dbtwPwPBOq2fwSkqFjJlxvsE9X+rSSkhLV19crLy8v8lhmZqbS09NVXFzc6jrPPvuszj77bH39619v8dzo0aM1ePBgXXnllXrnnXdi3gcCygAipPQezhkAp/mx8osAzFxunRs+rHlHdXV11E9tbW23txkOh1sMP+vRo4fS0tI6PW/W4cOHdd9990UNoQuHw1HhpKTIv2OdjwvOc7oazIT3IUJK53HMYXW/1pU+LRwOKyEhoUXV46BBg9pcZ8WKFbr++uujqioHDx6s5cuX64UXXtALL7ygYcOGafz48Xrvvfdi2geGeHfRpPQyrS0faek2ew+vUs2uFEu32RaGe3uHm+Gk3dWTDO8GgsvpO3o3Ybi3eQiO/SN5V6169LD2fJ48efoD27Bhw6IeX7hwoRYtWtTqOvPnz9cDDzzQ7nZLS7t/05Xq6mpdddVVOv/889tsC6yTHyrV6+Est5vhW02BGUO+7edGOGlCEO5Fybvd79ec6tM6o7i4WKWlpXruueeiHh85cqRGjvw0H7vsssv04YcfaunSpS2WbQ8BZYARUprPz+GknbiDN4D2EFKaw81w0u4Pa3ZUIXttOgcr7dmzR8nJyZF/JyYmtrnsvHnzdPPNN7e7vREjRigUCkXuQNrk5MmTqqioUCgUanf9o0ePqqCgQH369NFvf/tb9ezZM/JcKBTS5s2bo5ZvuiNqR9tFMLn1pV1rmJfSXn6rnLSy4jg/5EzIZorO9mt29mmhUEh1dXWqrKyMqqI8cOBAq+s8+eSTGj16tLKzs9ttjyRdeumlevvttztcrjkCSsM4WUUJszGsG4DbMoYe0u69A2zbvpsfyJqCMYJK91A5iVgkJydHfZBrz4ABAzRgQMfvXbm5uaqsrFRJSUnkw9b69evV0NCgnJycNterrq5Wfn6+EhMT9dJLLykpKanFdn/4wx/q4MGDkeF2RUVFSk5O1vnnn9+pfYC7gnaznDMRUtrDb+Ekuqez/ZqdfVp2drZ69uypdevWacqUKZJO34m7vLxcubm5UcvW1NTo17/+te6///4O2yJJW7du1eDBgzu1bJPAlc9ZWVnlh+GphGBmcvu8OFE96YffHwDeR0jmDrePO0PdIElZWVkqKCjQjBkztHnzZr3zzjuaPXu2pk6dGrnb6b59+5SZmRmpiKyurtakSZN07NgxrVixQtXV1QqHwwqHwzp16pQkadKkSTr//PN144036i9/+Ytef/113XXXXZo1a1a7lZ8INtPelwjTrHM0I87V42natQV7dKVPS0lJUWFhoebOnas//OEPKikp0fTp05Wbm6uxY8dGbX/16tU6efKkbrjhhhav/fDDD+t///d/tXPnTm3btk233Xab1q9fr1mzZsW0D1RQGsjpKsqmMIzh3mZwO5wEACeZMKyNId/OcTuYdIofbzLlVytXrtTs2bM1ceJExcfHa8qUKXr00Ucjz9fX16usrEzHjx+XJL333nuRu6F+9rOfjdrWrl27lJGRobPOOkuvvPKKvv3tbys3N1ef+cxndNNNN+nee+91bsfQbW5UUZrQJzbHvJTdR9ALJ8Xap0nS0qVLI8vW1tYqPz9fjz/+eIttr1ixQtdcc02LG+pIUl1dnebNm6d9+/bp7LPP1qhRo/TGG29owoQJMbWfgBIRzEnpPhPCSS/PPQkE2ZWhHSoKZ1q+XbuHeUtmfCAjpLSfKeEklSRoLi0tTatWrWrz+YyMDDU2fvreMH78+Kh/t+Xcc8/Va6+9Zkkb8akg3CjHhD7xTAz57hoTwkk7+zyn73iPjsXap0lSUlKSli1bpmXLlrW77Y0b2x6NfPvtt+v222+PrbGtII0ylFshkQkBWRAdPa/BiGPv1HVn5/BubpADoKuOnhtnTIjmN6YcV8JJAOgat4cpe40Jx4o+D15DQNlNfpxHz4SgLEg43gBg1h/RpoRpfhDE0Jfh3YB/uFUhZlKfeCYTgjeTEeQCXUdAaTA3h9oSmtnPlKrJJn6ongRgjyAGLkEM1qxm2vEz+QN/Z1wZ2uF2EwA4yOT3LEK41pl0TEy+foC2EFCiTSaFZ35j2rFl3kkAJjDxj2nTQjYvMDHcNfHaAuANbs6zZ/p7F0HlaUE8Dsw/CTsQUFrAzoowt4Mj06r8vM7E4+nkNUb1JICOmPhhzMTAzVRBP05BrDYGnJYfKnW7CY4ysV88UxADuiYm7rcXrpkzBe33Gq0LZEDptZtouB1SSuZV/HkRx9B+XvvdBqxm5xBQJ4MXU/+wJqhsm8nHxtTrCYB3UC3WOUEKKoO0r4BTerjdAHhHU8DW58NA5tpdZnIwaUL4DQBe0xTE9fl7o8stcZ+poWQTJ8NJqicB2KU2vU6J5QluN6PTmoK7Prv910+aHko60e8R2MMuJE0WsXvoqklBkonDlE1k+nFy+ppieDfgfVRRRjO5atBuXth3L1xDALzD7VDGi+9pTVWGpod6neGF/fDiNQI0R0CJLjM5fHOT6cGkZFbgDQBt8cof2l4I66zQtJ9B2FfTcAdvIFpQ56vzSr/YGi8EfGfyU8AKeAFDvD2k9/Aq1exKcbsZURj2/SnTQ8kmboSTVE8C6CovDWtrHtz5afi3FwNJpz/EM7wbCIb0oYdVvre/q23wUr/YmjPDPtOGgXs1jHSq33O7khj+RqpkISdCGFMr37xQNWiHpv32yr6bev1YgRvkAKfZXWlFENM5Xq829HL7vVxhBMB8JgQ0fnqfa16l6EY46PbrW8FP1wOCLbAVlDf23ajnjlzmdjO6xMRKyibNgzo/V1V6JZA0AdWTALrL89UiHqis9GIQ2Ro3PqQR2gNwg9f7xra0FhJaVWXp1QCyPX4IJ4M6ZQNaCmxAaZdJ6WVaWz7S7WYYwW9hpddDST9XTwJwVsbQQ9q9d4Cjr+mXD2KtBYFuhJZ+CSSb88OHNACdlx8q1evhLFde24Sh3pJ/+saO+DFY9CITqofhb11KjZYtW6aMjAwlJSUpJydHmzdvbnPZn/3sZ/rSl76kvn37qm/fvsrLy2t3eXSO18Imrw2FbuLVdp/JreuF6kl4Bf2aN/g1gGo+nNrqodV2btskbl0bTlRPcoMcxIo+LVj82jeiY5x7+E3MAeXq1as1d+5cLVy4UO+9954uuugi5efn6+DBg60uv2HDBl133XX6wx/+oOLiYg0bNkyTJk3Svn37ut34oPNaSNnE5NCvedtMbF9XePU6iQXzT6I76Ne6xq1hrUH6Y7ytcDGWnyAI0jUBdIQ+zTkmVZPxPhg8Tp9zk653+FfMAeVDDz2kGTNmaPr06Tr//PO1fPlynX322XrqqadaXX7lypX6z//8T40ePVqZmZl68skn1dDQoHXr1nW78aZysmrM6+HTmYGgU6Fga6/rl0CyOTevD6on4RV+7Nf8XnHFBzE0cfNaYO5JmMiPfVp73J67zqTQhr4xODjX8KuY5qCsq6tTSUmJFixYEHksPj5eeXl5Ki4u7tQ2jh8/rvr6eqWlpbW5TG1trWprayP/rq6ujqWZneblG+U0Z/JNc7qis0Fha/Na+jFk7Cqvh9eAE5zo15zq09zgxlyUTYIy7xbaxgc0IJrfPqshdvSN/kffBz+LqYLy8OHDOnXqlAYNGhT1+KBBgxQOhzu1je9973saMmSI8vLy2lzm/vvvV0pKSuRn2LBhsTTTCE5XjwUxjApCBWRX9B5e5fr14OT1z/BudIcT/Zof+jRT8Ud6cLl97p2qnvR7NTSsxWc1d5hURSmdfn90+z0S9nDrvNp5jbtdBQ2zOHpr5R//+Mf61a9+pd/+9rdKSkpqc7kFCxaoqqoq8rNnzx4HW+ldbodScJ8J1wBDuxEknenX/N6nuT3MlQ9hwcM5B+zBZ7WuMy2klHiv9BvOJ4IgpoCyf//+Ouuss3TgwIGoxw8cOKBQKNTuukuWLNGPf/xjrV27VqNGjWp32cTERCUnJ0f9eJEbQY0JARXcwbkHYudEv+ZWnxakyiv+aA8OE86126E80JagflajAqttJrxnovvcPI8mhu/wr5gCyoSEBGVnZ0dNmtw0iXJubm6b6/3kJz/RfffdpzVr1mjMmDFdby06haAqeEw551RPwmvo16xhQmDDkDb/4/wC7aNPc5epQQ7vnd7G+UOQxDzEe+7cufrZz36mn//85yotLdW3v/1tHTt2TNOnT5ckfeMb34iamPmBBx7Q3XffraeeekoZGRkKh8MKh8Oqqamxbi+6we7569wKbEwJrGA/U861G9c680/CCn7r14KOP+T9yZTz6mQYH6QqaFiHPs1dJoeUpryPovPcPmemXs/wr5ju4i1J1157rQ4dOqR77rlH4XBYo0eP1po1ayKTMZeXlys+/tPc86c//anq6ur09a9/PWo7Cxcu1KJFi7rXerTLb3f3RjRTgknA6+jXrOHmHb3PxF1M/cPtD2fNmVApDHQkqH1afqhUr4ez3G6G8egfvcOk/g9wSswBpSTNnj1bs2fPbvW5DRs2RP179+7dXXkJX5mUXqa15SNdeW1CSn8yLZxkaDe8zq/92pWhHSoKZzr2eoSUsBIfzoCu8Wuf5hXpQw+rfG9/t5vRpqb3VvpIc5nQ/zlRPcn8sTiTo3fxhjtMC7PQPaadT7fCSYZ3A+gIQ9q8y7TzRvUkYD6Twg4vDI017X0W/N0CEFDKmaDD7Qoz00ItxK738CrOIwDjmRjk8Me+d5j44cyNa5r5JwHv80pIadp7blCZdB68cO3CnwgoA4SAy5tMPm9uB+8AzGRqSGnSH/9oifMDwG+8EvTQR7qLYw+cRkDpIFPCHFPDLrRk8rly83pmeDfQeVRiReNDmHlMPicmhu0A2mbSMG8vMvn92I9MPN5Oher8rqI1BJQOMymkNDn8CjrTz48p1zEAc5ke7Jj2gSCITPxg1pxb1zBfKgD+4pUqyuZMfm/2CxOPsRevVfgLAeX/E9SKLJNDsCAyPZgEgFh4IaQ08QOC33HcAdjJxMosLwY/vFfbg+MKtI2A0gWmVZ8RirnPS+fA7es3qF8mAN3hZkWW6SGlxIcFp3jpOHvhugXgLV4MKaVP37u98v5tKtOPoVevT/gLAaVL3A55WuOlkMwvvHbMTbxuAcAqpn948CqvHVc3w0mGdwP+5vUQyGvv5ybgmLVkYpUzzEBA2QyVWad5LTTzIi8eYxPCSX5HAW/yWjUa1SLW8OIx9Nq1CqB1JgcgXg8pJW++vzvNS8fID9ck/IGA0kUmBD7t8WKIZjqvHlPTr1UAHXO7MsurwY+XPmCYwMvhrlevUQDe45dAyMvv+Xbx2vHwy7UIfyCgdJkXgh+vhmqmaDp+Xj2GXrhGAXiDlwMgPoS1zQ/HxoRr0+0vEQC/MbmKUvJfMOSHvqCrvLrvfrsG4X0ElAbwSgDk5ZDNaV4PJZuYdG0yvBvoPhMCEBOCoO7y6gcRK3EMAKD7/BoQBaGPCMI+2sH0Lw7gLgLKM7gVgpgUBHXEL+Gb1fx2XLx0TQLwFj+ElE2af0Dx+4cUv+6nn65HANG8EIb4NaRs4pd+0i/70cTv1x28qYfbDYC3NQ/janaluNgSd/gljDyTaeEk1ZOA/2QMPaTdewe43QzLnfmhJbE8waWWdJ8fPoB1xJRw0oTqZgDuaQqLyvf2d7kl9mutbzGxr/RzH0g4CVMRULbixr4b9dyRyxx/3UnpZVpbPtLx17XKmWGdHwNLvwaSzZkWTgKw1pWhHSoKZ7rdDEn+DSmb44OYuUwJJwHYKz9UqtfDWW43o1PShx4OREh5prb6ICf6y6D1f26Gk16oaIa7GOJtGD+FQ82HPHsx2Duz/V7ch1iZeP1RPWmWiooKTZs2TcnJyUpNTVVhYaFqamraXeeJJ57Q+PHjlZycrLi4OFVWVrZYJiMjQ3FxcVE/P/7xj6OWef/99/WlL31JSUlJGjZsmH7yk59YuWtwSRBDojOHiTkxbMyN1zSZSdcd1ZMAmqO67VMd9V1W/AQJ1xZMRwWlgbxeSdmWtgI+tystgxA8doaJ4STMM23aNH388ccqKipSfX29pk+frpkzZ2rVqlVtrnP8+HEVFBSooKBACxYsaHO5e++9VzNmzIj8u0+fPpH/r66u1qRJk5SXl6fly5frgw8+0De/+U2lpqZq5syZ1uxcgJhURSkFo5IyFkH7wOQkk4JJAM7xUhWlFNxKStiHcBJeQEDZBreGeTfxa0jZms4GhLEGmQSPnWNyMEn1pFlKS0u1Zs0abdmyRWPGjJEkPfbYY5o8ebKWLFmiIUOGtLrebbfdJknasGFDu9vv06ePQqFQq8+tXLlSdXV1euqpp5SQkKALLrhAW7du1UMPPURA6ROElLCbieEk1ZOAc7wYUkrBmJcS9jIhnGR4NzqDId4GMzk4ckNrQ67b+0HHuMb8rbq6Ouqntra2W9srLi5WampqJJyUpLy8PMXHx2vTpk3dba5+/OMfq1+/frr44ou1ePFinTx5Muq1L7/8ciUkfDoXUX5+vsrKynTkyJFuv3YQmRiMmBggwR+4tgB4lQnhEryL6wdeQgVlO9yuopSCVUkJZ5keTgalerLXXz9Wj3hrJwA/2XB6eOiwYcOiHl+4cKEWLVrU5e2Gw2ENHDgw6rEePXooLS1N4XC4y9uVpO985zu65JJLlJaWpo0bN2rBggX6+OOP9dBDD0Vee/jw4VHrDBo0KPJc3759u/X6MEdTkEQ1JaxCOAmgideqKJtQTYmuIJyE1xBQegAhJaxkejApBSectNuePXuUnJwc+XdiYmKry82fP18PPPBAu9sqLbV3WMbcuXMj/z9q1CglJCToP/7jP3T//fe32W50n2lzUTbHkG90l+nBpIlVzADMxtyU6CyTwkmGd6OzCCg9oilUIqhEd3ghnIR1kpOTowLKtsybN08333xzu8uMGDFCoVBIBw8ejHr85MmTqqioaHPuyK7KycnRyZMntXv3bo0cOVKhUEgHDhyIWqbp31a/NsxBSImuIpwE0BavVlE2oZoSHTEpnARiQUDZAROGeTdHNSW6wkvBJNWTzhswYIAGDOg4BMrNzVVlZaVKSkqUnZ0tSVq/fr0aGhqUk5NjaZu2bt2q+Pj4yJDy3Nxc3Xnnnaqvr1fPnj0lSUVFRRo5ciTDu7vJ5CpKiSHfiJ3p4SQA93k9pJSopkTrCCfhZdwkx4O8FDbBfVwvsEpWVpYKCgo0Y8YMbd68We+8845mz56tqVOnRu7gvW/fPmVmZmrz5s2R9cLhsLZu3aqdO3dKkj744ANt3bpVFRUVkk7fAOfhhx/WX/7yF3300UdauXKl5syZoxtuuCESPl5//fVKSEhQYWGhtm/frtWrV+uRRx6JGhoOfyN0Qkcyhh7yxHVC9aRZKioqNG3aNCUnJys1NVWFhYWqqalpd/lbb71VI0eOVK9evZSenq7vfOc7qqpq/QaN//jHPzR06FDFxcWpsrLSpr1AV/hh2Gn60MMEUpBk7rXgh98zL4m1T5OkEydOaNasWerXr5969+6tKVOmtBi5tm7dOl122WXq06ePQqGQvve970Xd0FSS3n//fX3pS19SUlKShg0bpp/85Ccxt5+AshNMrOialF5G8IR2efEaMfF3DdFWrlypzMxMTZw4UZMnT9a4ceP0xBNPRJ6vr69XWVmZjh8/Hnls+fLluvjiizVjxgxJ0uWXX66LL75YL730kqTTc2P+6le/0pe//GVdcMEF+uEPf6g5c+ZEbTclJUVr167Vrl27lJ2drXnz5umee+7RzJkzHdpzf/NKYOKVAArO4rpAd0ybNk3bt29XUVGRXnnlFb311lvt9i379+/X/v37tWTJEm3btk3PPPOM1qxZo8LCwlaXLyws1KhRo+xqPiDJ3HAKzuDco0msfZokzZkzRy+//LKef/55vfnmm9q/f7+uueaayPN/+ctfNHnyZBUUFOjPf/6zVq9erZdeeknz58+PLFNdXa1Jkybp3HPPVUlJiRYvXqxFixZFfZ7rjLjGxsbG2HbZedXV1UpJSdHb24aodx93MlWThnmfiSHfaM5roWQTL4STNUcbNO7C/aqqqurU3I7taXpfyxv8H7bcxfuNj//HknbCek3n/q53Jympd0+3mxNh8jDvtjDsG14LJk37MuBETb1+MHZtt/uLpve1y8fdox49kixsoXTy5Am99fa9tvRppaWlOv/887VlyxaNGTNGkrRmzRpNnjxZe/fujYwO6Mjzzz+vG264QceOHVOPHp/OoPXTn/5Uq1ev1j333KOJEyfqyJEjSk1NtXQfTGBqv9ZZXh/q3RqGfgeD6cGkG9WTQe7XutKnVVVVacCAAVq1apW+/vWvS5J27NihrKwsFRcXa+zYsbrjjjtUVFSkLVu2RNZ7+eWX9e///u86ePCg+vTpo5/+9Ke68847FQ6HlZBw+rPt/Pnz9bvf/U47dnT+bx8qKDvJ5PDEi5VysB7XAYDuMC046Qwq54KLcw8rFBcXKzU1NfJBTpLy8vIUHx+vTZs2dXo7TR8ym4eTf/3rX3Xvvffq2WefVXw8H7lM5schqFRU+h/nF2fqSp9WUlKi+vp65eXlRR7LzMxUenq6iouLJUm1tbVKSooOaXv16qUTJ06opKQk8tqXX355JJyUpPz8fJWVlenIkSOd3gd6yxiYHFJK3q2cQ/f4IZg0/XcLCAovhpQSYVWQePlce/X3yxTV1dVRP7W1td3eZjgcjtyMrUmPHj2UlpamcDjcqW0cPnxY9913X9QQutraWl133XVavHix0tPTu91O2M+PIaVEUOlHXjmnfv2dspLV/VpX+rSmisczq/sHDRoUWSc/P18bN27UL3/5S506dUr79u3TvffeK0n6+OOPI9sZNGhQi200PddZ3MXbZ5qCKoZ9+5/XQ8kmhJMArMIdv/3Lq6Fkk6CEkwl/22/5tCXxDXWSpGHDhkU9vnDhQi1atKjVdebPn68HHnig3e2Wlnb/w3N1dbWuuuoqnX/++VFtWbBggbKysnTDDTd0+zXgHD/c2bstTYEWQ7+9ywuhpB8llO1zvV9zqk9ry6RJk7R48WLdcsstuvHGG5WYmKi7775bf/zjHy0fIUBAGaMb+240ej7KJgSV/uWXYFIinARMdGVohyfno2yOoNI/vB5Mwjp79uyJmqsrMTGxzWXnzZunm2++ud3tjRgxQqFQSAcPHox6/OTJk6qoqFAoFGp3/aNHj6qgoEB9+vTRb3/7W/Xs+enci+vXr9cHH3yg3/zmN5Kkpin/+/fvrzvvvFPf//732902YBeCSm/yWjhJ9WTndLZfs7NPC4VCqqurU2VlZVQV5YEDB6LWmTt3rubMmaOPP/5Yffv21e7du7VgwQKNGDEisp0z7/zd9O+O+tPmCCh9jqDSH/wUSjYhnATM5YeQUiKo9Cq/hZJBqZ60W3JycqdvJjBgwAANGNDx731ubq4qKytVUlKi7OxsSafDxYaGBuXk5LS5XnV1tfLz85WYmKiXXnqpxdxcL7zwgj755JPIv7ds2aJvfvOb+uMf/6jzzjuvU/sAd/i5irK55oEXYaWZvBZKInad7dfs7NOys7PVs2dPrVu3TlOmTJEklZWVqby8XLm5uVHLxsXFRW6088tf/lLDhg3TJZdcEnntO++8U/X19ZEv7IqKijRy5Ej17du3w7Y3YQ7KLvBisOKHeQqDiPMGAN3XNG+h34Ivv/HjOSKcNFtWVpYKCgo0Y8YMbd68We+8845mz56tqVOnRj6E7du3T5mZmdq8ebOk0+HkpEmTdOzYMa1YsULV1dUKh8MKh8M6deqUJOm8887ThRdeGPkZPnx45PXOnB8M5gla9ZdX5jQMCq+fj6D9/pikK31aSkqKCgsLNXfuXP3hD39QSUmJpk+frtzcXI0dOzay7cWLF+uDDz7Q9u3bdd999+nHP/6xHn30UZ111lmSpOuvv14JCQkqLCzU9u3btXr1aj3yyCOaO3duTPtABWUXeWWo95mah11UVZopCIGkF0N+IGj8UkV5JqoqzeK3QLI5wklvWLlypWbPnq2JEycqPj5eU6ZM0aOPPhp5vr6+XmVlZTp+/Lgk6b333ovcDfWzn/1s1LZ27dqljIwMx9oO+wSlkrI5qird5eVQsgnhpPti7dMkaenSpZFla2trlZ+fr8cffzxqu7///e/1wx/+ULW1tbrooov0v//7v/rnf/7nyPMpKSlau3atZs2apezsbPXv31/33HNP1A3kOoOAMsAY/m2OIISSTQgnAe/wa0gptQzGCCyd4+dQsgnhpHekpaVp1apVbT6fkZERmUNSksaPHx/1787oyjpwXxBDyiaElc7wQygJs8Tap0lSUlKSli1bpmXLlrW53vr16zt87VGjRumPf/xj5xvbCgLKbvBqFeWZqKp0R5BCySaEk4D3+DmkbK55aEZYab0ghJIA/CfIIWWTM0M0Asvu8WsoSfUkrEBA2U1+CSmbEFbaJ4iBZHOEk4B3BSWkbEJ1ZfcFOZCkehLwl6bgJehBZROqK2Pn11CyCeEkrEJAaQG/hZRNzgzUCCxjE/RAsjnCScD7ghZSNkdg2b4gh5FnIpwE/ItqypZaC94ILf0fSDZHOAkrEVBaxK8hZXMElm0jjGwb4STgH0EOKZtrLZALSmhJGNk2wknA/wgpOxbE0DJIgSRgJwJKCwUhpGyutVAuCKElYWTnEEwC/kRI2br2gjsvhpcEkbEhnASCg5Aydm0FeF4LLgkio1E9CasRUFosaCHlmdoL77wSXhJAdh/hJOBvhJSx6WzYZ3eQSehoD8JJIHiYl9IanQn8nAwxCSA7j3ASdiCgtEHQQ8q2xBr8WRVoEjg6i3ASCAZCSusRIHoLwSQAqintR2hoHsJJ2IWA0iaElN1HsOg9hJNAsBBSIqgIJwE0oZoSQUI4CTvFu90APyOsQVDc2Hcj1zsQUFeGdhDWIFC43gG0huAGfsc1DrsRUNqM0AZ+xzUOQCK0gf8RxgPoSH6olBAHvsR1DScQUDqAAAd+RNUkgDMR3sCvuLYBxIIwB37C9QynMAelQ5qCHOalhNcRSgJoT1OQw9yU8AvCSQBdwdyU8DqCSTiNgNJh3DwHXkUwCSAWBJXwOoJJAFYgqIQXEU7CDQzxdgFDY+E1XK8AuoqQB17DXJMA7MD8lPAKrlO4hQpKF1FNCdMRTAKwAtWU8AJCSQBOoKISpiKYhNsIKF3G3JQwDaEkALsQVMJEBJMA3NA8DCKshJsIJmEKAkpDEFTCbQSTAJzSPBAirIRbCCYBmIKqSriFcBImIaA0DEElnEQoCcBtVFXCaQSTAExFVSWcQjAJExFQGoqgEnYimARgGoJK2IlQEoDXEFbCDgSTMBkBpeGaB0mElegOQkkAXsDwb1iFUBKAXxBWojsIJeEVBJQeQlUlYkEgCcDrCCsRK0JJAH5HWInOIpiE1xBQehBVlWgLoSQAvzozeCKwRBNCSQBBdWYARWAJQkl4GQGlx50ZSBFYBguBJICgIrAMLgJJAGgdgWUwEUrCLwgofYbA0r8IIwGgbQSW/kQYCQBdR2DpTwSS8CsCSp8jsPQmwkgA6J7Wgi1CS7MRRgKAvVoLtggtzUcgiaAgoAyY1oIvQkv3EEQCgHPaCsAILp1FEAkA5mgr/CK4dAdhJIKMgBLthmSEl91DAAkA5usoMCPAjB0hJAB4W3tBGeFl9xFEAi0RUKJdnQnYghpiEj4CQDB0NmwLQpBJ8AgA6Ey4FvQQkwASiB0BJbqtq0Gd28EmASMAwEpWh3dWBJ4EigAAN8Qa0Hkh0CR0BOxFQAnXEBACANA2wkUAQFAQ/gGId7sBAAAAAAAAAIKLgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALiGgBIAAAAAAACAawgoAQAAAAAAALimSwHlsmXLlJGRoaSkJOXk5Gjz5s3tLv/8888rMzNTSUlJ+vznP6/XXnutS40FALiroqJC06ZNU3JyslJTU1VYWKiampp213niiSc0fvx4JScnKy4uTpWVlVHPb9iwQXFxca3+bNmyRZK0e/fuVp9/9913Ldkv+jUACKZY+7WKigrdeuutGjlypHr16qX09HR95zvfUVVVVdRyW7Zs0cSJE5Wamqq+ffsqPz9ff/nLX+zeHUn0aQAQVHZ8VuvMdq36rBZzQLl69WrNnTtXCxcu1HvvvaeLLrpI+fn5OnjwYKvLb9y4Udddd50KCwv15z//WVdffbWuvvpqbdu2LdaXBgC4bNq0adq+fbuKior0yiuv6K233tLMmTPbXef48eMqKCjQHXfc0erzl112mT7++OOon29961saPny4xowZE7XsG2+8EbVcdnZ2t/eJfg0AgivWfm3//v3av3+/lixZom3btumZZ57RmjVrVFhYGFmmpqZGBQUFSk9P16ZNm/T222+rT58+ys/PV319va37Q58GAMFlx2e1WLbb3c9qcY2NjY2xrJCTk6MvfOEL+u///m9JUkNDg4YNG6Zbb71V8+fPb7H8tddeq2PHjumVV16JPDZ27FiNHj1ay5cv79RrVldXKyUlRW9vG6LefRiVDsAdNUcbNO7C/aqqqlJycnK3ttX0vpY3+D/UIz7BohaedrKhTm98/D+WtLO50tJSnX/++dqyZUskOFyzZo0mT56svXv3asiQIe2uv2HDBk2YMEFHjhxRampqm8vV19frnHPO0a233qq7775b0ulv5YYPH64///nPGj16tFW7JMn5fq3p3N/17iQl9e5p3Y4AQIxO1NTrB2PXdru/iPRpA79lT5928EnL+zSp+/1ak+eff1433HCDjh07ph49euhPf/qTvvCFL6i8vFzDhg2TJH3wwQcaNWqU/u///k+f/exnLd2P5tz8rEa/BsBtlvdrAwrt6dcOrfDMZ7XObNeqz2o9Ylm4rq5OJSUlWrBgQeSx+Ph45eXlqbi4uNV1iouLNXfu3KjH8vPz9bvf/a7N16mtrVVtbW3k301DJo7VNMTSXACwVNN7UIzf67TrZGOdZPFb28nGOkmnO9bmEhMTlZiY2OXtFhcXKzU1NaqqMS8vT/Hx8dq0aZO+9rWvdXnbzb300kv6xz/+oenTp7d47qtf/apOnDihf/qnf9Ltt9+ur371q916LSf6tbb6tNpjJ7vVdgDorqb3Iav6NS/1aZJ1/VrTh8wePU5/tBo5cqT69eunFStW6I477tCpU6e0YsUKZWVlKSMjo1ttbo/bn9Xo1wC4Lcj9ml2f1WLZbnc/q8UUUB4+fFinTp3SoEGDoh4fNGiQduzY0eo64XC41eXD4XCbr3P//ffr+9//fovH88e2vQ4AOOUf//iHUlJSurWNhIQEhUIhbQg/bVGrovXu3TtStdFk4cKFWrRoUZe3GQ6HNXDgwKjHevToobS0tHbf02O1YsUK5efna+jQoZHHevfurQcffFBf/OIXFR8frxdeeEFXX321fve733UrpHSiX2urT1s8cX0XWw0A1upuv/Zpn/asha36lB19mmRNv3b48GHdd999UUPd+vTpow0bNujqq6/WfffdJ0n63Oc+p9dffz0SYtrB7c9q9GsATGFdv/acha36lJc+q3Vmu1Z9VrOvh+yGBQsWRH2TV1lZqXPPPVfl5eXdDgVMVl1drWHDhmnPnj2WD2ExSVD2UwrOvgZlP6uqqpSenq60tLRubyspKUm7du1SXV2dBS1rqbGxUXFxcVGPtfWN3Pz58/XAAw+0u73S0lLL2taevXv36vXXX9evf/3rqMf79+8f1S984Qtf0P79+7V48eL/v737j6mq/v8A/pIL915Y/CriV8MaFGJEq3DcXcixHEsns/pLwyJsFpX0j7aKRe22TGOOtTZGtSihP0SmTcoFIxFhDkJrdNkobjYCay5g0xJYSPx6fv7yfr/oBTmX+/O8n4/t/sHhnHtfTy6c587b672rfhWlt6naaSLqnBuYU39UyeqpXgukThPxXa9NTExIYWGh3H///YsuKq9duya7d++WvLw8OXr0qMzPz0tVVZUUFhbKjz/+KOHh4at+bH9StddUOS+IqJOVOfVHj70WSNdqS/HUtZqmBcq4uDgxGAwyNja2aPvY2JgkJia6PCYxMVHT/iJLv7Q1Ojpa939QIiJRUVHMqTOqZFUlZ0iIZ94L12w2i9ls9sh9rcZrr70mu3btWnaf1NRUSUxMvOlN9ufm5uTvv/9e9pyuRV1dndxxxx0rKjKLxSJtbW2rejxf9JrqnSaizrmBOfVHlaye6LVA6TQR3/Ta5OSkbNmyRSIjI6WpqUnCwv7vvRcbGhrk4sWL0tPT4/zZNjQ0SGxsrHzzzTfy9NNPuxfsFnit5huqnBdE1MnKnPqjp17z97Wau/frzrWapmfNaDRKdna2tLe3O7ctLCxIe3u7WK1Wl8dYrdZF+4uItLW1Lbk/ERH51p133ikZGRnL3oxGo1itVrl69ar09vY6jz1z5owsLCyIxWJZ9RwApK6uTp577rlFF3pL6evrk6SkpFU9JnuNiEh/vN1rExMT8vjjj4vRaJSTJ0/edAE7NTUlISEhi14dc/3rhQXvvac+O42ISH/8fa3m7v26da0GjRobG2EymVBfX4+BgQGUlpYiJiYGo6OjAIDi4mKUl5c79+/u7kZoaCiqqqrgcDhgs9kQFhaG/v7+FT/m+Pg4RATj4+Naxw0qzKk/qmRlTnVs2bIFDz/8MM6fP4+uri7cd999KCoqcn7/0qVLWLduHc6fP+/cNjIyArvdjtraWogIzp49C7vdjitXriy679OnT0NE4HA4bnrc+vp6NDQ0wOFwwOFw4MCBAwgJCcHhw4dXncnXvabS75EqWZlTf1TJqkrO5WjttfHxcVgsFmRlZWFwcBAjIyPO29zcHADA4XDAZDLhlVdewcDAAH7++Wc8++yziI6Oxl9//eXVPLxW8x5VcgLqZGVO/VEpqyveula71f166lpN8wIlAFRXV2Pt2rUwGo3IycnBuXPnnN/Lz89HSUnJov2PHTuG9PR0GI1GZGZmorm5WdPjTU9Pw2azYXp62p1xgwZz6o8qWZlTHVeuXEFRURFuu+02REVF4fnnn8fk5KTz+8PDwxARdHR0OLfZbDaIyE23urq6RfddVFSE3Nxcl49bX1+P9evXIyIiAlFRUcjJycHx48c9lsuXvabS75EqWZlTf1TJqkrO5WjttY6ODpedJiIYHh52Hnfq1Cnk5eUhOjoasbGx2LRpE3p6enySiddq3qFKTkCdrMypPypldcVb12q3ul9PXautATz0+etEREREREREREREGnnmkx6IiIiIiIiIiIiI3MAFSiIiIiIiIiIiIvIbLlASERERERERERGR33CBkoiIiIiIiIiIiPwmYBYoa2pq5J577hGz2SwWi0V++OGHZfc/fvy4ZGRkiNlslqysLGlpafHRpKujJWdtba1s3LhRYmNjJTY2VgoKCm75cwkUWp/P6xobG2XNmjXy1FNPeXdAD9Ka9erVq1JWViZJSUliMpkkPT09KH5/teb86KOPZN26dRIeHi4pKSmyd+9emZ6e9tG07jl79qxs27ZNkpOTZc2aNfL111/f8pjOzk555JFHxGQyyb333iv19fVen5MCnyqdJsJeu5Vg6zVVOk2EvbYU9hq5okqvqdJpIuy1pQRrr7HTXGOnBRk3Prnc4xobG2E0GnH48GH88ssvePHFFxETE4OxsTGX+3d3d8NgMODQoUMYGBjA22+/jbCwMPT39/t4cm205ty5cydqampgt9vhcDiwa9cuREdH49KlSz6eXButOa8bHh7GXXfdhY0bN+LJJ5/0zbCrpDXrf//9hw0bNmDr1q3o6urC8PAwOjs70dfX5+PJtdGa88iRIzCZTDhy5AiGh4fx3XffISkpCXv37vXx5Nq0tLSgoqICJ06cgIigqalp2f2HhoYQERGBffv2YWBgANXV1TAYDGhtbfXNwBSQVOk0gL2mt15TpdMA9tpS2Gvkiiq9pkqnAew1vfUaO801dlrwCYgFypycHJSVlTm/np+fR3JyMj744AOX+2/fvh2FhYWLtlksFrz00ktenXO1tOa80dzcHCIjI/Hll196a0SPcCfn3NwccnNz8fnnn6OkpCQoCg/QnvWTTz5BamoqZmZmfDWiR2jNWVZWhk2bNi3atm/fPuTl5Xl1Tk9aSem98cYbyMzMXLRtx44d2Lx5sxcno0CnSqcB7DW99ZoqnQaw15bCXiNXVOk1VToNYK/prdfYaa6x04KP3/+L98zMjPT29kpBQYFzW0hIiBQUFEhPT4/LY3p6ehbtLyKyefPmJfcPBO7kvNHU1JTMzs7K7bff7q0xV83dnO+9957Ex8fL7t27fTGmR7iT9eTJk2K1WqWsrEwSEhLkgQcekIMHD8r8/LyvxtbMnZy5ubnS29vr/K8FQ0ND0tLSIlu3bvXJzL4SjOci8i5VOk2Evaa3XlOl00TYa8sJ1vMReY8qvaZKp4mw1/TWa+y0pQXjuUh1of4e4PLlyzI/Py8JCQmLtickJMivv/7q8pjR0VGX+4+OjnptztVyJ+eN3nzzTUlOTr7pjyyQuJOzq6tLvvjiC+nr6/PBhJ7jTtahoSE5c+aMPPPMM9LS0iKDg4OyZ88emZ2dFZvN5ouxNXMn586dO+Xy5cvy6KOPCgCZm5uTl19+Wd566y1fjOwzS52LJiYm5Nq1axIeHu6nychfVOk0Efaa3npNlU4TYa8th71GN1Kl11TpNBH2mt56jZ22NHZa8PH7KyhpZSorK6WxsVGamprEbDb7exyPmZyclOLiYqmtrZW4uDh/j+N1CwsLEh8fL5999plkZ2fLjh07pKKiQj799FN/j+ZRnZ2dcvDgQfn444/lp59+khMnTkhzc7Ps37/f36MRUYBgrwU/VTpNhL1GRMvTa6eJsNf02GvsNApUfn8FZVxcnBgMBhkbG1u0fWxsTBITE10ek5iYqGn/QOBOzuuqqqqksrJSTp8+LQ8++KA3x1w1rTl///13uXjxomzbts25bWFhQUREQkND5cKFC5KWlubdod3kznOalJQkYWFhYjAYnNvWr18vo6OjMjMzI0aj0aszu8OdnO+8844UFxfLCy+8ICIiWVlZ8u+//0ppaalUVFRISIg+/m1kqXNRVFQU/0VOUap0mgh7TW+9pkqnibDXlsNeoxup0muqdJoIe01vvcZOWxo7Lfj4/TfPaDRKdna2tLe3O7ctLCxIe3u7WK1Wl8dYrdZF+4uItLW1Lbl/IHAnp4jIoUOHZP/+/dLa2iobNmzwxairojVnRkaG9Pf3S19fn/P2xBNPyGOPPSZ9fX2SkpLiy/E1cec5zcvLk8HBQWepi4j89ttvkpSUFJCFJ+JezqmpqZuK7XrRA/DesD4WjOci8i5VOk2Evaa3XlOl00TYa8sJ1vMReY8qvaZKp4mw1/TWa+y0pQXjuUh5/vyEnusaGxthMplQX1+PgYEBlJaWIiYmBqOjowCA4uJilJeXO/fv7u5GaGgoqqqq4HA4YLPZEBYWhv7+fn9FWBGtOSsrK2E0GvHVV19hZGTEeZucnPRXhBXRmvNGwfKpcID2rH/++SciIyPx6quv4sKFC/j2228RHx+P999/318RVkRrTpvNhsjISBw9ehRDQ0M4deoU0tLSsH37dn9FWJHJyUnY7XbY7XaICD788EPY7Xb88ccfAIDy8nIUFxc79x8aGkJERARef/11OBwO1NTUwGAwoLW11V8RKACo0mkAe01vvaZKpwHsNfYaaaFKr6nSaQB7TW+9xk5jp+lFQCxQAkB1dTXWrl0Lo9GInJwcnDt3zvm9/Px8lJSULNr/2LFjSE9Ph9FoRGZmJpqbm308sXu05Lz77rshIjfdbDab7wfXSOvz+f8FS+FdpzXr999/D4vFApPJhNTUVBw4cABzc3M+nlo7LTlnZ2fx7rvvIi0tDWazGSkpKdizZw/++ecf3w+uQUdHh8u/uevZSkpKkJ+ff9MxDz30EIxGI1JTU1FXV+fzuSnwqNJpAHsN0FevqdJpAHsNYK/RyqnSa6p0GsBeA/TVa+w0dpoerAF09BpeIiIiIiIiIiIiCip+fw9KIiIiIiIiIiIiUhcXKImIiIiIiIiIiMhvuEBJREREREREREREfsMFSiIiIiIiIiIiIvIbLlASERERERERERGR33CBkoiIiIiIiIiIiPyGC5RERERERERERETkN1ygJCIiIiIiIiIiIr/hAiURERERERERERH5DRcoiYiIiIiIiIiIyG+4QElERERERERERER+wwVKIiIiIiIiIiIi8pv/AVdddTMjJCfiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plotter = Plotter()\n", "\n", - "# plotting at fixed time t = 0.6\n", - "plotter.plot(pinn, fixed_variables={'t': 0.6})\n" - ], - "outputs": [], - "metadata": {} - }, - { - "cell_type": "markdown", - "source": [ - "We can also plot the pinn loss during the training to see the decrease." - ], - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": null, - "source": [ - "import matplotlib.pyplot as plt\n", + "# plotting at fixed time t = 0.0\n", + "plotter.plot(trainer, fixed_variables={'t': 0.0})\n", "\n", - "plt.figure(figsize=(16, 6))\n", - "plotter.plot_loss(pinn, label='Loss')\n", + "# plotting at fixed time t = 0.5\n", + "plotter.plot(trainer, fixed_variables={'t': 0.5})\n", "\n", - "plt.grid()\n", - "plt.legend()\n", - "plt.show()" - ], - "outputs": [], - "metadata": {} - }, - { - "cell_type": "markdown", - "source": [ - "You can now trying improving the training by changing network, optimizer and its parameters, changin the sampling points,or adding extra features!" - ], - "metadata": {} + "# plotting at fixed time t = 1.\n", + "plotter.plot(trainer, fixed_variables={'t': 1.0})\n" + ] } ], "metadata": { + "interpreter": { + "hash": "56be7540488f3dc66429ddf54a0fa9de50124d45fcfccfaf04c4c3886d735a3a" + }, "kernelspec": { - "name": "python3", - "display_name": "Python 3.9.16 64-bit ('dl': conda)" + "display_name": "Python 3.9.16 64-bit ('dl': conda)", + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -236,11 +277,8 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" - }, - "interpreter": { - "hash": "56be7540488f3dc66429ddf54a0fa9de50124d45fcfccfaf04c4c3886d735a3a" } }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} diff --git a/tutorials/tutorial3/tutorial.py b/tutorials/tutorial3/tutorial.py index 7cb1d51..4d86b46 100644 --- a/tutorials/tutorial3/tutorial.py +++ b/tutorials/tutorial3/tutorial.py @@ -1,11 +1,11 @@ #!/usr/bin/env python # coding: utf-8 -# # Tutorial 3: resolution of wave equation with custom Network +# # Tutorial 3: resolution of wave equation with hard constraint PINNs. # ### The problem solution -# In this tutorial we present how to solve the wave equation using the `SpatialProblem` and `TimeDependentProblem` class, and the `Network` class for building custom **torch** networks. +# In this tutorial we present how to solve the wave equation using hard constraint PINNs. For doing so we will build a costum torch model and pass it to the `PINN` solver. # # The problem is written in the following form: # @@ -28,8 +28,12 @@ import torch from pina.problem import SpatialProblem, TimeDependentProblem from pina.operators import laplacian, grad -from pina.model import Network -from pina import Condition, Span, PINN, Plotter +from pina.geometry import CartesianDomain +from pina.solvers import PINN +from pina.trainer import Trainer +from pina.equation import Equation +from pina.equation.equation_factory import FixedValue +from pina import Condition, Plotter # Now, the wave problem is written in PINA code as a class, inheriting from `SpatialProblem` and `TimeDependentProblem` since we deal with spatial, and time dependent variables. The equations are written as `conditions` that should be satisfied in the corresponding domains. `truth_solution` is the exact solution which will be compared with the predicted one. @@ -39,18 +43,14 @@ from pina import Condition, Span, PINN, Plotter class Wave(TimeDependentProblem, SpatialProblem): output_variables = ['u'] - spatial_domain = Span({'x': [0, 1], 'y': [0, 1]}) - temporal_domain = Span({'t': [0, 1]}) + spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) + temporal_domain = CartesianDomain({'t': [0, 1]}) def wave_equation(input_, output_): u_t = grad(output_, input_, components=['u'], d=['t']) u_tt = grad(u_t, input_, components=['dudt'], d=['t']) - delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y']) - return delta_u - u_tt - - def nil_dirichlet(input_, output_): - value = 0.0 - return output_.extract(['u']) - value + nabla_u = laplacian(output_, input_, components=['u'], d=['x', 'y']) + return nabla_u - u_tt def initial_condition(input_, output_): u_expected = (torch.sin(torch.pi*input_.extract(['x'])) * @@ -58,12 +58,12 @@ class Wave(TimeDependentProblem, SpatialProblem): return output_.extract(['u']) - u_expected conditions = { - 'gamma1': Condition(location=Span({'x': [0, 1], 'y': 1, 't': [0, 1]}), function=nil_dirichlet), - 'gamma2': Condition(location=Span({'x': [0, 1], 'y': 0, 't': [0, 1]}), function=nil_dirichlet), - 'gamma3': Condition(location=Span({'x': 1, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet), - 'gamma4': Condition(location=Span({'x': 0, 'y': [0, 1], 't': [0, 1]}), function=nil_dirichlet), - 't0': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': 0}), function=initial_condition), - 'D': Condition(location=Span({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), function=wave_equation), + 'gamma1': Condition(location=CartesianDomain({'x': [0, 1], 'y': 1, 't': [0, 1]}), equation=FixedValue(0.)), + 'gamma2': Condition(location=CartesianDomain({'x': [0, 1], 'y': 0, 't': [0, 1]}), equation=FixedValue(0.)), + 'gamma3': Condition(location=CartesianDomain({'x': 1, 'y': [0, 1], 't': [0, 1]}), equation=FixedValue(0.)), + 'gamma4': Condition(location=CartesianDomain({'x': 0, 'y': [0, 1], 't': [0, 1]}), equation=FixedValue(0.)), + 't0': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1], 't': 0}), equation=Equation(initial_condition)), + 'D': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), equation=Equation(wave_equation)), } def wave_sol(self, pts): @@ -76,78 +76,56 @@ class Wave(TimeDependentProblem, SpatialProblem): problem = Wave() -# After the problem, a **torch** model is needed to solve the PINN. With the `Network` class the users can convert any **torch** model in a **PINA** model which uses label tensors with a single line of code. We will write a simple residual network using linear layers. Here we implement a simple residual network composed by linear torch layers. +# After the problem, a **torch** model is needed to solve the PINN. Usually many models are already implemented in `PINA`, but the user has the possibility to build his/her own model in `pyTorch`. The hard constraint we impose are on the boundary of the spatial domain. Specificly our solution is written as: # -# This neural network takes as input the coordinates (in this case $x$, $y$ and $t$) and provides the unkwown field of the Wave problem. The residual of the equations are evaluated at several sampling points (which the user can manipulate using the method `span_pts`) and the loss minimized by the neural network is the sum of the residuals. +# $$ u_{\rm{pinn}} = xy(1-x)(1-y)\cdot NN(x, y, t), $$ +# +# where $NN$ is the neural net output. This neural network takes as input the coordinates (in this case $x$, $y$ and $t$) and provides the unkwown field of the Wave problem. By construction it is zero on the boundaries. The residual of the equations are evaluated at several sampling points (which the user can manipulate using the method `discretise_domain`) and the loss minimized by the neural network is the sum of the residuals. # In[3]: -class TorchNet(torch.nn.Module): - - def __init__(self): +class HardMLP(torch.nn.Module): + + def __init__(self, input_dim, output_dim): super().__init__() - - self.residual = torch.nn.Sequential(torch.nn.Linear(3, 24), - torch.nn.Tanh(), - torch.nn.Linear(24, 3)) + + self.layers = torch.nn.Sequential(torch.nn.Linear(input_dim, 20), + torch.nn.Tanh(), + torch.nn.Linear(20, 20), + torch.nn.Tanh(), + torch.nn.Linear(20, output_dim)) - self.mlp = torch.nn.Sequential(torch.nn.Linear(3, 64), - torch.nn.Tanh(), - torch.nn.Linear(64, 1)) + # here in the foward we implement the hard constraints def forward(self, x): - residual_x = self.residual(x) - return self.mlp(x + residual_x) - -# model definition -model = Network(model = TorchNet(), - input_variables=problem.input_variables, - output_variables=problem.output_variables, - extra_features=None) + hard = x.extract(['x'])*(1-x.extract(['x']))*x.extract(['y'])*(1-x.extract(['y'])) + return hard*self.layers(x) -# In this tutorial, the neural network is trained for 2000 epochs with a learning rate of 0.001. These parameters can be modified as desired. -# We highlight that the generation of the sampling points and the train is here encapsulated within the function `generate_samples_and_train`, but only for saving some lines of code in the next cells; that function is not mandatory in the **PINA** framework. The training takes approximately one minute. +# In this tutorial, the neural network is trained for 3000 epochs with a learning rate of 0.001 (default in `PINN`). Training takes approximately 1 minute. # In[7]: -def generate_samples_and_train(model, problem): - # generate pinn object - pinn = PINN(problem, model, lr=0.001) - - pinn.span_pts(1000, 'random', locations=['D','t0', 'gamma1', 'gamma2', 'gamma3', 'gamma4']) - pinn.train(1500, 150) - return pinn +pinn = PINN(problem, HardMLP(len(problem.input_variables), len(problem.output_variables))) +problem.discretise_domain(1000, 'random', locations=['D','t0', 'gamma1', 'gamma2', 'gamma3', 'gamma4']) +trainer = Trainer(pinn, max_epochs=3000) +trainer.train() -pinn = generate_samples_and_train(model, problem) +# Notice that the loss on the boundaries of the spatial domain is exactly zero, as expected! After the training is completed one can now plot some results using the `Plotter` class of **PINA**. - -# After the training is completed one can now plot some results using the `Plotter` class of **PINA**. - -# In[8]: +# In[11]: plotter = Plotter() -# plotting at fixed time t = 0.6 -plotter.plot(pinn, fixed_variables={'t': 0.6}) +# plotting at fixed time t = 0.0 +plotter.plot(trainer, fixed_variables={'t': 0.0}) +# plotting at fixed time t = 0.5 +plotter.plot(trainer, fixed_variables={'t': 0.5}) -# We can also plot the pinn loss during the training to see the decrease. +# plotting at fixed time t = 1. +plotter.plot(trainer, fixed_variables={'t': 1.0}) -# In[9]: - - -import matplotlib.pyplot as plt - -plt.figure(figsize=(16, 6)) -plotter.plot_loss(pinn, label='Loss') - -plt.grid() -plt.legend() -plt.show() - - -# You can now trying improving the training by changing network, optimizer and its parameters, changin the sampling points,or adding extra features! diff --git a/tutorials/tutorial4/tutorial.ipynb b/tutorials/tutorial4/tutorial.ipynb index 9de6490..5e4034e 100644 --- a/tutorials/tutorial4/tutorial.ipynb +++ b/tutorials/tutorial4/tutorial.ipynb @@ -2,60 +2,61 @@ "cells": [ { "cell_type": "markdown", + "metadata": {}, "source": [ "# Tutorial 4: continuous convolutional filter" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "In this tutorial we will show how to use the Continouous Convolutional Filter, and how to build common Deep Learning architectures with it. The implementation of the filter follows the original work [**A Continuous Convolutional Trainable Filter for Modelling Unstructured Data**](https://arxiv.org/abs/2210.13416) of Coscia Dario, Laura Meneghetti, Nicola Demo, Giovanni Stabile, and Gianluigi Rozza." - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "First of all we import the modules needed for the tutorial, which include:\n", "\n", "* `ContinuousConv` class from `pina.model.layers` which implements the continuous convolutional filter\n", "* `PyTorch` and `Matplotlib` for tensorial operations and visualization respectively" - ], - "metadata": {} + ] }, { "cell_type": "code", "execution_count": 1, + "metadata": {}, + "outputs": [], "source": [ "import torch \n", "import matplotlib.pyplot as plt \n", - "from pina.model.layers import ContinuousConv \n", + "from pina.model.layers import ContinuousConvBlock \n", "import torchvision # for MNIST dataset\n", "from pina.model import FeedForward # for building AE and MNIST classification" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "The tutorial is structured as follow: \n", "* [Continuous filter background](#continuous-filter-background): understand how the convolutional filter works and how to use it.\n", "* [Building a MNIST Classifier](#building-a-mnist-classifier): show how to build a simple classifier using the MNIST dataset and how to combine a continuous convolutional layer with a feedforward neural network. \n", "* [Building a Continuous Convolutional Autoencoder](#building-a-continuous-convolutional-autoencoder): show how to use the continuous filter to work with unstructured data for autoencoding and up-sampling." - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "## Continuous filter background" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "As reported by the authors in the original paper: in contrast to discrete convolution, continuous convolution is mathematically defined as:\n", "\n", @@ -67,21 +68,21 @@ " \\mathcal{I}_{\\rm{out}}(\\mathbf{\\tilde{x}}_i) = \\sum_{{\\mathbf{x}_i}\\in\\mathcal{X}} \\mathcal{I}(\\mathbf{x}_i + \\mathbf{\\tau}) \\cdot \\mathcal{K}(\\mathbf{x}_i),\n", "$$\n", "where $\\mathbf{\\tau} \\in \\mathcal{S}$, with $\\mathcal{S}$ the set of available strides, corresponds to the current stride position of the filter, and $\\mathbf{\\tilde{x}}_i$ points are obtained by taking the centroid of the filter position mapped on the $\\Omega$ domain. " - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "We will now try to pratically see how to work with the filter. From the above definition we see that what is needed is:\n", "1. A domain and a function defined on that domain (the input)\n", "2. A stride, corresponding to the positions where the filter needs to be $\\rightarrow$ `stride` variable in `ContinuousConv`\n", "3. The filter rectangular domain $\\rightarrow$ `filter_dim` variable in `ContinuousConv`" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### Input function\n", "\n", @@ -95,12 +96,22 @@ "$$\n", "\n", "using a batch size of one." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Domain has shape: torch.Size([1, 2, 200, 2])\n", + "Filter input data has shape: torch.Size([1, 2, 200, 3])\n" + ] + } + ], "source": [ "# batch size fixed to 1\n", "batch_size = 1\n", @@ -129,21 +140,11 @@ "data[:, 0, :, -1] = f1 # copy first field value\n", "data[:, 1, :, -1] = f1 # copy second field value\n", "print(f\"Filter input data has shape: {data.shape}\")" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Domain has shape: torch.Size([1, 2, 200, 2])\n", - "Filter input data has shape: torch.Size([1, 2, 200, 3])\n" - ] - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### Stride\n", "\n", @@ -166,23 +167,33 @@ "**Note**\n", "\n", "We are planning to release the possibility to directly pass a list of possible strides!" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### Filter definition\n", "\n", "Having defined all the previous blocks we are able to construct the continuous filter.\n", "\n", "Suppose we would like to get an ouput with only one field, and let us fix the filter dimension to be $[0.1, 0.1]$." - ], - "metadata": {} + ] }, { "cell_type": "code", "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/dariocoscia/anaconda3/envs/pina/lib/python3.9/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1682343673238/work/aten/src/ATen/native/TensorShape.cpp:3484.)\n", + " return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n" + ] + } + ], "source": [ "# filter dim\n", "filter_dim = [0.1, 0.1]\n", @@ -195,45 +206,54 @@ " }\n", "\n", "# creating the filter \n", - "cConv = ContinuousConv(input_numb_field=number_input_fileds,\n", + "cConv = ContinuousConvBlock(input_numb_field=number_input_fileds,\n", " output_numb_field=1,\n", " filter_dim=filter_dim,\n", " stride=stride)" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "That's it! In just one line of code we have created the continuous convolutional filter. By default the `pina.model.FeedForward` neural network is intitialised, more on the [documentation](https://mathlab.github.io/PINA/_rst/fnn.html). In case the mesh doesn't change during training we can set the `optimize` flag equals to `True`, to exploit optimizations for finding the points to convolve." - ], - "metadata": {} + ] }, { "cell_type": "code", "execution_count": 5, + "metadata": {}, + "outputs": [], "source": [ "# creating the filter + optimization\n", - "cConv = ContinuousConv(input_numb_field=number_input_fileds,\n", + "cConv = ContinuousConvBlock(input_numb_field=number_input_fileds,\n", " output_numb_field=1,\n", " filter_dim=filter_dim,\n", " stride=stride,\n", " optimize=True)\n" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Let's try to do a forward pass" - ], - "metadata": {} + ] }, { "cell_type": "code", "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Filter input data has shape: torch.Size([1, 2, 200, 3])\n", + "Filter output data has shape: torch.Size([1, 1, 169, 3])\n" + ] + } + ], "source": [ "print(f\"Filter input data has shape: {data.shape}\")\n", "\n", @@ -241,29 +261,20 @@ "output = cConv(data)\n", "\n", "print(f\"Filter output data has shape: {output.shape}\")" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Filter input data has shape: torch.Size([1, 2, 200, 3])\n", - "Filter output data has shape: torch.Size([1, 1, 169, 3])\n" - ] - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "If we don't want to use the default `FeedForward` neural network, we can pass a specified torch model in the `model` keyword as follow: \n" - ], - "metadata": {} + ] }, { "cell_type": "code", "execution_count": 7, + "metadata": {}, + "outputs": [], "source": [ "class SimpleKernel(torch.nn.Module):\n", " def __init__(self) -> None:\n", @@ -279,35 +290,118 @@ " return self.model(x)\n", "\n", "\n", - "cConv = ContinuousConv(input_numb_field=number_input_fileds,\n", + "cConv = ContinuousConvBlock(input_numb_field=number_input_fileds,\n", " output_numb_field=1,\n", " filter_dim=filter_dim,\n", " stride=stride,\n", " optimize=True,\n", " model=SimpleKernel)\n" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Notice that we pass the class and not an already built object!" - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "## Building a MNIST Classifier\n", "\n", "Let's see how we can build a MNIST classifier using a continuous convolutional filter. We will use the MNIST dataset from PyTorch. In order to keep small training times we use only 6000 samples for training and 1000 samples for testing." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 9912422/9912422 [00:00<00:00, 26842487.33it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw\n", + "\n", + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 28881/28881 [00:00<00:00, 93758276.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw\n", + "\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images-idx3-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "100%|██████████| 1648877/1648877 [00:00<00:00, 21185082.59it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw\n", + "\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 4542/4542 [00:00<00:00, 10560160.07it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], "source": [ "from torch.utils.data import DataLoader, SubsetRandomSampler\n", "\n", @@ -339,20 +433,29 @@ "subsample_test_indices = torch.randperm(len(train_data))[:numb_testing]\n", "test_loader = DataLoader(train_data, batch_size=batch_size,\n", " sampler=SubsetRandomSampler(subsample_train_indices))" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Let's now build a simple classifier. The MNIST dataset is composed by vectors of shape `[batch, 1, 28, 28]`, but we can image them as one field functions where the pixels $ij$ are the coordinate $x=i, y=j$ in a $[0, 27]\\times[0,27]$ domain, and the pixels value are the field values. We just need a function to transform the regular tensor in a tensor compatible for the continuous filter:" - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Original MNIST image shape: torch.Size([8, 1, 28, 28])\n", + "Transformed MNIST image shape: torch.Size([8, 1, 784, 3])\n" + ] + } + ], "source": [ "def transform_input(x):\n", " batch_size = x.shape[0]\n", @@ -374,29 +477,20 @@ "\n", "image_transformed = transform_input(image)\n", "print(f\"Transformed MNIST image shape: {image_transformed.shape}\")\n" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Original MNIST image shape: torch.Size([8, 1, 28, 28])\n", - "Transformed MNIST image shape: torch.Size([8, 1, 784, 3])\n" - ] - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "We can now build a simple classifier! We will use just one convolutional filter followed by a feedforward neural network" - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 11, + "metadata": {}, + "outputs": [], "source": [ "# setting the seed\n", "torch.manual_seed(seed)\n", @@ -409,7 +503,7 @@ " numb_class = 10\n", "\n", " # convolutional block\n", - " self.convolution = ContinuousConv(input_numb_field=1,\n", + " self.convolution = ContinuousConvBlock(input_numb_field=1,\n", " output_numb_field=4,\n", " stride={\"domain\": [27, 27],\n", " \"start\": [0, 0],\n", @@ -419,8 +513,8 @@ " filter_dim=[4, 4],\n", " optimize=True)\n", " # feedforward net\n", - " self.nn = FeedForward(input_variables=196,\n", - " output_variables=numb_class,\n", + " self.nn = FeedForward(input_dimensions=196,\n", + " output_dimensions=numb_class,\n", " layers=[120, 64],\n", " func=torch.nn.ReLU)\n", "\n", @@ -433,20 +527,42 @@ "\n", "\n", "net = ContinuousClassifier()" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Let's try to train it using a simple pytorch training loop. We train for juts 1 epoch using Adam optimizer with a $0.001$ learning rate." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "batch [50/750] loss[0.039]\n", + "batch [100/750] loss[0.031]\n", + "batch [150/750] loss[0.030]\n", + "batch [200/750] loss[0.028]\n", + "batch [250/750] loss[0.023]\n", + "batch [300/750] loss[0.026]\n", + "batch [350/750] loss[0.029]\n", + "batch [400/750] loss[0.031]\n", + "batch [450/750] loss[0.030]\n", + "batch [500/750] loss[0.023]\n", + "batch [550/750] loss[0.019]\n", + "batch [600/750] loss[0.025]\n", + "batch [650/750] loss[0.020]\n", + "batch [700/750] loss[0.028]\n", + "batch [750/750] loss[0.028]\n" + ] + } + ], "source": [ "# setting the seed\n", "torch.manual_seed(seed)\n", @@ -475,44 +591,30 @@ " running_loss += loss.item()\n", " if i % 50 == 49: \n", " print(\n", - " f'epoch [{i + 1}/{numb_training//batch_size}] loss[{running_loss / 500:.3f}]')\n", + " f'batch [{i + 1}/{numb_training//batch_size}] loss[{running_loss / 500:.3f}]')\n", " running_loss = 0.0\n" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "epoch [50/750] loss[0.148]\n", - "epoch [100/750] loss[0.072]\n", - "epoch [150/750] loss[0.063]\n", - "epoch [200/750] loss[0.053]\n", - "epoch [250/750] loss[0.041]\n", - "epoch [300/750] loss[0.048]\n", - "epoch [350/750] loss[0.054]\n", - "epoch [400/750] loss[0.048]\n", - "epoch [450/750] loss[0.047]\n", - "epoch [500/750] loss[0.035]\n", - "epoch [550/750] loss[0.036]\n", - "epoch [600/750] loss[0.041]\n", - "epoch [650/750] loss[0.030]\n", - "epoch [700/750] loss[0.040]\n", - "epoch [750/750] loss[0.040]\n" - ] - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Let's see the performance on the train set!" - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy of the network on the 1000 test images: 94.767%\n" + ] + } + ], "source": [ "correct = 0\n", "total = 0\n", @@ -528,37 +630,40 @@ "\n", "print(\n", " f'Accuracy of the network on the 1000 test images: {(correct / total):.3%}')\n" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Accuracy of the network on the 1000 test images: 93.017%\n" - ] - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "As we can see we have very good performance for having traing only for 1 epoch! Nevertheless, we are still using structured data... Let's see how we can build an autoencoder for unstructured data now." - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "## Building a Continuous Convolutional Autoencoder\n", "\n", "Just as toy problem, we will now build an autoencoder for the following function $f(x,y)=\\sin(\\pi x)\\sin(\\pi y)$ on the unit circle domain centered in $(0.5, 0.5)$. We will also see the ability to up-sample (once trained) the results without retraining. Let's first create the input and visualize it, we will use firstly a mesh of $100$ points." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAGzCAYAAAChLlRLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXwUR9/Av7N3SS5uRAnu7q7FpRRKKRRKC9Td26f2Pu1Td3dXWqQtUtzd3S0BAgkx4nay8/5xyZEjdxcPCez387mW7M7OzJ7s/OanQkop0dDQ0NDQ0NBwgnKlJ6ChoaGhoaFRs9GEBQ0NDQ0NDQ2XaMKChoaGhoaGhks0YUFDQ0NDQ0PDJZqwoKGhoaGhoeESTVjQ0NDQ0NDQcIkmLGhoaGhoaGi4RBMWNDQ0NDQ0NFyiCQsaGhoaGhoaLtGEBQ2HTJ8+nYYNG5br2pdffhkhROVO6CpHCMHLL798Reewdu1ahBCsXbu21G3nzp1b9ROrxdSEz1VDozLQhIVahhCiVK/SPPA1NEpi5syZfPTRR5Xeb6Gw4ei1devWYu03b95M37598fLyIjw8nEceeYSsrKxi7fLz8/nPf/5DZGQknp6e9OjRgxUrVlT6/KuDN954g3nz5l3paWhoAKC/0hPQKBu//vqr3d+//PILK1asKHa8VatWFRrn22+/RVXVcl374osv8uyzz1ZofI3qp3///uTm5uLu7m47NnPmTA4ePMhjjz1WJWM+8sgjdOvWze5Y06ZN7f7eu3cvgwcPplWrVnzwwQecO3eO9957jxMnTrBkyRK7ttOnT2fu3Lk89thjNGvWjJ9++olRo0axZs0a+vbtWyX34Irc3Fz0+vI9Zt944w0mTJjAuHHjKndSGhrlQBMWahlTp061+3vr1q2sWLGi2PHLycnJwcvLq9TjuLm5lWt+AHq9vtwPSI0rh6IoGAyGah2zX79+TJgwwWWb559/nsDAQNauXYufnx8ADRs25O6772b58uUMGzYMgO3bt/Pnn3/y7rvv8tRTTwFw++2307ZtW5555hk2b95ctTfjgOp+PzU0qgrNDHEVMnDgQNq2bcuuXbvo378/Xl5ePP/88wDMnz+f0aNHExkZiYeHB02aNOHVV1/FYrHY9XG5z8Lp06cRQvDee+/xzTff0KRJEzw8POjWrRs7duywu9aRz4IQgoceeoh58+bRtm1bPDw8aNOmDUuXLi02/7Vr19K1a1cMBgNNmjTh66+/LrUfxIkTJ7jpppsIDw/HYDAQFRXFLbfcQnp6uq3Njz/+yKBBgwgNDcXDw4PWrVvz5ZdfFuurYcOGXH/99bb5eHp60q5dO5uJ5++//6Zdu3YYDAa6dOnCnj17ir2HPj4+REdHM3z4cLy9vYmMjOSVV16hNMVez58/zx133EFYWJjt/frhhx9KvG78+PF07tzZ7tiYMWMQQrBgwQLbsW3btiGEsO3OL/dZGDhwIIsWLeLMmTM2E8HlfiyqqvL6668TFRWFwWBg8ODBnDx5ssQ5FiUzMxOz2ezwXEZGhk0YLhQUwCoE+Pj4MHv2bNuxuXPnotPpuOeee2zHDAYDd955J1u2bCE2NtblPIr+bnr37o2npyeNGjXiq6++KtY2MTGRO++8k7CwMAwGAx06dODnn38u1u5yn4XC7/HJkyeZPn06AQEB+Pv7M2PGDHJycuyuy87O5ueff7a999OnT7e9X4899hgNGzbEw8OD0NBQhg4dyu7du13en4ZGRdC2f1cpKSkpjBw5kltuuYWpU6cSFhYGwE8//YSPjw9PPPEEPj4+rF69mv/+979kZGTw7rvvltjvzJkzyczM5N5770UIwTvvvMP48eOJjo4uURuxceNG/v77bx544AF8fX355JNPuOmmmzh79izBwcEA7NmzhxEjRhAREcH//vc/LBYLr7zyCiEhISXOzWg0Mnz4cPLz83n44YcJDw/n/Pnz/Pvvv6SlpeHv7w/Al19+SZs2bbjhhhvQ6/UsXLiQBx54AFVVefDBB+36PHnyJFOmTOHee+9l6tSpvPfee4wZM4avvvqK559/ngceeACAN998k4kTJ3Ls2DEU5ZIMbrFYGDFiBD179uSdd95h6dKlvPTSS5jNZl555RWn95KQkEDPnj1tQlZISAhLlizhzjvvJCMjw6VZoF+/fsyfP5+MjAz8/PyQUrJp0yYURWHDhg3ccMMNAGzYsAFFUejTp4/Dfl544QXS09M5d+4cH374IQA+Pj52bd566y0UReGpp54iPT2dd955h1tvvZVt27Y5nV9RZsyYQVZWFjqdjn79+vHuu+/StWtX2/kDBw5gNpvtjgG4u7vTsWNHOwFtz549NG/e3E6oAOjevTtgNWfUq1fP5XxSU1MZNWoUEydOZPLkycyePZv7778fd3d37rjjDsBqWhg4cCAnT57koYceolGjRsyZM4fp06eTlpbGo48+WuJ9T5w4kUaNGvHmm2+ye/duvvvuO0JDQ3n77bcBq7nxrrvuonv37jbhp0mTJgDcd999zJ07l4ceeojWrVuTkpLCxo0bOXLkSDEhUUOj0pAatZoHH3xQXv4xDhgwQALyq6++KtY+Jyen2LF7771Xenl5yby8PNuxadOmyQYNGtj+jomJkYAMDg6WFy9etB2fP3++BOTChQttx1566aVicwKku7u7PHnypO3Yvn37JCA//fRT27ExY8ZILy8vef78eduxEydOSL1eX6zPy9mzZ48E5Jw5c1y2c/QeDB8+XDZu3NjuWIMGDSQgN2/ebDu2bNkyCUhPT0955swZ2/Gvv/5aAnLNmjW2Y9OmTZOAfPjhh23HVFWVo0ePlu7u7jIpKcl2HJAvvfSS7e8777xTRkREyOTkZLs53XLLLdLf39/hPRSyY8cOCcjFixdLKaXcv3+/BOTNN98se/ToYWt3ww03yE6dOtn+XrNmTbF7GD16tN334PK2rVq1kvn5+bbjH3/8sQTkgQMHnM5PSik3bdokb7rpJvn999/L+fPnyzfffFMGBwdLg8Egd+/ebWs3Z84cCcj169cX6+Pmm2+W4eHhtr/btGkjBw0aVKzdoUOHnP4eilL4u3n//fdtx/Lz82XHjh1laGioNBqNUkopP/roIwnI3377zdbOaDTKXr16SR8fH5mRkWE7fvnnWvjbuOOOO+zGvvHGG2VwcLDdMW9vbzlt2rRi8/T395cPPvigy3vR0KhsNDPEVYqHhwczZswodtzT09P278zMTJKTk+nXrx85OTkcPXq0xH4nTZpEYGCg7e9+/foBEB0dXeK1Q4YMse2OANq3b4+fn5/tWovFwsqVKxk3bhyRkZG2dk2bNmXkyJEl9l+oOVi2bJmdSvdyir4H6enpJCcnM2DAAKKjo+3MFQCtW7emV69etr979OgBwKBBg6hfv36x447eh4ceesj270JNgdFoZOXKlQ7nJ6Xkr7/+YsyYMUgpSU5Otr2GDx9Oenq6S5Vzp06d8PHxYf369YBVgxAVFcXtt9/O7t27ycnJQUrJxo0bbZ9feZkxY4adQ2Rpvw+9e/dm7ty53HHHHdxwww08++yzbN26FSEEzz33nK1dbm4uYP0+X47BYLCdL2zrrF3Rvlyh1+u59957bX+7u7tz7733kpiYyK5duwBYvHgx4eHhTJ482dbOzc3NFqGxbt26Ese577777P7u168fKSkpZGRklHhtQEAA27ZtIy4ursS2GhqVhSYsXKXUrVvX7iFeyKFDh7jxxhvx9/fHz8+PkJAQm3Pk5QulI4oukIBNcEhNTS3ztYXXF16bmJhIbm5uMW94KO4h74hGjRrxxBNP8N1331GnTh2GDx/O559/Xuy+Nm3axJAhQ/D29iYgIICQkBCbT8flbS+fc6FAcrk6u/D45e+Doig0btzY7ljz5s0Bqx+II5KSkkhLS+Obb74hJCTE7lUoACYmJjp9H3Q6Hb169WLDhg2AVVjo168fffv2xWKxsHXrVg4fPszFixcrLCxU5PtwOU2bNmXs2LGsWbPG5kNTKNjl5+cXa5+Xl2cn+Hl6ejptV7QvV0RGRuLt7W137PLP68yZMzRr1szO3ASXIpDOnDlT4jgVed/eeecdDh48SL169ejevTsvv/xyqYR1DY2KoAkLVymOHoxpaWkMGDCAffv28corr7Bw4UJWrFhhs5OWJlRSp9M5PC5L4bBXkWtLy/vvv8/+/ft5/vnnyc3N5ZFHHqFNmzacO3cOgFOnTjF48GCSk5P54IMPWLRoEStWrODxxx8Hir8HzuZclfdSOIepU6eyYsUKhy9nfgaF9O3blx07dpCXl2cTFgICAmjbti0bNmywCRIVFRYq+32oV68eRqOR7OxsACIiIgCIj48v1jY+Pt5OAxUREeG0HWDX9kpTkfdt4sSJREdH8+mnnxIZGcm7775LmzZtioWRamhUJpqD4zXE2rVrSUlJ4e+//6Z///624zExMVdwVpcIDQ3FYDA49KYvi4d9u3btaNeuHS+++CKbN2+mT58+fPXVV7z22mssXLiQ/Px8FixYYLe7W7NmTaXcw+Woqkp0dLRtdwpw/PhxAKcZMkNCQvD19cVisTBkyJByjduvXz+MRiN//PEH58+ftwkF/fv3Z8OGDYSFhdG8eXOb46szqjsTZ3R0NAaDweZI2bZtW/R6PTt37mTixIm2dkajkb1799od69ixI2vWrLE5dhZS6GzZsWPHEsePi4sjOzvbTrtw+efVoEED9u/fj6qqdtqFQjNegwYNynjXjnH13kdERPDAAw/wwAMPkJiYSOfOnXn99ddLZa7T0CgPmmbhGqJwN1N092I0Gvniiy+u1JTs0Ol0DBkyhHnz5tnZY0+ePFmqXVNGRkaxELx27dqhKIpNPe3oPUhPT+fHH3+sjFtwyGeffWb7t5SSzz77DDc3NwYPHuywvU6n46abbuKvv/7i4MGDxc4nJSWVOGaPHj1wc3Pj7bffJigoiDZt2gBWIWLr1q2sW7euVFoFb2/vUpmnyoqje9i3bx8LFixg2LBhtkXY39+fIUOG8Ntvv5GZmWlr++uvv5KVlcXNN99sOzZhwgQsFgvffPON7Vh+fj4//vgjPXr0KDESAsBsNvP111/b/jYajXz99deEhITQpUsXAEaNGsWFCxeYNWuW3XWffvopPj4+DBgwoAzvhHO8vb1JS0uzO2axWIp9HqGhoURGRjo0wWhoVBaaZuEaonfv3gQGBjJt2jQeeeQRhBD8+uuvlWoGqCgvv/wyy5cvp0+fPtx///1YLBY+++wz2rZty969e11eu3r1ah566CFuvvlmmjdvjtls5tdff7UtvgDDhg3D3d2dMWPGcO+995KVlcW3335LaGioQxV2RTEYDCxdupRp06bRo0cPlixZwqJFi3j++eddhoO+9dZbrFmzhh49enD33XfTunVrLl68yO7du1m5ciUXL150Oa6XlxddunRh69atthwLYNUsZGdnk52dXSphoUuXLsyaNYsnnniCbt264ePjw5gxY8r2Jjhg0qRJeHp60rt3b0JDQzl8+DDffPMNXl5evPXWW3ZtX3/9dXr37s2AAQO45557OHfuHO+//z7Dhg1jxIgRtnY9evTg5ptv5rnnniMxMZGmTZvy888/c/r0ab7//vtSzSsyMpK3336b06dP07x5c2bNmsXevXv55ptvbKHB99xzD19//TXTp09n165dNGzYkLlz57Jp0yY++ugjfH19K/z+gPW9X7lyJR988AGRkZE0atSIFi1aEBUVxYQJE+jQoQM+Pj6sXLmSHTt28P7771fKuBoaDrkyQRgalYWz0Mk2bdo4bL9p0ybZs2dP6enpKSMjI+UzzzxjCwe8POzPUejku+++W6xPnISHXd7GUbhXgwYNioWHrVq1Snbq1Em6u7vLJk2ayO+++04++eST0mAwOHkXrERHR8s77rhDNmnSRBoMBhkUFCSvu+46uXLlSrt2CxYskO3bt5cGg0E2bNhQvv322/KHH36QgIyJibGb2+jRox3e7+X34uj9mTZtmvT29panTp2Sw4YNk15eXjIsLEy+9NJL0mKxFOuz6HsopZQJCQnywQcflPXq1ZNubm4yPDxcDh48WH7zzTcu34dCnn76aQnIt99+2+5406ZNJSBPnTpld9xR6GRWVpacMmWKDAgIkIDtO1HY9vIw1cL34ccff3Q5t48//lh2795dBgUFSb1eLyMiIuTUqVPliRMnHLbfsGGD7N27tzQYDDIkJEQ++OCDdiGKheTm5sqnnnpKhoeHSw8PD9mtWze5dOlSl3MppPB3s3PnTtmrVy9pMBhkgwYN5GeffVasbUJCgpwxY4asU6eOdHd3l+3atXN4z85+G0XDZqWU8scffyz2/Tt69Kjs37+/9PT0lICcNm2azM/Pl08//bTs0KGD9PX1ld7e3rJDhw7yiy++KNU9amiUFyFlDdpWamg4Ydy4cRw6dIgTJ05c6amUmsI6BY4KHmnUPAYOHEhycrJD04+GxrWO5rOgUeO4PB7+xIkTLF68mIEDB16ZCWloaGhc42g+Cxo1jsaNGzN9+nQaN27MmTNn+PLLL3F3d+eZZ5650lPT0NDQuCbRhAWNGseIESP4448/uHDhAh4eHvTq1Ys33niDZs2aXempaWhoaFyTaD4LGhoaGhoaGi7RfBY0NDQ0NDQ0XKIJCxoaGhoaGhouqRU+C6qqEhcXh6+vb7Wnn9XQ0NDQqF1IKcnMzCQyMrJYwa/KIi8vD6PRWCl9ubu726qj1lRqhbAQFxdXqlStGhoaGhoahcTGxhIVFVXp/ebl5dGogQ8XEi2V0l94eDgxMTE1WmCoFcJCYfrU2NhYuwIxGhoaGhoal5ORkUG9evUqLfX25RiNRi4kWojZ1QA/34ppLjIyVRp1OYPRaNSEhYpSaHrw8/PThAUNDQ0NjVJR1WZrP1+lwsJCbaFWCAsaGhoaGho1DYtUsVQw+YBFqpUzmSpGExY0NDQ0NDTKgYpEpWLSQkWvry40YUFDQ0NDQ6McqKhUVC9Q8R6qh2vD2KKhoaGhoaFRbjTNgoaGhoaGRjmwSImlghUTKnp9daEJCxoaGhoaGuXgWvJZ0MwQGhoaGhoaGi7RNAsaGhoaGhrlQEVi0TQLjlm/fj1jxowhMjISIQTz5s0r8Zq1a9fSuXNnPDw8aNq0KT/99FM5pqqhoVEaLpxOZNXvG1g9cwOJsclXejoaGlcthWaIir5qA2XWLGRnZ9OhQwfuuOMOxo8fX2L7mJgYRo8ezX333cfvv//OqlWruOuuu4iIiGD48OHlmrSGhkZx0pMzeP/OL9ny704Knz9CCPrd1IPHv7kPnwBvW9tTe0+za9UBLGYLLbs3pePANlqRNg0NDaeUWVgYOXIkI0eOLHX7r776ikaNGvH+++8D0KpVKzZu3MiHH36oCQsaGpVEXk4+Tw58idhjcRTdqEgp2fjPduKjE/lo02vkZOTy+pSP2bf2EIrOqlhULSp1m0Xw0pwnaNhGK9imoVFarqVoiCp3cNyyZQtDhgyxOzZ8+HC2bNni9Jr8/HwyMjLsXhoaGs5Z8cs6zhw5h2opnuBFtaic2B3Nmj828p/hr3Fg4xHb8cL28dEJPDnof6TEXazWeWto1GbUSnrVBqpcWLhw4QJhYWF2x8LCwsjIyCA3N9fhNW+++Sb+/v62l1aeWuNaJDs9hwVfr+Sdu7/hvfu+Y83sLRjzTQ7bLv1hNa6MCIoimPPeQmIOnEU1OxYostNzmP/FskqavYaGxtVEjQydfO6550hPT7e9YmNjr/SUNDSqlV2rDnJryyf44pnfWTt3G6tnbeHtu75hRof/cObo+WLtU+JScaXNVFVJwpkkFMW5SKFaVFb+tqEypq+hcU1gKYiGqOirNlDlwkJ4eDgJCQl2xxISEvDz88PT09PhNR4eHrZy1FpZao1rjdjj8bw06WPyc4wg7c0FqQnpPHv9O+Rk2mvlQuoFI1wIAooi0LkpqKrrB1NWWnbFb0BD4xrBIivnVRuocmGhV69erFq1yu7YihUr6NWrV1UPraFRK5n35QqkqiIdqApUi0pqUgarZ9n7/Iy8czDShSCgqpImHRuh0zv/yQsB4Y1Cyz9xDY1rDM1nwQVZWVns3buXvXv3AtbQyL1793L27FnAakK4/fbbbe3vu+8+oqOjeeaZZzh69ChffPEFs2fP5vHHH6+cO9DQuMrYOH8nFgd+BUVZ+N0als/ayrlTVq3dkKn9aNqpkS3CoSiKTqF17xZMe3liif2OuXdo+SdeDqIPnWPhj+v49+f1xJ64UK1ja2holJ4yh07u3LmT6667zvb3E088AcC0adP46aefiI+PtwkOAI0aNWLRokU8/vjjfPzxx0RFRfHdd99pYZMa5UJKyYGtJ4k5HIe7wY1ug1pTJyLgSk+rUnHmxGhDwplj8Xz41B8AdOrXnKc+nMp7q1/ikwe/Y+2szTazhU6vY8ht/Xnw4xkYvA2MvOM6lvywpliXik6hZfemDJ8+sLJvxyFJ51N56/4fOLwjmsL0DlJC5wGtePqzaQTU8a2WeWhoVAQVgcWla3Hp+qgNCOlI11nDyMjIwN/fn/T0dM1/4RrmxP6zvP3Qz5yPTkIIgZQSoQiGTOjOQ29MxN3gxplj8ezfehIpoW33xjRuXfdKT7vMPDX8DQ5vP+UwDNKGuzvC0wBYF/qwqCA+XfwU3n6eXLyQytFtJ0FA617NCQjxt12mqip/fbSIue//S2piOgAGbw9G3jmI6a9MwtPbUKX3BpCdkcsDg98gOT6t2D0qOoX6zcL5eMkzuBvcqnwuGlcnVb1mFPa/81AYPr4Vs+ZnZap0bZNQ49c3rTaERq3gfHQiz9z8KcY8I4DNni9Vycq520lNysBkUtm3+UTBTtUqTLTu2ohnP59GSBVpHzJSs0m/mE1AHR98/b0qpc8b7h3CwS0nXDdyv7SQqhaVC2dTWPrHFm66dxBB4YH0HtvN4WWKonDzE2O48eGRnDl8HovZQr2WkdUiJBSydOYmks6nOvXJOH00jnULdjF0Ys9qm5OGhoZramTopIbG5cz+fAWmPBOqA9dhqUp2rjnC/i0nrX/LS8LEsT1neHrCJ2Rn5lXqfE4djuO/d//ApJ6vcM/I95nU4xVeffAXzp5MKPniEug7riuDJ/cGcJyC2eCB0OnsDkkpWT5ra6nH0LvpadKhAc27NK5WQQFgxaytDgWFQoQiWDV7WzXOSEOjfFgKzBAVfdUGNGFBo8Zjsais+WcXFldqeUBaLA6vTTyXWqaFtCSO7DnD45M+Z9fGE7bUylKVbF19mEcnfEbM0fgK9a8oCk9+eSePfjqdei0iLp3Q6cDLE+Hh4fC6tOSsCo1bXaSnuJ6nVCWpyZnVNBsNjfKjCQsaGjWI/FwjJqO55IY6Bdz0XP7bk0hWzt1RKXORUvLBs3OwmCzF7O2qRWLMM/HJ//1V4XEURWHktAF8s/115id8TY+beqLz90W4ObbjC0GtcfQMKyknhE4hokGdapyRhoZGSWjCgkaNx+DljpdvKVTlOp1VWPA0WAWHQiSkX6ycXfeRPWc4F5PkNLmRqkqO7ovlTCWYIwrx8HRn5OTeLh0epYSRU2pH7pJRt/V1nRPCojLi1j7VOCMNjfKhSlEpr9qAJixo1HgURWHklN4OcwjY4abHFofn4W77t1AEYfWCKmUu508nl65dTOnalZZug9vQuX8LhztyRafQuHVdhkzsUaljVhUDb+xKq66NHaaeFoqg25A2tOvdlAV/bOXRKV8yY9T7vHDvj2xceahEU5SGRnWimSE0NGoYEx4YTHC4v3OBwc0NlIJzhQKDmzXYR6qSUVN6V8o8PL0d+wtcjpdP6dqVFp1O4aXv7+b62/vi5nEpiEnRKQy4oRNvz34Ig6d7pY5ZVbh7uPHGrIcYdXs/u3sxeLkz/t5B3Pf6RB68+XO+eHMhxw+eIz72Inu2nuK1x2fyv0d+w2QqhUlKQ0OjUtHyLGjUGi4mpPPlf+eyacn+S2psAbi722sVClFVlHwjrbs15s2ZD6B30xXrs6zkZuczufer5Oc6T5zkF+DFbxtfwM29aiKTs9JzOLr7DKqq0qx9PQJDau9vIjsjl/1bT7J57RF27zpLenoOmCxYTBaHERNCCCbe2Z8Zjw67ArPVqC1UV56F1QfrVUqehUFtY2v8+qZpFjRqDUFh/rzw9Z38tvNVIlpEgpcBvL2sOQcchRgKwfW39+XVX+6tFEEBrJqFifcMdNlmykNDKl1QyM01cvjgOQ4dOIfOXU/X61rRfXCbWi0oAOTkGvni4xWsXHGY5ORMTPlmzEaz09BKKSUL/9hKfl4JWS41NKoBWQn+CrKW+CxoSZk0ah1BoX50GdCKJbO3O7VhK4qg+8BWjJzen19/2EBKUiaBwT4MHdmOoGAfFvy1k6WL9pGRnktIqC+jx3Zm9NjOeHqVrMq/5f5B5OeamPPdOgB0ioLFoqLoBLc+PJQbbqsckweA0Wjmx+/W8e/8XeQWaDMMBjfGjO3MjLsG4u5Ru3/C7708j5SkzEsOo1IiKRbQYkdOdj6nT1ygRbt61TFFDQ2nVIbPQW3xWajdTxqNa5bRt/Tg3z+d506wqBKzwZ27p36NTqdYU0MLwdw/tuLuocdsstgWqHOxF/nms5UsX7yf9z+/DV8/x6XTC1EUhRlPjeSG2/qw9t+9pKVkERzmx8DrOxIQ7FNp92ixqLz0/Bx27oix22nn5ZmYO3s7p04l8uY7t7isJFmTOXcmmb3bo8t1bc03nmpoXF3UzqeMxjVPw+bhPPh/YwGr818hhQ6Qbfs3Z2tBRkeLRUVVpU0LYcw324c+SuvicyYmiS8/XlHqOQSH+XHTnf2585lRjJvWt1IFBYBNG46xY3u0Q5W8lJLdO2NYv+5opY5ZXVy8mMXCebtR9Qp2WlghStxneXq507BZWFVOT0OjVFikUimv2kDtmKWGhgOun9yT936/l56DWuHl44Gnlztd+jTjpS9u59iJxDL3p6qS1csPkp6WUwWzLTuLFu5xGF5YiKIIFi3YXY0zqjg5Ofm89cYCbrn5U+b+sxPV0w2LtzsWg96aDFMRSGFLjFkMIQTXT+pRayI/NK5uVAQqSgVfmhlCQ6PKadO5IW06N7Q7tm3TCfLK6QBnsaicOnGBzt0aFzuXm2dk3YZjnDufire3B/37NKduZGC5xikNcedTnSZ/AqtwExeXWmXjlwZVleQbTRg83BzXsSiCyWThmaf+4NjRePv7EgKpV7B4uaHLMSH0OjBZ7HwXFEWgqpIuvZty20NDqux+NDQ0HKMJCxpXHfn5FYvD1znI5bBm/RHe/XApOblG9DoFVUq+/n4tw4e05clHhuNeBWGSAQFeXIhPc2mf9w+onEqXZSUuPo0/5mxj2apDGI1mfLw9GD2iPbdM6E5ggLfDa9auOcKRw3GOOxQCFJB6BWFWwU2HUCX+/p54eLgRUS+IUTd3o++QNuj0xSNbTp5M4OzZFDw93ejUqSEGrby1RjWgOThqaNRiGjcNLfe1nl7utGhd1+7Yzt0xvPLmAtuibS4SgbF81SGklDz/9PXlHtMZQ4a348gRJ4sr1vV12Ij2lT5uSZyKSeThp2aSn2/CUlAFNCs7nzn/7GTN+qN8/sFUQur4FrtuyeK9Ng2BM1Q3HW7SquHpMaglL7w10aUgdupkAu++u4gTxy+l1/b0dGfylF5MubVXidoODY2KUBk+B5Za4q2r+SxoXHVE1Q+mfcf6Ts87t4fDuAndiu1Kf/hlI86C+aSULF91iHNVYA4YNrw9kZGB6HTFx9bpFMIjAhg+snqFBSklr761kLy8S4JCIaoqSUnJ4uMvVjq8Nikx06WggBC4GfQMHNGOt7+cxsvvT3YpKJw9m8Kjj/zKqZP2/im5uUZ++H4d3327ttT3paGh4RpNWNC4Kuk7rLVDRzlHS1Wh2aH/da24/a7+dueSkjM5fDTOaZIgsNrT1204VsEZF8fTy50PPr2NVgWaDiGEbafcslUkH3xyG15elZtWuiQOHYnj9NkUp4u+RZVs2nqCJAclpuvU8XG50xcCmjYL55lXxtOxe+MStQI//biefKPZ6Vxm/bmVpKQMl31oaFQEq4NjxV+1Ac0MoVHryck1kpyShZenO3UKwhdjz6eCrzsy1wwm689RAtJNQXUTCAnCqNKqeQRR9YMYOaYj7Ts1KLZAZWfnlzi+oohStSsPder48tHn0zh54gL7954FoF2H+jRrHl4l45XEqeiSo0ykhNNnkouZIoaP7MD+/bEurxs5ukOp5pGTk8+G9cdcaiqEEKxccYjJtaQap0btQ0XBUsE9t+pU11mz0IQFjVpLalo2383cyLLVhzCaLAC0ahbOHVP6WuP1FYHFoAOPIj/mAmFAYnWme/X9SU4d8gBC6vii1yuYzc6rHZrNKnUjAyrjlpzStFk4TZtdGQGhKKXNGOnIfDBoUGvm/bOTUycTii3yiiJo2CiEIUPblqr/9PRc1yaNgj5TUiqnNLmGxrWOZobQqJWkpmVz79O/sXjFAZugAHDsZAJP/28uUlfEEVGIS68i1K0bSIC/62iC2IQ0GrUKRzUoqE7KSxg83LhuQKsK3U9toXuXRi5zPwD4+Rpo1SKi2HF3Dz3vvT+Ffv1b2H0UQkDvPs15/8Nb8fAoXRSDn59nifNQVUlwJSfK0tAoyrWUlEnTLGjUSn74YxOJycUd5tQC34J/Vx6gTh0fLl7MdroDnXhTd6d28cSUTF74eCEHT8QjhEB6KuCpIEwSt2yL1YwhBFJKnnx0OF7XSJKg4CAfRg5tx+LlB5z6cdwyoYdTx0QfXwP/fXk8iYkZHDxgNUm0aRtFWJh/mebh7e1Bv/4tXJoipIQhQ9uUqV8NjbJQmFipYn1oZggNjSohL9/EktWHXKqhjUYzI8Z2Y8H83WRm5tkWNp1OYLFIxozuyJhRju3j2Tn53Pe/P0lMsTrpFV0UpR6MvjrcMyy0bBbOjNv60KNbk0q8u5rPIw8MISMzlw2bT1yqu4HVufGmsV24ZUL3EvsIDfVj0OCKLeTTZ/Rn+7ZT5F+evruASbf0IKSWV+XUqNlYpMBSwaqRFb2+utCEBY1aR8rFLIxG14mXdHqFXKOJX767i8VL97Nm3RGyc400aRTK2Os70dmBM2Mhi9Yf4kJyhuNkSEKADqbfPYAZN/WshLupfXi463nlxXEcPX6BFasPkZaeQ1iIHyOGtqNB/eBqm0f9+sF8/MltvPvOIk6csM+zMOXWXppjo4ZGJaIJC9cA6ek5HDl0HlWVtGgZQbCDhDm1idKo/KUq8fZyx9/fi8mTejJ5UukX9iXrD7vMmiiATXujr1lhAawmmFYtIhz6JlQnTZqG8dU3d2gZHDWuCJZKiIawaGYIjStNXp6JLz9dwbIl+2ze/Ioi6D+wFY8+OQJfX9elmGsqgQHetGtVl0NH42w+CpdjUSUDe7coV/9pma4LSUkgLaNmFJvSsNK0aRhNm2qVKDWqF1UqqBV0UHT2DKtp1A43TI0yYzGrvPifWSxZtNcu7E9VJevXHuGJh38rd7GlmsAdk/sgkQ7TmSiKYECv5jSqX6dcfdcNCyix2mNUeEC5+tbQ0NCojWjCwlXK5k3H2bvnjEPHL1WVnI5JZNnifVdgZpVDlw4NeOmpMbgVeN1LLmVnjIwK5NF7BwOQnJ5NdFwKmTl5pe573OAOJVZ7HDuo+msyaNReLBaV9RuO8fEny/no42WsWHGwRL8bjZpPoRmioq/agGaGuEpZtmRfiUV7Fv+7l7Hju5a5732HzzFrwU52H4gFJJ3b1ufmMZ0JDvIh6WIWQf7eNIwKqvIiPp7+BrL8QMlTkGYJAizuglM5Gcx4409Cgn3Zd8paiEmnCAZ3acaDN/YhKiTAZb8Duzeje7sG7Dh4tlh4oBCCbm3rk2o28sn8jXgZ3BnasRkNwqquVLVG7ebMmWT+8+xsEhMzbKnFFyzYw5dfreb11yfQqmXkFZ6hRnlRqXg0g/N0bzULIV0lva8hZGRk4O/vT3p6On5+WihUabhnxrdEn3Kdmtff35O/Fj5Rpn5nL9zFpz+sQacILAWCiFAEFmviAVu7pg1CeOj2AXRr36Dsky8FRpOZkY9/Q2ZOXjFnRClAKgJxWW0InSLw8fTg5+cnYzSbmbVuH9uPnQUEPVvVZ2L/DjSOCLb1/83sTfy9ch+5BeYaL4MbndrXZ1NsLLlGs7VUtSpRpWRElxb8b+owPNw0+VvjEllZeUyb/i3p6TkOs1YaDG78+MNdWohnJVPVa0Zh/1/v7oKnT8V+87lZZu7tvKvGr2/ak+0qJTjYh9MxSc41CwKCypjd7tipBD79YQ2ATVCQgCqKj3HqbBJPvPYXbz87jt6dG5dpnNKwZtdJMrKLmxYkYPU3Ku7RYFElWbn5PP3VQk4kpCDEpfs4l5zGnA37eW3aCEZ2a4m7m56Hbh3AnTf15lRsEgAX83J59JsFNgnErlT17uNI4O0Zoyr9XjVqL0uW7ictLdthdI2qSvLyTMyfv4e77hpQ/ZPTqDCVk5SpdpghascsNcrMsJGu7e4CGDGqY5n6/HvJHrtyyRKQhSmQLzM5SGldrt/9ZiUWS+Ur2k7EJqHXOfj6Chymdi7EokpOxCajqtImKBQeV1XJiz8vJebCRdtxT4MbbZtF0rZZJN8v34FAOAx0UqVk2a5jnE646OCsxrXK+nXHXIbhqqpkzdoj1TchjUpFS/esUevpN6AFrVrX5djRuOLqT50gMjKQkdeXrsJfIQeOnMdiuezJ58IvQUpr2uQ9h2Pp2q5yzREGDzfnZaOldDkvaxtwFEohgFnr9vHspOvsjielZ7EvJt5llzpFsGLPCe4e0cP12FVARm4eqw6eIjUnl8gAX65r3YRD5xL4ad0uNh8/g0VVaVcvnNv6dWZIu6ZV7k9SUzgUHc+89Qc5n5ROgK8nw3u0pG+HRuiU6nlA5+QaS2yTl1dyGw2NK40mLFyl6PU63np/Mh+9t5i1a44giwgMXbs15ulnr8fLy6NMfeou38mXcr2JT8wo0zilYWCnJnz9z+byd+Bk7hZVsu3omWLHs0vxQBdCkJVXNaWqnSGl5KtV2/hm9XaMFovNl8Sg15NvNNv5luw9E8/u0/9ya5+OPDt24FUtMKiq5K1fV/LPugO290BRBCu2H6Nt4wg+eeJGfL0MVT6PJk1COXs2xal2TVEEjRuFVvk8NKoGFYFa2gehiz5qA5qwcBXj7e3BCy/dyD33D2b/Pqtnf+s2UUTWLZ/nfq8ujTl7/uIlTUUpXWMD/Co/+VPTeiH0bteQrYcuCw8txZzK49EbGuCDm16HyWxx2sZsUakfUr1REd+s2c5nK7bY/raoEiTkGc22eg2FFCZ/+X3TXno0rc+gtldvTYtfl+7gn3UHgEvvQeH35PDpC7z07VI+eHRclc/jhhs6sXLlIafnVVUydmznYsellFy8mI0QEBjofVULdrWZyjAj1BYzRO2YpUaFCAn1Y/DQtgwZ1q7cggLAuBEd0OkUew2/lLgyyvp4edC9Q8Nyj+mK1+8fTecWUQDoFAWdItAJgShBUhd6nGoWdIqgR8v6xY57ebhzfbdW6FwkazK46xnRpXxZI8tDZm4+X6/aVvxECdKQTgh+37SnaiZVAzCZLfy2dJfT86oq2bAvmjMXUqt8Lm3bRDFxorWwlqP1fuiQNvTp08xubvPm7+LW27/i5ls+Y8Kkz7ht+tfMX7jbudlN44qh5VnQ0HBAZFgAb/xnLC+8PR+zWbXuVFWQOucL6N239MHDSbniiuLj6cEXT09g/8k4Vmw/TlZuPg3CA9l1Po5N+04jHCSoFJ7CapJx4nMpgYn9HftyPDimN1uOniEpPctuxy6E9cL/u2UI3obqK1W99kg0+eaCzPK6gigQAUo+OAhQsWGRkgOxF6ppltXPidgk0rJyXbYRArYciKFBeNVrgu695zoaNwrhz1nbOH06GYDIyABuntCdMWM62bQGUkre+2AxS5cdsLs+Pj6Njz9ZzsmTCTzx2AhNy6BxRdCEhauMnBwjK9cf4VRMIu7uevp0b0qHtlGV9oDp2aUxs7++h39X7mfXfqtpw8fXwM5DseTkGm2JoAwebtwzuQ83jehYKeM6QwhBh2Z16dCsLgBHzyfy4erNYADcQTFjc2ZU3UCng5aRoRw/lQRCYtJZ8zLoAWGCV28fbsu1cDl1/Lz57enJfLpgE4t3HrWZJNrUD+O+Ub3o26ZRld7r5aTl5IKwls22aUoK/u/Ef9OGm6JzcbZ2YypF9I1AlKpdZSCEYNiwdgwd2tZWLt3Pz7PYb3Lb9uhiggJcUtwtWryPAf1b0rVL9X7PNJyjSoFa0aRMWolqjaokMSmDhYv3smNXDBaLpEP7ekRFBfHlT+vIyzOh1ylIYPa8nbRqHsGb/3cjgQHelTJ2cKA3027uxbSbL5UAzs83sWl3NIkpWQT5e9G3a5NSVYesbJbsPnbJqU8B9bIpWFTJkfNJjBvUhrm7D9ns+BYgwMuAl59rp886ft78b+ownpkwkIS0TLwNHoQFlC1fRWVRN9AfVUdBuOil41KPQ61KITpFMLBN5ee+qCk0jgwq0b9ElZLWjaq38JQQAj8X/jsLFu52mXVVpxMsWLhbExZqEGolmBFqS54FTViohWzfGc2L//sbs0W1PVhOxiSiKtgMo0UTBh0/eYGnX5rLNx/e7rJAUkXw8HBjUK/qs9c7Iz0nD+vK6aK2g5TM3nmw2NY7PSePh35dwLczxtOraXG/haJ4G9xpHO5YA1FRzqamsejQMVJzc4kK8GdMm5YEehVfZBqFBYIDBYHUWYUFR9oFgXWnelvfTlUx9RqBr5eB0b1bsWDjIYcLr04RhAX74enpRmZuPr6eZYsKqipiTrtIogZYLJLomKRqnJGGxiU0YaGWkZScyYv/+xuT2WLnV6i6kAEsquREdCI79pymx1W+K4kM8iu3I5h1cZV8uGwjvZpOqdyJlQKTxcJLS1Yxd98hq6OmEFikylsr1/Ofwf2Y1t3ea/5IvJOFQ4DqYfVdKCowKEKgKIK3J4+kZd2rO1zv0YkDOByTwIlzSXa/EyEEKnAmM50p7/yBm05hVLeWPDq2H0G+XsX6ycrN56+1+5m34QAp6dkE+Xszrm9bbhrYvtJDLz1LoYkra7izRtVSOSWqa4dmoXbMUsPGwsV7MVtUuweghEuZC52g0yms23y8qqd3xbmhW2uX54UQl1T3DlAlHDyfwNmUtEqfW0m8sWIdf+2zhtlZpMSsWj9ns6ry+op1zDtw2K693lViIQVUA0g3aFMvjH4tG3L/0J4sf+5OhndoXpW3cUUwW1TOJqcRm5KGRVXx8fLgu+dv4eGb+xMVGoBep+Dp4YZZJzG5SyjQsJksKv9uP8Lt7/9J6mVOkSnp2dz+6u989vdGYhPTyMk3cS4xjc//2cTUV38nOT27Uu/huoGtXPoWCSG4bkCrSh1To2JYEJXyqg1omoVaxo7dMY5VlSU4MEopyb0GMsWFB/jy4MjefLp4U7FzOkVgcHcjS5hchnsCpObkUj84oIpmWZykrGz+2L3fZdTjJ+u3cEPbVigFn3W3hlHoFQWz6sRRT4DOXeGru250aMa4GjBbVH5ev4tfN+wmOTMHgDB/H6YP6MKtfTpx24iu3DaiKwlpWYz8v+9QHUTuWFRJ/MUMfly+gyfG97cdf/2XFZxPTi+mqZJSciElg1d/WsbHj46vtHu5flRH/vprB1nZ+Q6LTvn6Ghg1UiuNrnFl0DQLtQzpzKZZQr4DgEb161TBjGoedw/pzksThxBexPFQEYIh7Zvx4OjeWEp4nwQQ4e9bxbO0Z9XxUyWaT86lZXA0IYl8s5k10dFsOHuaAS0b2YSHy1GEYEKXtletoKCqkqd/X8RHizfaBAWAhPQs3l6wjpfmrLC9pwu3HXbWDWAVGP7efMDm6xOfksGGfdF2IbKXt9904DTnktIq52awJl96/70pBAdZv7c6nWLLmlqnji8fvDcFf//iphKNK0ehGaKir9qAplmoZbRvV4/jJxPsdh6CAiGiBOfFUUPaVfHsag439WzHjd3bciwuiTyTifp1Agn29SLHaOKjFZvIMToOF9AJQa+m9Qn1q94Ih2yjCUUIl4KMRDLn0EHmHT1CRn5+4UH8DG7k5V5K7awr6Kd3k/o8O+LqrWa46uBJVhw46fT8PzsPMapTC3o1b8C55DRbPgxnZOUZyczNJ9DHk0MxF0qV6fNQzAWiQgLKOnWnNGkcyu+/3sfmLSfZv/8sCEGH9vXo3atZ8XTrGlccC1TYjOA8ZqdmoQkLtYyxozsx95+dxU+oFNjh7YsoKUKgSskj9wymThlLUtd2FEXQKsrekc/L3Y3nx1zHi38tL95eCNzd9Dw9sn+xc1VN4+DAEjUe6OGXfXvtjwnI8jCj1wt6hNUjz2gmwt+XGzu1oVfj+lUW/XKlkFKy8eQZ/ti+j62Hi9fwKIpOEczaup9ezRvg52mgpCgZRRF4ebjZri02NgWJr5RLBw7EXGBo1xaV+j7r9Tr692tB/35XPrpIQ6MQTVioZdSNDOS5p0bz5ruLEIqwFajR6xTMFpUuXRpy8nQS6RlWZ61WLSKYenNPene/OuoAZOUbWXDgCHvOxaEIQc+G9RjZugUGt9J/lcd3aYOXuxsfLttI7MV02/EuDevywpjraBZe/eaafk0aEuLjTXJ2tkNrkiLA7Ob4WhWJRQ8mL8nvt0+q2olWA/vPX+CX7XvYcfYcihD0a9KQ27p1pEmdYF6Yt4x5e4+gUwTSKF3u6SyqJLqgZPiwLs35ZbXzFNA6RTCwfRM8Cr5HnZpF2X5TYE3c5agc+8y1e0jNyeXVaSOuOsFMo2SupWgITVioJeQbzaSl5+Dl6c7QQW1o3DCEv+bvZNvOGFSLSof29Rl/Qxfat43CbFFJS8vB3V2Hn++VtVfHpWaw9eRZzAUlkltFlj9kb/uZc9w/az5Z+UYUYa0AMW//Ed5dtZHvJt9I64jS9z2iXXOGt23GkbhE0nLzqBfkT72ggHLPraLoFYV3bhjO3X/OQ0XakkWB1TTibtBhxnmmJYuUbDp7loSsLMJ87DVIUkqyTSZ0QuDp5kTiqCH8tG03by5fZ1ctc+7eg8zZc5CxrVsyf+8RwCoIKKKgGrmTvgTga7CGGrZtEE7/to3YeOi03XsLBSGlQnD38EulxQN8Pbmhb1vmrT+ARUqHgkLhwEu2H6VLsyjG9712zHwaVq6lQlKasFDDuZiazU9/bmbJqoPkF1QS7NqpITMm9+aZx0c5vEavU664ySErL5///rWS5QeO2+2UO9SP4J3JI4kK8i9Tf7Gp6dw98x+MFquFr+gDPzUnl+m/zWXZgzPK5MwnhKB13erN4ldIYnYWvxzYy7zjR8g0GmkcEMjUth34deoEPt+4jU3RZ5CAm05hTJuWePu489u+fc4jHwpIzsmxCQuqlPxxaD/f79tFdJq1aFLH0HDu69ydEU2auermirDnXBxvLl8H2FfLLKykWSgoFCJ1IMyu+xzZ6ZIq/+0Zo3npt+Us33PcJiCYVZUAH0/enD6SlvXshc0nJg0gLjmdLUfOAMKpVCIEzFy9WxMWrkFkJZSodq0fqzlowkINJiU1i/ue+o2klCybQ6MEdu07w+59Z3jjxfH06lrz0vZaVJX7f5zH3jPxxVTqB89d4LYvZ/HXo1MJ8im9Z/fvO/disliK7QrBuihm5Bv5a+8h7urdtaLTr3KOpiQx6Z/ZZBrzC+5Hsjcxjz2r4+geEcVvE28mO99IRl4+dXy88HZ3Z+a+fVhKEBQAQrys76kqJU+uXMI/x4/YPYr2JyVw39IFPNmjDw937Vk1N1hOftm2x06jUBJSbxUWHGWq1CmCYF9vxnW9lHfD08ONd+4czUNJfVi7/xR5RhNNI+vQr20j3HTFU2Ea3N345NHx3PfRXHaeOOd8HhKi4y+SZzRjqKKiaRoaRfn888959913uXDhAh06dODTTz+le/fuTtt/9NFHfPnll5w9e5Y6deowYcIE3nzzTQyG0icWqx36j2uUr35aR3IRQaEQVbWqqd/4cDEmU83zpV13NIbdp+McLuwWVZKcmcMfW/aVqc/lR066jhSQkuVHT5R5rtWNKiV3L55PljEfVaqgSGvFSGHVp29POMewWT+CAg2CAvB2t2b1G9m8ucskTDoh6FO/PqEFWoWlp07wz3HrTrzou1b4mby/bROHkxPJM5uZfeQAE/75g36/fcvEeX/y17FDNg1OdbLtzLlSCwqALVNlUUmh0EpQv04AP913Mz6G4hkP64cEcPvgLtwzsieDOjR1KCgUoiiCiGA/l6XJCylNG42ri0IzREVfZWHWrFk88cQTvPTSS+zevZsOHTowfPhwEhMTHbafOXMmzz77LC+99BJHjhzh+++/Z9asWTz//PNlGlcTFmoomVl5rFp/1OnDU0pIz8xlw7aat0Au2HXE5YNTlZK/dx4qU5955hL0zUCeqeQ2V5p1Z08Tm5GORar2v74ixaBOZ6QxecEs8i2X7ifQ05PHe/d22KciBHpF4Zl+/WzHfj6wx2n+BbAKFz/u281N/8zkmbXL2HUhjtjMdHZeOM+Tq5cwcd6fZBrzK3KrZaakpdbhL0GxCgwWd1D1MKR9M765ezzzn5xG/ToBlTKvXq0buBRiFCHo0iwKN/3VW8lTwzGFVScr+ioLH3zwAXfffTczZsygdevWfPXVV3h5efHDDz84bL9582b69OnDlClTaNiwIcOGDWPy5Mls3769TONqwkINJT4h3a4YlCN0OoUzsSnVNKPSk5KVXeIOMS071+X5y2kTHorO1eKnCNpGXBn/g7KwK/68VUNwWUnpyzl6MZnFp+zTc9/TrRv/ve46/D3sd8tNg4L4/eabaRt26f6PJCc51OwUYpGS5TEnOZpirS8hC5biwmv2J13gvxtWleXWKkyfxg2cC5kChLO1WIBOL6gb6sd7U0bRu3mDSo1MGNSxKaEBPk77VKXk9qFdyt1/XFI63/69mZe/XsL7v63hwMm4Mtc3iYtP48vv13DvY79w3+O/8v0vG0hMziz3nDSqn4yMDLtXfn5xYd1oNLJr1y6GDBliO6YoCkOGDGHLli0O++3duze7du2yCQfR0dEsXryYUaMc+7w5QzOw1VBKU1RGqhJPQ/WXgS6JyEA/9p2NdykwhPmXzQHz1m4dWH/qtNPzFlUyuWvNT4WrCGFdCEpYyxQEc48d5Mbml2zuQgimderELe3ase3cOTLy86nv70+7sLBiNQU89HooQTOQnp/ndLugSsmCE0d4vtcAQrwqp7R5SdzeoxMLDhxxeE4Ail4wqHljVh45ZUs8Bdb31N/LwJe3jkPnql5GOXF30/PFI+O596O5pGTkIAqiMAr9Kx6/qT/92pXdd0hKyQ/zt/Ht35sRijW6ByGYvXwPvds35M2Hx2DwKDl6ZdW6I7z+3r9Iic1keezEBf74azuvvXgjPbvVPL+mqwVLJZSoLry+Xr16dsdfeuklXn75ZbtjycnJWCwWwsLsN0ZhYWEcPXrUYf9TpkwhOTmZvn37IqXEbDZz3333aWaIq4WoiADqRwW5LPmgSkn/XjXPq318t7YuBQUhYGKPsi3sA5o2YkoX6zVFN3iFqvaHB/SiXWR42SdbzfSt1+CS74WrzxZJUo7jQkUeej39Gzbk+hYtaB8e7rD40OgmzV1qYuzHlyAKXkWU/RYp2Z0Q57qPSqRtRBivjRmKwN7+rxMCvU7hs5tv4JNbxvDFrWPp07QBkQF+NA+rw2ODe/PvQ9NoGlo1JcMBGkcEM/9/M3h+ymB6tmpAp6Z1mTigI3P/ezu3DSmfVmHBuoN88/dmJNZF3qJKW96UrQfO8Op3y0rsI/p0Eq+9+y8Wi7TzbVJVidls4cXX/iEhMaNc89Momco0Q8TGxpKenm57Pffcc5Uyx7Vr1/LGG2/wxRdfsHv3bv7++28WLVrEq6++WqZ+NM1CDUUIwZ1T+vLSOwucnh8yoBWR4QHVO7FS0L1xFMPaNWPFgRPF7Mw6RdAoJIibe5QtzEwIwX9HDqJDVAQ/bt3N0QSr+rx93XDu6tWVoS2bVtLsq5ZuEXVpXSeEwxcTHbvxF6ATgnp+ZQsvLcr09p344/ABVIvFZmIo2reXmxuZpjxwk6AvoumQgEmAuYgTRTUyoWNbOtWNYOau/Ww/U5iUqQG3dGlPVID1/biuRWOua1G9u+WM3Dz+2XmYpfuOkWU00iysDv27NKFReFC5+lNVyffztzo/LyUrtx3ngZvTqBsa4LTdXwt2Od1QSAkWi8r8xXu5Z3r1ZyXVKBt+fn74+fm5bFOnTh10Oh0JCQl2xxMSEggPd7xZ+r//+z9uu+027rrrLgDatWtHdnY299xzDy+88AJKKbVxmrBQg7mubwvSMobw6XersVikNWudtO5ABvZuzjMPDb/SU3SIEIJ3Jo/ks+AAft+8l9yCOgw6RTCyfQueG3sd3h6XzCfn0zNYevwEmfl5NAgIZESLZg6TBwkhGNe+NePatybfbEYIgbsLT/aaiBCC70aN4/o5v3Ix37nfhkVKbmlVfrNKw4BAfrz+Ru5ZMp8so7FAyyCwSJVQL29eHziUO1bPseoWL19s3KxaBp1ZT+ewyFKPmWnMZ3/yBaSUtK0TRoBH+RKCNQkJ5v9GXFeua6uC6MSLTP96Dhezcmxi15nkVJYdOM4tPdvz4rhBLktLO+LUuWQSUlz7FAgh2LAnmluGd3baZvvOGCwW51o8VZVs3xWjCQtVhIqCWkEFfVmud3d3p0uXLqxatYpx48ZZr1dVVq1axUMPPeTwmpycnGICga7guVkW35hyCQtXIsbzWuXGUZ24rm8Llq85TNyFNHy8DQzq14LGDUKu9NRc4qbT8fjIvtw7uAf7C/wXWkaGEFwkt4LJYuF/q1Yza98BRJEkOS+vWsXrw4ZyfauWTvv30NdeOTfS1481U+7g+r9+IzYzvdh5gaB/vQYMql+x3XPvqPpsm3Yv808cZfeFOPSKQp+o+gxv3Iw/ju8FR3JW4ZrnBn0i65fKXyHfYubtnev4/eg+8goiONwUhZuatuX/elyHj1vx8MXaQmHOkLScXDv9TKGZ7c+t+2kREcLEnmUT7PJLEbmjCGvmVtfzK/lhr5YiP4dG+bBIgaWM0QyO+igLTzzxBNOmTaNr1650796djz76iOzsbGbMmAHA7bffTt26dXnzzTcBGDNmDB988AGdOnWiR48enDx5kv/7v/9jzJgxNqGhNJT5iVsY4/nVV1/Ro0cPPvroI4YPH86xY8cIDS2ebrcwxvOHH36gd+/eHD9+nOnTpyOE4IMPPijr8NckAX5eTBxb85MNOcLL3Y2eTes7PFcoKEisEm6hJ36O0cTj/y7G18ODAY0bVeNsiyOlZNOFMyw8fZi0/Dzq+fgzqWkHmgVUrH6Ev8GTJTdP4/Uta5l77CCmgge6Qafn1jYdeKZHv0px1vN2d2dKm/ZMaWO/mP12fE8JZZUguBSpwi2qyj0r/2H9+dOoRXozqSpzThzgyMUkZo+ajKGWCnfrj8Zw7mJxga4QAfy4fhc392hXJu1CvbAAu9oTjrCokib1XH/POrSNYt2m4zZfh8vRKYIObeuRnJKJQBAU5F1mLYhGzWLSpEkkJSXx3//+lwsXLtCxY0eWLl1qc3o8e/asnSbhxRdfRAjBiy++yPnz5wkJCWHMmDG8/vrrZRpXyDLG6PTo0YNu3brx2WefAVaptV69ejz88MM8++yzxdo/9NBDHDlyhFWrLoVhPfnkk2zbto2NGzeWasyMjAz8/f1JT08v0aajUTs4n57BwG++c7pYCaBNWBjzbr+1OqdlR5Ypn7vW/MXWhLPohIIqVVsZ6Xtb9+DZzgMr5cGbnp/HwaQEhBC0DwnHx73qI1xa/va+TQvgjO5h9Zg9YorLNsvPnODuVf+4bPNWn+FMbtGhzHOsCby9cB0zN+8tMc32mhfuLnNZ8/99vZRlW4441A4oQhAc4M38D+9yKTQePHKeB5/83el5ISDI34uLF63OslGRgdxyc3dGj+hwVQsNVb1mFPZ/7/qb8PCpWL2V/CwTX/f/q8avb2XaulRXjGd+fn6xmFON6kdKycHzF5i78wAL9h4hJSun0vpeevyEy4eVBA4mJHAu3fmurqp5ctMidiTGAmCR1n1zYSTD14e38fMx51UMy4K/h4E+UQ3oXbd+tQgKAL7urk0DihAEuJdsJvzz+H6XURcK8MexsmXrrElc7hzqtF3Z0iIA8PDk/oTX8SuWv0GnCNz0Cq89MLpE7VLbVnV54C6rf4dOd6mtTmftU1qkTVAAOBeXynsfL+OTL1aWOZeDRnFkQdXJirzk1VhIqrpiPN98803+97//lWVqGpXMiYRk/jN3KUfjk2zH9IrCTV3a8tzoAbhXUK2cmZ+HIoTLxEHWdsYKjVNeYjIusiz2uMs2Xxzcym3NO1dJbH9VM75xG747vMNpCm1VSsY2bu3wXFHOZaa7TMOtAuey7IV9s6qyMvYE6+JisKgqHepEMq5xa7zdal7OkM4N6/Lrxj0u20QE+BLiW/ZcFEF+Xvz40hR+XbyDeWsOkJmTj16nMLh7c6aN6U6TqNKZuiaN70brFhHMXbCLvQdiEUCDesHs3XfWaTzLPwt3M7B/Szq0q+ekhUZpsCCwVDBqqKLXVxdVbkgsGuNZ6Fzx6KOP8uqrr/J///d/Dq957rnneOKJJ2x/Z2RkFEtYoVF1nE/N4LZvZ5N92UJtVlVm7zxAak4OH00eU6ExGgQElqja1QlBhO+VqZ655vwpBMLlzjIxN4sjaYm0DapYfofU/Bz+PXeA2OyL+Ll5MiqqLY19K+YTURLTW3XhzxP7yTLlF1vsdULQIiCEYfVLzuER4unNifQUl0JfsOGSU2tMxkVuXzGb2Kx09EJBArNPHuDNXWv4auCN9I1sWN5bqhKua92YMD8fkjKznd7j7X07lztjpL+vJw9N6s8DN/cjOzcfTw839OVIG92uTRTt2kTZ/n7yuT/RKaJYXZlCdDqFBYv2aMKCRqkp05aoojGe7dq148Ybb+SNN97gzTffdOql6+HhYYs5LU3sqUbl8v2GHWQbjQ53jFJKlh86yYFzFyo0xogWzfB2d27r0wnByBbNCfAsX/hdRTGqFkrz/K9owaWZ0TsYsPQD3ty/jD+id/LVsfWMXvk5T+/4G2MJPgUVIcLbj9kjplDPx5q7QFcQjQJWX4Xfhk3CTSl50bqpWVuXgoIAJja35tTIMRmZsuxP4rKtmgazVK01MoBsk4k7Vs3lZHrNSl/uptPx+Yyx+Bjc7WptFJpeRnVswa19OlZ4HEUR+HobyiUoOCLmdLJTQQGs+RdOxSQ5Pa9ROlRZGYmZrvRdlI4yCQtFYzwLKYzx7NWrl8NrKivGU6N6kFIyf89hlyFZOkUwf6/jtLzOMFosZBuNts/c082N14cNLVo/6VL/QhDg6ckzA/oV66e6aB0Y5lK9DuCm6GjiV/6sgUvOHeLVfYsxqdbESdbF0zrm4nMHeXnvonL3XRpaBIaw+sZ7+G3oJJ7o2I9nOg9g8ZgZ/DF8MkGG0pUPH92oBW2CHNft0AlBlI8/k5pbIzEWxBwhPifTsRCKxCJVfjy8s2I3VQW0igxlwZPTuH9wDxrWCSTEz5seTevx6e038PakkTXSDOXlVbJJx7sUbTRcU1F/hcJXbaDMZogrFeOpUT3kmy3klhADLiVcLKWz486483y5YztrT8cggXAfH6Z16MT0jp24vlVLfD08+HDjZg4WaKsKNQrPDOhH5BXUKPWNaEg9H3/OZ2c43DnrhODGRm3w9yhfrhApJZ8eWeM0fFFFMu/sXh5qNZBIr/JnciwJRQj6RjYst/rfQ6dn5shJPL5uMavPnbI71zUsik8GXI9fgTPl0rPHHdxvQfZIIbFIwb+nj/B6r5qXbCzE15sHhvbigaGON0XVgZSSHYdj2XUkFomkY7O69GzX0KEJZNCAVvz25xan2gUhrG00NEpLmYWFKxXjqVE9eOh1+Bo8yMxzXoRIiNIVgvr3+DEeW7rYboG4kJXFu5s3svZ0DD+NG8+Axo0Y0LgR59LTycw3EuHrc8VMD0VRhOCL/jdyy/KZ5FlMdrthRQga+QXxfJfyZxmMyUohJsu1yl0gWBl3hNub9iz3ONVBgIcnPw67idMZqWyJP4uUki5hdWkRaJ84LNdsKiIoSFAuK6glJBlqLj8f28m0FrUzr0hVcT4xjSc+nE9MXIot6uEny3aiQv1577FxNK5rr+EaO7oTf8/fRU6usZjAoCiCAH8vhg8tW8p1jeKoCNQKOihW9Prqosx5Fq4EWp6FysdoNmOyqHi5uxULYXx36Xp+2bTbpRp+/sO30SzMuRNeWl4uPb/7BpPF4nDnLBA82bsPD3RznvmzJnA6I5VvDm/jn+hD5FpMhHp6M6VZJ+5o1RW/UoQWOuNgahw3r/3WZRudUHiw5QDub3l1pOp9eftKfj1a8L1SVGvZaSfPyQ97j2Fco7ZVOp98s5mlJ0+w/fx5hIBeUfUY2qRpjUshnpWbzy3P/UxKevHS7zpF4Odt4M83phHoZ286OnEygWf/O5eUi1k2AcNiUYkID+DtVydQv17VFd660lRXnoUpq6fg7lMxc44xy8jMQTNr/PpWO9OqaZSbrafO8t3aHWw9eRYJRAb4cmvvTkzp1RH3AueqO/p2ZfH+YyRnFX84AUzq3t6loADw95EjTgUFsNqof9m3h/u7dqvRyWEa+gXyRs8RvN5jOBYp0VeSfbquVwA6odgc/BxhkSpNqjgqojqZ0qwDPx3ZRaHpwdXH/v6+9dzQsI2dU2Flsj/hAnfOn0dKbo7tM515YD/h3j58P/ZGWoVYtSJSShKzszFZLIT7+lba518WFm04RFJalsNcDhZVkp6Vxz9rD3DHDT3szjVrGsasX+5j45YTHDh0DiEEnTs0oEe3xnY5GTQ0SoMmLFxD/L3zIP/9awVCCNsiHpeWyXuL17P5xBk+nzYWN52OYB8v/rj3Fl5ZsIp1x2JsbX083Lmjb1fuGVCyNuBIUpIt26EzErOzyTTm41dOu391IoRAX4kLV6CHF8PrtmLZ+cMO3yMBBLh7MTCiRaWNeaVpHhjCfzoP4O09a0tUvJ7LTudIagJtKhiW6oiErCxu+3su2SZrgbOiIbxJOdlM/XsOK2+fwbroGL7atoOTKVZzUZCnJ1M7deTeHt2qtTbJ8q3HXCZ9UqVk2ZYjxYQFAL1ex8B+LRnYz3mdFY3yUxkOiletg6NG7eNiVg4zt+zjq9VbbXUYiiKBzSfO8OfWfdzWx1rhLtzfly9uG0dcWgYnElLw0OvoWD8Sg1vpvjIGvd6qMSjBylUZKt+zWanMPLWL1fEnsKgWutapz9SmXWkXVPqKiVeCZ9oOY2fyWVLys+x9IhAIIXizyzjcSxG+CFYtRKYpF0+dOx66iqWfrUrub9eT6Mxk5sYcKLFtpqlqEnLNPLCPbJPJoeOqRUrS8vJ5ZNEitsTYJzW6mJvLZ1u2suPcOb6fML7azBUZOXkltsnKvTLJy651VKzhjxXtozagCQs1ALNFJS4hDSEEEaH+6AtUhKoqWb/3FHPW7OVUXAreHu4M69GCmwZ2oI5/6TLG/bZpD+/+ux6zVIvHKF7G75v32oSFQiID/IgMKLsdbUjjxvx+wHmaX50Q9Iyqh0FfsYVtTfwJHtw8F7VI2OH5nAz+PrOf5zsMZUbz4rutmkKYpx9zBt7NZ0fXMv/sfoyqGQH0Cm3Egy0H0im45IQ5maYcZp5Zw8LzW8ky56Ig6F2nNVMbDaGlX81MuDOifosShQUBNPANqJLxF5047jI3hESyKfYsCsUjVVQp2XI2ljn7D3Jrp+qpd9EoMphzCWlOw5kVRdAwIqha5qJx7aIJC1cQs0Vl5sIdzF68m4vp1lDEoAAvbhnVhYmjO/O/H5azbNtRhGJNi5wksvnm3238sGQ7T04ayM0DXReD+XfPUd5csNb6R2FIgpPmEoi9mI7RbLH5LlSEfg0a0rJOHU6kpDhUs6tScn8FnRsTczN5aPNczKq9b0ShH8Ab+1bQJjCc7iENKjROVRLq6csrncbwXLsRXMzPxsfNA3/30kWDZJhyeHDnp5zPSbZVfFSRbE4+wpaUI7zZ4U66B9c8M8aAyCaEevqQlJvl0KdFJwR9IxoR4VW5zl4X83KYc+wg5zNLUWvGhWAtgN/27K02YWH8de1Zu+uk0/OqKhk/qGwlsjUqB1kJ0RBS0yxouEJVJS9/sog1W4/bPTAvpuXwxcwNrNh6jEMJiUhRkHJYKVDpCzBbJG//sYZtR87y1j2jcXOwuEsp+XzFlhLLEBdFJ0SlOXApQvDTuPFMn/c3R5OT0QuBWuTcm4OH0rue49LVpWVWzB7Mqur0/nRC4afj22u0sFCIp96NuvqAMl3z3aklnM9J4fJ3QEVFSMFrB39nbr//4q5cuZ95bHYKyfmZ1PHwpZ631fteryi822s0d66Zg4q02+XrhMDXzYOXuw6t1Hmsi43h3uXzyLeYQbV+x4Wrh7SLTOQSOJ2aWqnzc0WPtg0Y3bc1izYeLnZOAAO7NOW6LiWn5i4vmRm5rPh3LxtWHyE/10STFuFcf1NXWrSpW2Vj1hYKszBWtI/agCYslBOLRSU5MQNFp1AnxLfMHv0bd51i9VbnhYpORCciDCCLRuUUjlHwv3V7T/H1wi08dGPfYtefSkjhbEoaUERYKJQDpF03gDUEa2DLxuXOce+IUG8fFk6eyvozp1kRfYo8s5nmwcFMaN2WOl6lyxDoiq2JZ4otlEWxSJWtSacrPE5NJMecz9L4HahOVjWJJMOcw4bEAwwO71TNs4O9qWf48MhiDqafsx1r6x/FYy1H0imoIf0jGvPn0Fv5YN96NiecAaxC5NCoZjzXaRD1fQMrbS4x6ancveyfgkyZgF5FMbrWngnXZUvQl9FfwWi2sPTAMebuPEhcWiZ1fLy4sUsbbujYCk8Xac/B6lz7f3cOp1m9EH5fuouk1CzAWojqlmGdmTqqa6X+bosSczKB/9z/CxnpOTb3o9OnElm+cC9T7uzPtPvKn2vkakBzcNRwitlsYfbvW5g3ZwephTXi6wUxcWovRlzfsdRCwz8r9qG4KPQiAcUEqofrMs6z1+zjzlE98PSwf+DkGE22NujATsVQ0KUsTJ5X8O87B3Qr1dzLgk5RuK5RY65r1Nhlu/PZ6cw8sYd18aewqCrdQ+sztXlnmvmHOL2muuXxNGMWRzNiEQJa+TXAz63iAk95uZB7EbM0ohPSWubWwbuhFzpisitWw6M87EyJ5oEdPxZzpD2cfp57t3/P591m0C24MaFeXrh75uHlnQdSIBTJ9ozDzDrjzWOth5aqNkVp+PnQbluJcQAUkDoVYVGQSJuGoailTrhQx8mCxqqUpQrtzM43cvePf7M3Nt5WaTU+LYP95y7w+5a9/HzXzQR6uzY9KYpgyoguTBrWibikdKSEyJBL/k1VgdFo5oVHficzI9fOT9lisUpSM79fT6OmofQf0qbK5qBRc9CEhVKgqpKt64/x7187Obj3LHn5JqQQVtOAEJyLvcgHby4i9kwK9zw0pFR9njmf4rLQi6BgdyOly4D07DwjR88m0qmZvUqwXnAAQoCd0Fq0m8KnorQWy3lr0gg61I8o1dwrm7Vxp7hv/VwsRZwUT2Yk89uJXbzRfRSTmnZ0eF2P0AbsSDrrVLugEwq9Qhs6HVdKWSrhLtucx6fH/2Flwm6bP4Re6BgZ0Z0Hmt2AQVe9OfY3J+/hx5h/8HW/5AFvUgV5Zje7XYoq1Wqfm5SS1w/NR5WyWMVOFYmQ8MbBeXzd/S5u2/gdacZcrJYva1ujaubX6C0k5WXydpcJHE2/QIoxm3CDH039Qss1p+WnT9j7zQiQbhKpqAizsAnRod4+XMjJRBZY/azpIOy/H4X3lG0xsf3cOXqWohrum4vWsr+g8FqhyaVwNjHJF3lu7jK+mjauVPeiUxTqhVWe1sUVm9YcISUp0+l5oQjm/Lr5mhYWNDOEhg2z2cJrz85hy7pj1vwEBT92ISWoEqlXbIv5nJlbGTCoNS1alxyy5+NtgGTnP0TrIKWboyOhI9Dbkzb1wjhwPsFxPwXHmoXX4ae7bibA68rkOojPyeC+9XMvqYgLKHy4P799MS0DQ+kQXPw9ndSoE18d2VTs2kt9qExrZu9EmZKfyeyzG/n3/A7STdkEuPtwQ93uTKzflwD34hEmRouJJ/d8xYnMc3ZCiVlaWBS3ldicRN7reC+6StoFl8SqhK18cuK3Ysf1QuLjZiTL5G4TGFQkfepU74P8YFosZ7OTnZ6XSM7mpPDe4WWkGXOcFJWCxecPsvviOeJz023HW/lH8Hy7kXQOLpuvi8niwKYgAL1E6qzLf7PAILKyzDZVm+oOitE6mUIBoVBwUPXWWV7IKuH3C6Rm57JgzxGn0RcWVbL+eAxnU9KoHxxQpvuqavbuiEGnU2yahMuRquT44Tjy8kwYDDU3XLcquZbSPdcOY8kV5I8fNrB1vdW3wCYocGn9FWbVlktAp1NYNH93qfod1qdlibtaVY/rNHeAm15H83qOs/wF+niWKHCcTkm9YoICwJ8n92CWzj0PFKHw07EdDs+FevryWe8J6BWdXdVDnbB+rZ/vMNTOuTEu9yIztn7MzNPrSDNlI4FUYxa/xqzhjm2fkJiXVmyMFQm7OZYZ61B7oSLZm3aKjckHS32/FSHfYuTb6DlFjkis6bWk7Wti0FmLgBWGUDbyqfykRq6Iy00rsY2UsObCMacJu6S03llRQQHgWPoFZmz6iV0pZ8o0pw6h4Q6rYgIgrP46Df2CuJCdZXdcdQeLu0TqQOpAdZOoHljNeoo1SVNJ7D93wS7pkzN2nzlfupupRlxpPosia0uNZY0KoQkLLjAazcybtc1pKW2b0FBw2mJRiYkuXY34Gwa3I8jfC50DxySdIqgT6M2YQW0Ln5wOURTBmN6t8XWy2F9eGtwRZot6RUuFb4w/7TLm3SJVNsTHOD1/XUQzlo24jxnNe9LYN5j63oGMa9CWf4bcWSzHwmsHZ5FmynYQPSBJzs/g7cN/F+t/UdxWl17zCoJFcducnq9MtqTsJdeSj0Dirpjw1Jnw1Fv/766YUISKXlERSDoHNePFNlOqZV5F8XcvnR9HnsXk8Pilr7tj4UyVkjcOLCnTnKa36ewyk6hFSvrVbVT8hMDq3+BW8Cr0/Sk47igKyVEXtZXW7es51SqAdR9Tv2EdPK/hUteFZoiKvmoDmrDggtjTyWRluM6eJsGmWRACvL09StW3n48nn780kciwAMCqlSjM1x4VHsgXL0/ixenDeP2uUXi42z+UCr9areqH8tgE50WGWkeGunTAUoSgZUTIFa3NcLlduzxt6nkH8p/2g1k24n5WjXqQt7rdQNtAe/+LmKwE9qWddlqLwSJVtqYcIy73ot3xxLw0l+OrSC7kVU8YXWLeRfQCDDoTOnFJmyAE6ITEoDOjEyr/aX0z73a8Gy999WuMugQ1IqAEx88AN0989K5+J0V1d/aoSI6mX+BYeukdN/tGNeTeDlZzlGKngbL++4WeA+lfr2zhtYoQLI92nvugkPb1wksMRxZAl4Y1LwzxuuFt8fYxIJxEWkgJ42+9ciW7awLXkrCg+Sy4oowbbilh4JDWpWprNlvIzjPy3H3DSMvI5Vh0AkIIOrWKomu7+rYFfESPlvRs04C/1x9gweZDpGflEh7sx4T+7bm+d2s8XKRfntC1LV+tcb7rVaXktt7VH1ZXlO6h9dl/Md6pdkEnFHqGVjxPwrGM0ql5j2fEEel5KRtekLsvKUbnSXwEgmB33wrPrzT4unmjE9Yd+eXynShQcRl0Jpp6h18xAdBN0fFQi2G8dnCe0zYPtRhGdGYqv0VvcbLjd5E9rID43HRa+JfexPJs9/50Co3g+wM72Z0QhxCCXhH1ubtDV/pHWbUK3SOj2BV/3qUWohAFQY7JsXakKAFenozr3Jq/dx1y+B3XCUG/5g2pFxRQ6nupLgye7vzvg1t44ZHfMZnMqBbr/AujuIbf0IkRY6/s80Oj+tCEBRfUa1QHH18DWZnOtQsCkEKg6AQhoX4MLMEzWErJH0t28evCHaRmWLM2uukVhvdpxcNTBuDvU9wOGuDjyR2junPHqLJlPAz39+W18UN54a/lKIqwpYtVBKgSru/QkjEdWpWpz9JyJjOVfcnx6BWFHmH1CTY43m3e2qwz3x/djjPJzCJVpreoeEhnacPwLq/FMDKyOyeO/+O0vUQyIqJ6ymw39olEp7hayAQI+PzUl7zR/mU8daXLBFnZ3FivGybVwifHlpFrMaIgUJF46tx4uMVwxtfvTlJeJovO7SfVmONA21OyoBPkwBnVFUIIRjRqzohGzS/5Hl0mUL0ycDA3zfmDXJPRVU4mwCpoNwksXYrl/4wawKnEi+w5G2cLnSwsm9I4NIg3Jgwv071UJ+06NeCbWQ+wcM521q88TH6+icbNwrlhYjd69W9RoyvGVgdaNIQGAO7uesZO6s7M79c7r4dUoDGtV78Or703qUSv4A9/XcPsZXvsjpnMKks2HObQyQt89/JkvL1KZ8ooDeM6t6F+cAA/btzFumMxWFSV5uEh3Na7E2M7tq70ZC4JOZk8s2Ux6+Iu+RnohcKAuo0YWb8F4d6+9AxtYFPN1vMJ4KPeN/Do5vkIhG3hKCzf/HynwXQLrXiNgy5BTdELxVojwwkeihsdAu3zQYwI78Y/5zYSl5OC5bIlREGhsU8E14V1LNaXKlWOZBzmfO453BV32gd0IMg9uEL3kGkq2fseINmYwprEdYyKGFGh8SrCxAY9GVO3M2sSDtsyOA4Ma4VXgfkhxODLb/3u4r975rM95dJ3xUPRYUFgUi0O+xVAXa9A2gaWv0iYswWuRXAd/pk4hbc3r2dVTLTLPnSKYEKr0kWaeHu489NdE1h+8ARzdh4kLjWDEF9vxndpw+gOLUtdnK2ySL6YxbJ1h0lKySTQ34uh/VoRGR7gtH14ZAB3PzqMux8dVn2TrCVcS8KCkFfSu62UZGRk4O/vT3p6On5+lZsvviTMZguv/mcOW9cfu5REqSAG29PLnYEj29N/cCs6dW1UopR94kwitz3/q9PzihDcPaE3M8b1rOS7sCKltMaQV1G2t3RjHmMW/cT57HQHqlzr+6boJCGe3jzbYRA3NmpnO3siPYmfj+1kXdwpzFKlR2gDprXoSqc6lWfLfffI38w/t92hD4IAJjcYwIPNRxU7l2rM5K3Df7L94lG7433rtOWZVpPwvcxGH511im+ivyTZmIxA2BL/9AruzW0NpuGmlM8h7GD6EV4/8mGJ7fTCQrghlLfbv06mKR2dosdb51Njd4Gns5I5mn4BD52ersENWRi7n9cPLHba/pWOYxgT1QF3XdUtsmfS0pix8G/OpKfZmQ8KNQNvDRrGpDbtXPRQ85BS8tPsLfw0a4v1t1hwL6oqGT+yI4/cOcjmN1Xbqeo1o7D/oYvvxc27Yg6epmwjK0Z9fUXWt7KgCQulwGJR2bzuKIv/3sX5sxfx9fdk8Mj2DL+hI94+pXci++CX1fy1Yq/T6nEAoUE+LPj0XsD649558hzLdx8nMyef+qEBjOvVlsigmvmF+vzAZt7fu8FlCmZFp1IQ2cjb3UczoXH1FOMBa8Kf/9v/GxuTjtg0F4X/HxzWnv+2vQW9C3PFuZwkDqbHAIKOAU0I9yyuho7LPc9rh/+HSZqKCSUCQaeAzjzQ9OFyzd+kmnhg9zNkmbNdtJK4CQueOkkdd08yzNbww7qe9RkadgNdgmqHQ9rv0dv4+Mgqss1GW2ZFN0VBEUZ0OhUPRc/1dTtzZ9NBhBiq5veQZTTy2Y6tzDy4n0xjPgBdIiJ5uFtPBjRwED3hBFVK/tl/mF927OF4YjJ6ncKgZk24o0cXOtStvtDWuYt28/F3q52ev3V8d+67zbnDdG2iuoSFIYvvRV9Kp3ZnmLPzWakJC5XDlRYWKoun3vuHjXtcqzcBtvz2BFl5Rh77Zj67Tp5HpwirGURYBYiHru/DncOqx05eFvr98yWxWekuWli1Czq99Svn725gy9hH8CjFDjHHnE9CXhoGnTvhhgCEEBzLOMc/sRvZk3YSgaBrUHPG1+tLYx/nmSillOxLO83S+F2k5GcS4uHHqMiutPGvX66dd74ljz1pO0nKT8BL583RzOPsS9vrtGYDwIutXqKhd+kXm6Isjl/Br2fmODkrUZD46vNxU+zHL9RwjI6YwIiIG8s1dnWTazayPuEE+1LPMufsZhSh2gmiOqEQ6O7Nj73uJ9wzoMrmYbJYSM7NwaDTE1iK3ApFsagqT85fwuLDx22+QoDtN/3BuJGMal31lUHNZgvj7vyK9Ixcp23c9Drm/3Q/vt5XLu9KZVFdwsKgRfdVirCwevRXNX5903wWqhE/H090RRwNHeHt6Y4Qgud+WsKe6DiAS+0L/vfpwk2EBfhwfffSRV5UF8l5OSW0EBR1/kg35rEu/hTDopw/LNON2Xx1cjmL43ZhVK0Jh5r4hNMhMIpFcVttmgGAJfE7WBy3nWdb38KwiC6OZyAEHQMb0TGwfIt1UbalbGLm2Z/IV/PQocMiVcwuwv7A6uew7eLWcgsLI8OHcCorhs0pxRNVKUgMigm9gypIhVqORfFz6RDQjQjPqHKNX5146t0ZEtmKT4//W0xQAKvza6oxmw+O/Ms7nadW2TzcdDoifMoX8fLXvkMsPmxN6lb0Z29RrdU8np6/lO71o6jjUzaHzbJy4GicS0EBwGS2sG13DEP6VY3T89XIteSzcHUYqGoJw3u3dCko6BTByH6tORGXzMbDMU4zqAng22XOk0VdKUIMJT3wZLF1NCk3y3FTIN2Uw93bv2Dh+R02QQEgJusC/57fCmDnSW+R1gXlrcN/ciY7sczzLwv70/bw4+mvyFetkTIWLAULcsk//Cyz83suCSEEDza9ixY+DdALq4CgExI3oaJXJB46i8uknwoKm5PXlHv86mZb8kkS8tKdmrYsUmVdwhGS80vn/Fnd/Lxjj9NvhMSaEGruvkNVPo/cPGPJjYCc3JLDQTWuTTRhoRrp1rYBnVpGOXQwVBSBwcONKaO6su5AtMtkShI4k5hGbLIrlX/1M6lpBxSXi6VAuSz0L9TT+Y7t5+g1nM+5WCy0ThGOPeUvDSOYf25zSdMtN1JK5p2f7SSzY8kCXL4lne9PvcQXJ55mbuynnM0+VqbxFaHwn1ZP0iOoM3pF2iVo0pUgq6ioxOXFlmm8K0lMVmIJ3ylroiZX9SiuFBZV5URSistvhJSSQxcSqnwu9euWLsyzYVTp2mlY0ZIyaVQJiiJ478lxvPL1UtbtPIkQ1p2iqkrqhvrzxiNjiAzxJ99ktkZeWFwvPEaT2eX56mZqi07MPrmPcy6iIYo+9730bvSPcFy62qxaWHBuu8MdpVJkcXSEKlV2p54o+w2UksT8BOLyzhU7LoS1wNilCiIO5obK2ewtBYu6JD43hj2pa+hd53pGRcwotd+Ep86Th5rdT1J+MofSD2ORFhr7NOLLk6+Ta3FuDhIIDMqVyb9QHjx1bi4dZi+1q3kphxUh0AnhMsmTEAI3XdUXIYuKCKRzu3rsPXTOocZSUQR1wwNo16rmZZKsyVxLZghNWKhmvL08ePvxsZy9kMrWfTGYzBZaNAyjS+t6toWied06mF3kZAfwcNNTN9i/OqZcavzdDcwZMZVntyxh9flTRc5cCpssuhY+33GwU+fGdFMO2Zb8cs/FVT2HiuJqMVaQWFyM7aMY0YlLD+tCR8jNyf8S6lGPbsFDyzSXEI86DAy95MHeObAnW5LXOnWwlEg6BtY851hn9AttxduHFrgUGMIM/jT3uzLl1V0hhKBfk4ZsOHXaqcCgSsnAphX3nykNT947lPuenUlOTr6dOVSnCHR6HS88MrLGhtdqXHk0M0QZSLyQzsnjF8hIL8mRr2TqhwcycXhnbh3dja5t7D3xB7ZvQpCvp1NThE4RjO3ZBk+PmlcWNtTThx8G3cwvQyZicFfQ6VQUvUSntxcUJjbqwOSmnZ3246lzd7rgq1I4T5KF1S7fLbh5eW+hRILcg53OTQjQ2QrXXmrjrfPGV5eLl855NtD1Sf9U2A/lutCR6ITO4fwUFEI8wugYULnCQkLeeQ6l7yEm+zhqEZNRjjmbhLwL5LgM9XRNiMGPsfW6uhT+OgVF2SqN1jTu7tXVRSpzQYSfLyNaNquWudSvG8R3706ld7cmtmeLENC9cyO+fvtW2rQof6KraxUpRaW8agOaZqEU7N4RzY/frOXoYWt0gqII+vRvwd0PDCaibmClj+em0/H2jNE88MU/CFW12wUoQtAwLIiHru9d6eNWJv0jGjN/+HT+t3s52xLP2o6HGLx5vtNgbmjQ1uX1XnoPetVpwbbkY1iKecErKMKClI4reAsBY+uW/v3JMWeTZkrBoHgS5BFSYns/N386BHRhf9puhzt4IcBH58mLrV4nxZiCu+LOkfT1bE7+12Ua4YvGC2SYUvB3d1xyvDSEGSK5v+kzfBf9ETmWbHRCh5SgYiHMEMl9TZ/GTakcITM2J4a5sT9wOudSQaUAt2D61hnKqewY9qXttiWk6hDQmRsiJxBZjiiMp1uPYVvyUeJyM7ncJ8RdZ2Fjym5WJ7RmUFjNq1PQrX4Ub1w/jBcWrQCsmoTCEMoQH29+nDIed331PIbNFpU/F+1i/e5TCD0IoaCqKtsPnqX7kXM0bVjyd1/DnsJtQUX7qA1owkIJbFx3lFdemGu3KqmqZNOGY+zdfYbPvp1BpAunIIuqsnl3NFv3ncZksdCqcTjD+rTC29O1jbVbs3rMfHoKPyzfwYo9xzGrKoE+ntzctz23D+qCj2flpYS+HKPFwtLTx9mffAF3Rcd19RrTNaxuqVSUuWYTWeZ8/N09aREQysxBU4nNSiM2Ow0/NwNtAsNKreq8o/EgtqUcL+IHYEUisEgdesWCIhTbblZBQQj4b9up1PUqecFNN6YyP+5PdqduwSKtTpNRng0ZHTmBtv6uF56boiZzIvMouZYcO4GhcAc8tcEdBHvUIdjDOo/D6WtLVWHTVX6G0tLMtzWvtvuMPanbOJsTjU7oaO3Xkea+rVFK2IFLKYnO3sf2lMXE553CTXjQ2r833YJG4ud2KV31+ZwzfHz8ZczS3m8mzZTCv/F/YlF1yIL3QiLZn7aHwxkHearFi9T3alim+4nPTSFDTcbTTWBWFaQUKEKi11lQrOUw+DlmOdeFdqyRavSbOrShd6P6zN5zgMMXEvHQ67muWWNGtmperamev/htPX8v3YukaLVcgcls4cMfVuPrY2BY35YcPhrP6bPJGDzc6N6lEb6+tT/vgkbF0ZIyucBoNHPLDR+R6aSQlKIT9OjVjFfenujwfFxiOo+9OZfYC2nWNKrSKjx4Gtx447Eb6NmhYanmYVFVjGYLBjd9lT8Mt184x70r53ExL9dav0GCWap0CAnnu6E3Eurl4/C6I2kX+PzIBlbGHUNFYtDpGd+gIw+07Osy4qEoZtVCmikLT50H3gXllTclHeXlA3+SZc5DLxRrelok/UJac2eTQSyP38mu1BMIBN2CWzC2bq9SCwrvHvs/Mk3pxRZ7iWRqg/voEdzPZR9J+Yn8fe5P9qXtsvXRwKsRY+veTGs/+1TAaxP+ZEXCbBe9SXQIbm3wKC38B5Q4/6pASsmS+O/YfvFfBAqy4J4ECm6KB7c1/B/1vKw5MT4/+QYnMw85942QYJQ6ijp6CgRRnvV5ofVrZZrXzNOr+D56SYmOjr/1fK5Un/21RFZOPhv2niI+KYPvZ21GmqTTfWyIvxeBeg9izlyKLHFz0zH+hs7cPWMA+lqUCrq6kjL1mPdIpSRl2jbuEy0pU21my4bjTgUFANUi2brpOKkXswgMsl9E841mHn5tDgkp1vLGliIOi3n5Jp557x9+fOM2mtQr+eGmUxQ83av+h3oq7SJTl8yxFfExq5fmfDA5gVuXzGbxjdOKVXDckXyWGRt+s+U5AMizmJkVs4uVcceYc90MIrycO2NmmHL4JWYl/8ZtJ8eSjwC6BjVneqOh9Alpyb8DXmBt4kFishIx6NwYENqGRj5hALTwK19yoYVxs4sJCnApedGssz/QIaArBheVG0M8Qrm3ySNkmTNJNV7EU+dFHSdmjLNZWwrEEHAWKeGh5LM47nWEEDT3q/60u/vT1rL94r8ANkGh8N8mNY+ZZ17l8Rbfk2PO5njmgRL7s4obl+5VIonNPcPZnNNl0i7kqSarkFzCviZf1XIEFCKl5IeF2/hp4TbyTVaXW+kO6EFnBOXy6GNVkno+k3RhnwPEZLIw+68dZGXl8/RjV64wWU2lMnwOaovPQu0RFa8A589dLLGwipRwIb54voPV244Tl5TuMAmTlKCq8MeinZU218rgu4M7MKsWhw5ZFik5nprCijMnLzuu8tT2fzCrajGPb4uUpORn88b+FU7HTDdlc9+OT5kbu5GcgugHCey6eIKHd33BxqRDeOjcGB7RifuaDWd640E2QaG85Fly2Zm62aXK3ySN7ErdUqr+fPS+1PNq4FRQSDXGcSH/OF66wugOe6MKYK3noFgXu7UXvkCVJeSSqAI2J8/DmSAjkeRaMjmYvoF008VS9efsEZiQF1+meTXyDndQxtoeN0VPuKHy/YdqK98v2MrXf28m32T9Htm+cQIsHqBeFq2py7e+v44UzRJYtGw/Z2JTXI6pqirL/9rBg2M/ZnSrZxnb7gXeePR3ju2vPXk9NJyjCQsu8PE1oKol25C9fYqrodbvOOEyF4BFVVmzvepyAZSHBaeOuowJV4Rgccxxu2ObE2KIz81wmWFvRdxRkvMcZy387tRS4vIuFrteRSKRvH7oT/ItlbtjTDOlYpGuc1TohI7k/MpJlpNjTgNALyR+ujw8FRMKKgKJHhUfXR5+ujzb9yXbcpHY7D3OO6wCjGo+CfmnudyBUCBxEyY8hAmDMLEp8UeOpC9DR8nCjLNvkittjSP6hrTFz83baUSEIhSGhXfFS6/Z1gEysvP4ceF2xycLvmQWtyKfj5QIi+vcozpFsGL1YafnLRaVtx//gw+fm0vMsXhUi8SYb2bz8oM8MfFz1i/eV657qelcS0mZNGHBBX36t3DpIyAENGgUQr36wcXO5eabS9KaYjTWrKRKuWbXi7Iqpa36XiHHMxJdZpssvC4mq/huNNdiZEn8Trtwu6JIINuSx5rEyn3QeJZisZJSYtB5ldiuNPjoL30/FCHx1hkJcssh2C2bALdcDIq5mGCZZS7d7r20SCm5kHuQTQkfszr+NXYm/0im6YLtfPFPUOImzHgqJvQFKaUFklzLRfan/Uu4Rya+LsJAwbGXt0HxpIVv2WqauCl6Xmx9KzqhoFz2yFIQRBqCuLvxyDL1eTWzdtdJTGYXwpwQ1lSfhR9P8SzsDq9JTXMeArt87g7WL9lv7a6INtViUVGl5N2nZ5GWUv405zWVayl0UhMWXBBcx5exN3V1qiGQEmbcM9ChQNGkfh10DtI6FyIENKpbXMgoL1JKVhw7ybSZc+n+4Zf0//Rb3lixlrOpaaXuo4FfgOvdhRA0CbCP/PDWu5cqN4CXrni4XmJeml3NB0fohY7TlVznwd8tkEbezVzG7quodAroUTnjuYcR5dUWUYafm7e+8lTqJjWXxeeeYf7ZBzmUNp+TGavYnfILM6NvYXfKrwC4KR5EGJrY3hM9Km4FBakKv96Xf8399Hl4Ko5rDlikgqMlaGTEDbgrZc+22C24BZ91eZjedVrb0j976zzoEtSAhj5+fHT8V/6KXUm66epbkMpKWlauy2dPIYVrlK6kHOFYny8hdZw7Ks//ZZNzTaq0Cg3L5xYvflbbkZWgVdCEhauEex8ayg03dUUoAiEEOr31LTMY3Hjq+TH06e+4YuK4Qe2dFoICq6BxXc/KSRykSslzi5bz4F8L2XbmHGm5eVzIzOKXnXsY/e0vbD9TPDWxI25v7TxJElh9ECa36GB3bGCE60UXIMLTj5YBxf0MDKVI0atKiacDQaOijI6Y4PScQNAtqA+hhvBKG++6sLtQhDU6QErXvnqeOn/qeVdezoA18W9yPsfqHyOxYI0nUQHJjuTvOJq+GIBewWPRCxMewohbSfU3sN6DVbtw6WbchDtNvNsUxHYIW4IoBYVR4WMZFja6THM/nxvHL6dn8uKBV5h59hc6BQUzs9ezvNHudjz1+RzNPMHetKPsTD3Mz6cXcOf2/7I79UiZxrjaiAj2c1mwrhAhreaF63q1YGD/Fi4FDFWVDB/iODeKxWzhzIkE15pUCScOnS9xTho1Fy0aogR0eoWHHh/BLVN7s27VETIzcomoG0j/61rh6eV8sasXEcgdE3rx/Vx7J7nC35MQMHvlHiYM61jh+vFz9h7k7/1We6IqJVJIpAKqAmbM3DZ7Dm+MGMb4tq1dmlWmtGzPkphj7Eg4b+fkKArm/Xjn3jQLtNeGhHv6cVPDDvx1ep9Tv4UHW/V3mGEvzBBAU59ITmXFO81BoKLSP6Sdw3MVoYVfW2Y0epiZZ74lT81FJ3TW9w6VrkF9mFz/rkodL8KzBbc0eJvl8Z+SnB+NDtVBUilr3LsbF9h04QXaBs4gyNCyQuOmGWOJyVqH1axgQVeQjFotyFVhRmF3yi+4CwNHUr8mzC0Dk1TItLgywUgUJEJIdEKljlsmZqlHIBkePp5eITeTZkxl+8XNZJjS8XPzp0dwH/zdAso099WJ6/gp5jcEwuaMGpN9mkXxS8gwuZGvYve9kUiMqpnXDn3DF11eINzz2gyj7NepMd6e7mTnOtb6KIqgfZMIXpg+lOAAH3y8PUhIzGDP3rNkZuU53ORMntCdiDDHEU1CEdZaNi4EFKGA3q3qa2BUN5ISg3RK1UdtQBMWCpBSkhifhsloITTCH/fLUinXCfHjplvKqJYusA1Ki31ss1SsKsDUzFz+XX+IySO7VGjuP23fbVvQpSKROuy+gRYp+c/SZRxNSuL56wY4FRg8dHp+GXEzn+3dyq9H9pCWb7VJNwkI4sEOPRnfrI3D617qOJIcs4lF5w6hE1YlcaGw8WibAUxs5HyXPKPxUF7Y/7PDcwqC3iGtaeRTeTv8onQK7EEb/47sTd1OYv4FDDpPOgZ0p45HaJWMV9erFdMbf05ifjTH0tdwKH0peZYM23kFiY8uF0/FxPnsDcRlb2JAxAd4uwWTZ07CoA/Bz71JmcY8k7UZBYmHsC4chR+9IiWKMKNDkGU6z+oLL126yKlaVKJDRSdUCiMZhQC9sGCWZlQUNiX9TPvAoQS4BzIsvGxahKKcyDzFjzG/Fox6uUBgwkMxkW8xcLmpQyKxSJXF8Ru5o/G4co9fmzG4u/H01EG8/O3SYucUIXDX63jqtsE0KGIGDQv14/MPp/LBJ8vYve9SxlVfHwO3TurBpJucpwhXFIUu/Zqzc8NxO3+FoqgWSbcBFRN8ayLWpO5aBsdrhtX/7uWPr9YSG5MEgJe3ByNv7sbUBwbhWYGEG8u3HkUVgF7Y2/ULnthSwoqtx5g8sgsZOXms2HuCpPQsgv28GdaxOf6l0DhkG42cSrE6w0lRICiA/TO04N8/7trNwMaN6NOwgdP+DHo9T3Xty6OdexGflYmbTke4l49LjYS7Ts+HPcZzf8u+LIw9SGp+DlHeAYxr0J5wT9dJRvqFtOXJFuP5+Pg8JBb0whqbb1Khe3BLXmw9ucT3oCK4Kx50LyH5UmUihCDM0IQwQxP6hs5gxflnOJ+zA4EFd3HJ0dFajsrM5gsPIrjk1+Hv3oL2dZ4ixLNrqcYzq3m4C1PB2EXnYf2/Iq0aBwuXdn06YTVRXL4Q61DRK2qxPgDcFAsm1Zpd81D6KroH31Sq+TljyYXlKCguw1vdFTP5anETlYrKtpT916ywADCqT2s8Pdz4bM4GYhPSbMfbN4vkqVuvo3n94mG+UZGBfPDWLZyPS+VMbAoGDzfatq6Lu7ueuLhUjh6JQ1EUOnSsT2Cgt/14t/RgxzrXpdaNRi0PRm3mmhcW/vh6DT9/stLuwZeTnc8/v2ziwM4Y3vnxLgwuzA2uyMkr8uNwsthm5xn5ZfUuPv13EyazBZ2iYFFV3p67hvtG9uLOod1sC3V8eibLDp0gIzeP+kEBDG/TzC4SQSo4esbb0AnBr3v2uhQWCnFTdNT3CyjlnVpp7h/Kk/6DynQNQBPfOrTx9+Ns7qX4+xCPICbW74mXvurSWl9pTGomafmb8VLMBbuLSx+cgoob5mKfZ7rxOBvj7qNPxOeEel3SdKnSRELOJvItyXjo6hDq1RudcEcRKopwoR4WoJMqFi45JCrCGglhkvoig8sCIcJxH1IWahj0pBsvOGxXFg6mHy4x9bVeUcl30sRUQmjsnosxzDqzmT2pp9EJhZ51mnFLg94097t6iild17UZA7s05fjZJNKzcokM8ScqNKDE6+pGBlI30upgm5KSxbvvLGLH9mjbeZ1OMHRYOx5+ZBgGg1VYO38m5dIXwRFC8O9vWxkxofZUPC0N11JSpmtaWIg7m8LPn64Ein/HVVVy4nAc83/fwqS7y5d+t1HdIC6mZzt1NtIpAr2PnvfnrbcdK8yaaLKofPrvJjzc9Ezu35HXF61h1o79CCFQhMCsqrz272pevmEI7SPCOHghEVW4joGySMnBC5WTO6CyOJB2nJcOfVYsEVRyfiqvHf6KZ1vdRc/gDk6urp1IKYnO+J1jqd9gELlQ8Iy1oGCUeiSgL9AmFJcxrX4Ve5LfYFi9eQghOJu5kIMp72FSLyUHc1P8aRv8BLpS1JoQwursVvQT8FaMZFgKrxYFPgqu+yi4OQw6xynBy0JJETai0O7mAB0KLf0aOb32l+j1fHZ8KTqh2JI9LYnby+Lze/hvuwmMqlsx51IpJXuS4lkXG4NJtdA+JJwh9Zta06dXM0IIWjQon1ktKyuPxx75lQsJ9knnLBbJ8mUHuHAhnXfevQWdTuHYvliEEC4/t1NH4rBY1BIT3dUmVCkQFVzsa0uehWtaWFj6104URUG1OInzVyX/ztpWbmFhwpCObD941ul5syo5nVk8+2NRvlqyhRPpF5m760CBM420LazZRhPPzF3CnQO6sj8+oYj3pPP+PKqpwl1pkFLyTfScAsdC+4dM4d9fn5pNt6B2NbYEcXk4fPFjTqb/ZHescIdvEEbypB7XkW+SbNNZLubvJ9d8nj1J/1eshUlNZ0/SS4R6jcAa9FS2AlWKkPjpcshT3cmTZYlGsdDSr+K1LZr7NnWpXZCyMDzT0QxURkfYp8tON2WzPeUIxzPi+Tna6nRcNCtk4b9fOTCXk5lJgCDSM4Dhke3wdSu9A3JSTjb3rJzH7sQ4dMJqzzZLlTAvH74eMpZOoY41F1JKsoxGdELBy71mlJ5fuHAP8fHpDgUAVZXs3XOG7dtP0atXMxSdtYibdJmXRrgUODVqNjVn5bgCnDudjCwhQ2NSfDoWswWdvuyevP06NWFYr5Ys33LU7njhpqh3t8asORnjso/MfKNNUHCIgE3HzvBwv558smmLc980rGaI4c2bluUWKpXjmbEsjd9GfG4K/u7etPKrz5nseJcPkIvGdA6kHaNjYKvqm2gRpJQk5R0g03QWvfAi0rsnbkr5kzVlGc8UExQKKdwtlyZsESDbeI7DqR+6bJOatwWw4EqCtFUhvAxFgJfORF33enQIuptFcS85aGVPA++uhBgaltiuJEaED2V/+kGn5xUhyLfo7fwaCv89pf4o2vhbHUEtqoVvTv3LvPMbMUsLuSY3wHEOCLBq336OXgdSj0WqvHNoMU+1HsnEhiWrz02qhVuXzOZkWoqtr8J3Nik3mymLZ7Ns/HQ7854qJX/s3c+Pu3ZzOjUVgPbhYdzTvRsjWlROaHUhZrOFtbtPsfXAaSyqSpvG4Yzo3cppBdsli/a51BQoimDZ0gP06tWMLn2bsW6R8+Rpik6hQ4/GKFdAu1KVlBQGXdo+agPXtLDg7WNAURS7Ik+X4+auRymn2kxRBC/fN4LWjcP5Y+kuElIyAYgM9efWkV3xDfYsUVhw4L9lh5Rw5EISH0++ns5Rkdz19z+YHAhAihC46XTc2rFjue6lIqhS5ZPjc1kUv8Wm+lVQWJWwCwUdHjqLS4EhKT+1+iZbdNzcA2xOeJUM0yXtkE4YaBt4G+2CZiDKoe04mzUfgQ7pJF2yEKCXl+o9uiLfkkS+JdllG5OaTrB7Sy4aY52OGeHZizM5juqUWMfvEXI/kV5d8dYHk22+iCPRQkrw0PlyY72SBYrS0C6gDePrjuXv8/OLCQQADzW7F73wZt751RxIs6ZNb+PfhLF1r6Nr0KWonY+P/8Xi+K22GVtU54ICFJhkkLbfUL5q5vWDC/F1MzCybnuXc15++iTHUh1/HqqU5FvMfH9wF//rPdh27KlFS1hw5KjdjA4mJPLQgn95rE9vHurd0+WYpeVM/EUeefdv4lMy0ClW56bFGw/z2awNvPXwGHq2a1jsmtRU5xkbwapdSE6yPtP6j+rAj+8vJT01G9XiQBNhUbnpzuovjlbVaD4L1wj9R7RlxbzdTs/rdAoDR7WrUFlonaIweURnJg3rRFJaFgIICbRGFxyJLUVmQmFd6F3VbADIyMunT6MG/DllEnfO/Ye0vDyb86OUEi83N74eP5a6/tVfAnX22dUsirdX/RY+/FUE+RYdBr3z3bSfW8Vt4GXlYt4xlp9/EPUyRzmLzGPfxW8xyzw613mwzP3mmOKc5pQoRAiQqlOfWAA8dEEY9I4LV11Oy4DxHEqbT5rxFIUmiUKBpanfDfQI+Q8H0v5gT8rPmGUehbovT10AfcOeJsrb6kg5KOwxFp7/L5d0Y7YZoxM6xka9hr4c2RmdcWPUGFr6NWP5hVUczzyFTih0CuzA0LBBRHnVBaBToPNwvNicRBbFb62UuXx2bCUjIl0/C/6NPooihMNCbGDVNMw7ddgmLCw5dpwFR6xax6JXFF7/0abNDG7ahFahpfucnZGTZ+SBt+dyMd26+FuKbCZyjSae/Gg+v706lUaR9jlUgoK8yclxnKsBrJuhkBBrVkcPgxuvf38nz834jvRCIUNaNQqqqnLf82Po0rdyNSUa1cs1LSx06dOM5m3rcvJIXDFpWCgCRadw04zKCatTFEFYkH261JZRITSPrMOJuGSrKuqy55AiBIHeniRYclz2LQQcTU5m+alTuOt0fDv+Ro6nJLP17FmkhK5RdRnXpjU+7pX3IC8tJtXMnNi1LloIVASqtDi003vrPOl8BUwQe1K+Rkozzmz9h1J/p2XARLxKuWAX4q4LQCBKEBcUWgTcyfH075y2aBv0KF5upfPc93dvyqh6P3I2ey0xGcswqhn4utWjmf9YQgztEULQIWgqrQLGE5u1mTxLOr5uEUR5d0cRlx4RjX17MS7qDTYkfUNK/iWNWLihFf3D7iPCs2w1H0pDK7+WtPIrX3z+qoTdxcIvdYoFs2rNpOkIKR07nJ3LSeVoRjyt/J2/5+nGPKeCQiHZpkuL72979roULnRC8MfefbwybIjLPkti2ZajJKU6ToNtrYCr8uey3Tw3Y6jduVGjO/LtN2ucqslVVTJi5CVtS6OWEXy//GlWzd/N1tVHMOaZaNa2LqMm9aBek6rJXXKl0TQL1wiKovDa19N59dHfObDztNVLV4DFrOLn78nzH0ymYdOKlUN2RnJGNr+s3MX5pHRQC/ZqhQJDgTZBpwjemjyCh+f8S3a+0eECI/SAt47/LF2OXlGQUvLhxs30aVCfT8aOxt9wZSvxncw6T4bZtToTJBYpHIb43d5wLG5K1Th8mdU8ojNXci57K6o0U8fQkub+16MIPXE5W3CVW00ApzOX0zrw1jKNGeUzipiMP130q6Oez/W0rfMg3u7hHEj+CLPMonA3rxc+tKvzOPV9x2A0X8BTF06uJcHJXAWe+giCDB0RQqGR7zAa+Q5zOra74kUTP9cLUwOfbtT37spF4xlyzKn4uIUQ6B5VqnuvbtKNWSgCigYjuesKhYXi0nnhomhRHT+8s0z5Do8X0iQgmK3xsU61gAJr/ZVCjiYluRQuLFJyODHJ5ZilYe2uky6jGi2qZPXOE8WEhevHdGLxon3Ex6diuXwzJQRdujSkW3f7JGHevgZumNqbG6b2rvC8awNaNMQ1hF+AF+/+fDfHDpxj+/pjmPLNNGkVQe/BrXFzr5q353xKOtPen0VqVk7xsMqCPzs3q8ujY/rSvmEEr4wdwpOzFxf7wQsdGA2gFKj2zUXUi1vPxnLX3HnMunVSiVUhqxJzCYWiimN9iHvpDNzecCwjIvqWecxMUxLHMzeTb8khyL0uTX17FlOPp+ZHs/TcY+RaLlK4EMdmb2ZPyo90q3MfJSVhFSgF15aNQI92hHkNICFnA5drLQQKivCgWeAdADTyu4n6PqOJz9lgy+AY4dWPizlL2Rs/nFzTSdyljly8HYxklTo71HmuXL4VrhBCEOzRkGCPhpXab2UTYggothjrFIlBbyLP7EZRgaGwmcmJT4MA6nkHFTtelCkt2vPL4T0u29zW6lJYpkHvRmbhJqDoR1TgF6kAXm4VfwblGUuugJtvKv479fb24KNPpvLBe0vYsuWErQ+9XseIke154MHBKKUoWHU1ozk4XoO0aBdFi3bVs0N6deZKh4KCwKpRaBkVwvcP32w7PrJdC3wNHny8ajMHz1vzJOgUQZ0QH+JzshzuZCxSsicuns1nztK3FEmYqoqG3hHohQ6zdOXhL/BUTBj01geWKgUPN7ud3nXKlsDFIs2siv+SfWlLkBR6x1swKD6MjHycZn7W3Y5JzWXpucfIs6QVXCkL/mtdvLcnf4EOBcVJEiIAFQte+rKrVoUQdAt9m73Jr3EuaxGXFiyJl74uXcPexsft0uelUwxE+Vza8cWmfUJs+kcULmjuwoK/kk2W6lmQWMmKj1sD2gU/Q6hXyTs8KQtzOlxdj4Oh4V35IXpJseNuOhWdYsRs0eOl8yHCEMzJzCSyTCakA0FBJwQ96zQh3NNxbYRCWgWHcn/77ny5f3sxrw5FCLqG1WVyy0tq+5EtmvHL3r2XXEAuy7oqJQxr3gwAo8VCanYunu56/MqoLWzRIIT9J847zfeiCEHTKMd1NAIDvXn19QkkJKRz7Gg8Op1C23ZR+PtXTvl2jdrD1fV0qAXEJqWx9Zjz3AuqlByOTeRkXDJNIy/9gPs2a0jfZg05n5pORl4+YX4+9P3qO5eOjzohWHTk+BUVFnzdvBgc1oUVF3Y6iZm3Zgb0druUklhKydfRX5NiTGJMZOnrC6yI/4z9acspfEyrBd7/eWrW/7N33vFxFOcb/87udUmn3iwXuffebWxs44Lp3fQSQm+BJJTwC4SEAElIKIHQEkKopncwNsbGBRvj3rtl2eq9Xd+d3x+ndtLd6dTc8MNHWNqdnZ2929155y3PwyeHH+WSHo/TI2o4+ysXhfUKCBQsaiJevSh01QIKPaNDu/TDQVUsjE55lEEJt1PgWIEm3dhN/UiyjAmbQOfw7q01FKDxVGQSGvFKNT5UUqKvID1mHrGmAWH7klJSVPMFOZWvUu3ZAkCMeTRd7b8kKWpWyOOOJySb47g6czb/y/qm2T6DEMRbTbww5jZSLQmsKNzNHT+9iZAECKKpQsFmMHHv4DMiOud9Y6fSwx7Hvzb9SHYth4rdZObKgSO4a+REzGrDK7dvclJDqXNTenbpZ2QdlJLMEwu/5731W6nx+PMdxmd247ap4xmf2S2iMZ0/fRjzF4b2eOhScsms8ERUqamxpIYQkvo5w+9ZaG/OQgcNppNx0lg4wtidE1kMctfhogBjoQ4Z8bFk4F9peLTw9fi6lFR5wsdZjwRu6n0uOyuzyXYUNKkEkAgk8SZnUN2CDw5/RJollbEJLesglHvy2VzefFJojBWFb9Cj53AO1fxA84z+xqPScOlVmIQJTbrrPQ6NMTzxBiyG+BbHFQ5WQxqZ9tBS2U1RUPUOoEIQA0YIMKLjcq8kLukPYfuRUrK/9M/kVr1GY/93lXsDO4puobv3TnrE3RnxuI5lXJU5G7vRxhtZiyj3NiT5jYrvy139LyTV4g8tnJLSj/9M+AXP7VrMutIswL/inp46gLsGzqZ7VGKw7ptBCMFlA4Zzaf9hHKqqwKNrdIuJDTAS6vDV7t2hExxr85Zu+uBTaio9AYuCnw4e5prXD/GPC8/gjMH9WxxTzy6J3DlvKs++uyzo+WaN78/s8e0TeXI63BzYU4iiCHr2TcVsOTaIpTobJxMcTyIkpJQsW7mbDz9bx+69BRgMCqdM7MvF542hd8+W3dLGCMmdTC3IuZpUldToaAqqg2c5g/9l0yMuLqLzdSZijDaeHXUXn+Ws4IvcVRS4SxFIzKqPWKMLVQmVECb4IveriIyFXZXLakmJQzD+IclxbqPaW4omvbSUkyClxundX2F14V8odjWQA5mVOIYlXk//2Mgn+Y6C07ufYIZCAyROXxY+rYwK5wI0vQyjmkGsdTaKYq1vVe5aUWsoQGDehP/37PJnSbCeSoz5+KfZFkJwXtcpnNVlEjsqD+LU3HS3pZJmbZ5/MCoxk1cnXU+hq5IKj5MUSwyxpra524UQzbRVnD4v3x7cR5GjhhRbFBtyc8MmOOpSUuZxoTaZTHTpD5b87rOFTO3Tk2hzy1VOV54xhh7p8bz+5U9s2pMLQLfUOC6bM4rzpw9rc+6By+nhtecX89WH63DXauHYos2ce+l4rrxx2gkpS/1zxUljoRWQUvLkP7/hiwWbA/TbF363jYWLt/HI785jyqS+YfsY3acrFpMBlyd04p/RoDK+f/cWx3PFyGE8vWJV2Lrui4cNabGfIwGbwcKlPWZyaY+Z/Hv/fBblL0dVPGFFjiSSLMdBanwOogzhX9ourTqssVAHt15NkqU/uY6fQrYVKCRY+hFv7svcbv+m3H2ASm82RiWKVOuIgHLCIwlViaYl6maByvac0Uh8tW01FBFD14Q/Ex91PgC5lW8SykNR10du5Vv0Tz7+jYU6GBSVoXG9ImqbYrGTYulYPpI3t2/k8R+/p8brqV/dq74WJtIwyXMScHp9fLVtF5eMGhrRGKaM7M2Ukb1xebzousRqNraLQ8br9fF/t7/Jto3Z9e9CAEe1m/n/WUb2/iL+72+XnHCsjY0Riv20tX0cDzhxv8VOwLdLt/PFgs0AAQ+Hpvn1Gh75y2eUV4TnRIiymLh82siQHHJCwMWnDMVuazmJ6ZrRI+mfnITa5IGv++uuyRPJjI9rsZ8jjTPTZ2BUDBGruGthkyP9iDOloxO+8kJBJdqQSP/Yc8K2k+gMjmvwHMSZe9I9+lTSbWOOmqEAkGibS3iNB4GKE0md58T/uemyiuySO6lw+JP9qj1bCeehkGj1eQwn0X7M37mZ/1uxqJ5joc6411W9RYIuJcytb1AU9haVtHo8FpMRm8XULkMBYMnXW9iy/mDAu7AOUsLK73awduXedp3jWEddGKK9P8cDThoLrcD7n6wN+YBJCT6fzlcLW37J3nrmJM4e7yewURW/uIpaa33PGtmPu8+PjBY1ymTi7csu5spRw7EaG2KE3ePi+OsZs7ljcsdQxXY00q0pPDjoDoxKywZRgimBaEOw0sBADLBPxSBCy1kLFAbYp2JWo4g2pnFK6v34Ax1qQCuAPva59Io59pL8EmyzsBr7AMFWpH4KX2NIY0KQV/4EUkoU0bLbWhFHl5/jRIFH0/jLj98H3SdNYXQXav8V3pBN/MysR4ForQ5ffrAWESZ8oaiCrz9edwRHdBKdiZNhiAih65LdewvCZq5KKdm+K7fFvgyqwh+vmsNl00bw2Y/bKSqvJtEexdnjBzGkR1pE48mrrOLrXXuocLoYmJzCkhvHUep0YlYNdI+LpaCmmq2FBSTbokiNPvJ0yS1hoL0Pz418grs3/QaPHpxSViCYnToTJQKeALMaxcy0W1iQ9zRNkxcFClbVztTUa+u39Y09A7upK1tL53OoZhUSjQRzXwbHX0zvmDntXnW1B1JKJB4Egas/RRgZnPImO4puoMazBVH7+Ep8qMKCUVaGUauUuH37cXl3kGibQ07lfwntXVBItB17xtLxiB9ysylzu4LvVEGaJbj9VRd1HgchBDajka4mO/sdpWHDjNWuEH13ILxejeUrd7N+w0F0XWfwoAxOmz6I/JwyZIhyTABdk+Qeaj0XyXGFn1Ec4qSxECGEoEXRKSFEvYcgEgzslsrAbq1jiPTpOn9e/D1vbfArvClC4NN1rEYDD8+cQb/URK74ZCGrcg7VHzO5a3funzSVISmdw0bZVkQbo7i73538Y9czaFKrL6300yFLhscNY3Za5FS3w+LnYFGjWV74OiWe7Nq+FPrGTGJ66i+xGwMTUFOtw0itFQeSUh5VAwFA00ooq36Jipo30fVyhLBht11MfMxtGA1+DhCTIYVhaZ9Q6f6JcucSdOkl2jwU3ZdLfsUTtPTm0fRyusRcSV7Vm7WTUNP7WUEVUaTFzOuUa/y5ocwVPiwpjRKpSmak96LC4cKgqkzr2ZOLhwxhW04BN7z9cdjj3/hpE6O6Z0RUFdEWHMgq4t7fvUdxcbWf4Rb4+pstvPjKUuJaqHgQQhAb37JX8LhGR4QRjpMwxEljIUIIIRgzsgc/rc8KGqMD/4QzbnRPwO+J6Ax2sye+W8ab6zfWTwl1qw6n18f9Xy9EsYKmBo5vdc4hLvrwHd45/xJGpkWmJ3CkMMg+kD8N+QPfFCxiTckaPLqXLtYuzEydweSkiaiiddnU/eyT6RsziVJPDh69hlhjKjZDXIvHHW1Dwaflc6jwbHxaPnUrfikdVNS8SZXjE7qmfILZ6J8QhBDEWsYRa2kgrapwLCB8PoMfRkNXzIauDE75N9sLb0aTNTRkuegYFDtDUl/FpEZWKnii4mBNIYccRUQZLAyNzcSgtC2rPyM6Am4CBcZmZnDT8EASsil9Mrlh8lheXvlTyEMF8NKKnzrFWKiudnHPb+dTWeUECFgoOWrceFw+hBAhZayllJx25omTJBsMJxkcTyIoLr1wHD+uDS4prSiCaLuF3fnFPHvj81RWu4i32zhn+lAunTuKOHv7Gc+Kqmt4o5GhEAyaS6JbZQDJiyYlUtd54LtFfH3Z1Ud9YmyKdGsa12ZexbWZV3VIf3464mNTryAUCsseCDAUGqChy2ryS2+je8qikN9djHUGqpKAppcR3LugEmUeh9ngr7KJs05gXLcVFFZ/QqV7LSCIs0wgOeoc1EZllj837K3K48mdH7G14mD9tnhTNNf3ms15XVufAzQmLYNuMbEcqiVoCoWn163kioEjmom96VKihlGdlcDOgiKKqmtIju7YVfyChVuoqHQEncx0KfGZVaI1Ex6XF72Jx1VVFTK6JzBtzrFRjXWi4fnnn+dvf/sb+fn5DB8+nH/+85+MGxea8ba8vJwHH3yQjz76iNLSUnr06MHTTz/NGWdERjYGbUxwfP7558nMzMRisTB+/HjWrFkTtn15eTm33XYb6enpmM1m+vXrx1dffdWWUx9VjBreg7tvm1Ubkgh8aduizbijBB8s2khltT+OWFbp4I3P13Dtg29SWFrV7vMv2rO3RVU7IUXQuUKXkl2lxWwtikAW+ySOKHxaHjWuhYTOIdDweLfj9oRm4VOEia4JT9T+1dSgUFGEmYz4RwK2GpRoutivZEDy0wxIfoq0mHmtMhSk1Kl2b6bcuRynN7gRfTwhq6aAW9Y+z/aKQIbVMk81T+78iLezlra6T0UI/nRKy6E0l8/Hx3u3Ndvu1bSIjHuPr+WKodZi+YrdYVe9OmBMj6F3f3+elaKI+rEOHtmdv75y3QlPznQ0qiHeffdd7rnnHh5++GHWr1/P8OHDmTNnDoWFwd/tHo+HWbNmkZWVxQcffMCuXbt45ZVXyMjIaNV5W+1ZqBvoiy++yPjx43n66aeZM2cOu3btIiWlOSlR3UBTUlL44IMPyMjI4ODBg8QdA2RBbcF5Z45kzIgefPb1JnbuzsNkMjBpfB+++HE7u7MKm4UodF1SXFbNX//zLU/+9nyklKzdc5j3lm9iV04RVpORmSP7cuGkoSTEhPc+VLrdKGFWGfUIs/tgRTlDj7HchZ873N5dRJLl5PZuw2IeFXJ/nG0uSvLr5JU/jsu7vX57tHkSXeJ/j9XUcVLfxTVfcbD8L7h9DbkxMebR9Ix/mGjz8bmafGnvAjy6L4DuuTFe3vcNZ3YZS6ypdSv4oUktJy2rQmF7cfOX/aD0lACBuGCIs1pIien43ACnK0wpRi18UvLPN29k17Yctm/MRiiC4WN60qtfZInaxz2kaH/OQSuP/8c//sENN9zAddddB8CLL77Il19+yauvvsr999/frP2rr75KaWkpP/zwA8baqrnMzMxWD7PVxsLRGuixhK4ZCdz6y+n1f+/NLuJv7ywJ2V7TJSs37Ce3sIK3lm/graUbUBVRL+yyO7eYN75bx8u3X8SAbqFZIHvExbVoKEhk84VlI9jNocsLOxIe3csPxetZUbyWal8NGdZUZqWeQv+YXsdcGORoQxBZ+ZsIUxoKoOvVGHHS1f5LpLCCkoLJ0BWToWPzVAqrP2RvyW+bba9yb2BrwSUMTfuAKNOgDj1nZ6PCU8OKou1heQ80qfNtwSYu7NY6+WWTGkG+gwCzofnreO6gfvx5wVKq3O6gq3xFCK4YOxxjJOdoJfr2SWH/gaKQSd2KIujVKwUhBAOGdGXAkOMr9HesobKyMuBvs9mMucn72uPxsG7dOh544IH6bYqiMHPmTFatWhW0388++4yJEydy22238emnn5KcnMzll1/Offfdh9qK+6ZVYYi6gc6c2eBWa81AU1NTGTJkCI899hhaGF0Dt9tNZWVlwM+xjF0HCiJq9/aS9by11O9KbqwAJ6Wk2unh9hc/xhNEKrYOM/r0Is5iCU9mpBLyW40zW5iQEZn4TLXXxX/3ruDMxU8z9ss/MnvR33lh1xLK3DUtHlvmqeA3mx7jn3v/x8by7eypzmJZ0U88uPXvvLT/HXTZciLezwkW8ygU0RJjoIrNMi3oHil1KiufpCB/OGWl11NRfheVZTfiqHgA9OIOHaumuzhQ+kiIvTq69HCg9LEOPeeRQImnqkWCJFUoFLnD5x4EQ4zJzJjUjLBS8T5dZ2b33s22mw0Gnr3oLIyKitoo9Clqf0Z168KNk1unzhopzjlrZNjqL12XnH9OaE/XzwF1CY7t/QHo1q0bsbGx9T+PP/54s/MVFxejaRqpqYHe4dTUVPLz84OOcf/+/XzwwQdomsZXX33F73//e/7+97/z6KOPtupaW2UsHKmBPv744wEfWrdukU1wRwuGCPUevtu2n1DvC11KiisdfLspNOOZ2WDg8bmzEEI0e/GoQmA1GtDDEL38avykiFY5Ze4aLl/+Mk/vWMQhRylu3Ue+q4KXdi/l4mUvkOsoD3mslJK/7HyJPKdfMKvuBVxXFrmoYAVf5oX2wvwcoQgL8TG3hGuB3TYPgxrc61RZ8Ueqq/6BlM6A7T7fbkqKL8Dr3d1hYy1zLkKTofVIQKfS/QMuX06HnfNIIM7YshtfkzrxEbQLhttGTgiZb6QKwaDEFCZlBFeHndirOx/dcDnnDB2IxeBnPu0WH8v9s0/lv1degMXYOXnq/fulc9UVfi9KY29g3a9zZg3hlMnh6e1PeMgO+gEOHTpERUVF/U9j70F7oOs6KSkpvPzyy4wePZp58+bx4IMP8uKLL7aqn05ncGzLQB944IGAD+3QoUMh2x4LGDukR30NciiYzQZyyyrDJgypisLaPeGvdVa/Pvxv3gUMT2+ICSpCMKtfH7647irunXwKRkVB4KeDFfjdoPdPmsrVQ0dEdD1/3vIFhxwlzVZaOpISdzW/2/BhyGP3VGexpzorhBy1H5/mfIt20rsQgPiYO4iNuqb2LxX/utE/CURZZpIcH9y49vkOUVPzSoheNaR0U1X59w4bp98IaNng9PhaJic7lpBgjmFsQl+UMH47AZyWNqJN/U/v3os/TZ6JUmvoC0Q9TXufuERem3thWM9D35Qknjh3Dpt+dwc7fv8rFt3xC66dMApTkNBFR+IX10zhoQfPoW+fhgVit64J3HPXHO799RknQ4odCLvdHvDTNAQBkJSUhKqqFBQEerMLCgpISwueJ5Kenk6/fv0CQg4DBw4kPz8fjyc4IV4wtOpOa+tAjUZjyIGagtCVBovVtBdSSsqLq/B5NBJS7agRegMiQUKsjbOnDeHT77YErTkWwHmnDeO1HzeG7UcQWc3txB7def+q7uRWVlHhcpEWE0281Z/Ffsvo8Vw2eBhf7d1NYU0NKVHRnNmnH7GWyOh7i1xVfJu3PWSSlyZ11pceZG9VIX1imq90N5fvREEJayyUeSvIcxbQ1ZYe0Zh+DhBCISX+cWKjr6ay5l18Wg6qkkSM7UIsptEhX8pO50fUCUYFh4bL9RW6Xo2itJ/J06gmhDlX43bHH0/DTX1O55af/gVSD3r/X545jSRz2wWmrho8kpk9+jB/52b2lpdgMRg4PbMfM7r3ahWZ25GeoKefOpDppw7E6fSg6ZIoW/t1JU4UHGmJapPJxOjRo1m8eDHnnXce4F+QL168mNtvvz3oMZMnT+btt99G1/V6Ua/du3eTnp4edP4NhVYZC0dzoO3B0k/X8e4/F5K1w7/aiUuK5uxrT+WiW0/DZO6Y0p5fXTWdkvIalq/bh6r6mR5VRUHTdWafMpDbLp3KsoPZHCgoDWkQ+HSd0X0iL2fpYo+hiz2m2fY4i5XLh7SNDGVHRW5IQ6ExtpQdDmos6OgRCUSd9CwEh9k4kOS4P0TcXtcKCW8sAGjoenmHGAuJ1jns5yEkoVYkgijjIKzGyBQeW4JLq2JXxQLyndsQQqGrbTR97adFpCvSWgywd+PpUTfy2Pb3yHE2CDRZFCNXZE7jmp6ntfsc6dEx3D1mcpuO3VNUzNvrNrM5Jx+TQeW0fr25cPhg4m2t58XwaTr5JZWoikJqQkxEBHJW69HToTimcYRJle655x6uueYaxowZw7hx43j66aepqampLzq4+uqrycjIqM95uOWWW3juuee46667uOOOO9izZw+PPfYYd955Z6vO22of1tEaaFvxzjPf8PpfvwgQPCkvrubNf3zF5lV7+NObt2A0td+VZzYZ+Ms957J5Vw5fL99OSUUNKQkxnHnqEAb19ntdrp4xmj+8vSjo8YoQxEZZmDWyX6vO6/B6cXi9xFksGDpAClaNQIcBwBCiXd/onmgtMAnaVAvp1tBVHycRORQ1jZZX+gYUJaFDzmdQY+kaezuHKv4RZK8/7a5H/L0dcq6D1T/yTe7D+KSntnfB3qolrC5+hbO7/pVkS+uelUgwPL4n8yfdy6byA7UMjlYmJPbDoXn57/6lrCvZjwRGJfTkvK5jSe5gKetQeO3H9Ty26PuAKqr1h/N4YcUa/nvFBQzrElmpos+n8frXa5n/7QbKqvxU1BnJsVx1+hgumDbspMfgOMC8efMoKirioYceIj8/nxEjRrBgwYL6XMLs7OwAWfBu3brxzTffcPfddzNs2DAyMjK46667uO+++1p1XiFDcXWGwXPPPVfPHjVixAieffZZxo8fD8C0adPIzMzktddeq2+/atUq7r77bjZu3EhGRgbXX399q8o2KisriY2NpaKiArs98ofz0N58bjz1zyH3CwG3/vkSzrpmSsR9tgdSSh5/7zveW7E54KFXhMBmNvLSHRcyuHtkD/263FyeX72aZVlZSCDGbOayoUO5Zdw47EFCDoXOalblZeOTOsMT0+gTlxS03xqfm2nf/AW3HroqQ0Hwzcxfk2pt/l3oUuf29X+gyF0aNBQhEJyXMYsre5wX0XWeRHhoWi4F+eMITfWsYrGeQ0LC8x12TiklOZUvcLjiOXTpok64y6gk0TvxMRJsket5hEKZJ5t3D1yPjkbTpZtAwaREcUWvt7CozT1rHY0lBVt5cOO7aFKrH4mCXwfmiRFXMCVlQKeef+X+g1z39kch9xsVhUdOP41zhg0Im8Og6Tq/+eenrNx8IMC7WSe7dvYpg7nrkqnERh//DJ5tnTNa23+3lx5GsbbPy6U7XRy66ZFOG2tHoU3GwpFGW7/4Vx75iE/+830zKtI6CAHd+qTx0tIHO2qoLUJKyaqd2Y1ImQzMGtmPiyYPJTk2Mjfxor17ufXzzxEQwLugCEGv+Hjeu/TS+hwFp8/LQ6sX8eH+rQHZ2BNSu/H3U84iI7r55/nktgW8sX9V0FIyBcHpGUN5YtRFIcd3sCaHh7Y9hcPnaiYONdjel/8bdDsm5cRmdjuSqKx4nOrqfwbZoyKEjeSUrzEYOiYs0BiaXk2p8zt8WjlmQ1firVMRomMS7pYVPM228i+QIb0mgsnJtzA84eIOOV8w6FLnud1f8uaBVfin0+arbqNQmX/Kr+gW1XKOxq6yIt7atZFNxXlYVAMzu/Xh4r5DiTOHn5x/8fZHrDqQHZpjRYLQITM+jv9dcxFpscENqK9WbefhVxaEPZfikQzr04VrzhnHgMxUjEaV2Jjjz3g4YsbCix1kLNx87BsLJ7Q2xMHd+SENBfAnE+bsP7L0x0IIJg3swaSBwcukWoLT6+XXCxYgpWy2ltSl5EBZGc+sWsVD06ejS8kN333ID/nZzcq2fio8zEVfv8mXZ19LgiWQOfKugTPJcZSxOH8HqlDQpI6KQEMyKrEHDw07O+wYe0Rl8NSI/+PrvO/5vuhHHJqLdEsyc9KmcmryeIzKCX3bHXHE2O9HUWKpqnoGKRtoxY3GEdhjf4/H+SlVNW+j68UoShLmqMuwRF2HosS367yqEk1y1DntHX5Q7K9aEcZQAJDsr17RqcbCK/sW8nbWShpYDZpDR/JB9mruHnhm2L7+vW0Nj/60JEDnYU3BIZ7bvIq35sxjSGJwj6KUklVZYQyFunYCDpdXcNPbn/DJzVcGDSd8+N0mFCFCU8ZLia5Itu3I5b7NH9dfcb+eKVx54XhmTOocZcvjG6Hvjdb1cezjhH5r26ItCEWE1Vw3H2dJO1/u3k1NmHIXTUre27qVe085hdWFh1iRdzBkuwJnNa/vXM+vRpwSsM+oGPjHmEv5qeQAH2evJ89ZQZI5mnO6jWBySt+I8hoSTHFc0eNcruhxbusu8CRaBSl1vI53wPkBNulAQ0Ex9MUcdQ1m6+lUFJ+PruVQF6bQ9TycVU/jrnkXe/InqOqxWZGiyZZLujTp7rTzl7qrePvgUnQZfjLQpM6Kop1hjYXvc/bz6E9Lats3ImMDqrxurl74HisuuhmbMfi7KFLfr6ZLdhUU8+OBQ0zo1b3Z/qz80ha1ZQxOEFpgmz1ZRTz05OfkXFnOVReMj2wwJ3HC4YQ2FiafMZzlX4QW31FVhannHl8MZLuLizEqCt4wfPFOr5eCmho+2rs1rGKdLiXv7tnczFgAvwdkXFIvxiV1vPv6JDoGUuo4y+/G5/wY8Iv4GBCgZeGtfAhv9XMIvRBDrQtd4l8JS3R0PZ/qsl9jjb4JzbcbIayYLDNrEyaPPpIt/chxbKC5/8wPgUqKpf1aF9XeGlYUr6HQXUK0wcakxDGkWVNYXLCpdmJtedXna6Gy5+Wta0I+h7qUlLqdfHZgB5f2a17BJIRgWJdUNucWhJ3oRe0ug6KwbG9WUGPBZjZRWRPawFLcEkVrfsV1keqX3lzOqeP70j2jY5JlTwg0IlVqVx/HATqdlOloYtLc4XTtnYIShDBJKALFoHDBjdODHHnswmY0trg6ALAaDBQ6q1t0X5a6HB01tJM4wvC5vqg1FCDwjVPrvtcLEUhE/X+g1v4LGj7PMqpKr8BR+SdqKh6grGAc1eX3IaUbTSvC6fwap/MrNO3IK5UOjT8/pKEAINEYHNe+EMjC/O+5ad29vJb1Hgvyl/D+oS+4a+NDvLj3dQpcZRgVHVU0T7BsDAXBiPjQIUVdSlblhw8jKAhW5GaF3H/t+FFhQgdN/sWvVBkMs8cPCFsiqbbgzFEVwacLN4Vv9HNDBzI4Hus4oY0Fo8nA4+/eQeYAv5COalDqyZii7VYeffNWuvU5NlZSkWJ2nz4tGgB2i5kSl5P0KHs9S5wfze/QZFv7a+9P4ujAU/0aLT3CotE6sc5kaH6EDrV+B7fjHUoLTqUgfxRlpddTVvpLCvJHU1Z6G7p+5DRaMqMmMTj2nPpx16Fu9JOSbyHR3LPN/a8s/on/HHgHn9SQSDSp1SfjLin6ge8KF6IIHxaDj3DeBR3Jxd0nhtwvpQxK1BbQBhmWd2TuwH5cPXZEsAMBf3Jj3Qh9us7QEGWUl5w2ApvZFNxgkDKgn2DQdMmBQyVhWpzEiYwTOgwBkJQex3Pf3MvmH/bw03fb8Xl99B3WnSlnjcR0HGqtD0pJ4dTMTFYcPBjSaKj0uTn/vbd5YOopfLx/GzRWogywHSSn9+j4WvXjAT6tjFLn1/i0EkxqGvG2uagdQFp0JKH5thO6ZDI0wh+hg34YEUDNpeF0fobPt4+k5E8QouMIkTxaBaWuNejSS6x5MBKFfMcqdOlloP1U0qxD2Vz2AUXuXQgUuthGMDJhHt2j2i6eJKXkvUOfhW1jULwoQkWoYJEeXD4TgRUR/t/v6H86Q+JCa9eoisLQxDS2loYPI4xOCU3GJoTgwdnTOKV3Jn/+ZikHS8vrh9B4gleEwG4xM2dQcL2G1IQYXrj3Iu559lOKyqobGGPraidbgCIEtuMsx6vTcRQkqo8WTnhjAfwP2/DJ/Rg++cSYGJ8580xu+/xzVmZnAw1iTQCyVlbAq2v8Z916Znfry8LDtUJCTe9JAR/u38L1A8eQHnXslux0JKSU5FU+R27Fs0h8+HUOfBws+z3d4h4kJeYqAFyeLZRX/weHawkSDatpHHHRv8RmaZ08cWdCCDNSti6MJFvUVvR/Rkpt9UsDNLzezTgdn2CLurTVY20KTXrYWfI3sqs+QOJFSnBLA1q9LoYAdGKMPZmd/gQxpp5+v0iEpGHhcNiZR76rqMV2JkXDrRswGzRUxY3bZ8Cn+89vEIIHBl/A2V3HtNjP9YPHcteyz4PuE4BZNXBRn6Fh+xBCMK1PTyZlduPmtz/lh/3ZAXO8qggMisKz887GHEZYymQ0MG1MX9bvPkxljYuioiqERyJk7bsjSM5CHXQpOXXCz1w4qgkaq0a2p4/jAT8LY+FEQ4zZzOOzZzHlv/+ujyhIgd8jXfuk61JyqLKSX6SMYmFOaNXBSo+Ll7b/yB/GzgIgz1nOm/tX8VXOJqp8LjKs8VySOY6Luo/BrB5/npimyK96iZyKxsJKfvIpXbo4WPZ7FGHFJAQFZXfh/zD98d8a1yJqXAtItD9Agv2OIz7uYDBY5uJ1vEskWg2tRfAJQ6HG8U5IY0HXndS4l6Hp5RgNmdhM44KW8Ekp2VD4awodSwGJlOCSxkZE4Q1hsmpvNktyb2B2t3ewGVofMtSkxtaK9awrXUG1VkWSKZUMa2QlgEI0vMUNio7B5A/qG4SB50bfQ+/oyCpJzuk5kJ8KDvPmrg0BiY6qEChC4YXp57XItVAHk8HAS1ecx4cbtvH2mk0cKCnFajRyxpD+XD1hJL2SQicfvvLFal78bFU9IZwiBLpRIAwC1amjmBWkQw/KKKEqgvTUuJPGws8YJ42F4xQHysuRLSyyBPB19q56roRg0KTk/b1beHjMTHZV5nP9qv/g1Lz17Q/WFPO3bV/xdc5mXp5wLTZDxwp8HUlouoPcimfDtskpfxwbhTR31vsn5JLKx7GYx2Azh45THymYoq7H63ifunyDjkRw/4OOrjVXk5RSUlr1EkWVT6E3kq82qj3okvB3oiyBn1Wpay2FjiX1f2so6CFyLyQaPr2G3eVvMyLpnlZdg8NXzQv7HifbsR+BgkTnALv4QX4PhPekCQFaiAcsxmiN2FDw9yX404RZTOvai9e2r2VLSQEmVeX0Hv24ZsBo+sS1TnTLqKpcOmYYl44ZFvEx36zZxYufrQKoZ46tC4soqiA+PYbTBvWiosLJj2v243R565V0NU2nR9dE/vZ/F2DqJDns4xY/o2qIk9/8cQqbMfQqXwoJqkQK2FVRhN5CaVeNz4NL83LP2ndwaJ6A2Grdb9vKc3h+12J+O/iMjhj+UUGFayl6C257RRa0UC2nUl7172PCWFCNfbElvIqj7CaQThqSHUN7GgRKI1XQ0O2C71FQgvAyFFc9S1HFX5tt92qHOFh0GZkpH2AzN7jrc6o/RaDWky75pEIohkTwGwwHqz5vtbHwxsHnOezIqu2jlmcCHVWAWfHi0U1BjSIp/aPx6s2NBQWF/jHNyxJbghCCmd36MLNbn1Yf215IKXn16zUIEdzlremSoooapo7vy/hBPXC7vSxeuYsde/MxGlQmjurJ6GE9IhKb+tnhZM7CiYeinDJ2bshCUQSDx/UmLqnzOeU7E8NS00i22ShyNEx+EgkG6f9Wa9+9FS5XfR5DKEQbTawrySLHWRayjY7ko+x13D5gJlb1+Exy0vSKFtsYWlwqaDg9qztsTO2FwXIqMalr8Do/QvNsAAwYLKf6Xfvld+Of9nXqs9hELNHxz1JVfg9SLyaYR0ILef06Ntu8gC0+rZTiiqdCtgcoLH+czNQP67e6tKIAdkb/2cK/MD16ddj9TVHgymV75caQ++1GJ6VuAxI1QMOkjpa8xmcKOiYdnXMzmvOSHMsor3ayN6c4bBtVUVi5LYvxg3pgNhs5Y8YQzpgx5AiN8CSOB5zwxkJFaTXP/vYdVn2zpb6ESVEVTrtoLLc+ejEWW+Ru9X0HCvng03X8uHY/ui4ZOrgrF50zmuFDQ2dDdxYMisIdYyfy0PeLGzaqtT9Q/56TmvAbECGgCsG8PsPZXpkbNlwB4NA8HKwuYUDsscn6VwefXkVe1YcUOBag6dVEG/uRYb8ck9ox35PUyykqmIrVdjG2qKtQlLgO6betEIodU9S1EHVtwHaDeQJex7v4POsRwoDBfCoGy7lozncwyWq8TaS+hIhFEzY0LY/mRoSKwTgAm+2CgK1Vzi9rE0VDQcfhWY3Xl4PR4M/4t6gpAZ4FBQgeKW+AzdA6ldKdlZvrJ/5gUIUkwVxFd9tENpXvxCf9YxkS2594Yzqf5KxGaVQTUvf7hV2nMTr++KI99vpaDlEJAb4I2p1EIIRsIMRqTx/HA05oY8FZ4+beC5/h8L7CgFpnXdNZ/P4a8g4W88S7d9RzL4TDt0u38+e/fYlQQKulQ125eg/LVu7mhmumcuW8CZ12HaFw5dDhlLmcPLPGL/okDbL5+1YK6pP+m+xThSDBbOOmQeP5PHd9BHnydIgMdmeixrufDflX4dFKqFuzOrz7KXB8SZfoKzCpGXi0XIJ7DyQ+6Z/Gwin1qkg0316qK/+Co+Z/JCZ9gmro2hmX0y4oagrmmDtobA57q1/GU/VnBGASqp8HoHafkFWYY/9ElfMbXK4vaTAYBBbL6cTF/w0hAhPxfFoxdRUl4eDTizHiNxa6Rp/L4eqP6/cZhIZPhnsGFXrZL2z5ghtBjyDpUxWSi7rO5s6+N1DmqSDKEIXd6C+fHZswjPcPLWFz+V4kkv72HlzY9VSmJg8/4jLOWwsKeHfTFvaWlGI3mzhzQH/m9OuLOYzCZGMkxtpIsNsorQwSgpMSoYHm1cgrKGf3wUL69Tjy8vFej491izZRll9BYpd4Rs0ciuF4yI84mbNwYmDh/FUc2pMfNE6n65Ktq/exeuEWJp8xIujxXq/GkiXb+eSTdezclecv5lIFqAKEqDcaXvnfMhav2sW5c4cze+qggFpkKSVF5TVouk5KfDRqB062QgjuHDeRSwYN4Z9rV/HWnhDsar7amLAaaEyMT+3OXybMJcUWzeTkvjy7c1HY86VY7PSMTu6w8bcHTl8heyre4WDVl3j0KqIMXehlv4CiqlfxamU0fgLrVrC51W+Rab+akupXaZ4UWNfev01KQhoMDd+ujq4VUF56M4kpX3TYtXUWpF6DpzowZCBEIOWRt/opoqMfxGaegCZdKGo6JtNYVENwHgCDmkYk1RgGNbX+93jLaFJtp1Hg+A6QqEJikBq+xuU89SNSiTFm0ic2MPzRErrberdo/BqEkXRrNyyqhfQmyoHjEgcyLnFgfb6P0gElm62FlJInli7jP2vX1VdRKEKweN9+eq/6kdfnXURqdMvcIKqicNmMkfzr05WB0tSaRNTaeAJYvSmLlRsOcOqo3vzp5jOwmI9M9dPC17/npd++QVVpQ6gpNtnOLX+/mhmXHeMhn5M5CycGvnlnVdjXhaIqfDN/dVBjweFwc+9v57Njhz/7u66mWfFJ0CSaSamfTSSwb28BT778La9/+CP//OM8uqTG8smKrby+YC3ZheUAJMVGcdlpI7ly9mgMQSio24q06BjO7DcgtLGAAJ8An+SyQcOZ0rUHA+JT6GVvKLMaEJvOmMRMNpRmhwxFXNv7lIhEpFoLTWp4dCcmxYoqWvbyVHj2sSTnl/j06vrEtSrvQTaV/AMVjVhFCzHRCwocyxic8jY55X+l2rOufo+CxITmfykjUQluMFjw24qNRo/Xux6vZzNGU+TZ6UcDmvs7CJvgKZFaNo7yG+q3qMZRmIyhY9d225nklz2IJJTmgEqUeRLGRpoTQghGpjzJjpK/c6jqXXS8mIQPgYomzfVeAYGB7tFzGZF0D0YlqjWXSq+o/qRZulLoym0SbKkdAwpjE6agS9hasR2BoFdUJlZDoOfkaBgJdZi/aQv/Weu/R+vKLeuSj7PKyrjl40/58MrLQ3o6PD4fCzfuYdHG3VQ63CQnRFNYUu1PdPRJlCbOoLoqieUb9vPHf3/DY7ed1UlX1oBFbyzjyetfaLa9oqiSJ65+DkVVmHbJscNt8nPGCW0slBRUhHXx6JpOcW7wpL5//nMRu3blBWyrrwKXoHh1dJNav71ufi0pq+bexz5i1OTevP3t+oDjiytqeO7jFWzen8ffbjmrQ70MAxKSMAilBVEbwUV9hjA6Nfgq8cnRl3LT6tfYVZlfH6Oty2O4LHM8l2d2bKil3FPI8qIP2FS+BJ/0YBAmhsdNZ0ryRcSZgrtCpZSsyv8tPr2miXaA/4vWUKiRJqJFMKJ7idOXhcXYm/4pb7L9cH8kOgJJ40RvicCHREHBKOJBlqDi9ygETwgXeDw/HfPGgtRLiYSur3ELzbuJ6uLziU7+CtXQPOdDVeykxP2OgvKHg/SkIISRlLj/a75HGBmcdD/94m+hxLUWKb3YzYOwGtIpc+9Elz5iTb0wqbGtvUz/NQjBdT1/xbO7H8GhBd4rAkGapRtVXpXb19+DT/pnTaMwMi1lCpd2vwiTcnSTeHUpeWnNmpDfliYlm/ML2JCbx6iMLs3255dVccO/PiC7qLy+CkIVoJsgwWShutQZ9tzfrtnNTReW0SOtfTLm4eDz+njl/jfDtnn53jeZcuGE+jLOYw4/ozDEMfoNdAwSUuxhk6wVRZCUHtdse1lZDYu/3YoeQtpa4KdZJch+TZccyC9tZijUQUr4fuM+Fv4UmiipLUiw2Dinz4AmWhANUIWgf3wSo1Kav1jqEG+K4q1Tbubvoy9lRtogxiX25Pxuo3nnlJu5f8hZHRqrLXYf5sV9d7OhbBG+Wjlin/SwoWwRL+27h2L34aDHFbnWUeU9GJBNHwiBWxrDsqJJqaPLKhShoQoZ0gDQUTGbRhMlwCJCGQp1OPYfJaF2JZI3U2ALDSmrcFc/H7J9YswvSY//K6qSFLDdYhxEZvKHWE2hPRNGNZa0qNNIjz6dKGN3FGEk0TKUZOvINhsKdUizZHDfwCc4LfUs7IY4jMJIijmds7pcjlu3s7x4Vb2hAOCVXr4tWMI/dv0TTXY80VVrcLiigsMVlWG/LVUIlh040Gy7lJI7XvmUnJKK2r/92zUJ0gAlXmeLt4GiCL5ft7eNow8cS3lJNWXFVc00MjYu2UZ5YXi9keKcUrat3NnucXQamsrttPXnOMAJ7VmYc9kkXv7Dh6ELwXTJ7Eub18vv2JFbn48QCgIQUiJrpX8b87doViXs+k0RgveWbGTu+AERXEXk+P2EGWwuymd/RVkAV4IqBHaThedPO6fFCd+oqMxMH8zM9MEdOram+OTwP3FrDpoqC+rouLQaPs35J9f3+kuz40pd2+oJdkJD4EPBGKSNWe2CSU1C4kVgQhJOas8HQkWIKKSsCdNOYjZ3XmxVSg+4FiJdC0BWgaEXwjoPYWzd/aOap4KSCHopwe7OxsmOgdDwOD7AGvsnhAgex46PvoK4qEtwuNeg6ZWYDN2xmDr3HooEscYEzu5yGWd3uax+2/Kileyt3h+0vUSyrXIH68s2MjZh9JEaZjNoIRYqjSGEwBek3U97D7M7NzSdtRLB5KQIgdPdggxlGEgpWfThWt5/ZSmH9/vHktIljvOvm8rZV01CVRXKC1suZQZaNChO4sjg2F8OtQNzLptI1z5pQSWq/XwLvZg4Jzwne0uoe+6ksWES1pXwxqIuJQfyStt13mCIt1j5+Nwr+fWYU8iI9itOxlusXD90DF9feA194lvHFNdZKHRlc9i5M+SEL9E55NhJoSu72T5FqBEZ4qFMou6x1yKEgiLMxEZdSEOtaXC4nV8hlS5helQxmU/FYOwcGlypFSCLz0FW3APub8GzChzzkSXnoFf9vUVFw8YQwojZ/mjdX4Hnqe1GD/npupEyPNeBEEaiLJOx2+YeE4ZCKCwpXB6gZNkUCgpLCpcdwRE1R0asnVhL+LJun64zPL05BfYPO7PChjh1teXFrE/T6dml7e+Lfz/xBU898D45BxqMlsLccl567DOe/O18dF0nqWtk/SdlhKawPuo46Vk4MWCNMvPXD+/kmd++w+qFW+q/FEVVmH7+GG577JKgZZODBmUghAj7IpaAXuuXlsYmPuoIvnxbJ2Uax5jM3DZiAreNaFt+gVf3sShvK58cWkeBq4IUi51zu45mdvpQTGrH3C4FrqyI2hW6D5JiCWTLS7VNhJJQJEB+CJqaAH6FnJSos+gac2X91mT73VQ5v6kla2rudq4roXT49hBtHIju21HfVx07gMHQj7j45yK6ntZCSoksuwW0g7Vb6oyr2rHWvARqJtgiLys0WM8A8R88lY8htQY3s782JFz9gAUhji9VzlAodpeEvVIdnSJ3MdVeJ1/nrWZRwU9Ueh10sSZyVpdJnJo8AlVpORG3PTCpKleMGMGLP64JqlapCEFyVBTTe/dqts+n6WFLfxEC3SQx+kTQUKsQEGOzMG1029gmt63L4qNXlwNBGCMlLP18I6fMGcrEWYNJ7ppIcU5J0LChEIL0XikMPJb1KE5WQ5w4iEuM4eFXb6TgcCk71x1AURUGj+vtz2cIAa9X8xsKkqALSkntPWIQSEOgoaAogliDiTK8IftXFMHp4zo2BNERqPG5uXXNf9lSfrg+wTHHUca60izmH1zFC+OuI8YYmeBNOBiVyIiwDKJ5klmsqTep1gkUOn8KmbcwIO46bIqPgpqv0GQNUca+ZMRcTrJtZoBqodGQQc+UzzhUfC1uX+P4rMRQWxFRB5fuICXhdZyOd9B8WShqElbbxVisZyNEJ+lleNeCb2uYBgJZ8xJYL2hVPonBchqqeYbf+NFL0aWXmtKr67UeG5MZ+f+vYrJdFDIEcbwh1hhDmTd4YjP4r9+kRHHD2r9S4q6o/yzKPJVsqdjPwvw1/HHILzF1orBaXnUVo7p1YeCBZLYVFAYqTAqBxWjgxfPPCcp7MrRHGm8sDU+wFJNkJc5jpKC0KiDkoSgCIQSP3HR6m3UgvnpnFaqqoGnBx6Aogs/f/IHJc4Zy+7PX8YcL/16bhNkwDiEECLj92V8ccV6LkwiOE95YqENq1wRSu0bmzlqyZHtgzkGd0VC7wZ+v4DcWFINSb50risBqMfKXX5/Hg68toKi8ulnsURECq8nIJTNGtP+iOhhPbPucbeU5QIM7uu7fnZV5PLrlU/4yqv3yxD2jhmIQpvrExmAwCjM9o4JXF4xP/TPLc2+nzLOjUf6Cf6XfNeo0BifcihAKveJ/1eJYTMaexJhHIX1768MiCk1LJiU+LQuTeTwW68xIL7PdkO7lNHgygrYALQv0PFBDJ64GgxAC1TjI/7tWgiLsSFlZ756vMxj8f1uxRN/W1ss45jAleTIHD2aHzmWSkuwaL6XuygAPRN2zsL5sD//L+pobep/T4WM7VFHBw8sWszTrgP9sEuxRZmIUE+VOF1EmI+cMHMg1o0fSNTZ4AuiMoX1IiLZRXuMM6pUQAi49dSTzJg3j1c9+5LNlW3G6vQhgwpAeXH/uBIb2ad391BgHduaFNBTAnyt2cE8BABPPHsMfP/ktL/76dXL25te36dovnVueuoYxs4a3eRxHAicZHH/myM8rR9FBb0R/KhXRbBa54+ppLFu3lwOHSrBZTcyaMpDzTx9BSmIML//mYu589mOy8stQVX/Co0/Tibdbefr2c0lLOLa0KUrc1SzI3RwyZq1LyeL8bRS6KkmxhFfsawlm1cbEpHNYXvRByDYTks7BrAb3YpjVOGZ0fY3D1d+yteRZnFo+Ah8qOsWOBazKK2ZkymNYI5Q09ucw+I2N8Ohc13Nz+GhJMwEAGZ49sSW4Kh8F6WgWx683HBQbIoiAVGP4tGIqa+bj8e1ECCvRljnYLNMREfBmHGlMSZ7MooLFFLqKm3EwKCjYTcnsrCwPebxE8nnuD1yVeTqWDtRJyamq5Pz336Lc5Wp4CgVUam4qNTf3TZ3CzaPHtdiP0aDy1PVnc/MLH+Hx+eoXLHUllBP6def6mWMxGlR+feV07rx0KuVVTqwWI9HW9nvJrFEt92GxNXxu488Yxbi5I9m9dj+l+WUkpsfTd3Sv48Oj8DMqnTxpLDRBYX4F3329td5QqHMoCF2C7i89QggURXDGzCHMO39s0H4ykmN5/5FrWL39IGt2ZKPrkmF90jl1eG+MEdBLH2lsKgtNxlQHHcmG0oPM6dK+pFCA6SmXU+OrZH3ZQhSUeueNjs7o+NlMT7ks7PEChcNVH6DpuZhE4LhLXRtYkXM1p3Z9D5MaF7YfKX2YTROprH47TJxXwWwcjqLYIr28DoEwDiW87gIg4kCNzCgKBqmX43N+SjgWRqkX4XN/j9EyI3C71HB71lLt/JKy6v/S4IITVNa8hckwkIzktwPYG48FWFULDw68lxf2/ZvtlYFleUNiB5Fq7s/uykVhkj3Bqbk5WJNPf3vrFShD4ekff6Dc5aonYGqKJ1et4MKBg0m2tUxQNaJnF96/90re+n4DC9bvwuHxkpkSz7xThnPOuEEY1YZ3kNGgkhzfcfkoU+YOZ8eGg/48hKbXUvvuPPXM4U02C/qP7d1hYziJjsdJY6EJnvjTpzgd7oA1Vj0ZE4AmUUwKk0/pR0xM+Pi9oggmDclk0pDMNo9HSsma7MN8s3MvDq+HXokJXDB0EEnRrWO0a/E8EZu3HWMGK0LlnIzbmJB4NpvKl1DtKyPaEM+IuBkkW1oWfCp0rqTEtSbECDVcWiFZle/SL/6moG1cnh0UVz1PpeNzwIfAgCJ1DARLDtOJs7feDS/1CnTvdkBBMQ5FtNbYMM8EJam21DGYIaeA7QpEkNyOSKH5DtCSrgOo6N4d0MhYqK55n7KKx/Dq+Y3MjMAPzuPbTU7R5XRPXRSQK3IsIM4UxwMDf0OOI5dd1XvQdB2X5qXSV82Oyv1HfLHn9Hr5dNeOkIYC+J+8j3du58ZRwRcoTdEtKY77L5zO/RdO76BRRoZZF47mvZeXUF5c3TxJXEpMZiNnXXGSlfF4w0ljoRGy9hexZdOhkPsFgPRzKkybMajTx1PhdHHz+5+y7nAuBkWpr4N/6vuVPDx7BpeO6jjGwGFx3QNU9oJBAMPiO24lBZBi6c6stGtafdzhqs8ClAubQye76qOgxkKNaxXZRZfXHus/XtaSDOsITBKEkNTlC8Tb7yPKembEY5N6Nd7Kx9CcH0Idj4OwYrBdjSHmnogndyGMEPc8suxakB4aVv+1/i7jWET0zRGPK/g5LC03QodG7aqq36Ck/N66PY3G1BQaHt8OHO5lRFmmtWucnYUMWxeKPeU8s/vf1GgOVKHi1UAS/juKNljpGdVx6qslTidePbxnTxGC3KqqDjtnZyEqxsrFvzyVlx/7POh+XdOpLKshKS14zsXxhLr8tfb2cTzg2DL3jzJ2bM9psY0A0CWPPfE5GzcdbKl5myGl5LYPP2djjp9y2qfraFKiS4mmSx5asJgle4MTy7QFyZYYZqUPQQlx66pCMD11EOnWuA47Z3vg0orCGAp+uLXmXBZSejlccnOte7/58RIV1HTMpjHYo64kI2Ux8fZfRTwuKd24S69Ec74HjQmfpBNfzct4ym5DthDuaQxhGolI/Bxsl/lDDpjA0AdhfwSR8J92V2Iohv4IpeVJz2g5DQBdd1Ba8QhQF66tq6EIBQM1zgXtGmNnYn91Nn/Z+TwOzU9/rEkNRdFQhUYoL5oAzs2Y0qHVEHazucVJQ0pJvCUS4+7owuP28fbz34a8LXxejZce/ezIDqqzUFc62d6f4wAnjYVGiJR/XJfg82k89MjHVFa5OmUsm3PzWZN9OKRbUhGCf634sUPP+bsh59DP7o9/N2TF+9EzOoXfDz2vQ8/XHljVNEQLCYcWtblCZpVzEZpeTOhkRh2PXk560nyS4p/AbGqdB0lzfIj0biJ4DoBEd3+L7v6+VX0KQ3cU+0MoqWtQ0raiJH2JsF3WrvBDfd9CwRxzZ5gWCgbLmSiGTAAcrq9bYLNsCokuO+cZ6Qh8kvN1rccu8DmLMXpqM2kalRXWvi4nJQ3lyh6zO3QcdrOZGT17haRrB78exDn9B7b7XA6Xh4++38wDL33JAy9+wfzFG6h2hBICaz3WLNlOdUVoSmldl2z+cR8FhzuemO4kOg8nwxCNMGJUZn3GcChIqDexqqtcXHzl8zz+x4sYNbxHh45l0e59qIqCFsI1qUvJptx8SmscJER1TOJdjNHKfyfeyNe5m/j40DoKXRUk15IynZExHGsHZn63F93s55FT81WYFoIe9ouabXV5t+O/7UPH6aV04fEdxBKBoaD5snDXvIbX+TXgwih9LawQVXyOd1EtRzaOHA5G2+XoWgGe6mdoWD8IwIdqnoo17sn6tpovj8ByTtmofTDomI2dH7JrC3y6xk+lm4KqUioCYk1uvLoBixKPRbXS1ZbMGekTGZ84qFPUKH81bhLLsw8iNa3ZiARw8aAh9Ixrn7DT1v153PnMx1TWuFCEvzz227W7+ddHK/j77ecydmD7w4wFh8tQlOCETwHtcsoiLmc/ZnGyGuLniZRUO6fOGMSyJTuC3ugSP7dCY2lqt9vH/Q9/yP9eup701I6Lwbm83ohiWS5f+8rmmsKsGjmv2xjO6zamQ/vtaCRZxpNqm06BYylNnzaBis3YlR72i5sdpwhLs/bBEEks3+teSU3JNRAQ0lCb61oHQENqzWmsjyaEEFjs92CyXYTH8R66lo1Q4jBaz0U1jgooYVPUJKiXkK5jtwjTN0bstuZG27EAj+4JaijUQQiwqDqTk3pxe9/rOn08Q1JSef3ci7hn4VfkVlehCIEuJQZF4Yohw3nwlFPb1X9ppYPbn/qQGpcXCQFeS6fHy6+e/YT3/ngNGcnte4/Z420tGgr+dh2bpH1UcNJY+Pni7vvOoKiwkm1bDgdwMQkApdZYqEXdPq9P45MvNnDL9dM6bBz9UpLwtZDwFG02dXhVRGfBp/vYWrGBEk8hUYZohsWOwWZo+9iFEIxJfZLtJU9xsOp9dFnnRhWk2qYxLPn3GJXmXBbR1lkUVjwermdMhkxMhp5hzy/1KmpKf4k/L6G2jr32fw1kRsH7F0rz8MixAMXQHYv9N2Hb2KxzKSm7H/B/3gp178umHgYVkKQmPI2qHpurR6tqIcYQTZUvnOaFJN0aXC49GHQpKXT5FRZTrXaUVnIFjM/oyvJrb2DloYPsLS0lymRkRmZvkmzt9x5+vGwL1S5v8wqFWqPE49P4YOlG7rq4fUbJxFlDMP7+Q7ye4DlFQkD3Pqn06HtsldSeRHicNBaawGYz8/fnrmLVyj38+Y+f4HX7kAJ0g9KMlKme9lmXLPthd4caC2cO6s9j336P0+MNangqQnDpyKGY1GOPs6EpNpat4Z3s/+DQqusZF98VrzIz9Wzmpl/QZpeuIowMSbqX/gm3UOraiJQ+Ys0Dw5IxWYz9ibacRrVrKaHyCpLsd7VICONxfgSyhsCYtl9PJPyxEtV2fti+j2WoSizxsb+lrMIvSFWnw6HjryShdqvNMp2EmNuwmscfpZG2DCEEs1On8nHO1yGrgCQwLbnlMj9dSt7Z/xP/3buKHEc5AOnWWK7pM4Greo9vldGgCMGU7plM6Z4Z8TGR4NMVW/1XGWIsupR8t35vu42FaLuVebecxpvPLGy+U/g/0+t+e8bxQbrUAn5ODI4nExyDQFUVTpnanzt+fTq6RUWaVVBFUEOhbpvH07HhgCiTiSfPmeun5W3yUClC0D8liVsnt00s6khiW8VG/nPgGRyaf/VWR6nskz4W5H/M13kftfscRiWGVNsU0qKmR8TamJH4PLb6ScyA/zFQAUFy7H3ERTUPXzSFz7OOoI9P7VcVjLdC1vocVMvcFvs/UmhNZUYd7NG3Eh/7cL2wVJ3BYFbSSY1/GnvMb3D4isguvY+s4pvILX+SoqrXqXQtb9P5OhNnZ8ymq61LffJiHeo8Q1dlXkSiOXyeQIGzghtXvcGft3xJjqNBcyLPWcETW77h/nUft0odtDMgpaSwvDp0QlbtO8bRDlnqxrj89plc9avZGE3+9ahSq59jNBro2z+NlV9sYMPyXUf9c2k3ZAf9HAc46VkIgzPmDqeq2sXLryyt5ziogxQgVf8DoCqC/n3azqIXCjP79eadqy7hxR/WsHSvnys+3mrl8lHDuH7CGKLNx07CYTBIKfk0Z36AMFFTLCr4nGkpc4gyHDn6a1WJoUfyezjcP1Lp+BRNVmIy9CQuah4mQ8uEULW9BN0qpQTRMNnUXXd9WEJJ7TzhqQihazl4q1/B5/wAZBVCScZguxxj1PUIpeV4tRCC2JibiYm6Gqd7CbpejkHtjhQxHCi6HF1WI6WOjqDGux/4uv5Yo9qFzMSniLFM7MQrjBxW1cIjg3/De4c+Z0nhSly6P7zS1ZrOhd3OZGLi6JDHlnsc/HnLZyzK24YEjAb/XKzrAk1XqLMcPz+0hbkZQ5ie3u8IXFFw7Mstwavp4fNphCAhpmPCmkIILr99FudcfQorF25h4fzVbP9xH5rHw54NWezfnM2id1czfHJfHv7vTRFRRJ/E0cVJY6EFzLt4PL16p/DbB96jLntBNglHaLrk/LNHdcr5R3btwkuXnIfb58Pl9RFjMbc6Dnq0UODOI88VmuQKQJM+NpWvZVLSka0OEEIQZZlAlKVt3hmjeTJeZ6C2hY7EUBtSkQSW4/l/VzDa5rV5zB0B3bsbZ8lFIKupJ6TSi/BW/xOf8xOsiR8h1KSI+lIUWz1Zla472Zk3Hl3WADoaIqh56NXy2Vt4Jf1SPyLKfGyIBNkMVq7teQmXdz+PYk8ZJsVIoik+rJu8xufmuh/+zcGa4oDrFAIURSKEhk/ze6tUIXjnwE9H1VhwukKr4NZDSgZlduyiJ9pupaq4iu2r9gCNRNZrhaa2rNrLU/e8xe9e+kWHnveI4WSC40k0xthRPbn2mlP475srURSBrFOZrE0MuuT8MYwZ2VA66dN0lm/cx2crtlFQWkVKXBRnTxnCqSP7YIiQy6EpzAYDZsPx9XU5fC2zzSko1IRNMOs4SKlR7lxCufM7dOnBZhpEctSFGNTWZ38brWchKh9D6qU0sED6477+6FTTiUZFKIkYbVe19zLaDCklrvI7AgyFBuhI7TDuyoexxD/f6r7LHZ+h6aW15wlI+Wx+HgS5FX+jb8qbrT5PZ8KkmuhijSzp7sPstRyoLgr6nhe1EUuhS6QUaFKyt7KwYwfbSnRNiW25nFEIpg4Pn9jbWvi8Gu8/vyjkfl2XLP9yA/nZxaR1j8xIPZbwc8pZOL5mn6OIay+fTN9eKbzz4Rq2bstBAv36pnLJ+WOZMXVA/eTgdHu5++mPWbfrcL0xsS+nmJVbshjepwvP3nMBNsuxHT7oKMSbWn74dXQSImgXCTTdxd7ylzlc9Sk+WYVRiaFrzAX0ir0OTS9nZ+E1uLx78d/2Emo+4lD53+iT9BQJttNbdS4hLEQnvkl18TykrKBuetRqSagDKa0kinEI5rjnEGpih1xrW6B71yN9O8O00NBcXyG1IkQQQqtwqHGvoo5/oeWsBI0q13J8WimGY7RSoiV8eHBt2P1S+j0MWq1NFmU4um72+BgbM0b2YcmGvfUqlI0hgPgYK6cM69Wh59275RCVpeFJvASw9rvtnHXt1A4990l0LE4aC63A5Al9mTyhL5rmz50O5iX4+9tL2LDbTxtdpyVfZ81v2ZfHE28s5o83HDsJbqGQVV3E4vztOHweekUnc1r6YCytpLeNNyXSP2YIe6q2h6xnt6o2hsWFjgtHihrPIVbkXoTWiF1Q0xzsLX+BrMo3SFbNeLQ6Ou+GZFQp3ewpuo3BaR8SbR7RqnOqxkHEpC7D43gfr/NrpHShGodijr4aRUSjuVcCPhTTKFRj+5U62wvdu42Ggt+QrdB9u1BbaSwE9hlJmEzi08uOW2OhyF0V9lMUAkTt868gOLPbkCMzsDC4+5JT2bg3l7IqR4DBoCgCgeCRX5ze4Yq4Pm/Lid9CCLwdnCB+xNARdM3HCd3zSWOhDQhFC11W6eCLldvrjYSm0KXkmx93cufFU0iK6zhJ2I6EU/Pw0KaPWJS3DQWBIgQ+qfPEti/54/ALmJ7WOrrZC7peyT92/QFvEwKcuqTHS7pdi1Fpn6dFSo1VeVcEGAqNoejleAhFZ+vPJcirfJm+yf9q9bkVJR5L9I1Yom9svq+WIvmYgTASUYC0DTTSUeaxlDs+rP2rnpkkDFSMrTZIjh0kmKKo8YWmSK57BahCEGO0cElm+w3i9iItIYY3HrycFz/7ga9W78Tr0xDA+IHduensiQzt3XHCWHXo3jcd1aCg+UL7m3Rd0ntopInFxxhO5iycRFuwaW9uSHrmOui6ZMPuHGaN63+ERtU6PLjhA5YW+F3VOrLe8Kn2ufj1unf4z8TrGZkQObV1F2s37un/MB8efpPdVdvqt6dY0jm3y6UM7QCvQqFjGR49NM+8SWhIGS4RXKPMsSgCjoTjG6p5Gi1yLgo7irH1iYextvPJK38MXVajhOVF9E+kqpqMIjqGpvxo4Pzuo3hu5+KQ/AxCgE9TSLPYeWb8JSzLPcDeihKiDCZmd+tH79jIw1EFVdV8sn0HORWVJFitnDWoP30S2xbOSomP5qFrZvPbS6dTWukgxmbGHtV54lT2hCimnTeaJR+vQ9eC0GqrCl0ykxg6oU+njaEzcTJn4STaBD2EodD0XoiECvVoYHdlPt8V7Ai6r26t+NKeJbw4/tpW9dvF2p07+v6OUncRJZ5iogzRpFu6dtjEnO/4toUWLX/eEh+6dFDtWES1awkSL1bTcGJtF3e4q1zqDnyuT/E5vwRZg2IciMF2Oaqxc13VipqOajkXzfUpoQwGY9SNbSrtVJUoMpP/R1bRFei4UaSGjmhmpNWtuJ1aMbmVr5IR29wjczzg4u7j+ODgWgpclWhNuCMEkGS2c9/IM9E1lSsXzqfS68YgFHQkf924lDO7D+Bvk87Caggd2pNS8sLqn3h6xQ+AP6FaSslzq37kgiGD+POcmRjbSMpmNRvbTescKW58+EJ2bThI7oGigHefoipYo8z87sVfnNBG+omCk6RMHYjBvdIDX4yAroBU/TTR0iCQKhRUHJns/9ZiYd5W1DBsijqS1cX7qPQ629R/gjmZvjED6WLt1qEvBynDl4VpsqXbXGBSM9iXP42c0tuocHxMpeNzCsr/xJ7cMVQ5gzDRtRG67yDOohl4Ku5H96xA967H55iPq/hMPFV/77DzhII57nEU0ym1f9WtFfwTjsF6Ocbo29rcd5R5LH3TlpIccwuKkoo3yOeuAx5UJJBX9d8jStLk1tzsrdrNnqrdOLW23cN1sJusvDbpBsYkZAZsVxDM7TKMz6bfSZwxhluXf0yV1x+u8Em93lP39aFd/GpleJnmdzdt4R/LV6LXStPXydQDfLx1O49+1zr10s5E1r4Cli7ayoY1+/F6Aytt7AlRPP3Fb7j8nrkk1Orn2KItnHn1KTy/8D56Dso4GkPuGJwkZTqxsHN9Fl++vpz923OwRVuYfMYIZl0ynii7tUPPk5oQw/RRffl+w158ukTWGf2NJ0YheObD5TjdXm46p23ENFvy8/l27z6cXh/9k5M4o38/rMbWJR8GQ7XXFVFqWo3Pjd3YsZ9de5BgGUtuGAVKNwashDcoVFmGT6sr9Wx42Uk8HCq+gV6pX2ExDW7XOKXUcJVeg9Tryujq3hL+83mrn0Ux9MZgPa9d5wkHIaxYEl5H96zG5/wYqZci1AwMtktQje27PgCToQtpcffj0N3UVL2FG6/fVVvLXikb3WEerQCvVoTJ0LkaAT7dx2e5H7GkcDFu3S+XbRRGpiRP4/yMizGrbatUSLXaeXnidRyoLmJL2WFUoTAmsSepVjsAz2xeAQSfC3QpWXhoNzvKChkY31x7QtN1nv1hdchzS2D+xs3cMWk8SVFHTx9mxXfbefqxL6iscFIn2Ws2G7j6pulcdOXE+kVBlN3KFXfP5Yq756LrOopygqxTOyAMcdJYOAYgpeS/j3/G+89/i6oqfiIQAdvW7OO95xbyxPt30r1vAwmJ5vPHtg3GtmcEP3DNTLLyStmXX+LfEGIF/fIXq5kzrj/RNjP55VXERlnolhgXMPb1h3L5cusuKl1uusfHMmtQHx5fuowfsrNRhUAIgU/X+dPiJfzjrDOY0Tt42ZNX11idn02py0m36FhGJncJurLvHpXYzKXaFBbVSILp2BKvyog+i+2lj6PL4FS1OgpOYrBRRaC8MoDAZuyD4tsWIifPb/qXVL1MRuIz7Rqn5l6K1A6EaaHgqX4R1XJup7plhRCo5omo5s5jURSNpK79n2CI6xGdq22iS52X9j3H5oqNASRZXullSeG3ZDsOck+/+zAobX8V9oxOpmd0YLJmpcfFyvyssMepQvDlwR1BjYWtBYUUVocvOdSk5Lt9B7hk2NGptFj05Sb+9sin/j/q7lchcLt9vPLsIqqrnVx3y2nNjjthDIWfGU5oY2HJR2t5/3l/PLuOMYxawpiK0hp+f+ULvLryIVZ9v4sPX1/Jjk1+tsG+g7pwwVWTmHb60Fa/tOOirbz2+8s58/5/U1HjCtlOUQS3/+sTsqsr6l9hg7qm8KuzTmFYZjp3vvs5K/dnoyqKP/EO+NeyH9EMEox18rJ+auEaj4ebP/6Uf557FnP69g04z/zdm/jruu8pdTe4XXva4/nzxDlMSg9MVDwzYzj/2L4AX5j0tEH2LphbWULZ2VAVK6NS/snagpsJZqYLDIxMexMhy8iteJFKtz8GbFK7kGa/Fo9rBTXaDkIn/mlUORe0e5yaexn+Ry5UmZiO9O0AWQ4ivB7BsY446xTyqv4bpoXAauyDUelc3oktFZvYVLEh6D6JZG/1bn4s/YHJSR1b418XeggHgQjZzuFpmXFREQKHp2O0HFoLn0/j6ce+CL6z1sMw/78rOf/SCcTFR1GcX05pYSVxiTGkZBzf93YATlZDHP+QUvL+C98iGjEuNoau6RQeLuWJe99l+Xc764VOAPbuzOMvD3zA7q053Pib01ttMFhMhrCGAviTHHOLK5CNEpF35hRy80sfM6B/KlvyCwCaVVeoPoEGyLpvTkq/KiaSWz/9nDE9Mvj9qdMYkpLKGzvX8/vVzdnTsirLuHrhe7x9+qWMS20oWYo12ZiTMZQvczaFHPeGsoPkOMrIsB1bD3yKbTJTunzM9tLHKXGtxU+PZCTJOpHBiQ9iM/rjorHWKejSjS49qCIaIQQHXd8RtkIAkCG8Fq1DcMne5ic7TmvOGyHOMhWLoRcu30FCqXtm2G/u9MS25UVLUcLUZwgEy4uWdrixkGSJwqoacWqhJ31N6mTGBH+OeibEt8yIISV9ktpmbOm65GB+KV6fTrfUOKzm1i0AvluwpVluQgCE36P0zktLyN6SzcaVe+p3DR7bk1/cfzaDRncsW+RRwUlj4fhHdYWTrB25YdsoZiPLv6stE2xkUNQZFx+/tYoD2SWk90hk8tT+jBrTM8CoCAUhBFazEac79ItC0nx60iWgSDbl5Yc5TqJoglra+frO6l4s63JzuPi9d3n9/At4fO3S0OeWkj//tIRPz7o6YN+uytDnrru2D7N/4s4Bs8O2OxqIMfdhfPp/WmynCDNKo4x/i2kINe6VhJ7MFczG1vFLBO3FOBJ4I2wboXSBTl5tHwkIoTAo5VW2FlyOR8ul4Q71h4Ey7LeQHHVep4+j2F0UtpBTIil2F3X4ec2qgYt6D+XtPRvqkxKbwqConN8zeAghLSaa6b178f3+A0GPV4QgPSaaST26t2pcUko+/n4L//1yDfkllYB/cXPOlCHccsFkoq2R5W/s2pZLC/XI4PXxxStLaDob7liXxb3znuOxN25h2MTjs2Ty54gTNngUzJvQFLrZFPZel8CGVXv5+vONPHDPO9z+y1cpKwsfR6zDnLH9UcMYFgLQg5hqWi0TcejjhD+hRjZsqRuswG9weHWNe7//BocvtLGiI9lUnMf+ikB+gv1V4TnsdSnZU1UQts3RgC59VHgOUO4+gNZCdURTxEdfSXjPgk5CTPuFbgzWM0HEEfqxExijfoEIU5ESDlJquJ1fUFl8GWUF4ykvOh1n9SvoemVbh9wuWIzdGdllEb0THifWcgrRppGkRl/CsLTP6BH/2yNSLhdtiGlQ/AzTpjNw17ApdLHZm0nM143nD2NnEWcOnSj88MzpxFutzY5XhcCoKPz9rLmtFpV74aOVPP76t/WGAoDL4+ODJZu46Yn3cLgi86CZrcbwhgKgVDmQuo6uBb7QdF2i65Kn7pt/3EtU1/EstPfneMAJayzExNtI654YlkhOqmpIeXeoPVTT6/Md9u8r5Pf3vhvyBq+sdrJrfwGH88u5ctYoDKoa9GFuXFIZ9KR1boeIbyIBtTXt4J/QsypKI3qRFDoDyzhNanhnk4JoNe1zZ0KXGltLX+fDA+fw2cHL+Dz7Mj7YfyabSl5Bb+LOd/uKyKn6hEOV71Lu2lT/PZoMPUiLe7S2VeMvxf/52a3nEmu7oN1jFcKCJeHfIMxNzuN/DFXzHAxR17Wpbyk9VJX+guqym/F6fkDXctC8W3FU/pGKwplovvDqn50FVbGSGjOPwan/Y1j6h/RO/DPR5rYn5EkpKfPkkufcjcNX0WL7CUmTQ8qjg3/inph0Ssj97UGixcZHc6/hol7DMCkN33f/uGReOvVCLu87MuzxGbF2Pr7mci4eNgRzLZ+CIgSn9enNB1ddxpiurSs5PJBbwn+/XBN0n65L9hwu5t3FG8P24fH4+NezC/no45/Cn8zrQ9QmjAeD1CX52SVsXbM/gpGfxLGAEzYMIYTggptm8K8H3w+6X1EEUhURiN40QNN0du3IY9OGg4wYlVm/vaC4kuffWsaS1bvrOdd7d0/ipjnjefP7DZRWOTCo/kRFTZdIBXxWmhkydWXpSu3CWAIotfkJTfgbghpBotF2KdAjqGFPsQbSTp+WNogFuVtCVkXoSKantt8l3xGQUvJDwZ84UBWYfOjRK9lc+iolrp1M6/JXpPSxo+RRcqo/prEHIdrYj2EpfyXG1I+EmGsxGXtRUvkvatwrAInJ0IfEmF8SF3V5m1f7TaGaxmJNWoi35r9ors+R0oli6Icx6mpUyzmINlYHOKuewev+rvavxuEUia4XUFV2A7FJXx/X5Dd7q1azvPB/FLmzAH/FRd+YSUxP/SWxpuDll+MSJrAo/2sKXPnNwhEKCnGmeE5JOrXTxpxkieKJiWfw4OjTyHVUEmUwkhEVG/H3kB4Tw6NzZvL706ZR6nRiN5uJMrWNHv3T5VtRFRFUSAr8z9OHSzZx3Znjgu7Xdckff/8hP67e50+6riUDDXolLTDZ1iE/u4Sh43tHdgEncVRxwhoLAGdefQo71mWx5KOfUFSlnm5UURVMFiPTzh/Ngs82hgxZSEA2EVZRVYWVy3bXGwsFxZVc/7u3qKhyBjyE+w8V89Jby7n/xlnY4izsOFiIyaAyeWgm989fQHZRecB6R1dAmgjwJghA6iA8tftE7ZgUgj6hARw4XoFFNeDSgifLKQiGJqXRKzaQnfDqXpNZkLslaHKVKhTSLLHMTGt/PX5HIM+xppmh0ABJjmMlB6u+o9z5OYWO5kmM1d59rMm7ioldPsRm7Eq0ZSrRlqlI6UOiBeQ1tASP7wBe30FUJQ6zcVhY40IxdMcc+zDEPhxx/+EgpQtXzX8J7YrS0Lxb8XnXYzQdfY2CtmBb+WK+zH2Sxje+RGd31Qp2V60kzjSACUnnMDh2Cmojg8ukmPh1/wf49/4X2Fm1vT4EIJH0iOrJjb1uI8rQ+aXAMSYz/U1t18IwGwykx7QvXHK4sDykoVCHgtIqdF0Gzc1av/YAq1ftrf9bGhWER6+vMKuDAPoOTGf/6r3N+miKjua6OeI4meB4YkBRFH7zzJVMnjuMz19bTtbOXMxWE1PPGcXZ107BaDHx/bfbcTk8zSiY6/6SQTgXPI0SF1+cv6KZoQANtLZPvbaEL16+hZmj+9Xv+9WZp3D3aw1lRxKQdRo/TZ7Ruklb+EA3+jfozaIAtY5WteGYnnEJXDNmOA/92LwaQuAPNz44dnqzff3t6Tw1+nLu3fAubs2LUjvpaVInwxrPC+OvaTFUcaSwp+LjWkHo4ImJAoUd5W+gaqHkhDU03UFWxasMSnqo4ThhQET4aLg92yksfxCX58f6bQa1K4mx92PvgNBFJNB8e5GypbwEFZ971XFpLHh0Jwvznqv9q/mbVUpJsXsXHx1+is3l33Np999hUBoeErvRzj397yPXeZidlTuQSPpE96VH1AmQjd8KRNvMYT0L4KeBDpXEveCrTQGLLoRAmhT/gkb3WwzWKBPPvnwd3XokcuWERygvrgraF4At2syoqcemRk6kOKkNcQJBURQmnzGCyWeMCLr/8Rev5f9ue52qCieKItD1hginbjVCkwdH13V69vaTqFQ73Cz+YVfYh8/t8XHvU5/QKzOZ8YN7MHFoJjOH9eXRy2bz2IdLcHi8KAbhF6QJxVsDoPs9B3UGQwP8FoY0NBwvgftOmcLs3n0wqWoznoUe9ngemzgnoGyyMaam9mfRaffyZc4mtlfkYFRUxib0ZHBs12OKkKnCczCkoQD+lWel5yAJamiDQqKRU/0JAxN/32oXvdu7k0NF5yBlYK28TztMQentSN1BbPSVreqz8yDRZDVSutuk/XA0satyOV4ZuhRZCFClP8lnX/UGlhW9x4zUK5q162LtShdr104c6bEJTffTTM8a258vV24P2U5VBKdPGBByf2FBRVAxqHoDToBX0+nSLQHVoHLNb87gmfvfDWyqS7+7FMEFN0zHYm2f4uwxgeNksm8vTnhjoSX0H5LBGwt+zZKvt7D5pwPs31fIgexipKo0z/YVYDQamDlnKABFpdX4gj48DZDA+h2HWX8gl/nfbqBbahzP/Op8zh07mFnD+rF4yx7eX7uV9YdyQ0pb1+GyMcN4d+tWfAHxQIFukChGgS4lsWYzj0w/jdm9/SVJl/YbzoV9hrAqL5syt5Ou0bGMCsHg2BgxRguXZo5nd2U+L+z+jt9t/AAdiUEozO0yjJv7zTjqXAsmNQa84avRFaGETXAD0KULXbpRRevU94rLH601FIIbIkUVDxNjOx9F6VwDSzX0RYhYpAyX8KdTWvkMJVUvE22bR6z9bgxqc+bAYxHlnjwUVPQwhqEQIKREIllT8hVTky8J8C4cT5BSsr2wiDKnky72GHoltE3IbNnW/fxv8TrW7z2MBPplJNE1NY7coopmnlRFCExGA1eePiZkf4lJMfULKgB0ifDoASFLzeHlyrOf4U9PXcrpl07A7fTw6hNf4HF5wOerrQ/3491/fEV1aRXX/9/57WLNPYkjg5+9sQBgsZqYe8Fo5l4wGrfby2/vfIud23MDqh4UxZ8MeeaFo/lx7X4G9Esn2hbZCk2Xst4izy2q4Oa/vs/7f74Wm8XE2WMGUeR0sP5QeE4IgFsmjePe06bw3d79lDqcpNtjGN21C98fzKLU6SQjJoYZPXthNgR+rUZFZWpG612uG0qyuPHH19CkXi/F65M6X+VuZlnhLl6ffBM9oo4eJ0DPmNkUubaEaaGQbO6J11sc1lwwKPZW5ScA+LQCHO7mNeSNIaWTaucX2KPmtarv1kIIM5aoa3FWPxt0PFLWyo0DSCdVNW/gcH1DesqXGNT0Th1bR8CsRrdo8PnhN4BdejWlnjxSLK3jIDgW8O3efTyxbBkHysrqtw1PS+PhGdMZnh75d/Xfb3/imU9X+JUqa7ftzS1G1yVd4qMpKqlGUQQCgabrJMVF8cStZ9E9NfQCYNacoSz/3s9Lg/QbCnVovPSorHBw/21v8u/3buXc66YyeuoA7pr7F5xeX8C36PX4+PSVpZQVVHLfC9cdn8m3J3MWfr4wm4387dkr+GD+j3z20TpKS6pBQFy6neIKB+9/ug4+XQdAVIwZo1HB20LVQWM+BU2XFJZVs2D1Ti6YNgyAOUP68fevl4c8XhGCoV3TSIv1JzidPSjQVXjBwEFtudSweO/AWh7f/hm6lM0cLJrUqfa5eXzr562Wq44UUkoOO/dyoHorIOkRNYjutv4BL5Re9jPYVvYWDl9hszCDQMWsxjIs8XbW5ocLBah0jbm41S8qn5ZPy0+5Aa+W06p+2wprzK/weXfgdS+kjvhIgp/hE3AG3KMamlZIafkjpCS+eETG1x4MsE9haUFosi2/MRQoUtVR1StHEl/s3MWvvvyy2fYtBQVc+u57zJ93SUQGw57cYp751C9i1dhbqUtACHJdNdx35XTcTi9en8aAHqlMGpaJ2oJmw/iJfRg2vDtbtxxCd/vvp2BPja5LHA43Tz/6GbPPGMbW5TtxOTxBS86llHz/6TrOv2kG/UdmtnhtxxpO5iz8zGE2G7nimlO4/OrJVFe7+cOjn7BxU3Yz1111lRtpFBBV+5A1mXAktVwKTfIehIBvf9pVbyxkxNu5eNxQ3l+zpdn0U3fknbMmdczFRYDX9v7Ak9u+wWBobijUQZM6q4v3dQr1c4WnmLcP/pXDzr31gkQSnXRLTy7PvJeE2jI5o2Jjdtd/sTTvPsrcuxG1GZ4SjRhjV6Z1+Suxph50i7mcQ1Vv1/cva7O3FVQshmR6xrae20BVInENa6hHiI1RCCMxCf/G61qIy/EWPu82NK0Ar5R4gxo1Gg7nF2haMaqa1Gnj0qWXnOrFFDl/QqKTaBlBt+g5qEpkIZ8aXzk+3cPQ2FlsqVhEUwOtbv6p8plxSSMCsKlGBEcuBLG7opCPD26mwFlJkjma83oMZVB86zw2Hk3jD4sXh1So9Ok6f1qylA8uv6zFvt5bvilsIqMiBEu37+el2y9s1RhVVeHPf5nH03//mu8+D00JD/7v5ceVe1i7aBuUVxKScAFQDQrfvvfjcWks/JzQJvP7+eefJzMzE4vFwvjx41mzJjjRR1PMnz8fIQTnnXdeW057xCGEYPuOHNZvONjMUAD/RK54JaqruTuuzlDQzI3+Fv4SSU1AUUUgE+SDZ09n3vhhKLVqkoZaKz/GYuapy85kYp8j41It9zh4evtihJBhCavqcKC6Y6ly3ZqTV/b/nlynn6xFNjjQKXAd5JV9/4fT10AkFW1M58xu/2N21xcZmnAdQxOuZWbGs5zTYz6xph4ADEz8HX3j70IVMXh0FYc04ZRmaqQBXcmg3L271eM0GrphNo0i/COkEm09q9V9txVCKJisp2NPfAPV9gscUoQwFOqg4fVlddp4Ktx7WHDwTH4qfICDVZ+SXfU564v+wNcHT6fEtTHssdk1m5h/8De8sGcer+6/nh2V35Jgymgofay9LAmU+2w4pQmJgo5Cjabzt133sr96Z6ddG/gN5ofWfclZi17itT0/8tWh7byx7yfOW/xvfr3mY7x6hFogwPcHDlDmCp3EqUvJhrw8DpSWhWxTh+3ZBWGTrnUp2XkoPFNrKFhtJi69bEIApUtoiFrLPPyLRNN0SgtaJtg6JiE76Oc4QKuNhXfffZd77rmHhx9+mPXr1zN8+HDmzJlDYWH4my8rK4vf/OY3TJkypc2DPRpYsGhri3oQqkuiuiSKR0d4dZJSo9FtAs0i6gVVdAPoBoFUQCqCfUVlXPOX+RRV+Cc+o6ry0LmnsfjeX/LAmady64wJ/P3SM1j2uxuZNaRv2PN3JL7O2YpP+l3YkXjmbYaOzWbeULaUMk9BUD5/HZ0qbynryhYHbBdCkGodwfDEXzI88QbSbeMCwgpCKHSLuRypdMNLLWFFLcrc21mRdyvZVc3dvy0hKfZBCPPaTIi5HYN6dHI6hGKjJXEsn4TciqfYcmgQWw71Z1/hlVQ6l3TI+T1aBctzb8St+enEJVp9qMijV7Ei9zYc3rygx+6p+oH3s+8jx7GtfpuOjwrvYaIMdsYknI9BsVOjGSnw2nHJwBIhicSre/j3gb/i1sILurUHz29fzvwD6wHq83rqyMy+yN7KXzd/G3FfOZWVETGu5lS2TN1tMbbsMDa1I6Fw/94IDY067YgWLktVFRJSY9s8nqOJk3TPYfCPf/yDG264geuuu45Bgwbx4osvYrPZePXVV0Meo2kaV1xxBY888gi9evVq14CPNEqKq4J6FeogGv2raKD4YMrI3uiNyhgDNCAaPTzbs/K56e8f4PY2ECelxkZz5aSR3DxjPHOH9cdkOLKRogJnJapQkFK06FlIMEUxNM5fflnpdfB+9jIe3fY2f9n+LksLNuFrxcqqDhvLvyfc20Ui2VC2tNX97iz/D9XeAwSR7wIk64v+iEcLXRMeDDbzRLok/g9VqasqELX/N5Ng/zUJ9t9G1I/Xl4PD/RNub8skNhGPzRJe6MsjBTXSQJVrJbqsQpcOql0rOFB0NfnlT7b7/AerPsWjV4QoWdXRpYv9le812+PTPSzIfRJ/XUPgdyXRcWoVuLRy7uj/P1SlK6HuFYnEqTlYX76y3dcSDA6fh1f3rA65XwJv719HhccZsk1jJFhtLVZDASTYWiYxmjasT1hDX1UEUwb3bLMug9kc2TtJ+Gq/+xYYJzWfzsx5E9o0lpM4cmjVTOTxeFi3bh0PPPBA/TZFUZg5cyarVq0Kedwf//hHUlJSuP7661m+PHQiXx3cbjdud0PtemUE1nRnITnZjqrkhqZIhWbvq6E90imqcbB0/V70OnMsyNOr6ZKsgjIWrt3F2RM7nxVRSsn6olyW52ShSZ2RyV04NaNnQGJTgjmq9qUl0KXfmgz14rmx7zSMisryoq38aeubeHWtlvBJ8HXeT6RbEnhy5I1k2CKPiTt81bTkl3No1WH3N4UuvRyo/LDZ5NO0zaHqL+gd23JMuDGirDPoaVmLw/U9Xu0gihJLlGUmqmJv8ViXZxv55Y/gcDdMaGbjIFLj/o9oy6mtGkdTGAxdibJdQo3jfZoaSJoEZz3dZ+PJ3P97QeUzRFkmEGNpu2ZCTvViwlaKoHO4ehFDEu8K2L6nagVuPbRYm0RnZ+VSpqT8kjJvach24Kdz3l+9k4mJp7Vq7E3h0zWWFe7i+4JdeHQfA+zpJJvicPjCiy55dY2VBfs5o1vzZ9vp9fLZnp2sOOwPcQ5JTsViMODyBWdcFUCvhAQGJrfMAnnuhEH8+5sfqXK5gy50NE3n08Vb2LjlEJfPHs0FU4dFpKZbh5Fje2IwKvi8YTxXUkKdhLXFDB5v0HCEEHDqeWPoP6JHxOc/pnCyGiI4iouL0TSN1NRAHvbU1FR27gweH1yxYgX/+c9/2LhxY8Tnefzxx3nkkUdaM7ROw+mzh/Ld0h1h20i1scsbRg7txsxTBzJ/0Xqe+WRFSIla8CcbLVjT+cZCgaOKG7/9hI3FeajCXzLlkzpdo+28ctoFDEr0r47nZgzhb9sWggRdV0DRUUXgcy4E3NpvBvN6jGd35WH+sOX1evdrXQY+QIG7nHs2vMTrE+7FHKH4VJI5nVJPfsiJXSBINLUuecytleHTwxsYApVKz4FW9Vt/rFCJss5o1TEuz1YOFJ6HlIETjtu7k+yiK+ia+Ap229w2jacOifFPIKUTh/Mz/BUSAtDxSIHfDAx1X6oUV73aLmPBJx0tttGCEC2VenJa5FTQ0ajyRpor075yvDxnOTev/h9ZNcW1HjfJ1zlbUISoTSIM7853680n/61FBVz92YeUupz1oYev9u3G2EI1wn1Tp0RUtWO3WXjpjgu59V8fU1rl8JdPSlnrSRAobr/rO7ugnCfeWMyWfXn84RdzIq4Iioq2cP688bz/ZogFYq2hUH81igIx0eBwgK/hezVZjJx93VSufeDciM57TOJnZCx0an1RVVUVV111Fa+88gpJSZGvLh944AEqKirqfw4dOjqKeQCjR2Uyfmzw0Endd1ynHqkogikT+pKabMegKlx5+hisFlNDY73Jj/QnG1XUdF5cFcDl83Hp1++ypSQfAE1KfLWTe15NFfO+fof8Gr8LPtkSwy/6TK49UqDrKl6fgq4LpBQIqfLsmCu5se90hBC8l/19yPPqUqfAVcb3hZub7avx1bCoYAlvHXyfT3K+JN/lj4OOTZwd1gMgkYxLDO9ibwpVRMI/LzEotlb1C+DxFZJd/i92Ff2WfSV/pML1U0Tu3fyyh0IQOtV+L2X3IVsptd0UirCQkvgSXVK/IzbmVqKjLiM+9ncoxsGEf0Np1LjXtevccaYB9dUpwSBQiTX1a7bdpFjDfv91sBnsdLf1Dis/raPTN7rtZcVeXePG1a9xyOH3YNTlJcja3ASjUUMR4cfaPzZwYVXucnLFpx9Q7vY/87qU6LXlrV6hI0wCS23ose7K4q1Wnj3rLE7rHbng0oCuKXz1h+t55IrZTOjfHXwSxQuqU6I0GfKXP2zn+w37Iu4b4Be3nsbss4YD/vdegJ3h01A8TYwkVcGYGMczC+7jgZd+wUP/vZG3Nz3OLx+64CQh03GCVnkWkpKSUFWVgoKCgO0FBQWkpaU1a79v3z6ysrI4++yz67fpteyDBoOBXbt20TvIA2A2mzGbjw1KWkUR/OrO2Vx3w39wuZq/vAUgdL/B0KtHEvfePidgf/eUOHZkFdSLrTSulkD6qyp7hCFC6Qh8lbWL/RXBXbaalNR4Pby2fT33j/W7vu8aOAOzYuA/e1bg0n34QxKCrtZ4Hh15LmOTMuuPX160NaRCJfg9ASuLtzE7vUGTYHHB97x+cD6a9KEIFSkl7x/+hKlJk7ku83IG2cezvXINTSc0gaBP9AgGx04EwKd78Uo3ZsVWr2ERDCY1hiTLGEpc60NORBINjx7erdwUOZX/Y3/pY9R9swJBbtXrxJrHMyj1RQxKcOEfjy8LRyMtiaCj0Uuodi0hxto6wygYTMaBmGIblEILa5rrhTRFuIk+EvSKvZjs6i9C7pdo9I5tTlbVN+YUvi98Jcy4BEnmTGKNaUxPOZv/ZT0dop1ClCGaEfFtLzn+vmAn2TUlocciwGjQcHub33uqEAyKS2NQXOB78b0dW6l0u4KaalKAVCTnDRnIhPRulDqcZNjtnNozE6Pa+u/DYjJw7oTBbNx+GJMvTCmlInjvu41MG9Un4r5Vg8JvHjqXCy6bwMIvNrJnRx5lRVXk7ysETQt6fb/49Rz6De9Ov+HHH1lWKBwtnoXnn3+ev/3tb+Tn5zN8+HD++c9/Mm5ccLXQxpg/fz6XXXYZ5557Lp988kmrztkqY8FkMjF69GgWL15cX/6o6zqLFy/m9ttvb9Z+wIABbNkSyLD3f//3f1RVVfHMM8/QrVtwbYJjDfPf+xFvU0uZholf8Upuu2kGZ58+ArMp8CMd3bcrOw4UBLSv+13iV3KdNbr5Cqsj8dn+HUFVJOugScnH+7bVGwuKULh1wDSu7j2B5YV7qfa66RGdwJjEHs0mZW8QN2tjSCRurcHI+rFkLa9mvdno3A0r6+XFP2BQVK7N/DVLCz5gVclXOGvzE8yKjQmJpzMjdR65zr0sL3qfPVVrkUhsqp2xCWcwKek8zGpwL8KA+BtYkXdz8DFKP6nProoPSLGOpVt0c4Gtpiiq+Zr9pX9qcq1+VLjXsrPwLoakBU/69fgi8ZQpeHzZEbRrPezW6Tg8GwhdLaFit85s1zkSLMPoF/cLdpe/it+BWXcu/53YI+Y80mxTmx0XZ0pjcOwstld8G5S1USKZnHw1QghGxE0gN/V8FhV8jIJSX0EjEFhUCzf2uh+T0vZqnaUFO1GFCB9GVCSq8OeB1EEVgmiDmb+OPa9Z+4UH9oX36UjJ4oP7+fP0WW0ed1Psyi4MX0qpS/YcblsJtMViZPV3O8g7XIaqKkiDgtS0gHddfFI019w1mzkXhqaSPm5xFMIQdRWJL774IuPHj+fpp59mzpw57Nq1i5SU0BTu7a1IbHWq/T333MM111zDmDFjGDduHE8//TQ1NTVcd52f2Obqq68mIyODxx9/HIvFwpAhQwKOj4uLA2i2/ViFx+NjwcItYR82IQS6R29mKAAcyC1pYAGqL52oy5pvaDNtROdpupeHWMk0RrW3+ao62mhhbkb476lndDr7q/NC0vEqCPrEdAGo9yCEgkSypHA552ecxWlpl3JqyoUUuPwTZoqlG0bFxM7KH3k3+4n69gAOrZJlRe+xu2oN1/b8M2a1eTghxTaO3rFXs7f8fwHbhfAbCl4MgMrW0teQ0sOh6m/w6JXEGHvQy34+CZaGz0FKSXb5cxDSBNMocy2j2rODaNPAZntVJRJPkh5hu9YjIfpyCiv/hS5dNDcY/HdlUkzriaqaYnDC7cSa+rC7/HUqPP6cpmhjD/rGXUVmzPkhY+Sz0u5Elxo7Kr9DoCBQ0NFQhYGZaXfQJ6bBW3BG+jwG2Ueyonghhx0HMComhseNZ0LiDKINLSeZhoNb89KCojMIuKzXGD46uBmHz4NFNXBBj+Hc0H8SGVFxzfsMkcAYeN6W27QGNnPL+UKWIO+uluB2ebnvxtcoLvKHMLU6nRyT0e81VeDuP5zHjDOGoRpO0FDDUTAWGlckArz44ot8+eWXvPrqq9x///1Bj2lckbh8+XLKy8tbPcxW3yHz5s2jqKiIhx56iPz8fEaMGMGCBQvqkx6zs7NRWkjUOZ5QXu7A7Q7/8KqKIC+/OanI/pwSftyUhdrofSwBXZUBrI5rz7OF6gAAkKZJREFUdx3mujNadiG1FX3iEthcnB8yXKAAmfa2TUwXdJvM33a8H3K/BM7sMh6AHGceea6CkG3rsLZ0I7PTpmNQjGTYGowot+bko8P/CBpKkOjku7JYVvQ+s9KuCdqvV/rwYEHBSx1jviYVJA2VAVWerfxY+DvqVsMlrs0cqPqE3vaLGZl0H0IIPFoeDu+uhnPLOrrh2uoRJEKolDgWBTUWLMbBGNVMvNpBQr0pBOYOCUEEg1FNpmfy/zhQdC26dNJgMCiAQo+k57AGGXdrIYSgW8xcusXMxavXABKDiGoxkc6gmDgz4z4mJl3B7qpluLQa4kzpDLRPx6w2F+XKjOpHZlT7vHNVXicfHlrNZ4d/otRdTYI5mlRzcliPnAC62RJ5aORc/m/E6Tg1L1bVGJYvYVhKGtuLC0N6K1QhGJqcGnRfWzFjTD827c0NeR2KIpg5pvWf3/cLt1IY5L0H/pAKisLWjdnMOmdkq/v+OaJp1V+wcPyRqkgMhjYV8d9+++1Bww4AS5cuDXvsa6+91pZTHjVERZnDvjDAv8KNjgr8UvfnlPCLP72DDLI0UTT/MbLeYOjcdNjL+g/n/T1bQ+7XgasGtu2BPj19LKuLd7C8KLB/Bb/s9q/6n0+61U+N7NJbTuRUEDi14LXpWyuW4wnTh0RnXek3TE+5PKjioC69gEALEY9XA5IN66o7/Nv2Vb5PjLE7feMuD8ji90kFLyoBugTomCXoIcYqhCA59j4OltwGCAzozcpTk+x3oobIeWgPfHoV1Z5dgJF+ad9R4fyMKtcypPQRbR5HQvQVmAwdLy5lbIPyZoK5KxPMl3f4WOrg0zUW5W/kg0Mr2F2VW5ts6E/kzXWWkesoR28hd+Oynn5+AEUIoiIgKLtyyHDe2haaKlmTkmuGdezkevbkQbz25RoqapzNPKSKEJiNBi6Z0fpz/vDdDkRtpUUwaJrO8m+3c/dDx3G1QwvoyJyFpmH5hx9+mD/84Q8B245URWIwnNSGaAFRUWbGje3FT+sOhCRn0jTJjGmBK7Gn3/kelyd4QqQEhAZSSISiMLp/5+ZujE7J4OoBI3l954Zm+xQhmJDWjQt6t610UxUKfxh6NZ8dXsWHh5Zz2FkMwMj4PlzWYzpjEhtWLCnm5IDYcjBo6HSxNk+WBSh0H2yxrM6l11DtKyfO1LwePcE8iL180my7P0okMbbgENtZ/jp9YudhVrugCCse3Y0HA830ChC4ABlEyVJKHwcrXiCn8nV8uj+/QiCxCI0o4UYRJpLsd5Jkv6vZse2BpjvYW/Y38qo+QMcfclJFFF3tV9Az+TUU0bFMnMc63JqXeze+yrqywCoApfbtr+kKCDCrOm5NQUXUSXPVm4WTkvtycY+xrTrvwKRkHpg4lcdXLQvIh1CEX2L+qiHDmdGjY4nrYmwWXvjtRdzx1EcUllWj1i5SNF0SbTPzjzvOJT2p9SEbp9PbYuWPpwWv7HGPDgxDHDp0CLu94XvoiCT/tlYkBsNJYyECXHPVZNauzwqqlyCE4NSp/enZs2FyKiyr4setWWHdl+C3KE0GlXNP6XxCpj9OnEmvuARe2ryGPIc/xmg3mblqwEjuHDEJUxuyreugCoXzu03mvK6TcOteVKFgVJrfWnZjDGMSRrC2dGNQg0EgiDZEMTJuWNDzGCOUkTaGSGrLjJnNhpJn8OoOqA9DCLxSxSR89ey0oeDSiqjyHsRu6kVK1Pnsr3qfwGSUhisBKHCspFd8w6Qvpc72onsodnxD4zeMROCUBjzSSo+4u0mIuapD5Xp16WFDwS+odG+icY6CJms4WPEKNZ59DE157rhUamwrXt2/iA1l+wO21X3kUoKq6Gi6gqLomJAMi+3NulL/M51hi+fyzIlckjkOo9L65+amUWPpl5DIyxvXsjrnEBIYnJTC9cNHc26/AZ0i1dw7I4lPn7iepRv2smZHNlKXDOvThdlj+2OJIKchGHr1S2Xzuix0LbjxL4SgR6+WSaROwg+73R5gLATDkapIDIaTxkIEGDigC4//6SIe+8sXlFc4UFUFXfeTnMyeOZh77gosl8wvqWrR2JT4J9knbz2bRHvrXbSthRCC6waN5uoBIzlYVY5P1+lhj8OsdtwtIITAogafqAtdZXydt5o8B1R7bajCjUn11r+gldq8gZt6XYchiKEB0N8+nhXFH4Y+P4IMa1+iDLFB9xsUK1PSnmBp3j1IqaNJHa9s3cter63esJlHQtUHYdtWerZS480iypgJQKlzGcWOBSHba3jZW/5XChwLGZH2XwxtcN0HQ371p1S6m3uV/JAUOxdT4lxOkq19rJHHC9yal48Pr0IPlS/SZK5WFcllvcby4oRr8UkNi2Js94Q+PbMX0zN71fMsGI5AnpfRoDJrbH9mje3fIf2dedEYPnordJxcSsk5l47vkHMdqzjSpZNHsyLxpLEQIcaO6cn779zKqtX7OJhdjMVq4pSJfUlLaz4xxUa1LL8rgJvOncCkIZkdP9gwUBWFXrGRyCt3HL7KXcUzu/1JkDqyNp/BjOozEmdyoiqSgfZ+XNj1HPrHhBbN6mrtRw/bILIdO0MkOUqmJF8SdixptnHM7fYGO8veYWfF1zR4GBRaWlgbhI0Yo//h8upVBJYEBofLl19vLORVzcfPpBg8jFLntSp3b2F93rUMSPoDdnP7vU45Ve8SunIDQCW3+r2fjbGQ7SjCobnDtvF7mSRS+o0Cv7dMxdhO/ommUISISEDqWETXHkn88lez+fdTC1EU0RCmrZW/mTh9ADNriZtOWByFaoijVZF40lhoBQwGlSmn9GMK4TOHu6fF06dbEvsOF4cUYzKoChdMO8EfJGBD2R6e2h0oGFS3opPSgEoGz428i3hTXIt9CSGY1/13vH3wUQ47d6KgUpsqikAwt8uN9Le3HEOONfVkeNKtbKv4qn6bhoIuRW0lQ7CjFHrZL0BV/IagWU2kJUOhoZ0fTt9BQhkK/uujlrxLUuHZyo+5FxFnGcvwlKcxqW038Fy+w7TE2Oj0dg6nw7GIcKyPwWAQCiPje3bSaI5vXHz1ZLp2T+S911awfZOfPyStSxznXT6Bcy4Zh6r+fEJbRwpHqyLxpLHQCRBCcPvFU/jVPz4OHtIGTp8wgLiYSGiIgyOnvJLCqmqSom10i48L2FdQXU1uZSVxFis9EzqXHbIlvJv9bcikRh2dQnc52yqyOSU5LqL+bIYYru/1BFk1W9le+QMe3UmSuSsj42cSbYisDwB3M4VJgVM3YVPcQXIXBEmWYQxOaCB1SrZNQxVWNBlKVVAQbexHlLGBFc+gxBFuhV9Hx9H4hqlwrWdd/vWM7/I+imjb42pU4/HqZWFaKJjU9iU/HU/IjEoh1hhFhTe0YJUQIHU/y8PZGWOIM3V+qPB4xcRpA5g4bQAupwfNp2OLNndK3sUxiaOkDXE0KhJPGgudBK9X8y88g1RHCmD5+n243N5WJxdtyc3nLwuXsfZgTv22YRlp3DtrCnHRVv685HuWZzUkVw5MTua3U0/h1J5HfmXk0zXWl+0O+yyoQmF1yTZOSQ6e1BgMQgh6Rg+lZ/TQNo/NZkhEwYBOQ7a2jkKNbsYkNAz4EIDFkMzg+OvJtJ+L2qhiwKBE0Tf+V+wsfTzYCAFB/8TfBrw0U6PPpbIFzQW9iWUp0aj27KTI8R2pUW3jXUiPPp99Zf8g9FtJJy366Ja3VXrLWFu2nKzqPShCoYu1O+MTpxNr7PiQmUFRmdd9Cq/sWxCcdrl+o2BcYh9+NeCsDh/DiQiL9edVUQN1T3r7+zgecNJY6CS8+dXahtKoIG+kyho3C1fv5JxTI5/wNh7O4+rX3senB67St+YWcNUb76NGq3ia8LLvLCri+g8/5rlzzuL0fh1LK+3VNTaWHqba6yIzOpGeMYGrU00G54hvDClli5TRnQGjYqNnzGnsr/q2nksBQKLglgpuaUTBwDnd3sWiBk+Y7BF7FUKo7Cp9hhrNhVZb2BlrSGBI8h9IsgbqEqRGncOhin/XhgUCv8O6CaqpseCHQkHN1202FrpEz+Nw5dt4tMKAa/VDJcrYm9SoM9rUd3tR4i7kk5xX2VHVkIApJWyu+JFv8j/kkm43MD6xZfrt1uKKzGkcqM5nUcFGVKGgSb3e52NWjIyO78+F3ScwLrFPWN2RkziJnwt+1saCs8aNs8ZNTJwNYxvoTkPBp+ls3pMLhLYaFUWwdvuhVhkLj3y5GJ+uozdJhNClxGeUeIJQydZFQR5c+C0zevduV4lkfZ9S8m7WOv65Yyml7gZX7qiEbjw84kz61SrtmRQjXSxJ5LqKQ/cF9I05Ohoho5Nu4LBjNR6tOsgkCmOTbw1pKID/c6jSBAU+G5qsk4CW1HgVunhKSW7COq0qNkakvcm2wjuo8myqN6TqJilfLf9jc+h4teBMeZHAqMYyKv0tthXeTaVnE43dXQmWCQxKfvKo8CyUuAt5ds/vqGkWEvJzT0g05h96iQRTMn1jOpYeXhUKDw25jDO6jOGznB855CjGbrQxO20UM9OGh6zq+TnB7fayZOkOvluyncoqF927JXLmGcMZNrTbzyfM0BKOUhjiaOBnaSzs3nyIt55dyE9LdiKlxGIzMfvicVx2+0ziEqPbf4IIJIqRRCRlXIed+UXsyA8u9iKFJFwFoATKXS6+27evQ7wL/9nzA3/f9m2z7RvLDnP5sld5b9oN9IpJQgjB+V2n8K+9H4d8HgxCZXZaZMQ2Ht3L+rINFLmLiTJEMSZ+FHZj21kOo41pnN3tZX4sepZDNT9Q99RGG9IZlXQ9feynhz1+Z8UHrC3+Z6Mt/uN90snqor+hKmb62ANX7GZDGqO6vE+pYyU7iu/Foxfhk0qtzkXwF7BAxVZbUdFWWA0ZjOnyHpXurVS4NyBQiLdMIMrUeZokLeGLvDdx1AqFNYYQtdUI+JMRFxd+1uHGgv88grGJ/Rib2LlCbuHg9vlYvHc/BdXVJNlsnNanNzZT23gPOhLFxVXc89t3OHy4tJ6lcd++Ar5dvI25pw/j13fPRVFOGgxHS3XyaOBnZyysX76bh6//j19Dvnaydjk8fPHmD6z+dhtPfXQHCcntE6AxGFQGZKaw62BRSINASsnwfhkR93moLPTKUoZ5ZuvOrghYlnWQWX36oLYjU7bM7eCZ7d8F3adLiUvz8vT273h2vL+E8ewuk1lftptVJdsCUvtU/BPk/QOvwG5sOXlsdcka/nvgDRyasz5h8vWst5ibNoeLu53fZlex3ZTBrIy/4PAVU+k5jFGJIsHcu0WCIk13s6EktJQywPriF+gVMztoYmKCbTITuy2hsOYb9pf/ixpvVsh+JBpdYy6O6Hpagt08BLu59ROvJr3kObbh0Z3Em7sRb+rarnHU+CrZWvFTSAGyuoWrLnV2VW3Gp/tC8m8cr/hwyzYe/e57qtzuegZHq9HIb6ZO5prR7ad8zsov5cOlm/hpxyGEgAmDM7lo2nAykkN7y8D/bnr4kY/Jyyur/xv8TLUAXy/YTI/uiVxy8YnNoRARTnoWTkx4PT7+evdbaJrebBLXNZ3i/Ape/cuX/ObJy9p8Dp9Po7zSyYUzhvPnVxcFbSOEwGYxMnfyoIj7jbOF5m4IZZlKqFM2Qgfmb9vCd1n7+b9Tp3FW/7YRs3x5eEtYyV5NShbn7qTc4yTWaOGQo5R53U5nWGxfFuSvIttRgCpUJicN5eJu0+lvb1nbfkPZJp7f+3L933WVFZrU+SLvawDmdb+wTddTB5shCYsaz4HqjWQ5FmBT7fSOGYNJCf655zjW4NWbr4obw6mVUOjcQpot+Itfk16KPMXkeRQsqBjRgpZtdrdfS8z/t3fe8VFV6R9+zp3JZNI7aQRCQq+h9yZNpKooiCK2VVfdtezuz7K2tbd1XddesSGCiqIgiPTeQ++hpJBGep1yz++PSYaEzEwmIQkB7vP5hDD3nnvumZuZe9/znvf9vp4XXtipPkgp2Z37E1vOfk1ZlaWQKK9uXBXxECGerevVb64p26FWRvVzn/u/VVrQX0a3q18OHOLR3363v65cWiw1m3l+xWp0isItPeufWr140wH+9dkyhMBeDyIp7Szf/rGTV+6dyIiebZ0ee+jQGQ4eSnPZ//wFW7n+ur5aauQVxOXz7XODLSsOkJ/jPF1KtaqsWZTIPU9NwS+gZpljVxQUlvLl95v5ZfleSkpNCKBluD+phYUoHor9C6soAg+9jtcfmoJPHaKHe8ZEEebrQ1aRg/FLzmVeiHObcPA9ziwu5q9LFgPUy2BILy1AJwQWFwaDiuT7U9v4OWUHySU5ABgUPROje/BajwcIMtReebASKSXzk39EVKxiO+K39GVcEzkWvwtYkjhSuIXf0t6hyHIuxdBDMTIsbCb9Q2qWUzapBed34ZBy1bFHyGQtZFnKveSZTgAqpfjgq5ThhclekNSoiyQ28C5a+tXfeL1Qtp79hs3Zc2psP1O6n/mn/sqM2Hfr5WUwOigj7oxgQxgG5cJ18psLVlXl1TWuK//9e+0GbujWBU993W/Rx1Ky+Ndny2wGSFWDS5UIJI998Cvfv3AbLZ2kK+/YebK6yJIDcnKLOZ18ljaxmpzzpeIZuFCuKLPw9LEMdHrXb9lisZJ+OqdO/eYXlHLvY3NZ8OtOSkptRXokkJ1ViGcZdIwOIzTQh+iwAG4a14t5L8+md6e6BfXpFYWHRw12uE8g0JlwbCg4eSY/v2Z1jawKdwjx9KkRYOmI/x1eTkrJuetoUi38nLKT2zd9QqGl9uqTlZwpSyelNNWpoQA2D8O23J1u93k+SUU7WXD6BYosedW2m9UyVmR8xuazNSWmfd2szOis3a6z75FfYSiArT5EoepFptWfsxY/iollUMtlxPjPvGjBZMWWHLZkf+Vwn0TFrJaxOeuLevUd6hlBlDG2VoEkiWBo6NUNdg2sUmXFmf38ecsXTFz1Jrds+JB5J7dQbHGt6NiQ7Eo7Q3qha69UYXk5606cqlf/361MdFrjRGIzwH9Yvcfp8aqqunW9XRkTVwqVMQsX+nMpcEV5FoxeBrc+4EbvukVCf/LtelLT82r0rao2NcC0kzn8/Nmf8axnwZZKrkvoQrnZwmvL11FqNqNTBFZVYtDr+MvwgYQF+/DMHyspNJlqTd7NKi5mU3IyQ1vXzY08oWU33thXM7ixEgUBwlZy+fwrbZWS5OIc5hxfx187upcGWGRx7gk6d06FYjfaOUJKyYr0zypfOWyzNnMuvYKuwbPKbDjcKwFffSRFlnQnxykEGtoQ7FkzeM5kLeZYwWInbniBGYHZksvKM0/RJ/Regjxj6/q2GoTD+StwNW2SWDlauJarrA/hqau7aNH4yBl8euIVx31XTIo7+vVgaNg4h23qilm18Mj2b1mXdcReQj21JJf9eSl8fWIDnw64k3CvAKSU7MlJY3dORUaTVNiTc4Zyi5mOQeHcENedMK/aA6FVKVl3+hRLjx+h1GwmPjiEGzt1JbfUmZBXddxtdz6b9p2sUYq6KlZVsnn/SR68YZjD/Z07R2N1UhyqEh8fT2JaNq1svMbF5YoyFgaM6cLHL/3idL8QEBUbRss6VEorLTPx28r9To0QKaG4xMSqTUe4eoRN57+kzERhcTkBvsY6izLd1LcHk3t04o+Dx0gvsCk4ju3UDj+jzU17dbt2vLZ+HXPcqF2eVVz3B2wLLz9ubzeQT49urLFPQSAE6HXObzQqku9Pb+eBDqPdCkoM9QyptY2KSgvP+rlDs8uTySw/6bKNRZo4UriZboFX2bcJoTCwxaP8kfa3iod+1b+/goKOgS3+z+EMrdCcjCpNLs8pJSQXbSCpaBN9Q++iV8isOryrhqHQkoVAcRlbILFSas2vl7HQyb8nM1v9hR9SPqZcLQOEPZbIU/FibMQNDA0bh66eypXn8/6RVazLtImE2RVAKv48Z0rz+b+d3/Gv7tP466YfOZCXDhJUa2VOhu3fJacP8daetbzSfwLXxTlPez5bWsLti35kb2YGeqHYJc7/u2Uj9/R0L/snOqB+gdbuZFm5atKrZyzR0UGcOVNzAgS2mKvJk3piaMB080sWLcDx8iSqdSgjJvVkzeJEpIMvgZRwy4Nj6+TyzMwupNzkWlRIr1M4mXyW4ynZfLxwE6t3HkNVJXqdwrgBHbnr2oG1RihXxcdgYEoPx8GRRg8PrmnfwS1jIcynfhK2j3QZjZfOg0+ObqDMeu69t/QJpI1/ANvOHndRAQEKzKUUW0z4edRecCvYEET3gK7syz/gUDIawFvnTc+ghDq+CxslbugXCBSKz1uiAIjy6cfY6LfZkf0O2eUH7dtbGLvQJ+yvhBkdF4FShHsGou0hrbAt+xP8PaJp639Vrcc0JN76wFqDEEHgpat/9lCvoCF0DejL3rwtZJsyMCpedA3oS4hneL37dERqSS6fH19X475c+dC0orIrN5lpKz6j0GyyeTas5+4DtmeCrbEqJf/Y/AstfQPo16JmgK6Ukrt++YkDWZkAWGT1a/jezq3EBAWQnlfkcElPABF+vvSPqV/GSe+OMSzbcsixd0FK9FZBSXYp0x/6lLBgPyaO7MqogR3w0NvyrxVF8Nyz1/Hw3+ZSVFRmNxgqUygTerRi9qwh9Rrb5YaWOnkZ89CrN2IyWdi4bK89fkFVJYoQ3Pn4REZMdp2ydOpUNot/TeTUySy8vT3p3rP2aH5VSgpLyrj9X3MxW6z2L5/FqrJ000HWJSbx6dM30TrCdR0Hk8XKyv3H2HXqDDpFMLBdawa3a10j37lXVBQt/f1JLShwarS28PFhYB3Kk1ZFEYI72g0mu7SMBSd2Ua5akFKQX6JS5KkiXVY4tAniGHXue1Rmtr6Rf+1/iXKrqZrBUBn0eHubWzAo9Vvi8feovSaCRMXfw7HnIsK7JxNafUqBKZlSaw7e+lD8PFynxAYYYvHWt6DEkum0jRC2SpgVr0jM+abJjYUO/qPYmPW50/0ChTa+A/DUXZg2iUHxpHewY5d4Q1BqNXHnpk9dxtpICRaznlJzme2TK8HVWp4iBB8c2OTQWNialkpixhmXx3p561Hybf1XHZfA9lB+fuzoeqc4zxjVkyWbDtbcISX6ElBUydmyYqSUpKbns3N/MvOX7GTC4E6sWXeYnNwSIsL9uetPI8g4k8eKFQcoKi4jOiqIyZN6MWZ0F/R6x8IuBbnF/P79NravPYzVotKpV2vGT+9PZKvaPYQazRsh66IMdJEoKCggICCA/Px8/P0vTAOhkuMHUlnzSyLFBaVEtAph9HV9CApzHU3/9Zfr+fyzteh0AqtVolTEDIgQI2apunTthbQOID2/yKFbT6cIEtpH8/7jzssr701O54Evfia7sAR9xU3EoqrEhgXx/u1TaRUSWK39iuPHuXvRz04f2e9MmMg19RRoKrdamLX6G3Zlp9rdq1Xx0FswGh17W3RCYXREZx7rOpGkwkz0io7OAVF41JJDn1qaxtxT89mTv8++LcYrmhtjrichyP26Eo74IukfpJYedjqL9lS8eajD1wihY2/eeracXcbZ8jSMOh8SgobTP2QcPnr3PUMAh/N+YGvW6w73SQlWBCZZPXZmdttFLhUlG4M1Ge+TmFszwFOgoAg9N7T6L0L4YJEWQj3Dm2XWwventvH83kW1tispNdhLUqtWUavBIBBsmvoAFlUS5u2Dh2J7gL64fjVzdu+qNYB4zsTreHv9ZnafSbdv6xAWyuMjhzEktn4pqZUsWJXIq9+stMc1AejLJMLs/B0Js4qHyeYZqcyG6Nm9Ff96bDL+/l61elwP7DzJU3d+Smmxyb4Uouhs1/HhV25k9LW9L+g91YXGeGY46r/bnS+hM9TuIXWF1VTG3k+faLSxNhRXnGehkvjO0cR3dl8UaeWK/Xz+2VrgnDiJqtrm0BSZkN6OL6WiCLp0jGJ7ivOZhlWV7DiUQnJGLjHhNb0LZ/IKufPjHyg1mQGq3YSSz+Zx+4cLWPS32fh42h4uqfkFfLBuK6IcpAfVcl5a+Pjw9IiR9TYUABYkJbIjO8XpfrNFj8GqopwXu6Bgq+JXai1n7IpXsVa4Z/31XoyP7k47vxZ46jwYENqOEM/qhlu0VxT/6PgQOaZcssvP4qv3IdIY0SBR8mMi7+bLE/+HKnFoMIyNvAcQfHniRY4VJdo9GsXWAlZmfMfm7N/4U/zzhBnddxu3D7iOYks6+3O/oupavRC2+hAmWdNTosqmr6ExrMU9GBQjO3IWYK0SZxHgEUWkz0g+OvE2OSabsqhB8aR/8EiuiZyOUVf/iqoNzS8pibX4umzUddokkfT75n1AEOBp5JZOCdyf0J8yB7LrjugYFsYPs24i6WwOGUVFhPh40y4kpEE+01OGdCUi2J/fNh9k97FUpFWSV0sGhtQLVJOtRoZqVlEskj1bT3LtdW8THR3E9df1YdKkng61FQpyi22GQompWsyEWnGvfPPR+cTEt6BD94sj7d5YaMsQGtWQUjL3m412GdoalKvopAXp54GUNk+BBKxWlX4JsfTtH8f2b5wbC5WcPOPYWJi7MZFSk9mhG9WqStLzi1i86xA3DuhOXmkZN335HVlFxShSIMolKDaVRx2CFn7ejI6/MInfucd3urz56oQgRB9Mrsy2GQhCYJEqAQZvPBWFTdlHqwg7SYqtxfyQvKnK8QoTo3vx906T8DxvuSLYEESwoWHLbkd5tWNW7CssS/+AM6VH7dsDPFowKvwOOgUMYXn6XI4X7a4Y8bl3LpGUWgv5+tQrPNT+f27f6IUQ9Aq9n3j/a9ia+V9SSrYCYFF1FcWkqvfjrQvBS9f05caFUBgYdju9gm/gVPF2m4KjoSW78vbxW/rP1dqa1HLWZ//OieLDPND2GTx1thlXqbWUTWe3cLL4FHqhp0dgd7oFdGmyAk25pmK3YsiMej3lFlvooxDS7mVwhDzvIZFfXsb7u7ewPvUk18V1rdWrEGQ0EuJty66JCwkmLqRhMgvyi0r55Nct/LR2L6XltslF7w4t6ds2hs++qxmUXA0hkAoo5RLFUj1ZOS0tl7f/t5zExNM89dSUGgbD8h+3V/MonI+iCH6as45H35x5IW9P4yKiGQtukJdXwokkx3UZKjFY4ZqhXYhoE0pKWi7e3gZGDmpPp3aR/L75kFvn8XaSGbEk8bDL9VYBLN1zhBsHdOfbnXvILCq2txcV8o2VD/eDmVm8snIN3aMi6BEZSZvguj+AThflubz5WqUk3DOIz/vPZHXGYcpVM+38wjlUkMZnx9ZUWbqQ6ByY1Vap8kvKDvJMJbzW8+Ym0RmI9u7AHXH/IavsNPnmDLx0/kR5tUMIBYtqZnP2b061HlRUssvTSCreR7yDstkZZafYl78Zk7WUMGNLugUMxrNi5h1gaMPIqFf56vh1mNViJ+cQdAuaVqsEdWPiqfOlvf8IADLKUlmR+bPDdhKVlNITPL73ASKM8cR6x/NH5mrK1XJ0KCAEKzJXEu0Vxd/aP0yIZ+On37X0Dia5JKfW79Dstv346NCmcxuAc6XYaqKaqxf+UqVkT1YG0ixdHqoIwc3dEuzLiQ1FflEpt780j5Ss6lkMu46ksmt/sns3ewnCUnnvqLK5oru16w7z+/J9jL+6+tLf9jWHXWZhWK0q29a4dx+8pNCyITSqYjG7iu0/h15RmDGlT43tA7rF4qHXYbY47yfA10j3dlEO95WYakmzAwrLbKIyC/fud3hTlFQUmxLwZWIiJNq2D2rViteuGUeEn/vqh74enpRazU73KwgCDF7E+oZxm++5wMBX9v9SLcZBEedc7+ejIlmTeYB9+cl0C6w9iLShCDO2IsxY/XzZ5WmUqa7TTBV0nCo+WM1YMKllzD/9FgcLtqLYEkuxYmVx2qdc2/J+ugfaIsr1iifjol9gScr/oUprlQqYNhMvxqcf3YKdx7M0NZvPrrTX53CElKBSxOHCo+wvOErlY8eKar8xnilN57XDb/Bi1+cavebD9a36sCHrqMs2FouOrPJCOgWGczg/05ZaqUikWmlmV/mQSsAqwFLzYS+R7MnNQKjKOQu9yqGKEPQIj+C+3v0a4J1V56NFm2oYCmAzYtyyM6VEMbn2iAghWLhwRw1joTZdBji3JHFZcQUZC1eUgmN9CQ7xJSjIdZqh1arSoaNjtT5/HyM3jevl8vg7Jg+wpy6dT9vwEBQXs2udImgfYYvqzy2pKeRS1VA4f6azJTmZ6XO/I68OAjBTWndF52I8KpJJraunDapSJbu8ailiWRH57fw8OqHwW9quGv1sPXuINw99z0v75/LtqZXkmVyvxV4o7nk2JOK8r9P80//hUMF2wOZ9sFYYASa1nO9O/4fjRXvtbaO8ezIt9lM6BkzAU/FDER6EeMYxLPwfXB39UoNpDTgdvZQcLzrE6szfWJ+1nLPlzj1p2eXpTg0FsP1NFYHLGiIqKullGezI3eW0TUMxIqIjPYNaO1xClBJUVWBRBUtS9vHuoGlcF9sdD0WHUEDoJHpFsX9tvHUGMOuQ5ZVfKAecqwBe7bcAHuw3gG+m3oCXR8NWliw3W/h53T7nei+KwKpz8X2TEmGRKFbXem5SSk6erPnZ6NyrtS2Y0QmKTqGTG5ljlxqagqNGNXQ6hanX9mbO5+scutoUReDj48nw4c6L/fx52mCKS038sHI3imJbx6/8Yt8+uR8zxjpP2ZwxsAc7Tzov7GJVJTf2t1n6UQH+FJRlVTdWBU7NQquUnCksZG7iHu4b6F4Vudva92V+UiLFlvIaDwSdEMT7hzI2unrdCUUo+Og9q8nq1vYMVqUkp/zcjD6nvID/2/0xx4vS0AnFlgufIfksaSl/63gDV0e6J3ZTV0I9o/HVB1Bkca7JoKJW8yqkl57kYME2p+0FglUZ86sdE2hoxbCIvzEs4m8NM3A3SSs9zZwTb5NRnlqtBkdC4ABmtrrHHntQiVHng4KCWUrUinV9fYVqZyU2BUYH1mkVFBR25O6kf0jj/N0q0QmFYaGd2ZJZEZQrQKeoCCSqVLBabcsJFqlyujiHl/tO4rEeozmUl4leUegaFIleKFikyrMbV7Dg8D6XxlLlbFOotkwAybm4oVb+QQ1uKABk5RVRVovei/BR8Bee5OeXnisDXvlbgq5cQpXy4M7w8Kg5qRk/vT/ff7wGZ9Nk1aoyZbamzXApo3kW3GT6TQPp1cuWzlT1pqjTKej1Op597noMns5tL52i8OjsUfz42h3cOXkAU0d0497rB/Pzm3dxz3WDXc5er+7enlFd4mt8gStfzx7aix6tbV6NGT271RSeUXDp6lKlZP7evc4bnEektz9zR95ClLctjU8nFLunoWdIS74aMRODruYNZWJ0T3RV/KG1RZ8rQhBuDKgYo8qjuz/hZLEtzcwqVVRUJBKLtPLqwXnszHHtaq4vtiqZk5yPE4Vor3hivM9lmOzL34Ti4uslUTlRvJ9ii3sFqRqLHFMWbx99jqzyMxXjOvdH2Z23lY+T3qhhIMf5dqHAoqfQ4kmx1faTbzFSZtXbjAQJJtWxl6wqKiom1fUSW0OwPuM4/zmwBquq2H6sCiazB+VmDyyW6h6CSm2DAIMX/Vu0pndoDJ46PTpFwVOnZ3yb9jVElqohASuIitTLSuVHoQoUq2Dj6frVe6gNL0PtBogEJoztxmN3j6FzfCRhwb50jo/kgZuH0SrAH0XYPBCuDAWdTmHIkJoF6MJbBvPIqzciFFEt+FGp+P8Nd4+g34iLUzm1UZEN9HMJoHkW3MTDQ8dLr07nt8W7+emn7SSfzsFo9GDkVZ25flpfWrWuXdwHIMjfmyAfIzv3nWbf4TROp5zl2tE96OYkXgFsN7A3b57Il+t38tX6XWQW2NzurcOCuGNYH67re87lf133Lvywez/70jOrxy7UMos/W1zi1vgr6RQUzsoJ97E+PYndObaZ/tCIOLoFOy+wNCtuMEtSEym2llekKUrbDdXJ2KxSZVJLW272jpyjHCtKBc7VDbDNam0Lw3oBX5/8g17B7er0PtxlSNgUMsqSScxbY1+vr5yFBxpacHPrR6sZfOVqie11LTeCcrUUHy5ebvWqzMWUW0sdzpQlKkeL9nOkaD8d/LoCkGvKZd7pH7HI840BQZnqgSoFXjozZvt+5wGCNiPL+ee+ITiSn8k9G7/DolodjkNW/CMEeOk86BbkOp16SHQs3UMj2H82o+YyS+VyQ5ntAVl5tqpnXXzwCE8OG4G/8cJy888nJMCHrnGRHDiR7jSQ06pKxvbvSPuYMCaPqh5zMHV0d377Yx+Ll+3h1NFMpIP4gsqP9403OPYEXTWlFzHxLfhpzjq2rj6EalXp1LM1k28dfHkaCoCQEnGBUkUXenxToRkLdUCv1zFpSi8mTXEdf+CM0+m53P/CfLJzbQ97CRw/ncWS9Qe4aXxv/nrzcKceBr1O4Y7hfbhtaG8yC4rQKYJQv5qlnj31eubMnMarK9awcO9BTFb3gjNb+NZdhU8RgmGR8QyLdC8VM8oriE8G3MVjid9xoigLKRWEUO3u0PO5PqYfbf0iANiQvQ+dULCoKlapVFGJtB1oloJtOUkUmIrxN9RPxtoVitAxLeav9Awawbac38kuT8NL50uPwGH0CBqKQal+8w/1jLbrSDjDQ3jip3cvG6XQnM+Ws2s5U5aKp85IQmBf2vl2vuBMka1n17p0qSso7MhZbzcWFp9ZTJHFeYyISepRLQIpFBRxbpnCERLJiBaNp9wI8NnRzajSWR7LueACgeCmuD746F0XkVOEYM746/nT7wvZkZGGXtgCGS2qaosrKhGgOp+dl1ss/HjgALf1qnkPOZWdx7zNu1l35ASqlPSLi2HGgB50jHSv7sndkwfw17cWOh63IhjUNZb2MY778vb25PrJvbl+cm9SU3P5v/+bx5n0fHQ6BSklUkoMBj1PPTmF+HjnUtzturbkH29cvJLqGo2HZiw0EVZV5ZHXfiQnv3rOd6W62re/7SCuZQiTRjgvTgO2L31EoOvMBV9PA89fM4a/jxzKwYws9mdm8PKatc77FILp3V2f1xGHcrL44dg+MkuKCff2ZVq7rrQPcu1haecfwfdD/8qu3FMcyk+j3GpmR+5xtp09bneB++qN3NxmCLfHjbAfV67asi+sUlS5ftXnbhJ45+hinujSOJkDQgja+vWgrV+PWtv2CBzKkrQ5WJwUjBIo9A6+Cg+l9gqnG7NX8d3pz5EV3gwQrMtaTqx3W+5t+3d89O5nslRFSkmZ6jqwVUWl2GILTLVKK+uz17ter0dirViAUZBIewzEucdnpUfmplbTCatnATB3WZZ6sFajTQIjI9vxUBf35LSDjd58P2kmOzJSWX7qGOVWKx2Dw/BRDDz4y5LanHisOXGihrGwfN9R/v7tEiTSfk9Iycnn+617eXrqKHtMkisGdWvDs3eM48Uv/8Bisdof9FZVMqBLa168e4Jb7y86OogvvribDRuOsmH9EZJPZlNcUIqPtyfbNhwlPMyf+HYNW7vjkuUKyobQjIUmYlPiCVIy8pzuF8DXv25j4vCuDaYrEOBlZEBsDP1at2RTcjJrTpyssf6sE4JWgYHclOC+ZLJFVXls/VIWHN1XEYNg6/PDvVuZ2aEHLwwa41LXXghBr+BYegXHAnA7w8koy+d4YToGRU+3wFY1xJjifaNYqm6vJWhO8Hv6Tu6KH0egwQdDI6fkucKo82Fqy3v5PvntakGDYJutBxrCaOPblx9SFmCRFmK8WtEnuC+G84yHA/m7+fb0J/bXVfs5XZLEh8ff5OH2T9frMyOEwF8fRIEl12kbBYXgigd6mbWMcrXcadvzsX02VKK8WlFgLibPnAdAvG8cEyOvqXfxr7pQtdCZM7oGRvHOgOkuM47ORwhBn4iW9Imortr5D91SzC7SCCVwOjefudt3MySuNa2CA0nNzefv3y7BqqoOJxLP/bSCTlEt6BYTUeu4Jg7uwrCEeH7bfJBT6bn4GA2M6tOOjq3r9nDX63W0jApix4ajFBaU2uOLThzP5NefdnLnvSOZMWtwnfq8HNEUHDUanO37T6PXKVic3EgkcOpMLjkFJYQENKwbXRGCd6dM4tU1a5m3e699aUIAo9rG8/yY0fh5uq/p//r2tXx/1Faj4fxZ29zDuwn18uZvvYfWaYzhxgB7MKMjxkb04b2jv9ZqhVukyrXrXgQEXQJacXPscIa36FqnsTQUPYNG4KP3Z2XGfJJLjgDgIQx0CxzC4cJs3jr6lk1/QQis0sq85G+4J+4+ugScG++y9J9qGBuVqKicKD7CieIjxPnWDDpzh8Gho1ia/oNLwakBwSMB8FQ80Qs9Fhey0wKFQI8AfPReRBgjGBY2gq7+3ZBIii3F6BU9Xk0oBR3nF8KxgiynHxudEAxoEVsnQ8EVvaKi2JaS6lwASsLp7DyeW7ISCYzpEE+Mj7+LpRKbN/GbjYm8Mv1qt8bg72Nk+ijn2VXuYCq38PgjcykqLKsWiFypp/DpB6uIjWvBgMGNEyOk0fzQjIUmwmG5WAc4y5O+UDz1ep4edRUPDR7E9tQ0rKpK14hwIusgxgRQYCrn8wM7XD6zP9m3nXu798fHo3YXu7v4e3gzteVg5p/e4PYxB/OTeWL3V9wZN4Y74kc32FjqQnu/XrT360WhOZdytRRffRCvH36F5JJkwPYwrryYpdZS3j72Fk92eoYY7xiKLUUkFR9x2b+Cjj15O+ptLAxvMZ4duRvILs9wuLwwJHQM0d62LCC9omdAyAA2Zm90LsiE5OH2jxDjXb0GgEDg51G/5ZIL4Zb4vjyza4nT/aqU3Bh7YQ/Wqszu2ZMtyU7qplQGQJrP2bwrjiThY9W7VJe0qpLNx0832BjdYfWK/eTmOBciUxTB/G82asbCFbQMoaVONhHd20c59SpUEh7s1+BehfPxNxq5Kj6OMe3a1tlQANiQdoryWoImSyxmNp9Jru8QnTItpm7eikqn7qdJyzlU4LzwVVPg5xFEqGcURwoPc6rklJPsA4lFVXn32Id8kvQlS878Xmu/AjA5iYtwBy+dNw+2f5ZeQYNQOJfh4KPzZXLUTVzf8rZq7SdGTsSgGBymhQoEA0MG1jAULibTYhMYGh7P+SGHlTJL/+g6ili/hiufPLZtW2b3TLCdo5rwRMV5TSCqBH2qUlJicq6Get7hTcbO7SdQFBfCa6pk7+5krJbalRsvZzRRJo0GZ0TfdgQHeJNXUOpwFiGA6eN7ufyCXmyklJSa3XswubNWXFeivILpH9KB7TlHHQatnbus1a+hTigsTN7E411uqPUcKSVZ/JK2nu05h1GlSo/AtkyOHkKcb8Ok+O3I3eFQKrlSm0BFIbk0nbSybFRpJUBvU0N0hhUrUXWodukIX70/s2Lv59qWs0gvTUGveNDSq41DGeZwYziPd3qcj5M+JqX0nAGmEzpGho1kesz0CxpLVaSULEvbz9dJm9iXl4ZOCAaFxXNr/GD6hsa61YeHouP9QdOZc3QzXx3bRkaZLViza1Akd3cYzNjojg02XrDFMjw1ciT9Y2KYs3MXu9PPYDJbwQqKuUKo6Xx0gIuvi04RDIhvWgPMXQ+nKiW1K2poXA5oxkIT4aHX8cbfruUvLy+gtNxs/zIqQqBKych+7Zh+df1SMhublSeS+HTnDralpdpq3QsF1SBB7/yG0rGWrIj68njnady77T0yy/Kq1ZlwlapslSqHC50rYFayLmsPLx74oqK2ge1hfqbsLIvPbOKh9jcwIWrQBY+/TC11GB9gslebBLDFMACUq3qMisWJFoXAoBjoEzwYq1TZnrOb39PXcaYsA1+9D8PD+jOixSB89M5jBPJMhSTmHcKiWojzbUlbv861vodW3q14rstzJBUnkVKagkEx0NW/a4MuM0gpeXnvEr49uRUFgYrEKmFd5lHWZBzhye4TuTHWPeVHg6Lj7g6Duav9IHLLS/BQdPgbGlbnoCpCCMa1a8e4djYXfZcX/uuyCqVVBx4VxoKjj7GqSm4e1HBLJe7QuUtLVv+x3+l+IQRx8S0cqjleUVxByxCasdCEdI6PYO6rs/lh+W5+33SI0jITbVqGMm1MAlf1a98svQpvb9nEW5s3oRPCLkIjpIKuDFSDFWmomV3RN7wl8YEN59qtSqhnAJ/1f5AfkzfyS+pWckyFWKVqK/xjG53D4zwV1wp36aU5vHjgixoei8rXbx1ZQFvflnTwvzB9+whjZI2ARVWC6mRFsFT1wENY0Z/nq1RQkMCs1n9GLwy8cehDtufusXstsspzOFmcwi9pK3iu699oYaz+9zCrZj5J+oHlGRurvee2vq14uP1sWnq7jp4XQhDvG0+874WVO3fGyvRDfHvSVra7qlFY+Rl8Yc9iBoTG0crX/c+ZIgQhxsZd5nNEhL8fKXnOpcJ1ekG/2JZsP2rz1FTGN+kUmyT8k1OuonstmRAWq8q6ncdZl5hEuclCu1ZhTBrWpd7LmmPGd+OTD1ZSXuZ4iURKyXXTG74Y1qWGlg2h0WiEh/hz34yh3DejbuvvF4MdaWm8tdlWstdRUSDFpMOqs1Dph9QJQYCnkVeHuhe1XV/8Pby5LW40t8XZghbfPvwL3ydvdJpPLxCMqCUj4te0DS69EzqhsDB1LY/531LvcQMMDR3GkjO/VttmtetxOzJ0BAVWI0ZpIdTgSYm1CIGgk393xkZMJs63A9+d/oUduTa57qrLGxJJrimf1w99wGs9nrCnV0opeePQHLbk7Knh5UgqSuGxPW/yn56PEeZZ9/LlDcXcpC12j4IjFAHzT23n713G1anfMouFFcnHySwpIszLh1Gt4vHSN3ythqrM6N2NN1ducKms+ODowQRMMPLt5kTWHTmJqkr6xrVk5sAEOkW1cNl/enYBf339B06dyUWnCKSElVuP8NGPG3nyzrFcM6R2b1G18VhUPv1glUNDQQiBlJJrJvdkzHj3060vWzTPgoYGfLUnsZpH4XwEoLfosegseOn13NCuG3/u3p8o36aVL74+ZhA/pWypSD87fwYu8PXwYkJ0zdLhVdmVe9Sl2JBVquzKvfDaE6GeYUxreSMLUr5zmhJZE5uU8r3xjxNuDMND8bCLOZlVM7+dWeUy9fFkSQqHC5Po6G/zAhwqPMHmnN1O2xdbSvkpZQV/ip9Wr/d4IZhUK7+l7GP72ZNODQWwGa97cusWtDr/yF6e37qSAlO53RDx8TDwWJ/h3Nqp8dz8M/v24Oe9B0nKynH4Xbo+oQvdoyMQQvD4pJE8Xoe+LVaVv77+g13DpVrWlVXyr4+WEhHqR0L7llisVgwetd/y3/3vMn79aYfDfVJKZs4ezG1/GtFgejAalwaasaDhlMT0My7LDEuglXcAi2bego/ew6UQU2MS7R3Cv3vewaOJcyi2lldoF9ge8IEGH97sdSf+Ht4u+3Dvod0wjIsYT4ghhF/P/EJKaTKKkLaShC7QCx3hxhZ466u/j9TSDIqtrlUYFRQOFhy1GwtrMrehE4pTT4yKyorMzdwVd32TPhCKzeXctfFrEnNS0Cmy1qqkBsX99fIfj+3nH+t/s7+uNESKzSae2rQcvRDM7JhQn2HXio/BwDezb+SV39ewaO8he/xCgNGT2wf25u7Bfet9nTckJnHqjHNRLZ2EZ9/8lYK8UiwWldAgH64b35MbJvbCy1gztTkrs4Bff9rp1MsmhGDLxmPcfvfIeo33cuRSWUa4UDRjQcMpjipHOmrjb3Bf0Kmx6Bkcx8Jh/+T3M7vYl38KgaBPcFtGhneroQbp8PigdhwvSnPqXdAJhZ6BDZdT3ie4H72D+lJgyafUUsqzB16jyFLs0GhRUBgcMqCGoVBf8swFqLVIIJday7BKFb1ougC2l/YsZU/uuWJh4LzImABGRLinLWFVVV7ettplm1d3rGVau25ufebrQ4CXkZenjOPRscM5kpGNh06hS2QLDPoLuwWv23UcnSIc6rgIi0SUSc4WF9sXuLJzi/nk2w2s2XKU/z03HW+v6gbD+jWHkC4yIaSUHD+aQVpKDlEtgy9o7JcFlWVWL7SPSwBNZ0HDKaPj4u2lpx2hCMGYuLZNOCLX+Og9uTZmAE91nc6TXW/k6qhebhkKABOjBrmcyVqlyrUtG7bokRCCAI9AIrwiuS/+ThQhaugXKCiEeAYzvdV1DvuI9grHpxYjQkWls/85QyfYEIio5avvq/dGX4eZ+4WSU17MouQ99nX9ygJUju6jCgJ/Dy8mxyS41ffWjBQyS50LDAHklZexPu1kXYZcLwK9jPSLbUnPmKgLNhQATGar42eNlOjKKgKSz9ulSsnRE5l8Pn9jjcPSUp17KapSVOS+7LfG5YFmLFzG5BWX8umqbdzwn68Z/8pn/HXOIjYcrlkfwhk3d+uBh07nMOxOEQKDTsfN3Xs07KAvEpFeoTzRaRY6oaCr8rWw1TeAv7abdsGZEK7oHtiVZzo/RkJgN7uAkFHxZGzESJ7v8gQBHo7jQDwUD8ZHjKghOlSJgkIbnxja+8XZt40KH1BrpcmxEU2r+787JxVLNW+HQFXPGQxVJ3D+Bi8+Gngr/h7uyUbnlLlepqlru+aAqkp+33yIPUcdS0sLCy6rqKiqZNHyPZjM1QUetmyoPS5HUQQtwi9eWfXmhCbKpHHJczzjLLe/v4DcknNFYNJyC1i5/zjX9e3Ks9NG15qqGe3vz6eTp3L3Lz9TYq4eGe2l1/Px5KlE1UMFsrkyrEUCbXyjWJS6nm05B1GlJCGwLZOjh9LWL7rRzx/v24a/dXiAMms55Wo5Pjpvh8JI53N9y2vYlXuI48VJ9nLflX9zs5QMD6sejBbvG8Po8IH8kbGpRl8KCsGGAKZGu1eB0RElFhObso5TaC4n1jeEHkEt67UmLxFYVdv7ERV31CktE/hn92vw1ru/9NXSzYBbd9tdbFRV8tzHS/ltw0GnNS2Een6tz5oUl5jIzC6kZaQt6+XYkXTOpOXVev6+/eMJDGr6FNRmiZYNodEckFLW6yZrVVX+/OlP5JecVwSmYi3yx2376BQdxk2DE+z7VFVSbDJh9NDjUWXddmBMK9bf8Se+P7Cfram26PP+LWO4vlNnAoyNJ2xzsYjxbsH97Ry7/JsKo84To879h2FWeT7bzp5FEUa89GZ0QkUiKLXoKbN68Mahn+ke2I4Y73PloO9rexMhhkAWpa2k1HrOpdwrqDP3tZ1BgBsCS2bVwvrMY6SV5BFk8GFYeDvmntjKx0fWU2I9p/QZ5xvKCz2n0CPYuQphj+Bo9EI5z7sAICq8CjbfyX0dRtbJUADoHhpB24AQjuefdXhfFkC0rz/9IppeptpqVflm7S5W7z2OENA1JpKSMhMrdh6loKSM8EA/rh/ajenDE/CpCEj8Ze0+fttwEMBlTQl3qJodceRQ7cJlAENGNqzqpcalgWYsNDNOp+fy7eLtLNt0iNJSE5FhAVw/pgfXj07A6One+vvagydIyy1wul8An6/ZwfSBPcgrLeXT9duZv30vReUm9IrCNd06cPewvsSH2QRvAoxG7uzVmzt79W6It6jRwPycuhmrVDFLPeUmx1/pH5M38GCHqfbXOqEws/UErm85hoOFSZhVM7He0YQZ3QtaW5a2nxf3/EquqcSeAqoXCia7UuE5I/dk0Vlu2/AFc4feSafASIf9BXv6MCmmOz8n73b4ANQJwfDw9kT7BDodU5nFwk/HDjDv0B7SigoI9fLhhg5duaF9N14YNIZbls5HlbJaSqbAFjvy4qCxDVZ50l2W7DjIP79eVk1aefuxVJAgrDb3dFpOAe8s2sjirQf57JHpBPgYmbdsZzXvEXDuRYU7wdvfSPnZMqfnFgLaxIQSFuJLUlImW7Yc59D+VFtSjnTtkWgRHnAhb/uyQqi2nwvt41JAMxaaEfuOpvGXl7/HZLbYvQBpWfm88+06/th8mHf/eSPeDtKdzmd7Ugp6RXEqMSuxLUkcOpPFX777hfT8QvsN2qKqLN57iOUHjvL5bdPoEeP45q7RfNiUfbAWTQKVTWcP8aCDfZ46AwmBdZsprkk/zD+2z7efsTKDwyJVFGFTpKyKTarZytuHVvL+gJud9vvP7leTVJjN7twUuw5CxbOLOL8wXug12emxhaZybl48nz3Z6fZjskqLeW7TSr48sIv5E29i7vjpPLdlJfvOZtiP6xAUxlP9RjIkOrZO1+BC2XjwJI9/udTxTgFSD1hsBoOUklMZubzx/WqemjmapNSz1dtbJYr13Nq3BAKDjYSGBnHoaLrDTAkp4cYJvXjs0e/Yvu2Erf6ItcLSELa/qeB8iwS8vDzo3PXCapFcVmjLEBpNjcWq8th/F1FustSYWUkpOXwyk48WbOChWbXnN7vrmXx31UYyCgprnM+qSsqllb9/v4RlD97RLGWom4pSi5kFJ3fw3ckdpBbn4e9hZEqrHsyK708Lr+YRr1FbGiRgrzVxoUgp+fcB19UwbQ/r6ivmVilZl3GU3PJigjwdr3f7eHjy5bDb+C1lH9+f3EVaaR5hRj+ub92TSTHdMLrIbPnXppXsrzACzhkxNk4X5PHI6sV8dc2NLJ4ym6N5Z8koLiTM24f2gaFNLi5Ubjbz0GeLbC8qT+3gOysVm4cBbN/JpdsP8+DUIdXaCKtEsVQ/XADp6fnIMEl8bAuOJGWg0ymoqqzwSEjuvWUoy35K5FDF0oM0q+d5FBxcEwHX3tgPo7FxFS81mieasdBM2Lgriexc5+ldqir5edVe7r1xSK3LEb3jovly3U6XbcIDfFlz9IRtMuHofFKSklvApqTTDG7butbxX44Um8uZvf4LDuSdASpmq+VFfHZsIwtO7uTrYbfT1j/MdSdNQPfANqSUZjsVWdIJhe4BbRrkXEcKMjhRlO2yTQ0XeQUSOOvCWACb0NKUVj2Y0sr9LJuzpSX8dPSAUwExq5SsSz1FUl4OcYHBtAsMoV0j1S6pDbPVyl3vfE+5yera1w+ggKzSzGJVOZmRS6+OLUk8kopqVREVyQzndyWBrLOFDB0bz723DGXVxsMUl5iIiQpi4uhuJJ/M5rMDKysaS+dLD5WGlJSMGtuVW+8YXp+3fdmi1YbQaHIOnbRZ/1ar81liabmZ1Mx84lqGsDfpDD+v20dqVj6Bfl6MH9CJId3boFMUhneKIzLQj4z8IscBUBIMOgVrLdWmFSE4mpF9xRoLb+z/g4P56TUmfaqUFFnKeHDrfH4ddd9Fl729tuUgfknb4nS/VapcHzPE6f66kGsqqbWNU/U/BKFG3wYZR1X2ZKc7CIysyfaMVOICL66Q0G87DrHnVHrNJ3PV1y4eHnqdjlsm9GHnoRS718EZVlXy6+p9PDBrOP0SYqvt+/Kzdeh0AqtV4iKLtsr4BHfeexU6vZZtXw1NlEmjqdHrdG7pHygKPPf579zx8jx+3bif7YeTWbnzKH9752fuevU7ikrK0esU3rjlGpuhUHVNrcrv5LPOAyArkVLi6YaW/OVIkbmchacSnRf/kZKkwmy2nz3dxCOrSVu/KB5qPxU4pwtR9f/3tZ1I54CG0YiI9Ko9uM2R7aQTgpER7Qk0NIwKZbXz1TpFr2jXDGoZzN+wx7WMtXTyf8Df25POrVowuEccD940vNZARIDSMjP5hTX1I4qKymyGAiDcXDQvKnQeMHmlciXpLGjGQjNhUEKbalHR5yOAqDB//th5jF822urMVwYuVR63/0Q6z3xmC5o6mJJVLeip8n5QGWWtqOBYbqk6w9s3jPv6UuNYYRblqsVlG0UI9uTUrZhRY3FdzGDe7X0/Q8O64qf3wldvZFBoJ97udS8zWjec67h1pW6Ck8+Oo4mWgsCg6Hmw06gGG0dVeraIrLVOhAAGRFz8wLzTWXmuJ5LneRiqvrxlVG97quPM8b2ZMqJbrfUzBDisAREdHYROVyF65YYRpSiCkLDmEaOjcXG4MqeNzZCObcLp3TmGxEMpjqOXgZkT+vLuLxuc9qGqkjWJx0nOyGX/6XS7Zrwzy1WWS3CSsq4IwcTuHYkKvDSEahoavajdjpaSJpVEro1ugbF0C4xt9PP0DmpLYoWRVPU5UykI5Sk8KK1iaHUOjOTZhEm09Xddarm+BHgaubFDN+Yecp52OapVPDH+gY1y/rrg5+VJfomLGXpV496K/Ts8ZWAX7hjXt1rT68b04JeVe512pSiC/j1i8fGqaSxcMyGBBfO32l5UhiXg2FOh0wkGDe2Av797iplXFFo2hMbF4KW/TuLBV3/g0IkM+02i8vfsyf1o1yaMwhLXmuwC2HzgVIWwUmUSmWMUM9x2VW8+37DDlvEgba5ai6oyvH0b/jV5dIO+v0uJ9gHhBBm8Xa7RSyRDWsQ3yXhKLWYWntrNghO7SC8tJNzLj2mxCVwX2wNvfe3ptA1FVmkR7+/fghQeeHhY0OnOfb6kFJhMeu7tPJJeYREUWcpp7RtCe//wRh/XkwNGcDw/h01pp1GEQJXS/rtjcBivDx/f6GNwhwl9OvLx71tdiinpFMHgdq2xWFWiQwKYOqgrXVqH11hG6RAXzpDe8WzclVTDK2lTvRTcft0Ah+do1SqEmTcPYu43G0EIpAKKA9VHRSfw8vbkznu1KpOO0AIcNS4KAX5efPrcTDYlnmD55sMUlZQTEx7IlJHdadMyhF1H3HB5C4HFqjKkUyzfb3Yx6xCCHrGR/GPcMGb07c6Puw6QmpdPoJcXk3p0pFt0RAO+s0sPg6Lj9rYDefPACof7dUIwMCyO+CbIhsgzlXLL6i85WpAJ2My/nPJink9cyrdJO/hq+K0EezZ8LIAjFiTtRkqJKhXKyw0IodqzH6S0VSOYe2wn93V+oEljBIx6D74afwPLTx1l3qG9pBblE+btyw3tuzIhrgOeuuZxq5s+pAffrd9DYWmZQw9iqL83Pz1xG35e7qlUPvfgBF54bykrNx9BUQRKxfff19vIM38ZT9f2UU6PvePOYYSH+zN37iYy0vNRhc1gqDq/6NM3jj//dQzRWoXJK57m8Q3SsKNTFIb0imdIr5oz1rioEDx0CmYXGRNSSjrHRtClTQStQgNJzcl3eFNSpeSOq2xuzZjgQB4cNajh3sRlwp3tB3OqOIcfTu1CJxSsUj03Ww2I4LU+TSML/fSOxRwvzHIY+5ZUmM2TO37lvUE3NslYjhZUT5uUUqmxBp9eWkiZ1YKXvmnz8fWKwvg2HRjfxr3S1ReDED8fPn1gGg99+gvJ2XnoFAWQWFVJ11bhvHnHZLcNBQCjpwcvPDyJ02k5rNl2jLJyM7HRIQzv17aalLMjhBBMnNSTayYkkJx8FrPZSlRUIGdS8yguLicyKpCwFlfmMqTbXEHZEJqxcAkR4GtLkfx10wGHwZA6RdAmMoTu8ZEIIfjgnmu5670fSMstsM/+dIpAVSV/nzKc4V3iHJxFoxJFCJ7vOYnrW/fk+1M7OV2US5CnNxNbduOqyA7olcaPD04vKWBZ6kGni0lWKVmRdpjU4jyXUsgNhZfOw+YxcHGDUxB4NKNYjuZG28hQFj1xG1uOniYxKQ1FEQxo34rusZH19sa0igpm1pR+9TpWUQStW4faX8e3a/xlo8sFbRlC46JSVFzO5p1JFJeUExMVTEKXGLuK4sPTh3PgVAbHU7Or3a8VReDnbeSVeyfabzgtQwL5+bHZ/L77CCv2HqPMZKF9VCjTBnSnVVjgRXhnF46Ukl3pZ9ielopAMKBlDN3CG+/mJoSgZ0gMPUOavsgQ2Eo313YvkUBiTipH887y+aFt7MxORScURkTFc0envnQPaTjJ7jEt2/NdUqLT/TohGBnVtkkMqUsZRREM7NCagR2uTA0TjUuPehkL7777Lq+//jrp6en06NGD//3vf/Tr59iq/fjjj/nyyy/Zt28fAL179+all15y2v5KRlUln83bwLcLt2Iyn1NciQwP4Im/jiehSwx+3kY+e2wGP6zZw49r9pCRU4ifj5FJgzozY1RPQgOri954euiZ1Kczk/p0buq30+CkFOTz519/YX9Wpr3ojyolvSIjeeeaiUT4XoapXW5ONBclHeT35KPohLArGf566iC/nDzA64MmcF1ctwYZzrCIODoFtuBIflYNxcTKcNp7Og1skHM1JRaryspDx1m0+yA5RSW0DA5gWu+u9I2tX3nt5kBpmYn09HyMRg8iwgMu2ffRrLmCsiGEdEcJqArfffcdt956Kx988AH9+/fnrbfeYsGCBRw+fJgWLWqmRt18880MHjyYQYMGYTQaefXVV1m4cCH79+8nOjrarXMWFBQQEBBAfn4+/v6X7xrau3NWM++nbTW2K0Kg0wnee+VmOra9MgMP88vKGP/Nl2QVF9d4SOmEoKV/AItvnoW3x+WlW59dVsTQxf91KuUMIFWBxeTc7a8TglVT7iXGN7DBxnTHmvnsz023p5hapYqnTs+bAyYzLubSKmGcX1rGn774kb2pGfaYlMospPFd2/PatPHodZeOp6SwsIxPv1jL0t/3Ul5uS2Ft3SqEW28exFUjLv1Jgzs09jOjsv9B455D72G8oL4s5jI2Lnu62T/f6mws9O/fn759+/LOO+8AoKoqMTEx/OUvf+Gxxx6r9Xir1UpQUBDvvPMOt956q1vnvBKMhczsQm7404dOU6oURdCnR2v+/cwNTTyy5sHHO7bzyvq1Lo3wF64azcxu3ZtsTI1NmcXC4pOHeH3XajJKikCR6DysCJ206xsoQhAo/MkuLXFaG0EnBH/q3J9HezZc+puUkk2Zp/gj9QjlVgsdA1swtXVX/AwXduO8GNz39c+sPXLC4fUTwJ9H9OcvzSgAuNxk4Y91B1myYh/ZZwtpEerHhNHdGTWkI+UmCw889BXJKTnV4poqw0z+fPdIbrz+8vfqasZCw1OnZQiTycSOHTt4/PHH7dsURWH06NFs2rTJrT5KSkowm80EBztPxSkvL6e8/JyeQEFB7dLElzor1h90uV9VJVt3nSQ3v4SggKZJk2tO/HjwgEtDQQALDx64bIyFzJIiZi79jmP5Z1EQSBRQJRaLDqG3YjBakULSPSiag1k5Tg0FsAVBbs9sWKVJIQSDwmMZFB5b7z5yS0s5mJWFThF0D4/A6yJ4hU6ezWXV4SSn+yXw5aZd/GlYP4zNQPq8sKiMB5/6jqMnMhFCIKUkPbOAxP0pLPxtFwlto2oYCnAuHvXDj1czcngnwkIvwyW7i4Eqa9Zkr08flwB1+vRnZ2djtVoJPy+gLDw8nEOHDrnVx6OPPkpUVBSjRzsX/Hn55Zf517/+VZehXfLk5ZeiKALVWRnICvILSq9IYyGvzLUuvcT28LlcuG/Vz5woyAFAtZtJFfK8Fh0tPYN4pOdQxkZ3pO/3b9fan0czCjgsKC/nhdWr+enQQSyqbXnFx8ODWxN68tDAgRWCYk3DpuOna5Eug6JyEwfSMujV2r1l08bk1XeXcfxUFoC9lkylN/LQ0TMkHUh3KRuPgKW/72XWzObjKbmkuYJiFprUVH7llVeYN28eq1evxmh07rp5/PHHeeSRR+yvCwoKiIm5ONHoTUVYiB9W1XX5N0URhAQ5L+97OdMqIICskmKnyzQ6IYgNCmriUTUOe7PT2Z6Z6rLNibOFfJO4H0x6+rdoxe8pR5y2FcDwKMdKk1JKdmWc4bfjRygym4gPDOa6Dp0J9mocg7TUbGbmgvkczs6u5g0pNpv5YNtWTubl8s6EiU0WjFfbd64SSzOY/WVkFbB28xGnWauqKrGYXb8fISAlNbcRRndlImiA1MkGGUnjUydjITQ0FJ1OR0ZGRrXtGRkZRES4Drx74403eOWVV/jjjz/o3t21q9jT0xNPT/eFSS4HRg/ryLufr8LiRHBJUQRD+7fDz/fSWxNuCGZ26862NOcPUKuU3NS1YSL+Lzbr005Vy2pwhIpk85nTbEw7hdGgA32Ftv95dx4pwajXc0N8ze9coamcPy9dxPqUU7ZARWF74Ly6eS3/GjqKmV16uDXe/LIyEtPPICV0Cw8nxNu5ofHdvr0czMpyOJmSwG9Hj7IpOZlBrRqmSmZtdG8ZWevEzkOn0CEitJZWjc/eg6m16vc4q+9wDoGPz5V1b9VoGOpkLBgMBnr37s2KFSuYOnUqYAtwXLFiBQ888IDT41577TVefPFFli1bRp8+fS5owJcrgf7e3D1rKO/NWVNjn6IIjJ4e3H3L0IswsubBhPYd+OHgfjYmJ9fwLghgTFw8I9tcHiJTqovMh2rtKh5zZWYrqAoYVHsxp6qXKBR/go01H+B/+f1XNqXaSmxbpGp3h6qq5Ik1y2nh48vo2HiklOw4k8Z3+/ZyIi+XIKMXUzp2YljrWN7YsJ75+/dhstpSffWKwpQOHXl6xEj8HBj8c/fscfmedEIwf98+BrVqRbnFgtmq4mPwaDRPQ7focDpHtuBwRpZDpVNFCKYkdCbA6xIw0oVAKhIdwulShNWqMnL4pZWt0qzRFByd88gjjzB79mz69OlDv379eOuttyguLub2228H4NZbbyU6OpqXX34ZgFdffZWnn36auXPnEhsbS3p6OgC+vr74+vo6Pc+VyE1T++Hj5cmn324gJ6/Yvr1bx2j+du8YWkVf2vrsxeUmDqVlIiV0jArD1+j+DEevKHw8aSr/2byRb/bspthsBsDP4MltCQk80G+AXXvhUqdniyiXXgWg+lqpBCwKlFcYDHp5bptZkCyL+PbAHm7qfM67sD87k9WnTzjtXhGCt7dt5KrWcTz+x3IWHNhn93YoQrAiKQlvDw/KLJZqxptFVfnp0EGO5pzluxum46mvfos5U1jociZvlZKDZzK57esf2HjSZshE+vtxa98EZvXriaGB4xmEEDw7aRR3fPw9pWVm231bB1IPKNAxIoxHrx7WoOesL906RdcwBM9HGBSEGYSQNUuFK4Ie3VvRtfPFj724XNAUHF0wffp0srKyePrpp0lPTychIYGlS5fagx5Pnz6NUiWY6v3338dkMjFt2rRq/TzzzDM8++yzFzb6y5DJ43pwzehuHDicRnGJiZZRQcREXdpr8SaLhbeXbWTe5j2UmmwPeU+9jmn9uvHw+CF4GdyLgvfU63lsyDAe7D+QI2fPIgR0CAmt8UC61BkY0Yo4/2BOFeY6NhokoEK1qqJWW9VQyvVQozCp5Pn1q5narpM942BZ0lGXSx2qlOzJyuA/mzaw4IBNUM16XkBdSYXBdj5WKdmTkcFPhw4y/byloUAvL7uh5wjFIjhxJpfTIs++7UxBIa+tXMf6pFN8NGNqgwZA7khK4f6Pf6LcZLbd+MF2bc0wdVAXnpg80u3PZ2MTHubP0P7tWL/1mEPPgaIIRg3txPhhnXn+5UUUFJah1ymoUqKqkn594njysUmaOJNGvaizzsLF4ErQWbhcsaoq9835mQ1HTnH+R00Rgl6xUXzyp+ubNAL+UuBY3lluXDKXPFPZuZl7NU+CrcIjVHgRrJWvnfPW6GuY2qETAC9uWM2cvTsx1xLgF6TzIr/MQVn0Wu4aAlv8wk833Vxt+383beJ/WzY7DlRVQVcKwsn7EMATY4czu18v1yd3k+zCYq558XPKzRaHS1s6ReH7v99CfERIg5yvISgoLOWvT33H8ZNZdi9DZQplx7YRvPXcjfh4e2IyWVi/8SgnTmbhadAzeFA72sQ2foXU5kJT6SwMGfksev0F6ixYyli/6tlm/3y7vKZkGs2OVQeSWH/4pMN9qpRsP5HK0t1HmNSrU9MOrJnTNjCEpVNv5+vDiXx3eI9NlEkCqqjiVaiKa0NBJxRSCvPtr9sFh9RqKBh1evLKypw+vF0hsS05nM+shATm7d1DdklNESmdtfYzfbUtscGMhR8273NoKEDlKo9k7vpEnpo2ql79Z+YU8vPqvexPSkevKAzs3oarB3fCx8tQ7zH7+3nx4as38/vagyz+Yy/ZOUW0CPVj4ujujB7W0V5p0mDQc9WIToD2vWpMhJSIC5xvX+jxTUXzSb7WuCxZsHWvy1gCRQjmb3Ed9Hal0sLbl0d6DmHLjPvoGxKDzqqzGQvVHqm1exTAFjQZaPSyv57UtiM+HganR+qEYExsfL0MhcpRhXrXTPMN9vJi/vQZdK1YthRV2rfw8nHpIpfA6dx8ezDlhbL2QJLTVFwAqypZvd+5YJMrlm08yNRHPuWzn7ewafdJ1icm8doXK7jub59y+GRmfYcMgKenB5PGdOeDV2/m+4/v4b2XZ3LNqK61lqTW0LgQNGNBo1FJOZvv8oasSklKTr7T/ZcSBWVlfL51J9O++JarP/qCB39azJZTyTWWX+rD/0ZPpKVfQDXToNIIG9yyFW0CXMe16BSF8fHt7K+9PDx4c9R4hBDozntAK0LQJjCIxwcNx+sC4kFu6NLF4faYgAAW3jSTRTNv5tmrruLFUaNZefsdDG7VCqUW20QnRINVtDQ7SVOuiqUehsmBpHSe/WApVqtqjy2o/AgUFJfxl1e/p7jUZG9vtaps3H6cNz/8g1ffXcbPy3ZTUmX/+ZhMFg4cTGXv/hSKix0sEWk0HWoD/dSRd999l9jYWIxGI/3792fr1q1O23788ccMHTqUoKAggoKCGD16tMv2ztBMUY1GJcTXm1Nnc11GcAf7OM/L35uczvxNeziYlom3wYPRXdsxpU9nArwbLpUto7CI+Tv2sinpNFJK+rRuyYw+3YkOdH/98PjZHG75ZgFni0vsy/knc3JZcvAIM3t159mxV11QYFmEjx+Lr7+VH4/s5/sj+zlbWkJr/wBmdOrBNXHt2Zhymtm//AA4Die4p2dfQs4TWhoX144FU2fwzo7NrD59Agn4Gzy5qUt37uvVnwBPI9O7duPL3YkuDb7z0QlBTEAA07p0ddmua3i43cMAMLpDW37a61z2XKcIRraLa7Csl4TYKI6kOU6ZrDxfj9Z1L+/97dIdNr0LR2EZqqSgqIylGw5y/egepGfm8/fnfuBUag66imJVv/6xl7c+XkHnthHExYQyengnundpiapKvvxmAz8s3GE3EgwGPRPGd+dPdwzH6wKWNzTqx8VYhvjuu+945JFHqhVzHDdunNNijqtXr+amm26qVsxx7NixdSrmWDHO5r9gogU4Xros2LKXZ3/8w+l+ATw6aTizhtRch35n2UY+WLHFXgEQbBoCQd5efHrPNNo1gFDOqiNJPPjdL5hVm0YBwjazVoTgjevHc3Xn9rX2YVVVRn/wOWcKCp1mFzx/9Shm9GzcuhXLko7y+Krl5JSV2qsneigK9/bqx8P9Brl8yBabTZSYzQQZvarN3EvMZmb9+D2J6WeAc88/RQj8DAa6hIWzKfl0tefi0FateWPc1YT51E1t1KKqTPjwS07n5Dksfy2EYN7s6SS0rPsD3BFJGWeZ+uqXLmM1P773ega0r5tA1Mg//Y+SMucZHwIYlNCGV/46iVv/Oof0zPyaBou0/aPHJgHfJ6E1vh4erNtQU8FRUQSdOkTy5us3YTBo8z9ougDHYUOfbpAAx7XrnnN7rBejmCNongWNRmZiz458uX4np7Jza9wQdYogMtCPa/vUdFcv3X2YD1ZsAah2nJS2ksL3fLKQZY/dgYe+flkUJouVN5ev54uNO6vvUEAVEikkf/thCW3DQmgb5joafvXxE6TkOy92JoBPtuxgekK3Rk1bGxfXjpGt41h5Konk/HwCjEbGtomvFqvgDB8PAz4eNWem3h4ezL3+Bubv38fcvXs4nZ9PgNGT6zp1Zlb3BMJ9fUnOz2dLSgoSSe+oaOLqKbutVxTmzLyeO779kePZOegUWzqoKiUeOh2vT7m6wQwFgLjwEJ6cdhXPf7+ymkFa+f97xvSvYSiUlZv5fcth/th6mKISE3HRIVw7ohtd4s+Ny5kKayUSMJutrNl0lNT0PMeNKjwTFilRgJ27ToHJcb+qKtl/MI1ly/cxaUKCe29eo2FowNoQ5xdMdKRk3FTFHB2hGQsajYqXwYPP757Go/N+Y/OxZNt6e0XKV49Wkbx+0zUOxZk+W73dPjs+H6sqySwoYvm+Y1yT0KHOY7JYVe7/5mfWHztVY59QQQqQFTbIN1sTeWaC62j4zaeS0SuKvSjS+UjgVG4eWcXFtHBDiExVJWn5BVhVSVSgX53SSg06HVfHtau9YR3w1OuZ1SOBWT0SHO6PCQggJiCgQc4VGeDHr3fPYu3xk6w8kkS5xUKniBZc270zgY2gonjjoB60jQjlyzU72XTkFKoq6dkmilnDezG0U5tqbdPPFvDnlxeQmpVvT1s8eCKdRWv3cdO4Xjx003CEEHRqE87eY2ecqigqiqBLfCRrNx+1FY9zVneiylqGtNg+W85MTSHgl8WJmrHQ1DSgguP59Y8caRE1VTFHR2jGgkajE+rnw6d/msax9Gy2JqUggd6x0XSMcpz3XWIycyDVdcS4ThFsOXa6XsbCL7sPOjYUKn9XfP+tqmTNUecqh5W4e6+oVZRRSubv2MsnG7aTnGsL+gz0MnJzvwTuGdoXw2UmPuUMnaIwsl0cI9s5l+/OyC3kj91HKSwtJyY0kFE92mGspwu+V1w0veJcr91KKXnkzZ9IP1tQ8dq2vdIb8e2yncRGBnPtyO5MH9uL3Ud+ddnflJHdePPQctcVIqsNwHXOi5RwxpmXQqPRaEgFx+Tk5GrLEI1RH8ndYo6OuDLuPhrNgrYRobR1I85AdbMSYF2C7qry7dbdLmVzJdgilHU49RZUpXdMFF9s3+WyTZiPN2G+rtfwX/19LXM27az2UMgrLeP9tVvYlZzGhzc3rHrhpYjZauW1H1bz/Ya9SCQ6YfPoeH+3gusGdqVvuxj6tGuJr1fD3mi3H0zmWEq20/0C+GrJNqaO6MZV/dpx7cjuLFy1p5rnQKfYPGVP3jWWyFB/4lqHsi3xpNMAy7rOWP39a19u0mi++Pv71xqz0FTFHB2hpU5qNDt8PA3EhgW5nElZVUlC66h69X8i23V2hgCQtpt739Yta+1vdLt4gr29nK9dSiguLqfIkRJiBXtT05mzaWdl82qoUrIx6TQ/73aeKXCl8NoPq1mwfg+qtNU+qDTmSsrNfL16Fw99uIjRj33IWz+uxdxAegwAW/edsmcrOEICKZn5ZOQUIoTg0dtH8eIDE+gSH4GHXsFo0DO8d1s+fmoGE4baYnQmjeleq2dBVNiqUuc61kURgqvHXB5VVy8pKpchLvTHTaoWc6ykspjjwIEDnR732muv8fzzz7N06dJ6F3PUPAsazQ4hBLOH9uJfP65wuF8RAl+joV5LEGAzRorKneexV351rarkln4JtfbnodOREBrByuIT1WsEV/xfWMFktvJT4gFuHehYfXD+jr3VguzOR2CLn5jWy3U64uVKVn4RHy7ezILNex03qFS+VqDcbOXLP3aQkVfES7ePb5CgUquU1Y1XKRHquYe5qgMUgbUiuFEIwej+HRjd3/lntGVkEPfdNoJ356yuHp9TVd674r+KXqAXCmoV7YZKdIogMNCbyRMTLvRtatSRqp+BC+mjLlysYo6aZ0HDKVJK0rMKOJ2aQ3m581SwxuD6ft3sWRJVRYN0QmDQ63jntin1LvAzoXuHGkJEVREACvxjzFB6xrjnvUg8lYauDBQLtiUMafutlINScenWHHEe/3A8K8e5O7qiu1M5eW6N5XIjNTufm17+hh827XUdeV6hWFX5jF26/TD7T2W4OMB9usVHnstyUCX6MtBX/G0VM+jLwGgVfLlgM5Nue5dxM9/m/ie+ZcX6Qy69BzOm9OHlx6fSqX1VF7KwP4RsNSoERqOBV1+8gV4JrW0tBHYjKC6uBW//5xYCApzrlWhcPkyfPp033niDp59+moSEBBITE2sUczxz5oy9fdVijpGRkfafN954o07n1TwLGg5ZseEQcxZs4kTyWQCMnno6tYukd7dWdGkfRe+urVBqk9u7ABRF8NwNYxjZJZ65G3Zx+Ew2Rg89Y7u3Z+agHkQH1z/6/pYBPZm/bS8lJrPDuAcvg563b5rMkLat3e7Toqq2Z5WlwmBwgMni3C3uZzRUrSHpEJ9mUv2wqXn6q2XkFZeiVvXauIFOEfy0cR9nMvJZsuEAZwuKiQ4LYPKwbvTv0rpOn9+hCXGEBfpwNq8Ypezc9qo9WMtVFq/aD1abF2Lf4TT2HExlw7bjPPngNU7PN6RfW4b0a0tJqYncvGJ++2Mfi5buJr+gFINBz7iRnbnp+n5ERwbRK6E1J05msXOXLXOjS+doOnWM1CpJXiwaMBuiLjzwwAM88MADDvetXr262uuTJ0/WY1A10USZNGowb9F23vlitdMgQAlERQTw3MMT6dS24fLem5L9qRncP3cRGQVFdhEii6rSMSKM926ZQmSAX536u/3z79l6MsVp0KVOCG4b3Ju/jx3qcP9PiQd47KdlTvvXCcGsAT15bNzwOo2rMThbWMKirfs5kpqNp4eeTjEtKC4zYTJbaBsZyvBucQ0WiJmUfpbrn/8SqEhpra0UhrQt+1Q28TcYKM0rt7v5K5d6hveM56X7J9ZJp+PAiXTufvJbVJPqcgjCImvs//u9Y5gyrofb5wIwmS146HWaIVAPmkqUaUTffzaIKNPqbS82++eb5lnQqEbm2ULe+3IN4NxQAEjPKuCBZ+bz+euzaBVVN3GPupCdV8TKHUcpKC4nOiyAkb3bYmyAGXaX6HD+eOROVh9OIjH5DHpFYVDbVvSNbVmvm/MtA3qy+USy0/0SmN7HeQDa+C7teX/tFlLyaqr5KUJgNHgwq3/POo+roVm8/SBPz/29Ss0DycLNtn06BFYpCfb14pXZ19C/Q92UDx1xODnr3ItKz4IzD0PF+kPV4lTFJSYUzmXOVF7btYnH+fDHjTxwo2PjzREdW4ejV8HlgpyUSKX6OrQQMP+X7Uwe271Ony2tMJRGc0KLWdCoxuIVe13O3Cp3qVaJ2Wzhm5/qXpDEHayqyn/mrWbC3z/mjbmr+GTRZp7++DeufuhDlm5umKwAvU5hdOe2/H3cUB4aM5h+bWLqPYu7qmMcswYkAFSTVdYptrqNz08ZQ0xwoNPjPT30fDF7Gu1bhFYcp9g9HqG+3sy59fo61apoDHYeT+GfXy/FYlVRpbRlJFTulNglmnOLS7n/g4UcTL6w6opg+xtVIqiS036+IVvxuupDWgJYHHt6pIQFKxIprUMsjslswWypezSblHA6NZdSFxLQGpcmlbUhLvTnUkAzXTWqcTott9Y2lZM7qypZtu4gj947rsHjF96ev5a5v5+TYrZK2026uMzEUx/9ho/Rk6EJzkV7mhohBI+PH0Gf2JZ8tWkXe1LT0QmFoe1iuW1QL3q2qj1QMiLAjx/vuZntp1LZcPwUVlWle8tIRraPq/bQvFh8+sc2FCEc17+okgEiKySaP/59C2/eOemCztmvQys8dIq9QqSo8B7Iqpej0qOgVvcqYJEuI81Ly80cPJFOr44xzhtVwdOgx8/HSGFxWe2NHaBrxBgfjYvERYpZuBhoxoJGNXy8DBWza9eR+ZWYzVZMZgtGz4YLvsvOL+a7P5yLHAkB7/24niE92jSr9VwhBGM7t2Ns5/rLLQsh6Bvbkr6xtes7NCVmq5UNB0+6vq9V2WdVJav2HKfcbMHzAtzpAT5Gpg3tzrw1ifZzCypkuSv+H+rvQ3Z+sf0YD51CQpsoEvc4XxaqxOKugiK2v82UMd2Zu2ibS4lmYa25jNSpfSSeDfgd0dBoajRjQaMaVw3qwE+/73a6334brHhG+/sa8WzgSnerdhx1qc4oJRxLyeZ0Rh6tI+pXtKixqYwbbk7GzIVgsap1ngCpUlJqMl+QsQDw8LXDyMwrYkXiMXuAYuXv8X068K9bx5GcmcfhlCw89Dr6to8hI7uAW/Z87bJfD51Ch1aOJcedMXNyH1ZuOkxGVoHDVFdhkTZjQaGitoPtOtx8bb86nUfjEqEiRfqC+7gE0IwFjWr07BpDj07R7D2cVmP2dP5nWlEEU8b0aPAHYmFxOYpQ7EsPzigqqZ87uDHZevA0X/2+g60HT6NKSdc2Ecwc3YvRvdtd0oaD0UNPVLA/aTnOq2uej6/RgF8DyC576HW8ftdE9pw4w69bDpJdUExYgA+TB3ShS+twhBDERYYQF3muOmiAj5Fu8ZEcOJHu8KGuKIJrBncmwLduEskBfl589OJM/jtnFSs3Hrb3rQCi1IpismVCSAEYFayK4J5bhjK0f9sLuAIazZWGiDnQYhY0LkmEELzy+LU8/cYvbNtzCiFAlefFPArb+mtEWAAzJ9dPOhRss9U1m4/wyx97ScvIIyjAm/EjutAi0AdrLTUZhIDwkMYJ+CszmUnJyMNDryMmPMjteIx5K3bx+rzV1ZQY9yWl89iHi7lpVE/+Nn34JWswCCG4aVgCb/601vFE6LyNOkVw/aBu6JSGibUQQtAjLooece5LfL/w5wn86cV5ZOcV2z1VlVe/fUwYD95UvzTUoABvnn1wAg/eNpJfl+3hk8/XoFQKcVWOVwKlKo88MJprJ/eu13k0LgEkDRCz0CAjaXQ0Y0GjBn4+Rv7zzA0cTspg/dZj7DmcyqHjGRQVl9sMBZ3CqEEd+OttI/H3q1/xmvJyM4++vJDte0/bi+2cycxn/5EzxEQF4WMwUGIyOfwe6RTBoG5tCA1wXZiprpSWm/noh40sXLXHHiUfEeLP7El9uXak67S3pLSzvDFvNUC1mWzlQ+rbFbvo37kVQ7s3n6DMunLT0AQ2HDjJliOnq/9dHBgKUcH+3DGmb1MOrwaRof588/wsFq7eyy/r9pFbWEpkiD/XjuzOxCGdLzgFN8DPi19+3oniRGtLCJj//TamTOzVqAJmGhpNgWYsaDilQ1w4HeJsEqIWq8qxk5mYzFZaRQUR6H9h0rIffLOOnftsAWjncvZt+9LS84hpGcwRk6mGMJROEXgbDTw0o2HFicpMZu5/eQEHT2ZUW35JP1vAq3NWkJqZz19mDHN6/PerbRUGnUk26xTBdysTL2ljwUOv4517pvLtukS+XZtIWk4BAluWQJnJYm8zsU9HHpw8lECfi18FMcDXi9sm9uO2ie7HDBw9lsH8H7ayYeNRTGYrcbFhXDulF2NHd61WTGrP3mSysgqd9iMlpKfns/9AKt26Nq+AVY0GQsuG0NCojl6n0DHedQlUdykuKWfR8j1OgxitquTk6bM8ft8Yfli3l8Onbfn6QsDg7nE8OH0YrcIbNrBx4co9HDiR7vR7+/WS7Vw9qBPtnATE7TvpeG28Eqsq2X8ivSGGaqe4pJzfNhxk79E0FEXQp3MrRg1o3yCiVc7w0Ou4dWRvZo3oRZnZgl5n04M4lZVHmclMdEhAg8QpXCw2bDrKM88vBMBakdVwLCmT1978ja3bk3jyscl2gyEr27mhUBV322lcgqjUSYLcaR+XAJqxoNHkHDmRSbnJSQGFqpglXz97CymZeeQXlxER7EdebgmLft1FclouZ/OKyTxbSEmpmbAQXyaP7cGUcT3w9jLUeUw/rNjtcu1Qpwh+Xr2Xv996lcP9Bjdkg+siLVwb2/ef5v/+s4jSMhOiwsX92/qDvDNvHf999Drat27RYOdyhBCiWiGv2BbNMyulLhQUlPLcS4vsRkIllZktq9cepmeP3UyeaFPSDA52bxnM3XYaGs2Zi6/0onHF4W45knKTLW6gZYtAOrUO58t5G7n9wTl8/+tONu5I4nBSJrn5pZSbLKScyeP9L9dwz6PfUFBYWucxpWXlu4wzsqqS5AznglXDesThKnZRpwhG9GyYiPiUjDz+9sZPlJbbYjpUVdqXTvKLSnng5e/JL6r9Gkgp2Xs4lRUbD7Nzf7K9vPKVyrI/9mE2OzdihYDvF263v07o3oqQWgyBsFA/unXRliAuV64kBUfNWNBocjrEhbule798xX77Q3Duj1tYuCQRwLGCILalv+TUHP7z0Yo6j6k2b4SiCHy9nReMmTy4Cz5Gz2pSz5UIbDPxGVcl1Hlcjvh+eSIWq9XhkomqSgqLy/h17X6XfWxJPMn0v3zKvU/O4+n//Mpfnp3PdX/+iOXrG0ZK+1Lk8JF0l0GsUkJyyrly7Tqdwn33OPY0VXLfvVdVi3PQuMyojFm40J9LAO1TrNHk+Hh7MnlMd+cNpASr5NjRTLbtPIHJbOHbhdtsu8A2xXNyU7eqklUbD5OTV+xwvzOuHtjJpRyvqkrGDujgdH+grxfvPXwdvhVGR+XwhAAPDx2v/3kicVEhTo93B1WV7Nh7mt9W7Uc1qU5vMlLCmu3HnPazZfdJ/v7Sj6Rl5lfbnp1bzLP/XcKytQcuaJzNASml2x6sSjz0Sq3Lz6IiG6iSq0Z25snHJxEUVD3gNzjIh6eemMyIYR3rNAYNjeaKFrOgcVH48y1DWbhkF9bKYgJV0x4kKCabSt/yVQcwehkoLKoiwFTZ3glWVbL3QArDBzl/uJ/PTVf3YvH6/ZSZLDXEqHSKoG1MGINrqUXRpU0Ev756F0s2H2TLgdNYVZUe8VFMGdKFIL8Lyx7ZmniS197/nfQsmyiSjgrxOA+Qempcj7Jyx+50KSX//XwVEul0QvPfOau5amAHPDzqH2OhqpLEPadJOZOLr4+RAX3a4O3d+IGP27efYMGCLSTuOoWU0KlTFNOm9WPI0Pa1alz06xvH0uX7nO5XFEFCj1boz4s9GTWyMyOGdWTHrpPk5BQTEuxLr56tNY/ClYCWDaGh0bh4enogylWEkEidsJcTtMnl2lz3VlVSUFCK6fx1ZDeEjf714iKuGtqRu+8YTosWtYs3RbcI5N3HbuDRtxeRmVNku9FLiVWV9Ggfzct/meRWMScfo4EbRvTghhE9am3rLrv2J/P3F36oMVMWgM4ssSKQVRIgdIqgUxvHAY6HkzI5lZrj8nz5haVs3XOSwb3j6zXenbtP8epbv5GecU7t0dOg55bpA5g1Y2CjCVN9v2Ar77+/wq7bAXDgQCrPPvsjN07vzz21LBkMGdSe8Bb+ZGcXOsxsUVXJTTf0d3isTqfQr8+lmxarUU80Y0FDo/FpEepHRmYBWB1/WXQ6hYiIANq0CkUR4lyqZS2eBaREtaisXnuQnYmn+ODtW90yGDrHRfDTm3exafdJDpxIx0OvY2D3WDrGhtfn7TkYlmTv/lROnMrC6OlB/z5xBAbW7nF474s19mqOjlDMEmsV74JVlVw3OsFh27N5RW6NNTunbss4lew7mMo/nlpQI6Og3GTh06/WYzJZuWv20Hr17YrjxzN5/31brEpVz1Dl/+d/t4XevdvQp08bp314eOh445XpPPJ/88jKLrQ7uxRFIKXkr/ePoU9v58draFzOaMaCxkVj8vgEPvlyndO1ZatVZeK47oQG+zJkQFs2bDmGVZW2uAVnBoOUNu8Etjz5goISPv58Df981L1SyTpFYUjPOIb0bNhZ4qEjZ3jx9cUkp5yb1et0ClMmJHDfn0bWcG1XknIml4PHatdnEFYQHjaD6p4bBtMh1rFnITjQvTS+kKD6pft9PGctquo8XmDugs1cN7kXwfXs3xk//7QdRYBqlZURpdX2KzrBwh+3uzQWAFpGB/PVZ39i1ZpDbNh0FJPJQtv4cCaM70FUZGCDjlnjMkDTWdDQaHyum9STP1Yf4FTyWYclf6dck0D7tjYhqIfuHs2R4xlkVrqIK7+gVeMdKsoDK+ZzfVmtklVrDvHg/WPw9XWezdCYnDp9locenYfpPG0Jq1Vl4S87KSwq45//mOjw2Jy8EvdOIqFru0humdCHYb2dp2h2jAunVVQQyWdynXoq/H2N9O8R6955q5B9tpDEva7LQqtSsmrdIa5voHoJVqvKvK82sOznXWCVKFQEwepExfJWReVHq+TQoTS3+vT09ODqsd24emy3BhmjxuXLlVRISovA0bhoeHt78r/XZnL1qK7o9ec+igH+Xtx7x3Aeum+MfVtosC8f//tWZl7XjwA/I0gw6BX8vD0Rqq0ssFJ2rupfVaxWlUwXsrwXyvHjmbz932X87ZG5PP3UD/yxfF81w+CrbzdichA4CTYbZ/nKAySdzHLYd1iIb63nF8DT947jo6dnuDQUwJbC+eBtI+3HOeKBW4fXK7gxL792bQedopDnrgFUC1JKXn3+Z774ZI3No1CBALBKhLl6xsiFBGxqaDjkCkqd1DwLGhcVPz8jjz48nvvuGsmJ09l46HW0i29Rwy1vMlnw9zNy96xh3D1rGGazFb1eYf73W/noszUOH8RV8fFp+Eh8KSVzPl/L119tRKdTsFpVhBBsWH+Er77cwBtvziQgwItV6w67HJ9OJ1i+8gD33FGz3kVkiwB6dG7J3kOpTvvwMnowYmB7t8c9oGcbXn10Km9+utKeXQG2aor3zxrG+OFd3O6rKiHBPjVqeZyPVVUJC/WrU79SSs5mFaJKSUionz3LYMfWJFYtd6wnIcAW56FK0Al0OsHgwe5fIw0NjepoxoJGs8DPz0j385TuSktMLPx2M79+v52z2YXoPXQMH92FG28dTGxb25r88KEd+eCT1U77FULQoX0E4W4EONaV5b/v4+uvNgLY1Q8r1+rPnMnln0/M59XXZrihjCjIz3c+235g9nDue3IeoDo0GO6fPQIvY90krgf3jmdgzzh2H0wh82whQQHe9Orayq2MD2cEBfowoE8cW3accGrY6PU6RrqpPSClZPHCnSz4aiNnUm3qmSFhflw7oz/XzxzAkkW70OlEjWBK+/GAsErQgxAKU6/VSkVrNDCqtGdyXVAflwCasaDRLCkpLucf98zh+NEM2+wQsJitrP59H2tXHODFt2+mR+9YIiICGD+uO0t/3+swqE5Kye23Dmnw8UkpmTt3k9OZtNUqOX4sk6SkTDw99ZQ70T2o7CsszPlsu1O7SN55fgZvfLicoycy7dtDg3y455ZhjB9ZP0+Aogh6domp17HOuOeOESTuTabcybLLvbcPx8+N2BEpJe++sZRFC7ZVWy85m1XIp+/8waH9qaSk5To1FMB2mJTg4aHn2X9dR0zMhYliaWjUQEud1NC4uHz10WqSqhgKlVitKqqUvPjYAr5Z8ggeHjoe/stYhIAlS21lohVFYLGoeHsZ+NtD4xzmv1vMVrZtPEp6ai6+/l4MHN4BX79zJZVVVbJrWxJ7dpxESuiW0IreA9uiVKg8ZmcXkXz6rMv3oNMp7NxxkqtHd+WX33Y7nW2rquTqMa6D6bq0j+Tzf9/KsZNZnMnMx9/XSNcOUc1O+KdN61De/ffNvPnucvYdSLVvDwn24c5bhzJhrAvlzirsSzxtMxSgRoEvKWH9yoO0bt8CIYRLpcaAQG8+m3svAQEXJoqloXGloxkLGs2O8jIzSxbudPpwlaokP6+EjasPMXxMFzw8dPzj4fHMumkQa9YdoriknKioIEYM7YjRWLNc86Y1h3jrhUXk5RQjFIFUJR4GPTNuH8LNfxpBWkouzzzyLckns+0P4+/mrCeyZRDPvXkTrdqEobpTdEmAxaJyy4yBrN14hPz8Uofv6ebpA4gMD3Dr2rSNDaNtrOMy2a6wWqwgRIMZFyXF5ZQUleMf5I3BUP02Et+mBe++cTOnks+SdiYPHx9PunSsm2Hz64877HEgjlAUgcVkdWkoCEVw3Y39NENBoxFpiABFzbOgoVEvMtLzKSs1uWyj0yscP5LO8DHnXPAREQFMd6KwV8nOLcf519/n2b/glZ4Ls8nCVx+uprTUzKpl+8jNsYkXVX1YZZzJ4x/3fMFH8+8jNMyPgEBv8l1E9lstKh06RhIW6sd7/5nFW+/8zpbtJ+z7A/y9uGXGAKZN7eNyzGBzy9dV+VBKyZrf9/HjN5s4vD8VIaBLQismTutL246R+Ad4E1BHvYPDe1P4+sNVbNtwFCR4Gj0YN7UXM+4cytGDZ9i06iDlZWZi24YzdmovWvernwrkyeOZLmM9VFVSlFdKy5hgzjhYjlB0CgEBXkyc0qte59fQcAttGUJD4+JhcCPFTUpZY0brDp++vdzlZODHbzYhcbxftdo8Gr8t3MGM24cydWpvvvxivcPZraII/P29GDrUVp8iMjyAV5+/gfSMfE6n5GD01NOpQ5TLdL7CglJ++mYTv/2wnZzsInz9jIyZ3JPrbh1EWC2eCCklH/57KQu/3YyoWDqRqmT/9pPs23bSFgYgoPfAttx63yg6dKu9jPL2jUd55i/f2N5vxVsuLzPzy/wtLF6wFatFRadTkFKyWu7ly/dW8OBTUxg7te4PbG83sle8fT15451ZPP/kD+zfm2JfIlJVSavWITzz0g0EuKGQqaGhUTuasaDR7AiPCqRl6xBST591+lBXrZL+Q+uWCpeafJZjh864bKOqrqWkpZSsXLqXGbcPZcZNA9i3N5kdO05WC3TU6QR6Dz3PPX99DWMgIjyACDeWHPJyinj41k/ISMu1L10UFZbx87zN/PFrIv/+/C5axTlfjtix6TgLv91sG7Mq7ZU8JVXiBSXs2nyc3VuTePH92fTo51y10my28NoTP9RUZ5QSacVWEIzqnhirRfLmswsJiwygZ/+6eRhGjOnC/j3JTj20iiIYObYrIaF+vPXBbRw+mEbizpNIVdK5W0u69WjVaDUoNDTsqJILXka4RLIhmld0lIYGtnTHm+8c5rwWgiJI6NuGdh0j69RvgTtiQG48YIqLywEwGPS89MqNPPTw1bRpE4aHQYe/vxcTJ/Xk40/uoEvX2mfrznjv5cVknMmrEeOgWiXFReW88tgCl+v1vyzYglI1RqDCTX/+u1NVW7GsN576EVV17vbfvPowBXkldS77rAjBd5+urdMxAGMm9CA01A9FV/PvoSgCbx9PJl1/bvmmQ6copt88iBmzBtM9obVmKGg0DVJtmJ9LAM2zoNEsuWp8dzLT8/n8/ZUoQtgL+litKh26RPPkKzfUuc/aXPeArbaETkFaVSg3IyxW22a9Djw9UHQKrWJD7c31eh2TJvdk0uSedR6PM3KyC1m/4oDz7AmrStKRdA7vS6FjN8epj0cOpJ0LwpQ1VS2rIlVJVno+uzYn0XuQYwXI00mZLgMOnaGqksQtSZSXmfF0EGzqDG8fT17/YDZPPjyX1NM56CoUPq0WleAQX557cwYhLtJNNTQ0GhbNWNBotsy4fSgjxnblt593kpqcg4+PJ8PGdKFn3zj7+nRdCG3hT68B8SRuS6omD1wVg0GHqdSMKKwuXSzMVig1ofoamXh97QGJF8LJoxm1KlICHDt4xqmx4FE1nsMNZ4AQkHoq26mxYPQynKv6WQ/MJkudjAWA6JhgPp1/P9s3HyNxu22JoUuPGAYO7WA3HjQ0LipagKOGRvMgIjqI2+8b1WD93fPwOB687WNM5Y5Fg267dySfv/QLFmq67CWgLzUR365hSlY7Q+9mDQMPFwGeg0d24qd5m89VYawFKW0Bg84YOLITH/9nmVvjOp+QMD98/OpXxEtRBP0GtaPfoHb1Ol5Do1HRYhY0NC5PYtuG85/P76Jrz9bVtke2DOLJV28kJzUXtdyMsFjgvDV8W70ByW8VgYONRcduLV0+uMGmIdBroPOgwck39kOv19nX7mu7pek9dPSryNxwRFRMMCOv7m7PrHAXIQSTbuqvxRBoXJ5ohaQ0NC5f4tpF8PpHt3MmJYf0tDz8/L2IaR3CR8/+wJKv1ld/quoUMHhClbS8jb/v4/Z/XNNo4zN4enD9rYP56r2VDvcrimDk+O4uYzAiWwbz/Fs38+zfvqW01GSvxOiMyTP6sfrHrfw6Zx1pJzIxensyfEpvrr3nKlrG2zwpDz0zBZPZwoY/DtgElkRF9ggSVIlQRPXqj0LQtVdrrps1uD6XQUNDoxkhZF3Dmy8CBQUFBAQEkJ+fj79/wxcE0riyUVWVZ2a9z47VB2vISwO2BX0voz1TokV0EF+seaJRx2S1qvzvhUUsXbjTHlhY+bv3wLY89eYMjF61F48qLizjjyW72Z94mpQTWZw8nI6UtvTOyjTIa6b15fSOY+zfctxmJ9lTQBX0HjpemPcAXfufi2VIOpzOmmV7KS4sIzImmFETe5B66izzP1/H1rVHbLUuwgOYfFN/ptw8sF56GBoaF0JjPzMq+x8deQ96pW5F3M7Hopr448yHzf75phkLGlc8O1Yd4MmZ77pu5OEBBls2xOBxXXni7VlNMrajB9L4/eedZKbnExDkw6gJPejeJ7bebv2CvBJWLdlDZnoegUE+DL+6G0u/XMe8t5c5NJSEIvAP8uGrnS+6jJGoxGK2YrFY8TR6IISgvNTEmoXbWL9oB6VFZcR2iuaa24bTpkv900o1NGqjyYyFiLsbxlhI/6jZP980k1/jimf5d5tRdIrreg8WCxg8UK0qk25pOrd6u85RtOsc1WD9+Qd6M2XmAPtri9nKr3PWOvaoUFGH42wRG3/bzfAptZd41nvo7AGa6aezeWzyG6SfyrbX4Ni/+Ri/fLKKWx6bzC2PTm6YN6WhodHoaAGOGlc82Wfyai8MVeGAm3HfKLq5UDq81MhKy6WwFrEqnV7HkcRTdepXVVWeuuG/ZKbkAOdqcFRe569fWcTqH7bWY8QaGs0IVW2Yn0sAzVjQuOIJiQyornboAA+jB0++dyuzH7m6iUbVNLiXpild1rBwxM6VB0g+csapESYUwXf/WVJnRUgNjWbFFZQNoRkLGlc8Y24c4NKzIBTBzIeuZvDYbk04KhtnTmSy4pt1rJy7nszk7AbvPzQykJZtw12qXFstKn1Hd61Tv9tX7EOnd25gSFVyYn8KBRXVPTU0NJo3WsyCxhVPrxGd6DW8I7vWHa6xdq/oFMKig5gwe1iTjikvq4B/3/UBmxfvsGcnCCEYOq0/D39wN76BdSst7QwhBNP/Mo5/P/ilw/2KTqFttxg6963b0ou1Qia79naXhgtWQ8MhV5CCo+ZZ0LjiURSFpz+/h6tnDqouIyyg1/COvLnob/g1Yanj0uIy/n7Vv9j6265qmg9SStb/uJXHxr2I2WRpsPONuqEfMx8ZD2BfjqmU024Z34Jn5txT5+yLDr3b1GowhEQGEqjVd9C4lFFlw/xcAmieBQ0NwNPLwF9fn8mtj05i3+ZjWK0q7RNaE9k6tPaDG5jlX67h1MEUh5KLqlXl8PbjrF2wiVE3D22Q8wkhmPWPiQyb3Jvfvt5AyrF0vP2MDJ3ci4HjergtP12VYVP78uET31GUX+I4JVMIpt4zCkXR5isaGpcC9fqmvvvuu8TGxmI0Gunfvz9bt7qOal6wYAEdO3bEaDTSrVs3lixZUq/Bamg0NoGhfgyZ2JPhU3pfFEMBYOnnq12Wc1AUwdI5qxv8vK07RHLv89N44dsHeOKjuxg6sVe9DAUAg9GDp7+6H4OnvlrwaKVcdN+x3bj2vjENMm4NjYuFlGqD/FwK1NlY+O6773jkkUd45pln2LlzJz169GDcuHFkZmY6bL9x40Zuuukm7rzzTnbt2sXUqVOZOnUq+/btu+DBa2hcjuSk5bpcxlRVydnUnKYbUD3pNrg97617lmtuG45/sC8GLw/iu8Xw8P9u45mv70fvoTk2NS5xZAMsQVwiMQt1VnDs378/ffv25Z133gFs+dQxMTH85S9/4bHHHqvRfvr06RQXF/Prr7/atw0YMICEhAQ++OADt86pKThqXEk8MOAJjmxPcppWqOgUel7VlVeW/rOJR6ahcWnQVAqOowJmoRcXqOAoTazI/6rZP9/q5FkwmUzs2LGD0aNHn+tAURg9ejSbNm1yeMymTZuqtQcYN26c0/YA5eXlFBQUVPvR0LhSuObOUS71B1SrytW3j2zCEWloaFzp1MlYyM7Oxmq1Eh4eXm17eHg46enpDo9JT0+vU3uAl19+mYCAAPtPTExMXYapoXFJM+qWobTt2cahUJSiU+g6pCNDrut3EUamoaFRDU3B8eLy+OOPk5+fb/9JTk6+2EPS0GgyPL0MvP7HUwy/cWA1g0Gn1zH21uG8tORxbb1fQ6M5cAUpONbpjhMaGopOpyMjI6Pa9oyMDCIiIhweExERUaf2AJ6ennh6etZlaBoalxW+gT488fVfufeNWzm05SgIQeeB7QkMa75rmhoaGpcvdfIsGAwGevfuzYoVK+zbVFVlxYoVDBw40OExAwcOrNYeYPny5U7ba2honCM4IpBBU/oyaHIfzVDQ0GhmSFVtkJ9LgTr7Mh955BFmz55Nnz596NevH2+99RbFxcXcfvvtANx6661ER0fz8ssvA/Dggw8yfPhw/v3vfzNhwgTmzZvH9u3b+eijjxr2nWhoaGhoaDQlUuJQPa3OfTR/6mwsTJ8+naysLJ5++mnS09NJSEhg6dKl9iDG06dPV1NlGzRoEHPnzuXJJ5/kiSeeoF27dvz000907Vq3wjQaGhoaGhoaF4c66yxcDDSdBQ0NDQ0Nd2kqnYWrPG9sEJ2FleXzm/3zTQup1tDQ0NDQqA9SAhcYc9D85+tAM02d1NDQ0NDQ0Gg+aJ4FDQ0NDQ2NeiBViRQX5hm4BCIBAM1Y0NDQ0NDQqB9S5cKXIS7T1EkNDQ0NDQ2NK8uzoMUsaGhoaGhoaLjkkvAsVFpeWvVJDQ0NDY3aqHxWNPas3SLLL3gZwYK5gUbTuFwSxkJhYSGAVn1SQ0NDQ8NtCgsLCQgIaPB+DQYDERERrE9f0iD9RUREYDBcmF5DY3NJiDKpqkpaWhp+fn4IIWrsLygoICYmhuTk5GYtatEc0K6Ve2jXyX20a+U+2rVynwu5VlJKCgsLiYqKqqYo3JCUlZVhMpkapC+DwYDRaGyQvhqLS8KzoCgKLVu2rLWdv7+/9gV0E+1auYd2ndxHu1buo10r96nvtWoMj0JVjEZjs3/ANyRagKOGhoaGhoaGSzRjQUNDQ0NDQ8Mll4Wx4OnpyTPPPIOnp+fFHkqzR7tW7qFdJ/fRrpX7aNfKfbRr1by4JAIcNTQ0NDQ0NC4el4VnQUNDQ0NDQ6Px0IwFDQ0NDQ0NDZdoxoKGhoaGhoaGSzRjQUNDQ0NDQ8MlmrGgoaGhoaGh4ZJLxlh49913iY2NxWg00r9/f7Zu3eqy/YIFC+jYsSNGo5Fu3bqxZEnDaHhfCtTlWn388ccMHTqUoKAggoKCGD16dK3X9nKhrp+pSubNm4cQgqlTpzbuAJsRdb1WeXl53H///URGRuLp6Un79u2vmO9gXa/VW2+9RYcOHfDy8iImJoaHH36YsrKyJhrtxWHt2rVMmjSJqKgohBD89NNPtR6zevVqevXqhaenJ23btmXOnDmNPk6NKshLgHnz5kmDwSA/++wzuX//fvmnP/1JBgYGyoyMDIftN2zYIHU6nXzttdfkgQMH5JNPPik9PDzk3r17m3jkTU9dr9XMmTPlu+++K3ft2iUPHjwob7vtNhkQECBTUlKaeORNS12vUyUnTpyQ0dHRcujQoXLKlClNM9iLTF2vVXl5uezTp4+85ppr5Pr16+WJEyfk6tWrZWJiYhOPvOmp67X65ptvpKenp/zmm2/kiRMn5LJly2RkZKR8+OGHm3jkTcuSJUvkP//5T/njjz9KQC5cuNBl+6SkJOnt7S0feeQReeDAAfm///1P6nQ6uXTp0qYZsIa8JIyFfv36yfvvv9/+2mq1yqioKPnyyy87bH/jjTfKCRMmVNvWv39/ec899zTqOJsDdb1W52OxWKSfn5/84osvGmuIzYL6XCeLxSIHDRokP/nkEzl79uwrxlio67V6//33ZVxcnDSZTE01xGZDXa/V/fffL6+66qpq2x555BE5ePDgRh1nc8IdY+H//u//ZJcuXaptmz59uhw3blwjjkyjKs1+GcJkMrFjxw5Gjx5t36YoCqNHj2bTpk0Oj9m0aVO19gDjxo1z2v5yoT7X6nxKSkowm80EBwc31jAvOvW9Ts899xwtWrTgzjvvbIphNgvqc60WLVrEwIEDuf/++wkPD6dr16689NJLWK3Wphr2RaE+12rQoEHs2LHDvlSRlJTEkiVLuOaaa5pkzJcKV+o9vTnR7KtOZmdnY7VaCQ8Pr7Y9PDycQ4cOOTwmPT3dYfv09PRGG2dzoD7X6nweffRRoqKianwxLyfqc53Wr1/Pp59+SmJiYhOMsPlQn2uVlJTEypUrufnmm1myZAnHjh3jvvvuw2w288wzzzTFsC8K9blWM2fOJDs7myFDhiClxGKxcO+99/LEE080xZAvGZzd0wsKCigtLcXLy+sijezKodl7FjSajldeeYV58+axcOHCK6r0am0UFhYya9YsPv74Y0JDQy/2cJo9qqrSokULPvroI3r37s306dP55z//yQcffHCxh9bsWL16NS+99BLvvfceO3fu5Mcff2Tx4sU8//zzF3toGhrVaPaehdDQUHQ6HRkZGdW2Z2RkEBER4fCYiIiIOrW/XKjPtarkjTfe4JVXXuGPP/6ge/fujTnMi05dr9Px48c5efIkkyZNsm9TVRUAvV7P4cOHiY+Pb9xBXyTq85mKjIzEw8MDnU5n39apUyfS09MxmUwYDIZGHfPFoj7X6qmnnmLWrFncddddAHTr1o3i4mLuvvtu/vnPf6Io2nwOnN/T/f39Na9CE9HsP4kGg4HevXuzYsUK+zZVVVmxYgUDBw50eMzAgQOrtQdYvny50/aXC/W5VgCvvfYazz//PEuXLqVPnz5NMdSLSl2vU8eOHdm7dy+JiYn2n8mTJzNy5EgSExOJiYlpyuE3KfX5TA0ePJhjx47ZDSqAI0eOEBkZedkaClC/a1VSUlLDIKg0sqRW48/OlXpPb1Zc7AhLd5g3b5709PSUc+bMkQcOHJB33323DAwMlOnp6VJKKWfNmiUfe+wxe/sNGzZIvV4v33jjDXnw4EH5zDPPXFGpk3W5Vq+88oo0GAzy+++/l2fOnLH/FBYWXqy30CTU9Tqdz5WUDVHXa3X69Gnp5+cnH3jgAXn48GH566+/yhYtWsgXXnjhYr2FJqOu1+qZZ56Rfn5+8ttvv5VJSUny999/l/Hx8fLGG2+8WG+hSSgsLJS7du2Su3btkoB888035a5du+SpU6eklFI+9thjctasWfb2lamT//jHP+TBgwflu+++q6VONjGXhLEgpZT/+9//ZKtWraTBYJD9+vWTmzdvtu8bPny4nD17drX28+fPl+3bt5cGg0F26dJFLl68uIlHfPGoy7Vq3bq1BGr8PPPMM00/8Camrp+pqlxJxoKUdb9WGzdulP3795eenp4yLi5Ovvjii9JisTTxqC8OdblWZrNZPvvsszI+Pl4ajUYZExMj77vvPpmbm9v0A29CVq1a5fC+U3ltZs+eLYcPH17jmISEBGkwGGRcXJz8/PPPm3zcVzJCSs3XpaGhoaGhoeGcZh+zoKGhoaGhoXFx0YwFDQ0NDQ0NDZdoxoKGhoaGhoaGSzRjQUNDQ0NDQ8MlmrGgoaGhoaGh4RLNWNDQ0NDQ0NBwiWYsaGhoaGhoaLhEMxY0NDQ0NDQ0XKIZCxoaGhoaGhou0YwFDQ0NDQ0NDZdoxoKGhoaGhoaGS/4fFTwxMtPVZrwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# create inputs\n", "def circle_grid(N=100):\n", @@ -596,40 +701,27 @@ "plt.scatter(grid[:, 0], grid[:, 1], c=input_data[0, 0, :, -1])\n", "plt.colorbar()\n", "plt.show()\n" - ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAAEICAYAAACK8ZV4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAADxu0lEQVR4nOydd3wUZfrAv+/MbEtvkAABQu9NEKQpiiio2HvvXe/0mufp2U+989Sz9947iIqgNOm9ht7TIL1tm/L+/thN2ewGEggS/e3Xz0p2dso7s7PPPO9ThZSSKFGiRIlydFGO9gCiRIkSJUpUGEeJEiVKqyAqjKNEiRKlFRAVxlGiRInSCogK4yhRokRpBUSFcZQoUaK0AqLC+AgihPhBCHFVS6/7W0QIIYUQ3Y/g/u8VQrxxgM+vFkLMP1LHPxoIIV4RQtx/tMcRpWWICuMGCCGq6r0sIYSn3vvLmrMvKeUkKeW7Lb1ulHCklP+SUl4PIITICgp/7VD3J4SYI4Tw1vvuNzf4/FIhxG4hRLUQ4hshREq9z1KEEF8HP9sthLj00M+scaSUN0spH2nKukKId4QQjx6JcURpGaLCuAFSyriaF7AHmFxv2Yc16x3ODz3Kb4bb6333vWoWCiH6Aa8CVwDpgBt4qd52LwL+4GeXAS8Ht4kSpVGiwriJCCHGCSFyhBB/E0IUAG8LIZKFENOEEIVCiNLg35n1tpkjhKjR1q4WQswXQjwVXHenEGLSIa7bRQgxTwhRKYT4SQjxohDig0bGnRYcV5kQokQI8YsQQgl+do8QYntwP9lCiHPqbXe1EGKBEOKZ4LY7hBCjgsv3CiH21zerBDWvV4QQM4P7myuE6NzImBzBc9sjhNgX3M7VyLq7hRBDg39fFtR4+wXfXyeE+Cb494P1rsG84L9lQa12ZL39RbymzeQy4Fsp5TwpZRVwP3CuECJeCBELnAfcL6WsklLOB6YSENyRzu9BIcQXQohPg9dtpRBiUL3P+wTvjTIhxAYhxJn1PqvVduvdn38Kfjf5Qohrgp/dGBzzX4PX49vg8r8JIXKDx90shBh/iNcjSgsQFcbNIwNIAToDNxK4fm8H33cCPMALB9h+BLAZSAP+DbwphBCHsO5HwFIgFXiQRn7oQf4E5ABtCGhq9wI1OfDbgbFAIvAQ8IEQol2DMawNHucj4BPgWKA7cDnwghAirt76lwGPBMe8GviQyDwB9AQGB/fVAfhnI+vOBcYF/z4B2AEcX+/93Ajb1HyeFNRqF9U7n6Zef4DHhRBFwYfSuHrL+wFrat5IKbcT0IR7Bl+GlHJLvfXXBLdpjLOAzwncWx8B3wghbEIIG/AtMANoC9wBfCiE6NXIfjIIfJcdgOuAF4UQyVLK1wh8F/8OXo/JwX3cDhwrpYwHTgV2HWCMUY4wUWHcPCzgASmlT0rpkVIWSym/lFK6pZSVwGMEBERj7JZSvi6lNIF3gXYEBGST1xVCdCIgEP8ppfTX07waQw9u21lKqUspf5HBgiRSys+llHlSSktK+SmwFRheb9udUsq3g2P4FOgIPBw8/xkEBFB9p9x3QW3RB/wDGCmE6Fh/MEHhdyNwl5SyJHjd/gVc3Mj451J3TccCj9d735gwbozmXP+/AV0JCLbXgG+FEN2Cn8UB5Q3WLwfig59VNPJZY6yQUn4hpdSBpwEncFzwFQc8EfyuZwHTgEsa2Y9O4PvRpZTfA1VAY4LbBBxAXyGETUq5K/hQiXKUiArj5lEopfTWvBFCxAghXg1OpSsITI+ThBBqI9sX1PwhpXQH/4xr5rrtgZJ6ywD2HmDM/wG2ATOCpoZ76o3/SiHE6uAUuAzoT0BrrGFfvb89wbE0XFZ//LXjCE7fS4LjrU8bIAZYUe+404PLIzEXGBvU2FXgM2C0ECKLgBa4utEzD6fJ119KuURKWRl88LwLLABOC35cBSQ02CQBqDzIZ41R/7pZBGYy7YOvvcFlNewm8ICIRLGU0qj33k3j57cN+COBmdV+IcQnQoiG31WUX5GoMG4eDUvc/YmA5jFCSplA3fT4QFPfwyUfSBFCxNRb1rGxlYMC5U9Syq7AmcDdQojxQXvu6wSmqqlSyiRgPYc39tpxBM0XKUBeg3WKCAjxflLKpOArMegwjTT+bQSEyh3APCllBQGheiMwv4Ggqt3sMM6hMSR112YDUN+u25WAlrkl+NKEED3qbTsouE1j1L9uCpBJ4LrlAR1rbPxBOgG5hzj+0AVSfiSlHEPAzCaBJw9hv1FaiKgwPjziCQiWMhEIbXrgSB9QSrkbWA48KISwB51TkxtbXwhxhhCie9A8UE5gemoBsQR+gIXB9a4hoBkfDqcJIcYIIewEbMeLpZQhWntQeL4OPCOEaBs8dgchxKkH2O9cAg+NGpPEnAbvG1JI4By7HspJCCGShBCnCiGcQghNBEIajyegwUPA/jpZCDE26LB7GPgq+OCrBr4CHhZCxAohRhOwCb9/gEMOFUKcKwIROn8EfMBiYAmBB9FfgzbkcQS+608O4bT2Ue96CCF6CSFOEkI4AC+B+zjSgy3Kr0RUGB8ezwIuAtreYup+rEeay4CRQDHwKAF7rq+RdXsAPxGYPi8CXpJSzpZSZgP/DS7bBwwgMBU/HD4i8EAqAYYScPJF4m8ETCeLg+adn2jctgkBoRtPXZREw/chBE0QjwELgqaQ45p5HjYC17WQwHd7B3B2jVNOSrkBuJmAUN4fHMut9ba/lcB9sR/4GLgluE1jTAEuAkoJOGPPDdp9/QSE76TgOF4CrpRSbmrm+QC8ScA+XBaMQHEQcKQWEZhptAX+fgj7jdJCiGhx+d8+QohPgU1SyiOumR9gDO8AOVLK+47WGH6LCCEeBLpLKRt7cEX5f0JUM/4NIoQ4VgjRTQihCCEmEpgGf3OUhxUlSpTDIJpF9tskg4BdMpWA5/0WKeWqozukKFGiHA5RM0WUKFGitAKiZoooUaJEaQUcNTNFWlqazMrKOlqHjxIlym+IFStWFEkpG0sMahKnnhgri0vMph1vre9HKeXEwzleczlqwjgrK4vly5cfrcNHiRLlN4QQYvfh7qOoxGTJj5kHXxGwtduedvC1WpaoAy9KlCj/T5CYERM2WwdRYRwlSpT/F0jAOiKZ8i1DVBhHiRLl/w1WK874jgrjKFGi/L9AItFbsZnioKFtQoi3gp0D1jfyuRBCPCeE2CaEWCuEOKblhxnl/yMVxZWsnZdN/s59B185SpSDIAET2aTX0aApmvE7BLpXvNfI55MIFKPpQaCTwsvBf6NEOSSklLz+t/eZ8sJ0bA4buk+n/9g+PPDFn5FSMu2VmSz8djlJbRM5545JDB4XbS8XpWn8pm3GUsp5wULejXEW8F6we8TiYPnBdlLK/JYaZJTfJ54qL5pdw2YPvQ2nvzWLb1+egd+r4/fqAKybl82TVz7H7o15FOWW1C5f+dM6rnnkIs6987Sw/UeJUh8JmK0447glMvA6ENppIodGOhEIIW4UQiwXQiwvLCxsgUNH+S2SvWQrN424j/M63sa57W/hPze+hrvSU/v5F09/i7c6tCKo7jNYPG0lhfUEMYDP7ePt+z6husJNlCgHw2ri62jwq6ZDSylfk1IOk1IOa9PmsJJpovxGyduxn3vP+i+7N+ZimRa632De18t46JLna9epLKmKuK2UEr/HH7ZctalsXbnziI05yu8D2UR78dGyGbeEMM4ltO1PJofWFibK/wO+eXkGul8PWab7DNYv2sJ/7nyXxTPWMWT8ABQlvPuTzW6LuE/LtEhIaayVYNPx+3R+/nwJ//vzR3z2wgzKig7Uti7Kbw0pQW/i62jQEqFtU4HbhRCfEHDclUftxUeXgj3FvPiPz1j1y2Y0TWXc2UO54YFzKC+uYu2ibcQnxXDsiX2xOyMLtyPJ7o15mEb4RNA0TH7+bAmLZmygQ+cUYhJi8Lp9GH4DoQjsThtXPHABHzz6FT53nXasqArpndvQZUCnwxpXVbmbP57+H4rzy/C6/dgdNj55djqPf/EHeg3ufFj7jtJaEJhHtD3l4XFQYSyE+BgYB6QJIXIItNWxAUgpXwG+J9A1t6Zx5DVHarBRDk5VuZs/nPEUlWVupCUxDYufv1rG4p824K7yoagCRVFQNYXHP7qV7gMa7WXaKHu372faR4vYn1fGMaN7MOHcYThj7E3ats/wbmQv3oruN0I/kICq4qn2sXdHERf84wKqCopZOzebDj3aceGfz6T7kC644ly8fs+HqJqKaVi069KWR7/9G4EWf4fOx8/+wL69JRjBcfl9OvjgP7e9w+vz/3nY+49y9JGA1Xr9d02KprjkIJ9L4LYWG1GUw+KnL5bi8+jIened4TcpL6oEJdQq9cA1r/P+0gdRlKZbq5bM3sjjf/gQQzcxTYtVC7fy9Tvzee6rO4hLcB10+zNvOplpb8zCMMyQMWLTEMFx+Lw6S37eyHPf/zl8+1tOZcIVJ7B11U4SUuLI6tf8h0kkfpm6qlYQ16cwt4TignLS2iW1yHGiHF1as2YcrWf8O2P7hhx8EZxcANg0cDpqG857qn1sWbOnyfs2TYun7/kMn1fHNAOmBp9Hp6ignK/eitgbNIyU9ESem/MAo04/BmeMI/CAcNjBFSrINbva6D5ccU4Gju3TYoIYCAuvq0FKUBRB0b5yvI1d1yi/CQJJH6JJr6NBVBj/zujWLxOHqxGTgaqAIsDhAEAIgd8Xrg02xt7t+9EjrK/7DeZPX9fk/bTv2pb7P7ydr/Nfpl2/zginM8QM4HTZmXTZ6CbvryWYePloHA1s6IqqkNa1LTed9wLXnv40F459jOce/gZdb/o1i9J6kIAulSa9jgZRYfw74+Tzh+Nw2hANoxEUJfASIiCQhQAkvYdkNXnfrlhHrUbckJh4Z7PHKoTgn29cR1xSDK44B3aHhsNlY8SE/ow/b1iz93c4nHPjSQwa0wuHy4ZqU0EITE0lr9hNZbkbv8/A7zP4eepqXnzs2191bFFaBonARGnS62gQFca/M+ISY3h22p845vjedQttGsQ4gwI4oCGIBBcdRvbkpf/NYOWyHbz8vxlcecEL3HrNG/z84zoi9UZM75BM5x4ZYWFnTpeds65snibr9xu88uJP3HnXR5SlxJM4uDOTbxnPM1Pu4p4Xr2qWHbsl0GwqD71/C6MvGgWJcVjJ8ciEWBqGnPp8Oj9/uxqP2xd5R1FaNZYUTXodDaJV236HtOucxqMf3MLHr8zik1dmh5giJGAluFBjHWzcmM+mTfl8981KFEVgBR1qzz75PVs3F3DznRPC9n3/i1dwz5WvU1pUgRAC3W8y4fxhjDtjcLPG+PjD37Bk8Xb8QafZ3twyppSs5/RLRh3yeR8um7JzmT1vM4bDhpBABIcegKoKyoqrccU4ft0BRjksamzGrZWoMP4dM/nSkUz/fBmlRVW1oWRqnAPhtNUK6BoF2KoX2eD16kz9ajkXXT6S5HrJFD6fTnGFh0feu56y/HJKCivpNagjbTKSmjWufQXlIYK4Bl03+fLzJdz+h1MP4WwPndLSav7+t0/ZvasIv6aAZkf4TRTdBCnDfr6KqtAmI/FXHWOUlkBgHiV7cFOICuPfMXEJLl746k6mvL+AJXM2kpQSR4lusmVzwUG3tds0tm4uYPjI7gB8+/1qXnptFkIRGIZFj25tefSBc0lOim32uHL2FmOzqWHC2DAstm1p2XKZ8xdt5Y135pG/r5zM9snceM0JjDi2a8g6jzz4NTu27w/Yw2tMOXYVaWoIT2i2oMNp4+o7J6DZVEzTYtHCrWzcmEe7dkmceFJfYmOj2nJrJdDpIyqMoxwl4hNdXH77yVx++8kAPPbPr5okjE3TIjUtHoDVa/fwwqs/46tn7ti0pYB7H/iSl/93ZbPHlNkxFV0P79KraQo9eqY3e3+NMXveJp54+vvacW/fWcg/H/uGB/5+JqNGBB4yxcVVZG/MDXdMCoHl0FB0C4EkNsZBevskLrnpRMac3I/qah9/uON9CgrK8Hh0nE4br78+h2f/dzldukTrrrRGpBT4ZeMhk0eb1vuYiNJiWJak2u3DsiQTI9h2G7rqVE0hs1Mq3XoEBOPnXy0LEcQQENY7dhWSk1vS7PGkZyRy3Kju2B2huoDNpnHehS1XCvuVN+eEjdvnM3jlzTm176uqvGhqIz8DIejWpx3/fvM6vlhwHy9+fjtjTg7UTv7g/QXk5JTgCWrOXq9OVaWXfz02tcXGH6XlsRBNeh0Noprx75wp01fzxgfzqXb7cDhsnH5yf5QYDdMdKqQkgYg3zabSp18m9z1ybu1nhUWVtQK7/m2qqQqlZW4yO6Q0e1x/v/9s3n5jDtOmrsLr8dO3fya3/+EUMloo0800Lfbtr4j4WW5eWe3fmR1SsNm0WqFag6YpnH3OMG657eSI+5g1Kzuidr93TzFlZW6SkmIOffBRjggBB17r1T+jwvh3zIw5G3jxrdl4g9qh4fYxZfoaDJcKAoQpQYBUAyK2V892PPLQeaSkBpx2Xr/OM+/OJru0BDNJBQtsbgvFCIhmw7To1rXtIY3NZlO58Zbx3HjL+BY403BUVSEpKYaysvA6x2mpdU5JVVO4+8+TePyxqei6iWVJ7HaN+HgnF186stH9R6oqBwGHaLSMRWsl6sCLcpR46+OFtYK4Bp/fQLMpaBJ0vc5O6nBoXHPN8bWCGOChF75n4eqdmFZQwqigxynYKk1iNBvXXTWWmMay/VoBV106ilffnBNyDRwOjWuuGBOy3tjje9OuXTJffrmUffnlDB3WhTPPPob4+MZrbZx66gA+/WRJiBNSCEH3HukkJka14tZI1IH3/wQpJcuX7WDWzPUoisKEiQMZNLjTUa32VVgcuR6vaUlGD+/OkqXb0VQFVVW4+YYTGTa0S+06+0sqWbh6J/6GU3EhSGqXwH03n8rwYV1pzZx9xhBM0+LdjxbirvYRH+/i2ivHMPHk/mHrdu+Rzt/umdzkfV9y6UhWrdzNtu37MHQTm03D6bLxj/vObMlTiNLCmEcpoaMpRIVxCyCl5L9PfsecWdl4vTpCwNzZGznjrGO4uRGb469Bpw4pbN8V3t4qLSWWR/55DhUVHsorPLTLSETTQr3M+YUVgfCzCHbR5DZxrV4QQ0BTPf/sYZx31lC8Ph2nw9ZiD0eHw8azz13O2jV72bw5n/T0BEaO6oG9kYJDLYWUEsOw0DQlWtazmUgEumy9Iq/1juw3xKaNecyelY0v2JtNymDixDcrmHT6YDpnpR1w+w2b8/h25jo8Xj/jRvWkU4cUPD6dHlltcRzGj/uWq0/g749+jW7UCVQpIKt/Blf962MM0+L0kX04P31g3edSIoQgq31KRAeVqggSklxMWbyBkb070zbp8DtsHGmEELicLW9OEUIwaHAnBg0+vML2TeX7H9bw5pvzKCurJjExhquvGsPkyUOiQrmJRB14/w9YsmhboBh5A6QlWbZk+wGF8QdfLuGdzxfh9xtYEn5esgUhBE6nDaTkLzdO4JSxfQ5pXJ06peGLU5CVJooJUgFvksqcjbtq19mZX8KMZVvo3bUtUxdn4/MbDO7Wnr9ffBJnnTSQb2evw1vPLmpKyfK8fJZ/VoBpWdx2xiiuOvnXLerz/5GZM9fz/PM/4QveZ2Vlbl5+JZCEM/mMIUd5dL8NJKJVmyla72PiN4Qrxh42zYdA2qzT1Xhro+LSat7+dCE+X0AQSzWgmVpS4vb4cXt1nnhlBlt27j+kcU1ftBHLDv5EFW+KijdJpWHMu0832LCrgC/nrcPj07GkZOW2XK5+6lMuPfNYbr54DOmp8cQ4beBQ8CYIPKaBx6/jN0xe/m4RG/e2bNYcBK5DTbGi4io3c7J3sG5PQcQCRq2NskoPu/JLMBqpcHcovP3OL7WCuAafz+Ddd+e32DH+P2ChNOl1NIhqxi3AiSf1491IxdWlZOwJvcOXB1mxdjeqqkB9c0CDKadumHz142ruufmUZo+r0u3FqN9vrhGlwLIkUpchd4NfN/ls3hruPHsMF00ayoyVW3jowxnIBgLBb5h8uySbPh1bJnNud1EZj3z9M0u270VVBF3TUthVWIpdVbGkpG1iHK/feB7tkuJb5HgtSZXbxz9f/4ElGwLfq01V+NOlJ3LaqL6Hve/Cwsgx0yUl1ViWbDTULkodUtKqQ9ta78h+Q7RNT+Cv95yBw6ERE2MnJsaO02njnw+fd8AwJ5fTXmfvO4CgLGqkdf3BGDkgC6ejaU1HG87edNNk4946jVw3Ijcwt6QMMWMcDuVuL5e++DFLtu/FkhLdsNiSX4TfMKny+XH7dfYUlXHH21Na5HgtzT0vT2Pxht34DROPT6fC7ePx935i1Zacw953u0aSYdq2TaituLdo8TYef/Jbnn52OtnZ0QbtDQk48NQmvY4GUc24BSgtq6bvwI58+vUfWLl8F6oqOGZYF1wHicEdPiQLpUYYNzL7djo0Rg89tMiFob07MrxvJ5Zm78Hj0xs9hiRgT66PXVPo07EuoeO43p0iTrtddhsnD+l5SONryNfLN+DRdQxVggJKhJLBlpTsKixlT1EZndKSWuS4LcG+kkpWbckJcZYCeP0G7/+wnCE9Mw9r/zfdeCKPPjY1JL3b4dC44YZxSCl56JGvWbZ8ZzCaRzDzp/VcftkoLjuKJUlbI1EH3u+ITVvy+ebbVZSUVjFwQEcWLNvO1h37EUKQmhLLfXefTv8+HZq0L4dd4z/3n8dfHv0SaUm8polu1Qk8u00lPS2BSeP6HdJYhRA8eftkZi3fyg+LNlJS5SF7334Mr1mnCguwXIAKfnvgPRI0Q3DxuMG1+0pNiOWus8fy7JT56IaJJSUuu40TBnRhZO+WiSbIzt2HBzMwXzvArFtVFCo83hY5ZktRVF6NTY0cCphfHNnE0BxGj+7JffedxRtvzCEvr4z09ESuv+54jj++N8uW76wVxBCwt/t8Bu9/sIBTJgygTVrrM+kcDSRHr3B8U4gK42bw3fS1PPfyTPz+gDBaumZ3iLKZX1DOn//5OR+8cn1Iyu2B6N+7PVPfvpWV6wLaq2FaTJu9nqpqL+OO68k5pw5usqkhEqqiMGF4LyYM78VTU+eysrgAYgXUyHwFFFVgBbVRAASYMbAmJ58JST1q93XJuCEM69GRb5dk4/HrjB/cnRG9mp7Y4tF1npmzkK/XZqObJuO6d+Gek48nIyEgLIQqAkK4ZrKgAka4XBYCerVrXZXRurRLwbDCZw5CQFG1m6e+nMsV44eSXi8UUDdMZq3cysrNOaSnxDN5dD/aHCBUcPSoHowe1SNs+fwFm2sFcX0URWH58p1Mmjgw7LP/r0Q1498BHq+f51/+qW6aKAIaSEOHm2lafDdjLVc1Y3pos6mMOKYu++3kMY07/Q6HjKR4HDYVn25CPbOYZUnMhlEWhslzPy1kQv/QH3+PDmncfe7xzT62lJLrP/6atXkF+MyA9jh901aW7slhxi3XEOewE+uyh0heqYEwg/UeAEUI7JrKA+eOxxYheuXXRkrJsh05LNqym8QYF5dMGMInM1eF2NAtCYUeN5/OW82UxRv46K+X0rFNEm6vn2sf/4TconI8Ph27pvL290t57g/nNNukEeOyh3RqqUFRBK4DRPP8f0MCVit24EWFcRPZvKUAVT24BujXTfIKyo78gA6BM4b24cUfFuGjbiotREDYRbpH88oip1MfCuvy97G+YF+tIIaA/bfa7+erNevJSElgv7cam6qg19imBVgOsKPQMzWVPu3bcunowfTucGjFiVoS07L447vfsnjbXjz+gDBVhOCaSUNZvm432bv3oSOxbIAi0E0L0+vn+W8X8O9rT+fDGSvYs7+01qzhN0wwTO57/Xum/fuGZiVynHLKAL6ZujKsXKiUkhHDu7Xkaf/GEdG2S78HYmMcgYI5NTTmcHPaGDSg468zqGaSFOvi9VvO42/vf8/+imqklHRuk0yep5Jyb7i3rGub5pfGbIwt+4siLnfrOv9ZvAAhwKsbqA1m+poqSE+M55M7L0X9lZuU1mAFWy8JIQLa8K4cXpu9lOWbc2pNE/6g4+795av55u4rOPOhd7AaOPMsKVm6eQ8A05duqhXEtQ5UAYVVbtbuyGdQt/ZNHl+XrDbcevN4Xnz5p5B490cfPu+gTuT/T0g4apESTSEqjJtI925tSU2JIy+/tHbaLCUh02qbppKaHMv4sS1nZpBSkl9WiaYqtE1omh262u/n5V+WMHXdRqSEyQN6c9vxxxFrt9O/UwbT7r2G3JIKNFUhIymeL5et57Fps/HqdZqV06Zx96ljDnCU5tE5JQkRQSsRDoHH0GufbWYc2DwCxQjYu8f06MzDZ044KoJ40c49PDJ9NtuLSoh32Lli+BDyiyuYkb0NX5WOiJTTIWFrQXFjz2oSYpwA2INCUxIwxwAgBAaS21/4mvf/dglZGU1/GE4+YwgnHN+blat2YbNpDBuaheMwfA2/R6QUUTPFb5lFy7bz0ttz2JtXSlJiDHEJLnSfjqoo+HWDY47pQt7+cnw+gxNG9+TKi0a22I9g7Z58/vrxDwEtFkn39FT+e9npdEpNanQbS0queO9ztu4vxh80Cby/dDULd+zhy+sD2qUQgszUuoaa5x3bH5dd44WfF1NQXknXNin8aeJYRnY/vCgJj67z8qqlfLUpGwnY4lW0MgOjdoYhMRvKZxX0OIlL01hx621oqsKbq1fwxpoVlHm9DEnP4L4x4+jfpuXaM0VibW4BN386pfYBVenz88b8ZWCAYVn1/YwhSCDGYWP8oO7MWrOtVmMGcNo1rjhpKADnnTCQZz+fh9us8UHU7c3t8/Pvz2bz0p3nNWvMCQkuxp1waKnz/19oqaQPIcRE4H8EvC9vSCmfaPB5J+BdICm4zj1Syu8PtM+oMD4AS1ft5J9PTsUXdMiUlFbjdGhMPn0wQwd2pl+fDiQmNF7z9nAornJz3etf4vbXeck35RVy1SufMeOe67CpkadbC3bsZmdxaa0gBvCbJrtLy/hl+y7G9Ygcs3zaoN6cNqjlNHpLSi6Z8jnZRfvwW2ZtlISWrKCWC4QpGNS+HStL87EaSXG2ayqPzJ/NRxvW4jEC38HivBwu/OpTvr3wcgo91XyxaT1+0+TMHn04qXPXurjtw+TFXxbj00NtsLpuIYJDlRpIf7hAtqkKgzq3p8+lbalwe1mxLRebquA3TM4bPYDzxwwA4JwTBrJ04x5+Wrc97NhSwrLNe1vkPKLUEahnfPj3hxBCBV4EJgA5wDIhxFQpZXa91e4DPpNSviyE6At8D2QdaL9RYXwAXnvvl1pBXIPXZzB9dja3XXfSEU1BnboiG7NBqJQlJdU+P79s3sVJfSM7Ztbn7QsxN9Tg9uusz9vXqDBuaebv3c3m4kL80gwJVzOwcKbZmXPJdaTFxHLtV1/xy+7dIQJZUxRO6d6dcp+XD9avCXH6AfhMg1umT2VvVRlew0ACP+3azomdu/LChDNapIrZ1sLGTQ0AKMHQu+Dp2TUVTVV47uoz0VQFTbXz0m3nkltcTkFpJV0zUkmOq3twq4rCv289k5F3PheIbmmA3da0n2a1x8/y7D2oisKwfh1x2g88K9u4JZ+Nm/NJS41j5LHdsNlarw215WmxTh/DgW1Syh0AQohPgLOA+sJYAgnBvxOBvIPtNCqMD0BOXmnE5R6vn2q3j/g45xE7dm5pBT4j/EdqmJJ95Y2nR3dISsBp00I0aoAYm40OSQmNbNXyrN1fgNfQIyZweA2Dqds2ce3AoTw6YQLnffQR1X4/1bpOjM1GisvFvePGsae8HJuqhgljU0q2lhQjlTpx6TZ0Zu/eweK8vYzscPhJKH3S25BXVhEikKUKouY5J0DaQVqBaI+/nnYCZxzTmzinI2Q/HVIT6VDPJNSQM47ry7eLskPMGXZNZfJxB69n8dOSzTzy+o+19nSJ5PE7JnPcgKywdQ3D5N6Hv2bNur1YloWmqTidGs//5zIy2ycf9Fi/BwKhbU1+UKcJIZbXe/+alPK14N8dgPpTlxygYSfdB4EZQog7gFjgoIXNW681uxXQoZF6AE6H7Yi3GxrapQMxEbQcIWBQp4xGtzuldw+cmhYyXReAQ1M5tU/LpC03hXZx8Y3GAhvSYl1hoNJb+/h45lx3HQ+PH8+tI0bwxCmnMPOaa0iLiaFDfDy6Gf5AEgCqBIcJLhOcJqgWbsPPz7vCp/2Hwu3HH4ezgXbqsmsM75qJXVNx2TRi7DZcDo3nrzyTi0cNChPETTrOWWNo3yZQX0JVA3HUg7q15w/njj3gdgVFFTz82o94/QbVXj/V3kCVv7/9byoV1eHZiV9OXcnqdXvw+nT8uonb46e0zMODj7fOOh9HgmbWpiiSUg6r93rtYPtvwCXAO1LKTOA04H0hxAHlbZOEsRBiohBisxBimxDingifdxJCzBZCrBJCrBVCnNbMgbdKrr98LI4G7eSdDo0rLzwuUG3tCDK+X3faJyfUet0hEOEwoltHemSk8eKixYx++VWGPPcCf/j2O/IqKmrX+eSai+nfPh1bsHLYgPYZfHzNxRGF+5HitG49cSiRhbFT1eibWpdB59A0zu7blz+NHs3pvXphD9rDU1wxnN69F04t9DtQVZDOemnTCmCXKDaIs0cWiB5D55W1S5j4zduc9e37fL51XaO2aoA+GW1587Jz6d8uHU1RSIuN4c4TRvL2Vecz865rue/0k3jozJOZ95cbOb5nl0b3cyAM0+KO96ayR6/E65J47RI9Fgb264DrIN/VjMWbsGSkjD/BnOVbw5ZP+3FNxDjk3XuKKSxquXjy1k4LldDMBerHr2YGl9XnOuAzACnlIsAJHLDLxEHNFEfKWP1bYOSwrtx/9+m89PYc8grKSU6M4cqLRnLu6Ue+mLddU/notot5Y/YyflizGZumcv7w/lw6ajB3f/cDs7fvwBt0av2weQuLdu/hx+uuJtnlonNKEp9fewnlHi8SSHIdujlFSsnn29fy1sblVOg+xnfozp0DR9PGFXvA7Vw2G1+ddymTv/wAr1knBATg1DQu6B3ehy4ST554CslOJx9tWIvPNMlKTCI5yc6KwtxQ84cAS7M4rVu49q9bJhd89xFby4prx7K5tIgFebt59oQzGj320I4d+PL6S8OWt42P49xjDq1eSH1+Wr+V7Lz9ePwGqAEziFeavDFnGReOGECbA4QyVnn8oeVRg5imRbUnPDXajLAuBJyFn3yxhE4dUznp+D7Exx8509vRJlBCs0X8PMuAHkKILgSE8MVAwxtlDzAeeEcI0YeAMA7vgVaPptiMj4ix+rfC8SN7cvzInrXtiFqC7fuLmb1pB5qqcEq/HrRvxJYb67Dzh4mj+cPE0bXLdpWWMmv79hB7siUl1brOx6vXcuvIOtNV4mEI4RoeXPYTn21fi8cI/MA/3rqaH/duYebk60l0HHj/PVLSWHbVLfx97gxm7NyGIS1Gtu/Io2MnkORsWhSKTVW5f8yJ/GP0OPymiVPTGPPFyxHjyhyqGjFLcsburewoLwl5KHgMnR92beHWgUX0TA4oLJaU+E0Dh6r9Kq2MZmVvx+MPF5w2RWHpjhxOH9x4dMvoQV34dMbKsO7fQghGDswKW3/8uD588sXSsEJGhmHyxTcrcDo0Xn1jDk89fhF9ezc94eS3RksUCpJSGkKI24EfCYStvSWl3CCEeBhYLqWcCvwJeF0IcRcB+Xi1PEhnhKYI4xYzVgshbgRuBOjU6dfpG9ZStNSP87mfFvL2/BWYloUiBP+buYD7J5/EuUObpiluLizCpqghKc0APsNgVX5+i4yxhv3uKj7eujoQmhbEkBblfi8fblnFrQNGHnQf8XYHz598BquK97K5Yh+dYlPonJjU7LEoQtSaKzonJJNTHaESmhC0dYVrkwvy9lBthAs9gOX7cuielMrzaxbyevZS3IZORkw89w87iUlZvZo9zuaQHOtCESLcXCIECQexPw/s0Z5xQ7szd8X2QHlUAr6Ms8cNIKt9eLLIJeePYMHibeTll+Hx6miqgmFaSCuQXVhjwnjg0W/47P1bfpd99QJV21rGvBiMGf6+wbJ/1vs7GxjdcLsD0VLRFDXG6v8KIUYSMFb3lzLUqBU0gr8GMGzYsNbfP6eFyc7bzzsLVuAzQrWZR76dxfG9upAWd+CpP0DHxMSwkDcIaFPdU1oufRlgQ+k+HKoWIowhEFq2oGB3k4Sxx9C5fsH7bCovwJISVVFIc8TxwfHXkOY8tGamdw4czcr9uXjqabpOVeOcrv2Ij2AzzoiNw66oYeehKQpprlieWjmPtzeuwGMGhFpedQV3zZ9GnN3O2PaHZg9uCucPH8AXS9eHhSLaVIXjehxYWRFC8OBNk1iwZic/LtyIqiqcPqYfw/pGTsWPcdl57X9XMn/xNtZtyGHuL5soLKoKm2BUVnnZtbuILlmtqypeSxBIh269MQtNGdkRMVb/f+SHdZtDQphqUIRgzqYdEbdZt28fF3/xGX1ffI4xb73O8oJceqalYmuQHmxTVS4fMrhFx5vuiotYFlJB0Dk+qUn7eH7jbNaX5eM2dbyWQbXhJ9ddxn0rpx7yuEZkdOSZsWeQEROHTVFwqhqX9BzEw8dNiLj+BT0GoDaICRcEBPiodp3qCWIJQoJi4ZV+Hln28yGPsSn0yEjjvrNPwmnTiHPaiXXYSYuP4Y0bzms0qSfkHIRgzOCuPHLr6Tx40ySO7VdXzlRKyaJ1u3jg1R948LXpLN2wB1VVGDemF3fcNJ6U5LhG0x9+j1pxgIBm3JTX0aApmvERMVb/3tFNk91FZSS6HLWOmEi1GQ7EluIiLv7i09rss7zKSp6c/wuXDhhI+8REftq2HSklXVOS+depp9AhsWXjiPumpNMtMYVNpYUY9SY5DlXlmt5N6wj9zZ41+K1Qzc+QFgv2b8dvGtjVQ5ucTezci1M79aRC9xGj2bA1ErkB0C42njdPPo8753yLx9CxkLSLiee1k8+lSvcjAxUiQAkUHampZLe1qpCnVs/hz4PHHdIYayjzepi2ZQulHg8jMjM5tn2HWoF3zrB+nDKgByt35RFj1xjcuX2L1OF47K2ZzFyyudaEMWv5Vs46vj9/uvxEAE4/dQB79hSF2ZwTE1x07pR62MdvrbREBt6R4qC/hCNlrP49893qTTw6ZRaGZWFYFsd0bs9/LzmdiQN68sHiVWHTUktKTuwdnlH3/JLFYQkPHsPgw3VrWXbDzWiKgt80iXc0P761qbw7/iLu/GUKy/bnoApBvN3BkyNPo0dS0yY+hhU+E4DATWIe5i0ihCDR3jQn5ej2nVl68a1sKSvCrqp0TUhBCIFumWiKEii2L+pKRNT8+8amZVzUfTAd45IOaYxLc3O4dsrXWFLiMwxcNhvHZXbkfxNPY/qWrczZvpO28bFcMmgg3VNbRghm7yhgxuJNIXWVvT6db+au4+xxA+iWmcbpEwexYPF21q7fi64b2G0aiqrw8P3n/G414xaMpjgiNEktORLG6t8KXr/O6i25qKrC4B4dDljUfFNeIc9On8/8bbtDWsov35XLbe9N4cNbLuaa0UN5a/5yTEuiCIEQ8M8zx5MaF964dN3+fRFjYTVFYW9FOb3T2uDQDv4VLty3k2c3zGFXZQndE9pw94BxDEtrmgM11RnDhxMuocTrpkr3kxmX2Kz6D+Pb9WZazroQzVoA/ZPa49LCY2kNy2RZyWYKPKX0TMikb0LTO4kcDFVR6JMSWgvZpqjcOWg0/149GyPCtRbAvLwdXNbzmGYfz7Qsbv3uW9x6nfPQress2ruHU995l3K3B49uoArBp2vW8dRpE5nY6/ATcxas3RlWVwMCYW+L1u6iW2Yamqby5CPns25DLus25JCSHMMJY3oRE3PkHuytgWjVtt8Ae/NLefnjX1iVvZfEeBeXnjGM+GQXD7wxHVNKdMtCCLj2tOFcf8ZxYVPJuRt3cPeH39XG/tafDRmmxab8QnYXlXLHyaM4fVBvZm/ajqaonNKvR6Nt57snp7CnvDxsuW6atI9vWl+zn3M388clX9eGdS0r2sM18z7i1dEXMSq96c6pFGcMKc7GO103xp8HTGBJ0S7K/R7cph+nasOuqDx2zJlh6+73lnHHihep1N0Y0kRBoXdCR54cfD0O9cglrNzQ91iW7t/Nz3nbwj5ThSDG1vxsy3Kfl/8tW0i5LzwbzmMY+PRKCMpoU0pMw+DvP87gpO7dapNeDpUYpx1NVcOao2qqgstZdx2FEAzsn8nA/k3vLKLrJp5qH3EJriNam+VIEO2Bd5SQUlJe5sZm14iNPfDTPr+wgmvv/QC3Rw9sV+nlmXdm4xMmvpomnQBC8Nq0Jazdkc/zd55bezNaluSBL3/CqxuBPp/1vu+aPzVVobCyms5pyXRtk9Kkwu23jziORTl7a23GEEiYOKtXHxIOEuNbw2NrZobE1wJ4TYMn1vzE1FNuaNI+DodURyzfT7iNH3I2sK40l67xaZzZcRAJEcwLj234iEJfeUhmWXbFbj7cPYtru57aYmPymwZf7V3G93mrsSsq53Yczr1DT2LBvl1h10oCJ2eG9507EHsryznr6/ep9voxLBnRV2DJcO+537TYsG8fQ9pHjvOVUrJmbz5zN+8k1mHntIG9IsaoTxjek1e+WBBxHycNa9651GAaFm88P5PvvlqBaVrEJ7i46a5TOfHUpoVktgYkYEQ141+P/JxSZv24ju+/XUVJSTUgGDIsi7/efyZJyZFDxz6YuhSfzwgxLfj8gWpg2IEGKeUrt+SyaMMuRg8IaJYF5ZVUeLy13RrqU1OIXjfMZjfRHJzRjhdPn8yDc2aRW1GBXVW5bOAg/jJqDFJKvtixlpc2LKTYW83A1PbcM+Qk+qfU1a0wpcXe6rKI+95a0Tz/ao67kGl5iynylTM8pTfj0gdjV5p2+zhVG+d0Hsw5nQc3us6Wyt1sqdqCXZEYUsGwAhfTbxn8kLesxYSxKS1uXvommyvy8VoB1XRTRR7j0/vz18En8MiKn5HI2q/xit6DiLc5sKSFQDTJZPLIwlmU+bzBDiERfvySiIXpfYaBR48cDy2l5O9f/MjMDVvx6gaaqvDiz4t5/PxTmDggNB66bUo8D900kQdfm147g7Ok5LFbTyc5ofmzG4CXn57OjG9X4fMGHlalxVU88+hUEpJcDB3x22ntFDVT/ApYluTph6cwZ8Z6dN2srbYlNYVVy3fy1zs/5NX3IvcWW7c5D8OMnC4qzPD+cH7DZO6a7bXCOM5pR5dWSKnIwMED752qyvXjhhN/CIVkxmV1Yc7V1+HRdeyqWvvjenH9fF7asKg2Nnbhvl1cNPN9vjr1KnolBeyiCoJEm5NyPXyqnOYMPJgsaTElZylf7l1Itenl+Db9uLrreJLtdTHAC4s28PD69zGkiSktFhRt4LO9c3l+6O241MO3Mf60bzGvbv8Um2IgBNiliWEpuA0bgbKHkZ2Ah8Iv+zextbKgVhADeEydGfnrSLXlEh/nw28EulSrqsVnexYxe382Oe5S4jQHl3cdwa29x6EeoObLvJxdAVu/AGm3wB9YVwT/L5FghUbXBB4AguyiQkZ17hy+zy27mJm9DU/QFhzoE2hx75czGNuzC7GOUFPKScf2ZET/LJZl70EIGN6vM65DbHrg9fj5ceoq/A0iL3xenQ9fn/vbEcaydZspWu9joplM+3I5837ORg+me9ZaFkwLw7DIzytl44aG4dEBOmYkNWzyXEukB6mqCOJj6qbZCS4nMU5bhJ7yAa/8XZPGcsv445p5RqG4bLZaQew19BBBXIPPNHhu3fy6wwvBDb1H4mpgb3WpNm7tE2ip9GT2V7ywZRo7q/ex31vONzmLuWbxc1QbAQFuWCaPZ3+Mz9Ixg+YDr+knx13I1JyFh3VOAG7Dw6vbP8WwfDhUHYeiY1MMNMVEUyw0oXJC25ZrNb+kaBtu0x+23JKQ5y7HEhLNZqFpgXP1WSY57kAp1SrDxzvbF/GvtQds2BBq81VBOi2kTYJNYtMCgh41IIBr/gMwbZKcigiZhcB3azZFTJ1WFYVF2/dE3CbWZWfc0O6ccEz3QxbEAGUl1Y3ahwvyyg55v782NcXlm/I6GvxuhPG3ny/F5w29WQUEm4wF6krsyw93hgFcftbwsGLedptKckoMRKjOpqkqk0eF1pvNaMQJ57TbGNGtZRuU5laXR4xosJCsLQlNib6x1yiu63UcMZoNp6oRq9m5ve9YLu56DPmeEmYUrArREg1pUaG7mZa7DIDtVXkRq4P5LJ2f96867HNZV74VVRg4VANVSFRFYldMYjQdl2qS7kzmmha0F6c64rFHiEkWiDCnbKTAO6+p89We1VRGmG3UcF7P/jjqC2QBNrtCn7ZtA/tUQNoCna+lDazg36iw3xO5VnXDpJWQz45wKFpq24SIM0ohoEfvdkf02C2NFdSOD/Y6GvxuhLHHHa7t1Mc0LHr0Cq8DnL29gMffnIEvmJigCIFNUznpuF58/t/ruOXMkWiqgqoInDYNh03jH5efHNYs8qwhfXFE6M4Q57DTrU3z40fdup/Ptq3lyZVzmLozO6SNUtuY+JBQsfpkxYUWChdC8Id+J7DsrD/z06TbWHbWn7ix9yiEEGyqyEUT4YLJZ+msKAnUBXaotkZLTca0gIkieEREvRhfhEAISaLdy3NDbybBdmh2zkhM7nAMSoTb3qmpRA6ND/9h2hSFfE/kBzvAX4ePZXDb9rg0jVibjRjNRu+UNB4aPT5U4ItgtxC17jDVjdiMzxrSF1eE+0tKyXHdWq7Oi9vjr51d1mCzqVx+4zgczlDt2u6wceXNJ7bYsY80NcXlW6sw/t3YjEeN6813Xy6PWFbQ7tA4bkwPMhtkFuUVlnPbY5/VZimhgmoT9O2ewT9vnwTA9Wccx1UTj2Xllhx8hsnQnpnEOsNDnS47bjAz1m9l2/5i3H4dh6aiKAr/vei0ZocA7a0s45zp7+E2dNyGjiIEcv5U4l0aF3UdzF0Dj+ecrP58s2t9iPffpWrcMSByR2e7opLuCtXe2zoTa6fI9dGEQoeYwLXqHJNOG2ciOe6ikHWdip2zOgRCyw3LYEre18zePwuf5SUrtguXdbqCrNiDh84l2WIamRQKLCTT839gXNvRaIpGW0e7w445Tncl8t+hl3Pv6k/RLROJJMkewzPHXMEv+7bxypY5teYfBUGkR55umSQf4AHh0mx8Ovli1hftY3NJIV2TUhjcJjD2c3v35euN2SF1NWpwahrHd8qKuM8RXTtywbED+HTpWiwp0RQFCTxzyRkHrX3cFNZvyuPJl35kb14pihCMG9WTP910MrHBuOPzLxtJSmocH781j+LCKnr2acd1d5xMt56NNzpobUhE0DHcOvndCOPLrj+BhXM3U1HmxufVa1Nak9vGc96lIznvooaF5uCzH1eGxmIK0A2L7B372JlbjMc0+O/Xc9mwZx/JsS6uOnkYYxuxvTlsGh/edBFzN+9kyY69pCfEceaQPk0q/tOQvy3+gRKfp1YjDfwrqfDqvLNlGatL8vjwxEtxaTY+3rYKw7JIc8XywNBTGN62E27Dh6ao2BWN/d4y5u1fhylNRrfpT2ZMXeZc34SOtHMms7u6ELOe2NGEynkdA0WAhBA8NvA67lr5Eh7TFwwPMpnYbhhZsfFsrdzMz/t/Zk3ZKnQZEGI7q3fwn81P8M++D5PuPHAX52R7EqqiRnTSCSSLS75nVdlPWFgk21K5sdvdpDsPr8TjcWndmXHSPWypzMcmNLrHpyOEoEdCBr0SM3h/+yJK/NUMSOrAN3vXNAh3k6iKybnznuLa7idyTbdxjR6nf1o6/dNCz//RcSczoUt3Hv5lFnvKy2uzEO2qSqorhgv7RQ4V0y2LCnR0e8D5hyK548SRjO2ZdVjXAiCvoIy7Hvwcb1ApMYE5C7dQWFzJ849eXLveSRMHcNLEAYd9vKNJa06HFkcra3nYsGFy+fLlB1+xGbirfcyYtpo1y3fRPjOFM84bRrvMxvt73fn4FyxdvztseazLzk0Xj+GZH+YHCn8Hcdo1Lhs3hDsmR9Y+WwK/adLn46caSRWWqDaJXVH58KTLOCYtE8MKtBuKtznYVJHLvzZ8wc7q/QgEveLbstuTj5BBb70QXJk1gcu7jK/dY4mvkgfWfcy6sl0oQiHRFsN9/S9kaEr3kCOblsnK0m2U6VWk2m18lvMmHrMaKQVuK3xqraAwJu14rsy6+qDn/I91j7GjuuH3IIlXfTjUUCEdryXwyIDnUcWvo0esLtnLE+ums74slxpBbFMDCUBO1cY/B5zHhHbNdzBKKZm2dTNvr1lJhc/HqV27c8Mxwxqt83zfdzOZun5TXVIR4LJpPHXWJCb06h5xm6by3Juz+PqH1WERRQ67xhtPXUFWx6Nfq0IIsUJK2bSCKI2Q2CtdHvfaJU1ad8a4/x328ZrL70YzBoiJdXD2RSM4O4IWHIl+3TJYvSknrJKabpjM37IrrGuv12/wwexVXHfKcGIcR6YHnhA1IU+NPyR1y2RT2X6OSctEUxQS7E72ecu4bflreGojBSRbq/aGRolIeH/XT4xu048ucYHpZYojnueH3UiZvxqv6SfdmRTRFKAqKsem9kK3dO5ZeyfVZsDRJGs8Ug00DguLDRWreW/nY6Ta23Fc2mmkOiJPaf/a+w7uWvUPPFadU8wuDOxKuLbst/xsrFhL/8TmpycfCoNTOvLGqCs4ZdZj6A3qbHhNnfd2zDskYSyEYHLP3kzu2XgB+Ro8us6U9RvDGtR6dIOX5i85bGG8c09RxNBOTVPI21fWKoRxS9DMhqS/Oq3XgPIrcP4pQ3A4Qrs6OOwaY47pxo7C0sh1IVSF3OLI4UctgU1RGds+CzVsOiVD5F3nBo66r/YuDinKo4jIwly3DObsXxO2PMkeS4Yr+aA22Q0VazBluL0zEl6jiM2VK1hc/APPb7mLHVXrI66XaEvg6cGPkOlMw6VqxKs2YlQZMdxQSkmF3rjz7EhQoXtQG/mpFPsa79TdUpR5vI1W/CuoPPzj9+vdHrst3JGr6yZdO/2+KuG2Zgfe70oYe9x+vp+6ileem8nM6Wvx+SJ7pmtITYrlrYcvY8yQrjgdGskJMVx++rE8fOtpdE2PnK6sGybpSYdWFL2pPHHcJDJia5xtwfKOgKIG/k12xDAyPStkm51V+9CbmBwRKVStqVQbVVj17MsBTb5ujLXLkThVT+B4mOjSx5d7X2gkYgGS7En8e9C/+Eefv3Bjt+u4uNNl2JXwaA2JRde45nXgKPYVMi3vE97f9SLLSn6h1FfMrP0/MiX3czZVbGh0TDWkuxIbqY0hyYxJatZYDoW2cbERC0IJYHD7w3egnTtpCHa7FiLubTaVE0b2JKNt4mHvv7UgEZiW0qTX0eB3Y6bIzyvlzhvexuvT8Xp0nC4bb786hxfeuJaU1FDhWVRaxZRZ69iZU8SAHu154JZJxDWoVnXDxBEs3bI3pNyl06YxaVhvEmIOrbec19D5dsdmlhXkkJWYzIU9+5MWobGnTVV4YPhJzM7Zzhc71mNi1iaQxGl2vj7l6rA44wFJnVlavA1f0H5rSRGxT5xN0RjXdlDYcikl8wpn8NO+aVQZlXSMyeKczMvoEhtay6BnfJ8w4aUgEagoig3d0rErklilGq2Bdl5plFBhlJBoizztFULQLa4rAKY0WFw8h33ePHQZML3YFQeDk4aT0cCBZ1g6K0tnsLpsFgKFocmnMDj5JBShsqliLW/u/C+mZWJisrpsCbo0kNKBLg1m7f+RbnE9ua373Y3aoVWhcGP3k/jPxm9rRkrNw2eHexclvgpSHC1bSzrk+IrC38aP5ZEZs2sz8ASBRKC7xh1+sUQhBMKmIBWBtIIJKEgG9uvAytW7yd6UR2pqXKCqm+vImOd+LaIOvAi0tAPvb3/8kNUrdmFZdeejqgonnNSHvz94Tu2yzTv3cevDn2EYJn7DxGnXiI1x8NZjl9E2JTT0a/6GnTzx+WzySyuwayrnjxnInWeOaVIXhoaUeT1MnvI+RR43bkPHoarYFJVPTr+IAWl12s0L2fN4ZfN87IqGRBKvOTm5XR8q/T5Gp2dxWqe+2NVATOzc/euYmrsYv2Uwpk0/3tk+l0rDgxUUFA4FhDBRhYKUEk1RuajzCVzbdWLY+L7N/Yw5hdPxW77aZXbFzl09HyAzJitk3U/2vMfC4nm169oVOx1dWdzd615UofLQugvxRzRlSE5sM56T293epGvmt3zM2z+T5aULsCl2xqSdzLEpo1HqpSJb0uK9Xf8k170FXQbGYxMOusUN4cJOf+P+dTdTZYa2oq+pa2uiBsfv4MKOlzMmbVyjY/lsz1xe3vodHiMwjVWFhV0zcak2bup+BudkHjmnbg1ztu3kpflLyCuvYHCHdvzhhJH0aHNoZgQpJd/MXcd73y1jX0kllm6h+GRdzQwpsfvAoan4fDpOhw1NU3j235fQrUvbiPs0TQt3pZeYeCdqhGSpw6ElHHhxPTPk4JeubNK6Cyb8J+rAOxRMwwoTxBC4ORb+siVk2WOv/ojbW5cg4vUb+A2Tlz76hQdvPy1k3TH9ujCtXxc8fh27ph5WB4ZnVy4kv7oSPdjGyGea+EyTP875np/PvxaAuQXbeH3LQvyWWduvzWPoLCzazg8Tbg6x5/5n0xf8VLAarxU4ly2VuXSJz6CNvRuLi7fgVOyc03EEEzIGsrBoA6a0GJ3Wj6y48Gmtz/Qye/8PtRpoDbql80P+19zQ7a6Q5Rd1vILeCX2ZVzgb3fJxbMooRqUejypUCr270IQff8PydUhswmRj+Qx6JYyhY+zgg14zu+Lg5IwzODnjjEbX2Vm9ljzP1lpBDBJTutlZtYSf898POycIzDAUJGbwdvFbPhYVzTugMPZbOoqwcNka3GPSwmce2BzWUozr3oVx3VumJ98b3yzi/R+W1xWgV8ByguYJdp7SJdKQeINx+55gduuD/5rKe69dF3IvSimZ8t4CPnz+J7weP3anjYtvOpHzbzih1RWql63Ygfe7EMaBKXzkCASl3hO62uNnx97isHUsS7JgVeQedMABg+r3lpWTU1ZOj7TUA8YUf7drc60grs+eijIK3dW0iYnl/W1Lw+pNWEjy3eVsrSikZ2JAI9ldvZ+ZBatqTRIAXsvPruoCrsg6iUcHXRayj06xkTWZGkr1koC22eDySSQ5nl1h6wshGJw0jMFJ4YpDmV5AjKqgSx1d1t1eKhbxqhdDCrLLZzZJGNfHkgbbK2eztWIGqrDTO/EMOsUex66q9fiDURgqJnZRYzc3WVX2CSkalBix+KwDJ0YoByj8A3Bcal8+2PVTyDUHiSrgmJTDi2b4tfH69FBBXA/TDpovIIwjsX9/BQX7K2iXXmdLnv75Mt55ejo+T+DaGLrJhy/+hM2ucfbVR37G0HRad6Gg34UwVlWF40b3YPHCrZj1MvA0m8qJJ/ere68qjRYEsmnN03rdfp07vprG0j17sSkKXtPktD49+PfkSRHrRjRWblIiawvLRKquBgGbZaVeZz5YXbo94noe08+y4i2MadMv4ueNkWRLxmrE+dfcBIs2jiwkJrGqDtJPoES8RBNW8NpLTNk8TVJKi+k5fyffsxZDBpyCOdXL6ZV4GnG27jiFAHyBonkNLr0iIEWrZp8/ASvorw6YKeq+b7viYPQBtWI/ed4d9E5wsMftplJXUITEplhoisW9a5/lrA4ncnnn01udJhiJvKIKlEizPCGQSlAIHyi6soFp8+MXf64VxDX4PDofvzyrlQnj1q0Z/6ajKXxeHX/w6f6Hv55GRrskXDF2bDYVl8tO56w0britLsHBYdcYMSgr4r48uoE/Qquaxnhw+s8s2b0Xr2lQYfnxC5NvNm1i7Muvs6u0NGz9S3sPxNmg+aYqBMe07UBisFD8xA59cEYQ2hJJ/+S6giyJttiIJRxtQg0pfdlUnKqL41LHYVdCnTM2YWdSxrnN2leSPYPu8SNRhQNVSByKiU2xaoWkQFLk/pkdFd+jm5V4jP0HjWbY615GgWc1GhW4hB+X8KNSwabyKeyp+IhUrQSn8CNCHIYSBQubCFSCa2OvQMUMCmwNm+JERcWu2BmQOIjhKaMiHtttuPnHuod4b9fHFOu5JNh8ZMRUE6uZCAGmNPFZfqbkzubbvLnNulZHi7bJcRhmhIevDKTCO+wabdslYreH+0batIknIz00wqKkMHKoZ0VpNVaE2eDRQkowLdGk19HgN6kZ791RyDP3f8WmdXsRQjBsTA/++NC5vPnhzaxYuoOcvSVkdW3DkKFZYZrKqCFdWbh6ByH3iAiUypy5eDNuYTB3/U7SEmK4aOwg+nQMpLNKKSnzeImx2RACvt+4BZ9pIDVCTKP7qqu45OPPmHfT9SGOvhsGHMuyghwWF+wFAtPiFKeL5048vXadi7sO5Ytdq8lzl+MxdRQEdlXjgcGTcNQT5CPT+qAKBVVY2JTAA8RvaSjCxqT2h+ZzOK/jFbhUF3MLZ+C3fKQ50jk/80q6xDW/M8QZHf7CkuLPWVb0OaascZ4FnYpCR8XNysIHWFMIQqg4lCSOafsg6TF1ZUalNAGBEAq7KuahEdhPzdepSIkNN+X6XoSQSCGgntajChOVuljlGEUn01mKYcUxOfPPlBkWVUYlPeN60zm2a6PnMi1/OkW+YoygQ9IkIMRcmhddd1Lz5fssP1/mzOTMDuPC9rG3upjtVfvoGJNCt/ijX8shLsbBpFF9+XHRxhBThcOhcfdFJzC8f2fSkuP4872fsW37Prw+HYfDhiJhQI92PPP0dEaP6cmxx3ZFUQRt2iVRsLck7Dh2py2yBn4Uac3RFL85YVxV4eHuy1+lqsIb1Kgky+dv5c9Xvsbr0/7I8JHdGT6y8e1LKt1YNdWygsXfEQKP3+C/3/9Cta7j9RsoQvDDis3848LxJCa7eGjqzxRVVSOEYGK/HpiWFbHWMQSaTs7ZsZMJPepsiXZV5Z2J57O+aB/rigroEJfA6PadQ5yCsZqdr066nq93r2F2wVbSHLFc3u1Y+iWHlil0qDZOadebWfsX1s4YnarJuDZDSHc2nv59IFShMrnDRZzR/kJMaaI1sYtHJBShMjLtYoYkncyS/Q+ws3IVFgK7oiMAhzAQUiIFSGngMfexuOAuTsz8EE04WF30KIWeJQgEGTHjcBsBE03952qNi0DBxELBLsygjTrwQX1BXLO+IiWKqKbEv4vRbULt6o2xtHh5rSCujyDgBKz/467Qq0PW0S2Df6z+hEVFW9CEiiEt+iZm8vTQK4nVmlbxrtBdzbc7NlHu8zI2M4uhbdu3iCnkb1ecRIzTxtez16KbFm2SYvnL5Scxdkhdofj//fsSVq7ZTfbGPApyS5n9UzY/z1yPaUp+/mkDg4d05uFHzqNN+8jC2DRM9uWWkt7h0O7JliZQTTcqjFuMn4MdB+pPbU3DoqSwklWLtjN09IE1uZ6d2+Jy2XF79dBedTEKFV5fsINCoDiPVzd4+IufMONESE2AHzdsxalp6Ko/YiyvYVnsq4qcGRWpeEx9XJqNS7sN49JuoRqu39RZWLyeEn8FafYE5hcF6g3X/10uLFnBpd6JZDgPPWtKCIHWIN5Wt6op8W3FqSaTaA/vQhEJw/IwN/cyvGYhybbANZUyoJnIYH3p+phSZ2vp+xR65uKzyiAYoFfgnoMQzqAJItIPKVhoRxh4sdXaqCOfG2goJNia3v6qoekm9Mih48mK7QDAkuKNfLBrBhvLC6nySywkPgL3z5qy3Zz68+NIqTE0NYu7+0wkKy7y9zV77w5u/mkKEonfNHl13TJO6tiVF06aXOuXWJOfz8dr1lLh9XFqzx6c1qtnk0IvNU3lrkvGcceFx+PzG1RUe1ievZdZy7YwalAXnHYbiiIYNiSL3j0yuOC852tNggBer87qVbtZuGAr3kbK1zpjHOzPaz3COOrAa2H27iwKKyIPgTC2vD3FBxXGowZ1IT01npx9ZehBZ59NUzGcCnqEsoZ+m4VhhP64fYaJTUrsmoK/pt1SPRRgcPuWK7q9syqfP69+AV2aGJZJ4OdtYVcaOKykZGnxOs7s0HI1ZrNLP2Z18SsoaFgYJNm7cmL7p3BpB65XkFs1Hd2qgAbZeoqURHYVmpT6VgcddHXbSEyENLAJBb2BbTlQmU/U/p2gevBbdiwRj0U1DT1QUgbsxb0Sxjb5/E9OP5EP93yK36oTOAKBKUWtMBaAXbFxfddz+TF/Gf/b8gU+S6fK7wgT2Ja08Ek/ftNg3r4trCjexZcn3EGGK9QO6zMNbp/1bUjFOI+hM3vvDqbv2sJpXXrxzoqVPDVvPn7TxJKS+bt28/Gatbx/4flNjoXXVIU3vl/GBz8sR1WUYF1pwf/+fC4Duwect6tX70HTFPwNZK7XqzNrVjb9h3Vh5+YCjAa1XHS/QefuB67a92tzlNIqmkTrMug0gZ79M3FGyAJSVIWuvQ4uADVV4fX7L+bMEwaQEOckMc7JWSf2p3+3dnWZx/W+MFNEqvgb0CyO79YlEAlRbxunpjGycyf6p7fMTSil5MENb1FhuPGYPnRpYEgLUwqMBo4GgThgb7am4Der0S03AHnVi1ld/Cqm9KHLakzpo8S3hTl5fz3ofsp8GzCDkQ8NiaSbKMKOTUloZBsLhxqLqKc7qMJOkr0HqnDVNv3UFDtJ9jiu7fY6ibZ2Yc1AhRCc2eGf2JXIldEiMa7tWIYlD8EmbDgUB07FSao9hTt73sKQpN6kOZIYmtyPJwb+kd4JXXhl+9Ta8LeD/e4lEp9p8MGO8PZVywoitwhzGzpfbFlPmcfDf+b+gtcwamuouHWd7H37+WHzlojbRmL5xj18NH0Fft3E49Nxe3WqPX7ufvobjGBhokiOPAg8AJ0OjXOvHYvTZQ+p2+1w2TjjspEkNNIE+GghpWjS62jwm9OMT5g0gPdf/Andb2AGTQo2u0aXHun0HdK0jgfxsU7+evV4/np1INLi7ZnL+GzF+mCpyToURRCn2ahGx6yXUGLaoMKmM3vnzmChbxWHppIRH8slgwdx2eDwdONDJcdTSLEvUmEcgSEVbITWYz4u9cDHLvHlkO/dQryWRseY/oig8C7z72Ze/qMU+7YgEKS7BiHwY8rQcDuJSal/G5V6LvG2Do0eJ87WFVU4w7YXQuBS2+O3Smo/EyjECAtN5iFqGnaGbGNjeJt7yHWvYXfVzyjCRveEyfRPvpIKPY8NZV9QoefS3nUMfZLOxqHGc16np/gu92GKfDsQCGyKi1Pb30Pn2OY5OBWhcEv3GzjbU8D2qh0k25Ppk9ALRSgclzokZN1iXwVesy4EUVWsYJ2D0B93QHYGlunSZHVpeA+7A5mFFaGwLCcXm6riNc263ctAp5AfNm/lzL59mnR+U+eujxxvbFqs3JzD8H6dGTIkK2KDBLvdxqTTB5OWnshzX93OO0//yJrF24lPjOHca8cy8YJjmzSGX4tANEXr1T9/c8LY4bTx3Ce38ubT01k0ayOqpjDhzCFccfvJh+TYWJi9i1d/WFxrK67ZgwAykuN56PJTuO2TqVT7/UgZcNhbjsAKNTWHDcvCJhUemnAyx3Vq2X53pjQbrdilCEmizYMEdMvOdV0uJdWRFHFdS5p8l/sUWysXIkSgJlyMmswlWU/iUFxM23MLfqsSgqKwwLMKEdQtw2J30fCZZQcUxp3iz2Bz2SuY0kfNI06gEWvryIkdPmdX5ddsK/8I3aokVfWDLMI0ixHEBaf2NSYAG7G2DrSPPYkOcSczvO2fAPDou8mrfBspTYYkn0WsPdQ8FW9ry8VZL1CpF2JYXpLsHWofPIdCO1cG7VwHjoSI11zUF7xOzaDab6fWUxx82NfvNqEKha5x4TbsY9MzI8arx2g2LujZn1hhD7QKq9lVvbhgp6bywdLV7CwuYUCHDCb17Rmx0BAQURDX7K+mhKzNpvLYvy7k7/d8GpgEWhLTsrjo4hEMHBi439t1TOXvz1za+MVpJbRmM8VvThgDJKfF8ed/nX/AdardPrI35RMX56B3j4xGBfX7s1ZGvCFtqsrLN59DVkYKn950Cf+d8QvLd+WiOlXK8IX0pAPw6gY/bNra4sK4U0w6sZoTb0ODHZIYVQ9WTQOnqrPHvRmIHC+7uuQ7tlYuwpD+2h+tbvmYmvMEQ5PHYEk/9ecFgTgBjcAtEnp9JBZJ9gO3Z7epCYxt/x6rCx+k1LcOEKTHjGVwm/tRFI2uiRfQNfECKrzLyd5/NZb0IgQkK9VUWU58aKjCSYfY0+iXeleIIM2teJ9dpU8gZcB2vrf8JTITbqBz8h/CxhHfDGfd4WJXbUzMGM6PBUvxWTqKkMTafViWnU4x7Sj3+8l3V1Hfam5TVK7sFl7sx66qvHLyWVw/4+vgw9bEpiic1qUnp3TuTqHbHe6vCArkn7K3M3v9Djy6QcyabJ6fs4jPr7+UlJhw88yEEb1Ysn53XeuxIIZpcUyvzNr3/Qdk8vmXd7JkyXbc1T6GDutC27YJSClZvXQn2zfn0y4zhRFje6JFKMfZWohGU/zKfD1tJS+/MQdNU7AsSVJSDE89cgGZHcLLYpZWR7Zr2jSVCk9gytm1TQovXnYWAN9mb+K+GT+FCWMhBHat5W9CRSjc1+8q/r72VQzLxJAmAokmTOJsdQJaIllUvITzMs8hyZ4Utp9Vpd9hSF/IMolFgXcLRd4MDBkp+0+gKTFIvEFhDapwMrTNH9CUg1eui7dnMbbDO5iWDyEUFBGeklzhW4JV79iKkCSoHkAQpyUjvW+zKfd9kmIm0yHlQQzLzc7SJ5D1zsWSJjkVr5MWO5FYe/PKa7Y0t/U4G4nFjwXLUFBQhcK1XU/j7MwxeEw/j6+bxg9567CkRfuYZO4fcCbd4yP7F0a378ziS27m+52bKff76ByfyHsbVtPjjaexWSqqIkLMZwAI8GCg6gGh4/br+A2Tp3+ez6OTJ4Qd46Rje/Dd/A2s2pyLx6ejKgJNVbnnqpOJbeCbcTptnHBCXTF8j9vHX298h707i9D9JjaHSmysk2fevZ62Ga2v9Kbk6NmDm8LvThiv35jLy2/Owec38AVllXdfOX++73M+fuvGMA35xAHd2JFfHNbtw5KSnh3Ctapx3bqEFSSCgCZzdr+m2emaS//Errw34j6m5y3m473TcCheXJoRZj7QFI1cT15EYaxHFLYBp1+SvQuacNWmGtegCI0xGQ9Q6ttIbvUCYrQ29Em+hHTXkIj7agw1Ql3iujGnoAgHVpjjTuI3dmETJhKTMvcUPPpG4mMvD9qVQ7Gkn6Lq6UddGGuKyh97XcBN3c6kXK8mzZGIpgQe0i7VzsODz+X+gWfiMw3ibAd/oCU6nFzSexD7qqsY/9mbVOv+gKnDtFCtCA//8NLSGJbFjE3bIgpjVVF4+q5zWLh2J7+s2k58jJPJx/ejc7vI9bzr8/4rc9i5dR+6P/DbMQwTn0fnqX9+zb9fu/qg2x8NWrGV4vcnjL/+dlVIPCQE7ERlFW6yN+fTr3dorYVLxg1mypINFFdU49MD6bIOm8Zfzx+H0x56eTy6ztQNm+iaksKmwkJsasD2qlsWx3Rqz/byYrqnpYRky7UUyfZ4LsmaQKrTwfu7P4y4jmEZtHFEnpb3jB/DqpKpmA1MDjFaEr2TJrOp/HOq9AKs4OeqsJPs6ErH2FF0ihvNoNTrD/scpJT49NX49E3Yta447cNJiz2dXaX/iri+Vm86L9HxGzvxGbsb2Xvr0nhcmgNXI4kdNkXD1sykmnc3rAxkfNYsUIN9DSOctxLBDFzt8+PRdVy28NmJogjGDO7KmMGNZyICrFq9m8+/XEZJaTUjR3Tnp2mrawVxDZYlWb9qN16PP2LU01FFgjxKqc5N4XcnjMvK3RGN9IoQ7M0vxebU6Nw+BUdQ0CbEOPn0nsv5/Je1/LJhB20T47h03BAGdQ0V2m6/zrnvfURueQUeI6CVmqaFw6lhaRYLCnaxsjiXx+bP5cvzLyUz4cgUGz8l43gStBhe3fFqSMcNm7DRO6EXbZ2RhfHINheztXIhbqMUXfpQ0VCExunt/4ym2Jnc6TVWFL3OzspZKEKle8JEhqRe22KFbyzLTW7RZfj0dcElApvWmcw2n9O37TtsLrwVU7qDnxnYZXWY5i+RuNQUIlbnEzbSYk8LW94a8Zp+lhRvxmcZHJvSo0n1RNYV7gut+ifAclkoHgWnqqEpCoZlkelKYE91WfjMwbL478/zuW/iocWgfz1lBa++MQefLyDpd+4sRFRENvEFjtc6ddDfvJlCCDER+B+gAm9IKZ+IsM6FwIMEfilrpJRHxbU6dlQP1mfn4PXVqQdSQIVq8vg7M9HUQB70HZeN4+zxgUaS8S4H155yLNee0ngozser15JTXlGbiScl6NJCd/sxYwKOlGpdx2sY/G3WdD48+8Ijdo7HpQ0j2ZHAOzvfo8C7LxhmNYIrOjd+yV1qPNd0e5nsstnsca8hydaOwSmTSLAFyms61ARGpf+JUel/OiJjLq54Ep9/NZI6W69f38r+0ntpl/oywzIXUe3PBiQe3wryy/6FJPTHLhDEOYbSLeUBtpc8FHzoBrL5OiXeERZRUYNhluMz83FqmajKkW2ZdTBWlGzjnjXv1Gq0hjS5rccZnNcxsuO1hn5pbVmQu7u2cQAAKlixFskuJ38fMY6RHTuiGyYnPPtG2PYW8PWa7EMSxh6PP0QQA/h1E7tDQ3iN2u4gEPCd9OzbnpjYpqV7/9q0VDTFkZCJBxXGQggVeBGYAOQAy4QQU6WU2fXW6QH8HRgtpSwVQhy4gO4RZNLJ/Zny3Wpy80vx+YIabJyK1AR+3cQfDNf53/uz6ZiRhGUTPDvlF3YUlNAuJZ7bTh/F+MHhP+oZW7aFpETXIJGBOz1ovjOlZEluDl5Dx6kduIZuU8hx57PPV0znmPakOerseL3ie/L4wEfxml40oTWploRdcTI4ZRKDUyYd9riaS0X1ZyGCOIBOled7pDQRQiXO0R8Aly2LfRXPYFleJBYBMWzHoXUj1nEscc7hJLvGUuSeAdIkJWY8Llt4mrYldXYU309h9Tcowo5Ep138NXRK+stRKXXpNnzcs+adeh28A7y09TsGJ3ehW1zjSUtX9TuG19YsDf9AQJFezdAO7UmNicGSstHqlw39Ik1l2479ETt3+F0aMRbYFIHH7cfpsmF32Pjzw+cc0nGONC1Vm+JIycSmaMbDgW1Syh3Bg3wCnAVk11vnBuBFKWUpgJRyf9NOq+VxOGy8/PTl/DBzHXMXbMHu1Fi8Y29t6nMNXr/B81/8wqbykto+dzsKSvjHe9Nx+3Qmj+gbsn6is2We9IXeSl7fOpcF+7eRbI/hym6jOaV9eP1ht+Hh8U2vsK1qF5pQ0S2D0WnDuLX75SFZdk710Prx/dpIItcvAJP6TzMpJZ7qD0lVPFjCREpJtbQTE3Me7ZPvrxWiDq0dHRKuOuAx95T+hyL3VCR+zGA0SH7lu9jVDNolNK39TkuyqHhTRBuvbhn8kLeC23s23tGkXVw87eISyK0KL1epCIEvmDatCMGwzh1Yvjs3NIFJCEZ3a1pdkYYkJrhqE6waHJiBJ/Vi0ri+bNuYR7vMFMZN7I8rpnVqxQFp3CIP4SMiE5sSBd8B2FvvfU5wWX16Aj2FEAuEEIuDKnwYQogbhRDLhRDLCwsLm3DoQ8PptHHO5GN49omLufqKMdhtkZ85m4qLQxqOQiBe+Nkpv4TV2L1i6BBcEfYjAj18alGEYHj7zIhacbGvigvmvsQXu5ez113C2rIc7l/9FS9vnh227qs7PmZL5U78lo7b9KJLg4XFK5iW93NTLkGrI9Y5ntrpQy0Cp/1YRL2Qt+rqN6ms/A9SViGQKAISVJUU5zBUJZ6mIqVFQdWHIWFzAJb0kFvx6mGcyaHjM/Ww7EIIlETymA1nDeGc06Mvjgg1J5IcLjonJNW+f+j0k4l3OnAEQy2dmkai08E/Th13SOPu1DGVzp1SUdVQQeZwaFxw/nCOn9CPa++cwKRzh7ZeQRxEyqa9gLQaWRV83VhvNy0mE+vTUrmBGtADGAdcArwuhEhquJKU8jUp5TAp5bA2bZoWjO+p9vHDBwt48d7P+P79+XiqD37T1qdrZipmhALXNk1BF5ELX5dVe8ISQcZ26cwtxw3HoarE2e3E2m10SIinY3oCsXYbAoi12Uh1xfDv8adG3O+HOxZRZXgxZN1xPabOW9t+obJelw+/pbO4eFVY6Ua/pfN9/pwmnnnrIi3xAVQlBUEg8UAIF4qIJz3537XrSCmpqnwW2SDMTUoPVZX/bdbxLOnHkpHvFcMKL/5/MNxGCbuqFlHo3XLQYviNMTy1B6YMv+dcqp0T2g446PY3DRpOZnwiMcEHvV1RidFsPHNiaIeRbmkp/Hj7NVwzciiDO7bjtP49+fbmK+mYfOixv/96+Hy6dU3H4dCIjbHjcGjcdP04jhlyaNr20UEgraa9gKIaWRV8vdbMgzVJJjbc4GDkAvXTyjKDy+qTAyyRUurATiHEluBAljVp2I2wP7eEP57+FJ5qH163H2eMnff/+z3PTvsz6ZkHj4MEcDps3HzRWF759Jdap56mKsTFOEhMcbK3KLzuQ4zDjiOCFnzrqBFcPHgAn69dj9swOL13T7qmpDB79w42FhXSOSGJid16NJp6urhoR22j0frYFJUtFQUMTc0CAo1AG/u5e8zI8cKtHZvWgc4Z86ms/gKvvga71ovE2ItQ1frfo4nViKA0zYJmHU9VnDi1TLxGeN2HOHvTa4dIKVlU+Crryr5GFTYsaZJga8fkjv8h9iCV6xqS5kjkuq6n8NaOmeiWgYXEodhI1pJ5btOPpDsXc1mXsRyT0iXi9vF2B9+dexXf7djEory9ZMYlcFHvgbSLC58xfLM2m7eWrEBTFLYUFvPjpm08c85pnNAj8r4r3V6e/ngOM5duwbQsRg3I4i+Xjycj2DE9NTWOV1+8ij17iymv8NC9a6AU7W+OlnHgHRGZ2BRhvAzoIYToEjzgxUBDr+A3BKT/20KINAIqeuMdPpvIi/d+TnlJNVbQXuV1+/H7DF76x+c89O5NTd7PRROPoVO7ZD6atoyi0mpGDMriisnDWb4jhwc+mBFiqnDaNa6ZMCxiYZSi6mou+/xz8ioDXSfeWLmc47OyeO7005nQpTtrivK5bOYnrCveR7LDxY39hnNNn6G1WkuGK5ENZblh94NumbRx1v2gYrUY0h1p5Hn3haynIBiU1JffKqoST1L8NY1+LoSGqrbHNMMrlmlaV0wzH0UkIpSYJh2vS8pDbC68JaghS0BBEQ6yku9t8pi3Vc5mfdkUTFlndy717+HH3Ac4t/MLTd5PDZdljWNoSnd+yFvO1sp8VhbvpdJfBAi2VOazrHg7f+47mTMzIxc02lS6n3WlBTgdCiM6dCQjNjw6ZE1uAc/OXYjPMPHVi9W+4ZNvOK5jJs9ecDopsXXX0LIkNz3xGbvyS2prtMxbvYMFa3YytGt7LpgwhHapiWS2S6JTx+Y9gFoVssVC246ITDyoMJZSGkKI24EfCRj93pJSbhBCPAwsl1JODX52ihAim4BH5i9SyvA2zM1kxZyNtYK4Bsu0WDEnu5EtGmfkoC6MHBSqFZx6TC/cXp3nvp1PpceH06ZxzYRjuebkyCFuf5o+nV2lpRj1pqnzdu3irZUrOaF7Fhf/+DEeI5DjX+Cu5D8r57HfU8U9Q8cBcFW30czfvxVvvQ7QNqHSL6k9nWJDb/Jbu1/GI9kvYFgGJhY2oeFQ7Vze+axmn/tvifj4v1FW9iegfq0EG8LKp2zfWMDC4Tqb2KR/IcSBnZfJrhPol/4ROWUv4DG2E2sfQMfE24mx92zyeNaUfhGWKi4xKfRtpUovJO4Qal/0TsikXK/miz1Lg6FqdQLCa+k8s+k7JrUfHJYY8r/VC3h53WL8polE8uX2DZzdtS+Pjwo1R36xen2jkRPL9+Rywwdf8+VNdZ1OVmzeS25hea0grsE0TVau3suaFXuxB+PyLzz9GG66fOxvovFqRFpAMz5SMrFJccZSyu+B7xss+2e9vyVwd/DVYqiqIEK994hhNofKOaP6c/bIflR7/cQ47BE1YoBKn48le/eGCGIAr2Hw0Zo1rK3Oxdcg9M1j6ryzcQV3DBxFrM3OoOSOPDToLB5b911tnYmhqVn8+5gLwo7XJ6E7/x10L9/lzybHU0Dv+K5MzDiBJPuRSSZpDVhmAWblkzjR8KNjAQqBMqGaDLQ0MpH4PFMwzd0oSgZCceGIuQSbfWjEfcY7BtMnPTzutqn4zcgdWxRU/FYVcHBhXGVUM7NgHmvLN9LGkcpp7U7i5a3fY1iRu5dICbuqC+kRXxfqtqeyjJfWLcJXryaKx9D5Zkc2F3QfwDFt6/xHVT5fbY3jhphSsqOohM0FhfTKCIx9Z14xRoRoCdULSvBwNVmtX3y/kvQ2CZwzcfBBz7t10jIPkSMhE1t1Bt7YM49h7pQVGPVSLjW7ytjJzauNcDCEEMS5DuwFblgYqD4lHg/rivcFtZzQH4EqBDlV5fRKDtz4kzoMZEK7fuypLiHR7iLV0XgSQjtXW67velHTT+Q3jrf8MaRVhCZMtOCt2VBcKUhMfBj+JcElAp97CkLric/YjJR+HI7jSUx6DE07fOdSVtxo1pZ+iUVoVTNV2EiyH7x+doVeyd/WPkaVXo1f6ggEC4uWU+ITKMKFKcOjIwxpkmQLLco+J2cHkQSJ19CZsWdriDCe2Lcns7fuxK2Hd8RBBupR7KusqhXGWe1SA5086mvTUhKpq5jXZ/DRN8t+u8K49TSrDqNVC+ObHzqPHetzKNhTjGlaqKpCesdUbnrowOUzjwSpMTF0TExkR2mog0ki8Vo61d7Au4Z3r9vyk+wMLV2oCoWu8b9eaceD4TPyyCn7NxXeuSgilrbxV5IRfx1gUuX5Ho9vOTatMwkx5zVwuLUshm8mNGjKFC5+GqY0SMCDpa8JJoiAzzeHwsLTSE9fgKIkNfn4XqOQbWWvUuRZgIUdv1TwGBUoQkFgw5Q6AgVV2BiX8WcUcfAqfd/k/kiFXokhzeBoJbrUibWB29Bw6+HF5wcldaaNM3QG5FBV1AimAVUouBqEUZ7csxtDO3Zg8a49gRTqmssVrLjpN0z6ZNTlIAzr3ZH0lAR27SsJpDFLEAeIGCmvbDwNulXTcnHGR4RWLYzjEmN4ceY9rF24lT1bC+jYPZ1Bo3seNXvVfyZO5NLPPqudKtbEjBpCUlVlIGKCMYr1hqcgeG/zSv44cDQvb5nFp7uWUmV46ZPYnnv6n86g5KZ1JzlS6GYJ2QVnYASbgEIpueXP4PatRTXXYZh5SFmNEC5KKp6iQ5svcNoPHoZ1aBw8Y9Fq1OgnUahRfCyk9FBd/Qnx8TfXruH2LaO06iMsWUlCzGQSXKcjgs1XfWYx83PPQ7cq8FsWfmo6TUOiAj4ZQ4y9D6nOngxIOoc0Z+R6zmX+Er7P/5yNFatxqi52u5VaQVwfATg0E9PS8Zl1553pSuFfgy8JW/+UTj15YMlPYcs1ReGsrqFOXVVReO3is5i2fjP3TZuJbprIYEMQl03jgqEDaBNfp3lv3rufgooqUGuq4QVKEEkhEREu94AGxbZ+S0SLyx8GQggGje7JoNFNd7ocKQa3a8ekPr34KntDoEWTAKlI0CS+mvlPg+eEieSzbWupFMVMz12HN9gfLbs8jxsXv8OHY25qtJ7tr0Fh1YeYVjUhTUClB7f3W5wCahxpUgY6ihSU3E5WxtwjMhZbzHno1R9CWNr0ISC9GLVFiaCw4gWKKp5FSi8gqfLOpcz+MZ3afIgQKjvL38ewqrCkgY6d+l+kIsAl3CRpHk7M+HOjh6wyKvjP5r/jNqqwsKgwyvAY8TQWzi+lwGkzA0JZCgYkdON/Q2+NqGwkO128MO4sbp8zBVUEhKYpLR4ccTJZCeHdl1VF4ayBfRjdtROv/rKUWZt3EO90cPVxx3DWoLpSr5YlufulqVR7gxmSIvg/VSDigQqz3j4FdrvGrVee0Og1aPVEhfGhs3jGOj565gf255XSa3Bnrv7bZLr0bbzdj8frZ8asDazbkEtm+2QmTxpEakrLFYfpnZaGw64FyxlKcAS/3ZoGehGUdp9p8H3umrAYY79l8Na2X/jXkF/P7OIzCimomoLP3EeycwSV3qURakaAHYNId65ubKes9J/Ex9+IqmWGfX44OOP/iulfjWVsCqowkoBgrhuHgoIZqWgvDc2BLjRboNaFYe6nqPzpkPOU0o3bv4JKz48kxJxGsWcxVjBlu7Hfa7l/2wHHP79wJl7TE1JNz6V50XUX9btESwmGVGqXCQFxqo2ruh64ddjJHbuz7KLbmZO7A8OyOKFDF1KcBw7zS4uL5R+TTuQfkyIXCNqaW0ilO8LDT0BWtzbcccZopvy4hj25JfTpkcFV54+kY/tw4f+bIWqmODR++HABrz7wFT5P4Eey7OcNrF24laen3B0mkP1+g9mzs3nxtVl4DROfbmKzqXz4+RKuuGwkZ08aQkLc4ddxOLdPX/63dBE+E9BqBHHwfzW/4nrft01RGJHegQ3eqjBhbEnJ5ormJTM0Byklhd4VlHqzcWnpxGjxbNh/K5a0kPjIr/qCGMVG5NZKjYkkC3f1u3g9H5Kc+i4Ox5gWG69QYohN+xpTX4Glb0LRumAaJfir/oU080HEYRMOhFWM0WC8Omq9cxAIYSc2JuD8rPYuBKFBw04n0k2l5wcSYk7DpbWj3L+BA6lOTjXtgOPfVpWNIUOdZk5FR2oO3KYdu2LHlCZSqrj9KjX2cYdio0d8JkOSI1edq0+83cHkLgduYjA1eyPPL1xMQVUVvduk8dcTxnJsZuQHp2laoaVKpUQYICzYvaeYnftLeOQvZ6K1QARTVVk1374ygyXfryKtfQrn3DGJfqN/3WYAkcwurYVWK4xNw+Stx6bWCmIIaBQ+j593nvyWh96tswVu2VLAX//yMW6PH9MIWBUVFXQpQQjeenc+73y1hLuvH0/nLmk89ckcNu7eR3yMk0tPHsLVk45FVZp2s6W6YvjwnAv444/fsdNbEqoJ6wrYrVoNOUazkexw8bdjTuTi+eGx0YoQ9E5ovFLXgSjy5ZDv2UGSPZ1MV7gd3bR8zMu/jVLfJizpRxUOLOkmQfGiBu9IU7pxWzZiwrQxiS4FCjJCM1JQhA5Sp7zkdtpkrDysRp8NEUKg2YeBPZD0oDnAETsZKf2Y3nn4yu9EExJVKrX6p0CgCbCkioVE2oaSlPIMStDZqCixEbuDgIKiBFKEuyRezX7PL1h4sUkzKNzrTl4VTvomX3fAsbdxtGN71aYQzVgIiNf8jE+fQIXuoW9CL0akDGNa/kKm5y9BIjklYzhndhiD0gLX8YNVq3lyzjw8wTDLVXn5XPP5V7x34fkc0yHU1rtkyx7en72iLulJShSdWj+032/y8hcLWLkph//84fDi2ytLq7j12Hso3VeO3xvo3bjkh5Xc8vRVnHbd+MPad5ORAqLF5ZtPyf4KdF94aI6UsHlVXbcHy5L8497PqKysC8wXACYIBaQaWMfw6Tz11k/4EzV8wZuvrMrDW98vpai8mr9delKTxzYoPYNZV1zLuE/fYHdlWb3BCfApKBqc27Mvw9M7cWZWH5yajTMyB/F9ztpamzGAXdG4rvvYJh8XwJQGX+x9iq2VK1CEipSSFEcGV2Y9QqxW54HfXPY+pb7sYHdmMKQbkFRaTpJUT7396Ui1E3bK0a0iQKIiUWp0Y1nXHVoA9eNCpKzCNLaj2Q6u0R0uQtixjGwI1q0QQtSWHZJSIoIPDhUNRRaiqnVhbbHO4wkvUgRCOEiODTjLkp2DGJD6ENklj6GgIywTnUDfPoFG35TryYo/sEA6oe0klpfOx2/V789no0y389O+OeiWwdKSJawoXckdPW7mnMzjD++iNMC0LJ6Zv6BWENfgNQz+M+8XPr6kLkzy419W8ey38/H6DYQGqhnQhhsGBHn9BovX72brnkJ6dGpaBJDPq5Ozo5Ck1FhS0wMPu29emE5JQXntb1pK8Ln9vPKn9xl/6Vgcv1ZqdSvWjFtOpWlhEpJjG71ubTvU2aw2bcrD4wkX2gIQDQLZPZrE37BKm9/gm1/WU1HdvJoPQghuGHgsrgZ1KGyKytiMrjw1+gwu7D6wtnrbP/pP5qpuo0mwuVAQ9E/qwOvHXUPX+OaVfl5Y9A1bK1dgSD9+y4MuvRR69zIl97mQ9XZVTq0VxPVGjYmC1cBuJpRkMhNuJhZBDAZOYSKEwCQwkRZSwwXEEnBm1SClhRDhHYebgpQSq/oTrP1jsQr6YBVOQvoO7BhUtM7QyPHq7hUTyyrB8P1St51w0LnNR6hKMoqIQxHxCJykJz2A015XvrRD/OmM7zSXMR0+ZWLWDM7puoBJnb7hrC4/0yvpyoNG8WQ4O3Bdl7tJtqWiCRsKGtWGCwuJz/JjYeGz/KwrX8/CosVNuUzNoszjDatCWMOWoqLav90+nWenzq8thiVVMFyAiJwSIYANO/KbNIap7y/g4hEP8ZfLXuaa8U9y37VvUF3pYfG0FRGVK0UV7FjTWCutI4Bs4uso0Go1Y4fLzikXHcfMTxfj8+ohyy+9q644ut9vhPW8qyXoU0MBhMBUI19nm6aSW1ROQmzzbMqX9hnE+qJ9fL1tA3ZFxZAW3ZJSeebE8PY/mqLSP6kDXeJSyPeU0cYZi1NtfvH55SU/YMjQ2sAWJturVuG3vNiDXZtlE6PbFeGifdxFxLsGU1jxeIMLJJBIFCw0UWfjDG6JpnU7ZCeedL8LVc/UarqY25Gld0DyywhHeOt6ANV5KlQ8EtwmGMQma4Kx6u/cwmpQ38LlGEzP9quo9i3CstzEOkeiKuFVzBRhI85e1wvOpTXvYdk7YSAP9Huecr2UfO9+nt78AnqD0Daf5WfmvnmsKs3jl8K1aIrKpHbHcVGn8dib2RuvPglOR8DcFiFBKTOx7ly35BUGbMD1ZaMASw32z2vwI1EUQdvkg5cvXTZ3E2/953t89ZSjNUu288QfPyKxTeTMUVM3SUj9FbuvtGLNuNUKY4CbHjoPgBmfLkYIsNltXHvvmRx3Sl2cq8tlw6yfORTUXiRgqYFHvWUPLNOkwBDhsYa6adI+rfnlBRUheOL4U/nDMaPYULyPdnHx9EuNHKY2Ze8KntwwrdZM8cv+zSwt3sE7I2+kZzPsxrrVeNiXYem1wrhT3CS2lH+A1UBwqwhsSgxSGiAEqa4TaB9/LkKoJMVeRGnVB9QJ3UDsrsTEkCqacATjcgVCJJCU+maTx10fKU2oeqFOENfiRVY906gwFsKJK/VrfOV/wfIvRUoLGfwvxAeFRLUNjLC9jThny5oGIo9TkGRPocQfXhEQAvffypIiDFlUG4P8yZ6fWV++gycH3XJIx9xYVMhj8+fgJVwxcWoafxxd19YpOc4VVocCwHSA3S9CUqkVIYiPcTJiwMGzGb94fU6IIAYw/CZrFm/nrofOZN0vm/DVi9xQVIVOvTvQoceh+U2aTTTp49DRbCq3/etCrrv/bCpLqklJT0DVQm1/079bi6LX8/0LiaUJEAJVFehOAQhcThv9e2ayNCcvpFax064xaURvEpupFdcn0IWhcc3BlBbPbpoeYi+WBIqNv7h5Jv87tuldJ3rGH8vasrlYDTLVUuztiNHqxtAn+VoK3Aso929H1vuB2oVGZsK1ONRYEh1DiXfUeebTEx/B456O3wpEeKhBYSwE6CKGlORnEbIKRU3H7hiDaEIGWkRkBchGzELGgYv9KVpHXKmfIKUXT9k9WJ6vQrpnSEBRktDqJaaYZjHV3tmUVb2JT1+HIuJJjLuG1IS7a5M+jgRZsZ2xKTa8Vui5GpYTUxKSDOK3dLLLd7G5Yg+9EpqXCLSrrJTzv/g4kP6sgFBBMQVCQJuYWO4ZdzwndqvT9ju3SaZ7u1Q25ezHrNe/zum08cezx/DJ9ysoLncjLUn3Tm34162nN8nBXbw/2IWkvrYjBJpNJWtAZ6584HzefeAzNLuGaVh06J7Bw9/8pVnnerhEoykOE6fLjrNDuIF/985Cfvx2NVBn65ISFF2iOAWTJg7GcAr8fpOTRvfiuCFdWL01l39/PJstOUXEOu1cPH4wN04e2eixF+zczWsLl5FfWclxnTty86jhtE9sXrGeEl9VSKW2GiSwvjynWfsan34F26pW4TPdgS7PwoYqVM7qcEfIepriYkDKTSzd92cMaSKCjjmJztbyDzml8yyUoCCSUlJU+TzFFS9hySpAoGER2thBx+k8HqWRhp7S3I/h/hxp7kGxD0d1nYEQjdT7EAkgHCAjtGJSs5p0HYRwYnh/CF8OYJUGC8DrFJX+hSr3Nxj15uSWLKes6lUMM5+MlGeadLxDQREKd/a4hac2/w9LWvgsAylVvKYWZrqAgEa/rSqn2cL45RVL64pUCZA2MDWJXVX4/porSXKF29mfu/4s7nxjCtvzi9FUBcO0+OPkMVw8dggXnTiYguJKbJpKWlJs2LaNMWRUD/J3F2OZ9SSelFiWRYesNnS5ezKnXTeerat2ktQmgax+HRvf2ZEiKoyPDN98sTysN1dN5QJDQkZ6ApdcHCpoh/TM5OMHrsCyZKMV2mr4bPU6Hps5B0/QKZJTVs73G7cw5brL6dAMgRxva9zJ1dbZPPNIvC2F23u8yKrSn9njzibNnsmw1Ikk2sJjYPdWfoPAh63BaUqpU+JdTZorED5WVPEsRZUvhnTYMBAIKVFFoCtHYtzNjQpi078Sf8mVIA3Ah+mdhlH1Io60bxBK+HUSQkXG3gJVz0NIB2gnIv6PTb8YshFfQXAmUFr+KG73VMza/nv1Ey88ASGd+A+0g8QPHw69E3ryzOAn+d/W18mu2IaJiYUB9dKta1CEQltn82t/rN1XgNnQ9ibAoWnsLC9jSARhnJYQy0d3X8ruwlLKqjz0aN+GGIcNv25gWpJ2ac2vDjjxohFM+2Bh2HJVEbURObGJMQweF97z8deiNWvGrTaaoink55UGCptEQsLrb87l5TdnR1znYILYb5o88dO8WkEMYFiSap+fl+YvOcCW4ThVG2d1HIpDsYUtv6F75MyoA+8vlpFpZ3JRp3sYn3F5REEMNNp2CARS1oQYGRRXvhLW6ggEBho2rTupif8iOSF0OmmZJXgrX6K65A78JdeArKY2jVm6kWYuetVLjZ6DiL0O4v8EIljHWe0Eif9FOJpu09UckULWFFTHGMCisvoDJN6gMhSh5JCwoxs7m3y8Q0W3dDZVbMcMasMO1aDOs1EzaoVEWyzHJDc/7b97SipKhEgPv2mSmXBgodq5TTKDurRH1w3++tJUjr/9Bcbd8QKXPfwBm/Y0r6/wyvlbsNnD9TspA869VoEUTXsdBX7TwviYYV2wOxpR7pXArf7V1yt496Pwp/XB2FtaHrEojSkli3eHt/I5GH/qcxqTM4fgUDScio04zcldvSdyUkbTOnfolp8CTy5uo7rJx+wQdzpqhFAwiUmyczAAllWJjGQuAISIpWPGLyTEXRwS1mXq26jcPxZv5TPo3m+QMpKjyo/l/a7RsQkhUGKvRElfhEjfjNLmJxTXhCafG4Az8RGEkkRt9LNwIUQirsTHkNJXe14NBV8NUvqxaVnNOuahsLlyO1o927QiIN7mQxUBx6MmVAYmdeOZIXeEdP5uKrcMHR7WqNShqpzStTttYg5uZpBScvNTnzN71XZ008KwJJv27OeGJz+lqCxyPedIFOaVokeIbDJNk5J94V2tf3WaGtYWDW1rPqedOYSvv1hGSXFVrfYrCcRN1syLdMPk06+XccUlI5uV0pkc44pYcBugbVzzQ3Fsisq9/c/krj4TKfO7SXPEY1Oa5gD7ed/3/JD/BSAwpcngpGO5tPMN2JQDB8q3jzuVnKrvKPGuxJRuBDaEUBjc5lE0JSDAFCURRYnBtMIFssMWWUtzl9+DlJXURFs0VpOjqbfXoVbhU7RM4trOw+/+CsvYgKL1xR5zbq1pRFM7YZg7QxKl63AQ65qEph75Uqbxtviw37emSJLtOie0GcUVWecTq4U6kDeVF/DYmh9YXZJDjGbnki7HclufEyLeM33btOX1M87m/jk/s6e8DJuqcmHf/tw7pmkFfVZuzmFrbnHAzl7zXUiJ12/w5dy13HTWqAPvIMiAY7sy88vleN0N7iUp6DX4KNiHI9GKzRS/aWEcF+/k5beu46XnZzL7pw2BNtuaQNbzPEkBhm7icfuJj296xERKjIvju2Yxb8eukMLyLpvGjSMjt2VqCi7V3qxGjqtKl/B9/uf46wnLNWXLUIXG5VkH7gOoCI0RGS9Q6FnIPvcv2JVEOsafSYytLjZYCIU2CX9lX/kjIaYKIZy0Tfx72D6lNDD9y6B28i+CZTlkeFSDveXqVtQd38T0TEH3fAaAzXUh9tjLI0Z2pCb/i/3F14L0ogYjryWBabOBSX71t+RXf49Dy6JD0t9Jionc1ftw6ZvQg1jNhc/vC6n5oSkqZ7Q/KUQQb67I54n137GyeDcWYCGo0E3e3b6IXHcZ/zn23IjHGN2xM7OuuBaPrmNX1San9wNMW5wdGFX9h6IIhLht2LWvsc3CGDmhP+1e+pncnYX4fXUp1rrXx5O3vM1fnruSXkOymry/I0EjDeFbBb9pMwVAUnIs9/7zbC6/4QSkS8XSFGSwxKAMxmXFxNiJjQ149jfu2sfns1Yzd9U2jEb6hNXw7zMnMqZrZ+yqSqzdRozNxp/GjeHEHl0PuF1L8mPBlBBBDKBLnRWli/A1oVO0EAptY8YwIO3v9Eq5NUQQQyCLzmbrR1zMFahqJ4Rw4bQNpFPae8Q6I0WZKDS001rB9vOy3n8g0GKvaM6pHhQpJb7SW/BV/APLvwjLvwhfxT/wld4ajJ4IxeUcR0abr4hxTsShdUdTM/FLO26p4K0tPG3hM3aws/hOytwzWnS8NShC4f6+fyTD2RaHYselOnGpTm7tdjWZMXX1InZU7ueqBW+wsmQ3iIA5Q1UlimLhNQ1m5m1kn+fA032XzdYsQQywv7QRU4QQJMYeuANOfTSbyn8/vY3zbxiHqgiwLNANpNdP7o5C/n7RC5QWHmVzRdRMceS56ooxdMhM4YmnvsMwrFpB7HBoXH/V8ViWxd3PTWXFpr1YUqKpCjEOO6///SIy2yZF3Gecw84rF5xFUVU1RW43XVKScWiHf8kqdA+aUIjRDn6jV+hlEZcLBG6zGofaNG1fN6tZV/RP9rtnI7FIsg+kb8of2VlyF7pZjEBgST/p8dfSKfnvjZoOhFCwuc5A90wDdCwkajBTrw4NxTYQtREzx6Fi6SswffMIicCQbkz/XCx9JWqEPngO+2Dapr2FaVWxMXcgEgMrkCwfsp6UHnLLniAp5pQWHXMN7VzpPDP4QXI8+XhML11jO6E1yLZ7descfA1CIIUAVZFYlsSmqOysKibd1bJ9EHtktmFJ9p6IMmjiiN7N2pcr1kHfwZ2wY+HxhSoRhmEy49PFXHT7kbnGB0PI1h1N8bsRxgAnn9iXNmnxvPL2HHbuKqJNm3iuuWwMJx3fmw9/XM7yTXvxBR0Mft3E4zO45+VpfPDA5Qfcb1pcLGlxTY+3bIxN5Xncv+YrdlYVAjA8tSuPDD7vgH3wusb1ZG3Z8rCSlnbFTqKtaXVlLakzN+c0/FZdc9pS/0rW77sALRCYW7t8f9WHxDkGkxobntJdgyvxESxjG6axHQmYGKjIQFyxNFHsx+JMbn4b+4Nh+hYRsfC89GH6F0UUxrXbWhUgFOQBpql+48jWSBBC0DGm8S4Z68tyDtDJJFD/unNsy7e9On/cQD6fsyYkGUoAGakJjOrfpdn7259bEjGCSfcZ5O8sirDFr0g0A+/XY9CAjrz8dPj0+Jt562sFMdTYDiU7cosoLK2iTfKRzY8v8VVx3eK3qDbqhMmS4h1ct+hNvjrhjkbLJ57R/kI2VaxDDxaaAbApds7NvLzJJRdzq74LEcQAChZqhPoVlnSzr/JdYm2d8PhXo6ntiXMeH5Kp9n/tnXd4HNXVh987M9vUu2RJttx7t3HBBhsXqgu9hd4DBAJ8CSQhIQklQEINhN4JxXSDjQEDLoB7771JtnqXtky53x+7krXaVXMVZN/n2cfy7JR7Z2fO3Dn3nN9RlHhiUmZh6iuxjJ0oWi9UW1+kuQch4hGBuF1p1WB45iCtIlT7CBTbkMMqmSWUxECySKMwPOFAiOYfTDY1A0XEYNG0a0eiYEkdRbRdM+RI0Ck6mdzasrDfqVLDZkRz6ucvk+aK4bYBY5neJTReV0rJ26vW8MKSZZTVuumbnsYfTjk5RD6zIdmpCTx+yzTue/UrqtxeLEvSq1Maj9x41iH9Xr0G5xDuXd8ZZaf/qPDlqo4ZkZHxoSOlZPPK3VSW1tB7WGfiD7FqR51/+KAv2b/ci2Txxj1MHdNyILqUktyKSoSArLi4Nl2on+xbgdFIXN6UFoWeSlaU7OaElPB+6AxnJr/v/QBfHviEnTVbSbancFrG2fSK69/qYxfWfB+yTNR7dkNx+zawq/DswHp+zd/OaZ9g1xpO/Ak0+zBoMBoV2sEbzdTX4ym5BDBBetGFDdU+BkfiC4ecgqy5puCrejDMNwLNNaXZbYVQyEx4kNyy3yIsN5YUQfNVUoIhBCW1X5IaPe2Q2ndwX5Kt1VtYWbocm6IxKnkM2VEtRxNc32M8K0v3BGVrSgnCUvG6bdQEUsir9VL+sPhLSjy1XNMneDL5qR8W8cqyFUF6xle8/xEzfnURfdObFj0a2TeH2Y9eT15xBU67RmpC6+6zPbuKeO3ZbynMr2TEmO5ceMUYuvbLZvDYXqxeuKVe5EuzqySnx3Py1KGt2u/RIuKmOETy9xbzx0uepayoCkUR6D6Di35zKr+64ww8bh9b1ucSFe2ke58OLRrGU0f25u05y/FYgcqMDdZ/+N3vSE6MpqTWTXyUg9E9c9BUhSW7c5m5diOmJRnQMYOXVyynsKYGIQRZcbH8e9oUeqUeDI2q9Hn5as9WKnwexnTIoU/SwYt/d3UxXitMDKa0yHOX01x8RpqzA1d2ubnV560xUbZOwYlugNnE3K1AQ6EWGUgYkYBlesgruZku6TNbdTz/RNsNfg2K+oUGpvdHjNr3sUX/6lC6gVAScCa+jqfsJqjPqrPjTHoBEUaBrTEJ0Wdh09LZU/pnqnyb0Br4LHQEljQod88/LGMspeSN3a+wvGwpPsuLgsL3hd9yTtb5TMpoPlpjaFIO/xh8Pg9vmEWJtwZVCM7uOJTNhdUsrNodtK7b1Hli7QIu7zW0PtzNretBhrgOr2Hw9I+Lef7c5vulKIKOTcyfhOPzD5fx70e/rOs427fm8/G7S3jto1u596Xr+PTl7/ny7Z/w+XROnjqUi287Dbvz+Lx1+NvYvqMp2q0xllJy3xUvULC3JMj/9MGzc6nyGHz52WpUTcEyJQlJ0Tzwn8vJzmk6rfWKM05g7rIt7C4JTVDw+gx+8+wnaHE2BAKbpjB6cGe+2bIDj64jgU/XbkIqEssGCNhZUsaUN97m6hFDuHXkKLaUF3PVNzP8qdiWhSIEU7v04dExZ/iLqiZ24sv9azEaOS29lkGivfk6ZodL1/gr2VX5OsHvaIIaaSdOiICQkIkiXCB17CF+WROPbx2GWdyq1GFpbENa4V633RjuQzfGAKpjJFHpy7H0NQAotkFtEiyKdgynQ8LdVBX9Bq+sIThIWsOmtk0yszFbqzbXG2IACwtL+vg47wNOSB5JvC2h2e0ndOjLKRl9qNI9uDQbNkXjhA+fDruuaVkUuWvIjPZP6B2orAqbiSeBjYWty6YrKK2iqtZD54wkNK3p8+rzGjzzzzkHFwSO6/HoPPzHD+ialcDqH7aS3iWVC26awJCxx7a8UpNERsZtZ+/W/LATAR7dZOaMZTRcnJ/n44bzniGhUxITT+3PpVeMxRUVHMsb7bLz+8sncuezM0MEuP2jP7/oNoDUYea6zUHv8PXzXFJQV3zUsiSvr1zF1zu3U26vocYIngmftXszEzt25/ScnpyS3ocH1ocfWc4r2MS49LbNWrcFh5bC8PT/sKLgdmT9iFKhW+KfSY8aQUHVW/jMfBKc46ioegrDqg2zF1E/Wm6ZZoYfYQRywq4mTXTvj1jmPjTbwCAVNiFUVPuhv+7GO8egCBemDO6nIjTSYy5qYqvWsaJsWVClj4P7VlhfsZYxKS2newshiLMfzJzsFJNAsSc081ICSY6D66XFxIQ87OvomtT8xF9JRQ33/OcLNu7OR1MVFEXhD5dP5NQmoikWLdwSNpwQw2T9t+vZpCqYusne7QVsXLGbG+6dzpm/al3yyFGlHRvjdhtnXFPpRgmXMed0EE6OwjQsig5U8NGMpdxxy5tBAkKV1W5mzVvPjp1FWEboxVqftRfA0qC+zEUjsXXF9P8byHTAsCT57ircRqgqW62h88G2tQAUeiuJUsMne6wqbXt6dWuRUrK5/EPm5/+DYsOOmxw6xf2GMzqvIif+Qip82/HgwukYR1L0VOKjpiMIbadNy0RTm54EaojQeiJEOElRF6qr5UrYlplPeeHJVJVdT03FX6koPpfKkl+14WHQPIqw0S/9vzi0bBQRhSpiUEUsPVKexGXr3Oy21UYpa8q+ZE3ZHGqM8pDvbYodEea28tfpO7RX9NsGjsWpBo+bXKrGJT0G11eSAX8o5kUDB+BsFH7p1DRuGzOq2WPc8eSnrNuxH59uUuvRqa71cv9rX7NxV2jB3Nx9Jbz60rywdk3UesGSmPrBh67X7ePlh2YeTAQ5jtSFt7X0OR6025Fx9wEdwwv8aOFiAAJIie4z2Z9bxpJF2zlxbE8WLNvGfU/PRhECKSWqYeJwCbyNem4GrmkrUIdSNBjASZX6MxUSGSPAa5qo4UYJUD9SSXfGBenXNqRTdHJTPTpsNpW/z+qS5zEDkz+1Rglry94hxtaFfRVP4jULMWUtinCyvezfDM/4DzbP1+jmAaSsReAXlM9MejpM0dNyPL5VqEoCDtvg+u+FUHAk/gdP6RWBkbAHRBSKbVCrXBRVZbdjmbk0rCyie5fgrv4PUbF3HJHzEmXvwdDMedTqm7Gkm2h7fxTRfGbkmrI5zM3/DwoKFhZfH/g3SY6ejE29hJ6xJyCEYHTyicwr/Ba9kd6HxGJgwuBDauu4zK48MuosHlgxl3KfG02oXN5rKL8bPD5k3T9NGEeM3c4bK1fh1g2y4+O4b9IpzUZT7MgrZteBkiBtYwCvbvLuNyu5/4aDYY7uWh+33fwGVRXh3p5A6KGDkjrydhbSpU/rHuj/i7RbY2x32rjloQt45p730b0GliVxuGy4Yh3UogSVYqonMJJ2u31s2bif/oM7cd/Ts4NC2gBUjyA5zYUhJB0zEthQVASW6RdsCigbBpkds07vIngEDf5lNqkiCTW0UZqNc7v5ox6SHDGcnNabhYVbgibynIqNa7odneoTUlqsK32l3hDXYUovy4v/RZwoQAZ0fi3pwcLDhpIHGJX5DZW1X1DrXYJd60RC9EUhGg6lVf+htOKfCGFHYqEpqWSlvotN81eEUO3DiUr7CcP9GZZZhOYYiWIf02IlacuqwvAthZDz6cFb8+4RM8bgdwdE25sve19Hha+AufnPYUo9qGXFns18uO+f9Ikfw7nZvyU7qhNnZ53HJ3kfogglUJXa4sZut+JSD61eIMC0Ln2Z2rkPVbqXKM2O1kSWnaoo3HnyGO446UR0y8KutuxPLy6vCavbIqUkvyQ4Y27e9xvx+Qx/bRVN+LVqAwhAc9gwG1Tz8GsUgO4ziE8+/Fj9w6YduynarTEGmHT+SHJ6duDz1xdQWlDJyMn9GTd9GPfc+AZ5e0vqDbIEpE2tn0RwOm2kZ8Tz44odYaUyTdOittyNcKoouqR3VirbCkqoDiMADwGNZAssB/VWWiLrQ+RsispfRk3gvqVz/ZEElkmUZmNMhxymdD7oc3tg8Hk8uG4mcw6sw7QsLCQeS+eFbd/z5wHTyYxKOHInDzCkGz2s/xc8ZiWxWmh/q307MaxaEqLPIyH6vLDb1noWUlr5GBJvvetAN93kFV9GTvqCgyNkJQFb9JVtbXXT35h57N3fl/jY24iLufGwYpbbyubKhcgm/LFSutlU8RN5SWeRFdWDyRmnc0LSSNZXrsMmNAYmDDksQ1yH35ccPuPSaxjM2baNzUVFdE9O5qyePXHamnaL1Hp9PPHpQmYt24SumwhPaN/sNo3R/TsHLdufV4aniQLAqqpw+W9P490n5vjLK+kGdVU/pLRY++NWxp9z6Louh00kmuLw6DGwE3c+Hpwh98Sb1zPnkxUs+Go9mzcfQBcgVQUpwLIpVCuSJ56fiyPRidcMvbkloOsWliLZsqeQUf07c8Ulp/LC90vZXFgU8vBUFUHH1Hh21pbXi9crmsDuVIm223ns1NM5Kacz4zt25bOdGyn3ejgpswujMjoGGQynauOMzMHMzlvrrzMW+GpJyQ4u/+kFvjjlDlxN+JVbosxXyMYKv85y3/iRJNrT0IQLuxKD1wqNINGaMWQiTFn7hpRXvxZG/9jCMA/g0zfgsLc+BroxipKIqnXFNLYELZdSYiCxrDLKKx9FSi8Jcbcf8nHaiiXDVOqsaxtgWD62V68kK6oHAAn2RMa2YrLuSFBUU8O5/32Hco+HWl0nymbjXwt/4KNLLyUzLtR3L6Xk189+zKZ9hfgC8feqJlEa2FibphAf4+S8UwYFbdujZwdcLjvuGg/CCK49aJoWb77xE6Mm9GXRZ8uDJvhMw+TJu94hvVMKfYa1PavviPFzHxkLIU4HnsKvEPOylPLhJtY7D/gQOEFKufyItbIRDqeN6ZeMYvolo8jdV8o//vYpO3cU4tGoHx0bhoWvuBYr/uCIuSFS8/8uPsvip/W7+Pv1Z9AlPYmLnns3JNpCUxRevPQckmJcFFRVkxkXR4XXf+F3SUysDydKj4rlhv4jm2z3ipI93Lr0bUysoCZZUuI2fHxzYAPTsoe0+Xz8VDSLr/LfrL/Ovs7/L6dlXMaJqVMYlHw9K4qfCXJVqMJBt9gxlNd+iSm96FLFCmiuJTt6YlOb1z4wG2Xz1SFQMcMY/rYSk/gUlcXn+4um4kFKf4KKt36U5aai6hniY2855AQSj1HMmuJ/cqB2PgKFrJhJDEy+C7saHK9ca1SwumwmO6qXhaSk11FhODFRWV2+mhNTzmlR2rQ5qnUvD635mi/2rcewLMakd+W+IWeQHZ3Q5Db3f/c9BdXV9dU+anUdj2Hw57lzeeXcc0LWX7+ngK15xfWGGMC0CzSbQkZ0NHZVZeygrlxxxgnExwSP6E8c24OU1FjyKtxhz4buM1j8w3ZkGPlZn8fHR8/N5d6Xr2/dyTjCCNp30keL0RTCH8T5LHAG0Be4RAgRoogu/NPntwNtK4NxmGR3TOLZl6/hutsm4WwUUK5IUNxWvd8KAmFsGhia/19LBZ+Aa/41g5SYaK44cQhOm4YiBIoQOG0aN44fSU5yArEOB91Tkomy2+gQG0u3pKSwcZ1N8dTGb9Gt8JN4taaPXVX+WNBibwUbK/ZQbTQefYZS6ivgq/y3MKTu92dKHUP6+Cr/LUp9BfRKOJ8RqXcRpaUjUIiz5XByxoMMTb2PGEdf3NKBjoqJioFKkW8f+bU/NnvMGNeZCEJflyUGTnvbHyaN0Wz9SUj7EVfsXfikhkdKahq4CKSEWtPDuty+rNnbhZ2FV+I1Wh+RYlpevs+7nP0132JJL6Z0k1v1JfPzrvZXrg5QpRfx2s7rWVLyPgWeLdSF7Enp/1gSqkwHZqCEUq47l/f2vnDI/ZZScsWCt5i5dx0e08CQFgvzd3D+t69QrTcdSTJ3586QskuWlCzcvTuo0nMdO/LDP0y9wmJAv2w+eOhqbr9oHIlxofHvmqby7+euQhGCpq58wxfe3SclFOaWNtmPY8LPXLVtBLBdSrkTQAjxHjAd2NhovfuBR4BjW+41QGFRJZ4woTOaV2JJC9OuoEWreDWJUacC2cCQ7s4v5d5XvuTZ28/l1P49mLNuG0LAGQN70btD2wTIN5YUMnPnJiSSKV16MyAlA4DtVUX+iY8wv7ZLtdElJpU/rXmNZaVbsAkNXRqc3/Fkru92RpP+0Y0ViwNKvcFIJBsqFnFS6tl0j59K9/ipIetE2QaDewsNJ8ss6WVl4V85I+erJifb4qMvo6LmHQwjF4kbEAjhJDX+byhK8A3s1XeSX/5najw/oggH8dEXkh7/RxSleR+qoiYTFftryt2zMHwrDvZLQo1U/C0OuEqqPPPYlj+VPpkLUFuRibe/5jt0szJo0tXCwG0UUFC7iIxovw7zD0Vv4DGr6s+vEBZI0BQnlQbUWHaMBjO6htRZW7GUGqOaaK116cTry3P5eO8KagwvXaPT2VFZjM9q2C6J29T5ZM9aLu9+0N+6qbiIt9evodhdE9bg+tsb3mB2SW9ax+PHNTt5/9tVXHDK4CZLk8XEOnG6bNRWh68Q09QYT7NrDD7pOCZ//AJU27KAfQ3+nwsEvYsLIYYCHaWUs4QQTRpjIcQNwA0AnTq1rQJuS3TpnIrLacMdLspCgmpI+ndMZ1tNBSUeT8hT0JAWy7fmUlHjoW9WOn2z0g+pHU+v/oln1yxGt0yklLy+cSVX9xvGPcPH0Sk6iXXltf5DygbPAgkJ9ijWVGxiWekWfJaBLzCR9fG+hWS5kjkry3/KLWmxrmIjZb4yusV09U8khrvAWvGEP1A7L2wUiG5VU2PkEWMLr6egKNF0SH6P/IqHMPQ1OLSuJMf9BpcjWDXNMEvZVTAFS1YCEkvqlFf/F5++lZy095tvXIDEuD9QWHIZMuBm8Yd/N77ZLSzpprT6Q1Ljrm1xnxW+rRgydGLTlD4q9Z1k4DfGu6qXhTzohAAhTISSg2GGjjBVoVJllLfKGL+140ee2fotPtPAQmITG5GqBDMQuhPAbepsLD9Q//+Pt2zkj/O+QTdNTCmxhXloaorCpG5dwz7EB3buQOf0RLbvL0avcycELsrKcg///nAh23OL+dOVTZfBOnlCX+Z8vjr4Ggu8gSoCcDrAc3A0r2oK0bFOzrlhQovn5ajSjifwDjvpQ/iHT48Dd7W0rpTyRSnlcCnl8NTUI1vuZvzJvVG14O7IBn85HTYuO2ckMx64CpfDVm+sRMOVpX+W+VDZXVnGM2sW4zENTOm/jT2mwWsbVrC5tIjf9DkFp2rDNBWswKsuErrHpvPqqGtYULQOXyP9Co+l897eeQAUeYu5ffU9PL3tBd7c8x5/2fAgS0t2hHWVCKGQ7Mjgu4J3WFj4IWW+0IoNNiVcYgYY0kONHhrsX0dp7XyW7z+V3Jr5HPCWsKd2GQW180LWK6t+OxBt0fCX8FLrW4HH1/jFKjwu5xjSkl/DpvUGbKAkIQiNEpDSjVtf36p9xtq7hq0NqAo7sQ2SPhxKU6FYki7RPcImd0gg2d5ySnWJt5qnt8zFY+r1spm6NBHCQlGCn6Iu1UafeP/blcfQuXfeXDyGUe+a0FULBNhVFZuiEG2zkRUXx98mTQp7bCEEL/7mfE4f1st/7UjAkqge//3g8RnM+mkjhWVVTbb/mlsmkpoWdzBlOtAW4QncPy4nWmIsHXtmkNEpmdN/NYZn5/6BxNQjq8XcVo5U0ocQ4nQhxBYhxHYhxD3NrHeeEEIKIYa3tM/WjIzzgIZDpOzAsjpigf7AvMBTOAOYKYSYdjQn8Rpjt2uojWIl60yUKgW/Om8Eo0/wq4qlxcWwt6YUpF/BTdRVBrEkGYnhDVRr+Gbv9rAporpl8vXebdw2+EQeHnouj67/igPuClw2J9d2H8N1PcZS5qtuciRbqftTYZ/a9jxlvvKgiaT1VTsZkzScfbUrsAL+TkWoZLly+CT3cXTpQ0FlftH7TMm8icGJE+u37RZ/CauKHghoU/iR0l/qZ3Hh/XRwDabCt51ERx96J15FjK0jplXLpqLfYDWIppAS8ipfJ9E1nnjnwdGxR1+HDCNZKVDxGttw2ltXjNXlHE9WxngAarzL2Vn4q/rq1vX7FC5cttbtLzt6MhtKnsY0vdQNlQQaDjWZjKgx9esNTTqb+YUvYzTI/FPQ6Bx9AmPTLmJj5Wp81sFSSnbFwekZ5zc7gVfirWJ7VT7bKgvRFAVf45GaAJsq8Vp1xxM4VY1zOg8EYHVBfqj7QIBpl3RMiOeCXv3plpTEuC6dm634EetycP/lp1O4v4LlW/NC3Bl2m8r23GLSmrgfEhKjefDJS7j1spf8znPTRHiN+seTw2XjlLMGc9vfzj6mIYgtcgTcFA3m0Sbj9xQsE0LMlFJubLRem+bRWmOMlwE9hBBd8Bvhi4FL676U/tLA9eoxQoh5wP8dS0MMUFZWg9sdflQbF+Xkyov9efHfLdtKbm5p/cUnLJCKBNU/Qiiv9pAYe2gxoTZFDXvhKUJgDyhrTc7sy+TMvuiWiSaU+vUT7THE26Mp9gZHIwgEgxK6UeYrJ7c2L2RG32f52FpTze97Pc6GisUAxNuSmbX/WXRZJ1ZjYEn4Yv/z9Iw9gSjNPzrJiZ3G6uInsBpEQEjwS8WbeeypPgBYlPu2s6/6K07JegXD2INAwZQCnbooDIlNeimo/jjIGDu0PpTJb5HoaA0iSCQmjgZym23BIg5VzUAa++oTVkBBEU4SYy5o1T5Uxcn47LdYXfQQBbX+yuEdoscxOOWPQaJDgxOnUOTdxYaKb1CFHUsapDm7ckbmXTjVWO7o+SCzD7zPrpotxNoSmJx+DoMTQtOOaw0vs/cv4709C8n3VGAXDjyGhdcMc60g6BiTxJ6KGgxpcmKaP5oi1uafMI2x28P7iAV0TIjn+hNaHIAF0TkzmdXb94dk3+mmRYfk5kexH725CFM3EKb0N8CmIU0TVVP567NXMGhkeDfJcePITc4dlXm0Fo2xlNIQQtwKfIV/2utVKeUGIcTfgeVSytbpKh5loqLs4X2nQFKi/3WzssbDfS/6laaCLpGAQRaCNlWQbswZnXvw0LJ5IctVoXBml+CJi8ZVfoUQ3NnrXP62/m18loFEogoFp2Lnhu5nolu6/8IO00fd0klxZDIuzV+s8ou850LSccE/Yt5WvZJBCePrj6mpGdRatShILAm6VHEoRuD81A3bTAzpZnXxv+iXcA6mNPEGIggAJAIfggrvtvpj1fi2s7PqM3yWRl3NvBjhxaWoOG0DcLYxFtlnlrKm4Hpq9B0IBC7AIVRAEuM8iezEB9CUhFbvL0rL4MQOTwcSOURYoyGEwqkdbmd0yq8o8u4kzpZGiqNz/ffpziyu7nJns8ep1Gu5bunTFHoqMKQZCNFzYwkFUx48h3XYFY1Hh51H34QspJQh7eqXkkaKK4p9ekXQpeDSNC4fMLjV/a/jkklDmfXTRswGWao2TaF3pzS6ZDafpr9h9R4ss0ErFIFUNOzRDuKTY9qXIQ7Qhgm8FCFEwwHli1LKFwN/H7F5tIa0yvJIKWdLKXtKKbtJKR8MLPtLOEMspRx/rEfFAC6XnVPG9cZubySS4rRxyUX+8/TD6p1NzhCrFgzqlklsVOsLMDYmPSqWf5x4Kg5Vw6XZcKkaDlXlvpET6RSb0OL2J6b246lhv+ak1P50i+nAlMyRvDLyTmI1FzPzFlPkdlLmdeI1Dxpym9AYlRyc1eRPww2P0ugn7xo3BVU4MaWCV9owUVCaGD6UeNaR6ByLN6zGhqBC34klDaQ0WJN/JV4zPzAYEUgEVdJBtakQG3Nri+eiMRuKfku1z68jYcpaqqWNMplAWuK/6Zb2No4WBH6aQjR4O2mKWFsKXWNGBBni1vLunvkUeSrrdUn8E4CgKhYO1Z9IEq3ZiVbtOBSN2/tMpm9CVmDdcA8IwWtTziU9OoZom50Ymx2HqnL94OGMz2l7MkXnDkk8cdvZZKbEYdNUbJrK2IFdefL2s1vcNq1DQtjlum6QmHx0K+ccMq0PbSuum98KfF4Mv8NQ2jKP1pB2n4HXFu68/TQ8XoPFS7ajaSqmaXHJhSOZPNFfxSOc8BD4xyYup537rz39sNtwXo/+jMvuwtx9O5BSMrFjN9KiWn9h9o7rxN8HXln//0q9hhuWPUqlXoMuJaBR6VOJ0nwkORSS7YlM7RAsWj4wYTyryr6td1PUYUmTHrHBEQ+9Ei5kf82PFHk2BpIsmsamxqCpcSCiIEw0gsRCN8uo0bdiyVoaD+OlFFShsqrwVmLtfemf+g9i7C0XLfWZxZR7VgX5tv39cZNb9QYdYg+vMsfRZEHhBvQmzquiQJwquLvvFOyKjREpXUlohbZ1t8QkfrziepYeyKPc42ZYRhZp0Yeu+3BCn0589vC1lFbW4nLYiHK2Lmnl4mtPZuOafUE6MXa7xsiTe5KQ1A50KMJwhNKhj8o82i/KGDscNv7257MpK6uhqLiKjtlJuFwHL6zRAzsHZR3VIYBHbp5CelLzk3c/7tjDW0tWUeZ2M7l3D84f2p+5O3bw0foNqEJwwYD+TO3TmxRXNBf3HHhE+vRJ7gIq9Vr0BqNRicBjOrm049mMSxuNTQmOLsiO6sXolOn8VPwpEhkY60rOy74Tpxp8k6jCzsSs//BTwSNsqZwFSHxSxY4ZlCWoCifd4y8GINrWhUrfhrDt1ZQ4DLMs7HeiQYh1lW8Tyw5cxtjsr7GpCc2eA8OqQgg1rBtKPwIZf42xpMWemm3sc+8kVkugX/xQ7MqhvTFFt1ABPMkRzVlZg9v8Sq8qCqOzWi7l1FqEECTHt82ADj6hC7ffO5Xn//klXq+BZVmMmdiH3/65nT4cj5zP+KjMo/2ijHEdiYnRJCaGXlguhw1hyZAfRFEEufnl/mdZE7z4w1KeW7AEdyBVelN+IU8t+QmpUF/mZk1+Pt/u2MHTU5uvx9YYKSUrSvbyxb51AEzpOIBhyZ0QQrCsdHPYkZVTcZDuzAoxxHVMSP8VgxJOYWvVcmyKnT5xo4nWwidECCFIcw1iR9W3GNKNT9pQAI2D0RmdYs6gT8LVAHRLvIVVBXdSbUq8UkMTFjEqdI69CFVxEO8cjiVD4739YagHg6stqbO/+jNy4q8MWbchLq0TqnAGRXCAPwIixXVKs9u2lY2VK3l7z1P4LE/gGAoKDm7q/ge6RLc9YeH8TmN5dOOHeKzgunYgcCp2/tDv3HbpW22MaVps2JiHz2fQv192fbbrxLMGMf70ARQVVBAb5yI6JryQUXsgoEJ+2BytebSflTGeN3MV7z47l9KCSnoO6sjVvz+L7v2yWr39hh35OO02quuiLgIjNcuUfLdsK+dPGhx2u3K3h2fmLw4aVXssE9MkKIi8Vtf5bsdO1ubnMzAjo9XtenjdV3ywe2V9IcqZ+9ZyYedh3DPwNFIc8WwJE+5pSJNEe/iRfKGniMUly/BZPoYmDqJrTMu+xM6x41hS9HTgQSXwSDtCSmyKg+kd3yTWfrAYaax9AKVWMj7pD7nTpcRraAxw+CMJHFoGWXFXklf5en3EQ11GutXgdrCkhxp9V4ttE0Kld8oDbCi6C0v6AAsFB5oaR+eEG1vcvrXsd+/mzd2PYzR4kFjSwsLNSzsf5f7+L6C2UQtjcvpgNlfs49O8xahCRbcMFKFwYko/ru46gW6xrb9OGlNSW8uszVspd7s5MacTw7Iy22zYi8urMS3Z7Fvh5i0H+OO9H+ALTPJZluR3d53BKeP9oYSqqpCR2XRWX7viCGXgSSlnA7MbLftLE+uOb80+fzbG+ONX5vPm43PwBuT7Vi7cysblu3n8w1tbJVhtWRKvR8c0GpiDBj9MXHTTT/R1efnYVTXIGFuNhM0CNoxay+Cmz2dy/4SJTOzWcvjW1ooCZuxegaeBupzb1Hl/93LO7TyEU9NHsqxkE74Go2MVhS7RHciOCk0uWFj0I6/tehuJhSktvsz/mrEpo7mq82XN3qg2JYozO/6b7/b/mRqjEInErsRyUvq9QYYYYE3pa+hBpYUEFiY/FT7KhdFjEUKha+L/EecYwtaSe/Ga5VhSIkXw2EQVLhIcg1o8RwCpUZMY1uF99lW8gcfYR6LrRLJjLw1xcRiWl5WlH7Kx4isA+sRPZljShWitcDPML5oVZIjB71qREkzLYHv1JnrFDmhi6/AIIbit1zQu7TyODRX7SHbE0i+u02GPhhft2csNH3+GlH75zJeWrmBMTieePXtKs/HFdewtKOMPL8xi5/4ShIDM5DgevOEsenUKvqZ8PoPf3/Me1dXB8w+P/ms2PbpnkJ3dfDmn9kZ7Todut2WXGqL7DN5+8ut6Q1yH16Pz1pNftbj9wiXbOfva5/jro59jlfrQai0aOiCddq3JUTFAgssZEtvZ8EeV4D+TAVuTX13NbbNnMWP9uhbbNj9/G7oVOqugWxb/t3wGv13+AVU+f9ieTWjYFZt/km/AdSHbVOnVvLbrbXSpB8KoJD7Lx4/Fi9hctbXFtiQ5ujM562ncModiPY48n53/7n2Ib/NfDUpmya35KWQyzd/mWqr0/UDABxl1Cm5lBPlmKh5pQzYokyLQsKmJpEef0WK76oi196Zv6j8Y2uFtuiTcHGKIpZR8vO/3LC35LxX6fir0/SwreZeP9t7VpBZxQ4q9TWcdgsSwwgvgNMf2qgI+3beSrZVFjE3tS//4nMM2xLppcutns3DrBh7DQOKvDP3jnj18sWlLi9v7dIPrHnmfrfsK0Q0Tn26yO7+MG/85g8qa4CSdxUt2BIevBTBNizlfrT2sfhwXWh9Nccz5WYyMiw6Uh81sk1KydV1us9tu3p7P3574Am8DESHFBLsXbIl2dMPk2rNHMbxv01oZ/TPTSY2JZl9ZRb1RVgyw6uYG6x5pDe4xt2Hw8MKFnNe3X7MjFYeqoQkFs5GxkFKyt6YEFBOfTwFfNFGawt19pzK9Y3iB7nUVG1CFgt7oVHktH4tLltInrmWf50f7HqRUL/ZrMgRG4ytKZ5Hp6kmfeL9mg12JpYZQwyUxsasHI0fyan6kyLMOU+qUyWhiFA8udARg07oxMO0xVOXI+Rj31a6i2LMDs0GMtSl9lHj3sLdmBTkxzQubd4/px77aHVhh9DosJN1jWpfhB2BYJvesmsHCwq0BhTNBvD2KV0dfi5SCj3etZVdlKZU+L1U+L4NTsriy13A6RIUmWpS53by1bjWL8/bROT6BERnZmGEe4G7d4KP1G5ner/nqJQvW7MTj1UMmRHXT4qulm7nglMH1y2pqPGGTTAzDoqKyZVXBdoVs3+LyP4uRcWJKLFYYfVSAjI7Nvya9++myel9XQ2xS4eqzRjB5dG+++GEjt/3zI5ZvCi/DKITglcvPpUtyIi6bRozDTpTNzg1Dh5PodDY5M+A2DIprw1faqOP0rH5hl1tYSNGw3YJaQ/Lx3lVN7ksR4RsiECgtlDsCKPcVUOTdGyKOo0svS0sPzkn0TbwITQQbUQWNdOdgnA1Gq7k1CzHqJ90E1ZaLIjOOAiOOXe4yPt13BzV6UYvtai357s0YYZJddOkm37O5xe3HppyBU20UWib9scgXdbwRh9r6B8c/1n/O3AMb8ZgGtYZOjeEj313O9T+9xalfPsczGxbyya71fJu3naVF+3htyzJOm/Ui2yqCz0dBdTWn/vd1/rN8CYty9zFj43rumfc1epgHBoSV7g4hv7QKvXFhXinRa3Q+mrWKp96Yx+5cvwjSgAEdscIYfpfTxuhR3Vt3MtoTkZHx4eGKdjDpvBP49uPlQTGNDpeNS28NVpaqrvLwwvPf8f13GzBNiZLiDBsSZbOpvPrZYrzSwjAtdh8oZfXWPH53xQSmnhQcVqGbJl+u2oK3UsdlaAzpksm9U06hQ2Icd50yltPeeJ1d5eUhxxBAgrP5GzjNFct9g6dw78rP6kcgEgLGM/SGK/RWUeKtxqnaQsKmBsb3xwojS2VTbIxJbr46MIDXqkERatiL0WNWo1s+NlYsodRXS5zjJMo889EUG5Y0SbR34eQOfwvaxq7EIQhfH1Bi4jVrWFHyJidntCk2vklibSlowo7eqOafTThxqgn4LB/2ZnQjYm3x3NnzYebkz2Bj5QqklORE9WJa1hWkOTu0uh0/FW3no70rQk6jacGWknIkAssIfnDqlolhmdy/Yi6vjL+wPlX+qaU/Ue71YAQMoiklpmmiqCb+x+zBfbhsNi4Y0HJmY/8uGWiagm4Gfhcp0WpBsWDvvlLy8sr4+OvVpEU5KTpQiSL9k3R1FdedThu9+2QycsTBOZGNK3fz3P2fsWPjfmJinZx99UlcdNOEEL2Y40179hn/LIwxwK/vOxubXeXL95YgLUl0nJMb7p3G0JMOJg1YluTO377N3r0l6IFS4Wa5GxyhZYQ8Xh2fTQSZCY/P4Il35nPG6D4H1aiAO96exaJte+orgPywcTeX587gszuvwGW30TUuiV1l5UGDUqemcWG//ji0lk/xgv27sAwbBnWz1XU3mYXdfrCFCoIKXw1nff9PLCnpHJNM99g0+sV3ZGr2MOJsUfy623U8t+MlBAJT+pUjTs+YTPfYlicTUxydUMKUXFKFjU5Rg/jX5pvwWR50y4dNsZNoH8zUtHNIsGeT6Ajdf/f4KWyp+BAzTMaeXwbTYF/N0hbb1Vq6x57EgoLnA8kuB+86XRq8tee/SN6je2w/Lul4Iwl2f6qvz9Kp0MuJt8VjV+wk2FO4uNPNh9WOpzd9E3ZwZVkBQaomDIIEfjiwi56vPE6SM4o7ho3hu9276g1xQzRFxWZTEQh008SmKEzo1oUze7ecRDOgawc6piWwc38Jhmmh6H5DXIdpSUzLJK+iGs2S/qKjgZ8wOtrBeecN5/LLxtQb2l2bD/DHK1+qHyhVVbiZ8cL3lBVXcct9oZVGjisRY3z4aDaVm/5yNtfcPYXaag9xiVEojXyxq1ftZv/+8npDDKC4TSy74s+bD/wQTocGThV3mFhY07TIK6ogp4Pf/bE9vzjIEAMYlkV5jZsvVm2iGp2lO/f5BYfqQn4lJNud9E1JpaSmluToprOq3IbOnNzN+CyLhl4jCRiGVm+MVQQmErfpQwiJKiS7qwvYXVPAD4WbeX3nPF4ffTPDk4byROyjLC9biW7pDEoYQIazddrMqtA4K/M2Pst7DFPqSCw04SBGS2BPzS5qjMp6F4bP8lDs3c+mql2cmTmufh/57t1srFyGJjT6J5zIiNTfs7ToUYwG0RdeaaPuyeVqVObocLApLs7PeYIv9z9Auc8/l+C1oNAXE7AlJlur1nH/xt/SNXo4NjWaZaUr6uX+T02fxHnZ57TKpdMce2uLw38hCMgqNU3dW3KJp5YHFn+P4mu6LXOuuZwfdu+jwuNhdKeODOzQcphcVa2HGx6ZQW5hOZblj/pWm0+8RDR4ltbUeJkxYymnjO9DTo4/r+Hd/3wb4gr0unW+/mAZV95xOjFxh1+M9UjRnkfG7esdohXYHRoJyTEhhhhg9+5ijEYZdkKCVqnTOT2RlKRouuakcNdNk+nYJbwIimlaxDdQbduQVxhWL9itG6zYlcdrS1fi1g1UU6B6QPH6JwgPVFTzwHfzOPmFl5ixtumoihqjaf1kl+pgZHJXcqKT6RyTQl2JP6Xuigo0y2PpVOpu/rnR79eNs8UyNvlEotV0VpftocATPiMuHL3jT+Tqro8xOPFUusYM5ZT0K7m88yPkuXeE+JJNabCmfH79/+fsf5Pnt9/DdwXvMzf/XZ7achtlhp0Lus4mzt4PXTpxSztW4LLThJOBSRe3um3hMKXBjurN7KzegilNkh05XNblJa7q+hYDE2+iUE/DJxuO9iWm1FlZvpIfixfhs3x4LR8+y8fXBXOZfWDOYbUHIDsq/LWlCIldVTno2m+cLg5SP3hde0yDWssXMpqzKQonduxEdnwCFw8awI0jT2iVIQZ44v357D5QittnYFmBwgTN+JmFGfq1z2fwzruL6v+/a/MBZBipAc2mUpDb+mvvqOMPdG/d5zjwsxkZt4bs7CQ0TQ0aGYM/8+6is4Zx1pTBB5fFOfjzc7PxNHii2zWV0QM7k9CgCGNmYngZQbumkpOSyJf7tgd/0aBIQ63uH3n/7dvvGd2pEx0TQkeByY4okh3RHHBXBi1XhOCk9K48M+o8AG5a8iq7agqpy2Fr/HyQSJaW+NuyuXIvv1v9Ipa0kFJiYnF+9slc3/2ssH1pTJqzM2dmHhTz8ZhNT0LW3YK5tdtYXDK7Xi3OxF+i6Iv9L9Mn7gTO6PgkX+X9iULPZlShYUqdgUkX0i320DPotlSt57VdT2JJC5Bowsa1Xe+kW0xvYmwpVBq11Bo+fJb/lcWmmGiB6XRDhrpjfJaPL/PnMCXzzENuE8A13U7ijqUfYUm/s0lTTRRFYpoCIUzibU501aRWN7EssAnFH95oCtAbDTJUwEfQsKlrYhKPT259SGBDvl665WB1jwCGBprRyOgGsnSEEWpkLUuyfXth/f879+pA3p7iEIOs+0zSshIOqZ1HA0FkZHzMGDa8CykpMUGTBooicDpsTJgQHJY0bmh3bjz3ROyaiiYFiinJSonj7ismBu+zcxZp8TFojdTeNEXhgpEDGJTZYGKnibNpWRazt4SP/xRC8OAJZ+JSbdRprdmEQoxm53eDDpaoGZbUGbvS/LNTU1RMy+QPa16hSndTbXipMnRqDZP39y5gWUnLEQXhcKpRZEV1o3FFNVVoDAyEu60r/ykkYQL86cSbq1bgUGOZ1ulpLuj8Gqdn/YPLu33MCSnXIoTAlEbY0MXmqNIreHnnv3CbNXgtN17LQ41ZxfM7HqHW8GcG7qstotp04JMqPqlSY9pxm+HTx+uoNmra3Jbgdnl4eO33mJaClAqWVPAZGl5dxbRUTCwWTr2NR0ZM4+/DT+P1Uy7mxXEXkK0lI72hkpoAwhQIHYTh/3SOSSTRFfzq79UNdheVUe3xhmzfkHBiWVIFafcLyrucNlxOGwKB5jHDDpoVRdCt68HkkEtunhCiluhw2jjt/BOIjW9Z+OiY0o6jKX5RxlhVFZ769xWMPaknmqagKIKhwzrz7HNX4YoKnUXXhIJq4Q+bk5BfWMnND86g1nPQdaAogjduvIAR3TpiUxVsqkLX1CReueF80uJi+OOkcUTZbKjNxBSZUuI1mnbMjevQjZfHXkj/uCwytASmdhzA7NNvICfmYIrp+TkjidbsqAGBy8b2wq6onNFhCOsqduOzdEwpMKWCxP/xWBYPbfzgkA3NBR1vx6XGYg/EBdsVJyn2TCZlXAIQYqjraFwUM96eRYeoQTjUWLZWbeCBjb/jjlVX8X9rruXT3HcwW1COq2NV+aImEjkka8qXUOApYFX5eg7GHfo/Pqmiy6Yv+w7ODoeVlPHezpWUeGsINqoCKRWkFAxMzCJKs3NGxz5c2n0YJ3foyrjMbvxp5AScaqOHrQQ8ItBygZD+z/ydu6jxHbxGX5m/jLEPPM8Fz/yXkx58gb989E1YQSyAsYO6oDYaWCiqwohhXZjx1LXcff1kHrxjKm8+cjknDOqC0OoqAkgwLYRuokqYNn1I/fZd+2TywGvX0a1vJkJATLyLC24Yz01/mX7I5/FoIaRs1ec4te34HHj48OFy+fKjJ3sspd8f1pR+cU2tlzNvfh6vHnzzO+waN14whkvPDK2YUO3x4jNMkmKCn/Y7S0p54celrMjbz96aipAgeaemMePSi+mbHr422rd7t3PzdzNRhAgkfwhuGHAC/zfspKD18t3l/Gfrt/xQuAWP5UEg0RR/6l/32HT+Pfwa1lfs4i/r3qDaMGg8yhIITk0fQr+EHCZlDCLO1rZRi8/ysqHiJ0p9hWS6utIrdqg/FA7Y797Ji9v/GCJq7w9t64xNdTIu9RTGpY5HEQq5tbt5fMvfgta3CTtDE0dxWeeW9Sa+PPAhc/I/ClmuoDIl80IsXHyw7wP0kNG6DLQLTFmXNunHrti5vcet9I8PH/vdGi5f8CZLivaE/c6lqrw3/hr6JIT3736zZzsPL53P3spyMqJiySuqRDR2WwCqEPSMSeaSIQOJVmw88Nl39QJW4L/ezhnej3unhxb/LCyr4soH3qHa7cPt1XE5NFwOO2/86VI6pIS65EzT4uVX5vHR24uxTL+UgM2mYrNr/PPpy+jZOzjkL5wg/pFACLFCStm2MiaNiE7pKPtMv6NV66549a7DPl5b+UX5jBsihGg2AH7jznw0TcHb6F71+gwWrtgR1hjHOMPrG3RNTuKRaX4t5Kd//IkXly7HZxggBA5V5eJBA5s0xNU+L7d8/3mQNgXAy+uXcUp2V4alHxRCynAl8PdBfh+ylJL1FfvYU11El5g0+sZnI4RgQEKXsOnV4Pcrz8lfybzC9Ty3bTaPD72WAQmdw64bDrviYEhieB9vpqsrJ6Wdw4LCj5FIBAqG1KkynNRY/kSGD3LfY3PlJq7ofBVf5X8W4tbQpY8VZYs4J/tSorXm5Ux7xvbnu8Iv8FnBr+WqUOkR249dNblNVEYR2ISKTVFxqVEk2NIo8haT6erAOVnT6Rnbo9XnIxwdXPEoiPoio3VoQuGZURc1aYgBJud0Z3LOwUSKC959j5X794esZ1qSrQXFPDp3IaqHkAGFxzD4ePkGfn/WydgbhVamJcbyyUPX8M2yrWzdV0i37BROG9HbX6Q3DKrqL3BqUxV8AV+zrpvousmD933M6+/dHGR827sCXXv2Gf9ijXFLxMU4w/rPBJAYd+h+rtvGnMiEbt34fNMmTCk5s1cvhmaFFzJy6zqfbNsY1lfkMQw+3r4hyBgHtVMIBiR0YkBCcBq3S3VwZocRfJIXWgOxbsBeJ+f4pzVv8+nJfwwbypVbW8gX+xdR7C1nRHIfxqcNbdFnPTH9IgYlnMTmyuXsq93HjyWr8ASqXUsJNYbBDyWrWVR6F3FqLSLMnaEJjRJfMdFaLD5LRxNq2PZ1je5Fr9gBbKlaV2+Q7YqD/nHD6BTVjURbGu/seSdkO5uwcVXnK8l0ZZET1TqdiHJfLe/uWsKiop1kRSVwedfR9E0I/5te0X0Ec/I2Bj1cVQTdYlMYm961xWM15O6TT+LKDz/C09DFJQMRDlLg0Q20JuQypJRUe3wkxYT+Zk6Hjalj+wGtewOY+9W6sFmsJUVVFORXkNFExY/2SHtOh/6fNcY9c9JITYohN788yK3gsGtceNqQZrZsmf4Z6fTPaDq217AsHlo4n/fWrcNC4jMlwi6Q9oPtkIH1DoVf9ziLLw+sDNLQDUet6WVHdT49YoMNy0/F63lo45sYlomJxZKSjXy4bx5PDb0dl9q8+lmKI5OxqdN4ffer9YYYQLeUQKIHmNLEJ8FOaFSIIQ0KPRU8tvmvHPAUYlM0JqWP5bKcc7EFHgZSShaXrGFntUqFL5sYzaBzdCwnpU5gUIK/xFasLZYbu93ICztfqC81ZUqTK3Ku4MSUMbSWYk81F8x/jkrdg88yWFO6j7kHNvHg4HM4NUwqe//EDjw0bCr3rZyNhcSwLHrFp/Hs6AvbPGocnpXFo6efxl+//Y4qrxfdtBCmP3yyDkuAEma0FxflICEqNL63rLKWVVtyiXY5GNanY6tqPjbl6pOBzLyfFZGRcftDCMGTd5/HHY98TGFpFYoiMEyLWy4+icG9s1vewWHwyA8LeH/9uqDRk/ApICykzX+1RGk2pnZrXvClKaI0J48NuY571ryOKS08pg+z/oET6kduiGGZ/HPzO3gbGHKP5SPPXczM3B+4KCc42qQpku3JaELDkIZ/7odg/6zbtGHXgieZ7IqdfnEn8MTW1/BZfl+yz9KZW/ADVXoNt/X0i9u/tWcms/bPxxNYp8ynUWM6ub7b0KBR9NDEoTw5+EnWlq/FwmJA/ABitLbVZnt849eU+WrrhZwsJB5T5+9rP2dCh95oSmiI3JSO/ZmU2Zv3tq1i8YF9JNlj2F9VRbqreddLOM7q1YvTe/Tg/dXr+OfXC6n1BT9gFYdA8wksS9YPKpw2jXvOGh9iRN/8YikvfbIoYIAFDpvK03efT89OqU0e3+PRw7r7hICsjomkpjVfQbpdISNuinZLZmo87/3zKrbtKaKyxkOfrhlEu1pX/+tQ0U2T/65bG/zqSWC2XFewbCZOzcbUrr0Z06FpJbmWGJTYhc9P/gtrynfxQ+EGPstdhreRjzZWc9EtJtiHubNmf4iCHPiN4ryi1a02xmNTTmZO/myMJqIjLBQqDSexmoFdEUSp0UxIP4PVZQfQG43ofZbO4pKVXOk7DwnMzPs+qPqJTxqU+Sr4tmARUzLHB23rUl2MTA4q3NsqqnUvty5+jxVlO8N+r1sme2tK6RobasiklNw5fxbf5+6k1tBREHy8fT23DhrNrYNHt7ktqqJw3sB+PPntT0DwudFsKs9dOo0PlqxjXW4+HZPiuXHCSEZ1C752Vm/J45VPF+PT/ZKZALVuyU1/eYeseH8x0mmnDmTqpIFBo91nn5jD/jCJGw6njXvvP6/NfTnuRIxx+0UIQc/O4SfXjgbVPl9Y+UMAh9C4auBwJuf0YEjq4YVYgT/ueFhSdwYldGG/u4zlpdsxpIlN0VCEwkODrgg5hkOxB5IoQolqwUXRkER7Irf3uJOXdj5PtVGNJ8wuTRQyXQP4U9//q18268DfkWHuGE3RKPKWUuKrxKZo6I0mPL2WzorSjSHG+FD586rPWVW6DwsI95ZuSJM4W3gRqB/376k3xOAfTbtNg6fX/MR5PfrTIbrtI2SHpvHmFefz6/c+o7zWgxACTRH869wzObF7Did2z2l2+4+/W4O3od9XSlS3xGfp7Kr0K7Q98/o8lq7ezUN3nw34J+q++XJdvUBQQ2JjnXTKSQlZ3p5p70kf//PG+Ejx3fod/PurH8krq6RbWhJ3nHkSI7qHFoyMdzqJdzrDSmsO7ZDJ3SeMC1l+uGiKysODr2RDxV5Wl+0i0R7N+PSBYYtldopKI82ZSG5tUZBRdCp2pmW13tcK0DO2F48OfJxCbwFLSlfwSd7sevcD+N0SF3YMFpLpFp1DXm1BiPqcYRlkuFIxIay+roJCiiOhVe2ypIXb1IlS7WEfeG5D59sDm9EtEyGEPzqkwWqaUBic1IkUZ3ijOmfP1npD3BBVKMzP23XIxWp7p6fy3W3XsrmgCJ9h0i8zPRDa2Dzzlm9j/ortQY84YYZOZnm8BktW72brzgJ6dk1n25YDYQ0xQHW1J+zy9o5ookJ8eyBijJugqsbDjtxiUhNjyEpLaHbdL1Zu4q8fzq0XE1q3r4CbX/2UZ66ezqgenah0e1iXV0BStIveGance/J47pn7db2rQuCPDb177EnNHOXwEELQPyGH/gnNj6CEENzf/zr+b/Wz1JoeJP6Jr9M7jOTk1MGHdNx0ZwbTMs8izZHGx3mfU+otIye6Ixd3PI8ejdTkpmVOZl7REqQ8OLknJSgijmg1ip4xOSTZ48n3FAcZbE1ROSsz9EFmSouFBdvYVHGA7KgEDtRW8ur2n6g1fcTbXPy270TOyxkatI3b9B0smyr9UgX19QME9InvwL+GXRC0TbXPR151BR1i4oi2OVCFaOCnP3guorTmMwBbQghBnwz/m1x5jZuHZnzHhn35ZCbGIiyF3KIKumcmc+OZo+jXOYP5K7bzl+e/DB4VE4gHDrN/aUnWbsqjZ9d05sxa3WQ7uvc49Np9x43jmF3XGiLGuBFSSl7+aBFvfbEUm6ZiGBb9umfwyB3TiQ1TJ09KyeOzFgapugF4dIPHZy1k8tAePDtvMTZVxbQkWQlxvHjFOTw/ZRpPLV5EbmUF/dPSuXP0GPqlHTt3SXNkRaXy9ui/sKZ8O+W+KvrHdyXFkYDXMnAo2iG7T0Yln8Co5OarbeyuLaVaj8Wm1GBXTCwpqDVsVCFZWbaDYUnd+Xv/W3lw04vkuQtQhYKCws3dL6FzdHAYYJXu4fIfXuFAbTlu04cmVHRp4h8cCUp9NTy07kt/RlzWQR3gRHsUqc5Y8mrL8WfP+Q2rgmBMejdeOPGy+nWllDyydAGvb1iJpijolsnknO6B6i3BE5RSSiZ2bFnKtDX8sHEXt7zwaf3/c0sC2iYG5JdWsmzrPp769XSenbHQb4gDTxWlTsK4bsTfaL+qqrBp9T7Of2Uh5SXVgSeiDHm9P2Vyy7rJ7ZFIaNvPiLmLt/Df2cuDJjrWbdvPfc/O5vHfnxuyvkc3KKkOL6SzLb+E7fNL8Rom3kB66s7iUm7+72d8cvNlnJzT+aj143BRhcLQxJ6Y0uLfm+bx9o4luE2dDFccfxxwOhMzex+V426u3EeNYQHBYVkqJluq9jEsqTupziSeHHIPB9xF1JoecqIyw0Y1/Hvzt+ytLkEPGEVdmv4RNwcHSB5T55lN3wcZYyEE9w+Zyi2L38NnGZhSYlc0XKqdvwyaEnSMV9Yv542NK/2RMQFDN3fvDk7skMNPBXsDIvH+47008RyibYc/Qby/pJJbXvw0/JcqWIZfm/vRGfPIL6rw98lspMAmAZtA6gcNshAgKnUWLdyKt9aHsOrWF4GT5j9rNpvKmJNbLuHVLomMjH8+/HfWcjyN0vJ0w2LZhr0UllWxYPUOvlyyGbtN5bxxgzhlSHeiHHaq3KECLRKJp5GCnCUlu0vK2FlUStfU9l9Z91/rv+G9XSvwmP5zsr+2gv9b/hEvnPgrRqR0PuLH6+BMwqnY68PW6rCrGunO4HLwHVxNh2QBzMlbX2+I66ir9uy/K/2m5oC7ImTb0WldmTH+el7fvohdVcUMT8nhsm4jSXUGh8a9uHYZbiM0A25Zfh6LL7qJHw/swa5qnJzVGddhuijAL/Rz1dPvN2y+nzCRizsOlNA1OZ7c/LIQKUyBPxLDYVewDImUkpSEaMp3luH1GQ0McTBCEUw7bzhJyW0LEWwvRCbwfkaUV4Uvsqiogjv//Rm780vrZTfX7zjAklF9uGzMEJ6buzh4Awl6E8KomqJQ4W7/EyBuQ+e9XctDUrU9psEzm+bx5klXHfFjTkgfxHPbZ+G1GtoXgUu1c1Lq0Xk17hITPiqge1wqDwyd1uy2ZZ7w10ut7iPO4WRq10OLFW+K1bvyqKj1NKtBXEesy8HNF4zhvv98iRmm9JWumwwZmM1vrzwFTVUoKajkz/d+hBEm2w4AIXC57Nx466TD7MVxorkyK+2An1n6zNFn1MAcVDX0Slc0wZ6CsiD9Y7fPYPaiTUQpKjahhJXhC6fmZklJnw7twz/cHMXe6ibV2PZUlx6RY1TpHj7YtYqXtvzEutL9RGlOnh12C91jM9GEiiZUesdl8+ywW1pMx25Mz5gOIffewf/7++VUNe7qF1xHsS30Twmfadk1PqlVkQ5tpaiyJny18foZx8CEsF3j8olDmTiiF9dMHxU2cUNRBOnJsXTOTia7QyKZWUnoehOGOEDHnOR2rz/RHMJq3ed4EBkZN+Kas0fz/bLt1Lq96IaFEGC3afTtlcmSMNWjhYDdB0pxKP7JvvrlADo4Y2z4LL/PWAh/vOgfzxiP09b+T326MzasMRZA7/jWlXJqjhXF+7juh3ewpES3TGyKyoTMnjw24hxeGXEH5b4ahIB4W3Sb961bJssKCrEUgdIwX1iCgyiEZtA5JoW7+k5idNqhT6r9ZfQELp31Ph7DqPccODWNv41pXXJMWxmQ0+FgIdGGBLroEAqKTXDumAFcc/oIAK4+eyRfz99IbkF5kB6LTVM57/SDqf+pqbGMGtWdxUt2oNf46v3rdTgcGldcc/LR6NYxIRJn/DMjLTmWdx65kndnr2D5hr1kpsbzqynD+XH9LlZuzQu5ERRFMKx7R2av3xpitpyaxlMXTmVTYSHztu4iLTaay0YNYXDH1lcaPp7YVY0beo3lhS0LcZsNqnKrGrf1OfQKHeAPObtl0YygslOGafHd/q3M3reBszr2o9qn+0fDh+Bq3VNVhiXB67WhKBaKIv1REaZCanQs3085vKKjdQxJy+Tjab/i6ZWL2FBSQI/EFG4bOppBqUfnN85MimPaiL7MWr4Jd4O3NIdN5bVbLsDltJOeGEu08+BEoRCCJ+89n7v/+Sl795ehqv5Jxd9fNzkk4ekPf5rGC89/x+xZq9HdBkKCUCAhIZobb53EiNHd+dkiZbt2U7TKGAshTgeewl8E5mUp5cONvr8TuA4wgCLgGilleFHXnwE11V6K8yqoyq+mzBBUlrmZOrY/b361nEbzcWiqyukn9MJUJQ99/D2WZWFaErumcv7oAYzu2YnRPTtxzdhjJ43q1nX+s2wJH23aiJSSab1685uRo4mxt30m/4aeY0m0R/HCloWU+mroHZ/B7/ufSr/E8KplrWVt6X68ZugrsdvUeXnLYh5ZsYBiTw2WlPROTOPZk84mOyah1ftPcLgwLH85e8tSaZj0mOo6spNPfZLTeG5yy0LqliVZtHMvWwuK6ZgYz7heXbCpoVEgLXHvBRMZ3DmTdxauotarM2lQD648ZRhxUeEzAgEyUuJ445Er2HegjOpaL91zUtF9BiUl1SQlRde7Hux2jd/cdiq33DoZ07RQFIHHoxMVFT5B5udGex4ZtyguL4RQga3AZCAXWAZcIqXc2GCdU4AlUspaIcSvgfFSyoua2+/RFpc/VPbmlXL9/72Fx6vXv9I5HBq3XTuBpIxY/vzyl/WiLHHRTp74zdn07Oif1c8tqeDr1VvxGgbj+3WjT/ax9wtbUnL+jHfZVFSENzCKt6sqXRMTmXnJZUfFj3koLCvawzXz38Nt6AhVBiV4WD5bUJadIgQZrlgWnP3r8P7SJrh2/vv8VLAbn3XwCepSbTwxejqTs1suaX8kqfH6uPyVGewpKcdnmjhUlXiXk3duuJj0uKMbmXCgoIItO/JJT42jd/cM3G4fjz7+JT8t3o4QEBfn4q7bT2fUiCMTA300OBLi8rEJ2XLIybe3at2Fn/++XYrLjwC2Syl3Aggh3gOmA/XGWEr5fYP1FwOX8TPllXd+CDLEAF6vwXNvzOfzN27hm8dvYuOeAuyaSq9OaUGjhezkeK6Z2HxSw9Hmp3172VpSUm+IAXymyb6KCubt3sWkrsf/hltXnM+v535OtUcgAz4I1WGg2i0Uy18HrqE4uyUlFT4PP+TvZlxm6zWBnxg9nVt//ITlRXuxqRqmZXFb/7FNGuKimhrm796NpihM6NqVOEfrtThabMs3P7CjsBRf4HcxTAuPbnDvJ1/z0pWh8etHAsuSPPzMHL5duAlNU5FSkpmeQILNzsbN++sL9xYXV/PXBz7lmScuo3u3w58LaM+055Fxa4xxFrCvwf9zgeZksK4Fvgz3hRDiBuAGgE6dDl2R7GiybnNeWNF5w7AoLK4iMyOBgd0O7xX9aLK+sCBsvb0aXWdtQf5xN8Ze0+Cyr2ZQ4asL7fM/zEyvhk0zSLBFUaCHJtFYUpJfWxW0LL+6iu/37kJTFCZ37kaCMzhRJM7u5M1TLmF/TSXFnmq6x6cQpYV31byxahUPL1yAqvjLwv5xruTfZ01hYte2CcI3xRdrt9Qb4jpM6Xdb+AwjpCLHkeDTOav5/sfNQQlMe/YWs9dthdRC9PlM3v9gKX+6Z+oRb0e7wZ/bf7xb0SRH9AoQQlwGDAfCqt1IKV8EXgS/m+JIHvtIkZocS1FJdchyy7KIjwsV625vZMXG4dQ0avTgxJUom42s2OOvPTs/d1dYiU4Ab42NQssbUJ0P/s6QFoNTDj4EX12zgkcWL0ARAoHgz/Pn8sSkMzmjW09My2LZ/jzK3G6GZ2bhVGws2L6Xpw4soVdKCpcNGkxm7EGRn20lJTzyw0L/20QDg/mbWV+w+PobiHM27YttLeHEjeo4WnNKH81aiccb/GA2DAstzAGllOTmhUpl/tL4uY+M84CG8mPZgWVBCCEmAX8Cxkkpm68X3o654vxR/PWxz4MuYoddY/yJPYmOOnKvrW1lT3E5C7fswq6pTOrXPaQoah2nduvO/Qvm4TaMegMg8PuNp/Q8/imsFT5PE4ZJIE2QJvXREw39yLpXkmT393lbaTGPLl4Y5IoBuGPubDpEx3HLrJlUer0IIfAaBqpQkFLiNU1+2LuXN9es5p3zL2Bgul/s5rPNm8KGiwkLrnr3Y3YVleKy2bhk2EBuGjPikCbdTu7ema9WbiEwp4hl88euD+mYieMohTm6Pb7QhU243DVNZeDAo1tUoV3QjqMpWjMbsgzoIYToIoSwAxcDMxuuIIQYArwATJNSFh75Zh47xozozs1XjSc6yo7LacNuUxk3uie/u/m049amZ75exDlPvMljsxfyyOfzmfTwK3yzblvYdR2axgcXXMzA9HRsioJNUeiXlsaMCy4i+hCiKY40ozt0Cj8ylvjl0RBQpYFXOWicPQqyVuXxJT8C8NnWTehWqPFUFMF1X3xCfnU1NbpOtc+Hblp4DKPecOuWSa2u88e5c+u38zZ4cDVsj15tsiGvgBqfTnFNLS/9tJw7P5nd5j7nl1WxeN0e0EGx/BoRmgeihMaD557a5v21ljEndA8tiyQEzlgHTsfBB4CiCFwuGxece3znO44FQrbuczxo8ZEspTSEELcCX+EPbXtVSrlBCPF3YLmUcibwTyAG+CAwobVXStl8Hmk75pwzhjBl0kAKiitJiIsiJvr4jYjX7cvntQXL64WG6rjn/TmM6t6JWFdo23ISEvj4oksp97iREhJd7ce9kh0Tz1V9hvHm5lW46zR/QzIXBXg1aPR+9c2uHfzjFNAtK+zo2rQsqkxvq7RgthQX4TF0nJqNU7v34J21a4M0JoTub0vDfXkMg3nbd7G7tIzOSYkh+2yK/3y1iGrPwc7UeWBclkZWQvOuIykln36/jtc+W0JJRQ1ds5O5/dJxDO/b8pzL1RefyA9Lt1NV7cHrM9BUBU1TeeBP55CfV86Mj5ZSVeVh6JDOXHfVyaQkt130/mfFL0FCU0o5G5jdaNlfGvz9M01WbxqbTSW7Q+tvuKPFF6s24TNCR4GqIliwZRdnDT6onialZGdhKZVuL32y0kImtFrLntJyymvd9EpPbTFTcP2BAp5c+BObC4rokpzIb8aOZkSn5l93/3DCeE7MzOGZ1YtYUZDnf3WvGxU3c7c4A5Ncp3XtwZvrV4UI9FhS4kBrUhOkIYoQqIF6ecMzM5nWuzefb9mCW9cRQqDK8C2xKSpbC0vaZIwXbd2LGWZS2O3TOVBWRXZyfJPbvj1rOS9/sqg+DX/rniLufOxT/n33eQzqmcXGrQd4f+ZyCoorGTagE6OGdSUnK4m4WBcJcVHccc1EZn69muLyGgb0zebi6cPJ6pAIA3M464xBre7DLwEBiCM0gXc0ci8iGXjtHMOSITPf4Hd9NSzflFdawS2vfUZeaQWqomBJyR/PPoWzh7euHDvA7pIybnrnM/aXV2LTFCRw96knc9Gw8JUpVubu56p3P6pPBS6ormF13ic8dfZZTOjRfBTCuKwujMvqwsOLF/Da+pUomt9AgiDFHsWeimAlNZemcVn/wQAMzcjk/N79+XDzBjyGjiIENlXl9mGjeXbJ0hb7aVdVzujeo973K4TgoUmTOadPX2Zv3YpdU6ms8PD5+i0hvmRTWnRMbNp4hiM+ykl+eVXIckvKoDcbw7QwTBOn3e80NwyTVz9bEqSHAuD1GTz/wY+ce9IAHnn2K3y6v+jrhi0HePPDJdgRjBnRndKCKnbuKsTt1nE6bRTvrWDapEOrMvJLQRwBn3Eg9+JZGuReCCFmNsy9AFYBwxvkXjwKNJt7ETHG7ZwzB/Xks+UbcDcScDEti5N6dQH8I+LrX/qY3NKKoNf3Bz75jh4ZKfTLbjl29P2la/nbF9/6M0bxhzqhwsNfzad7ajLDOmWFbPPQt/PDykfe/828Zo1xWa0bm6IQ43Rwz6iTubTvQBbm7iHGbmdSTjfcusGln80gt6oSAZiWZHynLlw3eFj9Pu4/eRLn9OzLlzu2YlNVpvfoTa/kVDKj4/jDt9/gM00sKXFqml/03TQDAv8W/dLS+PuEYO0IIQQjsrMZke0f1e+vqGTOpm1BxtiuqvROT6VPevPSnY256pRh/G3G3KACBDZV4cReOcRHOfH4dB7/7zxm/7gRw7TIyUjknqsmkZ2W0GS9xB25xTz+4tyQCh5IiU9KfvhxK8KQ9WGaHo/fJfTX+z/l7ddv+EVk07WZI+emOCq5FxFj3M4Z2jmL6cP68emKDXgNA00oKIrg3rMnkBjtd0Os31dAcVVNiB/VZ5i88+NqHryo+cnH1fsO8I8v59VPNNc7C0y/SPkbi1eGNcabC4vC7m9/ZSVew8DRKHZ2w/4C7vn0K3aX+EOoTsjJ5uFzTqNTXAK/6ptQv160zc5XF1/Jyvz95FZV0i81je6JyaHnJiOToRnBMd/Te/ehV0oK/127lsKaaiZ27cb0Xr3ZX1XFlpJicuIT6JPasjHNjI/jrcvO595Zc9laVIwiFE7t3Z2/nTGRzbmFvPX9SvJKKjihR0cuHDuQlLjoJg3cWUN7s7OglDfnrcCmqeimxcCcDB669HQA7v3PbBav310fC7xrfym3P/Yxr9x7ceBtIZT0+BgKysOEogUqc1i6FXYiqqS0mv0HysnKPP4uuGNPm7QpUoQQDVOEXwyE5sIRzL1oSMQYt3OEEPz5nAmcc0JfvtuwA6dN44xBveiYnFC/TmlNLUqYEsaWlBRV1bR4jHeWrA7xS9cZZAkUVIXGXQMkRUVxoDL09VsAtkZpy8XVNVzx+ofU+A6GWy3ZtY/LX/uAL2+9KqT9QgiGdchiWIfQh0BL9E5J5f5GI98uiYl0SWybARqQmcFn119GrU9HUxXsqsrHP63jHx9+j276EydW7dzPi3OW4FI1Lh43mFumnRgS+iaE4LYzx3Dl+GFszy8mLT6m/vfLL6kMMsR16LrJe9+s4pLTh/HOnOUhoZZXTB/Bw080cX+3YG/+J0fFAdoQKVF8JNKhW8q9aEj7ECr4H8Pt8bE3r5Rad5g40Cbon53BbaeN4YYJI4MMMcDATh3CTvI5bRrjendpcd8l1bVN3r82RWF8Ey6HCV27hN74ElRTsHzP/qDFH6/aEBDuOYgpJcXVNSzZvY/2TJTdhmlY/OY/n/C39+biM8wQP77bMHh/3moefOfbJvcTH+VkWNfsoN8vr7DCn30nJYou0dwSrVZCrcXydXspyiunR0YKUU4bAshKi+f+m89k8uje9OnRAa1x6Jr016uTTdzZqamxdMhom8/7F0WdcltLn+Zpa+7FtNbkXkRGxscQKSUvvvMDM75YgRDg001iY5yMHNKZy84ZSdeO4StOtERitIsbJozgle+X1fuWHZpKRnws54xouTrGxD7dWLl3f0hRVQEkxUTxqxHhZ93jVDvCANngKhKGvxz6urx8RnQ5GFWxq6QsJDwP/KP3/eWVrejlobG7sIz8sko6pyZS5fGRFOMiOa7t+sj/eP87Fm/eG1ruiIP/9+gGs5dtpqyomtVb8nDaNc49ZRDXThuJpoVPFOmcmYRPN1B0UIwGu7agOK+SOXsq/BOUNoVfnz+aKy8YXb/t/b+fxt0PfsyO3cX4dKM+VltIcETZ6JAYR2FhJT6fgcOuoWkqf7337P/dkbE8YtEU9bkX+I3wxcClDVdokHtxemtzLyLG+Bgy44sVfDBrRdCkS3mlm68XbGL+ku089qfzGNz30LKgbpw4Epsp+HD+WnTTZNKwXvzmrDFE2VsWAz5nSD/eW7qWfWUV9QZZCBjVrRNPXHhWk+nAWYnxxAiNWo9R79eoqzKRER8cszq0YyZzNmzD3ShNWwJ9j0LVkyq3l9tf+oz1ewtASryGiRbQnRjZqxOPXHkmMWFitMPh0w2+WrEF3bRafJfUDZOf1u9BWBK3V+ftL5ezc38xj9waPuw+OT6aicN7MPe7TUHLBYCUSAWkJfH5TN78YDFnTRxASpJf5S0xPooXH72MPbklbN6ez+IlO9i0LZ/0tDguu2AUwwfnsGbdPjZsyCM5OYZxJ/XC5Tr+iT/HlSNgi49W7kXEGB9D3vl0WYhWQF3RXY9X57GX5vLWE1e1eb9SSu57eQ7zVm7H7fWHen3xzTo6xsTyq9Nadnu57Dbeu/ESPlqxnq83biMxysWvRg5mZNeOzW535oBePPbND4i6URl+I+6waUzqHSxINGVAb55bsBS9ysQIRAg4NY0TcrKPSgmq+975mrW7D/gNaAAj8PfSrfu4580veebGs1u1L6/uz9Crn9hsPDqWDUr1SKCh4p9u8OOaXeQWlpOdlhB2/+eMG8CChVtD/MYNqqcCoCoKS1fv5swJwW87OdnJ5GQnc9r40DDGwQM7MXhg+xTlOh4cidA2ODq5FxGf8TGkojp88UoAJOzKLamXNWwLyzfvqzfE4H/19/oM/vPRjxSXh598a0yU3cblo4fw1rUX8vQlU1s0xACxTgdvXXMB3VOTsGsqdlWlT0Yab197UYjegstu48MbLuH8of1JjnbRIT6WG046gWcvPvKJmjUeHws27AwyxEC9AfUZJku27KWksuXJTYAYl4OMRP9IP8joNvooQiAMGeLFsGkq2/cVN7n/rPSE8F80MhxCAZfj8CtM/09zZHzGR4WIMT6GdM9pJqRKgN2mhmoJNEF5ZS0r1u1lb14p36/YVm+IG6KqCj+t232IrW0dnRITGJeaQ3yxSkyhoJeWSEwTJemToqP465SJ/Pi7m/j+juu4edwo7E34Ug+HWq+vRb+oTVUobe7h2AAhBH+6ZCJOu4YqBIoFNiFwqiq9MlJwKiqpcdEM7ZyJwwo9rmFadMxIaHL/qcmxjB7aBbst9FxoNSaKx/S7LCSMGtbyhGyEJqjTP2nN5zgQcVMcQ267ZgJ3/O2Dep9xw+evw64xbdLAsCFqDZFS8vzbC/lg1gpsNn8R1JhYJ4qExnagzmXQVgzT4r2vVvLRt6txew1OGtKVm84bQ3JC8MSXlJKbH/+IzXsL66M55i7fysotuXzy4NXHbRSXEhdNUoyL/MZvBTL4z5zUhFbvc1TvHN78v0t4Y+5ydheUMqhLJpdPGlY/YgY4UFzJxX96I6heoE1T6dclg25ZwZOz1TVeiourSE+Pw+W0c99vzuTJ17/ny3kb0HULLInmtlAChkHV4eH7z8Hl/B/3+R4GAnnE3BRHg4gxPoYM7J3Ffx68hFff/4mV6/fi8erYHRqWJRk7vBs3X95y5d2vF2zioy9XBQmGG+W12BSJNyrYGluWZOygtouj//X52SxctbM+DXfWwg38tGYX7z98FTENZETX7NjPtrzioLA605JUe3x8uWQT557cttRbn26weO1uKqs9DOmTTVYTPtaWEELwl4snc+crn+MzzJBkGKdd47fTTsLexgdVj6wUHrjy9Ca/75ASx3P3XMA/Xp/Ltn1FqIrC5JG9+N1lE+rXMQyTp56dy9ffrEPVVCzL4sLzR3D15WO5+8ZTqS6o5ocft4VMNNmEQmbq/3BI2pGiiYzG9kDEGB9jenVN55E/nANAWUUt+w6UkZkeT0pi6+qgvTdzGZ5GLgnTtFCkwK4qqIHXfp9uEOMVnH31f/D5TOJinVw0bTiXnjOi2dH3voIy5q/cETSZZFqS6lovny9YzyWnH0xJ3pFXElY3w+3V2bSnbUqq2/YUces/PkA3/IpslmVxzoSB/Pay8U26HAzDDFQ6Dv1+TJ/OvH3nJbw9byXb9hf7Fd3cXjKT4rh60gmM6dO5Te1rLX27ZPDW3y7D49PRVDUkDvilV+fzzbfr/ec3cI4/+HApyYnRTJ86lIL8yrAz/jabSlFJFRn/yzHCh0u9TGv7JGKMjyOJ8VEkxocXiW+KympP2OWWJfnzpZOoMHy8/PZCRKVJtTTqFdrLK9288cEiyitqufWaU5rc/5bdhWiqGjKz7/EZrNqSG2SMO6YlhE3Xddo1unYITV9uCsuS3PmvT6ho1LeZ89YzrG8nTh4WHJmxbkse/3xpLjv3FmO3aUydMICbLz8Zhz34cu6RmcLfLj16esHN4QwTUmiaFjNnrcbbKKLG4zV4d8YSpk8dyuBBndi1uxjDCM3I65JzaHHoEQ7Snt0UkQm8nxmjhjbhdpCSzz5fRfn+Kqzq0Fdz8N/0H89ZTXlFaI25OjJS4sKOdjVVIadDUtCy4b06kpEUGzT6EwLsNo0pJ/ZpsS9SSr6av5GLbnmZsv2VKB4rKCzM7dX55Ls1QdvsySvht/d/yI49xUjpVzD7/Nt1/P3ptom+79hVyE9LtlNcEprO3VZM0+L77zfy1/s+5tFHv2DD+tyw6+m6ia+xsE+Aigr/ZOJF548gymULentxOm1cdMEIYmIOv/zT/zztOJoiMjL+mXH1BaP57Ks1+INbD8ahKj7Jpi0H0LHQDTMg3ho6atV9Jhdf9Ty3XDeBqWcNDvm+X9cMstLi2b2/tD4uF/wTUedOCM7EUxTBi7+7kH+8PZf5a3ZiScmgbpnce8UknDYbBwoqSIh3NTnp9OaHi3nr4yX1sddCguqRmE4gYIwax2W/M3N5SPifVzf4aeVOCkuqSGtBIL2i0s3v//wBu/eWoKoCXTc549QB/PbXk1ucPA2HaVrcc/f7bNyYh8ejIwTM+34zV1wxhosvGR20rsOhkZ4Wx4H8ipD99OrpLwGVnBzDi89dzetv/cCKFbuJj3dx0QUjmXhKyw+3CC1x/Axta4gY458ZKUkxxCoa1T6fX39AgmL49QjsDo301Di27SwMJCfIMAZZ4qnVefaFb0lPj2PE8OCRthCCZ++5gL++8CXLNuxFCEFGSix/uf50OqSEVqVIjHXx6K+nYgSEc2yaykefreDmNxdiWX4JxzMm9+c3N00MSgl2e3xBhhgOihMpusRyCJwOjdNO7B10vB17i8MKtdtsKnn55S0a4wf++QXbdxYGPWi+mrueHl3TmHrG4Ga3Dcesz1exfvUev1tHEUgEXq/OG28s5NTTBpKUdDACRQjBbbdM5q8PfFrvqhBC4LBr/PqGg66j9LQ47r7rzDa3JUILSP53qkNHODZMP3MwH89cGZRWbbernDF5AJMn9GXpqt1+Ixdih2V9UoI34KdsbIwBEmJdPPl/51Lj9uHVDRJjXSGTZFJKVqzYzdIlO4iJcTL51P506JDA9ws289JrC4ImGefMXY+qKtz264NJSbkHylGUUC+ZALD8yQ09c1I56+TgrLI+3dLZtivYmILfBdApM9iN0pjKKjer1uwN2dbjNfjgsxVtNsavPP8dM/67CNOqS/SQSJsCikBVVVav2s2EicHtHzWiG489fDFv/vdH9uWW0qNHBlddNoYundumkRzh0GjPPuOIMf4Zcu3lJ5G7v4wly3di0zR0w2TIwE6cfepAfvh2EyM6ZbBqxwF8qsRrHnw1E7pEMQ5ejEXFzftLo112osNoGZimxX1/+YhVK/fg8ehomsp77y7i7j9M4c13F4VEe3i9BrPmrOWma8djD0yypSbHhExS1ZGaHMPt10/kpKHdQqIRLpl6AnPmbwwyqA67xqQxvUhObF4AyO3Wm3RF1NQ0LaplGCYLv9vEkh+2kZgcw5lnD6G0pJpPP1iGZTXKuNMtpF1BCIhqonZiv75ZPPLghc22NcJRImKMIxxJbDaVB+49h/0Hytmzr4SO2UlsWL6b2656GdO0sEwLh8PGCSO7ctPvTueaG1/F4w42kKoqGDIoWLPANC2EIGjEalmSyopaomOc2AIZYgsXbKk3xOA3VoYBjz48CxETPtFDSklNrbfeGCfERXHSyB78sHR70AjfYdf422+nMKgJwaTM9Hief+ASnnr9e9Zt2U+0y8H5Zw7m8rOb0/b2k5YaS1ysk6KS4GQQVVUYPaJb2G18XoP/u+kNdu8sxOPWUVWFLz5cRo8B2XjDZD0CYPn3OSySLde+aKQb0t6IGOOfMZkdEsjskEBlhZtnHp2Nr4H/1ePRWb10J/t3lXDDNeN48eX59SNWVRW4XHYuu+REAA7klvLkgzNZu3w3QghGj+/Nb/4whcULtvLKv7/B7fahKArTLjiBq2+ZyLdzN9Qb4oYoiqBDajxbq0NjjKOiHMTHBYfx/fHW03nsxbnMXehXLIuJdnDHdRPDGuKSoirKS6vJzkmhW04qT9/X8shSSsn2zQcwdJMefTLRbCp333EG997/CT7dxLIkdrtGTJSdq381Juw+vvpiNbt2FOIN9Nc0LUzTYuPafWEHWQJwRdl5+JGL6h9eEdoLkQm8CEeZlUt2hNW08Lh15n29nrv+Mp3MDgm88/4SiourGDI4h8svPZH0tDhqa7zcfuVLVFa4AyFtkkXzN7NpbS7VNd56IwQmMz9YBgK0ZozM1DMH8ezL8/D69Prr3uHQ+PV144NcBAdyS/nq05U4iz388YoJDBjRhdTk2BA3Qk2Vh4f++AFrlu9G0xR0j0GHzAR6D8hm2iWj6NkvfCWQHZsP8Nfb36Gq0o1Q/CI+PftmsnHNPmymRXp2AvFdUxgxshvTzxxMXGz4Strff7W+wTk4iKYqqIoICVWz2VTefu9m4tsYPx7hGBExxhGOJpqmhk7W4Q+kqDOcI0/oxsgTQl/Fv/tyLV6vHhRbbBoWpaXVIdet16Mzc8Yy/vDohSxdsiNkdKyqCmecPpC+/bJ49c0f2Lz1ABnp8Vxx6YmMbDBRuHj+Zv7x+xmYpsQwTBZ8tZ7O3dN49OWrsTfSs/jHnz5kzbJd6D4DvdbfoNzdxeTtKWbhNxu45Y9TOHX60KBtfF6de258napA7G5dR1Yt2Vm/TsneMmStzkX/uCjkmA1pSv9XkdB7QDabNuQF/OYKiqpwx91nRQxxe0UCjZX82hERY/wLYPjobsgwvjC7w8bks8JX6ahj786iEH8yBOyXJcGrI0wTFAXptGFZkt49MzhrymA+n7kK8Ls9EIL7HzwfTVPp1iWNB+87N+zxdN3gn3/6KCgLzeP2sWtbAXM+WcG0i0fVLy8rqWb1sl3+uOJA/+qeOVL6Hw7/eXgW404bgMN50KAuWbC1ycnBOkzToqrKw8JvNjBxyuAm15ty/jDWrdoT8uCJS4ji4ScvZc2qPSz+YRvRMU4mndafzOzmIzoiHE8kyIgxjnAUcbrs/PmRC/n772cghMCyLJBw/uUn0ndg87rE3Xp3wOmy42lUj0+RFrLS7Q+HAyQmwqtjc9mJS4ji5lsmMW36UFau2E10tIMTx/RoVRWJ7ZsOhH1T9Hp0vv9yXZAxriir8bsmfNRXEWmMIgTbN+2n35Cc+mWV5bWYrYgn9dT62L29oNl1Ro3tyZTzhvPZB0vRVP8biMOh8cATl6AoCkOGdWFIZKLu50PETRHhaDN8dHfemX0ni+ZvxuPROWF0dzKyWq6GPG5yP9547lt0n4EZeIXTFIFSUYNR6/FnwtlsiECEhcuy6v3T2dlJZLdxJGi3+1XqwuF0BrsLMjslH7TA9WU2gjFNiz2b9rNp0VY65KQy8tQBDBjWuVU3ndNlJ6db81VGhBDccPtkzr5oBGtX7SEu3sXQEV2brGkXoR0TiaaIcKyIiXUyuZlX7nA4XXb+/eaNvPD4HBYv2IIiJbKgFF9tYKRsAYYJTgeoKlVlNVSV1xKbcGh+0a69MohPjAoZiTtdNs664ISgZXa7xg2/PY3nH5uDt9aHlMExvYoisHSDl/7yAbpXx+60ERMXxWOf38UpZwxk/lfrDrpgGhlzRRFExTjoP6gj+XuKSO+U0qwgfVpGPJPOaJskaIR2SGRkHKE9k5wayx//cQEAT931X76ZEUb+0usDl1+oxuY49MtGCMHfnv4Vd1//Gj6fgQykTE+eOoQxE/uGrH/mucPJyEpkxhs/sHPTAarLa+v9wwrgyy+p9+e6q7143T6evOu/PPDOLQwd3Y3ZHy5H1w1Gj+vNlvW5LJq3GSklAwZ3pGZnPtePuBchBAmpcfz+hevoP7rHIfctws+AiDGO8HNh6bfrMY0wkxxSomoKw8f1wnmYFYY7d0/nv1//juU/baOyrJb+wzqT2bFpd8fQkd0YOtIfCVJZXsvmdbnEJ0Rx74VPYTSaWLNMyZoftqD7DMadNoBxpw1o1A2JaVpcO+xPFOWVYgVcM4X7Srj3/Cd5aen9pGZFJuF+kUgJZttrTB4rIhKaEYKIakamsVP3dO58+KLDPoZlWaz6bh1LP/iRfcu2YNaG12gOR1xCFCNO6kmvAdlhpT6Bg0VCwyCEYO0PW6gsra43xHWYhsmctxa2ui0Rfoa0YwnNiDGOEMT0607B0Wjkq6oKfUd05dkv7jxkX3EdlmXx1/Me4+8XPM7nz33NB499zk3D7ubrN+e3eV9jzxoSkoCiKIK+I7phdzYdO1xyoCysIdd9Bgd2FbW5HRF+RvzcjbEQ4nQhxBYhxHYhxD1hvncIId4PfL9ECNH5iLc0wjHhzCvGcsq5w7E5NKJinThcdroOyOa+125sseJya/jps+Ws+nYdnoAwj6mb+Nw+nrr5ZWoqmxa9D8c1f5pOWnYSroAgjzPKTmxSNHc8cVmz2/Ua2iVkVOzf3sHgk3uH2SLCLwPpj6Zozec40KLPWAihAs8Ck4FcYJkQYqaUcmOD1a4FyqSU3YUQFwOPAIf/PhvhmKMoCrf/61dceueZ7NyQS2pmIl37hRftORS+f//HekPcEM2msvq7DYw5+4QwW4UnLimGF+b/mUVz1rBjfS5ZXVM5aepQnFHh1dLq6NQrk1FnDGLJnLV4A1EdNrtGUkY8484d0bYORfj5IEH+zJM+RgDbpZQ7AYQQ7wHTgYbGeDrw18DfHwLPCCGEbNKpF6G9k5qZSGpmy3HKbcXhsjcsUBJEc66FptBsKidNHcpJU4e2vHID7n7pBr545XtmvToPr0fnpGnDuPius0JcNBF+YfzM06GzgH0N/p8LNNYrrF9HSmkIISqAZKC44UpCiBuAGwA6depEhP89Tr/6FBZ8uARvbfDoWAjBoFP6NbHVkUdVFabfMJHpN0w8ZseMcJyREqz2a4yP6QSelPJFKeVwKeXw1NRIZYP/RQae3Jfz7jgLu9OGI8qBK9aJK9bJ3z/9XbOCPREiHBHa8QRea0bGeUBDgYPswLJw6+QKITQgHig5Ii2M8Ivj6r9fxJnXTmDFN2uJinUxcspQXNGRyscRjj6yHY+MW2OMlwE9hBBd8Bvdi4FLG60zE7gSWAScD3wX8RdHaI70nFTOvC7iIohwLPmZi8sHfMC3Al8BKvCqlHKDEOLvwHIp5UzgFeAtIcR2oBS/wY4QIUKE9sMvQShISjkbmN1o2V8a/O0BLjiyTYsQIUKEI4cEZDtOh45oU0SIEOF/AxkRl48QIUKEdkG4ijjthYgxjhAhwv8O7XhkLI5X0IMQogjYE+arFBoli/xMifSj/fFL6csvpR/Q+r7kSCkPKzlBCDEncLzWUCylPP1wjtdWjpsxbgohxHIp5fDj3Y7DJdKP9scvpS+/lH7AL6svh0tEQjNChAgR2gERYxwhQoQI7YD2aIxfPN4NOEJE+tH++KX05ZfSD/hl9eWwaHc+4wgRIkT4X6Q9jowjRIgQ4X+OiDGOECFChHbAcTHGv6Saeq3oy51CiI1CiLVCiG+FEDnHo50t0VI/Gqx3nhBCCiHabThSa/oihLgw8LtsEEK8c6zb2BpacW11EkJ8L4RYFbi+zjwe7WwJIcSrQohCIcT6Jr4XQoinA/1cK4RoW9mWXwpSymP6wa/8tgPoCtiBNUDfRuvcDDwf+Pti4P1j3c4j2JdTgKjA379uj31pTT8C68UCC4DFwPDj3e7D+E16AKuAxMD/0453uw+xHy8Cvw783RfYfbzb3URfTgaGAuub+P5M4EtAAKOAJce7zcfjczxGxvU19aSUPqCupl5DpgNvBP7+EJgojkRp4iNPi32RUn4vpawre7wYvzh/e6M1vwnA/fiLzXqOZePaSGv6cj3wrJSyDEBKWXiM29gaWtMPCcQF/o4H9h/D9rUaKeUC/NK6TTEdeFP6WQwkCCE6HJvWtR+OhzEOV1Mvq6l1pJQGUFdTr73Rmr405Fr8I4D2Rov9CLw6dpRSzjqWDTsEWvOb9AR6CiF+FEIsFkIc07TXVtKafvwVuEwIkYtf4vY3x6ZpR5y23ke/SCJCQccIIcRlwHBg3PFuS1sRQijA48BVx7kpRwoNv6tiPP43lQVCiAFSyvLj2ahD4BLgdSnlY0KI0fgLPPSX7bkefYQmOR4j47bU1KOd19RrTV8QQkwC/gRMk1J6G3/fDmipH7FAf2CeEGI3fr/ezHY6idea3yQXmCml1KWUu4Ct+I1ze6I1/bgWmAEgpVwEOGm9EE57olX30S+d42GM62vqCSHs+CfoZjZap66mHrTvmnot9kUIMQR4Ab8hbo++SWihH1LKCillipSys5SyM37f9zQp5fLj09xmac319Sn+UTFCiBT8boudx7CNraE1/dgLTAQQQvTBb4yLjmkrjwwzgSsCURWjgAop5YHj3ahjzvGYNcQ/e7oV/2zxnwLL/o7/Bgf/RfUBsB1YCnQ93jOdh9GXuUABsDrwmXm823wo/Wi07jzaaTRFK38Tgd/tshFYB1x8vNt8iP3oC/yIP9JiNXDq8W5zE/14FzgA6PjfSq4FbgJuavB7PBvo57r2fG0dzU8kHTpChAgR2gGRDLwIESJEaAdEjHGECBEitAMixjhChAgR2gERYxwhQoQI7YCIMY4QIUKEdkDEGEeIECFCOyBijCNEiBChHfD/AzujvzpE/coAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Let's now build a simple autoencoder using the continuous convolutional filter. The data is clearly unstructured and a simple convolutional filter might not work without projecting or interpolating first. Let's first build and `Encoder` and `Decoder` class, and then a `Autoencoder` class that contains both." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 19, + "metadata": {}, + "outputs": [], "source": [ "class Encoder(torch.nn.Module):\n", " def __init__(self, hidden_dimension):\n", " super().__init__()\n", "\n", " # convolutional block\n", - " self.convolution = ContinuousConv(input_numb_field=1,\n", + " self.convolution = ContinuousConvBlock(input_numb_field=1,\n", " output_numb_field=2,\n", " stride={\"domain\": [1, 1],\n", " \"start\": [0, 0],\n", @@ -639,8 +731,8 @@ " filter_dim=[0.15, 0.15],\n", " optimize=True)\n", " # feedforward net\n", - " self.nn = FeedForward(input_variables=400,\n", - " output_variables=hidden_dimension,\n", + " self.nn = FeedForward(input_dimensions=400,\n", + " output_dimensions=hidden_dimension,\n", " layers=[240, 120])\n", "\n", " def forward(self, x):\n", @@ -655,7 +747,7 @@ " super().__init__()\n", "\n", " # convolutional block\n", - " self.convolution = ContinuousConv(input_numb_field=2,\n", + " self.convolution = ContinuousConvBlock(input_numb_field=2,\n", " output_numb_field=1,\n", " stride={\"domain\": [1, 1],\n", " \"start\": [0, 0],\n", @@ -665,8 +757,8 @@ " filter_dim=[0.15, 0.15],\n", " optimize=True)\n", " # feedforward net\n", - " self.nn = FeedForward(input_variables=hidden_dimension,\n", - " output_variables=400,\n", + " self.nn = FeedForward(input_dimensions=hidden_dimension,\n", + " output_dimensions=400,\n", " layers=[120, 240])\n", "\n", " def forward(self, weights, grid):\n", @@ -674,20 +766,20 @@ " x = self.nn(weights)\n", " # transpose convolution\n", " return torch.sigmoid(self.convolution.transpose(x, grid))\n" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Very good! Notice that in the `Decoder` class in the `forward` pass we have used the `.transpose()` method of the `ContinuousConvolution` class. This method accepts the `weights` for upsampling and the `grid` on where to upsample. Let's now build the autoencoder! We set the hidden dimension in the `hidden_dimension` variable. We apply the sigmoid on the output since the field value is between $[0, 1]$. " - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 20, + "metadata": {}, + "outputs": [], "source": [ "class Autoencoder(torch.nn.Module):\n", " def __init__(self, hidden_dimension=10):\n", @@ -707,20 +799,42 @@ "\n", "\n", "net = Autoencoder()" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Let's now train the autoencoder, minimizing the mean square error loss and optimizing using Adam." - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "epoch [10/150] loss [0.0058]\n", + "epoch [20/150] loss [0.0031]\n", + "epoch [30/150] loss [0.0016]\n", + "epoch [40/150] loss [0.0013]\n", + "epoch [50/150] loss [0.001]\n", + "epoch [60/150] loss [0.00089]\n", + "epoch [70/150] loss [0.00078]\n", + "epoch [80/150] loss [0.00071]\n", + "epoch [90/150] loss [0.00066]\n", + "epoch [100/150] loss [0.00062]\n", + "epoch [110/150] loss [0.0006]\n", + "epoch [120/150] loss [0.00058]\n", + "epoch [130/150] loss [0.00056]\n", + "epoch [140/150] loss [0.00055]\n", + "epoch [150/150] loss [0.00054]\n" + ] + } + ], "source": [ "# setting the seed\n", "torch.manual_seed(seed)\n", @@ -744,42 +858,31 @@ " # print statistics\n", " if epoch % 10 ==9:\n", " print(f'epoch [{epoch + 1}/{max_epochs}] loss [{loss.item():.2}]')\n" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "epoch [10/150] loss [0.013]\n", - "epoch [20/150] loss [0.0029]\n", - "epoch [30/150] loss [0.0019]\n", - "epoch [40/150] loss [0.0014]\n", - "epoch [50/150] loss [0.0011]\n", - "epoch [60/150] loss [0.00094]\n", - "epoch [70/150] loss [0.00082]\n", - "epoch [80/150] loss [0.00074]\n", - "epoch [90/150] loss [0.00068]\n", - "epoch [100/150] loss [0.00064]\n", - "epoch [110/150] loss [0.00061]\n", - "epoch [120/150] loss [0.00058]\n", - "epoch [130/150] loss [0.00057]\n", - "epoch [140/150] loss [0.00056]\n", - "epoch [150/150] loss [0.00054]\n" - ] - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "Let's visualize the two solutions side by side!" - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAEiCAYAAABURlUUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXwUZ97Av8/M7saVAEGCuzsUp6WlFCkFWqi7vNf26lf3a3u9+tVdaSnaFi3uLsE9wUmIe1ZmnvePzW6yrCVIgXS+98nRzD4z88xm9/k9PxdSSomBgYGBgYGBgYGBgYEPlPM9AQMDAwMDAwMDAwODCxdDYTAwMDAwMDAwMDAw8IuhMBgYGBgYGBgYGBgY+MVQGAwMDAwMDAwMDAwM/GIoDAYGBgYGBgYGBgYGfjEUBgMDAwMDAwMDAwMDvxgKg4GBgYGBgYGBgYGBXwyFwcDAwMDAwMDAwMDAL4bCYGBgYGBgYGBgYGDgF0NhMPjbc/DgQYQQfPfdd+d7KgYGBgYG1RQhBC+99NL5noaBwWlhKAwGFwzfffcdQgj3j8lkol69etx2220cO3bsfE/PwMDA4G/LJ598ghCCnj17ntF1Zs+ebWyaDQwuQgyFweCC45VXXuHHH3/ks88+Y+jQofz0008MGDCA0tLS8z01AwMDg78lEyZMoFGjRqxbt479+/ef9nVmz57Nyy+/fBZnZmBg8FdgKAwGFxxDhw7lpptu4q677uKrr77i8ccf58CBA/zxxx/ne2oGBgYGfztSU1NZtWoV7777LjVr1mTChAnne0p/e0pLS9F1/XxPw+BvhKEwGFzw9OvXD4ADBw64j+3evZuxY8cSHx9PaGgo3bp181IosrOzefzxx2nfvj2RkZFER0czdOhQtmzZ8pfO38DAwOBiZsKECcTFxTFs2DDGjh3rpTAsWbIEIQRLlizxOH5qfthtt93Gxx9/DOARfuqiqKiIxx57jKSkJEJCQmjZsiVvv/02UkqvOf3000907dqVsLAw4uPjGT9+PEeOHPEYM3DgQNq1a8fOnTsZNGgQ4eHh1KtXj//+979e1ystLeWll16iRYsWhIaGUqdOHUaPHu0hdyo7P6vVyiOPPELNmjWJiopi5MiRHD161Od7e+zYMe644w5q165NSEgIbdu25ZtvvvH5/k6cOJHnnnuOevXqER4eTn5+vs9rGhicC0znewIGBsE4ePAgAHFxcQDs2LGDPn36UK9ePZ566ikiIiKYNGkSo0aNYurUqVxzzTUApKSk8Ntvv3HttdfSuHFj0tPT+fzzzxkwYAA7d+6kbt265+uRDAwMDC4aJkyYwOjRo7FYLFx//fV8+umnrF+/nu7du1fpOvfeey/Hjx9n/vz5/Pjjjx6vSSkZOXIkixcv5s4776RTp078+eefPPHEExw7doz33nvPPfa1117j+eef57rrruOuu+4iIyODDz/8kP79+7N582ZiY2PdY3NycrjyyisZPXo01113HVOmTOHJJ5+kffv2DB06FABN0xg+fDgLFy5k/PjxPPTQQxQUFDB//ny2b99O06ZNqzS/u+66i59++okbbriB3r17s2jRIoYNG+b1fqSnp9OrVy+EEDzwwAPUrFmTOXPmcOedd5Kfn8/DDz/sMf7VV1/FYrHw+OOPY7VasVgsVXr/DQzOCGlgcIHw7bffSkAuWLBAZmRkyCNHjsgpU6bImjVrypCQEHnkyBEppZSXXXaZbN++vSwtLXWfq+u67N27t2zevLn7WGlpqdQ0zeMeqampMiQkRL7yyisexwD57bffntsHNDAwMLjI2LBhgwTk/PnzpZTOtbZ+/fryoYceco9ZvHixBOTixYs9zvW1tt5///3S19bjt99+k4D897//7XF87NixUggh9+/fL6WU8uDBg1JVVfnaa695jNu2bZs0mUwexwcMGCAB+cMPP7iPWa1WmZiYKMeMGeM+9s0330hAvvvuu17z0nW9SvNLTk6WgPzHP/7hMe6GG26QgHzxxRfdx+68805Zp04dmZmZ6TF2/PjxMiYmRhYXF0spy9/fJk2auI8ZGPzVGCFJBhccgwcPpmbNmiQlJTF27FgiIiL4448/qF+/PtnZ2SxatIjrrruOgoICMjMzyczMJCsriyFDhrBv3z53RaWQkBAUxfkR1zSNrKwsIiMjadmyJZs2bTqfj2hgYGBwUTBhwgRq167NoEGDAGco0bhx45g4cSKapp21+8yePRtVVfnnP//pcfyxxx5DSsmcOXMAmDZtGrquc91117nX/8zMTBITE2nevDmLFy/2OD8yMpKbbrrJ/bvFYqFHjx6kpKS4j02dOpWEhAQefPBBr3m5QqYqO7/Zs2cDeI071VsgpWTq1KmMGDECKaXHswwZMoS8vDwvOXXrrbcSFhbm+w00MDjHGCFJBhccH3/8MS1atCAvL49vvvmGZcuWERISAsD+/fuRUvL888/z/PPP+zz/5MmT1KtXD13X+eCDD/jkk09ITU31EG41atT4S57FwMDA4GJF0zQmTpzIoEGDSE1NdR/v2bMn77zzDgsXLuSKK644K/c6dOgQdevWJSoqyuN469at3a8D7Nu3DyklzZs393kds9ns8Xv9+vU98iTAGd66detW9+8HDhygZcuWmEz+t0SVnd+hQ4dQFIWmTZt6jGvZsqXH7xkZGeTm5vLFF1/wxRdf+LznyZMnPX5v3Lix3/kZGJxrDIXB4IKjR48edOvWDYBRo0bRt29fbrjhBvbs2eOuCvH4448zZMgQn+c3a9YMgNdff53nn3+eO+64g1dffZX4+HgUReHhhx82qksYGBgYBGHRokWcOHGCiRMnMnHiRK/XJ0yYwBVXXOG1IXdxNj0QLnRdRwjBnDlzUFXV6/XIyEiP332NAXwmUv+VuGTQTTfdxK233upzTIcOHTx+N7wLBucTQ2EwuKBRVZU33niDQYMG8dFHH3HHHXcATivS4MGDA547ZcoUBg0axNdff+1xPDc3l4SEhHM2ZwMDA4PqwIQJE6hVq5a7slFFpk2bxvTp0/nss8/cBSlyc3M9xris7hXxp1w0bNiQBQsWUFBQ4GHF3717t/t1wJ2A3LhxY1q0aHFaz3UqTZs2Ze3atdjtdi8PRVXn17BhQ3Rdd3stXOzZs8fjeq4KSpqmBZVlBgYXAkYOg8EFz8CBA+nRowfvv/8+0dHRDBw4kM8//5wTJ054jc3IyHD/t6qqXlakyZMnG12jDQwMDIJQUlLCtGnTGD58OGPHjvX6eeCBBygoKOCPP/6gYcOGqKrKsmXLPK7xySefeF03IiIC8FYurrrqKjRN46OPPvI4/t577yGEcFc0Gj16NKqq8vLLL3ut71JKsrKyqvysY8aMITMz0+vermtWZX6uf//3v/95jHv//fc9fldVlTFjxjB16lS2b9/udd+KsszA4ELA8DAYXBQ88cQTXHvttXz33Xd8/PHH9O3bl/bt23P33XfTpEkT0tPTWb16NUePHnX3WRg+fDivvPIKt99+O71792bbtm1MmDCBJk2anOenMTAwMLiw+eOPPygoKGDkyJE+X+/Vq5e7idu4ceO49tpr+fDDDxFC0LRpU2bOnOkVgw/QtWtXwJkUPGTIEFRVZfz48YwYMYJBgwbx7LPPcvDgQTp27Mi8efP4/fffefjhh905AU2bNuXf//43Tz/9NAcPHmTUqFFERUWRmprK9OnTueeee3j88cer9Ky33HILP/zwA48++ijr1q2jX79+FBUVsWDBAv7xj39w9dVXV3p+nTp14vrrr+eTTz4hLy+P3r17s3DhQp/dsf/zn/+wePFievbsyd13302bNm3Izs5m06ZNLFiwgOzs7Co9h4HBOeX8FGcyMPDGVVZ1/fr1Xq9pmiabNm0qmzZtKh0Ohzxw4IC85ZZbZGJiojSbzbJevXpy+PDhcsqUKe5zSktL5WOPPSbr1Kkjw8LCZJ8+feTq1avlgAED5IABA9zjjLKqBgYGBp6MGDFChoaGyqKiIr9jbrvtNmk2m2VmZqbMyMiQY8aMkeHh4TIuLk7ee++9cvv27V5rq8PhkA8++KCsWbOmFEJ4lFgtKCiQjzzyiKxbt640m82yefPm8q233nKXNq3I1KlTZd++fWVERISMiIiQrVq1kvfff7/cs2ePe8yAAQNk27Ztvc699dZbZcOGDT2OFRcXy2effVY2btxYms1mmZiYKMeOHSsPHDhQ5fmVlJTIf/7zn7JGjRoyIiJCjhgxQh45csSrrKqUUqanp8v7779fJiUlue972WWXyS+++MI9xlVWdfLkyX7/FgYG5xoh5XnO/DEwMDAwMDAwMDAwuGAxchgMDAwMDAwMDAwMDPxiKAwGBgYGBgYGBgYGBn4xFAYDAwMDAwMDAwMDA78YCoOBgYGBgYGBgYGBgV8MhcHAwMDAwMDAwMDAwC+GwmBgYGBgYGBgYGBg4JeLonGbruscP36cqKgov23lDQwMDCqDlJKCggLq1q2Lopy+zaS0tBSbzVapsRaLhdDQ0NO+l4F/DPlgYGBwtjDkg38uCoXh+PHjJCUlne9pGBgYVCOOHDlC/fr1T+vc0tJSGjeMJO2kVqnxiYmJpKamXhRC4WLDkA8GBgZnG0M+eHNRKAxRUVGA8w8YHR19nmdjYGBwMZOfn09SUpJ7XTkdbDYbaSc1Ujc2JDoqsBUqv0CncddD2Gy2C14gXIwY8sHAwOBsYcgH/1wUCoPLzRwdHW0IBAMDg7PC2QhfiYh0/gRCk2d8G4MAGPLBwMDgbGPIB28uCoXBwMDA4EJER6ITeMUP9rqBgYGBQfWjuskHQ2EwMDAwOE10dPRKjDEwMDAw+HtR3eRDlVPAly1bxogRI6hbty5CCH777beg5yxZsoQuXboQEhJCs2bN+O67705jqgYGlUdzaGxauI2lk1axe90+pLx4tHiDiwdNykr9/F0w5IPBxUL6oQyWT1vLqj82kJ9deL6nY1ANqW7yocoehqKiIjp27Mgdd9zB6NGjg45PTU1l2LBh3HfffUyYMIGFCxdy1113UadOHYYMGXJakzYwCMTcbxfz9dMTyD2Z5z6W1KoeD316NyaTiZlfzidl62EiosPoP/YSLr+5PxEx4edxxgYXKw507JUY83fBkA8GFzrZabm8/39fsGbWJlzRICaLiaF3XsqNz4xmycSVLJu6mpKCUpp2asTw+66gTa8W53fSBhcl1U0+CHkGplchBNOnT2fUqFF+xzz55JPMmjWL7du3u4+NHz+e3Nxc5s6dW6n75OfnExMTQ15enpHUZgBAabGV0mIrUbERqCbVfXzm5/P54P++8BovFGcCk0RgMqtoDh0ECARxiTG8veAF6reo+5fN3+D8cTbWE9c1DuxOJCpIFYyCAp2mrdL+duuXIR8Mzhe6rlOYU4Q5xExYZHnlmcLcIh7o9QxphzLQHZ4bNaEIVFXBYbW7PdKqSUFz6Iz719Xc+caNRp+PvwGGfPDPOc9hWL16NYMHD/Y4NmTIEB5++GG/51itVqxWq/v3/Pz8czU9g4uMPRtS+PmtGaybuwUpJRExYVx1+0DGPToc1azwxRM/+DxP6i69WKI5hOs/kUhyT+bz7Ig3+Wbne6iq0fzcoPJUxqV8Mbmc/2oM+WBwNrFZ7Uz9YA5/fDqf7LRcANr1acn1T46k2+UdmPH5fE6knqwgD8qRusShax7hq1qZUvHrf3+ncfuGXHZjv7/kOQyqB9VNPpzz3VFaWhq1a9f2OFa7dm3y8/MpKSnxec4bb7xBTEyM+8doymMAsO7PLTx6xeusn7fVvagX5ZUw9cM/eWTwv1n88wpKCkuDXudUp5qu6ZxISWfdnM3nZN4G1Re9kj8GvjHkg8HZwma18+zIt/j+5SluZQFg55p9PDvyLWZ/vYg5Xy/yqSy4kFKCDy+CUAST3vr9XEzboBpT3eTDBWlOffrpp8nLy3P/HDly5HxPyeA8Yyu189+7v0DXdHTN8yumazpH96Xx81szUJTTcxmrZpXkxduDDwzC0f3p/Pq/P/nujT9YOHkt1pLKtYY3uDjRkJX6MTh7GPLBwBczPlvAtuW7vRQCl7z434PfkXE0K+A1hBA+FQapS1K2HqIor+iM5miz2lkydR3f/Xs6v7wzi4M7j53R9QwubKqbfDjnIUmJiYmkp6d7HEtPTyc6OpqwsDCf54SEhBASEnKup2ZwCscPZvDHt8tYMTMZa6mNRq3qMvL2/nS/tA07NxyktMRKg+aJ1G9S6y+f24rfN1CYW+z3dSklJ49kBbQeBeNMzi0ttvHuwz+wfMZmFFVBCIHm0Pjk2Uk8+v7N9Lmq02lf2+DCRZPBG+9cTI15/moM+XDxoGk6S3/fyMzvV3Bkfxqh4SEMGNmFkXf0x1Zi5/C+E4SGh9CuZzMsoea/fH6/fzovYDU8qetomkYgk5KUEgJcQz8DGbFx0Q7+c/eXFOQUoZpVpC75/rXf6HFFe5784m4ion1/3g0uXqqbfDjnCsMll1zC7NmzPY7Nnz+fSy655Fzf2qAKbFuzn+dv+hS7XXNbZHauT2H72gOo7iRh51LbrmdTHnpz3GkpDkdTM1g+dxvFBaXUbViD/sM6EhEZvB36wV1HnfOwa37HCJMJabMSTGH3lbim2TXa9m4ZdB7+eOvB71kzdwuAhwekuLCU1+7+ijenPET7S5qf9vUNLkwq41K+mFzOfzWGfLg40Bwar937Dav/3IZQBFKXFOaVMP3LxUz/cjG6rbwWTER0GNc9OIRrH7i8yknCNquDVX9uJWXnMcwWEz0ua0vLjg0qcZ6d9EOZAcdInEUupNT9zksIgdR9fGMF1GtWh8jYiMo8hhf7kg/x4vUfopXJhopybMPCHbx66ye8Me1RI6m6mlHd5EOVFYbCwkL279/v/j01NZXk5GTi4+Np0KABTz/9NMeOHeOHH5zJp/fddx8fffQR//rXv7jjjjtYtGgRkyZNYtasWWfvKQzOiNJiKy/f8SU2m8PDyu6ypmh2zcNNu3NDKo+Mep+PZj1G7aQalbqHzebg/acns3hGMooqUISCw6Hx+WszePCV0Vw2qkvA80PCQoJ6AIQQiKgoZH6BjxdxSgzFOwpPURViakbT++rulXqWU0nddYxVs5N9vyhBKDDh3dn8Z/JDp3V9gwsXhxTYZWAh7wjyenXCkA/Vk2lfLGbNPGfIppeMkBJUFTTnJrgov4RvX/uNgtwi7nz+mkrfY8uqfbx+//fk5xQ5K99Jyc//m0f7nk157rPbiY7zv1k3mVUUVfEKV/WHlNL35tyfd0HCmIeHnfaG/pd3ZqLr0qcM0zWd5KW72bXuAG16Njut6xtcmFQ3+VDlHIYNGzbQuXNnOnfuDMCjjz5K586deeGFFwA4ceIEhw8fdo9v3Lgxs2bNYv78+XTs2JF33nmHr776yqixfQGx9PdNFOWXBA/JKStfqms6xQWl/Py/eZW+xwfPTmHJLJcFXuJwOIWLtdTO20/+yroluwOe33t45+DCQFFQIiNRYmPglFyGxEa16DioHUIIlAqVkBRVITQihFenP4HZcnoOt+V/bPK45qnommTLir0U5JxZ/KvBhYeGqNTP3wVDPlQ/NE3nt6+X+g/3ccX9n2KMmfLJfNIPB84ZcHFwzwmev+0LCvKcYaeaQ3Nb43dsSOX5275A92X5L0NRFC4Z3iXgOiyEKAs58n5NNan0Gt6FkDCzl3wAuPyWAQy79/JKPcup2Kx21szZElB+qSaFpdM3nNb1DS5cqpt8qPIOaeDAgQHjBH116Rw4cCCbNxsVaC5Udm1Mddeb9ouUYDY5lYZSG7qms3j6Ru5/dWzQeNXjh7NY9Lv/v78Qgp8+nE+Pga38jmncNokeV3Zkw/xt/hfe0BCnlyEiAhEeTqPGNRh77yASG9WkbZ9WSClZ+dt6Znw2j4M7jhAWEcrAcb0Zfu/l1KxfOU+JL4oKSlAUge4jWkoKAaEWCLVwy5VvU6tOLEOv7c6Vo7sRGmY57XsaXBhUZsG/mATCmWLIh+pHdnoe2el5wQcK4fQ06DpIiaIoLJi8lhsfuyroqVM+X4Su6X4t8Hu3HGbz8r10HeBfRlz32HBWz9xUrhhUwJ2b4DouncdufmEsjdom0WFAG2JrRnPycAZ/fPInSyevxlpspXH7Boz8x5X0vrr7aXsXrMW2gLkPMtSCIzqSmQv2sGjQm3Tr3YxrbuhFi7b1Tut+BhcO1U0+nPMcBoMLn0BWGQ9cliSTCg4Nu81BYV4x8aExAU9bMXebc0PtZ9GUumTftqOcPJ5Drbpxfq/z1Nf38u+bPmbT4h3eL4aGIszliovJpNKmTysG39S/wvQF/Ub3pN/onkEetGrUbVzLp7IlFQExUW5vR0mxjcMpJ/n8zVnMm76R/35zF5FGottFjS4FehCXcrDXDQwuZCrdm0YI54ZcUUDTEAKyKpQ39YeUkmUzk90eBX9zWDpzc0CFoVX3pjw34UHevP1TrKU2t/IhyuYlHY5T5gtD77zUw1hUq0FN7vrPTdz1n5uCzruyhEeHERkb7rNoh4yJhNhokBKHppOfW8zSP7ezeM5WHnvpGi4f2emszcPgr6e6yYcLsqyqwV9L534tA3sXwCkEhEACekQoengIItxCYbGNiT+s5JP35/HrT6vIzPBuolRcWOrutByI4kJrwNfDo8J47bfHeG/Bc7To1xotqRaO5vVxNK+PrBFNxe+dpukMGd8r6D3PBpeO6YHJrHq/EBXhVBYqlOpzGbkO7k/nszeNOO2LnermcjYwOJW4WtHUb1rLV7VRb4RAWkzoUeFoYaGYw0NYtWwPn3+4gC8+WsDalfu8FAOH3Wl8CoSuS4or0WOnz9Xd+CX1Q+58/XrUWrHIJvXQm9ZD1q8F4eXFNRRVodsVHc/Is1xZVFXhqtsGeBnmZIjFqSyAR46gpulICe+8/BvHKhnSZXBhUt3kg6EwGHDJkA7UrBcX0NMgLWb0EBNaXAR6VBh6fBT2+GjuvPFzvvl8CTOmbeCbzxZzwzUf8u3niz1cwvUa1QyqkJjMKjXrBPZUgNNalLw3nZ0FdmSNaIgIhfAQtIQoHPVrIMvyLEbe1o+WnRpW8h04M6Jiw7n/jXEex6SqOEO4/EhZXZMsnr2F3Gwjr+FiRkOp1I+BwcWKEIKx/3dZoGqjgHPN02rFoifGIxNicCTEMG3+Ll58ajLTJ61j2q/reO6JX7l93CccPlhe0chsMZGQGHjtF4qgfuPKVeUrLLYxc0UKjvqJEBMJ0ZFQKx7aN4f6tRGqQlhUKP9477ZKXe9scN1DV1KvaS3PsKboiIAlXIWAmZPX/wWzMzhXVDf5cPHM1OCcYTKr/Pun/yOmRqTvARYzMjIMPTzEd1MbKXE4dHcViJ+/X8mUX9a4X+83tD1hESH4U6QVVWHgiE5ERAUPz1mxbDdff7HY86DLgq8qyHpx3P3CKO57ZUzQa50tpJSE1YsnrHNjbC3qYmteF0fdeHQ1SOyiQ+fA7uN/0SwNzgWyzOUc6EdeRC5nAwNfXDGuF2PuvdTv61IR6LVioaxwhHsbXLYh1jTd7VlIT8/j8Qd/pCC/vJP38Jv7BvRC67rOkPHBQ0l1XfLs479y0pVz4ZJXrn/r1aLZZR35aPVrJLWsG/R6Z4tSq4M2w7qhN0xENq6LTKoNYb7lqQtdk2zffOgvm6PB2ae6yQcjh8EAgAbNE/ly6bN8/foM5vy8yrnil1nJpUlFD6taI56fv1vJ1WO6o5oU1qxPIaZrEtkHMxFSohZYMRVYEZpEURXiEiK57ZErK3XdiRNW+8+HEAJNCGq3qnvW6lkXFllZsHgnKakZhISY6NOrGR3bJ7mvL6Xkk48XMG3KevccECDDLGjhAlloRbX6d7erqkJBQQmZmYVERoZSs2bUWZm3wV+DTaqYZWC7i+0iEggGBr4QQnDX86PoN7wTz974CUX5nuFBMirMKS9OXXd9rMO6JsnNLuLPWVsYe30vTqTnkWEW2NvWwW7XECV2zFlFKIVWlLK0iNseH0adBglB57l5QyqHUjMCPAfY4mOp17xO5R48CFJKdu8+wbJleygusZGUFM/lg9sRE1Nu/Dp8MIPH7vrWqSC5KkmZKoSwBnC+m0wquq5z4mgODrtGnfpxWEL++qZ4BqdHdZMPhsJg4CYiKoz7Xx3D9m3HOHYw012NSJqr/jEpLCxl86aDzJi3lRWr96EoAkwKEnDEheGICSUio4jBV3Xk1oeHEF8rOug1i4ut7N4V2CKvqgrr1x6gT7/Tb8LmYumKPbz+9iysVoc78W/y9A20aVWH118cQ2xsOGtW7y9XFipSJij1CAuKXUP4UHAs4WZ+m5XMqmcno5W1e2zbrh533DmATn9ROJXBmaEj0IM4avVgnQQNDC4SWnZuxEP/vZ7X7/vW47iMCA1oLT8VKWHJgh00b1+PJ16cgt2hOffNZhVpUrBGh6JmFtI0IowbHrycQVd3rdR1N6xNQVUVvwnUUsKh1ExysouI9+dRryRFRVZeemk6GzcddMsHXdf54oslPPLIEIZe2QEpJW88M4XCglPKlrveKynLewSdghAQHRPGbSM+IP14LgDhESEMG9uNm+4daFTZuwiobvLBCEky8EA1qbz+9R00aFqr7HcFYTq9j8mChTtYuWYfgKdHQAgUs0pkh3r889UxlVIWwGmZqgyBqm1Ulh27jvHyG39gK0vGq+hS37M3jadenIKUkunTNjiVoQDovsrOqgr2mHBWrdrnVhYAdu08zuOP/sKqlfvO+BkMzj3VLanNwCAY/YZ35r6Xx6CoCooiUE2Kz4aYwRSIggIrT786Hbtd85IPAFpCJGOfGVFpZQHK1v5KfN3Ohox45dXf2Zx8yH09V7Kyw6Hx1luzWbv2AHt2HCNlb7p/2VXmkfY+LFAUhTXL9rqVBYDiIitTf1zF0//4AZvV7n2iwQVFdZMPhsJg4EVC7Rje/uU+hj0wiBo9GhDZIK5K1iMXazel+s3p0nVJ+sl81m1IrfT1IiJDSKwTE1AgaJpOqzZnXr/6p4nOHAxf89d0ye69aWxMPsSe3ccD1thGCPQyzwrgVi6iGsTj0HQPZQFcipXkrf/Owm730djB4IJCk0qlfgwMqhNX3zmAl6f8k6YjOhHbuxmqrypxARJ6FVUQGmmhqNiK7mecEIJJv1etmVmrNnWDFtiIi484Y+/C3r1prF+f4nftF0Lww48r2bvzeHDRecoAoQhMZtWvUqPrkl1bjjBn2sbTmbrBX0h1kw8Xz0wN/jKSdxzh2rs+Z9K8LRzOLiBL2qvkNFMUQZNmtcix2bCHKdjDFTSL8LqGqips23G00tcVQjDm2p4+3beu18PDLVw6uG0VZuuNzeZgzfoDARUBVVVYtmIvJpMPQVkRKZ35DgJq1omh7xXteOrt68kpLPXfl0JCfn4Jq1cZXoYLHafLOfiPgUF1wW7XeOW/M3jspSlsP5LFsYISrGbFe1kOktBriQkNuJmWUrI/5SQ2e+CSqxXpO7AV0TFhfhOohYBrrutR+d4Sflixci9qgKIWUkp27TqO1eYIWl0KAEVgDjHRqn09bvm/QQy6sl3AOUpgxiSjgtKFTnWTD0YOg4EHx9NyeeKlKW7rtla2qZWRJsyFDiSeBv5Tf1dUgSnMTFqkxGFX3VYm3SIgHMyFOoqjfAWtquNi5DVd2brlMMuX7vbo6KmqCooqeOm1sYSdYWyn3a4FX+SlpNRq55LezZn35zb/Lm4haNIkgYceHUrbTg0A2LH9aNDrq6rg2PGcqk/e4C9Fr0RZvIspRtXAIBgffbmIRct2AxVCe0IUFCtQMSKo4iJ3ykLftEsSW/efqNT9RBU2VBaLiZffvI6nHv4Zu93hDgVy9ZTr3qsp195w5v15SkvsZYUvAn+3W7ar7763P4QiuO0flzJibHciIp29Ip667/vAYVMSThwz5MOFTnWTD4bCcAFQVGTFWmonJibcGQ96Hpk2a5MzAe2UFU4PU7ELMBU6vNZIl9IgBPQZ0IpNOVlk5hY6X6woKKTEHqlgztdQdKew6dyxasm9qqrw3EvXsGjBDn6ftoGDqRlYQkz0H9ia0WO706Bh8EoawQgPtxAfF0F2jv8eCbqEhg1q0LtbE+b9udWnUFAUQVi4hbc/uoXoCh2dIyJCgs5B1yWRlRhncH6pjEtZq5SJ0cDAN5qmk5dXTEiIuVJrx7kkN6+YGXO3ePTZAUAR2KMtmIrsKHbpL4+XmrWiaXdJY/5csTvovRRF0Kp5ImZf4U4BaNchiS9+uJvpk9azeMEOSkvtNGhYg5FjunH5lR3Oioxt2DABR5DQp7AwM63a1KX/5W1ZvmCnX4/yTXcPYPxt/TyORUaF+q8GWEZ4uJH0fKFT3eSDoTCcR5I3HeSn71eQXFZrOSoqlGEju3DDzb0JDz8/gmHJqr1+Fyk9VMVmEQibRLVLpCJALdspS3j3v9dzsqiYOR/P9n3xsl21FqpgLpUk1Y+na+eqVwNSVYXLh7Tn8iHtq3xuZRBCMGp4Z777aaXf+FpFEQy9vD3xcRG88NJoXn3lN2fSmy7dykN4eAhvvj3eQ1kAaNgogaSkeI4ezfZreRJC0Kdvi7P9aAZnGbtUscvAGxr7xSMPDC4gSkpsTJiwipkzNlNQ4Cxj2rFjA266uQ9dujQ6L3NauzHVv+VbETiiLKBJzAU2lLJhEmfsc7uOSbz54c3cdN9XlbqXrkuuH93jtOZZt3489z86hPsfHXJa5wfj0ktb8/EnC7Ba7T7XcEURDB3aEYvFxCPPjSQnq4itGw+iqAJdk+5KTleM6MT1d/T3On/AFe1YvmCn3/srqsKgoR3O5iMZnAOqm3wwFIbzxML52/nPv3/36BdQUFDKpF9Ws37tft776JagSoMsC4sxqWqVrTD+sAboGQBl3TzDJVgliisnVwhGjuhE584Neea9P1CE8LvRRgh0C9SIiOD1l8eetX4JZ5vrRndn9boD7NmX5qFAuaw+jzxwOfFxEQD07deSXybez5zZW9ix4yiqqtC1W2Muv6K9T4ugEII77hzAyy9N93lvIWDUqK7Ex59ZYp4/8vKKWblyH4WFpdStG0evXk2D52IY+KQynTq1i8jlbHBhUFxs5ZGHJ5CSctJj/dm27QhPPP4LTz09gssvbxf0Og5Nx2Z1EBZmPitrrTVIZR4J6KECoSuYC3WEBFURhIZZeOjJqzh8LIsTrqZqQbjt+t70731hGk3Cwiw89eQwXn7ldxQFLxlRv348t97S1zk2PIQ3P72FzetSWDh7K7k5RdSuE8uVV3ehZVvfBTouGdiKxs1rcyglw13evOL1Q0JMjL7pknPybFJKtm45zL49aZgtKt17NqVu3bhzcq/qTnWTD4bCcB4oLCjlnTdnOQ3zp4b+6JLUlAx+/nEVd907yOf5DofG1NmbmTJrE2kn8wFo2LAGtWtGkxAXSZd2SQzs1YIQS9X/vM2a1GTztiNeXgZdBVuEghYi3GFGaqlOTd3MsMvaU7dlTWav20VeYal/ZcGFEHQY2oISLtwqQKGhZt79zzh+mbSW32Ylk1/WlbRdm3rcNP4SenRt7DE+vkYkN97cp9LX7z+gFY89fhUffTgPm83Z50HXJVJKho/own3/uOysPg84Qxu+/nopU6aux+HQ3cpPbEw4jz0+lD69m5/1e1Z3dKmgB3E5B/0+GBicwi+/rPFSFqB8Y/rO27Pp2bOpl/fSxf7Uk/w4eQ3L1uxF05zhjQ3rx5NYK4bEWjFceWlbGtavUeV5NWlU0+dxCdiiFawxCtIkADNCk4Rl2OmXVJ9uV7Zm4/F0tKLKJTDHJEWR0DgWq91ByGn0Afor6N+/Fe+9G8FPP61kw8aDgDPcdPiwTtx44yVEluUjACiKQtdezejaq1mlrm0yq/zns1t45bFf2ZF8GEVVEAI0h058QiTPvzOexHpnfxOfcuAkr744jSNHslEUZ46glNBvQEueeGr4eYt8uFipbvJBSK9gxAuP/Px8YmJiyMvLIzq6cjX7L2SmT13PJ/+bFzARKjIylKl/POIVb+lwaDz5+nTWJx8E6WwS6fR4OaNGhaIgpSQ+Jpx3nh1Di8a1qjS35Wv28ewbv3kc01UoiVPLExXKcIXe6CruelvmEonJKv0+myybryNeRZeSZ8ddxti+F7Zr1VEWQ2yxmIiqIATOBkVFVpYs2cWJ47lER4cxYGArateOOav3cPHpZ4uYPHmd13Hnn1Tw1lvj6NK50Tm594XE2VhPXNf4clNXwqMCe2eKCzTu7rKx2qxfFxrVTT5oms6Y0R+4w5B8IQT83z8GM2ZMd6/XNm45xBOvTEHq0l20oiIuQ8E1V3XmobsvC9pHpiJSSq6/6wuOp+V5pCIX11CwR5cVuagoI3B6VF2bIqFJoo8GNxSV1lCxhwqa1a3B54+MJS4qvNJzPB8UFVkpLbUTExN21r21e3YcY/2KfTgcGi3b1qNH3+ao58AjnHYil3vv+pqSYpuXoqoogvYdknj7/Rsv2KiAs4UhH/xzYaru1ZxDBzNRVCVgvejCwlJyc4uokRDlcfy3uVtYn3zQlTaAOzyubNPn0v9yC0r458uTmfi/24mNrvxim1g3BocFTLbyZGZrpOKlLEB5kq/QQArnYIcFlNLAvXMcocItyF6buJBmdRPo1KRupecYCCklO46lcyw7n5jwUOIjwpi5aTdpuQXERYYxoktr2iUlVumaJlWhxjkKD4qICGHYsE4ex7Lyili4YR95hSUk1ojm0q7NiTjDyk9ZWYVMneq7DJ9Lxn/99TK6fNTojO7zd0MHNBmkcd9fMxWDakJeXklAZQGcFutDhzK9jtvsDl56awaaJr0Tk8twbQanz95MfGw4t47rXem5CSFIaBTH8fQ8d5NiR4hwKgvOAR7jJZ5edKkKbBECc5H0KSMkIBWwlxmyU9OyefabOXzy0JhKzzEYecWlbEo9hkPXaVY7nu1HT7Jm32E0qdOpYV1GdG5NRGjV1tuIiJBzlpDesm09j9AlXZes3X6IHQdOoCgKPds1pHXj2md8n8m/rqW0xFtZcN1zS/JhNm08SNdujX2cbeCL6iYfDIXhPBAWag5WjQ2AEB8dgqfM2uQ+1+3p8qHx67qksNjKzEXbuWlU5RPH1uw4jBapopfqmEqlMyY1JLBLTVCmPAinQHCEOT0NFSsHuR5XN4NWYV1VFMGExZvOisKwMfUYL09bwIGT2WWSxzk3pez9EUIwYUUyl7dvxps3DMViurA+/rou+XjqCib8uQFdSlRFwaHp/PenhTx2wyBG9T/9JO+ly3b73UBAed3wtPQ8Es+Rh6M6oqOgBy2bZ7S7Mag8oaGVW5dCfciH5Wv2k1dQUul7/TJ9PeNGdSc0xEc3ej9sTT2BLVpFLdFRbRJblOLlWQhEaZyCqVRDnOJocK1OpfFKebdnXbJm12FSjmfRpG7VQ6gqYnM4eGfWciat2YZd87y5WuZlmblpN+/NXsH/bh1Bz2YNzuh+54IDRzP51wd/cDQ9F1Vx9jb6dPIKOraoxxsPDqdGTMRpX3vBvO1ejUQroqoKi+bvMBSGKlDd5MPFM9NqRN/+rQLWWFYUQcfODT1iIMEZjnQsLbdc1/Bh9a+IlJLFa/ZWaW6aroMi0EIVrLEqpbHBPyLS/X9l1wgVOCIVoirE10oFHOECW5TwmLOmS9bsPlylOfpiy6ET3PnlFFIzcly6gtuCpUuJLqXz2YAF2w/wxu9LzvieZ5vPf1vFD3PWo+nOkC5H2Wek1Obgte/mM2/dntO+dn5+CYoS/G+5ceNBXnx5OteM/YDR1/6P1/8zgz17Klcv/e9IdevkaXD+CQ8PoXPnhgFDhTRNp1+/ll7HUw5mYKpCU7LiEhtbq9A8E5xrtlQFjkgVa5yKI1RUWlkAp1GpsI6KNUpgtjg9ExJwhEJxTRXtFAOVELB+75EqzdHrnlLy+E+z+XlVspey4Homl9e72GbjH9/8xuHM3DO659kmI6eQ+16bxPEMZ9K4pku3N2D7/uM88J8p2B2nlxcopaSoyBpwjKbpZGcXMvGX1dx682dcPfxd7rrjS6ZPW09Jie207lvdqW7y4eKZaTWiUZOaNGic4DcWUErJTWUVFiqiKEqV4k0BSoNUtTiVNo0TT3FJVu5+UgXdVBaaBDjM0KRtbVp2q09JnMAaK3CE+RYsZyPp57+zluLQdRyqRJpBBLiklJJp67aTWeC/z8JfTX5RKT/OCdy585OpKwLW5Q5EYu2YwI2Aynjn3TmsWr2XvLwScnOLWbxkJ/948HvmzN16Wvet7rjK5gX7MTCoCgMGtvb7XVcUQfv29WnXrr7Xa5YQU5XXU6ut8p2UAVo1ru322rrX8yreU6qC0niVux4YRGGiSmEdldIaJmeDT1/jz1BGrDtwhEU7D1RqmlKCQ9eZsHLzGd3zbDNp/mYKS6w+PxeaLkk5lsWidVUzELoQQpCQEDjsVlEE23cc5asvlnD0SDaFhaWkpmTw8Yfz+ecDP1BQBc/W34XqJh8MheEck5VVyNffL+P62z5jxNj3ufbWTxl500ccyMpDq/DuK6pACLBYVJ58diSduzbyupaiCPp0b+p2n5YFiPq9t6oIWlQxtrFbqySSasV6KibOck4Bz7NFgz2y7N9wUFRIjIume8skFFXxa4FSFUGXpr5Ly/kiv7SUlKxssovLF6cjWblsPnQCzYzzEy2DqzmaLlmx+2Cl73uuWZ6cgj3Ihv5YRh57j5w8resPGNDKZwiDC/ffW+DhlnbGQjsVicOHs07r3tUZV9m8YD8GBr6QUrJq1T6e/NdERo96n7GjP2DM6A94/725HuOEcIaEALRtW49XXvVdkrpvj6ZVNio0rmKzy3FXdPZQSlQ7VfIwVKRHqwaYQ0wQwBAmJXRsWrmQVV1KjuTlcTA3x8OT8PvGnVXoF+2UD/O37avCGeeeuat2BfzbKkLw55rT90IPH9kloEFS1yWlpTYv5U1KOJiawf/en3fa966uVDf5cGEFcVcz9qec5JF//UJRsdMqIBVBfqnNubgKgRZhQtckisO5w712dHduuLE3UVG+S+UB3HhND1auO+CMRpI4m6f5QdMlo4d0rNKcFUXw5gMjuO/NSRS6EqB0p0XIFxLQK+aHCWeeQokKg7s0o2mdBL6dvx6pSZ9pG5ouuXFQ56DzOpidw3tLVvHn7n3o0pkw16dJQx4Z0Bu7TUO6PslVkApWR9Usa+eS/OLSwP0ryvhhwUYevXYACdHOWNW8whJmrNrJsuQD2OwO2jROZOzAjl7xvmFhFh58YDBvvT3H65qKIhBCoJjwL5AE/DFjEw/cf/npPWA1RZcCPVhSW5DXDf6eSCl57925zJqZ7NnV18fHRUqoWzeWx58YRtu29fx6p5s2qkXPLo1Zn3wwqOKgKoKO7ZKoX6dq5Tkv79WSTbuOMn3xVhQhkHaJ0KQzp64KikPDWnE0qVODq/u0Y+qyrT7XPlURtGlYm9YNAhu+pJT8uGULX27YwLECZ6nx+LAwbu3Umfu6dyf1ZE6Vq91bTzO851xRWBw4ZEiXkuR9R1m69QD92zdBCGcRlM37jzFtxXYOpmcTExHKld1ackW3ll7lakeN6cbCBTs4djTb52dHAtKPTUvXJUuX7OT/7r/snPUPuhipbvLh4lFtLjI0TefZl6aWKwvgfLcrLqhCIE0KWqiKFmYiNT03oLIA0LZlXV58bBgms+pWGgAPD4BLmNw0qgftW1beeu+ieVJNfn7lFm64oouzOo8EdEn5/9w5xehmp8LgEQIkABW2pqWTGBfFf267CkUR5Z4RypPM7h/em16tAnd7PpCZzZhvfmFembJA2b1Xpx5m/A+/ciAzu+y9LTtBqVROOS3q+K4p/ldyIiefD+euYtaW3ZUKJZi7eQ9jX/+RlLQsdh1M55pnvuGDyUvZtPco21PTmLpkC+Ne+J5fFmzyOnfo0I68+MIo6p1Sv7trl0ZERoUE3GDoumTLtjOLI66O6JWwHl1MSW0Gfx3z521n1sxkIICiXoEjR7KxWNSgZS1ffHwEHdo4131/FmNVEURFhfGv+6veCVkIwZO3X8brDw6nffM6CAGmIqpc7iUtp4Biq42HR/ejfWNn5TrFQzwKEmIieeOuYUGv9dLixby0eJFbWQDILinh/dWruG/GHxRZqxZjryqCVheAfHBoOgt27udfk+aU9bfwjwQKrDYe+eQP3pm8FE3TefWnBdz17mT+3LCbnYfSWbvrMC/+MI/rX/uJjLxCj/MjI0N5/6ObuezydpgqlHOPiQ1nwKBWQeeqaZK9e9JO6zmrK9VNPhgehnPE2g0ppJ8sX7yCfSZ0XbJ6Qwp5+SXE+GnG4+LSPq3o2r4hcxZvZ2/KSdKzCjiRlU96ZgEAzRvV5Maru3NZb++kuMpSOz6Kh8YNoH2bejz87QznQQnCAULH6UkwBX6uyeu38X+X9mJw5+ZMSryZiUuTWbY9BYeu07lJPa4f2ImuzbzjcE/l5bmLKLbZ0E7ZUGtSous6by5b7mmVE855Sd23w0EVgsa14unUsE7Qe59LJq3eyr+nLwJA13VCna00ApYb1IGC4lIe+3IGeZlFFJbYPKLFXIl770xcQuM6NejV1lMZGzCgFf37tyQlJYPColLqJMZSq1Y0467/OOh81UokTf/dqFxjHuN9M/BmyuR1HpXkgIAeUlVVmD9vOy1aBF63IiNC+ODf49my4yiLVuwmM6uAk1mFpB7OxG7XCA0xMfSy9tw4pie1TinbXVmEEFzWowWX9WjB6H9/T0padpWvYbU7WJi8nxE92/D5I2OZvW4305Zv41hmHrFRYYzo1YbRfdsTHRG4982GY8f4cUuyz9cksDg1lURrGBKJqKQLWtMlN/TpVLUHOstkFRZz97fT2H0iA1UIFJNOCP4/IgLQysLhf160mYISKzPW7ATK5YLLKHUkI5fHP5/B9/+63uMaMTHhPPnMCP7vgcEcSs3AbDHRrHltFi3cyZIlu4POuao5ltWd6iYfDIXhHLF9xzFUVamQaFq5L1JlFAaAmOgwxl/t2bSnuMSGEMJZtvUs0atFA8IsZkpsdmfZVB8VYV2b2VM5mV+eVNy0Tg2eHX8Zz1K1DsaHc3JZc8i3ZVsKiWaBHL0Uyynvr17WD6JitSRwWo7CLGbevGHoX9aApthmp6DUSmx4KCEmEyfzC3lv3gpmrN1VPkgIbJESS4H3nF3vt1YW+qXpktT0HFSrdHt2XB4sl3dTQfD1rDVeCoPzVoKmTT0b+vXo3oS587b6LaunKILu3ZtU9dGrPRoCLch3O9jrBn8/bDYHBw6cko8U5GMipSQnp3KFGoQQdGqXRKd2Se5jDk2npMRGeJjFnQ9xNriya0s+m72mysnWqqKQluM0clnMJkb1aceoPu2qfP9ftm1FFcLLoFSRbFsJlUktdSlwo7u349K2Tas8l9NB1yVZRcWoQhAXEYYuJcv3HuS5qfPIKXLm6mlSokWAqRhUm2/5oKvlclgRgjnr/G/wNV2yLTWNrSnH6eCjpHl0dBjtO5aXle3YqYG3cnsKZotKm7ZVj2iozlQ3+WAoDOcIIcrDdpwfh1O3gd4oiiAu9vQ7WoZXaO5VUGLlYGYOFpNKs9o1KmUdPpqbx3drNzFj224KrTaS4mK4vmsHbh7QhS/mr/V7nm7C56PFhp95V+RD2bk+j0ukM3eirGGcrkqERrkFSYAe6vSI4HAOM6sqV3drzR0Du9MgIfaM5xaMvScz+WjZGubv3o8uJRZVpVOdRDYfPI4sla5putEtAlu0xFQEquZ6TqcQ0Cx4JQZK1fl8UlRo4AdQlguxMeU4i5P3M6hTs6Bzveaarsz503clJCHAZFIYcUqDOYPqZ0Ey+GtQymroQ4U1IIiIEAJq1jz9TrAmVXF3qpdScjAjh4JSK3XjokmICl6/X9cls7bv5sc1yexOy8CsKgxq2ZQxndoQFR5CYYnVZ2dp/9fTiT8LHZz3Z2UHVBYAHGFgKgm+MWtWuwY39+vCNd3annODkqbr/LQqmR9WbuJEnlNxapQQi0PXOZqd732CEJQkSELywVx4iuwwu+Sw86guJboWvPrHs9/OZdJzNxMWpA9H7dox9B/QiuXL9vgMnxNCMHxEZ69S8H93qpt8MBSGs0x2ThG/TF/H73O24FABRTgThTSJCPC5UBRBv17N3Qv66ZJXXMq7c5bzx8Zd2MqqRNSKjuSuQd254ZKOfhfBbcfTuPXHqZTa7e7F92BWDm/MW0rHeolc368jE1dsQSBQFGenZl1KpHrKZtX1PEIwumvb036Ok0VF/LQ9mYk7t2GL1kGXqDYFxeZUCqSKW1kA0EKdcbQebmeXR8QEWhgURdtZ6zhBm4yj1K8RU14a8Byw5dgJbvlhCnZdc1vebHaNDanHQILqL3nMLLBFg6mkQgJkoF4bVOz27Zkfg5Q8+eUsJr9wCw1rB05sbNK4Fs88NYI33pyBlOUx1YoiMJlUXn1pNLVqXdht688HdqmgBimLZ/eXKRiEjz/+mLfeeou0tDQ6duzIhx9+SI8e/pswvv/++3z66accPnyYhIQExo4dyxtvvEFoqCHELyRWrN7HL5PXooeWfW50iXBIhF7mMfTzddc0yZAhp9+80cWi7Qf439yV7E93Vj1ThGBgmyY8MaI/STVifZ6j65Knf/uT37fschdnsGkac3bsYc6OPTwxvB8T520mLafA2QeirDRpIEyqwuBOzU/rGaSULE5N5fvkzezKzAg6XreAZpFu+VGRskhQShIk+yx5bMxLo0tePRrFVi0ZvCrouuSJX+cwd5tnGdSDwXo/KAJrLOiKRHWlZQSREYE4npnHfyYu4uVbg+eyPPr4VWRkFLBzxzF3kr7r3+49GnPPPZee1hyqM+dSPpwPDIXhLHIys4D7nviJ7JyiChUvBCjSqThoEuGj2pCiCEJDzNx5k3fvhapQWGrlls8mkXrS0+JyMr+Q139fzIncfB6/qr/XeZqu8+DkmZTY7R5uZdd/bT2eTpekesx59k5mbdpNZn4RNaMjWLI/leQjJ7z8lKoiiA0L4+bewasf+WJfdhbXTZ9IrrXUmWJd5sHQLDqaBqZ84VW1SZrBEQ6mEufEXYqDRKKHgy3KaW3ZnZXBvxb9ydLDBxnUsBGrjh3Goet0ql2HMS3bEhNy5psrKSVP/DYXm6Z5vJ9Cr4yfyTlAKsGjbRUd9ADdvhHO5/91STL/Gjco6LwvHdSG1q3qMmPmZrZsPYJQBN26NmL4VZ1IOM1Y5+pOZRrvnE5jnl9//ZVHH32Uzz77jJ49e/L+++8zZMgQ9uzZQ61atbzG//zzzzz11FN888039O7dm71793LbbbchhODdd9+t8v0Nzg0//LKKb35Y4RnrLUBaFKRDR3H4VxpGjOxMo8Znloj7+4YdPPvrPE/rtJQs3ZXCptRj/PLP630qDdO37OT3Lbvc411ourNi3TuLV7DgiTvZkZrGxv1HEQhiI8P4eMZK5/P5cADcdWVPYoLkJ/hCSskrSxbzfXIyCpXMtRZgjQNLLpis4KrZJxDoCljjnP17iu12Jm3fxu+7d/GfKy5nW3YaRwvziQ8N4+pmrela23+Fqqrw5/a9XspCVdAtAsXhX5a4iooE87xIYPa6XTw4qi8JQbpER0aG8t4HN7FyxV7+nLuN7OxCateO4aphHeneo6mRv+CDcyUf4PwYlAyF4SzyzifzyKmoLLhwBf8pAqFLZ5x5hUWnTYs6PHr/FTRM8iyFWVV+XLGZlJPZfmNJv126kVFd29Kstud9lu0/yIn8Ar/X1aXk101beWhgb+4eXP6BvKF/Z17+baFXhZ82dWvx33FXUTO66uXVdCm5Z87v5FlLkaKCld31rwqOWIlSjNfCLS1gN4Nid5aCRUjsEZKKwauuWc7av4dZB3ajloUGzNi/m/+uXc6nV4xkUMMzi9XfcPiYdyhVWXyaa8YyQIKzyzMi/PTcUxVBpyZ12b0njRLdEdC6pOmSZdtSgioMJ7ML2JWajqIIxt9wCffcHXj8wcOZbN1+FAR06dCA+vXiA46vrkgEehDVTp5GjOq7777L3Xffze233w7AZ599xqxZs/jmm2946qmnvMavWrWKPn36cMMNNwDQqFEjrr/+etau9R9KaPDXsnd/Gt/8sAI4pSqS6/trUkDXvJLEwsMtXHtdT266qc8Z3b/YauPf0xcD3nlomi4pKLXy3uwVvHvzcK9zf1y92W8Muyw7//ctO7mnXw8u7VgeAtk6qRYvT5jPyQoVeUItJu65sie3X97d+2KVYPbevXyfnAxUsTCTArZ4sDskaqlz4tIs0U7JJNakpMRu58HZsxDhZYqFEPy4M5lBDZrw6eCRhJrOLE/wlzVbKlVG2x+aBcwlzlw1X9fQdcnQHq2Ys3530IqBmi7ZsPcIV3b3XwlJ03W27DlGbkEJiUlxvPbGtQEVJ6vVztp1B8jOLiIhIYoe3Ztgsfz9tpvnSj6cL4PS3+8veI5Iz8hn9YYU/wOEAAHdOzRk/JgeCEVQXGKjfr14Gp2houDi17W+a1m7UBXBtPXb+dfwAR7Htx1Pw6QoAV3IRTY7h7JzaVm7vMlPuMXMm9ddyaND+rJq/yHsmka7erVpU69qzeIqsuroYVJzc5xeGfDeUZf9rodKVKvw+bpucR7WyxQMv0hPC4zV4eCeub8x+9pbaB5ftWZGFdmf6bvBmajwH9LkXyEQgBqicGXHFszZ4FRqNF26BUyzOgm8fdcIth84wUOf/h50PlqAv2tuQQlvfruAJRv3uz87ZpPK1QPa8c/rBxByyiKfmVXAv9+axeathz2O9+zWmGceG0ZszJnHJF9MnAsLks1mY+PGjTz99NPuY4qiMHjwYFavXu3znN69e/PTTz+xbt06evToQUpKCrNnz+bmm2+u0r0Nzh2/z0w+pRCGNxGx4dwy7hI6dmpAZkYBFotKu/ZJAZsuVpY/t+5zFq/wg6ZLFmzbT25RCbERYRWO6+xODxz2I6Vk27F0r+N92jRizqt3snbPEY5l5hIdEUq/to0JD7H4uErl+HrTJncY0ekgTeAIYsuSgJAC3aE7d0lla+PSI6k8s3w+7w666jTv7mRfetZpKwvgbPQ6dEArVqxLobDE6lbkVEUgJTx302CG9mjFnmOZHDieGfR6gWT/nyt38dEvy8jIKVf6GtWN54nbB9O1TZLX+BkzN/PFl0soKra6lcyoqFDu/7/BXHF51ZPaL2bOlYfhfBmUDIXhLJFyKPiXEmBA/1Z07dzorN9f03Uy8gNX0NB0ydHsPK/jZlX16t7oC7Ofyhq1YyK55gzyFSqyKe04iijb7PtDACacDYP8ND1xxvb7eyYJqgSz7u4MjSaQDueG/Nttm3l9wOk3KAsz+xDuolzACcoSlrXyRjhuJ4pwxhS/deMwLmvXlGv7tmf6qu0czsglNjKMq7q34tIOzTCbVPp1bMIVXVswf9Nev8JTVQSd/HRJLSqxce9rv3IkLcdDeNkdGlMXbeVIei7vPz7a7WouKrby4L9+IT3d+zO0YdNBHn56Ip+/f4uXklGdqUpjnvx8z0TGkJAQQkJCvMZnZmaiaRq1a3sq3rVr12b3bt+VT2644QYyMzPp27cvUkocDgf33XcfzzzzTFUex+AcsmdfWkBlAUC1qFx7ndOL26JF4lm9/9GsvKCGIV1K0vIKPRQGRYigVYiEEJhV39YZVVHo3bohELjfTmWQUrI1Pa1SykJcaCj5VqvPeQcLZZJCIk26V9lwXUqm79vBE937USfy9MM0wyxm8kpKT+tcIaBjUiLPjb4M+4iB/LF6Jyu2p2Cza7RvUocx/TrQoFYsAO/dN4KRL3wb9JrtGvr+rM1atoNXP5/rdfzQiWz++cZkPnzmWrq0LlcaZs5O5r0P/nT/7nrrCwpK+c9/Z2IyKVw6qE0Vnvbi5lzIh/NpUDqt4KmPP/6YRo0aERoaSs+ePVm3bl3A8e+//z4tW7YkLCyMpKQkHnnkEUpLT+/LcqFiMVemaFvlx1UVRQjCzIE3aooKx22FXPPjBK74+lv++cdMVh8+TN+mDYPGOtaNiaJRjXOXBOZCFUqlLUfDWrUAfDshakVF+EkylxCiQ5ju9D4oZT9mCaE6GjpzU7xjSzVdZ8Hh/Ty6bBb3LJzOf9Yv5WB+js959W/WGJOPqlSelYycnhBpxkOZGNimKT8/eD2D2zdDCEGXZvV59ZYr+f6x8Xxw79UM6dISs6n8Qjdd3jXg+6XpkvEDfeeS/L5kG4dOZPusbCKlZO32Q6zeluo+NmfeNk6k5focr+mS1IOZLFq6y+u16kywpjyuH4CkpCRiYmLcP2+88cZZm8eSJUt4/fXX+eSTT9i0aRPTpk1j1qxZvPrqq2ftHpXFkA++CQkJrkhbgqzhZ0J0WEhAq7ZEooVK3tqynMsmfc3I6T/yWfJacq2l9GnW0KPx5qnoUtK/eaNzMGtvKhvAERkSQo3wcNRTQmdUITD5UW4ApCKRYTqY8blDksDiI97RBCeK8nlv8wruXTSdh5bNYEZqeeGRUxnaoYXXvCpDZIiFJ4b255s7xxJmMRMdEcpNg7vw2cNj+eaJcTwypr9bWQCoXzPWr8EInPmTPVom0SjRO6TUZnfw/o+LfZ4npfPn/Z+WlI+3OfjyqyU+x7v4/MvFQZXm6sS5kA+BDEppab4b591www288sor9O3bF7PZTNOmTRk4cGCVDUpVXp2MZDzftGtVl4hwC0XF/jtKqqpC93PgXYCysmadWzNtw3afGzpdlVhjYEtOuXXmUE4us/fs5aZOHenWoB6bjxz3qzjc3bt7lasKFdis/Ja6g2XHU3HoGp1r1mN8s47UCvfvD+6T1IC31lZOZRjVpg1XNmnB5+vXs+Oks6Z5vehobu/ShfBQM08unud9klmCyUduhIsQHavm8Dglq6SYm+dNYkfWSbelTRWCz7at5fGu/Xig4yUe4+PDw7ipeye+X7vJczNfVtVJunIXykKTFItA1yRvXjuU4R2Cd9SsyIS1yWihoJ7Sc8L13wO7NqOjH4Hx+9JtAf36qiKYsXQHfTo6czrmLNgesA63EPDz5LW0ap5I40bnv0vqX0FVLEhHjhwhOrq80pQv6xFAQkICqqqSnu4Z4pGenk5iom9L4PPPP8/NN9/MXXfdBUD79u0pKirinnvu4dlnn0X5i5ruGfLBP/16N2fn7uN+v0OKIhjQt8U5u/8VHVvw9qxlPl+TSGw1deyxkiVHU9xyYHtGOp9vWc8znQewfN9Bn+eqQlAjMpyhbas+9y2ZJ/h1/1aOFuZRIzSckY1bM6BuE7+yRghB7wYNWH7oUNBrR5gtTL5uHB+tW8vUHTsocThQheDK5s35v+49uPv33zhR6NntWCKRoae4fU+dA3jJiF/2JvPc6nlOz7Z0ho/+nrKThlGx/HTFeJKiYjzG33hJJyat3UqJ3VGp0CRFCFokJvDjPdcRUYVwrpQTWWw/GLj78jM3DPZ5fFVyKgXFVr/n6VKy9+BJUo5m0qR+Aps2H6SgILCin5FRwMRf1zB2THdCgpRyrQ6cC/lwOlQ0KPXs2ZP9+/fz0EMP8eqrr/L8889X+jpVVhiMZDzfhISYuX50D776aYXP14WAEVd0IC42eL1rX+i6JPnIcU4WFJEQGU6XBvW8qhLcPqAbs5J3U3rKIiSR2KNxNvaqMN4lFH5K3sIzAwdQaLWxOz3DHSvvip2/o1dXru/aoUrz3ZaVxs0LJpJnKy2bAyw9kcqH21byQd+RXNXQ98a4Y61E2tVMZHtWWkBTUqhqoked+kRZQhjWsiX5paU4pCQuNBQhBKUOO++uW0lmcXEFJagsDMnfdcs29PUquJqllNyzcDq7s50xvK5ruf59a+Ny6kfGMKqpp5v1icH9KLLZmLx5O6oQCFeCm5AMaNqY49n57D+ZhaooDGrZhNv7dKVzA/+WIF8cz8lnxuZdSAtoirOhj1Imx3STMzFuy8k0d/m7U8nMKQzqnUjPKneT5uQWB5yPlHD4SBa33/cN7dvW45knhlMnMbZKz3SxYZcqSiXL5kVHR3sIBH9YLBa6du3KwoULGTVqFOCsWb9w4UIeeOABn+cUFxd7KQVqmRW1MuGGZwtDPvjnqiEd+HnSWgqLrF6FMYRwli++ZkSX075+ZkERWw6fQEro2CDRq+hEndgoxl/SkYmrtngnPUdJ7LGeaxuAjiTfVso7W1fwwvBLeXWW0+KsS+mOT4+LCOObW8YQUgXviC4lz6yey8T9Wz2MMNNTdtCzVhJfXzaGSLPvDdNdXbsFVRgUIbiiWVNqRUbyyqWX8dyAgeSVlhIVYnEnLP9fj568sGih54mnGpN8IIHW8eXK78rjB3l61Z8eY1zv4dHCPG6Z/yvzR93l4XWuGxvNV3eO4f4ffie7qMT9mkPXSYyJpGNSHZbtSaXE7qBOTBTX9+rIDZd0ItxStU32Tws3Bfz+67pky4FjHl4JFxk5hUGbtQFkZBfSpH4CuUHkg4uvv17GL7+s4dZb+jJ2bPe/rIHq+eBcyIfzaVCqksJgJOMF5qaxvcjKLmT67GR38pFQBJqmM6B3Cx64K3hpS18s2Z3Ca7MWcyynfPNWJyaKp64awOVty+tYN0yI5dt7x/LoT7M4lpPvnoPdLAMm/wrgly1bmX3nLSzem8KsHXvIL7XSqEYc13VuR+tEb8tgIPKspdy0YCIFdquHYNKlRErJA8t/Z2ZUHG3ivZOjhRB8PWwUgyd+S4HNWrZwS4TJ+aWSDgWB4Nb2nYmylAuU6FNKg4WazEy4+lpu+n0KaUWFTiUIGTwIT0KTCqFXmzKOs+HkMb/DBfDRltU0j43n+92bWJ3mTAbuV7cxt/bpwp2XdGPGtl1kFZdQJzqKUR1akxjtVEh03Sl0T3fBXLyr3C0uTeDw8W1Oyytkb1omrep6W/zjYsIpLPHvEVMUQUJc+aYjsVY02TlF/gVQheM7dx3n/kd+4suPb6NGfNWrZV0sVMWCVBUeffRRbr31Vrp160aPHj14//33KSoqcm/Eb7nlFurVq+d2W48YMYJ3332Xzp07uy1Izz//PCNGjHArDucaQz4EJjoqjHfeGMe/nptMTm6xW4mXuiQs1MxrL15D3TqxVb5ukdXGv39bxKzk3W7vsiIEV3ZowfPXXEp0WPna+OTIgShC8MuqLU5LuKLg0DUcNaTfRGJNStKKC4muEcq8h27n1w3b2HkinRCTiYEtmjC8Q6sqb2Q/3b6GX/dvdV+/4r/rM47yxMo5fDpwlM9z+zVsyAM9e/HR2jXlB006QpFITSA0hVCTiRvalxu5LKpKzQhPY92NHTpwND+PLzZsKM/RqORXpUvtOu7//mTbGr85HpqUpObnMOfgbvLtNibv20p6cSGJEVGMb96BOY/fxtJdB0k+fBxFCHo3b0i/Fo3cjVb9GXsqy4JNewM20xMCFm85wIhLvHMQ42PCgyoLAPFlRtBaVWgqWFxs49PPFmGzObjxxt6VPu9i41zIh/NpUKqSwvBXJeNZrVas1nJX2KnJIBcqiiJ45L7LGXVVZ2Yv2EZGViFxMeFcMagNrZvXCX4BHyzZncL9E373WslP5BXw8C8zee/64VxRQWloVz+Ruf+6g9X7D7PzWDpmVWV7/klm7tnjN9lNAqk5OeSVlnJF6+Zc0fr0mum4mJKyjXxbqU/hI3Hu2b/dvYG3eg/zeX7tiEhW3nQ318/4lT2lRzGFOdz5CFKHZqF1eaRb8BKDzeJqsOSmO5m1fw+LDqWQay1lZU6ASlY4F9BmseVVqxYdScEkFBx+mqtIYF9eJsNnfo8iFLSycb/u28LEvVt4p+8w/jnQ94J4pnWrS212lCDJiACldt+VUUb2b8cnk1f6XTB0XTK8X7kgGX5lR3bsPu7/RkJAmXDSdEluXjFTf9vIPXcM8H/ORY6sRCdPeRpVMMaNG0dGRgYvvPACaWlpdOrUiblz57rX3sOHD3sIgOeeew4hBM899xzHjh2jZs2ajBgxgtdee63K9z5dDPkQnOZNazPxu3tZtGw3m7ccRtcl7drU44pL2xAeXvUQBJtD4+6vprHtSJqHV1mXkrlb93IwM4ef/m+c2/pvUhWeHjWIuy7tzsLtB8gvsVIjNozHNnontlbEpCisOnaIYU1a8tjlZ9YvyKo5+GLHOr/eTV1K5h7ew5GCXJKiYn2OebR3b5Kio3l2xVyIKUUJKV+fhdXEi10vo1ZkYEOFEIKn+vVnTJu2/Lp9G0fy8tiVn86R4rygeXQuI49Vc7DqxKGA4xUEz62ZT56t1K2UpRUXsDnjOD/u2czPQ65neCffHvczlRFWu+8cChdSQonVt3zo06kJEWEWivwYlYQQNK5Xg2ZJzoqCHTs2oGZCFJlZBb4VDR/Hvv9hJSNHdiEqqno2lzxX8uF8GZTOeWDr6STjvfHGGx7JH0lJ3qW7LmQaN0jg/jsG8dITI3jonstOW1nQdclrsxaXNSLzRgKvz1riVTZTUQTxceEcF4WsyD3Clqw0dCGDLoJnK3Jh8dEDgUNdpGT+kX0BrxFmNlOzNlgiNI/kZaFAiu04T22cXinNONRkYkyrtnw8ZATfDx9DzbDAIWES6JXYwP27TQvQHcd1RlnSslNZcIYdaejoQufRlTPZn1u5ClpVpXliQkDrETjzEBom+E5Wv2ZQB+omRPtMZlQUQaeW9ejbuQlZeUXMXbULq1nSpHlN30LMlQVXAV2XzPpzS+Uf6CJEQ1Tq53R44IEHOHToEFarlbVr19KzZ0/3a0uWLOG7775z/24ymXjxxRfZv38/JSUlHD58mI8//pjY2NgzfMJzy99RPoSEmBl6eXueeXwYz/1rOKOGdz4tZQFg3ra9bDl8wnctfinZeewks5K9lbXIsBBEtMKWknRmHt4HNhGkbNDplzE9le3Z6e5Q1UAsOZ4a8PU6NcMw1S5BDfGcuAjReHXnLLZl+/cMV6R5jRo8N2Agn4+8mvu69gy8+ReCzrXqYFacmyxN14O+L66wLih/D13/7sxK57nVf/o872zQpE48gXQOVRE0q+e7hHhoiJn7x3s3egV3lXgeunEAUsKmXUeYtXwHg4a1d+bPnXrPUx+8DE3TWLrUtzGhOnCu5MO4ceN4++23eeGFF+jUqRPJycleBqUTJ064xz/33HM89thjPPfcc7Rp04Y777yTIUOG8Pnnn1fpvlXyMPxVsVNPP/00jz76qPv3/Pz8i04onA2Sjxz3CEPyxcn8QtalHuWSps5NrpSSV5ct4bvkzW43qSIEulqWaetj/yuA+jExJEScnRr6Vt0RdIw9QGk/gFlHtrE286DP1yTw5/GdrDh5gH61m/kc4wuTonBnm+78Z+MSn6+rQtAoOo7edcrL/7WtUTtgGUJEhcVRSFCk52IpJc+u/ZNfh9xY6Xn641h+PieLCkkIjyApJoY+LRpSOyaSjPwinxsGVRFc0b45cRVKJFYkKiKUL54fxytf/Mna7eUxwYoiuKJXKx6+cQD//X4hfyzzTKSPbxCJ7UQxmlVzP6PzX+/PVn5+CVLKahunqsvgLuUgOl21wZAPfz1T1+8I2ABMCJiybhuju5fXv9+dmcEtU6eSWVzsLi+qoCDtEhlSoShEBRxSp2ed+mdlznY/lYM85o3Arvsfp0vJ85tmIKW3IUxH4pAaLyXPZuqld1dpblc3a82ba5dSYLf5VcLu7lDecC7MZCYpMoajhYG9En69KcAfqbu4u20P2iecWRldq8PB3qwsJJLm8TUIM5sZP7AzL//oo/hHGZouGd23vd/XRw/uiKIIPvl1OfmF5UperfgonrxjMCaTytjHvub4yfJS25a6ocRIE4XHCz3lgY83QVEUsrMLvV+oJpxL+fDAAw/4DUFasmSJx+8ug9KLL754ejdzXacqg/+q2Cl/9WerMwczcvh5dTKLd6dgd2h0bFCH5nUq1zwsI7/8C/fN5k18l7wZKI8JdS98roZhp+znJXB7ty5nbVPXOaEumzKO+Q2VUYWgY0Jgr8vE1I3OLpZ+llpVCCalbqySwgBwd5vu7MxK54+Du9wKleupa4SG89WlYzwqdAxt1IKX1oSRZy31OZdTlQXvAbAu8zDf7dnAbS27VWmuLralp/PGiqWsOXrUfaxzYh2e6tufV6+9gvt+mu7cs9sloqyBhaoIakVH8uQpTfpOJSE2kv/9awyH03LYceAEqqrQpVV9asRE8Pj7v7NiS6rX9zSvpJSouuF0jIkjOfkwug9FwUVcbES1VRYA9Eq4nIO9Xl0w5MO5w65pzNmyh0lrtnEkK5eY8FBGdm3Dsey8wKVSJaRX6LJcZLNx89Sp5JaUAN5OBWEVSOEZy68IQVxoGFc2PjsVnFrG1gzeDwJJxxr+N9BrM1I5UeLfmKZLyY7cE+zNO0mLmMrn4EWYLXwzdAy3zJ5CicPufm9dsuIfnXpyVZOW7vFCCG5v041X1y30d8lKcev8SSwefQ8xIVUPzbFrGh+vW8t3yZvJLwvVizCbubFDR/7ZsxczNu9k7cEjoIOpxNmQzqVkPnRNPxr7KKlakVGXdmBY/7as336InPwSEmtE0bl1EjsOnOD/Xv3VK8LBZtfIQGPoyA4s/W1rwGvrmk5Cwun3s7jQqW7yocpVki7GZLwLGSkl3yzbwAfzViJl+eZ+8a4DLNix37kTC/J5Sohyhtk4dJ3PN673P9BV1rPsP12L4Oi2bbipcyev4XZdY9HxfWzJPoZJKPRJbEKPhAZBN4A3NO/Mlzv9117XpOS2Vl0DXuNIcY5fZcF1jUNF2T5fK3aUokmdSFOY11xVReGD/iMY1bQtP+3ZzP7cLKItIYxq0oZrm3XwWrBDVBOfXDqS2+ZNwaHrHkqQgsCsKth0h1tZ8PfWvJW8hOuadiDcVLUOp8lpJ7h+yiQvj8yW9DTGT/mVEKlii6wQv2uTRNvMjO3annsu7UGNyMp5jRokxtEgsUKy9+6jLE/2ne+h6ZKC4lKi2kQhN/lvbK8oguFDO1bq/hcrOgI9iEs52OvVCUM+nH3ScvK59+vf2J+R5a5ak1lYzPtzV2BSlIBdjwV4VEv6bdcusop9V7MRCCQSxa6gq841RRGCCLOZb4aMJkT13i4cyc/ljwO7ybWWUC8yhqubtSYu1LdH00VcaBhXN2rDb6k7fBqVVCFoFlODLjXr+b3G0aLcgPcoH5fjpTA4dI1CRylhqoUQ1TtZu2vteiwedycTdm5hbupeSjUHHWomcnObzvTw4WW5uVVnlh9PZclR53rpeiK1bFNeGQNyjrWEn/Zs5v4OlwQfXAFdSv45Zxbz9u/3uE+R3c6XGzfw87atFNptUPZWCg1CMyVd42pz+xU9GNSpcgY3s0mld6cmHsc+nrgcXZd+Q5nnr99Dl4712bntmFdVMPd1LSb692/p87XqQHWTD1VWGC7GZLxzRW5+MQtW7SEju5D42Aguu6QF2w+mMXHBZrYdOA5C0LpRbW4f2p0+HZp4nb8h5ShP/zqX43kFzgMVPjeuEBAhccaP+vlMJUSG06Ox0x2/KyODTD/CoCI1IsOxoNCyZgI3dOrIpU2beG2st2Yf5/9WTuJkaSGmsmZqn+5eSevY2nzeZxx1wv1XRGgUHcfrva7kmTVzPZJyXVaNW1t25fL6gROrY81hZFv9d64WCOIsnpvhZSe38fOhRezOPwJAYmgcY5P6c01SH9QKiRBCCC6t35RL6zcNOAcXves0ZObIW/l82zpmpu6mVHNQPzKaW1p3ISU/i8kHtjqtcgEodthZeHQ/IxpVrcvlUwvmYdM1r0VZl86g4tKyCEjXX08JEZhjzdxxabdKKwu+mLNqp7usri80XbJqxyEGDWjNkmW7vOanKoKEhCjGjDo9r8rFgl1XEXqQsnlBXq9OGPKhHCklm3ccYeP2w85Sp63r06hhDSYt2cKM1TvJLSwhNjKMwV2a84+RvYk8JY/BZnfw1qQlTNqwDYerwaOseH3n9zBYKMzo7uWFCxalpgRRMASqFNSOiCDMZGZ405bc2LoTtSM8E4gdus6LKxfw864tiLJO0A5d57U1i3m650DuaB/YIPR890vZmnWCA3nZHoYhVQiizCF83P/qgIapGEtgpcTXuGxrAT8eXMTsE+so0WyoQmFAzfbc0ngwTSI9vRm1wiN5pFufShXXMCsqX146hl/2buG7XRs4kJeNWVG4PKk5o5u25Z5F0wMav8D59/h139YqKwyLU1P4c/9+v9cstHkmLEsVSmpD90uaVFpZ8MXJrAKSdx8NOEbTdVp3bcDeXWk4HJpPpeGuuwYQGVk9E56h+skHIf/KIt2nSX5+PjExMeTl5VWqTu25RkrJT3+s58tfV6LpOqqilG2sJHYT6KHCucF3LXhS0r5JHf73z2uIjnB+ObYePsHNn01yJ025FIJTl0jXJttfKd+3r7uKqzo4NfRNJ44zdtLEgHNXheCJPn25p2t3v2OOFuUyfN4XTpfsKQudKhSSImKZecU9Pi1OFVmXfoSvdq1j6fFUdKnTsUYd7mjdnaENWgb1UnyxZzkf7FwccKH9d+eRjGnUGYAJBxfy5YE5XmFMAuhbsz0vtb/ZQ2k4XaSU6FKiSZ312QfYlX2S19auBDXw10hB8FzXy7i9lf/3vSLHCvN5fNFs1qYGqEpUhrCXKZZlqEJwc5dOPHep/zK+VruDzMJiIkLMxIZ7C9/H3vvNr4ehIiu/+iff/LCCab9vxGorj3Xr1aMJjz90JQk1vN3N1lI7S+ZtZ/3q/TjsGi1a12XI1Z2p8Re5ps/GeuK6xnULb8YSEdhrZCuyMemyHy+Y9au6caHJB4Dj6bk89eZvHDiciao61x1N0xEmQWmEQDd5rn8mVeGFmwczvKy8pZSSxz6bwZKtB7Ce+rXwsXS6chEqoiqCprVq8PP94wkrK3t6y9QprDh8OODcQ1SVXf98KOCYV1ct4pvtG/2uzu8OvIrRLbxLdVakwGblhz2b+GVvMieKC4i2hDK2aTvuaN2NOhGB/44lDjt9Zr1Dsea/LHTt0CgWDX0IVShklOZx34YPybIWoFd4p1ShoAqF9zrfS/vYRgHvWVk0XUcRgsNF2ezMO8bXW5PZkH4i6HkRJgs7bnqkUveQUvLL9m28smSx327SgVCFYNVd93iVmq1IVmExVruDmtERmE/x9u1OTee2534KeA+TqnDr1T3p17Yx7743h/37T7pfi40N5847BjBsmG8P9MF96cydvpETR7OJig5j4NAOdLmk6V/SgNKQD/45d33oLyI0h86alftYvmQXpSV2khrWYOiITtSt7zu2b9q8LXz683L3744Krc5NdnAoEi20YmkfwbaUNG77z0QmPHcjYSFm3puzAl2XzqVLwS0EZJlHgbJDupSYFIW46HBOVshVSIgM58mhA9zKAkCz+HjMihIwoViTkoaxsUzYt4nM0iISw6IY2qAV0ZZyLf+Hfesp1byVBef5OgcLs5lzdCejGgZu5tajdhI9aichpeRoSSZWzU7dsPhKxbRf26grE1LWk2UtcpcqdaEKQYOIeIYlORP5Dham8eWB2ShCIt2umLIa58DyjG0sTNvMFXUCW70qgxCC346s5+O988izO+OAwyIslJQGXhR0JInhldsQpxUVMGr6T2QVFlOpQmanmAw1KZm0dTvPDhro9V7nFJXw8cLVTNu0g1K7c4PfvXF97r+0Fz2alCeO1oyLDOhhAIiPDsdsNnHvnQO5+fpL2Lr9KHaHRrMmtamTGOPznEMpGTx1/w9kZxYiFIHUJWuX7+Wnr5byxEujGDTEfwLehYishMvZf9CWwcVC+olc5k7fyMEDJwkJNdN7YGt6D2yFyextySkqsfHAi7+SWZbMqVWQD7pDYsmXlMYqVCxf49B0XvhuHqqqMrRHK5IPHGfJlgNoKgi97Afn11wqzh/Xx0oRgua1a7AvPcsd0ioEDGzdhFfGXO5WFgDa105k9ZEjfvPLFCFoW6sW6zNT2Zx9GEUIuic0pkNsffdakllSxPc7Nge0mb+zYQWjmrfx27EZIMoSwv3tL+H+9pdQ5Cgmw5pNmBpCrZDg62SYycwDbQbw323z/Y55tN1lbiPRh/v+INeehyI0pFTc30lN6kgpeWXHz/za+ymUs2BUyrQW8uKWaazOPAA4S4Ejwsv+aL4RQGJE5fvVfLRuLe+tWXXapat0KZmxZw93dPFuFLhwx34+W7iWncedG/zo0BDG9erAPZf2dPfbSKhEA1pN06kVH0mrVnX44vM7OHAgneMncomMCKV9+/qYTN7fHSklX733J1O/X4mqKmiajqIqLJiRTJuOSbzy0c1ERlfOu3QhUN3kw99aYdi9/Si/fr+SNcv3Oq0/ikAXAsWkMPGnVdz9j8u47kZPF6HdofHV5FUBr6taQQuRngHtAg6l5zB9xTYu69aCdSlHneuHgveX3nWs7LiqCBY+fifrU49yMr+QhKgIejROwqR6LkDRIaFc07oNU3f6jw2NDLXwwNqp6OioZX0DXto4jyc7DeK2lk7r94zD2wPW9lcQzD6yi1ENO7A7/yj7Co5jUcz0qNGcOIvnovfniQ38eHA+x0qcpUUtiokr63TnriZXEWX2HzITFxLOj/1u46G1k9idn+4UPNK58e4Un8S7PcYSqpopdpTw9p7vibZY3W+3pgusmsnt6hMIph9dcVYUhl8Prea/O2d6HAsLt2GzmdD0isFBFZFYFJUNOQc4Zs1kRP0O1A7zb0n4YOMqskuL0ZGVq3vs409VbLdTYnd4NFTKLirm+k8ncjw33+Pvu/HgMe74ZirvjL+KIe2ciY0j+rVl2mL/CWuKIhg1sHxzHx4eQq8egUO8SkvtPHX/D+RmO0PNZJkyojtLSfDmC9OpUz+eVm39xy5faJyrxm0G55/iIitzf9/E5O9XkJ1ZbqwRAhbP3Ua9BvH859PbqHWKcjxnyXZOZhb43MsJnEYhU6nEEe79uXjzl0UM7tKcmWt2oqjgsJQrC67zKVMgdBPuF0Z0ac3Qji3ZdPA4EknnhnWpG+e9xlzfvj2fb/Cf56ZLSablJHeu/hZVKEgk+m5Ju9h6vNttPIlhMSw8dMBvXxoXxwrz2Zl1ksaxsazJ3E2Ro5Sk8Jp0imvsYcTItuYw4fB0VmdtcBuGGoTX47qkEXSP7xTwHrc364Vd1/h411JsuuaWZ2GqmSfbX8HVDZwGrZUZ69lVsJLEcKclXkoocpjJs4U5k1KRpJfmsDF7P91rnFlid56tmNtWfUl6aXlCtlAgPNJKcYH/ja4EakdZeHvHXLonNKZvreZ+PeLHCwp4f03gPUgwpIQdJ9O9jk9YuZnXZyzxUPTyS618vXQDa/Yf5tt7riXMYiYhLpKe7Ruyfsdh//kJZpXLepYbNJs2rU3Tpt7NWisyY+Japn6/EihXtPWyf3dvO8qbz0zh1Y8unqaO1U0+/G0Vhj8mrePjt+a4fxc4NzACZ8gJqsKXHy8ksU4s/S9t7R63Zfcx8gpKAl5bAIoDdB/NL6cv20bnVvWdwkSpcAKn/HdZvKpJEfRs2gBVUejVtAHBeLpvfzafOMGBnGyP6hmqEKiqQl5oPq4dpmvRt2oOXtk4nzCTmXFNO1Hs8O/mBeemPcuWxx1r/seegvJa16pQGFGvOw+1HIlFMfHTwQV8nTLH41yb7mDmsbVsyUnho24PEmnyv4g2iIxn2qX3kpx9lE1ZTmtXz5qNaRPrrLBU7CjlmW3vc6TkGEJIlLLnkkIQbrZT4pDYNBMSSUphWtD3LhjFDisf7vFdMzss3EphYSjlKeUuyn43W5lyaCO6lHywcyF3tejLP1td6uUBKHU4mLavTOFTwBWhLPxZISoolp6HJVklxYRbyjczHy5YzfG8fC9lUC+rFPXs1Hn0a9GYcIuZtk3rcFWf1sxZucvr8qoiqBUXxfgh3tapQCz5c5vHxutUFCGY+tMqnn3j2ipd93xS3apgGDjJzS7k8bu/5cihTK/vl+vrc+JYLs8+8AOf/Xq/O+wIYP6K3UENv6pV4vBhL8kvtrJieyrZ+cXYyqSzrzLYknIZo0tJz2ZJJMZGcVWnwAmk9WNieG3wYJ6ZP99nfllkrE6u2bnZrejZ3ZV3gjtXfcvkAf+g0G4LWMrViWTq0RUs3bIZq17eGKxeWDzPtL2WTnFNyLbl8uz2N8m15XuECR0pPs7bez7jvqa3MKiW/y7AQgjubdmX6xt3Y97xXWRZi0gMi2Zw3VZElBWXWJm5hk9Svsbs6fAnwmQnVHWQXhKFLhUUBClFJ85YYfj10DrSSvK8vPMmi4bJ7MBhV/H+i0oUVWdHcQq7U1P5IWUV9cPj+LjHTTSOqul1j2m7diCEqFKHXl+kZOd4/J6WV8B/Zi4F8Prb6lKy49hJfly5mXsG9QDggRsGcNeLP2P3k59w//j+Xnk5gdA0nV+/Xub3dV2XrF++l8MpJ2nQpPKVr84n1U0+XDwzPYvs33OCj9+e43XcZR8WuoSy2vG//LDSY0xRsdXrPJ/4+S6n5xSSEB3h27Nw6vnCmdR2a7/Kb8xiQkOZOu56HunVmzqRkQggymJhXLt2KHE2nzW2Xby7ZSkOXadRVHxAJ5lZgUz9EPsKPeMyNanz+9F1vLTtF04UZ/FNiu/uoTo6R4pPMunwkqDPI4Sgc40k7mzRh9ub93YrCwB/HF/MwaJjWBQ7YaqdUJODUJODcJMds+IgVLUjyt5kX9UwqsqS9F2UaL67YgpFEhZmQzmltKoQYAmxYzLrOKSOjkRH8sXe5Xx3wNtKlFNagtUVkypAmqV/ZQFn1Qtv8SORCuzJLG8YV2yz89umHX5DjGTZmLnb9rqPPXfnEG4d0YOwkPL3Tgjo3aExXz0/ntjIqrmG167Y57eKFDgFxtrle/0PuABxWZCC/RhcXLz36h8cO5IdcI3WNZ3DqZlsXO2ZdFpQGLgpmcAz5+jU19KzCwgLNTtLm/r56LhklQp0bliXNvUCW24rMq5de3659joubdIEs6K4w5CGd2yEqOEZ4+9CkzpHirOZfWwrTWLigygLEB1XzLyMdR7KAsCJkhwe3vgVu/KOMOnwH17KApQbSb5O/YViR2DjHODMfWjUmXtb9uXqBh3cykKJVspXqT8C3tXrhABVSGIsroZqklClahXsfDH98Ea/eXdhUVYsoQ48P1QSk0UjPLoUKaTbiHeiJI87V39Lvs37+Y/m56NUJowliD5RsRw7wLT1OwKO16Xk51XJbkWleYOafP7CeFo28ty814gJ55m7r2DclVUzKB06cJKsjIKAYxRFsH554KavFxLVTT78LT0Mf0xa70xU1vy7VYWmI4Vg/940crKLiIt3xuzVr1B6MhD+lMa4qDBqRkUQFmKixB6gwVmZGenJYQMq5VmoSKTFwv09enJ/j57upllzj+zm57QAJVeBjNIiNmUe5cam3Xh24yy/40JCStGl5nNhlEiWntxOjNkSsBqHjuSPY6u5vfGVp1WnX0rJ7ONLsah2FDybpQkBZqGhCh2rpuLQQxlY68zLe2bZCv32hpBSoJokYaoNXRfougAhURT/pVY/37ucGxr38FBmoiwhnu+bSaKjI+zeFxEOQPc87hK20gwnCssX35P5hVgdgZPjTIpCSkZW+e+qwj/G9uX2ET3ZsvcYdodG8wY1SaxxeolZDrt3tSevMY7AoQ4XGtWtbJ6BM19hzfI9lYoPV1WFtcv30qNvuWW6Yb14jpzI8RuqIQF/hVEkEBcVTrMGNWH7nqD3j48I572bhgWf6Cn0qF+fHvWdJUJdMuLqxf8LWO1NALOObuGrS26ndngkJ4uL8FWjyWzSiYrxvdHXkSB1Pts3h0zHVp/KiQuHbmdl5nouT/TdbTgYa7LWY9P9e8uFgHCTjVxrGKBwSUJrv2MrS5bVvwdVCElohI2QMBuaQ0UCqkn3MjKBU0HLshbx25FN3NLUs1JTbGho+fseSMiCt8PbhQ5FVk9lLjXDd5nyimQUFFFqd7jzYlo1rs23r95EytFMjqbnEhUeSvsWdb3CpSuDw16J5G0hsAfaN11gVDf58LdUGLZuPBhYWcCzfF3FD+jGXYfd4UK+o9XLktJ8CARFCK7u40zUrRUdxaGsHO9BFagbF80tfSuvpR/Mz+GrXev44+BOiux26oRH0b12fQbUa0R2aXBLDUC+rZRrGnVg9tGdrEo/6CEQnGuTJCpUD5jjoAqF5JyDQe+VZy+iVLch0NmSu4VCRwE1QhJoF90ekxL4o2nVbRRpeZhP7axcYbaKgFhLKTnWMMYm9Qs6n2AkhEQFLY8nBKiqRFFk0GSmAnspG7IO0adWeXm7SIuFwQ2bsuhwSvl7bJJIVYImygWAgzJF6xSJIMpC4YSztreLirkM/pBSEmHxtrKFhZjp1b5R0PNdpGfms3T1PgqLSqlfJ44BvZoTEmKmWas6bFi93+9GSghBkxaVt5ReCDh0BaEHFo6OIK8bXFjs2na0SsmkFeXDyawCUo5m+f2Mg/PbqoX6XhvCQsz079CEdfuPVOreTwzr79FnIRC6lExP2cZ3ezawJzcDs6LSPr4Oves0pHftRuRZA5fklkCevQRVUXh30FXcOnsKOp7hK6oQxEbrzpAZP2+ijmRDzgHqhGsE2lcqQiW9NAOAlMJD7CtMRRUq7WJakRjqHapzKsdKgleYUwSEqg4G1epNrdDYoOODUSMkkuMluQHHCMUZohQMiWTu8e1eCsPIlq34YuOGChd0n1D+H1KAA28vlXR6pdGh6BTvT3iI2SlTAsl2RWDxkazcpH4CTepXrtGsQ9NZuzGFfQdOYjGr9OrehCYNa1KvYQ3MFhN2m3+FQNd0mrWuW6n7XAhUN/nwt1QYlCpov9ExYdQoKw05c+l23v1hMSjOL50/5d0RJrzMyooQ1IqLZMwAZyLW8I4t+XTxWr+uXUUIhnWsfEOTTRnHuGnBRKyaw73RPFqUy9GUXKanbMdUtokMJggbRMZhVlQ+7zOOz3ev5Mf9G8gtc4smRcRxR8sefJIyJeA1nGVHZfDFRwgWn1zAjOO/Y5c2d+OgSFMkNze8la5x/kuQmhUTJiWYNVpiVnT61w5hXfZcbLIHTSOCl3T1x8BarQlTLZT4KOUnhKuBTdWunVnqbZF6qGsflh45iET36NKNSZaZJ0EIBWl2du5Gd6omUuAOMhTgkbhWKzqSdvVqs/N4ut9W9JqUXN4ucH+MQDgcGu99uYgZ87cAAkURaJrOO2EWnrz/CoaO6sLEb5f7PV9KyajxPU/7/ueD6pbUZuDcFFUWTddp1soZJllqtfPAy5M4np7rscyeejWHGTSL73vcf3VvwkLMdGtanxCzCWsAa6rZpNKvdeNKz/Ohlb8z69Bu9zpr13XWnjzM2pOHeY/lhJoU1BAFxeR7XVWFQsMI56awT72GTBp5Pe9tWMHyY4cAMAmFYU1bUq+Wg1lpa3EEcSfqUqAGEEhSSjR0nt76BilFh9zzBuge15F/NLuN8AA5cHl2/52gK1IzrIQYSyFzTiygX81LiDQFrwDkjzENuvHxnoV+DEtVXwcySwvdHiAXbWrW4qrmLZi7b5/nfUSF/3CUhb05KI9fK8t3qxjiWvHal7drzpR12/3ORVUEg9s2Qz2D0qbbdx/jxf/8QWZWIaqqIKXk8++X0aNLY154YjhXXN2ZOVM3+FS4FUVQMzGGLpdUrn/ShUB1kw8Xj2pzFuneuxmK6v+P5ExIFghFMHJMN1STgqbrfDZ5hXOAKPcgSI9zILphFJpFeC0XHZvV5asnriOmrA/Ddd3bE2Yx+yw7pwhBiNnE+B6VC6Ox6xr3LplGaQVlwT1RV/k4zanD+NsrKwiSIqNIztvLxqz9zDy2mm1Fm2gYX0y/+lG83K0/c4bcww1NugVMVHbNv2VUPa9yqBURQIMIB9OOTcYunRtwlzAodBTy6YGP2Zqb7Pd8VaiYhBIwJt717OmlB1iesYAP9r7KB/v+TbHDf0O4QISZLDzc6kqfr5kUf+pjYF7fMZU/j2/xONYuoTY/XHUttcOdgksRwq0A1AuPRnF4ehRQyz6PFb7NEuhUuw4Vub1fV3TpW2cUAga3aUazWjWq/Awu3v1iITPmb0HKMmFf5sUrKbHx0jszOZiWw6PPjyzzwng20gO47KoOXHpl4FK9FxrVLUbVANp1blhpo1JIiJnLyrqZz1+5m6NpuU6FvHzp9SC+dhT2miqy7DPv+i6Gh5h5YtxArr+0MwARoRZu6t/Z74oiBIzr3YHo8Mo1vZq4P5lZh3aX3dP3Jr3UoVNUZEFz+L6rJnXiQsKYcXQzazMPMOX4ak6GHKFFI5XrOjXhtzHj+eDS4TSNqRVw7QenvGkV3ThgfpaOzoK0ZRwsOuw1740523ht1wdo0r+lvmZI5SzeEp1VWWuZcHgS9296nFWZayt1ni+ua9SDeuFxZ6XnD0BaaR53rPrGK5fhnSuuZGybth6yASAhPByQoJQXyxBSIPSyf8vebyEEHRJreygivZs1pH5CDP4R3Dmgcn2EfHH4aDaPPTeJ7Byn/NU03a0YbEg+yFMvT+W2By+nYbPaXkY9VVUICTXz3Dvj/5JeDGeL6iYfLp53/iwy8truzi+Oj7+Te0lSBe3a1+f6m53uwB37T5CZU2GjKZzWXak641GlCroCWXmFSDPoFmfZO90EmhkGdG1GnQqx3zWjI/nqttFEhTpDQBQh3F/68BAzn986ijqxlavbv+DIPjJKiwIkogmkXmbs9/HYAufiXGw6wft7ZvDI5s/4cN/v7Cs4RqYtj9Tio3yR8gePbP6cUt3GyHo9AiZdaVLnlsaX0Sm2mZ9xZdWJRa7fawgEk49OQg/QUyLGHOz9kShlMbk6TsGSWriXr1PeD3Kef8Y26MmL7UcTf0r52CZRCVyT1AmggrAIHFyqCB0djee3TGJjlmeTtF51k1hx/b18N3QsT/ccwL/7Xs6aG+9j1rW30KZm4LAdVQgaxsTSO6k890VKyfebkpGW8plVLLAkFbit/+mXnU07mceM+Vt9OpRch776eQWXD+/EO1/eTo++zTGZFHcY0uMvjeLxF0ehVMG6eyHgdPiIgD9nVsvE4K8mrkYkl13VIehnUVEVnn59LBFRzk37/BW7yg0YLuuMcHr+XD8Z2YU4VNDCQAtxhg/KUAivEcKVPVp5bJTuv7I3I7o54+pVRTgV7bLN0pWdWvLIiMqHWX67e0OlzRnWUn/hi5Jphzby7OZp3L36e2Yd3cqJkjzSrLnMP7mNm1d9yfzjOxhcuyOq8N+9VhUKfWu24caGI4PMRGKTvvsB6ejsLzzIhmz/pZ/rh1U+dMVZjkLikA4+OfA1u/JPr/hCtDmM73rfRd+azT3eb4uqMqJeR2qHRgdUknyRnHOYRzZM9KiKFGIy8Z/Lr2DFHXfx6qWDeapvf74fNZo1d93LW1dciWIS7hBiX0gpua2bZ7jzqsOHSXHkOcv14ikjpIC2LRJpW//0Q0Z/mbbOb0UlXZds332c3QfSePf7u7jtwcHULCtXHB4RwtCx3fhk8v00b3PxlNyG6icf/pYhSfUa1ODZN8by+jNTnM3TTvkAx9aMYtwtfRhxTVcsIc63qNBfdaQK330JuA0rFbwQAB/NXME1l7QlMqy8zFjHBnVY+K+7mZm8i/WpR5FAt0b1GNGpNREhla/YsDUrDZNQgtTGLo9HSgiLIKOkXPkxmx1ERpRiMumYFIfPqjsAu/IO8em+Gdze5EoWpCWTZSvwaUkaWa8HzaPr8u8Ot/PajgmsztqJgiirDyRQhaR+RG5A74BEcqL0OM9uG0+r6A70rXk1TSM9m3pdWrsfU4/OCPjMoYqnS19HZ2/hTg4WHaBRxOm5NkfW78pVdTuxKfsgufZi6obF0jbG2djo6gZd+CV1LcnZR5BSkmEtdnaHPqUyBoBF1cpmCd+lLKVrjSYe91EVhYFJjRmY5Bl2MO3aG5ixZxevLF9Cvs3zc6kKQaQlhM+uGunhvVp98Aibjh53fuNVZ8K0K79RM4GqCr5fv5kuSacXH7pk9V4URfhP9JSwa18a6Zn5tO3YgLYdG7gF4OmGiF0IVDeXs4GTB54cRtqxHLZtOuT9uRbQd1Abxt/Rj+YV4qnzCku9FeZTPtvunGKXfFBBA07mFfHz8s3cP7S8jKhJVfj3DVdyY/8u/L5+Bxn5RdSMimBk9za0Sar8xs2qOTiQnxV8YNnENE0lXIRSLF3VnsofSq8QiFtxM6pJZ+rmk5smM/PSh7m32RA+3jfb6+oKAoti4t5mQ2gUWZtHW9zDpwd+oFgrKSsoUZWiB5LPDvyPBekmeta4nD4JwwhTy8OJOsd1xCRMOGTVkmQFgt+Pz6Z19OmVWE0IjeJ/PW7ieHEuO/OOoQqFrvGNiLaEkW8vYfrhTfxxZDM51mI0dHJsgXNHNClZn5XK9txjtI+r7/FaYmQUN7T39MqOad2WrnXq8vqSpSzam+rxmqsc7g2dOjCslefzfbBiNUIV2KMkwgGKHWc6hMlpAF1/8jj7s7JoVqPqXmgpJQuX7kLTAoQoqwqLVuyhe5fGjLuzP+Pu7O8VjnWxUd3kw99SYQDoM6g130x7kFlTN5C84SAAnbo34qprupFYN9ZrfP3a3sdOReA72RnAatdYsGU/o3q19TgebjFzXY8OXNfj9EMxzKrq15LgizZxtXntiqtYcGI7H+2fgep2X0oCGdV0JHOOr+fuplfxeY9/8Nau6azK3F3+LGoI1zfsz21NLgUgwhTK6x3v5GBRGr8ems36nHWEqA4iTVbKOyAG/rI4pGRfQTJ7CzYxvO5dXJJwlfu1K2oPZPaJ+ZRoJT6uI1GFjkXxdlkrKGzN3XDaCgOASVHpkeB9ftcaDelao6H79/35J/nn+p85VJiDS2lThY7ZpLnfax3J2sx9lGp2QitR/tWiqoxp047hLVoxccc2JmzfwtH8PCItIYxu1YZbO3amTqSn92Xurr2YFAWHrpeVa/X0f2hSMm/PPhy6juk0XL4FhVanMAryOSwsslK7LFLgYhYELqqbQDBwEhpm4c1Pb2XNsr38+ccmMk/mU7N2DJeP6ESvfi0wmb1FZ8O68aQczgxYuthfdSRdSqat2e6hMLhoXb8Wreufft15VSiVSV/z4KMeNxMZYuLxjRM5UpTj1nScCpHv8EunNVUy+dB6Hmp9ORGmUL46MI9sW3meVpuYBvyr9TU0inQqPD1qdKZTbFvWZm/m29RfKNacm2chKvO9EWhSocCRw8L0KWzOWc7/Nfs3kSanZTpMDeWaesOZfPS3Kjy506i0LW8HNt2G5QxKrdYNj6VueKzHsWhzGLc27cOtZYnMmtT5et8yPtqzKOC1VKGwKG2Xl8Lgj0axcXwxahQ700/y7YZNLNyfgl3XaFe7Nrd27cyQFs081t+MwiI2Hy8rk14mH7RTRJEqBHP37OOB3lVXGDRdYg2QzAzOEKXCU0oSX+wyorrJh7+twgCQnV1EZk4xxXYHIaFmwqLCCA3zvWFrUCeeDi3qsn3/CZ9WVFd1JN3PO6oqChl5/kuunQkD6jbhf1tXBhjhOd9aYZHUjYhmb1EqZgW3TceVuBvoO2qXGnsKjtItvgVvdb6dtJIcUgrTMCkKNS1mTKqCQzqwiPKFtlFEInEhhdQMLS4v+ykllYmIU4TuPmfm8a9oGtmBWqHORTPaHMULbR7j+e1vlHlXys13ZqERZbL6fBYhBHYf5faklEgkSoX4U01qbM5ZzcrMhWRa0wg3RdIkohV59iIyrCcJU8PpFt+LHvG9CVW944mbRdeiV80ksmyZOMqscL7mJHE2tauMwuAixGTi1o6dubVj56Bji2z2oLXTNV1ic2iYLFVXGOrVicURoPIYlDV8q1G5MLuLheomEAzKKS21k5mRT0FeCXabhsmsEh4RguqjSgzA1YM7sGCV/1KoArBH+v8sZBUEtjSfLiZFoXdiI1anHwq6BrioHxlLsVbCkeJsH7pBgLwDKVmX6bRqX12/J8PqdmN73iGKHFaizBYiTSrRZs9NuEW10CgiiRK92MfaGCg3TGISZd2b0cmxpfPHsa+5oeGj7hFX172KfYUHSM7dFvSZT8WuO7wUBl1qKKeEW2WUprE0Yx7b8zbhkA6SwhsTZ47nWMlhbLqNBuGN6VvzMpLCvRPUVaEwon6noAqDlJKSIA1VfdGmdi3eGuY7764iRbbg11aEoNBa9TmA01uWUCOSzCz/eyBVEdStE3ta179QqW7y4W+rMHz/1VJ++nY5qlrej2HfnjR+nbCK/35wEy1alSeMHjyWxdR5yaSfzEdqstxaU/Z3dnVddET4zyrWdZ2a0VWvvpBeXMgvu7cw79B+rJqDjjXrcEvrznSqVT6/Lgl1aV8jke1ZaX6sSAKh6u6pjWvaCYBsW1FQi7Cfq7n/u1ZoDFvzlrHo+ByKNGfd/1AljL41L+OqOmMwly24Nt3mVaK14gbfG4lZaJhExXMU1mbNZUS9u9zHGkU05K0OL/HG7nfIsuWgIIhQi8uSkH2jSY06YeWWmgOFyazMmE5q0VYkOnVCm9IrYSStoy7hy5S32Vu43V2hI9+Ry4mSo85nkioChb2Fu5ibNoNHWzxNQoi3JbBpVG0kekDvjSKcFpxzRaP42KBjakSEE+bDcloZendrgsmiYLfrfptS1YgJ58XXfiepXhzDr+xI82YXVwlVX2iVKJunXURl8wycnDiazeN3f0tWRr47zOjY4SxWLNzJFSM78cjzV7uTL+0Ojflr9vDb4q2Yo82UltqdDRVPaaqohYAjQL2I+CgfrZ+DIKVkyeFUJuzcQkpuNjGhoYxq3poxLdoRWaFE8j1terIy7WClrtkqthaJ4VFsyqpsGJMnFZcxk6ISH2JmXvrvbMsrbwzWPLIp4xqMpWWUsyqbr34JzhU30JooiDKXh2Q6PQNrKLDnEmWOLZuL4PEWDzLxyDRmnfiz0p74GHM0YWUGoFKtgA3Z09iaM5tiLReLEkabmMF0jx/L0ZI0vkx5Dyl1dzhVXl6Ox7WOlxxmVdZihtUZy5V1rvG6V0JoJFGmUAoc/hv+6egU6XmVmvvpUCsyEouqYtP8J5HbdZ1G8XGnfY9B/Vsx6bcNZZWavNF0yc7Nh3l27yQu6d2cyy5rS1j4mTfTO59UN/nwt1QYli/exU9l5R0r9mOQUlJSbOOZx35hwrQHCQkxs3jtXp7/30znWN1zw+tSGjq3qk82VvaezPJbRtRsUrmsU9VKVm5IP8YtcyZTojnclqHUvBym7tvBo1378FBnp/v6672r2V9yDCmUstqaLquM819RoVdBq9gE5p9cxQs7dlDkKMWk6GhSIMt+ghV3sCgmWkaXN/z56eBnrM/x9G6U6iUsTJ/F4eJU/tHsX6jCRP3wBuzM3+ZeVIUARUp0d8vrikuI81mjVM8FVKKzPXcpV9W9DVWUf3QTwxJ5r9ObbMvbwe6C3aQWbud4yQG/wiFECaVr3CUArMmawdwTXyFQkGVzSytNYfrR91honsnh4uNl967wtxfOP7NZaNjLPgS5tmw+3v8uL7R5w8uNOqxeF/63e07Z9X0rRyZFY8nJZIbV7eVzzmfK2E7t+HiF/+ofihDc0KVDlV3AeYUlfDF9NX8s3441DAhTEA6JapWoLg902Wc3K62ArBMFbNl6mN9nJXPtNd34x92DvO4ppeTQvnSyTuYTnxBFo5aJF6xruro15jFwGndeeHgC2VmFHsu5S1bM+yOZxs0TGX3DJRSX2njorWls3XfcbThCEWW9eCSKDaIiQujdvSnT9u7ya1BShGB0z3ZVmqdD13lk4SxmHNiDKoSzlHUeJKef4PPk9fw6cjxJ0TEcK8rlze0LUEw6ursCkv/P5Ihm9blv/dscLTlJjXA7VoeZYrsZXVYs5uDnORD0qhCqebDoMK/u/A8O3TMcZX9hCq/vfIvHWz1E+5i21AmthUmoOHxWPfJ1P0mEaiNUsZ9yVGdX3iJ6JIx2HxNCcH2DMVyZeBmrstaSXnqSxSdX+M2XEAgurz0IRSgUOXL55eAj5NnT3PLBppewJWc223IXcbgkCi1IjoTrPrNOTKFOWH06xnpWGjIrJobUa82UQ5t8PKfzqQSwv2gnmtTPWgWmioRbzIxu14bJW7f77bEUZjYxvFXlS727WLHxAN9MWc3ulHQIU0BKFAcodpfxVTqrOVk1dm49ihCwZvV+vvtmGW+/ewONGnv33CgqKGX/9iNICc3b1SciOnDlxvNFdZMPF49qcxaZ/MsavxUwdF2Sl1vM4gU7OJGRx/MfzkLXpc+4VCHhzUdG8slz1/HMjYNRyipZ+OIfw3oTVSHhORgFNiu3/zmVEofDw43s+jK/u3ElCw8f4NfUTfx3+0I0dMyhDlSzAyEkCIlQQDHpKKpTYWgUFUWxOYW5aRvJdzgTrsBZElQVTl+DJv23TlAQDK/by11WdU/BDi9lwYVEsrdgBxuyVwHQN2Gg1wZeERIFbwFhFhrxpiLMXn0WJKV6PitPfuM9N6HQMbY945Ku5aEWT1I3LAlxysdbQUGgcHOj+whRQ8mwHmXuia/KrlymyKCjYseCnVzrXkIUK76if4VwegVcf24dnROlx9hTsNNrbKwlnAiLux6R1zMpQmJRdVZl7jj11LNGnego/nWZs6rKqR9RRQha1krgjl5Vq5KUX1TKXf+eyLTFWzziU6UKjgjFGQMrJeigWMvrubq+S5Onb+C3mZs9rrl17QEeuPoD/m/4ezx3x9f8Y+T7/N+I99i8cl+V5vZXUd3K5hlA8vpUDqdmogcIsZv64yo0Ted/vyxl+35n7Lc8ZeFUTAqt29Rh5hf38eL/XcnAdk19Kr6qIkiIjuCG/p2qNM/Pk9cx84AzBMolF1xVbdKLCrnnz98oslu5ccmPHMjPQFElirniM526Hgt6NwxhetpcUoqOYdXtqAqEme3E/z97Zx0nR3n/8fczs757bpG7uLsRBUIIEEiQ4O5WrBRKS2mRlgr9QZG2QHGH4BDcSZAkkIS4u5777a3NzPP7Y3b3bm/1IFjaD6/lsjPPPPPM7Mzzfb72+bpasSTIB2sPgRn+dFLPcdFtT2x7Bs0IxS3OZfi/R7c+iSENXBYXBxZORGk3Z5skU/HzpsAgx+qjyN6cUN4uq30Qr1Ydtz3PlsusrjO4oPfZXNLnPAQi5nxm34K+nt7M6noEAJ9U3h+jLEgJhjS91K1aAIfSjJpAhiW+PwofVb6VcN/A3KywvIuXDwD5rlaatCa2e/dkdK5vg2sOnEyXrKw4T3eEuvWvMw7H0wkyFoDXP1rJb29/nQ3bqto2CoFhAc1h/rrCAOHXUIJt9xigsbGV3143h0C7itQBf5AH/vQaZxxwM7874z/ccOZ/OH38Ldx30yv4fd8uXOr7xP4mH/7rFIZQSGfdmj0pK3EqimD50u289tHKcFx7YqiK4MNwzOqI3l158MoT6VGUG9Mm22Xn+pMO4dzp5mJMMww+27KdOd+s4N11G2kNhjp2C8Brm9fSHAwkDRlSheChlYv519r50W1CgGqVWBw6FpuOEg5DGpxbzO0TZqK6yjHQY5iNInODyQIo0QyzlE572RehRh2V15dL+82Kbl9Q80nchNseAsEX1R8BUGgv5tSyc8L9tR2jCFAx6O8upsjaRIG1mXxrawJlwYRNaCyvf4OAnryWglN18asBN3NEl2Nxq230p4U2B0M9Ghvq7+Xr6odZWPNqO6VCYhdBnIqGVRioQuKxhCiwttLF1oRNxFuRpASl3e+joLK+OfGi36LoOKyhKM2reX8MHJYQHlsARegE9e+35P0FE8byzxNm0b+ojZ/cbbNy7vjRPHv2yQmrPKfCY298xa6qhnhlOuyC0ZwCEZSooeSBBXNe+ipquV22YDM3nPcI2zZWxLTZuamSP1z4KEs+Sx4f/mNBtvPOpfr8Dz8frFiyLaZOSCLUVDWxZUslb32+NmlegGFI1mytYG91E0II/nHeLE6ZPAJrh77H9i3l6atPJd9jhiTtbWzileVrePGbVayviF/4AoR0nUdXLk0qm3QpWVdbzb0rF7CntTGqUCgKqDYDxRJZ5EpcFitn9BvFdeMHU63vDm9tQ5gdlhyH3zRGRVu0m/uEwCJU7hx3Gl2cZtLxXl85W7xbk8owiaQ2WMfaJpM44/QeJ1DiKIpTGixCYBMqk3O9dHE00MNVR74tUb4DKBjYhZdNjXOT3BkTBxVN4oZB1zIku81i7lKtDPVoDHUu4bPy37Gx8V02Nn0eoyzIKFGHgkUY5Fp8dLU3kmdpIZFhKfZ6DbZ7NxMy4mW+KqCLx0u2PYAijOgRTkuIEk8zLqt5TMj4/mREgdvFq2efzskjhmFT2/I0RnbtwmMnn8CxQwZ1qr/6plbueuxjIF6ZjjxUhiJRvFpCGWEYktraFj79ZB0AuqZzy4WP8sZTXxAMtN2HUEDjnecWcNO5D6GFMlPefijsb/LhvzIkKSNI+GbtrpSKhW5Ilq7eGf0+tl8pr994Hiu3l7O7ppFsl4MJA8qwhePCP964hZvf+5jqFq9pbRdm4uqlEw/gygMnxlifFpXvSjk8XUq+qtiFNdcfN3EKAUKVoJpjv3jIeDTRRMAIJZ3ShAAViSYVpLQxLLcU0GkKeenqzGdWtwkcWDQMi9I2kVQFylPS4Ekk1YE2y8IhxYdRZC/mg8q3o5b4InsJhxYfQb7V4J29q2nRI16YeBe0ABxKCF3C7taV9M2alPTcDtXJ0d1OZmbXE/my6iFW188xXblSoyEIy+t2UKNlAQKnEjRdo+EXt+P9VJAUWluoCmWhJaPBIsLsEX8/pJT08mRTG9yNIgx0Q8GvWRCKjKE+3evfwZrGLQzN+f4qWR41eABHDupPRXMLAU2ja3YWdkvnpwFN05k7f1Xy9yOsNOhOgdKa/B2qqm5m9556epTlc98fX0MaMk64SGlaGu/942s89tFvf1KFe/a3pLb/IbmHtSO27KohpKVfoCzbsJte3fKxWSz84aRDueKoSXy9aRch3WBoWQm9is248JZAkJve+pB3126MmacHFhdw7ynH0iMvN7pte2M9df7YYl4doQrBO9s2xDEkmfIBFNWcqwpdNv40/ghOWXBz0jBOIUAVEruqE9AtdHPk0tNTRIWvEUUIDizuzym9xlPqaotxr/InVnY6oipgtsu2ZnHrsN/x1t4P+LjqM1o0L6pQmZg/juO6H8nCil/g1XWaDCfJQnfyLS0IYbCzZT6jCi5K0KYNQ3MGMTRnENW+rXyw51pCRhVCgE+HPa0VbGtZjMRU4kxloYM3ot0Q3GoQIaAuFFufJxES3eMSRz4IgxyHn2y7P0o+0lEWfVy5mL6eUqxK5uQYnUGB28VfZhzG76dNpbKlBbfNSrEn/TUlwrvz1yZlDANMT4MtVUUn03i7+OstHHnUCBa8v4oVCxJ7mg1DsnrxVj57ezmHzv729YT2NfY3+fBfozBIKamtakLXDfr2K2Hrlqp4rTcMw5AMHVHGlmXpLZrBDgJDCMHI3t0Y2TuWz/7zrdu5/OU3TEesYjIqIcCPxj8XLuSDLZt54pQTKXCFJ6iYPIRvDwG0hIJs9e+MJu4mbSvgnjEXMCinlBxr+gQ8tyUrbZ8uS2w/Q3NGMDRnBJqhoUsNm2JHCMGW5q9RhcStBPAadjpetwCyVV80cXhXy3zybblYhAuPtUfSGPcdLV+ytuE57IqGhbbEb0OGyFMlqtAJSiuthr3D5CxRMVCEeYwECqzNVAVzool4Han/dKnT1xPLbR00Qvx70/34jG041fA6WtFxW0MEdYVW3UZE+DVrLdy46t/8ZfhV36vSIISga/Z3Yyuqb/bh9ad3ARtq+mc4pOlsWLmLPdtrkraREip317Nm6XaGH9AnabsfGplYiH5OFqT/Zvhbg9TXttCnX0lMblsi5OW7ySvK7B3qqFTkup0cMSp2ntANg0vmvMay3eVxb8uGqlpm3PcEtxx1KKeNNem3M5EKAkHQ0Ej3+LWEglT662jWUrM0qULh6LIhnNrjMAZkpc8r6jj3J4NbbWvnsbg5rcfxnFo2m4ARwKpYo0XgllsK6GrbhBZUaDUcdMzVy1FbKbSYLDzNoT1UtC7HqjjJsnbHpiZe9EopWVB1E5qsiZ//hY6CgS4VZLvzJIIQptLQqgfxG4k9tQJBV0dpHPPS0rp13LXh2Zi+kt3ad8u/pDpQx81DL4lh89vXcNms9P4OCc4AO8vrUBSRsvYCijDjXJK8blJKQmGvwXsvLEpZ60cognfnLPxJKQz7m3zY7xUGKSUfzV3Gi498xq5tpiXDkedKqiwoisDptHHYjOHsDflZvak8ed9AayjETc+8T0V9M3keJzPHDeKgob1RFYVASKO6xYvDYuH/Pv7MdMGZ3szYeUfAuupqTn52Dq+ffSbZDgfjS0p5d1vyapOKEAwtKGajviP19QO9swrYEVDC7EYGVsXAougIQDMUgoYaHdCY/D5Ylcwei3F5k9mYJATHvCzB+PzE1UgtigVLu8evl2c0TjUbH43kK634DQshqSIAq9CwK1oMy1BFy0vUtb4AQJa1N4PzL6PUc7h5zVInZLSgKk5W1D2HQ4QQyJhJWAAeNYAmFVo6Ek4jY0KQRFhWuJQQXW0NlAdzMaQIO+XNThUUcqy5DM8ZFdPTMzueZ0XD6rZ+2v21KgZOQvh0W/isEl0aPLTlZf455vqYfjY1l7OxqRybYmF8QT9ybJ1nVNmXcDoys3AlZEySEqGbuQ0WVbBxfTkOLbOCTdV7GzIf5A8AmYEF6eckEP4bUV3ewNP3fsSnb61AC+lIAbZsJ1qSqrRCwOzTJzKsX1esFoVQmmd33pLNLFy5HU03GN6vK8cdMpySfFPZqGnx4gtprCmvZOmuvUn7MKTklnfM8I7Txo6gV04euXYHDYHkzDqaNBhYUEh9fVPCAptghpv2yS7oUJnZvGaR4FuZq4CB2V3JBP08fciz5lIfakjaxq7YGJk7PG67ECKOprpf9tHUBe6mh62OVsNGo+5CkwpWoZNracXZLgFak37e33O5eY3CSp+sGYwtvByHmmvuN/wYMkStfyMNwW0Jx6YAeaqXWs0T511IBCmh0NpCbciNz4jPV5RIppUcFbOtwlfLn9c8nHFxOYlkcd1altav44D8tppOPi3IwppNtGgBerkLGZ5b9qMTRbidGYS4yjCVe/LdNDf72LWzlvKddSkjPqQhKd/x7Zi9vi/sb/Jhv1cYnvzXhzz/0PyYxaKvvhXhtCLtFhRVYOiR+E6B1Wbh1ttPwemyceiE/jzx2qIUdgXwe+CtxeswpBle8v6yjQztWcLA/iXMXb4OX8icxKQAaZUQT9Ufxa6GRp78ZhlXTZ7ECf2HcseSz2nVtIQWfENKrhg5kTm7BItrdiRkNlAQdHVlM7GoF61GAx+ULybbGkRVZNTtblN0nIRoDdkZmtMvY2UBYGz+ZD6qfJOaQFVcaJKCgtuSxZTC6Rn1pQorh5Zcwtt7/wEYOJUQLpEov0NiFyFs7XIcmkPb+bryt/hC1xCSDWxvepmQ0QQoBA2BimoySLVD5HmwiChvU3SfNawsxCgY4X/bFY18SwvVoSxC4fAkgYJDdXB5v2tjrD7NoWY+q/4ipZvfpuj49Tb6QIlkq3c3O7x76enuxo6Wav646iXWNO5uNz6VE8om8MtBR2b0e2mGwSe7tvBN5V4UoXBwaS8mdCn9TgLF47QzYWgPFq9LEbYnBGpAj31/dIkSimUmu/OOd8ixZ/bcKWliy39o6AjSmXD1nxELxn8bKvfU86vT7qepwRdNchYSdK8fw6IiFCVqXIpYNycfMpiTz5mCalHp1bWATbuShN6EX4ul69rCS5es2ckTb37NSSeMYWHVblburQTMOj2Z+JP//uF8jh42CI/dxnnDx/DPJQsSHqMKQZ/cfK4aMZkv521O2p+B5Ky+4yhx5NHVnk9FIH7BpQjzPdWlzrj8zFlyFKFwStkJPLg1nqQigmO7HZ2wfk0i9MuexYaGV2kM7cCtBnGrmSW5GjLElqZ3qfQtZ2zB5axvfIUK31IArCK54SViKHIoIVqTVdzr0F5KKLB6KQ9Y0DGPUVAwMJhUcAgT8g+OOeat8s/RZefIzRUUPihfyAH5Q5FS8tiWeTy+9TN8etv96OUu4pbhJzAir0dGfe5paeLNLeuo8/vo5s7muH6DyXN8N+ahQycOZM5bS1O2EQakYEAHYPWq3Zx3zoMUBRLne7aHlkGI4A+J/U0+7NcKw9b15Tz/0HwgNi5VAPhCiJBOr+GlNDb7sNmtHHTIII49YSwlXXIBM0/AUMyHuv2iJ9JVyA2GVUQ7N8IJ0strK1neUBk7CUhQgmYokkyieEvgueUruWryJHLsDh454gTOe/8VNEOPKgQR+rzLRoznyF79GViYzymfPo5XC8QoDYoQqELhplGH8X7FVzQEm/FYQ1HWiZi1ogS3NcCMrqM6c3uxKTZ+2f9GHt32T7Z5NyHC6dEGBsWOrlzU51cotFLp24pdySbH1jvlInVorqlcfFR+H7psSVBEzgwTKrQ0JbhzkjV1dyFEe/+mgU2ATdVpNazRCTzmSAkWDIJht0+6atdCQLbFT33IhVXNxqW6OSB/ElOLDiPXFuvCXde0AT0hTWBsf6ow4nIj3q/4mm/qtrO8roqO6/GQ1Hlh5wJe3PkVedYcji0dzam9JlBgj3e7r6qp5OIPX6Pc22xWcJZw34pFDMkv4pEjTqC7J5ugrvPhps3M37qNkKEzvEsXThg6hFxnaoFxwbETWbw2ea5NttPOjKOG8cmHawgENAzNiCoL0XcpfG3NQQ1VEWCkZl6v2FWXckw/NPY3l/N/Gx687a0YZSECqUkUXceRbaWgWy7eFj89ehdx9EkHMHna4GhSdFGem007q9tHxqRc9RtSEnBLHly+NLZGg5GZh80X0nhv3UZOGjWMK0ZPYFV1JR/v2BKVC2DOYvlOFw/NmE3v3DzO7jeOpzcvic9lAA4u6UtplpW5e+aRb3dTGawhkXlMANlWN8NyOhcOeGDRZPxGgDk7XyJoBFGFgiENFKFybLdZzOx6GFW+tUh0cm29sKvJw7ysipMjS+/jy8q/srt1QafGIdFpDu1hXsXvY9jzQjJ1GJYQYBchWlNZ+jq0lxJyra206PlYFAelzp5MLTqCYTlj4uTf17WrUuYBJoKBwa7WKu5cN5e396ygMRSIa7PdW835ix4ky2JhZF5PTu05hclF8cqebhj8edGnPLnmG4QQqEKgGQZ//epTrj/gYC4aYVLA7qhv4KVVq9nV2EiOw8Exgwcyrnv3lPJ8SL8uHDC8B0vXJDcqjRnZA3uTxrLF25OGG0W21QZNCZ5qNvU2+QgFNay2n8bSdn+TDz+Nu/o94Z0Xv44pzNYeAhC6RPWFeH7urxIen+1ymJzaQppKQ/hZlgIC2SATVMTVHeH8hATnk4DqB81K0qe+2uuNeismd+vBxyddwDPrlvPe9o0EdJ3RRV05Z8hoJnUzLQd9sgp55dAL+efaeby7ex16uJrwlKJe9Mg1+L+Nj2KEt0nMQmM2oaO2Z+sRppDZ49sFJE8kToQcWx7XDvwjO71bWd+8Gomkj3sAhVYrS2puo8K3uF3b3owuuJwyT+IwJYCB2ZPZXv9H6kIhWgw7AWlFhm002aqPbKUVRcQX9Gn7FvtbRyZwpxKixegYC2bCqQQIGtZwP0baatdCQDdHI5f0+zc5tuTFx9IpC/Fjb8OLO+fjC9nC3OeJByPRqfA18PCm+by8YwmPT76Inp6C6P5ybzNnvPMCLSHT8qS1W5RsqK/h9Ldf4KFDZ3Ppq3PZ09SEKkx18q11G7jz8y+55+iZHN6/X9Jxjx5Yym1XHM2fHnmfVn8QRYg2xhgJTa0BFmzZxbXXHcX6lXt4+41lhJIIR0MC2Q4sDckTOYUqqCpvSLr/x4AhBWI/Smr7b0JddROLPl2fNDwVKfE3+rjk7yczfmpihpjcLBdhPTd8TIcGHX56QwVfceKmmcCiKOxtMA0mVlXloRnH8d62TTy7ZjlbG+vJsTs4vv8QThs8nNywhfimUTPol13EwxsWstvbAECB3cUxPfuwJbCCm1cvjOaiqZheTiPKBtR2HV6tlbpgEwX2nE6N+bCSaUwpnMTiuiXUBurJtmZxQN4YtrbMZc7W4wkY5vUowkr/rCOZUHR50pwDhyWPEtfoTisMJmT4/51boFtFe7rT9O+yEOBSQ4zPH8HM7tembJu47kSa/hFsbalmVf1X+PVUY5K0aCEW123mq9pNnNXrYK4cGBsSdceSz3lizTdmaymj83fIMPjLV/PIstnZW9PMfQu/isoHIQTPLV/BgT17cN/sY5Oy6wkh+Nu1x3LzP99i4fI2hSByJw0LLN28h2OnDuO3hw3n1Ze/ZvOmyqTXbbjtKE2toCWvXKCFdJobWskvzk7azw+J/U0+7NcKw46t1SmT16SU7E6RaNmtOIdBvYrZsKMqxqtkqCBtIs5cIwGjLYc1HkJgWCXoEDV2d2ibZbfHMOeUZeVww/ip3DB+atJx9vTkc9f4E/jTaD81fi+5NiePbpvLBxXfRMNh2suzgK7iUGNzAiSSL2q+4ZK+pyQ9Tyr0cPeh1NUTgUJjcBvv7roQXcZaPhqD25lX/hsO7PJnemcdnrCfvd4P0GQz2RbIxozPbb+Ab1uPxvp8BMkX+RFaQEsCSz6YVK1WNEIJPBDJkGUtItsaX9W5PXp7eqXtR0rQO0wYhjQ/oSQKTvtjFcWsEdIQauW6pXN48eArolafJ9Z8gzcUTEj7qEvJjuYGTnv1BXzNoei2CIKaxpVz3+S1s89kSEny65w2rj8Th/fi9/e9xZcr4mOB99Y08sdH3+Oh35/KZx+tpc6X3K1suGxomoGlJd5iBmaIg+cnVqBHyvSsOpmy7vwPPyz27qhNriyEoSiCXVurkyoMh08cyDtfxNdegbDfM2w8Eob5JgdT5ElHCDEitSyFQdxiQ5cG+e62MBpVUZjVdyCz+iYPFRJCcEbfsZzWZwx7WxvRpYGOn+uW3xml6YzIiUgYjhJVGtpgIPmqbi0zu3bOqATgVB0cVDiFiBvm88r/Y2PT27H9yxAbm96mOrCOY8rux6rEv+tSGqxreLHT5/8uMBkE9bCHOlWAciz6ZB2Qts3g7D7U+BuiNZEygUQS0FVCRrqxmEqgbpj5e89s/4yReb04qHgwAA1+H4+uWpLyXH9dNA9vdQhBmwcrMqEt2LmL6999n3uPOybp8W6XnTtvOJFFy7dx/d1vYIS0tvdCCHRD8vq81dSP9TH7+HH84/a3k/aFItC65GLdU5dU2xZC4HRnXu/q+8b+Jh9+WgHB+xgutx2RKr4EcDpTJ2/+4uQpcUk5hgoYZqxr5BN93xOcTgKaAzRPWKFQ2jVs97CoQnDisCEpx5MKWVYHvbMKaNFbeL/i6ySx8+Z5g3r84jigJ48J1Ywgu7yr2N6yDK9WH90eMnysqHuaF7aewBObpvL05sN5f/c1aEYggSXHnOC+rrod3Uh8rvrAGkQHPbZjLkFHxUBtx36UDFKa7TpCCDCEgkf14xAhJMmL77Xva2LhGWlzALo4ShiWMyRprQopQZNKuNp127ZQNAk9A2tW+K8uDTY2V7Kivi1EaO6WdUmrdkaObTB8aOFQOhkOt2z/OD+6JHUMKoDXF2Thqu0J90lp0g//55UvY7izEw9IIJO9j0Kg6wZTZ41MO54fEvsbz/Z/Exyu9AsLQ8qUC5CJw3sxrG/XmEKgEtBsEPKA5hJoLkHIbW7Tk4WjKhLDboarShWkBQw76FYZM48rQnDk4P4ZX2N7KEJQ6s6lpyefl3d9SMjQE9ZIiBSl7LgqEwj8emJlHqAxuJvd3q+p9q9DtkuyrvSt4sM9v+exTdN4dNNUXtx2WpyyEIHEoC6whfVJ6igE9EZaExRlSwWBxIoWdz2ZQEoISQUplGg4byawKx76p6D9juCYbgd1SlkQiChRSWajaXsuFQQv7GgrtPrxzi2E0oTCNYUCJLOjGVLy3sZNbK+vT9ygHb5cuY0QBroqkGqsEJdSMm/JZrbvqU0re1EVpD2xjFBUhQnTh/zEFIb9Sz7s1x6Gg2YM46t565PuV1SFqTNTL0AmjejNX66YxW2PfYjXFwSrQE8WzpjgDZaA7jSFAJDYDC7NInAeu40Lxn13SrB5Vd9EE60SQ2AALtWPgUpAtwAKZa549gtD6iyqeZHFta8QMLzhoxUGZh/E1OJz+LT8D9QFNhO5eE360XQfIFAlCfIBJEGjmV3ez+iVdVjc+RQ6wy8t8SgBnCJInZGe4rB9GJMFHXtYQTCknZBQcKlBXFKjVVrCrBjxP6iU0MU5jJG5R8XtS4SLe5/HrWv/Tl2wvoMCZyoErVrbCsKtOqkLBtGjMW3prVnte1QQrGzYxah8M1zNG0qdFBjtPeLIiHQWvnRNl7y3diPDC0oocLs4dGCfhO7nD7/akNJKYhiSr9fsZGLvopRFExVFoOgyJtE0AqEIJk0fQt/B3RIe+2Nhf4tR/W9Cn0FdKOmeS+WehqRtFCGYOG1w8v2K4O7fHM/N97/DwpXbEYpAs4OhyjhLh2GVCcNVpZAY7ae99o+LAoYV1LBj7oKJYyn0uDO6vmQIGSG+qFmWJnZe4lZDWFUdn2YjEF6g9kwgI+oCW1hQdTcVvhXRbR5LF8YVXgJI5lX8BYGCDFdEbtaSs0FFsK5hLsPzTovbrojO1R+wiRB9rdVUaDnUG51hljMpvi2YdR8EBoSVBnP6Sv1On9zjz6gi/fJqUHZvzu11DE9ufzNGZieT3zbhoi5oQJjzMJPriMBAsrqhrW6UNxTMKNE+FYsRwB3zv2BCj1LGdu/O0ATeaCklb36+JmVNBlVR2FnXlJG1XUkUYi4EihCcftUR6Tv4AbG/yYf9WmE4+MjhPPefT6jc0xAXmqQoApvNwuyz2qwADY2t+P0hCvI9WK1tavXhEwdy0Jg+fPr1Ju548zOC3vg464hBRoRM61DUgaCEvydE2+vatyCfe46ZRbfs7x571xjyhuPJU7USKKKNstSr2ZjVLT7s6YPyf7Oy4f2YbRKDDU2fU9X6BSpNxE855nXpqAipxxeWQ6UllFholLgOZGvTswn3QXv3ncApgniUQNh7oKPH8dW2O6cwKWRVBPlqIy4RjI6rmGa8ho1yLZd8x2DGFFzEZ9WPUhPYAh2m1B7uMRxX9reMGYby7fn8edjNfFT5KfOqP6Mp1EyONZtDig/ioMID2dC8g8ZQC4X2XAyp8PuVj0THa1V1QnryNC8hwNBjLZtqO5amPjn5rKyuSFppVUhQ/O1WMB1Po0KoVef/PvzMtLRaLfxq2hTOnTA65vrrm1pRFYGWim8bOGjaINas2p10v2FITj9rMu888QXeZj+qqphEAlJyyKyRXP2XE1P2/2Ngf4tR/W+CoiicdeVh3HnDywn3CyGYeep48sP1FoJBjbq6FpxOGzk5bYvPbLeDe35zAlt31/Dk+0t4Y+k6Er6zQqAGQOtg2zAi8iHRYyIAFSyGwsWTDuCXh3Q+HKgjfHowKc1qx3PbFR2H3Ydft2AX3RidF+vdqA9s442dl8WFn7ZoFcyruDWcYCyjykJmkLSEEsey21QPhfYh1AbWp81FEEj6WauxopOj+Kg3UilakXlekK346WKpxxKuuNydRvrZqtgaLKJW78LogmPJtnbjw/J/h8/SNg5VWDmh9Ba6uTKvinxKj8Ppn1XG67s/ZVXjZkAwPKcfx5dOI8+WzbqmbShCMCJnAH9Y8TzlPtOLrAgZF84ai/hQ3fYsfr1z8tMqCyIoUIzU89f7mzbxwaZNSGBU1y7885ij6Z7Tto7RdAOfPzXDkSENDIdCj54F7N6VmD5VUQVjx/RCluex8stNCMVUEnTdICffzW/vOYsBI8rSXNEPi/1NPuzXCoPNZuH/Hr+IWy5/iq0bKlAt5suiawZZuS5u+deZdOtRwJdfbeapOQtZv9GsueB22TjmqFGce/okXGG3tcNmpUdZPnUJlIUIBGDxm67oCKSVNIZi01Lwypln4LTtm+qNJfb8DASCRBEymhScZdUYlRsbB1vu2xinLLQdrSNkSwrGMBFuJ+JcuRIDu5o4ca7IOYEsaz9aQtsSChkzH8GFIVujyoIQ4BIBmmVyC1KutQejCn/Bnobb0I34ycutaAxxWhnb/S4siofT3KPZ1PQZ65s+olWrJ8fWlWE5M+nhHhtmYsocWVYPx5cew/Gl8bGek+150X+3hHxYhYVQmJPbpmpoutohX8OEDOc5tPeaSCQTC9sKvp09eBS/rn439oTtk1lC4cks2UJFmtZNETQP8oU0bvtgPooQnDNhdLRpcb4nLcuLEHDY9KFs31TFe++ujD530EZXmeew8cKjn5s7bBY82Q6mTB/CaRcfQpey/JT9/1gwDBBpBGqGBDj/w4+Aw44bQ3Ojj0f/8S6GLlFUYSZ/6pLDjx/Dpb87mqYmH0899QXvvrcSXzgHZ/iwUs4550DGju0V7atPaSG1Ph+qIpJaU5UgKH6JdETquMj4ujwdjxGCsyaN4lfTJu+Ta3ZbHDgUO34jeXgRmJWd29NJTyoojSsW9nX1/egyUfipic4mGEdgT5L0DDA8/2w+Lb8hyV6BKuzo0k+e4sMmTBmSo/iwixCB9ta8DiOdXHAhfn0Hft9TcXutwmCgvZLSvKvomnUWAD1cw1lW/zZ7WteiCJU+ngMYkTcDj6Xzc9XovEGMzkusZPR0t3l1Dijox/qm3RjIaPXtxEqD+fy1JzdRhcLEwraCgVO696SbO4sKb0usUckIKwpBkbSgWuKzwaqKSk6b8wJvnXc2OQ4zFMOiKmS77TR5kz9vihCUFGRxyU0T+NUvnyYQCMUUfFMUgc1qYcXCreiaDoVZqEGdnv1LOOnsKRw0cyQWa+Y5iD8U9jf5sF/nMAAUdcnhvleu5P8eu5ATzpnCcWdO4oZ/nMozH/+WIaN78sY7y/n9n15l46aK6DHe1iAvvraYq347h9bWtod8d01j2vMpGpw0YghOq6mLZWKIloBPy6xwSyaYXjI2JnE60RmdaigaLiTC7pEFNV/GtFrd8CEiSQBjJnkDpjiMb6RgoYfnkIRHCKEwqeu9uKyl0dZAdByD83/J0b3nM6rgV6iibQwORcMt/IRTDdt9wEGQbGM5tQ3XoxvlQCJhbhDU91LZYlobVWFlUM50Zpfdxhm9H2BW91vo6Tmg08pCZ+CxOjmq6/gwOa0ZzuWyBVFFB8rHcKK0ZrSNRRWCyUX96JvV5hKe3W8Ih5T2jvYXuSURGaJoqat0IxJ7x/45bwH+UNvzeviEgVhS1EdQFcHBo/uSl+3i19fN5LrfzKRXr6Lo/rLSfNTWEC2VzeHzCrCoNPtCvPfWCrZurko+xh8Z+1uM6n8jjj9nCs/M+x0XXz+To0+fyJmXT+eRd67lmr+cSKsvyJVXPc3rc7+JKgsAa9bu4Te/fZ6PPootXLmjqj5l6IUQUBJyMqGXaQlVlSQKezsoQhDQ9518UIXKEV0mJs2tisCuxBavXN7wDcF2uWetWi27Whd9a6UgGQQK/bOTh3z28ExlbOGVmMa2iHwyryXL2o3ZPZ/l+J4v0MPZlcjNFQL6WqtxRGv7tMkIgaSXpQ5vyx8J+V8j1Q9S3vgPjLA3Jd9eyvQul3JOn39yVu+7mFx0+rdSFjqD2aUTYrzIipBh+RD/zFlEbLFSQ0rO6HVgu2MF/zhkJqpi0qkCoIHapKD4BcIQGQc+RaBLSWVLCy+uXBXdJoTguEOGx+T5xB1nSI4+aBh9+5XwwEMXMOPIkdhs5m/rctspyHWhNflNZQFAVdGdNrbsbeC1N5YlJPb4KWB/kw/7vcIA5gM7ckIfLvz1kVzy25lMPWoEVpuFunov9/znQ4C4B84wJFu3V/P8q220oFmuzLiYjxg6gM+vv5Q/HTudUd27phUIHpuNbMe+S9TJt2dzfu+ZSfZKFCTZ1kCHrZK1TetitjWFqlK4kjN9yONf5KH5ZyX1MAA4LV04tPRlxhb/nW7u6RQ7J9Mn50wO7f4KvT2HoesVFDnHxB3nUoLkKy24RAC7COEUQQqVJkrUZhQh8YdzMFKNtaL5pQyv6/vBpf2OZXiu6SVQEChC4rZpuG0BerhdDMvpRVCPxLmJqDLQP6sLt40+OaYvi6Lw8OHH86sxk8nvUIQnGkKX7ndMsLslEOTzLduj33M8Ti4/6cD4hrRZhi4L71cUwZFHjeCX18zgjHOncMY5k/FXNKGE9Li8BSnNp+f+/3s7JdvZj4mO6mmyz//w00Zuvofjz5nCL244mjMuO5TuvQoBeOqpL9i7tz4uRCLy/c673sXbznKa43ak4a2BLnlZPHn2Sbx84elcOHFc22ItCXTDoEdu7re5rKQ4pcfh5NuyEygN5nU51RBqh4pafsPPztY2UoVWLTnD4LeFQMGmZDE096SU7YblncHxPZ9nSN5pdHdNpKdnKgeV/JFjyu7HIXx4LNlkWUpo//bZhM5AayV9LNUUKF7yFS/d1QaG2vaQq3rNfEPZTKo3VjcaaPJ9vm8u9lugizOXv448E6tQUcIEHaoicahgVXQOLRlElsWCTWkzViphOfH7oScwLDe2kNvkbj146ZgzmNKtJ0KC6o0Y6DqT4h0LQ0peWrU6ZtuZM8dRlOsxFeQEOG7qMAb0NI1I3UvzufiSaVx+yaGcduJ4Dp7Ql7q9jcgkNRrWr9nDvA9Wx+37KWB/kw/7dUhSOrz30WpSRe4YhuT1t5Zx3hlTUBTBAf1LyXU7aPD6kx6T5bQzYUAZNquFET278uA3S1KGJEkkmmowZ81Kzho2cp+Vcz+1x3SyrW4e3/oO9aHm6NnsikaOzR8nDMy9sXCqOQjUhEqDjkCXZipb8iGH94dJ+hSsDM0/m5H5F6UdvyKslHqOpNRzJFLqNLQ8RHXtSeiGGduqKF0Sjk0VErdos4LZ0dooWdOeFUL6j1ta3qHauGPkpXxes4q39y6i0l9Hvi2LI7ocwPSSMdgUK0tqt/PariVsb6kly2rnmNLRzOg2LGHVZ5uqcvWYyVw8YhyTn32QhkDbsysVabqfkz+cSV3SC7fu5PBBbTUazjxqHC6HjQdfXUBdU1sxpKF9uvC7cw+jT3ezPkRFZSM3/fFVNm+pQlUFBA3UuuRhfkiormxi1dLtjBrfuaJRPwT2t6S2/6ENwaDGu++tTF7JHAgEND7+ZC3HHmOG6M0cP5i1O5JzySPg6PEmE96QLsW8t3lTWuuoBD7btp0j+vejNCe5oaUzyLNlc+foa3hwy6ssqGlLVhZIXJYgDjWJR6PdWFMZfToHEV6gGuTYejC96624rUVpj8q2lTGu8AoAQqF1tDTdTm3F+Zh3TEEofTFtom2TmBCQrfrJVpPL8HQIGT+ujDioeAhzplzLq7u+YmHNBgxpMCa/DyeUTaJfVhcag17e2rOUL6vX49dDDMrpzmk9D6SHuzBhf6OKu/LUzJN54Kuv+cdnX8QsYtPTbiTGzoZGApqG3WLKpLxsF4/cchr/9/hHfLl8W7R/t8PGGUeN5fzZE6LHvvTMAh7/z6fomo4SqaOVYhBCCN6Z+w1HHD3qW4z0+8X+Jh++lcJw3333cccdd1BRUcHIkSP597//zfjx45O2b2ho4A9/+AOvvvoqdXV19OzZk3vuuYeZM5NZwX8Y7NhVG+Wdbg+JmXug2xSqCXD05f9h2oQBnDJjDJfNmsxtL36StM/LZk3CZrWwu7GR0597idZgMLZj0f6rST/gJcjN8z+myuvl1xOn7LPrO6rrRI7oMp6/rX2QVQ3Lsao6liR12AWCgVkDYrYNzZnG6sYPk/Qu8BkOPGrixZ5AoYtzNENyj6NF24tdyaHMc3CnhYyUBhV1V9Him0sM44NRgQ0LAawkVgVkOF+wbZ+IToXJXlCB3RLPAvJDQ1VUDikexSHFoxLu7+Ly4LRq7AluRw8YbNiwkWUN6zi/z+GUuhILhV1NjTHKAoC0ShQttZNRSZKr9vrKtfxuxlRsalvI2vHTRnDMwcNYtXkvLb4gZcW59OrW5qJvbQ3wq18/R02tqcDqukRoiepvx6O6smN1758IMjERfUsT0s91nv25jrsj6uq9MWFI7SEF6HYFwy6465lPeePLNRw/YxQzxw3kmY+XUtXQEheapCqCwhw3x00yFYbb53+eEW0xwMIdOznhmed4/ewz9wkxBkChPY8/DLmQFQ0buWX1vbgsPiwieaipXbFT6iqNfs+ydqHYMZRq/9qUoY0Rg1GiPYd0uYmA3oiBRpF9MCXOEZ02moWCK6itOQFkkLaXzcCmb+1UP5nCpnb5XvrtDLq7Crhq4EyuGhj/jmRbXTgtNqoDjez21bKueRdL6jZxes+DmV06Pun9XVXRTtFtty76NkqDZhjMWbGS88a2RQIU52dx56+Pp6Kmic27a7BbLQzv3xVHu9zNt15ZwsP/+ij6XddSKwtgsjBVVaYPF/9R8D3Khx8DnQ5JeuGFF7j22mu55ZZb+Oabbxg5ciQzZsygqipxnHEwGOTwww9n+/btvPzyy2zYsIGHH36Y7t27f+fBf1c4nba4JAMJ6E6B5lbNqA9FUN/kY+7HKzn7d09SluXhtKmjovF4kVwBq0Xl6uMO5PSpowB4+KultAaD7YqddDi5NBmUDIeMvhD3LVnErqZ9++CrQuGGwZdwQP7wpMqC2U5lalFsBeYe7lH0dI8OM13EQqCAksvg3JPD39WYv4WOwRza7c/0zDqUoXln0S/nmG9lkfL6P6DF9zqJ3iqPoqGiEz+jmG3txDI02YSRoG3scV2yTm37JiV1rR+ztvICluyezDd7DmNnw90EtRQWxO8ZW1rKufCrf/FR5YpoYrsmdT6qXMGFX/2LrS0VCY9L+MurYFiN8P4EWrMOIomh0RsM8cmGLXHbLarC6IGlHDSqT4yyAPD+R2uorGqKSWbLKMkHyCtIngT5oyKT+NRvYUH6uc6zP9dxJ4LTkZiEwlAhmK2iOwRSEYR0g/VbKvnbfe/xp7vf5o6LjqYwu42RJxKF0a9bIY9ecwpZLgeVLS08vvSbjMeiS0mjz88/v1z4na4pEUbmDuC2Edck9FBGIBAcUnQwDjU2LPeAwkuJUEQnwqCc43BZisJ9KNG/ApWpXf5Av+zDGZp3EsPzTqOLq/MedikljfXXgAxAnLdZJyvaXXqzRISmI9UKzqoUke1oM+ppeiV1jXewq+JAdpSPobz6TLy+D9IWBPy+IKXk72tf5Y51r7Pb1+YJ2dVay+3rXuP2ta+lrGwOtP2UMcbNzuPZZSsSbu9SmM2Bo/pwwNAeMcqCpuk88eC8JGNLfh4hIP+/TD6AaZjp1asXDoeDCRMm8PXXX6ds39DQwBVXXEHXrl2x2+0MGDCAd955p1Pn7LSH4a677uLiiy/m/PPPB+CBBx7g7bff5rHHHuN3v/tdXPvHHnuMuro6FixYgNVqPhy9evXq7Gm/F0ydMoDX3oydtA2rwLBHynO2/ZC6IdGR/PKhN9AsprVIUQSGlCiK4OrjDuSsaW3a9Gur1yYumhXVH2TcPKsIwcvrVnPNhHgvQ22ghY/L19Gi+enhLmBqyYCEE3ylv4a39n7C5zWL8ekBujqKOLLrVH418Be8uvt13ql4N+z+NQeioCCE4Kp+l5Nry43pSwjB8WU380H5v1jbOI82W4Ok0N6TY0t/R4G9B4NzZ7Ox8S2agruxqR76ZE2nu2v8PkkQbmx5CnOyjw+LUgTkKjqa2ptWvYWQUYtA4hEabqGjCNCkwCcFBgILBipGu4qdMb3hsQ2h2D0bMD0bW2pvoMr7Usz5dzfeR3nTEwwteRqPfcR3vr7O4rY1L+HXg3FUqbo08OkB/r72JR4af1Xccb1z8nBbrXhDsRZTaZMYioEIiugtsasqQZ+OEkwerqQqCttrGzo19o8/ia+IK60KUhFgJEqPN5Gb72bUAb07da4fCt9XJc+f6zz7cx13IuTkuBg+rJQ1a9tqh0gg5FbpyFcZWYQt3LCTz//xPIYhURURrtou6VWSx71XzKYwx1zYvLN+Y6fHo0vJG2vXccv0Q3F1YNQzpGRB5TbWNlRiUywc0rUvvbLiE3ANafB5zWLeLZ/P9tY9WIWFCfkjOabbdO4YcSu3rv0bzVqbNy8iKwZlDeSkshPi+uvqGs0R3W/n84q/06rXEJEPqrAxMv8sRuefiyE1trXMY6d3AboMUWgfwMCcWbgsib2hnYEWWoGmJa+15FJ0LBKC1nF4A0sBiQWJWwErZrCST5ofgVkyVIsK5vYvrvlb98j/EyJcXyEQXEl59ckYsoVI2JNPr8IX+ASP61SK8u76XkkyEuGr2k28sWdx0v2v7/maaV2GM74gvvjf2NLuvLdpc6xLIYmnwaIoaGnofXY2NHRq7KuW7aSpoTV+hxlhlhRSwoyjRydv8CPi+5IPEcPMAw88wIQJE7jnnnuYMWMGGzZsoLg4vhZGxDBTXFzMyy+/TPfu3dmxYwe5ncyN6pTCEAwGWbp0KTfc0EZppigKhx12GAsXJrZ8vPHGG0yaNIkrrriCuXPnUlRUxBlnnMH111+Pqv64NFijhpcxfEh31qzfGxUIhj3M95jA0hFwC7MgD7G0eYaU/OPV+ZQV5jB1eF90w6A1lJp3GEy2mo7Pyp7m5pjvmqFz19r3mbP9awxpmLzDUpJnc/HHkbOZ1qWNim1j8zb+tOZfBI1QtOjLbl85D299ngU1S7lxyJWMzhvJh5Ufs6l5M6pQGZM3iuklh9LFUZJwjDbFwdHdf8vBxeezveUbdBmixNGPrs6BUWtQrq0n44uuSHu93wZBbROJlIUIFKHjVoIM7baYYGgTNdXHgmyM/oRWJE4h8UqBDyu5lm5Y7YdS2fIyEjNcTGChyH0MfQtuRlVMC1ply5ywskCH8xvo0su6qosYW/o5ivjhqkpuat7L+uYUdQyQrG3axZaWcvp6YkOr7KqFaWV9eGvrhtiDhBmaJC1tD+OlYyZy/3tfpRyLIQ089iRla5OgqTlB+JoQaB4r1qZgUtf3Rb864idJmQcgDQVppF4URPY3NcWGVdntduz2+Ofn5zrP/lzHnQrnnHMgv73++eh3wyJATaza6hYIZAvQTWNQexmxq7qBq+6fy7PXn4GiCBr8vnCtnM6tFkKGQZ2vFZetzVu7qq6cqxa8yi5vA2q4/s6fl33AjNKB3D7+GDxW8xkzpME/Nz3BFzVLoopAiBDzq7/ms5rF/HbgJfzfiL/yWfXnfFHzJc1aC8X2IqYVH8KE/AOwJPFAlLkncFqfl9nTuoTm0B5sioce7snYwtSoqrDRL/sI+mXv+6JampY+7MgmoDj7AuyOl/E2/R8B7/1R+SAluBQISajWzaStbtlXUdf6AX5tc7QPu1pGWd6N5LnMa5AySEXN2RjSS2yilykrWlpfwG4bSY7n/H14tenx6q6FqChJq0erQuHVnYsSKgwnDhvK3+bNjzfmRx73sIgocDmZUFbGuxtSK72uBEU+U8HbkiKvJDKoDq+eogq6lxZw2Mwf3niXCTojHzqDH8sw0ymFoaamBl3XKSmJXVyWlJSwfn1iLX/r1q188sknnHnmmbzzzjts3ryZyy+/nFAoxC233JLwmEAgQCDQxjzRUdCmQ0tjK421LWTne8jKTc7NL4TgtltO5Ma/vMbyVbtQVAVpSSwMDBUMW3LXkSIED733FVOH90VVFApdLmpaE2jL7ZDIE5XriHX53rHmPZ7f/lX0fYl4LRqCrVyzeA4PTzqPAwp7o0ud29c/RNCItT5H/rW2aTMv736XM3ocy4Cs+MkiHbKtRYzIm9Hp474rFJG+grMispFSo772XJAtQJu+F/nrERIpXfQsfgKHtR+98n5Nc2A5IPHYh2NTC6L9SSnZ2/QI8VamCAxCRg21re9T5D72u1xep7Ddm1ko1PaWyjiFAeCUgcPjFYYI2nm7+hXk06cgj2219Uk9wQIRk/ScCXqUFrB3TzztpLRb0LJAbQnG3O7sHCeXXHskhx8zqlPn+SHRGQtSWVlsUaFbbrmFP/7xj3Htf6h5dl/j5yIfDMOgek89UkqKuuejpqAEHju2F7+/4Rj+cee7BAIawqYkNSiF3BHPdHw/uiFZv6uKRet3MHlIL7plZ6etXZIIAshup2Rub67jzE+fwaebBqr2Xu0P92zk0i9e4plDzkQIwUeVC/iiZgkQG4JoYCAk3LnxER4edxtHdZ3BUV07N9crQqXMPSF9w30MITKrei1EFkHf6wS894e/E/PXAhSqIJ0X0TXnN3TL+Q2toTUEtXKsaiFu26iYcCmv7110IxXds6Cx+UGy3eftMyKTTLC5uSKpsgCmJ3pzS3nCfTkOB/0KCthUmySpO3wZ2Q4HswYOSKkwqEJwzODMi9cBdCtNQUnbFtwQ836NHd+X6246zgwv/wni+/Aw/JiGme+dJckwDIqLi3nooYdQVZWxY8eyZ88e7rjjjqQC4bbbbuNPf/pTp8+1a3MFT/7fWyx4byXSkAghmHD4MM757dH0Htwt4TFZWQ7u+ftprN9YwfwvN/DkR4mT0HRbcs8DmF6GNTsrqWnyUpjt5rRRw7l/4ddJLUgCEY0fj55DSo4bMDj6vcLXGKMstEfkvbl3w8c8WXgRi+tWUh9Knv8gkbxf8Rknl85MGav6U0OW63hqm/6P5BVkBFmu2fj9H6Lr21P0JMi39cVhNRe5VjWHfNfUhC01ox6/tiPluAQWmvyLM1IYNCPAhqb3Wdf4Di2hGtyWAgbnHMXAnBlYFWfa4yNwqsknRXNiMp/NFi1xgZyJ3XqQZ3dQH0huyXGoFqaW9cFyqMovX3rLfPY6PPJCwiljhlOSnThutKHZx3uL1lFe20Sux8nh4wdSWpzLMbNG8uXCTQmPMRwWDLvKmSccQPeSXPIKPYyd1Ber9Sf+rHYiqW3Xrl1kt0tYTeRd+Lb4NvPsTwE/pHwwDIM3HvuMVx/8mOq9DQDkl+Rw/CXTOP7iaUkVh+nThzJxYj8+/mQtb89bzZqdlXFCXgKGjZQ5Oaoi+GT5ZiYP6cXMgQO49eNPCXSi/o4qBAf26kl2O6PSIxsW4ddDCeWMISWLqnbwVfVOJhb35O3yT5KaQCQQMkLMq1rE0d0OzXhMPzbs9oMQwo2UySmzhcjBaptAU80skhmBhAAbkOU6IrrAd9uG4bYNS9inP/AVhAOYEkOi6TswjFpUNX3oVY1/MyvrX2N3qxk21d01mhF5J1DkGJD22PZwWVLLiMjfkKElXAecPnIEf/7k06RTmiIExw4exPR+fRlYVMimmhp0AbLdmlMxwKqoXDAunvrcPL9kyebdLFi3A90wGN6zC4eM6Euf/iX0H9SVLRsrEjKTCSEo7pLN2ReZcnvoyB50/4kW9IyiE/IhUw/0j2lQ6pQvpLCwEFVVqayMtXRWVlbSpUti5oCuXbsyYMCAGC1m8ODBVFRUEGzPINQON9xwA42NjdHPrl27ErZrj61rdvPLmf9g4furony9Ukq+/ngN1xz9DzYsT74AFEIweGBXfnHBIYwdUpa4wEiGRgJ/0LT0nH/AGHrk5iTl2DZUCYq5kJeKBJtB/y55hIQWjYf9YO/qlDz5BpJldTup8DWyuWUHqkitKbZorVQH6jK7kJ8IctxnoCp5JE5aU1GVIrLdpxLwf0Jq/VcSCi1FyhQUnlFk9mNnUtTGrzfzys4rmF95N1X+jbTqtVQHNvFZ1b94Zcfl+LTMk9zH5PXD0UFpkBJ0QxDSVTTD/Px19VyuXPwYe1pjf2ubqnL12NQsXJeOHI/HZmPG4P7MGjawbYZo54GQCuxtbKLRF694PPfBNxx17YPc9fw8Xvx4OQ+8voDjf/cYV9zxMvklWRx6yOCEayohYNKkfpx/yTSOOmEsEw8e+NNXFqBThXmys7NjPskUhh9qnt3X+CnLBykl91z3HA/e8kpUWQCoq2zk0b+8zh1XPomRwuLvdts59pjRXHHxoYktgh1yGhKOAfAHzQVmlt3OjdMOSdJOxngAJBIsYFgkQ7uX0BT2rkgpeX376sS5cmGoQmHujtWEjBC7fRUp1y4CweaW1IaSnxqE4sKd9cuUbTxZV4NsRNc2knr1ZiEU/DTTM2c6xLRY3/geL+64hA1N79OiVdKiVbGx6SNe2nEpaxre7FRf07uMaCvUGUablducxPf46pk172+8sOPLuAToE4YOocTjSbhuUYUg227njJEjsKoq9xw9E9WhtikL4UMMxZQRm/bUxPVfUd/Mqbc/y0X/fpknP1nKs/OXcd3jb3PoDQ8y54OlXHbdDKxWNW4NpigCVVX47S2zOeLoURxx9KifvrJA5+RDWVkZOTk50c9tt922z8bR3jAzduxYTj31VP7whz/wwAMPdKqfTikMNpuNsWPH8vHHH8cM5OOPP2bSpEkJj5kyZQqbN2+OmYw3btxI165dsSWJcbPb7XHCNR3++ds5BP0hjA4FngzdIBTUuPvaZzNiLjjz6AMSa7d6+mNdditF4aS2HIeD+084BrvNAh0mf6lIiFRhdOng1sFusKW1hhPeeYbj3n6KPS1NNAR9aSo2m2gK+VCFmtH1WdIoFT81qGoBpUWvYlUjdH4WIoqB1dKD0qJXUJVcJCEy4XLwNt6GFlqXso1FycVp7UcqoSDRyHZMTHu+zyrvpi6wLXpU219JfXAn8yr/kbaPCFwWO2f0jPWK6IaCbihxY11Su4ULFz1AtT/WanH6oBEcWBop3tNm/hDAxSPGcfXYyQCsr6zm7bXh8KX2XYf/PX/rdg668yG+3NK2wHj7y7Xc/fw8NN1AStB0I/oufb1mO2f97im+3LCDgp55WLNt0ZC8rCwH5541hVtvPj5leMhPFjLNp5P4oebZfY2fsnz45rP1fPhCkrwcCfPf+IZFH6xKvL8dhg/sxsA+JfEFqCRm7kKKOVhK6NutLfTx9FEjOG74YKTocIxieisMVSItYDhAt0qkFf69dBHjH3uAR5cvRZNGNBQpGQxp0BDwJWS6i4dIa3T6KcLtuRK35yrM5YyCmc6sACrurGtweS5FyvQ5haAT8n+Mv/V5pJHasOR0TCa5dwFAYLX0Q1EKUrSBusA2Pqm4HXNl0JYrF/n3/Mq7qPFvTnJ0PI7rPgGP1RlVGpI9jk0hH3evf4vHt8ZSxGfZ7dxy2KHR+gntDy9yu3nu1JMpdJthYHctWmAmPrcnbwn/22doXP7mm/zq4TcIhsz7FAhpXPzvl9lcbhb80w0DLbxea/L5uf2VeVz+15exDc7H1T8f3alEzz9ybC/ufvg8ho/umfG9+MkgQ/mwa9euGENI+5Cj9vgxDUqdls7XXnstDz/8ME8++STr1q3jsssuw+v1RpMvzjnnnJgLveyyy6irq+Pqq69m48aNvP322/ztb3/jiiv2XZLstnV72bh8Z5yyEIFhSHZsKGdjCi9DBJNG9eaqM81FWXuhYEnBGAOmq+74ScOwt7OK3jZ/Pn4ZQlpAqhKpmpYiVDNZR/UYKGobmVvEUrSmrpJT33+OQntWlDoz1XlLHNmMzh0STXROhhJ7IUX2n75W3hE2a396dvmCbgVPk+e5hLysS+lW+Cw9Sz7HZu0bbjOCVMnRYM5lfu/jNFYfTlPd1ejaXgyjPr6dEHTLvpjkqz0Vm9qFfNfhKc/n1WrY0jyPxBzkIDHY1vIlzaHEVKgdoUudGV2GcXS30YBESjBkvLIApvepIeTlqW3zo9s0w+CST1/jy6rtYDUg7OVCNZBWA6fdElVQn1u6IrWyKsFv6Fw2Zy676howDMkDry9I2FToElszWALQ3BygvKYJnzSQWRYuvmwarzx/JeeefSAWy89vsdIZC1Jn8FOcZ3/O437n6S9RUiijiip4+6kv0vYjhODv18+ma0lu9DuARRFYfclDVsG00B47cUj0+7KKcl7dvBbDDrpdotskul1i2AEVpA0Mq4y+3hH5ENA1/vLFPF5cu5pCR+oYfkUIyjy5WBSVYdkD4qzP7WFgMDpvSNL9P1UIIcjKuYGiLkvIyv4DLs8FZGXfSFGXpWRl/wYhBIraBSFy0/Qk0bWNeBuuo77yAAL+z9H0CqSMX1C5HDOwqN1JTtcqycm6LG3+wqqG11MqcwKVVfWvpRl3G1QhuXHobPLtHZ+LxON4dMsn1AbaiFYW7trJVe++hY+Q6TkIewuEBYKKjifsFS1vbuaDLZuTe7cE6C74ZONWbn/VlEEfLNvIzpqGuBw2pMTeYOCukeiaQWVtC9U+H4FCB92n9OSRVy7n/+47m4FDfnyq5c7i+/BA/5gGpU77/E899VSqq6u5+eabqaioYNSoUbz33nvReKqdO3eiKG0vQFlZGe+//z7XXHMNI0aMoHv37lx99dVcf/31nT11UuzZmir5qA27t1QxcHSvtO3OmDWOCSN68dpHK1i/tRKbTWXquP54Cpzc9Mz7iA4MGIoi6FWcx6VHtVmct9fX89mOsILSXgMPQ7fpSJm4KIkuJXtaGmlpBbtixW8kto6oQjC9yxBybC6yrX3o5+nJ1pZdSRWHE0pn/KAJWPsSQqi4ndNxO6cn3G8ROWn7sKJgEabtJuR/hQb/KwCo1mHYXWcjUZDSh8U6iCLXiXiD66hofoJYWleBRclhcPHjKCIxT3sEFb7UBY1MSCp8a8myJi8GpEudN/Z8wDvln9CkmZN7nywH25sthJJyC5kxzG/sXso1g2ahCIVXNq9i/p6tkcsIy7q28f1rxQKO6jmQwfnFLN25N2WoQ3QRoxs8t3glxw0aSEVtguRTKbG2SJCxo5RSokt44JnPGTO8B4P6/fjFkL4VOhGj2hn8FOfZn/O4d2woT2pQAjB0yc5NmSnuxQVZPPWPc/howQY++mIdzS0BepYWcNS0Idz73kJWbauIySmIsCH94YzpFLSrz/DUymWoQqB3fDkyxF2LvuTM8aP4z/oFSXPldCk5pc8oAGZ3P4LVTYkTVRUU8mw5TMgf1fmB/ESgql1wZ12WeKfUQDgyeBclupQEjFqaak4BQAgHbtepOOyT0Y0aFOHC5TiMLoXPsrf6RAyjjraOTVmR7T6fLNfpace8p3V5jGchwWjY41uWtp8tLbt4attbLKlfFx6zINuq0hi0kerhMqTkg/IVnN7rQHTD4Nr330OXYRNXOz3GABr8fv48/1MeOOY4VldVZjSt6TbJawtXc8WsyXywbGOUmao9rC0Sa5gfJkrIFG6zdXcN9z7zGbffEE/p+7PA9yQfrr32Ws4991zGjRvH+PHjueeee+IMM927d4+GNV122WXce++9XH311Vx11VVs2rSJv/3tb/zyl6nD+TriWwUJX3nllVx55ZUJ982bNy9u26RJk1i0aNG3OVVGcHoySx7MtB1A37JCrjs/fnHavTCHR97/ii/XbkcCWU47Jx84gvMPP4AsZ1v/y8sTMxFEIO0R4RV+WmJWU+bWd3Zs4PphM/nTyrlxqVqqUHBb7Fw92LRyCyH43aBf8Mc1/2K3rzxKm6egYGAwu/sRTC+enPH1ZwopJd7gSkJ6FVa1GLet85U6v/MYjGYCTb/HgYo/yeSrYj7sifbqodW0Nl6PJg30CI+42ovuefdS4DqSiuZnaA2uRVHcFLqOpthzMlY1N/FYpMQb2k7IaCCg13znazOkwT0bH+Hrulih4df9qKRnCPHpQXx6CLfFzlPrlyVNegRTAZ2zcQW3Tjw849AgXUo+Wr+Zw3r1TrhfCRdfTfZECAHPv7GEP157dEbn+8khk8I737Iwz09tns0UP8Vxu7Mdadu4POnbRGC3W5k1bRizpsUmxT4woDtPfrSEF+cvpy5MIzymX3cuPHI8EwfHhlN8vXd3aqU8AiHBqSNsuvkiaQLpV6nztzLU051ennx2tNQl7OvCgRPol20m3Y7OG8KFvU/m0W0vReVCRE7k2LK4echV3wshRkivpyW4AgCPbSRWNW+fnyMdfN7/II30LHOalPg6ePWl9NPifZJm75Pt5k4L2e5zKS35lJbWV/C2zsWQLdisQ8j2nIvDNimpHNSMFryhLQjUDEOlUs8f65q2ccOKf8dEI5iGqkRFTTv0LARVfjOP7rMd26n0tiRtq0vJR9u2Uu31oiqZB6dohsGiDTtp8QfjQ6SkxNaSvAaPYUgWLNnKzj119Oj+84uO+L7kw49lmPnpZxVmgOET+uHJcdLSmDzu0OGyMebgztF8JcKoPt2497Lj8QVD+AIhctyOhC+Pku6FEpiCIOJ9kB3+ApW+Fk7sOZbGUCvPbF1ITdh1KBAcWNyP3ww9ijJ320uUZ8vhHyNv4Ou65XxZsxSv7qPU2YXDSqbQ2x1L6bgv0OD7lJ31fyKgbY9us1t6U5pzDVLfRJN3Drpei6oWkeM+kxzPeahKek9AZxHyzQXpxyIETqkSwkALT+1mRKuCBRF+L5MLaItQMKRJSqvrO6mtPYmioncZWPSvaBspJZIgUso4gVDd+gXr6+6iKbiRECoBwwJkkWrSFgi6ueI5pP16K3t8O1nbuCVOWQBzoa2mqNwdgV2x4FBNT8iWxtqUxgxdSjY2VANwSL/ebKyqSc4T385yEtA0yopzzc2R+TF8yUIxv3cM046e05AsWBJfMfpng+/JgvQ/7FtMPXYsm1bsSprnJRTBIbPHfefzOGwWLp05kYuPnEBjqx+7RcXlSOzyT0aIEdvIQOQG294nYYa3Kg4D2aoS1HSemHoqv1/6BotrdhLSwTAERY4sfjF4Muf2j72mmV2nMSp3KB9WfsE27y5sipXx+SM5sHAcDnXf1pTRDS/b6m6l2vsaMhzvb9a8OYEy96GEWp9BC5p5JRbbZOyei7Havw+jloHf+yTpXkQpJf40IcBtBheNJu9jGLKF4vx7yM36Rbt+NMzFeuzySjNa2FJ/F+UtL6MZQQLSgq57AAfJZIRApcwd/1xKKSn376Up2MidG15Ck3qcN1tRIpNTilw8aZBvN/Mut9TXpa0NYkjJtoZ6xnXrhk1VCeopwoAlqOElWUjT6NMlnxVb92BoINrZS6UFZDC1UWnRsm0/U4WB700+/BiGmf1CYbA5rJx+9ZE8fGvyWL9TrjwCh2vfTYhOmxWnLXlIyoTS0tQvny7MGPL2yULt/0qoDXg5df59rG82XeVCmJ6FY7qP4sYRxyS0BlkVC1MKxzGl8LsLv1Ro8H3CpuoL47YHtW1U1f0CVShEqFA1fTe1TXfQ5H2e0uK5WNT4SoTfBXpoA6YPQUMVAjVJXKmWJsdDSolCOEQAA2SI5uZ/kp9/PyG9ktqm/9DgfR5DNqMID7nuUynIugyrpSvl3g9ZVnUtAEFpQUNBEWAXIQLSSqLpUKDQN+sQ3O0qngZ0P2/uncOi2k8JyRB1ARfmaxp/vMcWoCmY2io6s/uY8G8BTosVv548UU8AHov5jpw+ZgSPf7WUgJZAIEScYoaZ5zOyexeKcj2UFGVTXt9Me/ph3QG6XWBvNFCSyBYtRajITx7fo4fhf9h3OOK0ibzy4Mc01LTEhSYpqoInx8lRZ+27xaqiCPI8qSmTp/bqzZzVK1N4GSQix1xJtdctojUEXDov7P6aP2/eRsDQsNrMdN+uzlz+Nmo2YwoSJ4h2cxZzbq/vN8TDkEHWVp0brnXT3vKtofuexxd8lvahnlrgU7TARziyb8LhuWSfjkUaDUgjSW2BdtBJvXaL985KWlpfIDfrSmzWflR732d306M0BZYDkGUbQWnOBRS5jsKQAZZVnEdzcA2GlPikuXbwKH5aDAfJF/aS4bnHx2xZ27ial3c/z27fLoK6SnUgMb21IsCq6IQMNUnf5lXN6DoKAJfVlhFxittqI9vu4LRhw3l6xfLE90yCpRkU3Tzv4LIS7BYLr85bFbPUkUAgV0X1GdiaE3sahBBoieTQzwH7mXz4GVKSJMbxl0zjzGuPQlGFubC2KAhhWo5OvuIwTvvlvq8ymQolHg/HDIr3aEikWX9BymSU0CYEBA2dNXWxYS26NJi7+xv+sOyVfT/oDCGlwY66myLfYva5RCj8UHVcBBqE9N1U1l+3z8cjROahBKn76Zh+puP3vUkgtIltFUdS1/IYhjS9PIZsoa7lCbZWzsAf3Mjqmj+Gt4NG2wSdpfixRAOhYu9VkWMAh5RcG/2uGRr/2fJ3vqj5kFDYVa3J5JO9XdVxWwNx/UbO5VCtnNt7anTLsb0Hp7RqSmBm74EAdM3J4oFTjsOmqrFWknbKgsD0EJw5YTRvfLnGVBYgfnUjIJCtJBylIgQD+yauMv5zQISyMN3nf/hx4clxcfvLV9O1Z6FpGFBAUQgXb8vj9leuJrcgfZHIfYlzh49OuN1k0jPAriPUFHnUEhbV7IgzAlT6Grn0qydY17h3H484c9R436Y58A0d5YBTGJSokfmw/SLQ/Le/6c9owfRsVZ1BpvLByMDUG/9TqLS0vsa2+ntYW30VTYGV0T3NwdWsq/4VW+vvYG/LizQHVwMGwXY8pFZhUKBGwoDazi9QECgc1vX35Nt7RbevbFjOPzf9gz2+3QBoMvUSzmWNhDwlvrbTe06h2GF6/Q/r0ydtOHH3rGwGFxUBcMOBBzMtEoraQT6oPnDUmAalUb270bskn3te+ZwIRUdUaYgYlpwKmjNJLp4hGdT355njtr/Jh/1GYRBCMGxCX/oMKTW56TVzohpz8CBmnJY8nnDlmt3c/NfXOebUf3HMaf/mj7fNZfXaPftkTH+ePh2nNUJPZv5nOAykvV3eQsr3UxIMxf9EEni/fDVrG/bNONNBSkmdbwErq67gy11TWbR7KkF9Dx0nIQWJNUIXmxA6rf6PaGi4EV2v3mfjszhnkJriLjOY4UYdoVNe91s0o5b4DAgd3WhgZ+0lhIxGQBKSCjETv4BctZUspRUrOio6NgHTu/yB43v8C5valoewpP5ztnk3xLiWFZHap1no8OJJoDQ4VSuPTvgF3Vxt8cLnDxmHTVETMqWoQtAzK5eZPduU3Cl9ejLnvFMZ3q0EkESGInRQw31cfOABTOhVytMfLk38u0dmQyVc/LADDCk5aVbiAj+ZQEqZkj//e4fM8PM//OgoKMlh/CEDsSkS3RdA9wXIcls57twD6dE/8YKkxevn+Re/4pzzH+KY2Xdz7gUP8eJLX+H1Ji6O2Bn0yy/g0jHjY7ZJIcEqTeO73Ui9mBAgEywYDSSaoXPfho8THPT9IKTXsafxPlbuPYJluyezve5PJBJu+UqaawK8decT8n+SkbU7EwjFhcU2heSMRt+pd1qCG9nZeH/4e/u5yPz37qZH2NX4GGBOh3p02WzCpQTpamkgS/FjRcOKRk/XUE7v/QT9s9vyKA1p8MyOJ2hfp0OkmVwsikG23R+WI+0hmdVtLFcOPCq6pdjt4bRhw1MuSa6eOCnKnme3WPj3zKP59QFTcIZUVD9YvOAsNz8WoZDrdvKXs2Ywf+UWKuub40drUv2BbqAlyElXFEFZtzxGD/v2IdX/kw/7DvtFSBLAog9WceuFD3dgYoFln2/g6ln/4J63rqO0b1sozIYN5dz/n49ZuXoXQhHoimkJnffFBj79fAOjx/Tkioum0b9XMVJKNu2uocUXoHthDiX5mVmi3DYbY3t044sdO0EHaZHtoktSuRfSQxUKb+1ZwZDcfU815tfq2Nb8OlW+xUgpUfESCC5GFQoSHQs6lgSqppom5CeC5pbHCfrmkl/4GpZw5eXvAtU6FtU2Hj24lFTUqm1BUokhhDCZq9rBwE5r8OsUR+lo2ias5BBCIZFTVQhwCA2H0qbU9Ms+GLUDy9KCmo+jSYgRONQQLVryUDohwGULIRSJZpgCURUGT0+8ge6uopi2vbLzeOqIU7nkk1epD/iwKApI0KRB35wCHj/sZBxh/u2V5RXcNu8zFu/eHR4IZFms+L0hFCkYVdaN8yaN4fDB/Whu9bOtvENBQEMi9DZPhMTklpfh+FVFERiG5NjDR3Do5IEp7m9iLHxzCS/f/TZrvlyPBIZOGsCJ1xzNlOMO6HRf3wn7mct5f0XQH+L3J93D+qVbY+rsNNd7efDGFynfXs3lf29jtWltDTB37jc88+wCfP62xFSvN8ADD33KU898ybnnHMgxs0bjcFhpaPGxfW8dVovKwB5FGVMEz+jTj/uXmnH8ZoG2dsak7wADyRdVG2kItpJrc323zjpASsne1iVsanoHr1aFXXGghj7HSS0iHJyuJ7kAZ0qDUrh/oxJv3bnY3BfjzL5pn5BouLJ+SVNtYtrnCCwIAp2WyQb1oQozgTmJ7BGoBPUKzF84sZXQIgxy1VZQzTyP3u6+5NpiF8nrm9bSEKqP2WZXtbDESH6PTKXBh26o6NKMwJiQP5Cbhp8U1/bmqdPwaxqvrluLKgQiHFYtgN9MOZCThgwFIKTr3LtwEU8uW05zIAACrFYFR1DBaNXIdTs5fuJQzjpkDEU5Hp7/dDkWVWkLP5USNQhqQEbz26Qw8xnQwiR+isDptPHnXx/b6WegvqqRV+/9gPee+ozmei+eXBczzj6YE6+aQX5JTqf6+k7Yz+TDfqEwhIIad//6WZCSjhS/hm7g8wZ48JZX+PMzl6HrBnfc/jYffri6LWrQkFiQGAoYVgWEYNk3Ozj/micZNrqMvf5W9lSbTAICmDSsF7857RB6lOSRDicNHsZnO3eABaSt4+BI42UQWCyJJyEpJbWB5IwGidCiNbCi4VPqAuXYVRdDc6bQ3dk/pk1F60IWVFyHLttbrSXgIkvxYxOknJwygUBiGA3U111EYfGn31kgCCFw5j+Mr/Z89NA3mI+1QXv1QAAWFIJplBorCiqE26motsngn5d2DDYRIiTtGd0ZVThRiM9/qQ1WxyWuudQgXs0WtSe1h5TmLxPUVRQBNlVHQWFc/uA4ZSGCA0pKWXTK5by3YyPLqvdiVRSmdu/D5K49o5ajZXv3cubzL5lFedrBq4dQnIKHTjyeKb3M+OjWQIin530TexJDooTXWDGpOUIQcgnsfhjcp4STjx7L9CkDO/37P/3nl3n61pdRVCW6+Fu7aBOrT7qTM35/POf96dRO9fddIGTyhO72bf6HHxfvPfM565ZsSWrdfuORTzns1EkMGN2LtWv38LsbXqKlJb6SOQACWluD/OeBT3jyuS/pM7EHX2/YhR5eDOVlOTlv1nhOP2JM2md7eHEJPXNy2dnYEEMWAIAu0iyuJSLFwyWBhqA3Y4VBSkm5bwm7vV+iyxD59v70yTocq9LmBdWNIJ+U38gu74IOi2QbbpFHD2stZvmiyLg6zFkZjcRE0PswFtsB2JxHpW+cBlb7FDy5d9PS8Bva2INiZatFCKwSUvEWOYWCFUGrNAiGVxB+ozWpsgAg0aO1FtJ5BMz2BjYlfm1RG4xn3VMEZFkDNIWSh11JTBlpUY3ogu/8PjMTtrWpKv844kguP2A8b2xYT4PfT2l2NrMHDaHQZT5HhpT88s23+XDz5pirCRkGuksy6cAePHbSCaZBClixdS+frdoaoyxYfG0yov1AZbguVZbdxsxpwzjl6LF0KUpfmLE9KnfWcO0Rf6O+qimar9TS0Mpr93/AJy8u5O4Pfk+XXonl477G/iYf9guF4euP19BU502639ANlsxbS015A3PfWcFHH60G4tfpwgAlZGDYVCSgW2Hxrlh6VAl8tXYH5/xtDk//4YwoO0wyzOjbnxHFJayurkSPEQjCTHy2JHtaTGFgsSaxWoQLtmWKr2vf4b3yR5AY0clrQc1r9PeM5eQev8WmOGgNlfNlxbUYsmPVZNNG3Gw4yFVaQQgMGdZ12t1EDQUp9bQWJNP2pqNrGwkFv8JmT18xORGkDIK2A4RAqD1xFb6GHlxEyP8uGF4kAj34NVLfHr3tVhRCCZQGU6EQGAKElDhQCYoCnK7jqM9AYYi8Shahh/MOEkOg0ivr6IQLCbclixatqUN7iUMJ4TMiTCttglggaQzaowqcyaXu4eoB8Zaj9rCrFo7rM4Tj+sQXaZJSctMHH6EZRlzCviFNV/iNH3zEJxdfQGsgxIX3vsSG3VXmbx5+JiKOlESPgaIKeg8u5sE/nZlyjJGxrF68jZ2bK3G4bIw7eBC71+/m6VtfNsfTLnk18u/n/vYaYw8fwfADB6ftf5/AEOYnXZv/4UfFW4/NT7lUU1WFd5/+nMKehfz2+hfw+ZIsG9utg6WAKqdB5ZrtMRNhfbOPu5+fT2VdM9ecfkjKcQkh+MOBU7n07bltrrhwVzKkIA09Lum53dHYrFrS+VYRIsqAkw6tWg0f772OusBGRHiGlugsqf43B3e5lTLPFAC+rr6PXd6F0f3t4ZV2yrVculsbkvrPWwwFm2KklREmVALeR7+TwiD1KjBqQSnC7joJq/1QAr6X0EMbQagYWgWh4GeAhkDgEiqt0gjXt4mFQyjYhYKUEo+i0mLouLN/TV3zp2nHYVGy0A0vQugo0iS0TeVG6u45Mm6bx5L4t/RYAkgJzQk80aowMMLySEFgIDmr55H0z0od4tMnL59fTUxMAvDp1q18sDlx9WlDSr7cuZN3Nmzg2MGDeW/xem58/D3aPw2KBmqC1ytyN6QKt/z6aCaN7J1yjACNtc0s/mAVgdYAPQZ1Y9jkAdx95eMxykJ0bLpBY00zd17xGHe8/QPVp9nP5MN+oTCUb682rY2p2FYk7NxcwSsvL05qZTK9DZimW0UQzE688NMNSas/yL9f+YLbL0vNH29TVZ6efRLXffgeH+zd1KEjYaqXFmIEhYLAqqrY3S1JJ1ZdGhxbljhpriPWNi7gnfIHo9/bT/SbW5bx6q67Oa3nDWxpeiVMCZfoBpkiwC+tuIVJCedUtPaEOEgEQQQ2mdztbKW98FMJBhd3WmGQMoRs+Q+0Pg3S9PygFCBc56G6L8Jin9SurcTQ1uGvPR1kAyqgSIX2JHQKbcnOBm10qTlZl2JzzkSIG5AyibURENjokn0BWxqfREGiosfFqZrtVCyKi4G55yTsZ0L+wby59/kYL4NPt6GjYBU6EoERdl8qwkAISbZNoyGo4lBsHNV1Aqf1OIx8e+csMu2xtqqa9dXJ60dICbsaG1m8ew/zl2xhw55q01FmBTWIGYqUYmVmGJL12yvZuLOaAT2SW3k2rNzFHb+ew57tbWOxWFSKC52oFiWao9QRqkXhjfs/+OEUhkxiUH9GFqT9FeU7qlP+DrpusGdLJW+/vQK/P5Q6fj48VwezVDOEIslk99wH33DswcPo270w4f4IDu/dj38feTS/+fQ9Wo32VYUFhteC4tbCVmJza4R9z2rRk3qgVaEwrWQQ2dbUTE0AhtT4cM+vaAzuCF9eW5+a9PNp+e+YVfYwHms3NjS9QfIbKWgwXJTIJlQRSSFuJ9iAOkMhTzFM40LadZKOHvwmXaOEkKGVyOY7IbgwOjZpOxCR9Rucnktj2hpGA/7m+wh6H0AIgVuo6FISDFNsK0JgQ0Q9sEKYfgKPmke25yoKDQveho0kD3hVKHYfQ4X3bUJGMzah4ZdWOt6bCPrmnI3DEs8kODRnBA7Fgd+IlUVCQLYtgNsaxKdZ0aVAFRKnJYQqYG+rB02q9M0q45Sy6RxYNKoTdzIec1asNAsOJnlHFCF4bsVKpnTvwc1Pvh9neFKCMsmVm1AVwWsfrUipMGghjUduepG3Hv4ELdT2vBb3KKBqZ23Sh8vQDVZ9sYFdG8spG9A15XXuE+xn8mG/SHp2ZzszSmzZXd5IIJC6UIoAhCGTZuxHoBuST5dvptGbfCEZQbbdwUNHz2Zqae8OCacCNAWCSjSCposzi2tGHsgbM8+hyOVOmKAKcHKPA+iXlZ5dRkrJvKo5JHs9JQbrmxdR7d/F3tbPkamj/AlKU8fUUPEZlrhn3SfbMhmi80T4rwrE2kAkopM6q5Q6suEq8N7XpiwAGLXIlruQjdfFCHshBKp1CEItidlmEQpWYdZnEHQMYDLt95r/A1TFQ77nIpJPb4I8z7kMyPs1/XIvRREW7ELHkmCmyLb1Zlq3R3BbuyXsaVLBoeRY81HCr6WU4DfMpBchzARoi2JgUQwUIdGkgl9TUYWC3wjyQcUSXtk9n6ZQcm9bOuxubEzfCNhaW8erC1dFhYFUwVAzd6/u6Jjz0H7fpgquP/MBynfGUiFqms7eimaMnNykx+qawfrFia1f3wv2s6S2/RWurNQLZ0URZOW5+eLLjTE5DqkQcispV72qInjj8zUZ9TWr30BePv60+GnGUDBarMiAitRBlQrTuvbj8YNP49fDD054eoFZf+XKQYdldO7d3gU0BLcmCasx78Wq+meo9K0Me59TQeA1zNDMtsVF2/0MIditmx78zJhiOr9EkcElyNrTIVzjITqG4AJk7SnIUCwLk6LkYrXH5j6pQuBUVFyKikMoUWWh7SoB2YQe+pqunlNRhSvJWBUUYacs52LGdHkWl7UXqpA4RHyWhyJs9M+9hMH51yS8Lpti47juJya9blVIPNYgObYAHmsQBUlj0IFCFgHdwqqGvby060u+ql2XtI9MsKOhIWXBQUNKdtQ3MHfBmoTvkqKnTtHRDcnWXamLnv7z6ieZ+5+PYpQFgOpdYbmSJmF+88odKffvM+xn8mG/8DBMOnIE9/3+xaRWRwR0711Mbpdwsksk+Du8L9Gsa1jSu4kMQ1JV30KOOzPatl+Nm8zne7d3eEAEGKBKCyXuLD6ZfSEOiwUpJWMLevD+3tXEWaqFpIc7ff4EQEOoiqrAzpRtBArrmhaFvQuZQ0NFkwpZBLCFJ0A1rHJIaU6fUoIqzNI0Kh1vtYHNflCnzon/fQh8kmSnBP/b4JwN9qkxe6zOEwk230b7m290YEVqnzomkUijCoDinN+g6ZU0tr4UvgoD8+p0sp3HUpL7B4RQGJB3Fb2yz6bC+xEhowFVZGFgRSLJtQ8g3z4sZUyzy+Lh6gG38MS2f7KjdUtKStWgrlIXjCyCzOfeq/t4edenfFG9gn+O+RW5tszCESLwhUJ8tC2zxbYW0mkNtls8CDOpGdkWkpQKTnvyGibP3vsRoZCeZOEmULI86E1NEEp8IluKvvc59jML0v6K6SdP5PWHPk7qhTYMydTjD+De58KFjTouODq8t5K2eOtkMAxJeU1mCjjAkMISDinrzee7t8cuyKQwFYaAyq0Hz+C0QWahxyKnk4c2zydoxL4HEnBb7GRZMpNLO1s+S5m0K9HZ2TKfnu7MFJD2ojUyW7a3KbdIhU2aIE8xcIWp11wi0UynYrEfnNE5o+eWEtn4e8z8hI6/tVlpQTbejCh8LWaPxX4wiGyQTXQG0qjGbp/MiJLHWFV1MZrRgIJAhlORVeFmWMkDOCymNXtCt7dpCCw26VeliqLkoKNhUdyUuA7GqqQmVDm0+HAMaTB37ysEY7xRHe8DlPuy8Go2oK3d6oZt/K7hEa7sP5sTyzope4Elu/dQ421N2y7P6WTDrioS8Q7KduGryeByJi52CLBzw14+fOaLhPsyZdaypqihtU+xn8mH/cLDkFuQxeyLpiV/AiWc97tj8LUGEZqBCEkUzfyIkESEjBgBYQjRVokwDTJVFgBGF3fjnmmzsCoKCgKBiPLid3Fn8ezMU6IsNZ9UrOWjitWoimlZjv3APRveZ0tz+lL3ISM9/Z9AEJIBCh2jovGriSE7MCEpqMKJS+hYhcQSZcAwJ0wdc4p2AZa4OFwVq20iVtuwtOOLGUHrHFI/tiqy9fm4rRbXaQilK5EMio7KgjlqEfY3hP+tmp4ATS/HrhbjVLtiFRpWYWBTbBR4zqd7wT8R7diObGouPbJPom/uRfTKOZU+OSfQN+dEChzDM0ruzbcVce3Av3DdwL8yMf/QxPdAQkO0YFtsnwaSCn89D295I+252sMXCnHGay/y6sZ1tKftS4Qsu51JZQliYAUY9vTzn9thY9yQxDG0fl+QL99f1bawS2CGlFIi3O6ExyuqwpTZPyBTUoQFI93nf/hRMfvSQ3G47Shq/NyhqAq9h5YyeeYofL4g6AbCkNEPRhITeBpPhKIo5KQp3tYR/5p+DGNKzHlHFaZ/OSIjfjlmEqcOHA6Y78ANy15CMxIv8uuCXv6+5u2MzqlJXxrPsqk0FDgyY7RziFgvhIKNjvOUjqDGUNmpq7QYSjhRuiN0HJ6LMzpnFKFvQN9O8vAgA7Q1yND6mK1COHBm/6Zz5wIUpQtSBrEb5fR2DKCLGqBYbaFYbaa7vSejS/5DrqNtPhJCkOcYT8+ci+iZez5l2SfQK/sUSj2z0ioLkeMP73Ik/xj5Ly7ofQnZlpyE7ZpC9rCyEC8fAO7bNJc9ramt+B3x3saNnP7iizQHU68pBHD80CFYLWpCmWdYU8+HQgiOmBxfwyqCT15YiNr+PRbCLKrS8VxJlAerzcLIg5L3v0+xn8mH/cLDAHD+74/FMAzmPjLPjDtUBLpmYHfauOwvJzFl5kguPvchMGJfIYH5XAlNYlgwaQcUgaKlEQZCMLJfN4rzYq24NS1e5ixbyVtrNuANBulbmM8ZY0Zy+MB+KEJwbN/BTO7Wgxc3rGZ1TQU2VeXQHn05stcAs0hWGM/vWBhNUkq0zlSFwss7F3P90NQ5FDnWIizCipbClWygU2Qvo8w5jm3Nr6fozUy0NWMkBapw0Tf7NJpa7iOeW8K8fw4kihDmIk9EHNUGFks/cvPNvAojtBbN9wroFaAUYXGdiGIdnngIKYUBgA7atviRKzk4Cl8mUH8FevCblIvaCLWpYp1MRfVpeAPzw0lqbVYyKVtp8j6Opm+nW8ETCLFvX6UyVx+O7pbLR1ULo4t3KcFA4NcsGCmUJgODT6q+4Rf9ZpNlzYwh5eFlS1hZVWk+bxZQtOST2NVTJtGnpIDSghz21DZ2cJgJdIfEkiJS77xjxuNIYuFpbfZj6CliFMIUf6hqvMKnCKx2K0dfenjyk+9j7G8sGPsriksLuGPuddx67v1U7qxFtSjm+6QbDBnflxsfu5RNmyppbUr84ApDmjUSzNhABGBtNVKGJemGwZETYxcmUko+27Kd5xavYG1FFQ6rhRmD+3PGuJF0y8km22bnxWNOZ8HenbyxeR1NwQA9snM5bdAIeue0eZWX1e1gmzf5gk+XBh+Xr6XG30yhI/VCNNfWm53MT2kk8Fi6km0rpcw9hd3ehSkUDEmVlk0PWyOgk+c8EsNooC4Q9tzE5XXF1mYwb6Xpl3Dm/AWLfRLSaEXzz0UPLAIkqm08FudshJLAg6pnGGqi7wBr7G9jc52LlBr+5ttB+jLoxIMMraal7hIqteoY/4wAdG09u6tPpqzoOVyOKZmNK0M4VCcTC6awqXkjX9Z8hhH+PXQpCBoW6gKp532B4K29i7i0X+r1QwQtwSDXvfue6cFJMZ+pQlDkdnPK8GEsYgfvfL0+ro1uM/PdIrVr20NRBDkeJ8cckkT+YyY6R5UEmxXRbt0kdR2CIUgSoi6EYNaF08jKS2xw2tfY3+TDfqMwqKrCJbecwEm/mM7nby2jqd5LSVkBBx09GqfbzjeLt7Fja01CJ0REaUCaCevSEo5zD0ICJd2c1ARcPjuWRWBDVQ1nP/MSTYFANLa7xtvKwu27OGpQf+6aPRNVUSh0url81ISU17OhqTxl5UldGqxrTF+4za46GZl7KN/Uf5hkkhc4FBeDsydhVWz0zz6ZTU0v0X5xHPm3BR1FgBS59M49B7uspqHlnqTntob9jn4psQA2tS8WS0+crhNwOGcBFoIN16P7XqTNea2itz6J4jgGW+6dMdZ7AJRsMFJ5VoTZJgEUtTvOwtcJtr6Mv+HahG3aehE0e/+Dz/CGlQWIn94krf5PaGp9gRx3etafziLfns/o3JEsb1iJLg00qSIR4eqeqdLGQJM6e3zVDLL2THseQ0qeWrm8LR/BEk7+7hDxY1EUrjvoQM4dMxohBBcfMYFb5nwQ15/uMNVCxW8q1pGaCxLJ2TMP4JxZyT0AnhwXFpuKFkgd12SxCILC/J0Q5kLM4bbz59d/S3FZ6iTTfYr9zOW8P6Pv8DIeX/JXvvl0LRu+2Y5qVRk7bQj9R5rvyI23vArEv1VRU4FsF/KgCuwtBiGXghDxP7EiBOMGlzFmYGl0m5SSW9/9hOeWxiaNPrpwKc8sXsGjZx7P2LLuCCGY0r0nU7onf3c3NFUkZSKKwECypaU6rcLQP/sYVtY9kaKFYFCuybw2peS3vLTtZHSZLBxG0Cyd2GzDKMs6lor6v6DLehwYhFDCi+q2kUsE23QLuYokR3XitvbHYhuDzX02qqUvenA5/rpzQTYQ5dfzzyXY/Hcc+Y+h2sZ3OH2GhA8i/p4IIXB4LsLuOo3mmuMxtPjFbiw0tOa/UK+HkgRzmSFQe+uupG/XJQix7wvHHVI8nc9r5gEQNFR8uikvTRmRXD4YGGxtKU+6vyPeXL8ev2Ym36d68AYWFXH/sceQ43Bw6Oh+dCvIprK+Gb29N04RhNxgbZVmOHbYW6DrBiUFWdz5mxPISZFzVNQ9H0MIcCQIW1IUcNgRwSBS06MEGZG/B80ex4W3npzxdX9n7GfyYb9RGCLIL8nhuAsPidv+7tvLowuXZFB0ibQqCENitaocO3koQafgjQVr0Q0jenyex8nN5x3BmAFtwkA3DC598XWa2ykLQPTf763fxIivv+HCieMyug6bYgGSu/4E4FAzi8M7tOQstnlXUh+sjFEaRDil+oSya7Eq5sunCokNA402O36E+UcNq8IBw0+JcwrbqxJzOUcQuQsGoCvFFJV8ihAWdG0r/uZ7kP5PQN8YntYiU665UDT8bxFqKsSWc3PsdTuORbbcTSovg3Acm3Jcipq+zLwEpNEatdwkn3wVGloe/14UBoAL+pzNrWv+zl5fbUxscCawK5k9H00BP7W+2LhUaQGpYobmSXMBNGvIQC4e37bYP278EPbWNfLg+1+hKgLdkOG/YDhAahIpJSUFWUwe3pvzjh6ftuihzW5h6JherFiYOpfigj+dgur3sfLzdUgpGXHQEA4/+2DcOfu2SFU6CDKwIP0gI/kfMoGiKIybPoxx02NDIXftrGXd2r1Jj4v5DSVgSPr1LGbKtEG8sWw9uyobTE8qZn7c9AP6c+P5R8SEZLy2ci3PLV0JEJOjYEhJQNP4xfNz+exXF+O0pn9v7Wo84UTCdkp6Ee+2ljC+6Bq+qr6T+PKWghLnKAblmMm2ilBTKAuRI1Sk9SCafe+iy3pARxWgoket05Gx+7CgI6g1BDm5N5OVdTpSBtD97+Jv/he6/y0iMiGmboL04q87B2fRxyhqu+Kl9ikg3CBTED+IPLAlN1oIxYMQmcwjfnSp4pOpPN4Gul6J1/8JHue+93yWuXpwStkZzNk5J6oshM0oab3o9gzXDwAba2pQFaWtNk97W2I7PHDcsXTPMZU2q0Xl/l+eyGX/fIXyuqZopAHCzP8J2SWqBjarwsAeJZx+5BgOHtcPVUkdKT/9tMk8fee75jA6JqMLAVLiKsjmr3Ou4KPnFlBb0UB+SQ6HnzmFgWP77JNCgJlif5MP+53CkAwVextSKgtRLwOgBiUnHDqSKy8xY8ivOGEK85ZvocUXpEdxLpOH9cLaoZLnvM3b2NvUnLR/CTyxeBnnjR+T9oUAOLTLUF7btQQ9xWR0SEk8j35HBHQ/rbqPM3r+kaV177C0/gOChulu7ecZw8HFp1Dmaqu0qxleVEHUFpQYBrUtz2JafJK30xFExFp+7s2AQmvDTQRbnwBUM7I16csr0VufQWZdjVDaxWm6ToHWp8CoS3BuFZQSM+k5BRS1NynNJOG9etTHk+qVNgiFvj9WnhxrDtcMuIpfr7g1us2qGiYlbwoU2/Po6U6vGIG5+Eh4N4SpNIAZ7pNlj+W4EkJw+VGTmTl2MK8tWsXm8lqWbdhNoFUjUqjDELC3oZlXPl/JgaP7ZFQlPehPw2QmYMlnG/jbk5dw3BXxfOU/KPazSp7/raiqyizZNfJLuhw2/njTbLp3z+fcUyaxdP0uNuysxmZVmTy8N92L4mPLH1/0TdJZx5CSJn+At1Zv4OTR6fO6phT1j4asJkOuzcXQ3MSMbBFIKakP1VHoPJhDuhaxpv4Zqv1mnSKHms+g3BMZlnsGatigFDLSh+oIBH69mqbAh3Q07ESm+8h9VKVEx4LT2oci92z00BoCdecijWpSz9EGyCCa9xls2W2c+kI4wXMFsvn25OPLujrec90BimUAemgFyeWbuSjXMlLbVAKhjd+LwgBwWMkMltdvZnF9G/uTTdEIhBn2EkEimVKYef6g02JNHLLWofuOym6P4lxe++O5fLJ8M5+t3MrWvbVs2lGNapgHSxVaDZ1l2/eizlOZMrpP2vVRTUUjKMn4IwEhaG0JIIXClXedneEVfk/Yz+TDf43CkJ/vSelhiLjaRPjLS68tZuqUAQwfWkpelovjD0oeUwewdPceLO018ASobG6hvKmZ0tzEiUrtcXqvSczdtTTMMBELFUG2zcWs7qOSHl8bqObtvS/xTcMidGlOekOyR3J6j1sptBdhUxzY1Xi3n8faM2UsK4BVyUXTtpFKWSCSB6DkU5DzR7JcJ+JvviesLICCkYGLNoQR+ALVOautVyUP8p9F1l8G+haIJmnrYBmAyLs/cWxrOyiW7qj2g9EDXyS5BmGGAEXvQ+rwHyE6l9jYWexsjbV8qkJiVTRCRnIWpbN6HUFj0M+cbYt5dcdy6gJeih1ZnNxrDKf1Hofb2rb4d1qtHFjWkwW7dyaly9MMgxl9+ifc16s4j2uOPZgbH36bQLNGTECyjPi0JDc+/A7v33kpNmvqaac2zeJNSqjYVZuyzQ+G/czl/N+K3NzOeaZaW4Pcded73HnXGQghGDe4B+MG90ja3hcKsbEqdZKpKgRLd+7JSGEoceZwdOlI3tq9IqnScEHfg7Am8TBIKVlQO5/3K96iKmCGeGZZsplWPJOTe/0fQkjsag5KhznaqeZjEQ60FHVpDDTcqpPUuWZEmfSynVPpV3A7Cj5aa08H2RJpkfJ40NH878YoDAC4LkRIP7Llfsz5PWLYsiCyrkG4zkjTL9jdZxLyxZNntBs9Klb0lDIwAgNFfL8x8ztbY8OL3NYQgUCHAk9hKEKhyJ7DtOKRLKjawtNbFrG0didCCCYV9ebcvpMYXRD7LB/Rvx8PLl6c9PyKEIzq2pV8V7wstFktHHnAIEb16caxv3kkafbdkvW7ePnTlZxxxJiU11q1Ozkld8d2g8f2zqjt94b9TD7sFyxJmeCwI4en5dduT5Onqgqvv7084/5Fho6lTN1hvT1F3D3uLOyqFTNVuI1RKc/u4cEJF5BlTczQVO2v4I71N7K0fmFUWQBY37SKf276K+X+vQmVBYCyrNlprkShV/YpWJRs0j0+isiiZ9flZLlPRho+/C1txeMyffCkjA/LEpZeiMJ3EHlPIjyXIzxXIPKfRRS8jmjvnk7Un9FCyPs0qrCjCBURNxIVsOANL3rNvcnviJRmiNb2mmtoDa5K2u67IJEC57GEsEapvMxZKfIMnlo2nY0NzUz/8HYe2PQRlYEa/EaAHd5a7lzzMafMe4T6QGwI0uUHTIgrsBOBKgQjS7owqTR5dVCvP8h7X28kWskvakoU0SE2tQb4dFl6b0xugSetnzYU0Aj4UodG/CCQQRTBeQAA+f9JREFUGX7+h580+vQtpqxHQYYViE0sX7aDPXsyW7xkJB/avTaZ4A/Dj+Wg4gGASYJhyghzxjqr92TO6ZM80fbVPc/z9I5Ho8oCQLPWxJt7X+XR7Y9gS6AsAFgUO/2zZ6Zk01OFnV6e9JSdQkBZzjUMLn4Eq5pPqPUFkM2kNkR1QILkZCEEwnMlovgLRNZN4L4Ekf1HRPEChPuitF0awZXgewOHZQCWMJ9hhzOgqr3MAqsp70R0kNQ3P0x98+MYRnpK0m+DjlOMRZHk2ALt9ra1KLHncV7PYzh53sNctOBp5lduokUL0Bzy83H5Bs76/DGe3xarHIzs0oUJpaXRNUhHGFJyxcTUeZn/efXLtFPhnA+XpmkB2fmZ0YU3VHeOIvd7wX4mH/5rFIbJBw5g0JBuCSfkqB05XHtBYibgbN1eRSCk8dWaHcz7ZjM7KuqT9j+hZ1lK7wJA95xsumanD8mIjrmoP+8f+luuGzKLI7oO58huI7l15Im8eci1KYu2vbz7KXx6+/h7EwYGhtR5evsDGElCnRyWIoYWRCw2HRktFLJsfembex7ZrllIaaBLgS5FAuYElRz3SVHXrxZc1M5ylDkUa+KwKyEEwj4J4bnKFA62A9IqY3rgK1qrJhJsuhE98DEC3aSpbZfUrNqn4i58DZvzaExfDiR7qyPXHJAada2vsb7iaGpbXur0NabDwKy+cUJLCPBYg2Rb/dhVHbticELpQdw2/ArmbF3DY1s+Q5N6dO1utRioqoHEYIe3lltXxFIuTuxext1HzMSmmtesCgVLePExrLiER485PuX9Xbh6W9hLl6RNeCCbdlWnvd7ps8embiAlNbtr+f3p9/3oSkOEBSPd53/4aUMIwS8um56u3lPc871jRy07y+uZv2QzX63aQSCYOFnfYbUwrGtxXAGw9tANyYReyZXyuD5VK/884EyemnIxJ/UYx2Fdh3J278m8NvUqfjP0qKTv6w7vVj6sfCfhPolkTdNKvqr9Mul5RxdegMfaJcFS2ZwvJpdcR7Z9NDY13bUoFHhOjX7T/W+TzivREUItTb5PyUe4z0LJ+hXCdXpsaGsCSBkkVP9LQrWz0VufRug7sAorDmHBGjEdKYU4sn6DK/8RhDAQQpCTQZ5ISN9GVcON7Kw6Dt1o6NQ1ZoJhOQOjBT8jsKs6hY5WPNYgDlWnn6eQPw07lzHZY7l28Wtsaq6K60cPV7f+84q32dTUtl8IwX+OO5bR3cwQN4uiYFEUhBBYFYXbjjicQ3qntuZ/tTY9g1VFbTN6mnXUiMn9yc5P77F58JaXWfDuirTtvk/sb/LhvyYkSbUo/P2u07nt1rl8tWBzbAKpAMNm0uNJwCQYEDT7ghz5qwdp8bVZuccMLOX35x5Ozy55Mf0f2KcnvfJz2VXfmDSs44IJY1MKjETIsjo5vdckTu81KaP29cFa1jYlf0kkkoZQHRuaVzM4e0TCNr1zTsdhKWJj/UM0BdcDMmy9soD0savpeYS+nRZpp526hQ0dGwZCKAhho8DTZs2RCVzYEct5IuubWUTNg2LdN3zJhrYbf/25EPVYtEv+FgqqcOEsfBPF0geA3Oxr8fk/BOnHEk4CDw/MdPKGh+yTCibRp9nfjrrf4LaPwWHtu0/GDVBoz2dc3kiW1q+MUQKFAIuQ2BSdiQVjuKTvccye9y/qAt7o/vZ/FSGRikQ3JB/sWUeVr5liZ5sCe9zAwUzt2YvX1q9jQ20NTquFI/r0Y2L3srTK2IZdNW3ehRRoyWCBf9gJY5n75OdU7K6PL7QVqceg6axbuo1XH/qU06+ekbbP7w37mcv5vxkTJ/Xjlj+dwN//9iaBQLqKxiYeePlLNlS3eRk8LjvnHTOes2aNi3tnLpw0jmteTbxQV4Qg3+XkqCEDOjVmIQQj83owMi95OFRHfF7zKQpKnEEp2ieC+dUfMbkwcdE0h5rL0WUPsKz2UTY1vYsh/eSpXootAdyKDWvgeepEfZrQVkGB50yslrY8K/ktrO+qY9+9+1rTbRj+iCEl1sthESo210VYsm+IUmirzlPRfS/iUVQMJA1JamK0QRIIraey/ka6Fdy7z8YNMKPLND6tWhC3XRHgsmgIdG4Zdi6r6ut4bPPCtP0pQuH5bYu5aWRbOHCOw8Hzp57Ckj17eG/TJlqDIfoW5HP8kCEUuNKH9DU0Z0JVS9o1ktVm4YI/zOaeXz+buiMJ/7jqSZ5beRsOlz112+8L+5l8+K/xMAC4PQ7+cvupXPLLw5BWgWEV6HYFw6GCItqWvuEqMntaW2KUBYAVm/ZwwV/nsLdDBU9FCB46ZTYFblfM8lcN93XKqGGcOXZkp8dcH/Ty4KZPmfnJnUx671aOm/dPnt76Ja1aYgalqkBF2j4Fgkp/ckYQgK7uw5jS7Qncli6oQiIwMPDTqu1gb8NtVLY8S+yTLghKFb9UUUQuPYvmYLO2WRxU68CY/iVEvRwdBUukKqjimp32WjKF1vokyCCJLVgGSC+a/73oFpt1AF2KXsFi6WNa3DGrWGtACIHPUGiRKnrcKySobnl6n407gkv7nkWpq2v4DCLmbw9Xdy7qcwaLarayw1ubMhFSVcysGAPJmoZ4Wr1ch5PzR43h79OP4JaDD2VSaY+Mwuiy3Y6M4ina00wmg8vj4PbnLqO4a9gi2K5oG4YBAVPpkIbkzSc+w0hjkfpesZ+5nP/bcfDUQTz/0hWUlHSwRrcPs4tAgc01sSFJLa0B7n3hc+5/Mb4S7VFDBvCLKSYNqNquUpkQkGW38fDpx2O3dN6G91XNJn61+AmmfvAnDv3wVn6/bA6r6ncmbb/XtzupsgDm/FvpT0256bTkMbnkOo4qOZcxjp30tdWQpTSjUEuT72N21/+WkL476fF57lPonvenmG2KdShkEODTBhWL89T0zTKANOowWjvKtFgYvhdpX2/ImvMXVNcFgJVsxUI3xUqWSLek0mlunYump/e0dga93KVc3OdMBCLG0xApEXtZ33ModXXjiU0LSJEu3DZKafBNbfwzJITggNJSbpo2jdtmHMFF48ZlpCyAyVCWDgXZrozkzYwzJvOLv6SmR5USfN4A815bktH4vhfsZ/Lhv8bD0B4nnzKB/OIs/vb3N5G6+WtFPAtSESiqgo5Ec8Y/uLoh8foCPPrmV9x0/hEx+3rl5/HuJefy2qq1vLV2Ay2BAP0KCzh9zAgm9kxvpe2Iva0NnL/wYar9zdFF4E5vDXete5/Xd33DY5MuJMcW+7I6lPSVpyUSR5Ichvb4uuIS/HpYsQgP3Y6GpV1lglgINFSKcv+CwEpIr8AapjBVLX1QbZPQg18T4R+yCCXsSRAxf80xKlgcx6AHPgclF8Uy7DvRoZnKQCoLkET3vweey6Nb7LZRdC/5DJ//c3bWnIYEfDJ5orEJnWZ/egtOZ5Fl9fCXYdfzec1XfFr1JXXBBvJteRxaPIWDCsdjU20srd2GKpSkzFqR2xcKqBiGwhPrlpKluhhb1D3u3mqGwSebt/LamrVUtXjplp3FScOHcVDvngktQKP6pWZjAbMoz0Ej+mR0vQUlOQwf3YOqbVVtBXWN2IrsAPVVTbQ2+/H8wHSqEQhDIIzUz2W6/f/DTwvZ2S4eefwifnPdHNavS75wDmVb0JMI+6ffWszxh46gWzu2JCEE1xw6hUMG9Oa5JStZW16F02bhiEH9OWn0sIQJo+nw8KaPeWjzx6gI9PDc+UnlGj6qWMUNw47n+LJ4+lCn6oqZaxPBrqaXI77AGiobfx9TpVnKdOsfgdM6ghzPBTQHt+Cx9UUJh61a3eeg+zOtUC9QnadhaOsxNA3FOgRFyUt/WBIYgS9po29NAulFBpcg7GZ+hhAWbDk3IrOupL7ul/j88/GnpFiNQMcfXIHHedi3Hm8iTC85kL6enrxfMY9VjWYNiRE5Q5jRZSo93aUEDY1VDakNhVKCNAShoIVtIS+PrfuaE/sMJ8ce/2zubWpizvJVfL1zN4oimNKzB6eOHE6RJ3G40OgB3fl6bXJFFuCQsZlVEweYeMRwHrgxdQiwalXZvj7zehP7GvubfNgvFYaAL0jQH8Kd40yq1U4/ZAjduuZx/c0v09jUiqqa8Xi6buBw2qh36VH/S5QZK/y7GlLy9sK1XH/WoXGML1kOO+ccMJpzDhj9na/j98tfoibQEmMxjiynt3uruW3NW/x99Ckxx5S5epNrzachlDwZTxUqw3JSMxF4g7tpCCyP2+4Q6V3122uvwqnogMDtOJiSnP9n76zj7KjOPv49M3N1XZONu4e4B0IgSNDgUtwKhQrSQktfalCgUFpoaZFCcZdgCZYQIO6um2STbLLue31mzvvH3Hv33r2yG1qkaX/53E/2jpw5M/fMec5jv+eXOO3DcOfeT2vtHKTZhMTAkCaqUDClDBc/koRLfiHU3vjr2+5NqH2xZ92O5prd4fWTIg2rR/SQJMcIIXA5pxLCRmeT8YJ6usJynUdLqIWdrdsxpUmfjL4UOYqZ1eVoZnVJnlDYWUOFaQqkqbCkYh9fHCpjTp/hPDD1NLTwu9IaCHLNG2+z+uAhFCEwpWRzZRXzd+xiZv++/PXM0xIsoSP6dmVo72K2769OGQd+3rGjcDlS0xk2N/mYP3cNntYAI0b3wu60IZDQPiwpFsJyUX9rOMJczv8NME0TT7Mfm0PD6UpS/Alwux088pfLeOiP8/lw/kYUxQpdlFJimhI9WyOQYb0vUoDhsD5SgDDBFhS8/+UWrjt7akLbY3p0Y0yPjhXsjrCmbg9PlC4AiCoLQNRgcO/muYzJ602fzOK488blTWJL88aU7SooTMjvOAS2ovF3KfakWwBJfKENLD90LgYKdiWPPjmX0T/nKlT7BGwZ1xHyPEFiPYjYtiUo3Qj63ibofSG8XUNznYkr51cIJbfDvid2q2P5ACQn4VByMW2jaPV91unL6ca/LiOklJS27qY2UEumlsnQ7CH0yejJ9/v/a1SipikwDYUmI8Tdaxbw542Leea48xlb1OYdnrd9J7e8Nx9TyihZxpryQzy2fBWPnX0G0/v2Tmj3eyeNS6swaKrCNWekH3erluxi87p9ZGW7mDi1E2G/UuJwdr7exL8dR5h8OKIUhs0rd/PKwx+x5vNtICE7P4PTLj+a834wC6fbES5rLqNKxNDBJbzxwg18vngHG7ccRAgYO6o3X+7cx7xlW8EwMRWsQMC4+GxJSJq8v2wrU0f2JcvlICNcdXBffSPrD1gLLafDxns7trNk336klEzs2YMrxo1lcq/4ZLBKTws1Pg9Frgy6Zlgx5buaK1mfxq1sSMknFVv46bBWChxtrAGKUDi127m8uO+JlOceXXgCmVr65OsK74dJt6vIDiNP2vwPEo9/MXsDZ9C3eC5O+wiyiubjb/kLQe8bmPgxpYpN7QkEEcKJYhuJ4Z+PNPbGtSmNMgKN1wN/RnOdlb4DSaDYRmIEFpF60a+i2JJT5wqhke06mWbfh1ZoVppQfSkhKBsJ6BU4tJLD7idA0Azy6v4XWVr3ZRzL1YjskVzW5xpy7blJzxuX34enSr9I2W4kskea4cqa4Yn+nbIt9MjM4dbRMwD45UefsvaQZZWJCIPIsYv2lPHA54v55fHHxrUthOAP15/G1X94jZrG1jZmVaz5cPzgnvzonOSKjq4b3Pnjl1i3KuY3f2YxTpuKbqTyZoGiKoyZPghHikXfN4HOJK39JyW1Hcnw+4K8+eQi3n9xGY11rSBg7LRBXPiD4xk50fJ8maYZlQ+qqvDTn53KBRdO5tNPNtPQ4KGoKItxk/px1T2vWscrEMymbY0sBFJIgi54ffVmTpsxHE1TKczKQFEEId1g2Y591Lf4yM50Uuqt5/Utm6nyeCh0uThv5EguPuoocpxtFv6gYbCn3jIA9cvPx65aYTuvlC1FFRaVtykFhqlYJhchURUTmyJ4Y/8Kbht2etxzGJ8/mXkV71AfrE0ITRIo2BQ7M4vivefJ4A2uTLFHkl5pABUTA4Wg2cDOhofxBPdwVNHvsWX9AsU2jFDrE5j6VutgpQghnCBNhNoTUwYxQmuJX2np6L65eEJbyCh8G6EcHo2pSEGu0e4oFG1w0j1Z7tOoa/5jp6/nC6wmN/OrF/vc2ryNZ/Y+R1WgLTE5U8vkvB7ncGxx8twTu6IxPLeEbY2VacNWTaPNyCoBTyjI5QtfZdGZN1DgdLOzppafvDsvgVUvUoDw+2+9w6fXXplA8DJ1ZF+umzOFJ+YuixqiwJIdqiL4w41nUJiT/Hdbumg7f7jrTXyethy4Jx+GzC65+GqakCkYMA3dZOophx8K/u/CkSYfjhiF4cv31nHvD/4ZrvRnbWuu9/DKwx+x8P0N5PUpZvvGA0gJw8f04pxLpzJl5lDsNo0TZg7nhJnDo21tq661lAsBUX9r7AoxzC9/9wsLCLlBUQVTh/aiSYRYW97m8pNIpAKmDVDg0127+bR0N6cMGcQfZp/EjsZa7lu9iGWVbYrB1JLe3DFuBqXegx3esyFNtjdVMK04nh9/csEMPHor7x58FYmJErbiS0ymFR7HnB4d81CbZnKLi4lATasSy3aiwkDKABUNd9K3yzsoajfcuffiyvkdUrYgRGZcER1f7fkQV2e6rV2AQNNdqM5TEOLwkpg092UYgQVpjjCwuVNbZoqzb6LZ93G0H8nyeyPzp45Cve8TSrIuO6w+gpXX8bfSh9nWvCUhZGBr8xb+sP1u7hz2GzK0xIl1SlF/emUUcNDbkDIsKRiw0V6YS+CZHav5wYipNPr8fLB9R8pfWErJyxs28uPpUxIKuXUrzOHVX13K3MWbeX/pVhpbffQszuXsY0Zy4oTBCcUOI+3deOmT7C2tSnjH/CEDCnNR65qIqh4xgkGakvN/2PHC5mvFEWZBOlLh9wa5/ZLH2LW5vG1xIWH9sl2sXbyTSccNZevafbQ0esnKdXPSeRM466pjyC/KplevAq66ekZbW4EQqiLQTUkoE2totpcPQLXHw+zfPg1Al9xMRvXpxoqd+2nyts2tpioJ5IPhBk8wyIOLF/PEqlX89fTTmdi9O39bsYLn1q+n0W+dk+t0cvmYMdwwcSIbGvehmyYBXcOUCpGBZgAhQ8VQDTY0JDLT2BU7twz+OY/ueoiD/gMoYTY4A4MsLYsbBtxMgaOww2cq0xQ16/jc+GMOet6je9YcCl2T0FxnobnOQpqt1pFK28JTD6zAW5cqdt3A1HcQ9L6EI/PaDvsQC8U2HGEbiQxtJblRSUXYpyK05MxPDttgMl2n0uqbT2eYnqzj/nRYfYxge/MOHtj+UIJ8aNVb+WfZsxhS5/guxyU998oBU7lt9ZtJ90Xkl6HHR2WYSDyhEK/v3sD1w6fw/Nr1KX9hCYQMk1c3bOInRyd61649YwrjBvfktQXr2FhagaYqHDOmP+cdNzqBSCaC1ctK+c2tLyfd16qoCJuGCISi67IIFFVhxKT+DBqd6O34xnCEyYcjQmHwtPj4483PW4v8dpqm4XRQ0eincsP+6Fjasn4/m9fuY9DoXpx01liOnTWcjIy2xc/sKUN5+v0VFltSKuaX8DZFB0ORLNq/L8yuFHMIAkyJGgTD3rZv3radfHJgF6EMPUHTX165n3PnvcgPxqYPGYoglaXg+C6nMjH/aFY3LKEhWEeGmsm4/KkUOoqTHt8e+c5x0JS4PYCGS4bSeBkENtF+wjXxBVcTCO3GEWYPEkJDiPgJwtT3Y4ZWpO+YbMbwf4oWU8wt5aFmK5IQQuSgOmagua9A9z5Dm90bIq5vW+bNqPbRKdty2UfSp+gZ9tZ8n4D0Y8OMGxqRsRVCAVSMr8i3va15C1ubNyfdZ2JSF6zli5qFzC45PWG/IhT+MuF7XLX0aeqDngSBoodUgoHkr3xrKMiG2kNU1Ho6nL8CusG6QxUc07dPwr5Ml4OehTkUZblpbPRSW9fK3oN11A320jVJleeln+9g7+7q5O9YSEdp8oCqhh+wANV6pzRFcPNDF3PUlOTF5L4xdMKC9J8kEI5UvP7EZ5TGKgthmOEkhBULt0W3tTR6efOpL3jvpWUcd/nRnHjKKIYMafMWOh02jp80mI9X70B2UoJWNbby8fqdCduFAc4a8BdZSgNAcyDAZW+8QaHbTZ3XGzd8Gv1+Hlm2jK3V1SiZCkFdxYxWio1/h0KGRkMgOStZvr2QXw67hx0tW9nWvBkDg74ZAxidO9Ziw+sEbGp3QkYyL3hqD4OUYKCE58k2CFQOtLxBoauNyz9ZAc6g9xXaCrElR8jzYqcUBil1pNmEUNwI4ULL+SOhuvOw6L9j21dBKcCW+/u07ZXkP0Jl/Y9p8b3f4bXNJPUjOotXDrxmGSNTTCyvHniD6YXTcKiJRrXZ3UewtbGCp0uXxuW7ReRX0JdoUALL+LmgvJTrh0/hs917UzJBguVp+HxPWVKFAaB7UQ49u+SxdV81vkCIPYfq2H2wlp7FuShK4rUf+s3c5BeSEtHkgZABSlhhjiSdmyZDx/Xll09d9y/lPv7LOMLkwxGhMHz21moC/lDCg5eaChlWsk7s+I4IjZ3r97NtRwV/f+QTbr79VI4/0aqw2acknzOPHsHbizd1yPyiGBCy01bdu91cKbA8HsIEqVr7TWHis4csQ0S75k0p0TF5Z2cp2BP3t0ddoCXlvixbNjOLv1rMf4FrMqrIRjeb4x6BX2pWHkNSPUqiINFSWFhC+v6owpAM0kifkGVBRRrpvS9B/wJ8LX9BD1nsCELpgivjShxZv0C1jSLk+QemvgUAxTYaW8Z1ncqNyHLOYHDJQtYcPJogAhUTJTywTAQ6EY3RwG1LnbwlpcRvtKAIFYca7ylYWvtlWspDieTLms+TKgwAfTKLePvYH/L2gbXMO7iBlpAfp3CwuboBXU+fsB00jbSCIBbJuLJNU/Lrpz5k/rJt0arqDS3w/IereX3heh699VxG9I8P03r28c+SLy9COkpjTN2OmMEmVMGwSQOYedb4TvX1a8URZkE6EmEYJh+8tKzDwp2xkKbE7wnywdNfMPeD9Ywa1Yvf/PossrMteXL1nMl8sn4nQjetef0rLkoiyceOBvC6iHsRar3JjQ4S+GT3bqaOLOaAPJDuLqj3B5FSJl00CSEYkj2cIdnDk5zbMYqzfkJ5wy3htoj+n2oKiRhYmgwniV5OA08o0RuS0IZxgI7IK8wO5IhpNtDa8gg+z0tI2QIoOJwnkJn1E+yF76N7Hsf0vQnSByIT1X0+asb3EWpR2nYVxUW3wic4VPcjWrxvpDlSYO+Adls3gwRMHy41M66AXqWvkr2esrTnBswAaxvXM6UgsZCaEILbRpzIMV0G8vLeVWxpPIRDtVHW2EyrX8YsZBIRDNPGGp14j1LVpNq8p4Ib//gmvmAo+j6u3nGAldv2c9KkIfz2mpNRY/JO9+2ppq4m+RpHNLWCPxQzkmL+0lQu//kZZB1mBfd/O44w+XBEKAxl2w+hqiqG3m4icTlSewgIr+2DBgFV577fvkNOrpu+g7rw7FvLWbhoO46AtUAzNYnhFHGVoGPbMDUQobbhKkVYOVBjrmOEtwFClWmfvCkle5sbyCtKz2QhgKU1pczp2UGhq6+A/a2fURsSZCpKVAGwor0UmkwXWYofDdkWqy6s/Aan0FPKTkXJTntNoeR3omcGKAUp9/o9z+Bp+iWxjMHSrMLbcj+h4BKy8p9Fc58dTl4TCHF48e8OrRsF7lOo836InlRwCWxKIXmuYxN7LnXW1r/Lmrq5NOsWrV6evQeDs49lYsEcnGoGDaH6tJSHAE2hJK6fGOTY3VzRfzpX9J8OwKa6Cs6Y/0zac1QhGJrXhW6OjpP/FCEY0SWxcOAbn21g/jLLUhu7ODNNiT+gc/PDc/ngj9dGiQLefnMVe/fUJFVhRDhsI9k+KWHj8lK2r93H0HF9Ouzv14ojTCAciWhp9NJU7zns8wQg/CFEyGDTpgP84s7X+csjl/LFFzt4+ZXluHf7cQOGDfyFGv585SspDgKB0EEJSsxORlqqQnCo2Q9aunwBQVPIz57WWvpnpV/sHi6ChodF9UsJBLsxzHEIKSHeOCyRMYvPSKRwo+nCT7IkVAVbB4XVAIRSSEceBpGGLck06qirOQPD2B/ThknA/ykB/0LyCp7FkfNbZPZvAD/gPGwLdUH2TR0oDJCXeVXS7VX+PSyueZUdzcuQmGjCQd/M0UzMP4PeGUfREGrs8PoKgsZg+uMmFvVlYlHf6PcrF77GlxV74pLnY6EKwdjC7gCM79GNj3eWpjQuqUIwvkf3hO3BkM4tf3kHXyAUl/8QkRUfrdjOyP4lXHi8RRhTV9PCnTeloCjXDYQ/NQGLAF7603zuffWHKY/5RnCEyYcjQmGwkh6TPHVNSzuBCwDTCupRFMFT/1jEQSVIQ5M3qkULrLAjpVUSyiBaDZrwFUOZlvcgDtI6x5SAFr5OrIejU0+945EmAb/RuQJDh4M6/za+rPwlEkmz6cIpQjiUEGr4JfdJG9KU2IWJGl7c5gsfmpK6v5raDZd9DFJKPP5PaWx9ikBoEwI7ma6Tyc28Gps2EKENRuo7SX3vDjTnCUn3GPpBPE13hb8l/iihwGL8nhdwZV512DkQseiT9wtaAqsJGrW0d10LBAMLH4oW94nAlAZzD9zN7taVxN5bfaCc5bUvsLjmVUbnnUaOLS+thwEgx9axYI3FyIISjsrvypaGqqSTvCoEp/YaSpErgyJXBpN69mB1+cGUx548eGACdZ6Ukpc/XhMX7BULU0oaW30sWL2L2VOGsmbVHh59+OOoRTJ+rSERgVAaX4hViPHz99Z+6wrDkZbUdiTC7vjXxJwI6pg2la1bD/HAg/P48MNNcaETSgjcFTqaR6G1Z3qZk/Y6nSNhAywSgpZAAEVT0iawAgS+BhnxScW9VPg2I8lkrb8XPbQGirRWFCRe006z6UIIA6fQUZDoUsUnNWTK0k8m3TNPA0A3qmlqfYZm75uYZjM2rS+5mZeT5T4bm+tsdH/y4ncWFGzu1Pz8Lc33tVMWIjAAk8aGmyjuujZsSDp8mlsAh20Qhdk/o7b5DySyPQncjmPIyUisH7Hfs5mX9v0fpjSQ4XN0GWBXywp2taygwN6DCQUXdXh9E5mSGCMVrhgynkWHdqduU0ouGWSFSV8+fgzzd+xKe+z3xiQWhV24tpT65tShugJ46eM1XHDcaAB+e9sr1KbyLvgCaVPrTVOyfvFOmus9naoK/XXhSJMPR0ThtqmzR2HoyRZYnfklrCFnmpLNlbXUxygL8UeA5pNRf6tEYjitxX8M42rc8cKwuiBp5+nrFO+uoIszN+2iSUEwMCvR0vuvYkvDS7TF+Qv80k6TkUG9kUG9kUmr6SIg7eioBLARwIZHprfUF+fcAQhqGv+PirrL8QWWYJoNGGYVTZ4X2Fd1PF7/Z9izfh4+I/md27J+hEjhqQh4I/1ODonE2/IQup7Ojd8xHFoJR3V9hy6Z56NEFQ9BnmsGI7q+Tq5rWsI5mxs/ZXfrCtqPycjaQiXE6vr38etlaZUFgeDoohkp96fCw0efSZ7DjdpuMaMg6JOVz68ntilhv599AkUZ7vg8zvCnb34evznh+Lg2appaeWLeCsprmtK+caqqsGGXFU726svLURTLa5cY2SYTFAgME4Ih6xMKYeomLU1fLU/k3wrZyc//8K3Bnelk1OT+SeOjO4XwaYoi+PDDTUC8By3ybjiaTexNX72IoEzkBEiLbCWjQ2XBpqj0zOiM57bzaAjsZ2/r0uii1mM62REsYbF3IF94B7LG35u9wUJMqeCTdjzSgV9qCYnOEQhUMmx9Kck4iUBoB/uqZlLf8hd04wCmbCIQ2khVw80crL0E1TEd1TaW5AXeVIRSgD3j8qTXMc1WfN7XSe2dkEiznpam+5Cyg5oMHaAg5yeUFPwNh21IW++UYgpzbqdH0bNxRB8QNiiVP4Ap9ehzbY+6YDkfV/yRbs4uJJk1o3AoDsbmjj6s/s7o1o/rh0+2+hkz8avCKvP2u4kn0T/H8uyP696NH0yxChDGvlKqYvXqdyfNYkBhWxSAaUqWbtrL8x+uTuutkcCh2mbqm71s31zO9iQ5R20Hd25S9bZ+9VyRfwuOMPlwRHgYho3vy7AJ/di+tgwzlrM9ELISJtOEJEmbgqkJTFVgOJU4FpZYCCxPgtCl5SEQoLvT6bjh8wxAAzNmfhNBYRkd0qhruXYnl/ebxP1bP0h5jIlkc2M5PiOIS/3q1JJSWglUSjhhqNzzBckZMNoSNYJSwxVT9bJZOsCEbBEITwoqoCOEiy65d5GbcQ4t3rk0eZ4OnxHbvmXdqai/lr4lq3Hk/p1A851g1tGmuDixZf0YW8YNKe/D0HeQjqHC8vQ0Ul45iZysG8nN/sVXToiya8X0L7iHvvl3ETLqUJUsNCUxqTeCtfXvxtxLcqjCoD64k97ukez3lieEoyko5NsLmFGUnAEjHfpk5TPv1Kt4ZvtqXt+9kcagjy6uLC4eOIZLBo0ly+7gUHMLj65YzttbthIwDIQicGkamNAtK5sLR4/k/KNGkGG3xpqUksfmL+fJD1eAlB3WaLXIZKzchnVrypBh10LCWyQEUghEhAc2pLdLQgIZCLJvSzmGYaKq357d40izIB2puOAHx7NhRWoLaipIwHRoEK6/kN4gAc56g2COGmtv6cQ1JKYNzMOYwgVw0cBxPFeziPqAJ6XiYJom6+sPcHSXf40cQEor4U4IQVnrcgRKioWtdcM6KkGp4RB6dGvbGSLMtScBkxzHSMYW/wlF2KmovRLTbCZePlhn+QJLqG95hIKC5/E13oru/4i2hyxRbMNw5z2KkiLXwPIsJE8Cj4XX8xh+//vkF7yIZvvqzy3bPYcs15kYZj1SBtHUYoRIPkvubl1Li17XYZsmJvm2eir91nNOFrJ8Qc9zkyY8d4Tbx8xkXFEPnt62irU15ShC4ehufblm6EQmFPdESsk7W7fzxIpV7KytAwF2TQMJDlXl6H59uGL8GEZ3a8tT21/VwE8ensv+qoa0+S2xUBTBmmW7UVUFI0UNHqmqnXm1qKlopGuvjhm/vi4cafLhiFAYhBD86unr+PWVj7Nt9V5ULcwzHwwi3c6kAzXyNZRlB0VgaqJDV7IkHH4UKTjb3rWQ4iRTYDEo0faCi4CCdKVe3N48Zjrn9R7NlzU7WVqT2v23qm4vv97wNvePTXRxdoRy7y6+rJnLtuZVGFKn0NGdKQWnYHbCuhJ5npZ+ZVkWmk0nrdgZXXAzSC82rRtZrlNRw2wXDS3pCvJIpPTT7HmVvKzrUZ2zMAKfI40DCCUP1TErKWtGHIQr3H5q376Ulkrf1PJXFCWfnKzUCkhHCBpNHPR8il+vw6UV0z1zFrYUfawN7CedsiAESBNMVHo6NXpnHMuS2i/i6jAMzxnJZX2uwp2EUjWxbzqfHNrB7uZaMjQ7J3QfTK/MfH465lh+OubYhOP3NzZyzksv0+T3R0ORJJKAoWNXVR447SSO6to17pwXPlvH4/OXW1+ktKxN7cOLYqAbJhOG9YrWQwHATHK8EEiXA7x+RHtlIQa7Nx3gjUc/4YIfndTh8/ha8R804f+3YszUgdz6hwt4+BdvYOim5W0QpPBMW5CAkelAKFZ9g44UAAGoftl2cifOiSCY17njwLIAF2dmcv6IkRzVUsg1S59L4MSPwEBy04qXeW3GdQzO6Zr0mFTQzQCbGueyuXEuLaFKVGFnQNax2JSsTnVWYr26kUoqChJVKBS5Z5LtGIFApdA1mRyHlXTt8S8iZJSladGkqfUZ8rN/gjv/CUx9P3rgS0BHtY1GtY9K2x8hOh9iZBoV1NeeS2GXL1A6kVuRDFJKavzrqPVtQAhBsWs8+Y7hSY1UVb7daZSwNhgSAkY5V/e9mfcqFlDpbysAl6VlcV7Pc5hRlLzeTXvsaallYcUOfHqIgTnFHFcymFk9BjKrR3Il6cEvlvD4ilVxv3xAt9YKJwzqzx9Pm40Sc28tXj/X3f8aDS3e8PNI3x8hoE/XfHIzXSkVhShcdmjxpn+9BPz2yid4ZvlvyMj+auFl/xYcQfLhKykMjz76KA888ACVlZWMGjWKv/zlL0ycOLHD81555RUuuugizjzzTObOnftVLp0S2fkZ/HHuzWxaXsqSeRvweQL0GtSVHkO68Yc738LrDUTDgyII5TjgK1gnzTDbUceQSCEsy1FMIoO0gRpSyXa5aFH86KYRpTizKSq3jDmay4aMRSJp8gXjEosT+oLko4rN3OQ54bBcz1ualvPyvgcREA2BqQ0c5L1D/2CwKwNBS9qbVITEZ9owo24SiSpN7MKkIOtKlHbJxFKaBEIb0rYJ4AuuJg8QwobmnNXp+wGwO08m6Hs75X4pJXr4+oaEqsYH8Zs6GY7xZDgmd9rbIKVkR+NTbK9/AhM9bC3TWV97HyMLfkz/nLY40/2e9XxZ/TQmIdJaJyWYKLQadra1lnLX8J8xp/u57GrZjhGu9Fzo6Fzi4qKKXfx05VyaQn60cA2O+zd9ymk9h/P78afjVBOTDu/6dEGcshCBISUBw+DWefP5+Moros8oGNJ54sPlbQcKgWGTaCkMeIoiKM7N5JjR/VFVhf4DurBndzXoMumkL90OhM/foZR567EFnH398d9etefOuJSPIIHRWXwXZcSss8Yz8dihfPrWavbtqsLhsjP5uKF89MYqvvhgAyLM7AXWeDRdNow8d9QuZCkNskPDkr3Z0ppDrvict1QI5IORYj3TNTOTytbWaJiIISWDCgv5+xlnkOVwoDcZ6ClqrkQggWdKl3LvuLM77EsEIdPPuwdupcq/DaJzZpCdzQvCbaa/pkCiSwW/dENUYTBxCp0s+0AG5F6XcI4/uAZrSZLaYGXKZkL6Xhy2oShaL+xa54ufqWofVG0Ahr6bjl5KUxo0hhppqL2NDOcJFGecgF1NnUzdHq2hchZX/JSmYCkiLCMlJvmO4UwruR+3ZoUSh8wAn1W9wOr69zGl2amiqCYCn76P+0bew27PHuoCdWRqmQzOGoSmdDwPevUgd6yey8eHtqMgUIRAlyZ5djd/nHg2U4v7JZyzoaKSx1esCt9HGyJ/v7dtBycOGsDswYOi+95dvIW6Zk9no4eQEi49ebzF3jWiR3qlQVGQ2W6U5jRKg4TWZh+fvrGSM686/DDefwuOMPlw2FL21Vdf5ZZbbuGxxx5j0qRJ/PnPf+akk05ix44dFBen5vgvKyvjtttu4+ijO6f9fhUIIThqysAEbvbnP7yVBR9sYMG8DWzfegipKYQy7XEBeMLAMpd3EOdq2AgLDIkSFGlZLQQC3UF0NEth5Tw4HRrnDB3OLVOmoiiCD8q2U+1rpdiVyezeg8lzWtJjefUe1jcewNbBr6QAT+3+BFXRCZgh+meWcGq3SRQ7c5Me79NbeW3/n5BJHdmSiqBCN3v6USyQxNfgFVblTlwEjEZcWvuxIOjI+h9xVcciZFTS6luIKX04bUNwO6amXNjbnSeiaAMw9b0J14lYtP2mpFUqGChAAF/Tg4CJQ+tPn8LHcdqTV/KMxa6m59la/2hb22EBZ8oAG2r/gCqc9Mk+i90ty5lb/uvYXpBKaRAC/IYt3Eed58oe5vv9f86YvM5Rh+qmQXPIz66mam5Y+hqmjCTNtU268w5sJWQa/GVKfFLgtupqvty3L2XbppTsaWhgzcFDUfaLNbsP0uILxB0nNUsRU0PxdyoE5Ga6ePjms9HCCvo5503kD/e8mzoqT1GQDhv4g2ltmc0NHvZuPfitFec50lzO/w58l2VEdl4GZ18dv3gYM30QZ115DB++voIvFm6j1R/CcNuRdvWwQhYloLsUFNP6W/NCqAPjtLSBnsQpObSoiB9NmcIJ/fuz5tAhVpSXAzCxe3fGdesWrUb9yPbPOuyXIU0+rdxE/z0aB701uDQHxxSOZkLBMFSR/A1cU/c81f7ttF/NSIww+5FAhKVAkrvCIYLohGN3wzAReKUdjx5Icg7hub8zL0ubjJDSoNm/BL++G0VkkOs6DpuaPARFCEFm1i00NfwgbesNho1DhsuSb57F4FnC9rrf0Sfnavrn/QiR4plFEDAaWVB+LQGjwepjzDNqCGxnYfn3ObnXy4DGC2V3Ue7dgQxLpFRoW3Rbz3Np3bsMyZnKgMwhDMhMT9EaQWsoQMjU+dmquSyp2QNYBseId6ox6OO6JS/xyrFXMSKvW/S8oGHw9Ko1qEKkZEZShOCFtRviFIaPV+7olLKgKgLDlHzvxHGcPs3yNo2fOoDikhyqK5pSn+h2Ipu9Hfq61ny29VtTGI40+XDYCsNDDz3Etddey5VXXgnAY489xgcffMDTTz/NHXfckfQcwzD43ve+x29+8xu+/PJLGhsb/6VOHy4yspycceEkzrhwEmtW7eHBP86nsi4++14Amt9EdyePMZSEi69FPBJCoPkgmKJWgqoIeuTl8Pz3z6c5EKAgw40nFMIXClGSlYXb1mblnVbSmyc2r+KJTav5+ZKPKcnI4pIhozkYqgxP6Kk1bUWYZNqCLKpZhYLARLK0ZgvP7/2UW4acy2ndE7mY1zZ8hp4m7KjZcJFngktpJDbu3rKkG9iFjiKSLX4FptTZWv83xhX/On6PELgcU/EFlpJaaTBxO6zFgikDVDbcSaPnVdoKVkhsam96FDyKyzEm4WwhbGQXvERL3aUY+o62sJcwfKZJi1RjnqYg8mwDehml1ecyuOvH2LT4WgGx0E0f2+sfT7kfYEv9o3TPnM1HFX+K+JTCvU8e2GwVMxL4zLYxsb1lA4d8++jmSr8Qrgu08lTpF7y9fw1ewzLvq5qCqSttcXBhmEg+OridHU1VDM7pwod7dvH3NSvZUFFJZyJCd9bVRRUGrz+JKyHsTZOqRAlZIVYOTeWC48dw1WkTyXI7o4eecPJIPv5gPRtXlqW5YucWax26r79OHGEWpH8H/tNkhBCCIaN7MWR0L67zBnj2ucW88drKmIytyIG0xdm0UyQix+iZavRQ1QQjKDFtIuVQvueCkzhqYDcEkOdyUe3x4LLZ6JbVlg81tls3ynz1/HPrGh7ctghVKMzs0Y9zBg5nY0N5h/eX5fCT4/Lz5oFFmJgoKCyoWs2AzB7cM/J6cu3xGoshQ2xufDelF0EIGQ5BtGNKEZfvZpl8DDKUAMnkA8COptcYmHsxGbZucXtdjqOBP6S9F1Upxq5ZFvAW/wr21N1M0DhEW6irSnHmZfTKuzOBqQ7A5Z6DaVbT0vQ7ksmhJlOl3HDT3o4u0dnb9DgIwYC8H6ft457mufiNOpK9+BIDj36Qspb5NOpODngjBQPDFOopHFhCgC7bYqAFgiU1b3Fh71+k7QvAp4e28+TOxWxssAgn4sVi28UipeAe37GYv0w+n1qvl0dXL+e1LZvxt+qINDUaTCnZWVsbt63Vl1wxbI8+JfncccnxjBnUI7pNVRV+9eBF3Pi9xzrVRkpI0NOEHX7tOMLkw2HF4wSDQdasWcOsWW2hIoqiMGvWLJYtW5byvN/+9rcUFxdz9dVXd+o6gUCA5ubmuM+/C+Mm9GPmCcNRtUTFQAlIVF84QUHKuN/a1EB3hJOVwx9FB1tzWIsENEVBC1t++hTm8fTV51KYmUG/gnxynE66ZWXRPz8/TlnYWFvB7LnP8PKODXhC1iKswtPCH9cu5v0dZRiGmUZLl2TYgtYETlvVZzPsO3hw++usrd9FwAjwWfWX/G7rA9y+8VcsqJqflmUBBPsCLsYX3kauvW94i0KJexLDc87BJpJUnIv2yGR/yzxCZiLveV7WDaRWFhQUJZ8st+U2P1T3oxhlwWoZIGSUU1ZzHoFQ8rwOVe1GTtEnOLLuIoQkhCQgJa3SxB925ybvu4FhtlDT+kyK/lmo9i1Hl+nZeQJGHVsbXsNrNEb7LYQlEiJ3EsnnBTCkQn0oM65fCgqbm9akvU6tv4XvLX6cV8qWR5UFAEUxcdh1lAS+X4v1Yv6BrTyxbhXXz3+XTTVVnY6ddse4unp3Se2el6rAcAoMtyAoTd5YtIHaxvjxIITgjA4Kr0m7rcOu2Z02eg06vNjsfyeE2bnPV8Gjjz5Knz59cDqdTJo0iZUrV3bqvFdeeQUhBHPmzPlqF/4X8E3IiK9TPrjdDq6OsUZaXmGBtClITUGqVkI+tK0Fwmlc+Au1hBAkmweUkPWiq4pAVRQUYYWB3HLmMZw+YRi9c3PplZtLlsNB//z8OGXBlJJbvnyf2xbPY1t9teXFkCYLy3dz/cJ3CAXSUw24bEFyXFZNk0joaeT/Pa2H+N2Wp5FSsqf1EH/e8RrXrfoDt667n6DZmrJNAFVoDMo+jqE5J6OGw0/daj7jCy6j0KbExbInQrCn+Z2ErU77WBy2UaRbluRlXY8QGp7gZnZUX0rQqAzvibxkBtWtz1BW/8uUbWRkXkdR19Woam/iFswSKnUX6TzBZY1PETIa09wblDXPJ/0qULCvZR6r6z+Mv367vsR+DCmIpaQ1MdnRsirqSU6Fp3ct5YcrXmVzQ1sxu/ifJjEEdcGhHZQ3NzHntRd5fuN6vLpVZCpdTSgAly0+1LV/twLUdBEb4Zdnz4E65i3dlrB7wJASCotTE4kAYNPS9kpRBEPG9knfxteIr1M+fBs4LA9DbW0thmHQpV3Rpi5durB9+/ak5yxevJinnnqK9evXd/o69957L7/5zW8Op2uHhR7d85NaJSNeBjUIul2gZ6qYiuVZkGHPQpzVSYIaBKUerjtvChXNLdg1lRlD+jFtQO8OafxMKblh4Tv4DD0hac2UkpZACJtwoGoWNVj7OdimmKhpah8oKDxX9gmqeohKfxWRqqKFNg8ZakfxkoJ3Kt6mi7MP44u+z7DsaaiKxqa6PyPQomE4ySAJ0ejfSaa9Ow41DyVMIaeTSYvpJkvxRo10bfkZNroXvoSiuPEFN9Psez9F6wZSBqlt/gvdCx5J3nOhkJF5LU2elwjppUSUlKBMbuGPbbuh9Q265f48xX4IGp1bnDSHyhOS2KxINokpBX7ThkQQMDUCMt51D5YFKSTTM3o8uPVDqv1NCW7iyHO123X8AVtc2wI42NrEG2vWAtY4iwiDdEqkpijM6Ns3+n1ASSEjendl64Gq5BV0pWUtkwYEpc5jc5dy/w/iq1OPGtcnWhE6KRw2q1q7biTtmaIITrhgMhlZ33JC29dgQfouh/WkwzchI75u+WCzqeTnZ1LX2GrN+7HvVzizXwKGCnqGYoWeupSk4awCcHhhwsDe9OlXSIsvQM/CHM6YOIyinA5IHIC5e7Ywd89WoM0gBETf+aDXhmozUZLKAUm2058y7cLEZHPzHh7fPZc3y7+I5tE5lRCDOuBVMNHZ2LQYKYoZnn0+4/NPpsDRDd30U9b01w7uyqTauxZvTjWqcOBQc8K9NaiRvXGYm7GH+xut0yLA5TyN3Ewr9+Fg45/Cno3kIVG1nlcoyb4ep61P0h6oaheycu6isb5NQQ1IhWAHXG+SENXeBXTPOiflMUGzIxkhCRrNNISaiZ8cwgatMDFHxCudysglMTGlEWU3bI+9LXU8uPkTIH7sQLzsbQ8Tyb3LPqeytaWNAEOViDR08KoQnDpkUNy2s48dxcK1pSnPiXHwM/fzTVx4whj6d48PJzv2pJG88fzSlE1ItwOlKfVaRCiC2RdPTd2Hrxv/zR6Gw0VLSwuXXnopTz75JIWFnae2+vnPf05TU1P0c+DAv8ab3x4zZwxJS8UoTND8Es1jYNgti5KiS9SQRAlJhCERMVzxwoRTRg7mt2efwC/POI6jB/XpFOf3Fwf3Ut7anJLhQgJBv4quh5Om2h2mKUbaGEETk/UNe6jy1YTbsw72GLYOlAWJQOI3W9nv3cab5Q/x1sE/Y0ojzALUAbMIgkUV1/D+vtm8s/d4NtQ+hDd0iC1V1+IxFWp1Jy2mjRbThsfUaDZsVOkKrSHLCtLkfYv0uqxBk/cdZJoFtRCCwvxHwgXa1GjfOjKnGzJNzCSQaeuRdn8Ebq1HUpe+EFYYWbPhotlwEZDxC/poPzAocfZK2O43QnxwcA13bXiVDw9tTBlTKkT4Wu0WEqaUVDR74y2A4dyaVBDAJaNHkeeKX5j/6uITcNq0xLEU7pMatM41TMln60pp9ca7qHNy3ZwyZ2zqCwNmbmZCHHnk3vqP7MlVv5yT9vyvG5EY1Y4+h4vYsJ5hw4bx2GOP4Xa7efrpp1OeExvW069fYuLidxFfRUZ83fJBCMGJJ45AKjGr1liEGZZUHQyXgp6hps19kxIyNI1b5xzDry86gatPmNgpZQHgn1vXoKSZswQCI5D85VWFxNaBYUhB8Fb554CV6wDgNzWaQs4O4889hklzqJblde/x+O6bOeDdjiJsiDRzt8TKZagKbGRu2em8ufdEPi6/hoOeJexu/CeHvMso03Op0DNpNJ00GHYaDQf7Q3ns8lUBAt1spsm/kPT5cCp13kQvRiwczpNwus4NfxMkN0u0h0LITC8jsmw9o4nOySBQybL3wqmk0sosb4KBGiYVSd6vPHtXNCWRwGJPaxWP7vyQW1a/lLafqZCh2fm4NL6Sc6RGSDIvgyIEDk3jkjGj47ZPGtaLM6aPSLxAnGvOgqoIPliyNeHQ08+biKalWaY6bEnX26qqoCiC2x65jKLuqb3hXze+LvnwbeGwFIbCwkJUVaWqqipue1VVFV27JoYF7N69m7KyMk4//XQ0TUPTNJ577jneffddNE1j9+7kvNgOh4Ps7Oy4z78TNpua3lUWhhKCXKcDzWgLOwJLQVB0iBSYUgQU5x1+NcHNdVUJhbQSITBNFcNQrHjR8OCSEjTRkevXQvtCYD7TRshU0ggEEQ1niSx6tzR9ycq6eXTPOCFlbKsETCniJgJdetjV9DILD15GyGzFlCat0k6t6abGyKDazKReuglJjfLmpwAwjHoMCR7TRotpx2vaMBLiJ3XMJGFPsXDYj6Kk+EPcrtMBNcpVkRoCu9ozbZsFzjG4te6kenUECrn2oQzLm4OSJIYWrPHiVlLHdwoEGWoWR+VMiG5bWruNa1Y8wqzP7uT3W1/l06q1KEr60rBSEs41ib22gICWoGhIFUxVEvkHbQV8zhk+nDuOOSah/YHdCnnxtovplZ/b9lithAxUf7yr1TRllF4vFtfffBI5Oa62c2P/N0wUA8jOBKcDFIHNodFzYFe+/9tzeeDtm3FnOhPa/EYhO/k5DHxToZ9fB74JGfF1ywcAZ6YjuVk+AkvzJyv92jGKzszTybC1vjptcTYJKKaWVI6ITqxEknsWBTtau6S8fSkhZKroMmKIMQmZAV7adzeGNOiZmZzdLqIstO9VrX8Ln1fcwtaGZ6I9apZOqoxMqoxsqswsvFKlNbSXWv8KDLMJy2gVsb+btH/RBAI9nHScCkIo5OT9maycu1HVnuFQ245g4tLSG43655ydUkaC5Unpn30WI3OPTatYdCSrJhWcFv1WH2jl0Z0fcswn/8fFS/7M83s/Z5+3Mm0byX5fVQiOKx6C3t7rK8B0yDjdJTKmc5wOnjn/bLrnxL+HQgh+efkJ/PDc6YndCP9csREbNQ2JYXBdu+dx7Y9PTIzRinwaW+NGr6IqZOa4mDFnHA/P+ynHnjku5f1/I/ga5EME30bI6mEpDHa7nXHjxrFgwYLoNtM0WbBgAVOmTEk4fsiQIWzatIn169dHP2eccQYzZ85k/fr19OyZfnH2daG52UcwlH6xBZBbkklL2CoaVRZi/o4oDVJCfdPhVxS0KWqnxsqNQ46lmzsP01TQDQXFtDOn+wSuGXB8h+eqwrrP9olOlcFsdBkJs4p9bSWqMJMazJbXvUumrRdZtsFJ61qYkUV9QkKgic9ooMV04seW4GKVQBCVBv8GTDNIbaCMetOBV9rwSw2PtFFvuvCYtpgQpgyUFBWfY2G3DSQv917qlGnUm8646yZDQdalafcLoTCu+FcIi5Aufh8KQtgYXXQnLjWbifnnpWgFsjU/eba8hDYUFBShcmmfH0WtR//c8wk/W/9PtreUh/tgLQbcdh27mr5mRuRnitz1naNPIsfuSlzACJA2MB2Wt0HRBN+fOJGPrric+08+CZua3FXft2s+Z08agc0Pqk+i+kALJlpNFCHITRI61NzkpamuFXTDGqSmCbqJ8AUR/pDlllcURIaL25+4lnfLHubxz/+PM6+ZicP11YsV/ttwGAKhfdx9IJBcaUwX1lNZWZn0nEhYz5NPPvnvuKuvjCNFRtTUtHRYEFAKoHvnwuGUr1hcMJITlwoCmFzUlxO7DY9jPBqQVcyDYy/CraZXqK1FfOLK5aA/jy3NJeF1WVvOBoAuFRoNF/FzuMRntLC1eSlDci9Lea22XsciUjE6lKpuahTVnqUE9QqrpkM4bEcAKhIl5h4kJg6te/rGiISvXoXMuJ0KIwM1qnwkPRqbkkuR+9i0bfbMnEVX1xSSyxph7XdPZWLBaTjVjKRKg4pCtlYQPqP9fkH/zNFMyJ8NQIWvgcuX/YUX9n5O0GyTBzbVJNMZ6JTiCJay0N2dx8V9JyQ/QLGUBsNuIjXJqO5defDUk1l8w7WM7d4t+SmK4JKTxuPQ1Lb8T0m7FYD1d2FucqPrgZ1VaCEToZsWk2XIQLT6EDWNKMG2+x06ri+vbb6P17f+gZ8+chkDRn47c0ccviaFIRKy+qtf/Yq1a9cyatQoTjrpJKqrq9Oe96+GrB42S9Itt9zC5Zdfzvjx45k4cSJ//vOf8Xg8UUaMyy67jO7du3PvvffidDoZMSLeJZWbmwuQsP2bhNvtSB87DaiqwGMzU3o9o4NdWl9sSZKoO8JxPfvz+1WL0h7T1Z3JD4ZO58Zh09nXWk/A1OmZkUeG5qAp5OGFsk8JpWE8EkCNPxOQ2BWDDFsQm2JiSJWDgVzcapDJ+QNpDB6kKViNEEZKy1JjqBqP0UTXjFk0BnehxCRcRZ9kGkuaDxua1JNQFVrfg6jsafgDjcGtcdsj8Eo7ChKXMMjNuDBl1cxYSCnZWP0DmoKbABW/VHGQ7B4VXPaRFGRclKSVeBS5JnBM9yfZXPcIdf51cdtHFPyEXMcQAKYVXYaJwaq6N5BIFBRMDGzCyXElNzAw6xg+q36fJbWf4DFaUFA4Kncis4rn0N3dB4CNjWU8teeThD5E+u+wGeimgimTLyxMw9reP6uQHw2fwck9hpFlbueD0p3Jb06AYhPMGTyUW6dP6/BZAJw8aQiPvrk4pWtVVQTHjO4fx5IUQU1lU9t5RryHQQjLGilUhbOvnM6xp47qVH++SRwObV77xe+vfvUrfv3rX//LffiqoZ9fF44EGZGV1bHnynSKqEEpHRRF4HYkho50BrN6DuDDfTtShh5K4JQ+Qzh/4FE0Br1U+JrI1BzRmjz7AlN588BnSb0UkZw2QVtMe1vIiWCnpwsH/blMzofhOdnsbFlLwNQIJsm5AlBQOeDdxlE5M7DCQNuEp7UuSh6LH4sQGo40+XGN/lWEfE+FjVwyobXYatIFGXPSXivapm8JpfW3ARK7EPikjahgj8L6e2jhbxJqDLWHIjSmd3uQLfVPUtr0epQAxK7kMCj3IobmXY4QgmxbAZf1vYfX999LfbACJarymPRwD+W8XrdT5d/P4po32eNZD0CurZhJBacxseBU1LAH+57Nb1IfbE34hSMywmUP4g2kr/xsV1TO6HkUt444nly7i145ORxoakocNZZ2hlQlD506m545OWnbBVAVhdOnD2fu55swUqy5DFNy6tRhSfdVltdjGjFmxkjVXFUNT8ACxWXngbd+nJTM5tvE10Wr+m0x0R22wnDBBRdQU1PDXXfdRWVlJaNHj+bDDz+MWsP2798f5Yj+rsLptDFl8gCWLS9NqTToUuJLRh0ZAwko0qIFK0qhHafDwNwCjuvRj88P7k0pEG44ajJq+Hn2zYpfDOTYMrhz+EX8dvMLCCGiMaiCyHQXGa3WqxY0VYIBFzl2Pw7VAASGzOZ7vX/GwqpnWV3/YQfleCxrR7eMqWxqeNISN9HFXZvFJ93ZEiWJU7oNB1teTNuCR9rRTB+7mj9BtR9NccYJaY9vCqyhKRBhGxJ4pB0DHRehqBdFolCYeRkluXegKJ2zGBY4RzOj+9N4QxX4jXpcWlFC7QkhFI4pvppx+Wezs/lLfEYz2bYuDMqejj18ndkl53Ny1/MImH5sii0qBCJ468DSaDJiMkgJds3AH2rvqRDM6jacK/vPIEOz0ysjL6qondxvIH1zctnfnCRhGssbcM3oztV/AOiSn8Vls8fzzLxVCfsURWDTVL5/ZvLEs+wcd+JGIUCL8b4J6NaroNP9+UbRGQtReP+BAwfiwmccjuRC/F8J64nANK3xomkaO3bsoH//znG1/ztwJMiImTOG8tKry1PuVxRBbvdcqrxeDDP9rGmakqmj+n6lflw7fALzy3Yk3acKQYHTzel9hwKQa3eTa49/ny7pfRIbG3ezs2U/sfHnEWUB4m08bb5mS254DSe9MmdzfNfJrGm8pMP+Wl5WQVf3RCq9y4l/OToRPitF2sNMYyOm8JDspWuTe1bYz/6Gu+md/zu0DjzR5U1/jZ6lCImLEAEZnz/g1noxuOCXFLqnd3gPAKqwc1TBjQzPu4bmUBkA2fZ+qCJecezi7MONA//OXs9Gyr07UIRK/8wxlLis97VfZi79Mo9CN0MYUseuOOMMbvs9NayuTx7aDdZva1MlijDjjEoC0BSVv0w6ny7ObHpk5JFpa5uPbp40jZs/npe0TUUITh84pFPKQgSXnzKRT1fupNUXSFAaBHDa9OEM6Jm8MGl2XgaKqmBGiGqEAE2zPmFk5WV855QF4LDkQ3u2N4fDkVRGREJWf/7zNnKWww1Z/fLLLzt7B3H4SuVRb7rpJm666aak+xYtWpT23GeeeearXPLfjksvnsqKlbvDLtf4X1RRBOMm9OGLAx1zXEvgylMmJi3wU1bXwHPL1zF/6078oRD9iwo4bmg/9rU28WnpbkKGwaCiQvo68in11VkFTKSMLhCvGzGBy4eOSXv9Y7uMooszj1f2L2JJzRZ0aZBlc+PVW0HIdv2yJsXmoJNCpwdFCI4vnoFTddAvcxQr6z9IcyVBkaMnbjWLDG0YhY6R1Pq34g9zQ9sJoYr04TFtTyw5rOS+jkJsBLWmG5NGNlT/mKOK/0yXjBNTHl/j/YRI/YjIffixQp1UaSV36yiMyL0dNWUSWmq4bSW4bfF1G0xpsqFxGRsbVxGSQbo6ezIh/xi6OJO7yIUQONXkisrW5v0plQXrXFBFxI0uomPn2K5D+N3os5NWdbarKi+eeR5XvP8WO+vromEPummSYbfzt5NOZ3DB4Vmqbzx7OhlOB/+ctwKvPxTd3r9bAb+66iQG9EjeXvfeBfQfUsKeHZUJ72EEqqow7bihh9WfbwqdocWL7O9svH1sWE8kzjQS1pNs3o2E9cTil7/8JS0tLTz88MPfSljPf7qMGNC/mGOmD2Lxkl0JpBRCCBRF0L9fEZWbyzpsq1tRDtPHJCpshmnyzqZtvLhqA7tr63DabJw4ZABdsjL5ePsu9tU3kumwM6vnQBY2lWJqloFGYNXbKXBm8OJJF+DSUnsvnKqDB0bdyLuHFvPewcVUBeqxKxohM9F1HhEV0bBPQBMqs0sm41IzKXb0ojpwgFRzuIlBv0zLCzgk9xIqve0XL+2t9gk96FClcNCa8vptrVh+k3rve/j1PQzt8jqKSO4x0s1mmgMr4rYpQuISOqa05I1ApXvmMZ1WFmKhKg7yHInFQOsCtSyu+ZhD/v1kaTkMzh7BlMKzsCnJvReaYkMj8Xfe0XwoydHJ+iExjYiXW+LW7Dw88XymdUluSJgzeCg1Hg/3L/3CMowKgZQSQ0pO6DeA+45Pb6hrj5LCbP5x54X89qmP2LS7IrrdYVO54ISx3HB2am/2zNNGs+iDDSn3K6rg+DPTr5O+LRyOfOisB/qbYitNhq+kMPwnwTBM/N4grgx7nFVr8KCu3HfPedxz3/s0NHhQVQXTtCbkmTOGcstPTuT0W/9BiyeQco4TwIwxAzhlcuJiZmVZOde++Ba6YUatuJuqq1jXWGm5f8PHbaioxJSSmf36k1/gpDkUoFdWDhcOGsWgvPSLtvX15by2dw07m6vI1Bxc3edcTu4+lCtX3oNISbdqTad+Q2NcXn/O63kmAAOzxpNn60JjqIZU1TunF54dVUCOLrmPT8q/jz9oWUF1qeJQ0i32FVSsmHS/acNr2tFREUicIoRbCYQXvh2jjY9asqPu9xS7j08ZnmSYPlLFksayYpgyAHSOuSQd1jcs4/XyxwiY/ui2bc1rWFA9l0n5x3Fez2tQOxFKFYGtE8cKAXZV0tWZx8wuw5nd/SiG5iSPKY2gW1Y2H154OV8e2Mdn+/YQMkyOKu7C6QOHxNUJ6SyEEFx56kQumjWGldv24/UH6d01nyG9i+OUVtOUrFu/j12lVdhtKpMm9ufqH83izhufbzMRtsN5V0wn5yuQCnwjOAwL0uHgSAjr+U+B3xdEUQT2dmFDv/jZafzx4Q/5ZMHWqJJgGCY5OS7u/NlpHGxp5cuNe9O2LQT89fZzohXOI9BNkx+9/j4Ldu6OhgP5QjqvrrUUv8ir4AvpLN6+jxy7m9MmD6JCb8GmqMzs0Y/T+gzBmUZZaAn5mbt/Ix8f3IZPDzIkZwy3DRpLqXcXT+x+J22/FSwP6V3DryDPbnHhTys6h7fL/5TieIVsWxGDsqz49y7uiYwpvJV1tX+M3o+F9EqDJkyCUqVOz6TJcGNKgUsJUaC1kKX4O1Qo4qcQE29wE3WedynKPD/p8WbMPJ1wT1b8C4KIHPnX4dU9PFP2V7Y1b4zbvqL+S95Sn+P7A26nT8aATrenKZ2TJXZNRwiV47oMY0pRf07tOZIMLX1o1bVjxzNn8FDe3L6F/U1N5DgcnD5oCMOKUtM6p0Ofknye/uVFlJbXsru8FoddY/zQnmS64q3o9fUelizZSWurnx7d85kwqR/DxvRm+4b9CREhiirIyHQy57LOhc9+4/gaPNCHi39nyOoRqzBU7K/jtb8vZOHcNQQDOq4MByeeN5Hzr59JfrH1o4wb04fXXryB5St2U7avFofDxvSpAykpyQUgw2m3FIYkkFjRPkf1TawK7AuFuOnVdwkZZtQ6JZHo9rZzIzDDBeK+2LOPBwefzNnDk8fxxV1bSh7c/AlPly6LWpQFsKK2jMd2fIFiD5LOOycQDMsaye1DrkNTrCGgoDC58HJe3v8UfiOEJkyybT6cimU5mlZ4NkflHhttw6UVcmKPp3hpj8XUYKKgSwWVVDR+Jnm23lQHD+FvFyPqkQpew06R2opNdJyMHvv8AkYVDf5V5LsmJz02wz4AmZZ+DzQlB03pvHs1FdY1LOHF/Y8k5T1XgBX1C3GrGZzRvWPXfgTTi4ZzYN/nKZlSIkmJqmLyu9FnMzqv86EPihBM69ELny/Eoj17WbG7nJbWAGePGE6+u/O1DaSU7DxQQ0OLl+K8LI4ZndxqtXNXJb+9ey6HDjWiKBbj11//9inTpw3iZ/ecw9//MJ/mRm80v0izqZx/+TQuvWFmp/vyTaPjqOzOBGIk4kgI6/kuQ0rJJ++s5a3nllJWahk9Bo/swbmXT+foEy0ly+Gw8Yufnc6Vlx3NkqW78PlD9OldyJRJ/dE0lcD6PR1ex6aqFOYmGiKeXbGWhTt3h/uSpH8xfxtS4g0E+WL9fj696cpoiGo67G6u4fIvn6cu0Bptb1tTFW/sW8eYwry4kKT2iMxdj4z5MYOy26id+7jH41KnsalpBwqCbJuXfLsPRZi4tRwu6XNXnDFkUO6FNAR2UtbyPoSTks24wKGYa6KQZetJS3APZcHiOGKMFlOlJegiX22lh90JsppU1N6J6zNBTesrKRUGm5qPpuSgp6FKlRi4bQNT7u8sgmaAP+38DZX+g0n3txpeHt11N3cO+yO59s6FYI7N64dNqIRkehlnV2FCYU/+NDH5c0iFoowMTus/mDc2bqGstpFXWjdx6pBBTOzVI2lURSo0e/zsLKu2qqr37ZLU42wYJo8/tpC5c1djmlZ0hGlKcnJc/PDGE8h5dx3LPt1qjU8hkKakR58ifvHQRRR1/dfl99eBw5EPnfVAf5shq0ekwrB3ewU/veBR/N5gtECbzxPgveeX8OW8DTz05k106W4lhWmayvRpg5g+Lb7oiGGYVFe3WFqBKuLnOBlJvoHNuxNdgvO37KTZH69omJEnHY2bJ2E0/eazhfTIyWZij/S0bW/tW8/TpZa7NxKuEpkk6wIeRDCDLtktKfOPFaHQN7N3VFkIGAEe3vV3NjVtRkHDDAcHNekuBmQUcnXfK+mZkehWdWq5dHNPoMK7BomJz7TjUoJoxFenVoTG+KI7qfFvZ3/g7fgHEf5bAo1mEQV2Gz59H8nU8nAtMNq/ggEjNTNA14wzKa1/AEmqfBSF7lkXRSlQawN7WVf3BqWtX2LIEAX2PozKm8OQnFkoaaz9htSZe/CfVu/aPfeIBVEBvqj9kBO6nIVL65zF/KweU3jjwBKCpp4g4CPP2JSCi/scfVjKAsCBxiaueO0t9jU2ooYX8O9t285DXy7lwVNP5pR2hXiSYfHGPfz5tS8oq6yPbhvSq5jbLprJ6IFtIVgHDzVw860vEQhY4UqxlqKly3bR6vHz4ke3sGpxKRXl9WTluJly7ODkOQ7fJXxNHgb4zw/r+a5CSskjv3uH+W+sjntXd245yD23vcL3vj+TS29sY6Ar6ZrLuWcnMses31aOqkuMyLSQZMIN6gb7KhsY1KstPtuUkudWrDusYWECh5qa+cW7H/N/s48j05HaOhwyDa5Z8hINQU87xcOSFetqGyjKtOF2pE/Y7p3RtvhYWbeZe7f9k5CpY3liJXVBNxU+wRV9p3BC1zNwqonvav+csyhreQ8I50fFKQ2RrVDgHMGU4t/xt9JrwzTgiQnH9UYmhm0qavCFlH0WEG4/AknISM4sBiCERpfMizjY/ASplBCBnaLMOQDoZojVDQtZVvchtYEK7IqTUbnTmF54GoWORONhLJbXfZ5SWYgSf5ghltR+yqndLkjbVgQ5djdzek7kjf3LUyqAAFk2F78Yfnan2ozF35eu5E9fLLFCkrCG+MvrNjKxZw8eO/cMsjqwgnt8QR55cRHzFm8lpFvP12nXOOv4Udxw/jTstrYl6N//9ilz566JYde2/mhu9nHPve/xwIMXcc2ts1mzZCd6yGDgiB4MH9v7sBSXbxxfg3z4NkNWjzgTlZSSB299GV+MshCBaZg01rXylzvfTNvGR4u2ctEP/oHNY2JvlWgeE2HI2BUrSMtlmczKt+lgZQIdnoxZa0aVhcghYcWhJRjkotdf49XN8T9u+/t7ateSlFqrISW6qeIPpdYFDWkytbAtVOGpvc+xuWkL0FazIXKbpZ5aNjWXpWxrdP7lccwaPtOBx3AQlBohqRKQmRzT7QV6Z51GmWcJqfVtQVAGyM24CEXYE2lbw9/1JEPWrqZ2s9nUHIYW3kP8A49AIdM+hN45VvXQstaVvLz3BrY1f0rQ9GLIENWBUj6pfID5h+7GTGPF2dGyEY/RknJ/pNiYIUPsaE39+7ZHF2cuV/c7OY4yEdqeR1dHIb8aeQE/HDS7020CBA2Dy197k/Imy7JmmDLq7QoZBj95bx7rD1WkbWPRulJu/stc9lXVx23feaCG6x98nXU723KAXnt9JcFgKCnJgGlK1q/fz+YtB5l23FDOvWwaJ5055ruvLMARV5jnvwErv9jB/DdWA/HWfRkemy8+/hk7NqfOX6uvb+Xuu9/hraeW4awK4aoKoXnClI9J3AXta/40eH1UtiRyzncG72zaxoX/fIUmX+pQmgUVO6jwJRIaxKLRl3qhp6AwNm8wDtVSSvZ5Krhn61OEzBDxlVogaApe2b+xjVK7HQocIyh2jSdCDRpRGgRhWSolJe5jmdXtcfZ4NqFHGHBSYG1rA7muU4F2v134/zbajwgENjV9CE2PnB/gtg0hmXwAwYDC+9GUbHQzxD/Lfs/cg09S5S/HkDo+o5WVdZ/w8M7bKPMkjx+PYGntorT7LX4kybrG1Mn2yXBpn5n0y7SUlfZZIAI4s8cEnp3yQ3pmHF44ytubtvLQF0uQWOsKU8powvLq8oPc8s78tOcHgjo/vPcN3vtiS1RZAPAHdV75cC13/PndqDyoqWlm7ty1yb1t4W3/fPpzuvUu4PSLp3DW5dMZMa7Pd1tZ4OuTD7fccgtPPvkkzz77LNu2beOGG25ICFmNJEVHQlZjP7m5uWRlZTFixAjs9s7Tkx9xHoadGw+wZ1vqRCDTMFnz5Q6qyuvp0iM/Yf/r763hkac/i34XWBU9Fd1yK4TcRKt6SgkThydW4+3QZdxeWYjZLoE7P/2UqT17JWUhqA142Ntal759JAFdw2VPzClQUBie04chWb3C7dWxvG5lWuvE+4c+5MQux0c9ErHo6h7NjK6/4vPK3yLDFiwDBROFgKnSaGTxyv67ubj3XXj1mrS9Fmg06S2M7voayw5djF16otZ5M9xue2FiV4vIc05M227XzDNwqMWUNf2dBr81GWtKDt2zLqJ3znVoSgYBo5V5B3+LiUG8ym/9XdryJZsa32NU3pyk12gO1SfdngxBI7Wwj0VpSxW3rXmFva21KELFpgoUYZDvyGRWl1GEQi7KW5p4fNM6Hl2/hmy7k+kl/big/ygKnPEeDN00WbB3N2/v2Eqd14ciYV9zY9hbFv9MJdbw/MfKNfx1zmkkg26Y3PfCgqQTvBn+wf7w0kJe+pVV1+KTTzdjGKnHmKoqLFy4lbFj+nTq2Xxn8DV6GP6HrwfvvbICRRWYKcajqip88NpKBo9I9PQ2Nnq56YfPU1PTHLWAKgbYmwwcTQbBLIVQdts8mZ/tpndJvJzpTEhRKkhgT20993/yBb8/IznZw7LqvWhCQU9DlhAyNAwTkpWHMDG5oGdb8bW5BxfFKQntj20MtbKwejWndUvkdhdCMK3rAyw4eB3NwV1xCdUCiVfa2dmynALn6xzwVWIFtaY2zNQGDtAt72U8ppNW31wcMSGsyYrCgaQoM721XlUyGdn1FcqbHqOq9cVoeFKOczI9cm4ix2mFuy6qeZs9rZuj7cY+AymDPF/2B34+9PGk1ZcBGjuUEZbnJWB0TNUL1jz78NbP+MeOJRiY2FUnqhrCpghG5/dibF5/DrS0sq2ilau2z8UmNHpn53LBkJFM7d4rYbFd3tLES1s2srbqIIpQ2HGo1lrNJlEGTSlZtGcvu2pqGViUXBGZv2QrW/ck9+5IKVm6oYwl6/dw9Nj+fL4ovbIlpWTLloNUVzdTXPzvL9T4teFrkg/fVsjqEacw7N2e3ioKgIR9OysTFIbGZi9/e/bzpKcIrIWrGpAYLusF0lSFrAwHpilRYqxI0/r35oWV6+POVwxiXNekzf0SwMubNvKz6YkTsJlGCMQiaKgJizkhYFBWD3494qroZLGhcVNaZQGgRW+hzLufAZn9kl9LOqkMZYXDkQwkAr+0EQq7VVr1ejY3fZb03HhYD6UpVEeV7kBgxymC5Kg+pBRxHv9InkD37CtTVlSORZ5rMnmuyehmK6b0oym5cedtb15ASKZbyAvW1b/FUblnJrVqZGm5nbg/C11dHbsAy70NXLL4cXxGOIRHCgK6Cqjs9xn8rXojmALTjO/LyuoD/G3LEv4x43wmd+kNQHPAz+XvvMn6qkoUITDDFcqlA9CtiubtlQZDShaU7rZYWZLc76pt+6ltSlJpW0qEAUKX7NlVwwNPL+CS0yfgj2FOSgbDMGlqiU8sTHXt7xz+pxD8R6F026GUygJYY7E0hdHp5VeWU13dnOApi4xSW4uJ7pZIzdrSv6SAhkYPRQVZ0WNznA6GdCliR3VNUoW7IxhS8u7mbdx+wjHkuBLZf0yZrjZ0G0KGiqoYcX3QFIWbB13I6Ly2mP1ltRvSM7UBK+o2JVUYAGxKBk0hQavhxCZ0K4kYEVfPYVXt0xS5T+pEr60Q162+FuoCfbATYqCjCpcIJswVUoJUCsl3zemwTVXJpHfebfTK/QkhswFVuFCVttwTQxosrZ2fUlZKJB6jmS3NKxiVm5xNKVvLxaOn9kJH5F93V6IRMhnuWvseb+xbH/4mCBqAYccHfHGogs/LKwg1OTFDSrTtTTVVvFu6nZP6DuCvs06PFuR8Z+c2blk4L3yvkZggIAtUj4JiJM7DqhAsKN2TUmF4Z+GmqMEvFR58diFSQlOzN0wq0MFapMUXVRjaKN2/4zLia5IP30bI6hEXktSe6SLlcU7ruPq6Vv7xxGece9bDnH3BX9CN9BNjtLozoEuTO/82jzv+8i663mbpOGZAH7rnZsc7D3Titc00Y9yQko0pKroWObPo4sxKui+2p6ZUqPe58YbsBAwNv67hDWTy2xHXkW1rsz7rUu8EmR2EzNQLvo2NCwEVr+mg2XTTYroIxQgDiWRj4xJ8Zgl1oQyadWfSip4SgxL3WCp8qxBoSAQ+6aDByGgXl2pZk6r1HJbXvY8h0y9GY6EpmdjVwgQlo8q3g2QVN2N71xQ6RND0Jt07OGsULjV1XkKkkn2Jozc9XckVrwhCps61y56OKgtx+3QFf1CLFkVuPxuZSPy6ztWLXqPKawmn2z75kE3VVoJUWxJ+GCpILfmMFjLNBErJCCrrmxM3SonmBZvPUkIUHd75ZAPn/vAf6M70U42qCkq65hIMhHjr6S+48rj7OGXQ7cw56k7+9PPX2F9alfb8bwsR2ryOPv/DdweRuT8dHDHHLF2yi1tufpGTTryf119fmbbgJ4DmsWSB0CXrN+znwh89xbotB6L7hRBcPWXcV1IWIggZJrtrk1usR+f3SLvAj6CqOZvq5kxaAw48QTtNXjcz809iZnF8DRa9g4RaCQSSzFUR1AV20aSXY6Dgl3Z80k5Q2ogVgiHTj242Y9JeULZBIOji7IfEoC5gJYwHsbE9UEKDkREfoiShwXSz3utmR8uChLZSQQgNu1oUpywANIXq8KYJOQWLB3C/d1fK/VMKZ3R0dQQm04tS04RH8GH51hhlITlCLXbMUOQZW/9H5vOP95bywMrFAGyqqeTmhfMwwrSpMd0BwMgwkUniZoQQBPTUzIgVtc0djvGquhZ+9qd3eGbBWkIdjFlFERQWZrFz435+f+OznDn4Z5za7xauP/F+5r24FEPvmDDlm8aRJh+OOA/DuGMGo2lq3AK+PTKynAwb14dDBxv40U3P0dTkxTQlhkttM12nQMTTQIzm/Pm63Tz17nK+H+YSXrpzHzVVLcTOiUIINL9E77iAKAJwaMl/GkUILhswmQc2J1b/hbY+CSExpYI3FB+fdtynv6dHRi4Ds7owNKc7A7OzO/QwKCh0d6Wm6fTqjSSnYrX6E5IqVYEIC0UmIFBCJsW2ZrI1y6ovUMm0ldDNPZlDnnj+7oC0UWNo2IUV7GSiEJQqXtMOZi17W75kQPZxae+hI1gJzR0rTvdsu5nphScxo+hUHKoTKSUewwMSTiu5hNfLH0/6DABU4eB7fW7s0CLy4t7lHPI1Jm0nFFIBiTSTxbRZMJH49BCTX3uUAe4ulFYlX1hETpcaSF3GKY4C6JuflzJ8Ii8rMb9A87VNflF+gPC9624VDIkWaO/2sj6GIZk1cxi3X/I4OzYciI7JgC/EgrfXsui99dz99DWMnJhe2fqm8XVV8vwfvj4cfcII3n5hSUovgxCC6bOGA/CPJxfx8svLLOunmV42RKDoEsVvIszwYjpo8NN73+Ktv19HdpaLoK7z9oatHbbTEewpqPBO6TGCezd+TKveUWiLwBey44uREU/tXM7b+5dzVGEOI/JKOCpnAH0zurG9uSwlU5uCwoCs1F5Tv5GagQhAlwqtpoOG1pUook0ESxmtQw1YhqfJBWcnsN4ZqOwOdcEW0slSLXnSajrDHgxYV/8KQ3NO/Zcs0Z2hwjYxWFL7AXWBCo4tPos+GRbdum6G8BoexudNZXHNp9QEqpLIXOv7xPxjGJ49Ju11/EaIO9bMTXuMNARmILVMk8ATG1bxwpb1dHFnppZ84WgI0yZRg/FH6abJ4KLkxdYA8rLdNLZ0jo42JCR6gQ1XTShpXxRFMH36IDYvK+X3P3jGKlQbNu7u31XJX375Ois/28r/PXbld6qA25EmH444hSEnP4PZF0/m/eeXpiwEde51M7E7bNxz9ztRZQFAdMLkI4H2ofRSwqufrOeK0ybhDYX48fPvW0VSDCvZOTxvoZgCm08iixRLmxbtGo54AgUc2yc1482YvF6YJihKvH4TXZzpCkKoOOztlSaJKiSVvgYqfQ0sqdmBxGREfgaG9EUTnmOhoDCpYDzZttRejRx7Fyr8pUmVhpBU0WXsojNs6UBQGcpBESaZaginmsv4wjtYWfcxTSEdmVDATUQFQGzuuUDloHfNv6ww9M6YwJam1ElcUkJAarTozcyvfJ2FVfPo7hpNub+CSr9l/S52FDMyZyalrSvxGW3hOkJAv4zhnNfzWoo6YNKQUvLS3uRJb1IKZORZSkin4EgA1aS0ri7sjE4jLCM5Ne1+vsvHpRZcvbrkRsObAER4vKfukKWQK4F2aevhH/K8cyew9P317Nx4IOG9NcL0xPf88Hme//JObPbv0LT1vxyG/zicfuEk3n91BUGpRxOdI1AUQUaWkxPnjGX16r28/LJlvIh6FTowKFnHgBLzLkkp8QdCfPDZZi46YwKPfL6M5WUHkp4qgEyHnZZAIqtb7Cuf73IypEvyxZpLs9E/q5ANDakYeVJ3PMfpoyDLQ7m/lvKK3XxUuRiX6kypLIAVw39KSWoe/Exbl5T7DCloMZ1xrcdXnpYIVExMJhecTYYq2NE4D5eai89oIvblCqFRbyRS2DaFDuI16sjQvjoHfbaWT5GjOzWBQ3T0Qm9vWcf2lrWUOIdgVzIpbd2CLnVUoTIiexxZWi674xKkJQ7FyWndzuWYopM7VGzml2/Fb6QvcGoEE/P9ksGrh9jb1NDhcdImiSUaVIQgz+Xi+IHJDThSSroVZbP3YEf5lmEIgbQJDIeCFkhcR7hcdi66cBK3nflnpJRxXr6IuFi5YAvvv7CEM684pnPX/CZwhMmH75Dk/ffh2l+cTnODh8/fW4+qKtFYaMMwOeOyaZx/w0xKd1WxvV2cqhI0MVypH4kETJWkAqPVG2D3wVqW7TtA0NCjKQrCgFiDiOkUGAETHLTlMURcUzHtPb9mHUMLixjfI7E68Ntlm5CGDd00UGIkk2kKDMNajoVCWjuFwWKmiDUYy3AHSpsc9M0OhNeMbe0JBIWOAr7X+8KUzwRgdN6JbGtOLDUuJWFlIdnEZW1r1IuYXnQGm5v38/ieu8NXlfR3pqvpYBWKi7Fjp+1fOhjSoC5QTaatN9m2rrSEqpMqPkJAU6jNql4fDFERWB93THWgmoXV1UwvmMq0wrE06w241UyGZI3GrnauCEurHqDKn9widzh3GSkOKKODrJPnhf+f2b8vF4wamfSY+mYvP3jwzbiFvaKnTcuxBIIGIoligoSjpw3iN1c8mTLcQ5qSpnoPSz/ZzIxTR3f6fr5uHGkWpP8GdO2ex91/u4xf/+gFPK0BFFUgCBdly8vgnscuJyvHzdy3V0drgkBb6lk6pUEApj3RKyclrNm8n7Nmj+Gl1RtThvpJSFAWJGFa7phmG4wAv1/4OXfMPAa7Gm9Rrfa1sPGwlQULuS7LIhx7e349gIoIZ6e11W+I/P39/ufQw51aKci196LYOZQa/46EudUvbbQ93XhE+tDTNYwhWaPZ3vQie5sbEShhNqXOW5JTGQ87g5ZQC02hJibln8z7FU915moYJuzxlIa/WzdiSINNTauxKXau63cLfsNH0AzSN2MgJa7O1zXY3lSJKkRaFqxIPw5n7k8JES97VCFQFYWH55wazYFoj+ffW8mSdTF1Sjpzb1JiOJMrDP0HFLNl8S70YHzOTXu8+88vOePyo78zeQ1Hmnw4IhUGm13jjocv4dzrZrLw7TU01LZQVJLLCedOoGd/i2Jtx47E5GhhgggYSLuSMMAjv6nhSDMQJawtO5RyQEvAsIGQAiUoMe2AAcmKMpc1NHLpq6/z8kUXMLpbvFW63BOmzJMKppk8ZCR+grT+VlOMTL+hsac5l5O7l7C9ZTPWhCfw6HakzGR780EmFaRmJuibMZrBWVPZ0bKM2Kkl3rOQHF7TYGn9Jg76IpOLJY7KA/n0dNShSBnnQRHCYkvSw8JCYtDFdfjVbE1psqh6Hp9Vf0Cz3ghAtuqgq8ONLtsoDyOPsTqYRZPhwiYMdKkQkKnjoBfXLWNC/gQmFxyf8phUsIUrd0oJhqlEk5oVRaIIk3ghkFogSAmYCigdeBfCLUTL0+fmcPm4MXxvzKgEauAIXvl0HfUtXpIMsQ6RrMeqKnj99ZW0Nqdnj1I1hdLNB79TCsORZkH6b8HI8X158dPb+WzeBras24dQBKMn9efoE0dgD3uwtm07lDpfIYnSIAHTRjThOdkpu2vr8ART1YRJck64zfYwpOT5NeupaG7hb2edHrdAqvI1f4UhJ8l2+rFriYs1KSRCwujcgZS2VtCqt4ZDTcEwHWxtqmZWlwBuLbVRZFrxj3nnwA9BEqc0xCY+J4NAQVMkG+r/HlVUJGbUuCVpS+hNhQytiAytc4XQYlHuPcjr5W+yoXFj+NqSvu7u+M2DKOHg2KhMkgKfbsOh6tgUM2zQIqFfJiZBM8i8ytf42eD7vtLC1h6WEaYhMHQl2gdVM1FU6xkptva1LL46BOASNkKYaIrC7CGD+P7kCQwuTu6xafH4+cdby5Lu6wgp2HnZuOEAOQEdoUCqlBop4dC+WgL+EE5X56lCv1YcYfLhiFQYIhgwvDsDhida6AFstuSaseY1MCSYDmuxpCiKZQ0SEHIJq56CKaNaoQyHWLpddvp1L4hGXKYcA+E1mGIK8EvrF0jykkQsUPd9/gWvXBRPC5fvdB+2hUFTTJQ080fAUPjw4EFsajamDE/JEhqDDdyx/inuPuoKphUlX5gLITir58/4ovoFVtW/T8iM5CUo4RtO389yX2nCNr+0szdQTJ7qIUfzoGIV/NFNNYZeVcGhZDAg6/AW5lJKXt7/OCvrv4jb3mwEaPW6GJjZB5VGagPVeE07tcGMaJKeCHtq0gkpBYVPqz9jdN6ow+oXgFO1MTCzhI11tXHbrXBNFVUxMUzFmjhTKovh/0OKZR0SVgxXMsVBEYJzhw7n7mNnYZgSp03rkJ3o3cWbExZSUumEeDJl0gQvw5CU7k5dfK/tIny3wpHgiBMI/01wuu3MPncCs89NLMoGoCWREcnm9ggTjLQLdLeSGC0orfds9LAenSKYiEWKdWekWT7ZtZuVBw4yqVcbBWye4/Drl2TaAxRlpK4NIYVkc9NuGgIOTCKKgdWpDw6tYk9LJX+dcAP2JNTbAMWuoZzR8xGWVj9CtX9bzD2kfx4Sk2rfTtyK9S0CIUCTJhKJEZ6Vk0MwKu9chOjYeBWL/d4D3L313mjtiUhb+7xebEoOUwoGs615JUFTxWs48BlhQa4LHEoQtxpKaVSXmBzy7eeAbw+93J2rsBuLo7sM4NGNKzANK58tAkNXUTQdm91E0SRCM5B650KT0kERgvmXXkaxOxO7qqIqSlqPzeerSwmG2q3q45KpU/dH0VO36wlGCFrSTKjCokX+zuAIkw/fMen7zWFsuOhH+4EvAM1nIP0GaoaNSy+fRr/ehTz+3jJ27a8BXcYN2Yh34IRJg3E6bEwe2ItF2/aQEjHrzEjYSCqYUrK6/CAHm5rpntNm4T+z9wjeLrOKf0kJ0ghTjiqWNV4VgmNK+rKuZTumtNip0ykLsV0LmSJstWnbaAC/3/oq7x4zLKGAWASq0JjZ5QqmFV1IhW8XpjSoDVQz9+BjHV431s0dC12q1OjZNBh5dLNXI8J1QgEMqdGgZ2GI3vx2y08pcfVgeuEsRuSM6dBqs7Nlc4KyEIEJ7GitIkMtoSJg9S4WEtryCFLAxKTcmzxGuSMc8jaxvaEx/K39fVhKkxAyrHiaYaWhbVBFlYWgammzArBJCFrPOLpgCR/n1DTunH4sgZDOS8s28OqKDVQ1tZLldHDG2KFcPn0c3fLivUtNnsRENlMDGUje60jHVH+Y60pKS3kApLD66HDa6NmviPK9qakmDcNkwrFDku/8lnCkuZz/hzZMnTqQD95fl0D1GJn/BTBhYl8mTxqAPcvO3X//iJgc3bgTFEVw6szhZGa5yHE50xZei0XKiM4wVCF4e/PWOIWhR0YeI/O6saWhAkNKpCGQpkCoMmqBVoXCtOK+fFm1Gwnkun10RNtuSCOcy5A4J25tOcDbB5ZyQe/U8eNdXMM4q/djNAT20apX41JzeP3AfTSG0lRiRsGQLSSrwmxNHRFpZSMkjTbvhVRo0h20mP14bv8qXi3fyIT88cwsnkGePS/9jQLP7H2OkBlKyOuzPASCjY3V1AVzkoZTBUwbhlTJ0vxpI3EqfeVfSWGYX7YrrCwkXtvUVUxVomoSe06QQIMj/Ojah+/GJYq0bW7vwAZ+OfVYeufksbqsnH8uXsPinWUYpmR492IumzqWU44aHCdz65u9qBGSgM4iPOnbvGFFw5QIQ1oGWVWAEAw+qhebP92SsglFVRg1ZcB3yqh0pMmH75Aq9s2isDCLWScMj6ufEAsBXDhnApedN5npEwfw08uOt6o9x+yPPXPFur14/UHOGDuUDIcdJclMIQARom1fJxX/ak+85Wdal76My++B4VcxPBqmX8PwaRgeDRlUyNQc/G7cacwqGWaFlQjSxv21dTCWlSL+0xQK8KtNL1Lpa0jbhF1x0jtjJH0zRzM671icSmprl0AhQ+2YpUmXBsXuc+jiGoVLzUMVXdnj70FVMJOaQC0NoTq2N2/iiT1/5Pmyv3dYq2JJ3acoaYa+lIKKQAMpcy9ExMuQGnalczkL7fHSntXhgkvJr21VjJaoisChqQjFyvNQENZvbAikXwU95v4UwB7RJNo+woCAT2dJaRkX//0V/vLJUiqbWpFAsz/Ay8s3cPYjL7CjIr7gXmFOYmIhQkQZwBKejLQmf81nInQTJWCghkyUkIkaNFCCBn17FXDhD45POU4VVWHomN4MGd05jvJvCsKUnfr8D/95OOus8SmND4oQuFw2bv/ZacyZM45Tjh/JUUO7h6dLkfDRpeSzFaXYVZXLJ45JOfV3xrATC0NKKlsS6T5vHX48ekAh2OAg2Ogk1Owg2OAk0GTH1AXXDprK7SNPjL6rAV3rUEaEzPSd+3vpfFbV7UQ309Nb5jl60zNjAoXOQYzNOzWt10Vi4lQ6ps3W1EH0zjyJbFsJTiWXmtBAtntLqPAHqAvWc8hfwbuH3ueOTb9kd2sagx5w0HeI3Z49SUlArD5JaoMNyIRVQAQCPYHsIxG2ryAjmgJ+Xti5Ps0RglDA+i2FKnHk+9EyQsSnGiTpc2RTpG6pBKGD6hMs2b6P55as5fInX+eLHXsJhUkothys5qevzefX7yyIM7wW52elVxYiHOOx3wFHo47QJYpPR/HqlpzwGygeHTVocPp5EynpXYCSwoNgGibnXf+vkZ/8u3GkyYf/WoUB4Ce3zGbMmN4AUcUh4s467rjhXBGTbb94zW6ESD21Vde38uHibWS7nPz9qjk4bVqc0qCG279q4lg0RbH2dXKcFGXE8/u3hoJUNQbCi8LYHgmMoMqUvAGUuLO5vN/R4a3hIJoU17OmPTPmWyKkhM+qNnHO4nu5bd3TVPkbO+y3TbFzZo/ro32Iv6aCXXEyIGtUB4t3Kz50XtU65te00j/3Ng4EuxIyzThFIzK5r2pYwuc1H6XtV5X/UEphABDsMPciUkQu+QO1mKWShzl0hI8Pbk+ZENl2eYFQTN6cdSVrzrqVreffzobzbiXfzEEJ2qzchViErUaKLlBC4Y8uEKalZNz8ygfsrq5PuK5hSryBILe89EGcQDh7xlFJFWKpCXSXRQwQeZ9smoISMLE3GoiQiaInsRRKWPzpVvJ75HPpjy0O8ohQiPzfZ1AX7vr75d+ZZLYoZCc//8N/HHr1KuBXvz4bm02NG3dCgNtt5/77LiAvz5qbm1v9bNtTlTbc4uk3lqHrBt+fPpGThw0CLA8BtM26PXNzOX5Q/06Pc1UIumQmKvBl9S0EW+wJYYsypECLm1NKjqJ/dhGzSgajCEGTz9VhXqpPTx8XrkuDm9f9g7O+vIe3y5d1KtF4TP6pFDv7kqoGzlE5s7B1YIKVUrK9pZLXD21jX2A4PbNvYo8vXPAyZp6XWFWUH9r5MEEzdR5JlT99zZfO5U9LAmZqS7cmbAzJPqozDcVhSWUZoQ4UMhBgKpzYbSjr5tzBmgtupvSaW/nllGNJaaWUgA6aX0HzWB81oCBMweelZdw373MrBzNmcRuRF6+v2sTHW9rqTxw7fgCuNLVOhBDYbFqkp9hC4KwLoXkNFJ8Ohmy3qgGCJg/d/R6/e+Y6irrlAm0yRlEEQhH88PfnMWb64A6ezTeMI0w+fHd8N98CnE4b9z1wEWvXlvHpx5uor/fQpUsOJ88+imHDu8dN2h8v2562YI8APl2+g7NnjWJsn+7M+9mVvLlyMwu37iaoG4zuVcIFU45iaLdijh3ej5vnzqPGk6RSbgwUIRjbrYQeOTlx2/+5ZTX7W5pSjrP39+zghpFVjCjszoNjL+bn618lYAQRQibk6lkCS6CpwbTxpLGJxyvrdvH9lY/y9KQfke9IpFttCLawsXE3pjQZkj2ES/v8go8rX6TKvy/8rASDssYwu+QKQjLAhsZEhqVY+Aw7hoSAIfnHnqfI1NInDS6sms+MopNQUoRPudMUWLPusbOL0kT3vEDgUB0cV3xs3HavHmRR5Q5qAi0UObKY2XUwLi1RAAc6oMuL+I/P6DmSobldo1sdKrx46vlcOu91anyeNsrT8CBRfNbknwAzXIwwBQwpKattYNXecib2s7jWz5s5iveWbOFgTWOiJUkTHDd5EL+9Zja6buKwq2zfWclzLyxh9Wc7UmZ+SCn5+8Mf89iz13LMqaP46LWVlO+twZ3p5OjZI5kwY8h3il87giPN5fw/xGPq1IG89PKNzJ+/gS2byxGKYOzYPpx00kgyM9uK6ixbt5dQB4WjGpq9bCmtYNSQHvzp7FM4e9RwXlu7kbL6RnJcTs4cOZTTRgxBVQR3ffAp72zchmKG9f8UU5IhJWeNHBa3rTUY5DdLUxUrs0JF7l/5BU+dfDb3TziLm1e8wRdVpTR43eS5vQkyQiBwKG4a0hhZ4u4z1Moft7+NR/dzSZ+ZCftNabKpaR9VvgZy7Blc0PNevqx9jk2Nn6BLa27PUHOZXHguE/LP4uNDVZR7lpOMvU7KcBHPkDWnl7aWsqsltQdBImnVW1lZt4rpRcmpYF2qqxN32bGMSCdHji2ejUuN975vb6pkda0lIycU9mFwTiLzVMfywYKKwo1Dj8EdI2OuPmoch1pbeHrTGlShWMX9IhOyAao/hTetAwePIgTPL13HSSMsJdjpsPGTS47l3n8k1opShEDTFB6/6wL6di9AUxX8/hAfzt/Ac09+jk/qKZ/sulV7OVDeyBOf/pylH25k2SebCQVC9BnajdkXTqaoW8ehZt80jjT58F+tMIClnY4f35fx4/umPc7nT79IlUCrr61QTlFWBtcfP4nrj5+UcOyk3j35/KZr+Kx0L69s2MgX+8oS+yWsl+tnM9q8HHsaGnhh43qe37QeTAWhSqTNTGCXU4XCqzs3MqLwBGZ0GcLHx93O/EMbWFdfRmnLIcp9dejSRCCYWjiYq/rP5KcbHqc51FGhHwuGNKkLtPJi2ef8cPBp0e1+I8iju97kk6rVcZVGJ+YP5ZZBv0YKD169hVx7Edm2/LbnkX8yK+o/TLiO5V1QaNKd4crRErswEwRaezSG6nhg+19p0QMU2vOZ2WUKI3OGRBWIcXnT2NGyC69hR0qwKwaumCQ1VchOaP3xS9/IBJylZXHzoB/Fxcm+unclD239BK8RREFgInFrdm4ZegIX9J0Y1+rwvBKq/S1pE9r7ZhZw97gzErYPyS/iiwuv5b3d2/m8fC/1Xh/Lyw4gQgKRQngJPdH70x6KEGw9WB1VGDLdDp76+QXc+/wCFq0tjVqaXA4bFxw/muvnTENTFWzhBf6wId045fgRrPlsR8prSAl7dldTtreGvv2Kufr2U9P26TuDzliI/oMEwv+QiPz8DL73valpj+lIPkTgDVu+hRAcM6APxwzok/S4+888mZuOmcK7m7fx5Oo1eEOhBA+gEIKZ/fsyqaeVvxA0DObt3MlfVy7H32wihGJVcddk3PrWkJKF+3dT4/VQ5M7giWkXs6n+IB+Ub+aAr4x6Yz+thlXJPc+WzendZ+BQcvjDtjc7dY8RPLn7I07tNoE8e5sHZGXdTh7c/haHfG3FJHNsGdwwYDY/GnQldcEDqEKjyNEnXEwTJhXdSKVvA7rpi1MaInJgl6c4mskgOzF1KyjMr1zAx1UrAcFRuYOZVTyNXLuVqzUwcwBZaiYtRvIk8EiSe0eIZSWMeNFNTKYUHMepJW1EJtW+Fm5Z9QZr6vbHpQ+ML+jFHyecS7GrzSg3NK+44wsDD0yak6BwCCG4a9pMzh8ygle3b+JASxPrDlbQ0ORDGCnkQDh0NR1MKdl6KJ604syZR+Gwa/ztlS+prm97joP7FvPTK2YxtF+bsSszU+Xc8yYx79XVlDemzu1RFMFH761n8tGDOPbMsRx75tj0Hfsu4AiTD//1CkNn0ad7AZt2pabZUxVB/x6dLwxjU1VOHDyAEwb154V1G/jzkiU0+dsW7H1y87j7pBMY292qsDxv105+PP8DwJrwBQJ0ELqKdJhWYZUwDGlysLU5+j3T5uS83pM4r7elvPiNIA1BD1mai0ybZSU7s/tUni9blLbPsZOkicm7B1dy0yCrgqYhTf5v0z/Y2FiaUORnTf0Obln/F/42/lYKHYkVo0/rfg159mK+qJmLNyyopAS/qdGou8PKAnQ66QNY37ANHdhFGUvqVjMubyS3Dr6WkGnwec0eDvryiE0AU4VBsaMVl2qSY3NjhERatzVAF0ceA7OGogkHQggGZw5kfP44bEqbO/bNfWu4e9MHMc/NuqZXD3L3pg+wKSpn9x4X3f+9fuP59FDqhTXAfePPjFLrtYdLs3H+4JGcP9iqoXDBK6+w9lBF8sJLkk6VpZdIbDFxo6u27Of5D1axcrNlDetakMnM8QO57qwpZLmTlzKvr23tlKCtr22lb7/OCcXvAo40C9L/8NXQu3t+xwcBvQ7DCtozL4cbj57MWaOG8/N5H7Nk3/7oPpuicMGokfz8uGMQQuAJBrn8rbdYW3EoHGJqEXqIoICQQLriC/1IoNLTQpHbssyPzO/OyHyLUVBKSUOoGUOa5NtzUIVCwAjx5x3vEDQ7Z+EGayH5SeV6zu81HYA19aXctu6phJmoKeThvm1voEuTOT0mJ7STa+/FGT0fY3nNIxz0ropu95s2ynwFSYu1pYMhTco85fjDIUNbm3fxZvmH3DHkekblDmVj02aCMr1ZfXj2ELY270iTfydwqgZDs0aRay8AJFlaLuPzp9PF2SYDPXqQS7/8Jwe9TUD82nFdfTmXfvkMbx33fTLCnoIhecWMKezGxrqKpEYlRQimdunFqb2GJeyLYEhBEb+aZsX6rzxQzsWvvJb2XjsjI2IpuFs9AV55dxVzP95AQ7MPu01h9PAenD97LNPHD0jZRn1dYi5OLExTUlvdnPaY7xqONPnwP4Whkzj3hNFs2JG6GI5hSs46/vBjEoUQXDp2NOcfNYLl+w/Q6PfTKzeH0SUl0ZCofY2N/OTDeZgyfnqKWgQCClIxop4GVQjynandqk7VTkk7nuJr+p/M3PLltOjJNfy2ualN6niNAH4zhEu1s7JuK+sbdyU918Ckwl/P+4eWckGvRApURSgcXTyHqUWn8Y89j7CxaT1BEyQKITNCHWddV5cqQqQWWpGch0jpvEgM69qGzbxQ9jZ7PJVsbor0s+1eDKlQ6c9meI7GDwf+jNLWvTy196kEBicFBbfq5o4hd9DN1S1trPHWxgp+v2leyv0AD29bwOk9R0frL0wt7suVAybxz9IV8eQVYWtaX2cxvdydW5wA/OmUUzjv5Veo9njaLJTRRi0PQ6owoQikhOmDLA/cWws3cv8zn6IoInpebV0rr324li1bDnLCpMF075rL1HH90GJCiKqrmjpllcsvPDzh/63jCLMg/Q9fDaOH9qBH11wOVTUlzUFSFYtWtXuX3MNuu1t2Fs9eeA5l9Q1sqqzCpqpM7tWTXFebcv7bRYtYX2nVFmozg1hvtZQSEVCQzviVX14KGSGEIN8eHwbrUG1c3382j+x6r9P9VoVCTaAx2odHdr4Xfl2SvxB/2/UBs0vG4VAT49/zHH2Y3eMhDnp38oftd6FLBa9pJyEkVBCTO5HCqypAjwnPlEhCps592x/jxwMv4bHdj6cl4ji95FROKTmZ3269jwpfZdJ8uJO7zuLCXuehitRhlEFD566177Lf05B0vyFNDnjqeXf/Bi7q15YT98dpp3HOh8/TFPQnjjUJM7unXpS3x8SePfjJtKn8ecnSOHkTmdxVX8ceaFURzBxisT01tfj4wZ0vc6CiATPMhGeGTNZv2M/mLQc588RR9OqWz8TRfejeNTfaht8fQk+S3xYLRREUFqeuB/WdxBEmH/6rk54PB8dNGsSM8QMSQmEi388/aQxHDUpe86EzcGgaM/r15cxhQxnTLX4h+uKmDUiZnktIhNp+SkNK5gwYfljXV4XCb0degiqUhAki1ULPodhwhHm3P65chZKW7UIyv2JFB33Q6J85gqCpIlGi8amxE39IKhhSpF18eg0H7YWFRPJR1RdsbNqR3NqOQKDQxTGBrs7uTC+czg8H/JBuMdYggWBU7ij+b9j/0d3dPa2ysODQdi5Y9ESHFrn6oIfVdWVt1xCC20fOYnRWHww9RqgZgpBHY1d1M+d88CLNwc6Fj3XLzua9Sy/lh5MnYxNKdAJTQmFhIARpcvNQhOD4Yf3pXZjLoZomHnjWio2OetqkRAQlmkeyY3slf3vuc35x/zucec1jfL7cUswa6lt587X0vz0C+g/oQp++RZ26r+8KIhakjj7/w5ENIQT/94OT0TQlSnARgaoI3C4HP7161r90jT75eZw+bAgnDx4YpyzU+3y8vW1rSrIEgbDYb8LrMUUIxhZ3o0dWTtLjU+HsnlMZlzegwwVkBKY0ybNZBoC9nip2t1akXYh7jQBLarel3A/Q1dUfnQK8ZuIcH4FIYwIJMzonMBhJJLqp81xZx2FXxxYfg1tz83/DbmdG0XRsom0CzbPlclnvi7m41wVplQWfHuKqJc8z72BqmtAI5u7fEPe9X3Y+f5p2WtI7NJH8bs0CXt61vsN2I7hp6mT+ee7ZjOzSpY0hKQRaC6jB9L+1wHqml0+3woP+9vznUWUhrl8SgiGD1z9Yy0NPfsoFN/6DX/zhHTxeS449+9hnBIPpZaVpSk46fXSn7+u7gCNNPvzPw9BJqIrCPT86nZfnrebVj9ZS22AlLHcvzuWS0yZw5syRh91mIKSzYHMpe6rrcTvszBoxgF6FuQnHLdm/P21Me0QgSCxhMKVrT6aVHD795ISCQfx13PU8ufsj1jbsBtorC/Ex+7O7jYvmBdQGmlIsxNvQEOzYnTilYBpvlr9OKKVLWNCiO8jW/FHN3OLjtjwBPsOG10jO0GBIA1WoGCm6aSL5snYNPxz4PYQQjM0by5jcMVT6K/EZPgocBeTYOhaydQEPt6x6I1qHtCM0Br1x39fVVrCivAKwE2svtCDZ19LIs1vX8sPRUzrROuS7Xfxo6hR6ZmRzxzsfJ+yXmjWhKwbRZOkIj/aY3t34/XknAfDGp+sTBL4IStSYnyoyXpqaffzygXd48JfnsGPtAcxUDz16Ilz/oxO+eyxIHaEzYV3/QQLhf/jqGDm4O0/efTH/eH0pi9fsRkqLdW/W1MFcc97Ur+Rd2FNZx+eb9uALhhjYrZBjj+qPLZ4jk/UVFehm+kEoEFa9nnDhoJ9OPPqw+6IpKg+MuYpn9y7grQNLadET67G0x6yuowGoC6QPN4n0sS6QXkaoQmVm8UzmV8xPy3TX5jdNVB78hi1hG1jzf02gEbeWXtaurF/NKSUnk6FlcFW/y7iw17lU+qvQFI0eru4pyTZi8ddtn7GuruNaPRKoDySSozy5dWXa8363egFn9hmG29a5isdH9+3DtN69OeHBp6hqbk3L1Bd5qooQKIrgD+fNZli3Ylo9AT78fKvl3VfCC2GZ+KQjLS9eVcpt97zJg784h3ffXN1hHwcM7sqEqZ33nnwncITJh/8pDIcBTVW49PSJXHzqeGrqW1EUQVFe5lda5Hy2ZTd3vvoRzb4AWria9J8++JJTxwzhN+edgMPW9tN0VKcgAgGc1ncw900/+SsvvEbm9uGRcd+nPtDC3ZtfZWX9roSrKwhcqp3v9ZkR3VboyEFpUdJO4vn2jt2JGVoGV/S5in/sfQJFxAYEtd2PiUKT7sKh6NiFTraWRa6tkM3NlQRNlWTCIALLXZ16f9AMoUsdm7CUDiEEJa4SAkYIRSh4QgE+OLiJzQ0H0RSV6cUDmNF1UFxBu7fK1qGb1pPojMLQzZUb9/21nZvaWCySCTYpeWnH+k4rDBGcPnIoH2zeweI9++IVQWEVXpvWvydF7kz21tSjCYXpA/tw5bHjcdg1Pl9TyssfrU3w7EhVIEOp+bUee+FLgnsbO+ybEDBqbO/Dup/vBNpziqc65n/4r8DAPsXc/9M5tHoDNLf6yc124XZ2btEWC48/yJ3PfciijbuthZkQ6KZJXqaL+688hYmD2wxChzO6ClxuHpgxmyndvlo9E7uicW3/k7ii7/EsrdnGrza9iJHCVHR+r6MpduZa103CptceEkmho2MZcVrJaWxu2sx+7/6ksjFS0M3yygsEgh6u7hzyN9Ksp2cD7OhZKkKhVY9fwLs1N70zehMwrErEmxsqeH//FhqDPnpm5HJ2n1GUuNvuy2+EeLVsTYcGNrBkbc+M+BDUQ55mllTuS3ueVw/x4YGdnN1vRIfXiF5LEfz+3JO49p9vAcQpDaoAh9CYM344++oaafD46JWbw2VHj2V0n254fEFuve8tQjEaQpRnw0xuRTdNyabth3j1teWEQjrRYIIUS4hJ0wZ+t6o4dwZHmHz4n8LwFaAqCl0L2yYA05Qs27CX9z7fREVNM4W5mZxyzDBmjBsQF8cdwdq9B/nxs+9FYy1jrUPz1u/AGwwxvG9XPtm2C19Qx8yQbTSZSaAIGFVSwsMnn3rYbuZUyHdkcf+YK3h4x3u8e3BlHOtRv8yu/GrkhXRztU1kJ5dMZHHtxpTtCQSnlHRugTupYAo5tlzmVb7PpqatBJPEzEgEAdOOVDK5a/gfaAw185N1v+lE65HKyMmRY8uKJi2b0uTNfWt5Yc8y9rTWhs+2ijCpQkUAr5atpndGPk9MuZQeGVZC44aGg1FBFvnJkulvEWFwVF4PNtRU8Or2TZS3NrGtvgYjMiZSyLYqb3IGj3TQFIW/XXgmTyxeyfMr19Po8yP84PABJqxqCFu8JGDAli0VvPLJOs6bOpIX3lkVF4YUjc0UoDsFmj9RDEtTUrq9AkeLHqUWSSWqUxVQ/K7jSEtq+x/+Pch0O8h0txXmqqlv5Z0FG1m5cR+mKRkztDtzThiV1OsgpeTWf7zHyh3W+2hKGZ37mzx+bvzb29x2wbEsLdvP7up6HHY1rXyI4P6ZJ3LOkBFxCapfFTZFY0aXkTzs+D6/3/IaB3110X12RePi3jO4qt8J0W39MrsyMKsbpS2pw5IyVCdTC4d2eG2n6uSOIXcwr2IeC6sX4jGS05NbBS3h9G6nclb3s3hox1MsqVuTsl0pSVpfJhaGNCh2tJGb7G2p4/HtS3hv/xaCpoEmFHRpoiAQwjJ3PbLlC34yYgY3DLWSv8ta6/DonWPVMpGc12csLcEAb5du5YvyMuoDXqQuQJUp2QI1oVDhOfwE4Un9evL8defzl0+XsrR0P5igeUHVwUDnzY+t8CgJlFLNwhW7mDq0N1qDwZZdVg5NXKektKqVp1AaFCl5//VV7TZGziXGSSRwuFLXdviu4kiTD/9TGP5FBEM6d/zpXZZu2IuiCExTskupYcn6PQzv35WH7zg3TnAAPPrxMiD5stWUkoVbdrNg924ieVmiEczsJL69MKSEXx9z/L9NWYjApmjcNvQsru5/AivrdhIwdAZklTA0u0eCB2NC/lDG5Q1mbcPOOIEQMhT8QTtu1Y1hZOLTQ7i0jl/8IdlDGZI9FJ/u49UDb/FJ9SIU2jwYCgqqULll0I1kaG4yNDdOJQuf0ZJ0EpUSAqZqhQmkkJcKgpO6WtzcpjT5+dq3mHdwU9xjN6REEZbgiPwg5d4Grlr6LO8ddyMO1RYtxgQC0wRFSax/gQShCO4ceSp3fPkRr+7YhCpEmAGrLcSKFBzseY7OcIUnwq6q3DRjCt+fPpE/vvMFL3++PvEgAWhg6tYC5Zl3V6JGzEWGRDHiJzkpQCrxrlehm9g8hlUdPUzQIkVMdHG7xU3f/l3+88KR4IhLavsf/v1YsaGMOx58h1DIiC7qt++p5JUP1vB/N83mxGnxi+QNeytYvn1/sqYs4gtTcvdrCyFLROugiEwJKcL6VSE4tk9fLhh2+KQcHWFUbl9emfoz1jfu4YC3lgzVwaTCwWRqifPTjwadzk/WPokpiTOo+EMahqEypngIe1rq4urLpIJTdXJ2j7OZ030Ou1t389fSv9Kit0TbjciKkTkjOb3kdACGZY9IqzAAGHpXFK08pafcJmxMKrCosDfWH+KSRc8TNPVoyLAeNqyZxFuWH9q8iEJnJuf1Hd2pkCWwfsopRf3oYs9j+qtP0BSwCEmiHndDIDWTZKkShjQpcKavN5QKo3qW8I8rz6G8vonzfvscfj1NboGElZv3Ya9P4RYIG4qkAhgxw1NKbE1BNI9BStNX5GDFamPcpP5f5Xa+XRxh8uE/zL/z3cOjr3zJso1lQFsiaOT/bXur+P2THxEM6ew8UMOuAzXUNntYUXogrTVIAjLmHZU6aK3Wjrjq0eHK03cfN8tKWPqakGfP5KSSsZzRYyLDcnomXdgpQuE3I67i1JIpaELFlFDbkkHV/7d33uFRVGsD/53Zml4gFULvvXdEitIRFcUGiF2xctWrnwW99nK9dr2i14qi2AuCiqBU6dJ7LwkE0suWmfP9MdlNNtndbEILYX7Psw9k5szMOVvOe973vCU3mtxiO0cL4fG1s+n/84v8eih4YFtZwsxhXNv4ah5sNZUucR2Is8SSaKvLsOQhPN/hcdrF6MK2wF3MgQINrSQg2psQSJZmTipwhdE0srnf5ygopIYlMraensVp9sENzD64Xr9HmXaeoYsyZ1QpOViYzS+HNgHQN7FpmUREAtVPwbQIs413+0xi5YEjfL51vfc+5Z/nT26ZhOCy5lWPmSnLyu0H/CsLPg8qybCilrhyqVIv8lb+qytLXJM8w1QlljxVr9jpLm1cNny9/C169j4LhQG6khTKy+Dc5MixPP75wrc4XW6fOV/TJKom+dfrP7Nj71EysvLYtC+DI9n5zF29FVOQXQAp9WKLapm4IHNBaQFGj4zw/Naaxsfz3NChJ31sHoQQdI5ryph6PRmc3MmvsgDQOa4p/+58PfXD6wDgcJnIzI0kr8iOw2Xjt4O7uGjedG5Y9Cn5IdYEUoRC86jmPNnuSS6pdwkp9hRiLbE0j2rOLU1u4a7md2EuScyxKTuLrCJ9EV1W/Hr+n1kUwZ48lTBTuLduQnkmNLqaMFMYmpTctexrHGWUhcp4Y9NCNClpElmXurbKs8GNqt+eZ7pczLVzviTX6Si39iz5dN0K0s/8YlZMDGvQIqR++UPVNG749xcUu/wrC2UlmiiuxLlKCBACqZT236MshGoisljNNG+VEmLrmkNtkw/GDsMJkF/o4Jt5f5dJ4+aLqkl+W7Odxfe8TUFJYZ/IcBsmTaLa8e+n4qHcLU1OgSkHouuEER5pRSLpVT+NSR070zqhZmSWsZms3NXyMq5tPJwblnzCYfcRPLYkj+Wl0O3k7uWz+LDfJLrVDd1nvV1Ma69y4I98dzEqgmOOcMLNLuwmFwoSTQqKVAtFbgsmodAwvD7DUjrzxf45HHfmAGAWJs5P6MG1jccSUSLsPtv9l7fIWiDKpqFTEPx6aDOj0zoyMq09/9k0j1yXJ+2dR2mQ3mte6X0l7WLqc93674Pcv2SXoUzYhUkIYm1hTG7bNeB1lZGVX8Qd078tHURZysU2SFG6I+BZkJS/xDMmaQLcYCnWP2vPLoS/b7koV5Rh2OjOVR9ITaCWWZAMTi7fzVuHW9UCuilrJrjtja85WlCa+KBOdDjS3yqwDBV+g1JgyZFoNmjcMJ58l5PEiAgua9uOsa1bE2apGe4c3eKb82nv+/h63yoeWjnHuyNQdtG9+Mgubl82i/f7XR3yrmOUJYpRqaMYlToqYJtcZxE5jnCK3CZibEXYzfqEVuQ2k1McVhIMLbmnxVRmH/6BNdmlSR5S7SlcWv9iusXr8+7SI7s5UJBdpbEfLMxhW84RWsUmcV3z3jy/oWIlZNBlSYf4ejzf/RKmr1/hVRYqUjLzqgIU3xZ3tO9DbDV3oQHe/mkpGdnB3V698i/U+a1kp0C4tSopC0hJ3wGtQm1ds6hl8sFQGE6AjTsO43T5L4MoAdUKKHiVBdCVDDN6RhpXRHk/lTL4M3CokHukiD9vvsEnKLqmsb8glw1ZGX7PSfSF5Ftb/+S9uhNO2jNjLRFYFTNOzU2B20qBu2KgoSolKWHxDE/pz4XJfdlfeBin5iI1LJFIc7hP26056cGVBd/1LhqSIlVPFxRhtvJe3wlct+hjcl1F3ruYhB7c/kjHEfRMaMzK9AOVpkf1FGDyzK7t6iTx6vmjSQqvfr2Cb5ZtwKVqAVbyVFQaKPHFDNpPSixJEsVZkgw3QJFD3wsFvfo0IzklNuT+1yRqm4+qwcll2drdAYt9qmZwRkNRfqHPj+t4bmHpTzCQG6qf4wKBzaVwYXJTpg7td0L9PpUIIZizf7su+vy8NaqULDmym3VZh+gYX/1U5eVJDY9FSkmRWzcg+SPcZKVxRH3uanE7Oa4cMh3HCDPZSbGn+CgvW7KPhBQ3Uh6PjJjUrDe7848xa89qb4ILj4GqSVRdXuupV4L+fd+uStaTomQXWm8VZjJzR4e+3Nq2YgG8kPvodDHj9zUhtRWAVAJ8kOWREinAVFRJ6Wg/XHZN1RJ81BRqm3youavOswA1yIJIKuipBfwgAJMLVBdo5da1XleWwCmca7xCOvfgpjJZfiqiIVlyZBf5LgeRFpvfNpUhpWTpkT18snMFG7IOYzeZSY5K5kDxwYALfUUIhibrFiKTUGgUEVgYWRQTjiA1FMrLCZMQtIgurVDcJjaFXy68k2/3rWV+uh7/0SGuHuMbd6VxlB4056wkFSLo35WLmrahZ0p92tdNpn3dyv17K2PBhp2VP9QzPiHQLBKT/3p+FSkb2FyJkkFJWr5/PBjYKljTEZqsVDEKSXEyqJWoAdIJS8AV6ePf6HNOlv3Dz3k/NcvKtai5FLqd/JmxI2gvzULh5wObTkhhyHIW8PW+lcw+uI48dzGpYXFBMw6ahGBsWlfMJUU0YywxAdNo203mKisLZqHQKFJPFKIIweOdRjG2QUdm7VnNnvxjxFjDGFW/PRemtsZq0pdmTq3yxXWY2cLDPc8n1mpnYL2mRISYSjUQ63cfpsgZvNK1Bwm4bWDxH3fuS4mGKLRgeaoqMnBoe5q3PPvckaD2yQdDYTgBWjVO8uarL49mhoqRrqVIwOSoqDAIQPOfJhpFQIukBOw1eHcBIN/tCGlCKHQ7q6UwSCl5dt1vvL99mTdQGOBAoSQ+CsyKf1eim5uOID6E9H4AYSKMPOkI7jVWRphrUnJZI183oWirnYnNejGxmX9rT6v4ut6sGgGfAUxs05muSSfP0uZwV8HCo+k7ZRaXAHflE9td1w3ii/cXk3W8QN+dqERpaNYimdi46gXn1Qhq2ZazwcmlU+v67Nx3tIKM0MwgzYF/GYFifSS6MUoNMG26NY2uDU/eXHEqKHK7QvpJhBrH4I/d+Ue5ful7ZDkLvUpCZnFewOeahEKCLYobmp0X0v1Tw/0rEoEwCcHwtDbE2Up3soUQdKnTgC51Aqe47ZSQwpojhwLGSZiEoGtiKte0OHkunc6qyAe9E7iiwJpXycJYQNMGCQwc2pDPpv8Z8u2HjuxYtf7UJGqZfDCCnk+A+JhwLujdqjQlpKeMpGeVFGS1qbts4PtlkaBaAu8uaBKu7dPlJPU+MPtzcthwJIPjRZUX5vFH48g6lQaCRZhtxNrCg7YJxE8HNvL+9mWAr++rWxMcz43E4bJQWGQlN99OXoGNeHMcD7YZzxUNB4R0/yNF+ezP1U0m/obhDaRWFW9163+0vYBGkXUrNg5CvD2c0U1blcmq5ItJCFrG1aVLYqrf89WlXYOkCtVofZCl/yoAQnDvDUOwWYMrqgnxkVw6ojMXX9xVTymoVF4TdvTF1Y/FqAnUtkqeBieXiy/sWDqHeOSDVpI1pqpIXVlwRxAwG1K9uGj6tWhU/Q6HQIHTyeb0I+w4eqzKVnaAGGsYUZUYijQpaRxVp1r906TGnSs+IcdV5LOjUNaIZNPsFOdZKc61oRZbGJzUmo/73kx8CMHIAAvSd4TcH5MQJIdF82DHqlf6vqZ1p6DvsSol155APJs/WtRLCGoo8+DplaIIGjdJ4KIhwbNwSQmXj+jKFVf1ISys8l0QIaBuYjQduzaqvDM1lNomH6qlMLzxxhs0atQIu91Oz549Wb48cNXB6dOn079/f+Li4oiLi2PIkCFB259t/GPSINISYjEVa5gLJZYiiblQVhr57vX40ECoJS8NTH7SM3sWd1f37MSYjpXnqa4uC/bsZvSnnzDgg/cY89kMekx/myk//cD+nJwq3Wd0Woegub5NQjCuYWesShC/qyC8v22Zd6FeHqdbIT0zgmPZkeTnR5CTG8H6AwrLD2RVWg3Vw4GCbDSp4HDoC2SPglA285LDYUFKQfu4erzW4womN+tbrbE82nsQjWPiKuT/NglBtNXOG4PH+PjOHsjK4d+/LOTq6Z8z8b1ZTP9zOccLCsvfNiiX9+0Y1J3O65LkhuS4KJ6/YSSXnteBe68fXLGtlAiXhuLQGNy5GY5iFxdf0o1GjeuilGRO8vckRRG075jG4AtDLyxUIyn75Qj2OscwZIROw9R4Hrj5AhSXhrlQw1LyMhdXITVKGSulouI3+YAiBNFhdt6ccFHQDEsnQr7DwRM/z6fPi/9l7DszGPnWRwx65T0+Wxk48Yc/zIrCFY27BK15oAjBxQ2rlwZ2WeZO9hce9+sSKzXIzwwn45ANR04Yzrww8jLDWbo1j/S8UPxqdPbmHQ+pXYTZyoRm3flqyHUk2Ksed9Y4Jo6n+l6guzGXeb88793ktl0Y0qA0w5xLVfll3TbueP97rn7tM+6fMZtl2/dV6fNJjI3k/A5NgxqVyioLF3Rqznt3X8YdEwbQICWuYk0dTWJ2SZIiwmmUFEdYmJU77h8RtA+ixOB69wMjz75ibWWpZfKhyr4tn3/+OVOnTuXtt9+mZ8+evPzyywwdOpStW7eSmJhYof2CBQu48sor6dOnD3a7neeee44LL7yQjRs3Uq9ezd46DYUjR/PIOpSLSSujBABmh8RlEn4tQZ420lbRAis0EIXQtXV9Dufn43C7aZOSyFU9OtK3WcNTlqv+h61buHvObJ9jmpT8snMHfx08wDfjryItJrRt2DhbOI90HMGja36okGnIJPRiZbe0Cm3rtzwuTWXd8cNoLhNS0ycWxaIhFImmClRX6eTiTVMqJR9uXYlE8lj3Cyt9RozVDoCmmSgqUjCbVZSSLBSqqqCqCgLBA+0vZHLLHtUah4c4exjfXHQNH21aw6eb/ya9II9om53LWrTjunZdSY4odaH6fu1mHvx6rt63krGt3HuAt/9Yzn8njKVbo/ohPbNlvQSmjunPS98v9Bu41zQpnpsv6ElibBQdm6SiKIKiYieqU6VLy3qs35mOy60iXPrix2Mh+earlcz+cS0Tr+7Lf16+mnen/8GcOX+jFrv1z6rk/jabmeGjO3P9LQOxWKqnNNYUaltQ28nAkBGlSCnZ+PcBTA7fL4G5SIIqA8a5efB31loENsVCy+ZJ7DmWRZTNxsiOrbise3vqRFZv17YyCp0urvlwFlszMn3mi8O5eTw2+3cOZudy75D+Id/v5pb9mHd4G3vzj/vsEnvkxSOdhhFvq56r4qpje9BcZhwOXRaYzBoWm65l5WdGoDr1OUeCdyF9MD+XK374gtmXTqRhTGylz4i1hfm4w/ojxmJn2ZipJ1wo7+rWnWgeV5fp61fwx4E9aFKjU0IKk9t1ZUSjFt41QW5RMTdN/5oN+zO88/qGAxnMXruVoR1a8NxVwzGHuPh+cPwgth44SnpWXoWgfUURTB7SjXaNU2jbMImEGF0R2r4jg17N01hQ6ORITgFIiblQQ3HpMQvZBbnccc8ntGyRzCMPjOHxF8bz/tvz2bPzSIXnN22ezI13DKFz9yYn9N6daWqbfBCyKqon0LNnT7p3787rr78OgKZppKWlcccdd/DAAw9Uer2qqsTFxfH6668zceLEkJ6Zm5tLTEwMOTk5REdXXjr+dHLLP2ewefvhCj8qKcARqyD9CASTIqgbE0l4op2thzO9P25PPMSlvdrxyLghp636bZHLRc93/0uB0+nXGmwSggubNuONkaOrdN/5h7fx5pY/2JB9CAC7ycIlDTtxe6vzfXw5q8L/Nq7kX8vnlTsqEGZVTy0n9b/9oSBYfMkUksODxzFIKRn+83R25GYG8XkVLLnoTuqWKY6z/dgxvtq4kcP5edQJD+fi1m1OWn2MjYcyuPztz/xuTytCYLeY+XXqdcRHhP6+Lt68hw/nr2LFjv1IKWnXIJlrBnRhaOcWPorpX2t28+jz31NY5MRkUvSgS7eKuTjw1DF5Yj8mXt2XggIHBw4cR0qJ26kihKBx0wTCw6sX7H4yOBnziecevYf9C7PFHrSt21XM0jmP1sj561RwumVETZYPq9buZepDn/s954hWcMQHVphH9mjNzyu26IlwygSKRkfYeev2S2jd4NTV3inPO4tX8J/fFwd1j/nxlgk0TwzdLTPHWcRrm/5k1p413uxBbWOTmdL6PIaktqxWPzMK8xjz0wdkFBRS1oQnhIbN5qI4J/D8aBKCK1t34Mn+FwRs4+HXg1u5bcmsoPea0Kw7D3UqNVA53G5+2raNpfv3oSHpkpLKRa1aE2k9sSBlD3e8/x1/bt7tV4kRwI2De3DnsNB3wrPzi5gxfw1fL17H8bwiIsNsXNSrDdcM7kpyXKkMdThcPPnsDyxavN27G6BKzZtdrzwmRRAdHcb0NycTHx/Bof3Hyc8vRkpwOt3ExkXQoFHV3HtPJoZ8CEyVdhicTierVq3iwQcf9B5TFIUhQ4awdOnSkO5RWFiIy+UiPj4+YBuHw4HDURrwlJtb9RLnp4M9+4+xceshv+eEBGuOhjNaQZqFd3tP1STN6yfwwpQx1I2NYMGGXfy8egtZBUU0SIjjkp5t6dAw5ZTtJPhj7s7t5DsDl6pXpWTuzh0cLyoiPiz03M4DU1owMKUFR4ryKHA7SQ6LDqnKcyC+27WJfy3/HX8KgXQLRAi3nr13M9e17kGhy8n327ew4vBBhIA+9RowomlL7GYzQgju6ziQmxYGFgjXtujuVRY0KfnXgvl8tHYtpjLVjD9Ys4aRLVrw72HDsZpOzJL+0ZI1AdMQalJS7HLz1aoN3Hhe6DsefVs3om/rRkipV6L2p6Du3HOUB576GlXVt/c9/5oc0l8CFy8ff7qUsaO7EB0dRsuzNMNFKNQ2C9KJcjpkxNkiHwC+/3ltwMQY1lwNoYAjVp8bTIqCqmlYzCamjO7LxCFduXVkb75avJ71uw9jtZjo17Yxo3q2ISrs9Crcn638O6iyYFIEX67ZyINDQ4sTAz2W4eFOQ7m3/SDSC3Oxmy0kh1V/weRUVa6aO5OjhZ7Yu9LZSUpBcZ4dv2mnSlCl5Ovtm7wKw6ajR/hmyyYyCwtJioxkXOu2NIvX4yoGpjSnXVwKm7PTKyzQTUIQbrZybfPSuXjTkSNc++3XZBYWel2Lvtm8mecWLeSd0RfRKy2t2uMG2JeZzfxNuwKel8CMRWu5cVAPwqyhyeDYyDCmjO7DlNF90DQZ0ID5wktzWLJEj+nwyAcIHMKpapKc3CK++nYlN11/PvUaVC9W5WygtsmHKikMmZmZqKpKUjmraVJSElu2bAnpHv/85z9JTU1lyJDAAUDPPPMMjz/+eFW6dkbYfyi4H6OigS1b46oremKLtCEEdGuVRvsmpQrBBR2bc0FH/9WHTxd7srMxK0pQH39NSg7n5VVJYfCQGBZaZqJgSCl5afWiCmUCSqk8F7QiBNnOYlYcPsANs78hx+HwTt5fbtnI00v+4MPR40gMi2DfkTwG12nJwqwdODW9yIxHLrSNTOHKxqXB528tX85Ha9cCVBAes7dtI9pm466evYm02QgPcbIuz5/bdgeNO9CkZOH2vVVSGDwIIQJO7jO/W4HUpK+bpSYrneTcbpWFi7cxcnjHKvfnrEKVFYom+W1zjnA6ZMTZIh8A9uzLDPi7FYA1WyNR2Jl4y3lk5hSQEBvJBZ2bExWuWyXr1Y3hzovObE0FKSWHcvKCtlE1yb6s7Grd326y0KiaAc5lmbtvGztzAsnk0AxwhS4XDrebB+f9wrdbN2MSCh658s6qFUzo0IlHzhvIkv376BHWlJzCYvY7skrlgwCzNHNTo/4klSg/2cVFXPP1l+SWKLllZUShy8V1333DrMuuIDkikrjwsGp5FizdvrfSNgUOJ5sOZNC1SWiuq2UJ1KeDh7KYN3+T/4uCWJQ0TTLnl/XcdP35Ve7LWUUtkw+nNT/ns88+y8yZM1mwYAF2e+BtmgcffJCpU6d6/87NzSXtBDXwU0F4KJH+QJsGSZzfp3pbrCdCgcPJT2u2sOFABhazif4tG9G/ZaMKQXExNntI2S6ibWfOjWR79jH25mUHbRMkiy2gV5uOMtuY9MNXFKu6T2vZyTuruIhLvvoUt0MDqe8KuVUz2BUwS6QGFJvYfCSb4Xs+5u1RY+iVVp93Vq7w/0ANhAtmLdvArGUbUIRgSMumTOnfi9ZJVavOrUoJKiguPUAeoWdM0SxAyeZFqEHdVWHBkm3BA6QDYDIpZGVXLRj7bEQQggXptPSkdhCKjDhb5ANARETlc2Z0hJ1L+1UvwPdE2Xggg5/XbCW3qJj68TFc1L0tSTG+wblCCCKsFgqC5OY3CUG0/czJB4Cf92wNXkytsh+ihLrh4Ty/ZCHfbd0MUCFw+uN1a/l+6xZyHMWYFQVNk2iKDWHXg7SkU6HYaeL5g0tYsusA08eMZdbGjeQUF/s3ZzkkqkPl0rdmAJAcHcnEXl2Y2LNzyPEGQMDigOWpzlwejCVLdwR+zyt5v3PzqpeF8WyitsmHKikMdevWxWQykZHhW8U3IyOD5OTgBaVefPFFnn32WX777Tc6dAg+OdpsNmxncHEaKh1a1ycmyk5OXuCqVnabmR6dG5/GXuks2rqHqTN+pMDhwqQIBIKZS/+mUUIc71x3MfXiSwOYhzVrzlML/wh4L0UI2iQkhBz0fCrIdwV2mdLRK15Kxb/S4JnPlu89hEN1+53gVClR3W7d4i7BrZaYSIpNPpO9ikRTVW798XteGjqcPH/uXBp6sbMyF2pSMm/rThZs380HV19KtwahB3Qm2SMoOuYoNdpIQAWTqtfyUKyCLg0qT79aVOzCpapEhdtCcntzOgMXrwuGqmokJpz4zlKNJ5QsF2dRFowT5XTIiLNFPgAMPq81Gzf7d1sF3XI7eMCpy3wXiGKXm39+MpvfN+70GpCklLwxdyl3DO/DDYN8dypHt2/NrDXrAy44VSkZ0fb0G8XKkudyBDd8KRLU4IvwIpeLj9etCbpXnePQ5b1b0/Qqy5qCzC91OfWoGEv27+fFJYtZc/iQ/0xxxWAuFpR17kzPzeeFX/5k1d6DvDp+VMgZr9LqVC6bLSaFlqnBDVWqppFf4MBus1SaRhuguNiFUIR/K3kwn1WgTrwhH7xtzhKqFL5vtVrp2rUr8+aVBp1qmsa8efPo3Ttw6e7nn3+eJ554gjlz5tCtW7fq97aGYbGYmHxF8CCiqy/pGdJOxMlke3omt3/4HYUO3SKkatJrfd5/LJvrpn+F0126EEyJiuKq9h38/rb1rVbJ1N7VSxt6smgYHRs0DR8ATpOeq7zc78+781Bk4s99eyutESFDcCqUgEvT+GWn/3zcipOSSse+fVal/lnc++3PIecwX783nT0H9a32sncTJS/FCVKVjO/ePuA9Fq/dxU1PzOT8G1/jglve5KK732XG7JW4KynS06B+fEUFTBFoSnAHMLvdQv9+LYLeuzZQ2/JsnyiGjPBl2JB2JNSN8puiUlEEUZF2LhrR6bT367FZv7KgxOdd1TRUTUOTEk1KXpm9mG9XbPRpf13vrlhNZr9zsEkIOtZLpn+zRqej6wFpFlMnYE0bL97c2OWP6/8UuFy4ghTSrHiNZxauiCYln65f53dnRqi6sqDfwfd6CczbupPv120OrR/AJ4vWVtpmdJfWxIT737XLyS/itRl/MPTGNxh285sMuu5VHvzP92zbUzGDUVkaNazrE7fgQ5CPQlEEo0fUcndVap98qHK+r6lTpzJ9+nQ+/PBDNm/ezK233kpBQQGTJ08GYOLEiT4Bb8899xyPPPII//vf/2jUqBHp6emkp6eTn59/8kZxBrlkRGduvLo/JpOCEAKzSUERAkUIrrq4BxMvCywkTxUf/LkKTUq/CzpVkxw4nsMv67d7j2maZGzjVgxKaozJpVvXPangIqxW/jNsBOc3qnyXJLuomEU797J4515yiwPvuoCeL3rW3xu4+P0ZdHnpDQa88S4v/bGYjDz/34s69nCGNWwRWCBIwK1AgRncopzPPcgCM7hMOFQ1+Eo38PxfAU1K9ufmVGzuqa0RRJAcys1j8a7K/U4BPl20NnihNaB3gzTS4mP9npv16xqm/vtb1m8/7D2WcTyP12b+yb3/+Y6c3EK+mr2aKQ99xuR7PuTh577j25/XsntvJhcP7+TXAKJZ9P4Eeiun3DyIMPvpVZTPCDLEVzU4W2sZGDKilIhwG68+eyVp9fUAbpNJ8WaSSUqI5pVnryQu9vRWOj9wLIfZq7cENVi8/esyHzeXCKuFuwf2IdZugxL54FEeejVuwPSrLq7UoCOlZOOhDP7YtpvNh49UWhtgR+YxHp39G31e/i/d/v0mk2Z8yW9bdwa87qqWnYIbgzwL/ADKQsnZKvqIBB9DkctFanRUBbmlOMC/hC45LwQzlv8dUg/2ZWazaOueSttdO8C/Ip6dW8gNj3zKzJ9XUVCk75ZrmmThqh3c8OgMVm7cx+Yth3ju37O54db3uf2ej3nrnd9ZuWoXbdukEhcb7t8VOMDwTIogNSWWsRed3UU7Q+IUyoczQZVjGMaPH8/Ro0d59NFHSU9Pp1OnTsyZM8cb5LZv3z6UMttob731Fk6nk3HjxvncZ9q0aTz22GMn1vsagBCCiZf1YvQF7flt4RaOHMsjPjacIf1bk1DnzGy5/bJhe1BfRUUIftuwg1GdW/Pr+u288OOfHMrSM43YgLoxkfTq2JBezdIY2rQ5YZbggbr5DgcPfD2X+dt2eSdsq9nEpZ3bcv+F51W43uF2c8MX37Js735vqHKew8k7S1fw2ep1zLjmMlokVEyr9lD3gazIOMCx4kJfYSfL/CsFFFpASKQi9b81KCsFFOFbG8KHKv6AbWYzAxo1YuHeMjsXfnYWyqMIwfajx+jftFGlz1i580DQz1MAR7P1okOaJskrLMZmMWO3WTh0NId/fzxfP1dOmEoJS9fu5orb3iO/oDTrzI7dR/lj2XbQJIlR4Zik7oYFZeqKKALVBvVio8jIKM1Sk5gQzY3XDWDIoDaVjqs2IKREVLLwqey8P87mWgaGjPAlNSWWD968jlVr97J63T6QkvZt6tOja+MzUpRqwaadeiX2IN/Lg8dz2ZlxjMTYSJ78eT6zN271zkEWRaFtciIDWjZhcIumtEyqPAXmnA3beHbOH2TkliqBTRPieWjEQHo3bVCxjzt2c9us75FI73OX7z3A0j37uapLB6YNG1TBpbJ5bF3u6tiXV/5eXLED/uZ1f273QgRdyFeHC5s2Y/7u3b7PCWJQAn2u3nH0WEj3/3vv4cobAbuPHqdJUjwOhwuH001EuA2TSeHNmQs5fDSnQhyEqkk0CQ8+/hXuHD2ltmc3YeOmQ3zx1QoUBWJjIvx71QhdYVY1jeJifZdFUQTn9W/JnbddQGQI8T1nO6dKPpwpqhX0fPvtt3P77bf7PbdgwQKfv/fs2VOdR5x1xMVGcNnomqExO13B3Uw0KSlyupi9Zgv3f/ZzhWnreG4hcxZt4bK2bStVFhZs3cXdM3/EUeLa4lEAnFLl81Xr2Zl5nP9NuNSneM3ri5axfN8BwHfOVqUkz+Hg1i+/59dbJlewWNWLjOaLoVfyn9WL+WHvZqTnYSX+/IgSBQH0f9VyVh0haBIbx47sIBOxAKGGZmJShKB3/TQuadOWSz/7lMzCwkrdnTxIKQmv5L31UNnugqcv//v+L2b9toZjOXqwcbc2adSNjgi8OJB6ZfJ86fA9XkYpOHq8AOGWKGbQzHgDRIQmSYiO4OP3buLw4WwOpWcTHWWnVcvU01Y/pEagUeq0HKxNFXnppZe48cYbvVb5t99+m59++on//e9/fmsZzJgxw+fvd999l6+++op58+aFXO/mZGLICF+EEHTr3IhunRud6a5Q7HQHTNFcluzCYu797md2HDnmM6+5NY11hzKICbNzS7/gWdkKnS7umvkDi3ZU3E3defQ4N3z0Ne9MuJi+zRp6j2cVFnHHVz+ialoF+QDw6ep1dGtQj1FtW1W4510d+1LXEs5b6//ikKPEkCHRZYG78nlJk5LGMXEcyM4JcS4Pfs8wi4VRLVqSkZ/Py8uWlgYIC32HIZjSEGYJbXkWinwAPaPRA998zdJVO5ESoqPsDB/cjjmLNgfO5FWs4s73TaldFk2D41kBKmRLuPH6AQwd0o5NWw7hdqk0bZJInTpVr3h91nKK5MOZ4iyuuW0QiCaJ8UGnMZMiaJIYz9Pf6Zbn8lOFJiWqlDz7XeBAaIBF2/dw2yffUezPD14DTZUs33OAXzeXuj853G5mrA6c01uVkn3ZOSze7Stg1h9M57bPvmPEqx/yy8IdxBwOIzrbjihWdFckqZSZu/3fW5OSqT36cFUb3Xey7HvkUU6ECkJWPgELdEvb+HbtSY2K4vurr+Hazl30IjwKweWIBJMDlq3Zw53vfMd/vlvI3iNZAZv3a9UoqFBQhKAgu5j/fr3EqywArN5ygDlLtgTMoKGPNVg/JdKiizTFDaZiialQ01/FkuNH8lm4aCsNGtShV4+mtGld79xSFtAVp1BeoGfzKfsqW0ugLJ5aBmXTip6KejcG5ybNkutUmi3HrCisPXyYbRmZfhfOUkr+3LGHhTv2BLyHS1W5+eNv/CoLHjQpeeLH330MGl+v24jT7Q6ozyhC8P5fq32OOd0q0/9YzsDnp/PMZ3+QvaGYBkdjMWWZUJwmXUZUsrg3CUGz2HjeGj6GCIu1ohtReb8bb/YJ/z1VhODq9h2IsFq5s1dv3ho1mo5JeuC/Zgm+w2DSoKESzd1vfMcD7/7E3JVbcbr8J6Do2qR+pe5gJkXw3n//YNnqXd7dgNy8Yj7/YRWuIHFs5qKAe/G++HPlFTDrq+XYbGa6dGpIj+5Nzi1lgarJh7MBQ2GohVzZp2PQH7mmSRrVjSO7MHCcgZSSzYeOsD09M+D5J36c7zcRgvdvPdMcs1Zv8J7bm5VNniN4xiNFCNYcLN1mXbJzL1e+9zl/bNvtneyKXW7UXI2E/HAaRcYSY7PTum4i13bsjFXxDc7zTPw3d+7O8KYteGrAEF4YNIwW8aVb6e3qJnJ3195YKXNtgDnYJAQWk4m3Ro0hIUL3P06IiOChAQNYe9sU1t9+O/8aPtj/xW6wHQdLDvyxfhd/bNjFB/NWMuaJD+h+1ys8/skv7DrsuwNyZb9OAd8rTxez0gsq7CJUlmpPUSvZfBcClFI3JIGvXFAUwR8LtwZ9Rq3HkwWjsheQlpZGTEyM9/XMM8/4vWWwWgbp6ekhdSuUejcG5yb9WjUmIToi4CLTpAiGdmrBD+uDB92ahODLMnN7eX7dtIOVew9W2p+9x7P5+0Dp93rtweAuNpqUbDic4TU6uVSV2z7+lpd/XczRvFJr9/GcImyZJtqYE4i3h1E3LJxLmremW7LuolfeYBRvD+edYWNpVTeBH66cwOVt22Mz6Vb+cIuFa9p3pHe9NN+Fvh8jled97ZvWgH/0KU0WMrRZc7664ko2334nK+68hdSYaL8xeZYCsB6BHTuP8uf6XfyychsPvjubXne8xthH3+erhetwl7H2J8VEMqxji4CfpyIEtlwJqqwgE2QwGSElilrFkI5yQuLgoWz27PW/hjgnqIJ8qCpnIsbttNZhMDgxioqdaJokPMwaNCXmJd3aMX/TLhZu2e2zIPRsh9478jxKdkUrtR5k5OTTPLmij+ra/YfZdzw74HWe3kkNDmTl+PShMjRNcrikUJBLVbnv65/1UvPlOqtKSUGxk0HhTXj24mHe49e178rHG9Yyd9cOHKpKx8Rkru3QmT71S31lL2vVjstataPI5UIIsJdUoB7YsAkvLlnM4v379HEI6F6vPrE2G9uOHcOsKAxq3ISrO3T0m2ZWEYIIq5XxnduTVVjMK38s8R4XhRqm3BKrvigXUyDAKTW+W7aRn1ds4fUpl9CthV5gp2lyHZ69ZjgPfPIzyNKteUXotSJinBYKVF35E6pEcYMokSeaCaSJ4AUqqommSQqLKkt3W7upSiXP/fv3Ex1dWsn2VKUGDbXejUHtQlU1CouchNktmM2BK8ubTQrPXTWcm6d/g5Caz26DSREkxURx76jzGPHWh0Hlgyolh3ICV9metWp9SDIG4HBOLp3S9IrwilAqvaasoerLFRtYumOf351ygN27jvPz1Mk0qBOr91vTmL1rG59sXMvunCyibXYuadGGK1t3IM6uFyZNi4nhqUEX8K/zB1PochFhtaIIgVNVeXPFX3y0bg3ZxcUgoG5EOF2T65Gen8/xwiIaxMZwRbv2DG3W3McV14PNbMZmNvPRteO44ZNv2HMsS2+nSZTjErPTt/9l2Xckm6dmzGPR+t28cPNob62GaZcO4VBWLmv3HvbKec+/jeNiOb7tqP91qQTh0pCmEuNQ+Tf5JFB0DsuIU1Xp+UzFuBkKw1nAH39tZ8Y3y9lUkuUmPMxKg3rxDOrTkpGD2hET5Vt92WxSeHXiaD5ZtIZPFq8hPUcPNGuflswN53dnUNum/LJuW0jzQXyE/8rOZYPXgiGAupGlWUAax8cRYbFS4HQGNl0I2HdUd9GZv3UXxwoCF3hRNcmP67fy4LDziQnTF0cNYmJ5qO/5PNT3/Er7Vz5Go2NyCh9fMo6jBQUcKyok0mzF5VCJCrMRbrMCsuTf4AghuLVfDy7u0IZv129iybo9rDt4sGTxHuAiqbvaOt0qU17/mrSwSIQi6NWuEeMGdeTHByfzxZK/Wb7jAALo3bIhIzu35MoHPgJAcUpMbl9hqrgBN6gWCaZy6ftMAuEKbmEKFgRuMgkaNag84LFWU4U829HR0T4KQyBOV70bg9rB8ewCPvnqL376bT2FRU6EECQlRNG2RSoXDetEp7b1KxiYujdL49M7r+Cd35Yzb8MONCkJt1m4pEc7bhzcg/jIcOIjwskt9u82B7rBouzcXp7D2XkhrznrRISX9i2tHj9v2hZ0nlRcsO1QJi3rJTBj2dqg91aE4MuV65k6tD8AJkVhdLNWjG5WMQaiPCZFIaqMYm81mbi7Vx9u696TfTnZCMCmmVA1SWJsBC63RrjNGlLRtfpxMfw0ZSKLduxl3uYdLPhzO/nOwO93Wf5Yt4txD76PySVJjI9izMD2vHPjJSzauodvV2wkI7eAlNgoLunejg3L9vCt6Rhud0VneQGYnaCZJKoNX8OS0A1OSvCQyKAoiiA1Ja76NzjbOUV1GM5UjJuhMNRwPv76L/47Y6GPZb6wyMmWHels2ZHOfz9byLQ7RzKoXCVpi8nE5AHduPa8ruQUFmMxm4gos9Dt36oxETYrBQ6nbpUuWb9rJcGtQggaJsTRul5FbRWgTmS43+PlkcClndt6/zYpCkn2cHb5K3bmuUCDzQf1/M87jupW/WBVjN2axv6sHK/CcDLQXJIZc1fz86otuDzbvyW/6ybJ8Uwc2JWxvdpWWvwsOTqSqzp34P0vlpUGaQdRlAA0qSsNezKzUVQ4kJHNl/PW8q9bRjB19Hk+lzhdbv0yt64slLmN9/8SMLlALVuiXggsYWaiLCbyCxyB4xxcMmB3VVUyamTHIKOv/QitdDcnWJuqULaWwdixY4HSWgaBAolBr2Xw1FNPMXfu3FpVy8AgMEeP5XHLP2dw7Hi+d6dASkn6kVzSj+Qyb9EWOrdL45n/u5iIcN8drVb1Enlp0igcLjcFDifRYXafhe6lndry0u+LkaqGJR9MTn0B6YoCadat1xd3CpwNLSEqgn1Z2ZWuh5KiIunasNTK2Tw2vtRI4W/yEWApgpU79tMitS67M49XuhOyPSO0jEOhYjWZ2LIjg3fnLmdP2fgzqRdIG9mjNTcM7UH9urFB72NSFAa0aMy6TQcpKAhNWdCfo8f6WQokh4/msmbLAdr9msIrD4zjwg6+9W92rj2EFqhWQglCBcUl0bz2MwFC0LBZIvu3Bq/FEAiTIujfryWxsaGtFWojVZEPubm+u3WBClR6YtzKpqY+XTFuRgxDDWbXvqP8d8ZCwP/2JIDq0pj28o9s3Obf71MIQWxEmI+yABBmtXDb4F5YcyX2LN1v0lwAthywZeuuLfeNOi/ggrhLg1SSogMHMHl62ywxnpHtfC05KRGRCLVcwzL/mpylAWFhFktIBc5CzTgUChnZeVz970/5aeXmUmWhDLvSj/PYZ7/yxMzfKs0lDvDzii1BA8v8IiWy5NepanpqwUffns2+dN/gaKvFTO8Ojbw7C/4QJfczF+vuSoobLE749OlJvDTtMsLt5VzcyqaH9RPn4Gk6eWI/Gho7DKfER9WoZWAQCq+8+7uPsuCPtRv38/hLPwY8b7OYiY8Mr2AVH9+tPUluO7HbJFH7JWEZkohDktitkvAMSYd6yQxu2TTgfS/u3Dakr/59Q/v7VDS2mc3YcqiYp77k/5Z8MLlESUFOgc0c3O6pCEG49eTJB4B35izj4Y/n+k1W4VI1vl+2kSuencH2g5X772ua5Ks/11XNA8gTX0bp2mDTrnRe+uj3Ck3792xOZXG1An3XRnFKhBtMqmRo95a8/59JDLswcEHQQJgUQWxcBLfdNLDK19YqalmMm6Ew1GC++2Vd0Ow4nrlUAJ9+v6JK99Y0yeJlOzGXFKH0CWZVIabQ7LcWggeTovDA8AEB+yWAFil1+Xjy5djLpYfr2bgBZreeKUio6ClRNb1isckBZkXQs3EaAINbNQ26KBdAw/hYGtc9edueL3+/iOP5hRWFcLmP4qulG1i4aXel99t/NFsv7OfnHhWoZGL/8ve/KxybOLK7N8A8EJ6EHmaHxOyQCKfG2g37adk0iY9evZZrLulBfGy4t51JA0WCYlNo3TqV2JhSK1HjRgk8/OBoJl5zZqt/1whkiK8qMn78eF588UUeffRROnXqxNq1ayvUMjh8uNRIULaWQUpKivf14osvnuAADWoqx7LyWbgseM0d0NcjS1fuYve+qgWfbtuegWtrodclpWw8qz1T0tuchMUUOFZiZPuWtEyqG7DYpiIE/xozmJEdfA1KLVITiFAs2I/rhizFBcIFpiKwZYG5SN9F6dZMj/Ea2q55UDmpScmQts2qMvSg7D2SxZs/6ZbcCu98mV3iIqeLhz+eU+n9ChxOcgursLsQAE2TzFm8meNlMuUBtGqeTGpSxXi78gjA5AazU6I4JGvX7sVkUrh/6nCemHYJnTo2wGIp/bw9H2t8XDhtWqd6j1stJoYN7cDbr00kIaFyF8xaTRXkw/79+8nJyfG+yhqETiaeGLdvvvmmyjFuhktSDWb77iOVFuyS6BbohSt2IKWs1EUGdDeWlZv3s2bbgYBtXC6VT39ZxT+uCmwhGNauBaqm8fTsBRwvE2cQYbVwy/k9ubF/d7/Xjevajrf//AuXS8WcD6ZiPfBHs4A7HFSzZGLvzgA0iI9lRLuW/Lxxm9+dBgncfn7vkMYdCrmFxcxdsy3w++6N5tatKDP//Jvz2jYJes+oMJuu9JRdPPrrbsl5XbEQCNW3D6omWbGxYorCzi3ro4gQDNkSSsxyKIqgoERIJdSJ4qZr+nPTNf1xu1WWrNjJgYNZhIdb6d+rOXXiI1FVjWPH8jFbTCWVPc+t9KmBEJqGCOIu52lTHYxaBgbB2HfgeEi7r6D7ki9avoPGIewIaprEraq89ekigmm7X89Zy6SxPYkPUKnaZjHzweTLeOjbuczfssvnTm1SEnn9qjGkxFQsbhpuszCuT3tm/LEGUSgx+65/URRo3zCFVvV1d9nJ/boxe91WNCErzIEmRZAWH8vg1idPYfh6yXpMiqhUUVM1ydYDR9m4N522DQPHHtmt5pDu54OUJcXfyj1T1diw4xDndfUd7+D+rfn4y2Wh3x8oLNKtiUII+vVpTr8+zQG9nsOy5TtxOlWaNkmgW5fGKIogP7+Y/AIHcbHh2Gwnd0fnbKUq8uFsiHEzFIYaTJjdgghlIYg+UWiaxGTyv5BzOFx8+fMavv55DRmZeQgBFjO4bULPkFD+fprkpyWbgioMACM7tOLCts1ZunMfGbn5RNttFB4tZsOWwzy17Re6tU5jYPfmWMvsMiRERfDo0EE89f6v+u4CJVuiTt0tqm+3xvRqUprR6KmLLsThdvPblp2YFIFA958VAu4d0p/RHSoPXguVQ8dzUStb4JV8Hqom2XrwaKX3vLBrS96evUyf3DV0V6OysQxlttyFhv6BB/B99PdVEELQsVV91m09GDSVquLUMLklql1B0yAtteKujNls4rzeLSocN5kUEhPPcWuRP0pibiptY2BwkqnKokwRAofTfx5/D5u2H+aT71awaMUOVK2cK6IfsaJJyfxl27h0WOeA94wNt/PGVRdxICuHlXsOIIE6Shjr1u9n+seLSKwTyYgBbWmQ6utLfcfIvvy+bgcHj1XMwqSg8M9Lzvf+3SK5Lm9MuIh7PvuJAofTm5nIrWk0SYjn7YkXYw2SNaqq7D2SHXxxX25e337oWFCFwWIyMbhLc+atrny3qPQZApMzwMTj5xbduzSqksIgBNT3Ix8A6qXGcenYijFSkZF2IiONrGw+nAL5cCZj3AyFoQbTv2dz/lq7J+D5st+zBqlxmAJkZih2uLj78Vls3HbY694jpb7Na3FJ3OGgWSpKhPxCR0i7FhaTifNaNObvbQf5x0vfklfoKNkiFnz/xwbqzvyTl++9hOYNEgBwqxoffrsckxSULQvjecqSlbv5s9dOzuuo+8faLWZev2IMmw4fYfaGreQWO0iLi2FsxzYkRJVatzRNkpVXiFlRKmSOCpUIe+UZkMpS3t3KH42T4xnWrSW/rCrZJdGgfG04oZVJrybB7Kgoo02KoEebBkgpWbFqN998t4ot29KxmE00ap4YWFko+cxNTv1fxSmJS46kR+fGVRipgT+ElIhKNPrKzhsYVIcWTZOIj43geHaASrtlcKsaTRslBDz/x1/befilHxDgf9Fa1sBRgqIoZOcFzmBXlvpxMSRHRfL023OZs3CzLqtKfhcffbucy4Z35q6JA72FH39du92vsqB3RfL4zN/4/L6rvbKpX/NG/PHATfz09xY2HszAYjYxoGVj+jRt6FNMsqjYRX6hg5gou48RqypE2C2V7wiUORWKjLhuWA/mr92JlFrwXSPPXO6QfrMXmRRB2+YpZGcX8v0Pq/lt3kby8otJTYklsU4Ux7KCx7uUfczFIzpV2s4gOKdKPkydOpVJkybRrVs3evTowcsvv1whxq1evXreOIjnnnuORx99lE8//dQb4wYQGRlJZGToxfQMhaEGc2H/1nwwaynHswsqFlwp838h4NLhga08n3z9F5vKKAve60ruYy6UOKOpkKvfYjIx7cUfaN+qHsMGtSUqIrD14HBmLne98LXXiqVPSvrzjucWMuXZWcx6fjIxkWH8+fcuDmbmBLyXIgQfzlnpVRg8tElJpE1KxaxNblXj8zmr+Xzuao4c14M8mzdIYOLo7lzQu2q7D/XrxNA8pS470jMr3dlRhODCzhWt8f547JoLMSkKs5dvRilxCXKrGuE2Cz1aNvDuEP21ZjcEKJYjgUsGdeS/7y7g8y+XoyjC+704npWP2argtgiv25F+kX7eXKCW3tMtuefGwSGl/jOoBI+bV2VtDAxOMmaTwsTLevHy9HlB2wkhiImy06+7f7ec/AIHj786u4KMKb8BWh5V1Vi8cCu5h/K4YEhb2rapF9S49PonfzJ30WbvtWWZ9fMa6sREMPHinkgpee/X5QFrOHh2dlfuOED35mne4+FWC5d1b89l3SsG6W7fc4T3Zy1l4YqdaFJis5oZPqAt147rRUJ81aoPX9C5BT+t2BK4QZlOW8wm+rRpWOk9W9RP4PU7LubBd2dzPK8Qs0lB0ySalLRukEhyfDSqqrH/4HEOHchC+lEWFEVwQZ9WFOQWc/fUGeTmFnk/09zcYjQkpigrqlZ5Ao7kxGiGDWxXaTuDSjhF8mH8+PEcPXqURx99lPT0dDp16lQhxk0pk0igbIxbWaZNm8Zjjz0W8nMNhaEGEx5m5dXHL2fqv74k/Wiu18jj4wavQM9OjRl7QUe/93CrGt/MXRvQauG5n+KUaDbfTDlanov5S7Yxf8k23pmxkKceGEuPTo383ufL39bidLn9PkfTJLkFxfy4cCNXD+/G0o17MClKQNcfTUrW7jhEkcNFWCXb7qqm8eArP7BozU6f3+WO/Ud55I3Z7D2cxQ2X9Pa55mBGNt//tp49B44RZrMwoGdz+ndvitlsQgjBlJF9uPvd7/0/sOQZihDYrWYu7xeaH6DNYubJScO4dWRv5q3dTkGxk0bJ8Qzq2AxbGQvUd3+s5+kPfkURpRYskyKQwOM3DWfvjqN8/qVeobGsgFdVialYRXEruDzF2tBT5Zmcmk9xGAHERVZvB8agHKcoz7aBQShcMqIzx7ML+GiWf3cTRejuhI/dO9onYLUscxduwukK7K4kpMc9SZTRIvQjuzdnsHdLBj/8uIY+vZvx6MNjsVorLity8or4+te1QX8Kn3y/gvEju5JbVMyujOOBG6In3Vi0eY+PwhCIvzcf4O4nvtSNMiUdcDjd/DBvHQtX7uCdp64iuUxwrtutsmTRNhb+uZXiIieNGicwYlRnUlJjAejftjGt6iey/dDRitb6cvPs5f07EB0emptO95Zp/PzsDfy5bhfbD2Rit5oZ0LEpjZNL3bVy8ouY8uQX7Nif6XVXFkIgpaRlo0TunTiI2+/82EdZAD1IXABanguTTUGtxFaUmBAd8PtiUAVOoXw4EzFuhsJQw2mQGs/M169n0Yqd/PT7BrbvziAzqwAJJCfFcNmILlw6rFPAyp5Z2QXk5BUHfYaQEpNDoHlS/kqJ0PSMRR4cTjcPPP0NH/xnEg3qVczd+/uKIIHC+i35fcV2rh7erSTFaOU/kspiCVRV47VP/mDxsu0laebwFifz/Abf/Xop53dvRrM0fTt+5o+reP3DBYgS67yiCH5dvIWG9eJ55ZFxJNSJYmD7pjx+5YU8/eXvODyC1KOtlWhYkWFWXrtpLCnxVfPrr1c3holD/PsP5uYWkRYVxSNXDWH13kOs2XYQgaBXu4aMG9yJJvXqcOfUT3x2FsoiJeDSsLio9O0N5L5mUEU0Ks98Vb2YZwODShFCcOPV/Rk5pD3fzfmbv1bvZv/hLJxONyZFcH6fllxzaU+aNfZfTwdg+56jKIpSwepf5iH6tOfZuSz511zgLjmuN1u6bCevvPYL9/1jRIVb/LVuj9/CYWXJL3SwfutBUutVnvFOCN0YVhnpR3O5/9lvcboqWtVVTZKdU8irH8zn6fsuAiDzaC733fMp+/cd886zfy3dwcwZS7h5yhDGXd4Tk6Lw5m0X8493f2DNrkP6W+KZB0rEkCZhZI/W3D22f6V9LIvFZGJw5+YM7ty8wjkpJUcPZnPb6N5sOXSUJRv2kpmdT1J8FKPPb8+FfVqxadNB9u0LUnNCSoRDBbtSwaPApx8nMebjnKaWyQdDYTgLMJtNnN+7BeeXBKO6XCpuVcVus1QeXxCilUBxSn2WE3rwsaXIt2CXlPpzX3hjLs8+dAkREb4FRYodwQPq9DZ61oU2jZL5ccmmgO0EkFo3Jmg8wdadGTz0/HekH80tmaf1/kpFotqEdzI0KYJvf1/HvZMG8+fy7bz24QJ9PCULbs/C+8DhLP7xzNd88PxEFEUwtldbhnRqxpzVW9mbkUV6dh6alETYrERKMwc3HuGRB7/EajHTv28LLh3dhbT6VSuC4qGgwMFbb/7Gr79u8ApVu93CmIu6cN11A7yfoZSSTVsOBQ1s1hsGPx0RbqN5s6TgjQxCwohhMKgJpCbFcuukAdw6aQBSSoqKXVit5pDcDi1mU0j1ZEzFGmq4CaGBuciNqVyVeCklP89ZR//ezenVx3fB6whBPoBumEqMiSQuMoys/MDxEW5Vo12DwHOYqmq8/tEfzPp5dVADrp5hcCeZWfnEx0Tw4H2fc+igvruhlZMRb7/+GykpsfTt35L4qHD+d/flbNibwcKNu8jMLeB4XhHhVgsRFgvmow7Wf7udy2dsoH6DOoy5pCuDLmiHyVw9Q83ShduY/vqvHNhXuvPSonUKT98zgjbt63uPbdx4EJNJoKpBBi3BhCCQY5IQBPQkMKgatU0+GGbGsxCLxURY+WJbAYiNDqdpg7rBt72EQGgSW7aKLVvDWih9XFjKsnbjASZeP72CFaN5gwSf4LLymBRBy4a6lWtEr1Ylyo7/thKIdAoeffJbfvz5b4qKfatCpx/J4c5pn3PkWJ7efcoo8RqYiku3AVVNsqMk//hH3yz3qZhdFlWT7Nybycr1pWlLI+02xvXpwD8uHsALk0fx4uRRRB+Dnz5dxbr1B8jNKybzeD7f/7SG66a8z4rVewKOPxAOh4t7//Epc+eu97HAFRe7mPXFcv71+Dc+CkJln7kQEBcXHvCzEAIuvaSrX7cBg2qgaaG9DAxOE0IIwsOsIcco9evWNLgRQkqES8NcpGHNcWHNragslOXh+z7nnVd/9VFCmoZY4LFxWl3MJoUr+ncKKB+EAKtQ+P2rdbzy+q/s2JlRoc1bM/7ki9nBlQUPmpTsP5TF6pW72b3rSMDFtqIIPvtkSZl+CNo3Sua2kX149MoLePmmMVzftwsrP1rL71+uJSM9h/y8YrZuOsTzT3zPI/d/jsvPTkdlLJy/mWn3f87B/b5uWju2pnPvlI/YuG5/aZ8UEdqYA1iVhBCE2a2MGFL1Ym0Gfqhl8sFQGM4BLujfOvD2o5Sg6pl79LzOlSghArJzCrnvoS9wl6lefNkFnYIKHVWTXDJYj7OIDLPx3M0jMWsCUzmfT6TEXKRxcNNRFi3dwYuvzuWqye+wc3dpefpZP62mqNjl93kCPduQp5K0EBBut5KbX8zmHelBM1CYTApLVu8OeH7u7xv5YY5eOM0nfkCTuNwqDz/5DfkFoRfg0TTJK//+me0bDiKL3AiHinCpeMpySilZsmQ7K1fuKhmLoEunhkEVMynh8nE9aNpEV848bT0uSOef14qJVxsF104ap6jSs4HB6aJ7h4aEW8yBv6dCYC7W9NTXlRSI1N2V4MtPlvLLj6VFJls3TaZZg7oB5y6TIujRoSGpiTEAXDekG90a10NxaojyCT9USdheJytX7uaHn9Zw460f8OobpQpKVk4hX8xeE+rwAX1H96+lO4K6amqaZMvmQ+QHcPFVVY1p//yCwgJHhfgBgJV/7eKzDxdVqV8H9h3juce+LblPxf5oqsab/5nrPdalc6NKd6BjY8O57/Zh3uQbHnRlwcIL0y4lJtqIcTsp1DL5YCgM5wBD+rZCODX/X1KpuyMpJf8Pqu2WpATVNMmRI7ksXrrDe6pfpyZcNEDPqlBWN/FYxK8d3YN2TVNQVY0vvviL15+cTcTOIqJ2FhN90ImtUEM4JfYsFfsxtdRnFsjJLeLe//uCwiJ9p+GXPzcHnRQlINyeRTcM6tHcR7kJhICgFqBZ36wMqnc5HC7mztsQ8HpHsYsj6TkU5OsC5YWnvufXn9Z5i7V56jQIlwYl/rkmk2D2T6WC97JLugccu6IIIiPtjBnZiTdfncCjD42hZ48mtG6VwvnnteTfz13BI/83xohfOJloIb4MDGooiiLo16Zhad2XcnLCXOBGcZXKi6CUFJwUAr74eLF3DhdC8OjtIwizWSpUZTYpgpioMO6/8QIAdm5L57mHvubgp1tIXJlP0op8YvYUYymRDzG7XJgK9M56dgO++W41X369EoCFK3cEjsfwQ0KdSFo0SiyJrascV4AA8RXLdpKRnhNwfpZS8t1XKwPKGCklWcfyyTySi6pqbNtymFsmvoMzSP0MTZNs33KYPbt0g1qrlim0bpUatPL1uEu7M+rCDsx463ouH9ONtq1S6di2PjdN6M/Md26kfev6Aa81qCK1TD4YfgnnAMlJMXRqVZ/1mw/q2RFK5hKhavoCFUBKwjKKQYA70oIryqKn2CiLECglk6rJpLB6zR4G9G9Zckrw4HUX0K5ZCp/NWc2ug7rLUsuGiVwzohsX9GqpW2Ae/YplS3f4KNVmh0Q55CTMoqD6KSKnaZKs7ELmzd/E6BGdKChyVmjj0010uWZSBAnxUQzp1RKrxUx8bDjHswsDXudWNVo28R8c6Har7Nh1xO8573OFYMPmg1w6pqvP8aMZuXw8fQHzfl6Py6UihKBJyyR27Dzi7W/5vgu31OMxVDicnu09361rY269aSBvvTPfx1dVCIHdbuG5J8cRHq7Hlwwc0JqBA1oH7bPBiVHbfFQNzk3Gju7Cgvlb0CwCzaobFIQqMTl8M6x5q9X7+IF6zpXEwal6VqX9e46RfbyAuDp62tJmDRN4/9kJfPTtX8xduBmXW4/DG3V+WyaM7UFCfBTr1+zlwSkfo2la6cJblUSku7AfduKKtlWUSyXM/OIvLhnblfwCR8DEEP64blxvTCaF5i2S+bESRSO+TiQxASpbb1p/AJMpSPA4kJtTRPqhbNIa1vEek1Iyb856Zn60mH279UKgcfERuFwarkqK7Xk4kpFLoxLZ9fi0i7nn3k85eDDLG6PukRWDB7Vh/GU9AaiXEsdtk88P6f4G1aO2yQdDYThHuO3Ggdxx36fg1nwD3DwZL/JdJYoDmPNcmArdFCeG6VmHStoIl+Z19QHdFcdR7GLx/M2kH8wiKiaM8wa3YcyA9uzdm8mi3zdRkFNM3q4sslsUsHTZDpYu2VG+a6UTu0sDofgVCELAshW7GD2iE/WSYthz4FjwnTwF6iXG8p/7L8Zekpp13PAuTJ+5GH8BfkJAmN3KBf0CLLBDiBcBPd1fWdIPZXPn5PfIyy3yChIpJTt2ZAS8pzd1ripRrArxcb4C6vJLe9CtS2O++3ENmzYfxGo107d3c0YM7UBsbHhI/TQ4SRhpVQ1qAR06pHFe/xYsWrQdGYqfvecrXTbNqgRToeqjR2iaZPfOI6xcugO3W6Nlm1QeuOlC/nHdYBYv2MzOLYcxFUn2bz9CXNdwnn34a9yq5k1KUfY+AKZCF2qk/2QYx7MK2L3nKPWTY0NSFgRw4xV9GT1Y99cfNLgtb7/xG8VFTr8/WSEEYy/tFtCtSvFj7Aql3Qf/nc9nHyzyEQdZxwtCljmAz7xft24U09++jvkLNvHb75vIzSkiLS2eUSM60blzw5BiHw1OErVMPhgKwzlC6xYpvPzsFbz0+i/sLLFiALqCkO/EXFwqJASAKrFmO3DWsYMGilvTt5pL2qiqhsmhcsWFL1BY4MBkUtA0jTee/5nmrVPYvuUwosRHUlUl7776K5H1YrwWD39IdKuW9DMhe7I0AYwd1qnSYkV3XTuQccM6g4S/Fm5j2cKtFBe7qB8fxcGMbDRFeBUTkyIQQvDEPaMIs+vKhaZprFm2iz9+2UBBXjGpafG0bFCXndvSkaqGNCloNpPPpK5pkm6dG/n0481/zyE3txCtTCBdqNOD0CSaJrngwooBaE0aJ3DPHReGeCeDU4YmCZghoGwbA4MajBCChx+6iHffXcB3368J6gbjRXq2GiTCqaE4VJ+fQp2ESF54/FtWL9+tL7IFaKokITEKza1yPDNfzxok4fP3F5GQHEPmEf/VnSl5kuLS9PTdARbtLpdKny5NiI0OIye3yO9cKwSkpcTx6rTLSYiPJDM9h1+/XsnBPZl0bZnC0rV7AYkq8c7vQkCnLg25bHwv732yjufz809/s31bOhaLidTUWNzFThSnGwRIqwXKpSdNTIomJbU0beyOrYf57INFpW9n+fc3hMV9av04mrdK8Tlmt1sYPqwjw4d1rPR6g1NILZMPhsJwDtGudT3ee/1atu86wh+/b+Lz9xehuDS/QWwCMBWpmPLdiHKTs6II7EIw54vl3mOl27CSbZsOQUkxGY+lR1Ulx47lB50AdR9+6XeSVxRBqxbJuF0q4ngxdglF+J9QLxvZhfEjunIkPYeHbv+IfbszURShL/RVicde7w43I5MjGDCwNVdd1J1mDfVaDXm5RUy74xM2/b2/ZItZdyOSmsRC6Y68VATOWBtamAVFEcREhzHwvNLK0seO5vHXom3VNiAIIWjWIpn+JW5fBjWQWmZBMjh3sVhM3HrrYCZM6MuGDQd45dVfycjICXKF0JUEh+pfhgjB2lV7gDK7yFKSmV56T7VMZrhgykLpE3VDij+jktViokFaHfZvT6eVYmaZ53dXRkaYFD2D1HP/HEtCfCRfvfcH7z0/27urKzXpDexUFIEaYSWlZTJjx/Vg1Jgu3hTX837dwPNP/6An0ZASoWqIo7lYyqSPlYC0W9FiI6Bk5/myq3v77FDM/nZ1pW5MlXHj7UOMXYOaSi2TD0b04zmGEIIWTZOINJuxVpLxQs+KIX0mOEURWMwKdUzmwGv/sieq8GOQnocGYNiQdky7cwbTX/wZ095cLDlOH+08NtLOPTcO5s7rBuJ2qTxw64d63mop0ZwqUvWtLWEtVrHtzePCDk28ygLAsw/MYsv6A0CJIiTx2SIvTeEqsR4vxlTsJirSzotPXo6tTLrSA/v8u015XL+CvTcCaNIiiRdeuMKouFmTkSGkzJNnUVSbwTlPZKSdXr2akZmZV2lbYTH5BNh6ZEXr9vXJPJLns7MKgCxnECqzoNLn2OotnhRFMPTC9mxduYs7hz7H1p/XE77hMKayGY0k9O3ShHefuZoGqfEs+GEN7z77E7JkJ7e8GxSaxFzgJBGFkaM6eefhTRsO8OyT36GWuE5Jt4ZyOBtRrtaEAESxE9PxPJCSURd34aJLfYt26mlcAxfMC4YQggcev5i+A1oFbWdwBqll8sHYYThHsdnMQVOMerj15oEsWbGLXbuPYrNZOP+8VvTs3JD/u/Uj/xcIAZqGKHaB04WQIIUAmxlhEUirOajvvmYSKEJ4+2Yy6cFr9989nCW/bmT1sp26fJFgO+7AmuVAMyt6oWeliGH9WiOEYOmfWznoqRVRIgjKP1XTJEJIXnj4Kz797X5sdgu7t2ewqmycRSWLeoBEYeKdd24gulwqurCwwIXn0KRPfIjvWyiIiQ3jlTcmYS9xkTKooYSyyDmLtpwNDDxYLKaglm8hBF27N6ZZvXjm/7KB4iInDRonMOay7iyavzlg4LGQEhwuREExeDIOWc3IiDCobL4zCYRF8ZmWhRA0blSXSdf04eY+j6OWxOmZc4oxrzuMZjUhLSYUl0qbni2pnxKHlJIZr/8W1EUWdCVm46o9fP/xEsbdMACAL2Yu86mMreQXgxp4px6nm+sm9eWKmwdW2AkIj7Dpu9f+OuFnh6QsN995AYMubBe48wZnnlomHwyF4RylZ/+W/Pc/vwRtk5QSy6XjenLZ5b18jm/8e1/gi1QNkVfoTRUKuoCQxS7MTjeupGiExVRhkjaZBHUTopkwuT/fz17Lth3pmEwmenVvwvhLu9OmVSoThv27wsQqJJhc+sTtFBrzfvqbMVf0ZOmCzSgmgebWfPpSHimhIK+YRb9tZPCoTvz159YqZdgAyM7MJ/NwdgWFoWnLZOomRJF5tKKlTkg9nzgmxfs8j/CKi4/g+VeuNpSFswEZgoXoLLIgGRh46NevBfPnbw6oNEgpGTS4DRde0I4b7hjic27Od2v8z6FSIvIKEYUOr2sngHS6UZx5aFFhEBk4ccN1tw3mSH4Rv/62kYJCB4kJ0YwZ1YmxY7qw6IfVFORWrA6tOFVw6vFvP77/J1fdM5yMg9kc2HW0QttA4/zh48WMu0Gvor1syXaf90Qp8F+XwXteEWxbtRshBlU4139ga1b4SQTipURZ8MgIj/vSuCt7cfH4HiH13+AMUsvkg6EwnKPUS4un/+A2LJ4fuKbBVdf395sRIjk1tkwqnzKoKiIrX99ZAH2yM5vBYvbGAJiP5WNplEBRkdNbD0BVNVJS4nj2+fGkpMQy3E+Qb15uEZkZwX1cTYrCji2HAb1Ssgyws1AeIeD9535k0ZfLMMVGlViBqqb1Zx8vqNgfk8KEGwfwn6d/9HuNAgwZ2p7EerFs23IYq9VMzz7NOH9IW0NZOFuoZT6qBgYeLr+sB/Pnb/ZrhVcUQUJCFOcHcIdJrR/PutV7fZUNKaGwGOFwgdnkTeeNVpq6VckrIjolnuy8Yq98kCVuTJNuGcj4iXrRyTtu81VQAHau24/JYkINkuUpN6uA4xm5OIqDp+Yuz5FD2fxjzL9p1bURbne5BV45V9fyaJokK0B8xvkXtGPG/xZy9EguWjnFTFGEHlcydRh/r95Lfl4RqfXjGT6mM02aJVWp/wZniFomHwyF4Rzm3mkXUVToYOXSnZhMitd6r0nJhBvPZ+iYzn6vq5MQTbfezVm9bEepsuF2I47m+OYU1lMbgdsNYXaEEAinyttvTmTdxkNs3XoYs1mhe/cmdO/RJGhBsVD9+K0l7Ro3S2Lpgi34D6H2RWqSzENZZO1KR7WYITY6pGchJRQ7QVXZt2EfbTqkYY+w+TQZPrYLuTlFvP/W70CJpUhKNFVywciO3P1/ozCbjRiFs5ZatuVsYOChWbMkHn/sYp548jucTrc+fwuBqmokJcXw/PPjsVr9LyGGX9SZn75ZVXpASkR+EUqxC1lyHy8mU4k/tz5bt25Shwn3j2LB3A3k5hSSXC+OC0Z2pG5i8HnZbDWFtPiy2Mwkx8ZjtZlxOkKrc4CUbFqxiy2r90C9OmArY9AxK0iX/8Bv0F2mNE2ya9NBmrSp53PObrfwwhsTeXjqp+zbk6nLQKEHg0dFh/HY8+Np2yGNERd1Ca2fBjWLWiYfDIXhHMYeZuXJV65m8/oDLPhlA/m5xSTXi+XC0Z31XYQg3PKPYdw16R2Kipxobg1REtjlFynB4QS7vpg+vPcYI0Z2ZMTI0FO+2cOstOvSkE1r9wXcEVFVjR7n6RmFho3twqfv/qE/vuR8QCuQEOBw6vd1uPQqy5VVQy4qhuM53orMb9//KR88/hVX3z+acXcM9RGI4yf15YKRHZk3Zx0Zh3OIjglj4NB2pDWsG+rwDWoqtcyCZGBQlj59mjPri9v55ZcNbN12GIvZRI+eTenbp3lQA0+LNqmMHteNH77Uqy/jdKOUWPV9lAXP/xUFNH3RnXngOE1bJNO0RXKV+tpjSHu+eitwum2hCJq0rU9s3SgAhlzSjTlfLK9g2a+AlFBSsFRTNUzZBaiJMd6+axF2lOyKO8yll0u2r9/PlBEv0qpzQ+5/5RpSGpTO/cmpsbzz6a2sXrGLVct2oqoardrWo9/A1gEVMoOzhFomH4xv4zmOEII2HdJo0yGtStelNarLKx/exPSX57L8940IdyXFflTVG+BrqeYkOP66/jxy+yd+zykmhfoN69C1TzMAEpJiuP2Bkbz69I8Is4Dy28gePAF4JUJDADInD+KiUUwKmkbFH3SxA45mVbhVcYGD96Z9iaZqjL9nhM+5+LqRXHZNnyqN1+AsoJJsV942BgZnKZGRdi65pFvlDcsx5d7hpNSLY9YnS8nZme4Ts+AXRQFNw2qrnjtm+97NaN6xATs3HPCrBEhNMv7O0to1104dxrq/dnJw99HAP2HPCZfLe0jkFqJE2NAiw/QcH5F2lILioLsMHrav28+9417jjdn3ehUX0Heeu/VsSreeTUMdrsHZQC2TD0ZaVYNqk9aoLv96+WquvfH8ygMFADSN8EgbrTo1qNbzuvdrwa33D/ebNCKlfhxPvTnRx+o18tLuPP36BDp0a4xUROlOQ1mnXKcL8vJ97iVcbpSsHJo1T8Rq07M6RcaEERlt1xtkB083+Mlz31OQU1itMRqcZahqaC8Dg3MMRRGMu7o3n/5wN+FWU3ARIQQIgVAEvaqZ+UcIwWMf3UJqo7oVjiPg+kcvpv+oUteeqNhw/jPrdi67aSDhUXafrgClMqLYobtMec4DyuEsrMdyadCoLigCLTmWOg3rBqwC7UFVNbIz8/j+w4XVGqPBWUYtkw/GDoPBCRMTFxGyljz22v7Yg6UbDUL20Vxmv/A17s2HUOJjwWZFIFGz82jbsz51EqMqXNO1dzO69m6Go9jFsSO5LJm/mc1r9rL4xzXgcAbcGRGapG/fZrwy8zZUt4bZYkLTNBbPWc9TV78WtJ8uh5vFP67mwqv7VWucBmcRtWzL2cDgZGMyK1jtFooKHIEbST2VXVi4jQuv6BW4XSX89csGDuw8glCEN+mFlJKI6DA69atYADMyOozJ9w5n0tShFOQVs/Xv/axauJUls//myL5MPf7ODwJQcgt578ObUd0aQhEoiiA7M49nbv+IDct3BnSd1TTJ3M//YuI/Rvg9b1CLqGXyoVo7DG+88QaNGjXCbrfTs2dPli9fHrT9rFmzaNWqFXa7nfbt2zN79uxqddagZtJlQKuQdhgGXdqdq+64oNrPeXL8f9iz8QC43GgZmWj7DqHuOwy5+fz87jy+evmngNfa7BZSG9Rh3KR+3Pf0OOyaGtSNSlM1WnZphBACc0kgtaIoxMcHTvnnQTEpZPtJpWpQC/EIhMpe5xiGjDAoS8/BbYLGPABYrSae/nQKsXUqGn5CYf3S7bx6/6cAFYqwFRUU89AVr1MUIAWqoihExYTT7byW3PzQGIaN64aiBZYPiiJo0akhoCtEnp2F2LpRiBDScudmBY55MKhF1DL5UGWF4fPPP2fq1KlMmzaN1atX07FjR4YOHcqRI0f8tl+yZAlXXnkl119/PWvWrGHs2LGMHTuWDRs2nHDnDWoGSWl16D+6S9Dt2GET+nHfi1dWKjQCsWPNbv7+Y1PQALVZL/6AWlksBWAPtzHs6r4B+6uYFOo1SaRj3xYVztVNja/0/pqqUTc1rtJ2BrUATYb2OocwZIRBecZOPk/fhA4gIqx2C+/8/n+07Nyw2s/46u15KIp/+aKpktzj+cz/akVI9xp6VR+UkoxFfu+nScbeONDvucR6cZXKuTpJMSH1w+Asp5bJhyqv3l566SVuvPFGJk+eTJs2bXj77bcJDw/nf//7n9/2r7zyCsOGDeO+++6jdevWPPHEE3Tp0oXXX3/9hDtvUHO4+99X07anHnCslEyWnklzyOU9uf2Z8Sd0/1W/rfPeNxBZGTns3XQgpPtd++Dokh0E30KaikkhMjqMR/53Y4WqnABJDerQvm+LoH0Ji7DRZ5T/lLQGtQsptZBe5xKGjDAoT+NWqTz42gTMZlOpoUbor8joMJ77bApJ9Ss3xgRj9YLNQQ1KQghWLdgc0r3ik2K4/81rURTFZ/HvmfdHTz6P/qP9pzq98LIewStkK4LhV/YOqR8GZze1TT5UKYbB6XSyatUqHnzwQe8xRVEYMmQIS5cu9XvN0qVLmTp1qs+xoUOH8u2331a9twY1lvBIO89+eSerF2zm969WkJ2ZR1JaHYZe1ZuWnRv5XXxXBdWt+Q12rtgutAAie7iNZ2fdxS8zl/LThwtJ35dJRHQYg8f1ZMz1A6iTHBvw2puevJypw54DKf1uPd/09Hjs4TY/VxrUOmQIFqKzaMv5RDFkhEEg+g3vSJuujZkzcxmbVu/BZFbo0q8lQy7pRkR02Anfv7L0qFJK3CHKB4D+o7pQb24i37zzO3/9sh63S6VFp4aMuf58eg/rEFCmte3ehPNGdWLhT2srFrwzKaQ0qMOoCX1D7ofBWUwtkw9VUhgyMzNRVZWkJN8qg0lJSWzZssXvNenp6X7bp6enB3yOw+HA4SgNkMrNDV7h16BmoCgK3Qa1pdugtif93q26N0UNlBq1BHuEjfotU0O+p9VuYdS15zHq2vOq1JfmnRrx4uz7eePeGWxbs8d7PKFeHJMfvZRBl1c/aM/gLEOGUJjnLBIIJ8rpkBGGfDh7iU+M5qoyqU1PJs07NmDb2r0B4weEImjVuVGV7tmkbX3+8crEKl0jhOC+/1xDclodvv9wIcWFev0JRRH0Hdqe254Yd1IUJIOzgFomH2pklqRnnnmGxx9//Ex3w6AG0WlQO1KbJZO++4hfS5JiUhh+/SDCIux+rj75tOzSmFd/f5g9mw+SsTeTqLgIWnVvEtCH1qCWoqogKrFayrMnbd7ZgCEfDPxx0Y0Dee7W9/2fFLqL7NCrT08tHLPFxOR/juKK2y9gy5o9uF0aTdumEp9oxC6cU9Qy+VCl1U3dunUxmUxkZGT4HM/IyCA52X9VxuTk5Cq1B3jwwQfJycnxvvbv31+VbhrUQhRF4bGv/kFEdJhP/IAnBqFVj2ZMfvKK096vRq3r0XNYR9r0bGYoC+cgUtNCep0rnA4ZYcgHA38MuKgrIyf1B0AxlboLKSYFRVH455uTT/uCPSzCRud+Lek+sLWhLJyD1Db5UKUVjtVqpWvXrsybV1p+XdM05s2bR+/e/oN4evfu7dMe4Ndffw3YHsBmsxEdHe3zMjBo3K4B7/z9Ipf9YzTxKXHYI2w0bJPGlFev44XfHjltuwsGBl5qWdq8E+V0yAhDPhj4QwjBlGfG8/C7N9K2RzPs4TYiY8IZdGl3Xp1zP/2MRBQGp5taJh+q7JI0depUJk2aRLdu3ejRowcvv/wyBQUFTJ48GYCJEydSr149nnnmGQDuuusuBgwYwL///W9GjhzJzJkzWblyJe+8887JHYnBOUHdevHc8MxV3PDMVWe6KwYGekCbqD0+qicDQ0YYnCmEEPQd2Ym+Izud6a4YGNQ6+VBlhWH8+PEcPXqURx99lPT0dDp16sScOXO8QWv79u3zcc3o06cPn376KQ8//DD/93//R/Pmzfn2229p16565d8NDAwMagxSApVsKZ9FAuFkYMgIAwMDA2qdfBBS1vze5ubmEhMTQ05OjrH9bGBgcEKcjPnEc4+B5nGYhSVoW7d0Md/9pTF/nSIM+WBgYHCyMORDYGpkliQDAwODswKpUbkF6ewJajMwMDAwOEnUMvlwVigMnk0QI9+2gYHBieKZR07G5qpLLUYSPC2eG9cJP8cgMIZ8MDAwOFkY8iEwZ4XCkJeXB0BaWtoZ7omBgUFtIS8vj5iY6qU6tFqtJCcnsyh9dkjtk5OTsVqt1XqWQXAM+WBgYHCyMeRDRc6KGAZN0zh06BBRUVHecuy5ubmkpaWxf//+Gu/3FQrGeGo2xnhqNlUZj5SSvLw8UlNTT6h2RnFxMU6nM6S2VqsVu91I+3sq8Ccf4Nz+jp8NGOOp2Zyr4zHkQ2DOih0GRVGoX7++33O1LQ+3MZ6ajTGemk2o46mu5agsdrv9rJjkazvB5AOcu9/xswVjPDWbc3E8hnzwj1Ga1sDAwMDAwMDAwMAgIIbCYGBgYGBgYGBgYGAQkLNWYbDZbEybNg2bzXamu3JSMMZTszHGU7OpbeMxOHFq23fCGE/NxhhPzaa2jedMcFYEPRsYGBgYGBgYGBgYnBnO2h0GAwMDAwMDAwMDA4NTj6EwGBgYGBgYGBgYGBgExFAYDAwMDAwMDAwMDAwCYigMBgYGBgYGBgYGBgYBqdEKwxtvvEGjRo2w2+307NmT5cuXB20/a9YsWrVqhd1up3379syeHVpZ7tNFVcYzffp0+vfvT1xcHHFxcQwZMqTS8Z9uqvr5eJg5cyZCCMaOHXtqO1hFqjqe7OxspkyZQkpKCjabjRYtWtSo71xVx/Pyyy/TsmVLwsLCSEtL45577qG4uPg09TY4f/75J6NHjyY1NRUhBN9++22l1yxYsIAuXbpgs9lo1qwZH3zwwSnvp8HpxZARhow4nRgyombKCEM+nCZkDWXmzJnSarXK//3vf3Ljxo3yxhtvlLGxsTIjI8Nv+8WLF0uTySSff/55uWnTJvnwww9Li8Ui169ff5p77p+qjueqq66Sb7zxhlyzZo3cvHmzvPbaa2VMTIw8cODAae65f6o6Hg+7d++W9erVk/3795cXXXTR6elsCFR1PA6HQ3br1k2OGDFCLlq0SO7evVsuWLBArl279jT33D9VHc+MGTOkzWaTM2bMkLt375Zz586VKSkp8p577jnNPffP7Nmz5UMPPSS//vprCchvvvkmaPtdu3bJ8PBwOXXqVLlp0yb52muvSZPJJOfMmXN6OmxwyjFkhCEjTieGjKi5MsKQD6eHGqsw9OjRQ06ZMsX7t6qqMjU1VT7zzDN+219++eVy5MiRPsd69uwpb7755lPaz1Cp6njK43a7ZVRUlPzwww9PVRerRHXG43a7ZZ8+feS7774rJ02aVKOEQVXH89Zbb8kmTZpIp9N5urpYJao6nilTpshBgwb5HJs6dars27fvKe1ndQhFINx///2ybdu2PsfGjx8vhw4degp7ZnA6MWSEL4aMOLUYMuLskBGGfDh11EiXJKfTyapVqxgyZIj3mKIoDBkyhKVLl/q9ZunSpT7tAYYOHRqw/emkOuMpT2FhIS6Xi/j4+FPVzZCp7nj+9a9/kZiYyPXXX386uhky1RnP999/T+/evZkyZQpJSUm0a9eOp59+GlVVT1e3A1Kd8fTp04dVq1Z5t6R37drF7NmzGTFixGnp88mmJs8HBieOISMqYsiIU4chI2qXjKjJc0FNxnymO+CPzMxMVFUlKSnJ53hSUhJbtmzxe016errf9unp6aesn6FSnfGU55///CepqakVvuRnguqMZ9GiRbz33nusXbv2NPSwalRnPLt27eL333/n6quvZvbs2ezYsYPbbrsNl8vFtGnTTke3A1Kd8Vx11VVkZmbSr18/pJS43W5uueUW/u///u90dPmkE2g+yM3NpaioiLCwsDPUM4OTgSEjKmLIiFOHISNql4ww5EP1qJE7DAa+PPvss8ycOZNvvvkGu91+prtTZfLy8pgwYQLTp0+nbt26Z7o7JwVN00hMTOSdd96ha9eujB8/noceeoi33377THetWixYsICnn36aN998k9WrV/P111/z008/8cQTT5zprhkYGFSCISNqHoaMMKht1Mgdhrp162IymcjIyPA5npGRQXJyst9rkpOTq9T+dFKd8Xh48cUXefbZZ/ntt9/o0KHDqexmyFR1PDt37mTPnj2MHj3ae0zTNADMZjNbt26ladOmp7bTQajO55OSkoLFYsFkMnmPtW7dmvT0dJxOJ1ar9ZT2ORjVGc8jjzzChAkTuOGGGwBo3749BQUF3HTTTTz00EMoytllWwg0H0RHRxvWo1qAISNKMWTEqceQEbVLRhjyoXrUyE/YarXStWtX5s2b5z2maRrz5s2jd+/efq/p3bu3T3uAX3/9NWD700l1xgPw/PPP88QTTzBnzhy6det2OroaElUdT6tWrVi/fj1r1671vsaMGcPAgQNZu3YtaWlpp7P7FajO59O3b1927NjhFWoA27ZtIyUl5YwKAqjeeAoLCytM+B5BJ6U8dZ09RdTk+cDgxDFkhI4hI04PhoyoXTKiJs8FNZozG3MdmJkzZ0qbzSY/+OADuWnTJnnTTTfJ2NhYmZ6eLqWUcsKECfKBBx7wtl+8eLE0m83yxRdflJs3b5bTpk2rcSnzqjKeZ599VlqtVvnll1/Kw4cPe195eXlnagg+VHU85alpGTCqOp59+/bJqKgoefvtt8utW7fKH3/8USYmJsonn3zyTA3Bh6qOZ9q0aTIqKkp+9tlncteuXfKXX36RTZs2lZdffvmZGoIPeXl5cs2aNXLNmjUSkC+99JJcs2aN3Lt3r5RSygceeEBOmDDB296TNu++++6Tmzdvlm+88YaRNq+WYcgIQ0acTgwZUXNlhCEfTg81VmGQUsrXXntNNmjQQFqtVtmjRw+5bNky77kBAwbISZMm+bT/4osvZIsWLaTVapVt27aVP/3002nucXCqMp6GDRtKoMJr2rRpp7/jAajq51OWmiYMpKz6eJYsWSJ79uwpbTabbNKkiXzqqaek2+0+zb0OTFXG43K55GOPPSabNm0q7Xa7TEtLk7fddpvMyso6/R33w/z58/3+HjxjmDRpkhwwYECFazp16iStVqts0qSJfP/99097vw1OLYaMMGTE6cSQETVTRhjy4fQgpDzL9pIMDAwMDAwMDAwMDE4bNTKGwcDAwMDAwMDAwMCgZmAoDAYGBgYGBgYGBgYGATEUBgMDAwMDAwMDAwODgBgKg4GBgYGBgYGBgYFBQAyFwcDAwMDAwMDAwMAgIIbCYGBgYGBgYGBgYGAQEENhMDAwMDAwMDAwMDAIiKEwGBgYGBgYGBgYGBgExFAYDAwMDAwMDAwMDAwCYigMBgYGBgYGBgYGBgYBMRQGAwMDAwMDAwMDA4OAGAqDgYGBgYGBgYGBgUFA/h+6P+nSDowKtAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "net.eval()\n", "\n", @@ -797,70 +900,68 @@ "fig.colorbar(pic2)\n", "plt.tight_layout()\n", "plt.show()\n" - ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAADQCAYAAAD26DD6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydZ3gc1dWA3zsz29S7bMu994a7wTbG9N5MbyFACAkECAECCYT2UQKhQyD03psx2AbbuPfeq2QVS1ZvW2fmfj9mtdJqV7aMDciw7/MIvFPv7M6cOfdUIaUkRowYMWLEiBHjSEP5pQcQI0aMGDFixIjxY4gpMTFixIgRI0aMI5KYEhMjRowYMWLEOCKJKTExYsSIESNGjCOSmBITI0aMGDFixDgiiSkxMWLEiBEjRowjkpgSE6PVCCEmCSEKfulxxIgRI0ZzhBBSCNHzlx5HjJ+XmBLzK0UIkSuE8Agh6oQQxUKI14UQCb/0uGLEiPHzIoSYK4SoFEI4DmKfmEIQ44ggpsT8ujldSpkADAWGAXf+ssOJESPGz4kQoitwDCCBM37Z0bRNhBDaLz2GGD+emBLzG0BKWQzMwFJmEEKMEUIsEkJUCSHWCiEmNWwrhLhKCLFZCFErhNglhLjuFxl0jBgxDgeXA0uA14ErGhYGrTO/b/L5SiHEguC/5wUXrw1aci8ILr9GCLFDCFEhhPhSCNGhyf59hRCzguu2CiGmNln3uhDiOSHE10G5slQI0aPJ+gFN9i0RQvw9uNwhhHhSCFEU/HuyqTVJCHGbEGJvcN3vml50cN9/CyH2BI/5ohDCFVw3SQhRIIS4XQhRDLx26F9zjF+KmBLzG0AI0RE4GdghhMgBvgYeANKAvwKfCCEyg5vvA04DkoCrgP8IIYb//KOOESPGYeBy4J3g34lCiOwD7SClnBD85xApZYKU8gMhxGTg/4CpQHsgD3gfQAgRD8wC3gWygAuB54UQ/Zsc9kLgX0AqsAN4MLhvIvAd8C3QAegJfB/c5y5gDNbkawgwCrg7uN9JWLLreKAXMKXZZTwM9A7u2xPIAf7ZZH07LPnXBbj2QN9JjLZLTIn5dfO5EKIWyMdSTu4BLgWmSymnSylNKeUsYAVwCoCU8msp5U5p8QMwE8scHSNGjCMIIcTRWC/pD6WUK4GdwMU/8nCXAK9KKVdJKX1YrumxQXfVaUCulPI1KaUupVwNfAKc32T/z6SUy6SUOpZCNTS4/DSgWEr5uJTSK6WslVIubXLO+6SU+6SUpVhK0GXBdVOB16SUG6SU9cC9Ta5bYCkmN0spK6SUtcBDWIpUAyZwj5TSJ6X0/MjvJEYbIKbE/Lo5S0qZCEwC+gIZWELt/KArqUoIUQUcjTW7QghxshBiSdC0W4Wl3GT8EoOPESPGIXEFMFNKWRb8/C5NXEoHSQcs6wsAUso6oBzLwtEFGN1MplyCZe1ooLjJv91AQ5JBJyzl6oDnDP67Q5N1+c3WNZAJxAErm4zn2+DyBkqllN4WzhvjCCIW0PQbQEr5gxDideDfwFLgLSnlNc23C/qbP8EyQX8hpQwIIT4HxM843BgxYhwiwfiPqYAajPsAcAApQoghQD3Wi76BduyfIixlpeH48UA6UIilTPwgpTz+Rww1n3ALSbRzbgx+7hxcBrAXSwGiyboGygAPMEBKWdjCseWPGGuMNkjMEvPb4Uks//Ei4HQhxIlCCFUI4QwGunUE7FiCrhTQhRAnAyf8YiOOESPGj+UswAD6Y7luhgL9gPlYk5Q1wDlCiLhgKvXVzfYvAbo3+fwecJUQYmhwsvMQsFRKmQtMA3oLIS4TQtiCfyOFEP1aMc5pQHshxF+CwbiJQojRTc55txAiUwiRgRXT8nZw3YfAlUKI/kKIOCxXOQBSShN4GSueLwtACJEjhDixFeOJcYQRU2J+IwR9ym8CNwJnAn/HUlbygdsAJeg7vhFLQFRi+c+//EUGHCNGjEPhCqyYkT1SyuKGP+BZLFfPfwA/lrLyBlacSlPuBd4IumOmSim/A/6BZandC/QgaEEJyo0Tgp+LsFxHj2BNiPZLcN/jgdOD+20Hjg2ufgArXm8dsB5YFVyGlPIbrInZbKxA4dnNDn17cPkSIUQNVvBwnwONJ8aRh5AyZlWLESNGjBgxYhx5xCwxMWLEiBEjRowjkpgSEyNGjBgxYsQ4IokpMTFixIgRI0aMI5KYEhMjRowYMWLEOCL5xerEZGRkyK5du/5Sp48Ro82ycuXKMill5oG3tDjx2HhZXmG0fLx1vhlSypMOy+COQGKyJkaMSA5WzkDblDW/mBLTtWtXVqxY8UudPkaMNosQIu/AWzVSVmGwdEbHFtfb2u/8TVdcjsmaGDEiOVg5A21T1sQq9saIcYQjkQRky7OjGDFixDgctEVZE1NiYsT4FWBi/tJDiBEjxm+AtiZrDqjECCFexeo0uk9KOTDKegE8hdUo0A1cKaVcdbgHGuOnxVPn4YvnZjDv48XEJ8dx5g0nMe7MkWxatI3i3H30GNqNbgM7HfhAMX52rNlR2xIsP4aYrPltsHNtHh889gV7thTSd2QPLrjtTJIyElkxYy0AI04YTHxy/C88yhjRaIuypjWWmNexSlW/2cL6k4Fewb/RwAvB/8doo9TXeKirqicjJw1VVfB5fPxp9J0U55bi9/gB2LxkG444J3rAMh2ahsmwyQP5x4e3YLPHDHhtCQkE2tjs6EfyOjFZ86tBSkl5USU2h43kjEQAVs/ZwD/PehS/N4A0JXkb8/nu7fmYhoFms+SKqRv87Y0/MeG8sb/k8GNEoS3KmgO+jaSU84QQXfezyZnAm9LqX7BECJEihGgvpdx7uAYZ4/Dgrffxnz+/xqKvVqKoCg6nnesfuxh3ZR378spCCgyAz+3H5/aDomBNgGHV7A18+NiXXHLXOb/UJcSIggSMX0H7kJis+fWweel2Hv3dC5QVViBNSa+junPnm3/imT+9YsmVIIZuYugmUkoC3kBo+SNXPEv/cX3I6JD2Sww/Rgu0RVlzOOrE5GA1EWygILgsAiHEtUKIFUKIFaWlpYfh1DEOhkeveYnFX60k4NPxuf3UVNTxxB9f48sXZ+F1+w64v9/jZ/r/vj/o8+ZtLWL59xup2Ff9Y4Yd4wBIJIH9/P2KiMmaI4DyvZXceerDFO0swe8NEPDrbFm2gz+Pu5uinSWtO4iUzPto8UGd1+8LsGbeZtYt3Iqht63g018LbVHW/Kx+ASnlS8BLACNGjPhVSdeDpWh3KW/9+2vWLdlBamYS5143GWe8g/KSavoN70qPAS2nsf0YKvdVs3zWOgI+PWx5wBdg9+aiVh/H18RacyBqK+v5x6XPk7u5EFVTCfh1TrpkPNc/cH7IuhPjMCDB+E0/TZHEZE0j86et5oNnZ1FZWsPgMT057YpjyN+2F82uMebEwSQkxx3W8814fW6EEmEaJpX7qsFsnSvC0A289QeeWDWwbNZ6Hv79S9YHCapN5Z63/8jAsb1bfYwYraANyprDocQUAk0jPjsGl8VogZL8cv58ymN4632YpqSipIZH//wmmkNDUVWEgKMm9uXvz1+JqqktHsfv1/n0lXnM+Hg5hm4w4dQhXHT9ZOITXRHbVhRXY7NrEUoMgNA0pN/HgRRpVVMZe8aIVl/no396nZ3r84NxNZapeOZ7i+neP4eTLhnf6uPE2D8SQYDfhFIYkzUHyUfPfcc7T34bmnz88OUq5n6xErsmUBWFZ//2Lnf89/eMOXHwfo+zZ0cJbz4+nc0rc0nLSuLCPx3P+JOi71O0ax/+Jq6hpkgJUecvzVwUmk1j9KnDD3yBQPneKh688gV8nvBz/mPq07y98THikyLlYYwfR1uUNYfDnfQlcLmwGANUx3zU++f9p2fic/sxzfAHV/fp+P0GPk+AlT9s4Zt3WzanSim555rXeP+F2RTnV1C6t5ov31zEzVOfJ+CPVFRyemRj6NFnQcJuR0lJAUXgiLPjiLPTrlsWzkQXdqcdAEecg5SsJK6674JWXWNtlZu1C7aFAoMb8Hn8fPbynFYdI0brkEBAihb/fkXEZM1B4PX4wxQYCOoKEvwBiafeh88T4OHr/kddtbvF4xTs3MdfzvwPi2asp2JfDTs2FPDYze/wxWvzom4/6Oi+OOMd0Q8mJTKosMQnx2Fz2Og2qDMOlw0hLAXHGe/gpKsn02NI11Zd5+yPl0bIUqzLZOG0WPLa4aQtyprWpFi/B0wCMoQQBcA9gA1ASvkiMB0r5XEHVtrjVT/VYH8tbFi2E8Nowaxq08A08XkCTH97IaddfnTUzbas3cOWNXvwNZnxBPw6pXurWPzdRiacMiRse2e8g4tvP4N3H/0yLLDOWulAURTiMlI47+pjOOaMo+jcN4fyvZVMf2U2BVuLGDCuN1MunUBcFCtPNDx1XhQl/KaWAohzkVfu5vSj7mHkMb25/o5TyWyX0qpjxoiOBIw2Njv6McRkzeGlaHcpihrlvhDC0mY0DXQdRVFYNms9k8+Lnuj19pPf4PP4kU0UBZ/HzxuPT+eUS8ZFZCtOmjqW9x/9gn355ejBCZWUstHaIkHRFB786g469m5PYloC6+Zt4vt35oOUHHfJBAZP7N/q66yrqo+wMEuHHW9SEk/8exavvLKQ8y4fz7mXjUVRYu0CD4W2KGtak5100QHWS+CGwzai3wDZndIp2Lkv+kpFQaoKSBOfX6d0Xw35eWV06JhGu/Ypoc22rSvAiOJf9rr9bFqVF6HEAFxwy6m075rJ/+75iOIqDzhsCB2UoEJlGCYnXDaBzOB50tunctnd5/6oa8zokEJCShy+YiuYVwIkJYCmAoKAX2fJnM1sXruHV7++BVdcCzO3GAfEmh0d+cI5JmsOL2lZSej+FgJcg4qMtGkYisDnDbBlUyE+b4C+A3JwOGyhTTetzI1u6TAl+woryekW3n7H4bLz9IL7eff/PuPzl77HcDmRpgmVNaFtBh3Tj/5N4lWGTBzAkIkDftR1Dj92AF/8d3YoOUHaNMhKQyoKSElVRT1vvTiH6sp6fv+XE37UOWJYtEVZEyv48Qsw9YYpbFi6I8KHK1UV02VDuuwg49njl1x6zjM4XXb0gMFRo7tz933nYHdoZHVIQdPUiBmI3WmjXaeW0xJ7j+1NoHcnKK0NCSbT4yO+zsuZVzYqMIeKoij85fFLuPd3L6MbJhIQqhrmEDdNy6Q95+u1nHL+qMNy3t8iEoERa0gfoxkpGYmMPK4/y2dvirRUKAIzPRkcNtwSnnzxBzTbAjRNwTQlN99+KpNPsOoNZuWkUVpUFXF8QzdJSU+Ieu7E1HhyxvRFLM4DnxVFIbt0QMkrwuHz8scnrjhs1zl4fG+GTerH4lkbLGUpJTEi8MbnDfDl+0u55NqJsQnTIdAWZU3bGs1vhMFje3HTYxdhazLbQVMxk+MtBUYICLpiTFPirvfh9+usXLqLl577DoBh43uhJDkxE+zIJm4bTVM47syWA+Luv/czysvrrHJFinUekeBk4hXHcNWdp/+o66mqclNaVhvydQMEAgbzVufh7ZpFoFs2ercsdFekzuz1BNi5JRbWcCg0zI5a+ovx2+W2py9n3ImDwpZJwMxMAYcNGZQ1pmHi9+m46/14PQGe+L9p5O22UtNPufIYRGY8Rrw9FPtvd9qYcNrQFoNmC/aU8+LTs9B1E1QVVBWhKig9O/HEggfoNqjzQV+LYZgUl1RT3yxrKW9XKXn1BrJjFnRuB/GuqNHDiqqwb2+szMOh0BZlTcwS8wtx7Fkj6Novh7+c/xx+vw5CNCowLeD363z71RpOOH0ot939If5UJwGXiikljmofXVMTuO3xC0lMiZ4yWVFex64dJRGmYVPCuk2tT7NuoLikmvsf/optO0oQCmRlJnH3bafRt097nn92Ft/N3GAJPUUAAhnvwJQ+lCYmbofLhl8RXP+H16iucjNiZHcuu3w8mZlJBz2e3y4CI6asxIiC02XnjuevIj4pjlkfLbUsMjYNNCVc1jSTO7puMP3L1WjpLj74bDl0SrMSBkyThD1VTDhpCH9+4LwWzzt75oaoiQQ2h8aO3eX0PMgWJjNnrue557/H79cxTcmECX249ZaTMQ2TW695lboab5NrkCCgeWFZXTeY9vFyls3fhivOwRkXjOKks4fH4mQOirYna2JKzC9Itz7t+ftTl/Cfuz7B6wugKwcOmPL7dW6760OqazyNC4WArARufPhCevaPWvsLsKwjooVz+KNkNO0P3TC58bZ3KSuvCylFBYWV3HLnB7z6wlV8+826yGMKgeGyhZQYRbE+fz9/K76gufvbb9Yxf95WXnnt96SlRTdVxwjHKgXecip+jBh/uO9cAgGduZ+vRMY58B2gTpNhSLbvKGHDgnL8DRmGikAoKglju3PLYxfut9ZTwK9jRonZM0150LJm1epc/vPkjJCMAJg/fxuGbjJqcOeIDMhQ4LIgVDbC7tDQNJXpn6wMbf/iv79ly/oCbrn3rIMaz2+Ztihr2pZK9RtES4vDPrwDFR0TwHHgm6NDxzS8ho6pCZpmtPkDOl99s2a/+2ZlJ5EexYdts6kce1zrswEAVq7Kpa7OF5kmbhhM+2ZtyzsGZz1CCAaN7IbusIUJJ8Mw8Xj8fPThsoMaz28ZKQUBqbb4FyOGUAQJgzoSGNaZmpwUy420H5wuG9V+P15vwHpzNSYWUVXtZvuuFhITgoyb0Ad7U3d5AxJGj+t5UGN/553FYTICrEnXokXbyd9ThtcTvSZNA3EJDoaM6IphmGEKj88bYM436ykurDyo8fyWaYuyJqbE/IJs2lrEHQ9+Sm5+OQD+OLWpvIAm/xaKwO6yUZOuUWOTBOIV/MkqulNY+0iordt/hUshBHf+4yxcLjt2u3XDOV022rVP4cJLxh3U2EtKa6JmR/n9BpVVbpzOKAIMSEpw8MB/r2T62vu57KYTQ+NoSiBgsGZ13kGN57eMlfaotPgXI8ajT33Lx1+sxO3xgyow7IoVbN+wQZN4NofTRlqHZHYVN3u5BzdRFIGnhWJ2DfQb2JHjTx6M02nVf1EUgcOhcclVx5B9kMkDJSXR41g0m0p2Tioulz1inVAEYyb14e0Zt/LZ/L9js9vCylE0oGoKWzfG6iW2lrYoa2LupCjs3rWPVStySUx0Mn5CH+JbKtx0iLz63sKwGYa0KQRSbah1Oooug/EkoAiFMeN7UawF2Ly7xJI8wZmU4VQQhkm8qnHshL4HPGf/ATm88e71fDt9LXv3VjFkaGcmTOqH/SA7U/fr3T7qcpfTxpDBnRjUpz1PNzEBCwEOh41/P3M5PXpkAZCekUAgEKkICQHt2iUf1Hh+y0gEARl7lI80AgGDxUt2UFJcTe/e7Rg8uNNP0o6jorKe2fO3EGhihTDiNaRqoHkNhAzqJ1Ki2VQuumo8b3y+HNOUYRVBZPA/ppT07dXugOf9820nM/nEgfzw3SY0m8pxJw6kZ5/ocmN/DBzYkeLi6shYPlMy5eTBzPx8FXk7S0NuKrtDo2ef9tz7+EWh77N9x1RUTYkap5ORFYu/ay1tUda0rdH8wkgpefzRr5nz3UZMU6JpCs88NYOHHr2QQYMPLhCtNTRYYMLGoCkEku0oARPFtFw9PbpncePfTubcm/6H3rxInhBIl0rvztlMOqZPq86blp7AxZcdWtn/Xj2zGT6kC6vW5oUUFZtNJSM9gUlH98Fu10hNS+DtNxZQXFJNv34duPJ3E+jePSt0jPbtU+jXrwMbNxaiN+m1YrdrTL0geuGt1hIIGGzZUoSmqfTu3Q5V/XVbJIxfV2XeXz3FxVX8+ca3cbv9BAIGmqbQo0cW/37swrAaLYeDor1V2G1qmBJjxadpGA4FR5WVAu1waPzljtPYU1ETtS6MwMp+/Ov1J+BoxaRHCMHAIZ0ZOOTgM5Gactll41mwYBtebyA0LqfTxpVXHE1cnIN/v3QVH7yxgO+nr0MAx58+lPMvGx+mEJ52/kimfbQ8TIlRVEF6ZiL9hxyabC8rqyV/TzkdclLJzv71T77amqyJKTFNWLRgG3O/3xR6KTc89Pf8/SM++vwvqFrji9AwTN7+dCkfTVtFbb2X1NR4MjMSGdw3h/NOHkb7rAPfzN27ZLCvrDb02VTAl6Rg2gSgYddhRM/OdB/Ujo9+WBuMoo8sXmU6BD2O7ozbHyBpP72WDjf3/+MsPv58JdO+WYs/oHPshL5ceuHYkFVn9OgejB7dY7/HuO+Bc3nowS9ZtTIXVVWw2zVu+suJ9NtPgPKBWLp0Jw8+9CWmKZHSEngPPnAeffse/CzwSKAtzo5i7J+H/m8alZX1oZeyrhts317M2+8s4urfTQzbtqikiqde+p4Va/IQCmSmJ9KhXQpTjunHlAn9sNn2/8zndEhpDM4N4o8XeNNUpCoQpp0sn8rkMf3ZKevZtquYQLQu0AISOiaiJB9eJetA5HRI5cUXruT11+ezdl0+6ekJXHzRGCYELc9Ol50r/jCZK/4wucVjdOiUxr+evJjH/vEpdbVeTNOkd/8c7nrkxzejNXSTfz/2NXNnb8Ju0wgEdEaM7M7d95yN3fHrfB7boqwRUkZq3D8HI0aMkCtWrPhFzt0Sd9/+AUsW74hYHhdn58FHLmBQkxnFf176jq9nb8Dr0wnFMwlhvYhtKs/cM5V+Pfdvcv1+0VbufeTLUBC9O121opSaP1Q2sGkqoiwQ0aRRAroTlGQbmcnxfHjnZcQ7I33ErcEwTVRFYW9lDUWVNfTITicl/udpnlZd7aa21kv79ikgoKSilqQ4JwkHWZiqtLSWy6/4b0QgYHy8gw8/uCGq/7ytIYRYKaVsdafNboMS5H2fDmxx/eW9lx7U8X5ttDVZU1fn5Zxzn7ZqqDQjIyOBDz/4U+hzbZ2Xi6//H7V13gjriNNho0e3TJ558EK0A0xeLrnhFfJzyxFAwCVwZ6mhWlQNaIpANyXxAQVbcSCszQBYsqY+S8URb+OKE0Zw3WljD+7CG44jJWbwvbO50AoQ7peThfozpDpLKdlbUInTZSMtI5E6j4+aOi/Z6YkHff633ljA++8sCpM1drvGiScP5qZbTjrcQz/sHKycgbYpa9qWSvUL02I/o2brauu8TPtuPf6AQShlviFGxTDxGCaPvjSL1x69bL/n211aiZ6koNabGJoIi3VpQALSBJ9uoLjA7m7MIJQAAnSXAN2gvNbNF0s2cvGkYQd13dPXbOWJb+azt7IWm6qACU67hl83uGDsYP52+sSfxFfflOTkOJKT4/hm8WYef3cOvoCOYUomDe/BP646EVcrTewzZ22Iago3TcmixTs4bvLBZWEdKZixAN4jhmj3Z2idEb5u+vcb8PoCUffx+gLs3F3K7AVbOWHS/u/rEsOL7hRoPok3VYlQYAD04DnqNYMEO9gDSkjuSWEpP9Im8Pp1Xp+xnIuOHUZSvPOA19uA2+fnkS9/4KvVm/HrBpqiYFMVFEXgtNn4z+WnMbzrj7fAtgYhBB06peHxBbj7+a+Zu2IHqiJw2DVuvuRYTh7fr9XH+uKzFVGzpmZ8s44//+XEiN5xvxbamqxpW6P5hZly4qAWs2r6D+wY+ndRSVWjCTeK4gGwI68Un2//EfymlEi7gi9ZJZCg0GJfraD8Mh0KSrqdLp3TwSbQXeBNaazu6/XrLNqUu99zNuf7jTu4++MZFFVbbq2AbqKbJnVeP37d4OMl6/lw8bqDOuaPZdXWAh56YxbV9V68fp2AbvDDqp388+VvWn2M6qr6cN9/EMMwWbhwG+df8AzHnfAwl135XxYt3n44h/+L0RbTHmO0TFKSi27dMiMNrprKsZPDX6LbdhZHvCib4vUFmLdkW6vOa8Sp+FK1oLt6PwhBXZaCmWXDkWRHd4A3VcGX0vi6sKkqW/L3n2bdnD++9gVfrtyEP+iq0k0TT0Cn3hegvM7NH/73GdVu70Ed88dy73+/4YeVOwjoBl6/TnWdl4dfm8XKzfmtPoa73h91eSBg8MC/PufkKY9w0nEPc+/dn1BeXne4hv6L0hZlzW9aiZFSsmLVbl54eTbPvPg9X83ZgB8ZsjrYbCoOh8Zd95wdlr3TLjM56ouyKaqioB7AxDv5qJ5o6oF/eN0F/kTQHYBdcOZJQyHTjh4XPqNSFUH79P1H2kspw9oD/OebBXgwkBqhQpdN8QR03pj387Szf/3rZXibFcLy6waL1u+mvLq+VccYMaI7LlekImoYJosWb6e8oh4pobCwkvsf/IJly3cdlrH/kkjAkEqLfzF+eerqvHz++Uqee3YWj/97OjVVbqQkNFt3uWy075DCFc261vfslrXfIFpFESS3orP8caN6owWD28X+RZeFECjpDo46tifeTA3dFV7hVzdNMpLj93uIpnJm695S1uYVEYhSlqHp9jPWtU4hOxQqatwsWrM7Ik7I69d5Y1rr61MNGtwpaoF1VVVYOH8rgYCBrpssXrSNP/3h9YMu8tcWaYuy5jfrTtINk7vu/YR16/NxewNgC/4AdoFQVTQJQ4Z15a+3nkJGRmLYvslJLk6Y2J9Z8zbjCeigyLAH3KapTBnfJyQ0WqJnp0wuO3kEb327Al9AD6U5NhxLAlIB0w5SBcMJtVLnrLH9eX/+GvJLqzCamJltqsoFEyK7VwNU1Lu5b8YcZm3dgYlkYo9u3HvSZPKqq1q2AAWp9vw8s6Oisuj1IAK6wQvTFnHr+ZNw2W0sXL+bD2evodbtZcqI3pwzYTDOoLtpxIhu9O+fw8YNhXiDljCn04ZuGBFCy+fTeeXVHxg1svtPe2E/MVawXczi0lbZvbuUv9z4FoGAGWGdlRI0TXDdNcdyyqlDImJbTp0yiLc/XoqvhRegzaZyxonRn/mm/HHq0azcnE95VT2mL0BAk1EtyE3p3ymLS447ih/W7QqbXGiqQo/26XRvnx51v/l5udw3Zw47KytJcTq5bsQIctQkAvtx14PlMq+s9+x3m8NBWVU9mqaGLEJNWb21gIUbcxk/oCu1Hh8f/rCGeet2kZYYzyXHDWNE78ZMpuv/NIUb//gGfr+OrpsoihUTKRSB39cknd2Q1NV6mP/DVo47/sd16m4rtEVZ85tVYmbP3cza9flWRUpVNCoPQiA1QQBYs2MviS00OLv1D8eTmhzHx1+vot4fCNVBkVIyoFd7brn6uFaN47qzxzFlVG/+9dZM1ucWgwjOlCSYNjCaxrUKUG0Kq/OL+e+fzuXW/01je1EpqqJg01TuveQEerbPiDiHYZpc+OYHFFTVoAdnQnN37ObcV9+1YnoaKuw1KdPdgCIEo3p05KdCSsknSzfw3++XUlFVG9U0aEr4YtkmNhWWcnSvLrw3axUev/Uy2JZfypcLNvLG3RfjsGkoiuD/HjqfWd9tZObMDdhsKsdN7s+//zM96vkLfyXVOmNF7dou//fQl9RFKUQpwJI7pmDXrn1Rg3OTEl28+OglPP7CLFat3wNYM32HXUM3TG743bH0OUACAUBygov3/+8Kfli1kztfnobQQR5Akdmcv4/+XbL5x6XH8/B7szFME90wGdC1HY9de1rUfZYXFnLdl1/i1S2lp8rr5eklSxifeuA0ZodNY+RPKGsq6tw8On0e323YjhLsrN0UCXgMg9v++xV/OXcCb81aQVlNPb7g5GfpljxuPPtoLgzGHHbtlsnLr13Dxx8tZevmvXTrnklcnINPP4605ng8AfLySn+ya/s5aWuy5jerxMz6foOlwECLcS0AJftq6NwxLWK5pipce+kxXHvpMZimZG9pNbv2lNGxXSrdOkWfobREj5wMLj7xKO79YBZuf2QcTVMrnd8wWJu/l7E9O/P2bRext6KGeq+frtlpLVp+5u3MpbSuPqTAABiYlBj1aAjrYRaW0qQE3bwieI1Om8bNpxxzUNezP/yGQZ3XR0qci2qPl398NJMFm3PRDRPhlDh8hLm1JGBqYBomu4vL2bl7H0bADAU1u3Wd3H0VfDFvPVOPs4SLpqmcfNJgTj5psHWthslzL34X9UWSk5N62K7tl6Itzo5iWNTUeMjLLdvvNoZhsnE/VWM75aTx5AMXIKXEMEw2bC3C4/EzqF9HEg6iEKemqRw3qjc957Zj056SA25f6/FRVe/h5FF9mXJUL3KLK0mKc5CdmtjiPk8uWhRSYBrw6DqzC3bjEALRQkyzy2ZjdI9ODOvSodXXc8Dxe30oQhDvsLM6r5Dr3/yCOq8fU0psSeCoITSehmGZNsut9OQn8zCkSaBJBpnXr/Ofj+dz+uj+xLus7z27XTI3/PmE0DaLFm5j2ler8bjD42VcLhtdumQetmv7pWiLsuY3qcToukGdx2/1HmpqhWiGYZikpe7f7wuWXzonO4Wc7BT8us6Mddsoqa5jSOf2DO7cLmpmz+bifdz37RzWFOwlzm7j/KEDaZeaSEF5dZiZUyqERS45bTaykxr7H7VP238MjCklC/P34DF1JBKBQCIxg7LPtEsUH5Yqo4LpAEUHu6oyaWB3/nrSBDqkHnpFy4Bh8Oh38/lw1XpMKXFqGj5PALOuUUhIVeBLlmh1oOpWRoRpA6lZ35/Hr+NQFWQAQqUKhMAvTZ74bD5HD+1BhygxQaqqcPmlR/Pqaz/gbRIk6XBoETU5jkQktDnBEsOisqoeQxCSNdGmSkJAxygTpcjtBJqmMnSAZdXYW1nDV2s2o6kKxw3sSVpCZPd6KSVvLlnNS/OXU+F20z0jjaljB7Jrb3mjC3s/50sIlmuwqSq9ciKtvE2p9nrZXBbd2mDaIZqgFUBWSgKXTRjOZeOGHZYsyF37Krjz42/ZXFSKlJKUeBfVbm/YJC6QKJCqxFEFwgy6622EYgx9Ad3qxNBsOAHD4PZXpvPMDWdFHevo0T1JS42n2KeHMrtUVZCQ6OKYia0rRtqWaYuy5jenxKzfXMid93+Kz68jbYplzjWkpZE3uSkddo3JE/oe1Ewnt7SSy1/8EG8gQEA3UVWF4V078OwVZ2JvYiouqKrm4jc+DFld6nx+3l25jmO6d2HywB58s3qrVa+lrhaPDPfb2hSFEwb2atV4VhYX8YfpX1Dp96AnmiBBrRcIM3idwoqzEQHAtBQcVRPomsSfBTNqd7H0q728eupZ7HPX4zMMRnfoSKL94NswPDTjBz5du9GapUkIBMudK4TLCakK9HiQURK7HJqK0GVYXZ6G/wcMg0fen81TN5wV9fznnjMCh0PjzbcWUFFZT06HVP5w3eQjPh4GrIwB8xCD6oQQJwFPASrwPynlw83WdwbeAFKC29whpYzuo4uBlJJnXvyead+sxbQpmEG3reI3IxQZu13jwovGHNTxX5u7gmdnLAJhuXwf/vIHHjj/BE4eFv6ifOGHpby8YLkVuwfsLK3gPz8s4u8XTmTeyp1sKyoj0Wknvyx88uSwaZwxuj9224FfEVJKHp4/nzdWr2o5cFeALxUcFaFucCiKwHRISpO8PLJqARvqS7ll3DjWlRWTFZfAsKz2B63U1Hl9XPLfD6jxeEMKWnmdO+q2epxADUQPdG6Y7EVj5bYClm/NZ1TfyErEqqbw9PNX8OzTM1kwbytSSsaO68Wf/nLiQbd2aYscqqz5KeTMkf+tHgReX4Db7v3YaoLWgBCgCTRAl1ZZbVVROPG4Adx4TeviWhq4+e1pVNS7G3upGQYrdxfyzsLVXDWxsf7P60tWRQSV+XSd+btyueuPk7jxVCtDYeveUm5572uKqqz05w6piTxx4anEOw5csK3a5+WyLz7CbQa1gaAQNRIlwiNRGm5EAXoiCB2EITE0iT9OWsVpAuAOBDjp/TeJs2sIIdClyQPHTOG8vi0XPGqO2x/gk7Ub8DVc8wHqK0oVVFOEKu42YLdpJNg0SvS6qPV0Fm3KRUoZIfh0w2TFpj3Y0108+8KVZKdFmsP3ldawZPkubDaVo8f0IjGx9fUvfmkOdXYkhFCB54DjgQJguRDiSynlpiab3Q18KKV8QQjRH5gOdP3RJ/2VM2vOJqbPXN8YTC6sOlDSrqDqVoagpqmkpMTxl5tPos9B9BTaXlzGszMXNz5PQe7+cAZjencmNVig0q8b/G/hipAC04A3oPPlhi28/cepgKWEvDZrOS9/uwwhrOflpKN687fzJrVqPO+tX8+ba1bj30/mEVhWXk8WaF7LjSOcEr8qIWDJqC+2bObznZtwulRMKcmOT+DdUy+gfULL7qvmTF+3Fb++fwtTU9REFbWOsArFDpvGmH6dWbQpN2owsi+gM3PltqhKTHl1Pas253PsGYP5299Px9YszklKyeo1eeTlldOpUxrDh3U9ourJHIqs+ankzG9KiVm0fGfU5YoiGHVUd+665VQCAZ24OEereoM0pbiqlryyyrCXLlgC49PlG8KUmI1794WZNhuwqyq7yyvpkGy5RPq0z2TazVdQVFUDCHIOwq3z9Y5tBGTwHA3PSPD/0gWK1wqYbVgubaA4BAHVDDONWJuY1JtBxc+Eu+d9x9Ds9vRMbV3sT3m9G0VEaZkggm4hPdwa47Rr3H3+sbw3ew27SyoA6JyZwsNXnYJdVTn73tejCiklSsXN3YXl3PDwx3h81vh1w+T8KcP484XHhJSd9z5eyqtvLUAoAkUI/vP8LP75t9M5emzrLF6/POJQ0xtHATuklLsAhBDvA2cCTYWLBBpuwGSg6FBO+Gvnk89XNsbcNUGxqfzzH6czckQ3PJ4AKSlxB21tmL56a1ivsdCxFYU5G3dyzihrglHp9rRYWG9XWUXo30IIfnfCKC6eNJziyhrSk+JJdLXe2vryyhX4jOh52xG5Airo8TRfCoBhSsyASZ1mHWtPTRXXzvyMr865vNVjySurilDaWkIRgpS0OK46fjj/nbYYw5CY0uTU0X25/cLJPPjud3y5eFPU/Wxa5PP25pfL+N+ni6yyGQI0ReGpO86lX3cr8LquzsvNt75L0d5KDMNEVVWyshJ58olLSW4hgaTtcUiy5ieRM616U/9aTM1utx8zivJgmpKsjMSg6+jHdaw2ozlQg9SZfh6e+wOqonB63770b5/JuqLiCEXGbxh0Sw8PNBVCkJN68E3Fyj1uAqYRtRKQXVXpmZVOXnlVKAjPqWnYNIUqs1nwq2aAo4nAkVZVyo+2bODOsY3xJLuqK5hTsAunqnFSl96kuxr989lJCShNBXVTJanhDgwqMqnxLu49bwrHDezJWaMHUlpdh5SW37yBScN6Mmd1eHsITVGYMqxX2AtBSsktT3xGRXV9mMj8ZPYahvbJYcLwHuzYtY/X3l4YkX5936Nf8clbfyQxoe1bZFoxO8oQQjStu/+SlPKlJp9zgKZVvgqA5h047wVmCiH+DMQDU370gPfDr0XW1Lsjg8gB7DaVzp0zcDrtOH9kexDdNEJl+5tiYrK0LJ81C4vpmZLGqd37tjjL754RGYPjtGt0zT5wbE5zKt3R3TUA8XY7ppR4dT00Zqem4WtmLZFIpNMMk1eGlGyrKKOgtpqOiZYMNEyTuYW72FldTs/kDCbmdAtrFzCwYzZxdlvUBInmjO/VhQfOOZ7MpASmThxCSWUtaYlxxAV/l9umHss3y7ZEWGNsmsppo8MrJK/dWsirny3GHwgv5fCXRz/l62evQ9NUnv/vbPbklzepMWZQWFjJM8/O4u6/n3HA8bYFDlHW/CRy5oBKzK/J1Dx8cOeoMxOX08a4UT0P6djtUxLJTk5gT3lV2HKZAHsVN68sX4kQgjdWruayoUOxayq6v/HhcGoaE3t1C1lhWkI3TT7euZ4Pd6xFAud1H8TUXoOxKeE31qgOHVEVgSEjowlVRXDHhAlsLSnj4w0bkMA5/fvjcmo8vHg+nobsAkVaCkyz/U27QZW3sZ7DYyvn8fKGFUgpUYXgvqWzeWriaZzUtTdgKU1/njiGp+YusmZJwnIZCQMcNhVDNdFcCuN7duWpC08LE0qZyQlh5/brOsv2FmIqVkBe6HsRJtefEd7LZVteKZU1nog5n9en88n3a5kwvAcz52xsscLvE8/O5NorJ9C+XUrE+raERKDvX7CUHYZ+JhcBr0spHxdCjAXeEkIMlFLu34dwEPyaZM3RY3vxyRcrI+4tu0Oj4yFmxJ0wqDfvLVyLt4nFwVQllR18fLl3C54CHZdm44kVCzn3qIF8umJDmHXCqWnceNy4A56nsK6GFzcuYcW+ArokpnL9wDEMyYh0e43M6cj3u6MXjXRpGu+dP5Wnlyxh1d4iOiUnc8Oo0fxz9vfsqmwsbyAdZmSAHGAiqQtYVtRyr5vzpr/NPk89Pl3HoWpkxyXwySmXkuq0LBnH9e/Js98tpqCyOqR8KMJ6+aqKgqYoSCl5/KJTmdyvsTmtTVPpmJkSdu5V2wuizku7ZqcyoGt4WvuXc9fhi2IB0nWDVVsKGDWwC3Pnbo64H3TdZO4Pmxk9sjsTJ/Zt83EzP4OsOWg505pv7Fdjau7QLoXzzziKT6atDhVCczltDBnQiZHDuh5wfykls7fs4u3Fq6nxeJnSvyeXjh1GotOBEIJ/X3wKV730MYZp4g3o2J0qdU49VLlSBmckb65ezTPnnM5/FyxjbeFe4mx2LjhqEDcfO/6A579u7icsKskLKRpbKvcxI38bbxw3NcwKMap9DgMzsllbVhxxHIeqMS6nMxM6deWaEY33m1fX+XDzRnZVVVjHt0W5b4Kn6J5mzdhW7SvilQ0r8BnhD/BNP0xjabvrWV1WxJ7aKgZ2y+aB+ON5YcFS9tXVM6hDNtePH01ueSVVbi+junZkcMfomVxNmbt5Nz5DJxBvKUHCtDK47E6V+dvzuCgjJbStxxdocSbq9gbdSwEjagCfrpv8MH8LCxdt56Y/Hs+pwXTttogVm35IfvVCoGkhj47BZU25GjjJOp9cLIRwAhnAwdWe3z+/Gllz8dTRzJm3hapqNz6fjqIIbDaV228+GfUARTABqt1e3lq4ijmbdpEa7+Kyo4cxsa8VhD6oczumjhnEh0vW49N1FKHgz9TBJvAEn0OPHsCrB1jtLeSm48bz0vxlVNZ76JaRxp0nTWRU1/3XY8mtqeT0r9/AowfQpcmWylJ+KNzFMxPOZEqn8AnfnRMnMjd3tzVhaoJNUThvwAC6p6Xx5CmnhK17aMrxXPXZpwQMw3J7q0RVGHTTpGeK5ba+d8ks8mur0YPvM133k19XxX3LvuMfo47ju/wdGNLkqStP54MFa/lm/TZUReHMYf2Z0r8Hy3MLiLfbOXFQ71Dc0P54efrSsBTrBnYXV1Dv9Yc12q13+yNCCRrwBGVNS735TEPynye/5eX/zeW5Zy8nM/PQs0F/Kg5R1vwkcqY1SkybMTUfDq67YiIjhnZl2sx1+Pw6Uyb2Y+LY3q0Krnrm+8W8sXBlaFazq7SCL9Zs5pM/XkK8w86AjtnMvONqvl69maKqGgr8tXyzc3tY+e0G8muq+OCqC6MGorbEqtJCFpfsabSUAB5DZ0VpAUtK9jC2XZfQciEEH599EVdN/4Sl1dtRXZYFRAQ0Hhx1KlqU+BGnpvHJuRfxyZaNfLNzO1vdxZT6I8v9q4qgV7olWD7buTGqP1wRMOWL/+HRdXRpogpB39RMPvr9RcTZGh/+kQcQps3ZW1VrCZZgPE3DN+vTDQorwiv+9uuWHVWwOO0aU0ZbWRwTj+7D1zPWh5TaEFJimGAaOk89P5NxY3qQmnLgdPtfAolANw8p7XE50EsI0Q1LqFwIXNxsmz3AccDrQoh+gBM43NW7fjWyJinRxavPX8XXM9axck0u2VnJnHP6cLp22X+aMlj1Tc575h3KautDCQBr8oq4dvJorj12FAB/O2MSpw7vx3frd2BTFZ4rWIZfD69NIoG1pcW8e9oFXDl2+EHJmkdX/0B9wE+wIlOwEJzOXUtmcFzHHmHH6Z6ayicXXsQlX7yPL6EO4TQRpqCdSOOPo5r/fBajOnbk68su47VVq9hcVsqKqoLQuZri0mwh68m3e7aHFJgGAqbJl7s3Mz1vG6oQVods4J+jJrPgjD+EbTu4c+uDpwFKKmujLlcVhao6T5gSc9yYPixdn4enmRzRdZPh/az39pjRPVi4aHu4NyD4T69Xx++v5z9PzuShB887qHH+nByirPlJ5MzhKr3XYALqCJyCZQKKOLYQ4lohxAohxIrS0l+ueuFRQ7pwz22n89BdZzP56L6tmhmV17l5dUF4pL9PN9hXXcenKzc2bqhIdgSq+HTvVuaV5GEqkfN8IQS2YM+kgwnqW1KSH2HxAGvWtWxfZOMym6oSnx4gLlEigq1PhF3nvo1fUuGL3ovIqWlcMnAIb595Hn8ZPh6XGqnnaorKiCxL+TBMGdWS4ZM6FV439boPn+nHbfpYW1HIA8u/b/X1RmNQp+yov1ec3caQLuFCymHXuPv3x+Owa6gNPWocNrp2SGf80K68+MlC3v5+FR37ZWJ3BK9TylCL8IZfRlEUliyLHhTeVjAQLf4dCCmlDvwJmAFsxnLXbBRC3CeEaHDW3wpcI4RYC7wHXCmjaec/PUeMrImPdzD1nJE8ct/53PKnE1qlwAB8uGQd5U0UGLB6mL34/ZKwBoluAiytLeT1XWsJ1JkRcfNgpQo3yJiDkjXFe6IqFVV+D6XeSNmRlujA3t6L4jKtxEFVUmWr5sH1LTdv7ZqSyr8mH8cH519Al+SUiPUKMKVLo8unpdvNkBKfoePWA3gMHZ+hc8+S79hZVX7A69wfg7u3D4/lC6KqClmp4W7uY0f1ZkDP9riC7U8UYXXGvunSSWzL3cd9L36DN0HBmerE0dBkuOFygv83TcmyZTv32+W8LfBjZc1PJWdaY4k5bCagYIDPSwAjRoxo07+UlJLluwuYu3kXcXYbWckJ2NXIfhteXWfett1cNm4YXj3AWe+/y97a2sZ6CQ2ZzE12k8AJvQ4+BifDGYdD1XDr4dq+U9VId0ZaCXbWlLKsLBe/2aR4HuAzdD7YvZLr+07Y7/nO7TmId7auYXdNBR5DRwTPdftRE0kK1oo5vXtfPt25EU/YmKzZkFWYxvqZhbCEzXu713BBnyEMSW9dZc5lhQU8v3wZe6qrGN6+A38cOYp+OZmsKyoh4NMRCOyaSse0ZI5t4uNu4LhRfejRMZPP5qyjvKqO8UO707l9Gpf+4x0CukFAN3DYNGzZDrppKezeWRpRlMwq6Nx20yAPgyWGYHDs9GbL/tnk35uA/fs7D53fpKyp8/qYtnoLO/eV079DNnM27YxInwZrUrKxsIRxvbowPzeXPzQp7w+g6iqG0whJdU0oTOjUFUeUiciBSHW4qPBF9jGSEhK0yIDk/21bFDHB8ho6X+dv5OYBx5HpTIjYpwEhBI9MOIkrvvmYgGGgSxOHquLSbPxt1ITQNsd27M7sgp1hbquGZ7N5oLMuTS6b9SFzz7kWeyua7Pp0nbfWreGTTZsQAs7vP5DfnzKaBVtzrdijgFVHy2nX+PNZ40OT0AY0VeHJ289l3sodzF2+naR4J2dMGsS3Czfx9Ls/NPZxi7PRq2c7di0rQEZRVoQQB2pp9YtyqLLmp5Azrbm724qp+bDhC+gUllaTkRxPUnxk9sm+6lr++OYX7CgpRzdMVEVBUQQySs1sRYhQBd2vtm6lzO0OL/gkAAXsioaKwJQmj5x0AhnxjUrHPk8tH+5ew566SkZndeG0TgOiCp5TuvTl/pWRlgxFKJzepV/E8h21pahCBcKFi8/UWV/Z+G6QUrKrbi91uoc+SZ1wqpaQcqoan55yKZ/s3MCMPdtIdcRxWd9hISsMwJh2nTi35wA+2b4Bn6GjKgpCCAwMTMX6HprUpAPgjiXT+ebU30eMtznfbN/GX2d+G3Kf7amu5qutW1ACQDLoBiSZNi4ZPITrjhvdYtuFrh3SuPmSSaHPV9zzTigmBqz7IaAbJPTJwplfic8X/n0ZpmTs6EML/P4pkRICv45u1b86WVNWXU+tx0enzJSI+1NKybertvKPz2ahmyYBw8Rlt+3X4pAerMr7wNy5EeX9ATS/iuoQaIpChiuORyacFHa+JXvz+XrnVjRF4exe/RmSFd3Fct2A0dyzfFaY69qhqJzcpU+YO7iBDZV7I1w9AHZFZXdtWUiJ8Rh+ttYUkGhz0T2+MQZuVPuOTD/3Cl7fsJIdVRWMyM7h8gHDwrIc7x9zAuu+fpNavw+3HiBOs6EJBY8eiGo12ueu46vdmzm35/5rWplScsXnn7CupCT0nT66cD6aouDvbGBKELqgv5HKzScdw8QhkZMlsBSZyaN6M3mUldCQV1TBJ7PWhgX8en0BtheVM3JMN9YuzUVvEnOjqgrjxvZs2xOmNihrDqjESCl1IUSDCUgFXm0wAQErpJRfYpmAXhZC3Iw12f+lTM0R7C2t4eUPF7J8fR4pCS66dE1n9gZLmzekpFt2Gv+58cxQZPr0NVu488MZYQ+kbpoQLJ8i1PAKB3ZN5eIxQwFYXlSIOxCZ2ue0aZzSoxdjcjoxuUcP0uIag8pWlxdw5bx30U0Dv2kwo2AzL25eyCfH/Y4ke7iClWh38PaUC7lu7qfUBnwIIN5m54UJZ5PsiFTGuiakY7QgWPomW9H1RZ5ybl/zP0q91ahCwZAmN/Y5i1M6WL53p2bjkj7DuKTPsKjfrxCCB8edwNReg/huzw5cmo3TuvXlpvlfsaYyenT/jupyavzeiOtrSm51JX+d9W2YEDWlDJlaFROrCqjDJD07oVUFAAF8fp2teyJjxEwpWb+7mKvOG827Hy1FSmkprhJuv/nkiDoOFWV17MktpX1OKtntU1p17p+SQ63Y2xY40mXNvGXbeeOTJZRW1NG7ezalupfNRaWYSBQhOH/iYG45fyKqohDQDf787GcsLihAVxpNfx5/AEUIFETYi1kVgk5pyfRuZ7mkdlZURBsCmPD30RPpkpzKMTldQpl+Ukr+Pn8mn+/YjFcPIBB8sHUdfxgyipuOipz4nt9zELtrK3h180rsiorf1Dm6fTceGnNi1NP2Sc5ic3VxhLzxmwZdEqwkgM8LFvP89q9QhYohDdq50nh0yNW0c1nZWt2SU/nX+JZDnNrFJ/LDOdcxPW8L26vK6Z2SQd/UTE6f9kbUApq6NJmWu38lRkrJc8uWsLKoKMzC4zMMK9avYZEGO121DOzV+riaJetyo7vafQHa98hg354qyspq8fsN7HaNlBQXN90U/v1KKdm5ZS8et5/eA3IaXVG/IG1N1rTKzthGTM0RlJXW8P2MDdTVejlqVHeGDO8SpsWWVtRx1e1vUefxYZqS8sp6duaXodvBcAoQgl0lFZz7zzd4/5+XkZrk4u6PZlqWlKa/U1DGuOw2khNcVLjdlsUBuPfM4+jfIQuArikpOFQ1ItBVFYJjunfBrwZYWpbHsR164NSsGdetSz/H3SQgz20EKHJX8/zmBdwxJPKBHprRgcXn3sCmyhJKPBUMSu9AljMl6vfTJzmbgSntWVdZGOZSsisaF3YfYdVRWfkipf4KDAkNkvSprZ/RPaE9fZMO3Hm2gSGZ7emRkspjm6YxddF0fCZA9AwAISxFqiWWFOVz5fSP8QdMIrSgoGWrwf/v1XWeX7KEK45qVLKklHy8YgNvLVpNndfHhD7duGHyGDKTElAVgaqIqH5nh13jysuOZsrk/ixasgObTWPC0b1JT2s0hRuGydP/N43vv1mH3a7h9xsMH92dux467xcTMFbaY9sSLD+WtihrpJSsXZHLqiU7SEhyMfnkwWRkhWeQfPrtap57q7E31+KVu5CAkawgNUsheW/2Gjbn7eN/f53K+3PXsGZnIYZdogT1dKkG+4UhsakqTs2yauqmSc+sdJ694oyQfEtzuSj3RLp70lwu+rVLIb++gi01dgak5ACwet9ePt+xOeT2lUg8us7za5ZyTq8BdEpKCTuOEILbh0/iDwPHsKGiEJdNMiClMw41+mTh6t7jmF6wEU+TDByHonFs+95ku5JYX5XLC9u/ICD9eE0rl3pP/T7+uuZ/vDXmr622Pjg1jXN6DGRleS4PrZ/Gjk370OxOdG+kPBGw34mSlJJbZ37L19u2RmRWWRuEf/ToOh9v2sh1I0aGlu2rqeP575cwb8tuEl0OLh8/nHNGDEAIQZzTFlQiw98HmqaQlhLPq6/8nmXLdpGbW0anTmmMHdszLN6vILeMf9zwFpXldSiqJbP+fNfpHHfa0NZ8VT8JbVHWtO2k9BZYumAbTz/8NWUlNVb3ZSH4/OPlDB/ZjX8+eF7oRnh/2grcXn/EC0v1Wz2DGtANk8fen8OJE/pZs5+G36ih3KSwzGhCCP5+6iS6Z6VR5/PROzszrCfS+f0H8sLyZWFKjCoEqiq4feVXaEFXiyIErx97IdlxCezz1EVcn980+LZgM2d07cO3e1cRMHWmtBvC8FQrK2Bx2UYe2/IhPjOAsd2kb2In7h14OWmOyNS8F8ddwv+t+5av8tcRMA2GpnXi3qGnkulI4Knt7+KWe4kPvnt9horP0PCbOp/nL+SOARe2+jeRUnLD8tfYWrOXgDRQNHA4ffh8dpp1RyLOrnDtkrc4JWcQ53Qehr2J60xKyd9++AavoWPNR6OdLPxjuTtcmD/w1Rw+X7UxFIT9ycqNzN68ky9vuoKUOCfHHtWLOSu3h6VPOmwqZ00aBEDHnDSmnjsq6nV+/PYi5szYQMBvEPBbv/PqZbt44fFv+ctdp7fquzrcSMA8tBTrGFHw+wK88sx3fPXhslB6rGZTefu/c7jrkQsYfYzlNggEDF58Z35Yc9EGNI9JILFRRqzfvZelW/bwxYINuBXTKr/fsNIglHXnsKnMu/s6thWXkRznpHN6Sthxrxs1iv8sXBhmqXRqGvY0Hzcue5eGcPtBKR15bvSlzMrbgVePtBIDzMzbRrs0werK3bR3pXJGzigyncnops47e95nUdkKVEVFSslZHU7k7I6nRCgd3RMzePXoS7lvzXS2VJfgUG1M7Tqcvw48jnJfBU9uf4Z0V03oXq3wxeEzbJT6qtheV0TvxJxW/y7ba0q4fulbeA3remxxXny+uGAmYpNil0i2e/K4beUHXNp9HENSwydla4r3MmPH9pb7PTXDlJL5ubkhJaay3sN5z7xDtduDbkpKaur4v6/msK24lDtPP5aJI3vx+BuzI46jKAonjuuHqiqMHduTsWMjXdWmaXLHta9Rvq82zL349P1f0q1XNt0Pok3F4aQtypojTolZvmgHD97xUWPcggQhJd46H6uW72be7M0ce/wAAFZtykdvITdfGE2qxQKrthcyeXxv/A1+o9CGhBQZkIzr1QVnC03RMuPjefuc87l15jcU1NQgpaRHeiq57MMvDfxNlJur537A9FN+32KTMbRa/rziv/iC3adnFq9hSvYQpnYex/0b38ZnNgqkTdV5/G3tS7w88tYI4RKv2Xlg+BncP+x0TCRqMJFjWtFc5pcuxa7qqMLElAIlWD3OZ9go99dEH1cLbKwuYGfdPgJNGlY6nDq6rmEYjZq7UCR+tZ6V5fVsrNrLl/lrefPoq9CClplSTz0l7jrr+1Yl0rAyLELI8CJ31kGhsKaGnKQk9tXU8cnKDWEB2IZpUuv188GytVw3aTR3XDmFwtJqdhWWW/E7hsmI/p34/ZkHbsL3+fvL8DUrJ+/36Xw/fR1/vv1U1CjlyH9y5KEH9saI5F+3vs+a5bvC6nvoAQMdePiuj/ngu79ht2uUlNdiRAvShJCVpQHDlCzcsJs63Q9KpKhBWhOf04b2w2HTGNQpvKhaA78bPpx6v5+XV6wIpU7ntLNT7NyL2WS86yrzeXHrHJxqAqqiRFQJVxX4pGwmvlIfXsOPTdF4N28e/xl+NcsqFrG4fCUBqRMIBu1+XjSDNEcqk7Iii+UNS+/EZ8ddhyFNlGBWlClNHtz8OF6zuqFBNKqQZDjrKHYno6BQE4ieKdkSr2yfh79JELEQEJfkxV3jDHvhO1x+Cvz7KCzaxw8l2/jHoNM4vVOjxXZeXm7UuCIgen83CXmVVaGP7y1eS63Xh97kt/cEdD5ctp5rJo0iIzGeR24+kzuf+jIkl3XD5O5rT6T9AWrBbFiVR32dNyI+KuDX+fqj5fz57l+owm8blDVHnBLz6rPfRQReCgBT4nX7+e7bdSElJjsjia27o9fIaW4Ri3PY6NWuhRTI4MP31KWnt6jANNA1NYXXzjkbOxoOTeVfK2eyJa95goXlr91RU86A1HasrSgKi653aQqmWhs2Q/Aafr4rXkNNoIaA2SzwFJNCdzk76grplRi97ooQArWJyPwo/xtsije4DhRhoikmmjBAuhifMWC/19mcPfWR6YxSClxxAUxTYOgCFImiNAb4eo0A22pK+H7vFk7Msc7n1Gyhnk7SJi0dsok1VhggzfAus6YGFR43OUlJbCraFzWLzKfrLNtVwHWTRpMQ5+C1ey5mS24J+SVV9OyUQbcOresD5a73Rl2uBzOdfgklRgKRvZFjHAp5u/axblV44GVzNq3Zw9BR3UlNcmG00DuouZxRhCAl3kl2ZiJF7kgrLEBmQjy3nHL0Acd4zqD+TB08ENOERLuNibMexmwWk+IzdT7PX83rY67l+TVL0Qlf70iqw214Q5OPgKkTAP61/j1ctiICzdrJ+0w/XxTOiKrENKA2yXjfWrudcl+ZFU8YXCaxAp4SbR7cuv2g3NYA22pLIgJ5Vc0kIdWNEVCQUqDaDBpKYUksWfPQhumclDMIm2LJ8Hi7A5uqhk0uQzs0/L/poCXUNmknsXTXngg5A1aF8q17y8hIjGf04K5Mf+F6VmzYg2GajBjQhXjXgeP3aqrc4ZO3IKYpqSiLXr/m56AtypojTokpzG8hoC2IGnTvbNldwtKNuRHrJWCqQJPidjZV4bxJQ+iSkWqV6o8yqxrQIYuxPbtELG+g2u/lloXTmF+027rfpUnX5BTibC3HSfgMnSfHnMPFc96kyu/BlJYRuF9aIvt0d0SQnM8MsKOuOGokvioUCtwlbKxZxobq9aTYUjih3Un0TuwT9dwew5oZNRpuRPC7MGnnEhydGX2/luiekNWiVUlRJMLWsDb8AfAYAX4o2RZSYpLsDsZ16MzCojx000Tag3VbTIKuZQUlYLmdpGJZ04QiqPRZykX7lESMKOZhVQg6pyeHLevbNZu+XbOjjllKybwl2/ngy5VU13oYN6I7l5wzikHDurBi8Y6IInodu2Tg/MViYkA325af+khnz65SNE3FH8VF1IASdFu/+vHiqDJDAror/HexaQqnjOkPDoU1eXsjnhiHpnLbaRP2G6i+qDiXvy6aRoXPQ8AwcKoa49p1QTdE1MpfAdOga3Iq940/jn8u/A4tWDTKkCYd0gRVUV7EFf46slqoolsVqGFb7S6mFc2i1FfO4OR+nNLhOJJtkdaFIs9ezGYVRARW7E+izc9p7cdgVw7uNdQ/uQO768oi5KMQoNlbVjqllOysLaVvsuWKOb13H55YvDD6xn6s77KhFUKwOrjZ5EI6p6WwKrcoMr3bNMlu0i7Fabdx9PDoGU0ANbUe3v9kGQuW7CA+3s75Z45g6NDOUduhOF02xkzs2+KxfmraoqxpW6NpBe06pLS4zuG0cdJpQ5FSctfTX+Hx65hKSIkGICXFhZGkhD6rimDi0B5cc+poUuKcTOrTPaIGgMumce2k6DESDVw391PmF+3GbxoETANdSnZUVbCxsjhqNWC/YSAVL3V6HRf06sbY9qmc1a037026nMt7jkKNEuimCIVOcZnYlciXpV96+bTwFb4tnk6uezdrqlfz5PbHmVc6N+p4NaWpAhNOgi2fBzffyjPbHqI20Dq3Ut/kDgxI7hgmkDSlNUkjkrklG1lbmRda8sSxp9A7NZ04zUaCzY5DUy1lUFpC2nSA6QRpx0pfVxU6JCQC0KddJu1SEiPOYtNULh0bPcMqGq++v4gHnprO+i2F7Cms4OOvV3HVzW9yyXWTcMU50IIWF0UVOJ02brzz1FYf+3Bj1W5QWvyLcfB07JLRYpl4AFVTGDCkExu37+WzWWsxpAzJmZCs6ZSIYRfWhF5YlaIfvPpkOqQncdaoATjtkc9xnN3GpAEtv/Dyaiv5/ZyP2euuxWfomEjcRoDvCndQW2snEAj/vVWh0De5PavK88hOsXPaoE6M6JLBDUeNYPmlfyTZHhf1PBJI0KKvcwgb9218gqUVq9lVv4dpe7/nr2vuo9JfHbGtLYqsgqCrTcCSim/548q/8HXRty1ec3Ou7jUhIjFARLVbhOM2/Dy95btQIkV2QgJPnngKcTYbCXY7CXa71QhXtWLxFFOg6AIlIFBM6wydUhonQpeMHxbhvleEoE/7DHpmt9Ky6/ZxzY1v8OHnK8jLL2fTlr088tS3vP/5CqZedTQOV+P353Da6NApnWNP+eVaoLRFWXPESbgr/zgZhyPywVDtKsedOIixR/eiqLSasqqgn1UJRv2rlgWm0uNBt4FpA0MDnArnTBqMLWjBefj8kxjXszN2TSXeYcdp07j+2DEcP6BXi2PKq61kdVlRWAZQA4ZhuT0cQcVIDRYzSkrw8tCm97lm2X/4KP8HNtdvZVnVcv697R1GpPWM2qVWEwrX9TyZZFs8mmh8iAWSTGc1HtONLhtnjn7Tz/v577CrdiOmDB9bmi3cKtEUgUSXOjvrtvDizsda3K45T424nHM6jSRBc2BXNCZk9+aSbqOwKxrxmo2Wunz7pJsbl79GmddSmNJdcXx9zhW8f/qFPDbxJL47/3dMO/dy2sVHUU4UhQGZ2fRMs4RGflU1+d6acOVVQEZ6PN0zW9eht6bWw7ufLQsL1NR1k5o6L8s37uG/71/PaeeNpO/Ajhx/6lCeefMaBg1r2Ur3c2AiWvyLcfB065VNnwE52OyR/n+ny8Y9j1+EqqnMXrwVn19v8MkS8puoUOZ2YzrBtIN0CJIzXRwzyOp/lJEUz3PXnEVGYhxxdhtOm0an9GReueF8HPtxWb+1daXVnb4FfB47dmHtrwkVQ5psqMrn6sWvctPyd5lVsp617u28XjCbT/Ys5+xOo3E0UzQUBH0SO3BtjwuxK5EWoUq9hkATOaNLnXrdzWu736LcVxL+PcZ32a96EZABfKaPzwq/ZHH5sha3CztmQgavjbuaYamd0YRKqj2O3/U4mh6JWcSp9hYsO5Y0WF6+k7vXfBJaekLPniy75g/858RTeOqkU1h13fXccfQEVC1yzC5N40/jGtsofLtjO2aCNbdqkDWmjYgO1/tj2sz1VFa5w6wuXm+Az6at4pQLR/OPxy9i1ITe9B/Wmd/ddDxPvHkN9ijvv5+TtiZrjjh30riJfbn1njP539Oz2FdcTVy8g6Gju3PZNRPp3tNyDSjNq5A3+W5DVt/gJn7D4OkvF/DObVZNrXiHnRcuP4t9NXWU1dbTNTONuCgzpqbsdddiV9QoLQGCaU3A2OwuZLsS+b5kLVKrQ9UMDGkggimVAF7TT5GnnJnFK7l/8CX8c907oWvRpcFf+pxJn6SOvDzyZt7Nm82s4qV4zTpS7PW4tADRlISA6eeV3f9HvKpxcdfb6RpvFcU7r9MZ/HfXG822ljgUPWShMTAo9hRQ5Mmng+vAfmuXaue2/qdxW//Twpb/vtcElpfnUuv38vSWOVT63TTMV+2qjiKsGKGvClZyVc9jrW9OCAZntmNwZmNg4+KrruXVNat4bsUS3AEr4PnoTp15/PiTQ9u8s2INhpSYTholi4ASj5tNxfsY0D66+6gp23btw2bT8Dcz5/r9OktX53L5+WO5/taTWtj750fKtmfi/TVw/1OX8OLj3/L912sJBHSyO6Rw4hlHceaFo4hPsNIbhRBh8VkND48JwQ7yAlQwkFTVe5m9fgcnDrNctSN6dOS7e65lR3E5NlWha1bqAVONc+sqoxaVa0BB4aKuY9hRV8zSsp2AxGM0xLU0jE3iNQI8u3U2X0++ibWVuSwq2xIKxk22xfGvQRfTzpVKki2BTwqms7F6CyYmjYEi4eM0MFlVuY4y3yJ6JAzgsi63YleddIrrSLo9jTL//lsA+Ew/XxZ+zdj0/Vu8G+if0oE3jg4vmHljvymsq8yn0FPFhsoC3tm9NFQ7vAG/aTB/3zYqfPWkOayCo3E2G8d17x7a5qphwzmjT1/u+GYmC3P3oAqBpircfPQ4Tu5jZaQZpslrK1fhVU2rDWlDNQhF8urKVVw8fEirrmP5yt2WEtwMm01ly/Zixo/vxYjxLU+gf27aoqw54pQYgB592zNqUh9yd5UyYHAnzjpvJGnpjT7I9plJtEtPZE9RJU2zwSRgOCKPl1sSGWeTlZRAVlLLpbKb0jclMyxaPuyMwfP3ScnixC7dWFa3DLfRss7qN3Vml6zhsm5T+HLiP1hStoV63U2nOCc5cZYvN9mewPW9zqDIN49SnzX2lnL3JWBID/WG5I3d93N7v5dxqvFMzBzHorLFrK/ZRkihEAYJangTOUWoVAcqQ0qMz3DjNd0kamkoQqEuUMOc0ulsrVlPoi2ZRC2dUl8Z2c52HJt1AtnO9mQ4Ezk5x0pf1lTJYxu/xmfqKEKGFCa/qZPv3r+gE0Jw9bCj+N3Q4RTV1ZJgs5PsDK8Dsau8sjEguomsVYWgoLqmVUpMemo8epRATSEE2W20w2xbS3v8NeBw2hgxticVJTWYpsnxZwzjmOMHoDRpnnrCMf34eMZq/P7I4FC9WYkSty/AtqKykBIDoCiC3h1a11MJYGxWl5DbOhqmlFzeYzwPbvgCA6uPUfPU4wY0obCsbDcPDLmU3XUlbKrJR0Gnc3wyyTZr8P2SenFx57O4f9O/8Zq+hrZiURHCQJcBdtZt5LPC/3FB5z8BcHf/v/HXtX9Hly1bkACqAo3uKCkldXoFNsWOU7UssDvrtjK75GsqAxV0cHbCb/rwGG4Gp4xgdPox2BUHQ9I6M4TOnJIzmLklmylwVwXH1vRMknJfXUiJiUZ6XBwvn3sWbn+ASo+HrIT4sDADT0BvbA0RtLw1UFLX+myr7KwklCh1q0xTkp7WNhvOtjVZc8QpMRvW7uHOW94jENAxDMnmjYV89dlKnvvf7+jQMY1tuft47NXvyC+qBAmaavmkbTYNr9TD6sM0kJPesmulAb9h8O8V83l36zrcAT9HZedw39jj6JeeRZzNzsh2OSwo2tNkj2BlWdXKsDk2pysLyzYhMaDlxGrAsmgAxKl23MZW5pRORxMahjToFNeNa3vcQryWEJaJoGBihqLQGsdgEwZqsF2CbvpZVfE94zKtoll39ruVr4u+YdrebwmYVcRpkUJGlzodXV3wGW6+KHyWrbVLESg41TgmZ13BJ4Uf4DWCbixPUFOXgq21m1hUPo8/9riFvkmNmU4DUzqBMFAj4mUke70tdlsPQwhBTmJ0ZWJk544syc2PSJ0MmAb922Ud8NimKSmuqkW3CwwTlECTBAUpWbRgO+etfJ4zTxvGRee33Org50QiMNrY7OjXwOP//IwF323E67EsGRtW5TFv5kbu/vcFALw/YxWvf7UMj2IiHALNBJtQMUyTQKqVjdeUOIeNrlmpBzzvtooy/rnge5bvLcCl2biw32BuG300DlVjbPvOKOsEtGCM6ZKYSoG3kGLfXhRhNqmu2jTVxkIIcAX7IKXaHSwun85eb3Gwoq7OuTlncUqHE4MWGBHax1KKwo8nkCRpVnC9LgOsrpzPOTnXYVNtpDvS+c/QR/jvztfYWLOxRdnXM8GyhhS4N/B14ePU6eVIJJ1cA8mOO4YvCz8iIK1JVr57d2i/XfVbmV86i1v7/AuH2ijgR2Z0ozB/VcR1B0wdn6wDDjyhibPbolri4+020uJc7IuisPTLyjzgcQFq6jyo8TYCanC+1aS6h8+n89e/vEO3bllcc+2xDB58cBlcPxVtUda0rdG0gice+RqvN4BhlZglEDCor/PxvxdmU1xWw/X/ep8N2/eGskeEFHTMSuHJ28/hmovG42zmT3TaNG44reV0wQZunDONNzatptbvw5CSZcUFnDvtPQpqq7l6wTusrclDtemEfBgCFM2yNAxvl8TfN7zMlwWL0KUPTQm1R4zIcnEqds7qaBUkXVm5mLml36LLAF7TQ0D6yavfwRu5zwEwKm0cmmjommoJEus2s/5vEwYpWmMhOBODxWXvEDAbUqsFp+WcwosjnubJYc+SpKWgNplS2BUHEzKPJ9GWzEf5j7G1dhmG1NGlD49ezucFT+PTa8LicIQATUhMDPymnzfz/hdW66B3UvtgwG/TC5cIIdlRl4uxH39/a5g6dCAJDjtak2Bqp6ZxYt9eYUF50fD6Avzu/ne5/dmvcAsD3SXwJwpMBZAS4Tfxuv2Uldfx9vuLeeixaaF9qyrqeO5fn3PJ0Q9y9fGP8umr8zCiZH38FFiKo9LiX4yDZ8eWvcyf1ajAAHg9AVYu2s6mNXt4c9pyXvx4IVW11vMlBUi7wqlTBvLhM1eTkp0Y6pwOVsBnnMPO8UN67/e8xXW1nPPZuywpyseQkrqAn7c3ruGGmV+xrXofl/zwBqbqg5BrpxGHqpCeXsS/Nr5CnbmXzPh6EuzeiO2aMj7TKrT2xLZnyXcX4Df9eAwPfjPAp4VfsL5qI93iO4fqOEGDnGn4txlUYNzEa41WXBOD1RWvhj6n2FO4vd/NvDHqZa7v/vuwWBuBwKE4mNrpHKr9JXyU9w+qA8UY0o8p/eypX8M3Ra+iy8b05qb4TT9lvn0sKpsTtvzorC7BF1zT8UqSHV5ml7Qu/qYlhBD8/diJOLVwO4BT07h94oHT41dvKuDsG17m0+/WYtoFhkvBcApLNzUkwq3jcQfYtLGQO/72PuvWNk6Q1y7ezm1Tn+Wikf/kzkteYPOq3EO6loOhLcqaI8oSU1/vo6igMmK5lJKVy3fz0berI+IYdMOkpKyWtKQ4fnf8KGyqxiszl1Hj8ZKdksjNZx7DxEE9KK6t4+tNW6nz+ZjYoxtDOjQ2J8uvrWZ2/s6IdgJ+Q+fB5XNYX7sXn6mj2kDRdExDIKTCURkdmdApk8+L5uNvqO0iQEhQFZOAqeJQDAQCp2rDkCbHtxvO8e2GAzB733T8ZviDa2CwvXYTdXotJ7Y7jfXVayj1leAzvbhUGwoqmXYPNbobLUrDSiHdbK2Zw8CUk8OWJ9qSuL3fQ8wo/pwN1asQ+EnTavD4pjG/uJLc+vUY0o9N6GiheBaDeNWHz9Qo1+MJn5lZoqMmUE2NXk2yLSW0LsFuYvoDBEyrzrrLFsCuGoBCwDRQ99OS4EAku5x8dvUlPPXDIuZs30Wc3c4lRw3hilEHzkx64+tl7Cgos+4h0XgVukvgKDfDNH6fT2fB4h0U7a0iNcnFjWc/Q2VpTaiuyJtPzmTzmj3c9fSlP/paDgbZxky8Rzqrl+zEiFIjxusNsHzRdt5ctwVvs1gG3TDZsKuYdulJvHnTBTzw0ffM32SVXBjbuzP/uGAKDpvKktx8lubmkxrn4rQBfUiLb8wCem39qgg54zV05hfk4VlRh1v3IwXYnBLTBCOgYBMq1/Ybw3r/fEq8NaFXthAQbw8QMDR8ug2J1e6joU7KMyMvxqXZKfaWUOgpDFpcGvGZfr4tnsWglAHc1Os6/r31WUwpCRDAqdjp4UrCbWwlgKB5AqZd6Gyrfp9h6ZdhUxqvTwjBuMwxJNuT+aJwGiW+YpJVH52dxawtexCp5GBKazIYUpaESYbdqo1SFkjAHcWcHpB+1lYt59jsRrkWZ9PolOSj1C3wGRo21SDJ7sOumZT7qiKOcbCc1q8PiQ47Ty1YTH51NX0zM7llwniGddh/NV3dMPn7E1/gaSiaGXzPSBWENNF8zX4Hn87LL8/lmWcvZ+n3G/m/P70ZKri5pmw7m1flct9r1zB4zM/TpLatyZojSomx2VQURRCtrlR8vIPtefuiVug1TZM9RZV0bp/G5ccdxWWTh6MbZigjaeaW7fz1y2/RpYlfGjy3dCn9MjJ466LzSXI62VVdEQzcDT9xwDRZW7oXd5MZiBCgahJVmEzu1IP5FQvDqutaG4GKYHhqD6a0H0qWM5GagJuBKV3p4GpMzavXoxc1UoSKR68n09mOO/v9i/XVa9hdt4M0RzojU8fy+s4/4DcD6LJpoQeJXegI4WNX7cIIJQYgyZbMeR0vxyFXU+rdioIXnwGbqopxChs2xcAnbWHHVJDEqT5MCZVGYwxRY70oGTbryqvfQ4c4D+lOq9CX31Rx69YxFWFyz8bnuG/gDS32aGkN2YkJPHTaCQe93/SFmyOUYIRAqhKhEGHC1zSFXbmlVO0qo6aqPqwwms8bYNmczeTv3EenHgd2Yx0abc/Ee6STkORCsynozaxpdruG3WWPvE+C5O61YtQykxN46vdnhmoWNVTLvfa9z1meV4BH1xHA/838gVsmj+eacVYp+/VlJVGzj+yqwrqyvcgm+r2igOIwsQk4vmsn5m+ojbC5CAE5CTYGJg7l5JzBVPs9OFWNsZk9caqWFbcuUBe0wEa2JagOllgYmNyXp4Y9xMKyZdQEaumf1Icsu59vCm9nqzshmJliKf0CSQd7FVJKKrzbyI4bGnHcAcn9yHG6+GLP7zGlB5CUeouoNXZgNmk30jzOOcNWx15TJSCjuHi0JvJHSvLri5DCS3pQh2pap2p11TZmFi/mhHZjI45zMEzs3o2J3bsd1D6bdxaHtTwJIQSGQ8HmiVyXu9tq1P7f+z+PqBju8wZ46YEveHbarQc1jh9H25M1bV6JkVIy9+t1vP/yXCrL60hOiaOq1hP2wnA4NM48bwTlQmf5hj0RxwjoJtNWbGbG5h30ycnkjNH9SXQ5KKisJmCY3PbVt7iNgBWcFcwW2lhWyvGvvMbMq6+iW3Jq1EA6m6LQNTmFem91kwyA4JgUjUxHAh7DD0hsihkq7+83rdnQ3YOmtti8EaBf0hAWl83FbNZAzCbspDusF6MqVIamHMXQlKNC63snjaO+Yhq61PEFeys4FR27sGY4Ze45fL5zNHG29vRL/QOdEk/ClDo+o5wKXz4V3lXY8IcEiKp4sCteKvREGoSAgoHWpP5/is2DFILKQHxIWKio9EsciEu1pEiFv5IHNj2KX3pDx7YrBopNUq87kEh21ObzYf4MLutq9SGqDXhYWbEbl2rjqLTuYWbtn5OwCAApEYbEX+enML+Cnct24vNEvgAM3WT7hoKfXImRtL1guyORmio3bz/7HQtmbkBRFfRA5MtECMEJpw/lpcVrCURxF/r8Ok+8PQefX+fYEb0YPagLXl1nb0UVS3LzWZaXjze4n+VOlvz7+wVUe7z89bhjGJiRxfK9BRH9fPyGSbbLSbE/0qWiiGBEXPOszCBdE9K5f+g5LV535/hOUQto2oTG8NTGLJtkWxKntG9sSmuYPuzCoKezhHI9AbdpxyF0Mmx1OBSrNvDMwj+iCQft40ZyVMaNJNo74jfq0aWbpaXPIaXbUn+CsTZJaj2VhgtjP6+mdo5qin0pBJr0jbErdiZkNk5cPiv8no8LvgOaKEKyIRpRYEiDF3Z8zLCUvmQ6rTil7bXF5NWV0SMxi24JP90ze1BPatAVb9NUdmwvZu+e6MkPuVv2HvrAWjMc2p6safNKzIevzOPdF+Y0ap9VHkh0YHNq2G0a/oDOhMn9Oe/CMSxdn8dbXy2PqBZt2GDGph2YUuK0aTw3czHONDtVHi+6aVqVH11E3F2VHi+vrVjFX44ex8SO3ZhXkIu3SRaSXVG5e9RkLpn/esS4VUXhxI792OXZxtzSeShB144EXARwiiQyHfuP0Ti53dmsrVoeCpwVCDRh48LOv2tRYAGMy7yYbTWL8Jr7cEg9bDYjkCSqHkwkdYE8VpX+i+L6uZR6F2LKAIYMEKcQVH4ag/lUKZFNvlVNmBGzpBTNTb1uJ0AKdiHp4OzIVd2uC63/rmROWPxMw7E1zFAQol8G+K5kKad2mMTbu+fxYd5SbMGaOIpQ+F33yYzJ7EWPxEghs7Oqgv+uW8bmilIGZ7TjusEj6RzszuvTdWp9PlJdrmBn2UhOGd+Pt75ZET7LllZcVShG05QofjM45zR46/X52Or80Q6HYZjU1UZvU3BYkWC0McFypOH3BbjpgucpK65GD/7+ml1DVZXG7uQC/v7oVDIyk+jSPo0tuSURxzGl5MNZq5ESvl28mZTeSeTqtSiKwOMPtBid8vrSVVw6cihXDhrOO5vWETAb7ymHqjIupxMn9u3K/62dFTZhcigaZ3cdzIDkrhHPFlg1XyZk7D/d167YubjLVN7J+wB/8Lw2YSPJlsiJ7aa0uJ+qOBiXdQcLSu6nnb15UcxGW6wuPeTXz6fYvYp010CK3autnmXBIN0GOdLw/zjFT60ZvVywCPqpM+01FPlScSpx6FLnpHZn0ydpIACmNPlwz0x8pj/qvqGRScmCstX0TOjO/22cRl5dGapQ0KVBn6T2XNVjAsNSu5Foc4VfmZRM372NdzevwWcYnN2zP+f3GYQ9mL1U4/UihCDRESUVFujXsx12TcUdZZ0irQKapiHDAiZratz8+YY3UFQFM4oVR0oZ6qH1k9IGZU2bVmK8Hj/vvTgn3HwmJUqdj5Eju3PaJWPo2i2TzCwrU8XlsuGIs+F1NwoLww7+REI3hEfXCbiAmvAbXHODnkCzmjKSmdt38Jejx/Hs5NN5ZNk83t+6DrceYHhWB+4bN4X+adm8fsyl3LjkY6r8VpBfmsPJlE6ZXLbkX7gNL6BgE0aoFpaUkBPvOOANl2xP5e/9Hmbuvhlsq91IuiOLcWkjqfDO5ovcfxOnZTMw7XLax40M2y9OS+aK7o/z0e6LqDJESPmwoZOp1aKKxmwDQ3oocodXy7QHh+VrZrK1Cz9e6UBpQRQLoIPTzbC0y+mVOJSOcZ3D1he4C6IKWgC1SUWH2oCbqQvup8Zv3Z5+Gvd5atvXPLXVQf+kDjw96lKSggJm9b4iLpr+IX5Dx5CSTeX7+GzHRt4/9UK+Wr+F99auQ0pJnN3G7RMncN6ggRFjuOLUUSzekEduUbnlrw4WsercLoXzLxzC9C/XkL+9NGwfjyeAT4SMeBGU7q2Ker2HE2tG37YEy5HGD9+sp6qsLqTAAOh+HbtT4+q/HE/Hrhn0H9oZW7AQXVZaQlQlBhrfPVVOnRJ3ZUT/pGioisLS3ALOHNyPj8+6iH/O/44VxYW4NBtT+w7kjjETcKgaRe5qXtu2FJui4jd1jmnfAa+ygwsWzcaUgZBDp+FulBCyNOyPyVkTyXF14Nu9s6gKVDE0ZTD9E+L4Ye/tuPUKOsaPYnDapcRp4eng3ZKmUKcXsar8RZoHEIuwzxKfdLPXvcJ60sPL6oRhZ/8B8Q0Tn+4uyfEdbqBbfK8wV5LX8OM1owcBN8WUJq/vmk2J53uaG93WVeVzx+p3satwfa+TuKBLY7Du3+fP5Iudm3EHu4JvLN/HFzs389C4E7j9mxlsKrGyLAe1y+axU06mS2pK2LFVReHBW87gr498imnKUJ0YxaYwaUJfOthcfPXpyrD3npTg9xso8Q7Uak+4rAkqL/sKK8nu2LqCnj+Wtihr2rQSU1xQiYgyazZNyZ5txYwcHV6eu3+3dghFQTaptuhPJGirtD4bUUItpLCsNZg05msFD5Hmsl6SDlXjn2Mn88+xkyM03iFpOcw9+UZ21pYhpeT5ne+zqGJNYzAvAtPQcKqWVUQI2OMuxG8GorYQaEqiLZnj253AuIxhqNj4tuD36KYHiUFNYA+lResZlXkrPZNPD9uvxD2HDFs9qZoXU1riRBUy1IaogWjyVQhLkDS1xgDEK368hp39ZTsITMZnnoBdiQy+6x7fjQ3VmyOaykGjdi8Q+EyJR4doaaFWsaUAG6oLuXft5zwx4iIA7l44C4/eeFxdmui6yTUzPsdd6g+lXPs8Bv/6bjapLhfH9Qy/f5wOG6/efRGvfLmEV79cGio7n1dcxTOfLeTe35/II3d9jtHs+k1FQHo8Wnl4uqVqU0lMjl66/fAiMMy2JViONDavzsPribSoCQTClAwZ2T1s+fFj+rB84x48viYvGgFSsQL3McGXSpgCI5FW24zgNqJJh3ZVKCS7rJl7v/RMPjrroqgz61sGTubaPuPZU1eBgYd7Nj6Pr8mETAmexwwpMZIfSldzdOaBi6/1TuhJdlcHAoW82nks3vckurQsiVuqithV+x1nd3kTlxb+otxR/QVKM4dU87uxwQ7dvPhcNFpjTBACuif0Y2ByZMC+S3WQoMVRHYjeYLMBQ5pU+fwEzHA514DPNJHC5MXtM+iTlMPQ1G7sqCrnsx2bwizyHj3AhrISzvngHTz1euh7WLO3mAvefZ8frvs9jmZZTMP6d+Sz567hmnveo7CkmoA0MTCZvXw76SnxXHzpON56fX5EA1IzOQ7F40c0b4IsBK746Jafw0vbkzVtK0KnGemZiWEzo6a07xSpcTrsGndfcwJOu2Y1ctQgNJ1uUr216f1qaKDHg7SL5iVWcNk0rhwxPOI80SwoQgh6JmWiCw876gqbKDDWGBrSqZUWHmIpTbbXLuGL/Af5suBhdtetJGB4mVN0Dx/sOofp+TfwWd7leA1PWAsBQ3pZUfZUMKK/kbpALkZQAClChmrF0OTyncKPIloWKo1XaX15UghSVDc2oltTAAannBFVgQGYnD0Ju2IPK0MuJZhSw0TBqTqQCLxGeBBeJJKAaTCvZCtu3Y9hmmwsj15jpthTi1vXrWaRivWices6Ty9cRL3fH9HqXlEE3yzcHNE3x+fXeeHjBS1et7Q3mw8IgaoqTDptaIv7HC6kBNNUWvyLcWDad0nH7oic0ymqIDsn0pIxeWRvBvZsj8thZf3oDtBdVjFN3Wn9NQ3ClUjMYLsTVJCa1QNMKg2ZfgrjuncJO0dLltoEm4P+qe2ZXjyPQLOkAav7gcQuAiFLSPOy/x69ilXlb/FNwR0s2fcitYES9nk28+6uC/kk9xo+yv0dS8r+GyrFAGCi4zfq2FD5fsR43Pq+4HkixKv1HWKSrtS1aMFtipSSgGxe7yoagknZ10VfIwSXdz0dR5SWCQKBgkATGgHTidEKM5nPDPDxnsUALN2bH3Ubtx7ALfWwKzSlxO338/WWrZGdsoHCfdUUV9cREJKGbry6YbU32ZFfFvX3V1QFNSFcvqqawsBRPUhK/emL47VFWdOmLTGJKXEcfcIAFs7aGNZN1uG0ceG1kwCoq/fh8wVIS41HCMFxo3rTs1MG789cxYcrNiCav6T0YOuBoG5jOmnyvDTeNJoiuGbkCKY0m60fiN11RS2sEQghSbT5CJgKPeMHhawwUkqmFT7GjtolBIKKx87apbR3JODTCzHwh/zH1tBFmKlWSoPaQCHJ9kYhmOLohypcGLKxTkxoe8AlfCQqXmrMOAJRRY9AFS4SRQ2JSi0CSQCNMiOdRFsqnRNOZHXl5xgyEDyiQteEkUxud32L302SLZF/DbyLd/I+YGPNJuyKg/EZY0jSsinxVtA7sQsPbXofMNEUE73hh2pGKLBMgMfw41JtODVbmCUmdBU+QUQNQAGb80sZ+ejzdEhO4p6TJ3NMz66h36JgX1XU8ReU1jBuYEfWr88Pq7Bpt6uMGNqFDTM2IhSrN5ZhmNz68FSy9tOw9HDS1oLtjjSOP2s4778wJ0zOKKogKSWeoWN7Wpk2FfW4XDbi4hxoqsJTt53DgtW7eHn6ErYWl4V3slYkSsBSVCBokYnybjZt0E6L438XnxOKqWgtO+ryowbkCiDJ7kVTTOoDSUzJbnQ31wb28mnedQRMD4b0U1C/go2Vn4EgZHVpQEdBk42xbyY6hfXLGJn5x7DtkuydqfLvbGGUkp62UgQm5WZk7zOCmUh2oZCmlOMUPiRQbSaRF8iiY/wY6vQyyn156NIPCBQUTs+5m2R7y8XqTmg3Drti5928rynzVZHjyuKk9kdTFkytVkUcr+2chxC+oAuuuaxpTPGWQKXfsuqkOYMxdc10EkUKpEdGKIxuXedv38zg7zNmcWyP7jx04vGkBq37W/P2RTVqe3wBzDglqhKjaQqDB3di44Jt2B02TNOkXed0bn/q5ynlAG1P1rRpJQbg5vvOxu7QmP3VWoSAuAQnf/z7aXTunc3f/vkRq9bsAQGZ6YnccfPJDBnUiS7t0+jWPRPbGhUjEG41UAJgEwpCE3j3Uwb76K5duHH8gYvgNaeDK6OFGZSVoSQE2BST/smNPYEKPZvCFBiAgPRQHyiNYloVGCgoTZ4iEwOnmhK2VU78CWypeB6v4UcGtxVoOLV0AqZOoshFERCveKky42nquhFYVTIVJY467wIa6gvb0cmxVTEo62mSXUfRP+UUtlbPRpd+eiSOo73rwI3Psp1Z3NLnzy2u/7xgKeuqd6IFs7mM4KysQRe1TJkieKwk0uyW8npx38G8s3mtZeYNWt2EBMUvIhQYpNWUz/BK8iur+dNHX/HOFVMZ2CEbIQRpSXFU1ESG3aUlx3H7nadx45/fwl3vw+830DQFm6Kwau427AkOfG4/w0f34M5HpxKXEN0i9VNgtjET75FGSloCj7xxDY/f+REFuWUA9B/WmdsemcryFbt54slvqKnxIqVk7Jie3HbrKcTHO5h4VE/+/dkP4QoMgBDYa0DPUjCkiWwhaMpl03j8vFPo2651VV6b0smVzV5PacR7UAKaYqIISLTX0SuhsW7Jkn0v4DVqaHh7mgQwCUALLybZbMIUb4sMqB+e8Sd+2HsHRpNidAo2Uh290QNrQlXD05R6Ksw4ZMgBINEwGZ02lZK6NzCDbmYBpKr1tHMEGJnzTySSXXXLyHevJ1HLoH/yZOK0lAN+P5OyRjApa0TUdcWeKl7eYRXHUxUz2A+oQQZa16sFrWQOxcax2VYM3bGdeqA1DXEwQPEKlMD+rRC6aTJn5y4uff8jpl15mVV1PCsFpXmBHcBh0+jdqz2j/9yRZ5+Z1djLzpDYhWBzbgWiXSqmaXL1jcdz6tTRP31AbxPamqxp87Zmu8PGzfedw8eL7+b1GX/l3bm3c8yJA7n1rg9ZsTqPgG4QCBgUFVfxt39+zN7iKgDqvX4CUWrGKAKuGT2Ca44ZSXZSfESRpgbibD+uTsnglB5kOVJRw75aS6uP0xqj8ZdWNFaM3FW3IkyBAVplegVQhJ2cuHE41PBMJ1VxMiHnHXISTkYT8diUJLolTeW4Tp9xQqePUIOVfm3CJEWpx46OwERDJ1OpRQksotY7G0l4nICUPvZUPwNAqr0jYzIv5+is37dKgWkNf+p9Fi7VjiYUXLYALpuBTZGoQgVpw5AKKgpO1cY9g88KPby3j5zAlM49cKgqmgjWmWjpKxThsQq+gM6LC5aGPv/ujNE4m7mHnHaN3581huzsZN5593r++KfjOf3MYQzq1Q69vB7dr+Ou96NLWLt6D998tuqwfB+tQSKQsuW/GK2jZ/8OvPDFTbw99w7eX3AXj7x+DdV1Xv51/2eUldXh9+sEAgaLl+zg3vs+C+3n8UdaAAGcpsL/LjybyX164NCiW1kURRy0BaaBCzqfGCWmTuJUAyG5piJYXrk8tDbfvZzoD0a0ZeGhuapwMij14oitcuLHMqn9I6Q6eqEKJ8m2rhzT/n5O6fwKozKuQA1mUnbUKslRq3CIABoGaUo9ve1FVNU9h5RewqP1DHSjjCrvAhSh0jNxLMdmX8uI9HNapcAciHauFM7tNAanakcJTiztisCpqNgVgT044XQqNjrGpXNajqUMOTWNd06ZSvv4ROKEhlanHlCBaUA3TfKqqlhZaFnrj+rXiYyUhLDKzgA2TeG0YwZw6unDePOdP3DeeaM47bShOEyJp9qLx+PHGzCoNyQvvTCHqspoeU4/DW1R1rR5S0wDDqctlOq4ZdteCooqI+IWAobBe58t46brpjC2Xxf+O31JqNhU6Dg2jcmDetCnUxaFvlo+Wr8xytkkufWVFNbWtNijpyUUofDEsD/x+Jb3WVS+HgCbYpBi94YpTL4m0fNOJR5V2IKuGQurmLdoJkaAoE/XJhwY6HSIG8X4dv+MOhanls5RWQ8A4PYupKz6X+wueg5VyWgy37AUmWTVEzy6JE7owUDb6IqcJ9CS6fjQ6ZGQw0sj/8qHe+aytXYP3RM6cEGnY0nQEvggdymLy3aQ5Uzk2p6T6J3cOMN0qBrPHXcGK4sLuXDa+5btaX/PlAz/54KdezClRBGC86cMxR/QefWrZfj8Ok67xtVnjeHsSYPRdYPHnviGOT9swaYp6HuqIw7t8wb49J3FnHvZwVvyfhSy7Zl4j2SSm8QWvP/h0ojmjoGAwboNBezYtY+e3bM4emA3vl66OcIa0y4tiTE9OpGZGs/aD4spqYsMNHX7AyzIzWNI+/YoBzmb7pPUhbv6/54ntr5NVbAonUv1k2BrWv7fxGM0upQ14SQQNbk3EoGCJhSrtYkQjMr8M+2iFK4D6BA/hg7xY5AygLv2STy1f6K0ph5D6Y4i7JjSgxCQodWTQXgAvMdscOeEY0odd2A3qa4JrRrvwfLn3qcyJLUbn+Yvwa37mNJuMGd2HM222iI+yltIkaeCcRl9uKTbRJxNim8OzMhm4UXXcds33zCtamtEoP/+8Oo607duY0THHBRF8OLdU7n/pRks32jVN+vRKYN/XnsiKYkudu/cxz23vk9VZb3VjytKfKgpJXNnbeDsC0Yf+hfSGtqgrGmVEiOEOAl4CiuT9H9SyoejbDMVuBfrnbBWShmpsh8mSvbVhD3wEjAcAr8TPl6wnm9XbuN3547llJF9mb58C96gS8llt3H88F4M6NKOR+bM56tNW5tNQKSVYaDBpop9nPPRu8y7PDKy/EAk2eL516CrWVi6ghd3vojSrBGcQDA4ZVDoc7/kiSwofavZUQQeM4EkzR8y01pCxckpnZ5DEeBU03Bp6RwIj285ReWXI4PxMYa5F5dw4pYaMixIV4bSG5WwSOjwccXb+4Y+mdJHtXcpUgZIdo5BVQ49uKyDK4O/9DkvbFmlv461NZsp8BVS7Fe5YdUmbup9OqfljArbbp+7DpuiWsXCBEhNgt4suFGC0iwRxa/rLNyZxzE9uyKE4NJTRnLRSUdR6/aRGOcI1ZZ55fX5/DB/K4GAQcCv07R+cVPqf476ME2Qh2jibQvPeFsYQ3MKCyvDgr+lAN2p4Nfgd7e/Ra9uWVx/+UQWbNhNrcePXzewqwqaqnLv5SfgNwwueu9DKj2RsWkEL+KlpcvRDZObjxl/0OM7Kq0fb465jzvWPs4+32aaJ3PaFBuDkhtlTf+UM1hT8V6Y60eg4VATgnEy1nJNOGjnGsykdrfjM6tJtnVGjRIo25zaqpvxeb4BrPvfZmwJRjhHKXkdRBWSQBQ9QBEq8bbGXlO6Xog/sBZVbY/dNvSQXShCCCZmDWBi1oCw5dX+OpZXbMOQJrvzivmhdCOPDL2c9q7GZBJFCHIrqjCaN79rBZ9v2sRdx05EVRTSk+N58rZz8PoC6KZJQjBDze/Xue0Pb1JT3UThjBK66PfpVJbvPwvrcHOosuZwc8C3sxBCBZ4DjgcKgOVCiC+llJuabNMLuBMYL6WsFEL8pCVKe/fMDmsvYNgFptOK7pYSat0+XvhoPildktFN0zLZ2lSuPWk0V04ZgSkl76xeG9HpuMEfKu1WFEl9wM+3O7dzZp9+oS0Cps7K8jwMaXJUetdQ6W6w6g4sq1jLvNLlqEJhctZYbuh5HS/tehkTE4nEJmw4VQdTOza+pBNtmZza4W9ML/o3okkRu9M73o1TEayteIvaQCHZrsEMSbuCJHvOQX1f5dWPhBSYBlzCC7jwkogh67GhkyB0VCHxSYEpBA4EfmlDNilHrggnnVNuAqDau5Qt+66lMYHSoGf6o2TEn3pQ42sNt695jW21hVZriKDi9eTWL+gUn8mQlG6h7TolpeBrkv4oHUEho1u/rioUTK9EMcIfRENK5m7fHQrwBaueQ0pCY6ErKSVffLUKX0Pwp5UKEowUb0QIGDgsPNPkp+ZHyNIQbeEZbwtjiMbgQZ3YsXMfum7NtwPxauhlYpqSbbtKuPXxzxAZdkys9hTt0pP497Wn0ysng+lbt+E3Ws7mA6t21asrV3HDuDFhrqVidw0bK4tpF5dE/5TssJd2tb+WGSXz2Fa7m85xOfy17+94I/ctttRuCKUxOxQHR6UeRfeExvTwYemXUeHbxZ76JShCQ0qTdEcPTsh5kO01M9hWPQOEoG/SqfRPPRNVaMTTungdwyjC55kONFGQBGSqghrRHo9eDOg4BdgAHfBIsGHiAyQqhOL37Di1LiQ7xyClSWX1ndTXf4AQdsBAUzuRmfEhqnp4b4HcuhLuWf9eWKuY3XXF3LjyZT4Yf1tYkdGuKams3Vsc9ThNLd3NCRgGe6qq6ZbWmPXWvDHxsoU70CPeT5E4XTaGHNX1gNsdTg5R1hz2iUprTAyjgB1Syl3BE7wPnAlsarLNNcBzUspKACll9HzXw0T7dilMHN+b+Yu24fXpIQWmAQnUOE2qy6pCy7x+nZe+XcKJR/UhLTEuigLTZOcg9YEAu6sqQ59XlOfyl+XvYkirnJQpJQ8OO4fj2vdHSskT215hVeWmkKtoZeUGJmeN5bEh/8d3JbMp8u6lV0IPJmVNJKFJcSaAPsnj6ZZ4FPn16xBCoXPcYLTgzKclE25r8etbI5YJAfEK9Mv6Go/7E+pqHwmtixeSOilQcNAh+UYKa98gYFQSb+9L97S7SHQMxDDr2LzvakwZbpreUX4bCfbBOG2Hr3X8nvpSdtYVo8vmDeoCfJA3L0yJGZCehVPVqG/IVBIgnVY1S5dq4/KeQ3lnwVoCzWaFNlUlNS68MmdzpLQaADZFT7SjVTdYyqx0R7tD45qbD753049FSpCHlt7YFp7xtjCGCM4/bxTfzFhHfb2JHsohbpQ1ugpepwn1jZa34spanvxsHs/96Rz21dVFjc1rjiklVR4PWQkJSCm5d9UMPty1BruiYUiT7olpvDbxItKd8RR7y7h93cP4DD8BqbO+eisziudx74Cb8JpTWFi20ApAzhjLkOTw+jCq0Dgh536q/QWU+3aRbOtAutNqHDgk7UKGpF34o78rQ9+BEHZks27TqtDJtLUjKftrqkpPwzTyQy/5FKDUtJPjPBWvlFR4ZiNQyYw/jW5pdyCEoK7uXdzujwBf6NgBfQflFdeRlfkZh5PPCpYQMMPfDSaSKn8966ryGJraKGvOGzSALzZvjnqcBIed9omJbCuLbBNgmJJEx/6tWlWV9RhGFG2hiXHc4bTRb2BHhjWrYfRTciiy5qeaqLRGickBmibHFwDNHXC9gwNYiKVh3Sul/LbZNgghrgWuBejcuXPz1Y0n2LmPr9+aT2lhJUdN7Mfkc0ficIX/6Hfecgp9erbj069WkusNN6eZWvRge92QfLxgHTeecTQdk5PYUxUZz9A0HjfeZqNvhjULqQt4+dPSt3Eb4X6IO1d9wpeTcyj372NV5cawUtc+08/3+xZxUrsJXND5/BavtwG74qRH4qgDbnew2LTuGP5oPTcEUEt93VMRWVAJAlLSXyDeOYGOKZH1GCrc3xHNkSKlQWn953RKaTkDqcqfz5765dgUF90TjsGhJrS4LViuJE2o+Jo1qDMllHiqwq9ICM7s2Y/3tqwLnwkJMIXk7EED+HjpRvy+8N9RAc4a0o/mlFfXU1xRS5fsVBLiHHTvnsXOnY3vTmlX0VOdpNlsZKcn0G9QR867YjztOqRGHOun5ACzowwhxIomn1+SUr7U5PNhe8YPgcM6htbIGsMwWTJzPfO/Wo0zzs6JF42l31HdwrZJT0/gv89fySuv/T97bx0vV3m1f3/vbSPHPSfuriQhIZDgEIK7PbhXKIXSFil1oJQWSnEoUoprKE4ICQkQSELcXU5yXEe33e8fe86cmTNzkmB98vzeXv1Mw9mua697rWtd6xPmL95ESKYzIKyc9s9xx7tg2g6L1u+kurGNcd0rPeLmnkVoMVSF4qAnjPjS5qW8umU5puske7ata6njugVv8Mxh5/P01lcI29Ekj8SWDrZ0eGTzc9w95ua09FFXKDB6UmD03OtyXweq2h8ps7Xg0ND04cRC94Fbk+QGCrzntlwrpLT0boTILvwZCv8jI5IMDnHzKxynDlXNHilypcO28Je0mFWU+PrTMzg2LdKdDTWxloyydSm9KGxjPL21woSePfBrWtYBcb+iYi48YCy/+nAWEctOflc0BOO6V1Kak552l1KycbdnowdWljBqbO8MDSsk6IZKZc8icvMDHD1jNMeeMDZrhdP3iW8RifleBirfFbFXAwYBhwE9gU+EEKOklM2pCyUM56MAEyZMyHopvvhwJXdc/QS27eDYLovnrOG1R2dz79s/IyevY6SsqgpnnjqBM0+dwOk/eZxddR0OSVf6RZbjsKPOO6RfH30EP3z9350eQImrSyQSTRcYAYXSRDphdvXarNt0cHlr51L8RnNGr47EObO0eQ09g3tuz/59oiT/RnY1XJRmCIQIUJh7BfHYR2SzsAIdaa8FspPqbNmWLN1OhcTCdjv3UenAZ7UPs6L59cQ+FObV3MdxPX5Pr5zspZAAg/IqsVPK4aUE21GQCFY21/KLJc9y04hTKDQ8w3DNuMm8sbFDFhy8/jMHde/F0JIyfnv8kdzwxrsdpkp6QomhWMf9i5kWv3n8PeYt24yuqpi2w9TR/bjgfw7izjvfxrQcXFd6qcpcH3+8+zyGDO4om//PQuwtT10vpez6Au8b9ukd/56xz8ewN1vjui6/u+wxln+2gVjERAjBnJlfcc61x3DOj9OjaN26FXLLTSexcv0urvvNy8RSVHpdNT0K3A5DU6ltCTG6bzcm9+rFZ9u3E09pGCnbaftCousKBw/oQ2s8RnEgyFPrF2Y0lLWly6K6HTTGIyxvXpeVCLstvIu4Y36rDvDfBqrWE8N/KGZsLqkpJYRBMPdKWupPhk7VjkKAkA0g49CFE+PK7JwPIVSkDEOWdFfYbuTVbT8majfjShtF0SjQe3Ba73sw1K55e5NLBrOwYT2xRDrJdb2KnJBtc8eqmTTGI5zeezJCCHRV5epJE3nki4VEU74jfk3jukOmMLVvH55dsYzF1R3NGS0kJXqAqGkRMLzzXbW9muv/8RYt4Rgg8Wka1xwxialHDOPTj9cmo78+n0a/QRXc8+glqNr/VmHxXm3NngZM38tgaV+uRBWQmhvomZiWip3Am1JKS0q5BViPZ2y+Fhzb4S/XPUM8ZuEk5JZjEZOanY288ficLtf78fnT8KWUxCo2WQ1LwNCYMMgbfRzctzc9S/JRFM+gSCERukDTBOQ6EHAJiRgXzHqJS2e9QosZyUhnANiuQ6sVI0f1o4lMn1AVKkFtz2mK7xtB/yF0K3oQTe0DCBRRQHHedZTk37iHtSyibfcRbr0TN4tTUug/hGxZX0UEKQ4cnnWLVZGlrGyeiSM98T5bxrBljPeqbsPeQ6+ToObnsgHH4Fd0pATLUWnvDyORzK1ZzVVfPIabuD8l/gCju1WkPQIjyyp4+OiTAXjks4XpOxDQEotz2uPP8s5KL/V297MfM3/ZZkzL8cr1bYc5CzZw8z1vEQ0I8ipz6dGriGOOGskjD1z0v+jAANIj23X12wf8x97x/eUYFs5enXRgwBtsxKMmz937Hg3VWSK0wIhBlQwdUIGhd/BWdK8xfAYsx6Fft2KEEFwzZRK2miCaC4nUAD9geGKbrg6zd2zh4Kcf492N6wnZ2d8FRQgidtdOiiKU/7Uu7+3IL3oIf/A8vBMUqNooCkteQtX67mEtm5b6szGj72edG/BPx2PRpEOIPFQ1e5Tt4+q/0GbVYskoDhaWG6XR3MZndY/v8findz+Acn8hhqIlHZj2KFubHeXv69/h9R0dcgyT+/RG1Ts+o5qq8ItDpzKtX1/WNdSzqqGug5Cb+L21fQMn3v4kjW0RQtE4V97/KtVNbURNi6hp0xyK8tdnZvPvFZuI9QhSMLCYAUO7cckPjuTuhy76X3Rg2BdbUy+lnJDye3Rvm+yE1IHKucBjQojCPa2wL1djITBICNFPeKyqc4A3Oy3zRmKnCCFK8bypzft+3B62r6/O2mbAitvM+/eSLtc77MDB3PHTkxjSt5zcoMGoft04cFCvNK0PTVUozAlw4iRPz2TWxo1UtbXiqNJ7PzQv92kHvf5GtnQxXYeobfF59TaqW82sVSh+VWdq+WCmlk3MWiIpkUwqHvt1L8V3jtzgsfSr/JyBPbbRv/tqivN/jBAKhjYCyKZzIVHdZmKhh2iqnkBL3clE2h7AMtcRj3+JTy2mW+7/oIgOB00RQQr9U8n3H5T1GNa2vJuhCgqAEOyMZNdVaTZbeWbrK3zVNJcxxcEUBeaOa+0i2R1tYnHjFgB+Nv8dltRXIXUXEr/VrTXM27WV2rYQWxqaMr87AmwpufXND2mNxHh3wRriKc+iEnfRIhLhgm271LdEqI5EOOXU8fTutfcKse8dcg+/veM/9o7vL8fw2bvLkw5MKjRNZen8TA5ZYp/85dbTOefECZQU5ZCf5+e4A4aQGzTS3v2AoXHR0RPJS1Sa/GH+HEzFxfHLhNMicQW4qndzLNclalvEbJvrP3yXg8v6oWVJexQYfroHCzimYipGp6iFJjQOLjnA01P6X4QQfvIK/0Bp5UZKK7dRXP4eujEOAEXt1+V6trWUpsYrqameTEP9RcSiH2Gay7DMFeTlXouqlCGStkZDiADFRfdmTQ850mZb6MuMSLErLda3ftTlMaxo3sAdq5+gwGfSI+BLc2DaEXdt/rFpNgD1kQiXzHyNVsfENTxn1FJd7lv0Babj8O6G9VhZ2g0AVDthHnj7Mz5cuiG9NF9KgrUueqIKPRK3aHAsrIoAp5x9YNbWGP9xfHNb870MVPZ6RaSUthDiR8D7eOGdJ6SUq4QQvwMWSSnfTMw7RgixGi83caOUMhsJY4/wBY0M7Zd2BPP2rH560Jh+HDSm4yVxXJeX5i3nxXlLicYtjhwziCumTyKYIFTN27aNiJX+8ZaKTPQykWnPbtSx+HDbRk4dcAAzdyxJhnoDqs5BZQOZUOKV5f5k4MXct/HpJINdAD8fehU53zASI6WkLb6AqLUOv9aPfP9UQGLZmxEiiK59vSolAJESLZJSYrX9DgMFsxPR1UAk+mY6QATbWoxtLSHcege2CCKlRXHOlRSWPUJd6BVcGacs92SKA8ekVVFIKWmOLyVkbqPV3NLFiZLWD6odzWYrP1/+e8J2JJlOMtQgpps5KrOkw45wPYNyuzNrx8Ykl6D9PkZti4dWLOChaafu8fooQvDFpu1eHrzjJNBimQygWNzm0efm8ZdfncH/Or6FdsN/8h3fX44hJ9+Poiq4ne2NAP8eGun5fDpXnj+VK8+fmpx2ZUMrD7/1OQvWbqMoN8jFx0xg+oQhyfnLa7NXsEgAzUUEbdBcsBWIKwzL6c5c3yZarRgxx0YVAkPRuHPiCShCcEbP49gR2c3ippXoiootXQbm9uaKAd+clGu7bTRGZuHKMIX+afj13rhuC66zG1Xthfia0gmeDehwqGxzBY61Mvt1kBIL6VVBOttxnO3E4x8COkIYCJFHcdHfMa2VxOPz0LS+5OZcjK4P7HQOYRqj84k7zXRVzp0tBQ7wQfUCHt74clpVEmRv3tpgtuFKl9fXrMZO1SET3j2N2Razt+zZt3akZPbyjXQvzse07aSxUWOgOOm2xrQctlU1snj5NiaO7bvH7f5H8M1tTXKggue8nAN0rjx6Ay8C8+S+DlT2ya2TUr4DvNNp2m0p/y2B6xO/b4zufcvo0b+MbWt3p/Wm8QcNTrrk6wkeqYrCuYeO5dxDx2adX5aTg64onp5IGlIcmJR7tTvaSp+c4ZT782i2IlT6C7l04FSO7j4i+dGeXDqOcUUjWNW6AVUoDM8fiL6XLtVdwXFDrK05l5i9CSkdhNDwKTkERMRTt5QOhj6MypLHvpEzAyCdbbh2FYZQ0KSgvX2ZlnBg7AzX2pPgU2TIc20ij1NgDGJw2b2Y9lZaI+9Q33Y/eYFj8etDsJwWvqi+jDZzGxHXJepqQIDO7oDEoWdOR6PN9W0r+bx+NitbdtFmhXFTDJJPdQhbMjFK6oAABuZ1oykeRVOUDicmBTWREBV5ufQtLmJ9XX2niwG4nkEtzg+SGzRoCLdziARmLhghieh0SdZtqtnjNf6P4VuUPcJ/7h3fX47h6LMm884znxLv5MQIBBMOyyR47wndS/L53UXHdjk/1zBoiWdJEekOoiAhtS9AKi6mEWFjWy2H9erBgrotOK7BAYX9+fGIQxmQXwqApqjcOPQKdkdr2R7ZRaW/nN453b/WMaeiOfopa+uuwkvPOsAf6Ovri+Fs8Hgq0safcxnB/F9+Y22WePRVOvNh2uHS1eNrIaWFlGGaGi+lottX5OVeTmN0HlWhd/Bp3SjLmYGm5FIfmcvKup9guRCTLobIJy7TVZwUVPrnHpL8O+ZEmV//CSubVzCndidWJ7qAImRWYbcyXz6KUNjd1kY8S6TFdl1qwyGOGzSYxxYvxslSYq+FwcjTGNOvEsWBZP9eFSy/wIimX5G4abN2c81+4sR8w9W+p4HKfhCbSsevn7iSX571d5rr2pBIHMfl6LMnc+jJ47/T/Zw5ciQPL+zgRkgkrpryQKY+uwJCtsk9q2dhJVIvlmvzUfVqpvdIrwTwqQYHFKWLJ30T7Gi+k6i1jnbZfyFjGG4TqRSHuLWCqroz6dPt029kXKS0QCie+JsQGJ1SNNkghECR4CCRMkqo7UFiTpialt8hpQO41Lf+jZLcq9gZr6HN3ETUlbgoGMLGJ6yEcfGIvYrQObzbzzEUb9Tz1q4XmFv3HqYbpy6ei0t6eDzXiNMcD+BVH7Yfr6RPThmjCntjSzcpc54KBcHkbl7+/J7TjuOsJ18gbFodL6QEIcGv6xQZAdpMK41X5RoQzxf4W9INXUXZ11N0/l4g9z8Bqv0d/YZ158rfnMbDt72KmiDnqprKb5++KqMS8tviwtHjuH/hgpRHTXoNInPtNN5W+3+/uHMROQELB4mC4LOm1ZxrjmMApWnbrQyUUxn4djopjhtjbd3VaVIJpYqNZq9MlA95zlcs8gSKWkEg99JvtB+vNDp7dKQrW9N5qXD0Dda3vEbE2oQrIygiwOamuxhR9jAr667FcWPEpAEISrQQ1VZhIssh0ISPgFrIweVXAxC2Q/xh9a9ps1oJOza2zKXz4CpHN2kzfRnTfzJkBgAH9uzJS6tXZkT0FSEYX9mDoaVlXD1xIvctWICbEtr11UNA0Tltykg+XbEVUiMvQmDngeJKtBS/1+/TqSwv2Ifr9D3jW9qa72Ogst/1TtJ9OsUV+di2V/3h8xuMPmhQ2kc6Frd44LHZzDjzXg47/s9cce3TfLVs29faT4/8fM4Y6fFjJBLX74IvpfavEySSsNnxEkYdi09q17Gmpauu1fuOqF1L1K6jOvRvPt95NHO2jqI29BypfYsMkS0M6mA5W6mtOx7b7iJVswco2gCEyNZZNrsKLXiRilSTYzt11DT/NtH7xAIcpIzREHqExsj7uNLCSbTvFQLylBiFaoSAMMlVXM7t9zSD8o8AoNGs4+PadzATJF81i9FTBFTmtKAr7YxKSWUgjycmX+NVDCgqt048goDa4Z+rQpCjG1w31lNE7Zafxw1HHUKfkkJUIfAJhVxVp9Dv45HzT+Hlj5elt6twPS4MApwUn8rv07jkzOz8n86or2pk3mtfsOrTdZmlk98Fvh0n5v+XyC8M4tMVXNPGjsbp3b+Uyj7p/KaNG2u4/vpnOfqYP3HcjLv5011v0daWXX23K1w78SD8mpa4HRJ0CWrilwVOYpAA3gc+5ljcvuKtb3SOadt1TVrNKqJ2DVsabmHR9lEs2jG2k66LpCjRPDINMkqk9ddEWv+ClJmRhb3BFzgBRPb0zL5ASpPdofcJm+uTDpcro9huK2vqrwMEdsrnTBcuPfRGitQQ+UqMoXljOL//0wQ1T/rg/ep3abGaMaWJIrLVeoGhOuQacRThxYoU4fLDQcdyVKWnvXNU/wH0KyzClyJQGNA0DundhxHlnnN5bP+BnDNsJHmWRk6bQnG1Rn5MZ/zAHlx4+AG8NHeZ5+B4J4liSRQTbH9HwxkhBH6fxtQD09Nn2a+TZPUXG5k/cxF1VY1f5xLvO/YzW7NfRWKklNx6/gNsX1ed5MZYcZu7r/0nlX1K6T+iB88//zlPPTUPx07476pg/YZqfnrTi/QeWMqpp4znw6UbqW8OcdCIvlw4fQKlBdnzuacNH8Gr61YTtS3vSrRLPqTLPiShdMoluNLlq4ZtDCvYcyi3Ib6b2vg2SozulPs72PQt8Y0sqLmJkL0TKR0UbHKVCJqQIN20Y1CQ2QquADDNZTTUHk9Zt09RlH3XJxFCIVB0P5HGi0A6pCltkl11UgiBKj3j6qLiqn3AXZOxoJQmQQXiTqDT+qDjoKsOmlDI1zuqeta3rfT4RIlt5WgmptV+Y9q3620kaNiAjSZUHpt0DQGtY/R89uDRdM/N48HlC9gVbmNSt578ePTB9MorYNnu3Vz00qs40iVuOxg5Kr0LCrl20mQOH9Ify3ZZsHabR7aTEmHjOTAJOAEFw4Qcn8E1FxzKIXsxLFJKHrnxGf798IfohoaUkqKKAu764FeU9y7d47pfB+K/kZivhU0rd3D3j58iHu0YRa9fuo1fnfsA98+6icbGMH/440yWLeuoCHUcm/ffX8kHH6xkxvFjKOhfyEeLNhDw6ZxxxBiOO2hY1oiopigc0a8/b29cn+Dc0fUooYtZ20INxBwrTSG8M1zpUBtdhuVGqQiMwUjRX1rR+DxLGp7wzkNGKVSiVGqhBI+jY4+ZVNZUSKLhh3HdWnIL/9TlUtmgGVPw+U8gHnsLZJRUg2GgEMsyYBF4qW0LiRAajeYWJJlpOctpRJJJaFYE5KlxwKTCV5kUDwVY2rwYO+GMqULiU2zibidbA+iqQ4HqFSMMz+/PBf0P6zgnReGlM8/miSWLmbl2LZqqct7IUZwzajRSSn7/8RxeXLEC23XRDAVXE5wxbgRnjR3FsF7lfLVhJ/FESxxciRGSaXZUGgLNgaEDunHbdcenVeBmQ11VI7886c807G5GUQS26TD9omlcc9d532mX6/3N1uxXTszmVVXs2lqf2djRtJn5xBz6HjKEfz3zabL8WgCKk2D6a4IN1Y388bnZyedwe20z73yxhhd/cwEl+ZmOzLhulUzo3p0F1Tuw2glfjgJq5zw5CEWiaunTNaFS7Oua8Ga7Fq/suJuNoa9QhYYjbXoGh3Bu71tQheTjXVdgpZQvO0CrG6BIiWALBU26ScfFlgK9C0dGRSJlnEj4BXLzrunyeFIh7e1gb0LVBpBb/glW5BVcpwrp1GHHP0EhioHE7BTsVQGEQJEqpvBj+I+hzcqmoSPwK+UItw1FtguhpxpLlcpgOs/JrwQRqaMpxUHDwU4xUAJByNIReGTH/+lzDOX+TMdtavd+TO2eXg3hSskPZ/6bkJmiB2PbbG9ppsmO0RKOce5fnqO5KeL5sW7il35aBMqCzPzrFeh6puF0bIeFc9exc0sdvQeWE6pu5J3HP8KKW1gJfZF41OTXp9/NQwszFLe/GaSA/cyw7O+Y+dgcrHh6RMGxXaq21LJxxQ5+d/e77NrVlHVdV8LLi1cjVyjJUfSGHXUsWV/FLRcfnXWdnx54MB9v20JYxhMPlEDGFfC56SklQNMzIx2GoqHvoXy6Mb6eD6t+iu3GEQhcbCaW/oQhhaewseUDljT8I60ysNn1Iex8uumtpI7aJAKLrlq/AjJKPPIKwfxf7tOASUobrCUg4wQL/oAveDZm7F2kjGFbK3CtFagCDCkxUyyNAAKoCEAXAtc4HBHb2sVevM5o2SK3AKrw0S3niLRpATV9cFXsi9AYDxJ3teT7bghJTKr4FB1d0fjp4HMzth3QdX544GR+eODktOkLduzgpZUrkjpk7QTglzav4oZjp/LmZ6u4/bmPks+PHpGd60kwfBrnHj+eq846hGxoqm3hs39/hRW3OHD6WO687GF2b6lLI6u//695DJnQnyPP3reI8V6xH9qa/cqJaaprRVUzM1yuK6nd2cRnz37e0bcmAQEotsTVwMpT0p4C23EJReL8871F/PSsQzO2K4TgHyeexo2z3+PNrau9V0gKsBSvNBfP2x5SWEotVRm0NE1ROazb0M6bTWJu7QtsDH2FLU3shJLljsha3t39GGPy++DKzqXNXgjRlBqKlKjC9B5sASYKPlwUmS6Bo0Mi9BvF7oL9nwop48jmayH+WYK0Z4FvKkbhvYm+JF70IFIzAmQYQ6a2gvT+30k4UwGtN8Hcc6hrvTfLtdXpU/wb6mt/TUBYhFNSKKrwYyj5jCn9ado6wwvGpb3EIdtAUSR6QiVVAJqiUZhThF8tYlLJME7rmXlfu8L6unpaY5kjuaht8/KKlaxcuYvGUARH8cZ1olOVQDtipsW67bWMHJAuYNjcEOKGsx+gqT6EGbcwDA3HtIhF0++z67jsWLeL3ZtrqOxfsc/Hv0f8N230tVBb1ZBWPNAOVVVY9PlGGhraulQmtXMUL62YskDMtHnns9VcNGMiPcsLM9YZUFTMzDPP5/SZz9Fies6EjCf6MBkuAvBpGhPKKlkT2kY8JZ3pUzRO6zM+K9cLvG7PH+z8CXG3JW36wvq/UeofxrKmpzOkDSQKTW4OFbI1UYXYcS41jkoP1fEGb8I7zbTBkzBw7W0oxp6dGGktRzZeiRfhFYCDmn87OQW/SS5jRt8l1nwDBiH05GDH4zm0Rw8EBsHgDLpp1WxvfijRaSl5MAT1ARQHj2B761Pojonlvb2AZ2t65Z5MkT+du3hE+TE8s+0JzIRAqSKg1B/BdgWuVNAUByE1DGUoBUYhZ/Q8lJ7BfecfzVy9Jtl4OBWaojBrw0buen42Zrv4oZRZbU3csnn/0zVZnZhPXl/I3Vc9hhAC13X5x69fxnFc3E6tCuIRk5kPz/runBjY72zNfsWJGTi6F5aZZRTi1xl/6FCamsLeG5UI9afC0bN7h5bj8vmqrvkyhqryp8OPpdCX4pm7AuIKfsfgjekX8fYJl3Je/4lp6wnglF5jCexBHXNx0wdJ5yV5nNJiRcsnhK1qnAwp7cQyCCSCsDQwpYqGg47EkQkmf8Kr8AMdxaABNH1kl8fSDtn2Z8+BIQ4y5P0bn4ds+0vHuQmBok/E47F09H+WSTcmcZnszWhqOd2KbsejBRuAjsBPad51lASP5dBebzO4+Cr65R5Kr+Bh9M07kXGlNzK992sEtHSlTUMxuGbgTQTVXHQRwJYq7VwaJVG+WBMz2BJuYW3rNl7YPpvzF/yO3dFOlUZdYPHuqi57Zkkpmbtqs5dGEuD4ye7BeEeEmUXP6IHfvE5NVRPRcBzHdolGTEzbRRQVZiyrqgqR1q/Hrdgj3D38/osMHHDoMAx/llJ904ag4TmeUnb8UmD7BJmkEe8DtXxj1xy5gUUl/OnQYwlo7WNHgYxpqCE/BxUMYOHJP+Xhg88hT08v8ZZIzujddWHD7sgiXDKfa1darG+ZSdTuihshcFFQAAUl+bjHpMJORyUsBZbM8gjJOIrWp8vjgcRgqfFSkI0gw56tkVFouQlpb00upxkTvIEUiVR14pee/jBxzK/olX8Zub6RqCKAQKCKAJpSyLCyv9K/6DrGVTxJ3/wz6JVzKD1yjqZf/vlMrnyUUWW3ZBzfgcWTmVZ2OJrQ0kRKNUViqA4xR2dTqID1bbV8Wb+em5c/we2rntsnPlvEslhdW9vlt37Lrka01MH6HjZp25kvcFtjiLuvegwzZhGPmlhxGytu49puxrMKEPmaHK69Yj+zNfuVE1NYkscplx+GP6U6QDNU8otzmHbaBITtIiyJsGXi38RNEyBc2eVHp7wovTeP47psqKtne1Mz4MlEv3jCOfTNLySgaQQ1nfJgLk9PP5ORpRXUxlp5afsCFCGTPyEkr2z/ki2hui7Px+pChdaVDkX+4WhdEN2UxNOgiAB5WjE+4WII1/O6EdiAH4ku2kdICkL4COZ4OhFSmolKoSyIvgIZeeU4RF9Om+LLvwVEECmVjGdTJMK3QhRh2zuxrSUYih9NWOjCoSBwKCV5l3nbUUsYWHglEyruYXLlX5hY/hv65Z+CpmTXzumbM4g/jHqI8/tcg5qSRpISQpaBnYgMuUiiTpwWK8yf1jyX/VxT8MzyJfzh0zk4WVSXA7rGmaNG4tNSApOK58hktS8CRg5IV+iVUvL5rFU4lpP+8ZOg5GamHDVDo+/I76hJpsSLIHb1+y8yMOPCqeQX56IZHc+YP2hw6pVHUF0fykJaTEl1OGT9WCAEJZ34dy3RGGuqa2mNeZGQ6f0Gc934gwloGrm6gaGqTO3Zl4ePPI0c3eCfm+cTsts5I97Plg6/WvZal+diuZGsxyNxibutlPq7ihbLhHikgqbkoSTeOAGYUqHaUdlla+kfCRHAFzgDRSnySP4ylv3DHp9D9oZRNjLacS6KWoaRczmI7PYgsVOE2hvX/JxuSpQypYkKNUK5GmdE8c/IMTxeWoF/HENLf8fYivs5oOIvjCz9BcX+sdm3KARn9TqP20f9hfFFExOunAfXhd2RPCQCW7o4uMRdi3l1K5hfv+dod9y2OfO551lXn31gZbsu4yu7p9sVRSCVTFujaypHTh5CZ3zx/vKOjIWmgq6Bkv1Trvs0DjnpO6zs3Q9tzX6VTgK45KaTGDiyF68/9jFtzREOmj6aM645kqeemJdGsASP+4qQuJoCmkBxvOaPqfAbGhce29E25rMt27lh5rtELQtXSnoVFvDAGScyuLiUj8+6nM0tTdiuw6Ci0qQK58fVXn+qznwUW7rM2r2SKwYdnvVc+uWOYn3bYjo/npX+/nQPHkxQ60arlarj48U6bKmiK8X0CB5BLPpMcl47tETy1IuKqBi+g8kvvAPs7cRaLkDaawANNXAqev5tiET5spQSsinmQoJs1wFFH0yg9D3irX/Ejb2bZQWBVPLZUX0wdifF30jsY3Y3XkWP0meyrLd3qEJjXNFEugfeYke0ClcKbKkQddJ1H8Abpa5r207YjpGjZRdEjNkWd342j5jjgAGKKRNnINAUhQk9enDGqJE07Q7z1OzFSbKdawAWKI7AdSW6pqAoCr+7egaGnvnqyCzpiXb4gj7ikTiKqqD7NG547GpU7btTV+38bvwXe0ZuQZD7P7yJVx78kM/fW0ZeYQ6nXnkEk6aP5tST7wXSnzTZ7sgIMEIOVn76R0MIQW7AYMIwzzF1XJc/vDeHV5auxFBVTMfhzHEjueXYw7hqzIFcMHwsm1uaKA/mUB7sGGTN3LGEuJteei2RbGyroSEeosSX2Sy1IjAWJ0skRhMB+uQeRr7emze3L0amDUe8Z7XezWdQYDgaFq3xRRnaUAqSuBT4hEQRBfhzLsGfey1m6H6s0CMgQwilAj3/FvTAiR0ruq0JA90ZNrjpXCNf/s9RjbFEW24GN9ugUOLEXqW+ZR2RlMi2lK3UNv8SXSsnx7/vaeVUFBqFHNvteL5qWozjmsRcjbCt01mHCiDmmry360umlnXdYPPd9evZ3tKSRX/M69929/TpTBnYF0NXUxufYwcERkSiqyqW7RDw65QV5XLJqZMztuO6ruceBlMcPx2E44BjowiBY7v4AgbFFQWc/uPpX+eS7BX7m63Z75wYIQTTTjqAaSd1iJ+5rmTWeysyl4VkjX0woHPE6AFUxSOs3l6Drqq4UvKTM6Zy4DCvImhXSyvXvDKTaEqucmN9A//zr5eZ86PL0RSFAYXFGfvJXoAHSJns15MNx3a7nO3hNQlOjIWKhqponNDjBwihUOYfQtjakChB9ohpGi66kkv/whtobf0ZHQJRHUkdFbBQ8flPoaz47zjml5it90N8JiI5+jFxoq8jnV34Sv6ZvLZSHwfW4syD1TO9dUXrjRY4DSs+L5F66oAALHszTtKBSWX1x4nG5mPZO9G1b94p96oBl/G71X8ilGyc9808/U1NjR3BcgVcnzealkhK84M8ccZpCCG44uhJrNpew6KNO5O5ZvIkahQKfD4OHtWPK089iG4lmdowQgi69yll5+bMpqvBXB8X33g+C99bRnnvEk686hj6DP9uOwh3FuH7L/aOgpJcLvvVqVz2q1OT0+bOWdPuq6Qh9e/uZQVMPGQQ7yzbgGnbuK6ke1kBd//4JNTEiPiheV/w2rJVmI6DmRBEe23ZKkpzg/xg6mSCusHI0kw+VJe2BrpMZQS0YsYWX8ayxidxZByQaMJPiW8IfXIPwxvqyDQHpb3aMUwFhf4DqGt9BE3YqCkFMhJBHJVdbg7Dyl4gRx+AHZ1JrOE0pN2uRQbS3Y3Z/DOEyEHzJwi0xkFkzy8EEb70QZ8QAj1wLGboYZysToyOY20knKVDtpRR6lv++o2dGICewV4cUX4U/949C1vCnuuz9oz527Zn6MYA6IrCz6YewnFDBgPw9x+dyg/vew3bcXGlxLRslHwFYUn6VhZz1jEHcPy0EVkHSxOOGokllcyKI1VlxkXT0BSo2d7A+CNHcNS5BxPI3bPa/dfF/mZr9jsnJhscx80g9HaGCDn84LxpdKsooKaxjca2CP27l+BLeQheXrYSu9NoWQJh0+TTLds4dEA/suHQimHcuzazOZmmqBxZmclDcaXL6tal7Ihs5eDSC4m7deyObaLC348Di2dQaHhcECktdOGiZ3nZw/HPuhjJgIuBoRRRVHAr0ZZfYkZfR5Nx70PdKZfsml/i2ptRtP7edcr/NbLxXJAmnq6LDsJA5N+WbVeo+shkzrrT2WMn1SwyX3ohfFjOjm/lxPTJ6c3YwgP4tH4REomRpQxSIBic14ug6mNp4052hpsYWtCNgfkdfJviQBArVcFX4DXhA/qVFCWNga6pPHDVqazfVccrc5fz+pzluI6nYRqzI7y3aC3TDx6W1YkBsLMQ+QAs02HySQdy4lXHZJ3/neC/aaPvBE1NYfb4qZIwoF8ZP738KK51j2DTzgYCPo1eFekk16e/XJLBv4paNk9/sYQfTM0cXbdjRo8xPLP5M0y3Y10B9MkppdSfqenUZrWysOlLInYBI4p/Rlt8IZYbom/ekfTLOwpFaLjSBiFRs5yXKy0awy8g8cICQqQMl6REEX5Kc04nqJURqTsU3DYgWzQ3htX216QTI7SeyOAFEH02JcobAGMs+LI7HKpvMo61gkxlXyvJxct2Zyy7a87jvuKkHqfxxq65gI2hZE/F+1WD6ZUTidgmn9VuxpWSKeX9yU3hMFXm5WZVgjc0lQHFHQPk4X0q+OBPV/LZ6q38+dmPqW1rxZQuJrCprokn31/I8dOyi6Y21rah+/RM/qgQbNtQw90zvzdRbQ/7ma35P+HE6LpKz97F7NiWRX04UZBkmTYvvraQn1xzFBXFeVQUZ77wu1vbsjbkciXUhyIZ09tRGSjk2iHH8Pd1H+BIFyk9Et9F/acyMC99NBV1Ity7/vc0xGuJuzF8ig9dMbh+8G8o86fzKLrnHktNZE4GwdfFJk8roSlrTlkh4D+K7iV/w7VWY0ZfBxlFQe1CC8BB2tug3YnRh0LpO8jw02CtBmMkInghQs3swiylRLpVaMYIbHMlHcZFAxHAlJGEYckU1nFkG82ReRjaEDQ1M7q1r2gyW5Oj06BmY1sq7QR8Q9EJqn6mlk5i2vt/os2KoaLjSphc1p+/TToLQ1GpzM1jfGUPFu7amWZcAprGFQdMzNjnoMpS3p632mP6p1zTuO3w52dn8/IfLs56rEoWsid41UihlghllYXf7CLsDR5J6L/4DjByVK+9amos/HIzO7Y30Kt3CYN7l2XMl1LSlqUKDshaHZeKywdOY37tenaEG4k4JgFVRxMqd4w7M2PZVS0reWDTfUgpsaWNrhiMKRjLFf1/lezfBqAIjTL/KGpjy0l1AwQKPXMORjpvZD0WIQSDSh+gIHA48aarwW0kO8/Fg+ukt7gReTeC7yBk5EWQUUTgJPAfj8jSpFK6IVS1EkXoiT5q7fsJIISOIlsz1umAQyj6ATn+o7I2hNwXRJ0Ox0wIKPRFaYp3pGv8isGBxUOZXbWNH372BqpQUIWCi+T2A07huJ6ew3H2qFE8sfirNDsjgBzd4OA+6WRoXVNRXKipTT83KaGmvo2PFm3guIMyW2BIV6LpatYimJaGEFLK71QXJn3n7He2Zr8i9u4JP75+epouRzvtzdWV5HVdsXon85Zu5pl3FzJv6eZ01VVgSt/eBPXMigRXuozrWZkxPRXn9ZvCi1N/xNWDjuTKQYfzr4Ov4erBR2Ys9+6u16iN7SLuei9F3I0TtkP8c9tDGct2Cx5GaWASapLgq6IIHyOKf05BcAYOOqZUcFI8XyF8lBX+EkXJxYy9m+S4yMT/OkNiI7T0JqBCrUTJ/yVKyT9R8n6e3YFxI8QaTiXWeBHSWo0qBIrQEaIMPXgOgZKXkTK1xVvHvqUES0J124Os2jWNmLVxD1d2zxhZMBQ90bFXCMjX4+RqJjmay5X9T6Svfzh/XP4OLVYYFweLGKYbZ0HtZh5dNy+5nQePO5GJ3XviU1VydYOgrvPLKdOY1rtvxj5rGtu88sgshmBrTXbtEIAjTh6f2WVWShzb4bb/eYi25q4d5W8LIbv+/Rf7joEDK5g0ecAePwKqprBsxQ5e+2gZL7z3Fdt3pz8TQgiGdst0bgCGdTG9HUHNx/NTr+GOcWdwxcBDuXH4DN478gYG5acPlmzX5uHND2C6Jpb02ieabpzlLUtZ0pyZLp5S8UsMJRdVeFEDTfjwqQVMKLuWXP80vE9Bu1X14NeHUxg8AiEETvxj9uTAeOdd1OlvgfBNRSm6H6X4H4jAyWkNaNvhxL8gVjsZu+0uVCSaUFBFDoo6CH/B7zByrkSIAPlCyZrocd0GqhuuYlfDJcg9pPf3hFwthxyto9DCpzqUB8Lk6XEG5Rbyi2Hn8+H23by0bXGC6GsTcUxijsVNi9+gOuo5Ij0LCnjo5JMoDgTI0XX8msaAkmKeO/sstCzk21fnLM96PK6UfLZ8S9Z5/Uf2xAhkFz2s3l7Pk7fP/Lqn/7Wwv9ma/zNOzLjxfbnnwQsxgrpHhFbB9SnIxOhXKILtDS3c+ujbPPjap9z66NucectTNKeUl00fNphehQX4UgiVAV1jxtDB9C/Ze7Sgm7+QHsFiNEWlJtaalQ+zqOmzpBJkOySSHZEtRJ30j5gQChMr7mV8+d3k6f1RhQ0yyprG37Ci5nyirkJcakSkRsTVAD9FuRfj0wcl1jdov4XtDkyqI+P9dw7KN0jpmG1/wbVWg4zgVTOZCCS6bxSBwtvRjeEUF/4RBT9aQpSqvfo9LgVxqQAujmxje+NNX3v/7TimYho5WhA1MXoTAvJ0jdN6TqPE6Ma82g24ifx++09VJTHX4uWtHca8wO/n2VPP5OMLL+P5085i8eXXcOGYcVn3ubuxLfvBCJFVx6gdp19xKL0HVZD8ELRzGOImLY0h3nh8ztc9/X3Hflb2+H8Zt/7qFM4868Au5zuOy5+f+5i/PTuXB16YxwU3P8MjL3+avo1jD8eva8niAEUI/LrGLccettf9q0JhaEElZf4glozTamWWyG4Irc/KkYm7cebXz8+YXmD04bS+LzO68GwG+yKMMjYwTFvG5t2TaYu+jSKcZCpJoKKIXHqXdMgukMX5yDjuVGLvPkLKOGbTFYky7DAQ9wq/hSBQ+FuMnLMx8q5E0UeQp+VRIJQ0bd6klg1xovFPCcc+/NrHAKAIhQv7nIWRouqrCij2Kdwy4lL+ufErWqz0aE07XCl5d2dH1dK0vn1ZcPVVvHTuObx14QW8f/HF9CvKrqnTGuqi0AIvUpMNqqpwy6OXo2dR8LUthzce+5j63c1dbvdbYz+zNf9nnBiAIcO68+xLP6KwZwHSUJGK8AQENQGqIKQ7RGIWtuMSjlnsrm/lz8/NTq5vqCovXHQ21xw8iUFlJYyurODXxx7BHSd23YG2HVWRJo7/+K/8dvkb3L92Fj9b/ALnz3+YiJ0eHhZfk3wqhEJ9dB4ReyMkPsa5IoZ0Q8hkxYHAQcfnn0F+4HichMqvETgVT+4uEZVKOFUy+T8NJedqnPh8XOfrdVu2o6+RWYrt4MTnJfokQV7uefToNg/dOBhHCkJSJSy1NLEpkITiX3Zd8r0X5Oo5/Gn0LRxdMY0yXwl9g724vP95XNDndN7ftZKok42vA64DNa0mb25ZlSRWAlTm5mEoKn+eO5+fvPk2M1etSZsP0LuiELWL1NDIfplRq3b4AwbX3HoSPkWAZXu/WBykxIrbfPFhJjn9u8CeRkb/jcR8faiqwlVXH8Evbz4hIxinqgITlzgucdPGsh1ils3z7y5m1abdyeUm9O7BixefwzFDB9KvpIhjhg7kxUvOYXyvvXecf2X7As6Y91f+vv497l/3HmfPv4cXtqY7SWIPDQK6skCGkoMSu4dcUZ90+L133E6u1z69W9GfsdCSjpLmP5k96PgCfhTjEOz4F8gsBNyu4JpfkJXpIqM4kZe84xJ+/CWv4C96FCkMtIRMj9KJAihlhLbIN49CTCk9kBuH/IjheYMpNYo5sPgA/jDyJnoGu/Nl3daMo2zfdyQGb21Zx+qmDhurKgoDS0pYXV3LT998h19/MJvVNZmk/4NG9e3yeE6a2nUj4VEHDWL84cOzztM0lZVffPPo956wP9qa/ZITE26L8uWsVZhxi/GHDqM0hUtQWBjkX09exT0PfMCsuWsAKCvJY6cTwVKlF6VJuGYmLh8uXs/v3RlJvkKOYfCDgyfxg4MnETJNFldVsWhnFeN7dE9WFmTDbcteo8EMJWWiI47JplAtD62fzQ3Dj0suN6F4Cp/UfZAWjREIegf7E1AzdWGkdNne9kLqFHTcLJkMh4bIW1jxD5HSpCTvKsoKfo4//+fEWv+EIwQqNq50ESIAuKBU4IT/hhPxgTTR/MdjFP45a0g3E10RqdNDzprWk0DgOJrNxSCz5/slEtsNoasF+7Bfj1OwunUli5q+RBc6U0qnckm/s7mk39lpy+mKikBkptEkuI6KbcFNX7zLw6sX8MqxFxDUDN5cvZab3/sQy3FwpOTjTVt4evESnj/vrKROTEl+DsceOIT3F67DSVHA1FWFWy7MlJVf/tVWnn5kDi1NYUaP6YV0HMgiqldYmr3Z5neC/UwK/P8Ktq2vZtXirRSX5THh0KFoKSnro48eRa+eJdx119vs3NGIENBvUAXro61Iy8YKdIgixh2HZ95bxJ0/7IhGDO1Wxt/OOAGAzY2NbGluJtis07uwsMvjqY42c+/adzBdO0365f7173Nw2VB65XgNKgfmDkpGeVLhU3wcXDo167abIq8jZXiv10RKh3UNPycsc9CVAg6ouJeC/JtxrRW4zqYE0d/CIyQGAA1XQrTpCtpjOYGiv6O3VyrtcWddF2ykNsAVQkH1TSWqlGM727tcJ25+vYFC2I4wr+5TtoS30ifYm2nlB/OrET9LW8aVXmTI7aI6zHFUltRVc/r7/+QX4w7n4iETsByHi158lZXVtUQsC0UIXl2xil8ddRhnj+ko0T798DE8+/5iwtHUc4WhfSoYO7hnp/04PP+PeXwyaxXBHB+FmoKiKmltBrwNQEFxZin+d4b9zNbsd07M4rlr+P1lj6MoAikljuNywqWHYesajXVtHDh1CIdNH8lNNxzPDdceSzxmk5vrY8qVf0M60nNgUl5uR8IJt/2D7j0KOWL0ANY01jNr7UZMxyXkmKCDogr8us5fjz+OKX178/y6ZbyyaQWqEJw9aAwn9BvCsqbtGQ+x6Tq8tXNpmhNzXOVprG9bRV28BtONYyg+DMXggr7ZexrZMoJMyTXv+fGQuNJLdTSEHsfQ+1GYewVG4ESs2McIYaBoQxCyFSv6Gk70TcBMVCKBHXsXEeqDkXfdXu+D5j8WO/o66c6MQNHHJpykDhQET6a65Q5PW0F2Hh2BKzQaIu/QLS+z90jGGUrJP7Y8zLLmJcQTfWA+rZ/HCd1P5rjKE9KWPbnXON6uWkasczRGgG15H6OIbbGltZGn1y7mkiETufX9WWlVIxHLYkN9A6+sWMX548Ykp9920TFUFOXx0sfLiMRMhvWt4OfnHk6/yvS04+P3zeKlf32WPNntWxtQc/xeFCYprwy+gMGpV2bXE/ousL9pN+zvcF2XP1//PJ99sNJThFYVDJ/G2dccyZol28gtCDD97EkMHdWLJ568glAohq6rzF64gT8/9RGWAY6P5MMuNXhv/UY23/UvBlWWMm5Ad2YuWMXmmkZMxaU110LmeIrXYysr+ccpp9AQifLwl1+yrLqa/kVFXDNpEiujG5GuJGap2I43qBKA1F1m16zkov5eZY+maFwz4Ef8fePfAInt2miKxtjCAxhXeEDWc47Gl+zj1ZFIaeJIBceJ8uXuyzmi90f4S/+dqHZcj1D7JBwYh0jjZSDTU7DRpmtQy+egqHvmGirGJLJzbYKJ6E86ivKuoa75t2SvkALL2Y7rRlCUvXfMro3V8etVf8R0TUzXZFHjV7y5621+PeJmKgMdEVdFKBzVfRizdq3BTqEQSAmO3Z7Oh5hjc8dXszmxz3DmbdrGiupaoolya1dKYrbN72bNYcbQweT5PG5ScX6Qp351Hn965iMWr92Joakcf/BwrjsnvYIrHrf4n+PvobUTr07RNXDSHaBAjo/RBw/e6/l/U+xvtma/cmKi4Th/uPxx4ileqfTpvPbyIs/jdCVffLKOR+95j1MuPITjTxlHUcLjPGRMfz5etomM0KSA6to2tofb+LR6B6QpI0qkA5Yhsew4l7/6OvnddaLSIuZ4H7r1zfXM2rGhS42GUKd0kl8NcOPQP7CmdTk7o9soMUoZUzgRXckeitVEEIGWTB1JBA4CVXZu9ijRSH2BIjS0Pkxhzlkoajd8OeemzHNxGi8hMx0UxYr8s0snxnVbcKw1KGoFRt5NOObnSLfR48WIAODDV/jnzHNQi+hX9hxray7EoQ0l5VJJPJKv5XStbJyKdW1rkg6Mt77Ekib/3vUGk0umUGR0OBFjinpz8YBDeGLjPASeGqYtXSJhH6nuYMyx+fe21RyQ3yvr6DVq27y9dl2aE6NrKkeMG8jG7XVs3FFPgd/I6LXT0hzpcGDAsyCOgwzHEYqaTNYqAi742QzGH5pZafCd4L9po6+ND19ZxOcfrsSMdTjA0XCcx+74d6JXkOCDVxYyYNIAzrziMA46aCCqqjBlTD9M18EJkkH8lhLWVdWxvqqOtxatSZvni0LMlTi5sHjXLsY/+CC6omK7Lo6UbGxo4JOtWznzwAGELIHtdKSLJBCxFHaGm9O2OSx/OHeN/guLGr8k4kQYnj+CvjnZZSIAgr4JNIaf3uu1kUBU6il/u1SHP6Rn3imovkmovknJeVZkJlnJENLBjLyKP+9HWfdhWxtx3Hp0fSR6wZ+xmn+G58xYIIIoxiEo/sw0f0HOhdh2FU2h+7NuV6DgyjAKe3dintn2PGE7nIzkmtLCcmye2vovbhqWHo25bczxbGitZXekBUs62K6L64Jlpn9CdUVl/u4tvLNmY9KBSZ+vsHBHFUcM7J+c1quikMMnDKKhLUzMtAkGdE/wztdxDx796/sZDgzhGNK0ESkZhJKKfG5/8cd75O59K+yHtma/cmIWfrQKkcJFkAC5OSBE8gNimQ6mGeXZx+bw8gsL+PN9/0P/geUcPLQPn3y5AVcRuLrMNDCqJ7siHEg0C/EqENqzI0IidUmTFU0Lh0Rtm8+rd1BYYhDN0kbAkS6N8RDFKUqailAYUTCWEQVj9+GsBTnGgbTFP0seckj6yBcxSCRLvKXAEOkjFtvNUnLuHRWZDkwCbihjkpSSaNs9REMPgDBAWmjGGHJLXsWNf4ZrLUdo/dEDpyCU7BopQd94BpQ9xZq6i7BlNJHk8Y5eEUHy/elESds12dD2GbWxzRQZPRhacCiG4uerpkVJByYVilBY1bKCQ8rSRyjXDD6Ck3sewGd1G2g1Te5e9ClOljL6gKoT1LUuQ8K5RrqTuWT9Tq7962vEEmWMNU1tLN2wi7t/dBKTR/YF4O93v5teXC4lSnMIOoV3dZ/OoDHp5ZXfOfaz0dH+jnee+5x4NPMj0/54SClxbMm6Tzdwe20Lg4d25893nYMZs5nYs5LP123DylOxgynEjMQ/2Z4wIQW+JomdMBOOBDflOZV4tuaDVTuwSrLzXdY1Z77vuVouh5XvQ9oG0PQpNNn55KttqClfIpnyEEvp2Z/UzvGujBN3svdfkrK5i5SQicxinxynjsaGC7Hs9d7gTVrk5/+cYNmHONHXkLIF1XckinFQ1goxIQSlhTcTt9cTiX2QMV9RilCV0rRprVYdK5vnEncjDMybQM/AMIQQrGxZnZGKlkjWtK7LKFMuNILMPOIaFtRtYVuogXm7tvH+9kzeicBrY5PrM7Lq2kggaKRXFt32+HvMXbIxaWte+Ggps7/ayIu/vRC/TyfUFuX9NztF0Swb0RpOf0oECFWlx4B9b1T5jbCf2Zr9yomxzPQ8MJoKWTRIBODGbSKqye2/n0mszKCuKYQa95QoiYGVA1L11nMVcHU6OoUmboI0vI0JF6QicPXsd8d2HXShkq2Nll/VqY21pjkxXwdLGh5iZ3Q9QgYIKnE04WKi0UwOfhlHFZI8YWIkqgc6oJDjOxiASOwzWsL/xHVbyA2eRF7wNIQ2LKGqmQ7FyNRFMWNvEQ0/hNcU0nMgbPMrws03kF/yLHDaPp1Lvn8C+b5JtMa/xE1o3ygiQJ5vPPkpo7eI3cIzW64jYjdjyRgSeHfX3+iVcxBC9EZBwe30pghEl9Gs7sFCzugzESklz61ZxebWhjTjEdB0/mfwAYzsVkFhwJ+hqBnQtbQoDMBfn5+TNCrtiJs2dz//Ma/88RI+eG858+etSz8QxwHHzfj8xGMWM5/6hNEHDcx+4b4D7G+jo/0dZjwzBZmtpB4BZnOE9eurefiRj3jnneW4riRguQQaXMw8hVAvLfu6nTflkM2cpaEuGiKoaJhuZ0dcUBfLHIDsKyw3yivbf0TErqSnrtNTa0YTLiHXwJE6uhIHFMKujtnps6AIg2L/eFw3TEv4ecKxD9HUCgpzL0U3pmQ/IRFEzyJq19hwCZa1EpJCmdDW9mc0fSj+vGv3+XzKCn7FjvjnCTtjAwIh/JQX3ZHmfKxumc+/q/6KKx1cHD6rfwlNGBxefjGqUDMqSYFkJWRnKEJhSvkAppQPYGRBLz7euTUZsW+HBKZV9qeYHD5cv5FoJ26cT1OZ2LOD3L21upE5X21MtjoBsGyHhpYw732xlpOnjuTnVz2F1anhrAhnSadJCLVGWL1oCyMPHNDFlfv22N9szX5VnTT+sGG4dsrNktDlG5+YvLW1lV21LUQTYWGRWE+LdpQcW/ntdLO0VRF2+gTRBWHJUFT651aQTaXAdB0qA4V7PbdssNwoa5tfxJExbFRa3SCNTi7NTpBWx4eJTlQatEqjkzKujiJyKS/8OQ2tf2NXwwWEom8Sic+lrvlXVNWdjpH/m0QKSE2ug8jFl//rjOOIhR6hc+8ksDDjn9Da9ggyq2JvJoQQDC1/lL6FN5NrjCHHGE2fwpsZVv54mmGZW/MP2qw6rESVU3vQfFv4c7aG53RhRCRjCsfudf+PHnY6ZYFccjSDoKrjUzVO7DOMU/qNwHQcLj3wAHJ9BgFdJ8fQ8akqFx0wjkP7e2H4nfXN3PHSbNZuy6wkANi2uwnHdXny8bnYnfujpDYhdVwwLYibYFlU7+gqavYdQe7h919k4PCTD8iq6ZMNUghiMYuZM5cQj9tYluPZEwlGm4vR2j4q2vM+5T5YW83V0oTq2iGAvrkle99AF1jfOpu446VOdlglfB4dwLzIIJbGetHo+mh1A7S4PkxUUj8LqghQEphMvt6f7bXH0tByB9H4PNoir7Gz7nRC5lfowVMhrZltAFUfj+qblnYMtr0Ny+poV9AOKaM0Nf0E01y2z+dj6APoXTGL/JxzMbSh5Pin07P0ZXIDHSko04nyVtU92NLETdmnLU1m1zxBv5yStA7WAJrQmFxy4F7F4kaVVHL96Gn4FJWgppOjGeRoBo8fdgYBTadbXh6HDuiHrigENY0cQ6cw4OeJM09FVRSklMxZspGbH347qwBrzLRZtHYHq5Zup2p7Ixnd1N3MwRJ4gYCm2pZ9u4jfFPuZrdmvIjGFpXlc/qtTefwPb2BbDq7rDV06N+OSgB3Ucf0qpl/JCN8L8N4T1wUEUs1MLwlINJAk0UFUImIKMi8zGqMqCjePmsFFnz9G1EkvH5RIblv2GvdOOH+vD74rHda2LmZt60KCWh5DcgcjyPbBFtjSmy4lxDBocINU+nuiYhL0TaI07wcI4aOp9V5kSupIyghxay0Rp4rc0nexwo/hWmtR9NHouVegqJklnq6bPVSMdGluuZNI7CMqSl/YJzVMReiU552Nz3cAqjDI0/tnXJd1bZ+mGRXwbo8iJXE3zEElh/N5w2IUoSYVga8Z+BP8atedbje11hOy4gwrrODTU3/I/N1bqIuFmVDWk375xSyqquLy1173StGFxMJhxsDB/PzQaXTL86Joq7ZXc/l9r2BaXgO+bCOO3KAPVVGor2tNGpXk4FrTEg+n40Vl2uFKtq/awZY1VfQbtvcS268Nuf+R7fZ3nHTRIcx7exk7t9QRi5iomorTucoDQAikTwMpydLTz3Nkml3M/D0385RIzAL2GIXxaxpnjBhBeQ+VR9fNw5Lp6aYF9VuYV7OBqRWDut5IAhG7ibUt79JkbqebfwTVsXXYXTR/jUuNABZIUIRE4pJvjEIIhV55p9Ej92Sa2x7GdnYhk4RaFymj1DXfSr/KZWi+QzEjz4M00YOnowdOzbAXrtuEEFpWX1G6dTTUn0Zh4f0EgsdlLpAFutaLwvxfErJ2kqv3xKema7FsDS/3jiHL/mxpo8iV9MuZyPbIDtpvTI9Ady7s03UBQsyxWNtSQ4Ee4Irhkzil3wg+2b2FoKZzWPcB+FWN3344m5eWrURVFHRVRVMUfnHYIZw2agS66j0ndz07m7c+W020c0QweW4q3Uvz2bG1PtG4N3GI7TbHZ0DcynicbNPh1Udmc8jx474f1d790NbskxMjhJgO/A1vWP+4lPLOLpY7HXgFmCilXPRNDujES6YxesogZr38JfGoyaAD+vL0I3NpbgpjW14I0glouD51ryFcCYk2D10v5xgkv1aaT0Ez/QTyFaKO16+jxBfgkSNOo3duMYrUkNJM260jXb5s2MzSpu2MK+6a9+BIh6c2/46d0Q2YbgwFlQX1goH+bJoKEhWHiKsnK34soTA454dU5h2fXKot8hYIPaO0WcoIocg75AdPw1dw+x6vEYDuO4x45Dk6l1VLwJEx2mJfYjfeQH7wJPL8h+7RmakOz2dR7a240kLiEtDKOajbveQZ/Yjarcyqvh/T7Vq5tsmG+vgW7hj1V9a0rUJTNEbmj8an+rIuvzPczFWfvsDOcDOqUJBIfnfA8ZzYu6OnVdy2ufz1N2gz06/1+5s2ctH4cUkn5o8vzk4aFUUDxUp/cvyGxvnHeo0yyysKqNnRBKQsowhkjh8aWzOeOMdyePrOf/Obp6/u8ty/Ff4fibj8p2yNP2Bwz2vX8vmHK1ny6QbKKguxbIdXH5uDaTneh0MIrPI8r3EqkGD8Zh6LI9FDEtsH0sicL5HYfrBS6GQ+TaU8mENdOIye6HJ99IAB3HzooSyo34SdRVfJdG1+u+wtPjz6uj1+oOpjG3ljx09wpI0jTTa1zUWgoQkfdhYZBFcKGp1cJF4T2jxVcnCP59OWCUXfSepDpZ07Cqa1ikBgBnpgRpfHBKDrQ9gToSLmxtnQcCN5ZjUVOUcT1LsW6XSlzeK629keehdFGLjSpE/ucRxQdjOK0NgUWsI7ux4i7kQzblm7T2DicGaPQwhoPdkZ3UV3fzcG5GYOutrxytYl3L7sPRShYEuH/nmlPHTQuZzev6Nk+u0163hlxSriTsdARgCPfrmYsxKl1duqm3hz/qq0FFJnaIrCaYeOprGqJftnLmBAKIrMEpHZtq6aFZ9vZPSUvTu73wj7ma3ZqxMjvEYXDwBHAzuBhUKIN6WUqzstlwf8BPji2x5UnyGVXHZrR3ndEaeMZ8kXm/nHQ7PZWNWAoyrJL4cSl7h+0oyLBFwVUBWElCiWx39Jvfa6qlBemoftk+i6Sn6Oj4k9e3LR2LGU5+SysqGaRTVVKAly6rtVKzOiMO0w3Th3rXmBFquVfD3I2b0P45SeU9JehhXN89kRWY+VMCIuDq6EZjtAsW4mus92QBUuMiWsa0pJdXRZmhOjdkGyBRVV9ULPllNDY+ujhOOfY+h9Kcm7hoCR3ko+mHctZuxtpNsMOMlKrKjr0ia9/reR8Cs0Rd7Fp/VjQMUrqEpOxl7DVhVf1NyIk2LsQtYOPtl1BdN7v83z266n2dxNx51IuWeSRHNHhZ2xXWwKr2RSyZSsZ2e5DnNr1rK5rY5nNi6iLhJNM423LP43A/JLGV7YjY1NDTy8cCHxLLotpuPw8sqVjKmsxHFd1uzoEKtyE9w7JTFQ8ukqpx8+hkuP97g9l191OHfc9GrGNmWC0JcxXcLar7ZkPZ9vC8H+Nzr6JvhP2xpNV5k6YwxTZ3TwoU6+8BDef2Mx/3z2U6JudqclFVKAHVBRHNCjYOpkjJl0VaX7oALCwibPMCjPyeHU4cM5fvAQIqbJ4t27WN9aT0kwSMyx+evqWR5XL3NvhN06Lvzid7TZEYbk9eHKAScxIDf9Y/9R9Z1pAwVbxkAqCKGl6SoJvO7WLkpSpNNBpcVRaI5votDXwatQ1WLIEjSQ2ChKAQCtsfnUtv0D26mnIHAM5XkXpdkoIQLkF/yW1pbbkJ3S1/W2TrUbROJQ3XQvG5vvY3DR9fQpuCDrdV/d+Cg7Qu/jShM3ISGxPfQ+AbWc/MBhvLjtj9gy3iVfwk3MeXPXg/xs6NP0z81e1VUba+ODqtVsaqvn1a3L0hpzrmuu4cpPn2XmUVdjuy6zt27irk/mEbUyB4O1oRAb6hsYXFbKwrXbu3ysFCEoK8rld5dPp1tJPhXFefToXcKmtdXpCwoBfh0imU6pFbNYu2Tr9+LE7I+2Zl8iMQcCG6WUmwGEEC8AJwOdWaO/B/4E3PidHiGeguaEKQOZMGUgV17zJBs2dfAVtJiLpatIVSJTqgSsgEg4/QI9BFYhBP06puOgqyr9y4p58vIzyPFlkkU3Njdw8QevEnds7ISnW5EXxFQd1E5RY0W45Bpxdse8EuKIE+eRjW9RE2vi0gHH8kXDIjaGNtMQW5h0YFLR6JQzrGAQtZFPsGWUPL0XOlHiTkeIsx3bQjMZWXotuuJFDgK+KSjCjyPTCX9CGBTk/A+mvZPNNcfiuhHAJGatoC36AT1LHiQv0NFRWVG7UVj2ES1NP8OKf4SLiyklrVJJ4+K4MkzM2kBNy310L8psJbC19Y1E87ZUSBw3xoqmZ2mz6nGxEymi9tFtwulE0OJ46SJH2nxS9x7jijKdmIZ4iAvmP0qTGSbqmEgJugHxlK+H6To8u2kRFW4JDyz+EsdyyCYY7EpJyExEXoTAp2lezyTvIuIaeJVuLuQqKqceOjopmnj4kSO4L+9twm2dRqd7EEws7VbY5bxvhf2w7PEb4n/d1hQU53DWpdOYetxoLr7oUSzb8VqbJEpNhExJbwuwAgquTyTvgRYDGRRJyXhXSq4/eSrnThuXdX/Prl/GvUvne26EENz6+QeowWi7EHca8nwxcv1xauOeg7K0eT3XL7mPvx9wPYaqM6t6IS1mI4rcmrmycNGFQUlgBLsiyxEo9M45gJbYnIzIg0SyqukpDu72++S0wtzLiMY+S0knASjoam98+mBqWh9nV8ufk85J1FpLQ+gFhlW+m+bI5OScj6YNpLHhQmRCWyYuRcKBaWfHWUgJ65v+SnnwCAJ6Zgp2Y+uLaYMl8KLGG1pfJNS6G1uagMDFS1OnwqVjGCWRbAx9xbD8zM7i7+xcyc2LZwJ0Eh9sd/gk28NNLK7dwc8/+JCacIhoq0021XZFiKQ+VUGOP3uzWOmxkYZ0L+WAhNCdEIIf//IErrvk8czFNTXrgMnw65R1L8oy5zvAfmhr9oXY2wPYkfL3zsS0JIQQBwC9pJRv72lDQogrhRCLhBCL6ur2TTekM0aOTB91CEBvc9BCLlK4WAGI53hGRySeOuFAbpvgR4cfxE+PPYT7LziJF39wblYHBuDq2W/QGIsQskxijk3UsalqDeHG/RnL+tTMEX7MtXht53xuXHobT259llm1c9gVyy77b7oxPmtaRYgDmNLtQU7p+xJaFykwW1qsb3qWXeG52G4UR0ZpdotwpMCVHq9USsgJXozfGEVdy124bhsd3ae9PPbuxl9kNEpT1FIKih8gSoCYlDgSnDQ6tAdJnKZIZgQCIOrUIrMM1yQuLeY23HZ5cwECiSuhzfHRbAeps/KSoyPvGmZPOd2x8i1qYi1EHDPJ+xYCdK3jPrhSsrmlnge/+tJzREX25phBXWfG4MGJYxKcPHkEPj2T2yAcCMdM/vLCx2nTjz1hTMayKAIZ9GfszRcwOPe6fcv1fyN8y34mQojpQoh1QoiNQohf7mG504UQUggx4dsfdAb2G1tTWpqHqgmvwrG9ckkRSOG1OomWqUTKNMwirzKp/S1RY5IeapDrT57GT0+eyr9vvaRLB2ZVQw1/W/opccch6thEbE+fKhLS6dyWTSDJ88fp/O0zXYt717/IlQvv5PntH/J29ec4XTRBjLsRNkd20TfvJC4a8BIHlV2EkVUUTlIVns/Wtg9oiK1GSknI1ahzDFxJwt4ILAzKix/DcdvY1XJXWnRFyjiWW0td278ytu7zTaKg8I+IBBm41TWyvJ2AlNREZmWZLLHc7MrDlhuiPp6q6CtwE9pbLgIbBbdTW5S4k2lrWswoNy+eSdy1ibt2pxqTjqNVhcKDSxawo7WFsGV5g+ksZ6MKhWHlXvPPqaP7ZyVvAziOZPHanSxc3XEOg4Z1x+fTM9M4PiONJwOeHTN8OlOmj866/e8E/6/1ThIeQeKvwA17W1ZK+aiUcoKUckJZ2Z67uXaFyVlKxwSg2JJAVKCoAtUB1QbF9qYLKbFMyRHDBnDxIeOZPKB3l3nP7W3N7GhryXheLNfFjGm4jpokiksJmpKtRQBI6VITb0lqnrTYngHIWA4X2zWpim3g+e23syW0nHwjMwzYLv66pvkffFHzK97cejQra39N2Kpjtx1kh53HTjuPKjuHbW3vIaUkHJuHI10sqaTt25Gt2E51xj4UJYduZS+hKhWJaoOvRwyrCExGFZnkW4lLt+BklJRKACFAEy5R10dcpsfgNaEzpsBL27jS5ZPalVz8+b1MnXUTs3avSFPNbN+WqnacoF/V8Tv+jp5IAqRGmnEJ6jqTevbkyAEdolPXnzqNSUN6k3qDheM9R1LCojWp31c495KpBAIpjnBiHRn0IxJaEJqhEczzc9mtp3Dw8WP37UJ+Awi3699e1+1I4xwHDAfOFUJkNGb5LlPG3wT/SVuj6yq9+paR0mTIgyIQAgwTpK5krXqUNpw9dQznTB1Lt6KuW028sWlVRt8u8KohhZ0+wFIVN2t1pItkdesW4q6FLR0cqVJn5mbYGikh5qrEnBDLm2fz9NYbCajlOF30ObJlhC9q/8hHVdfw3o4LWVxzE/WOzkarmC12AZvtArZYReyKzCdirvResE6QMk5LNHtDxkDgdHJyLgd8iV9XyDSaQgiKfEOzLl3kG0a5v2/nNfCcGYXONs2VDv1zvcFIixnh7+ve4fiPb+fIWX/AdPdelWm5Dl9u342VYH1LnYSgaoJnqSj4NY27T5ieJPX6fTr3X38aQb/ecYoJwqwAonGL+Us3J/eh6SrX3XpSYjnZ8S8gU260bmj0G96du1+/Dl8g+wD9u8C3tDXf+WBpX5yYKqBXyt89E9PakQeMBOYIIbYCk4E3v6eRGg2NIXxZuncKIFjkB4ekYWkvgxSuF87bE5GqHZbrdOngdA8WMrG0H66rIl2N8UX9mVI2NOun3jMoTtKYxFyDVtvvpT9E+0srUUWHE2RLkw+rn2Zw4UVpDH7vmfWMqcTBlmEcGWVjeC5R6enKOKjYqJhohJwm2uKraLRtGt0ALa6fBjdI2NW97UoXRcluXH3GWCrKZ9OiDMeRSkYlgcBHUTC7bkyP3KPI0/uiig6jpIoAvXNnMDj/WAr1bqgpGUxFKHTzKejCQEk8ioYwKNRLOLT8eEzX5trFj3Dr8mfYGN6FKx1yfBbqHt4Wn6JRGchnSG73tPsiNXANUHQY270b9x4/g0dPPSWtX5ZP17j3ipPxWwpKHNQYqGaH2fP70mP8BYVBDFV41XGuC7aDiJoojoScIFPOmMzDH9/Ci6vu4sRLD+3ymL815F5+e0cyjSO97n3taZzOaE/jdN1699thv7I1XVWOSCEIVuRmfe/bgzb7AtN1uxy1n9RrDGU+bx+5mo9LBkxFV7JXQIlOZnxJSy/Cjg9XaqjCQEqwpUIsocLrYhO2m9gSWUmxb0i2MwS89IwtYzSbmwg5Fu3JZYmCKxWQcba1vkTc2oYkm4aNQFezC68JIcgv+CVGwf3EpEbWAZMQlAePyrr+uNJfoAp/8twFCqrwM670Rg6rOC/FxnrQMSjSK9BFezRdoAsfh5SdQb5ewuqWHZzyyZ94dus8Gsw2VMUl6DPp/AKl3tuAqnPt8MMQqbXzAly/RPokqJKLxo/jrUsvSFPoBRjZv5Kbzj+KgKp2OAGJeZqqkBdMP/7CoiB+TYAtvZYmrRGobUKRElVT+NnfLuCpBb/hgQ9+Sc+BFVmv2XeCb2Frvq/B0r5wYhYCg4QQ/fAMyjnAee0zpZQtQFIiUQgxB/jZN61O2hvKy/JRskgq67pKPCDorEgnAFxQFUFeYE8ev4f++cUU+vxE7XQD5lc1zhw4kh+PnYLlOihCoAqFta07WNq0kXiK164JFReLZtOLSvhUm3w9TrOdQ8TJ4bK+J/FhzROQpdFjXXwHhf7h2PhQZRxBew43e3/sODpGWrmywAE2NP6auPREoNqfrYjUUXDJ0fohRNfXYlX9z2g2tyAwKBAxrygDUIQPnz6QioKfZF1PETrTevyDLS0vsyP0LqoSoH/+mfTMnY4QgrP73M2cmkdZ1zoXF4cBuZM4vOIawk6MT+s/oNGsZ1jeWCYWT8On+nl5+3xWt+7AbWfmJC6A37AIxxNKhYCCIF/PpThQzPSewzh/wAR2trby1PIlOKmEXsXrkfPQSSdRnpNdnFBRBCdOGcHbn63GTNEs8ukap00blbF8uDWGaPdUJaAoSEUihcItfzsfZQ8cme8SexkFlQohUt/HR6WUj6b8nS2NMynl77Q0jhDiO+eiJLBf2ZrKboXs2JEpP6D4VSJm16P07mUF+7T9GX2H8NKGFRm2xpEu1485jFL/DCzX8RqdCoGztoG5dV+l2RqByBCGjLs6s+uHMLWkjHGFsKrlC6xOXxjTjVET3Uz//BNpqFuD7NQjLRUSBxuJlB2Ur/Z30XKq2Nn86y7OUJLnP6TL84/Zu1nTcBOuNFEROElnTKAIH4OKftplhVKJfxRH9XyGNU1P0WKuo8AYwrCiS8g3PILueX1/zfu7/0FtbCtBLZ8ppacxsfh41rQtYFXzPHTVz/iiY+iTMwIpJbcuez6tcEMIUBWJodmYdsfgRRMKPXKK6JlTxEUDJjG120A27QzxytpVyWgMAhRdcHD/Ptx0RLpWTioOPWAAf/qnkrDYHVAVhRkHp3/bG2vbEAhEuwyApkHAjxSCg04ax5FnpCuif5/4FsTe74XztlcnRkppCyF+BLyPV/b4hJRylRDid8AiKeWb+34O3x7jxvahsDBIPG6l9bLRNIU2Owt7E++VHNKnnIri9OjDwm07mblsDa50OXzIAHaGWli6ezeHF/fnjcgqHEUSdxyCmk7/gmIuG+EN+FJHREPze/H70Rdzz9pXqY03J6qZHBQhaTcGcUejVUKRz2JA7iCmlB3PvPrniGfhfeTrpahCp0fuUWxvm0NMSgxhY4jMKJLn/GathSFkriIzSSmISIOm+G4aq87gwO7Po3WqMjKdBppjCz1yHQpNMoCBg4pEV/syqtvbiC4ULQE0JcCgogsZVHRh2vTaaBWr2pZQ5j+QQyuuTuvonafD6T0vzdjW+7u/SqsG6DgLj1DtSpWgalBoBHnm4Csp9Xfc36ElZfxw/IHcv+jLRGdvzwn8zdQjunRg2nH9OYexs66Z5Zt2oykKtuMyeUQfrjz5oIxl+w2uYOOa3YkDE5BQie4zoOw/5sDAXsl29VLKbxytSEnjXPxNt7Ev2N9szXlnT2bZ8u3E4x3PoGGo9B5cwYaW5qzrKIrgnGPSGzCGTZOZy1ezcFsVfYsLmdC7B7M3bKElGmNibg++bKsi7nidjnVF5aaJh1EW8N5LQ+0w0T8ZfBZBzce7uz/Hlg6qUHFcJ0X7tgN+xcdR3U6hyAixum0ZuOmjO134KPJ1p3fuQSyuvwdXWokB0x7CSFlm+UUMmbXtgHdMu5t+jZQxyvOvyFiiJvRGkpunC4kqHVwEQhgMKvopvQouzFgnFflGfyZV/C5tmitdVjQvptGs54iKKxmQOzQtsj6y4BBGFqQ7VlXRRhrimZEkIcDQXEzbGygZqsrZfSfwy9HpPZ1+MWUaX+6uojrURtSyCOg6uYbBHYdndrxPRdBvcO/1p3HDvW943zIBjuNy2+XH0qO8MG3ZIaN7pnerVlVQVfwBg4lTs0XTvj98C2Lv9zJY2iedGCnlO8A7nabd1sWyh+3LNvcV1TsaqK1qovegbhSW5KIogr/dfS6/v+PfrF23GyGgrDSPm39xArc88R5VdS2ZGxFw9zUnpk360wdzeWHRcmKWjSskL61fhaIIHCnxqSqaonPuhBE4isvkyt4c3XsgWqePUtyxeW7zl8zcvhxNlHJp3yNZ0rKIZS2de2oI4q5GvpbDNQMuRREKh5Sezid1L6VVLOnCx+EVntDSgWW/oD62jpi5G1uqWZ0YBQ1NWoRcH9GEqm9AWOQpNkI4yCxMKydRcRS1trOj9Vn6FV6ZNt92W1GElpIrF0kZconcowOTDW1WCw9t+g218V0dE3doXND7WsYUTep6ReiS/AbgUwWjC/twRu/JHN5tKLqS+Sj/eMJBzBgwhFlbNqEqCtP7D6Jnfldl6R0I+HQe+tmZbNnVwLaaJvp3L6F3hcf2tyyHefPXsXp1Fd27F3HhD47gjze+hBm3kqk3n1/nmhv3rJnxncIr7/o2+DppHIBueGmck77rKMj/lq1xHJcNq6qQwODh3VE1lTGje3Hj9cfx9wdnEYt5g6ZDpgzmvAsO4vxbnsm6nQE9SzhsQkd7icZwhNMef47maJSoZaMKwYPzv0TBu2VBXWdYWTkHjKgkaOic3H84AwszlXk3tdbxyLr5rGyuZmDeRE7tO5K71/0DJ8uNFwiO6XYgk0pG4OLgV3Ox3HiKPRBoio8R+dMw1ADTKv/EJ7t+QsdD1DEAa4cmVEypUxUvIuT60YVNpd5Mnt6clcxPYgsSi+rmOynKORVdTe9pZDkNSDqiH4rw2sZ4Ue6vr8O6pOlLnt5yPw7t+iyCUl8FPx38a/L0rt97z85k/zIrQpJjOJzXdxon9BzF4ILMVE2B3897517Ex9s2s7a+nr4FhRwzYCA+de/nMHZwD96/72q+Wl+FbTuMG9Iz2fixtraVDz9cSUtLhAkT+jHlqBF8Pnt1sueXbmiUVORz6HHfI4m3M/Zua/YW9e0S33SwtF8p9qYiGo7zxx/+kxVfbEI3NEzTZvrZk7j6tpMpK8vnvr+eT0tLBNNyKC3JTW/mCKnkcxRIc0A21zfy3MLlSe0QJ0H8dqSXoY45DrgOH63ezAeXXIxPy7xMjnS5cN5TrG+pIZaIFmxeWU9AtwlmEZb1KQbXD76WEl8xMSfGhlCUjeEibGmTo1r0DEimV17AyIKpABhqHlO73c5bO67CkSaWVNHx+idJCYrQ6J07g01t7xKXHfTCsFSIOzp9NYntNqcdg5Qdz59LnOrwuxlOjF/rhRAGyPQokUCjJOAdmysdtoa+oMHcRrHRm365k1G6cG4e2fz7dAcGkNLmX9v/Tv/cIeTphVnXAzipxyQ2h3YTSwmftzsKOZrOHePOpsTXNXESoDUa54NVG1ldU8tj/kVcNvEALj9wQtZu1gDba5p4/sOv2Ly7gdEDunP2keMoLfBGxaFQjB9d+wx19a1EoxY+n4amqVz/25OZ8/YKtmyooc+AMs6/6jCGjsweBv8+kFlD9rWxX6Vx/tNY+dVWfn/985iJXlm6ofGrv5zLqPF9OfLw4Rw2bSh19W3k5frJyfGxuarBE8BLbTOReC7zcwJpI//7P1lAXSicbFHhJB7g9vcwYlmsr65n+pBBXDU5e0pgZdMuLvzkaWKujSslW9rqmVu9gYp8H0LNjOZ28xfzw0FnALChdQcbQ4PZEt6FKhwq/W1MKurGiT2vw0goYFcGJ9Mn91i2hd5DQSaiMR2OjCr89M6dway6eYl5AktqbImXU6iVk8s6ZJaGs0nCs9AJxeZRlHNq2vyiwMHsDr2CKzufg6Qg0TC2zWpmZcsCLGkyNG885f7site7ott5asv9aUrgEkldvJp/bX2EawZ1PajvHiiie6CYLeHMViOaEEzvNYLrR2Tn5rRDEYLN1U08++VSWmNxnqlcyi1HHcaY7t2yLi+lZO6ijfx77kpcKZkxdQRHHjg4WXq9YMFGfvfb13FdiWU5vP3WUoYP787lN0znnZe+JB6zmHbsKM68bBo+v551H98H9sHW7Cnq+70MlvZbJ+bvt77K8gUbva7ViXDuBy9/Sc/+ZZx0oRcOLCjwUhLRmMljz86nYUsTmgDbLxItgzzHxtA1onGL9sr5uRu24KZUuLTzyiSkUZ13tLVy+JNP8Nq559ItN/1jOWf3eja21iUdGICoYxFzQNVUfHonWX0EPYNlSCn509q/sjW8PaHKKYg4PqpiOQzNTw9zlvgHUewbSENsPXEpsaWKLrzg8fCiq+gZnMS6to8BM21PUgQoCM6gMfQUrrSTjg+QkncGTWQK1ilCY0jxb1jT8EtcGcej8RmoSh59C35A1G7hpW3XErYbsWUcTfERVAs5q899BLV0bYLd0e3UxXZl7AO8PPuy5i84pOzYrPMBjqgYzZtVX7K+bSeO7CBBDsnrzW0jz9qrA7Ourp4LX3gl2YStIRLh758uoCES4abDM4m2SzdU8aN7XsWyHRxXsmLTbl6Zs4xnbj2fnuWF/PNfn7J7dzNWIm0Zj9vE4zb/evlL/vHYZXs8lu8b30aAan9L4/wn0dYa5dYfPkMs0vEORcMmv/rhMzzz/g3kFQRRVYVuFR7PZd263dz9l3fw74xh5ShYeVrCZnimPRJLr/b5cO3GzB5bnWC7LvfO+YyathC/mn54RmHBncs/IOKkOPJA3HXY1arTo5MciIrCuCJPNmBbeDe3rrifuOsdky1VauJlhN0JFPvSnYFhRRexM/wxjoyhJN40KUEVORzX65/MqnkxTQIBPMG4FVEfA4vHEjK/SPm4JThsyb8Fisgs5S4OTCPPGEWbuTytYWx5zgnkGANZ2byAF3bc56W5pMuH1S8wpXQGx1X+T8a25tS+n9HKpB1r25ZjuiZGFw1kAa4beiK/XPoMtusk2z2oKJzX92CuGtS1jWrHHz+cw8vLViZtzZKq3Vzw3Mu8evF5DCrNjKz9/tH3+fjLDUny+NK1VXz0xTruuPZEbNvl9j++mZbGjMUsVq/exVFHj+Sh1/e9Ueb3gW9ha76XwdJ+1QCyHfGYxfx3l2GZ6Q9lPGrx+hPz0qZJKbn+N68w8/1lSBdUB4ywxGiTCNdjjOQGfHQr6QgnBnQ9PTXUOXqTUt5UFw7zq48+yjjGL+u3Esmi4CuRmIky7Hb4FIML+k7HpxpsDm9hR6QqrXuqRGK6JvPqPs3Y3tHd78YmBym9fkptrp8qq5hZte9SFVmc7fLhSJOwq1OUezlRqSc0X8BKKTEU+OiVn71HSEXucRzQ7RnKg8eRb4yhV/6lTOrxFj6tnLm1D9Bq1WDJKBIXy43SZtXycfXfM7bTajVmbVEgBCBdrC7KOwFWNe/kqFl/Zml9PVFTx3J0BgT60V8bxbKqOMe//TQHvvY37lwym7DVsZ2vdu/ivNdeYvxjD3LOay8S7ZSvj9o2/1qyjLZ45sjxD09/SMy0cRJcK9N2CEXi/PX5j72GbXPWJB2YVOysaqSpKbtuxX8M31K7QUr5jpRysJRygJTyj4lpt2VzYKSUh/2/EoWZ98HKtDLVdkgpmfv+yrRpW7bUcf1Pn2XzxloUCb6QS061idGSiOBoKodPSJdH8Ov7Nk50peS1Zav5YtvOjHnLm6qyrAG2q3RuG4df9XFOb4+L8fKO97E6lQmbrsWsmgW0WenPa4FvACNKrsPxGskhJJhSo87xM7/uSXZE1nRx5ILigruocfoScb2QtiDzw5IXyBw0CKEyutsTDCy+hQLfBAr9Uxha+icGl/yBmBPmxR33YUsTS5o42FjS5LP6d9kaXpuxrUazay0gL8redWXqncvf4/L5z9MY1oiaOq7t45DiceRY3Xn4i3WMfvJ+Zrz8Tz7Y0kETsF2XR5cuZNqzjzH+yQd4es2SNEcTIG47PPRpZoHNuq21zP5ifVr1WzRu8fmyrSxavYM1q6uSqumpiMUsPvxgZcb0/zi+oa2RHnmqfbC0BnipfbAkhDjpmx7OfhmJiUfNrhrKEmrxQo/RqMlHs1Yx7/P1rN1YjZ3yNrfr/yiWxDUEzaEof3n2Y244/3AURXDs8EHc8f6c5PKKnZCZz5QRwJGSOVu24EqZloIo9+fhUzTiWYinUUtHVx101QUUzulzDGf1PhyAqujurOdluiZbw9syptfGt9PkBDBdr86ovRWBhkNVdCsxxwc46ErHx1UVPvL07mxqnUmzk4eKQ7EaTtYpCaDN1TDpWj8j3zeakeX3ZEzf2DY/KVrXDheHzaHPkFKmjSJ7BPtnLSH1WtCoDM8/IGMeJFR5P30sTbTLiqnMb65HOu3VIoKoY/HkuoXMr97CzGMvYdHuXVz85qtJZUzAa94tQXE7zKquqFS1tDK0vOP8Q9E4O+qa0w5SjXnPxoLPNnPauscIxzIdH29Zj9C5/ItNfPzmEqSUHHHyAYw6sOs+LN8p5Lci2/3/Gq0tEaws0gtm3Ka12bM1O3Y08O47y5kzZw3xTmXXQoIecjFzJTYOL72xiJH9ujF+ZG8Azhk/mns//iyrHkxnxCyLN5evYXLfXmnTC4wAdbHsJcwNoRwKgjFU4aLIHB448Doq/MUAbA5VJSv7UqErGjWxBvL09EjsptAK6pw8BG6iYEAAFptDC/ArA2mhPd3S8Uw70sGWEXZbAXbInnRTW+itN6bFRLbb/RgmRYZQH3gVjZV5Z1GZd1ba9HVtSz2uSqfDt6XJkqZP6JuTrhMzJG8U69vWZOUBdvN3TyskSMUDa+bw9KaEoyEh7njn9+bmdZhNHeXYqxtq+clHb/Gbg4/k7GGj+OlH7zBr68Zk5AUd0EBr7Wjh4ErJ6ppM52rRqu1p36t2xE2bn/zpVfqVFBLrovpN01UioRizX1/EyoWb6dm/nOPOPYiSin2riPvW+Ja25vvgvO2XTkxeYZDSbgVUdypvFIpg7EEDaW4Oc81VT9LaEiXsOjjBzGaQAi/sJfG85n9/spLyolwuOuFAVu+shZikvYG0YuJ1sv4anNWTeo/h3tUfp03zHC9PGbLN7CDG3LtmLi9t+4oRBT04oDi7boIhDHrn9MqY3mzVJLeblOWWEHFtPm9chiCIJIhfMeluNKMKiYJK//zprG1+AfD6odQ5eRjCQcHFdDXC0s8X9Q/RO/frluZlf4IdaXPPups5ocd5DM4bRU2slharhYOKj+azhg+Sod72HnoHFR9FRRf57RsWPZ/mwEgJpqWR6OZJqhG1XIfVjTWMe+4+fHFfugOTWFTqIOMdReqW49A9Pz0VZWgqiiBpfLVIunZDTUMbGBIjDEqK/REqDBnSjRfun8V7L35BPOYZnzlvLeOYMybwg9tOyX4Zv2Psb/1M/q9gzMT+GMZcYtH0j4bPrzFmYj8+nr2aP9/1Nrbtel2uuxCHUUwXIRSaY1F+fufrvHDfZZQU5bB05+69ppM6b6szzus/kftWf5z1zYtaPqItHXIJZ899gOHFOUwuG0SFv5id0ZqMgYTl2lT4M1McTaZXOJLas82VEHUVpL0NVciE1po3mNKEwbD8g1CESHaLrnYKqHdyKVCjuFLQ7AZQhcvmto8ZXDB9ny9DtkiEd2ySRY2zcaTNcZX/g18NsjOyhf65g8jT8mm1m9OWV1G5sO81WbfVEA/z4NpPss6zQu2pp44bErVtfjn3fR5a8gVVba0dJdUpi7mGRDVFctKgsszrnBv0oapKVkfGdSWbahtRCjQCDZ1kPvw6h08bwlVH30lbc5R41ET3abz22BzueO4HDBnTO+u5fNfY32zNfunECCG49o9n8NurnsQybVxHoukqvoDBJT8/nif/8QkN9SEcx0Vo2Ue6EnBTIisx0+a59xdz3nHj+dlzb2ObiQxvgjsTcFVCmt2xjkzcLAl9Swppi8cp8He0HfApGralItX0EZZtKwhUVF/7dInEYXe0iepYE5/Wa/TL19CEk0wpCQS6ojOt7OCM86jwZ0YzHKlgSy2xbe8Eo65BjVnE0NxcCnxH8Y9Nv8cnFHyoeJ9mgZlQ1UycFs1p8tz7hv65U9jYNh+ZSqCTEHEN6qwt3L/hj0SdfFxAVwwcaTG5eAr15iZarSaK9DKmdzuHkYXjs24/6pgsb04PqXcVlUvOB1rtGCLi6eJkIGWSX9M4beRw8v3pLSS2Vjd17MeRaQ5MKuyAghHueItVoXD+mZO4/eqnMWMdRiceNfng5YUce8aBDBjefc8n8F3gv5GYb4Sho3oyfsogFn+2IenI+AM64yYPoP/QSn5+2n1p3IQshTteJE6Kjg+ZK3lnzkq6Dy9l/qZtuJ0e4HbabPvmEJ5/rijQu7ggI6KZoxp4aiJ7vsmqcCgINrDbrOP1qq1oQkMTKlZKKsWn6BxWPjEjCgNQGRhOk7kjLZoRc41ENCdR8ZM8TZVBueMo0qLMr/4jjtsRpbRRaXA6ZAxsGaU2tu5rOTGD88Z22T7BwWZR02y+aPwYKQ1URQckQTWX8XlTWNe6AhfJ4LwRnNnzQvKNwqzbea9qVRd7F0g7S1ge735t7aK8HgFSk0mKol/TuGZK5iBx664G4uYehFeFwNXBVYUnnJnAoEHdWDN3LU11IZxEWtuK21hxm7/c8ByPzupSAPe7xX5ma/ZLJwZg3CGDuefVa3n18Tns3FzH8PF9Oe2yQyntVsD8eeu8UREgbOkNFxSS0Zj2a+wa6Q9hWzjO8u3VSc6DgOTQO2o4CBNPAdvtCJkJoKq5lRlP/pM3L/ofSoJeWHJ1cw0+VafNctKIsyCwHfDh0K7iooiOQFHMsdnaWsCU8hyqYptwpYsldUbnT0QVmSzzCn8/+uSMYlt4eaKpmUfQy4QgKoPU2v1Z1vYRloyj4NLP50mXKCnHaCZk/nO00izbyUSz2cC7u19ldetSgppBoZqLlCaWjCZ6qSjUmHkIIOz4E86ZwHY8st6CxlX8YMBVjCsau9d9Wa7Xscl1BY4rEi1r9sH1lyLr9wVIpgFzDYMLx4/l2oPT9V6klNz4wJvYduKZ6mp3ItFLJwW6rvLJByuTRiXtXCybhXPXfv9OjNzDMf8Xe4QQgpv/fDZz3l3OB298hZRwzCkHcPiM0Sxbuj17o74USMDxKaTmSkzLoa4xzMIVdUSsbL3EOv6V7d9K4Q0uHvz8S+ojUW49+rDk8p/Vbd6rAwOS0pxQWv9RW9roQqPMKKEu3pBQ6w4wKn9k1i1MLDmX9W1zsNwYIHGlSFYjdUbv4EBi5ly2xGMJpycbE8aDJvwUdCFa1xnLmpczs+rf1JsNdPP1J+xsQkoXFyehPOzFU1UhsaUCODiu9+6Zbhw7vIzfj3oQLYvkQmdEbBNXSmxbQboCRZUoakJaVJVI++ulghUEuvAkLAaVlXDbMUcwvCI98r5ywy5en7UsfWTWRcrZ1SCFJcC2bfVU72jIamt2b6unpTFEQfGeNbC+NfZDW7PfOjEA/YZW8rO7M8mnekrbAQHobTZ2UEXqCoqqoPlVQjjeBXdkcqQzbGBFgtCbhaehehERJS69q5LyXJmOQ2MkwqNfLExWtZT7c7FcL8LROVKgpCQNU9sKtCPq2Hxa24qu5GNJLzRbHVnOutY6Hj3wugwexZm9buHT+pdZ2vQ+ljSxpffCdoZAsDu6OUmYdVHYHC+jSItRpIZBONhSQyJQ8NEn72RarCYK9KKMbbWjzWrhrrU3EXXCuLi02tCo5DIyrw8bQ8sIOT5a7ADtyRpHZho90zV5t/r9fXJi8jQ/0vF1ahGhoiiuRzrsVP6ZvPa2AE0ibUjVNlYQ/GTSZH44YTI7G1vY0dhCXWuYysKOdNK26iYaWjqIjrIruruUKFb6zY5GLRrbYqiqgmOnv92qqv5Hyh/bU6f/xTeDqiocecJYjjxhbNp0w9Cyuw6Jx8/n04hpYPlE2iPvNzTGj+zFzqoNe95xSgFBO6KWzQtLl3PBhLH0KSoEoEewMKFo23VEpzAQoTCYxSYIhZ3hCBHHTzvH5dcrn+Nm50yO6Z7OSSswunN2n/v5tO5xdkVWIEQQ04olB0+pqI9tpkCNJo9AFRJFOglZzPSjtKWPoD4S07UwlK7fh3l18/nntmcxE9VUrVYrfiWPEQVlrGvdQsQxsKWCROBTLHK1eIZttVyTtW3LGFmQPdKbiiF5lUTDRtrnQCguvqCNlmNhtXSognvoapjkQVcVZp1/KeWBHFZW1WDbLqZtY6RIdLz76RriVicnpD3HngpBhq2JxSxy9mBP9CzteL5r7I+2Zr+sTtobjj9hLD5fiiMjwR9zmTygB7NeuI47bzkVRRHJlIBH7IQ+ZYWM7FWBT898EHQpsvF6k7Bcl1kbNyX/7p9fwtCCcrBV7Ij3c0wFv6Jz/+Qz8KsqipBd9lFxpENcek3JJAJbSta07ea1nZ9m5INVRWda+XlcO+Rpbhj6PKMKDkn2GkqFQGRU/EgUmuxcpDoJRCECnVa7mDWRSl7f9RG/WflTHthwJxE7e3XNJ3XvE3ejadLmpmuysHkrO+PFNNs5iRx6aiQk0/S3Wq3ZL0QnzKneSNxu31LHTyIQQqJqHZEVL2cokNGE16kCqqSjSRpIW3Jcv8H84OmZnPq3f3HD828z4y9P8vMX303mpB3XTXccFYGrdTqLxDa1qIOwHJS4jRK30SWMntAv67kIRTBtxn9IiEru4fdffCMMG94df5aPht+v87vfn85bb/+MsZP7J1Wa2x9X03bo0a2Q08aMIJDF1rQji7+f2Izg860dqd7z+k9ARcMKacSbfZitOtgK/XJLuGjAJHShEtSzE0FN1yLqtEdKPNjS4Y41LxO2M1tglfj6cFLP33P14De4ZMATZGt2ogodjTCdHy6vqaukzDcSgYojNTZFB/JlazfuWncfP/rqJ3xYnVnpCV4J9QvbX0o6MOAly6Ouw8rmJlrsAJbUkrYm7upEncySaSklYbst6z4646EVX6TchISdcRVsU0HzOQTyHYRIfZFS7nPHQSbsEHTX8qhtDHHEXY9z9T/f4Ef/epODb3+EOWs7mjm6rrv3/Lgr0SKu17w4aqOELZSIjbQcpp81CaPTM6lqCmMOGkgw19/FBr9j7Ge25v+kE3POuQcxZmwffD4Nv18nEDCo7F7ETTefhK6rtLXFMTQ14/WbtWAdDU1h7r/wJHJ8BkFDR1cV/LrGkf3749+DwQEoTOFRSCnJl3m4cdUj37gK0lTpoZVwVI9hTCodkFVFFjwehUjGCdPJqvesfZOzPr2LL+rXdXkcR1ScjU8NpjRTFOjCYFTBVHSR+WK70mVlWx0rwv3pV3Ad1VYhlrSJuzFsabEhtIYnttyXdV8bQ6vTysHbYbrZU1rZz1dldEFm36FseGPbMqwsuXAhIKir3D3pBGZOv5TZJ1xNkcxDxPUUwi+eI2MJhIX3cwUn//0ZPt+4jbhtE4qZmLbDR6s28ticLwHo370ko+Ga4wMRUMjL9ZETMDCEgtFsoZoOwpFeY1EJbtzmkw9XcsNd5+Dz6wRyfARyfPj8Oj+766z/TNWAxJMT6OL3X3wzqKrC7XecRV6en2DQwB/QMQyVk08Zz5Qpg1AUQWsk4QikPIKulPz9n3OYOqAPp40Zjk/TMFSVoK4T0HVOHjWUgK51afhVRaEg0GFrdHTslgBOXEc6Cq6lYrb6uKjPIVw4aBK6qtIcC5CNP2y7Hby5VFjSZsbcX3PL8qdpsbIPYAzFz+EVF6c1U1SFTo5aQKmRPW3hSsn79SYRjifMDBosFVs6xNwYcTfOSztfYVnzioz1WqyWpJ5NKjy+nUmmbRHE3Cyds3Hpn5u9w3UqYrbFlzWZ5ewgsE2NAsPHG8dfwgfnXMTdhx2HP4v6rjBBDQvUiPfbUdfKhY+9RFMkSjhuJn/Xv/A21S2eY3XU5KH4fJnfGUV4hN9cv4Ev7GI0eY5L0ta4EhGxKe5dygFTh+Dz6/iDnq3p3reMG/5y/l7P+TvBfmhr9ut0UlfQdZU7/nQ2mzbWsGFDNRXdChgzpk8yfz3vq01ZiVOqqrB49Q6Omzqcj2+5glkrN9ISiXHggF4M7V7Gmpo67pg1lwVV2zMK9QK6xiUTvPCrlJLX16/m0+3bPdJbyvu1o7WVT3dt40/jzuGeNe8yc+ciHGkn+6IAjC7qyfKM1gQeJLAr2sBNy57hwYlXMzTfyyXbrsPHtV8xr24ZOVqA6d1uoC6+hM3hlRTpFUwtP5kSo5KVrZ9mGEYJNFkKtozx8s6XMJT0s3OkzabQOta0rEVTfPTN6YmeCPuW+rqxObQhSfbrCIJkD62KRAVD+zxNaATVIMd3Pw6AqG3yyrbFfLBrFXm6n3P7TWJqRYe2RtevgWBYYSUn9h6djMS8ftIF3DDnHZbUJSpAHFCiSvro0QUsmSGDFbNsnl+wjGuOnIwQgjuvPoEf/fVVHCmJmzZBv8Hg3uU8eMPpGLqGbTs8/c/5vNBJpwigakcTWp6PZz/7FV/NX4+UkvFTh5CT9x8aGcF/S6y/Jwwe3I2XXvkxixZuobUtyrhxfahIOKauK1mzqTrresvWViGE4LbjjuC8CWP4dPM2cn0+jhk6kFyfwZgey3hw/hfUxjIVdxUhOHyA1/U4Yln84uP3iMWtFAkIgSvh7oWfcubg0Twz9SJ+vfQtaqIbKAxGUIUXEVaEQovjI10Msx0CR7p8Xr+G6xY/whOTfpqMRlbHmnhtx2dsDlUzoqAPx3W/kdUt7xO2mxiYO5GJJSexpe1DFtU/iC07ojmOFOyO52NKm6UtK1PKtDtguiZv7Xobv5pLnpZD94DHGcnR2onG7Q9yx3qpabM0yPRtG4qPCUVTKfN5KrmbWut4YsNnbGyrY0xRDy4eNIXuwb0PKoSAuyacxpBEi4FBBeVI4M4Fc2kzTUzH408qpvBsTeLgFCv7cbqu5K2la7n80IkcMKwnxx0ynHfnrSJu2WiqgqIo/OLSo5gxdQQADQ0hfnrlU1RH0qtzHcfl8fs/4uX3f8bOzTVsXLmTip7FjJj4H5JySGB/szX/J52YdgwYWMGALG3Hi/IDqIpIEnjboQhBfiLkluMzOHl8eqfQYRVl/PP8M2gIR7j01dfY3NiIJhRMx+GCceM4fugQqkNtXPT6a2xtbsJ2vXJmqbte63UgYlt8vnsHh/Toy00jT+KXI04kbMdZ2LiJVivKhOL+5Ot+Zvx/7Z13fBR1+sff35nZkh5CgITQewm9SJEuICpgBxWVs7fzzvrzLHfWK+qd7ezlPPUs2LEgRRALXaT3DoEQ0svWmfn+/pjNJpvdhKAQFtj367VKdmdnvju788zzfb7P83kWPlhn9M1n6ry9cwGP9boc3TS4c9XzbC/PwWP6EAh+OLSaK9tO4OaO00Pe97u2f+Hd3U9QoZeiSx2JIM+biF+qgAjJ16mOLg3+tuk5wIrkXN/uUoak98eUTdjjSsFEoAqTRjYXKXaTpo408n0VIeFfC0GcYiPN3hSbYic7JZvxGWNJtiXhNfxM+/E19pQXBlsJrCjYxRXth3BLl9EAnNe6Jwtzt+GuIRzlUDT+M2xaiFZPq+RUPpx0KWU+L8v35XDj5zPRa6loiESF1xq7lJJDheVkt8ogr7icVpmNuGBUTwZntw06xpqm0ijBGTH3xe32sW7NPoYM68ywhuxjUo1oW6c+mbDbNYYM7Rj2vBDgsGt4vOETprhqIf8OTRrToUap7WUDenPZgN58s2kr//flbBRhqUA5NRuvXDQZp03js40buW/eXNyGjpSKVUDgNIPSEKU+LwcryuneKJOPRl2L3zQo8BaxrmQrCVoc/dK689q2Oby7Z2GET2XZAV0a7PcUsK5kFz1S27KpdC+///ll/KaBLg1WFm3nwz02Xh14K1nxVZ+ha+p5lOu5bCz+CK+poyDJ9yWw01u79lQlm8q289D6f2NIg5ZxGdzb9QZURZBqT6LAlx+YBFkRJLtix6HEURq2RCSxKzopWiPitEQStWSGpo+lV4rVj215/m6uW/Q//KaOISUbig/w6Z7VvD/iatonN8Gp2RjQtAXL8vaGVI8pQjCpbTeGZ4R+3xd1yeaCzt0p8ri57YuvWbS7RmWnhAjt7QArp7LIZTmrxaUu0pxOWjdOwVQEfbNbMmVCv5DO540bJ+JzRxYC1f0GeQdLaN0pk9adMg97ro8F0WZrTmgnpjYmjuzBx/NWY9SIxmiqwsAerQ/7/sYJ8Xx+xTQ2HzrEwfIKujdrGqxKuu6Lz9lRVBjogRKY8/sVpGqCJnGqGk3iq8oXhRAk2pyMatY95BjntRjMp/uWhJRPV69wkkh2V1hCSQsPrQo6MGBd3l7Tz5s7v2Z8xkCSq5VLtkrozN1dX+E/O19gWdFSDKkEq5EA/KaKquhhuTqmNHEbBmDNrF7Y/jZbyvcw68BPQblxQ6oU+BJpndCUWzv+nqe3PkuuJxev6UVBQRMa01pPY2j60LDmjX7T4M7lH7Gl9GDI827Dz3+2/cTUNgNJdyYyMqMjE1p044s96wKJ0xad47JqDdMk2R2MbteOa/r3442fV+Krlr2v+LDuNjXeKwQMaGdFuR5+ZTYLVlRJgB86WMq+7QX83HsXIwZ3omeXLIQQbN64P8yBASvBs2nTwzeWPKZE2ezoVEAIwTmjevDF/DV4q6mLO+wa557Rq177OLNLR0a2b8vKnP04NJXezTNRFYWtBQXcO29uUPcoOON3K8gEK9lPSkmSvWqpx6aoZMSlkxFXVXV4XYcz+SxnCS6j9t5GADnuAnqktuXxjR/jrqZE7jN1MV+37gAATohJREFUdNPg+a1f8tdeV4Z89oFNbqJ32hXcvfoGXKbVT+lwSAl+U+A1LTuzsyKHRza8gF0tochXGNh35fgkF7Y4j7YJbXli89MBYT0Du2InSUvk/q53k+4Mr7DcUZbPDYv+h6faREiXJhW6l8fXzeHlIdbSyxNDz+K8r9+iyOsO9rRCwoAm4XpdYDk4jePieerss5jy3vvklJTir9R6MaxITCTi7TZO79SWvIIyrrrzLVxuH75AVeve3QUc2FdMz65ZnDUqm7TUBFwVXspL3RH3ZZgmySmRhfsajCizNSdkTszhaJvVmHuvGUecw0ZCnJ14p53GqQk896eLsGmHV7QrdXvYfrCA1qmNGN62TdCB2V1czLbCwqoffACBQPFbV54iBJPbdT3sMW7tNImRTXtgD+TNhFU4IeiWYl1MPx5aHXRgqqMJldXF28OeV4TCgLRhaCKeyoTbSjymzVqKr/aklFCmOwhJ/jMNvjmwMGydWiLI86ik2tO4v+v9XNH6CgY0GsCYpmP4S/e/MKzJsIjdp29b9iEL8yLn+dgUlVWF1sxGCMGYpl3RXTZ0r4rfo+Ets7Pm4CHu+nFWxPdXctewYXx95RUkCRuKD1QXKIbAsIfWFdhUlQSHnf87ewRbducxb9nmoAOj+Ez0Ej/79xXx4VcruePhj/nHC3MoLCjju28j60pIYPS47hFfaxACZY+1PWIcO26+bDj9e7TBbtNIiLdjt6kM6dOWay4ectj3SinJyS8hv6Scwa1b0q9FFmqgRvqDdWvx16bya4BdURnXpiOJ9tr7AQFoisqLA26isT0JW7BJq3XxVzoLppR0SGyO1/CzrSxcUdxEsrwwcqWVXU0kK6FXmANj7Tty0o+vWi6LiUmO+yAF3tKQ4gEAh+IgXoujc3In/t7zESZkjmdgWj8uaXkRf+/5cEQHJsdVzMULXg1rAVA5muX5u4N/t0xMpW1yWthnfXTFt6zIi5QvY9E4IZ7ZV03n96cNJs6volWArTy0KrKSOJuN/m1aMKhdS15970dKyj14/UbQBuu6yaKfd/DGB4uYcvNrrN64j4/fXRyxvQnA6aO6kpDoiPhagxCFtuakjMQAjB/alRH9O7Bm636cdo3sDs0Pq/ng1w0e/Hges1ZtxqYqmFJy7ejTuHb0AIQQlHq9aBFu0ACKVGgcF8eLoyfTyBmhjXUNNEXlkZ7TyHEV8NyWL1mavxmfrDabU21c3mYUAIlaPCIQnalJghY57yI7pQftEzuwrXwbHqOqOFMiKNGdOBWdOBWaOTLZUVGK2wjdt4kZCLOGf948b0HgM2gMSR9Cj5S+eAw/ZT4PL+75DlNKxjbvRqdka6lvR1k+Px7cjiGtaq2w5VspSXVUzS5eWL0Uj09S/efpNQzm7N5GiddDiqP2XJO2jRrx+Flncten3+BFRwI2FWxOjYEts8gtLqdVoxR+P34ITRITuOrJd/FVljxKK5+ncnhSgsfrZ96PmzCLPRETJwF69Wl1XGdHVtljlE2PThEcdo0n7j6XnIPF7D1QROvmaWQ2PXzexeZ9h7j7ja/ILSpDAE1TE3n86rPp0sLKESlwucImS2DdKDWhcnpWa/4x/PCNCQHaJ2byybD7WF6whYfXvYtL92AGlpXtikbP1LZ0SGqObhqoQsGU4TdQZx3NEy9tdSmPbngUn+kLcUSUQLQIBIlaEobUOOhxhSUaSyR+qYe1JfCaXg4E2rSkOxpzUYvzyPOU41Q0fsjdzeqCHLISUjinVXeSbJZNeGPropAITE0qtwPYW1bM2oLcsPPsMXReWb+U/k1r17ZRFYUbhgxkxea9rNp7AE+gFYtdEbRulEZSgoMKj48Rndpy09hB/LJhH1//uAEpZHA5EKPK1vj8BvgNHvzXl8gdJQTTCqsNTVEEky6srUF0wxCNtuakdWIAnA4bA7Ot5aOCkgqef+97vv95O5qqcNaw7lx34RCc1TLF/zFzIbNXb8GnG8EliVe+XcqSnXtYe/AgumngSQm/k9kUhfO7deOx0WNDcjbqQ1Z8Y/7W6wo+2beYd3d9T4m/gp6pbbil09m0TLBmGuc0H8KCvJV4qzVzkxJswkavlPYR96sIhT90vJ1lhUv4av9sdrtyg31UJAoGiVzc8jJ6pGRz3Yo/UXPGZN3M7UD4Qm9lMl6ht4J7V37CsgKrt5SlsGnJj7+x7Semtx/C77uOZnPJQTRFwasL1Ag5OYk2J4kinmvnfMrPB3Mo9Xmt4dTwnzRFodDjqtOJARjXtSMZyUm8vmgFKzfupTTfg4nOkkJrFnZgdyHLVu2mXWIK+w4Wg7QUejGxyqtVWSUyJSW+ci8Lvt2AqQgrqU2GmuEmTY7zUhLRl2x3qpHVLJWsZqkALFm1i5fe+4E9B4po3jSFGy45ndP7VV2nLq+Pa575kDJ31RLPnkPF/O6pGbRqn8bmg/nYEzTsDhWfGepQ2BSFD8+bSs9mGUc0PlUoDErvwluD7+DFbV+x6NBG7KrGOZkDubKd1TBSU1RGN+vF/IOrg52cAezCxuSs02r/7HFZPNbjMeYcmMPC/IV4TW9wwqUIQbwaxz96Psan+xbw4b5ZYc6K3zSwCRWjhq1xKA5axlvR6AUHtvLAiq8p9rnxmTpCCEwpiVNtPLl2Ae+OuoLOKU1ZXbivVmFAu6Iyrd1AZmxey8trl5HnqsBvWLpQ1c22BHIqDi8JoSiCl6efxyc/r+eTFevYvjkPQ5fsKSwIbpO7u5ivFq5Hz/GEFDyARKogjWpmzpCU7y5CVATsvAjZHBSO/1IS0WdrTmonphKP189V9/+P/JKKoNLvR3N/Yd22/bx4/xTcXj+qJvh0xfoaImtWFcuyLXsxAvdNUSYRCZYGiCklTk0jPT6ee4YOP2IHphIhBBe0HMIFLSOHoDsnt+LadhN5ZcdMhNQ4WKFR4VXZj2DaD2/yUJ+JdEoO78mkCpXBjYcyuPFQFucv44O9n5DvK6SxvREXtjiXYU0G49K9uHQbDtUbNC5SWpUGdiUdRRSGLCnZFRtXtjkXKSXXLX6L7WV5Icm0UlqukseQvLltEWdmdadlQqNAVMc6Z5UXrQCSbU4eyJ7M+Z+/i1v3V6tNEFZ34WqOjKYotEiqX8lyz6wM+qRl8F1BeBjci0T4dHbsLbAE7HxV45GAVATSsBwVrcJA8ZlIvarWQgphScMH9td/UGRHssGQIA7fXzBGA7Dolx3c968vgtWRO/bm88DTX/LATWdyev/26IbJ3FVbI/ZTcnv9rN95ENMO3hIdI1Wg2ZTg9RWnaVzVt98ROzDVSXek8ED3S2t9/fYu55LrKWRzaQ5+XSXfpaCbCs+tX0meC+7MPgO7Er4kn2ZPY2rrqUxuMZkP9n7A4oLF6KZOt+RuXN76cqv6yEzFlApgBm2NKaHcm0hjmx1NzQ3KOSgoJGqJDEgbwIbiXG5d/ElIhKVSS8tt+HEbfu5Y+hlfjruOdknpbCyumrBVZ2xmVwpLDf65fl5V40YAQ0HaqkRJbYrC6Zlt6nU+barKRf178MKHP2LoNSaCgNuroxf7sPmpMU8MWBsFpAmKbuI85Km9E7QAVVNp2aZ+KuvHjCi0NaeEEzNvyWZKKzxBBwas8N363bmM+eOLeHx+7DYVqehgl2HrHdWjjYpXkChUOrVtgt2uMapNW6Zk9yDJcWzXKSe3GMbopv24eOFreHwlwZLnVYX7uGzhG8waewvpztolpwenD2RwengfjxJ/BT4jDq8hiNP8KELiMVTcup00u+SPnS/h3T1fke8tJiuuKdPbnkufRl1ZX5zDnorCiNVAlc6A3zSYu38jN3YeQfukJmwuzcVvEgzfOlUbH428ib8u/h6PoYeZHSEtZwEBcarG/QNGBcvUD0deSTlPf/FDuDBVjT8VvWrM1ccuVVC8lkJvZf+SEEWfQK8JTVM4bXB45UqDE2Wzo1OVf7+9MEzewePXeeCd2fjfk5hSkpoQZ5VM10BC8CYmEGjFEiVeYWDnliQ7nVzSoyfDWh++MOG3kKA5eb7/Tcw7sJ7bln6GHogEeQw/7+/4mQJPBf8ceH6t749T45jeZjrT20wPe+2Qp4J9pckkOzwk2PwYUlDicaIbcQxpNRLVtotlBcswMemT2oepraZiU2y8vnkJPqOOXkPAzrIC8j3lXNNxKHP3bwpxeGxCYWB6Wx7odTYD3n0Rb9i+BBgCNIkmFJJsDq7pVv/GuC9/vZhSV+TEaQlWa5uIzknVepFW6rfa3dRxnOGju9XxagMSZbbmlHBi1m8/EEzcrMRQQRcSbyCkqxvW7EA1waiW0mLNzEP35/MYZCc25S8TxxzjkYeyq6KIg+7yMMfBbxp8uGslN3YZXu99uXQf3+duw6X7UIVGhaHh9VVv5yDITmnNiKYDGNF0QNj797tKMGsRpQs6fUJYwn5C8NrQafzlly+Yf2ALJpIOSU14tO8kMuNTWJm3P6xJHliRlyYJ8bRKTuXmXoMYnhVZGTcSnyxZF36tVVtjrmw/FanRowBQBLbgxrUYFyGYMm0odsdxvoxk9K1Tn6rszS0Oe86bLJBSt26UQEFZNW2YGj+s6vmxAkG8ofLg8NF0aBreDflYMmvv5rBokdfUmbN/I/me8jonTDXZVX6I1UV7sasaTsVJsUehuJpYcJyq0qdxW/qmjYzo/OwsK4gYWameri+xItqdUprxwqCpPLjqK/a7ilGEwsSWPbi/1wQ2FBzCrih4I0QS4hQ7zZLiGN68Hbf0GEyTuPAGmbXx3ne/1Pm6aRPgkZFv/kIgVLD56s6KVRTB9OtH1ntMx4wotDWnhBPTOjMNp13DU22GJGv0R7KeBM0DhjM0GiNrCCzG2bQw3YeGYFd5QcQlK6+ph5Uu18Wigzu5afEM654uJaqmkJJgKWuCZTydqo2r29WeONjYnoTHCC/VljLgxAjQhML4LGv2kGKP4+nTLsZn6PhNgwRbVeSqZVIKOeXha9CKEHxz3u8OmwMTiX35xXVvIAVKgoKIoPEBltEYNbQzixdsxuePrNmgqgpTLhsc8bWGJlaFFB2kN0rgYH6VpompVtqamsmshP0t1SrnuhLdMMlIPsZN/SKwtfRQRMfBoWjscxXXy4kxpclfVn/GnANrUYSVT+YzDWyKGpRPcCga3VOz6NOoVa370ZS6i2gVBF1SmtLYYTkeg5u245uxt1Ch+7CrWnD5KzMhKSzHCKzbwMgW7XjpjMmH/Uw1kVJSVoumSyWGHetOW0u+cef2zXB5DlGQV3u7hH4D29EsM/WIx3csiDZbc1KWWNfkrOHdsdlUhGktDwh/+JJRCJWVgSaYVRIrgHVjdWgak3ofvoz6cGw8dIjXVv7Mh+vXUeoND0fWpFNys4gVC05Fo2ejrHods0L3cdPiGbh0HxW6D5fhp8yrUVAah16RTklxKk1pzVO9b6RNYriQYCUrDu1DGmpYqbaUIEwNh6Lxx25jaJMYuoZrV7UQBwbglj6DcGqh/rRT1ZjYrkuIA5NfXkFOcWlYb6lI9GvfAoetlqUnCXGaSr/urRg9uFOY2qWmKgzt247bbh6HogikEn7T0TSFQUM7Ehdfd4lrQyAg2AYh0iNGw3HNhUNw2FSELq1cqtqUrSv/Ua0KWY8P3dRp0zi/XzaJzt+2VO0zDL7ZsIXXF61gyc699bp+shtlEt64xZowtU5Ii/COcL7Yt4q5uevwmjpuw4/L9Ft9yjxOzKIUKElhbOO+vDjwijoVZ3eXFxJerm39O161keaI56lB54W8x9LncoTk72QmJHF689Y4aixJOzWNG3tVLR/phsmegmJKXOG9pWoihKBdRuTzUfnNOx027v/DWdjt4fbI6bBx87QRXH71iJB+gNVxOG1MuWLoYcfSEESjramXEyOEOFMIsVkIsU0IcU+E128XQmwQQqwRQnwrhDi2C7dHSHKCk0mDu2PzSBSfRPVV5TnURAirWaRighKIzNikQFMUFCEY0CaL96+7hKTfYFiklNw9dzYXzHiPJ376gYcWLmDI66+wLKd2bQKAzinN6JPWEke1nkyKEMRpds5v3adex154YCvSBFMXVK4GmYagtNxGbqlJqVthfZ6b6xfMpMQbWXAJLGfI61Px+1VMU2CaoOsKfq+DERld+HLMLVzRvn5RitOz2vD3YeNJc8bhUDUcqsq5Hbrx12HjANhfXMrUl99jzJOvc84z/2Xsv97g5905de5zQt8uNE1JRK1eCiEDEZZubXls+gSevWkyN049ndaZjXDYrOM6PBKt2M+u1fv56ps1PPa3i0hKjUer5hDZbCqduzbnzj+dU6/Pd8yRtfcyibbQb12c6HYGYPiADqSpdjSvieKT2FxmxKVIRQhUUVWAokiI8yok2e0IIMFu44ohffnT2SN/03j2FpUw+pnXuXfmHP41/ydufP9zpr7xPm5/7WXIANd1HopDDQ1Bx6k2LmzTh0aO+lXIfLBrKeUeA79PDU5wygviyT+kUlYBJWXwydrtPPvz4jr34w+JnlQ5MwLBQ30n8N3Zv6d1Yv0cq3+PnsiZbTthV1QcqkrT+ASeGzWRXk0s9dsvVm5kxMMvc8FTbzPq0Ve47e0vcHnrjrTcdeFIHLZwByQ9OZ5po/vy/j2XMWFAF26bZm0X57DhQGAvN9CKfbz15g+06tCUCZP7otmU4PxaUQR2u8b060fRs2+ben2+Y04U2hpxOK9cCKECW4CxwD5gOXCJlHJDtW1GAUullC4hxI3ASCnllLr2279/f7lixYrfOv56sWXHQW66592QhDvDBr5kNXTmY9cY1q89czdbZdiV4kX/vnYyvds0x5QSm1q/xNK6+GbbVu6c/Q0uPdSQpDqdLLv2hjrDpx7Dz7MbFvDJ7lV4TZ1hzdrzf9njyUpIPexxfYbBxbPeYdWhqn4vQg14azVMrV1RuabbQO7qPTLivn7Jz+HyBe+GtQdwqhozx19F++R0dNNkzrZtzN2+jSSHg6nZPejWNLyKqhLDNCnwuEi2O3BqtuBz45/6DwdKykLyZuJsNmb9cTrN6gi1l7o8vDJnKfNWb8WuaVw0tAeXDOuDpipIKXn29QV8PnsVNk3Bp5uIcj2oFQOWEu+woZ24586z2bhhP0VFFaiKICurEa3bHl5e/dcihPhZSllvQYik1Bayz/A/1Pr6D1/cfUT7Ox4cKzsDDWtr/v7ULOZ+tx69mrKzu6mKmaAGo6iKECTFO8hITWLPoeJAHpmkc8umvHDz+aiqgk1Vjko/nEv+8wGr9h0IuXYcmsrvBvXjttF1z+43FufytzVzWFW4j2S7kyvbn8bVnYbUqwpzY2Eek756E39lXo0Eu13HV+YI63nkUFXmT72arKTIUgV/XPIx3+zbGLa81S01g8/OuBaAQxUVvLd2DVsLCuiVkcHF3bNJdta+DO3y+yjz+2gSlxD8PMu37+PGNz7FU61C1a6pDOnYmn//ru6lplXbc3jpq8XsyC2kXUZjbjxnML3aNQfgYF4pd97zPgWF5QgBLp+OMLGqLyvPgUPjib9NoUVmI7ZvOYDL5SMuzk7X7BYkHqMebEdqZyA6bU19cmIGAtuklDsAhBDvA5OBoHGRUi6otv0SYNrRHORvZc7CDfj9oWuhqh+SPILUlskUlLnITE/mhslDGNW3I3eWVbBkyx6cNhtDu7TBabdO0293Xyw+XL8uzIEB0E2TlQf2MzCrdpElp2rj7h7juLvHuCM+7jOrfmJjYT7VHRZpWNPBmnbJZxrM3rOFG7sN4enlP/H51o1ICZM6duW2gUPolZbJ6OYdWbB/a1Ad06GoTG3XO+jATP/kY1bl5uLy+1GE4KP167lvxAgu69kr4vhURaFpfKhTsnTnXopd7rDEX8M0+XDFWm4ZXXu0JzneyZ3njuDOc0eEvTb7uw18OXc1fr+B328g/CZKjSRfr1fn+x82c9WVw8juUft3ctyRIGqJLJ5AnPB2BmD+DxtDHBgAZ56B3ggSWyXh9voZ2r0Nfzh3GBmNkli7K5ddBwtpn9mY7q1/fel0JEo9Htbm5IZdO17d4NPVGw7rxHRNzeCt4Vcc8XH9psFls9/Hb4ROjnwV9jAHBiyn7qec3XROTefxRT+w/lAemYlJ3HraYCZ06MRt3UaxOG8nbsOPx9DRhIJNUXmsnxUJ3XjoEFM+/AC/YeA1DL7duYOXf17BzEsuIzMpKeIY42124m2hS8Gvf7c8xIEB8OkGi7bu5lBpOU3qmDD1bp/FS7deGPG1+x/8mP0HijGrOS01r1avV+eV177juaem0X9Qh1qPc9yJQltTHycmC9hb7e99QO3KR3A1EFEfXghxHXAdQKtWtSdyHW38fiOi2q3NEFw79jTOGpMd8nzjpATO7vfbcl525BWyeNseUuIcjOrWngRH1QUTKa+lkkhVOkeLdzatwhsmZV5DFrIaNkVhymfvs62oIPi+d9atYvaOLeheSbHXg6EKcKqoQiB8dj5ZvpWJzXuwt7Qk6MBUfi6PV+ehr+fz3x9X0iOzGTecPpCOTerWPThYUo5hSBSvNUypWInWPsNgX1HJrz4XH37xc0jjvkhVSgCaTWX7jjwyM1J/9bEagmhLtvsVHDU7A8fP1pgRDLwAHCUmsx+7Niy60rNtJj3b/vpGfrph8uOmneQUltK1RVP6tGkePIYZOR0n8NqxszM/7t8VMYHWInxQHl0n3+Xiwfkzgr2iSr1e7pgzi9d/WcG6vDxLXyZeAZuGNDR8LhtPfreYlyZO4p65cyj3VS35ePw6fpfB5JfeJjMxiYk9ujDttD44Iyz5VCensCSiKbSpKvllrjqdmNrYl1PI3r2FIQ5MbWzfmXfE+z8eRJutOarVSUKIaUB/IHzqC0gpXwFeASvEezSPXRejhnbm62/XhWkzGIbJoH71L9utD1JKHv1sAZ/+vB6kRFUUHv70W16+6nz6tLHCi+d16cqKnJywaIwA+mY2P6rjqY5Lj7S2K8CMoFopYX+BC7+vIsTx8ZkGOWVlCEMgTAG6Al4FHdAxceNl+mefMLB5i6ADA4ABaiBPbldhMXuKSpi3ZTtvX34RPZvXPgON12zopXqV0JwB+MGWrDGwbXijNiklm3YeJLegjC5tm5GZHjlEXVFT10FEMq9gmpKMZim1ji9qOIY3pWjjcHYGjp+tOa1/WxYt2x5y01IUwcC+bY/K8lB1covLuOLfH1Dq9uA3TFRFoUtWE1657gKcNo3UOCedmqaz4UBeyL3Zpiqcnd35qI6lOiVeT+SfoyqDZebVkcDnmzYEHZhKPLrOygOBXk4mUGqVlOqBJ5bs28vffvieDYdCb/6qCxS/pBQvpRVedhUs4ZsNW3n/6qloau1L9Woty/i6YdC6SaOw590ePys37EVRBP26t8QewUmqqPCiagrUnVYDQHrjyFGjqCPKbE19EntzgOp3ixaB50IQQpwB3AdMklIevtSmAenVrQVjh3fF6bAhsEpjHXaNm383irTU+usB1IeFm3by+UpL+derG7h8fiq8fm757+foAbG9czp15rTmLYgPVOQ4VJU4TePZCWdjryXnxpQSrx65HBjAq+t8tWEzz/24hDmbt0VUBK21F4hLsxwZWa1E2qdQWu7D7avlmHXYY1NKyn3ekE1ULyEN0kwpcft1HpvzXe07Al6dsyzkcJXOjM0vOKtHqCEuLHEx7f63ufGvH/LIq7O5+O7/8OhrczAMk1Xr9zJzzmpWb9iHlJLTB7ZH06p+/qYW/oE0TaFN63Q6tK+9SisqkPzmpmxRkFR7wtsZgD/cOJZGqfHEOa2cLqfTRkpyHLfdPPaoH+u+974hr7ScCq8fn27g9vnZsPcgr8xdEtzm75PGkeR0EBe4wcbbbbROa8QtwwfVul+fbgRtVST2l5TyxtKfeXnRMrblF4S9flpGy6BcQ33ZXlZU+4vBe2boNeo1DD7esD4kR0cEuklXtzVeXWdHfiHzN4c3yw0e/2ABe2uRZTivf3fi7aFJzguWbuGsG17gL//+igee/ZKzrn+R5et2U1HhZd78DcyavYb8gjLatW1aL+fV4dCYfnl0VCDVyVGwNUeb+kRilgMdhRBtsYzKVCBEt1oI0Qd4GThTShl1MTEhBHfdNI4JY7JZuHgLTrvG2BHdaN3i6Gu9fLJ8XcQbv98w+WX3frx+nUc/nc+BolLsqkK31hmM6deR87t2o0lCuEPl0w3u/3wOszdsxWcatGiUwv0TRjGiY1UE6UBpGRe/9T6lXi9un594u40mCQnMuGIqjeKrlPseHDSG87/6HxWVuieVxsEUUG6zZkoCa7YUqMjSVBEq0V1JHc64KSX9s7JYnZtrvbdmdWQ11u2vXd/G5fWzLTc/4muKaZWgHiwoQzcMmjdJ4c8vfs2unMIQAzxn0UZWLt1JebkHn0/HMC3RqZZNkjF0syr8ogiUeIW0uDhKS9xIJKcNaM/dt0+o/YNGCVbZ46+fHQWSap+nWlKtEGJm9aRa4Begf7Wk2seBwybVHgEnvJ0BaJqexP9evZb5CzexbWce7do0YcyIrsTHHd1S/HKPl5W79lu/52p4dYPPVmzghvGDeXLuD8xYuRafbpAa72RUx3ZM6N6JUZ3aRSxQWJ9zkHs+mc32vAKEEIzq0o6HJp1B48SqaqQPV63j4dnzkdK6zp//YSlXndaPP46sapmSmZDM1d0G8MaGFXgq1XEDkhURV6+FpQXj48j17L2Gwdj27Zm3fTt+00TUMudy+fws3rmXcd0iq2v/uGlXrUtsKfFx+Pw6uQdLSU2Jw+3z89ALs8KUme9+9BMcLsv2+P0GpilRVUGj1AQqKqr8bSEgId6BrltNdh12jaumD2P0yChR5K2D32prjgWHdWKklLoQ4hZgNlZu6xtSyvVCiIeBFVLKmcATQCLwYcDr3COlnHQMx33ECCHo0SWLHl3qp6fya/HV0kJdAFsOHOKpr38MJo8ZusGOPQV0SWtCk/7hDkxOUQnnPv8O5V5f8Lrfm1/CrR98wX+uuIC+razP8sA38zhUXhHMtanw+fHqpfx9/vf845wqwTq7oXF9y4HM2bOV9Z48q6OqQZVhMUIDc8kOJ2DiNYzwC7yO37FhmlzWsxfxmo1nlixGFQq+CI0kAZIcDrYdyKdZahJJcaFl6zbVKmuP1NDNrmlcct9b7D1YhBCCRklOCgpdYTNIvczPobAkasneA8WoPompgVQFwgSHTeOt167B7zewOzTinMdfA6a+/MZku+OeVHuy2BmAOKeds8f3PKbHMKWs9Ro0DJMHZs5l9oatwSWawgo3C7bs4Ooh/SM6MG8tWsnfZi0M/i2l5LtNO5iWN4Ovbr0SRRHkl1fw8Oz5eKvZON00eWPpz4zr0oFuGVbloW6YDExoSUkjL1/s20iZzWvJOZiBOGqNwIRNUTmzbUfmbtkWecIUdHxCF3wFMKhFC/46Zix7ikvYWVyENE0Mjxl2buyaSpJmY1duIa2aNkKp0YUywWlHUxT8NeyHXVPZtesQky5/HiklumGS1ToNs2akW0oo9uGtcVzDkOQXlId+HCE4fUhHbv/DmZRXeEhOikOtY5kr2oi2xN56nTkp5ddSyk5SyvZSyscCz/05YFiQUp4hpWwmpewdeESdYWkozunTlbgaoUewjM6Pm3ZFbDD55S8bIwor3fDOZ5QHNAoql1GQ4PUbPL9wKWA5DD/u2B2WLKybJrM2bQn+/dS8Hzn3pbd57fsV5OwpJTHXToZMRhEqTRMTiLfZUQNhTwVLAOqJ0eP59ILL6Nss04rKKArdGjclXthRahHwitM0bho4kGaJidwwcCDfX30Nfxs3ljO7dwwVtJMQVyHw7fMy7Z/vMfyeFxn/wKu8NW8FFR7rM9s0ldE9OmCrcYE7bBp6qZ8dOfn4/AZen05ufnl4CFzKYG+k0IEK0KyAs6qD5pWofomQkh9+2kpKSvwJ5cAEI121PQ5PpKTaurz9OpNqfy0xO1N/kuOcdMxMD7sKbarC8O7tmLV+S1iOidev8/IPy8L2tTn3EE/M/iHseUNK8krLWLxjDwDzt+6IeN17AkvZAIUVLiY+81/u+uBrvli6EftBlaYHE4nHjiZUOqSmoYmq69mhamQlJvHwsDN4aOQY0pxx2APL672bZeCsdLhqHNahqiTaHTw4cjQpTiczL72Md86/kIfGn0GK0xGyudBBPWjwwRcrmfroOwy+9Tmu/ecMlm3aE9zmjOwOkRsbSMmqhTtwuX24PX78foOdewvw16hAU3yy3qkipimZv3AjimJFaU4kB+a32ppjsWx9SrQdOJp4vX7WbzmAw2Gja4eMMI9+Qq9OfLVqE8t37MPt82NTFVRF4R9TJ/Dkl99H/J5tqkpuSRkp8VV6ADvzi9hbGF59IwBpws6CwuBztf12PH7dugj3HeC/S3+pmkEF/ufJ87Pmzt+T6LBT4vXw3vo1/LRvDy2TUpjesw+dGluVQx+dfyllPi9SQrLDwab8Qzzx04+sPLCfxnFxDG7ZikMVFSTY7EzJ7sHAFlW5N00SEpjYuQsTOnbiz19/yxfrNqKhYOb6wZAYQuIOOB+5xeU8M/NHPli4mlduvQCn3cafLxpDTmEJ23MLUYRAN006NWtMzuZ8dNPqQK1UivZVyrb/ygRKv9+kpMR1+A2jjsMKTaULIaoLpbwSSHw9YuqTVBvj6HDgYAn7DhTRKiuNZk3CE9T/esl4rnx+Bj7dwOPXrWXk5ATOGdCVWTu24qtRiSiB7fmFYfv56Od1EXPoAHyGya78IoZ2aB34O0KkWcLmfYcAeGTmfHKKSoP7030mmq4wKbULf7/oTADWHTrIf9etJNdVzqhW7ZjSpQcJNjsXdsvm/K7dKXK7SXI4sCkKM9av5eWVKyhyu+nZrBmtklLZX1ZGdrNmTOvZK7gEL4Sgd2YmvTMz6dM0g5vf/4Lc0jIUtwn5gSWeal0Yf96aw9rnP+PSUX24ZGQfEuMdPH3FRG5/+0sUIazAtGnSxh9HnqtGvo7XBAdQzfkQlf+ppyNj6CY+v06cegJNloB62JpaOVbL1jEn5giY+8NGHn/JShT1BXRnWjRvxF3XjaVfD6uMU1UUXpg+maXb9/L9pp2kxjuZ2LcbmalJzFq1iX2FJVYo0sQKeQRuzC3TQitgXF4fmqLgjbBOLICugdCtqiikO+PIc7lCZysSVCnYlHuIz1dvDIsAAahC8MPWnUzI7kyKw8kNfQdyQ9/I3VuT7FVLPV3Sm/D65PPYnVfEx4vXsnVzPpqi0CIjgRQRWclYUxT+es5Y7hw1lOlPvM9usyQ8OViALiX7C0o59/7/YDcUmqcn8+B1ZyLsCnvzS+jUPJ1lq3fz7LqFaB7rc1buRtEtB6+yVYTdrqHqJqbPDJValxIihERVVdC7V8OV4x41Dq/dkH8YAaojTaodEY1JtScLXp/Og09+wdJfdmKaEsMwURTBGcO68odrRpOcZOW5dchIZ9a9V/HVyk3syS+mR6sMzujRAa9u4A84G8Kwlp2kJlCEoEfz8CT1Unft8vqKEHTKsCYzg1q1tHJwIswR9u4tRErJ/I3bwxwi3TSZs35r0InJbtKMJ0ZFzjVThKBxfFUOzpTsnlzYLZvv1+5k7srNHNpTQnqik+aN4nGIyEUQ7Zs0ZtYtV/Ltmm3c+8rXtSxkg89v8OacFXz4+QoUKRh9Wifm/OlqVu05gGlKBnVsyRU3vxHxvZoXdIcZdGRsCXYUt7fepeuZmY1OrGhvJb9NJ+aYLFvHnJh6sntfAX9/YXZIMpcE9u4v4s6/fsyzf7k4mG8jhGBQh1YM6hB6Q7xu9EC+W7oVWX2JNEkwbWRv4h2hP+iOzdJRIpT8SUDTBLeMrKouyIpPJq/CFbZhPBrFLg+mjKSSY1GXZk1dfLduO//35td4dT0YRv1hw07eXbiKa8YN5PozI1c/7DlYTH6pK3I9c9XQ0YVE6Aa7c4u4+fGP+OjvV9GthWWA3e19CL8Vvg0JGwMEojNShYxGCfztz5O47S8fUlbuCST1WoNV/KGf2+m0MWRQezp1PLqCYw3Gb0u2OymSak8WXvzvQpb9sjNEoNM0JXO/38Cmbbm89ezvgksQyXFOLhnaO+T9dk3jvG5dmTVzLYrL+l0YdonR2sb1w8InKWO6dmDuhm24I0x02jZpRP/Wll2L0zScFQJPQuhvTasAn2qNtbab+K/VpTFMkz++NJMVW/cGG/hK4NtVW3n+q0W8efsU2mWEF2gIIZizdHOdVVbWziReKVH9MH/pFjw+nb/dVrVK2bNrFvMObQrdd2AMmtc6r6oquGLSQJI0jVff+B5fbRWdBFoJ2FRuv/XIxUqjhrq/y7qivkdVC6qSE2gx7vgyc94a9BpJu5U3UJ/P4NX3fzzsPpau3o3dK4L5LQKwuaG5I1xEya6pPHruWJw2LeRG7dRUXrv8/GAkBuCs7p2IN1QUn6XForqtkmbDkPRskcFZ2Z2DJZbV0U2TYR3aHHbcNfEbBve/MzuwXFXtBWklNr8+dxm78yKXTO7PL6mrOjtkX8FxGiYzv18b/LtbuwySHI6I+xESVF1i80gO7iuhXasmvPfCNdw8fSTtW6fjUFVUKeiWncXllw0hu3sLevVsye23jue+e07cFIvf0s9ESqkDlUm1G4EZlUm1QojKk1I9qXaVEGLmsfospzJSSr6atyYY6Q19DfILylj6y84692GYJmvm7UJzEWzMp3khZQ80sodL2I/p2p7erZqHicH1bpHB/66ZEiwRTk9OINOeiKMAbGWglYGjABxuweDOrRBCMKxjm7C2BKpiVTr9Gr5fu4Oft+4LOjBg2U3dkJRVePnz23Nqfe/ug3WUbVcncIn4/AaLftlBYXFF8KWLJw+I+BarSgc0n0S4TQ7sL+LC8wbw4rNXMGFcDxo3TkQIcDo1zhyXzcSzetGpYwZnjO7GC89eQZ/eR1uhoOE4jK3Jl1L2r/b4rcvWTxxu21gkpp4UlbjCyhmrs2NPuF4CQGm5hy/mrWHtphwWb9yNTxhQLY9G103+89UyLh7TJ+y947p3pG16I95btobc0jL6ZGSQ6UhEuCSGaQbFmS7q34N3Fq6kcE95MN8FB1x73gASHHZOa9OCST278vmajfj8OqqioCgKD08cQ0rckffl2JJzCCPSGnpgimKaku/W7eDK0f3CNuncsimGKa3eIUro+yCgNyAlarXJjM9vRWSqM2pgR2bOWxNxUqC6DUyHgmZTEQISExxcNLEfF00MHw9X1usjRz+/sexRSvk18HWN5/5c7d9n/KYDxKgXUhJWulsdr99g5558hvRvH/bapu0H+XzeanbuLaCwuMLqzVNdwNKUfP3dei6bFHpjVhWFVy4/jzkbtjJr3RYS7Tb6NG5Gis1JYWEFCZlWlFgIwf0Xj+EPr36O4a76vdlsCrecZZVY/3nyGKa++B7lXh+ugNxDcpyDe39lI8t5v2zF7YvcrFICm/bmUeHxkRBhaaZXu0x2HCio024DIcn/Nk3lUFF5UD+sQ5sm2O0qPl8t5d8SFFUQHzh+u7ZNuPuOsw7/wU5kfr2tOSbL1jEnpp4M7d+e75duC1P9raRVVriiY15BGVff9TYutw+vT0cCdsCfYK1RV1JYWnsyacdm6Txwziiee/973np3SUBxUhDvtPHCny6idWYaJWVu3DkeRLXrTPHBnPkbuWH0aQgheGjiGVzYN5v5m7cTZ7NxVnZnWjSy8nD25BaRX1ROx1ZNSEo4vFMTZ7fVKaOtKCKsoqiS9pmNGdSlFUs27bEiOZWnQVq9l/ymgdAJ+SxxDht9OmWxcdN+/vvOT+zclU/TjGRsmho6Y5VWybgwrIqjM0Z3OeoqqdGIkDLqyh5j/DoURdC5QwabtuZGfN1hV2mVFd6x+bO5q3n2ze8sfZKQ/C+CjozXp7P3QOTohKYqnNWjMwNaZHHzIzNYVmxVNhqGZOTADjxw4wRURWHt7lw0RcEIaSsgWLh+J5cM701GShLf3HEVc9ZtYevBAjplpDOue0ccNg2/32DTjlw0TaVz22ZhRRGRiHfaUYSofTlKUGtDyunjBzBr+eZgtWO1t1jSDaaJrUKGRHR1w6R50xQ++exnvvjqF3w+g/Yt0tmxryDUuaw2HEUIzhrb47Cf5WTgN9qaY7JsHXNi6smI0zry4Zcr2bg9FyOwzlr5VTocGtdMCVdbfOmd7ykpcwdv+JUXi+aW+JOqLh3pNzlj6tOMHtKZm6aPIDU5tNX99yu38/F8K8RcedN2e3zc9s9P+fiJq/ho4dqwtV9TQn5JBb9szaFvJ6taqEdWBj2yqnI+Ssrc3PWvz9m8Ow+bquDTDa6YOICrzxscvPlLKdm+Jx+Px0/nds2w2VTaNksjo1ESu/OKQnNtZNX/x/SKLCoF8MQ15/Dm3OV8/ONaPH6d4dntGNe3E37d4JN5q1m1JQdvIB1PUxVSk+LITEjgtrvfwxvod5R3qBTVqaE6RDAqJHSJ5jatUK8pmX5R7aqkJx21VJfEOPG44/qx/P6+98MmTIoiSEmOZ3CNKEyFy8uzb34XFsERUiJr9BL55otVrFq4lcsvP52zzuwZ5uT/+bmvyMkLbVa4cPk2sjus5oJxvXlnwcoQnRiwSrffmLucS4b3BiwRykl9QoXbFq3cwUPPfI2UElNKEuMdPH7PuXRqW5Vo7Hb52L79ICmp8bRsaeW5nDu4O18u2RDWmNE6H9C/YwviHOGSFgDN01N4655LePaTH1m5bR+pCU6mjOxNVnoKFS4v/3x1Hm5TD/bVczo0Lp84kH89NZvFS7cFbY2WX4oWZ8MLEauPmjdLpVO7KFf1Ppr8SltzrLSgYk5MPdE0lWcfvphvvlvPO58u42B+Gbph0qJ5I/4wfSR9s8OrWhav3BkxYqEYEoxAZruUaC6rpcDshRtYvWEf7zx3FTZbVeb9R9+uDjNoEktmf9vefHIOFUdOYBOQV1Qe/jxWqfjND89gV04BOhJvYFb0zlcraNcindEDO7E7p5C7//4p+UUVKIqVy3PvTeMZOagTz147mWv+/RHFFe6gwJ+qCFQhuH/qGTRLrb1Zmk1TuXbCIK6dEOpkGIZJhjOeb5ZvZuHq7Xj9BqP6d+C6c4dwx11VDkxwe4+Oza+gBD67qHaqHXabJbB1KiCBU+WzngJ06ZDBf5+ZzpszFvPjsq2UlXtRFMHpAztwxw1jw/r/rN6UE1lrRAiEYSI1y84IE4TXJO9QGf9+fi5lpW6mTqm6BotKXazfdiDMZnl8Oh/PXcXkMT1x+Xw1j2K9t8Jd6+dZtWEff3r886qcQiFwe/zc+tCHfP7KDTjsGh9/tJzXX12AqqkYukGbtk149K8X0b11BjdPGspzn/+IbpjBiIzTrpKWnMDD08bXelyAthlpPHVT+D2wtMRF/PSxfLVkE+u359IoJY7LJw6kU4sm3PSfRSEOoe43UYSBXVPwRTAqTmdkJ+qk5DfammOxbB1zYo4Au01j0theTBrbC7ByP+oKiTrsGmW1vKZVSIw4ic0tUQLXtmlKDhws4ZEnv+S+28/CEZhhuNyRDYeiCNxeP/27tOTHtTtDkt/AyrdpmZ6ClDJkxrVmYw53PvoxLrelBKwCpiaRdgWPV+fdr39mRL8O3PrQDAqKKkImHw8/N4u2LRvTOqsx3zx4Ncu27GX3oSIqPD485T5W/bCTZx+bxX8SF3Dxef2Zcv7AeoWNf/55J489OhOfz9K2SUtL5OlHLqBN2yYA7NwVuf2AaZjYVAW9hvhUXLyNzMzUwx73ZEHEIjEnFc0zUrn31gnABExTIgS1Lo3Gx9nRIyQCIyVCB4mJqks0jxmMBnu9Oq+9vpA2WY0ZdLoVNfX69FqvVbfXj01TadE4hb354fpVHZo1xu32EVetvYKUkqde/5bP5qwOzUuREoTAMCWLVu4gSbPxxmvfWZOUwERl29aD/Pm+j/j3i9OZNrovZw3owtJNuzlQWIamKezbmMeq2ZuZPvk5OnbO4MY/jqNLt8OrsRuGyb//OYs5X63GZtPw+3VGnZHNbX86G01TmTV7DSLCOfD5dBSUsFIYu11l+ODao84nI9Fma2LVSb+Bw92cT+vVJvzJQN6GzS1xlJlBByb4MvDDkq3ccc8HQW2TsYM647RH8DcldGnTlHMGd6NxcnxIHooqBJTp/PGP73LpVa+wctVuwOrpcfdfPwk6RpVVUopOUDuluNTFz+v24PL4w6Knum7w+VyrUkhVFAZ3ac3UYb0Z07kdM99azpZNB/D7DQqLKnjzfz/x/Kvz6zxHADt35nHvXe9Tml+Gu9yDx+3jwIEibr/93WCZaXJy5FydpCQnKclx2APnR1EEDofGXbdNqJfzdHIQKB2v7RHjhEZRRJ25XT06Na/1u9a8Js5SA5vbDIlUApimySN/+ojv5q4HoFnjJBrVWMoGsGkKIwdaN+p7LhwVVsUkJOQu2s/kc5/hL3/5hPJyS3fmu6Vb+WrB+siJtdLSvykpc/PRjKV4PKGRZsMw2bEjj/05Vg5PWlI8EwZ05arxA3FvKGbRJ2spKqjA7zfYsC6HO295h53bD59C8fw/v2HW5yvxe3Vc5R78PoPvv13Pf1/9DrA6SUfKsbHZVIYM7IDDoQW/C4ddo0laEuef3fewxz15iD5bE3NijiHnn9kbVVLjiw5olNQiuIaUmH6THTvzWLXaksU+d1QPWmWmBdd+VUXgsGvcd804VEXhkw+XY99SQcoOL2kFJvGGgqPEwF6g49cNDuSWcO+DH7N7TwE/r91Ta1Kuoks0VWFw77aUlLkj/igNU5IfYYnq7fcX46vZUsGrM3PWasorQhPMDd1k66YD7Nqex87tedxy1RuYXsMKd+sS4TORpsTv11m61Oo8O+WCgThrrH07HRpTLhzIG69czeWXDqZPr1acOa4HLzx7BYMHdYj8pZyMSKzfUm2PGCc1qqpwerfWgVC/tB5SorpNFL3uG4zP6+elp2YHo7V/vnECTocNm2YtZzsdGo1TE/nduYPI2VPAvP8so+mKcpqvcdMkX+IoN0ne4UMpN9B1g8VLtvGnP30IwGdzVtVaCAHWkPp0a0lhYeQlb1VTwhS0Kyq8zPx4Bd4aTo/Pq/O/N8NbJ5QUu9i4bh/FRRW89dpCvvxkBWb1a0JKvF6dmR9Z0iZ9+7QmKckZNgFSVYVbbzqDZ/86lXEju9K3ZyuumXY6rz99JYkJkQU+T0qi0NbElpOOIZ3aN6NtszR27SuoatgmrYQ7W4kPxW9iOBV8aU6r7DqwjTAkPp/Bpi25loKsIXn1/ouZv3wbP63eQXKcg8kje9ClXQaPPvI5i37aEswXEcUm9iIfhkMJkd/3+Q1mfLqc0waFl2ZCICIjBMmJTqZPOg1dNyLm2TgdNgb3bRv2/JZtByM6R5qmsD+3mE7trcS3FUu28/cHPsHvN5CmRBfgr5YoWFltLXQTwzApKrI0G6ZcdBqlZR4+nfkziiIwTcm5k/pyycWDUBTBtEuHMO3SIWHHP1WIts6yMRqWy6cOYfmSHXgMAymsCYkVeamyOwhZJe8gJcJrLS+VFLtwVXhxxtnp3i6Ddx+fzmffrmZvbhHd2mYw+Yye+Fx+bpn+Oq4KbzBCrO10kaKA4ay6jei6ybbteezYkYfHU3upuN2uMWFEV1pnpTF4cEf27C4IEfcDMA1Ju/ZNQ547eKAYTVOomZojpWTbloPBvw3d5Nl/fMW8WWuw2TR8Pn/tFU5S4nb5Al2nFZ7+56U89OjnbN+Rh6IIUlPiue+eiTRJT6JJehL33XZ2Hd/EyU+02ZqYE3MMEULw+MMXcvefP+JAbglSSrxeP1q5H9VvOQiqx8Re5MWX5gATVJ9lWOx2leLcEi4/5ykK8kpxxtkYOrobB9bmsOpAMd+/tpSe/dvwy6b9IRd/pYERukTaqpwY05Ts2VvIDdeMjOicCEUwbFBH7rrmDFwlblYu2U6/js35Zet+K9dGWNGflpmpjBnSGYCCvFJ+mr8R05RkpCWyb8chSyfGXuVA6X6DjKZW35e83BIeuntGcBYlATQR1uuosj8UQI8elqyAogiuv2YkV0wbQn5+OenpiSembPexQGIlisc4ZenUKYPb/jCeZ56dY+XK6X6r6qaaVIysjNQIEF4DxWv9ZjRN4dWn5/LtLEvQs2WbdDp2zWT9/I2sMdbw6bML6NitOV6vP6R9h2mYli6VXYZoX2maQm5uCeOGdWXb7jw8NRLyVUVw781nMuq0jixfuIl4UxIfZ8NlymAXaYfTxg03jsHhsCGlZM3qPWzaeICkJCc+jw/h9SNVBQIRIyGgdZv04DH+98b3zP9mLX6fgb9S46WOdYf2HatKvjOapfDic1dQUFCOz6eTkZFySkg11IsotDUxJ+YY07RJMm++eBU7d+fz8D0zyMkpC5PK19wGpssI3syFENgMyaz3lwYjLK4KH3O/WhOy719W7sKIlCuDVWJc3V+22VR6dM9i27oc0n2wv1IISwjinDZ6d2vBI384hzeem8vMD5Zh6CamX8cmwa4Kktqkcd6UoZw3vhd2m8bcmb/w3GNfAGAYBobfxF75gQT40uKwJTs5Y0TXYK+X2V+ssgxfPRAChg/vQptqhgkgzmmnZYtwnYxTGxkrsY7B+PE9GDmyCz/+uIUnHv8Kn98MszWKAbj8wecdThvp6Yl8O2tNUC5/945D7N5xKPg+v8/gl2U7I65ICRGwNdWcGL9fp1Wrxmx4awNGkRscKqgKqirQVJWHbjuH7m2acd34JynKL8Pn8VvJy0B8vJ12A9vxu5vG0LtPa3xenXvueo8tm3Px+3TUonIocaEikFIiHTbMRknY42xcOv304Bg+n7E8rJqxtlYnqqZy8x1nhj3fuHHtFZanLtFna2I5MQ1E29bpeEs8EaXy7Q6N1i3SsNlUbDaVTh2b0SIlIfQiFML68fgNhMsLbi+mR7eaSdZACFBsVV+tIgROh43sds148A/vUrqjkPicCmwlPhwVOqO6teYf957Pmp938eWHy/F5/Bg+PaiJIA2JN6eU0s2HcDpsFOaX8dxjX+Dz6ta2gahSpRS3MMFR4GbiuF7cfktVj5D8vNKQqJGAiLoLQsBpQzpy9/+dcwRn+BQnypLtYhwfHA4bTdKTsNu1iLYmvVkSCQkOHE4bDofG6HHZ5B8sDe/3Y0pweRClFeD2ImubfEgQ1QoKHA6NkSO68s5fP+eL1xfiXLOfuG0F2A6W4dhfxr/umsywAR14+k8fkre/CE9gGacS3eVj99LtNEq0EvlnfLCETZsO4PH4kcUVmCWBvmvScnqE10+i7ufhJ6bQuWvz4H4qymtvalkdRRE8/OQUsk/Exq/HiyizNbFITAOS3bsVP3y7ISx3xOGw8for11BS5kYRgtTUeKaMfTz0zVIiKjwQcAKEEAiP33JDk+OCAnyV+7vwktOYu2Aj5RUe+vdtw7XTh/PU/Z8Gl3IUv4mj0Eq4XfbVOvS7z2H25yutKgFThhlAr8fP1x8u48qbx7B4wabDhlcdThsdm6WiaVV6N/0GtWfBnHV43NWS8gwrFO102jClRBGCjp0zeOCR80+h6qLfiJRg1CKLHuOUo137pmH5JWBFY8eO68EVV55OYUE5KSnxbFy7jx++XR/qxOgGIr8k6CggQJQpmE1SLYW5yv3ZVbpkt6Bx6zSWLdtBfLyd887tx/DBHbh2+CP4vbrVH67Qha3QhaopLPpoOd26tWTlT1sw9MiOkd+r89Gr33HH41OYM2sNvsBkTil1h1VYCcAodZPdo2XI8526NWfTuhqK9hKEAg6nHZCYhuSWOycw4FQqAvitRKGtiTkxDciVN4xi+aJteNxVsw+H08b1t41D1RTSGiUEt23XMYOVgcocpEQUl4PbGzQq2Gxgs6EWVdB3VBd+/sWqOmrZqjF33DmBbt2y+N0Vw0KOv2dH5BJEKSUlhRURDV91vF4/l/S5l8xOzSNGgKqj+wzKalQWDBnRmVZtm7B7e14wyhTntDH8jG6MGJ9N7v5i2ndsRtfuWbE16CMlFnGJESAx0cmllw3m/feWBEuXNU0hMdHJ+RcMQNNUmjZLAaBl2/TQvkC6gSgoBap0aYSUSMMkWRqktmlKzt5CFEUwcmw2t9w9IUQbBmDVj5ux2TX8NcUpdZOta/day0B1/FxNUzL/0xX8Mm8N5c2qtXOppapSSonP48fuqLqd3XTHmdx941v4fHpQz8tm13jgbxdSVFSBlJLThnaiUVpCxH3GqIMoszUxJ6YByWrVmBfeuZ7/vb6Qdav20CwzlUt+N4zeA8Krfa68aTTrV+/B6/EHQ7rB27oEfH4QCqrTxrln9ebBRy9C140wg1Kdlm3TKS6sCHteCEhJS2DUmT1YsWgbnnKPpUdVc0MT3KVudq7ahUxLCUvItbYxobgUw+Xhfw+8T86qHVz90IUkpSagaSr/fOlKvvh4BQtmr8Ph0Dj7gv6MHp8dc1p+C1GYbBfj+HL55afTpnUTZsxYSkmJi4GntePSS4eQmhqqA9M4PYlR47NZOHc9XpcPUVhmTZoqr8eAMJ2QErPCy2szbsJV4cVm10JUxauT1bYp/ghNLFVNoX33FjicNrr0asmGlbsjD15KTL9OwQEXmKCkJlhV404buH3V7KCVuKz7dG4950ku/eN4zrhgIABdumfx77eu5f03f2T7llzadWzG1CtPp3W7Jr/mdMaoJAptTcyJaWAyWzTizr+ce9jtumS34G/PX8FL/5zFtm/XRN7I78eRGm/NMgL5NHVxxU1juP/mt0M0FhxOG+dfPgS7XWPIyC70G9Se5T9txeeqUcNoSnC5LQOiGyhuNyIxASmElaxbqYeTmw+BkmlPhZd57y1i3eKtvLzoIVRNxeG0ceFlg7nwssGHPQcx6kv0JdvFOP4MG96ZYcM7H3a7P943keYt0/jw5fm4kaGTEyGCM+9KQcn4w+iiNMlqxGlnZLPs2/X4qtkam13j/OtHA3Db3y7i9oufp6LcE6bbAoA/UMGYVwJOO86UODyNErF5i4I6ONV7tR3YXcC/7/2QihI3k68aAUCrNunc/eC5h/38MY6E6LM1scTeKKZ771Y88LeLAmu4EZAmCEGPgZG1X2rSrXcrTuudCT6fJW4lTUaM7szlN1qGRVEUHnhiCo88cxkjJvSgSUYKmk21ZKbLK8BVlSwny9y0z0zkihtHc9n1o5h+61jatkwN+0HpfoOCA0UsnV2LIxbjtyOxDEttjxgx6kBVFS753TAmntsvYqI9gKKpjL5gQL33Oe3Os0huFB90ShJT4njg9Wtp3saKhLRo15T/LLiH6++bRNe+rUhIdlrRH8MAd5XQppCSxMJSLpzUh0uvGsaVD17AxOnDiE8Md6S8bj9v/+sbDD26cjZOKqLQ1tQrEiOEOBN4BqvNzmtSyr/XeN0BvAX0AwqAKVLKXUd3qKcmac1SULXIvqaiafz5hStD1oLr4sXb3mTR/xZiBKIsJjB/+27OnNibboM7AdY6eO+B7eg9sB0A+3fmcePov4bMqMAyfB26t2DqNSOCz8miUt5asjnsuO4KLzvX72PI2X3qNc4Yv4KTxFmJ2ZrjR4fsFsQlOHDXUNhGCDJapnH5nWfVaz8VZW7uPvdflBW7gnks7jI3L903g5cW3o8SSA5OSIpj0uVDmXT5UABeeuBDvnzz+7A2BaZuMOqM7rTuXFV99N0nKyIe2+/VKSmsIC2gTRXjGBBltuawkRghhAo8D0wAugGXCCG61djsaqBIStkBeAr4x9Ee6KmKZlOZdufZOGrkumh2lb/PuIVeg+uXWe8qczPr9fl4aywTed0+3nn041rf17xtU7oNbIethh6NZtc4/7rRodu2a4ozPjxqFBfvoHnbpmHPxzhayCq5+UiPE4SYrTm+DBqXTVqzZLRqy9KqqtC8bRNe+e5e4uopr7/g42V43X5ktd+e4TfI31/E6h+31Pq+ydeMCrMzNrtGh56tQhwYgIxWjSPuQ1EFSanh/Z9iHC2iz9bUZzlpILBNSrlDSukD3gcm19hmMvDfwL8/AsaIWKbmUeO860bzhycvpWWHZsQnOek5pCNPfn4HPQbVv3tqfk4hqhY5Z2bPxpyIz1fy5zeuY/ikvtjsGqqm0qJ9Mx7530206NAsZLvBZ/chPikOpZpuhKIqxCU5GTrxVGqS1sBIkIZR6+MEImZrjiM2u8ZTn93G+KmDSG6UQErjRCZfNZx/f30nqlp3vl11dm86gNftC3veMEz2bTsY4R0Wma3Teez939OqcyaqpqDZVYac1YuH3r4xbNvL75iAIy60l5ojzs5514wIc4RiHEWi0NbU59vOAvZW+3sfcFpt20gpdSFECdAYyK++kRDiOuA6gFatYuJCR8Ko8wcw6vz6r0nXpEnLxhHVcoUQdOjTps73xiU4ufO5K7n1yUvxe3USkuMibmd32Hh6zr08/Yf/8svCjQD0Ht6FPz5zJXanLeJ7YhwFolC74VcSszXHmaTUeG557CJueeyiX72PDj1b4Uyw46kIdWQUVaFN1+a1vMui24B2vPzd/VSUubHZNeyOyHZjwKhu3PbkJbz26OcU5pXhjLdzwXWjmPr7sb963DHqQRTamgZ1WaWUrwCvAPTv3//EiXOfBMQlOLngtrP55Omv8biq1rztcTamPXBhvfZhd9hqNSqVNGmRxmMf3xYssYzNihqIKNNuON7EbM3xY8Tkfrz9+Bf4vXpQ0M5m12jZoRnZ9RSWS0iKPFEKOc7Evgw/pw/egEaMosTqVBqEKLM19fnWc4DqcogtAs9F3EYIoQEpWEl3MaKI6Q9P4aq/XkJ6Vho2h42ugzry+NwH6NC7zVE/ls2uxRyYBkNGXYj3VxKzNScBzgQHz3zzfww9qw+OODvxSU7GXTqEv3/8x6OuByWEwBlnjzkwDUb02Zr63GWWAx2FEG2xDMhU4NIa28wErgQWAxcC86WMMnctBkIIzvv9BM77/YTjPZQYR5PK7sQnPjFbc5LQOCOVP71y9fEeRoyjTRTamsM6MYF151uA2Vhlj29IKdcLIR4GVkgpZwKvA28LIbYBhVjGJ0aMGA2AhBMt4hKRmK2JESO6iUZbU694v5Tya+DrGs/9udq/PcCvzwSLESPGr0dKS/jwJCBma2LEiGKi0NbEkhZixDgJiLbZUYwYMU5Oos3WiOO1nCyEOARU7wCWTo0yySghGscVG1P9icZxHW5MraWU9e5UJ4T4JrDP2siXUp5Z3/2dbJwgtiYaxwTROa7YmOpPXeM6IjsD0WlrjpsTUxMhxAopZf/jPY6aROO4YmOqP9E4rmgc06lENJ7/aBwTROe4YmOqP9E6rqNJrC4tRowYMWLEiHFCEnNiYsSIESNGjBgnJNHkxLxyvAdQC9E4rtiY6k80jisax3QqEY3nPxrHBNE5rtiY6k+0juuoETU5MTFixIgRI0aMGEdCNEViYsSIESNGjBgx6k3MiYkRI0aMGDFinJA0uBMjhDhTCLFZCLFNCHFPhNcdQogPAq8vFUK0iYIx3S6E2CCEWCOE+FYI0fpYj6k+46q23QVCCCmEOOaldPUZkxDi4sD5Wi+EePdYj6k+4xJCtBJCLBBC/BL4Hs9qgDG9IYTIE0Ksq+V1IYR4NjDmNUKIvsd6TKcK0Whn6jmuBrc10Whn6juuhrY1MTsThUgpG+yB1Q9lO9AOsAOrgW41trkJeCnw76nAB1EwplFAfODfNx7rMdV3XIHtkoDvgSVA/+M9JqAj8AvQKPB302g4V1gJbjcG/t0N2NUA4xoO9AXW1fL6WcAsQACDgKXHekynwiMa7cwRjKtBbU002pkjOFcNamtidiY6Hw0diRkIbJNS7pBS+oD3gck1tpkM/Dfw74+AMUIc5f7tRzgmKeUCKaUr8OcSoMUxHE+9xxXgEeAfgCdKxnQt8LyUsghASpkXJeOSQHLg3ynA/mM9KCnl91hNCmtjMvCWtFgCpAohMo/1uE4BotHO1Gtcx8HWRKOdqe+4GtrWxOxMFNLQTkwWsLfa3/sCz0XcRkqpAyVA4+M8pupcjeXVHmsOO65AWLCllPKrBhhPvcYEdAI6CSF+EkIsEUI0hAR1fcb1IDBNCLEPq8Hg7xtgXIfjSH97MepHNNqZ+o6rOg1ha6LRztRrXDS8rYnZmSgk1gDyCBBCTAP6AyOiYCwK8C9g+nEeSk00rDDvSKxZ5PdCiB5SyuLjOSjgEuBNKeU/hRCDgbeFENlSRllL1hgxiB5bE8V2BqLT1sTsTAPT0JGYHKBltb9bBJ6LuI0QQsMKyRUc5zEhhDgDuA+YJKX0HsPx1HdcSUA28J0QYhfWWufMY5x0V59ztQ+YKaX0Syl3AluwDM2xpD7juhqYASClXAw4qbuRWUNQr99ejCMmGu1MfcfV0LYmGu1MfcYFDW9rYnYmGmnIBBwsz3kH0JaqxKjuNba5mdCEuxlRMKY+WAldHaPpXNXY/juOfWJvfc7VmcB/A/9OxwpjNo6Ccc0Cpgf+3RVrrVo0wPfYhtoT7s4mNOFuWUP9vk7mRzTamSMYV4Pammi0M0dwrhrU1sTsTHQ+Gv6AVqb0lsCFel/guYexZh1gea4fAtuAZUC7KBjTPOAgsCrwmBkN56rGtg1lXA53rgRW+HkDsBaYGg3nCqtS4KeA4VkFjGuAMb0HHAD8WLPGq4EbgBuqnavnA2Ne2xDf36nyiEY7U89xNbitiUY7U89z1eC2JmZnou8RazsQI0aMGDFixDghiSn2xogRI0aMGDFOSGJOTIwYMWLEiBHjhCTmxMSIESNGjBgxTkhiTkyMGDFixIgR44Qk5sTEiBEjRowYMU5IYk5MjBgxYsSIEeOEJObExIgRI0aMGDFOSP4f8pZpoN/s8fsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "As we can see the two are really similar! We can compute the $l_2$ error quite easily as well:" - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l2 error: 4.09%\n" + ] + } + ], "source": [ "def l2_error(input_, target):\n", " return torch.linalg.norm(input_-target, ord=2)/torch.linalg.norm(input_, ord=2)\n", "\n", "\n", "print(f'l2 error: {l2_error(input_data[0, 0, :, -1], output[0, 0, :, -1]):.2%}')" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "l2 error: 4.10%\n" - ] - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "More or less $4\\%$ in $l_2$ error, which is really low considering the fact that we use just **one** convolutional layer and a simple feedforward to decrease the dimension. Let's see now some peculiarity of the filter." - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### Filter for upsampling\n", "\n", "Suppose we have already the hidden dimension and we want to upsample on a differen grid with more points. Let's see how to do it:" - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAEiCAYAAABURlUUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddZwkxf2wn6ru0fW93XMX7O7gcHeCa5AEYoRAlOgbISSEAD8gAoQIHoIF9+B+6OF6wrm7rO9Yd9X7R/XY7tjCwd0t/fBZ9ralurqnp7711RJaa42Pj4+Pj4+Pj4+Pj08B5KbugI+Pj4+Pj4+Pj4/P5ouvMPj4+Pj4+Pj4+Pj4FMVXGHx8fHx8fHx8fHx8iuIrDD4+Pj4+Pj4+Pj4+RfEVBh8fHx8fHx8fHx+fovgKg4+Pj4+Pj4+Pj49PUXyFwcfHx8fHx8fHx8enKL7C4OPj4+Pj4+Pj4+NTFF9h8PHx8fHx8fHx8fEpiq8w+HzhWbRoEUIIbr755k3dFR8fHx+fLYxCMuSPf/wjQohN1ykfn42MrzD4bDbcfPPNCCEyP7ZtM2zYME4//XSWL1++qbvn4+Pj84UjPfFdt25dwf2TJk3igAMO+Hw75ePj87ljb+oO+Pj05MILL2TMmDHE43Fef/11br75Zl555RWmT59OOBze1N3z8fHx8fEpye9//3vOOeecTd0NH5+Nhq8w+Gx2HHHEEeyyyy4AnHnmmTQ1NfHnP/+Z//3vf5xyyimbuHc+Pj4+Pj6lsW0b2/anWD79Bz8kyWezZ9999wVg/vz5mW0ff/wxJ510Eo2NjYTDYXbZZRf+97//5Z23YcMGfvnLXzJ58mSqq6upra3liCOO4IMPPvhc++/j4+PzRWDq1KkIIbj77rs599xzGTx4MFVVVRx77LEsXbq0ojbefvttDjvsMJqamohEIowZM4Yzzjgj75jLLruMvfbaiwEDBhCJRNh555257777erUlhODss8/m3nvvZbvttiMSibDnnnvy0UcfAXDdddcxfvx4wuEwBxxwAIsWLco7/4ADDmDSpEm888477LXXXpn+XHvttWXvo1AOQ7o/Dz30EJMmTSIUCjFx4kSefPLJXudPnTqVXXbZhXA4zLhx47juuuv8vAifTYqv/vps9qQH8YaGBgBmzJjB3nvvzbBhwzjnnHOoqqrinnvu4fjjj+f+++/nhBNOAGDBggU89NBDnHzyyYwZM4bVq1dz3XXXsf/++zNz5kyGDh26qW7Jx8fHp99y8cUXI4TgN7/5DWvWrOHKK6/kkEMO4f333ycSiRQ9b82aNRx66KE0NzdzzjnnUF9fz6JFi3jggQfyjvv73//Osccey9e+9jWSySR33XUXJ598Mo8++ihHHXVU3rEvv/wy//vf//jRj34EwKWXXsrRRx/Nr3/9a66++mp++MMf0tLSwl/+8hfOOOMMnn/++bzzW1paOPLIIznllFM49dRTueeee/jBD35AMBjspchUwiuvvMIDDzzAD3/4Q2pqavjHP/7BiSeeyJIlSxgwYAAA7733HocffjhDhgzhggsuwHVdLrzwQpqbm/t8PR+fjYb28dlMuOmmmzSgn332Wb127Vq9dOlSfd999+nm5mYdCoX00qVLtdZaH3zwwXry5Mk6Ho9nzlVK6b322ktPmDAhsy0ej2vXdfOusXDhQh0KhfSFF16Ytw3QN91002d7gz4+Pj5bGOeff74G9Nq1awvunzhxot5///211lq/8MILGtDDhg3T7e3tmWPuueceDei///3vJa/14IMPakC/9dZbJY/r7u7O+zuZTOpJkybpgw46KG87oEOhkF64cGFm23XXXacBPXjw4Lw+/va3v9VA3rH777+/BvTll1+e2ZZIJPSUKVP0wIEDdTKZ1FoXliHp59azP8FgUM+bNy+z7YMPPtCA/uc//5nZdswxx+hoNKqXL1+e2TZ37lxt23avNn18Pi/8kCSfzY5DDjmE5uZmRowYwUknnURVVRX/+9//GD58OBs2bOD555/nlFNOoaOjg3Xr1rFu3TrWr1/PYYcdxty5czMVlUKhEFKaV9x1XdavX091dTVbb70177777qa8RR8fH59+yze/+U1qamoyf5900kkMGTKExx9/vOR59fX1ADz66KOkUqmix+V6KVpaWmhra2PfffctOK4ffPDBjB49OvP37rvvDsCJJ56Y18f09gULFuSdb9s23/ve9zJ/B4NBvve977FmzRreeeedkvdTiEMOOYRx48Zl/t5+++2pra3NXNd1XZ599lmOP/74PC/4+PHjOeKII/p8PR+fjYWvMPhsdlx11VU888wz3HfffRx55JGsW7eOUCgEwLx589Bac95559Hc3Jz3c/755wPGrQ2glOJvf/sbEyZMIBQK0dTURHNzMx9++CFtbW2b7P58fHx8+hM94+onTJjQa//48eMz4aWdnZ2sWrUq87N27VoA9t9/f0488UQuuOACmpqaOO6447jppptIJBJ57T366KPssccehMNhGhsbaW5u5pprrik4ro8cOTLv77q6OgBGjBhRcHtLS0ve9qFDh1JVVZW3bauttgLolfNQCT37AybcNn3dNWvWEIvFGD9+fK/jCm3z8fm88HMYfDY7dtttt0yVpOOPP5599tmH0047jdmzZ6OUAuCXv/wlhx12WMHz04PqJZdcwnnnnccZZ5zBRRddRGNjI1JKfvazn2Xa8fHx8fEpTrqUdSwWK7i/u7u7z+WuL7vsMi644ILM36NGjcosfnbffffx+uuv88gjj/DUU09xxhlncPnll/P6669TXV3Nyy+/zLHHHst+++3H1VdfzZAhQwgEAtx0003ccccdva5lWVbBPhTbrrXu0730lU11XR+fT4uvMPhs1liWxaWXXsqBBx7Iv/71r0ySWSAQ4JBDDil57n333ceBBx7IjTfemLe9tbWVpqamz6zPPj4+Pv2FUaNGATB79uxeVvnu7m6WLl3KoYcemrd97ty5eX9rrZk3bx7bb789YEKW9tlnn8z+nonQe+yxB3vssQcXX3wxd9xxB1/72te46667OPPMM7n//vsJh8M89dRTGc8zwE033fTpb7YAK1asoKurK8/LMGfOHIC8UKeNxcCBAwmHw8ybN6/XvkLbfHw+L/yQJJ/NngMOOIDddtuNK6+8ktraWg444ACuu+46Vq5c2evYtGsbjLLR02pz7733+qtG+/j4+FTIwQcfTDAY5Jprrunlmb3++utxHKdXbP2tt95KR0dH5u/77ruPlStXZo4bO3YshxxySOZn7733Bkw4UM8xe8qUKQCZsCTLshBC4Lpu5phFixbx0EMPbZT77YnjOFx33XWZv5PJJNdddx3Nzc3svPPOG/16lmVxyCGH8NBDD7FixYrM9nnz5vHEE09s9Ov5+FSK72Hw2SL41a9+xcknn8zNN9/MVVddxT777MPkyZM566yzGDt2LKtXr2batGksW7Yss87C0UcfzYUXXsi3v/1t9tprLz766CNuv/12xo4du4nvxsfHx2fLYODAgfzhD3/g97//Pfvttx/HHnss0WiU1157jTvvvJNDDz2UY445Ju+cxsZG9tlnH7797W+zevVqrrzySsaPH89ZZ51V8lq33HILV199NSeccALjxo2jo6ODG264gdraWo488kgAjjrqKK644goOP/xwTjvtNNasWcNVV13F+PHj+fDDDzf6/Q8dOpQ///nPLFq0iK222oq7776b999/n+uvv55AILDRrwdmDYenn36avffemx/84Ae4rsu//vUvJk2axPvvv/+ZXNPHpxy+wuCzRfDlL3+ZcePGcdlll3HWWWfx9ttvc8EFF3DzzTezfv16Bg4cyI477sgf/vCHzDnnnnsuXV1d3HHHHdx9993stNNOPPbYY5xzzjmb8E58fHx8tix+97vfMXr0aP71r39x4YUX4jgOY8aM4YILLuA3v/lNphpdmnPPPZcPP/yQSy+9lI6ODg4++GCuvvpqotFoyevsv//+vPnmm9x1112sXr2auro6dtttN26//XbGjBkDwEEHHcSNN97In/70J372s58xZsyYzIT+s1AYGhoauOWWW/jxj3/MDTfcwKBBg/jXv/5VVvn5NOy888488cQT/PKXv+S8885jxIgRXHjhhcyaNYuPP/74M7uuj08phPYzbXx8fHx8fHw+JVOnTuXAAw/k3nvv5aSTTtrU3fnUHHDAAaxbt47p06dv6q4ApgjIjBkzeuWI+Ph8Hvg5DD4+Pj4+Pj4+mxE9q1LNnTuXxx9/nAMOOGDTdMjnC48fkuTj4+Pj4+PjsxkxduxYTj/9dMaOHcvixYu55pprCAaD/PrXv97UXfP5guIrDD4+Pj4+Pj4+mxGHH344d955J6tWrSIUCrHnnntyySWX9FoUz8fn88LPYfDx8fHx8fHx8fHxKYqfw+Dj4+Pj4+Pj4+PjUxRfYfDx8fHx8fHx8fHxKcoWkcOglGLFihXU1NQghNjU3fHx8dmC0VrT0dHB0KFDe9WP7wvxeJxkMlnRscFgkHA4/Imv5VMcXz74+PhsLHz5UJwtQmFYsWIFI0aM2NTd8PHx6UcsXbqU4cOHf6Jz4/E4Y0ZVs2qNW9HxgwcPZuHChVuEUNjS8OWDj4/PxsaXD73ZIhSGmpoawHyAtbW1m7g3Pj4+WzLt7e2MGDEiM658EpLJJKvWuCx8ZxS1NaWtUO0dijE7LyaZTG72AmFLxJcPPj4+GwtfPhRni1AY0m7m2tpaXyD4+PhsFDZG+EpVtfkphevXoftM8eWDj4/PxsaXD73ZIhQGHx8fn80RhUZResQvt9/Hx8fHp//R3+SDrzD4+Pj4fEIUClXBMT4+Pj4+Xyz6m3zocwr4Sy+9xDHHHMPQoUMRQvDQQw+VPWfq1KnstNNOhEIhxo8fz8033/wJuurjY2jf0MFrD7/Fy/e/zurFazd1d3y+wLhaV/TzRcGXDz6bGq01H785jxfve533np+O61SWeOrjs7Hpb/Khzx6Grq4udthhB8444wy+/OUvlz1+4cKFHHXUUXz/+9/n9ttv57nnnuPMM89kyJAhHHbYYZ+o0z5bPuuWb6BldRv1A+toHt5Y0TnJeJJr/98tPHHj8zhJx2wUsMdRO/OLG75Pw6D6z67DPj4FcFCkKjjmi4IvH3w2Bqmkw7L5a9BaM3zcIIKhyqYqH7w4k3/+5CaWzl6R2dYwsI4z/u8rHPrN/T+r7vr4FKS/yYc+KwxHHHEERxxxRMXHX3vttYwZM4bLL78cgG233ZZXXnmFv/3tb75A+AIy992F/Pt3d/H+1Jlmg4BBo5o58Ct7ccrPj6SqLlrwPKUUF5x0GW89+T5a5WjkGt584j1+tu95XP3Wn6iqqyp67VhnnGfvfJWp90yjs7WbEVsP4ajvHMSUA7ZDCMGM1+fy8DXPMP3Vj5GWZNfDduC473+J0dt9stJqPv2f/haj+mnx5YPPp8FJudx91TM8fPPLdLR2AxAM2Wyz02i+8fMjmLjrmKLJqNNfnc1vj/oTSuVPwFrWtHH5d6/HSboceeZBJa8/550FPHrdM8x+ez7BcJC9j9+Vw799IPXNtXS1d/Pkjc/z1E0v0Lq2jYGjmjnqrEM4+Ov7EQwFNs4D8OlX9Df58JnnMEybNo1DDjkkb9thhx3Gz372s8/60j6bGbPemMevDrsYx1EgAG/gX710PXdd9gj3/f1xvvN/X+HLP+o9UXjnmQ958/H3CrarXMXKBat55Npn+Opvji94zOol6/jlYZewZsk6hACtYemcFbz84Fsc+o19GbHVEG487x4sW+I6RuA8dcuLPHnzi5xz0w/Y/8TdN8oz8OlfVOJS3pJczp83vnzwSaOU4tKzb2Ha0x+R+5VJJhw+nDaPX037J+MnDecP159B89CGXudf9+v/opTKNyjlcMNv7+Cg0/YmHA0V3H/HpQ9y8x/uzpMBc96Zz91/eZjf3no2//zxjaxetBaNBg2ta9uZ/eY8nrjxOf789HlEqiOf/iH49Cv6m3z45MvYVciqVasYNGhQ3rZBgwbR3t5OLBYreE4ikaC9vT3vx2fzR2vNzLfm8/Sd03j5kXfp7ozn7bvyRzfiply0UiClURhyrEVOyuW639zB4/95IbNt9dL1THvyA+6+/FGkXfx11Urz+A3PFu3X+Sf/jfXLN3h/m+1pofD0bS9z43n35G1L/1u5ij+fcS2r/FwJnwKoCn98CuPLhy8WHS1dTH3obZ6+axrzPlySt++NZ2fw2lP5ykJPFsxczq++8i9iXQkAnJTD+1Nn8PA1TzHnnQVFlQWA7o4Yrz/6bsF90x55m5v/cDeQLwO00sQ64/zhhL+wZuk6tDbKQnofwOy35nPt/7u17L37fPHob/Jhs6ySdOmll3LBBRds6m749IFZ7yzkip/eyrJ5qzPbQpEgJ/3wEE77f0cy//3FLJqxzOyQpesb33LRA+x48CSuPvce3n5hZmaAFg2NyO4Yqqur4HkbVrUW3P7RK7NZOH1pn+8pjdaax298gTMuPOUTt+HTP3HRuGVcyuX2+/QNXz5seTgplxsvepBHb34JJ5VNQh4/eQS//Oc3GbX1UJ64YxrSkii3+BRKKc3qZRt49v63IB7ntgvvo21dR0V9kFKwfmVLwX33XvFo0Wu7jguqRJ9cxdO3TOXMP32NmoYyRfd9vlD0N/nwmSsMgwcPZvXq1XnbVq9eTW1tLZFIYRfeb3/7W37xi19k/k6vvOezebJgxjLOOfFKUulEZI9ELMntlz/OB2/MBwSiphqdSIBbumpF67oOfnbkX+lsi5H7XRJSQlXUDOztvYVEw6C6gu29/+LMPDczlgSlKWnKykG5ig9fnlXRsT5fLFxdfuGdLWlhns8bXz58Mbji57cx9YG3jYU+h/kzl/Ozoy9nr6N2ZPpbC0oqC2kEZoK/+uO+GYGU0jQOru+13XUVM179uLg4qEBOOEmHue8uZKeDJ/epTz79m/4mHz5zhWHPPffk8ccfz9v2zDPPsOeeexY9JxQKEQoVjjP02fy49c+P4KTc3u5gy4KAzfS3FyEsCdEwsiqCTqXQ7R0QiSCiEYRlGUEST6C7uhDSoqO1u6B7WQiBiERQ3TFwsgqKkIIjvnNwwf5ppdDSQtRVQzSCkMK0HU+gOzsh5RQ8r8eF+/RMOttjdHXEqR9QTShsEuJcVzHt6Y947PbXWDxnFUIKJkwewfHf3o8pe03oU/s+mweVuJS3JJfz540vH/o/86cv5YX73yq4T0tJPKV44eF3eykTxVCuYvXsZX3uR7g6xJ5H71SgE7pS21FJ+iIiXMdlw6o27KBNfXNNJpF79fIWHr1jGq89PZ3O9hgDBtay+0HbcfJZBxCt9t/5LY3+Jh/6rDB0dnYyb968zN8LFy7k/fffp7GxkZEjR/Lb3/6W5cuXc+utJqbv+9//Pv/617/49a9/zRlnnMHzzz/PPffcw2OPPbbx7sLnM6dtQxevPPURbRu6aB5Sx96HTiYcDfDOy3N4Y+psEJK8V19KCAaMdUaYCXqmuoVtI5oG5I2wQgh0OIQIhyAeLxmLqrVGRsKojk5zKVsyYHgTBxcpmzdkwlB0YwME7EwfhAXathCRMHrl6rJWpDGTSlswW9d38OxD7zH1sfdZsXAtsa4kAJYt2Xr7Eex31BTenTqTN5+fmXfeG6tn8MazMxiz3TD+eP0ZDBzWO5nPZ/PF0YKULj1TcMrs70/48uGLidaaj6bNY+Y7C5FSsOO+WzNh+5FsWNPGbX95FCmF8R7kzqoDdubvSpUF7+CKvcO5nPqb4wkUqGZk2Rb1A+toXdNW+MR0lYwSSCnYetfxRfcrpfjg5Y955s7XeP+lj2lb15HxeA8YUs/OB01ku7235tpLHiOZcDLPo72lm4WzV3HvDVP5zq+O5PjT9ylaJcpn86O/yQeh+/RNNYvsHHjggb22f+tb3+Lmm2/m9NNPZ9GiRUydOjXvnJ///OfMnDmT4cOHc95553H66adXfM329nbq6upoa2ujtra2L931+ZRorbn9X89y97VTcV0XaZnQHjtkE6kK0dGWk5joKuiOQSoFwaDJVSg0uKWTnQvs01ojwLRTok86kUC1tSOaGggNG0TK01W2njycr5yxL3sdtF3m+J+e9E/mTF+evXa2ITSgu2KwoXBsKwCWxRE/OZKxk0YydqtBTNxxVGbQXre6jev+/DgvPzU9r11chcj9arml42ABmoY2cM0Tv6S61q+28VmyMcaTdBtvzBhMdU3p2hGdHYrdJ676Qoxfvnz44rFs/mouPPPfLJ27GmlJ0BrlKuoaonS0dBUOM0oblD4BWmt0R2dJGZGLHbRwHVM9KVId5rDTD+DUXx9L/UATwjr7rXn8eK/fl75mmTDa6voo37rwq0RrIuxx9M7UDqjJ7Hvmzle58fz7aV1bIDk/LY+EgIZ6RJn8vu///liO++beJY/x+XT48qE4fVYYNgW+QNh03HnN89x65dO9d8icgS6N502gs8uEIxUjXSGpFPHiuQ7SEmy/x3jatWTB/LV5xh8pBUppvvPzwzj59H1Yu7KVbxz0Z7Rlril6TuS9f6vOLmjpYWESApobEbXV5lzP0DR8dBPn/OlkGgZU8ZOvXMOGNe35Bqj0c3BdRDpXwqkk7Enynd8ezUlnHVD+WJ9PzMYUCK/NGFKRQNhr4kp//PqM8OXDpqN1XQc/OORS2lu6s4qB1mXz1LAssK0+h3qa5k37et2Gksed8OPD+d+1z6CVzlNapCVpGtbIlS/+kQFDGvjVly7i/XcXQSBgjF3tXfTslVaqrJdBCIHWGjtgcfxPjuTMP32N+/7xFDdd+EDpGxICwiGoipb1HkSrw9zx2u8zYa4+Gx9fPhRns6yS5LPpWbWihZeencF/r59qJtuuyg6ihZQF72+NhqoopFKIYglsaTc0oIO2N5F3EU6OwJGyqNBRrmarPbfm7ltf673PC2W68cqn2H6X0fzt4kdQ1eF817ejkPGkuZ90iFJ1FTocgo4uSCQAAYObEKFgzrnmGiuWrOdXZ9zIrnuMo2VdR285kn4uUqKV20v4FEVrnr3/bU466wBcVzH93UWsXd1OfWMVU3Ydix0ooYT5bBKUFqgyLuVy+318tjQcx+X1txbw8J2vsR4z5GWmRWUm1mbctxDecjylUCEbFbZBaayuJCId2mrbJWvLbLvHBF66/w2U23tdBuUq1i3fwA2/vYO9vnUQH7S5sM2Y7AHJFHrJKsSGHANSBWFJadurk3K5/4pHaF/fyfMPFV47qBeByhSA7s44774yhz0Pmci6tR1M/2AJSmm2nTSMIQXWpvDZtPQ3+eArDD55xONJrvy/R3jhqY/MBikgGjThNLGUsZiXsIIIBAhwa6sg5SA7Y72tNYCOhlDRUH6J1ZSL1dGdVRyKEQzw2stzMhadgv2QkvP+3120tXbn91cIsCUqGkJ2J0CADlgoS6ICEeyqMCLpmuOChb8eSmni8RSvPDMjo6AURYo+lUFob+ni9Rc/5qpLHmXt6qwLu64hypk/P4wvHbtjxW35fPa4CMqphH1QGX18NnveenchF1/+GC2t3WYSPbQOhtZhre8iuKIVUSb0EkAojTt4ANaGdkSqt2FIBS2Sw+tRVTmJvkphr+sisLqj7OS9K+myfkXxMFPlKqY+M4Pn5rYYT0cuARvGj0DPAza0QVUYHQygRg2Glnbk8nWIRLLk9bWGZ+58DSsaoWzVTK0pf1CWdWvaufSPD/HCszPylKHd9hrPL889hobGqorb8vls6W/ywVcYvgBorXn3zQW88OR0EvEkg4c2cPhxOzJs5IDMMW2t3bwydRYP3v46yxatzY5fOTGWOhqE7mRFr7fQoMNBk+zcHc/bp6pC6Kpw75NsiVtfjdXSiQh7SkpPL0MwgK6OsmzR+pKJckprWlu6i3ROoCU4dWF0KJt4h9Y4YRuSLoHORDa0qAC6gOWqyMUqOMZDCqoaqrjgZ3f02tXW0s3lf3gQpTSHHV+g0ofPJsFF4pZZ/7JMcIaPzyantaWLxx56l4Xz1hAM2ey6xzj2OXBbAp5XU2vN+x8t5cVXZ/PwY+8bTzLkjY/ugCqSUhBaWHqRSwFoxwUpcAfUYq1pNYYoDxWwiI9rBqvH2CklTnM12pIEF6wpeY3FC9dilVjTQQNqaHOve8j8rTV6zFDU6MGQu4JzTRQ1cjBixgLk2taSfUBKlNKVSYCUY/L+yqCBhx/5gKVL1/eSP++8MZ9f/OAWrvrPd4hW+RWVNgf6m3zwFYZ+zluvzeXP5z9Ie1t20i6Au299la9+a2++9YODuOWGF7n3jmk4KRdZwNpjTvIG0aBd0CLUEy3wlIwQujueGTSVNNuKXgONWxXGjqegthoc1ygNAuOGlhIdsNCUHoi1VWJVaECFLCOQenoftIaghRuwsQoIGw2exOuDKiCECbEqY3nTStOZNM+2mC501aWPom3BgYdMysSxzp+ziicfepeVyzdQUxvhgMMms8ue47FKPAOfjYOuwOWstyCXs88Xi1h3kisueYQXn8uv3vbsEx/SfPVzXHrl13DQnH/pwyxZVjpnACFwG6tQK1qQieI5Wxry8hdUNIzVGcvsSzVX9x6bc68xoAp3fvFpmAYIB3FbOoqP0dWRkknX2pImFKrA9dEaPX44FFAYMvemdH6uXDkSCYhG0FAyj6FmUC2LF68ruM91NcuWbuDiPzzIWT86mNFjjUIUiyV54ZkZvPX6fFJJh623HcoRx+5IU3NNwXZ8Nh79TT74CkM/5oWnpnPpeb0TrtKW+btueZW5c1bz9tsLARCuMgNWsQa9cB6ddPLi//PaxmsgPVkVAhUNYXUnTChSdQHPQs9rhGxUPGUEgm1lXMbp4TdVH8aKpZDxUs68/D0acMMWKmyhLWEm/K5GplT+kWmBELLQsaxSomyJUxVAhzxBpzSyK4nVnkAWkwtCgPKUKylLlgMUUjJu0nDmLS4tlJMJh8sv/B9X/vlxTj5tD5JdSR666w0sS+K6CmkJnn/iI7adPJz/+8fXqK7xKy59liS1RUCXVsySW5BA8Pni0N2V4MffuZGli9cX3L9uTTu/+tGtdEYtuuOlQ3AyaI07oBq5orXkYaommj2lOozqjCEBbUvcxmjpZGitcZtrkG2dvXcBNNZCYz2sLHxfgAk7KtY8mPE96aJs2dvTIQSEgiiyeRtaCPSIgejhAyFkPAWqtQN7bTuio0w1J2HkEe2dUFdjKgUWuH8hBQPHD6J97uqSobBvTpvHm9PmMWxEI9/90SFc+ZfHaNnQlbGHvfX6fG6/+RV+fd6xHHTopNJ98/lU9Df54CsM/YAVyzbw9BMfsm5NB/UNVRx82CSammu47MKHoZAKkJPA9e60eWBXULUo91ylew+iOVdSwUBee6qhCh0KIoVZ+6Cia3iLq6VbSQ+PTl0YHbBwpUDGYwUVHGkJ7KBFSmm00mgBqbqgURTS7QvjBXEtCyvhInqMvypkoQPSNO5qVDSQPRdAClR1EBW2Cazp6q00eMpBNlFcoi2JUIqgLUnFU57iJgiEAxzxld2pGzmAef94tuSjSd+v6yruuvlVpOcFcb3fysuXmD1jOX/+/QNc9PevlWzP59OhEKgyLmfVh/hkH5+NTSrl8uqrc3jvvcVopdlu4jAOPHBb7rr11aLKApghrGVDF07SRgUrLLigS4/xGiBoo9NhPt54mhw/EBWUxUtx92zHM4Skx8OMHKiOwvDBxmDVUItuaS9sVEoW94BkZI4GK6VQSqN7FpwQAj15HKqjG+040NwAddX5x9RV49TXYC1eg7W+d0nVXrLLcdAtrYiqKMHaKpI5Xppx2w7ltB8fwj/+8Uz5vDmP5Us3cP4592SUj7Stypyv+dOFDzN0eAPbbDesovZ8+k5/kw++wrAFo7Xmhque4947XkdmKhfB3f99jW22GUIq5VLUX5C2pPf9oiBg3NZDWLu6nfbWnDwBYZSFnoOrtiQiaIFjSpqWi+rUgIoGTXiU42baUCEbt9pULdK2Rao+TKAtnme0F0BVbYSvnnUA1/39GQCcKtsoC4ViVdG4QQs74eZvF5CqNwvPyWS27V7n2xK3Loxsjec9SwFGsfLaSv9W4RC/vuI0dt5zHPNnLEdraBpWz6V/eYzpL8yiXK0MAah0ZacSHiGlNG++OpclC9cyckxzmVZ9Pin9LanNp3+xaOFazjnnbtau7cDyDCaPPfY+117zHLqzMq+BSLhQqcIgQCRdappqaRpUw8IZyzO7TLGLMKq53nhcITOLteIuKlLhdEQIdE0VatxwxPo2dDIFARs9oB5qq7Lj/MjBJgy0rbPX2Hz6r47m8beWsmZ1W9Hwz/S3VroaV6qs1zzNgDp0Y21enl/PfqI17shmZFtXRpYJQEsBloV2sqODBkR1lGE7jePf95/NisXrWb+6jfoB1cybs5pLznuARDqvrg/laIvl+kkB993xOr//vxMrbsunb/Q3+eArDFsw99w+jXvveB2gl9Vhds5AXZS00qBBhSQ6JAl0FBciQkBkSC3VI+sZOXE4P/7S9lz6q3tYsXhDNgwpZyDTYHy2ElRAIhyFEqVj/9MhTdoWKGkjQjmvaA/rkw7ZJJuqkHEH6bgoS5KsD9BRZXPV029SNyBKd2vMeAukQAVMsrPQIFMaobybsjDbVX4fEMIr/dejLJ8FbkCgpUAAMihAKWRKo22BtgUgsBIOwtEZJUvaFiNGDWCP/bbCsi0m7jIGrTU/+/ntzJixHG0JlCUQbmGVKtOLdEhViecIZk2KN1+d6ysMnyGulrhlXM7u5r/UjU8/pKMjxs9/fjvt7SYkxs2p1tbZHkPGK0u3FIWK+BS1QwmadhxJc3Mthx40kXBK8dff3QeYIhi9KhJ5Mki66XGyssmTtgXUVqNrq4uPg1LC2OHo7ji0tJtE69oqdF01tz0+k+qacEULRmtAugrVU2EoNnH3wplEyjHFP6TAHTMEa4Op7qTDIYh4eXxaoxMpc5VgEG1JvvmDgxBCMGx0E8NGN/Hemwv48x/uN2O+FOgS4VR9wXU1r786d6O05VOY/iYffIVhCyWZcLj1xpeK7s8UOaqgrVRdwIQlaY3r2tjdTkHLtSsF63BZt3wDi1e08MjTH3LsAZNYfsdbva6Vvn46ccypsok3h9ABSaA1RbCjt0s4c440bm0rqRBu1guiPI9IXr+kQEUDJENBnKrsFzOWdIjVQihl4YYkbjj/btywRCQVdswkp2kp8it1BGX6onlubzcoUCGZEW5aa9P+kCgypbwwJu9aWhPodAi3JlGuYuSYZv7vn1/HyhGaH320jI8+Wmb+EAI3GsTuSPS6z0y4VzqHosJBxvES1JXSWS+Uz0bDuJxLP9dy+318PgseuP/tjLLQk75MUXpNlNMNFHqtBaxc087KNe18OGMZgwbWMmSboaxY1pI/ZqWVA29bmTlVbyxJsi5IsD1pwqCyl+9NNIyOerlz3jUdR2Wr6JX5egpAl68Ua3AVdmci06G0p1lCNmSpR6ENGQ1n+nDWTw9l/y9NzGvyjn+/iBQCpbXxWivVZy9DMRyvhLn2DIe+jNi49Df54CsMWygvvTArL8YxFw2osIUdK25BSlv/85K6hMCpDqAtgd2VgpxB0o1aJOpCmWPTbs7/TZ1O7bBqEqu7wNGZibW2BTpogRSkohKnys4Ih1SdDRIC7U5e7oAKCmKDQihbYMdcgh0K19E4VZJkrZdToDVWTBPscpHe7bu2yCoLuYOoFCQagmAX/kLqgMDVYMeyncg8l2Bue2a/sj1lIfc6metp7xyR/foLQaomwIBh9fzqOwez617jkTJfMr78yuxMwjKADlo4NSHsrqQRDpm2TG3yTHywKC6zM89TaV55fR53PPAWnZ0JwiGbQw6ZxMlf2Y0RIwaUONOnUlQFZfO2pBhVn/7Dww+/U3ynKmB8KXZoqMj7XaCBnnaM1avbqAoHCxs4cpSFVH2ozxNgHZAkBoSwYi5WzMl4iAt1M4+e1+mLda1kh7QZt3t4f8s1q7Xi8ON24hvfO5ABTfmVizo7Ynz4zqL8tlKukQOST600RKuCnPm1a1m6eD1Ka8aMG8gJJ+/KYUdN8ZWHjUB/kw9+3cUtlNdenVN0nwpKdFCirJ7BNIZMtaG6IE5dqJfFw40GSDRFSDSEaZ48mNiQKInGcMFEZ4B2oXCjNqrKxq0yv3XYNnW2LeNdSLed/p2qDdA9NEx8QIBYU4DO4SG6RkaMcLIETpVFd3OA2KAAiUbbC/Px+hcRxJpsnKDZ5kSKxJACWBS3xguBCpowICWM4NKWMP1NJ4rJ7ICvgiUs+yUsPqvau2jXbi9lASAeT/XapoMmPyNVG8INWjhhGxUJ5CcTphPDC/fGKG0CZs5ZSWdXAqQgnnR4/IkP+P53b2LmzApC1nzKknY5l/vx8fk86eyM09ZWpDqP1shkpSbzMmioipZYP0AIuhIp7IiNJUVeMYj0jxsN9HmyntZVZMLF7nLKrxpdyiKf7kgRFOCEJW6gtGdGOMqsRF2m7z1liNbw7tsLeykLAIkC8kEA0nERSceUHP8kuYgeHe1xFi9cZ0KaNSyct4YrLn2MS85/IGPE8vnk9Df54HsYNjM2bOjkgfvf5qknP6SjI05zcw1HH7Mjxx63E5GIGZi11syavbLg+RrQQRMW41YHsDpTeWE9aZzagPEAQL4lO40Q6KBgRVuXsdCXGpGUZsDoBtYvbsGptUgFzJBpx7XnLta5dvcsUuBEzSuoQr0TxrTtJUgXSSZLNFiI1Q46UEoYFB++tQAnJElWSxAm3dhOaAKdLjLtnJECLTVaka2yVLTB4psvvuZJdpg4nIGN+UJh1KgmVKH1GYRAByxSQYl0suVfNZ5nJGyhhE1oQyKzknRu8hyAUxXMJhd6KK1JJB0uOP8B7rjrR/5aDZ+SlLZI6dIJoaktx4Dks5mjtWbaa/O4//63mDVrOVIKdt11LCedvBsTJw7PHPfBe4uLtiF6jBclrwfYXQ6p2iJKgYCu7jLJ01qTQFMdDtAeUMQaLFRAYCU1ofUpdEiWXHugyGVBaQJeaGtFk/Ri1yjiatFA9xCbriGBjJdFJjWRNS6Rtb1TVYVTpix5CVYvbeEf1z3LT753SN72uvoqqmvCdHbEe50jAO0qnIiFlfMRKAmpWhsnamF3uwRbK3xGObz4/Cx23m0sRxyz4ye4G580/U0++ArDZsSyZRv46Y9vo709lkliXrGilRuun8ozT0/n/AtP4MOZy3n3vcWs2tBhcoB1Nr4+HaaSW/oz1RBEOBqZMAOcsiROlQkVEgqzuEw26qYXSpW3XmhgWWcn7ohQdgPgRtIVMCjqLs5cuseAnhFpxUY5L1QoVdeHkrA5KFnYM+EEwWmwCLe6WF7IkwoIRPKTf6sFkEy6/PJvDxGJBFnX1sWgxhqO238yBx20LTfcMNWraJWPlqAiNsrVBNpTaKVxagOosJV5XvFBErvLwe5IZRQ/FbRMrkNPj4anaCmtWbeukzfemM9ee034xPflU+lKnluQRPDZbNFac/11L3DPPW8gpcjIiFdfnctLL83mF//vCIYNrmfB3NXc+p8Xe0+SM3U1S7+PSmBiDzRIZRQM4aqCi2GWEB35fQeWjbW9/C9zYkpr4k0B7C5FdF3xSO5ik3CZyFYdKnVe2YijIspC2/gg8ab8KZIKCLqGWTgRQc0SZ6NGn9/38Nus74ozb9EahBDsPmU0Jxw+hSO/vAv33fZqwXKqsUFhwi1Z5cUJS7qGhTL35EQlqSpJqNXB7upbtPxD977lKwyfkv4mH3yFYTNBa81FFz6UpyykUVozf9l6vvG9G7PezKCFsiVWzEGFLdywUQLQ2luQTJv8ACnQIYkTskzCbpC8pFyZFFiJwgOJlIJoVYi2rnjeftcGJyJRnifBSmrcQLqaUO4k3/THDYPorsBl3GtbmWcmBMlaSaCy3LU83FBvZSH7tyZRYxFtcTPbVBCvTGqRvpbqJ2byP2vpGqQQaA3L17bx9qyl7DBhKGf/5Ev87fIn8yYBQEa4Cilw6gImMS3QI4fCkji1QZyaACKpsOIqW89c57wHufenNUIK5s5Z5SsMnxKlJaqMS1ltQVUwfDZf3nxjPvfc8waQXxXPdRUozZUXP2IMSMIMVZJsmKV0suNAsbfRDQhS1QHjofaQCZdAp2O81AUMpVqTUS4y2wQkqyWpGoGS5toyIU1IJ2QHam8Mc6KCRL0k3FrYqlRstJVO6e9V+rzugQGq1hZfd6GQRpKot4g3FyhyLcz/EgMsQq2KUHu2z9qWiETJLpVEW4LnXv048/eSFRu474n3OPeHhzFq3EAWz1+T97nrkDTFSvAKW1hklYUcGeVGbboj5sOrWhRDSInreUyspEIWkv8aFixY4xfL+JT0N/ngxyNsJsz+eCXziqzgqAICZRUInxfgVAXMl19mJ8DaErhhifbMKxpjTc9TFrxjVdBM/gu9skrpTJ5AJu8hIkg02rhhkSkh6kS8f/eYSGvhJQpb4BZZYCA9mf7ECIEbKqEsaHpJSOUJ0VJhTDogcO2cJixRelGhEt95gcl/EIgei+fAR/NW8uGqNVz2168yefII05SAQH0wr/a5FgIVKOFNEQIVlDi1NipshLMKSZxqUyVK9zxWad7/aGnFiwD5FCZtQSr34+PzaXngwbcLT96U8SCnv+Rpp7HAeHatlO41PvVsxQ1Ikg1BE96Z23RQkmgMFlQWpBQ0NERxAmSEk7Kgc5hNfIDEDXrjaFiQqrdLjl2JGkGfF7yt8Ph4U6CQGCjZTvcgu7QnRmviTfnfa20bmVt2RO0pJzHPP2MM8lBKo1zFJVc/xS8vOZGTv7k31TWm2pMbkkS2HpDnuU/U28UNWkKAC8nmMInmEE6NjVNjk2gKER9oCo30vkdYtmpDubvxKUF/kw9bTk/7OR9/vLLg91wLMxAVHQQA4eYf7wYFTkiQqLVwbXAtTNJwkTZ0QECOoEgftvee42l1EjheSVInIEjVWPkH5fxby2yybSoMqSpjPXKqJIlGQbI6P0k3/e9CwkikDyg3EbcgVSVQ6XWAChwUCFj5163wrRfVAVxbQFCibVnU0pK+50y/e+xzrcL3CMa68NirMxm71SD+8pevcOS3dyM1LsqGWp2xPGjvPt2wIBUWOEHyhKvGJOaJdGJfjx8VkrgRiRs2liXlfU7vzlzKJZc/5isNnwIFuFqU/PFTB302BrNmrSj4XRUp84YVGp1Ej98a47lM1gZI1gVIVdkoKUjV9ihMkWnA/O2G88dQSwrC4QANo+pNiKs3VnU3Wyib7PhTqM1CSEHnYKuXYamUCFBBWXZNn2SVscJ3Dg9mtuXuBzJ5XLn73GiOEa4QQpDyKvNlIj+FwK0Je+Nwjnwr00eAZEOw4HPSmOiDp1/5mDN+/CXOu/YbNB02jo7xNaxyk5lnoMH7DEX2oeXdkMZOku/dScttWxBvCpGos0nUB0hV2yZkNyz55q9uY9b8VSXuwKcU/U0++CFJnzPd3QlenzaPtrYYgwbVsetuYwkELCxLFq48Z4mSCVsCb6zWGjcgelXycQLeYK510cQyIaB6QJTuVV1oYOyoZk46fhcWdrTBnEXooMBVysT8F+tLehE4CU6E3pYOIUhVaZQUhNqzlSTcACafotgDK2XQF97kXwgS9WB3a+x4dr8VkPzhe4fzwNszePe9xViJHEWkArqqFOeedjDT3l5Aa3s3wwc3cPRBk9Ba88vLHsJNuMaLEjD3EYiRyXtIX8YNQioqkG7xe3RcxUdzV/DwK9N56f355uMTAiU1wsu1yE8KF7hhsBJgJTLZHiXRdo6yFrTAWxzu6ZdmsmDpOs4+8yB22n5kZQ/GJ4NCosqWzfPtMj6VM2fOKmbNXI6Ukp13Hs3QYQ0AWAWqrKF1ZZV5wCgG9QFjgErLiKApma2FKD6IeON4dXWQrs4EoZDNYQdN5OTjd+G0P/wXhCBZYxFoS+FGyq1VX6J/AegcbFG1ysVKme64ITPOFT5ellzoUgCxZqMoJBsCtAcl0RUJ7Hj2+K2nDOdbPz6QH/75bqqWpQikS2wrXVLughlTdz91EsMSYWbOXI5tW+yxxzj22n0c/7nhBV574WOE0qiAJFUbQLiaUGsyzyugbUFiQAg3bBd9/Epp3vxgEfvOm8DZf7kvbwE+JypJRSTxQcG8lajTSkT6f3b6GRYzGlrgVNuZe7e90uZyeTc/+d7NfOub+3DcCTtTUxMp+jx8etPf5IOvMHxOaK255+43uOWWV0gkUpk1a+rqIvz0p4ex8y6jC59XgSQQGCt2Nka0yKBAYZmgtclLOPjUHRnUUM1xe01iUEMNXz7v5swkU4U8ZaSMtchM4Iv3wY2Ck/DWa7DMtqpAgFgshSUlWmvjPVUabM9y3iMf2AsjzSgb6badKoFTBcrSRtCEJP/+6D1Wt7YTq5cITByvFhDoKj3JNqFSghGjG9l159ForRnRWI/tDcpjtxnErEWrjNfaayhVA46rM/1Vtmkj7XnpeR9gwqPcAFx83/Os3tCBlOY4IywFBLwKUgWepxsGZWusGFjlzBTp81X6GWTbm7doLT/7/d384PT9OfXLu5VpyCeXylby3HIEgs+mY+XKVi668CFme97m9Jx+r70n8JtzjmbPPcfz7LPT8yaMUFlkjgajLFiFZUTG8FSisa2nDGPwkHr23H40e+84lpffnU/K8eLnQxaxwbLsJLskXv5YbIBFsEsbQ0lAYMUVdR0CJ+UihDG8uEoTigZpb7SILo5hJ3sX5+gaGiJVk53iOFUW7ROiaDQq6IX6NiT5+/PTiA0MEGu2kUkzPrpBE9RV7k6Wx7v49bcPZn1HF43VURqrowAc/dXdeW7u0l7HOzUBrJhrFAlbmjw1UT6OafmqVn5+wb2olGs8ODlyLzY0lH2EhR6rW3xfjyNBa8ItqbxzVEpxy39e4snHP+DKf36Tpube5V99CtPf5IPQupBde/Oivb2duro62traqK2t3dTd+UTcfdfrXH/9C0X3X/R/J/HUkx/y2qtz8xNfLTNolhqEFZCqleUXctFFFAZA25Cqt8wiIhr2nzyGqR8uRFs6E7hmd5UZQrVGSVDh0sfIlLloqtpYkKQlGTeggVGBWmpVgMFNtRyz3yTufOE97n/pQ7Qyk3Chc3IepFmwjZxQHw24ETORztOOvMdpxckk/skEWatLAVwb3CjUNIRpjRm3RWNVhG/stRPf2XcXHnttJhfd/HT2hBKeEOV5igOx/O1uML22A1mTkMDEJCfNUXaK0lYuTGJzsLv4vWQP1kWrVaW55i9fY+I2QytobMtlY4wn6Tb+9vZeRKpL211inQ4/3+W1LXr82pzpD/Khra2bs75zIy0tXb3CjqQUTJgwmJ/+7DDOPvuW/P1aI+O9S3z2xA1KUvXF10vItFiiIbfKW9tHQ3U0xOTxQ5j24aKca4AT5pMrDDmdSRtN0lSFg0weMpAGFSAaCrDLlNFM2GYQX7/4TpKpFIE2l2C7A0rjhiXxhkDO4ps5TUsTKtsrVqtAH9IPpdTdNFRHaO2KZfJG9t5mND85Ym+2GtzEiT+4nrUbOvt23+UPAYzcUIHyzzktUqxYeS+UBoJtSaxE4WMtSzBlx9H8+fJTy153S8aXD8XZclSbLZju7gS33PJy0f1CwPXXv8Cvfn0U2203DMgZGCS9kolz0WAmzaWSeHMbLIITErjoTDz+1BkLPQ8AmXhHbUG5Iqtl1yrAuJ7jzSasBmmWvJ+zbgPPrlxE9dhqfvzV/Rg9tJEvH7w99U1VJjzHFibkKiDMwm4h0evtVUFPWYD8kdf7txvKHXCNgMsN90z/mLwI01ZaWQDY0BXjH8+8yv+7+zEO330bdhg/1DzyUmFTGGWspxHBDRgrVm7+Q64QU2FR/jPFKHAVGyhU6dfAkoIHHnuvwsZ8oP8ltflsGh5+6J2CygKYkJTZs1eyenUbv/v9cSaXKm3n82aq5cZlU3Gt+DGZYazIIVqAm3PZzu5EnrIAIBw+vbKQ7kwPuuJJXl+4jBdXLeP0b+7DYQdNZPTgAXx5v8loBMk6m84RYTpHRYgNCuVVesrcA5CKkr3ZUl3tsb9YLkVaWUgfM23OYr7+z7uYvmw1v/7el5Cf4nloYWRRbpRBultWUiPKVIlKHw9kvNxFrwUIrYsqCwCuq3nn7YUsW+YnQldKf5MPW05Pt2CmTZtHImGC27UwsaQqZ5VerWHpkvXc9eBb/Orcoxg0thFlm6Tl5IBApgRozy98pjpqoQoHFZK22BvLEL0H0pyyD+lKP0XbERiPREkEbtrQlTOYpv9167T3OPLqWzj1lrs58T93sjTcRfdA441wouZ310AT/pNuR2Em4E7as1D4siDJJh8LoxCkvRwq4P2EjJdChwo3o4FnZszj5bmL+NcvTuTkA6fkPIBsf5ygEU7JGhOWlD5EYRLCk7WeN8TziLgBsslPfS3bamcTmctRqmVXaT6cuaxP1/6io7So6MfHpxRPPflRZs0bJT3Pcs53Wgi45dZXCIRtfvWLwxGOgpSLjLtevD0lFYLKshyK41QQjioVZhL7GQYtdCVSHH/RzXzj1ns56m8389+XKjBwaBO66US0Ma5V+ig8WdizwERe0z02uErjuIrz73maPXcay+W/P5GBBVZwVhIStYJ4vSAVzTEuYWRB5xBBywRJ63iLlgmStpGSVE76gAZkH1b80nYF+pFT2ToNs2etqPi6X3T6m3zwcxg+B5Yu2wACHFsaq3EaL2FNpsxwfus907jlgTcYPXwATo2dURRUWOJIheWtnJxm8qQRRGtDvPr2gvKxo+mQF8gL11G2GbgKVYTIWCe847VlJulWsmDED06VKY3X053cs1G3hCtVAwtWbzAlYL2LmNCd/INcCSgzIXe9JOtAV/HbT5+nLdJlqw3SKAloU+1CC3Cs/MfVE0sI7nrzAw6ZOJ5ff+0g6hoiXPvINIRr2k/Ue0pcJihYI+OAY65l7iXfbKRt7ycJlte/voQ2pqIQ7Mz/XLxb7tNUwV/5uW+oCixEW1JSm8/nj+Mq410oFH6qzCrvUsHCRWs598IHqauNYAckqrvA2gI5ciASDbLXl7blrRfnsCGRLPkeFhrr0tvckChosS9EoBuSVYD8FLkMqviYJQA3oXh73jIT6jkYAu0QbOt9jgBSEU2sGdwqc5zdpSvITOjRSPqfEnQYHKWw4gJRZKKntGb+6g18tGQVu+0wmjuu/DZHnXEViaRZoivWJEg05DcsUprIWoWWEBsos559zG83rOkYaWF3aapXmPcBRXm576GlUVJEgWebUUor1D+kLyMqpr/JB19h+Axpbevmr397gldemwsBWWBEM+EkbkBgpVQm9Gjxig04gfSU1VMaghIVMLH8xiMgeG3DKtgAsk541XIKDx7pceCUw6dgIWjtiNOWSDB13kJcm6LVk3LPTaOCZuCRDpl4eBXwrP0WmfjTQhNV4U3GKVJiFO8crXL/wHgGcgc6T3lJ1ZhJdsnZfYWIaklXVTbAXzgm50EWiPl3tWbh2pbM36fsN4XbX3yP9kSCRHVuo9kYIxXWJAIir4pSIXQQVMJcV0uz6mp6Ne9ex2auYxSUVEQTiGWffa9HIjIRDAWxpGCvXceV7qBPHpUtzLPlCASfz5enXp7FP2+dSrdyC0/KhRn7SWYHovaOGEIKLOmFZSqQuXlvmBWUNwwNcPfi+TBSUrskXXe6sIwQQE11iK+fvAdzF66hribCAy9+SFu1IthZ+RRbaGO4UEFwwn1XGoS5gbLIpJE7AKlaI496GoxSUU3nRij8JgBhCTpHpDLXREGwRRBcL4sqIIvXtbL9qCFEwkG+ccIe/PvuV+luFiTre3trtA3dQ9IJ0AWeW2aRO+gcJqlZ2rdVm806PRornr85V0aogCxrYLIswZQpfjW9Sulv8sFXGD4jOrvinPWjm1i7rtNLRqbw4CkEWN4aMZYJU0rZoAMYkwaA1mYMUQIVwlsXIduWsoWZVLpkRoCe1n9twalH7MLQ5joAps1czLM3LCo4Ie5Fj5mntk3IjS6gAyHMQC6d/PMsKThkygT+N3c2CCq38oic37m5fpb3jHL75R1TyruRFkYaY2nSmEHYieY/CG1pnCqB3VVYaagOZ2OWGqojXP/jk/jatXcBRdwrQhglgNIDMnjPL2HOcSMau7uw5yBzTzn/VpYR2q4XfmWlyFrsvOdTrA9CCE44ascyvfPJxUVQLuW0fEqqzxeRe594l7/d9AJojW0XWVPAm0CqQDY+SWvQlkDV51THcRR2t4NwFW0TomYdgbS8kYJErZ1XTrQQe+06nlOPz1ZJe2bpItrWt/X5vgRmQk+43JH5DBtQS104zMeL1/TtRG1CPO2uXLmn6R6S0yHMuFqp3EnnhAgEbkCTGOxklQUACclGjQoowqsKKw3V4axb/Fsn7sHS9a3ctXhW8XlAoX8XOM6Jmhw7O1bm2IL3VUL+SIETkdixwsqIEIJDDp1MQ2N1gb0+hehv8sFXGDYySmnuvu9NbvrvKySTnjm53Jdaa5Rt4XqLcxW2LnhrHKTr8Yv8/SapyVTBESp/QilswV47jMkoCwDRaBCsrDW/ZA97dgdTxlUWs+pLY2Ea0VjHWfvvRtC22HPrkcxr3cADS2ebeXvIzOyFa+psixSZCXyvRc4KXCedgJ0ZqL3QpWKVj7Q3VOoQqIA215DaeEYKLdDjlbpzwyC7e+86Zso2edu2GtpsVjwt5UEo4WrPw0t0E97EwIl6liHVQ2/y9EbtdUpZIGyvZK2noLohjXRApjxPktR5yc+57TUMr6WhIVpJDwGIx1O8MHUW8+avJhCw2HOP8Ww/eURJj1V/o79ZkHw+e+YvWcc/b5vKmx8sBkA4ZTIM0msk6DwLTN4h2hKkagIoS+UrCx6pakkgXqCucw4nHb1T3t+BxiBuR4VjVm5fILt4Wxl+etw+1FWFGdFUz5SxQzn+qtu8tWvSE3ywYibUSWSMPTnFLYBMSKdFphxoKtojjNU7R0lPRpa4K402XvMIuGEXt1oXzvYU4NRq3DZv8p5DVSjIHhOylngpBcO2a0IulZkFOT8xWpOsFabaYKWnYN4RKyMJM7eQlScaUjU20k1hJbPHpX87Qdh6t755F+YvWMPUFz+msyvBsGENfOngidTVfnHWcuhv8sFXGDYiWmv++rcneOLpjwrH4xQjHZoUKfHieEJDaDJJtLkoC6Q2lYxMaJDOhDgFAhbnnn5I3vFdyaTpc84g2+t+MtfO35a+hnZ67c4cI4B9Jo7hy3tOMtu05td334mqyjnKq7ykQiASYHd6Vv8SIUsZCngptA2uaxZPy8+x8O5EghYaHQCVTpAulXCUFkTec0+3FQ7YnLDTdnmHJhyHpFNaIPcpdCr3mVtmfYlASqMT+fvTzSkbCJoQBSvvGGGSue0cFUEbBUK6XpKlLXCDghXtndz44Ov89LT9y3bvrbcWcOHFD9PVlcC2zaKD99z7JltvNZiLLzqJxi+IFSqlJVaZFzalK3Hj9eaqq67ir3/9K6tWrWKHHXbgn//8J7vtVnydjCuvvJJrrrmGJUuW0NTUxEknncSll15KONxHU6/PZ8a8xWv53u/vJJbIzvbS5aLLTq/LyBCjUFgFQ1pUUJCokYQ6VK/8MwEcceT2bD1+cN45gbBl1rXZQOm8tBzSo0yymqKhlNkuC07eZ3uqI8ZT8viM2cxrb4HmbMe0NopDqgZC64zH1I0UMCpB/phZqIKsgEQjhNcbeZSWH1lvs/ktECTrPDkRKXMTGlK1CjtmZdpCwLF7bEskmO8Cb+mKIaVAuZUKgSJ4xiFt924nHLKJJ5xek30tveIetiDYqfNkfn40giBRF8BKaqx4er0IgROVuGHJX25+jn13GU9DbWnDUiKR4uI/PcrLr87BsgRCCFxXcd0NU/nxDw/h2KOnfLpnsIXwWcqHTcGWo9psAXzw0VKefPqjwjtLVrAoMgD2Ok6b0nWF9glTbcENmAlueuVONwRdYZelG9rzjh/VVA8YRcOpMgN8KmryE9J9Mu2SWyjJ1LGuzlYVyp245sdDwtf2nJL5+61ly1ja6fXBs35n/o3xODi14AaKWHPS17c0To1buBqTwAvZMsdpoVFS40YgWQfKk2AqrwJS+cHblYpURBFvUsQHa1oaUxx+1608t3B+5phwwKY2XKS0UvpKFVYy6vUwPf7faQdxza9PQgSy5VjdICRqIVltJv1OVJKs9Z5BbjNeaVyEAClwQ4JUVJKqtnDD0pS3VZqHXviQRLJ0osX8+as597z76OoymonjKFzXDHrz5q/m17+9O/N3fye9ME+5n75y991384tf/ILzzz+fd999lx122IHDDjuMNWsKh2vccccdnHPOOZx//vnMmjWLG2+8kbvvvptzzz33096iz0bk8v88RyKV//3SpVa67wte2KOVLLw7VSOJNcpMeWmNGfM7h1vM0e29jh/XPAApBV1DIN4EsQFkKvrkji09/443Qaqu9B0J4LAdJ2SUBYCrX349/4D0bwFISDRDKmKKSvRCgXCMjEzUaOINha+rAxBr9mSYZeSDCkKiwSz2CZCs1dlw1/T1S9yICmjcgCI2yKFzvEvnBJfrV77DL6c+wYZ41j09tL5244yL2iwul6sUWlIwrLmO/170DfbaaUzG86yl8Qy4IXO8tgWJekm8TpDqYUdI36oQAhWSJOsCxAYGSQwI4EYs47FWmkdfnF62i3/662O88tocwJRjdRyF1uA4Ln/7x1O8/MqcT/8ctgA+K/kAxqA0evRowuEwu+++O2+++WbJ46+88kq23nprIpEII0aM4Oc//znxeLzkOT3xFYaNyKOPf4BVaB2CMrNEAWbSVgaBKFjJwA2axC83IkjVCuKNgvgAQaJWkAoJRFBy3dQ3eOi9GaztMJlhMdch2hQyk/RwtpxossFTHCxv3QIvV0FbZuBxImTLkwpPcfDcwdry/h2Ab+2zE6ObsqP28wsXlh18VcBM7gs+Ow1uSJFscnGjGhVUFKw97nkFHE9JSDWaChl4Ck66olKlaDROHTi1+Urduu5uznz0Ia5/9y1zWSE4eZfJWKUSyO38W+p5m+ntdeFQXhcH1Vdz0dcP46v7TWGXbUdy0G4TSNaYzzlVLdABAd7nlaoySfTaEsbrUOB6BfMfPLrjKda0dBS9B4Crr3u+qOBzXc2CBWt54835Bff3NzQCVebnk5S0vOKKKzjrrLP49re/zXbbbce1115LNBrlP//5T8HjX3vtNfbee29OO+00Ro8ezaGHHsqpp55aVoj4fH4sW9XCB7OW91prwYRXVu58LEcxoxIYORMfYNM11KZzqE13s00yKnhr/jJuf+U9Xp+7BKU03ckUjeEIysEUVKg2Vv7YIEHncDPWJOoh1mQMTk4UkvXQOQJSNcbT2Wss95ACqiMhfnTM3nnbF65vLXtvqQZ6z1q0VyFOmCTn7uE9jUI9sMCpgfhAiA+CxABzP04U4gM0TlXOseU+FM8D0j1K4dTm9+2+OdM55oHbWNNtFm87coetsTdGhSEhqHWy3gspBPvvPJ4b/vBVRgxu4Kdf3R8nInCiAjdslITeSdZmvxPqfZu5eY+9wpEFzFu6rmT3Fi1ay9SXZhe1kQoBN9/2ClvAmsGfms9KPmwqg5IfkrQRWbZsA24pd2MBV7HGTCRVJZ+E1r3i7d1A8YFZB0yugRPSvLR4MS8tXowQUFsToSWWE3TZ4311vfhR6RaYbOasY6CCXmx8juW8PhrmzP125dt778y8lvXcOetD5rWuZ+7K9QXvP9sFzz0c0uhkOp9BZ8OCpMKt1Zlr65CGRL5rOdPHdOZzD6+NDvYtHlejjaeiiHsb4NJXX+LA0WMZ39DId/bZhSenz2FVewdugQWYwHwmIpXTz3TvpVf1yYLDdtqWb0zZgeXr2qiNhpk4ahCWzAqa4UMbULPz+5HTadywqYghHIEd09g98x8y1rvCT6M7luTeZ96nrSPG4KZaDtptAlEvga+zM8677y3OvAeFQhWEELz08mz22nNCwfb7E5VYiNL729vzrbihUIhQqPfMJplM8s477/Db3/42s01KySGHHMK0adMKXmOvvfbiv//9L2+++Sa77bYbCxYs4PHHH+cb3/hGX2/J5zNi2aq2wjuE8fjZifz48gwVxSvlHF40uaw3VsrzFEu49OGpgIm/T7kuScdNF75D2yJr8LChe2i2Q6n0MgM9xnc3YrygoUR+GM5uW43knFMOZGB9NQ+/P5PnZ82nK5HEUWWs74VCOrXJbdBK0zXCTPozx/YF4YWp9sQRECgRliSAQJF9wKquDi547Xn+dfAx1EXC/PLwfbn0sRf72Ll8GqsiXPvD44m1J3EcxfiRTTTVZ0NAhzfXY0mJW/Z5iky0gBU3uW7pe3ItCpqTBYKgbfHGR4uYMW8VtiXYbfJothkzKHPMv655rndERc57oTUsWLiWVavaGDKkvm83v4XRF/nQF3INSgDXXnstjz32GP/5z38455xzeh2fa1ACGD16NKeeeipvvPFGn67rKwwbkdraCEKIXpqzgJyS/NlBNZ0c5kZ6J6kVQguzmE+6jUzyVwmBIl1w0/GgwngOWrpjZQdUbYPOmQxmJpq577anNNzy9ZNwXEXQtth++BCCtsU/3pnGFW+/iiUErtbIlKgwTtfE20vXeBxUSJtYTVvlL7qjBG6Ng9Vpe0m86QhME4qlg9ljNTonTljkXUsgClpCdPq/YE7sf4FjhAXHPHAbcdehIRTmqF23Zt2yLl7+eFE2uc3T84QwIV9u1FS9SldfUgEvQc+7xG3vvY8WmvMPPaj3NbXm6Rnzej2zXBOlUUAEOqBJBSVuWBPoBJTGUsU/ASGgvjrC6X+4HQ1YUuK4istufZ5ffP0ADtl9a/7fH+/FyU2q1GbFUZnUmVdDa00sViQuop9RycI76f0jRozI237++efzxz/+sdfx69atw3VdBg0alLd90KBBfPzxxwWvcdppp7Fu3Tr22WcftNY4jsP3v/99PyRpM6K2urjZWwckDgorqQubeytES89bXcFgmx42rBSZcByArkSy13F4ZbTNOFWk4ULlWqOCfXcaxxm77UxXIsWo5nqGNdWxdEMrR/3jFpa3tiM9GUEhw0yhTvf4W1uQaPA8yRsZkRJG/nzCmDHdBc++No/tp/4drWHKyCF8bc8deG7mfFa1deYdawmB0uXW7Da5EN/693088OOvM3JAfa/9L344v7iykP7QM4JdmIVDwwK0NutUlCjO4SrFax8s5JEXp2N5i89effcrTNlmOBf/5Gg+nrGcd99blHe+hoLGwli8D1nbWyh9kQ9bgkHpEykMfjJeYQ46cFveemdhQUOIwGxMf3mUDcl628wkVXHLe5q8MBJt3K/KEmWDygTGCpwOG8p2pgyegpE21qeVg9xzLSHYccRQdhuTPxF6eO4srnj7VcCsWQCmOoUUpTubHirdao2bG3tlaQjrfAuT0GCDKx1ESiISnhKWKWGb37ayNBKBTmU9EgLYZ8xIJg0czA1vvo2jVDYBLqRQtS50Wb08GJm+Bkx34q4xzbQk4tz58Yc0hCP89/unkIy7BG0LRyuufuV1Fre04QiXFd2d4Jr144p9FP999wNO2WES2w4aiKMUU+cu5KX5C+lKppjbusFU6s3V5nKVhTTeASporH1WzFOOisg/raGlI+t5crywo1gixcX/fpo773mDZSta8t9VYSyPri1QKY3lmJd8+PDGInfWv3ArWJgnvX/p0qXU1tZmthcSBp+UqVOncskll3D11Vez++67M2/ePH76059y0UUXcd55522061SCLx8Ks83YwQwcUMOa9YVD/nRA4tga4ZrvkJXU2RDU4naLPBJ1lRmf0ghMCWyT11B8UTMBpiS1ouQ6Oj1xleZru+/IDmOGZrY5ruKsWx9kVbt5Dkp7ld0UZcNWC6HReQrPxmRAJMo3d5zCk8vmMHN938q92m2CYIupS+R6H+D7S1by7uIVfGe/XThs0gQ6E0kG11bz4KzpPDd3HjGVorUlQazVodiD0EB3MsW59z3Ff7/3FQCWt7dz/8wZLG1rY+6SdagIiFiPz1P0+N3r30Z5sLsLe7qk915taDNhzble9I/mLOe7v/kvrQtaCq71Y2yl2eOlJRk0sJb+Tl/kw5ZgUOqzwpCOnbr22mvZfffdufLKKznssMOYPXs2AwcO7HV8OnbqP//5D3vttRdz5szh9NNPRwjBFVdc0dfLb9YctP+23HHX66xY0YKjvG+NV70id7x3g4JkrZUNLxKi6BoCGccEmE9LkJ3uVuDJysib9ES6D6QVDCXNKsi5WEJQFQ2y9YQmzn7+f0QCAQ4fNYH9h43h6vfe6K00yR5egF791IWFhdAQybGW5O6XQFiZpGxbIBLSSwbLtpn2OGAZz4UVEhwxeiuOHb8N2zQ3M6K+DoAzd9+ZHz/8KK8uWYIbdNC1OfVmC5l80t+cHv11taYlHuOiN6fywPGn8cLihfzgif+RcB208EK4tHkG5VIdf/nYk1z75eM4444HWNzSivS8VzpiFAC7y3iQCnSjxzMUOGGNTJj1GayUuSUnSGbhO+GAnSRTurAn0tFGWSjSPmCesRSIlOLww7cveW/9hb5YkGpra/MUhmI0NTVhWRarV6/O27569WoGDx5c8JzzzjuPb3zjG5x55pkATJ48ma6uLr773e/yu9/9DtnzC/wZ4cuH4kgp+P6p+3Dhv57ovTNnMqUtgR1Xeeu/6Nx/FHjdNJCslaRq+jCbzzlZo81Y4BRXGjRGuVBFLiE9C3n6365WHLTTOO5d9hG3LnyXCQ0DOGWr7Zm5ZA2LC+QrCEUm7KkvuCH6pMSUwxaCvxx2OAOrqth12DAClsVPdt+Th+bO5DcvPklClamGB4gEBFtMp3KfZ/r53PjS2+w9YRRTRg/hR6/dx0ur52PVSVxHYS+OlpUNAO8uXsHslWt5bulCLn/tlbx9ehTYHVC1QmdXpK7A66Rt4RmX8j0dIqfvhXBdxfqFLWaB7x77Cl1yyOB6qqo+Iy1vM6Iv8mFLMCj1WYr4yXjFCQZt/vaXU9lmm6FmjipE5gEHbIuBg+uIN9gk66y8XAQtwAl5k3ryDMYAOIFsPCiY43SxiWwPhNd+RTkSPbHNAL7v+FGctusUIgETrBkJBNhhmyGsq+/ipo/f4bGFs7l/7nTOeOYBDn/oZj5uWWsUAEt5oUQKhDZ5B2QVh17/lrp3InOwxIxYYN5gTxmSQUFVMJAJJzLhTSrPpazQnDZlEstZz2OrPuLFlfNwtaIuHOaCww/CqUuhq3OUBbt3n4oqNx6u1ry7egXPL5rPdx9/yCgLmZ3ppst5lDRz1q7nlJvvYnFLq+l7WvH0TnWqvKpWuoJXQXrlaqWpNJKsMYmB2vYSpIOmUpZbJB5Xpsq4yjWZcr86IFm2orVcj/oFKW1V9NMXgsEgO++8M88991xmm1KK5557jj333LPgOd3d3b2UAsvySj1+jsmFvnwozeH7bcevzjyEUNAMyBkxIAS11WHqgyECnSobT96TUsNGzjhQZo6Se4qppFONl+dUImQxfUIBfnv4/mwzuDnz97jBjTRuE+Wx9UY2PLZwNle+9xp73X0t13/wJraU3uKYCqdKoQLaeC/Kz8Xz+y90xuhRCVHbLnmoJQTHbbcN9Y0pFqh5/G/F66yNtwFw/ITtOHR0ZXlZgQ7ZW5blXkcKbp/2Phe+9xSvrFoAgKsVIi4RJcJGe/LHZ57jstdeycwZcucOTjV0p+0LffDcKJu8RVkrmWrIlC67CGxuFzpzPNn9mb7Ih7RBKf1TTGH4tAalyZMnc8IJJ3DJJZdw6aWXosrluuTQp2nkFz0Zz3UVH32whJaWLpqaa5k4aTiyRxLygAHV/OtvX+fj2St5571FKKWZuN0wdtxhJK9+sJBfXPFQ3vECz5IvjTtQudkayenqRJll4UPGRS2UWbdBhSjpqk5PLjPlTz/BvGFEfR1XnnQU1aEQvzvsAGKpFK+vWsoZz9xf4GIwv309IuyCle8Z1xpISjQSUiKz4rK5T1MC1SgAeQGWJqGsjJDE0qAEd51wCuPqG/juMw/w7qoVKCfrVjHWL8WkMfV869XbkAiEMJP7IZFa/r7HicSSynwjcuddAQUpK99dX+Hge+NH7xaNSS3l/s8cozTru7oL7/Q+TycKdtxbWbUMKl3BK31/PdzRaI0TMSFsPQf/UnGtuf1Jf+j/uf0VBjfXsHpVG7W1EbbZZmiv70p/oC8WpL7wi1/8gm9961vssssu7Lbbblx55ZV0dXVlkty++c1vMmzYMC699FIAjjnmGK644gp23HHHjAXpvPPO45hjjskoDp81X3T5ALB2fQczPl6BACZvN5zGht6B9SccugOH7rstL7w+h9Xr2qmvjXLQnlvRUBvljB/exJzOOEjj1ctTHEq8RgKwE4rOqEWgD3MxATgBUxnISpgxp5SHoRAXHXcIJ+08mW/utROJlIPWmhMfv4NVG0zIUTosNd3A611LYRgZQ08aGRME11ngil77imEMYeVN5wLYffgIbj/pJP43/0POff4pnIQk5WQHe0sIhg6SzAxN443pMSxhFln7x5yHOXbY7vx0q+NZ2VW6glzmXhKlPciu0ry/ZCVrw+tQuUazPgwVGs1b61cUv3Vhqie2BTV1SyprWAuNFdcZT3OhKKaCl+pDtVgBtLfH+PjjFXR1JXFdxfjxA/vl2j2fhXzINSgdf/zxpg3PoHT22WcXPGdjGZT6pDB8XrFTiUSCRCK7ZG/PZJBNwQvPz+S6q55j3brsgNE0sJYddx+LlhAJB9lv7wlM2X4kQgi22XoI22w9JHPsutZObn3szfzJpiYTU55GW8UXLtO2IGN8SA+oRWJK002qIHnlNSt9NesjYU7ffSe+tftOzGpdw7pYF0Oqapg8YDBXf/B6nvs5g1TogBd21ONCQgAhb2gUFtrNcZXidSzgGmGR3i6NZ6KsxmBpdhpZz28+uJs1sU4UmnAzCCVJdARwum12GjiUZHUXczqMVq5yzHGrYx1866X/csWuJ/Zu3sKERMUE2lIImV5JWZYd3WetXZMVluneWuSsWFpaaSg7CHseFhUoXnvduxBgPBLSMeFHBa/qKQ1uEGSP8szFQuZ6XsP8WzNv7mq+850bM5sGDarlu2cdyIEHblvmprYsdAUreepPUAXjK1/5CmvXruUPf/gDq1atYsqUKTz55JOZsXfJkiV5AuD3v/89Qgh+//vfs3z5cpqbmznmmGO4+OKL+3ztT8oXWT60d8S4/KqnefG1uRkBLKVgyg4jGTSkDlcpxo5o4ogDJlJfG6UqEuToAyfltfHwqzOYodpJDc6KZSuuCG9wi3scctAYj3Cqynxfg535dqKe312NGY/cMCBNKepAmTzUdMiQFIJdRw/nl4fuy+DGap5bPB8B7DRoKDM3rGH6+tUl2ymkEKiwJjHEIbTCNnKgV1lPjbBMxSWRvrOwm3XNl6C2UZBqXs2hL/yBhI4zYJw5PdYWpnVlDVER5UsTh/K2+zqdjpdLl7Og1v+Wv4GrFYOqSkxqhUZY5hw3KBCOzJdxPVBC9ZIPhBXa0gi3vKRWFpR1RgjQYXDCGite3IOk0SRrIVGvGTCjz9HLlXwEvfjxT27LVJWUUrD//tvwkx8fSl1d/1kJ+rOSD5vKoPSZV0n6JLFTl156KRdccMFn3bWKef7ZGVxy0cN525QlWNXRxRPPfoS0JEIIHnzkXSZuO5RLLziR2prsS9/aEeOMi+5ibUtHwYSjQmsr9ETjTdq8EBS8v1M15rcV9yaDmf6ZwT030VnL0pPQgCU5YYeJTBozEDsgWRPr5LD/3cjSzrbMMaNrGljY2kKvIUVoRBFlIY+gMh6GQLpsqsKOOASqUmZNMQTSDZBQSQJBRVdH2AvvLdKogEDQ4eOOlfRUibRUBOsSfH/nXdh/0FZ87cVbCzah0CSVyzMrZzK2rpGFHRvyLxF2sWqdXnkcKiVwuwNop/cXzhYSq1Cuhg2kjFdFKFFQadBFRXxvtNC4AbCk8TwVOiMjswTlV2wVwoQH9FAYVEBgJUq/qLnvsVIqT49dvbqdi/7vYRKJVL/Kb3ARuGU+p3L7i3H22WcXtRhNnTo172/btjn//PM5//zzP9G1NhX9QT7E4yl+eu7dLFqyLqMsaCBpad6cuQRmmhAUpTXX3fEK5/zgUA7ff2JeG3c89y6X3fNir7bdkKBrsE10lYNVPA/W5CRVCTPOe188bZmcJTdk8pasZPY7qoUmFYFM/hzZvCjcQmOSufZWw5o4aqetaRxQhdaaa2e+yRML52QmvgEpGVvfgIXEpYSwKXQfXt/dGoXVaWWOccMubr3KhLTW2CG6EjHsqhQiYcO6csnxGreuldVuLL9Yj4Cq+gSDmyyu3fU7/GnWPdBa2JOi0Ty64k1+POo0HlswO2+fEJpQbRxhaRLdQZSSpIa5pLSL3SIJrLd6KQ6WFGw7upk1rM+/kAQ1MIVcGSjrgS651kReB80K11UriisLWkK80VMyP0EkggqYCo5lPdE55JagV0rz4osfM3/+Gq6+6ptEo/0jv+Gzkg+byqAkdB/8Eclkkmg0yn333ZdxhQB861vforW1lYcffrjXOfvuuy977LEHf/3rXzPb/vvf//Ld736Xzs7Ogsl4hSxII0aMoK2traKkwY2J47h89aR/0tqSDQ1RUqDCFoVKhUkpmLTtMP7+11MR3r6r7n2Z2554u9eCPbm4Vn74US7pOFOVLqHq/UrWmQlo5gzPIK88xULjraUgtbd4i3dMTk3+9LnDGmo5dq9tuG76m3Q7KdLm5F6eAkxRJyMLsjuFrcDSFRXoCKQCJFMay9IE62IgC52nEWjiiSBussAKMjlEomawLnXMwYO25dkV83B1bpBs/vEBaXHNbqfyzWfuyeyWARc75Bb0zqS/OU5HEJ3KTo+lEHxlm8ls6Irx7ML5va1IrnH/o9OT/Bwlxxu8pRCQ/RgKklYsVAhEEsItZLSD3M83o28JsGIVCASlCeV43qUUKMcl0KUzbffoiNmeIyxkws2E1uVSVRXivnvPJhQqUbz8M6a9vZ26urpPNZ6k2/j21FMIVpeuB5nsTHLTAfdskvHr8+SLKB8AHnr8Pf52zbOZvzVeLpCgqPXkH+efws6TRwLQ3hXnS7+6jlSxVYC1xoppouuLB/hroHW8jRvJXs+Ked4DyAwEaYORkoAwoUh2l1lFGQm4EGwBKyUy44tA4AY0Pzt2Hx5fMYcP1q4q+TyMB9YYbD6Jrmy5gsAqGyHBqXVx6t0C7nGNtBR2yMFZXtVLHuUdF3UYMs4sNlZMPu1QN5YP2haU7JdEcMbYw7j97SXMbkm3p6lu7iKZsEnEgvTqqNbIuCS0zM4oDUJAwLL4+xlHceZbdxbqMtbiELLFLumFdqp1dt2JCgitg8j6rJEq/flqCV1DzPwi2KqpW1h5m7kE2x3suC44L8pD9/idgxCCs846gK9+ZfdP1omNgC8fitMnX8jnlYwXCoV6JYBsKt59Z1GesgCgArLol0IpzYczljHz4xWAuccHp35UUlnQGizHG2TJ/z6lPQuparOis7KN1UgHALvHEOnlPKSrlwrADWpSVSZHQKMzxyjpKSHSeCO2GtPE395/NU9ZKNhXvNuW6b/S165MWRBAfYMiUhcjWNdd8jyNwLJdhOwRt5XpCQRDqbLKAmheWTedoJ2gJpqgvjpOfXWc6kgc28oK4ZRy2XXwcH67ywHG2oXCDrleTwrci7fRrk4COrPK84Ejx3L+Xgfxrck79lYWwKzKHDHhYtrSKKlRwvxOJyZPHDIQYWXvsxgq6L0jAYg1Gtdz+vNVtvc5i+zjSa8qW/xJ6byJvhCw+6RR2CmRUTp1/gnmuPTcQGujURaZ23R1JZg2bV7hnVsgynM5l/v5IvBFlA8Ajz39UX6+liC78EoBpBTc+sDrmb+fent2poRxQYTAjYi8ohiZa3m/u4bKPGUBnVMGO8eirj3DlBBGERAOJAaSFTYWJJsg3qRJ1ZoY+HiTZsj4eq6e9QbT15UJNUr3qdCQXSk2OMNSJBtSRlmAAsO7QLkW2pXYA9Lu0AIyQmqizaYMaCn5VE5ZAJBC0uXEuP+40xgUNbkp4bo4GjxloUBHhUCFNW6dynwUYdvmqm8cx/6jx7HTgOEZuZFza7ijEjjjYuiqwu+FJSWTRw0puK8YiSboGGlCj9ygxg0br0LnyOyidU5VZR+blZOPNqC+it3HDScUx7MmliFjxeqN1prHHnu/gh5sGfQ3+dDnkKQtMRnv07B+Xf7iKhrAKjU5BcuSvPLaXCZuOwzHVbR3xUsej/AW9AoIhPa8At4c2Ima2NLMOBQEFITDNimKB7amv5PaBgLeOghxz7og0hM/Y2loqA3z1Oo5+eeXmfyLnhPHCtFAt+oiEHFx3FKegxxrTNjBTVm4qWzgq5CaUCiJHVAVJA1phHQJ9njbLampjiSJJWwSqQANwShhy+Z7k3ennVZuXjCNVM41C/bSkwLbD21i29qhfHnCduw2ZDhCCPYaPpKzd96df73zRl7OhyUELprDJ0xg7up1LGxpBQ3RQIBxjY2cvtOOXPbOq7hBM3k3i85lLU0Zy5AXdgaYCXrADPw67c1VxnqY+1kq21NOi9yVQKCrBP8972s4KUVzQxUD6qr4xcX38/ZHS1BCo12Fla7JrkGmJ3beSyETqqT6duVlT/DAnW9w6BHbc8jhkwmHN5234dOiEJS+W8ru70980eQDwLoNnXmLP2qLklZWpTRvf7SEWDxJJBxk1YYOLEuWVRo6h9i4QU1kvcp4+1LVgtgAiVPVY9IhKJoLl4uVwEiRHsfqQH7FtGEDali8uqWwAaQAGs/V3YdVp9O4WiEClFxBOX0VJ2URiqawB8VwW4PohJ3ZJ6oc7PokgVAfSy8V7ZfL0MgAqoMhHjjhNE578TradIrujgKehVwEBAZaHDR0HDuNGsYJO0+kPmpm6H/d7Ti++sLNrE905+UESiloHljFrrVjee6D+TjKGKTqo2GO2H5rGgdW8ZdprxS+Xql7iEAsQkah6xmirAKCRL0m1FraBPflQ6ZwzP6TsCzJyCENzJ+7mh+9ssDMO9IaY3qxoMK2vqKsWN7C6Sf9k+13Gs1xJ+3KuK0KV/7ZEuhv8qHPCsOWmIz3aRgwoEeSU4VW9ETSTOZtSxIJBYglymSTeRFDOmjmflrkKAo9rykg5jrGUlSmH8pb1l7bZoVhmRLgLa6lLVABRTzglNT6K6KiRXe8ONegY2z2ZRO7PMu+ENhBFyvgYkuXmkgCpQXxVACdqS9bvC1bauwCwjMtzyMhB9e12HfoUK6b/yQLOtbz9IrZ6ArLYVpCcOSECXx/m314f8MyfvbmvUxdNRdHu2xTN5jv7D6ZVxcvZX5sDViK2kCEk8fsyM+n7EfIskk4DlIIXl21mBeWzeOuJR+wLN4CAYl0JFpqUwUpPbgLk+isc6pfabxwNMsoBHlpELmfqzSWR5nMf2rpfyvLNHT/69NZuqqFNz9eikIzZmAjqQDIBCCF+biFRuTqrK5CJgp7YzJoTUd7nI/bljNrxnIeuu8tLvvn16kvUE1mSyClLESxwvQ5x3xR+KLJB4CmxmpaWrsKrhhfilTKJRKGhppoSQ90BilwQ4KOkbIiOVQJlVb8fX310oqVBSAT8iIReVWAKuhRH+IeBOm8ZBlWyMFxtCu8QiA642nfWFWFJTYru2NcNvMJnlzxIR3aGBOVW76kU0I4/PPrx9KdSnLb7Pe47eP3WN7ZRnUgxOGjtkLZKZ5ZMZuYm8IWkm3rB/G7KYeyc9MI1ImalOvS5sR4cPGHLOrYwN2z3zNFQlKfYmwp8lw6R5jKe5Zn5ywkYZ98dSa1VSEeeuEj1rd2UVMVom5cA22LWxGOZ9JKh0yQozxX8FlopVmxrIXVK9t48pH3+MmvjuToL+/yCW9y09Lf5EOfchg2FRsjpuyT4jguXznxn7S1dqMxyc46aFbTzJ2T9eSH3zuIiZOHEQ4FuO+5D3jwxQ9LCgUnCNoSZsVNb0LYc2XlXLIlV4v3XQOpWlV2AK4Nh+gKxEll6vFmB9tSSMshQpTOZMqUzAyWKuVhhpxIJEE4nEJrQSJVTl81z8s1AbfYlktjVXdmW0c87P07fXzhhxEJppCiRMiU1kipsS2FhaQjaaM0pByLVKrMQ/b6OSBqMaFuAO+uXQVY2QobWuC4RpOyhMDVWSG6dd1Abt3/6yRdl9OfvYePW9diC4mrVVbIddhIR/ae+PfskuOFBTkm/jgdVSYTFK6KpLxF5NIlfNMWSQm2EpDUWFJkVvNMe0gCcY3VqYyiYIFwNXY6GVprZFKXimjzjsnaVKQU7LzrGC65/NQyz3jjsTFjVE957hsEq8rEqHYluefg27aIGNUtkU0pHwAefOw9/n7ts5koHDddmrmEm7ahLsrfzz+FRDJFMGTz1YtvL7kwVhplm/DUjYUb0KQaKDvEuWHVx8XRNJbtEgwKEimJqzVhy85fk6bIeYAJt61IKdKEq0vXlJZCMaCmqy8LYPe+iobORIj0ykq5SlBXe4hUovxiEBPqBtCeTLA6lh+1YFkaGTJGo3S7ljfeXrTzkXxl7E7cPPdN/vTBs2ht5JijzG8dk6gNobLXzr8Z73epAhhKE14P4fVesnyBY3tWSpRSIDUE1iQQDmghjLEr7eCp5APQGpFSWKl8r9A/bvwO20wcVsHNfXp8+VCcz7xK0paOcjUHHrQtDz3wDiogTf4COm/wTJdGTSeTSkvy9wdfxnnAbGiqr0Z6k6+eXxmNmfyTNhq5gJ2zdkLRjgFWcdt6RpmpIHRoWE0Ns7rzi3enB6ZirQuhCVal0LKNbaKN3LzPt3hpxSJ++8bjFF5YXhOJJgkGHZQWSJEb5Fr8RqUw+RdKC6pDicw9WVIhhfLaEl7oZOHrllQWvAbTenNS6UyIkyUVqQq/InHdzfS2bkIhSKaUyWInV5nJ1iNPC4V57Wv5f288xJINXSzyKjM5aUUjrSAEFdr1EqPLjbeCXgnNKlAkBMnzNJiO5exToJPmPXVzFNy0YEiFBSIJwstnsLpzajoJgbKzi7wV6q6SIm/eoZTmrTcWsGzpBoaPaCxzg5sfugKXcxmfi88WzsRxg2gOBFjf3k2yJuB5Wr3P3CtVnIsQ4CrFN355C2AmWqPHNLBgQ2vZa0knJ5l5I7xWsqrAoFGASMAmpnoahEp5dgU1Dd1EqxMI4Pvjj+SYYbvxlcfu4uOWtSWulLZEl7I6ZK9vBcovAKC0JJ60CQedT6w0CGFkUSEvSyDkkEqUip8yz2lu2/reu4RGhIwSlauEpK9z3juPsz7Rxd+mv5jXXOY+wn1YACG36+Wq5UlBvBnizVC9RBMp0PWeCq5SpmOJWotAh5kjGQ908fC8gvRQFixL8uDdb/DbC79ceRubCf1NPmw52RabgOefncEpX/4HDz3wjgnDCEjzxOx0VrHwfgBLoCxIRQSxGmHiUb0v1PrWTpJutmJE+mum8cKCgmS+UALKLz2Q3p2pdpT/xdWercsN6YrqI/9ol91NeImlkAEXGVBI26VwnJJnAQlly4wu7d7Ama/dxsnjJvOrnfciEHARQiGEwrZdIpEEtXVxgsF0m+bmAplrFMJ8jaSEgK0I2imCtpsnh6vDCU82a08Bye1j2lJTiQNNF/iXubZluQWeQf65AdtFyuyYGAy4SGG8BDo347gHrta8snoB8zvWFXb3C8BWlCuv50kbMy6nzPuTOUPmVErxDs2Lt1ZeuFrQxCxrWfpuRVKT1m6Fm1YScl5sS6AC2f7mvuvKEqbUb4F2p3+wpPQ9bqakF+Yp9+PT/2hv6+Z3P76NH3/tOjqWtODaIpvwDPlKA95770XMtHVm89qU0qxa2FLxde0EFa+IrGXhleo1xhCTaE702t+TKYMH85XtJmNZmkA0SbA6gR1OemsOFDpXIwMOoWgyk+N17fzH+bBtAQ8d+3XqguVKZuq8hT2LHgNYgcoeREc8TNL5dNOdYk8pEHSRReVE6WcrbXOjxebTUkiu/3hacbVMAH3J0VAYb3SpY4zgAq2JrNBYMehuEnQNFMQaBE4Jg7lSyoQy2WZuJNOlU9NtlkOI7PzKw3UV77+zqPy5myH9TT74HoYivPbqnLy1F1zLmzzLHGUhTY5gUAGvZJ3ncUiXyRTarOScm2jUs4xqWqCI9ASwRGhkul0nqrESIie0RKMC4FoaHc60arrXozEpBPuMGMnoxjoaGyzaUsnMd1oIUCnHK2magwA75CADOi+vb2HnOqatXUA4IKmpdvIWvSmGJTXacnHcngO58JSFdGKExipQTcmSmtpInHjKxnEldaEYltQkHBtHS1wls6FVZZQwKdOhN/mDWjDgkgTcvD5mFSnbdgn1CMXS2mx3EpUtV2pZGtcxbQrLeG+0FiYe1wYdckwCYaGFgDSmMoXwJvshgU70+My9WuwyLdO80CUtQecW99CmRKsKQqCz92rPaG0mK5CxnGowiymhsdJpOpapyZ0p8wueacKbPQi3oljWLYFKqlxsSVUwfCrDSbmc+6PbmD9nJQBKCJyo3VtZSCPSph3vi9Zjv1JmVeeM8l2GQALKRnQCqfExZKuNtS6A8Fb50tUKZ0ASNyiMjHBdRFfvxozuI/j1vvvw1Pr3qRrYkee5dh1BvC2Mm2dd19hhh0h9NynXwrayY+M1c59gv70nEnPKrUJXyFCVbT89pgYjqcy4XR5BKmXTFGnDRaK0IKUs3AqSOLROD7OFPxshoLo+TldbGNexcvouevwucK6lShrfXa3octIhV8YwJqUZd5USKCXM4nWJ3PsoICPSv92cV6+ETAyth8hqSDQKEgM8L5kQqKDGqZYEOjSh1t62cSuu6Gm7y/s0y5Zc1WhZ2XdgS6C/yQdfYSiA1pobrn0hz5usJaY6UpkXXjpkK9dkGvSUBG0mb7nvhxbGuqtzlAyhIaIkMav4pFsgcKMKHQAnkNXeNRohhfcN1RD1NImYzFsWUgrBSdtO5MxdduKU528i5prZXu6tyYBC2AqtzETPeCGyE3etzbb0TT6w+D0OGrpVRcqCCWsS2JYJLXKUhUBjS+15HiDlSs9CD7blFnz0UmrqIzEGhLt6DV5KC1Z21hJ3cz+QnkflKwpSgCUUrk7fM4SCLkoZxUZ5z9CSyngSCnzXTchU5TNirTXSdr3ysJmNZBbTqE5rg6DjErptzwslstLMi5t2bVMuTyYxC8NJRTRpk3JVXoKjKqTL5PydqoZge/4h0ukRvZDrMQtIUgHtvedGJ5A9jW4lHsmkHUYW37kZU4mFaEuyIPlUxrSXZjN31orM38pOe5tLTA5J570VPsZK6F4KQ9oLnf7upvOURArqwmHa4oUr8Gk0ukqhazRuTQp3WAocYaoW2d7wojChk1EXJUB05S8wNqy2lksOPZQX26Zz/9K36RkVKS1N1YAYyonjJM0YawcdpG1moib3LMuS7rW0p7oZGK1iWWep1bm1V0q793MSUmPZDlag9ES7Z3ujGzYwINqdZ+QWArpSATYkomSntQWuKSCeKp2jIKWmpiGGk5KkkhZO0sJ1Sp1TQRhBXh80Adt49TPr/8QDOBtCZjDPNYzpAm273ruDF37rHSI0DKupZXlne3Z4FqZSknBENvS6h7csVSOQjiaYm46hNVaiyF1JcG0JIkdGKApGwxUSSzvuMrrk89lc6W/ywVcYCrBwwVqWLskP2hM67QEoJRDMJKnn0mBag9CaYErghEUmackNGctvr0YccFKKyaMHMX356h5zLvOXG/LyHDBeBTKJdmYCakJUdMaoS5VCuwqUQAhBMCg5e7c9+Pfc14i5qSIVMLwJcziJRnqegOL3v6h7MS+vW4cUpcoxa2ypCFouCdfO5FhEAilsK/8kS+a7WgsqDEJllIVe+9AMrWmjNR7GFop18Zoe7ncjwm3LzSyyBxCyHbpTAXIHdSkh6PVHCpV3fDHMIeUFgxDkLXqnNeiM+zzXk4WJWbVS6A47G7rWUy6lF/nDlOIbMbCeRQta8mJO02NUwZ5574wKmoS3zGaVf05mTQc7e6L2Sg5rrVEa7G6V+e4IvDUeerwbNXXhLTJ/Afpf2Tyfynj+iQ/NgobeQCcqqXJEadu5TGI8t0GjWGjhyQeZPUlbgFetrMYOELdTpFyV/91GgwRnVCKncSCY43kUZpt2FQgJURcdcdFJaTyDluagySMZ31zPjz54o2Cf0+OVtDVBu3cVwJ7naA1Xz3mScDQGnb0Oz22Z+vpOWtur6DlCaS2K5i14Ts1eDKttpTHSndfnNFE7BXSDhm4nQFylS6RmSTg2KbfCinm2QlqKRHfpRNf0fWlXomVx5Sed/BwMZL0yQkCqI0Byfbo+aoGm00qDAumIHrtzLT2wor0DyzIFOTK+ES1MWFExtCZZIwh05nsZepnjbJNfqIPptaukZxzVaCEQjkY6OdcVAtGjvLDWmik7ji7el82Y/iYfthxfyOdIR0es1zbhlov0LC4I0kJCasHh209gv+3HokI5iWu5P2C0+gCs3dDJzw7Zm6bqaF5jbgScGi8MRWhTrzp3Lu8Jg17rRVhAQKNtRUw5nP3ygzy46MMy5fI0rrII2C6RUAopXKLBBLXhOFWhBJYwHoJBNR10soz3W+dQFSyxkA5QE4wTts1iZwEhqAqoXspC+jYsIZGYpN9dG8cgyY+brbKTBZUFvG1SQGMkTnUoxdCaNhrCMaKBJFWBJAMiXTSEuwt6LaKBFJbIvxYIglaKgLcIQVA61IeMd6M+FCOQUXCy4VoiL7k7H0sIJtYP7rVCtla5H2SBhxLUDKqvMovniN6H6ZwfR2uUDROGDECnF8DTRVvPa0QVMSfkWqJ0Ol+hp3XVy+1xwjIz+QGBTLqZ70P6p60zzto1pSyOmy+OkhX9+PQv2lu78qreCUcbK8mnKDoogGCX5ntH70FTXZVRFnKHgpzvugrByg0dnLX/buy3zZicqpUaVe+S2jaGjpTuixDkezUFEFIQUeig5pbZ7/CXj57uY/SgRgqTcxYOZJWItFH7kRVv0xlYg2UXj/mPRBJEowki4RRB2XOBCEEyFsicagmJ7cWdDonWsVVdZ6Yds18xsLqz6IRcCKgKpKgKphgQ6aY53EGVnSRip6gJJBgY7igQMlvkzhWkklam1CtCEwyniFTHiVTHCYRSve5ZeYahYq+NqzWja+syfU1fJ7khdwnv3BsyP1WhALWhUEmvbqbfwLd23AkQyLSBLJU1ThZEmIU8e0ZT9DxD2T1kRM75YBSKbMSFBqUQPfIepKuZ/eHS8jeyGdLf5IPvYSjAoEF1vbYJ15ugU3ypdigdg+q4ilO/tBNbjR7IPhdeS2eiSDk4z+q+pr2LnUcO5Yx9duG5ufP54SOPZBWD9I+dPadnG2ggJSFY2CLzwZqVBKoqS5gSAoJWivpwD2UqlEQKhe0FvGvMZFug6UyG8txtQcthWHU70UAKpWGf5tGcOvIE/jzzIWZ3ZN37QWlz+JAdaQhW05rqYlC4jiOG7Mw/5v2DwdFOWhJhYq4pIxWxU9hSYXkVkxydqzlpb9IPrraQQlMdTJJblVBrSCjbq4Wc7auUikhQs/eA8Zw+5mi63QSXz3qcRV2LkZZLbdAhGnDyBvrqYJKulE1LPJIZeG0LnEyVIpGJYgYYGq3jhNHbM71lVd4j1WXWp7CEYLexQ/m/3Q7ngFv+TWtOWIIW5K3sDDC7bR06BaLeCAQrBlZJC19OX7zfAm+NB5HjRs5NeCmEEGCDGzbfGN3tGm+D925mPiohWL+hk+aBm3dJuUL0N5ezT2UMGd7IrA+X4XrWUAFY3Unc2nDJ80rN34SA3bYfxXeP2ZO6higX3/98kQOz/3xr7lL+86OTae2O8/0X7uHttiV9kurS8qqhFXhHNfDo4pmEwpV6TzThYApb6vzCChkbhUBphZTQNLCdtpYq4rFsOUAhFIMa2hk9aB1SwvCqJD8c903eW9XN9TPeIOYaK7tWklGBoZyw1TasTbQjEOw5cAyDo53csujPhAONzGkZSNwNUBOKI4Um6CX5OVqiSthJg5YiaOWHeQ2tbmdpRz29vcWakLQ5f/vjGFs9mKcWzeeaWa9gV3UTjiYJhPNzNeygSyiaJNYRMoa/lI2FxE1Y2GE3U3YbjCLkasVvtj+Yuxa/ljfEujG74OeVS1cqxbNf/zqPzPqYf776RsljAW5+572MLckSppJdJaNW2uhj7EHCeMByKzAVqBKW34A2xWSEBldgJRzjpXaM4iAck++2bnVbBb3Z/Ohv8sFXGAoweEg9U3YcxYcfLMlakbLfgIJBJumvhBsoEoIiYdLYwWw3djAfLV1VXFnoQUt3HNuS1EZDXhlVnVl/QQtd2keUa8otEntSLgcJjJU8IN3MBLnn8RqBq6Vn/TdEAg5h2yGlLLSGxlA3IStbWUkKWNA9gzuXdnLdbr9kUdc6FnSuJiQDjK2u4e2WF/ig9VlSOkmVO4pV8WpWxFZgSUVTpBtXmZtrDHYTsrJKj6MEHU4IW2iq7EQmB9HVgvZUmA4nvx6hENAQitOVCtLtBDLTeVsqBoRirE5N4+3WCF8f9XVu3/uHXDj9bqZtmJYJT+rt4nYgHGegPZY6awATG4Zy3IjteWPtEu5a8B7Lu1sZEKrixNE7cNKYHXhw0UdFwhSKfyiu1qzobqM2FOLYrbbh9o8+MO5kQSYXJhelMd90x4QJERVEHZtEvHTyoRZkLEgiocH12nezXu+ythGtzYetQUVsUtL11m7IV2IbttCF2/qbQPCpjCOO35lnHnk/b5vQonDcZE+K7NYazjh5LwBemD6von6s7zChNvXRMDqsoKui0/KuKaRCFwm5UaoyGQE6s94N9D7ejHFZQWRZmsamTlxHkExZVNlJhtS1EbCzg5dldXP9ouv46YTvctbEs3llxSK6nBRja+tR1jxe3/AYyl1OyIqQFPuwNGZhCcnoug2Mqt1AWzKELTVRO9svrSGmArSmIugeo1fPPqapDiYZVdvC2u4qup10DLEmYqeoD3Vx6+K7+fMOP+WnO+zD17bekYOf+XNGWSj03KK1CSSSnaJbURcMc8yYbRleU8Pt89/hxVXzcZVil+YRfHP8ruzUNIIb57+Q/6Sd9CBf+kNZ3dXJqTtsz1WvvVl2jY/8/QJl9Xw6BdAaJ+wtFKogssEtuF5DyZcnNzfCBjcQxAWCq7qQXnlVy5I0NNWU681mSX+TD19YhWHh7JX87/ZpvPvqXLTWbL/bWMZPGcWH7y1hxbINBMMBrHQYoDZLpucYrgtbioQRGrn7csM39p4yFiEEsVS5KhHZc4fWmy/KuMZGozDkhrZX9J6JzJoNvVrPUf6Lf6cFAdslbKdKCA6R8cb39DoGvcm8baleCcIazYKuxTy56jmOG3YkW9cOY07HdP457w8o7aI8BWR+52zmdc6iygrR6iWSBS2HhkB3r0dgCU1DMI6F69XNNhYlS2jqAzGC0mV9Mj82VgioDiaoDsQJSccs4iaycaXPr32ebWq3Ycf6HTlm2CTeaX2lpFE9aqf4006nMLJqUGb7iOpGThozpdfxo2sai1gdiwsESwgGR401/ps77Mid0z/MKAymEz07ZZrTXl1spTWdgRSBeLGZi/fLAidq/raAgGO8DOnIporIScwW3gsic2JUpRRMmjS8oFdvS0BTPgb1kwep+GwqEskUT7w0i0df+Ig16zsYUF/FQbuMx10T473X5+M4LiNGNbF00brM982pCpScHJV7DyxLMnmroQC0dhVOZu7J8AHZ783omgG8u2GZuZYub9wFMmVPix3mpCyIlBr7DbZURQs9pPtRyDBi2WbiHbTcPGUhi+ba+bdw7c5/5fBRW+Nqh9sW/ZWPO97JeGzjqpuX1z6CJayMzBAC6kOJgjIpIlMEgi5rkzX0rPNTTGmIBlKMqmulMxkk4dreOkBmX5cT55KZ/+HaXc7Fki7DovUs624t+izQsG39YG7a7+S8fRfufGTBc0ZVDWBW28rMOg2mnG154T+wqoqB1dWcMHFbHpwxq6KFAcHIB2HjLcxZ4r0VgmSDSJ9EZF0lvSreFmBeFFcjk1kjoOsqvnTsjp+05U1Kf5MPX0iF4dmH3uWK392HFALXNV/DZ56ewdPPf4wQwlu0zPwOR4N0a5dMfc58j2T+tl6Wd++3DUIIImGTpTy6qb5sHwVQFQ6w7dCBAMxr3YAqEOdfEUUm+cLOfinT99wT23bMCsgVVP1RWlS47kEWjeapVc9y9NDDmN85nRsXXIbSTl7ymvb+smWCiBTElE21lV6DocddCXOGi0Rql4BUOFrjasvEq9pJksqiw4n06IkgbKUyCk5P7lxyB3csuZl1iThC9Dy3dx/WJzfkKQzFGFdXT0MoQmsilnlfpKVQJeJmXa05aexkAMY2NHLt0cfx3cceRpWqTpUe16U23t+QoBqbRIeTL8h19neOUw03BHYMUN5Ktun2UmAnKb72U6bMmAalPTdz2gopkFJw5vcOLN7vzZz+ZkHygY6uOD++6F7mLFyTmey2LG9j+dPz8t5zaZmZdigSIBFPZUuqFqGwJzFLwM5adWyrsrjmI3baOvPvWa2rcnKnKjq9gpQLQTwWIBItrTTYliq5v7TyIoo+Fw3EVZxX1r3B5LodeGDp/bzfOpPaoMgrga1RuFp7KoRpM33dQn2xUVRZCTpzFqnJV2zylYZMaVWEl8OWRaFYFlvNT9+9jPldS1kZq6HkstgCUr0WwSuMo1z2GTSaGW3ZkF0ZcShlUJLAds0DGdc4AIA/fukg1nZ18dLCxRVdE4x3OVkFtTGbpOOWVzakoHuQpHqlypyvLS8aQ+vCnodeFzUvUKA1lp1SCcFu+23FpJ1GVdz3zYn+Jh++cArD0gVruOJ396GVxvWGFh200VY6+Ujn/U4mUkyeNJyqkXW89PZ800gJBUGJHMEgyKy1oLVm521H8Ma8JXTEEr10jZ7tIKChqYqVHZ0Mra3h+nffyotxzBxY1jOpe+z3zpfaS3gzfZNp00eOGyUYcLFtt2KrQfEhJZtLUIg2p4PzPvoGCrPQT8gyIUQpZfWyANXY3VRpUUYoekO+d0+20CitPBe0ZkCwE0dbxNwgJpBKEZSpnKTl3rSkWggITe+auYUpJxBWxjZw+ccP8fr6jyFooRMmsV0ICEUcYl1BT8Dm36REsMegkew3dGxm24Gjx3LGlJ244YN3Sg/sIvuj0bSFUlxz9NHc+foHTF++mu6El6TY85UBsATJek2w1XsEXnkrFQSnCqwEBLp6fFppz4Iyv20XRDz7Pg0ZWs8vf3UkEycO79VVrTWppEMgaFdUkWpT0d8Egg9cduNzzFtsViPWGoSriCzv7h3q5yVnJrpTnH3uUVx250s4JWbNpaZclhTss/NY5q/bwLKWNmqqyi1uZhZa7HCTuEoxo3UVs9pW96HUqEEI0GWSep2UTaxLEI4WD6MV9F4np3I0Yav4eKk1/GPOvayNPe49w2FYwmVEVSsjq1ryEr4toaiRcWIqQFxn8yMKUWXnKwyQ89Fp056RD0Z96E4FS7Y3v2upd2olD6KM1VlrHlnxMncueYqWZCchu4qEY6O1INUaKn2+EPx2n/0zf0YCAf594vFsddnfK+hXFhkQnLDLJKKuzaPvfczajq6S8iXeKJBJSbBDo3NzOYUEpbESqvfaPmRvRQiBvT6G3W3eBduWHHbCznzv10cWlAGuY0qt24HKKlhtCvqbfPjCKQyP3PG68R6klQWMwlBstFOuZsYHS7n6l4fzxoeLiSedopN8ZZMpiQdk2hRSMGhUPd+4/h66Eymz3yYT2lTIaZGs0syLtbDv9Tew/eDBfNiyCtXDjCsQaKWLLvAmgINGj+ON9YvoTGYrVghbIezsAC+RhG3QMoUWLlKYSkHp/UpXEsdaLBVcmzCfMkqNo5J5IUvSOy+hbDQCiaLOjhGQiqSStLvR4s1lWvV+a1MtI50QrRGMi3YRtXdlcKSZ5d3zmNs1q2x7YNZfqITRVcOK7lsbb+O7b/6dLrcLW2pkUCFquuiIhRHec49UJUnEArh5scWa+miAGw44yVPwsgyvrcsouSVJ64USglJy6KQJHDZ5K96Yv5Qzbriv9LlaoAI6a2XN6YMbMgpaqDMnNk2bEKjRQxs5+zsHsePE4bzz9kI6Oky4xYiRAxg+PL+cauuGTu7/90s8ee+bdLbHCUUCHHzcTpxy1v4M6nHs5kB/EwhfdNa3dvHctNl5FZACbanCSrSHZUnef3Mh3zxpD/7zQPEEU4GJDi3UTjIE7wU3cPc1t5g244WFc7pXKgDJWs3vX3qWS998icmjmpCITNhKJUgEYTvALs2jeGH5gpLHKtcGiisMSku0dovKiOJDk9lRE0wUOwCAhJvvhXC1xaLORpKuxYS6dQA0WF0MDLQj0CxODKBUYrAQYJUYL4WA0dFRDAkPZmh4KP9Z+ASVBtyELYdup7iyYgnBpPri8gHgv4uf4I4lT2b60lTVSXs8QmtrFU5HNo/CjOfZ6wip+PHue7LniPx1baSU1IVDtMVLP+dcXK0ZVFfDWbvvwi+O2Jcv/enfrGjtKH6ClGhLZQ1KuQhwwxIRV+TZDgWEwwEO2Gdrfv79Q1i9vJW5M1eQTDk0D2ugeWAtgR4KwevPzuD+619g+lvmnR273TC+/J39OeiEnTc741J/kw9fOIXhwzfmoxw362O0ZFn/rRAw/f2lXPibY/nNRQ8UneQ7EZnxJqTDLVyliQ4Os6CzNdse5K2tkhvfqQJm9WaVNiJo+GDNqqx1uGf5grQEyvF3W9J4Ik7caiJ/2v8w3l+/nFOeuzXvfnL7IoXg3/t8lf8ufIMXVn6MkOmB3/NAACklCRStF20uLEWuODTbLKGoDpRK8NZEZKpXfkPaPRyQLkllUR/oxsppsxKybk0v7t67nhHccXZvjLJL4368saGujMKQtRkFpMIWbo9qTPnHblMzmoFhM7ntdLp4ae1rLO1eQVAG2b5+IlfO/h8J3Yads2h40DKhXx3xiLdNE6lKolyB8squScslZcU5/4OH+MvOJ+cNjgePHsv505414VtKgJt+KTLdyj4T710Z19SYaWNAVXkFTCa9kwvdthCoEGw7bDDDB9Sx9eiBjBk+gLEjmxjUnK1+1NYe47ZbX2H1alNG1bYlBx64Hd/7/kG4CYezT/wnba3dRvkRkIilePLet3jp8Q/46+3fZ/RWg8v28/PEVRJRpixezwWsfDZfZsxdiXIUdnuSQFsS4ajeq6v3wHUV/5+98463pCjz/requvvEm+/cycMQhpyjSBIEUQxrRl1X19U1rGkNq+vuq+iaNum6pmUVWTEHFBOgICpJcg4TmJzDnRvPPam7q94/qvvkNAiKow+fw7nTXV3pVNdTT/o99962jvd/4iXc9uBGVq7bVXc/3uq1AnS9J6sUgiAlyK2QTO+t5v4JPVD55lfNSAiThtKoRkcw/DOUuHXbNsBD9fnIGlS8Tq5AWTfB5We/kuNHFvOK67/BXbu2tMxjIIXg4oOP45j5w3xl7U3sLjYfGv1Q4jmdEfeqKrpaHiEY9PId93QhqAk2rrvD9sIgi9IzLEpOscCbrtxxKpDY7X+7zr7lhlI4zcsWP5/hxBFcueVmZoLeIsqX9k2yerK9O2poDBcvP9W2YgyPTK/j1vEHKIQllqbn4wmXb2/+eW36DRuTkSowuyNLLChkF88ivZAg74CWSFcjEwHf2HM9z5k5mEP7F9a1e96hB3HVqkdtjEIguq5rgLMOrLoCJb3Ox0VZ1HhztPcDAwbGshy+eB7Ll45w6CELGBvr56jDFuJE7njp/iS33beRm25cVRHaFy0e4nWvO4vznnkUV3zm53zzKzchHInJJJD5EhtWbec/3/MtHr13A2/76EufUkLD/sYf/qQEBmMMe3ZMd8oq1oYEWmtOP/lgXv9XZ3HZN26uvMmxZSFISYKEPUwJbbWrRsKZpxzM9eubtTciBONWqqecJsroaeq9XmoP90ZgQlP3qwmiaxpwDAuyWZYNDPD6Y07mwgMOBeDkeUv54IkX8LH7ro/g2iL0ASEAyX+f/iJOGzuQ08YOZKI0x9b8JDftWslX199k/UKFIQgVrmzlp2onwpVhBIZTPdQnVEhC+tHct9pHbNl+t3WAnz3oG5LSR0Umb4GmT5WZCxOUTZfsm220bZ4IyMgC9058jfsnrmDIOxBPQLlGilOE9DtFMqqMEMZq0LCiQ0qW2JIfjsPr6sYjMcwF61kz+wi7Szn+d90VhCZERBaY63b9mkALEsr2PdA2KFvW9bfab+UYFPWM+Bc7Hubc7Ydz0eJjMcbw9TX38l8P3oTJ+FVWHAJ5B0JJi2oBGE5XhYRDFow0CbI1w0L4UabnNnMNVlA97sRlvOOFZ7a8/81v3Mrll99Udy0INDf86hHuu3s9xS1TNb7gAhyB0ZrQ1+TnSvz7e7/DF378zqcUQ9jfEvP8qdO2DXvIrJtBlcLKcdM4kpYp3WtIa4PnOnz+Iy/nxW+5jOmGXD6hSzVbc5R11wDz5/czd4hicmqqvkJp8+04hcgKrsCP5O7ygMbEecEaNFfhrAv9ZaRbfdlrhYakcliaGeSk0aW859jzGPKsguJzZ76Qi6/7BhtnJ6OqTGSxgBNGF/H/Tn4macfj5ctPYUNunK1zE/z3yutZl7OuW9pISoEi4YQt9/rY47UqNFQ7X9JONX6g4TljbEI1C3vdTALDzkKW4/o2V57XRtCnikx3sEIbA/mwXXI1w0J3igXuZq7ZehuKBKcNPY3r99QLOyPeHIuTU2SdYqSDsWHYobHITxtyo7QSkA7s38s9Uz9mQfqVfPLRr/LozHpUFCNpXWdrlF11vYJSwbpFpUbyqIRV7HnZeneu0IS8995v86Nz/h4pJNtzM7zvxp9zy7ZNkK5WJsoCWZBtfQPAglLEdPyyRazfPdmynJMzpPe0raZCk7kiH/mnvyCdbJ778fFZ3vqWK5hqyHGyfdskH//YT/jRlXfxyMrtMBIBowtBqDVqbw41V+Kab97GKc84kqedf1T3jvyeaH/jD388os3vSMYYPvLmr5KfacgjEOpO9tLKs7fevY5fXP8wL3/eiSw6YAQ/LSlnBOU+iZ9RBClhZ1PahCbaFQQSbli1vqXzqnFsIKmRNrO7iZKvxUwl9jM3wmBk9I2JoPvq6xLKoAZ81IDPXmeKe3Mb+bvbruQtN1/JrG9NkK879FS+ctZLOXI0zUh/gZGBPKMDRV59+KGcMlY1jw4nMhw7tIS3HX4B3z3rrZw9/yC8COGoFDpN5jMpLBKSo6xgIYWhzy0y4BVJqiBy/6obOfEABIZRN1eBKG1FQkBS+pVnk9IeioecfE19TbNbETDs7xe/lPZAP+bNkpRBJUB7sryBwzNbSUmbTM4TPouT0ww4FsPbIBFCI4X1ke13Shya3UWfU0TUjCWlfIYSeUomz6dX/ztfWPsVAhNgMGg0YSRiKGGh/mKo2oTyEcLOX+PYW84J8M31twPw5ZV3csnd1zFVbhC6JJANQFkPXGNsL0z0n5SC0XQ9Qz3zsOV1lqp4ekUUY9d9WxNMzTUnPTTGcNud67js6zejVXOAoy6HTD22h2LRrw68Fm7PVYShYcPqnU+5BD6xybnb58/01KeNj+3k6x+7GlmKIJPjG4auPMJLOlz6qWvZtW2Kd7/+PAwQJOwnTGJ9uqN1bRyB9uxny+wMGxqFhYjCFPhp25EwUrBr12DaubBH74wuNOsBhbB7dVkHbMjt5bsb7uPCa7/I9dtWAzAvleUnz3kdLznkKDIpiZPQyETIIcMDvOHIU0g79oCnhOSQvjGeseBwfvCMt/L3R1xAv2uFjnKgKPgOos2xwvKHZgtxIfDYU8hUpjn+gBUWxgvZ5soiMkBGlXAjVDvrOCDIyBIpWaIVf4j5Qa6l1QIOSu7hiMzOCo8JKdGvbuT4vi3E/OvQ7C6O7t/BoFvAlQYnQtZzpMGTmtPnbeDpY+siZZh9ZsArcPTIDpb1TXHH3lt4+z0fZdXMRtuG0YSms0OZAIQ0IAxef6m9Y4SArfkJ7hxfz95Cnpf8+Jvctn1zUxnjGcJ0WOEJuoY/xGQVW5beeO6pLZtzcobMbtOaFTeQNoa5fLNb1NxciX/7158yMZEjDFpbmx5ZtaPKG2r4QzivH532kErw06/d3L0Tv0fa3/jDn4yF4f7fPsYdv4rcTmreNAGIctA2jsFqdwT3PbKNex/eyuVX3MT73/dc3vVfP6IYWsZSyYjb8LwBWnmuaGWZAVhGEFukTHQqq+RXqLVJRn8bbRBaYCLEJKkMDPhIabVBtUFJN2x/jDfe9D2+ed6r2TI3zsdXfp9cUCR2Qg9MyDXb7+XmPY/yD0c+l7PHjiapqpJ/0jE8ff4whwwcgiuSnDH6NI4ZPJi5oMh4cZpVsxv49e67WTm7jtCEZJwSg24eT4Ts9bN1G48BXAIbWCwEjgjJyHIl4VsnktHUSkzlkJ9SPmPMMu5nK8JATIpqkHU8HaGRKDQLvOk6dI1qkJvh4NQ46wqjjLpzyKj3BvCEzfocM6TAKEBxQHqCsnYiPZygqF0K2vqu5tvgmsdtWncEm8bNEQZUgHZaJFFoQQZ4dHo7M+Uin3rgxrZtYMCkAvBVRRAwxkBo0cHOOWB53TP/+LxncPu6r+HXbtiRZT+e4Y5GfGNYNFyffG31ul382+euZe2GPZBUcUFkWSPLBmEMzrQVdlrWXZ0s0Ib1K3dw+HHLWpX8g5AxAtNlw+92/8/01KB/e+930WGLkNVQ2wxnHQK5Zqby/OS7d3LVt27nVW84hxc861iuuvmhrm122CYA0Ekb3xBvCzphuryIAuPLKlpS9dHKdwycMVUu8LbfXsnlZ7+Sp48dyH8/ciM/2vJgJekkwOa5Sd5++w948a7DeesRZ7IsU3UJDHTI0mySlx54MLN+iRV9y3juolPJOkl2FifZWZjk1vFVXL/zPiZK07gqpN8rklI+u/J9FEKv0qs5P0HBdxhLz5KIUIhCLRgvZOkURCyAVE3AdMwLhBAs8SbZWR5gVtvAZhOBZQRGMuFnWiRwMyxNTLAssbflz3xwZpyZIEVeeyxMWresOvfeGh2HELAsM0l/okQ+kvZqy5a0w5RfjSvslfoG8kxPpyugje1ICckj01u5ecMOdufn6sFSKh0GPAhVaF2dKyY1a1Fe4g2wbHCgUnzpyCAvOukorrrnkWodxpDa2wqItjV5rkN/tooyGAaay79yIz/8wV2UyzWWku5479X7xhAMZRDbJln78NYeevH7o/2NP/zJCAxXf+v2totPFMoWJSmGsqvVigsIM25lAY/vzfEf/3ktF5x9OFff/KjFv4+QkGIy2FgE7VFNpFXTtE5U6zaKOjuPEaYeka2xyxIGE0mKJsBTkrF5CTaUxluiF4RGc/fejXztsdv51fg95IIiYQP0psYw7ee55MHvMpL6Pi9deg6vXPZM/m/jN7lxz2+RSGKI2ZvGb+KFiy/iZUtewAHZ+RyQnc+FC5/Gv636EJvz60jKMilpX/oBt0hRO+QCDykgLct4MqRoHOKUML2Y4jyRIqsKFI3VTNXy7LQqs1ROUNAeRe1Q0B5VtI76I25S+gypXOTb2kxCWL/XETePEwU8aFO1btQyA4cQpUIKYQJXhNGeZciqEhlVZtpPkjOdUU5sPjNDGI3HFYay1KTdcoTG0ZmUkFyzeRW+7uA3LEA4YIJoHuLpVjYT60dv+Q0/Xr2SFcOjvOKoYzho3jBf/duX8c5v/JTx2TxSREH1UV1NWTybxmToSyaYyhUYzKZYv2kPb//Atyj7DX0UAp2wDt3OrG/hVrtPFmiDm3hqbVn7W1DbnyptfGwnGx6LYg8a+IQATKDBke2FBkEl6/O3LruRv33vs3tqV3R2+692ILaW9rSUBMNemoL2WZTqZ0Nubxs7rP3/R+79BW8+4ul8de2dAHWB0/HfP9ywijumbue44cW849CXUwp9PvjQZcwEcxV3mpvG7+XqHTfxyWPfxJL0GAtTw5wwfDDnjC3n31f/V13bi7MzhBpyfgJfKzxlFU72QG/fcSEg45bJdUAnMggOytjyppZpYy25ixNTlLUiFybYUR5gopzFNxJDM2MeUHkOTe9uO6vGwKGZXYwH2Z6S2eXCpOVJLcrNBbGwtG97w9DoLNMzPQB+GIMjFd9d/WBrYaFSkOr5Q1S/jYKd07O8/LJvs2RggPMPP5gLjjyES178TJQUXHnXwwjAKQpk2INpARsLc+QhC1i9fhfHHLYIIQSf/vS1/OLaB9ob8HqZaCHAdTCuwk24ncv+nml/4w9PLe77JNLG1TvaLj4ByFzRwqt6ThQIDTrp2INNjR+f1oadu6a5aKC/ekhvqFO7VaFAGKrJ1oisDk7N37LmRu0L22IMsdZ4UX8fP3vlXwFw/A8+1UJYMCQSPkpZrfh/rb6GhNuJM9lMzXNBma9vvI57J+9kvGwldV0bpQdcte1qbth9NaePnMAzxy5iafoA0irBoFOgFlrPGEjKgKQXVJ12DLgipGxiDigIESjTDMknEEihOCLjMV0uUGzjjyqEFRzSqow2BfLaq/i7CmHwtaoEcHuquzUjrQxlbZ9tl805/h086VPSXl0ZgSbrFJkMqpmLBaYShBeYZqjYaMZIKp++pCAh+5kstU/cpITkzLEV7C7kUEISdMq/YDtQ/Q3jpqVhIl/gN5s2cvPmTXz5vrv5h9PP5O9OPo0b/vFvuXHVeh7dvptv/fo+ckUbtK4dUGEzm6sopkL492/9ik9/+zccunCU/ESBvAkRbQQC7QlEozDRsv9W2JFKctKZh3Yv/3uk/U2D9KdKW9Z3dsAWxmCC0MYy1CXPFLRa3Nd87y5Ofdoy7l65pc4fu5FUAKporMtRD7E5PQkYwDfOeg2Hjozytcfu4mP3X0c7y6UBNuT28v67ftqlRsN0Icma2c38/b2fwSAq0NG1SqidxQled+cnWZoa4wWLz+SihU+j322dpVdJGEi0QO0xpmIN6PdKzPluhYfUkkRw8vBC5rk3NddRQ54MGZZ5hpw8U0GKHeVBitpFETITpigbN3KPnUOb9uk0Yl6ToTfLwKBboKC9yCLdMMSeamgxFi9kyZJJpoIEqHYgJFbQO310BR8u3N65wnZLToLIw8Ozu3h0625+/vAalg0PcPlfv5SPvOQC3njuqVz/8FoefGgrt+/oLSu5Nob7V27lzR/6DkMDaQ5ZOsJ9d25AKYEMHu+M1AzFVZxx4TG/cz1PJO1v/OFPJoYhnY3wltuIsgLrmiSLZWTJR4QanXJa7h5SCm68aTWj/WnQBlnSEFrHS4O1LNRR7NtCs/BQ14do4VQCT2XNJxYiBKzeay0KxphKjEJtralUuSIsAHUuOO1JoLUN2tpd2tpxQ5v1DXftvY1/W/VB7pu8C19vrxMWoMHNsOaawuAQVkYfGoEjEihRrxkYdEd5yeLXUAhW44oySVEmjJhIO5LCkFVFFrjTLPSmWeDOsNCbpk8WSctOSE3WapAQPikxhxAagfW3bRtHEFkkRBOuiHUxkpEvT0aVGHbzDLhFBlz7d1bZ2IfGjcKVmkWpPv7xmLPIul7bvVwbzWsOejpjqWyTxaglNS00bNbwym9gv//jtlv42WOrcZTk5IOW0N+fxPHqmV3kcdUchyDBSGORlAqa1et3s3VyBj9h43zCNqqJMKVadrGp+8bwrBefxPC81oePPxSZHvxT/5gYwp8qpdKxhqeD+4sBEWqEH1YF3TbFt23eiy4GmBisp4YHNFJyPPqjB1hkWWrfZqWfwHUb7SFuulyIwC1+VxKUfAeNoaQDStrvCOG6pbCbL679Ie994IuMlyZ7bsUYKAYOfuSn60jNSDLPsFevMFJC8rzFJ3Ph/A3IyMJRHWYbHi9gyM1zVGYbp/Rv5MT+LZw9uIbjsptZlJiK9uX2/fKNomxi353expJVcQxDzXWs4uzx0msOP4PnLzuy7VJVQnLqyEEc2r+AkVR3a0Q70pnY0m6/t03N8Ldf+yGh1iwa6ueYAxZA93QhLWlyJs9dD28mSCtKIx6lQbe99awXuHBAhYa/+OuzHl+HniTa3/jDn4yF4cznHMtjD29ti3ZRWZJKVuIW2lGoDas37abcr6ygEYLU9tAUpOutGAIslJ6oiV2IrQ6qpkzUBxMLCo0UKeWNhsBoNs9MsXxgiPnJLLuKs5VaXDdoCKA1SKlRNYHFWsd4PE1qfRIq6KroMgh8Yw/MV2z8LH1OruPB2r7vVgoSAjyhcWsOun+1/H0szxzBqpn7KOk8I4mFHJQ5iocmv2kD6IRmUOXJ6QShkUiaLRIxOdRrXRxh8zcAlIzTNG6HkH5VwIs3cAXzzCw7/AHKxuk4F0LAgJPH2hUEgZGUtEuIpM8poJF4QjcJUgkZotwi4+VMfX0Yino3X97wHYbSinJuEF9XDQRS2JP6Jcf9BSeOHMAhffO55K7rKLdxSzIGG4PQig3G60zXX/rCXXegyvD+H/+CchCigqpHhDDROnZrXCOi+AaMwZ2jgrEt4sFG94KUROQ1jfHtxpEYIRCdMNEBtOaFr2uNvvSHpNAGHXUv82d6StMxpxxIMuVSLNQE3v+OdO8jWzCJBu1yCy8UtwCZ7TA3BnTxqOjlbGGAB/fstDFF6X4CE7909Q8LYXCkJghFxU20U62x4qlXj3UDrJ7ZxBUbv4tVRfV28PO1YrKURqBRQrI8u4ArTnsHK2e38djsdjzpcNrIoQx7Wb6+9jOYmk1MYlrEJlRGDA32XSlgvjfLfG82Coauf9YYKJj6JHAikv5Mra9Yq9aEReSrzoZ9WgB9bom9Dft/r3Tl1l9iDGTcFHO+GyEf6koejhV98/nXE14BwMWHHculD9zR2S2pZedtgH0thdqwYXyS6x55jO/e/RB3bNiCIwQZB0QXBL3WbdR4bniC8oCLN+U/vt2y5HPsSctZtHze43n6SaP9jT/8SQgMxhhW37fRvv1a2wQj1B/UAXAVCPtC61TnqdFus/pZaJtwJ0xS9/bEf+qU/VtDFWKvvqfV+IV2a0jY8Vz008s5YKSPXaXZ6rOA4wTWah4JDQnHJk2r5NIy4CiNNjH+b3UWagOFuwsNlqTobp6tFxrsIJSwGZafs/C1HN5/MgDHD9UfCI0JK/0TAvpUiVAL8tSacOLjtGA0cSCzpcfa9kMREtQseYeQEZVrUU4zoAqMh1m6bYP2IG8tJ5KQhBOSD136nCJFnWz5jI2D0KSUHwXE2WiOeP5Do0k4hqUDE+TKSRYnDsWTHkcPLualB5zM4vQQAP1ekncfdzb/et+vW3cMMEH7g0Cc6C2G1TPAqr17eOcPr65YuwLXum5XeHK8/9W8QAYLudo2WWscmJaQuIWqi5sQAh2jx5jWx5B42QhHUS51zp79h6D9zeT8p0qb1+0mqHGP63Qkji29nbJRagnaa/PutRIa8uDNQXmg8+bbY6J5rtu0hhdf92W2B3tIJgKMgTCUBKHEkZrRbI7+VJGZQoqdM32tO9VA6URnK20r0hj2lvf0aOW2Qy+HKjr8ShalRvnUCa9DSslRA0s5amBppazdv0zT88LoljEKSiRwhCAwrfMpmJr/E7nQzmmPMvXw3VV+1pmq6HxQ7xdql46oCB3dSQlNv1vAEZZ3F0IPIQwpxyGr5jPPm0e/l+bZi47lnLHDcaQ9SLzumBP5wZqH2VNoE/jctvPxl6EWdlVJwT//+HoKUSLYwBjyY4Ls9t7ESEOb5S0EOmFnRPrGKmwbDy6tHozG5IzP4h2xsPn+H5j2N/7wJyEw3H3jKn77iwixQkqMTRhQzYwrBTg2VsFABHvXGr4ifuWCZDMzENiDE9pAg4UirMXNbqOYMLH7UScSgKspuT5rpotNdYWhwnMtg/BUNSt1bdBupa/CRAE3Bk/Z4N3QyB6UazXapn3VXGBYnDqE5ZkjOXXkQkYTiwAYL9zNhulvMlG8FyEk81Jn0Jc4EdOQg8CVIfPFFEXjkdcJAiQJEbA8fQTnLvo0P9r8d0yVN9dpnSrPEhJSDXjrk4W6OYlJCBukTVercf1mWg3G9pny010Fr4wqUwjdag6LaCqTToA2Nllef8KwpH+Ojx/zxpZ1vPGI00gqh/968Gama6BVjQHjy9bajfgnc+3fcR6PWsGh8pSAIGuTSKla2VDUf6tSlyOHEBgnKhMN1mgDTvQ+Iq2fuKmy0MrKEiCkZN6CwXa1/8FIm+4JkP6Ygtr+VOmzl1yFDmvw1urPdxWqXHJk2wVvgPJQYp+sFEZCuZ+uz3RHSbI9SI/O8Vhxrm7fV0qjlGZh3zQJJ6Tou5Gw0P2YJ4WhP1Wsu9arTrlXDhFDoqZUhpOHD+O8+cfwjPlH40mHUjjLyqmfsmr6GorhFFl3jCMGbFK1idLKmv3eMKxKJAmY1gnyxkVHO9uzFv8b+WA3t+z6aMv2La5CfIg3hCjKbUw+jZbzdlTQtQHb1XKlUPVg1bH1jyVnmZfINfHyQAu2FwaY9kPefvhLOXrwkKanR1MZfvDCv+R9N17Lrduq0KpSiJZAKdUBghkK8Md8RE6ixh1kQRFoQ1iuVxL6/YIckNne5ZcW3ZatQSckTt5H+lgIbk9CEILb4qga4e/KqTyONiw8YLRz+38A2t/4w5+EwHDNt25DKokOtbUwALRAWzEASmBcBxEYTGySE9WDFEB5QLXVLgkgbRzyDafNuhxjDRrauod7IOHV+n3UU9l38dwQV4UV0KeWdYjIfGsMjgzxIvWwryWBFhHcaasO2QDeGN7UbxHQ1fRELJcBC5OLeMsh/05t8q3HJi9j1eRnEaiKgLAt91NE7scschP4pkwQSeoDKh9Nn6kkOzMIwmA3U4Xf8Lwl/8Utu/+LDbmbiX8xgWIksZR8+THmyyl8XKbCFIkO+R8cocmKUoR21PqHaecaFTO+bu5Mwui6HBR1rkvYmIZABzw68xg7i+Nsze9lb2mGYa+PE4dWoKRCCMFrDzuZVxxyPLft3MSMX2RpdpBL77+T6zavbe1nLIgEhIgipC4TWMjeJmWghDANarrtVPROkbAe/22EwKRdRCEAbTChzcIey8GxRurUMw9jcPjxmfCfTKrFjO9U5s/01KUNq3ew9tHt9RddBxNqCFtguTmSCq5lwz5usHE5xXntnbsTrqIU1O89QYKOFosKKXp6B2ULlPAY/GGqmGJBX46JuW7+7XbhSmFYMDiDkvF+ano87FoqhYqME3Z1SRKR1v2SY17MycMnVq7n/N38ePPbyAW7K30qlXLcsftTHJIIWeztAQTT2mORmqFfhdEeDAgbXlgwLrMz/87B8z6DWPBh7t7zeQrheKWNrLOQuWAX/TLPImeSvWGWTf4InQSCThaC2LoQQ6o2Umh6m7+x5Czzk81WcABHGpZlptieF/xy152MJkZ5YGojYDh2cDkLU0MALM72883nXsz6qQkeHt+FpxSDiSSvvvr7bQAzrJ+pcO23yWqCbBm1zUXOqGhG6sft9wuCKYPTIjv5vpCR1ZpFaKAU2vetHGBcBUGIHJ9G5EuIcoCIgAjChMezL37a79Dyk0P7G3/4kxAYtq7bZYWFmIIQ4kyDxmAEEayqAGlRqGUhwAQSnXSoGCuloDToYNz2r4QAXnDykXz3gYes9nYf+mlkj6VVp3KGUlmR7it31XALAUmnjNtQXylUkcDQuFna7THtVE3TGkFSZijqHK22CmPsxuoISEiPFy19T52wMJ6/g1WTn41qj5mowRNlHGEwpowbnR5jIUdWdECWJAZpAlaPv5Ph1Pmcv+hz5INJdhdXIhAsSB2Lr2e5YcvzSYiQpAhJyTI5naITjahZykGsZaqdI4HNz9z6d7AB0WGEjtHuBzAWnUO0Zkgx+Iq0RXnLXZ9hJshX7g+6WU4ZOppcYF18jh9eznMWnUDGsQzq0+c8lzfd8CNu3rYxas5UguejSbPXQglaVK6pgmhiBoBFZ+mwlnqQG6lycWrMzFjBIeVCsYwMTMNM2/Fv3TTOXK5IJtvazesPRfubyflPkbZt2lv3bwEYre0BXiprRY0lV0F1U41f3ZpXuDTsURxLdjz8e67DigPGeHTDzo4ISo1kiA4XHZXaBum0R88BQTFwCUPBXLk9XGlMrgpZPDxVMxzbX08GlHVv0ouvUxhmKu236rP1vlecOfp0Tho6oe7uddv+X52wALBAzXJycmdlDzbAQmeuJXy/EpAVPia8hd27zmTxyNdZfuBV7CrcTzGcJOPMZ17yaG7d+QGS5W8jMCxyp9kT9FHoAI8dw2nH46ptO0Swp9zfVqCQbeC9G8uMJVoLCzEZA/NTk/xm5xq+t+mhOqHshKEDWZIaJRcUGU708dxFJ/KCQ46o3P/iBS/gHTf8jGIYZeZ0tM0QLi2vqMxhtMbDxT5iTiLCNgJUB8ht21m6LhfpV+dFAEJbq48MDaZUQm7dDUGD17/WUCjy2H0bWH7YU8staX/jD38SAkN2IF1vYg5D+5H2rRAAocFEeJlGCvAkeE7lwBLnIujmQ2qAc44/iGJC84sH1pAvRTj+PpVnhaapHiMNOtl0VGqo22q0KxaGlmQ1270oq4AGK4Qh45QYThQi5iQiC4KdF08GpFRQ449qv1NmNyEJfGLhqspFE7JMvyiwpO8CnjH/NYwkqlmljQm5f88HAI2DqSBHxEFl8VhqSUeRuo3gpHG5icINbJ76AsuH/p6sO1a572qXjKxup+0O+7UkBWRlkSIOrhwiF+yNNN9dJDFs9tGi7gwhUdb1vrGNZAw2YB3JZClfd2+ylOO6XbdTChxC7XLdzgf54prr+PRJr+H4oeVkXI+vX/gyfrNtPZ+88zesnrbatEq345/J0RBEQoMCio1eqzXlO1CQBHcuWqMt/TQM0m8YbRy7oEFojYhiFFrNyI7Ne/m393ybgYRCSMHxZx7Kmc87ES/5h8Xd3t8Ywp8iZfqahVARakzsBtHmXRcKi4JUIz+EKdXxUCQEHL58jIufdxKf/t6NbN4zhdEmcmWlo0uqdkCWJdrtfNh0M93iykSPamCBkrqOl0hh6PeKuEIzF7jkgu4C/LCrWJHexer8fEwdf7D78OHpbUg5xMmjb+bcsbPrrc/Tv2BPaTVWqLB7viM0S5wZa4mMUyfFPW6w0tZzI4MxJSb2vpb58+9gYfqkun4ekBxkd7lqNfakhYTuljjOIEirQab8Mr7xKYYued3eMg0W+MIVQQ1/baZBN9/yel37wp7vEXsw1CPI3TuxgfvEBjAgheLKzbfxrAXH8aFjXoYjFc9avoLb/vLNfPGB27hi3Z2EUrdXMsZCw3CIu+fx77lt64+kLTdXH6dmwJqIALl3ullYqKHPvvsbrL53I3MzBeYtGuKCV57O0hV/WAFif+MP+7XAkJ8tctOP7iLtCEyxBK6LiCwIZq4ImVRlgxZC4BgIyyEveOVprDjpAH541d08tnYXUkpOPPEAbn1sc7SCW696ASwY6+fd376aQhBU4FGlEChtZRRfRdqqmNFE1Wiv8URWL47HBzGRLnc5qxrcyCTbSyxCQvpk3DJKaJJOUHE1EoArfYZVHt9I64sn4jvVzX5pcgIlQgaYwzcORe2hjUAJTUqWK4nNDsrMZyL/Y/bmNYOJ4xhNPp31U5+hGO4mI3yUMPWmOWHH3Gqz1oiKlaHVmLbPXMGygbcgZfXAPlNaianBz5bCoKKYhrYuR8LhJQd8hYHEMrQJ+PLalxEan9DEYKrtJ3jUG2HCL2NaljOVcXSiON9DrXCjDWgTjd5Yv2SDj9aKfFDinXd/le+d9S5CLfj3B37FzzatJChGuVvrJKyarsQQX0JgEkCpQRWkq0Xb9lgKyn0Gb5ZmrmDt86hyK/coK16IcueAZq0Nd96yBjk1iwCu/85tXPYvV/Hx77yNA49c0vHZJ5P2Nx/VPzVa/dBWHrl3I17CqQuqF9pAEGKc+gzPQsDAUIZ/+OiLuPOWx/jl1Q+QnysyOn+AwYOHuWdiorMlzsAcAe/4nx+jpEBLm18kdAxLymm2J/IVg1/dc2C1viEQ0No1yQDS4Ka6A1FIYUi5fhcrgy3jSd8iu0mNW4P6lnF88oEX7WP1dcTuOgend3Ni/2YLWuHk2VkaYDpIWYhTJ898bxpXavocw6LENPfsvYykGuCgvmeicLhp138gGnbKEMF95QVkRJmnJbeT6uBaWqsntKQxJk8+/z2yfW+uu1Mo31O3bS1wptkRDHaoW3Ds0EU8ffTVZJwhrt7xPX656yfoHqCuhYAl6QIb5rK021mHvO4CA9HTnmr+zWsNYWEEIHL9zgcZSfTxjsMu4soND/CFR29lS26qomFsOjM0WLRMWlesGNWYN5tHpDwIalen1UTE1xvKRIw/MV6mleHFXtOQy3fkmH454Oqv3hgZAgXf++zP+Ys3nsebPvZyZBt0zCeb9jf+sN8KDD//+s38z/u/TalQRjnW941CCeO5kErajSSXRyRcVCrBAYcu4KDDFnDRS0/hiGMtEsMF5x9tgzCjt+gbP72Tz3/75gglpvlEnkq6bBN5SoGuO/zq2KRdBJMCJDaoJ0ZqM6CVqRMgGmN2BWCEtlqtLsKA7NG1yZEaJSHl+DanQEOdvlEYfFxhHd5tzgSNEpqsKtHvFCoCBghcEZKQrV/qxya/QF8UJ2EISAuJoERaiMqBuMnnFghbbqaizRZrUBg8Jtgw/lek3EMZyryclHcsrVTk1i0pSbsN+4DsGYwkV1R+/xOGX8rde78dQfeJts8BnL/gb9i68UsUwrBJuBAYXKlxhG6Z1KcyGlPdr8FuLGHT5iJQ0iBlQDlwKIU+X117Ez9ct47JUp7Ab7VDN1URLTCDdoXVdkZaHaFFxR2pY6ZnA6Er7EGrtkBkWVDlNgKeNjbYvxfXDCkrgakA03tz/ONLP8tlv/0wfYOPH2/8dyGt7Rx1K/NnemrR1N4cH33nN3n03k1IJeqVFRGJKObNKMm8hUMsXDbMmecdwfnPO55MX5KTn76Cv3vfRRUesXd6jr/+0DfZM5lr65d8yIHzeGDLDkAQRms+Dj6dnMqTGXaYiVCNYpwfwL4j0UFI5SU6qalB+rQ6LB9rHe9y/hBRrcOZPHPldlZQW2YwXUAJSDnNAr0QNhPzrF+twxM+/U6RPqfIwZlxRjyLSGQMpKTPAam9tOrgbLCTW3d/ColCE3LHni8gEBYutKm4vZA3LncWF3J2amtX5Vi8W2sDRQO5mS/hlR4gm3g6Q5kXoWSWxhiLQZlnRObYqzMt+mxwBZw6/Fyy7jAAZ827gJv3XEdRz0Va43Ybr2G+18fpo+dy1dafsqUwGPEBW16iWZiaps8JuuNuRC3EyUrblhHWfcoAP9hyO8VSki+tur2r5bjCG3a6kNI2ni0FqkBlvsKU5Q2FMUjtaj9qgfWAFVAXQyeLGm+qjFNsvVEKAD9sjq1rQUbHvbL///GXfsXw/AEufudzuj/8JND+xh/2y8Rtt/zkHj7zjisoFayvfVgbYFb2EaUSyrFDX7RwgL9577NJjWS5+dbH+OD7vstn/vVqNm2wmT9rzaOvfv6pfOANFzCvP1PjUGoTuT3njCN47kXHUBJhE3KQkeCnoZylqhkSdoMnqEreVbsqUcI2g80WZCrXtR9J9S1fnrhcLwKDIa3s/BSDdiZGwVwYZzI2DDgFlqf2sjQ5yZCbrxMW6gfQ3FZC+hhCDAFJAjA24ZwS7XMqGPZlgRrSwqdPlfFESL70W/bmvs7aXRexZe+76PNWIEU9c3SEJiOLTe5JAkO/nCMo/pD7tz+LfNlCtZ4++teMJZYjhEHVoHLU9xiSosyi1MEcN3gSrrIZox1hP64M8JTFFz8os6DjiISwOTOKoWPDDUztAqkvJ7ACoMbw/XWPMFnKWxg9LaprSGr7qe1zw7ozyhCmouSDgkpmWUGUvbwm1jP+rrh5BdZtosKZA40zZ3DaCQvGIEJDmHExTg9aloZFr0PN7OQc13/ntu7PPkkUm5y7ff5MTx0K/JAPvP4rrHpgCwA6jBC7akgqgRACJQV/8cqnceaLT2Dj9Bxf+satvOu93+bqqx/A9+NM8Pb3HRnIcNklr+TsEw9uWu9jw1n+6fXns256ssk2aoBSP8wsgam+AO2B8SB0arSyNY8IBKqoULMSmbcflZOookIYgZ93OgRSGvqTRXvYT5QZzeYq1+t7BAsHpnGVxteyrTyfVj4JGfnAo7lg3krOG13NqUObKsKCnaNoXlueUE3lowkqf1fUMm3aNghmTYLxsHMsWjx1ZQN7tWTOCArhHqbz17Bt8p9Yue1pzJXupS9xOrUcRwg4OrmVhWqqImTF1CeLHJvYwJqdz2bL1KcwRjPgDvPmg9+FJ8KG8vW7ZVIEnDE8j2MHTmU4Ueao/h0clBlnSWqK5elxjh7YzrzEnC0ruytCDILxYrb9+EXtHBryfmiFhboZMi0+Nd32DMw4MONgHAuCYZTNLRUDuoRJwcxB9SOmpjatsKAyjkC7ELrgTJZI7Sy2FBbqBI9eLARtFsr3P/sLysXesnM/0bS/8Yf9zsJgjOH//uWHrWyR1TJ+wIqTD2TTxgm2zJa59PM3VO8B1159P9decz9vfNv5vPhlp9YJDX9x3rE87xlHs2r9LvLFMovHBlg0NgjAi/7za3Vr1mA3+qAFuIshepEFNti5Mf9C7bcBIwxIg1TGmujaBD5LqRHCaqIV7Q7jhoQMKu9gMXTIOKVKHoDa5DWhkRRCh0G3QJ8qdrFu2C1eNWwXaVG2VgpsvgJVI9B0qq96uVFnEbNcg4smLQPr+oQ1V1uB3v4LYCp/Ja6az5K+l7B55jvUmm9coXFkHgeNxlpQUiJ2+xIUg3U8tPNlnLDoOjxnjGMGL+S3uz9HICShhhBVmS+FJiEDXCH46ZZ3MePvIi0HyetkNLdVrZMjDM8eOx3fPMCGuU0t5zJmOoXAbcDzbjFXApTUlEPJZLFGQBYG4Vhf3yqktYEQTFjjjhV3LWkweYNOCLSCOuh1YXOMiMAKB/Faj5Vp2rNMoJKPQQqLNOa3MUObqkASZhKoQge3JGOg1JzUxxjDrVffx4vf/Mz2zz6J1MBa25b5Mz116LYbHmXjml1t7wshWLRsFKRg05a9XHndQ3VBYWvX7uJTn76Wq350N//2ry9nZKTqOz5/uI9///u/YM9kjk3bJ3BdxeHLx0h4Lnes2kzJb9YZl4bB72/sBDYbu2q/fgQCUfPKGAwyFWA6ajQFWlctKiOZOVJumcl8mkLZA2HIJkoMpQp4bkCsUSgEDhm3GVdZCBj0ihRCh7QskXXa52qoxk8166A7AUh0IoFhd5hmXpScsxXFuj0JZIWmYGTEGeK8N7Os3/2XHDz2PXbNfDHSnNv+KGE4IrmTA/Ue9oZ9aKBPlsjIcqXu7dOfByNYOvRuDsgcwWl94+wuG6aDJEXtUTIugZG4ImS+N8N8N0cpkPx626tY5rlsLI3S7xZq5sTOz9LUwZw0/Cx+sO3SNqOy35tzox0t1fE8xr95sexWkrzV1VVrFDHQuGsLRNU9VVmhoTJVUbHSiGAibUjtBm/a6qnKWUjMABECUjVOXFAe8XBzITJoVirV/VspTMKDUrm9Aa3NYslN51l51zqOO+vwdk8+abS/8Yf9zsKwaeV2tq3b1fwruC6kU5BJQybNqns3MVcs22RtERkp0AlF4EoCR/LFS3/Fa/7qUu6+e0NdVUpKjjpkIaccfUBFWADYNZWryueRlSCMY8Ia1nLl+BdSjzDTSsiPNMgyGaJSIdKNgp9rtU7CWgHi636oanzj6jcGTwaknDJgA5kXpGYYcItknTJZp0xGlVDRSS4pfRYkZskoH092ywJdf6i3B/qQee5M5aqi3l1rH6DKK/WK6DMgy4w4JZIixBF2MXvC4DW9pobx3Fc4ZODNDCZOaKrPFQF9qsiIyjOoiiSkxkWjrPiBMdOs2fMmysFuDum/AEcoPBGSUiFZVaZfFelXRTLKIjuFJiQX7EIKi7Q0oObwRIAixBUh/SrPgJrmxj1f5Lnzj+C8eWcjGubOEwEZVWbQKzKWmO1pV7EBcDXr2YBwTFUmqP1WIBzdtM6ozUDeqk0BxrVm6DAdaZpc+5xRBu1Yv+xoGGhXEDS6SRtjs6OXjc3wbAzak4Seaj9MIaxbYQsqFvY9odQTRU+mBukLX/gCy5cvJ5lMctppp3HnnXd2LD81NcVb3/pWFi5cSCKR4NBDD+Waa655XG3vz3TjtQ8iOyVdM4YtG/awZeMegoFUW8Pp+vV7ePnFX+TT//Vzig0azHlDWU4+ahnHHbqYhGctuJt2TzbVEbothIXHRQbhatJjBRJ9fsd9dbacZMv0ILmytR6nPZ/Fg9McMraHQ+aNs6B/NhIWADQpVSbj+hY0SsQiRHXjEALSTsCC5GzL9jr1ubKf/w5K1m6xYGD77AlICxiRmmSds7xGmzyzxRs4cPQLVHCm47vGCg5jzgwLnNmKsFBL22c+x97c1QgEhwy8kFG3yEGpvRyZ2cEJ2c2c0reR47NbWOhNI0XIdHkDhpCkLKNq0AErc4phe3EtN+35Pq9c9i6GagA8YpIYFHBAZi9pWWy6345CLWmCuG2rj4r4R6nNUbGFY0GYEuQOEEwcK9h7nGD2IFERuE3N/zE2QdvcASnKA07blEFGRN/D/bVPNxQ01U8LKv3ZwvCE0OMSGJ7KjCw33RAoJIQVFDwXhDUzow0mX7JQqtECM1LYzJwNv932bZO8/33f4aof3d2xXa0NM8VS9dBFtMg7A+HYLnYC4q2Rxk0o6g59QlhLXQT2hBDgufHmIyiHilIgsT7zAUkVMC85y+LMDMPJIqOJOZakJ0mregYjMWRUmTFvhoWJ2YpFoHtWSrv5SzQuIcMqx2Jvss6isC+vRi0KZ+1kKAwZEZCMUZUaD8SA2/ikKVD0H+SUhV/hmNF/pc89jHi3SwsfVzS3pJHRQd4wV76f+7adzs6p/+aU0fpguerYZGUWAAIjKeOSkAGDToERd44hJ0+yRvC6dc9XedWyv2BxMk1KlkirEllVIhEl0gPo80r0ub0xhLA2+MVUhcimvgoQCuv2VquRNFQlhR5VH7XFwhTWvSj2fDJglCCUQFkjSxpZ1MiyRgYaGVrIPKHBH0mjO8F7Oc1aNKUkhxyztEXh3xO1suS3+uwjffe73+Xd7343l1xyCffeey/HHXccF154Ibt3725Zvlwuc8EFF7Bx40auvPJKVq9ezZe//GUWL17csvyTSU9l/gAwO11oDWdayXxuSTsqyrnQfk0aY/jZz+7nDW+6nNlc53d0+97ppmtBHPP6O5NAOjUvXRfSRrI3n2Xr9CDTxSrSUfykFQ4MWadM2vHr4ghq99natrppuatU7aPE9Izo166mAWndW1ux0Vj53cgj+oVp4BGa6fwvGEw/myMXXs9o9q8QIkM1W3OLk3EDrd37Nu7fdg4HZE4m7cxH0Gk+rOJsQ3EULVRFGKsIZcJajKb9PewsrOWiBX8ZQXnbTy1KoBKGk0e30MvvLoRgJJFB1sJLtRpW7bWiQARPjG45rlYWNaldJVTBIlEFWYcgVbUzaSUoD7kUFqcoLElTWJyivLCPcP5w1WTUKCC0N8VxwOGLnpD+7zM9SfzhD0X7vAqe6oxswQGj9Ys9magICrFrUeW2a7PbGLDCAjQzh+jfn/vs9Vz1k3vathvoGmfv+Lv7HkNPq6ViIBBov3WAHhikNLhOrRZWoI1CSc2AV2RBeoasW4qg8kIyTqluM608FZsXtVvXlq87+cZaGlJ5FntTLPBm6FPFJt/PfY3vqbJwm3/BifJ2ZmR7LZoQFnu7qW1TRgqPRX0v4OlLruLsJdexLPsivEjbFNenDRF6UlRf9QjBrtwVZM2jPGPBh+h3F9eUkYwmDo9ihW15X8fbegdtJiE/3/ltpoO9ONI0xXTEf89Ptc5zUZknA0Eo+MsDz+DowQU1yAydnxHC0OAgXaVed4daoVZVZQ6pQYb2owKD1CC0QUafRpIGgnkZe1BrlIzb/NhhqHnua8/usaNPAvWiPXocGqRPf/rT/O3f/i2ve93rOPLII7n00ktJp9NcfvnlLctffvnlTExM8KMf/YgzzjiD5cuXc84553Dcccf9riPcJ3qq8weAJctHUTGedBtzpwC0q9pqLBtp+9ZJXvvWy5lsVFjVkGrhh90lVrVnMhi0lnW+6r1QaAS5cqJybpEiUvoIjStDkk7YVuHQSJN+pgUoQzMpYQ+5neLXeiMLcrHIaQwyFy3+qrkbXUw3QPLoKK4u6R7MsuGPcvySR1k++kWEGOy5R+VwO2v3vJGzFnyEZdln1QkNaWcBnhyo/DunE5TxOtZnMNw9cT3X7vxa2yOFEDaJWzcYViEgIxO8/YhnRKhJXU6rcUN7f0fo6qYzvUD5msSUT9/mAv3r82S3FnDnrFuxdgTF+UmCjFN1BZSCIOtQXDFMuHi0+nsbLMNuMwypJKc882jmLx353cbweOlJ4g/wh1HM7HMMQy0jA7j00ku5+uqrufzyy/nHf/zHpvIxI/vtb3+L69qFt3z58n1ttmcaXTTEKecfwz2/esQil6oOO3Ls1C3bH0hiEsB/f/565i0cYKZkTZLHrljEkvmDAHiOQ9JzKPpB9UWL38du66FXoUIIwpJCidC6k9Q05DohCa/eZUgKjcCQUAGeClBCV3IoCDSubBW4Wz1oGixSkhdp8svGwYsc0punyx7mszWmUYNEiHo3kgCF201sqGTAIbJYwIB3HEsH34I2JQqluyjlv9S1Cgk1KBOClHdkXZmUu5gBd4RCo0m1clJu9cMYdue+zvGL38TBfd9msrwBX+fpdxezevpadhUfwxBGmqn2kK3VXsH9U490juUQ1pXr4OwI63MTTeZkrW2siUuS72y6FYkgk5bkCx5h1xNJQ6MGCCLdobJ7WbcYetni54zjGiorVAm7ogy1MfxNvRBCEPQl8KaLzRPi18DiSoHWhle/97kcevwBnTv4JNK+ZPKcmZmpu55IJEgkmlFqyuUy99xzDx/4wAcq16SUnH/++dx2W+sA75/85CecfvrpvPWtb+XHP/4x8+bN41WvehXvf//7UZ32wCeYnur8AeDZLzuFa753ZyxlW8tVG5jsXskAkztn+cTnr+UlF53I+ESO4aEMpxxzAG7k9prymg9ePeTv6okENjYhmPVw+2OXmc7MR2BwZEhfoqrYUaIa75SQQUWpEGe1twJB/YE8Xv4hks3FYQ5M7W1qqzP1wiRbPQOL1Cy+ESjpksn8NcnUC/D9e8nPfY0wWNv2aSGwR/XKu6tIe8c3lBEMps7DmPbxEc2k0abExNz3eNqCT3BC+B5m/c0okWDQO4Qr151ZKTkbtkfoq6VCOEc+7A6xeupIiet3ZlqenY0BR7jMBGU+teaHjA045EqQL9ZCbbUgQef73ciAO9PismpTpzGUhxNRktEWmkwJpQMGSI1PI4qdXVGlkgyO9vH2//zLx9f3J4CerEzPsWLm0ksv5bTTTuMzn/kMF154IatXr2ZsrNl9LVbMjI2NceWVV7J48WI2bdrE4ODgPrW7TwLDHwsjO/bMQ7nr+oesdaENCYCSDwk3StjWmYyA8qDDez77k7rrTz/uQD70xgsZ6k9brVVNEJqAaoxChybCZLcVI2yCrfjljU5x6YTViFiXpOrG46mAjFfCU5YbGWNjGlJOVStv3YQiLQ+12nWDNnGKHFOnMTII5sIEGVVsGI6FVJ3vzNSZlw2WwVhmY/tnEJRRJGiVKyIyUwtDQgS4JsQIgRJpjlv0g0qpvOpjWxeBoZ4UfYmTCIq/xifE807G9Y4FoBxshigZXDxXvUh4E/lrWNj/BoYTB1WuJp0BTE9AeFUyGItm1K1FAW88+Gyu3PIId02sQUagi6Ex+KH1eytGeSY0hoQX4rkFpnMpgqADdGvtgcWA8KuZnqUUJPtdStMd/D91jUBhDLIcHSJU/WEoFj6kNp1ZpDGgBGHCQZYCWy6eH+WCskkXDzxyMa/4++dw5vNOaN+33wMZLTG6sykmvr90ab3r1CWXXMKHP/zhpvLj4+OEYcj8+fPrrs+fP59Vq1a1bGP9+vX86le/4i//8i+55pprWLt2LX/3d3+H7/tccskl+zCix09/LPxhweIhBvsTTI3n2goLALIUEPZ1Tr4YkwACBb+9dwO/vW9D5fpAX4p3/PUzePY5RzGUbUbzcXNPTAyDwWAUlKcTuP0WtMEPBEGg8Nywzkgn0Iyk8/Qni5X9unELsno0Q0qVyTqlinJJG4uclwsS2GSm9c9tLg4jMSxOTFaEjO7sNRY7agt2O0jbZ8Z1mslimqNH3sHCwVcB4CVOpJi/qutOXF97wJB3CIXcZUg5gpe8ACGz+OE4tfl7eqOQ8bkfsXz44yTUAAl1TOWOp/ophnujEfZ2EFdCEfSQ2yHphHziuFfzLw9/j0JYxjojG0IDxsi6OkICkp4FypjNJ2k715qaPDz1STmVEITG4EqJ3wobNFob6RrjYvxLB2mFVtb6XNecJ9GJDu+9EBhPkT9pKel7NyMLNb9N7MMswU26PPevz+Flb7+QkQWD7et7kmlf+MO+0B9KMbNPPe3EyHbu3NnymfXr13PllVcShiHXXHMNH/zgB/nUpz7Fxz72sbbtlEolZmZm6j690qN3ruXyD10JUIdu1IrkbAGE6KpBNUBh1CX0muu746GNvPnj36NQ9BlMN2e9lLXKnhYUJg0dXR1jlayqViLdkIQb4iqN5+i6NPMJp8xgslBjPbAbdsk47C3WmIwNOA3CAlgm4UjrJxk/K5A4ImCeM8Myby+jzhzDKsegnGNQzrHUHWeZO05ClLH4ExUflcjjsj6kN0Dim8alZ0gQ0E+RflkiIUKkBCUkfcnTK6UKc18lt/evO01Ypd/WBiMZlJKkfzsz0//E7PQH2bvn2Yzvvogg2IxSg+yrZ55AEoRTTdcPzJ6NFFUtohAx0lHnBbY8s6J7owYO6zucfz3udZw9bwVK+igZYozs2EJ/ptCxfRNYpmIwGGEwgf3bVZILVxzCL970WhYOZtsZWyrrO7Z6xGAlcRLrSstCEKTtPHd8K2OLn+dgvBqXkFKAkCICLkhRCAzH/wFQLxqp1pW20wdgy5YtTE9PVz61B+vflbTWjI2N8aUvfYmTTjqJiy++mH/+53/m0ktbIaw8OfTHwB8A/u2tX2V6+wQUO8ccCD+0CQV7EOhDVxCmmzfy6dkCH/3ctfzipkdJJ5vdT1QZHIug2XxPCDylUD0otLRnzXlGS3RZYQyUy66FZS65aF2VDBb3TzNQIyxUxttwuO9zigx5BZwa/iKFIatKjHo54pNkrLxIqzLzvDlKeKwvzWdDaR57ylkKocO4n2VneYDd5T7yodfWrbaRRMe9WVAwLjnjsiB9sp2HcCdze/4C49/fcb6MAbt1KVLCsNhJUs59gvzMv5CbejsTu06gkPsflOjj8WjYtSlAC5HlwP7nV8aUkr0JIkcPnNnAQVvTiDefZ8w/mn8/4ZUMJwSO8qMkrvaYrhvmVwhwHU3Ca4NOZ4C5+jWtnWotY/1ZPvP8i/joOc+0yqFaRhR9Z7eAW6hequUHxdFmYVw7PfJiV1E4YRkmLl+f+Ao/X2bpIQv+oMIC7Bt/6JVixcz5559fubYvipn58+dz9NFH84lPfIIw3DcF55OOkvR4GNknP/lJBgYGKp9GzVwn+sHnfmERMGIcsQ6/hij5MJWzGNwdyvopGQVEN7+0oTZs3D7BNbc8ygXHrGja3KW2SU4a90JPKd50xikccsBI962gAqEqQFqTsauqL7kURJmPQ/ojq0NzV22+zNkoUU8qygzZqhyAkhZ69fkL/4YV2cNZ6k2TVaWa8gJPBIw4ORLCaoLjfjgRulClfxhS+KQok6JMGhtknHSWctLCH9AvQgZEiVQN1GuVAkazL0KHeynmv0tu+p8RolTn+ZlAkEaQrNlWjQEpBhh1hnArZp/qlhX4DzGx54UMJs+lzixUKdeeDAEJd1nTdSUkR/Ydy5DKMeTkGJBzDKocWVmsm49aOmbgAl68+FUdtXBGQ1oNcv/0/fzryi9x39TDpJRPQpYp10KjNlAcFF9FPInqi4Zn/Mi9QET+W8pgMgbtGcoq5OqNa/jor37D9lmL/lWZFm0FBVGK5wNAIEsR3GrUeJCAWC40RGbobou95h00noMJQij6FhggniSp2L55L9d889Yulf0eyPT4Afr7++s+rdyRAEZHR1FKsWtXPfTnrl27WLCgde6OhQsXcuihh9Zp5Y844gh27txJufyHQ5HqRr9v/rBx1Xbu+c1KTBghhAXtBQIBOBP5rkkFrcY0xi1uXeZzV/yGk1cswVHNLDe5B5wcTdvOQcPDvP8ZZ3a0QMbCfi0nN4ZIQKh+SmWXQtGhzyuRaBGX0PhvVwQMesWW94SwOWzmeTmWpsa4cMH5LE8lGXALOLJWiy3ImRS7g0HmdIKScSkYjz1BPzv9gboMt9WexsAZlm+cNf/9rOh7Dm33OBQLk4cx7GbR4SRz4y8n9B/EqYtBAweBgyDKeY8QUNCSQe8gRpS1z1qK1ekF8jMfJyh+l4HkWS3a77wmXDWGEM0OHPOSJyKFhY0bUHmGVY4hlcMTrYUHhcMz5r+MgzLHtLwP9vee8RN46niu3HIDH3n4y2iRJ+36NWu7/cab9Fq0HSnr8QU4VgFk0fAkxrMQ2juLOT5y06/5v2vuIr0DvCmQRVB5SO2BwVWQmKyRIWo9fQ2UhzwKY4kKClJlML1QZGnwFw20feayD32fYr7UW31PFu0Df2hUgpRKrfv++1LMtKJ9Ehh+X4zsAx/4QJ0mbsuWLT338a7rHiQMI3HX7pztF6ExyJJvywS6KmTUFgGCTPfgtx/95kFe+fTjcB2FbCE0eAXIhg7PPOwgnn/s4Xz25c/jXeedwd8ed3In/a/9UtV/WySMZm2QEJBygyaLQT0JitrFGIMnmzM715aL3Yxc6ZIV25o05QITBTXX96Xi8lSByRFWoBD1CBBgOGDwLWQTx3DQvEuRwqHe1CLpE4bFTgp/6u+Y2HUss1Pvq9xNCUghGBGSfilJC0FW2H9nhWBYOizrfy3oPbTS9ECI1ruhfDeeiH1JDSkR4lX63pqkSDGSfm7dtR25a/j15rOZLfyctPRxRcigU2BYzbHAnWa5t4c+ma+rd0X2aZy34E0Y8pw+/HR7saZZY8DXkjKKySDH1zZ+nfsmH7KBicKgTbOwYEwUtK1F5eM4AY3j0WWLumU5c3yQj77dqhbpF488hpSiokESkQuSiX9HgXU3cizii66V5KQgjHIz4EJ2IEliINGF1YKIskzHEk/dCOPFZuDab//hErbF9GTA5nmex0knncQNN1Tzw2itueGGGzj99NNbPnPGGWewdu1adI1rwJo1a1i4cCGe1zmw8omiPwb+cPdvVtZDqsZ+0C32d2MMQhuc8TkwlaN5E2mHrnFwk9N51m/cw0vOOKb5AA6k9kJmC5w4MJ9nHX4wbzrjZL75ypfy6hOOZ3F/X0c529RAJ4NBubrlmjNGMpTu7gsPMOgVup7dlDAk1DjHDCyjZJqD2lUU+2BJ1H2XjbU6xH2uF2+sIJB1FnBw/wWcMf89LEwdHz1dPXWOyDLnpfdyjvtLCrtPZ273KZhwIxAihcBD4iFJCQcXiYskKRRJFC6Sxckz6BclGvfQWsrPfpqR5PHEsG8umowod3wGJGPZer/5cjjDr7f9HTfteAehKVuOJARj7izz3RkOTu5hqTdeA7EKjvB43UH/Qkp6nD//xTii+T2e8RM8PLOQtXNjfG/LrXxlw0+ozQ8dNFny7XwTC2bC4CiNqE3ogcGUBYwnMGXXZg9vEVMQGsPMZJGt49OgBW5OkBoXJPcK1JydIu1C6EEpC6UBm5OhtpbSkMvM8gz5xWmCA/sYXjG6Typ3f8FA23uFXJHbrrm/57qeDNoX/rB06dI6RcgnP/nJJ6wfT5QFep9iGGoZ2Qtf+MJKR2644Qbe9ra3tXzmjDPO4Fvf+hZaa2SkPu7GyNoFA/ZClazOocaEGhHqCqRqxWk++jaAyaSQpYDAU5joYNSkS1B0dcRcs2kPr/nP77C4r5+ts9OUg9AiM2FfLKUks07AL9evRwjBj1eu4qCRIT5+0flkPZdc2Sc+YEet2i+vXmslI9hUbQTSRD6iGKTUuCokNNbFSrRwN7JU1bB0Juux+NvxKxiS65vuJoTfVjiJp1ihScohHJPHpnPTxKHIywbeyoLsSwAYSF/AYQtvYHz2q8wUfonBZ0SWcMwEUBtwVmtVEWRqJqbW/SwZjT8/eym18QnNpMnPfZmkmSVEkhEaBXgYJoxHO2/75cMfQclqNr69hd/y4J5/iHooKdfAC1aU4hjmuzPIQJL1juW0kYvZlL+f/3nslQQROseS5GJ2lgyBscGGvpGRrs3SXODhV+oWUVxIlYypDUqs3vM8A6JEyXfQgSQsdAh0E9iEUb71V5WhjWsRtcswLtPkgSG4+l/fQKFQ5tvX38M9D29h+/YppBBoY5iZKyKkxopn9f6wlQEAIqgZVzvMRSGY2LOvuO9PEu2jSbkXeve7381rX/taTj75ZE499VQ+85nPMDc3V/FZfc1rXsPixYsrTOUtb3kLn//853nnO9/J29/+dh577DE+8YlP8I53vOOJ71wb+mPgD0E5iDaoGkVSvmBd3WqtWCaK4iqVkUri7J6hsHwQ5ZuGZGn0lqUceO+lPyU7kmLRSD/bxmdQUlqhRFhLtRyS3FXegdwi0JsNX3rgbt54wik875jDuPTWuwAq70zl/ZFWWI97I9M+QhlES08D68LaC7miQxJFqnt8Lpjk+l3fRyLRdfus6ZA41I6kYBJo4+OIUrRj2TEZNBlnHs9e8hmUcEHAc5Z8mnWzN7Bq6ifM+ttZ4gac6D5cmQ0AY+oFTEfY+bX9rbdmuEKig982uek0kclTyn2RAelTMpJsNC+agIKJ09rXDlKScg9mQf/rqlUYw8073s3e4sMYqGuzdn4ysswBib3sCg7i6IGzODx7BHfs+W92F9cAMOp4zJl5zAY2g3Yu8Fg3Nw9TNwuNs9w0oKZrUsBIfxE/sO7DuW1ZTLdg6Li2cmseaRyB3+J0edoxy/jM376An9+ykut+u4rVj+6gFPgIJSgHml2TERpgJxSQyuBES6jtyriUZGLnVNcxPOnUI3/YsmUL/f3VgKYn2gLtum5bxUyvSqV9Rkl6qjOyg489gMfu34hRTnXRlX3rm6FknauSGciA50TKVYEIo1T0CCrKWyGiwOX2CzheDxMTc+ydy6MNLBzt45iDFuAqxX27d7IxP1U1zUWb2MaJKV7zoyspeEGEh19TmwIqmqPopZQa7UuE1PiBg5so4SiNkholbN8rZl5j/UodqZt9VfdhPv1wvKUdqheGokSS85b9mqnireyeu5rAzJJylrOw72Wk3QMxRmNMiBAOCfdAFg9/hMV8hELuy+Rn/oVOb5qMtOGtfDtj5mDobo7U2gZqZ2NMI2FjO4ZNmZx2KNUgHSnhcdDIZ0m5S5gr3oaSC8j597Fu8osoNIGBsmn9ksdLZ1nC49wlH+Xbm97LRHlLJERZSsrtHJA0HDP4cqRczLe3fLfaTwPFsH4Tt9CEuiIk1EMa1s+L52oMIcVyD4GkgoqcpQEpI5cHXTPbDeZUAE9J/vMnN/Lypx/LS84+jp9d/1DU92oh40hKg5CYCus1SdEEyVJ9GiYRtjngGMPgaLb1vd8j9WJBeDyJeS6++GL27NnDhz70IXbu3Mnxxx/Pz3/+84oZevPmzZUDNljt1C9+8Qve9a53ceyxx7J48WLe+c538v73v3+f2/5d6KnOH1YctwzduKbKvkVLSnjVA4gfgB9Uc+RohfGGCTwBUe4QsIkJTY+JBIr5MjkZoqKMt6cetpS+dAJfaX4yvoYwGQcW27oDrfniPXfgSIlORYJKbCyUEDqa6vZkrEthOiQMRZQ+IrY0CDKJEsuGJnueJ9Oz84FkvLSjQViosM6udNjg6zll5HzWTP+MvaU1KOGxNHMGy7PnoKSHNgEChRQOK/ovZEX/hRhTIr/rlGj/6HwaaxXHWOUP3ckYA2YOT5gKup8QkCFAYcgbp2bkhuHUs1g0+AEmio/hyT5K4TQ78rcwXnygoc1W/YKECHjZkpdTNh4/33EJtTEcQpTpEzsYS4/xtNG38b/rb0awo43dy5KnAsphfMyrCgutfhs3ik/Qpd6EBbDHjNCz7UufGjjv1rR9YoZv3Xg/Lzr9aG6/Yx1+2Z4jKm6yTQ10EByMQXRwOdKhZmisvQXi90H7wh9iV9Vu9PtSzLSifRYYnuqM7IVvOZ9/f9NXmjcKre2HaFF6DmRS9szjWTeiGERAYDHjjbAMwSloyon2UxXrc2UJAs/+e89EjuSBDheccig/+H5rZBNtDCUnqNphZdS7+O9aRbETRnB3klcfeDIH9A/wnS2/YDacw5FhjcWwftyBlrgV9yODK0IEhkCLrjjYjtBts2j2whAkCikVw+mzGU5XsfKLpdvYM/5BiqVfAxrHOYxs5g0knGWU8t+kXPwF3bZz2cOGZrVVgs7ZHyIrTbQvxdMuhWHE8QkNBPELL8fYNflWYpg9E8l4EsWAkuRCl7xpDnyvpUK4m9/u/lyTsFDbl0emr2Qg8cI6rV3Ywv1ICMi4JWbKqSZ0p6YN2ICrQordIvxj0nY962SU1y0Fwjc4BZCBaOnl5fuaXz70GNc/8BgrEgPICEWjqWpPUhiF9M4ojgZAG0RYo/0yBkINflgR8NHWKURIm2Dx2Rc/rbexPJnU/czyuC0Qb3vb29oygN/85jdN104//XRuv/32x9fYE0RPdf5wwlmHMbZ0mN2bxutvaA2FhiDoyP0tTLnkj5xP5f1SAt0IC9noedPinirb834YxUTcsWozP/zQa3nDL39E2GHbCLQ1exsXjGtar6dUiMgESCmY747xN0ecyMqJPXxn3UOk3DIHju7dJ0XRbJCgv0OySFOzsQSms/KoPQkSqo+0M8rxI39duerrOR6e/Carp39IIdyLEgkO7LuAQ/tfwM7CfRTmvs1RzvTjbLO29R7KCIE29Xl64r9TIiRpQixHte6j6wp7uXfmJW3r6wUZae30VazPb4/K1/MIg6YQ7GZ97jbW5LZ3rctTIVJotBEdhYUawxpCmJ6VHGEG8rHeJgRvxuBNthccNu2Z4r9/eguX//wO2NAJdEBEetIO/RACd9tU29vJdILTLzq+ywieZHqS+MMfSjGzzwIDPLUZ2bkvexpXfPKn7NqyN4J9q/81YjchE0u2rsR4dhqalqYBEWhkWSDLGu2Kjgu49iymteHae1axMpjo3OEmRU70ooRRB6IycWJGJQS75/K89ein8ZVNVyGFoR2kcSxxBFrgRhCr/W4RR0IpdMi4jW5Q1YE7hEhhKETJ2xqHHaBwTPs4CIFiMHFc0/Xc3LeZnHoPta5CQbCGqel/iNyBnCZXG1ufqGhSemV8CtGk+WoqIyTSaDxpU+zEgqY2hiAS3iSGooFAb63vk7CGoTQh+X3o2abcrzGdobHYVljfte9g41a0KTFTThD/lnEcQ73Eaf923ICg0CERT7TByULNY/EtB/w+cKcNMmy27RggkBYqb8vWyZb5GSokJaVBh9SeGqGhUlGksZotIrS22l5T6yAWksx4nPP841l5x2MYYzjwmGWkMp2FtSeFekm88zgT8/yx0lOZP0gpecMHX8gn3nAZEGuQo3dEiCZFk5GCwuFj1jrdhkR8ho9ft9oqar3rGs7VQsCXfnUHaye78IimBhvqFiASkUIJ2JSb4mmjK3hschopBPP7Z3vW+MeUCxIUQ4eEDJqea9YGN+/Xhl68SgxL0vUIceVwlmu3voXp8sbKYTk0JdbNXMPamZ8BcKQ3gzbN3oqdnE9bkQWQdmgHmxqfHTrhyAgBDoaCVjzqL8CwoaeWO9FkaQ1hG0s1WKHhkambgOXdWxLQnygyU0pijOgMrhHpKr1smdJMgspZpBqOWGPRajEUBeVBCBOQ2tHC5bQ6AErTJXpyKmzt8QTGoMZzOLvbu6U+69VnMLlrmnUPbmZo/gCLD57ftuyTRk8Sf/hDKWYel8DwVCYhBAcdvYRdW/ZiWmAXV0EDrDBhXKftziYAoe3h0ZsOKQ0oTAtoVUOEItBwPdSGNXvGm8rXkaYDrGrEgWqaDI1hZ36W346vwmBdUjpvzFFKHgPDiTxpx3KtEEU+MKSdWGiolnfQJKS1fafaZFQuapek8tu2bQhZ3v9KZvPXUizfAygS7hFMTb43EgjsNiyrPUQDIWEdwkWL2Yg+HTakiCQKJdKEJte2PhcwkRDZ6OfqCYlvNGUDQTtLi7DLJ0lIsccsTK6YAYY6lBAYk0MiKv6ujqjdtesp45UJtCDnJ2qEhdqRVMnzQsqudW0D0RznL0CUYmba0Fb0A/h9kJho7osMQZVskH8vhgztScKUQpZCm8+hcsMgCmULaVn2K6OunJOMIb9zgtcf+Z5KzFIym+D5b7yA137kZXiJ3zEz6b7Qk2hh+DM9ObRw2SgARmtogBU0QoBSlb3AH8lg3Pa5GmISRO9Rh2LapY7XhNpw09aN0JyeoTdqOKzV0u5Cjmu3rARC+pKlfRIW4sq3FgZZlprEU2GtTAXES7pTpRaVL46zaySJZH5yOaNumq3TlxLoCTy1kI35zXXCQoKQhU4eT2jy2mFHmKpafJ8Act2TKfutwRNihaOiGUevkdaVR/bhNe+0UAyaMg6Jjm26srfgdbCIhwOJAtOlVId2q5QeyVuBITSRebnabaHBCGPTdbeqSkCYtgAYbiPbNSBCW8c+p7ZopIKPt3ZXh9EYfvK/v+Qnl/6ycuWwkw7ibz/+co4+/dDfsfF9oP3MAr3fCQwAiw4ao/2vEF13Xas16uJ/arALPEhH/irxaSw6wcRJ37QDKFFN1BY9W+qCcyuLEp1uEWldIQGqehBVQrAw008x9Fsd6drWMT85g6fq5yQwDsVA0++WbBC1MDg12aAVmlGntQSvEeR0gqyMUSZiFqIwhCzLvoDZ6fcyGW6nuszssTuB3W9chHUFqwlM0xEaScvYhKid6jvYWWiQwiFtSpSQlBt0Tw4WRcMXOnJHqq8nZhYOgtbiRm1ZC2MoTH0Oimay95KNqsYG0iYk1FvRDNe1kVI+hbC1f2nCCcn5okZYaL2bSwluqkQ5SDUdAipdTAIlWqvWBKDs4UfVbPqyDE6pOnrtRD6tbcYogIQWIAU65YAfokohshgg/KhhrZsVtsagJ6ehXK7rXjFX4srPXM36BzfxsZ+8D9UhGO4JpT9bGP7oaNGB85ASQr/FAjcGggDjOAghCAZ7O82L0OCUQoj2f6MERgm0Y63S2oUwIVBFCBNV9Xipoxku6hKdjnkGHINo2Nvnp7IUwwDVEQ0vqqHVPgCERrEhP8yS1FQFhruqXJB0O+kERpKoxLrVKmMkaaefpw8kuXf7OdidXWIIMcYwIPuY0mmOdKc52J2tM9wECNaU+1uybSGsgBJnv+nlJCaCVbgoAsKm0grr0hp0sVtoAwW6+f0bksJHY4O9O/QIicYRAUEzqkSFPBmSkiUK2uvSriUprZtt1fLcouVIeeR4IanBAsU96TZDEZY3tDs9GigPNAgMxvKDuHXtiYjP7yOFmsQj23B3z0ZwrM1WwYoLawOtuW8D73/ef/CJq97NcWcfsa8tPz7az/jDk56H4Q9BpS4pwwFMqneUjTARJZ0SNZrOiqnOEKTsC6Cj7LYGCJI2g6fK2zwMolGRH5EsClwh2yTnMVZdK6sPhsbwzMUHc3B2Ae1g/lrVkw8SDUGxlsrGI62Wc3B2BQmpI6HBY0gFLPEm6pL21JMgMDJCYwoBgRQJss4iFjgDOMUrCMLYxzKO1rPH/ZIBt86nsvrSx5q6diMTOLjOEWSHv4cQWdpufkACjSMUaeEygEcGhySKDIqkUPagT7OwUKkjuu52eZ99I5kxCYyQVEPgGvsfudkAjkjSKSGRsOdoEg2LJu2UcSupMet1fAtT2Rr3uw7HCwNCV60LzY3bL53szCTreJm2loXalsNEF+uPFHzlU6/hisvewIkHzSeRD1DFsCIsxK5ITbWUStAGbtNowz2/fIhbrrqrY9tPJLVLxNP4+TM9dSgMQrTfRWesNSJWKPVw4nbyISKM0pmEoMoGt6BxChrtGIJktR5VAhEYVMlgHikych9kN1he0VR154YBEJmq5C6A5X1DLO8b5rCBeWituqWRAKAYKgqB02KtSrYVhlmcPIU+Z5iYAw64w82VNJHg6OQmDk9sJyOLOEKSVX0clUnxtNT95AvfJmakJormFgLmObMc5u7lEHe2Mv3xt4PhqMQ0e4LWyd+EEEgBqcHP4aT+omPvHCSOyeEhSeOSxsVFkkCRwSWJg9/Dy9v9uGfol3mysohHvKe3qrdWFdZ+/7XoVAn6vVLUdmteE5OMeM2A2yGjc0Sx0FCe9tr0seb8025qBDXIXdGloOZZrEAdeu2rkFJw0blH8aPL3sy/vOd5leuJlTsqbkh1yH0xddhwjTZorfnvv/9ak6v6k0X7G3/Y7ywMxhhu/GH3A8PYaIYJISl1cbQURIefRg009drUeOWGCajAS4vqAVj6QGjv165yYQTvOeYMbpnYxC3bNtWOxCZsc2s1RAYhDR+470c8c9FBOEIRaINSnawYhoQKMUIw6yfpd4sVC0J83zeK1x/0CQJTphTmSak+frb5Vcz6ezvWm5VF+kWhRtszh9ATuKJs+99yWq1moYQhJZoPze2zc9sZV+6R9A9/Fanmo+Zdy9yeF6DNVF1JF4UnVF1dxhj7O9SMvdcXtZOu2hiYrSQfsDkntHFbBovblAeKeekzWF96tM5WUltfYCSBkVhQ1Zh12AN+v1vA1w7F0CE0kiWpRTx/8XnkSpKH9v6UXthX6Cs66i0FkDAw176OWjlStcr7owRBCpxCs/OCAN700jM5eNk8AC5+9Rl88O5NFfcQARC2DrfX+UKLq1WSSnL1ZTdwzst+TwHRT6LJ+c/05NCNP7yr+8uvNUOjfRTnyoQDyfY8IkY+oHmNA6jARK+aqL9e884II0hMGBITMHsQlIeiqqPyA8kk7zntDD51+y1M1yZzkgbRFyC8eCx2R9lZ3sWF13+KMW+E0Aim8imG0oWOck85dCrLNOU0JHoEnjH/JRwzcBD5YBYpJGtzD/ONTZ9uXyEWSW++m8OTIQcmurjm1rZnQLRJZBYfaJXw2RYkWeIWKwKRzX/k4PVfgpt+AU7q+ZTEAOX81+rrwAoLsoH/CMCLNCEx7whrGX0bsmAZpi1ASFL4eMImy0vIEBnqaGev3YPjXBQGgWRh+nQ2zd3bJDjEy3aX348rNfOSOabKKcq6epSTGFwZoI1ECYdzx07j+YvO4q13/h9UkAPbLwZdVuhyD0fDTu7U9Qi7LQ/35X5JclJXLNm1lqSx0T7e+OqzGB3Kcu7ph3HogXeybuU2nJ3T1Xr23c8Oow3b1+1i5Z3rOPK0Q/b5+X1vkP2KP+x3AkPgh8xOtjjpCEEljbDWjG+bRA4NgJus3m8gg9Wkhsn2PvVC22A2HUnLfqbmZsOfRlvNUpikYtvJKJeXHXM0b86cxobpSR7cs5PZcpHvbLifRyZrs/YZpApRnkZIzb2zD0aHXwun6cSRd3XDsNuSNSfbg3oxdKK4BUtKhPjhWv5r9SsQaEYSSzlx6Hkc2PdsHpz4Cu3CyLKyxDxnronvGuiCv22pZCBhTFOSu9p6au+4iWeSyr4Rxzu9splLOZ8EcxicyuYrIzenpuBFjPW9rKFetxtr4G69Bvwox3ZMCeFTxEU2BdtXe3LU8JtYkJ3iZ9s+SUnnkKgowNngG8lcaAPUAhyUIDKzm0o9nuOTcXwkktNGFnHhgqfz2z2P2Ta6OVITZ4HtTm3jRIx1QaqMrY2yVnsCX4EzZ6oChrbvwaXfvJmHHt3GGUctY/36PRx4whLW3bsZWY64hx+0Fmm6uPjpULN93a6OZZ5Q2s9Mzn8KtGf7JNJRrV2SamhqxwTOQIbyov74FNtcSAhUOWz7xhnAy2mb/LPmWmP5GNShbwPs7TeYRKRpNvDSI4/kr445npcfeTS3bd3CZLHAPeOb+emOh8nVQMQKoUl4AUrB7tIsu4qzKOWwa6aPvmQJp8E9KR5SMXQqe1gpVCRUUKMEMiz0prl+69/z4LiPIxIs7zuXFf0vwJMJyro1rKUk5OzsKtzWCSE6khA2S3TBCNKtADAE9ImQu4p9rPT7WeIUyKg0Bw/+LW76JQg5HJUTODILJCILRsSzOykIG+716oIhrK2aVntvqmazlMK6JpWMG825qanDcrAl2WdyytiH+OWOf2Xd7E0xVyM0ARrB1uKw5RGAK0PmJecIdFXJ5Mr6TN6vWX4hg94Q81ODTPizLftYS7+zxts0uyO1bFEKisMSVTC4c9Xzi3Zg2/QMF7/nct588Vnsnphl0dIhNj66BZ1wUKWg2tHHITQA7Ny05/ckMOxf/GG/ExgcV5HKJCjM1WxknodQqs5X3mAIta4IEY3OHPG/iyNux0VpoJIkx2b8bN83gbU0hOlquTnj85yvf52vv/SlHDoywvVb1/CFh29julyFHJNS46X8GOWPlOdT1VcZAm0T1LgqrBuBK0N7sKyK5JS1QzqKOPKkz8LEFAIqG/+Owhp+VvgUB2dOIKkGKYaT1G5q0UgZUbNt3tde4irs/JcxeIa2QoMlhZCj9A1/GSFslmpTugNT/DGEu5BIjNAVhqdaWC1oMQKIzNemnUhULWO0oR1GU2BiX964fUOWIjmSdddjF6QTxz5Ov3cI/R68ZcW3eWz2FvaUNrIh9yjr59YT5yyr7a8Q7bf4GNLw1JGDGElk2V2Yo/WRpKY+ZTpH8RkgbP9LOvmae5H2qB1JH5wWHkTS19z9q9Xc86vVqAiBJhxKEfoh7pRFRxKttHtSWrjVdiRgYLSv/f0nmESX8cdl/kxPHRoYyTbnYmhBYRCisylUISRMqZYHFBHo+kSDDWT3/N4UFQIbN5WcgMIiKhbqyx6+mxDNh04/jwMGB/nfm+/ktu2bsVZoxyZD7CvhePUCgRCQ8AKCQLJuzzCLBmfoS5QrZTRQ8p067TSArxUJZeOxTujbzJLkFNqAr8FnjlVTP2LN9E85deil3LL31y1GYljqTZCVjyfYukrdfqERVWJj0Md02eX0sffhZV9oW9cTUPghpnwvIliDEqKt9r8bpYRiznQXepaoHNvCvihKr54HKep/lz5ZRIcSn+bEb0OJIzhl7J9wZZLnLP4wE6VNrJ+9mUI4y8923MBUkKJVjgxHapw2M+ZHPOIFS05h5aNbW5apksFL+HbT6nCQ7Wh40eDM1JTt8kPKEHSimdvkiz6fvuJXSGmVgOFgEnPeoSRX7iSxcR+RxRqof/j3k8Nnf+MP+53AIITg/FecztVfvckyhUSiag6u270EzBVgOANS1L0ABjCOIEhItNd7mEfLxI+N/UMgTL2H/lShwOt+8AOee9IKvrzyzvrSUpNIR9CTUb2eU6tBsHqJ0Bj6VRFX2sOzEs0J2+KxWdLM92YijUvtfVti3dz9HNt/KqJ8F4VwL7UiVVaUrEWjDYXRGNszi+qWF2I65lQQIkP/yBVg8ui578Hc/4EZJ96ypLDaF200GoPNnNqqvtb9dVGU2gDnaWMNwq4UDGHPCyUMBWODvtv12hMhA+QpGRc/stkuzj6XFUNvJOseUCnnSI8jBs7jCECIH/FYbkOln5btxHkwWrekMSxLL4/qUrz10Av48INXYUzzmo3POmEoUZ4m7JLTThRl6ykzUOstICIZteVyMAYn35wvWwQGN1ed87D28OZI/KEU3ky+6n9Q+2wyifHbh6ELBBf81dlt7z/hpEU9kki7Mn+mpwyd88JTuOzDP6CnCDDfR/kgdEiQkFWOGVs5/ccRuNmF3JygEL1QcQ//7+F7GUmmueyhu5kt17iVhJDI+k3CQkxCgOtaJL2JQhojRMUts5oVvp7iV25ZYi+LE1NAPTaIISQ0msn8VZw8eB73TN1LHMBqLcyaI5LbfydhAcDrwGOMgVFZZCN9rOh/Pof0vQBTvhuTuxTKt1ArbljXTkXYIrC5ax+QeC1AM2JKIEgKyXCiyOEUmdUOG/0M2xt9j2tICBhQecrGoaBdNJKkGubY0fexOHuuzW4d0XDiAIYTB6CN5rvb7sVQ1b7Y+e48yRmVYcgdAuA5i07ky2uvZ9qfITSt3FLt7HhuSHqoQH6iPaqSoe0tVAAyrN6M4zpbFZd+XYhmS9LaVLNjS0HxqIWoqQLOVKHK2PbB2tA/nP39BT3vZ/xhvwt6DkPNIUctQZRKmEIRMz2Dmc1hikULoxeRAOsnnav3iQ48SZh20K60yUdC09FGJ4jg8qBnX7TGYqEx7Jqb47L77m4q6yXqhYX2W4SIfBZNxfQcu89V27MuSgBpVW4yUdeT5uGZ28kFE7gEJERAWpYZUHmyqvNps2icLu+uwInut9PdCCxKRVKkkOVHMHvOhtx/RMIC1B6s7bfoLHi0uaeERUuquYKdy+pxotKGsAhPA8LaSELAEbVWnZgs3G1alhiQReZ7oxw/76N1wkIjHTt4Vn1/BaRU5+B9T7qcPnJGzb+diLHbX7122RoDfqAItUJKg5OMTQy1q9FUrAt1/LHG7CYQnHfiCs498qCKoNC8zqLHwghiteG6U6yJVWgkIcCRmKRjEcgapF6RSrbFxBdCMP+AUS74q7Na3n9SyPT4+TM9pejQE5b3VE7tmgJjkCF4eY0sRC9G9HIZpzOzN0CQ2rcDQaPrJNh35X/uv4OZUrEuGaJyQ7x0c66EpueF5RzaCEIjWyaCjFuSwipeDkp3ijswhBTIla7m4ORO5rvTrEjs5MTURp4z8GBXJLi4jnbX00LTAsG8bjz9KuBpiT0c7xVg6u8wE6+C8k3Ubl5WIRZZf7vkvmndjmBEeiTreISVGjNCkhayju9kRcAxiWmO8ybJyBLDKtdWkEvIgEGnwLAzx8nz3smyvmfVCQu1JIXk9JEzKwHMVWq/wQgE546dhyNtf5PKJe3Yso5oBJQwSGFIKLuWBhfNoLxa1L/a9uLzU8MnmvZE1uVtLz6D/nSiMtZ2P6UMegVuqe2CoXjkgupzNee6ihtGB3rtB1+M6/2edOX7GX/YrywM49sm+OcX/BsbH2kwuwUBJgwRZR+TTiGcmgCh2QJhv4UPE4Aqa0xo0MoGmTp5TdDXeqMxRPkXIqYhgyhIqqFM3b+aLZa2bQHSl4TJep9U5TQdw9rC4OUDj7Tr17zSpubb/pV2SnjSJ6NKXfM3aAQhkhIuaUokhN+TVqOMpGwkrmg0BNv+KDolm4tbF7gohJnGzH6wq6OTiCSk9uhK7Z93hEQZO1aVeTOF/LcwkWDS+JSIDuSD2JjgIuAQEkQ/apxbOlZ6GEIW9b0G0cZVKqYBd4Sz5r2Qm/ZcVbmWkj6+VpQrkBPROouyV7zhwLeQdjKV8nNByZ6vpUFrQTmIDgVG1G7zdsyJECENQcnB1GqDAqAgEVpgIqhGYao7/uFjI3zhRc9DCMGGPRN84Zrb+OXda+qyJlUErTYbofANRlKBJMbYGIeqTGwI+1M4Bd/myFBVS4OQCjEyhJmctgndamjxoQv5t2s/QKa/DRzgk0G9bPh/RAxhf6erLv0lX/7Q99G9QAcBItSI2QImWlOObzBBSOhJTE3unVYa1PheOdv7QVUgKA81980Ac0FzILCbbp8Lp5G0kfihwFXtrL+23VKgCISkz+lihozIEYZBp0BWFlnqTuyjD3yzllsCCzsCeVjqkwF9MkAWv4ERbkcOEcNk1+a26ZWkEIyoBL7RlNyTMHIIU7wWtyVoh/1e4PgMyCk2hwnmOsCjArhymLHMhV378ewFz+WuiTsohoWK7Rlaby8CwSHZFVy08Pl110u6jKusxUmaoDL1Mc+KSbma+YeNM7Mzy9zeNEZb11svU6Y8l6g8g671PQATwldf8iJOXrKEvz7jRH710Do+9vXryRf9lh1tiXTUjYQgHEpjHIkIagT4LgtPCMGb/vWVPPdvnrGvLT5+2s/4w35jYQiDkA8895NsWrmtdYEgsBaGfAGjq8cnEei6hSYAGRqcsra48KX2G5dR4Gery12GVOBTDWAkVmHtRN9S2IDnFm+IabGwRBtbXSloLec5MoyPqzWjierHIl1nnRJK9G5G10ZgjCBvEsyEGRAJey5s1eEamjVOdGA0KAyuMHjCmplrNUeNRnHR8FGYrm1Vnm0R7Fx7L04IJ1tYI4QQJIRAyTRGd0b0EFifygSGjNBkZBmFroQ/x12wCnLBjtnLKAU7O9YJcMGCv+SZ81+BK6qamX6nyIJEknmJMStECZeTh0/ln468hOOHTqx7flnGJg8SApQyOMpgjGhYE1WSjsZJ+QgvsB83RAiD0KJiTRCIuh9k5Z5xfv7YYwAcOG+YS15+Pp6jKoJwRXEpWiczJNQYV2AcaYUGicWrd0Wdy6xxHYigjw1WuDDRpAilkKkkIplEeC7CcxlcPMr/3PUJ5i0Z6TrPTyjtZxqk/Zlu+vHd/O//+17PwkJMIso0Xvm3AaekcedC3LxueeiJSxeHFDrRG5s1GLQylIZ77590uudZqPQb0ylhNfGLG1qv+x5qNCREGYUN+s7pJNv9QRCq5yWfweCiGZOaxSpkqdIc7AQ0ojK3643AupWKXloUAtGDlcHOQrOKyRWSPrUE17+3pbDQSEkBK5wSmS6B376eYPP0V7vWN5IY5f2H/z+WpquWagE4KBYlF5GQCQSCscR8Ll76St596D/gSa+ujiXpeXZsIs7N0B45WDmaoSUzLD52J4uO3sni43YytqLWPbnah9oTxwevv4FyGOK5Ds8+8TBe+YwTbJxiiza0evzbo0nWnIN6wCh93YdfzAvffP7jbO1x0n7GH/YbC8Md197H5lXbOxcKAvA8Kzz0ZyDhgpCo2RI64aC9akbPeG2rwNAqD70B/MjFrxZNxslHsKpVpM3KtxEG6UcuTK32LbdWXwXGCMolByEMytHISIAo+g6eE9oDalUtS5/XTiNk7QIxjoMxUNQOmVbRqDUjlBhCozAIPEJ8oRgPHJ4+/EL25i6PFMrNGiKwh3LfCPqlqXNFb9yYXGTlIK9r7AMuFhZVITuiWjSN1DsLU76FxrfQYDM/ezX1GWPQaAK0bQdBsXANjegV7UgKmynaIUqKY3vQUMpQDnezfuISjhj73y71Sc6b/3LOGH0+a3MPUArzjCQWsSx9WEVDVjsXgQ7ZXdqLFJKxxDCnjBzEwuQgO4vTGAyuE+IHnSFUdSCrv4mw1gRjOltk/vOWW3j2ihUIIehLJXjTc57G5356a7OcKiyMsCpF1gZjcIqmklm7EbJFO6LiEy6C0LoeZZIQhDbQOQgxcwXwIzc9JW0ZY5jeOcklL/40//LDd+Ml65nkk0r7GQrG/krGGL71nz/r/QEpwXNBKpypPNrXhINpTI9rSwB+Epu/Zx/8q2UoyG4S5A7srHoVUpPMlEh4AUIatLHuRp0eSjgBUnRHsAMIjGJPKcOIN9cht6lgVOYYUAV2hgNMhFlmdR+Lk6+A4v9h6G6hWOxokk31W8yhSpZ7RGX/09QDjTqonvmDAIRzIGG4DUyRxrBqK07U8xtjDGGFMwmM2YvRe3prL2IjS1WZVUHnBIDrpz7FSPps+rzDO5ZbmFrEPx/5YTbnN7E1vwVXuhzZfxQZJ1vpb23/Z/xZZoM5Bt1+Mk6aFy55Op989Ds99b92HMqNuH0Ph9s1e/dy/WNree7hhwHwynNP4Ee/fZipXIGwQVjXLlQ8b0OD9A26DSpl/YMaWfB76xBWIfi1j/+YA49ayikXHNvTM08I7Wf8Yb8RGG798d2VTaUtGYORAjE6ACo6sQsB2iALPrIUEGQTICNtpxAIDe6cxm9wSxKAl4MwafDT0QE0ul6xQDZpSSzWjipCmKmvK+E4zCVs/gJRc8jWYaT1CRRKhTheiBCC2UKCVKKMp6yGqR4KrxUJNIqSViRlgK8dymECT/rUwxgYEiIgKXwcEVaOzmWj8LAa6EL5kVih3DIUTGIDzfpUrXtV617JmoN51arQLpFdNxKI/o9B4buYuf8DCjV36v4X9UkgjQ1q0xiQY2g9y76I/PYsYNAtAo2rFDJZ+CWlYCcJZ0HT3cnyNh6avIaJ0mY8leKQvjM5KHsia2bvZ0t+LdP+BEf0n4Qrrcbd1wFXbbuOa3b8htnABgCPekP8xeIL+PAxL+Gtd/8f2oAWhqTnUyy7gLU21ApvYSAxjZtVqVMkiKWNU1OsGR/nsHk2j8LfXHAKSkr+99rbKZSrbhPZZAJd8jFRzIIMGh2jaijqmFHCJrUq+NXrrmMlM4CkB+OTVogXgJAVqNX7b3yUb3z8Kv7moxd3GcETR/sbCsb+Sru3TrBxZReFUkyui0h4dYcvOVdCzpUI5vWj+xsOf7U+GbXVFEHsCSgNKHSXRIb2cVsmtUtSGg7xB6v3JIJDhoZZNzWBSpboH6mHDo8Dmf1QtXUZTbitcxs0DqTPLeEIzZq5xZzmrUU27PKe8BmWczYRWZRfYKEzTWAkMzpDIRgn2YOwMCYNqTZMK4alFtQk9RQChd0n9tWtyJIC7zTc9CsIpv4REzxcuSMQOEK1PD8oZFVoUMv2qUUhIC3ao+xV21dsm/kWh4/+S9O90PhsnL2RjbmbCUyBYe8gDht4ATq1nFUzj3HL+N0c2X8oS9OLKnO1NreR727+MQ9OrwSsG+spw8fxsiXP57SRw7lz7+q27rvtSCJwg762Y6iUE4KfrV5dERiG+9P833sv5p8vv5aHNlYt7ULAYCbF3FwBlQ9xp0OKY61jOOpIG9xt01V3pEZqIaAbYwj9kI+++gt8Y+Wn/oyS9DhpvxEYHrl1FVrr7tqGecNWWKgpF/9ltEEVfcJsfRZoJx82CQzxc04RghSEkeLJxC5IbUhghZAwNKBs0K0Ugi8+//n8fNdqvrP23mrZhgNuGCpEYHBci4SUL3mETkDSC3ozyUY9UNIezafCBAmTJKtmIjclw4DK4wpdBz4go+8QgYMhV3oYHTn1SDSiRX6DTCRsdPo5BOADKsrHEJuBrbekrVNjkIbetEhqGdJZDH3vxmTeiC7+HDPzAToJAJV6DajM65Cl30C4iW6gfsZYZG8BkWavvRY/biDvr2kSGO4a/y637PkKopL6R7J65jeERjERpLA5JjQJmeK5C1/LScPn8u+r/pf7ph6t2/DHy5N8ZcP3mOeN8f+Ovohf7FjF7eNrUcqQdAMckyYX+BVhIQhkXeyCEoIjBuezYmgBP1q5quPYAWZqEkgJIfjr80/m5Wcdy82PbGB6rsjikQGOXjafd3ziBzw2ZfMiiLDbzikw0qBypdZlbeR2XQwSVBU0Rht++qUbePU/v+j3G0hoeAABAABJREFUZ2XYz3xU91fatLpHYUFKRMKuHdHAIwzg7JnBT7qYHoMmnbJBTIXkx2S3c1aFDIbUTok/qCvtPn3xMv7pac/g5VdfQTISFhq3RGPAVSHlUNGqse7WBYEnAxakcsgIo+2+3MEs9nazyJsFoemXeZY4k03tGwML1DSzOkuKncRAphrRUoARGMZU53253b6vonsGCLuCr9ZSCIlzke6RePN+gvYfJZj5JKZ8m3VqaoGwFyshFZJApJGp50P+611bMsZQilD2krUm3HblCZktP9J0fdbfybVb/54Zf1uFR2ydu4P7J77J6vwCthZHo+cNR/UfyjtWvJ7thV18fOV/o011bjSaOybu486J+7lo4XmsyJ7DT7ffxbQ/hzZggiwzJUlZ298t5fmkvTKqxi1aY/jH41/EGx/5JbqDYlYbw3ShWHdtybxBrnj/K1m1ZTePbNyJoxSnHb6MR+/fwsc+8WMIQbuCrsGNgPBDkiu7u/g2kjEGvxRw3Tdu4aXvePY+P/+4aD/jD/uFwLD1sR1sW7sTIbuYsjzXoqy0IQFQDutckAS0h/KJqA6NpseokKR0SKdczjlwOc9asYJjFsxn6XA/311/b8fnAl+iHItk4ClNwrUoPWGXwKqYQiPxDTiRVcHXgqJYwIDcTloVKljOtX74MTloFriCWaOxeEF240/ik6jx0zRAWnZnkPG0BRg8bJCzjK1EEbMICdsiRzQPbpPF3vZORMgsQg70pEUxxiDlGCrzBlJqEaXijV2f8amKFJ7QFbSgTiRFvSC6ZuYmbtnzFduHioOX/ZaEDKo8E2EGEJR0gR9uu5SVs9u4d6qZscS0p7ybS9d/i8XJ5Zw8vJw9hRKPTEygot8nFgJdVxMKgQ5s5MWCZB8n9B3AlQ+3rzsmASwZGGi6nk54XHii1SrNzBV5/Ue+zdaNE5VAqYrDRL3nXfUmNo+KUwgQUtT7mhtjXZPmLJReRRNYazIB8jMFtqzZwcHHHsDvgwQ9aJB+Lz35M3WiG37YjEDXkly3LTRzfHiXM3nC0f6eqjNYP+3KP3pYDAJBoggZ12V5/xDPXnYoFx6wgoOHhnnm4fP57fhky3qqCh5dY/GsUThpieiIjGdz99hdKOYrms2lUUa8MUbFAy2FhfjfrghZ6uwmHW4lTk4UK5rK1Fs+sj2cDbsmWDO2xtBoJLKLMBTR3GWQPBcA6R4JepcVaTrEJMT9cPs/iPCehpQHIfVGgjbCiokEhZkIaW/WGJIEFOjMxxrjK7QJ+cW29zLr28NxLY8QAg7P7KQQuoz7Vuu/cmYtH374U/gmIDS6Je8zGK7ecQNJmWa+exRpY1g/u5ecX4qsNlb1mC+7FHyH4XSBhGPn+Fnps/n6tWswgYF2IFtYgW758FDLe4cvHePwpWMAXH31/Xz6P6+tVlNTn/A17pxGluyYtSsIMjYeaHFZMxfo1rMvBDgqnsB6BKVo/I/e8Rjw+xEY9jf+sF8IDL/61i32oEmXPTnd2Y+Q6FkRhHUapHZCgMFqN2UgQNTAq/ZApy9dws5wjivXPsqV6x5FAIctHKowpVatOU6I54VIFV8RBKHEUZpSqAi16KBFqiajL0SuSAkZotHkwzwZKSrm5VbkioAxZ7ppMgxQMB5QxqsRGqRIIOgMCxpTiIkC1yzVMgqNITAhjuhNIDK5zyKGvxr3oqdnhBAgBxBC4SWfg1QLCcMd1TqplwYC6vOeSQEDssyUrhcIGintVv1TjTHcOf4taPOLWwascXWIb6pr8YZdt2FxptqsEmOT+GzIb2GqmKTkuzhKENRoHePpVY7h4L4RLj7wJH748Cq+/vD9aF3Ni9EqjkEJwdOXLWNhX+fkaP/7g1vZun2iIkgJwEgBoanbQCujjzyMDjlwjLd/6KV8639/zb23rbWFtIHcHBTLtnythB6EmKAeLUl1jux8Ymk/81HdH6lc9Pntzx+yluUumcJRnWOmBCDz5WYdUqTkaIQjFhKCTAObbePCVEtDqTQnJhdw77ptfP7R2/k8tzOWzaCP2NbxOSHAkQYhQuvSagShtkqBUuDgeJ32ZMGAW6hYq2tdaFbOCV4xPN3xUO6gGXXqXaWEsBZke2B2KvXJJ8API/6dfAISIlYEdrE4+Heh/Y1Id7n9t6mHRe3YnhxCCEFy4H2EU29DGIFPLBiZSp80MKnrnaaGVJEgFFGytlZkyDj1QujWuduZKm9q2x9j4MDUOBNBthLfsaO0u6ex5IM8WwqPsGO2n9YLyoKdFEpZnr/4MObnD+A/f3I7AMq1XhXtKDSGi485umP74+OzfObTP6+7JgMDxqCKGm+qHnpblAxOKaCcVbznXy5mzdUP8LPLfsXMRE1OnoRXdTWnah0iCG38qrGxprKbYvmJpP2MP+wXKEmTu6aRUmB0B2wHITr7x9QW9cOK1lIIKA069Sr3SDgRQlifa0D54BZgmdc9y6wBfr1pIyu37UGWgBCMhtXj421jeLxEQDIV1CEnGaAcKsqBRYmYKVtTenMd9kLaKVc22bJ2CXSc5dowG2Y7Ts+Aykdz27gh26sF49bxTM89ktaR3c2UiLbs1lo9QUBI6J7VW33l+yp/GtEbvKYxYPR4pFl0cBNnEY/LYNDGGpl8LIxqoyewAJKifabNmHLlByp/F8Ip9pTW08kuYQwkRP1huBDSVlgAopAcwUQhjdZWmPTckHSyjKMaDtZCsLgvy2wu4JHx3dbMLEB78YGh2dXMU4oPnHNO3fUg1KzdOc7q7Xso+QGFks9Pb3qEUFvtaoyEoR1RERYq1oaavw2weeM4t922liNPPpC/fNv5vPOSF5IoFBDFcs07KaqIWEoiHFXJzTA4r5+lhy1qOz9POJkeP3+mPxjNzRYI/BBct2ce0ImEHyJK1V1AYGGB0dW1XLGkhaBl/bVlY4OdGzCwK8jzm7UbmClVD/i7c3MUS93zG9SyKikMrgpxVBBlkW+3IA1pp0TWrWaCrnVzLeqQ7eVmq2KlTQxOG/S9GCDHreyPAsc5vus4eiWDoWjKGPeU3h4o2YOqhVn1WypGWrYTBTu7nm1HCoEXwWWEQMEYpsKQca1bOiVkhY1RbDUCgcEJt9Rd3TJ3e5PVoZaEgEG3gKrAbfS+0WyZGWDHbPvfM6Z8YHjG6Kl87tq7rVBiDLIcGZDaNPeiI47guIUL667tnZ5j9abd7Nw7C8C11zxgXw9PEKQEoWNdtVU+bBIWav/2ciFXffMO6Evxwnc+h9d/8pVc9PpnQDIBStXzBqIzhaPs/UiAOP6cI3uep9+Z9jP+sF9YGEaXDFv3BSHBcawWqfbUrJT1TY0PHR2YhsEmm9LagBKESqBTNQHSxH/av1UIOjDgWg/8s049mA333B8VatNA7QoxIMugPaCkMMogUvXbjZQaz6u6lFTJ/iPQCiVKJFWIH1kcaospoUkpH1fWBzeXtcKpXGuvHZdoUsLvymtLOHgYBpKnM9j3N4xPvKpj+VhadXuwHvjlXyHEAJJ8l5IFjJ4AMYSZekfXeiE6ZOsJTPk2jHsMQekOqvo1e5TtZiuxh/uQoINPmjZVv87Q9JLYqHkJSWEFmE79CHVkLxb1zye8EMqxtcFqgh6c3MaDE7P1PqnKCg3SF5Wlaq0sgkIx4O0/+hlXXPwS5meyfP2me/nqb+5mfNb+LtmkxzMOO5B8GEASdCVGxAb7O/n2ClIBFEoB37viVmSgKy4Wyo/XfguBUgiMUghlAxZf8s7noJzeBNUnhHrZ8P+IGML+SJn+NG7CwS8FmETCahsbrFLWpNeDiTh6T5zdM/hLLYRvKulRKJSbXA9iITi1NyC/0EMKwXGHLmbd5ghlp5U5PK6jjSFkbuUQ6cOnUInefPfjd8iRmhUDe8i4PrsKWWb8Kr63wDDoFRhN5uqEDTvcaidLpj2PUOiOrFUIcIyONOyCBUP/hMx9FO0/TFerQE8UooNNvamo/PsBMIUfIPWWrkJkxUUt/0NIv4Kg9NvKPSGsK+20Dsl38OsXQEqETJlmNYzEMCSLiIZA8dB0C1KP+xDh+hmwc9ldD+yHbZBZWvT7ykcfqAOzEAjcnCFMWhS8ShUa3JLgmttWctTAGK878yTWb9vL575/M7c+uL5yJDt+xSLyu/PMLHIwbrWvqqhJ7fY79soYwz03ruSBrXsrbmkAQnUSrKL4lIRHJqk47+KndRzzE0r7GX/YLwSGC159Nld86HsghY1jkLLObaFy0AgjH+hsa82zgQghSSDLITol8bsk3THYVOgLFw7yvlecyzVr1zRU2EwCYd0slP3bYKzE7gB5B6M0wqs+7HpBx83YlQF9kalZIymHgkGvgCM1UhhUS/OvTVRm/5IsTC0Hs7Fl/YresL6NEQylz+XQ0U8jRYZM+lXM5b/V9TlJ+/wJtn9Wd+KbOTyqv2e89Zq6wz0InUMXvwFmsoc+x3VIwsJVFPLfQzdoenrVSXYrl3YPrfydcYZJqQEK4XT7+gT4DQJIn1Nkys92tDLM+a0Dfo0B1wkIwqoDqkKyMz/XXFiBVsauUwMiFMiSfWbT5BSv//5VnJxewFV31cc85AolfnHzKoRscGkSAnrJ/2GMZSKBPYAQBJhyd8ZppGRo4RAvfddFXcs+kbS/oWDsj+QlHJ754lO47nt3oENt4xRqAufr9p74t2q14caHEwOi6CNKPsZV5OdKbfcvAaiywQngOecexTsuPotn/d3/RC56DW3WHLxkmzO08SXFDX1kDm+/bzT1QcDyvomK9WBhepYxk6MYOtY6qoKWLkKN59+F6aNAtw427WWPlAIUWVaM/icDyVPR6j8o7H0xmDxPxKnJ6G3Qi+uqSWJ0DmY+0r1obTxLcD9h8TaC6f/P3nnHW1KUef9b1d0n3Tj33smJmYFhyDkKKqCgIsGICXPalV0VdQ3ra17dNbuuESNmMSAqQUFFkJwzk3O6+d6TOlW9f1T3OX3iPYOSRp75nLnndHdVV1VX11NP+j3vbnJlLB62JiFgtixQ0in8iPemCcmIACEsMqlDaq4fyuzP6qnL27QNXGVXlFQiakK7VmgNgZIUW/CIhuuBdbvGGvuCwC6DVdaVeVxNvin4zJV/xQrh2z+5AdcPaubS3Wu3mzbWZUkP0wJlC+w24BhCCHQ2HVnrOp8zIvIMef3HziPXM7Nr+j+K9jb+sFe4JM1ZMsTL3ncuKFXjS9g0kdfYBNKKN5zU/DWre+QeEylWlDOzBJ5zHA5cOY8fXX8Hv73rwc7WvrpqY2RTjYayVeNXKWV7dIvutBEWqteYWAZbqBbCQi1pFCcNPZfl3c9qbBhUBIv2JFjU91YOmPNNLNmNEIJZ/Z+hv++TSDlQd2UcMyVIR5EV7eBwTZ4LgKCCiqET/2JSWqG0Ipj6FGr6fztos4mRKOsAV3uUSn/AL/0SIXRNjzthhkJA0FK/ZdGbPpFs7DcLSGFx+KxzWprDdbRXL+tarWe/U4rGq3mZQMmWAoMQcbIeU9gSEhnMoFWVNKwSodasHhnlF3c3BkhbLrVZm5PteyTuIJ1m5BUCt+Q9tv6psNeZnPdWevnbT6c7AYfaij8IIVi8zMAF16JZVExt1Wu9wGwIOpjXxy9fxORkkbd96hIjgBO9J4rKHBFh9d1pjWEhCPMpwqLVsSuNIwNmpUs1PMQSmi7bJ2f7M8YTxMnAjp/7PlptGTpjeWmOWXwLA7lnAyCdVWSHfouVPr3p1XtKnY4H/o3o0ZdDB9CvYPiKrwM8HeC3QN1zOpgDGuPG1CV9+qVLv3TJyiB6LiED3a+uuX7fntOxRYtMrxFtcQcazqdEaz2wELArPzM0auV64MGHWyveBAKpzCc5/lII/u+aGyn7QUPuBQNq0kQgrygCZ6JHtqAKIfC8ziz7/zDay/jDXiEwALzu4+fxpv95RTXQpQUNzO5l9uJBtG0cS+NcN8qWaNvArWqoxKroqq2vJRU9n6vufJjr1mzCb4UNHJFGo6SuGXlB1fVDINC+5PSF+9PjGBPwTC47GbvRXcgLZzIe6Yrv46qewzis/3hOmvsuhtKxFlxU/reEYjzsYSLMUVDppm43AoslvefXHhOSnu7XsWDefcwe/CVd2ZeSsvYnZR9ENnUUWRwcEVlYZrAwxBRiFu9Ah4RaEWqF0toIC0SJfdyraIGh0ECeNkKIQqP0GBJdSRRUSVosxAymOIEQ3fj00RhnYWHLfvYd/GRDqaMHX8qi3KHUL97xdJsMcw3npFAN11byKmjBzkI3M+rxRawP0+wYd5lx1RIgAlF/CNUEcEzGSdqakHKYOb5LCISX8MewZGfrqdbYHUJd/kNpL2MIeyvNWTjAF37zTuYtbZ8JXGvNkc9YVWtpiNxIdL2XePvENzV0y/2bue7O9azZHGWRj4UGDTL6RKwIAXhtQ+E03SPzWNW3AJNsrH07elPuIwrdMGVMoOj5+7yeXGpfVgx+DsO8kuucJEDiYeFqSRglf6wli8HuVzQgxUl7BZmBb5KdcwdOz38inGMQ1gpk6qQ9ayt0HLyMHofw4Zkvi567X8nCoNEtILe7ZrRsCDKpo6PvSf5pvg/2XEAuXRuDkbK6OG3+R5FYJGMZ4jV/1O9iS7lOGSfA060daHdMdTNW6iy2TyLoLXUj/T3fJiqtySufsKWbRfNnFeRmuJfWiHxngl5DUTTOY80j9jL+sFe4JIHZ1O1/7MrK91Y0tnOCc96wL5f96naUlGYDk8iNriPVbpiR+D02Qs1g4sPEH4RKo1KGAVQWy3qLdlRTPZiOjrlHRBLBl08+Fytyrfrpxlv47/t+37IdzXpbDBy6HNcwpqbDYTC3A2Vx3uK3IIUkZXXz/MVfYf301Tw0+Tvy/ibQxhxplkiLUEvK2qFLlMnIqrS+T9/rSNuzm7dPCDKZE7Gd5Sg1jW0tIHT/Qmn8X4j1EvVuRZWxiQJxk8frr22NGNReEDFZPGvLxi5iNoII/AqADFBo8D81YwKCuQNfZ769km1TX2N3/tdoXKTIMqf7xSzsfStpe35DSVumeMGST3LP+O+5e/wyxr2tKA2utimEacImFoswYX4OdZwDwsQtlHx7RnhdrQElcaTFwdl9uHl0B6GlI5/pyKxWUwATzBk21hPaYNmQmAYVy1xTkgI/J3AKLUQarRFuiIyF7hgSrzuHzheblomVA1LCiWce2bLfjxYJJRBqBivkDOefoseGFiybzeCcPnZuHm25qAshKOddUmkbzw3QliSc1UXYmzWB9Uojp0tYk0VU2jFr10zrDBA0S9zW4nULchC2Rv8GBMfOWc5nT3yuwZZXAWf++X+Y8FvFd+35jqS64RccPXAM+/cYhLeh7nPJpQ5k1/TFTJSuxQ9H0JQBixj200ci0KR0jLpnYcluZve+peX9pDWI3fVqSJ+KEBksuYDyyGnocH1H7XVwOrL07Cl1mtzMFoJZ0mZcNdNgS7Lp41k49EOmi79hdPqbuIHJdZNxDmSw91/pzZ7dtN7F3SdwztKLuHfsp2zI/4VAuRTCFFvdAba7/TMrh+po2svQdOIlKHauOrR/IXfdOfkIbD1VihVEndbh91ikJwzCV6sy1ngCGSkRI9cJHX3qYxjwzN7HH/YagQFg4/1bZ7QwABy0ah7XdGeYzperWcmSZEW6Za2RgTAByU1MaHGpoG5xF4oa9FEtjJYGYYKEmu3pVEqDY96SrOPw67UPcNaKVaQtm7MWHca31vyVYXe6SW80bmiRFUFN8xSScTfHQLpY03TzXSNRhFqQsXy+u+G/mJdZxFEDp7Bv96Gs7DuTRV3HcNmmF1UcgBK9AzQFncHWRVLSYVnfG1jR/6/NBxsolP/C6NRncb07ohpSdOdeQEYMIPU4AmMhiMeoIgg0ERY61iLFra7EKFStBTEFOjSCQQuhIZnJWghBF+Bp8EUXWudNjXIR0jmSsnbpt+exYvCTLB/4GKEuYokuRAvNk6+KBMolbfVw+Kyz6U/twyWbv8RUMEHQBuQ6qeO0hPkdKJOxOWWFCFTERJqXz8ksQ9kBlBI8MDxKGK/Mlc7qSEgQCC2MsODXmpuTAxx0gVU0KGFRA9vuT7weiQxCbLf6TCrsS2mciTKEYU01OptBZFLoyTzCrzLkeKOmfR8hBOf+y7Nb3/jRok40RE8iDdLeThse2t72eWit2bRmJy9+62n86P/+iLd4EGxZXUClQPVmUT3ZytpiFPHNNTNGAJDodkkHdHVj5fdAcQ6NvEZoY6GLlhPXDlk7Osq+g4OkLIfX73sKn3/w902rb+WiWNtvKgHSybbPdSYp+Vfzm81rWdh1JAf2PY9caiXLBj/BprGPsXP6+9HVVQSkuKyPJIUi4+zP0qH/I2UvbHrvUE0zNvU5Jgs/QmsTT5WyV9KbPopUuIGZXqAUNlabPAoz990ojow1vVpPnFk6tl7PRD3SwsZiSvThhhG8qegmsA6iZD8TNxyhv/s8+rvPQ6kCIJCyubZf6ZBSOI0tUgym9+WooX9lIlzEVTv/SEmlcNtiuLeea7OyxQhKtTUtzAwQBBY7d/ktN7NKgopQcoUC6Te5a6jNtIjmVSecW1uC4lyH3M4mcWtaY+0cR5a9xndNylpzex0JASeffRRzF7e3MP7DaS/jD3uVwJDOpWYUFgCG5vXx7x84k0988FfmQHLyRd9tVxF6GpUxgT1hpm41jeFJe6gwAxGCtqONaWyZiKoO08YCUe8EplDoLm2eRLRzKoU+7772Cr573+38+Mzz6Etn+MQRL+AtN32f2h2Z2dqGWjS1InjKZne5m5ztkbN8EBqlJFIouh2PjGUk+V3uJna5m7h78m8MpoY4YeBkyv69aB3QfDabDWQmdTxPX/AFHNnafj5d/DU7xy4guVxoPKaLv6AoZ9GnNFqECAQOAkvISoZKgUAmBiy2RDRYIaJ/yUVdIoyrUp2OyNISB4kSGhUlCUgKBvW9TPZfCJue7LOxu97J2uHX4andoEYg+APDpctxrHmsnP1dcqkDsEXzRXl78W7uGL2YbcXborb3UFBZyqoEQNYy08zTNp5uzNiq6iaQFCaBn9IKrQVLe2DztGxgcDIazZ2TgJ5EaY0O4vpFNRFPACIyQYt4AjsGNUx4IH1hLAoJK1qYrjKMMAV2O4uxFLh9FmFRYZc1MrJcKAlWwUMkcPJF4otGIPp70ONTiCC6Rmt0EODYkg98919YdtCiNjd+dGhvC2rb2ymdcShOl1ueFwIyuRSvfOcZ/OGWdWwbnm7cnMTRpUKgVZ2Ot05wCNPCwHK3omhuKBvyC0E7NNxPWbpqlY5OXbV2DVeuXcP/nHEGLzzwQF629ER+s+U21uV3JatFAAU/zZSbpjvlNvWi0hoCLVBKGgtyYDOYyXNAbkeklIBtpXG2le7k1pHvsm/3KQxmFhPkf0RrhCOT63nJ4Nfozz23pfZfqQLbhl+I6z9EEhrKC9YwEqymx9oHR28h1BpbCFJU404kglSHlgVfhxSVT5xBIy1sMtiUCShpvzJeDpJumSKdiAOwsfDozPc9KwV9gz/kwclL2TT9MzQWsAlK32L1xEUs73sVBw68Cym7mpb3VJm/Df+S28YupxQaBWGX1U8xnESjmR8pJ0uhw7ZyX02OnnaktYFg70m5OF19bC5MNb1O+RbriwWDmudDllptqMbkYNDxfiWiMA12Geyixs6DFSHIiloW2lFDdaucr1ojCh5axmAtTahe6o3osJP25x2fa4/a+GjQ3sYf9iqB4dgzDkNa0iBhtKD+2b3sf9Qy/vi5KxESk7WwXoEuQAuBXQzwMhZSgShqlF0VDvp60gx3+VU4Sh3Bo6aptfhps/G0yiZhld1t4UabIo1G53TVHVRUigDw0Ngw77/uKr76rHMYdWPIOxPwasmQlBViW5pQW5QCTdauR1PSKC0IlEU5cQxt0Y/ZoNavtaPeMH/c9XP2SQ+TbgXVEbV9wt/aVlhQqsCu8ffQXMwOCdUIE2iS+i9bCbqxkUIg67VGmoo3aTxYyU1lzb0rYkT9XRUhyvgMi7iOxlUtRmYyx41IYdn7k+n5T+7f9UJCNU1lhx2RHw7z8O5XcPD8q3GsRk3Guqk/cc2Oj1Ua62uLyVADxZoOCBHlX1BGcKh0X0MxqPVnC5Sg6Dv4yopa7XPi7GXkA83d45vRgC0kc5xBHhouRC5MUV9tBX5iCVAJYSGy9lRvbhiCCUJOjFhiw2MFhnFYcRxD/YquqdECCV21xMmij11QLRfPCoRebzd6Kg+eD1pz5GmH8B9fex39HWbe/YfTXqZB2tvp5Ocfwe8uvr4lj9AaTnreYYyOFtg+mq8erCeRWOCThRN/y7Nsgi6rcm3y1Yu/atscFxq6dkI4z6KUqrZNiUZhAQzwAMB7r7qKA2fPZtXs2eSDWkFIa3ADi1BZPDg6h8PnbDdWyDovDk9ZbC7MSmSH1tgixOpq5A8axZr8NewslljZNgmcIV9Ntd3QT+QvwvUfpFHwMI2bDjfWHLKAPmnRK1JYddZbYymIrAExHKwAT4fk6yBKi9qn2JBRB3wU46pMr0iTk0aLL4SxtrZ3T7IAhdP3P6wrXM+G6Z+b+6Nq+rZ+8gc4so+Vs97cUIOnyly84QPsKK2ruVchnGi4NiN99smOsaE0SNDGDVVr2DnZw87JXvwornFuzuJps/fjgcltjHvGjW1hrp8tE3l8P9FPB8JciCzKipIuyFatXPX8QZY1mdHa7U/NdTrxt9mUiCZkZixKsuaHiChgWkmB5YYIS1TynTRQE/ckIeATP72AI05e9ai4rM1Iexl/2GuCngEG5vZxxvknI9oEo73sXWdi2RYPPbAd7evGh6UxE1JrpF990QVmQ2S7GtvVzO3rJtC6ZkIIjHtGzRyJBBCBwHIFKSvS2Noa5USWhRbNDbXmig2r2Z6fQgpjRYiRbjQC26rqkdzQIe+lIvcUs6+TaHK2R8pKOqCbm03V+1Elzrsdai1m8hucLl2G1u3zJqi6agI0k/h1ACUaX4eUCfBRBGgCFEHEHNomMmvV9Pi8aIWtIZFyPtLaByd1LD39n2fW7N8yWvw9oZqiOVB6SKAmGc7/tOGMFxb4y87/juaGmVeFMBaVmrcgJaqq/KpcWr3WDSSTbqYiLMT9undyDTvKm/n28W/g0qdfyKUnv5vVIy5hfcSx1EZoiO5RIyzUkV0kWqirZ0Wi5SoFlhQgBUNLeunrzsQNTnw0ItBkxxTpvIESFmGU4TNlo+0ZUg8JYdwFu7oQ3d2IXI63ffoVj5+wAEYhMMPnycQQ9nY653VPx7atpjxCWpKBOb2c8oKj2bhxGJ1Ad0nOdaO3iTalbfYgc+b1gRCEDri94M4SuLOMcB064PaB1yvwewReryBIg8grgqwmSGvCVGSVrty0kQRw8V13mfYnNkQCCEJJqMzuzg1T3L5rMZumZlEObEIlKIc2w+VuNuWTwoIpvaPcz3RLHrEn1Hrya62ZyH+PPcnDEAJjKmQ4rBVWAh1S1C5l7ePpAI8Qj4CS8huEhU5oSrs1uWmaD78AaxnCWoGVeznpoSshcyZrJ77btu61E98hUI188YbhX7GjtH4GwSS6szBgJLOcZD0aK2GB11qzfvcgW8ZmJfIuwK5igWs2beKkgQP4w7P/jT+d8Q5OGzqEMLCoj4nw5wSRhVejZGRZaDIYlqvJDVdGpUmDQUoR7V8EBy2eW1UOxQqkELK7ApzpAGvaRZYDhBcivBC7HCCUgiBs79qUeGbSkjzzBcdw5NMPeHyEBdjr+MNeJTAA/MtnXsnJ5xq0AcuWSMt8EHDeu87knMjPeXKsCfZ8kiLfu2YkpeBphy+nL9e4oNZkQEyWF6CFpjQeGLcaiYGMnmEea+DWnVs5amCfGv99W2q0TrIxCLRFIUgz6WWZ8jKUQxtbNpuNgmKYarPfF5RUu/MgsJiVXsFduz/E9dtexU07/oUt078hVFUtl++vA2ZKhtS4SdRAmdCgVGhdQaloXpqWi0FrYYAIFUlXkDAaSdMz9DNmzf4jKvMiRst3sGPiE4zmf4LWocn+HH1qx0kxVmz0JV47fTWBdo0WTAs8bWEJhdMuZSZgJwSTEEmXbfIT+IEg7zdRPUZ9K4Ue31j7OxZ3DfLgxDC+ahRwhACcEC002qMiEDRQCMJvcQ6QIdgl6LFTLOrt5TmH788PPvIqPvK6Mzhk+Xzmzepm2ZxZZEqa3KiqBFBXZm/0/IJZGVRqBrSRihZJceoLj2bhsuaB9o8Z6Q4/T9ETghYsm83Hf/AWcl3m3bEsiWVHSDXz+vjvn11ArjtDuSaTMw3fZ9p+pFI2L3n+kQQZ8HtEQisr8LvB76aR+0oDnmGVARvjntRGoQRGqXT9pk0AnDi0suKDrzU1m0QwCT43Tw1wy46l/G3bcm7dsZThUhe6yTZAoNlW7mt536JKdYR4PB3s5NYdr+em7a/gwdH/Iu+tqZzTlAnV7pkraUIFQsIIFCHUinLCrShJ/t+RFK6QQBtq5BIWMnMu2Tl/wuv7MhvCfh6Y+CH3j3yUMMorIYhxtWoXgVAXGS3fVlOb1orbxi6PlElxWYVANZSPSQjot6s5LAQaKRQSw1OmSmlGC93UirtVumT9vWyanmR+ro/rdm6oWK1q2pXSuHMD/C4TjN+KUhMzL3NOyqKvN8sRByzi/LOO4Tf/8wbOOWIVyzM9LBc5lpVTpKZ9ZKmavK2+5bqve4a7UOERli156b81g+x9DGkv4w97lUsSQCrt8IHv/QvnXXgmf/r5jUyOTDN38SDPfuVJzNvHbC5KJY+JmQQGIHSay1MCOOc5h3HjyA7uWL+t5pxyoFXMqkAgApCubgpJ2Yo0MDfbx7PnH8wfd9yHQmO1cReK71YKUtAyM3JrLmQRMh1m8bWNQNFleWTqMj1rQibLN1B0BZoQkAyX/saa8Ys4YcG3yNrzQKQi+FOJEOB0mAAOwCUkh90Qg1Dfg5k0B8lskLVlBS4haZOjtKb3oMj2fYpSsJVNI89D6WniV8XXIUGFi0fmUjMg+NqirFKIcAd65L9Y2vMSeiOY2jF3A2gb49ppytrCmKtTIsDVTkvTcqAEgbbI+2nyYZpQiwjatnXfNZoHpjazMb+z6QhqDcq1IJAQZXRuJRCIsI2w4BphAWDKd5kqulz859v58V/v5ItvPJvvfvDllWt/edntfPlr1zRdI+PnFPSksUZbzNlYq+u6HHT4Ek46/WA81yeV7iBD76NFe5nJ+Z+BDj1hP35428f486W389AdG7FsiyNO3p8TTj8E2zHv4Pq1u9sKBbrhS5WkFDznuYdyxKFLCP4Q1ZJcp1pZwCOH7/QYFLPMLJXETYjWt5csPYFfb7kViNHTZqpA4wY2ttVMA68riGzNKMTiQXc+jlB0SZche5p0DZSaJMRm7cS3KvVNufeyeepH7D/wHvbpex2CNKG2KWmzNU6LsK6O9jSmPYZ0Gk+3ji9oCevZARW0CfrNCbvOm0YirGVYve/lrl3vYFfxD8SwpwplvokqtGyMqxJH5gE8OPa/uMEIC7qfiy2zlMI8xXAqIWRUSQrdUD4mS2gkGktUeastFTaKXZNzKi1uRlLAj9fcyUnzlzVXDpYlctyBCMSl3WyySzPPtrIXUPYC7li9jdse2srxBy3l8/92DinH8FbPC3j1OV9kvNjCIiQEZFJo26rGsTUjrcl2Zzj3zadiO4/zFncv4w97ncAQ04pDl7Di0CVNz61fvZPAbz7hNKAdSZix0LZAlkO0JdC2wLIkSmve/2/PRTqSuzZsbyivZgCk0GisskBlohWg9fsM0amj5hp0if93yNnsKI1zz8TWaLPc/l5gEHTCiHkIdJT9WWGLZpt3TU56ZKSJhXC1A2jKQRpHBAzZ09hCoglJCx9bJLfaZjkrBtu4defbOXTgAtZPXISOLQza/JcVIRkRVmKTNBAIqB82DZQIcB6lKRo7MrmEqChA3WSchp6Br6Pt/di48wx0xc81INCCco27VnUATeCgwSJHh2ya+gUbp37G/rMuYOWsN2OJNHHGg7hs0uUyLXyUFg1BzYUwTSHMEISCCT8bQa1WU9nNRJuLwxw6sAxLiBoNknItCCN/UB27MzUGlLcjEYBTajyutMYPQt757d9y+Ydez1CvCfDbunUcIU2gaELeiu5NxBDs1q+E6yGnCyjX576/PsB9f32A7r4c53/gHM5+06mPi9l5bwtq+2ehTC7Nc19xIs99xYlNz99775amx6GOv8toexep26WAFSvm8MY3n8KXLv8blhQNiavakUAYN70OlUqWEJy4xPC5FT1z+fjh5/Ghu38+c76TqCetEntqJL126+BwgDIpylowHWbYGfax1B5lyDbocQpBXpm1qlqn4bkPj32GnL0PG6Z+zGhQm0QsTcBcu9CR4DClA9I6jfw7rAgzUV57eFpRUA4SyEhFmDqRuYNf5b7RT7KreDVg+qYBZfyPgUb+LNGVTf+0t4a7Rz7CmomLOGH+t7CtQUC3TaJnytdWGmrZ4EUQ37fopWi3uVAaHp40fkTHz13CmsnhKo/wBXIsiuHohCfswdKrovfh5gc289Vf/Y13nPcMAEoFl/HdzZAgE6Q1OpNC5JswniiAU1qSUtHjJ1+8kp988UoOe9pKLvzCK5mzcKCxzKNMext/2Otckv4e0kDQbRP0OGhbgBDmgQcay1UcdfASvvqpVzBrdjdf/vl1iJJCBLU+KTMofs3LF9Z9bzNhTluygsU9xjTc7WT49glv5NNHnseC7FDbvtgyYChbJNASo4Mwi7inbAIl6W7CDNIiqORWqC525ouvLUaDbhTd9FtdkX99I2lC8t59PDz8WlQDsoSgpC2KyqoMmQL8FtzNF7NQclHL8dFUtWutqNn5ZNSDEUwUBRTThExrl+niZYxMfzNicNXybtNor+iIgIwIqIZKR8xx/P/Ynv8jaWuAVnCn8VinZO14aaAYGteJsnISGbc739bnrDSzs92cteRArDj4UgFhNFFVFOQWNa2pNcJuftxyW09dDfhByC9vvLdybOfuyRq/4KY2ZyGidtSR58PoJNqvHaP8ZJGvvfcn/OJ/r2zRkkeZ9jKT81PUnmoeZRxUBmBJct1p3vTmU/h/n3wRl972AH++dx1hqB/R8+9U0a605tVHHFH5ffr8Q/nF0y/kvKXHzbBGaHozLplUs3Vc4xCwMDsxUytr/m4KBhkJuhD2MUwpp023JfeMfJDR8g3Ur4cuFluDHrw21o2YHID0c9peM1NSu5lIaxhTmoeCNA8Eae7wMtydv4MJdz3b85fRGH/Rfo0XNZwHSsFObt75NmwcMjLd0g24OtUSew3dLhYRbGuGzQW6khz2VSuPrAWBzBvFmOhM8sTv2vNprrXml9feQ7FsXL/K5Q5jTWSLZJ4R71B1Avq9N63lwrM/z8TIDMLIo0F7GX/4pxMYPC9g0+qdNQFiMamMhY7dkOoCyKQQbNw4zMe++wcu+PQv+MMND2G5kCqAkwcRmqcuqjGkTUmjIWHeE5E7SM3ESfx+yX6H1JR3pMXp8w/mq8e8oWVOAoGmP12u/EqeAQjMDrAGtlhrTVb6LRcsEHjaYcwPCfVI6w6i6ZEuWtfrQqr1uFjG/5/YPaeRfA3FcIRSuKHpZrV6t9ZCQ2zBqL3eHAniDBNaVzbScX1Tpd8wWfwNycBmpWNI0/YLaLpBkJKsm/wuo15rjSWY6WZFJqe4O+N+lzFQayiGTs29bTnDRAMy0uHQWcsB+MjRZ7Cqf445EcpqWV0VP2Ie3TDesjHZIJiEbe1GQynN1397I+/4wq+45YHNbNsxEXW2ycWxwKI0yrFr3j9pSWZnpTHtt9DWXvzJ3zA9MbOb4T+aZgpo60TD9BQ9sWjLut24TVxWG4SFuu+Fks9to7s5+7++z2d+dS3DE/nawnswD2bIv1ihxX19HDRnTs2xRbkB3nPQWbxo6ZFN+RxALuWRcVq58gi0iDTaiTa3N5SYF3hTMJvNpTU0ZryvkkbhqUlaLQQKwViYbXczbGBA2kj3N22vc/7OLY4Q0NUQmKi5a/cFDdfGrqbt6qrvsSYk769nY/6P+Lrc1msgGWMfW7Qng9bjNLs73/JcTGctNYnMVvQN8ukTz0RioM1FqYqM1Al5/VG7Oi5hqOT6nPXeb3PRZTeyddvYzAWEgIwDuXTNveYtHWrZABUqxoenuPSiP+9h6/5+2tv4wyN6m77yla+wzz77kMlkOO6447jllls6KvfTn/7UJFg699xHctu/mwrTZd79ym/w5Q9fio5gGWPSQJhpvciFWrMlLLF55zgQ4dJH54QCpwBojZxBSBYI+tJpVg4OVV1AXAE+tYKDAgLwwuaqpnnZWbzvwBcB9cnMNGkrmMFlSTPmd0XWBzMMMjKHCmH8Xz1l4SoLT1mVbMJmeWu3iGjSwsMhbLvwAZSxKgtschLGCE/xk3G1autqEvuoxgHS8XcARCYazuo/MMJCs3c0DmRWGlQdulOnLkBNxFAm3PvwVWHGBTjuZohgxOsmH6V7DbWgPjBRCEhbrfJkGHrFPqeSkkZTlLNT/PtBJ3Pu0oPJyXS1pUmrgog2KnWWBseS9FmpWoE2+bdlh8yzuOn+Tbzts79g3dgMDEFrRKgRloXOpFCZFKIrzbs+8UKGN400aI6S5PsB1//m9hka9CjRXqI9+kfSk5VH/OnSO3jLGZ9h3Q1ro4WoyQNssR65gxZ/WL2eQKk2YAozk0Zz1gH7Vzf7GsMf4n1rhxW/+6Bns2/P7CaKJUUu1Z5RBdrmj7tXsaPci68kvpK4yq6sz6XQYTLIMhlkKCmnVjs9w8Z5po01CKZ1e9CNnhYJMevJEoJ0y22OoJMtUBKmPP54aoT61V5X6pyJajsmsBku3dpBOVNWa4Owt608q8GFNUnz+6baKJY0PSmbl6w4tHLkhHlLuPDIEzlyzpw9EhYA9ps9ZOCB96iUocl8iYsuu4n3fPtytNNBDVKie7vQc2ehhvo4+PRDOfSEfbGs1mOhQs2VP73xEbTuH0B7EX/YYwfxn/3sZ1x44YV8/etf57jjjuOLX/wiZ5xxBg8//DBz6jQdSdq4cSPvfve7Ofnkk/+uBv899OWPXsq6B03cgXADtBBgR5myLNE6GA0IstJoWpsG0EZVeKCFSV7VMvBZwNdefi6ho3npr35qstUijJuIB3GW4bj8gu7WeQ7OXHgMi7tm85ONf+W64fsx2Yk1GXsm055xTfKVRRAtvI4IooRhVsVPvtJ3bWHpkJQICIUg1KKp76uFwomEjplIV1YXgSOq+aRrUavN95JWZNtk8vS1ipirQGjjTVpWClfn6ZYZJG6i/rrFWgj8UFHUMhKGqsxMIBAi/h6/3e0710qgGkg1j6eJSWtTdqfbG2XxnHkQ05bJT+qFjcxzRfdC7h8p8Px1X8cLA3YVikyXfbQWqHICesXSCJUY21ho0ETzSfDOE0/k+1fcjlBmXmmBCYSzMAhK0LjwRS+FCKn4cHs9FtINkK1jFBExPn5k/tJuyBc+8IsZx8KyJGO7Jme87h9OnSz6TzKm8PfSk5VHbFqzk8+++yfGiqVC7OFpgjk91Cdja0ZaQHF2B5vYmZcQjli2kM+e8zy2XZLnjg3bkKUEX4hIZYC0YGFva0jh3lSWH538Bn684RZ+sO5GRtwCAsilPaym6Hm1NBnkuGFs38rvpw2uZShVYDLM1UxpN3TIk6bfKuJIRVnbdHWsYmlFghCBXffyWECvkKT2IF7JERKpwUcTJOoTgJRLCNXGlmW1hrKuJgqrqs6M+qxaU8w5Wj/g6tah0c6QkTaOyODr9kkFS4HNDq+PsAPo85Qdctiibdy3fT5u4CTcZQU5J+SV+x/OW2/4CZN+iYLvsbNskrmpSQeIlEozyXZAl+Pwqv0O5nO3/KX9hcl66oZAac205+EsytKzoT0Ue6IQsuRy75V3sWWoh7BN/i2AqdG82W89lrFuexl/2GMLw+c//3ne9KY38brXvY4DDzyQr3/96+RyOb7zne+0LBOGIa985Sv56Ec/yvLly/+uBj8SKkyV+N0PruevV9xT0VIKQJZ9RNmjEvXahoLMzJNMekaj4RRgTq4xk+PC/l5+9paXc9TShew3awAHq2KOEiQR7o3VYnFPH0fOW9D2nof278OnDn81vz75/azo6SXjBDVyT6wRCpUwaDtKRIqz2v4E2oqEhaqffHKJDJH42kYCU6o5hIctwpZKuXqKF6/+3EuZM3ARXV1vJNDNEblLWlFQYVNhDcyjK6iQceUzpnwmVYCrjTouIEuIsUTUCws6sihM1QgLVP5qqu5BUoDV5u2P3Z+8uoXc3EPS7wwhZnjd8mEWr4mwYJAwGjVFQkDWDuhJuaStACmMe9W+Xcu4fts0v916H6snd7N+apxpz6s8TuEoEhMPLZvkshAmr8LygVm86uDDOXTRPOwIplbqCBkpriaS8kT0Mb/NgNQAsGhNkGs/BgZ320d4AdIPQWmCDoJGw1AxMLdvxuv+0bS3mZz/EfRk4xFaax6+fxtf+Wite4ss+TjbJpBTZQjCtjzC75KVpJ7tKN6rZBybXB26lyUFLzrxYL777y9FCFiR68cqJXhC4p9VFuBqXnboobSjLifNm1aezF+f+x98+IhnMq9vmv5MvULJIPNIoSqfZp2d9LNMVIQFUfPRCCbCLpQWTKsMLTVmHZIgyikgsszp/yLzBr7BgDWHQWGRaqM8akaxtUdHdtr4I9AotZF20N9CwJhKUe81X8sdk0qlGQTLJuc1ITtLd3Jo/ykteUTsPuxpuyNhIaautMex+2ziwPnbWdA/wYL+SU5YUmRer8331t7GnWNbWDc9UhEWAEiFiFx763WSPvTsUzhseZN9SswuY54Qr4W6+rv+cq/XJmxnZVAado8jdo8jdo3BdBEBTI7lZ1RU9g52P+bAGHsbf9gjC4Pnedx+++28//3vrxyTUvKsZz2LG29sbe752Mc+xpw5c3jDG97Adddd98hbu4eklOJHn7ucX3z1arxQQ3ftJj4WnnUq0mPE6C3NJlUywK0JVbSsvuZNpx/Dv517Etsmprh94zaCMOS45UtYOKuXe3fs5F9+eRnXrFkHgIVEO5gkbhUvEfPlaQuXdjzBZ2f6ueiY/+DPu+/kV1v/yLC3IxIWRMIEbP4qLZEoFCLaBBsKtNWmi4IAY5oeDfpYml3FlHcHcRZkom9CGM2QpWewNGjNlOqiWLqPLcVbSckMaeWQroNvjclF4+qQeX2fI+UsAzGA617L2OSHm6ZQi25CWY3Smz6C0L+7RlEYb/BHQ6jVHVX7SzRqRH3JiIBChByVvD6uN6/STeqBsna4Zfh/OHbwDdw0+iNEAi8jFkhcbTMdZnBkiJdIxAam7i7bYzpoEkiAEVLnZrt46aLnE4RZ3nvbbwFBoBRhINEqjlmIkJkchXCUsTQoAbaGUKDDWpSkedlu3n7k8eQch1eecDjXrdlYYQJxAh/tGQGiThQzzKE+5i5KYtWO7FLQuIBaFmRS4HoteZjj2Jx87tHtK3806FHUIH3lK1/hM5/5DDt37uSwww7jy1/+Mscee+yM5X7605/y8pe/nHPOOYdLL730kd38EdKTjUdsXLubT3/416xbvRMxnq9klq1QoFAZG5VxQOmWzL2DGF1DvmZetovvvu9lzJnVwy1rtrBrYpqh3hwnrtqHUCm+9bdb+eHNd7F72sRRtHIPSXmSZ+6zT4c3hvOWnsIxg/vzm63X8/sdtxJqs2tLWotj9DpL6Ejmr97bWD5NixrJWECmwgy20HjW4aSDvyCEqtPE6+jKdgOm6cYlr1MU1Eo2jH4TW3YxqEsssCSpNi+UdI4l0/suIAdCMDX+dvxgTWW9bWy1hW0fgB88CNQmyhQCJkOLCWXQhppzCKK+xJAWEYJdnVWqmnizrqfR2jnmbWaOtZah9GJG3C017a0ChAhyVuy73PnGVwgY6i5yztLDOWnoabznlmvYWRpvOYoio5ALyqhJGzWciSZF43Up2+LUlcs4adlS5nZ3s2rpHFZv3o2KFUfJ/ibclSpGC504kGhsmLWw/CZmaK2h7CGbQaoqjW7jISKl4Dkvb46I9qjSP7OFYWRkhDAMmTt3bs3xuXPnsnPnzqZlrr/+er797W9z0UUXdXwf13WZmpqq+TwS+vbHL+XHn78Cr+zT7AXTQqCiBD5CCKSnWgoF9WhIDXVFf2UA37v8Vu5dv4OF/b2cffgBvPCog1k4q5fr1m/kpT/4GX9euz7xrgiEj9Ek1VV/184de9TftJXiOfOP4wtHvIuslUbrJKJzrfZcIdhRrJqzbTFz3IExE1v4WnL79ASzu95AX2oVtugiY80hZZnAIy+SQ1sNl6ct8mTwtaIUbMALd5L3NzGqUkzMkDDOyZyEnT4BO7U/Sva1ERYSrc68lHT3u9CyrxKnUNAwHELQgSYsDt+WwuSSCLWoaWOIYCpMJxhqte9lbTMZZvCURdFfywsXf4ZFucMTZSWTYY5hvxcQpGTco9pByFo+mUqAjK75O5SexftWvYX5mQV8a/UNFeuNCgVa1T53qE5xmQ4i81NUl6XRtkI7CuHC8HiBd/z+Cl77i19y9NIFHDJ/btWqIIzQEOagXo6pWMssURu8GXHHhscbDZblKnQuRZh1GmEh+wz8Yqss7q/54Avo7muTWehRIqE6++wpxW49H/7wh7njjjs47LDDOOOMM9i9u32iq8fbreex4BH/KP6wc9s4F77pu2xYt6vlNcFQFyoXgT6L1vzf8jrj+k4JpkeL/M93r8a2JCeuWsoLjj+Ykw9cTqg0b/7hpXzhmhsqwkI7CpXmlg1bO7pvTMu7F/DOVS/l1fucbrT4sctlQh9WWR8q5kND/akSM62VnrYpKoc7pjayi+cyr/tFpOQAtuim2zHuTVVVTLMx0ygtKGmHbUEvE/4OyuFu8v4GNgVpbnV7yKtW2xYLy15s+EP6MOzUoQRqoqWwYChE6Tw9s75FKvP8SjLOspbsDFJsnyH4GgSSBM/SmlCJGvhTk0PBHEta9uMyJZ1Go9lVuoEXLHwbJw69hKzVU3ONisQRS2h6rVKLsavWWwUzMX9fsOBcThh4DjfvHmfd9EgkLLboUfz8+wLo9VGWRqUUylEmyScaZWlKjs8Vm9bw9Iu/xTUb1vHWc040kMCJqmPuWi9oV0ah2TRQNG4eIt4hhDS8INVE85SMCk+QtCQDc/s4903PbNnnR4seLf7weNGjmodhenqa888/n4suuoihofYwoEn61Kc+xUc/+tG/697D28b59Tf+VD0QBA1Sv0pH3Y+OSS96crEW2hJGcyQldknhZVoPlwBiV3JLCn5yzZ0csnx+5bwbBLzzsssJVWPArUCgtUZ6ApWunh0rGazhQCmu37GRW3dv4e6xrWwtTmJLydPnL+f8fY9iWe9gTX1ddpb37P9GPnTf19qMkEE9mvTS9KXcllqseopbF2iP60ev5tXL/5c5mWUAbJn8PmvGP4lGUMImTVhjwTC5HazIiFOvJTHXFbVDSiu6mqANpVNH4tjVWAAhetoahTwtKGnJ2PiHEr2Wkam7c8E+rxzyOk0MT2vq0UitqObjNBYYK1qIfW0xHnSTr4CpC+6evIXJsJe5uRM4bvCNfHndhwl0WDMOUmhylkcxTFXGDKpWBuVL/IQ68+ShY9kwqXjF9d+qHEulwPMsVBt1vojdkwTopHlYYFC8dDWg/MYtW3j1xb/kwa27qi1NjLc2ylesamJU4saHtskEXSmmtbFOJBGWNFjlAMuPGmFJVC6FLHjVa9IpcssXMNvRbHqomv+kd6CL899/Lme98ZSWfX1U6VHSICXdegC+/vWv8/vf/57vfOc7vO9972taJunWc9111zExMbHnN36M6ZHwiH8EfwD42fevp1RyURHCHY6Ndv2q5lgKwt5s7U468v2vaEjjKVvWWGVFmG5hidbabA5C817ddO8mNu8YZ8n8WZVLfnLr3dy8YcseTZfxkvF535af4s9b13P7rq08ML6bgu+xsLuPl608lDP3WUXKqo2veMXSU/nL7jvYXNzZ0qAeh/YZbH7RNkdAVKrm14biw2TtE3nJ0usBUNrjz5ufTqCmkOjE8CUXEygrO6Etrt1NBQju9bo5Lj3VJOQwxMm9uFqVViBmofWupn0MNYwrh+lgJ3r4LVGZDHGeZXP3mRRKGk2ZvMqgKtzODF7sxqQinbqFxhYhMnKRCrDwtF1jbfnLjv9gdtdLePbctzDsbuZvI7+k3l10KFVAeZJ8mGnYV4+7WQIl6XFchICU6OaEwVP53D0PMuLGoBAVHX/bvmkNcpZH6FX3PdrR1eB7EeXcCUP+9bLfsHhNhjjWpmmtdSxfJA5XKNSkxsvGqly5wEhxwo8iBIWArhxQNHDbiQYfduJKHrhtA75b3T8c/rSVvOOzr6B/sHU86KNGe5mFYY8EhqGhISzLYteuWo3Mrl27mDdvXsP169atY+PGjZx11lmVYypK527bNg8//DArVqxoKPf+97+fCy+8sPJ7amqKxYsX70lT+cult1UWPcB88X1wnMqCrm1Z/S4BSyKVESo0IJV5VcOMxvJAlhWqGUOI7iEDUFITKrj14VoYzT+sXstk2W3ZXoGAQJsMZsLAuC7u7ePqLWv4wE1XMexOI6yqNghgc36cH625gy+deC7PWbyqpr6UnCGDXNTwca+LPgc8BF20bl9MVV9OjUZx9Y4vMys9iFI+fvAwXdo43CAkZSRCmyU3DurViCgpT6uFSpNXDjkRJIbZeJ0O9v0/AMaKf2DH5NfJe3cCGSwUORGSjcDLPSSeFvhNDGhmoRbYnQRaxGW0iPN3JuoRUXC4IYFhDNOqm7JyKDbBIdXA+ulruH/yOnwseuy5jPuTDdfZUpPWAWNeF3Y0Vr6S+NoCIXAiR1AvlFyyYQNlVStcCSDlKDy3vRCoNQhLQbluGVAYxItYu6U0D2zY1Zq1CJOwUHp1TzWxwYpfRBkYkzNKI3xFZsw3G6n6coB2LESUYFFaggOPXcHHv3I+q+/cyM6Nw3T15Tjs5FU4qccv/+SeJOap14Sn02nS6cZ58mRz60nSY8Ej/hH8IQwVV19+T1VYAHTGQbh+ZV+jMk4jEEbMVES06Yr3XhK6doVMLbaj48lNsLmHU6yd53et3lojMPzw5rv2qA8AA10ZLvjLZfxuw0MN57bnp7l55xZ+9NBdXHz6S8g5VZ5gS4v+VI4tTfJfJbsK0C1hadcEmQoqW6fKJcX9U9czf4ePYJJAe0wGIV0RrLgZutodVUGnIhCMVvcQeAhGlcPsmgApiZV+BlbqRPxwhB1TX2M4/1OULgAOORS9MsSJ2GxRSca1HcWu1QolMuGOVQ01b99nq+J4VbXo1gKLC0LiGLfWdXnhMOsnL+Kv3ixSItcgLIB5LnPT02wf68HHxhYaX0mmvCy+Mjxp3DXu10P2EN8auwHbUvTljGLHCyzKXtyO1s9TCBCOjnxOE9fUsVUNOMMwlW8esJ0UT+qp5rjWZHeUkL5C+5G3R+I1q2kYQDZTKzAAr/vAOSxcNpt7blxD4IXse8hiFiyb3eLujz79UyduS6VSHHXUUVxzzTWVY0oprrnmGk444YSG61etWsW9997LXXfdVfmcffbZnHLKKdx1110tF/l0Ok1vb2/NZ09pYmQaUQ+zVSxBqKo2u3hjIoD4WhFrkKOf2iRtE1qTngxx8qrWXKarn4oFVzdK2KuHR7DlDAGfiIr0rrTmqEXzedOff8nushEW6sMoQq0JteLtN1zKlvxETV2tAoTr72jLkIKCYghuIqFaI5nA25qAahRbSw+wZupadhSuZsrbwFSYqYoUGpSWhEgCJAEWVtMlsLZNQV2ImZCDdPX+J6nUkWyb/Aprht9C3ru7Og4IprXNmHLYpdKMqhSeli36Iipl4l60IyPodPqaRDkTWqb7NvdMS+OH6obDgG5op9HsKZSGQpCmGKbw6xiNUrBlqr9BWIB4jnS4CsUWDKpB90ILtFMNhJZ+B4uaMC5KTeuPXY7KiR5IgXYksl5YSBZ1qgKZCjVnv/x4hBDsf+QynvHCYzn6tIMfV2EBqHn/236AxYsX09fXV/l86lOfalrlY+X6+WjQY8Ej/hH8wXMDPLfu3bEtdJexCGpos2dNWByEiIQKgV3W9GwOsIu6xidEBpCarrW0RRVU2xOEbBmf7FjZKID5fT18dc1N/L6JsABVRLg7hrfz8Vv+1HB+yu8kb4nmyIEtzMuM0klQb7Py905ezZbCn9lWvIGyFhRUuuo2k/gUVRpPp9qBFULUgklVXRs0ktA5Aav3Q/jhTu7feRa7pr8XCQumRBHJLuWwI3TYHKYZ0aloXa+9WW2CNV1jIW/Xnj0dlZZ1CchIny7p4ulS1L9G8kLJvMw0I6UedhZ7GS13V4SFmJSCYX8E21IJNzNI2yE9WQ/R8WyrbyQNHXbGZuLqbY5H70p62KVrc6FyXGiNUC2sFQBSgmPWf2lJVhyymP0PX0p3X44Tn3MYTz/7yMdVWAD2iD/sKT0e0NV7zG0vvPBCXvOa13D00Udz7LHH8sUvfpFCoVAxnb/61a9m4cKFfOpTnyKTyXDwwQfXlO/v7wdoOP6PpqH5/agkRCOYBzM1DekUpFMIP0RZ0thdW0HniSjbswIscIoKZQnCBGpS0nIGgILDVtSiBmRsp2WCsSTJwLhBzc7luHr7arNEt4HAM/NN8+O1d/Dew0+tHN+nqz26UkzdjhfVoxn3u5idmkY2BCyb+6ci6NV4sx279kBAKrIIFHWanPaQuprmXuuqiddsTauB0q0o2/02duV/QSmcxqUMY18gNf4dHIajK5LlDfJTOQLhszG70HYB3Em9UbPRDbSkoFO4yqLityNaswYhwA1tYwVowz6EMONmrDCKrPQq2ZxDBVN+lnyQrsHXrg/WBhgtZ2mVGi++j5QhSrU2qQsByq9N0JMUGkQYCQttYFDbkjZ5SaTXPMmbSGh3KzuIOOg02jVIKVBKc84rjueYk/Z7hA15FKmTBT86v2XLlprNbTPrwiOhR+r6+WjRk4FHpDMO2VyKUtGrVQClbbSdQ5R9pBe25gstyHE11vaA0hwHLXRbDeMRqxZWvttSYklRgSCeiTRw0JI5/G7XQzPuVpXW/GLtfbz36GfQn6765A+l+9hUbB2/AdBluUjcZAguM2mmG+5fWW1NmbJOUdYOKRFE4BuyonnvbBNrY2fPYUqvIe/dRVFrwuBGKD0LW84mUKPQEN1mlDl+pR3M2H6BgQoPqIJGtCJH+jUxbI3U2T3BTLleq0RBJZRv0X8jbhfrpmcz5jWiMDa0X9T+TR6XaDKpgJLX2hNBa9C+pDGgrMm9OsxM3uwm6ZEy2V1l7HywZ4KX1iAk0pJ092Z571de+wgb8SjSHvCHPaHHC7p6j2FVzzvvPD772c/yoQ99iMMPP5y77rqLK6+8sqIN27x5Mzt27Fmw7qNBp7zwGPOiqIRFIf6UXUShyNEHRzEGMyAgaahFz0iYVJN66mTikuMOqMXdf/bKFZEvaJubQAVZZrRYYsO2aYNzL9vzrFBrfrD2di5ecyvTvnEr6nG6SIn2kDQShYUyQVpaEGiL3W4v+TCdyOqpsVFk8HGVTV6lKUWfvErjKhu7ZnEWTKqccdnREhX5/cdoELa1kHbCggZS1gIenvwhE2EZl4RmXY821caXtUUJBxcHDwdVN1ihFrgRbGwzLOxYm6Qxm/adQQ/rg0F2hT1M6BwTKkdJpwlbQqFIsvZ+lFlIqNsZYKukNAYNSYMlAoqBxc5yH1NBpmkynsr0Bab9FBNujnbMRwjIZJoH+1fqC0D4TfoUgjMlsFwRuQt1tozXBG9FjU3lNVaLjNCpYlRAaQOj6oWIQCECZb77IctWzuMDn34pb/2P5z3mkHid0J7A5tVrxVsJDH+PW49t29i2zcUXX8xll12GbdusW7fuH97vdvRk4BFSCp5zzhHN11VLorvS6N4cRx25T+eVRu+ntswzlwn04npKOzaL51bdkaQUnLb/ihm16zEJ4Op712GPd8bCfaV4258v487havzPCYMzC2T75EYTWvf4syc7HJMbp6qeqR73tENZp/F0FUpaI7FE+82wJsD17mKHey/TutZaHKjdNAoLlVsiRKwl7WSgjUIsRXIj27zvDoou0S4YWTAnczStVVSJK4WxMMetjEtsLfVx6+hSxrzOwB3abWuEMHkamuKbJq4J8zPA2kUUZGMO2pyantGa9M4SvevyOHsqLEQNtLMpzn79M/i/q9/P4v0a18bHmx4tWNXHC7r6EWV6vuCCC9i0aROu63LzzTdz3HHHVc795S9/4Xvf+17Lst/73vceE6i/nv4cs+f3t75AKd7w3jN57Zuf0VmFETNQElQTnGABKCs6n4Kf3XAPn/jp1dy7cQdaa1bOHmLfwYHqm1MveUargsBodlWMClDszAhUCjw+cddVnHnVN9hSGAfgnIWn1MhJla5E6gpHBoz7OSb8HONejgnPZO2cDHJsd/vZ5XaTwccRISWdIqBeey7wtM140IVSJlhtIsixw5/FBm8O+cj0DMa/fyrMstsrNqAM1Y9jKRxNDFKVJLWWD62hhN1gWo6RKJQWTIYZxlSOKZVlUmUZUV0UIiQmDQghogBoQVnZ7FB9TOkM9SKhQuDqTCLrtWkRQMZeyu1TRYY9l4mw/UY+pjG/mzG/i2G/m1KYYjrIEOjWJnKAQugw7acZLnZ1dA/L0shGPwgz9gqYSjXWo8EpiOpcRIAELduwOY3h0XXpTHIlUYOYEZOUgvmDPVgFA0QgvKAqMCdaJIVgYrrMkSfu+4QUFoBHxeT8WLl+Ppr0ZOARqw5aZJK0taAjj1vOB99/NrlcJ/FghgQQZJskcEu4KAlfo4oB7//0b/jFFXdQKBolz2tOOKKiqJlp6sTH7SkrVpvPSDfu2MwLfvdDvnjn3wA4Y/5xyFiZ08AfYH5mgoF0rV96/H7GeQw6UZ8Oh72U2mrfq2TpgOmgHj2hlgQaHa6hpWDQEXX+UkohcAiQtI69EwLSMqS7wRtAILDoshexu3xHlE+n/f21JuIFVfKUxf3jsddAZ2vhTA4Nxpuu8aK4XDDloEqd7T/Ks9srlpo4LCB8Tc+2YiPyXfRzaF4fYgY37kBazNtvAbMXzGp73eNGjwJ/iGPcnvWsZ1WO7WmM2yOlx9kB+NGjG664m12bR1ue11rz4K3refmrTuZHP7wB32+9+AggtAVYgjCVcF+Kd51SEEpNmK3qA9ZsHWHd9hF+cf29nHnsAZz9tAPZuGvM1JeQKmONFFGVyoolE7OZJRDoELDaWRlMhRrYVZriZX/6HvN7UuwqTxLKDBk7JG0FWBjIOi+UdKX8KGi3WmmoJdN+mm7bJW2F+Nph2O9hllOswLo1G52yTjOuuo0pJGF23uwNIYSmR5ZIiRCFwff2g17m2VPIaGVKxhEWlY0j22vG43EIKqhFtdf6WKQJGFfZJu0WFLVDoAXd0sMSPRRCF19DqC2KupWbiKlnMPc8ZqeXk/fXY8kcc3PP4qeb/zcy2hvm62izc/awCbVEoklLHymMwWsqzFBWtqlRCDxl4YZNNu/xnaPxcYSiEMSbF93y+tpyLYTbCScSCurO+SBUY5kwZWIQGu4azWPpAcL4a0sXrAAjaFjUmKstS/LsE1fx7+c/g0995FLuvGldpU31pLVmdHiKP1x2Fy98ZeNG+YlAncDiPRLYvCeDW8+TmbTW/OCbf64Fxqij9Q/vpLs7zYvOPYof/Lg1I05oRSLBOkYNiF54IYwVLdCVOAaN5q+3rOGvt6zhop/8jU+892x+eP+95nWqYFFiFFWxgJ+keKnVGntKEgzOMMl0pIQS8MW7/sYtY+vZ5o0y6vYjhEdPxiPjBAg0bmAzPzPJvt2t+SdU39l22Y2j7T27/V6WpkdrrksiwJlNsmBnMIuSTrHQGWPQLtSw2vjaLG6kQHgEqtmoDqHbt7t6T03aXsGUv6WtBj2mlChx3JxPMly+j1C59KVXoLXFjcPfQOs0WctDCoOuZ5RzWTSCHqtMt2UER09b7PL68LXEjhAhdhT72vDgv5calVTBpE2Y71xQ9nugNKTJjsQoSbFXALUeTdFclgosyyK/3ywym6awi1W/13mLBnjDu59Lb3+O973+2zM+5h9+5Wqee96xpB7veLYmtCf8oVNQjHYxbg891DyeKY5xu+uuuzpuezN64o3wP4j+8OMbKv7PTUnDL75yNcc97whCv7WvasUg4Ai0FMa9oqgJsgodX6808T5TRP9rDK8AuPTeB/nlmgfRTnWdT5KMk4hKs1mrAK/GfzwLkW0u0Gg0UlY17wrYXS4wocbpTnvYQuKGEjcBsdmTKlfaWUtmEc4HaVLSpGcfC7pIyRC7mao40YqpMEu3ZWAwY5hRMKvuRNhNj8yTs0wffBy2BbPolmW6hItA42kbL7QIhUWfLjUVjgIkqYRWqRkKkhkDSV6n2go5Hg6TSiK1T0/qeMru7ZRjya2VsELI9sK1HDf3v5DCZszdzmXbPst0mE+UkeTDNEWVQid9XwPzMCeDbAJdKbIi0RKIroakiJbixEaineLd9w26VANgiwBhgW4SmyCDugW/cgLCjIlpIIx6Gwu2AaycO8jUrgJTk1XYlVBpsAVEQvAbzzmeF59xBLN6jUn9Y//9Es5//heZHG8dfKmBa6645wkrMHSoZN1jOu+88xgeHuZDH/oQO3fu5PDDD29w65EzaN+eota05sHtbN3UfkM8MV7g6t/dxehoB8HBseCsIDOu8HOgUjJaUSPFCM1Xl3Hpcv4lvzLvZrw0iLq/VqKCWNEtzAWyFMWENatcgSxIRFkaMAM0OqW5KdyGMxBr8h1GC9XNYc52OXh+8+D6eups2y5wdYpS6JCRASECT9kVMAmJJiUChoNuXG0UJ9v8ASbCLgataTLSR2mJqy1m2aWI7z4yYSEmiU64MrW4RoDAojd9MJP+5o5rVmonx8z5IFprrh2+it9t+wGuXgqAQDFkT+Nqm/GwO9EPQZcskxIhU2GW+EFKFDnLI++nOhzrKrXjDVqDilyRm5ZNRb7RST/rtjeD/BIIcprsLrArgIsaSwkyaZsFc/vZsGmkKl8rjcpZ+AfMwnFD5vd08dG3P59Vhy6uWJRf+47T+e7nr2p76/xUmbtvWscxT9+/g4Y+xrQH/KHeEvzhD3+Yj3zkI393E/6RMW57rcAwvH28tbAQ0c7NI5z//M+jUvFOPqHGoPqcw5wF0iz+QVoYrO0EEpLGJOQRGsIawSEyQPjGxy+mWn139a+OSsjQuDdVKvAE2hEmIy/JhcAIC42kCQMLmWl+LmMFbRYT05JyaJOxApQWUc6Eulq0EQzCKKDZxaaoUvTbxZrMoWaJhEnVgyOnIsg8s6mfUjmmiP0xNTZhBLnanAIkDmHFGtPMuhCTm/CLbU4ahYGAXdr3OiZ23zYjAzHt9glUiUKY53sb3kW5RlgwZEuNrVWUL8GcK6kUJZWidvWItxNt0atrrrejS6TQFdeuBpTfSJgol02gvRDV6wSgxm0IZXTvJsJBK5Kg0qYL9mTNnoW1u0bIjrdqtkBIuOaOtbzxxdVsm+m0U4HQbEkapqfaYD8+ztSJzu+R6gQvuOACLrjggqbn/vKXv7Qt287l5ymC0eHpjq773H/9lqA/03z3VYeWJzAuqX6PwZCv3/PXf4+KYRcwwVO2bH5R/e+kYThuQpA4F5cJwZqwIwE/VhEJ8IDRFMpRyJ6g4QYr+kY6sF/WNq+Ztt5CkZMuGWkUSa62CWqQfMz1CihHcKqurp4rqAyFSh4b09keaxtxTNxj4aWoUWTtBfSkDmLae5CZwDoEAj80ngSXbvsxf9p9OUlJTiMZDnqjtT45ZpqSSlOuG0eFIB9m6HHau2nFlIQTaZejSAgoeTY6cn2qQQueTsGONMJWtDS4N+885dlQHoDcDk13Jaegxi8HBOUAKUTTWE4/bbHZK7PLczkg0eBMV2cNKEw3h3R9vGlP+EOnoBiPVXqDZrTXCgxD8/rZsnpHS6FBA9gWKoLt0jH0swC0RguzSQ9TlkFRwmziw3T0eBOTOv5mlzXKxiR8S9zL8pgxWkSD0dZKYTLKJNcNBVoJtG80w0Q4/LJBgKi2KFSSkpeiK5NcaDS27CSjs/H/D6MNr9KiRgiIfSxVHXpEl1WOutnccjEedDPbnmpxfxFpnILEFrb+2QnKOGTwq4+qBWvTOs46msbHQqDJCJ+cdKO+mDL96WOZ03Uq+w38B/eMfGHGcbFFDkfm+NO2L1MOCw1m6njhzUqfku9UrAJVH97mY5OtJGtrofER8Myh4+lx+rlo9S34hA3m+vg6pQT5qQxKGeS5WImkwojRpkCUSIxy4tlazdqYoITGJHmV7Yu2KGBaw4atI9xw23rStsXswR5W37e1YpFodUcpBYuWDLY4+wSgR8nC8BQ9ujRrsLuj63SrZJ1J5D1dnb9Bl9V6l9aEInaDMwVeJ8q/ejWzMO+xNR4BOmRAZUKwQOatGmGhWiRaOXdl0F1540maoF5n5nw8zRtWJUcEDFj5mqEwQ1a/Ua6WzcgATwdREHTzexRUmmxbhVdnpIFi6PBAaRFrSnPxtE2/VeDgrm0sTw8n6lfMyj6duT2v5Nbt51MO22fW1igy9gK2l7ZEwkK1f8l+xP83hoM3v7bL8bBliK+az0eJYGF2gFPnHcKa6R3cNLIajSZQAsdqhO6eHstSnMxgZUJkxpiMdSAJizY6kNhCIwOBkhrt0KjnakdW42Wh0mzeOdG2mJSCP/ztQfqdFEII9tlniJ9ccvMMNzM0f/FAR9c95rQH/KFTiOhkjFsMjRrHuDVTMMUxbkn64Ac/yPT0NF/60pf2KMZtrxUYnvWy47n9Lw+0vUZ3Z6MHarSwyYfr99sNi36QjF9oVh8gXU3QFQsVdLxZaOADIVVc+1R8TxPPoAFpG5Nhu4Wz5Drk0l4Fl18I3dSnvXlfqlCohTBNv0y4mpBMShMvfpq0aCeMmERnnrZJt8HplEgce3/C8GGaDaCOhAZbKySqaY4ErWFKZSnpDEnmVNCSQphmwMrjECKEZmmfCQDap+91ZO0V/HXnO1u2TWCxrPdcSmGeh6dvbBAWKtdF08QWmpJK4Sk5g0ZMGJevCsxo7YUSyareFbx95SsRQtBnz+ZT91+GZSlcz0LGKFoa3LKNV440R2H8nGpXe20rRE3SuYRGKwV2WUQ+vi1aG2CYiEkngfRBB0ZYJk53X1dGegonr/jPD/2ycswGSEksr7XWTinN8154VMvzjzftbYl5/llo/4MWsmDxADu2jjWPYYiVRlbEF6h7gZvMcWWBtjtbX+vJ9jSd6ZBpuLHxyTcWcMogy524qplFSk87iL7aqGmvDs9/z0kzYBUa5Kbq9xb8U0NWenhtMtQD+AjS9v64wRqaB3fQ5Hgtjfld/HrsKFztVPhcSaXYPjHAsvRuTu+/Hyk0WWd/etJHI4TgxEW/5fYdr2UykQOongSC+d1n8dsdlyMj0Njm1yVtC7rCRdtUzKKuCTZODza1RGvgfQe/kKMGljPll3j9TV9hR2mckidwfYljKYQwngfTu7pQoVEGhmVJWG4c7zClsF0LyxNoX6McXcuOnRb8IdpDuf2QHQE7qfiv12wlSWnsCZ9bfvcAN192PwC2LQn8ENuWBj2vxbgsXjablYcsaj5ujzM9Wvzh8Ypx22udYE96/pGsOmoZshVOnSUhmzGTME7mNgMZiP3WL7UgTs6TUDnFssMeAjpUg6K12VnVNa+Zm1B9a5SuTYAmoxXcV62SmlXLJmMWimGObnsWElOuGbyoJVQHWh8d5Slofs5Cmbx1zikcMuerZOyFNVekrXkcNPR5FnafF8G12ibHQ11fijoVCQumL8l+AYyHXWhgYfdLGcw9o3J2btfT2b//NU1bJ7DIWIOs6n8tU/5oS2EhSVYl2knMODZCQM6qavYsYWFFqr9VvSt4z6q3VPw6X7zkOD51+Hns0zWIYyuUEoShwPctvHKqIizU9jvBopREWS0YqoDewXRlj1Sh+HscxGVh4FfzYLmAFgYlLCUIU7VFpatITaqGdyDQmqAnhbJbAzUu228uJzxjVYuzTwDSHX6eoicUCSF4y4VnND8ZSfcqYxtX1Ap0UfsHqa1Hrva2/w6PCt0pFmsz8hrX8s3TszqGdwWj3V6SO6DyOys8pGivzGpGBvK0faxcTnpMqX0Y6v88g10vBJL8RDIr+1xWzv4BthysHKsnpeH3E4fhartm8x1/3+DO5s7CEgphloPmfK+y7loywyFzPocj++ruW6UVs95Oyhpk1B1uKSw09LsjxxVYkJ2kP2ViCy0hsYUREtPS5qOHvpSjBgxUZq+T5aLj3soZ8w+jO22UhGXfpuSlmB7LVYSFdqRTCeuHFliexHIllieRnmBhV2/j2hZ9t1yDrlea3c5SrWu+Z0Z97KKqQS0LAgMYEPYmkik23o63f+yF/1QoevD4QVfvtRYG27H4xM/+jS+/+0dce+nttSelRPf3VJJDCT80gVTx2hJbG+q1SjNQxeLakCnFbKqCNlnhK2Xj39F3KURT8LjY733GFkUKdmNdME0rBQ49jttC662xhcISGolECMG/rHgrK7oX8rPNn2VrcW3TTnQgb1HXxdp2AiWdYreXY7N3ORqHZy78I5PunbjhLlLWEP3poxDCYm73mSzqex278pexu3QbE+7tOInFeTrM0mj2rrZAA3mVoajnNpw9ZODfCLRk09QlBDpfKTM/dxJHzH4vGXuQrOpM+ot1Ip1lSNWUgjRapzhy4GD6U1m67RzHDR5BEKT5xD2X86edD+GpgJU9c3n5suO55OS3s7Ewwp2jm/nzzjX8ZctG0289EwPSRkMUNo9fWNDTS37bsImjScTSGASlqOaE5qSqOKxa1sKUccUTWpvs6M1aFF3v96axpz2kX9UiaUBIwTOfcwhWfcb2Jxo9JRA8Ken4k/fnQ595GZ/+0K9MArckKYVOmckvwABbyISFuZn1+BHOAwE4BXOPPdqpx03tdPFtevPGsrtKPewudjOUzTc0J8kz4sirxbkDecXSD3Pr+BX8edePScniI44xaN0TTZdw2eQNUlKCH236CG9Y/iUW97+PvHsbGuhOHU7KNj7chy28gfHilUy7t3Llrls4OLuOdARRtdkdZCpsn8vg3uIitpaHeMY+ta4uWWchh8/9PveNfJiSX7U0pK05LO9/G4t6XwpAl93d1sLwSEgKxcH9O8jZq3DEATgyx/KuOZwy9xAu3/oAz/nD/7GlME7GSvH8xQfz2n1P4+37P5/VU9u5Zsca/rR9Dat3uczIiyL2oW2aJu0UCFbkBtgxNk1o68q+SQQgfYGIAqW93hnmZTRJ7JLC8ts8+ZRFMJjDmnYRXlhznP4sBx25tP19Hm96lPjD4xHjttcKDABdPVne9403svrBHezYOBz58kijNUq4XAgALzAJeywJEmQ5QOVqTXWWD2Gq/UoYNsnRAGCXIIjXqPpFOP4iq1J9rIjXujaQqVImFIi2T09jW2HFPSa58PvKIu+n6Ha8Bivh3HQ/acvFFjaH9x/KaXNPZUHWJLh7676fYfXUnXxrwycb+40k1KIhV0ItCdLSr2EmsV/reNiFqx0CbaGBG0Yvx9WCk2a/nP5Mo0tKzlnOslnvYEJ9n/HCg4RI0iLEwsdPTOs4OFsjsKhaQYo6xYOTv+Go2W9BRgO5ufAAV+74JjvL64FesjJDnz3I0+a8joP6n12psy81hwXZleworWlraShHpnVLKIKWlhXTxlLosLvciyUkf9ixmox0uHDVi9maL/Pu2y82Y6zNLFg9tYsP330p1+1ezWeOein79szlJfscwzd7bua/b/9L5NnUTkgRtagrdXTQ0BzW6GEDjdouy7NocYdoQ6WlxirrprkYaq61jDZXOwoUWBHEsRaCfVa0zlr5RKBHC1b1KXps6MRnruKdHziLT77359X3IZEzIV4whAbCSGiI12hq578MNI90pywUZIc1pTnsUXlLCLpSDlOqY4em5F0R3c1ecMG12/flpPnrmN81jdJGQWUJjcZhljNAqH36UnM4atZzOLjvZCzp8LShF3D0rDO4Ytv/Y2fptj1ujdZEFugkZ65+L+hM9FPhqRI/2Pg+nrfgAvbreU5DXVKkGew6h57s87h13dt4uNTP4vQYNoot7ixqn15yETS75Tg56fXDN3DqXGOFDpTPlTt/zM2jV+HrgIzYj24rZN/uozh5wX+QsatxMUfNOoGbRq/d0xGg3ZpdVikEEs/fiGI9+3UfwClz/5V/v+kX3Dm2pVJDIXD5xcY7+c3me/jOSa/imKF9OWZoX953yHPZ/5tfxA3bLerVpmhbQ9DYHltKLCERgcBucj7R5I7ILoQzqtS0YxEM5CBUiEh4F7Zk+fKn+MNjSXu1wBDTC998Kl/50C9r1wXXh2yqssBXXJOUQlsSq6waBQZP1+ZhSFBcddgiqF9oSE8Y3z6gMdu6BVoYjW/oaCxp0AT2HRpgtbsL4sCjeKOtRAXiu5mVACDtBPihxJIKWddkT9mMuRZpK8QSCq0Fbmjx6UP/jf165jfvBLBfz+EMpOYy5u2k9hU3gb3dVnPGFQdKb3UHmONMkpYBGigrh2mVw9ex31W1ztvHruDhqRt5zbLP0J9qjP4vhdPcOPIb8uHsRDnFXGfabMK1w3SYqcCYShQ56dEjSwghcFWJrYXbWNJ9PJsK9/ODDR9EU3UjKqk0Ja/AL7f+H5bsYVXv8ZV7P3POq/nJpv/Xsq/FMFXJ2CwFSK2awrzGe5Nx18BoxUJBWfl84v6fUCh3o7Sqmbrxr6t3PMAvNt3Gi5ccjSUlBw/Oi879febZ1xx1JJff8BBe2MaSIkC24ztao+UeuOIJEQnzoEOFRDBrsItjjt93T5r+mNNTMQxPfnraaQcyMNDF5HihRlsvy4FxS4qFBqi6J5FgJwmhQnoalaLZojwj5XZqggz4fZ2VlUKQS6UoPCJhQUM2RGSa71Y8ZfOnbfszK11kUdcEllSMu1kGnYP58TPe2NIFJG3lOHTWWex6BAKDEOAQkhEeZZ1ElGt+r3wwxs83f4ynDZ3HM+ee3/Sa63f/mEO615NKJLAM3arZNK65qsCqDUP+0+5rOXXuM1Ba8YNNn2H19J0VJVFZpygHMDrxIFvcj/PWFR/HkQaedmXPQazoXsWG/Oo9tDI0W7915W/8D2Bd/mHedvOXuHfMbtD7hFqhQ82/3/RzrnnO23GkhRSCg2fP4Y6d2ztSejcLd5TAuQcfwOzuLq7fuKm1dUtrrE7c7LRGhJ2AikdkyRpl6jnnPHHj22Dv4w9PcFv/P4ae+7LjOf5ZB0euOeaY0BpZMj7jcaZBbUl0yo4mZaNGWGhwigntU/SJn7fXTVuTsgzAKkauHRHMMYKKtlcg6OpJ0duV5vjFi/n06aezNj9q/NGTCSI1oAWhaxPtLytJZuLFxYpyHmgtCJWFF1pN0ZTc0KYYpCgGDuXA5sLbLubu8U0tEW+EECzK7U+zRbysHEqhXT88gAmUzocpplSWNe4C7i0u4b7iEta7c8mHmQSCRpI0hWCS32z9XMO9AuXx043vYzIo42vLoDZpAImnJNNhmomwqyYoWiHJqzSjYTdKQagF077JxH359q+hCJtYDDRaay7Z/Gnun6wywWXdh/PCRe9HkmrobzFMMR1mampJiRCJahwXLRj3slgCRB1j8QIbPxIWWq3L/3X35ez7k//hyEu+yF+3r2NJdz8Gnn+GJbg6VWroPSecxP6zhzjr8AOw2m16wihZ24z36Gw1TI67kALLErz3w+di2U/wJUp3+HmKnrBkOxb/+dmXYTtWjfubLHqIcCb1YO07YhcVInavSL7oHVJ2JLpeRZ+64lnHpiedYkFfD29+2jGcduAKoyToaJ4lLsqGyPkzwxWPuznuHVvAXSOL2DQ9yB1jO/jfh/7ApNc6N8XS7pN4JEoLrQ0ctocdOTuZg6LZQCTobyM/Y2Phnobj66av5d7xi5nws+x0e5nws2gNQynjalovLMQU7QYAGHZHAHho6nYenr6jqUVZo9lWWsf3NnyScmjGRQrJW1a8i327D2i4vjOqXzwaN9WB1tw/bhRIzaaaQjPiFjjsN5/koF9/gvP/+n2OXTy/4+VI1il7LCGY3d3NO59+IucddsgMpQXZsQ5vJPZ8iRQCjjlmOWc8Z6Z2PM60l/GHfwoLg2VbfPCrr+GKn97Eb753HVvX7UZakmNPWsnRzzqY22/dwA3XP4xKCAmixUIvQ0hNa8IUKEugbeM+1AlChibWQiWMoQIqKQM0fPuV53LkUhPs+8P77zILlBJEduGKf2FcOCzaYAtkJkK6iM4pbVH0jHlXRDCsVncRWza6DOmoaj+02VGe5E03f52F2QE+dMiLOWJgWUM/hlJL8JWNIwOqjTLjVVBpPGWTsXwkBv/BVxaeknjaieBaLWIcaoEk0BbdlktG+A330ii2lh5kd3kjczL7VI7fOHIJm0ub0SQx3ywsrZgmg0uciKj+mQg8bTOmusiIkIzVx/bSWobd1ol5TEhLwMUb/5vzlryDI2edBEBZ51hd7KXL8kiJAFsoXOVULAsN9QAxeq/W4IUWU75J0iMEpKwgyvhsyA8lYWggcuMxllJjyUSAuTTMdNwr8a2HbqE/lSXn2OQrZufGOSkRHDRrLmvdMdzIirCkr49/P+YEXnTAQQBcePpJXHXvavKuV1tFNNQ9ZYugaXRN4j6hwiq3zwMbc7lkMqYFC/p58wXP5ohjlret/4lAe5sG6Z+VDj5qH77803/lF9+9jr9ceS++FzA0u5fnvOgodC7FFVfcw+7dU40F66zNJh5BocuKMC1N5ucWbqrNKMgI7KnaOaNSJmkiAub39nDFv762cu6YL32NitEjfoWa3K6vO8W0LKClRnb7kKmuIXs2PTUXPXw9v9r2Z85ccDTvXHUujqzdRljCBh2lRtsDuaGoUoz5Oe4fn8+6ydkE2iIlA/bt282B/TtJ23HGulqSWNw2+lv26Tq0cixQPt/d8C22lpeSzHmQEgHLsrsrvKlBWIgdCDCCQE/kZvTn3b+esf3rCvfxjXUf5q0rPk7aypKRWfLhdCXWozPSDbGJte67iljPWwpsPN8m8CxUBHIhpMZ2FNKuBSHRaG4f3cwtw5s4dP5S7tkx3LIFAnAsi+U9s1g3Og4YN6TnHbCS9zzzZOZ0mzF58/FH8/Ubb21ahxVAamzmPlvlRjCMmUhKwWmnHMg7Lnwutv33Ino9urS38Yd/CoEBjNDw/Fc9jee/6mmEQYi0ZMWseuZ5x/Gf7/kpt920rpK3QSgQvjJCQN2qIgDbMy9haUCCjHAOAozfX4tVUjlU4uUqpEF4VaHh2oc3VASGou9Xkm7hyQhelbqABsF7D38mt0yt5W+71zdJiiIwviEKPzDmPMeqXchDLXB9J1IIG1/VHeUx/uXWb3L2wmO48ICzyFgO5dDl19uu5dKtNzIVzCFrucxLT5G1fSQCKQzUKcL4W8Z1F8I0pdAxdUuFI4LIEGOWxkBJpnWalOO3NNDsKK2pCAyj7g7+tPuSpEG52hckRZXCkm23qXjaISMslnSfwGXbvtXyuhrS8K313wQuIWOlEVHqt0KYpkCajPCxmqCDVAQyA7NVYfCFIF1po9aYNkeLp1JQ8lJRJs5qP5UCpSxsOySOwaz0XWsmvBJHDy2i3+niig1rSO4g4lqOnbeI75/+EnwVsmVykrRts7x/VuV92Dk5zTX3rqU47ZmM0Il4BxEYgbfsh9TDc9eTXWwfv6AxFiuUNla+QIHS7Fi9m4+9/Uec9KyDeOdHzqWrO9O6ksebOtEQPYkYwj8zLV0xh3d94kVc+PEXEgYK26luRo4/YV/+5a3fayzUZK0XGAuyKCrCtGAGlNBKNUpAkBPU5+KUHqAhzMGWiclKMkaAku9X7llZC5LlBczKZvjaS8/kVdc1aT9N9QHtWko6FRKiuGz7LVw3/AD/ddirObR/HwDumdjIjzb+mRtGjsIWIQf2bGdl9zBp2Tx3gtawpTiL+8fnM+p1MebmSCbk9JTNg+Pz2Tg9yBmLHiDnNO4uFSHbSg/VHPvW+q+ypZxM3hnVpy0eLs6nZfwVtRv0p89+Gp5y2VpaM+PIaA3rC9t42+3vZazcz5x0H47TaYZoww3bCVj1OXd2TPThleItXMRHFPiujQxDnHQtn1fa1P9wuIl3HHsK377rTqa9WjOxJQRCCL7+nLM5ZclyNk9Mknc9FvX30pcx63DZD9g8Os5VD62tqgojwVl6msyoxi4YD9M4AXmrAUtNBYnWd0a67POn397FnX9bw7+/90ye9mRA0ZvpmicJ/dMIDEmy6qRSrTV33LK+IcmbVQoIepwGLVJMflbUOHVZnvEeMu74ibqEQEmqeRUSVNF9hKBsuGv7Dj70+6uRQtDXkzZtijbXeFEBKzZ5C4QSnLvvQZyh9uXFf/o2+cCr+MED0UZecMjQEGsL2/BCo9m2pPGoN9mCW7t9XLbtVjYWdvPpw1/FB+/7GusL2yrakmKQZn0whADmZyeYlXKxCJFRFE85tBn1u2veh0BJXGyy0seRsb4dQm1RVKmWMRBWIsL7+uFf0Dphm4i01e3IjPrS7hOwRJoHp+6c4XpDk0GWQugAeaaDgrESKCeyk2h8C7otH7tu4Q+1oKyML3Q8Lab9NGFdIHSy1VPlTJ2wUNv2ILCwrRBVsT4YZhEEgpu2buOtBx3Pj844j9+sv5/fbXiYUuCzrG8Wrz7gSF6x/2GkLZsMNgfOrgaN3bRuM1/64w3cvWVHxQomQkzCwKB6dwEm67OoTZBuGmHeFcvVWG70lBKMrlYJakzplQ2SEFglkxUWDTdc8wBjw9N85jtveOIiJe1lDOEpMkJsUlgAuP22jUgpGhOBViZ27XuqAQSEmebztm5PjxZQnCuaurQKTK6TUEEQKj7z22splH3mz+phSU8fa8fH6uy8VbKAs1at4ujZS3jtvsfzvbU3NVwnERzQP4/7JjqBYdT4gUU2ZRaEcT/PBbd9jf869NWUlMfH7/spUhiQCV/b3D21mLunFjMvNcWz5tRu6kMt+P22g9mYH0Kg0HWJQKt3FJSCFLfs3odnLmyO0meJqlQ24o5w49g9Ta8DQagruVhb91KDQHDKnGdwz8QNM1oI4hi9Ma8LKJBLFcnr7YxNDbAt34slYE52miXd46TtBggT9nSRKHoOD+6aR3P+ACqwUJbGcqr30hp0yUKUbP7gr+FzJz+XXV6ei++7i3UTY6Qsi+cuX8mbDjuaA4cMX1g6qz9xT5//u+ZGLrnlHqYDn7ArOqE0fWsV6SnTjXh+aWlgtqUQTWMdpK8b3J7aktZGuRSYusbHCnzsfT/nv77wCo5+osa67WX84Z9SYGhGzTJCy0BjT/sEXU4N7LIGwghvPhKviQOnZVkbDOPK9QJhEm8S6KppOUmCyOsoBTdt2cpt27YDEChF2rLwesJI2BDmfhEygSUEpy1dwexsjhu3j3BMbiW3j2xlxJtGpAOkrTl29lLesN/x3Dy8njX5bZU7hm2S89Qv2fdObOaD917MhqIRFmKNebx91MC20izGPA+lBUPpIoOpPCN+jBpRv6hpSsrBivC642Nu2DxoWiDZp+twAJRW3Dt5bcu2K4TJ0aBnNoc/fc7bKIUFpoIpcjLqTYsyoRbkgxRKS0Jkxb3MFiG+tlEI3DBDoGxytksqykuhNHRZA0bAAAJtUQ4a3ZaEgCAyKysNZT+pHWsckfiv59pmz+LLGkz1b9x1K9+461beeOjR3Peqt5u5KSVFz+dnd9zLz+68l135PINdOV586EHMy3Xz/kuuqt4ioa2UQe1d4x9hCnRoFv5K4KcCy1PIMDLHJpusa6o1B4Wm4oCrFMKvMjilNA/ctZlbr1vN8c98YmqR9jaT81PUnJRqNJXVbLzrlEraAr/bqsmREH/TycKiuqfIjkJxtm7qwiTAaG0V/Pj6uxCYTZjSGisbIfA10ZorDecdfgijxSL95X5WuEvZVBjFdcrIroD+dIaXLz+ao/uW8/67fs1ub3rGsaj3pldoPn7/T3FDH42us3JHVkuvj19sPwKBRgo4aXAt94/NZ2N+MKpT1lzf7J7biv0Rul+t66pAsl/PcZXfN4/e0tYNyA1scs7MSEHLupbS43SzrbS+I7eiYphCaZhwcxR9Y2HPOR5zc3l2FXvZUexlV6mHwwa30ZOK+6BxSIEICdtC0lV7C7BpbKCpgFglTeDLisCgfUG4I2v4BJrVExP865bfsrC3l2++8Bz2GxxEmuA37t25kwt/fznXb9iEBo5dvIhXHHYo/3flDdy7dZfZ/Cd2jj1bFOnJ2icnMLxAeBplaSMI1+979hQdKNRIt5GvX/TlqznquBVPyFwMext/eEpgwGiUlq2Yw7o1uxrOyUDjTHpoW9A31M1pZx3GD6+6DRDI0Gh1lQ1IkxkU22TJFWHt5NWYF0TGVgIMU9HSfMJs9dogwZx0qHGmJF6/qg1RjybZu487ifOvuITrt23CEgZZyRI2gWtx1opVzM1leeOff0WgFbmcTTo9k0jfGFyl0dwxtpm+TFJYaBhFSmEaSyhGvW4KYSoyQzfX8oDGUxYZq+prHzSxdGgNRZXjK+u+yalzTuWQvoMIdGOsQ0y+slACUnbrfmoNc9JL6E3NphyWAIGrbLJW0BIVcbfbTVk5CS2YoUBbJpgZEVlsLDyVQssQrTR5P8vL9nst1+2+g1vH727ZHqhmWA3C2AeoHWk8zyIMrUhYqLOaRX8vuuc2vnPH7QhPsHJgiMmJEsOFYuW6qbLLZ/9yvXE1SjxYLc3cjmLnm7dGmNgdEZhgT1mX/TZG2agRGpp1XAhEoCKUpEjKikhKwZ9+f/cTV2BQugY5p9U1T9GTmw44cGFTpVKNEKA1L33ZcVx+w4OMlCKImHjB1Inrmqi3BRA4kUWviVtrzD8AQlWrtrRLoKRGZRMCS7QinbFqX7ZMT3LuT3+Er1QFzEKTIVdI8e5TnsHX7rmZL07eDkKR6gdk8zUwJsdqXFuLoTvjimXcVI2UdMWug5goZNkzZxTBuJttEBiUVlyz+34mg59z2pzTmA7ySCEJdWM7Qy0IsAh12BYCXACvWHIeEFu3W2/PTTJTwXCpiw1TQ4QJeKFxN4clQqQIUdpCabh/bD7Hzd2MEOAryUT5OP7fIS/gq+vfhW6DqJQEBpkoZZtw6toeVABRQgi3ZRPJPKvltk9N8fzv/QAN9KRS7D80xG3bt9csw1evWctVD6/BKoAV9y0kSuKpyQ63UW0psJQRKlVa1GjlOk44GL1DshxWnC2Spzas282WjSMsWTa7s/oeQ9rb+MMT1M7/2NPCRQMtzwmM4DC9c5rznn9UxT1CYDZZtm8Ss0k/lqTrFnthLAs6QuirvLZhZGpOuiFqatAxBMJg05dErXo2BF2CD//tGm7YbvwkY81O/Pe36x7iW3ffjq8UCE3JdVBtk1rrlhk6VZRRuVq0+cseRtc5Qs0g8dcLCJpQS0RkmonbWFIOO9wMq6dX89V1X+W7G75PWrZOuhObwuN2NJyPjp2z6AMAZKwsi7P74WuD8KTrrgu1YKfbw4jXQ23MRPyJ8zxUyQ+taKwE+cDhvx+4mMu3rcULqn2rR7XotvpRUd9tMfNrGfoSv+igyhLdJFtrzbWWRnma1TtG2F0qGmFAaBNwD+CBKNeyQ+1EHzUDSxcQOpgYhFgQjjrZSeZbEeoo03pUtq6IUprx0XxjwScK6Q4/T9GTmg4+eFHFGtCKhC3wleJZzzgwcVAYnmAJtKQlx3V7BeXZEpWm6W69uto0kkZjl6hFthPm/V07Nca//u63eGGIihD94qumXZf3XvkHNkyMRxVJgmI7HaIpmWmine8kjWi1J50qRRppwu2qfI88VNjh9jLsTXPVzqv44H0GGlvp5hvvMHLzdEO7pbCgNSztWsb+vSsBWNVzBEorgzuiq9ckFT07Sn2snxyq1J98YmHNgxcRpHkOrWFbvp97J7bzomu/yq07FrXkzRILR1RjubJ2qvmFdeSVbPyxNDpsPoNq5oPncdt2492Q3MOGocaeBiuoWlmENhYvJ9+ZhlxiYOnNDc3gKTtSTLUrGA1IRVhoQRMTxTZnH0fay/jDUxaGiGYNdjUEFTUj3wt45rEruebGh2uOCzAB0k1U1GGKhhU/qZmyPfBTRlMbv3yxMkHbgBBYZWF890TEGCyBlRLcuHOGoColoCwQ3SZeoFhK05Wry/IcwUIIwGr59tcAX7a8ndYCX3Umh9ZsULVZSJd0Hc/q/O14CqaCNCVlXHNizcst47dw4sD+bC/d3UIbo/GVzW63hx6rXJOcTkQMP2svZ3ZmKYWgyKXb/sAtYwXKagDQ5CyXgVQBVzkEyiIfplFaNM2hUCVRGR+BAQFUGsa8LnTkvpS2A8bdLNnQI2f7yEidPz89m/P3OZOnzzmKEXeSQlCm3+nh2Vf9H5NeuWkAtV+0Cb0ob4USNMvWXN88YQtIKubiya5FDWpXfbkwC3Jm9MXqi6NAhiZ+wUAitr9eBEYDI6Jj9doWaUnmLujvoAGPD+1tJuenqDm5bkBoCWRQGz1VebRm8SSfd/m380/jZ1feYaZ4jZ9G87chSIMX515ock19NfUkEMb6ILRJLFo5oVk9OoolWm3mzQZQBwIcc4VybZSjsDKqjpWZ873ZcmXtqm2j7sht5+8jjcUB9Dlptpe3UQ5TTAWZCnS2QuEql7+N/K2lhSHuTqAtCoEmWxeMLQT4WnLWgrMBuHfyPn63/Up2un2AyeXTbRvrkacsPGWSje4u9bThEaKOe2qmvTSBkmzO90f31Yy5Wa7bupwDB3cyK1NCCo0UkmMHns6ZC15Czupm1BvBFjZXdW3jP2++qsm9qmMFoEKBVXqESEJRk61S1boV85pYt6kl+FlwOuARQmPi2mT1t5+1SLVL3Ba7Ic0wrWbP7Z25AY8D7W384SmBIaKFiwZmFBaclEXZCwgLnSfK0YKa+Id6Ehgrg/Co0T4Jon28D0SSuIjVr5GFIWybQjdRU/yCCgiVZDqfJp0KcJw4E7TAkaqldcESki5bRBmnZ9YKuaGNryRStIsj0BXhJB53X1tk7JVsKa9uW/+awhTz0wNM+WM1QkMxcNjh9uEpEwC3C0hJnzmpKbptl0BbBNrmabOfTT4o8MF7P8uO0u5EYh1BMUxTKqWwEgHZuiUjSFLVZK21YHe5Gx09eCHAliFKpxgv5RhJwKQumLOUAyJN1lC6j6G0YUwvXHo431t7U8NdAtcirLgf7YGGTpjQ7NpjAqRGOQKrmZeXAGxQktZoR1qb/CKuWfi00lgRDr0QAm3pCvKTSJQh1EgvEcmhNcJvZAwqVJzxgidwcp5ONERPIobwFDWnrq403T0Z8vmysYpVlwy0NNYDKQRz5/Ryyz2bcBwLz+8sotPrbq5oiqndW96wQW9ycSNyXl2RQKCd+BpBkE+h/BArE4BtjqeskK6Mh9MQsNumLW3IkrEZvdM1LFbH9LGxlGHU62/ZhkKY57iBE7hx9ObacxoCFa/TglDb5EMLicYWIQij7MpYOQ7tW8Vfdl/LdzdejEy0USGY9LMNPGHSbRKc2KYnu0rduGHs6hQ/ek05THHH7iWVa20hOWP20+hzjAfEvMwCAM5d3s9Hbr0aX7WbYyJu9MxKpVbFdaQ0asIfBGZ/UxqUOFs7C0gQUXviHyot8QCnGNauk0ojvNBkT2+ooEpSCg46bDHzF8zq6P6POe1l/OEpl6SITjv9YOw2SaKkJVixaj6ve9t3+dtN65peI8LGRb8NAFG1HDT3/5aAHRkn4viH0GzE0KDrX6aWjU/Uq0CFFqVSisnJHOPjOSYmshSLxl2pWdsAzl/29Hg7POPtNDDhZWcIOjaY2LGbUyFMoRGMuCNYGJeeUuAw7mYZLecYL2eZcDOMlbOsniwz5h2AYE5F2CgEKTaVBvFUrQzsKZut5QHG/G4CnSJr9XDMwKn8dPNldcJCtV0iXgkT/emUDFqGqAgLMfmhpOQ5iZwK5l437NrAc6/+Xx6sQyj5j4OfRa+drdQZxQQTlG1qZkqnfCBsfaFqZ93WxsolokRt0o3yiAQau6RJT0Iqr1FOFM8QwxLH/gIaM/9kbH7WWG6IXQ6w/BBZ8rEKHlbRxyqHtWMt4JnPPYSDj1zaYScfe4o1SDN9nqInN0kpeP5zD0NaEm1LVCr6ONK43gmB1pqrbl3NB7/wOyMsdPjcW7khtSMtNV6vpjgfiguhuGCG97gFNd9ICpRr409mUJM2mTAkpRWOHdIsoadEcNLQgSzMDna8HFlSR7EQrS3atbstgUQwO9PFqDfaeHW8RmpQWvLQ1EMsyS5GUnUDLQYOvq5bPzEgGZ528JSNRvKChc+mEBb4/sYfAsb/Pnl99ZNsbScKpep3N6wFtUjGJyQp0IoLb/0l77n1lzXHu5wU7zvymR3dT9vV7NB7TNE+RLWABhYIgi7wMpCfL5hYIZlYLinMFQR249OtschFj1elJG6/jdtt4eckoQWiGDQKC3WVSGnQzN769jMeWd8eA9rb+MNTAkNEvX053vrvpwONa7e0BF1dGe7ZsCtCpNG1vkvabKisMtQ4Oj5CqlglEu3Q0XGhgACEEgh/zx6fTqy/Sgm0EqZSbVEoZhge7WVqOo1EVvzoM1aK/zn8VZy/7HRes+zMaj0tSAgIlEUhSFEM7IbrY4ZjiwCNgRvNh2k0Fvt170uXkyPUMObmmPbT+Moi1Ba+rpp/Ay25a2ITd05YbCkNsL3Uy9ZSrGGoX3TN71Gvi26rn7es+DCWSPHn3Tc2ERaq41TLIjp7nlWf1lqhRSmYKMVxF3XtE1AMfF7x128zXK766ksp+eJxL0YrWRFeVChocPIXZhPekiFE1qiWyXGioJp2PRQKA6uqYw2RJjVtgi2FijDhhUBbEGajoPAwmqvRRwQauxCQygdIXyHdEMsNEaGuLpoCsI0LV64rzcvf+Aze84kXPSHRLyqkO/w8RU96evlLj2fe3D5ki2DN/rm9bB+eND+Sz3ym+bCH80NJTWk2+N0kXeNbKg9km/dHo2lI/AAIGTJv0SgLlo7TP1iku9dFihjsRmMLiRXxiOOH9ufDh7yCLxz5Jman+zvuR1c6RslrNiiNG3OF5pwlh9KM4i7GNuFxf5LNpS1MByaOrBA4hPVMtQmdteBUXrTodK4bvr7lmhpbA5KUsfwmfajSTFsCpdpbsX+39T4+dfeVNcdes+oojpu7eEZRRefUI7MwVCqg/U5RCPL7WHi9AuUIVEqghUne1nBpss6a4wLLDUmPuKQm/da3S0yX/Q9cyOe/8Vr2WzV/z/rzWNJexh+eEhgSdM6LjuY/P/oCFi4erDmuAs00IcKq+u/FPtqoaDOmzWA6+ejpxz7aihlXCw0VGFYNVRem2AMptjZEa0q8XkkP7LKceSkIJYlEusaSUNl41v4tltKExVkc2b+S/zjgXH7/zA9w0hyT3v7lS07nYwe/Jdm92n5oo0mPzbV5P8WuUhel0K7IUXEiukDblFQKX9tIJBY2h/SeyD3jeXaVclGgmKlHaYN+VA4tyqGNG9qEShBqwbiXZdjtjmBKW42EyS79gsXvZH52KcPuGJ5qjbRUry2KmWTLNztSbwmgGNhR25NjYkUwti1cDgS4KuD9t19ac/zEucv4zsmvYJ/uIZSSRnhoRlFejgYGF/20CjPHObQ8K4ywkGRnduR+ZI7VSrUi0DXJegTG2mCXAmOBA0SgkPH3mnsJhJT0DHbz/SvfxWsueFZDzpQnGu1tGqSnqDX19Wb56hfO5/TTDqqxRmsBQUayq1iMEIwS1O7ZR+fsEnukZPL6qSZT7ICaYeDXNMOpP69YsGQUJ9UkBiDiPwvT8zlz/nF8+9h/59OHv56slWJBdoCfP+29LM3NaSjXjKQESyT8U9qQAJ45dyUPjI+ya6q2fq1hws2waWqANROz2TA5yGgpSxAKSn6KSTdrrAczDPG+3Ut5/bIXIYVkS2lrBz2oVjiYLbTtQzudh9ZEluf2dPH6m1k9WUVytKXke6e9lFeuPAJHtoFJdzQqE0Yt/gcvRjWaNdNJ6Wm6djau77HSk4TeK+Yr9rRPetzvGGr1/Dc+gy996/WsXLXg72v/o0x7G394SmCoo2c+6yBe96ZnmIkcbbI14InaNV26GunpaILrij8fFtgl49dNBKlltLOtZ4WKg6KBOtRO85IlhIWYYtFFTArSYoZQFAU60hA3FxZqa92V9/nt6u18+c47GS3XRjMFoc20m6aBL2oDEecl8jsESuKGNiPlbrYW+tlS6Ge4IgxUaUF2CUrty+ce/h23j62P1h3TllALPGXVoE8oDAxq3k8z4WUoBR2kUgXGvAkA0nIm272IkqZVH5tdUdHXdjxGQ3JDiwkvja+dRC2mjrw/s6+AEPC3XevZVZqqOf60ucu58oy38qvTXs8XTjwHRzZ5ZQVGaBAJhqCBAGReIMM2r7nWJk6m6Tki60Ci19ok26mZOVpjlRV2SWP7gCMhJVC2EbOkp6rWCa0RgWrJtrTWTE+VuO2Gta3b/EQiHVlg2nyeTBqkp6g99ffneMcFp7PkoPkEXRZ+l4XfbaFSe8BKY+VN9BI507VKpiRJUSvqK6mb5vJpR7NzxrqZ3CzG33VKN+wC+gcLWFabTa6Ah8Z38/U7HuKPmzbVnLKlRUrOHBoZuxD5bRQpMaWkxclz9ucvOzbwvw9ci2PnK/xHadg8PYsdhX5KoRPBWluMlLtZNzXEaLmbvJc2zZ5hzMa9ycr3tEy1VbIkHH4A6HY8BjKFmmNxP5N/k2Urqr49WB9+suG2mt9Z2+ETx5/BrS+5gO+e+hLO2ueAxlYLUL0hYU/wiHd8sk3YpiwbV9W4H+mJJsKCcWRAW8K48FnGIq0FoDTORGsFXj0JAVdfcU9T97gnHO1l/OEpgaGOCvkyn/74ZWajnpR2Q13jbiQwCa2EjtEhonwMROY1H5yyQQ9IT1LdlEWTIzZrn3rovpBO3KdOMNCxAKGNJUME0aeSGEvw+uVH0e0035TGgoUxeba4SZMSWsOW/ASv/OOPccOqbfGeiS0EKkUpcCgFNm5gUQ4s4x+qIv/QyKen6KfQCRcapQVj5S4eGpvN/aNzWDsxwJbpXvLeHDYUh83do7iGuA1VxKX69lcZQH0StFbUY5tEcrPTAyzOzm9gCIGSFH2bcmCjtGTaS1UwtYUAR4TGlSvBrKa9NGPlDKUwBVis7FnEguwQC7OzOXP+iazIrUK1SZKXJI3m4cndDceFEBwysICzlx7M2csPaL7ACCLXAg1FECWBdCVSidYuSxGMi5VY7BONAcAuamSokUob9yEVLfyJOqyyNvOxttEmbsExORZqnp5uPfsALFty312b2lzxBKIkRm67z1O019APLr2F1Rt3o+LNz564zDXR1VghZEcSi17MYwRkUzanH7Jf5YXTrfI5auMSm5qA9Jj5a5XN8SnX5aWHHmjex3gtkBitc4N1Abp6yjNO2WzGQwOfu/uvXLLunsrxUCvW5LfPPAwCJqdqJZ84BiEIZeWDFpw27wD+vGMtgVYoNH2ZUiUh9nCph2IQ877k4NbyC6XljH3qc3oq34+cdUSDy6rSMO2mmSxl8EOrcoc4Xn1B1xTzc5MRLl5URgnKbhX8IiUtDu5fyIJsP4cPLOH1K54OOqkxbE/3jG9rerw/neWURSt4/1GnRI2qu0CAzinCIZ8wG3ZuadBgFUEoUVtnvCcJjLBglcGZMh8tamMetKBlLKe2RE2yzo6apGHH1nEmxp+gUKpJ2sv4w1MoSXV09VX34XlBwwuXypsdv5IQZmy0IxPZnIk2bC1cToD0FISOJshBOmVz8sHLeelJh7JzbJpr7luLwLxkYRoavGsiKZXEYR0JEFrCwztHuOKFr+E1V/6C9ZPjlfiDQCu6U2m+ctpZ5FIO1+/cwBfvuY4a9VbLFpuMnVsKk1y5+WHOWXYQYLJLgyBQFqBQddXEwVsFN0XW8YkhEbxQUvDS1fq1iXUoBQ53TjQPIg9bWkISY4ARKkIt2ibiycg0h/SZ5F9CCF68+Ey+sPpbgHGjGil1UQyq3NgSirTtM1bOYkuTrq0cWEy7GcDkq1CRr5gUioGuAmlL8PGD38hAugrx5quAb6y+hq89fGPzhiX6ooGU1V64WJzpr8QFSD8CsZagHJPYTxYts7jHpt8YIStO4kMs8Jpn4EwZwTdOIhhbuIRnhAU7oVkSGAuAsgEryj0S6NYISpGJTqUk0t0zpvCEjltI0N4Gm/cUtacgVPzqD3fN6ObTklosvXYZurZr/C4I04IlC/p50UmHcuTSBXz2l9dWUGqa6h4UpCapxCmZ3D0aO28gMd2+kJcfdBiLB/r53K3XA8ZyoZGEWnHm8v159zEnsXlqgg9efzXI3TPKQMmYgS/fcz0vWn5IxRoiEbS2IZq1znVt8tNZcv1u5ViYQI+L/wZK8sdta5BRUtLkvZUWjJfbJX+rHi/6Dn0zJC09dc7xle+H9x/Ggsx8dpZ3EWrFzuletk72RxYRAM1Atsjc7inWjs4h63goLSh46djfoKYNngfZtOLFS4/hvQedWXvfeQfyjlsuYXtxkpkoM4P1ZiCdwwkcPOlDIKgwaKkN4lUQxZplNFa5agWvoUTT7QJkRgx/CKJcUnH3rHKE8FhXVjmC0qAgNWWAMapxNnX3iqC9w6w1446kGT0ZWMTexh+eEhjqaP2aXUgpCcPqBqcGp1mBUwwIMhZhujp8xhKgW85igUnwJvMgrZD77tvG7au3Mp4vVfQhlgd2Edw+IJbQY5NWk/p01J6bN2zh/q27+eOLX8+1Wzdw7ZYN+Epx2Ox5nLViFbnI+nDE0AJ+tPoOhkudS+YSwVVbVlcEhuOH9uPra/5kMgwDtqwdJw2UvBShsvACTcYJCJWoFRYSvXCsWrzvUEtExPlUfYBv/RiIhIDiO/SmvJaP4JQ5J2MnFtsTh45i3JvgovW/Zmu+N7pXtWCoBUU/jSVClIZQCYpe/FBkjUuW0oLxQhefPOp5NcICgCNtLlh1BtsLRS7dcnfTthnNmqDLTvPX9Zt59x/+yJTrsrS3n1cedBgvXHlQRZBYPz6OnTe23KSWyHZtqljoVHiutjCaxTCyhsWm0ACcqSrQqghAuNEIaCNEyCZZnqsbeU2YMhudmRZ7lbEgITDoaPK2KhMGisOO2qdNjU8gijRtM17zFO0VND5ZZHK6/MgraPOiSAXpaWBaMzwyxnXpdXzx53+N0Y+NQiEv0Ls15dnVupx8ZHFOVF75HmqcPHzpjzfwhRefyYtWHsQvV9/PlulJ+tMZzt73AA4cNDEBy/oG+M/jn8kn1q6Z0ee+YgUGthQmWTs5wsr+2UghOWpgX24fW9sgNMRrc6mUYmy0G60FKhAISzexgFf/llVt9OyUm6YvXcYNDapRJ1QKHLpTHhaqad8cYdcIDJaweM+qC/nMQ5/nxh1ltk3115UQjJVyTLkZAmXhu9mG80kKQpt+O8u/rjyt4d6HzFrIxSe9ljP++L8zQuAuyQ5x/hWXcPfwThxLcvrSfXndQUexctYQALsKeTxP04DlHkoD1gLmIdjGWtXKHVW4Zl6l8mYmiRCcQrSUJYTF5oUjIak34iPtdEVRUEyYtZClzmCIhYCFSwbp62+dwPUJQ3sZf3jKJamOUuk6GapeKI7+WuUQ4T2yJx1ozU63wES+VKmzchttXJhid6h2QUBxGd9XvOOS33P5/as5dckKPvq0Z/HJk0/nvFWHVoQFAEtKLj7tZY2dqqHaGa7QlIPqqnJI/yIO7luEJSz80KbkO/ihhRdYFFyH6VImyuIJXmgRKIEbJFNZtyelBWHC7aehdRpzL8+h6DmEEaMphw5TXqrS8qRbkyDH+fu8oKGuMxecxsLUkQ3CQrKtoZZorfHDdrkPBKGWhGGmyTlDHzniLBbmZlXaVMN0NagQylMWX7vzVrZOTzHludw3sov3XfsHzv/dJZVncP/2XcQxKCLxL/4doxM19EbGi7fAlhIk2EmLmK4atqSiCo/aqkORy1G7jX98nZai2lkh0I7VsoyUgqE5vZzwzFXtan3C0Ez+qRU/1ador6B06rHRsQU5we3rjftJ5dWJzqWmjNsRABHccSt/e4FJzHjTQ5t4zUWX0OtkeNsRx/PfTz+D9x33jIqwENNzlq1kRW5x27YJAWW3Nm6snHBbffnSZzQVFiYncuzYPovRkV50FJjnlU09neW6MbR9qq8pUlF7EoyWcnhhFWY1Sectfh5Zu3b9HkgN8JZl72wiLFTrDDpMUgoQ+A5ddrrpuYVd/XzqyHNbF9ZgKZsf3/MQ12/byKRXZqRU5GcP38tzf/V9rt5kYr62F6Yrbav9UPcdVBN3tMplaeMO14wrdv6koqS1HZC2OjcXaA0vedWJTwor9N7GH54SGOroxJNXVq0LM8xHqxgtkpHmtp1a5v+3d95xVlTn437OzNyyfZe2FMGVrtJBioKgIti7YDfGaGLJNwm/FI0tRmNLNCaWaOwm9hp7AcWuKIhSpPeywPbd22fm/P6YuW1vXaQu83w+C7tzz8ycc+/c8573vC1xGW644sdaE50HrcwZubuR+Not78wmbGTX0g+sqOTE/Q/MecXoUFQhGFgRFypCCO4ceQ49C61CMlJa7kkhXbMVheSdoqZAgT1Jpx+FYSqt3jZBwHBZu9atbHW6oVDrK6LOX0Rz0EtT0EuNr5jGgBdTWkpDTbCQxpCbkGHFVvh0Fz894ExUkWrLD+hhvq5dk7FvsT5KhYiRLQuT9cr7m39IOtYYCjKnej1zt27ENOH1oy5naHmvmFVESjDCGqF6L+FtRfibRTz1rWkrjSZ8vXkjf//6czY2NbGuPofZWgERtiwGbkVhYKdO/HzUIZzYewAdCwupKCjg6P59eebCaZxz2LDkAWDdW6SxLKQftLD9orMgZSw7UlRKS1Vg2gIi8VwhBCWlBfzln+ei7eHZkWLIPH8c2gWlxV4G9+/eZveJGHk8C1KAnsXTRiDwNGC5JWZRFhLbg2DZlhpembso5/1vGX4OSoalQXSjo66xKHbMpahUlVTE/h7dsT//1/8k+4T4ec3Nheh68vfaCGuEW9eWyUF9sIj1jeV4VB2lDastUyrUBYvY5i8kZCsOAkE3b2eO7z4p7Tmvrl2QNS0tSe5H2dkcaGJJQpYjKSXLGrfy5dY1rG+p58ReQ7hnzHS0RFklIRJQCTYU0FxvxTqYCa8ZpsQwTS7/4DVqA35eWZb78411W4HyAg+nHHQgl4weRb9OHSn1eOjToQN/mHQ4r/zq/Bxjz3UPkbF+Q2sUI/fnqKrWM3nSmYdwzEnDtr9fu5J2Jh8cl6RWDBtZRe9+laxasSVnWy1sYoRMTI9i7chGiwNn+JJJO6W+FRucZfEpLdckJWLn2s6xdopeqd4f4NMVazhyQJ+k1w3T5KVFi3hy3nyWbtuGpqp0qSxmq9FCuqc1sWumlJzdb1jS6529pTwz/gpeXT+XWxe+GctWINOIrlBYw+UyUNX03wrdtNx7kje7BT7djUuJZyYyTIVaXyHxlKfxE0K6hhkooLwgEKsD0Rzy0hwsQMHDXd/PY22TyfSqkZS647tIdeEWdJl9opIyvyoMEvDrlsN/UzjELV9/yMsrFhG2K3GWuj1cfPAonhx/Id/Wb+C1dQtY3VDPVyu2YSZOlhK7bkLcciCRPPbtPDq7isiJsK28uuDYA/vz95OOy9i0S2ER//3k27hQz+EqlA5DA1cOS7IaMKzvRoIvq3SrGIaJ0CWlJV66divn8KMP5piTR1C6N5iabdqbj6pDbi48bQy/ve2V7Ts5x5dLAuESkVU+AAgpKKiWSJdo0xf2hW8WcO64YSnHV9fU8fjn83jz+yUEIhG6dNsPtd9GDJK/3KaErTELgbWhdHLVQUnzKsC0XuMZ3bEff/zmBZa3bLJqyKRzXhQSkaYORC7WNXagMVhAiTeI38g/aBgs+SClwtYWL2HDS02Lmz9++zLnHTCOER2rktpu8jfmceX87x2wLcUfbFrOHd/PYkVTTey10Z17ce2wKXx87AxeXTefebXr+X5jHWv8LckXsTeUrDvb7j9hk7/P/Yz3VuefXU4I+OKyX+Cy3V3/MPHwlDbD+3Rn7oqEQOs26g85833YG0pqyMysewnovl8H+vbvygmnj2ToyKq9wroA7U8+OApDK4QQ3HzHNM457Z7s7bCebVeLTkRxIRUrW4DpsSdw22EzNkUK4tkCcj3rCT6Cim4FWmc8p9UcvLqmnn/XzOH1hUtoCobo3bEDTUaI+VuqYzIoohvUbjRQNBey0ECqtrITVBEuCcU6iiIwpeSGQ46mZ3F5ym09qovpVWP5tnYTb25cgCnN2DijRCIKkYgLRZEoipFBBgoCERfFbt0ObDPRDQVf0E0orKGqOm7VxBfyYEqBokhU1SQ5u6ggYmiWn6jHTaOvlJpgwP6MdFa31HLnwg94dtVcnp54EZUFVjaMUlcBls9/9m9sKKImtEr/QahCoV9pFwJ6hLPffpYl9VuT/FGbwiHu/vYzVjfW8/fDj+eQTvtz0ov/IdJKWRC6sFKZtvJHjoRNnpj/rV3HIvcMI5HMXbMRKWVscl1VXccd/5vN92s2EwzrdCgppEdZKRvrm6znU032N80Vm4CUSMV6PtO5QVkpVKXlvgd2fQYZ//IIBTQo6ljMvf/9ec4x7YkIO3VyrjYO7YdDR/Tm0BEH8Pm81W0/OcmkRtKXTIJd/Cq/SwmZHK+UD9UNzXy1aj1PzZnPwo1b8Ggag3pU8t7CZUTMuCNR9SYdubUzWi8fno5WzEYg6CYQii/OVSHYr7icq0YcmfZeVUWV3DzsHI56+ZEMQeISV1EYkaefQ9wIalWJNoSgKexBUTLmG0lL3+KuLKivRbUDqcNmgNlbljCrejEzDpzKhX3Gx9pWeAppixUhG4oQVBV34M31i/n1Fy+nvP5NzXqmf/AEzx15IRf1O5R+hWt4beELyY3SKAvWYclTi77DnaUeQ2sk8MaKJZw6wIpPNEyTxz7+hpe+WcjmhmYUITi4eyWmGo9naxXLneMGEjWS+73z1IdT1g5JCLjit8dwyLi+edx0z6K9yQdHYUhD58oyxk8cyGcfL826OBOAGpHohrW3rpgSGTGt/POawFQlaApRN0cZT7Bg/ZPJEhG9OJbJ2XSTXihEXZZCxKwQd777CWZUMQG2NLQghVUkx3THbykAdIFo0uKXUkCaElSVQ6p68IuDxzKpR7K1ojV/HHIsy5u3srSx2g66tWo9REKalfVCQCRiWRkyYZgqv+p3MoubV/HGukVsa4rvVkUMlZCID940wTQ1VNVA0xI/G0m51oXenv2YWbcs8e2xf5dsDjTx+29e4YkJFwBQ4irgsM79+Hzb8qxZPSK6BkhUNXMWJkOaTKsaxTNLv2Nx3Za0V5PAq6sWc86AoZS7C/h+25aUBqJ12ikbgWBjc3Pu3QjbxCkQVDe3cOI/n+TmU47muU++5825yS5TWxutnSsRFUKKjFtIhXU841pE2qlUhcDwSNQwYCTYmKRERCSuhnArJzWSPxgBjY17QXq8TORjUt575IFDnlx2zuHbpzAAsZRogqSVrukC090GX+7EtWEeSoMEWkJhfvLIi0nOyGtq6q1fWp+vC/RVxRirSpBIzCIT0UlHeiQlLg/n9BvOLw4eS7mndcBvnN5lHfjb+GP57advg5RJiUpVt4FQchpTAOjmLeFnAw7jiZVfUm9UpyTLyJfzqibyyPLPAZI2dAzb0nzXD+8ypKInwzvsD8BJvQbx6LKv2naTNKhCMLXHQIpdHm6Y+3baKcGUkpCpc/P893j6iAt4dNG8NI2s/1rb8qPJLqS0FJO8snhJuOrNd1mxspapg/rz00deJBBOjoKet24TFFkZkdRwG6Yy+/5aIPsZWlMEzZ+wNsjweW6tzuGKu6fSzuTDdsUw3HfffVRVVeH1ehkzZgxz5szJ2Pahhx5iwoQJVFRUUFFRweTJk7O231M4+4LD8p6MFMN27DStRZQWkrh8JqURFUU3Y9aFaLRQrngHQXzBr5hWajyg9QrYaqtbG7XRhaRp+yZGc91HdRPFsKwVre8T7YWCvUusC0qNQp44cnpOZQGsXfqnJlzMdUOOZ0BpV4ywSkt9oRXMJqKLfIWQHSSXOI9Ffw/4XfT0dufsnkdT11yYxrEpZcmJYagYRvLxLp5OzNy8PGOmCUOafLltDSub42bg3gU9MaTMXLlaVyy3JCnSpk2O/v6rA4+kT0lnnl46P8M7ZaEKwXPLvmdlfV3Ka8LIbu0QgEdVM/uV2gv/xPdv9dY6LvjHcynKQjo0n5X1yKrsnOzqIFv9b6V1jXZMYLhB8RkofgPVb6C1GGgBI1YaIiMSCovSBwLuDbS3Sp47ivYuI/r06sSkMf3adI4wJGrAQPObuAIm7oCJKxzP82N4BGknolZILFcPmW4zOcfphkwUDNnPbZ1QQfEpuNe6UfwK/zf4MK4acURWZSHK6f0G8cZJF3B6v0GUJCThUNy53EGJLbg8iovz+ozisG5d8NjurdvjlbLB15DVnUUVCs+s+TL2935F5RRpeUbuZkAAnb3FXD3saGZvXkFDOJCxrSklc7atY31LPd9t3Zz8okz+TNIRNo02pfzVpeTxT+Zy9r+eSVEWEjG81jMXu3MeC2F3U0LK7QxtVT2/vnbuUpq70R5Ie5MPbVYYnnvuOWbMmMENN9zAvHnzGDp0KFOnTmXr1tSCUwCzZ8/m7LPP5sMPP+SLL76gZ8+eTJkyhY0b0xcg2VPoP7Ab084dl72RPfFIARjYi7U44WAEd5NJaStHPmFALC9nGiWgddIeNWKlOFPC9n0M6xoinNCstbtTgiUhOuUrEdJ+cZOW3RKaA2Hu/PQzQrqlYYR0ndeWLOH6D2Zxw4ezeGfFcnQzPtl7VRfTDziEv46Yhu4rsgYgLGuAjAjMkELY76KlxYOuK7aVAHRdobnJSyjg5px3n+Vfiz8HkmMGMs/tMklhUIWCW9FiO0XZmF+7AYCtgRbu/X4OLS3eWIG5RKUgFFIJBKL+AQLDUFql/7Pa/WXYKVza3/L/3NjSlHUeNaRkXUsjarqKzTJ15yjpZQGGkHg1LVVpsCdwJXHON0EE8liDCCBajE2CqoPQZfLzTfzRUcKWRcGyFsjYMc2wBICiS2sSFCLlWU537+EjqnJ0cA+mnRXm2RHsKzLi+iuPxds6q14GVNOqhp7ouielVcfEGwZhu/flWgVHnyQ93To9UavP9Mi1kg8Zr5H2VOsk10YXD82bw5LqbbHXVtfW848PP+f6N2Zy70dfsqEheUf44I6V/G3CcRxXNSDeBUUiwgJRqyFqNQi22jVP+HONr47/9/VLvL/5u6zW4GwIYHnz1qwywpAmc2vXxP7+x6KPCehZyhznwYCyLrw8+WK6FpSywdeQVyDxJn/Tdvvp9ynpkHdb1Ze7DQBSooQNitdHUMIJc1rUrEH8fxGWeOsSavhk+bgMbx4uVAIOHpo9c9ceSzuTD21WGO666y4uueQSLrroIg466CAeeOABCgsLefTRR9O2f+qpp7j88ssZNmwYAwcO5OGHH8Y0TWbNmvWjO7+zOeOssahamrdIiNhs5i1wMf7Q/qRbF0Wfg0htiFsvjQefxtJpGakPSmznqNXFhGnt/rparAxKit5KWYDUgm+J52NP+FkFgo0Bj3w9lwuff5lvNm5kwqMP8+t33uLZhQt4ZsECLn/jdSY99gjLa2uTzn9k4TdxRUIXyBYXpt+FDKqYfhd6owd/UwE+n/UTDHowdGuwEWnyzoYleS34o71NrCJtSJPDuuTn46jan90LK79HItF1lcbGApqbPQQCbvx+N42NhQT8HkxdQw+qdppbgWkqRCIK4bBCJKwyqqIvp+w/jJCuM3P1StxqjgWEhMVbtrK+rjHtZ5ErniJimOznKeHUgxIyXUlLgUzKmCIty5Qic3oqxC+jEUvxpuiWEiCiirAJakii+WTys4ew7u1PL8alkpAiN41yDHDeTyfk2cM9j/a2g7Qj2FdkhNfj4rQpw7Ku8YWAk44cjMcQaWWEaUpM3eTIYX05cnR/1BzO+FKFcHEG60IufoSyEL+EQEhBXU2QMx56mpk/rOCGN2dyzH2P8+Cnc3hp/iLu//hLJv/zUf4285Mkl97NvmaeX77Auo0Byiov6pIilA1elA1e1KVFKCu9EGm1Q2Hz3qYF260sKCiM6zQAt5I7QES1gyqCRoQXV88nm0SSEsygggxnXkrdOOJYOnuLWVlXx8qa+rwsAI9/Oo8DispztktBwIYVdVzUfzidC7IkybCt0S5fflYthEAvUlBC0qrfEH3opS0PdKsQnKfOpKAht2Uhil6oWrGdWdpMOOJAioozpyzfk2lv8qFNCkM4HGbu3LlMnjw5fgFFYfLkyXzxRfZKtlH8fj+RSIQOHfLXgncXZeWFnHDKSIQi4kpCK+kw7eyxrN9Qm+EKFqoiWLp4E8P6dY9Xw9Tth8WwfcENII0C0ZpEd6UUT52cPqwyljIz2/WjfuZzN27kvJdepC5gmVB104wpBFtaWjjnxRdoDMaLGL2xeqll8jaBiJowC8QFgAxomGHFUqxN4tvXxDNIbA+n7z+Ck3sOzRn0JYAxnasAWN64LamPuq4RCrkIh12WMmIXlTF9GpF6L0ZAjaVEjUawX3HQeP7z/XxGP/IAl7z+Ko3Noeyzn4CAT+eWjz+iRE12xZEZMknFG1jPzcqaesqFl/+cdoZVbdMPakhY8Q/R3UXTqsTc1rnI1OLvk2KCFpR4mk3cPmvHSDVt65Zu/xj2c5zJS8plxbGkyCTbLeLSKybTrXtFG3u5ByHz/NlH2NdkxOlTh+Fxp7H4YdUUKS70MKRvNyLhbDFcks++WM7xIwdi5AiAlLY1MCeZZEEOa18urMdZIgICwzT5vxff4Lm5CwDLeqqbpuXiCTz0+Tc88sXc2Lnvr7Mz+JjgrdYQLWkG0qKirCywLOnbt8GeFo+qceWAYzmscz+ULBdWhcL4Lv0BqPY3EzDykEm6glnjxdjmQerxayvAmM7709VdxrkvvcDRTz7Os98szr4+l0BI8NHCNfywcGvK3CHJsSNtguZTeO39Rbx12vmM6dLD2vAJYxVps2UDQNlyrBiafC0Z9uZT1IotsDaSvPWSgjqJp1mi6vG2ec17QhDs5ImdkvwadOxcwpX/79j8+rcn0s7kQ5uCnmtqajAMg8rKyqTjlZWVLFmyJK9r/OEPf6B79+5JAqU1oVCIUCgU+7upqakt3dyh/PzKyTQ2+Jk9azGqqsSyzhiGyQknD+fcn0zgsVezB0UZpmTNulp+/ZOJXHL7c2BYvopEsCZ/O63cwP06M7BvV176amHa60TXqiQqDG2YVEWeD2fUzdVQJIaZXtAZUlIX8PPA13Mo9xQQ0nV8ETsqyvbFTx+LIJFBFTQTaSTrq6YpUHItmuO9BAOC9R5E2M3TW1bwwcJqBnbqyQLfWmQatV0RgqndD6RbYRkABZo7Z4BYTEFAYPjdSMIIt0GR5ubW0Sfyw+Y6/vzxh7GJWIQUZDTAO8XkhCUIA9auvD8URikQ8QI6ImG3Id25Mj7pPzHnW0Z26467QcQmcom14DfVBIU0z3cTiaVw2IHPbVpXSIlWpCGCaYSrEJgeFUWXKJJYCtl+A7py9gWHMeGIbDVB9nzaW9q8H8uukBF7knzo1qWMO68+nd/f8Qo+fxjFthCYpqS02Mtdfzydr79ehaoq8fo+aTBMSZfCQo4c2ocPv1+Zdk2oqQpnTxjCOytWsK3ZlxqrleuLmw95XkMJKVa8nJl9knng0zl0LihgQ0MT37ZsRgiB4rPmsXTulwKBDIGo15Adk4PudKNtDhFSQsDvwe/zgqFywitPM6RTJUKqCKGnt4hKydlVYwAo0PJMVxW9UETBrPWgdA4iFBhXeQA3Dz+e6c8/T3WLXVBNCmSzC1GaZq60r6Nscdtuu5KCrSqBzkbMe0CYZE0J5a63LEAh3eBvr3+Md5OguDoeWW6qEumSFGyVqCGR3rUt7Rglnkbr+fU0GAS62EtHBfKNPi8qdBMIRjBbKcVGoUagUuBuDKMFrXu4PRpTTxjGeRdPpKJDHunE91Dam3zYpVmSbrvtNp599llmz56N15vZxHTrrbdy44037sKeZcblUrnmxlM58+yxvP/OAhrqfXTqXMKU44ZwQG+roJnH7cIfyOznqCgCr8fFgJ5deOB307j1PzNZsaHGWoYa0LG4kCtOG89J4wcBsH9lBXe//ikQ/x5Gd57MxE8scXEZVQayrvQEMlfOa2nvTLtzt5XAg998g2oKFCHQiy0H3eyFhKwFrgyryfYtCUpEJb5FYR/OMBeZYRWzxRU/GcmGliY2tDTh8RYgS/xoipU2T0FgIhlc3p1ze43lzi8/wx8J4xFuy2KSaXfcVn4SGyghD38aO5FTq4YgEBzyxr/sDtmjkwJ8KrLQsJTBxM8oAlqdimIqcYWqRaAKiV5sZf1QWwRGAdY3M/FcO/hdSGG9bzr8/r9vxZSFaDNFt36iNT/ILs9jA1XC4G6RSQqLtNOlZv0gbIvSXTdO48lHPmHBgvUpAsEq4CO49tqTOPjg/XC5VMor9l4hkIQhYwp/1jYOeZGPjNiT5APA8IP2438P/Jx3P/6B75ZsRAgYNbgXkw8dgMftYuHCDanfiTSomsKtFx3HP1/7jBc/+Y5QxNp4EAIOH9Sba8+eTKeyIs5rGMklj73M6m31lguTTM74k/ULn01GRHefc63LE+eBHJNLczDEH159D5dQCHsNzC4STzrLQutb1LmSFQYJZkilrKSMBrMx5/rUNKG+tphIJCowJboe4cvqDYCX0oogqmbEXJwsy7/g+kEnM2/jNp5Z8AMFmsYB3k6sDdZmdIUSAsxA9B4CDBhb3JerDp3IoIpu3DfnKza3NCdvSrVoVsmmkkjSdTBAqfagtCQI+YjAu0lFLzbRyyTuGstiG+6YOrG76gWu+vjBt75dam8yJsgvHdAFpibQfDLvxT5AwTYrPba7yUQNhQmVq0SKLTcl00Nm+QAM2a8LP7/kCK788/Npry0KNbr17cL9108jFIxQXl6EO8/4oD2adiYf2vSJdOrUCVVV2bIlOR3kli1b6Nq1a9Zz//a3v3Hbbbcxc+ZMhgwZkrXt1VdfzYwZM2J/NzU10bPn7g166T+wG/0Hdkv72hETBvLOrIUZd5BMU/Lx58uYfMqdqKqC0AQDe1UwbNj+TDikLyMH9kRT47P0T44YxTHDB/C/OYtYt60Br0vjhc8XWN/HqHJgLyKji1IhbBefTHEMUYVCIbPQkLaLCUAO16Wk8UmJKaW16+TNMwbB3s1GgvArEFaQCCgUiNIIUopYpefEOS2aOSOuLKQOJBSEDmoFY/p0oTrYSBdvCcd2P5hXv1/OtBefQxUCIQS6aSKEG4p0ZKuMHbH5vZVvqm5Ienk7UeRy8/qyJfj1iL0oj/dDmAJaVOuziVpMIgLVJ2IL8iSlSoKrWaVbWTHVsgXhl8iELChRFyBVt+MBhJXmzpQyZfSxx8O0FvxKto/DvpYSAU+DTDJYSftZQMGyhLXeSUoQgEJCcZGHG/90Kn+85gUWL94Us8ZF+cUvjmTSEQdl6czeiSCPHaRd0pM9g10hI/ZE+VDodXPqlKGcOmVoymvjx/bl3n9nj8cQAi791ZOW+6tLoazMzUGDqzh0xAGMH9Kbbh3iWWK6l5fy2q8u4JNla/jwh1VEDINNtU18s3yDNW9kkurReT/T/G9bODM9zjKhXVvRTRPhB3SSilKmQyCSXHtoUWGbG8IqazYYlA5UUTxxZSqlnxKamwpsZSH9QJvqvZx8YBV1eiMmklEdquiqdOGamR/ji0TQFGv+MqREaBpqSSSlXoSUQEgBXUm4sqCl2WBQhbVWeGHRwjQWbAEtLqRPA69hWXV1gdKoogRTtTWBQGtRKAgrKC3WesLVLNGLJaZmzdNai0Axksea9nO03zC9EFx+K+7A8GZRGuy+l67S0UKx3qOGoGiLQchvooYkUlPjLrWtZITLb9KprJjhB/Xk2suP5dYH3sUwpe3hbXlr9OregbuvOZ2yskIoS9+VvZH2Jh/apDC43W5GjhzJrFmzOOWUUwBiwWlXXnllxvPuuOMO/vKXv/Duu+8yatSonPfxeDx4PHtPqsXppx3C+7MXY5oyZ1Et3TARBqxfWcPa1bXM+XIlHq8LVVUYN6I3J08ZStfOpXQtL+HnU8YCEDEMXv7CmnjUsFVdFzvFWUxJkPYisbVSkdgdUyIiIBMtra0UEKFbB4VJZsESJaqE2L8rfmEJq3wsx7ZkEs0qJAoQv4aMCCjUkR4ThIwPw94QSdrRydCvupYQx3UZyol9BwJw0Wsv8cm6tYC9GyfjyggtGpREUFytduqCKrEiGgk0hKy4jW1+n+XSZMoUFyxh7zaRMIkLYVsIUt8MkLC5rgVNCIzoYt1W2pSwpSBkk/WtrmaNTdh6mUnqSfYwtWYTlz/1I0u8hiKtvlixM3HhEn1GOlcU0btnJ1RV4Z5/ns+389fy0ewl+ANheu7XgWOPHULnzntnWryc5JPlYjuzYNx333389a9/pbq6mqFDh3LPPfcwevTotG0feughnnzySRYutNwZR44cyS233JKx/c5iV8iIvU0+dO1SxrGTB/P2zIUZ5UMs0YwpkSGDwLYAX3+xkrlfr+GNnt8TiRh0ryzjxCMHM35UH1RFYdLA3kwa2BuA+9/9gm9XbMSwdytTEmfIBHHQeiKJbhyEsYorqlg1eVo1AbIm1shIwiaJp8ZaWMpo6ua0zSVEN3CaNNgc/6ylrtK4uAJv5wDuTkFUb2pB0EDARcDvydFRwZdravhy+uUIIZhbvYkz//dM7PNJzAIodRWjWaCVhmPDEQIIKZj1reLQgPpAPK6vxp+lxowUEJVl0lL00rvyWu+VHpRoUUu2KXA1/YilppSEiwSeOom/W9QULVLaqH5J2UodLU1KdgBPs0R3g9ZiYHoEhkexny+rDo8WMlEMGDfGStF+7OEHMXZYFW9+uJAV62rwuDUOH9WHscMPSJ85cG9nJ8qH3UGbbT4zZszgwgsvZNSoUYwePZq7774bn8/HRRddBMAFF1xAjx49uPXWWwG4/fbbuf7663n66aepqqqiuroagOLiYoqLi3fgUHYf+/fsyB03nsF1f3mV5pZgVn/V2FfSBKlKNm1tjH1RV62r4bnXv+HWP5zCmOEHANDsC7J2cz2H9NmPr1duwJQSLQJSJzFeGNMFqlugGzKuRCTcKzrLqRFrh0JqtmCwF/1KLC2sdVGJtWiV2b7DthkVGVc01AYVo1wilfQTX2zlD9buTLrdpogKjdb2uiwNI10Ji3uAXL6s9uUenDuH9xYtZ3ldLUtbsgSmS6BJQxRJK6rXBCKZJWOvUmsLpGtxSZtyXmdd7NsvtL6eErayY7Vqlv4S0UxJ0n423ODyKJgBEzPxZPvzUsIStz+XWIVePTuwcWO9rRhFRxI/79xTx6DaFjIhBCOGVzFieFWWq7YfdpaPajQ16QMPPMCYMWO4++67mTp1KkuXLqVLly4p7aOpSQ899FC8Xi+33347U6ZMYdGiRfTo0aPtHfgRODIild9ccTThiMHM2YuT4hzSYa+3EEETvUCwfI2VvnTd5no+n7eascOquO13J+N2aUgpWb21jl6dymMWR2GAjAYNC2JWSc2jEDFMSz4kmBOFGY95Autc05YNSVaFRBNklGyTmi1bEl9WgwqmmkE2xG4lMIsNS7Zs8cSOxjAVgluKCG4pRCuJUDqgwTpsCJqbvXkoCxZbAj5+O/tttrS0MG/L5uyxbLqC0ajh9aqEdQMjoKaVEYoQVJWXx/6uLC5mdX19zr5Elbis7rwivw2jjJgSl9/Kdoe01gxaBEqqJf4KkWRpUAMmRRsNvE3ZJy8hBN0rSti2pQklJFFDcdcEgeWOXVZRyJGT4rFqFaWFnHfyrt3I2F3s8zEM06dPZ9u2bVx//fVUV1czbNgw3nnnnViQ27p161ASNMV//etfhMNhzjjjjKTr3HDDDfzpT3/6cb3fgxg+pBcv/edyPvp0KY/+5xM2b2kirdZuE1uQq/HXTVMSkQZX3/E/Hr7jXJ56ay7vff4DYd20qoCW2TO2SH4QFSEY3K0rd158Apc++SpLqrehYikPMRIFhBTWAj+T25F9bSVgC49M82/U/T+h+qTlly8xSmIHkwcNaM0qhc1eXKUq9SSshlO6IS2Lg8ewztUSt8lyIGHhlq0sCdVgatJyD8o00wrrH7NeQJFAKOlvoSDoXV7B0M6Wa8VRVb0pcXtoDoUyWA6S+yNyZf5QbItRwjlq5rcnpZ0aifdbYP09pGsl65VG6lr8GKb1uhKxJ/PM4RsxVEXh8LH9+O779SxcusmKCzElqv3/tBNGcsZxw/PoZDsl0cqWrU0bSUxNCvDAAw/w5ptv8uijj3LVVVeltH/qqaeS/n744Yd56aWXmDVrFhdccEHbO/AjcGREKm6XxnW/O4Hzp4/j+Ve+5s33vs/aXmAt5A1TxoJcowrGV9+t5YFnPmXA0O7c+/bnrNlWn3xi9L/EBbuEf513ChtqG/jLKx9a18uwQI65IuYg61QctSqk2TeLus6k202P7t7Leg8HuCtZbTZk7YHe7KZ+a5GVbjaUyQUpMy8vy5G1KKFjZlgjHFAws+S0NaXkrEGDY3+fNWgwt33yce4pQKYWVk1BWJt8itn2TWklLCmokcmfR9Ca36eMGcjbny7GVMHUJGrAxFufn2uxlJJtW5v44x9O4La/voWUEtN2N5ISysoKufO26RQU/Ljid3stO0k+7C62K6rkyiuvzGhenj17dtLfa9as2Z5b7JV43Br9+1SyZWOj9c7mqOactINjIyXoEYPL//QczeEwui0wFF3iaoZIcfwMYftZDu/dnb//9CTKiry8eNk5fLJ8De8tWs6qbXXM31CdvDMUfYBzCARXC2AKDE1iFIFRSMynvsLrpcEftNOiYhcjio9V0QU0KxiFZvITZoDmV1AigrAwaAlEss7vAmHtlEVUlKBACVl3Mb3S2g3JRFSRyjUBp0ELWv1unT1JEQJVCG49fEosB7VH07huwiR+P/NdonvvmawqSijH7pF9qxKPm5ZQ2BKcen7iTwknp7pLZOGqaiYO602LHuHLpeus1zXQhIJbE5j+7GkDJZKiQjf333w2X81fzcxPl9DUHKRH1zJOOGoIfas659HD9ouQEpFDekdfb53NJ5NrTTQ16dVXXx07trelJnVkRHqqenXE5w/FFlS5iMYiJSKl5MV3vqX+23mpGXPSbEF7XRo3nDmZQwfsD+zPxIP78PJXC1lRXcOnS9bgb1XhV5hYm0l5uB/FrCEJ1gyXqmLoBtLIfno6ZUEqdmIPAau3NuS1PxT2eQCJq1FBCVnJOsLdzPQWkURMbBek/JWMqEwQiJR+CeCIqgOY0ideD+jswUN4fuFCVtfXZa7nEJVXedSHM13gjijoWTJupek0hdtkirUHLHfB9z9fwoUnj+bVWd/T2BIERSFSCmW4CDaHcj6nqqpw1BEHMWxoL956+3uWLNuMS1MZM7oPR046EK83z2xT7ZC2yIe9gXYQhr5n8cVXK1EUkbPATLZXTSlpbgqiu0VcINjuREo9GJ6oO5HJdecfzakT4jsaqqIwaUBvJg2wfFvX1dVz3f9mMnfdJnTdROighSFSTDwTTytfVjVoCyqsQFvht/Lxzzh2AqeNHIQvFOKIh+NFmNIthBVdIJoUq4KwsJUKI97WlDKnfVXaGpW7TkmyYhCRGG4yCwSBZf2Ixg/kuYMElkVF+ARDD+jKt1s3x14eWdmdq8dOZERl96TTzjxoEG5V5eZPZ1PT7E9WHKK7bBHQWsD0knXMCnDa8IMJRQyem/t92t25dP1WQ5nfRlNKPpq/ijdv+xkhXWfZxm24XRoj+/bA49I49ZcPsa2+JePlTVMybugBKIpg3IjejBvRO49O7UOYkHklkNAGUgJzM+2g76r01Q67Hikln3214ke7Leu6iRoWGOkSSUXnHQH7d6rgmV+fTbE3rphWlhVzmR0fJ6XkyY/m8vAHX9PoD8amJyUEZmF+fYlufpV6PLxx+QWUFXj58+sf8L/vFuesK5GI6SJlIyufs7UmgatBi1ksJBJXLUQ6Z/liSmwLe/7KgojKRyEY1LmSlfX1tIStVX6J2815Q4bxq7Hjknzxi91unps2netmzeTtFcvT9wPQ/OS2UgOqJvjHOSdy00uzqG7MPG8n4vKRVlmI3l5KSVNLiNfv/wXf/rAeXyBMz64V9O3Vmbfe/Z6/3vV25v6ogjGH9EEIQaeOJVxw3mF59WmfoQ3yYW/AURh2MOGwbu1Am9Ius5t5Ekh0R0p9kVbbNxYCYtkKVEUw9/t1SQpDa3p1qOCJi87ku9WbuOAfz8Uv7wejgKSKoUK3Fp9KQhkBie3f6lXQIyYdCgroUFDAb8Yfxl2ffmZ3NXOgFgYJmYESMG2h5G39QvL5SoCk2Aqwqna6GiSRcjOxcVxQhkD1C3BZ5wgDKxg702LdFh7RewhT8K/JJxHBZKvPR5eiInqWlKXvJHDygAM5od8A3l6xjN+8/jaGPWBh2K5CQfvaYTDdrfqRIBEVITj/kGH0rCjnyoljufu9T3nt88UZ7xu9Ry4xY0rJ54vWcMr4QfTsXJ702vknjeauJz5Ie56qCIYf2JN++6f6zDtYCFMiciyKoq+vX7+e0tJ48PfOCtzNN321w+5Bj+SXgk7C9lV0jp4vYc22erY1+ZIUhkSEEFw4aRQXThrFJQ++xJwV662Md4aVmjTnLn0CvlCYLiVWzMmvjjqUT1esodbnz19paOW+qvhtpSXj/SVSAa1BtU8Xsf+1BgXpkujlaTamTFBaBFIVqcHh2YhuWgnBwM6deeaMaSyrtWLj+nfsiDdD3YYOBQXcd8KJbGlp4VdvvcmcTRtjln4lYm/4mLk7IbA2lCYe2JsJfzyAz5at4epn3qHBF8w6Bi2Q/f03TMlHXy/n9xdPZvTgqqTXjpx4II889jENjf60MTeGIZl+xr4Rj7A9tEU+7A20w7D03Uuf3l0wDDM5f30rJJaZStFNhJ7u9QQzdBaFwzAl3y3dmFe/3p63NGnnQ41YioAaAFcTuJuwsuW0kmUCa8FvGJKeHeKL5ivGjuH2Y6bSq6LMXnCn8a9KvEgU04qN0ALxnY+050lAj/rbp7FgGAJ3rWKlk4u6RoXAvUXBU6ugBhOVLGEVPItet/V9pGUB0HzW+1GoaXQoLKRnSRkju3bPqixEURWFE/oP5NIRo3AFBZ46gadBoAXjQd2KYSlJsSB0+/5aAApqoGSrwnl/eZprH3+H2nofU3r3zV5sT5Lf7oSEV2d+R12DL+WlM6YMY/qxI+wx2P20/++7f2du+uXxedxgHyaaBSPXD1BaWpr0k0lh2BGpSd97772c6asddj1CCKr27xSf1jN8t6MyQOgygwzBsrLmwcJ11TnbNPgCfLl8XYLLTUL8VJ7rmW7lcWW4S2kxz116NscNGmCFj0UkIkO+eQlJ2f3UAHhqwO0DNVOSIfsk1Ze+gwKBe5uGZ52K26/G5kq1XsG9SUNrUu1EHfmh+sC7TcFTI8AnqSorx6u5GFLZlSGVXTMqC4lUFhdz93HHUeJ2o0YE7iaBFhA5lQVhgKsZSmoVZr2/hDNufJLnP/qOQT0q6a4VpR1/EhmsC4k0NPp5/6PUzSmv18XfbptupTslvhxRFIGiCH4341gGD9ovx9X3YdogH9rKfffdR1VVFV6vlzFjxjBnzpyMbR966CEmTJhARUUFFRUVTJ48OWv7TDgKww5m3Jg+dOxQZBWCiSoDUfcb++EQEpSQiRowcTfruJp1yyJBfEPHzNP2s7WuhdsffA9/IJy1OFBTIJj0YAosM2hrBSEThS4Xkw/qm3Ssq1LIfi2FFG0VFNYICrZZE1vKIjZ6W8NamEdrAwgpcDdYE2KsXdSfM2i1zWamFQjUoIJno8oEdy+8tSqqnXVJRBfT0euZwvLzT3yLpLWA91aDyydQA6D5BGwxeeHL7EGJmZgx8TCmDR+c7E4kbbckn6WYeetBawZvSFAZ9uKpBy0iCEcMmvwh3vlmCefe9jQz/vUaaqDVe0jy39nypie8USxbuYWfXf80DU3JElgIwa/PP4InbjmfY8YfRFVlBVVdKjh9wmD+/tvTKC/N0y9hHyWafCDXT1tITE0aJZqadNy4cRnPu+OOO7jpppt455138kpf7bB7OO3EEalrBEnS/Ie0LZQhieYzEZH4hCIE6EVkrfibyANPfMxX81bHAlLT0RwIpRxTDGuXP98d+LNHJiuoRZqLHr4CKteolK+UlC+XFK81rYJhNtHfTNsC7GoGd7NtnMfaVNISN5YS3h9XkzWvZ4sNU0MK2iaFA7aVU76tALdfI5qcQ4nkMTAJBesFJWtU3PXgroPC9YKZ7y9lS0N+LkGJdC0u4cnTzqBQtBLwtmx011s/qh8woZO7gOJ6Bbcf9IhJMKKzenMtf33uQ07646OsW1pjy7U0n6t9zHTnkBFSIg3JTXe9yQuvz015+YCqzjz1+KXM+NVUDhrQnR6VZQzu343rf3cCx07J7N3gsHPkA8Sz6N1www3MmzePoUOHMnXqVLZu3Zq2fTSL3ocffsgXX3xBz549mTJlChs35rfhHB9PrsIBewBNTU2UlZXR2NiYZNLfU1mwcAO/veo59IhupaJUQCrCMj2ZoBjJBbeiu0mRUg1FUTh4UA++X7kJPfrRZCmqIgxQDSvwSDdMCgvcHDPhQM456RC6d4nvjN//9uc89P4cTMO0goGldU/TJaydLENaxwUYLpKEkQRuPOtoTh81KHbs5S8WcONzM1OCgyWW+4/eUaAnRHULmTDxtzKzS6w0r6bLel0JgxIUmB6smhE55nUlYG9OtQrSM9wybYYnibTiKgxw1wuUDDe4bfoxnDj8wLSvZaO+JcD4mx+IWYlcLZbwlcQ9pwTQqaKImjp711/KeJxHVL+MpjbUBLqX5PdNt64ppFVbw6q1kC7g2nrmXH4rs9H0Y0bwf+dPosUXYtaHi1m9rgavx0VTY4B331+ANCWqomCYJqqq8rOLJjD9zDFtfg/2ZHbEfBK9xsRx16Jp2d1+dD3IR1/c3Kb7Pffcc1x44YU8+OCDsdSkzz//PEuWLKGysjJratLDDov7Eben1KSZ2Nvkg2GYXH/L//j0y+V57d5H5wvdI5AuhQN6duR7sy4/hUFKStcYKKa1KyylpH/vSs44YSRTJx0US+DgD0UYf/2/iBgGQpfWIlRYVoxIiRXN7G6x5ifTZcfAJcw3HYsKeP//LqbQbe20N/uC/PzaZ1i3uT5JSYn+FuyhECqxj7msTNlKCDyNGYYh7Ng9JcFSK6wCZHnjsmsYxfoiCXfMHhxdsF7gbkxVSlRFsF+ncl64+jzcrrZ7dl/333d5YYW1o68Gwd2Qvl3XimJqGn3p3bqktGISQ5JQqbDei+hnYlqfoekRKBFJ4ZbUIp9J47HrJaiqwiuPXUZZaQFLF27k0w8XEwxEKC0rYPZ7C9m4rs4qygmYhknv/pX86c6zqexW3ub3YE9lb5APY8aM4ZBDDuHee+8FrA2lnj178stf/jJtFr3WGIZBRUUF9957b5uy6DkxDDuBwYP244F7L+Duf77HggXr7QBc084mlIoAhAlqwEDRDQpDoGkqZsQuXZ+ufHvUdGxYv0azJvgDYf4383ve/fQH7v/TdPpVWf7nJx1yEA//70s8gWSN1lQlphIrumxZHgCpWNWGTQ0GD+iepCzUNvv5ywuW33vr1HwCKxZiZFlXZpw0gTcXLeU/c79DNYkXloveKHaOleY1MauRsBf0MpulN3HHKfp3wnWVsK1EqPbvwtptEYrAK1TMBiOjsgBwz3ufc/zQgTEXnXxZsG6zVSDPYwezJcSEJP5fU+ezK3Rbk7tiJg8hajKXSFw+EVOIotYTq5aGQIkKk9bPSbTSZtASFqYp+d8HCzioZxf+evc7hEI6mqpgRAsO2pYwaT9Lum7wwEOzKShwc9IJw9v0HuwrCPu5ztWmrTipSdsvqqpw4x9P5vW353PPgx9krNkTJTplqmEJhsG2VbVMnNqbj1esye7NICXuJhmz6EYX7stWbeUv/3iL+YvW84crpiKEoNDjYvKBvZn90VI7o5t9CQFGnbSs0QkywlRAL5AYHgiXCh64+JSYsgDw6ItfpigL0bEAFFVL/u+0iYzo3Z1Ln/8fjYEgml9mDDMTMrkejT08y4qcZ5yFjJC04hEIXI0KkVIzvlGjWm0kUB72YDRG0lowDFOydms9789fzvGHtH1TafmabShBSz5FlYV0Q9iSJSEFQljKlinxNkpkExgua65XItZn56+0/pcivhEVu48tLyx3MeuQaUpee2c+iz5cxvyvV8fq6yQ+o4m/r125ld9e+hgPPns5hUV7TzHFXUVb5MPekEXPcUnaSRxQ1Zk//+k0NE2JKQTZ5jSJZX4WJsz/eg2njxtElw7F9jdcpPV5UyLEMjckYpiSQDDCtX9/I1a58sOvluPyp5q/hGHFMyT6OUb7q0TAFYDl32/mfx8viJ3zxteLMWT2b8H6jfUM7d6Na6ccwYNnnkxVWUX2NywNSsTaSXI3gLcGPLW2m1KCG1W21KPCFHhqoWATeGsEBdsEhZugYItAW2/i9gsrlV0Gobuxvomlm7fF/m4OhPjqh3V89cNamnzZCiRYLlEiFK95kAlpux5EJ42kzyD6u21JUEzbqmBidVoSm+yFXUAvXjLWUkJcvuTc24GWEH+5401CIUsb0Q0zufqsIKUa7WNPfoqu5+m7tq+xE31Ur7zyStauXUsoFOKrr75izJi4pWf27Nk8/vjjsb/XrFmDlDLlx1EW9kw0VeHUE0Yw7dRReW1IRGPJhA6RsMna2es5bfSg9HOL/bxpfklBbeo8Hf1+vzlzAR9+thSAukY/i+dsSMm4JqSdZEOJ9wOsOcjlA08dlK6V3H3fTOptd8eIbvD6rO+zushKQ1LqVxnaoxtvXHI+lx02GjXPNNKxvkGb4hDSoegCd52Cu1HF1aTirldx1Sl46lUCjTrhTsKyfKe7v4B35y6L/S2lZNnGbXy2eA1LNmzNWNU7eq6n0Y7jo23jbo3pUTBV+7MKg2oX74wuVgvqrU2yWFxkdE4yLcuCGolbH1QBb//3S76fuwawlIMUhTZhTjMMydbqRma9vX0uvO2eNsiHnj17UlZWFvuJWo9bky2LXrToZS62N4ueY2HYiZSVFnDSicN55dW5OS3P0V0ksJ6fLz9axktPXsqcBWtZuHwTT781j0DIitxV7DzZipEQSCYs96LoDrNpStZvrufbxRvos38nHnzps6z3jWUSSjgexTAlNz/+PpUdShg7qIpVW+pQhMDIMiE2+IJM/e2/afIF6VBaSN9+XVhHfWYTvGlli8De5ZESVB1cwfiuiAArxasfwhXWLpfItI417VoSUrQSgAJhKwmKbu2aRU3vhpsUd6kPv1/B3c/MZvG6bfjt+ggALk3lpEMPYsYZEynwuOz3yeT75Ztorg+gmQIjlmYkC1JmrReRKTbSssrIpCxJwo7ZUIJmxp0ALWgihEi/hhXCsmDopp2D3bpyQ4Of7xdsYMTw/bOPZV+ktZUrUxsHhzSccvxwXnl9HqGQnvdjYkpJU1OQwzp357LrxzHr++XMnr+COYvXAdamgrvZRAtkd0NRhOClN+dx5PiBPPvWN7EFfwr25JtYV6G1oXjZ6q384Y5XefCms6lr8OEPZq/vIhTBf179in8+ORshYMRBPSlyu/GF8ihGYCNFDgt0nrS2IAhDEA2+1vzEUoy3fi+lhNomH3e9+jHvzVtKbZOfSMLiunfXDvz2tEkcemB83tzS0MKS9Vvo3rmM5Ru3QZaU2HkjJYZboCRkQ5LWwCisSdjhFgIUaWURjGR4NkIGdVua874vwnr3PnjrO04845AfNYx2SRvkw96QRc9RGHYyP7/kSOrr/Xw4K3t6zNbPVHV1I35fmEOH9ebQYb2Zv2AD3y/ZFHMdUYJmzIUlihKWGLafK1g+q0tXb2HNlrqshV5iykomezCWcHnszTmMHVRFoSePWVpCXXMAAWxr8LFt3moot+8V7bR9Y1eLNTknCiEpogV8rB1yxYi/aGjgbhCEi+IeOK3fP9VWCjJOxpZMsBbW0lJW1BBEipKF0EOvfmXFCZjx81AEEd3glU8WsnJjLQ/OOINZc5ZxzwufxGoauADhBtOV4U2VMlZpO5fAkNhCK6rMJLijJSlDwrI4ZFIWVGEpSVlrhEiJVASKIe2Ug9YdfL7UoEgHEKaJMHO4lOR43WHfpWtlGXf8+Ux+d/0LMatfPqiqwuKlmzn6iIM5Z8JwDqzoxA+z1rTp3qaULF1lZeJ67cMFWS0C0Zi3RGtlbDNDWptKC5dt5rslG+nds2Pue5uSrXVxd5uvF6wlWAyiKMNmRmp3MBUSJvE8zmmjP4VU40lB0nVJEYIf1m9h8fotaV9fvaWOK//1Cv/4+ckc3KuSW56bxQffrYy78YodoCyA5ZqkJrtziWinzaRmCKHgMozMEsAXQVEVzDYUhpMSmpuyWdz3XdoiH6LZ83KxI7LozZw5c7uy6DkuSTsZl0vlumtO5txzD83aLt3EEfUfBDh24sExE6cSNJNcWBLdV9SQjGVnklLi1lS21rUkpVTN9/6JmFIyb+kGfIEwk4f2y55bW2LXNUjAsBfxkJS9yNUcVxaS+iEtBUgJWWbWqNuOMMAVssapRmI2GZSQxFsvUQO2QhXOMSaJZbe1rTTRaouJRW6UkESJWK49UbcfVQclYt3DlJL5Kzdx639mcv0Db1FT02xlu4p+Tnrq7hWAMCSeeom7ZTu2nqO7OrrE5TPx1Oh4t+p46nT2Ly3lsMFVKGmCnxUhcj4Dsf6JBIFj06NH213K9gmiQjnbj2NhcMjC0ME9eenJyygqzDNPqk3i93nIgT3o1KHtwe0uTUU3TKvCby5yCAlVVfjk6xWUFhcw7MD90s5DSSR8LwxT4vZLZJ456QV28HM+Opa9yVa2IkLJWh0llMc9hBXvpoRNXM0Gmt9McS00pbSm+2y3RXLzszO56I5n+fSjpbhqI6iBZP/THTI9ZEmMEv2RpuTcY0eiChELdk++hKBnt/JsmdzTXl9RFXpWddq+frd3doJ82J1Z9ByFYRdx/vmHMWjwfmn9VVtbrRRFMGBAV4oSgoimjB9I756dUKTlkpQ2MCx6ftiakKSEscMPoGNZoe0e8yOQ1uL5ndkLUYOSYVXdUE3Q/KaV9i+WQtb6T01jkdaaiS3kNQQiZAWyZRpLYsqx1oqRMCxzMVh+rAUNVraJgjor1iFrqjIpUUPSStln+3yqQUsJwZS4myXuOpOCGomiW8pEUlydJJbKTjUkb81caCkSMYXCUgqEIUmRKFLibrQsFqpuFdXJy10tenMTtBaDwm0GrmYr45ViWmPYurQOl09y5Nj+1nkiXluhQ3khd151OiXFeZggZVSfktaz2L8rvQ/onPu8fRAhZV4/Dg7ZKCkp4Lrfn2il485jxWYYJqNHHhD7W1UVrrhoUpvuqSqCCWP6oqkKxYV5uD/keIyFYbJq2RY+nP0D06YOQ0oTNWCgNUdQ/XpqLE+rYSo6FDRamxs5lQ37/Ghmvcx9tl4sXWNQWC8pXm9S+U3Coj0DrkaDLl8H6bAkSNnqEBUrglQsDeJu1BERScG2CMUbwhRWZ7+WNCUtC+vwfbiJklVBSteG6LAkQPnSAGrQtKw2uUeaHWlveuVoJgQ8//63XPyTCZSXFQDWMyBsT+ZjjzyYk04c0SbrAljZko4/3UnjnI6dJR9mzJjBQw89xBNPPMEPP/zAZZddhs/n46KLLgLgggsuSAqKvv3227nuuut49NFHqaqqorq6murqalpa2pYa2HFJ2kW43Rq3334Wjz32MW+8/i1B28cz6VFJiD84a/rYpPM9Hhf3/OlMfv7b/7LZ35A50Je4z+XEsf3oUVnOUWMGcNdTszMGYcnEk9OghCRa0Kof8feHPkACbo9KQVLFUonuhVC5gtBF2swAAsuicMlpY9nQ0sSCJZvY2NiQ/qZRt5ss41TDoDVL3L7Exbz1d6iU9GkHpZ3xo1WAnQAr7iEok4OqAQwwNRm7XtR1StFBDaa+pwJiQcha0MomEg1eV0PxOhRgWUt0KZFaevu0ECANaQUvS8u6oYZlRnerr75ZxYVnH8pL//gZn85bSTAUoXfPTowbdgCqonDS8cN45oWv0rsfxFyd7P+FwO1SmfGrqWnu5ACQFGierY2DQw7Gje7DnbdM48HHPmbJss0Z26mKYL8eHRg1vCrp+OQJBxIMRrj9vnfzvue0E62F3gkTB/Hs26k5+GOI1E2Y2J9S4moxUHXJd1+t5ruvVqPoJiVhEzOhfoRUINTBjV6c2aVVCUr6ihKOOW4w363ezMeLVmUOe4teJttK2YAOyyK4AvGmJlBYLWmukml35l1NJl2+CaXIMCUsKV0btqdyEetX4TadUKlCcy93iswpWheioNZI6aLmNylfFqB+QAFoyo+bI4SIbRJmQ0oIRwwe/t+XvPzPi1n4wybWbqilwOtm/Ji+VHYupbkpwGP3ziISzt897ohjBjNybJ8fMYB2zE6SD7sri55jYdiFeL0uLrvsKF586f/4042nUV5RBFgBYAiBqlrTyk9/ejgTJw5MOb+8tJBxw3ujqWk+tlYR9wf17cYfLzsGgA6lhRw+LP0XWtr2DammfRklJHEFZExYSAAB4TQTiisEBVtNlDTVq6MIYFCPSv5y5lTG961KP5aEttkQkKwsmNKKRYjYKfjSfFGjbkXZLDRR39JEq4KiEyuuF20bLemeUakxrTZawLKsYEqUcKpFQQ3HF+lJfZYSt6ri9km0iN1v2+qS6Z5SwkuvzaNzRTHTjhnBBSePYfyIPjH3hXOnjaFq/zTm46iyoMetKX36duHef5xP/37Z/SL3aXZiliSHfY8RQ/fnwbvP5+mHL+HYo61U1lG5ELU8dOlcyu1/PiOttXrCmH5prysTfqLXuvF3J9H3ACvt9tnHj8y8qx91q5DJh6xfJO5mPWnOFxET4dMxIsmLWGGCtyaM1pI9dVyhy8XFR4/mz+dOybqWMlWyCwkp0UIypixIQPco6MVqzPU0HeVLw2mzGibHByRbnd1NJsUbWgVsS4ki05eVi24qFW6NYCqQo9hzVpRw9sQZyV2SBEMR3vtiKRPG9uO8M8Zy+gkjqOxs+c6XlBbwm+tOyu++iuCiKyfzuxtPzcsqtk+yE+XD7sii51gYdgMFBW4mTBjAqFEH8OGHP/DJJ0sJBCP07t2ZE08YzgFZ3D+qenXETHAvErqJGjJiCz0pQBS6uGXGCcz7ahXNzQF69OjAaZOG8PFXy+1A4viXO1YbITFkyvaTR0q0QJqHWUC6mVrai1k1JDG8AmFY5yt6zMcFRRF8/cVKvIZAg+yxEG3BVhaiaAGJ7rVtAQnjVcNJI02LbJV9KWpREAYpgXM5lRo7UZInDGaQtGkABVbAtdQlpgukrZ0pEZg2aQgvvj4vFqicKWNHIs0tQb76agVuRaGktIABB/WILS4KCz3c89dzuOnW1/jym1UkRo0rumlZMRRBRUUR9997IZqWQZN0sMgjEVZK5XMHhxz06F7BVb85jjNOHsXrb3/HqjXbKCx0M2n8AI48fCCeDIknSoq9lJUW0NhkrZIlYHgEhkdYu9/SKvR46uEH0617Ba99tBCXpjB60P706dmJ5eu2pb1uSkyajRpqVV9ISpSANcll+lp46sLoxdbSQw2aaH4dzKhrhsBbGOS1F+bQd2A3PJpGSN/O3Kki2SxieBRMt7U5p5hQsA0CyZkpUQMm3oa2f2EF4Gkw8Xc1Md1xIWFkWWEJwFur4+/psRSG7RCFk4b2Yc6XK8k/x5bF1wvW0q+yA4Yh6dO7Cx06FMVeO+q4oZSWFXDj/3uWSCRTGkK48qrjOf50JzNSVtqZfHAqPe9ltPhCnHrufYTDOkrYQA1YX+joMxldTApFWAFk9oKwslsZtUXQ6AulFACz5iqrIjWGRC9QQLMWrJq/VVXqpG2W9JiqleLV09hqhynxOliLb38XNa1ZGClTTOCpbYi55ihhmZI1yFQhVCKQLhFTglwtMpb5IvN107eRYAkc+3dhWjv/ma4hJaDCfvt1YMPGBuu4IbPX5EgYc9dOpfzzujM464pHYseELmPKYTqEbqL5IihG/EJdupbxsysmM+nogxO6J7nvvpm8/PI3qAlZMYSA0tIC7rzr3KyK697MjqzkedSg36Op2f2/dSPErIV3OPPXTsKRD8k8/PSn/OfFLzFMSaRYScp2BsQ3hBLmS1URDOrdjQVLN6a/qO1aoYSsCVeq1sLb0xBJnqd1E82Xe4Ef7OzG1ayjhuM526K+3CLBFNJ0gBd/V1daGaF7sMeW4SZS4q0xKVtnIAVEipNljQQCXcDfJa5MeRosd6S8aNUnCfi6uwh2imsJJauCeBuyC5yawQUM6FXJyg01bd5A+/NPpjLv27W8+/kP+Z0rJa4WE09QYtoyQlEEkyYO5Je/nEKZHdsAsG71Nv7fzx6lqSGebldVFQzD5KRpo7n898e1S8uCIx8y41gY9jKKizz84dfHcPPtr6coC4m/t842sbW6CaNARZRpqfEFUiKEwNUQQQ1ZL0aKVAyvEvO9TyLHHOGWCrIxtW+QYBLH2i13N5uES9W4ELNRVcXaTbezEaUgE7oiU5UFsIKQCxokpiatnR4hEYbIuUOfCyVs4vKZsSxNhkexdvBsq4zqN9H8ZixWodhrMq5fT75Yvt5yAszDSiAEnHnccPbrVsHJU4by2nvfxZSsTE5cQjdxNYVTrru1upFbrnuJcCjClBOG2dcXXHnl0Rx++EBee20eq1Zuwet1M2nSgRxz7BBKSwtSru+QBjOPUp5OWlWHXcg5p47mi29W8sPmmlRlAftvCSgg7c0Lw5R8v2IThV4XobCeJsbJmmNdTQYKYCj2ArxVs5ybPDbuJh1huyzFXUHtzRiBtbECFG0IEeygYbpTx6Ho2XfwEYLCbdY9TFfqbCuAwq3grZFESiSmCtr2ZK5LvKYpwZB463Q8DTrupjR5aFvR+YcgQ3uVsIE6gsJML+/SUFLo4eiR/Rncqysffr2cUCTd55aAlLgbDdSgTNrUNk3J7I+WsGLlVu6794JYspVeB3Tm0Vf+j/de+5aP3l+IvyVE7/5dOeGMQxg8Yv92qSzscNqZfHAUhr2QyZMOYtG8dbzx0je5G9sLcSklWtCgT88O1BKhwTZZW23A1RxXFgDcPoOwAOlO45KSbbUrJV6hEBKtKgjbxE4zJKjCDuY1CEd3wmzGHNiLMw8fwu/vf92aQFvvkEV3oezj2aYuRbdcgaRiBcrlyqCUzror7dc8DQbuFjPpuBo2MP0QKlNxN5spafvWr61h3ZoaPBqEO7iQKqkF51rdc8zQKqaMHcCGtbX8/JzxeNwaL739LYa0dsvSBT1r/uzFku7/+7tMnHwwHm/cnWHIkJ4MGdIz63kOWcjHB3XPN+I6tCMKC9zcdeM0jv/NvyFThfaYnyWxuUcCvnCEoX27s2DZpnhb27LgbooH7yomeJpbZ4dIsEDnQIlkWSRJaSkzhkSNQMcFPpp6ewlVaLH5vqzAy6VTR/PlsrV8sHZt8oaT/XvxBh2X7VIrsyxuFdOqumydKjA1kdWKm4noW9lhoT8lqYZ1cdIKKqlLPnxrAQWA3sNNuFxLVfIS+ytAVVVuvfg4arc241VV7rvmTG64/y3WVzdkPi9iJS9Jh2lK1q+v4/XXv+Wss+IJV0pKCzj9vEM5/bzsaeEdMtDO5IOjMOylhANhVFVgGPk/bKYp2bx0K088fwWLV27mpr/8zyqKFjbTWgI0n0HEpbRarJM9VF5CMMfCFSkRpkSEDUyvissPmt+wsl6YVhag8Uf3YNYbC/CuDxEuVgiXqFblMcOqP6AGJeFyFanKWLey7thLaQkNKYmKgtQJPR4nkA41ZCYpC4nXEAZ4GgxEGkERnQ/UiKRgUwjpEpgugeFWoECzFSJrED27lTNx0AGs/XYD5xx7l3WeqnD40Qfz75vOYsXGWqq3NvHa69/S2OiPXVuRMmuwOYDfF+Lzj5dyxJRBWds5tIF25qPq0D7whyKEMykLWVBVhf3368gNlx3Ldbe8yooVW6xaNK0uFQt7i/0RvYCwXFszuV1KCYpAUUXMJSaFmLyxFltqGCqWBDDcAr1AQQU6qQYjLujKI7fNpKxM4Ouqottu+K5mSVG1jqcpPq9aCSqyf1Glfe9wiYanPpJdpqRxR5KqpLA6jJrNIyuT0mC7fJWsC2FuCmF4FCJlGpEKN7oWV0ZcqsLk4f3oGFD56zWv0mRv/HXvXs4F08fSrXdHVm2o4etF6/hk7kpURcRclaIpvDPv9UlefyNZYXD4kbQz+eAoDHspVtDb9kVKtTQF2La+Hi2YvfqzkJbPvGxtzpX2P613Qex80Pk6/AgDlKCBWaDZaVLtfNImPPzYRxhBA0WCN2RQUJtcndJ0C5Q60AssISJVMgbmWTcTuBt1IoUqhpfUt02I2K6/aGXREAIOPKCShiV1NOJPPk9KK2APEFKQc19KEahhEzUgceuWeX/SUQdx3GmjOHh4LxbMXcu1v3oqybRsGCYfvb+Qb75YwT8e+xk9jhrMWSeP4u33F/L+h4toag5SUehlxddrst9aEWzb0pi9fw5tIp882k4dBoddjce9faLdMCV1jX56VJazeXkNWj5FziAheE5gejUUv566OE1IpiHbkhbIPk8NS9SwNUk34GPGr/4DgLdeUlCfqX69dR8lLO15P43caoXpVgmXgbspQqwmTZb2iiIQimDcpAF89vai/MeV0lVLnisRiRoxcLcYsDFE1+7lnHj6KCYfN4TiYi/XXPMCb81dm2TB37Spgbv//g5nnDmayy47imlTR7Bw+SZefH8+C1dsxuPS0BU/2wLZ5/+amrbl5XfITnuTD47CsJcybnx/Xn8lS97sKGkmx/LyQhZ9vQalOWQFsLlUy/UoTVvvJh8lvSuIFLupb/RbKkrs+U42Awtd4m6IYBS5LCtElolZRBfZBtZOkx1EF13J62EzJX1owr6TlZ5Ulbj84PJbykSkSMl4X61Jx1MfxtOgYNpWE0MF02tVzrEmaYnuBr1Ijfm8VpQWcvZxI5kw+AAuviQefGyZ6Q2UkBFPOSssYWNmeC+jwlIJRhBGPL3qR+8tYva7Czl00kCW/rAZw5Ap7lymIWluDHD7tS/xj8d/RlGhhzNOHskZJ48ELLeni6ffn/H9BsvCVFZRlLWNQxtpZyZnh/ZBh9JCBlZVsnTt1oz1d2JFCRJQFUGXDsVs2taIz2Vl/BGmlT1IybC/JATsX9WJtWtrrK+DS8EsVFECRurGjG1NzZlrJcfrJmDYi/+YlTfx9NZ9xBqDUZg561vi+aZXJehRrHi1xkiqG2uC4jHusH6cd8F4nv/v5yiKyB5HgLQERSbRmCADo1RvauDhe2fxn4c/4vhphzD3mzUZr/7iC3MYPbo3I0cewKB+3RnUr3vstZtu/h8fVTdl7Z8Tu7aDaWfywanDsJcycnRvevfpEsvRnQ+KIjjowG78+qx/8c17i1CCOkpAR2sKodUFQE+VCMKU+JbVMrSohH/eOI3eXStQIoaV6cfAsgjoJprPwFMfQdFN1JZwmrvbRN1+IlFXIplcg8AkwVKRnpiASMz9LSWuZiu9bOIXUOgmnm0hvFuDKBETJRBBawiitoTQggauFgOXz65GWh/EuylA8fIWile2ULgpyIwzJnDBiaNTxqD6dZRgskAUEpSQgRqIpJ8EpLQCnKKF0WKHrb8//2gptduaswrTpYs2cstvn01KrQvQc/9O9OnfNevmmcutclia+h4OPwJT5vfj4LCLufikMZnnEkla47RhmDS3BDnt1w8TLlLQCxUixQrBzpoVZ5buUiasW1PL7bdM57JLj0BpiaD49eRFdmI/ovfO2DeZGqPVuq2dujTjujvNeWpEovpzuGkZJq66AO7qFly1ASvuzatCREfZ2oC2YjOu5ZtQV1Ujapvo1KGQG28+g379u6bd6MnYszZOCVJKQkGdF56fk8tAwtVXP8/SpamF/46efHBWZUFRBMccM6RtHXPITjuTD47CsJeiKIJb7jqbXlVW6ktVVSzTaNKWvEhqrymCdd9toK6m2XqZhInVlGiNwfjDKyUiYqDYf3/9yTKKVY1fnH847oYI3s0+CjY0493QgndrEJffQJgSJaij+iKIsJmqXdu/K6F4zISI+peaErUxhKvWj1YbQPWFETlK1MdiDWwBo0jwVgcpXNuCd6OPwg1+itb48TRGUKRE6IZVa8C0rAOuppClPDRZxYSEES/Go4RMXA1hFny5GoDu3copLHRb99UlSsRMfv+ifQIU3VKiUjssLItEpgHls9MgBB+/t4hXnvw85aVLrpxs7bhluMF5F0+kuMSb+x4O+ZOtGE/ij4PDLmbiiL789rwjUBSBIgSKIlATi721ijMQQJ/9OjHzy6X2AZH0oxer6IXplwymKbn/X7M488wxVHYoRkR0RIsf0exHBEKWa0biCdG5vbV8iP6dbhEV0RFNPkR9M6K2GaUllPW7lS5GTQlE8KxvwrOxyTo/AVdtgJJF2/Cua8JT7cO7oZniRTVoNT60ddtQGv0x9xHFMFFrm2n5bi0NtjwdcGC3dHfNTDqrRZbxSCnzKhxs6CZX/eE5AoHkjbtDDunN0CE90xb8U1VBeXkhp54yMs/OO+RFO5MPjsKwF9OxUwn/euxn3PzXs5hy3BCOmHwwP/35Efzi/46mQ6eSpLb9BnRl8sSBhALhtLsbAqxKxEE9tgBX7eBlYS+2b/nlf5j1ny9wbWlGqw+gNofRmqxFvlrvR0SsaC9FgtYQRvHr8XtJCYZEDRgpwbkiqONd34S7LogS0C3Lhy+MVutHBLMEUCf6R5kSEdJxNQRwNYVx14fRgqb1gEtpWU9k/LSYwmJKlLBhKUit3w/g3Ze+YcPaGjweFyeeMNwSvqHsZXIkWNdMOmgpRUqWQjixdrmQ8PLjn2K0UqhGjO7NjXdMp6JDcdJxr9fFz644irMuOCz3tR3ahjQtq1G2H7kXRbU5tCumTR7Oa3f+jEtOHcfRowdw0uGDuPkXxzFhaG8S140FHhfnHDuSDdX1Wa8XyWRlAFavreHv/3iHYDCI0uhD+EOWstDsR9Q2IkP2XC4EojloWVpbr4DttKStrQui2Y9S2wT+EIQiKL4Qro31uNbWxpWPXAiBZ20t7s2NuLb6QVVi99bqgxSsb4opUYk/rqYQqFrazSEzGOHfN7wEwDEnDEPTfsSSynZZzapy5Lm2bGoK8MEHi5OOqarCLbecycSJA1M2lfr168o//3F+UgE3hx1AO5MPTuG2doqhmyxetIGW5iDduldQ1bszPz32Tjatq8t4jgSkpmAWulCDup1T2oRAKH0qUi3uqy/BypBR4LbqDKgK0qNiKtbvib6m8Rta2rVW6082QUsZv6YQGBUFSFeq76nhFlYBIcNyYfLU+OKWDQDDUgRQFKuvWvrYgtjQ0rymqIJTzh7Lz//fMQSDEX5/1bMs+WK1nXUjM1KAXuyOX1dKlJCOGsxR1Ci6o5f2oraADUYQwMNv/ob9qjqlNDN0k3lfr6J6UwOlZQWMPrQfBbZ1xGHHFuaZvP+VaEqOwjxmiJlr73Xmr52EIx+2jy21zSxftw2XpjKkX3c+m7+Ka+95I+d5njodNZw4R5OwAyNi85RW04xmF/2KzpZmRQmoCkpdC7KsEBSRlPI07cznD6E0+9O9YhXTLPKg9+yQcjypP0KgVTeg1fnA48bUFIxCl+U+KkSsfkLG2gJSgi99H1RN4an5t1LWsZhPP1rCTde8lCOOIaWXsXvkqmNhupS0srA1iiKYNOlArrn25LSvb93axNx5azB0kwEDutKvX9c8+rtv4MiHzDhBz+0UVVMYPLRX0rGAP0tsAfZkrZvxfP6mae3oZEI3YotwAWBIpGGCUCxFQypWrIKiQOusSvaiXvUlBJSZJoTCoCe47bg01G06ZrEHs8QLQhBNDielREQkqj+C5otY8QumROjJGTqkYSIME6kb4HWnLMiFlMhwBBEMW/0WgMeN9HowpWD+p8t4udiN5laZcdlkblj7Aps31OdwLRKWtSYUpkNJAe4ORVRva876/udECAjrGYvzRVE1hUPG9f1x93LID5nHDtFetIPksO9Q2bGEyo5xS3QgmF0+REmqtRDbik84KKygXr1LKcIwUZuDsXx+ii+AWVRgzWHBCLLQnWNHXSJ8gYyZigSg+kKwrgajSxnSrjFjGZ+tDSnFF0KtaUZtCUKhFdSrGBLRHC1y2cotKp3SkJDhqTWGbvLi/e9T1qmEbr06ccVvpnLPne9kG5VFIGy5OEnJwIN7sHxtbc406ZoJpl1tORuWQTvztbp0KeVYJ15h59PO5IOjMOxD9OrThcY6X9bdj6S5Mpy+WnMSrVOQGiZSU6xzQga4FAjp4FJilgbAcs/RTRTdQAiB1HXwB5PuJwAZ0RG6jhoIoTT50bt3QJgmWlMIt65DIGQt8hUBmpbkdgStfjdMiOjgjhcuQ0po9qNEEpQMCTJgmdNBsmZbPY98s8I2iEiqRvVOSb2a8j7qBlogjGhswVfbjKzx8sc7zubpxz5h45qatJ+BqiqMGNsbRVH56tNlqReNGLG4jtLyQrq12lVz2A20sywYDvsu+3fPbz6JupTGrQuZd+X1jsUotsIgABnWIer1EoqAWwVX5mWIMM2c1lwApSWE0rgZvWdHzLJCtM0NqHWtUoRG+5mr2Gfrud0wIBDMev8X75+JoiqYhklJRRFahzL0bP02JWpDS2yzbPnny5l61lg69u3Kfx7+KPNphsnvfnssf/3b21mVBiklgw7eL2ufHXYB7Uw+ODEM+xAnTB+T21Sa6Niq69mVBUgqa65EfUKj87IpEXZROBEx7axMEZRABDVsBUn33L8T0rTcniB9EHFMCQjpuNZtQ2sIIJpaoLbRUjJCYcttqtmHCASzfwEjevLrwbB1jDRKRoKJ2DTjGTDWzl+deSJIDNqzd+xMQ+JvCfHmQx9yyz/Po0On4pTAM0URdKos5TfXncyf7jqLyg5FlnKgmxAxIBCJBVILITjp3LFoeZimHXYy7SwLhsO+y+B+3dm/eweULAqAEjLjRdxyCQchkG4N6YkrBAJQoptHYMUytJ6TbRRFUFaen0+9UKzraetrcS/ZiFrbHL9mYnCpP5C5+nU6pMypLEQx7QV8c4MPc1tD1rZKiz/F/ejdZ79kyEHdueDSSVabBBmh2NkQf3blZI6eOoTf//64jNcWQlBQ4OZop0Dn7qedyQdHYdiHOOzogzj8mME507JJ+yevAKtEa65pMnR0n6SXhbQqOsfqLtg/5RWFXPDTCdSu2AyGkZpFI/EaEA8G001EbYMVTJdwvbj7kQGh9G5UAisrU5IgCWTOtCEyxBNIXcK2hlSBFCVqCQjFTfymYbL4m9UEW4Lc9/RlnPXTw+nQqQRVU+jUpZRzL5nEvf/9OR07l6IoCjfdfyGlRR5Uw0ToltIVFSCHHN6fsy6ZlOHdctiltLMsGA77LkIIrv/FMbhcaqrSYMcluJvaXj1aKvFlRmGJl+KyIij2xi3JzUFEIJyycDrksH4cdmifPBNBSISqWnN86wx1refxUChpoysrkRwxZ2n7AmpzAKW+Oe1cIJr9iJZUJURVFd7872ec99PDufmusxk+6gBcbhW3W2Pk6D7c9s/zmHbeoQAcNXkQp502CmilWCgCl0vlpptOp7jYyYi322ln8sFxSdqHUBSFP9wxjQGD9+PlJz6jdmsTAG6vRlX/rpx/xVHsV9WRZx76mOU/bGLzD5sI+UPZFYeEiVhzqVxz19nM/XIlzz3+CauXbrGaSMtn1IiYlHUo5Ke/PJqJkw/i0rHX469rgeKinNU0hRAYTc2IwgLL7ck+ltIOrB0k07RjJ7IQjuR0Lcrku6oBZoMPs6Qgfh9pZWISER1aAmnHs255NeP7deXCy47kwsuOzHjb/ft24d//+xVvPjeHD96Yj68lxH5VnTh++mgOP2Ywquro+nsEiQpotjYODnsBB/fpxiM3nsPDL3/Ox9+sxLQ3ajoXFjJl1ACmnTaK7xds4LXXvmVbTTPV25qyX1BKlGj2PEVwwnmHcfxPJvDCk5/z9nNfotf5rEV+WEfarqtjjjyIX1xzInM/WMy9Vz8fu07WeTpdfEG29hEdPKmJIFLkUCRLlr4sSClRGloQgTCy0INUFWvTLBDK6GJlGCarl2wCYPSh/Rh9aL+M1xdCcPkVkzlkdG9efWUuy5ZX43ZrTJgwgJNPHkH37hXb1W+HHUw7kw+OwrCPoaoKp/9kPKdecCi1W5pAWK4wiYvvGTeeCsDbz37JP//4YvYLKgpCEUhTcuWfTqW0vJAjjhnMEccMJhzWWbFkM/PnrEKPGPQ/uAeHHNYPVVV47+nPqNlUb8UdhCP5Za+ORJD1IZSyPDIJGEaKwmD53MZ3m2RDM0LL/hXIpMiYhsnAYd2obgxTX9OCQCJDYcu6kGX3yluQPWNCIuUdizn38iM59/LMioXDbsYwQObYdTXbvivr4LC76NurM7f9+mRa/CGaWoKUlxZQ6I0vricfVcbkow7GMEymn3s/dfW+9GsiKVH8IYRuoqiC/Xp3YdplR1FUWsAVvzuWy/7fMTTUtfD1Bz+wZUMdJWWFjD9uCJ27lWMYJs/d8551nVwmcftebUJPrzAk3ck0f/Tu76GTD+aLmYsQSn6xrQVF+csHIQSjR/dhdCurvsMeRDuTD9u1TXnfffdRVVWF1+tlzJgxzJkzJ2v7F154gYEDB+L1ehk8eDBvvfXWdnXWYcehKAqdu5XTuWtZxlRyR59+CEMP7YtIU+jFuogARdDv4B7c+OBPmHL6qKSX3W6Ng4b05JyfTeSCy45k7OEDYjvjX73zvX1dCZHsdQ3AcneyzMO5hUcmdyoBSEUgAwHk1hrw+ZGGSbbMwiJDZgxVVeh90H78Z+bvufbvZ3PKeYeiGdmVhcISL4PHOpN7u6KdmZx3FI6M2PspLvTQvUtZkrKQiKoq/OG3x1u1adLJCFOibW3GW+jmxAsmcOeLv6KotCD2sqIIOnQqYeq00Vww4xhOvfhwOncrB2Ddsmq2bWqwGub7/Ulsl4+Sketa22ldiPcBrvzLmTz2ybX85LfHc+CIqhxGEsHhJwz/cfd02LNoZ/KhzRaG5557jhkzZvDAAw8wZswY7r77bqZOncrSpUvp0qVLSvvPP/+cs88+m1tvvZUTTjiBp59+mlNOOYV58+YxaJATlLMno7lU/vzIxTxz70ze+O/ntDQGAKjcr4JTLprAqEkHUljkoUOXtucODociVlpQaSJcAkwTKURG5UW2+KxfTGuBnzFfNnHFALtdtL30+6EpnjlDqCqEw4iC9L6e0bR86e5kGCbHnDMOzaUyfsogxk8ZRIEmeOae9zKaGKddPhlPgVMPoV3RzrJg7AgcGbHvcMioA7j7b+fw6OOf8O136wCravCEwwZwxknDqSgtoGPXMjwZlI5MRMKtYgcSXUPTxVdAclxCLhcmRcl+TfhRwaiKKhg56SA6VJYB1tw/+YzRXDr5NgItwZTkI4qqUFxWwJRpY7b7ng57IO1MPrS5cNuYMWM45JBDuPfeewEwTZOePXvyy1/+kquuuiql/fTp0/H5fLzxRrwgzNixYxk2bBgPPPBAXvd0CvPsfiJhnS0b6lBUha49O6Dkig/IweN/eYXn737HyizhcllVN4VAqGrSjr8QArPFF1cYAFFUiHC70ioN0UW+NExEodeuCaEjfQHLDJ2AUO0sQx4PwuOOKxaJwczhCCIxDavNcecfxi9vOyvpmGGYPPinl3n98U9QVCUmi0zT5PRLj+Tia07Kqug47Bp2aGGeDhehKdkXQ7oZZmbdY/vM/LWrZYQjH/YM6up9NDcH6FBRTEnJjwu49TUFOHvYNamKQ2uik2yruT2nhcHlSkrnKoRI3ecJhVOvmyeFxV7+/ubv6NU/uSDaioXruf6ih6jf1oxqV4U2dJPO3cr58+OXUjWg23bdz2HH4ciHzLTJwhAOh5k7dy5XX3117JiiKEyePJkvvvgi7TlffPEFM2bMSDo2depUXn311Yz3CYVChBIy3TQ15QisctjpuNwa+/VO3R3cXo694HCe//vb1h+RCOACAWaLz4prUAQYJmYgaPkBJiD9AYSmIhUlaQEeXehLfwAM0/rfRnGptHYWirYXoZBVB8LlstL9SctNikgEPJ6kHSjNpXLB70/g9F+kxhWoqsLlN53BKT+dyAevfEPd1iY6di1j8umHUNmz4498xxz2RKQ0kTmck3O93p7YFTLCkQ97Jh0qiuhQkV8a1FwUlRZw5OmH8P7zX8XSlQJxWRDdsDKM9Du02awHigKqmmQJ9hS4CIf15J1/Td0uhWHgiCp+fdd5KcoCQN9BPXnis+v5/N0FLPp6FQgYMrYvYycPctJkt0Pam3xok8JQU1ODYRhUVlYmHa+srGTJkiVpz6murk7bvrq6OuN9br31Vm688ca2dM1hL6OyZ0d+eed5/OM3/7EK3kQisQleNrdkNymbJkZjM0qBF7yeuFUgoluBx63iCDSXyvjTxvDxK3OShU80k5KUluBppZigKFYWpYiO6lIZe+xQ/t8/L8wZmNb9gM6cN+PY7XlbHPY2pMzturAXmZx/LLtCRjjyYd/g4j+exOJvVrFx5db4Ql5R0s/V6UiXNUnTLGUhQbYoqsLEE4fz3otfJ7dXFMvynaZAWrrQto7dyrjspmkcdvywrN1yuTUmnjiciSc68QrtnnYmH/bILElXX3110o5TU1MTPXv23I09ctgZHHvh4XTv3YUX7nmXeR8swjQlPfp1Y8uqzUR86WspANZsbRrISAShKJi6kXEnSAg46bKjmf7/TmTJNyvZur42SWmw5IYlPBRFYJoSVVM4+eeTmXDaGNYt2YS7wMWISQdR1rF4B47eoV0gJTnz4u1FAmFvwJEP+wYlFUX8/X8zePXh2bzx5Kc01DTjLnDTbb8K1trpR/NCSiiw3VNboSgCj9fF2Vcexf79Kvn3La/H5ABCWBbmcNhK1S1s1yVT0q2qM7++61zqtzbhbw6yX59KDh7Tx3E5dUimncmHNikMnTp1QlVVtmzZknR8y5YtdO2aan4D6Nq1a5vaA3g8Hjye/NOLOey9DJ0wkKETBmKaJqZhork0tqyr4dLhvyfQHEy2NMTMzCaqqnDp386joKiAg8b0Ze573/HItc9hGNZrpikxTZPjLzmKn/3lLFRN5R8fXs8zf32dd5/4iIAvZKWlmzKEs357Ai2NATauqKawpIAxxw6lvJPlS3jgqAN247vjsMdjGCBy7HbmSqvXjtgVMsKRD/sORaUFnDvjWM6dcSyRsB5z23n05ld58b73s5572AnDGTZ+ABWdS9j/wB7c+sv/suqHTUmxA+WdSrj+wZ9Q2aMDp/70cLr27MDzD37IkvlWAHdFl1JOPP8wDj92CN99soRwSKf3wT0YPK6foxw45KadyYc2KQxut5uRI0cya9YsTjnlFMAKaJs1axZXXnll2nPGjRvHrFmz+PWvfx079v777zNu3Ljt7rRD+0NRlFggdWWvTry05d9c2P9XbF1fl5ylyPb3u+HF/8e4E+NpXPcf2J2jzhnPh899zpZ1tZR1KmbSmWPpWhWPuyjvXMpld5zLz26eTlNdC4XFXgoSq2FOGbIzh+jQDpGmiRTtx0f1x+LICIedhcsdX65cfN2pdO3VkXv/8GzatoPG9uX39/4EtzeesOLeN37Dgq9WMu+TZRiGycBh+zPmqIOSYgfGHT2IcUcPornRTySsU9ahOJYKvMcBnXfSyBzaK+1NPrTZJWnGjBlceOGFjBo1itGjR3P33Xfj8/m46KKLALjgggvo0aMHt956KwC/+tWvmDhxInfeeSfHH388zz77LN988w3//ve/d+xIHNoVmqbx35X38v6TH/HM7a9QvXobHq+b8aeN4fTfnMABg3qlnFPWqYRTrpia89out0bHruU7odcO+xztzOS8I3BkhMOu4PgLD+eQowbx2C2v8tV7C4iEInTvXcnJF0/i6LPGJSkYYLkTDRnblyFj++a8dklZ4c7qtsO+RDuTD21WGKZPn862bdu4/vrrqa6uZtiwYbzzzjuxoLV169Ylpdw89NBDefrpp7n22mv54x//SL9+/Xj11Ved/NoOORFCMOXCSUy5cNLu7oqDQ3pMCaL9CIQdgSMjHHYVXfbrwB/u/+nu7oaDQ3ramXxocx2G3YGTZ9vBwWFHsSPzbB/pPhNNpNbpSESXET4Iv+DMXzsJRz44ODjsKBz5kJk9MkuSg4ODw96ANCUyxw7SXrAn4+Dg4OCwg2lv8sFRGBwcHBy2F2lCSknAdG0cHBwcHPYp2pl82CsUhqgG5lT0dHBw+LFE55EdsbMTMYJIsqfF04n86Ps4ZMaRDw4ODjsKRz5kZq9QGJqbmwGc4jwODg47jObmZsrKyrbrXLfbTdeuXfm0+q282nft2hW3271d93LIjiMfHBwcdjSOfEhlrwh6Nk2TTZs2UVJSkrNYSrTq5/r16/f4AJJcOGPZ82gv44B9dyxSSpqbm+nevXtStp62EgwGCYfDebV1u914vd7cDR3aTFvkA+y7z/2eTHsZBzhj2RNx5MOOYa+wMCiKwn777demc0pLS/fqBzwRZyx7Hu1lHLBvjmV7d44S8Xq9e8Uk397ZHvkA++Zzv6fTXsYBzlj2RBz58OPYfvXJwcHBwcHBwcHBwaHd4ygMDg4ODg4ODg4ODg4ZaXcKg8fj4YYbbsDj8ezurvxonLHsebSXcYAzFod9k/b0rLSXsbSXcYAzlj2R9jKO3c1eEfTs4ODg4ODg4ODg4LB7aHcWBgcHBwcHBwcHBweHHYejMDg4ODg4ODg4ODg4ZMRRGBwcHBwcHBwcHBwcMuIoDA4ODg4ODg4ODg4OGdkrFYb77ruPqqoqvF4vY8aMYc6cOVnbv/DCCwwcOBCv18vgwYN56638ynXvCtoyloceeogJEyZQUVFBRUUFkydPzjn2XUlbP5cozz77LEIITjnllJ3bwTxp6zgaGhq44oor6NatGx6Ph/79++8xz1hbx3L33XczYMAACgoK6NmzJ7/5zW8IBoO7qMIUilIAAAfrSURBVLfp+fjjjznxxBPp3r07QgheffXVnOfMnj2bESNG4PF46Nu3L48//vhO76fDnkN7kRGOfNjz5AO0HxnRHuQDODJilyH3Mp599lnpdrvlo48+KhctWiQvueQSWV5eLrds2ZK2/WeffSZVVZV33HGHXLx4sbz22muly+WSCxYs2MU9T6WtYznnnHPkfffdJ7/99lv5ww8/yJ/85CeyrKxMbtiwYRf3PJW2jiXK6tWrZY8ePeSECRPkySefvGs6m4W2jiMUCslRo0bJ4447Tn766ady9erVcvbs2XL+/Pm7uOeptHUsTz31lPR4PPKpp56Sq1evlu+++67s1q2b/M1vfrOLe57MW2+9Ja+55hr58ssvS0C+8sorWduvWrVKFhYWyhkzZsjFixfLe+65R6qqKt95551d02GH3Up7kRGOfNjz5IOU7UdGtBf5IKUjI3YVe53CMHr0aHnFFVfE/jYMQ3bv3l3eeuutadtPmzZNHn/88UnHxowZI3/+85/v1H7mQ1vH0hpd12VJSYl84okndlYX82Z7xqLrujz00EPlww8/LC+88MI9QiC0dRz/+te/ZO/evWU4HN5VXcybto7liiuukEceeWTSsRkzZsjDDjtsp/azLeQjDH7/+9/Lgw8+OOnY9OnT5dSpU3dizxz2FNqLjHDkw54nH6RsPzKiPcoHKR0ZsTPZq1ySwuEwc+fOZfLkybFjiqIwefJkvvjii7TnfPHFF0ntAaZOnZqx/a5ie8bSGr/fTyQSoUOHDjurm3mxvWP585//TJcuXbj44ot3RTdzsj3jeO211xg3bhxXXHEFlZWVDBo0iFtuuQXDMHZVt9OyPWM59NBDmTt3bswsvWrVKt566y2OO+64XdLnHcWe+p132Pm0FxnhyIc9Tz5A+5ER+7J8gD3zO783oO3uDrSFmpoaDMOgsrIy6XhlZSVLlixJe051dXXa9tXV1Tutn/mwPWNpzR/+8Ae6d++e8uDvarZnLJ9++imPPPII8+fP3wU9zI/tGceqVav44IMPOPfcc3nrrbdYsWIFl19+OZFIhBtuuGFXdDst2zOWc845h5qaGsaPH4+UEl3X+cUvfsEf//jHXdHlHUam73xTUxOBQICCgoLd1DOHnU17kRGOfNjz5AO0HxmxL8sHcGTE9rJXWRgc4tx22208++yzvPLKK3i93t3dnTbR3NzM+eefz0MPPUSnTp12d3d+FKZp0qVLF/79738zcuRIpk+fzjXXXMMDDzywu7vWZmbPns0tt9zC/fffz7x583j55Zd58803uemmm3Z31xwcHNqAIx/2HNqLjHDkg8NeZWHo1KkTqqqyZcuWpONbtmyha9euac/p2rVrm9rvKrZnLFH+9re/cdtttzFz5kyGDBmyM7uZF20dy8qVK1mzZg0nnnhi7JhpmgBomsbSpUvp06fPzu10GrbnM+nWrRsulwtVVWPHDjzwQKqrqwmHw7jd7p3a50xsz1iuu+46zj//fH72s58BMHjwYHw+H5deeinXXHMNirJ37C9k+s6XlpY6O0ftnPYiIxz5sOfJB2g/MmJflg/gyIjtZe/5hAG3283IkSOZNWtW7JhpmsyaNYtx48alPWfcuHFJ7QHef//9jO13FdszFoA77riDm266iXfeeYdRo0btiq7mpK1jGThwIAsWLGD+/Pmxn5NOOokjjjiC+fPn07Nnz13Z/Rjb85kcdthhrFixIibQAJYtW0a3bt12m7IA2zcWv9+fMulHhZyUcud1dgezp37nHXY+7UVGOPJhz5MP0H5kxL4sH2DP/M7vFezemOu28+yzz0qPxyMff/xxuXjxYnnppZfK8vJyWV1dLaWU8vzzz5dXXXVVrP1nn30mNU2Tf/vb3+QPP/wgb7jhhj0iZZ6UbR/LbbfdJt1ut3zxxRfl5s2bYz/Nzc27awgx2jqW1uwpWTDaOo5169bJkpISeeWVV8qlS5fKN954Q3bp0kXefPPNu2sIMdo6lhtuuEGWlJTIZ555Rq5atUq+9957sk+fPnLatGm7awhSSimbm5vlt99+K7/99lsJyLvuukt+++23cu3atVJKKa+66ip5/vnnx9pHU+b97ne/kz/88IO87777nJR5+xDtRUY48iHOniIfpGw/MqK9yAcpHRmxq9jrFAYppbznnntkr169pNvtlqNHj5Zffvll7LWJEyfKCy+8MKn9888/L/v37y/dbrc8+OCD5ZtvvrmLe5yZtoxl//33l0DKzw033LDrO56Gtn4uiexJAqGt4/j888/lmDFjpMfjkb1795Z/+ctfpK7ru7jX6WnLWCKRiPzTn/4k+/TpI71er+zZs6e8/PLLZX19/a7veAIffvhh2uc+2vcLL7xQTpw4MeWcYcOGSbfbLXv37i0fe+yxXd5vh91He5ERjnyw2JPkg5TtR0a0B/kgpSMjdhVCyr3MluTg4ODg4ODg4ODgsMvYq2IYHBwcHBwcHBwcHBx2LY7C4ODg4ODg4ODg4OCQEUdhcHBwcHBwcHBwcHDIiKMwODg4ODg4ODg4ODhkxFEYHBwcHBwcHBwcHBwy4igMDg4ODg4ODg4ODg4ZcRQGBwcHBwcHBwcHB4eMOAqDg4ODg4ODg4ODg0NGHIXBwcHBwcHBwcHBwSEjjsLg4ODg4ODg4ODg4JARR2FwcHBwcHBwcHBwcMiIozA4ODg4ODg4ODg4OGTk/wP+3YXcw4XCMgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# setting the seed\n", "torch.manual_seed(seed)\n", @@ -888,58 +989,63 @@ "fig.colorbar(pic2)\n", "plt.tight_layout()\n", "plt.show()\n" - ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAADQCAYAAAD26DD6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd7hlRZX2f1U7nHRz59zQNDlKkqQoKChizjqi4+jomMY0n3HMo455lFHUUUwEQSQjIog0OTcNNE3nHG/ffMIOtb4/ap98bjfahNtw3uc53ffsULt2nV1rr1rrXWspEaGNNtpoo4022mhjb4N+pjvQRhtttNFGG2208Y+grcS00UYbbbTRRht7JdpKTBtttNFGG220sVeircS00UYbbbTRRht7JdpKTBtttNFGG220sVeircS00UYbbbTRRht7JdpKTBtPGEqpU5VSG57pfrTRRhvPXSilRCm1X/L3T5RSn3+m+9TGM4e2EvMshVJqjVKqoJQaVUptUUqdr5TqeKb71UYbbTw9qH3Z12z7olLqt89Un55siMj7ROQrz3Q/2njm0FZint04W0Q6gCOBo4BPP7PdaaONNtpoo40nD20l5jkAEdkCXI9VZlBKPV8pdbtSalAptVgpdWr5WKXUu5RSS5VSI0qpVUqpf31GOt1GG208pSi7h5VSn1FK7Uist2/bxfGTlVJXJ3Jjp1JqkVJKJ/s+pZRamciNR5VSr6k5751KqduUUt9Lzl2llDox2b5eKbVNKXVOzfHnJ26iG5L2/qaUmjdOn85XSn214X4+nrS5WSn1rppjJymlrlJKDSul7lFKfVUpdeuTMZZtPHNoKzHPASilZgMvA1YopWYB1wBfBfqATwB/UEpNSQ7fBrwC6ALeBXxPKfW8p7/XbbTRxtOA6cBkYBZwDvBTpdQB4xz7cWADMAWYBnwGKNetWQmcAnQDXwJ+q5SaUXPu8cBDwCTgAuAi4FhgP+DtwI8a3N1vA76S9O1B4Hd/x/10J/fzbuBcpVRvsu9cYCw55pzk08ZejrYS8+zG5UqpEWA9Vjn5AlZgXCsi14qIEZEbgHuBlwOIyDUislIs/gb8GSuc2mijjWcnPi8ipWS+XwO8cZzjQmAGME9EQhFZJEnxPRG5REQ2JTLlYmA5cFzNuatF5JciEgMXA3OALyfX/TMQYBWaMq4RkVtEpAR8FjhBKTXnCdxLmLQbisi1wChwgFLKAV4HfEFE8iLyKPCrJzQ6bUxotJWYZzdeLSKdwKnAgdhVzTzgDYlZd1ApNQicjBVOKKVeppS6MzEXD2KVm8nPROfbaKONPUIMeA3bPOyLvowBERmr+b4WmKmUmpsEBYwqpUaTfd8CVgB/TlxCnyqfpJR6h1LqwRqZcij1cmNrzd8FABFp3FZriVlf/kNERoGdwMzd3jH0i0hU8z2ftDsFcGvbbfi7jb0UbSXmOYBkhXU+8G3sxP2NiPTUfHIi8g2lVAr4Q3LcNBHpAa4F1DPU9TbaaOMfxzpgfsO2fbCKShm9Sqlczfe5wCYRWSciHeUPgIiMiMjHRWRf4JXAx5RSpyV8lZ8BHwQmJXLjYfZMblSsLombqQ/YtAftbQciYHara7Sx96KtxDx38H3gJcDtwNlKqTOUUo5SKp0Q4mYDPpAimfBKqZcBL33GetxGG23sCS4GPqeUmq2U0kqp04GzgUsbjvuSUspXSp2C5cNd0qoxpdQrlFL7KaUUMIS19Bggh+XGbE+OexfWErMneLlS6mSllI/lxtwpIv+w5SRxY10GfFEplVVKHQi8Yw/72MYEQFuJeY5ARLYDvwY+DLwKS8rbjrXMfBLQIjKS7P89MAC8FbjyGelwG220saf4MnbRcit2Pv838DYRebjmmC3Jvk1Y8uz7ROSxcdpbCPwFyzO5A/hfEflrwi/5TrJtK3AYcNse9v0CLIdvJ3A0lsu3p/gglvS7BfgNcCFQehLabeMZhEp4WW200UYbbTyHkKRW+K2IzN7NoU8rlFLnAxtE5HNP8XW+CUwXkXaU0l6MtiWmjTbaaKONZz2UUgcqpQ5XFsdhQ7D/+Ez3q409g/tMd6CNNtpoo402ngZ0Yl1IM7Fur+8AVzyjPWpjj9F2J7XRRhtttNFGG3sl2u6kNtpoo4022mhjr8Qz5k6aPHmyzJ8//5m6fBttTFjcd999O0Rkyu6PtDjjRTnp3xmP395DpetF5MwnpXN7Idqypo02mvH3yhmYmLLmGVNi5s+fz7333vtMXb6NNiYslFJrd39UFTt2xtx1/fgBJt6Mlc/pjMttWdNGG834e+UMTExZ0yb2ttHGXg5BCGX81VEbbbTRxpOBiShr2kpMG208C2Awz3QX2mijjecAJpqs2a0So5T6BTYV9TYRaUolnaSg/gG2UGAeeKeI3P9kd7SNPYeIcOtld3HFuX+iMFrghW88kbPffwaZXPqZ7lobewC7OppYguUfQVvWPHsw3D/CZf9zHXf/6UH6pvfwuo+8nKNevKeVCNp4pjERZc0TscScD/wIm7K+FV6GTUe9EDge+HHyfxtPA/o3DfCzz1zIHVffD0pxwDH78o7Pv5ZDTzyg6djzPv4rrvnZXyiO2Uzbax7ZwF9+cws/uuvr+Gm/6fglty3jul/eTClf4gWvO56TX30sg9uG+eO5f+KRO5Yz98CZvO5DZzL3wFlP+X22MT4ECCfY6ugfxPm0Zc2Exd03Pcovv3UtG9fsoLM7w8lnHs7b//0MOnuydccN94/wvmM/zXD/CGEpYuXitTy0aCnv/tqbedX7z2hqtzBW5IbfLOLePy9m6pxJnP2vL2HewbN58K8Pc/mPrmOkf5STX3c8L3v3aaSzqafrdttogYkoa55Qnhil1Hzg6nFWR+cBN4vIhcn3ZcCpIrJ5V20ec8wx0ibb7RmKY0X++fD/YGDrEKb8OyqF0orjzjiC/7zgQ7ie1VO3rd/BO/f/MGEprGsjnUvxwR++mzPe+aK67b/9+uX8/rtXExQCROxxC4+az+qH11PKB4RBhONqXN/jK3/4GEe84KCn5Z6fC1BK3ScixzzR4484wpfrrx2fTzdj9ua/q71nEm1ZMzFx518e4Rsf/i2lYr38cD2HT/3P2znpjMMq2371xd9zyfeuISxFdcemsj6/X/9j0jWW37GhPB844bP0bxqglA/QjsZLuZzy6mO55dI7KOVLlXNnLpjOD+/8L1KZtiLzZODvlTMwMWXNk5EnZha2iGAZG5JtTVBKvVcpda9S6t7t27c/CZd+bmDH5kG+9YHzecMBn+DtR32GC793HVEYc9NFtzM2lK9TYADECPff9DBX/ewmbr9uMR8+45v82+lfh44OcJy6totjJe6+7oG6bds37uSib11FKW8VmPJxj9yxnNHBPGFghVMcGUr5Et//4C9oJ0185iAI4S4+zyK0Zc1TjLtuWMIHTv8vXrf/x/nYK77NQ7cvB+D/vnF1kwIDEIUx3/roBWzd0M/PP3MBb1vwIS7+9tUEhbBJJjiuw6ol9YWoL/3BtWxfv5NSPgDAxIbiWIkbfn1zRYEBKOUDNq3cwp/Pv/lJvuM2/h5MRFnztBJ7ReSnwE/Bro6ezmvvrRgdyvOhl36d4Z1jmNgwOpTnwh/8iZuuvJ9SPqCIrigvKGWVlDgmLEX8/ofXUygZSgUrIHBcnL5e4p0DEMfJJs3kWX1113zw5kdxXE0YavBciGKIY0zc2oy4de0ORgfzdPbm/q57C4OIseECnb05HKedd/EfhkDcnk11aMuavx83//Eevv/x31EqWGVl6X2r+exbz+Wwkw9gw8qtgGp9ooJ/f8EXGd4+XG/pFfvSU4l8isOY7imddafeetndhMWgvr1xFkSlfMDtV97L2S1cUrvD2EgBgFxn5u8+t40aTEBZ82QoMRuBOTXfZyfb2vgHUBgrUSqFdPfmUErxp9/dRn6kWFUglCJEs2H1DlAK3ZFDclmraKRTVgAoBfkCg4PF+sYTYaI7cpihYQBc3+UV//qSusPSOZ8om0P1pKzcEqBYQvp3tuyziJDKeC33jQzmWXT9EpYtXke2I8VRJy7kiOcv4Lffu54rfrWIKIxRwAFHzuMT330rM+c9p1Oa/EMQFOF4L5hnF9qy5kmCiDDUP0o665POphARfv6VyysKDACOJhJ44NbHy2fZ/1T9s1YaHCUcHm5yVdfCcR32PXwusxZMr9vu+m613Wrvxm0nlW3m7pWx4qF13HrVfezcPMSMfaZwyquORrkO3/rERSxfsgFjhFTa47XvPoW3fuAluJ4zbltttMZElDVPhhJzJfBBpdRFWJLd0O581G00Y2Qwz3c/fSn3LlqGUtA9qZPuSTlWLt0MmSzoEuSL1jIC9dYXrcF17Yqn7FLKZiAMIaz3SyulUL5PqitL3NNN974z+eYXruSVbz6e0195JFprHn1kCyadto+qUiCCZNOQz0Ch0NT37NRe7lq0nP0OmsGM2daqs/iuVXzns5eybdOgVayMoES4/PzbwMQoEcRYYSXA0vvX8P4zv82Prv4YcxZMfQpG+NkLAUKZWILlKUJb1jwJuP+Wx/jBJy9kYPsIIoZ5+89g56YBBrYPVw8qW3XV7p8r8VzCsHXuED/tIQjpTIqdWwb56lt+wNs++xr2OXQuxhg2PLbh7+p7rjvHXdfcx5EvPpRUJkUYRPz2G1fyhx9dT1TbB6X41dcuR0/qQWpeuqViyIXn3sTS+9byX79+b8VK1MYTw0SUNU8kxPpC4FRgslJqA/AFwAMQkZ8A12JDHldgwx7f9VR19tmMz/3LL1j12Cai0FpcdmwdYse2RKgohaRS4DioMGoSLLXKS90212tSYgD2OWQ2I67H4ECe/v4x+vvHOPcbV/Pog+v40OdeyZWX3EOc8lCACiMUyiodfd0wqGAsnyhPCmZPp5hO8b0v/pEoNJx0+sG86MzD+MqHf2cFW7lvSpDYoIyB2LRcawXFgPO/dS2f/8k7n4QRfe5AgHiCrY7+EbRlzVOPNY9t4svv/lnV4hLHrFxcn7hVwAYItDhfaO1UUtkMMjpWt831XV785pP468WWuzc6mGfb+n7uvv5B/vv6z7H68U0Uertguo8aHoOdQyixskuSxVMjbrnkdm697E7ECJ+7+GNc/atF3HPDksqCqNpRgVQKY0C18FQ/cv8aHr5nNYcdt+94Q9VGC0xEWbNbJUZE3rKb/QJ84Enr0XMIQRBx4f/dwtWX3sPwYB4cjYpMayGhFOJ5xBkfPVZE1UxaASTtYTIp0ApVCtFjJZRqbZbtnT+VjY9uJgyqK5dSIeTGaxbz2ONbCT3XKk4iiO+iCwHEBhyNmTkZXQhRQQC5LDia2Aj5MevXvv2mpTx42/LmlZlS4Ggwuw7Pe/ieVTy2ZD2/+d+bWL1iG3PmT+af3v8iDn3e/CcypM9J2NXR3s8pasuapw6r1+7gx7+8mXvvX4PZdzLu1hHc7SOoFoqCAsTRxB1pK0dq9omrCaZ1EnemIBa8HWO4g4WmgAGAKIxYcttjBDWEYDFCKR/w3U/8lnXKgznTQGtkSg/MmgIPrwIxSNpHcmlUv1VsyiinhwD40hu+g9PZ2azAlOHocWk8URjz8L2rWb52B1defh9BKeLkFxzA2845me7ubOuT2piQsqadsfcpxPBQgUt/cxurV25jvwNmcNZrj2by1C5KpZBbb36MC372N7ZsHLBmUKXAdRDHgXwwvpnTcTA9neidw5X5GXdkIOtXXUkZnzjl4QyMoHwPgkSIKIWkUyxespEoaDb/Gq1Yt3Z7vasKiLMpjK/Bsd9NVwY1VsKNpNk/XgwpjTRwcWow3kqujHRXhv/3nvMrkRA7t4/w2JINfO7bb+LYk/ffxZnPXQiKuF2Q/jmNxY9s4IrrHiCKDS888QBeeMJCXNdh0+ZBrv7zQ/z+inurCwvfJZzZjaQc/LX9rRuMYqQzi0HhjNn5LI6isHCKVQ60ncXBzC5MysHtH2huw3XZtHJr02YBVpUEfLGucADHQTIpzKH7QHfWmk8USGzQdz6CasG3iQxExV0wNKKoyhFs7Jrvctt9q1m9rp9SEgp+5eX3c/ttj/Oz899LJjM+9+a5jIkoa9pKzFOEq/9wLz/872utRVSEu29fwWW/u4OPf+FV/M93r6eYLxGOlupPUpZFK561yLT0RzsatMakPXQxRLSqU2Aq7Sgw2TSO60FWqpNZKYoaHJqViVjAhFVLiXEUxkuUF6k9XpBcChkqVrYZR2FSjjUHxwY9zupIlTk8LSwyXspDUj6lgXreTakY8oV/v4BTzjqC937oNFY8toVf/ugvbNowwIxZvbzrg6fx/FOak/s9VzARV0dtPD0olUI+/OmLeGz5FsA+C7feuYLfL5jKKcct5FcX3k4Yxc3uW0cTTe7A2zCAahV16DnWQtKVxRSsNSaYnKtTYGrbcUyDk0Ep6OtC+gebrT0pH9way015t6OhJ1dVbABcB7PPTJzHrMtLFDCpG8llkGKALu7CuRFGYAyiVNOiUPsuq9b2EwRVd3sUxWzZMsQ5b/lf3vTWEzjrlUfxf7+/nWtveoQwijnpmH35wDtOZXJfx3hXfNZjIsqathLzJKBUCrlj0eMMDRU44qh5BMWQc799XdWlqxRihEIx5Jv/+UdCBZK4jZomYJlr0rBDwCoTWlv3UW8HjNQQfRuhFeK7SBBXfcxA2JvB+A5OsV5RUEqhXY2JLF8l7PIQr+ZhFXDKAkMpBCHKWd6MaIXJetWOdvo4Owu4hRo+jkhVcXEdRDQ6jhEjaEfjuA6ve++pXPzbO1veThwZbrrhYf56/RI8pSokvjUrt/Ffn7qE//jKazn5xQe3HotnPRTxBBMsbTw1WL9jkNuXrSWX8jn10H35/rk3VBQYsGIjigyPr9jK48u3YiJjN7ZaEAmYjI8zWm85FQWmryv5WxHO7EUcIe5Kj0v0Nd05nB3Ddp5rBb4HMyZbWbF9oE6R8dMuoesQG0l84UnfY1CxIK6plz3TejE7R8DEyMLZtm2tEWMwscFdugEdVS3LtdZeGRpBZTOobNp2zVFMnt7DcWcfydXXLm45Jjt3jvHjH/2Fcy9ahHgOYdL2jbct4/6H13PhD99N9jlrqZl4sqatxOwhVizbwic+9BvCIMYYg3Y0k3pzxI3B9AlRLQxjxNV2dTBOm37a46gTF7Jp3U42rt5u57nrIKnqzyWOQjJ+S582lJUejcl4iVUHTNq1yoZShD1pvOGSFToCKuXwxnedzB9+cwcj2lqD6gWWYHyNE1RDvaMeH1EKHdUIjUQzi/oy6M0jqPIiL9HLRFslzcl4fOg/X83zT96fnduG2TYwxlf+68pdJ7RWCqKYRqpyqRTx8/+54TmrxNhU4O1w0Wc7fnD1In79twcQERyt+erFkF1eajpOgZU/tWuhVm4VrZg8s4fDD53NrdcuJiqG1vLR12WjEZO2lCii7l3UV1Mg86aDn4IggI4s9HRZZWbmFEvk3zlU4dktPG4hI33drF29w3arsb1IEC0V9zWOgxw4z6Zm1bVBDPZlGs+filqRBKm5DngeEgRgBDIp3Om9XHLLZ9ixeQgR4fe/vo1rLr2X0G0OiCjDuIpAxKauKG8zwli+xJ/+9givPfOo8cfjWYyJKGvaSswewBjhPz7yO8Zq3UKRYcumwV2eF2UdjK/xBwxEUj+JtaIwq4Nbt/fzglP3Y+tokWKh6ve1kQOAo4hyLnFK443FdhXTcB1xFCblojxJyHo1DqGUSzDZQUQIulzEV/zkxnvJpSB2HaKsRjzrRtKB4JQAp2GV42hUjbIWu4o4VZWcsd9lrTedPnFscEdD3OGATNpnwf7TOe3lh+N5LpmOFB9+/UUUCiE67eLk6/3cAvUrsxbYvGEAEWkyGz8XIKIIZWIJljaeXNy+bA2/vOm+SnbuKDaoSPBjGd+dIjX/N+kvCgG29+W4fWCM13z+NVz0f7eO307tWqnxgkoRd6dxmFR1O9dmEZ87HWZOQYyBlMfD/SVk53a0q6FVMUGlULGx/MBaV1PZdC2CMxaiyrw+pZF9ZuJoa02OY7FWF1fjuQ4f/vQryGRTzFkwlZuue4hFf3mUqBhB1gPdmjNj3NajWixFLF2+GZ6rSswElDVtJWYPcPedKxgZrnfLCGA8hS41CxdRCuVb7ghKEfSm8YZK6MBYQ42nKfb4drIba77sm9OJWjOEJBNWXIWkHMK0Juq0P1/U4ZHqL+GUkrwrGoqTfYyn8IdjdGgodTvEWQdlwBszuEVBlKLU59aZm8cm+VSWR2VuTcpe1xuN6+4RrSrpG40Dcbp+ZWNSGpPSdhy0JupLkZ7ewYf/6UW88PRDKsmm7rtvTfWctGuFVI0rSlyN7CYxleu7vOc9v2Cgf5R9953CP51zCocfPmeX5zxbYMMeJ5aJt40nF9+5YlG1vEgCJxjfCqugPmpHKv+gtLaRh0YITEwQFvjNZXfTkfMojYVNbUXd1lWs6pupP87VlPpSuCMBTtEkEUVijSVKIa4Dqpp3RgFmvEhMEaQ2F0nD9ZzRABXWnCtWtpoaTp/WisOOnMe/feJlzN+vmnfq2kvvrSwKdSG08qYsWmpkl95FWtplq7bx6vf8BK3gRScewDte93y6nyOZgCeirGkrMU8AK1dsZe26fubOncR++02rbF/0t8eajjWeRnyFDkydqVSAOOcSd3jWzAmgFWFvGkSYPK2LbQOjTe3tHC2Qm5ImGgmJtdjETZFYBaY86RwoTU1DZKw/O6Mr7qtCqmYFk6y+Sq7COAYdtcjAWf6zgShsXKHUofFzDjo0lVsQR6FiIfYb3U9JG1IVqkZguBSydMcAp9UoJVFUn6TKZH1M2kUVI5ucrxx1lSh6OjRNlpqiElat2gbAfQ+s5eGHN/D5/3w1J5707I9oEhShtKfy3o4giLj//jWUShFHHTWPrq7qi3H11oZs2SLktpqqYkHN1C3/X7sT+7fSCgeIGoj3IkJBC2nfoRTGxCmFDsUuIBxV13Yro4wgOPkIp2DqZJ4yWGtHnRuo/ty6fgClbk0wycU1Cm9bjK69YCz1Csw4bRkjPHTfajp665WLWiKvEnAKEUYrTM6zilfSkBgqrvZKvxOX3Kp1Oypt/P7q+7j5juX8+nvnkHsOVNieiLJmYvVmgqFYDPnsp3/P0qWb0FpjjGH//Wfw+S++mlVrd3DTrY81WWrFs+z9sNtHBzG6ZBCtiHOujd5pdSGlGBprHZYswIgPzEsTmLhi2nUCQTdaYl1NrVWlbEmx0qvmyloRdmqcEVMfaVDTn1rEDsRpbQnCWhPFMW5eSI3Z88UR/p4kjhdcdQ89k7LsGMqzz8w+Tjx0PlFUfzOiNdHkDE4+RBcNUc7FZK3i444GeENhRZqaVMIXqhE2pTDmhz+8gRNOXPiccDHFEyyLZht/Hx5+eAOf/swllaKJUWT4t/e/mKOP2YdFtz5OXIzAr66AdUiFb1arWOzK6wOQ8t36zLaVgxWREvILMgymbTSjKHAKQm6HqWu4tfUE3NGobl+lX4YnVGpYFPQfmiLocVCuxkURzonpezTEG0sUivFywrSAMcIH/uN3vPyMIygUA048dgEvetlhrFmxra6YZZzR1ShLrchP92xKCWPd6M4urDIisHNolGv/+jBvOOvoJ9y3vRkTTda0lZhd4Gfn/ZVHH91IUJNTZcmyTbzhHT/GdR1KItDpghFMNnHLxIIT2pVH3OER9iiidJUnoiJwC1KXwMnzHBxXI0FisXAgzGqMn7hrlKDE1CglEKdB5VvwYFpKmOaNohRht8YttRBKtSsSqm4iASJj+xFlwQ3ACa31yR7c2r/c2LRx4IeXLEIEMimPH6c83vHPp/CbXy4iiozlz2RdDILJuETpJOw8aTvqTBHmPFTRoLGmbGUEHSbjmlihtm8foVgMn/U5Hybi6qiNJ45SKeTTn7mEsZpEbgJ8/0c34HoOcWToFaHYo3ACwctjybQaS35N5oUpW1zLbYhqcotEUUxUE1IdZhXFbmttcQuGMF1e2NiG4izk+zS5/oZFRv2lLDeu0UyTHBP7to9Ni64GjM1wCXocG7QgQoAl9w4sdJnyYMKTa7Xo2gU2bRviFxfdhhjhD9c8wCnHL2CfhdNYs3IbxXyA5zmMTUmT3hEiAmOzfMsdVAocRZyF2BhSOyKiLjfh6wjKVO8/DA13PrD6OaHETERZM7GcWxMM11+/pE6BMRoiLcRGKCVmSXEU4jsVc6l4mjCnMTo5PqOqplSlEBfibHXYlQLfdxlRdmUQayj2OsRplbStEVdjVFUBCNNW+AS5JmsxLTlX4ywkotQ4u2uEkRnveVWKKOOAY/tZK0xbNVeL2FMV3l+hFDI4UuD2Nes577x3ceYrj2Dm0dPRk9KV9OfGt0K2rp9aI1kHk3EQ33Jvog4H49hxF+xK7Gfn3zLODTx7YFAE4oz7aWNi4+57VlUsMBVo6+IJwxgjll+XHrQKTNm4igFisfO+4jKu/9QualK+y5z5k4ldQIRityY/xcGkLYk/7Cy7oakh8yqinKrIivKlGyFajStn4pRmdJa/i7KOFvnpbl3wQRnGV8TZqnVZMm69staiTwLEKcdGaBo7RsVSyK13r+RNH3oRn/zyazj8zAPJnjDDusKBKK2rCkxdY4qwz7N8RFfZ/vjKymRlf4a7HlnL42u37+YO935MRFnTVmISFAoBi25Zxt/+9hijSd6EsKHukLQIyVMkvA8RIh+iNMQpRdDtEGZ1CwVBgafJdqTwPIfjj96Xt/zTCcSOJkorwlyDS6h8jobYgygD4tnJFOUUxT6FoargtFqpNFpnhGQV52qKPVbxKQuCvr4cZ7zkYIw3rkyqtBHnFK8++yjmzZvEEQfN5uP/chrz5k2yE1tbZUt0jUxUEHSopj4aEe5dup7BUpErHnmcFTsHGCoVMQpKnYqwSxN2KIIuReTX9qvm96hkF3aIcw5Rp0uUc7j02gf4xBcuYWttcbtnIQx63E8bEwvr1/Xzlxse5qGH1iMiFAthXZmgyp8tOCSK5MWZUkhK2QhCJdWdDSdkO62c6e7K8JbXH8+ACgk7NAQxpZ6GxHXjWVEVjE11KOWU5aVp6qYeAFphUrpZ1mgYm+lTmuwxOtuvLDBEwStfdzTBAVlit0YmtYJW9B4/hRNO2I+5cyfxklcdzfs++XIk7WCSKM2g27d9Sz5x2qE4tTksvFAMuem2Zdy2fhP37NjB2oERYl8RZjSFGS0stnEi41WDrNH2N4h90LHB7Q94/7/+gquuuJ842o3JaS/HRJM1E8su9AzhjjuW89WvXIFOJnQcGz7xibM48qh53Hfv6oqAkV24SoybWEHquCeNRtdks6Pw5uaYO6OHV51+DBf95X4iD5SvK9aHltfwGttXGE8IO4AYyCrmTulhx8YRnKTq2eQpHazdMoDUuMElUYhsqLam1AORB5KFvFti58bVjE2zLhoEvNHWOW28jEP3/C5OX3g48yf1cMr++5DqSvH13/yFYmCTxwQpa3pFEmVJKytzE/1QkrELfXjXDy7BiMERUKlEYHr10jLK2L77Yy1CS2sJeJJcC7j7gTW880Pnc963387cpMr2swkTMeyxjWbEseFrX7mCO+5YgZNYHCZP6eLzn39VPbl9FxDsyxNoYTGgSdwEUcz0AyZz5IGzOPXUA/np9XeD0uRnpna9SqmDfWkXJ2mijGBSClcU+3id9G+y5U+mTOlk5YxRUmsLpAajimVodG6KsNu+ZopTPApTPLtAcuGCwVWMTFYwKQsmsfq2FpnsUCWOfNUBHBiGnLL/Psyf3Msf71rKyhqSbdjjo0NjrbautryeFqknbrptGWEcE7kKUla+FKY3ZD3f3dgkx6b6Q9xKNFbMuT+8gdtvW85/ffONz0ou3kSUNc95JWZoKM9Xvnx5pX5GGd/61jV84xtvZOnSTYyOJkXQjCA60cwbYPwWZsiG6JwywsiwdmSYtWMj3LlyPQDSafc5RVr6jivm4kYoRZSBoNvuf8wMoWcqPnPGybzhuMPYPDDCm7/8W0qlECVJO1phaiyyUQrijD3fGMNgUII0OCWFMpZ/4zTwjsWB4VTM//7tTkJj8B2HyR1Z/u9dr6Mzm7JKTMJPKT/zFWsRoJPhjr3y2EEsAg5EDoDCazHSCoW4rf3v9iICpnmo8oUS/3v+zXzjc69tcdLeDYEJl0WzjWb88bJ7ufPOFXURMps27uTHP76Rd55zMr88f1ETwb0J5Z/5CbwgBSiZmFUb+1m1sZ/Lbnyosk+J+gfs8DYPlAIiBcujEaYu7ODcD76GBXOmcN61d/Lja+9AhYKOxHJhanNTYWVJ2Wo0Ugyq9+JYg1JT7s7k9KFCiW9cczOxCN+9/lbefsJR/OtbT+Fz37mSoExU1kn6it2gXEPKCQRlhCjbogjLePKlFrHUKDAWURizZPE6Fj+wliOfhUVrJ6KsmVi9eQZwyy3LECwT3zgKoxMCa2y44JK7+Nj/OwtJa0qdDkGvUyG4lqG1wtndxGkwFUdpEg5JzW6xbhbj25T+9afL+EqMJIKhJoTRiPCVP93MG355IW/6zcUMToko9SqCTkWpR5Hvs1Ydo6zLp6zA1EEl1hrA+BB2QJyC2LffTbdCOVAII6LYkA9CNg2O8N/X3cL5n30rB8yzuRkSnYIwDUFn4g7DbgvSEHTZbVHKRkFJmby8SwHS6FbaPUTgwSXr/44z9h5Ysp0z7qeNiYErr7ifYimycsaxlsY4FhY/uA5cxekvPdS6acBOEKm+1ctW4vECQxo3l+dG7DeLeEWS4y2ihdawC7S49tahMd70nQt4w09+x3k332W77CridOKqSpqPPSHKSpI3ZvzmbekBqPjIExgRCmFEEMWUopgL7nyQ1OQUX/jIWRWrFthFUqlLUepWlnsHxC6MzNL0H+jQf6DD4HxNlErGoTwG4+mEu9AVnaJpKYSKxZAHH1g7/ol7MSairHlOKzHbtg9zw18fIW9snhPjKoyniFOa2Bjuvn81X/vRn/D70paMqzVhpyZOKYy2BNUjTtmXmQsmVYVOIzSkfAetFcqxZNygo9nXDVirjWvZ/LXcOuMpwk5b/6hpoaIT9n8LPLZ5BzuLBWLHKiFBL0SdIIlCkZ8FQR/jT1Rd/7ekIeqAcLomyAlxw3mRMfz1sVVM6eng/M+8hVSvT5yGwlRrKYpyiigHpT4o9tm2KnWiNIhvFSWpSPJmVIRzRtXzbca5hVp0djx78zjE6HE/bTzzuPOhNWzpHyZOa4xXI2c8RWSEX/z2Nm649bHKc19VZAARcpMzHHbGArLZ8SPt0ikXRyscR4OniDK6zhLSCH/Mhmo/YUWmhYVTAXHRsGTTNvJpQ9hV03/sAiw/XRibDXFHs/xqhMJaZLRAMDlGzVDozuaFXTGMuPKBpZz6/P358kfPxvccSh2KkdmaYq+i2KsYnaUZmqMZXOAQdNlFIloRZxRD+zrke2wvdSzjC5DahWbjrnGUn1TKpbs7u5s73Xsx0WTNc9ad9NiyTXzw47+zxb0aEzGJEHsacRVBKbQvzHIaalFI2pJMjadYtGIdCkGnVIXnUWtImD9nEhd//Z0AnP2VX7B2x9CulHt7CR8CnypZL3k2jJfkhwB8zwosk1UU41JLF1dT0ogKtwdMTqxVSY/rhk5cYWXXjbIWn25FYJIViA/eGNX6SFCJsvBch/9536t55y8uTZZ9NR1R1h3V8pra+sadSBGnbJ6GqkCsuRcg8sEJqt91DChFWeTVtu97Dm945TGtrrjXo7w6amNi4ms/u56r//YInpKmeSoOYCAoBxG4VUukjqz7emgfnwEnZN2a9aS7Ba+/ee5opfh/HzyT019wEJt3DHPG139Oehv1ieIaoAAvj41y9Fof4zoarRTzpvawfF3/+G0lnDfj2Y+TyKniJIiy9mKxI1anGsecZGWNAiXEMyFKCxEh9IBOK1LbdWX8BBv6DPDC4xfyghP35w9rH68fGAUmo5qtP4msL0zXpEZjKuy6WqEh1TES26UmRFmH1GBjJTeLF53+7KzjNhFlzXNOiYljw/+edxN/uPI+u6GWdV5Gkuoy9JWdBJVtAGInq0uNlm4tM8oVdFx92Tq+wwffeEql2XTWty/wXVgvbXvWIgMNx2nryvnIy07iiLkz2W/mJE76358SRWB8S6DVRWydI6pclMaJaZLkdCrZV6scVfsg4Np8MMa35+CoarIpBYgQpRReUnlBK8UJ+82rmL6P3HemvY+/x+9TvvfIcmVECW6xXgeSpOMmVbMaUrZSuC7nsGowRweO0De9c5fXffTRjVx2+b30949y/PELOPuso8jlJr71RmCPBYtS6kzgB9gk7D8XkW807J8L/AroSY75lIhcu0cXfZZj3ZYBPvGty1i3dQgVjbNUUCpRIBLNpRIBY+dl0GHTMpS3FzPgJly72tY6O1O84ISFAGSyPmEWnlAi/GRB0aT1C7iO4tx/ew2TurJsHBnm3356Bca3x+sQ/FHrjhFNNbJIWZezk8zDoKvabpwBGQFEapQR+7cgRGmIcoa42zRZgU1aMGnBKdrzMp7LWUccmAyh4rDj5nL1ppWUGgnS47nhEwSdCqdWD2mQVeXAAydssdjTisIUn/SOoKrkKFCzczi7KJMSBBF/+vMSbv7bY+RyKV75iqM49ph9xu/kBMKTIWuebDznlJjzf3MrV137wG6PE6WQcci6lsNSv9k4djLVPeVZxfGHzat8nd7bydJN26uWg7BqIJHkUuVQwziVmHobeH6Or3jTiUfQkU7xs3vupeDG2HAea1WJOoTYB3eMluQ/UQIudStC45f7U1VQYhe0EUyG8RURZUm2ouyqSXzY4I6wdXSEaR27UBh2Z4qqOcZJO8ye1U238nlk1ZbK+ERp0LHCuAqnmCS5cxSxUz1ZjCQrRGtG/s6v/8qLj92/omTV4trrFvODH/65Qvpb+tgmrrr6Qc778TvpyO2igu8EgIjC7AHZTinlAOcCLwE2APcopa4UkUdrDvsc8HsR+bFS6mDgWmD+P97rZzfCKOZ9X76IncP53SvxlXna7KxxGxN5a0V+qkOmP66Q401accRL9sP3rDh3tMJxHQq9MW7RvoCdaoLrqlFWQX6StXo2+WQVnHLIvhx/wFwAzvntpcS5aheNhmIKvEGbEK+262XLbJySemVEQWkS+EO2qCxY2aNCq5GF3SD+OCs8BVHGQARRp6GUirlveCPHmTm42l6k1byu3Nc4Mif2FU5spWHad3nFKYdw5aKHKSX5wYybWJd8K491SCWiHWx9uPzMVM39KEKJuPSGB3nXq5/fdL0wjPnQR3/HqtXbKiTue+9fwxtffxzvesfJrTs5gfAkyJonfbH0nHKYGyP84fL7CMJa/wctfcKiaZl4qXxSrQvFOBB2KYJeRbEPSt1Q6gTTofnWtbdw9+r1jBSLpLo8wm4IO+2n1GdXLbFvFQWThD6HiXlXXMCzKx9xIJVx+NBLT6Qjba0DlzzyMI1ZchUK8a0yU2uB0QrilCGYGhPnTL2PWdkij2HO8maCPog7wKTHNzNXR0IoThGiLrvSWjqwnVN/8wsWb92CozUn7jcP3UqZ0s2yXQAcmJLN4mqN62hOOmg+v/jom/jhx15LnIViL5R6rF877FAEnVDKqGr+iZoPOnEDJsJtrBiwvUV9qkIh4Hs/+FNFgQEIgpjt24e5/Ir7dz0AEwDl1dEekO2OA1aIyCoRCYCLgFe1uEzCeKAb2PRk9f/ZiFsfWEWx1BCh90SU9waomOpESR5s4yvGZriMznQYmekwNNvhhsdXculdS9gyOMKWgRGy2iPsgsI0GJ0FozMg6IBCLwRZy4kbnQlhtyKsUU7ATpcO3+Njr30BAKUwon+s0OSqAQh7rOyohRMKY9OF0dnN9yOuVWQK0+2n1AthFxQnY99Gu1D44jSUZhriTqsgfefe23jzVRcRxDGnHrwvcauSBLtyp2lFt/LxXIfOXIp/e+PJfPKc03jfm0+2wQaZmqhTZRPchbl62WWVQVUpdotSBGHM7YtXt7zmZZffy+PLt9RFoRWLIRdefCc7dzbLpomGPZE1NYullwEHA29JFkS1KC+WjgLeDPzv7vr0nLLERFFMsaZmRh0SZaDMprBJ53YhdcquJAVRrRCo4ZmMuhEX37+EixYvIcRUVj+1wiDsBN3I+0gEnvFhRkcnWcdjUi7DOScdzZzp3bzr2j9w95YNlEbicfsoKTCBSZQaIfQNkrGKjXhiX+4RVBkk2Keh4oKSqhJXWbo1XAOxAqzhnopRxIeuv4r3H3s8Zxy7kGVbtzNWDBgLqmNvXUZSsTSJTnznvuKQA2bytTNOJ+V5pH37iJbCyJKrK0l7kv8ciLug2KnwhsWWUTD1v0cZxggXX38/dz+8lr6eHG992dE8/7D5/PSXN1NyAFehI2xacWz9mkW3LuPtbz2x5RhPHKg9DXucBdSGbm0Ajm845ovAn5VSHwJywOl7csFnO7bvHCGKE6U4kS1hh4M3YreVp9Ru9RrFuEeWs1jrCMZKIV+//K8EUYxSCiOCJpFFPpWXMgqCmj6BVQ7SaZcDOvooFEKO3m8273rpMdyxbgPvvuAyto2M83JtIRe0sYpTVA6l3uV92f/jWg5sPI6wUUALTvOS7Vv5+g03c0jvVP71tOP56Y13EYtUSyvsIhrK0Zov/vtZHDV7Bh3ZFE5i0cllUruQ/YowK+iIyqdlV12H//ju5WzaPszzDprN219xLH1dWc7/9a31i+ZycVsRFi9Zz4teeNA4150o2CNZU1ksASilyoulWovv371Yek4pMb7vMmN6Nxs3D1a2JdSOBEKcUkTZFm6kyhH2LFH2wRsvMgjsy7RkzC4nEiQ+6UTeGb96bMb3+OhLTubsw6zvd/3IEGde8ivyYZAs8Mq+8RYCDiHuAHESk65vwK9OHuMKFDS6kGgtDhUFRhDEEVvnSWvSroenFdNynSzb3m/3I5iOGETbnBM118WBdfkhvnTbTbhak5vu8aEDTmRkpMRwqchdq9czVCyyKRrFGGuerc0cev3jK5jb18N/nHoKI8USNy1fxZL1W3A9TRzEdcLTZtOkao4exXJoGiIpPEejFPz+hgctmXv9DhYv28iLj1jAjX99tJKNOXYERKEDQceC40ws/28rPAE/9WSl1L01338qIj/9Oy/zFuB8EfmOUuoE4DdKqUNF5NmdnvQfxCH7zUBrTWViA+Ipgh4nCc2Vau6lcWSDAMUeDaqF2bL21MRaU4zsG1VJzT4DRFiLbrlRRbN88xW//Pc3kUpcUuctupuf3HIXhbA1cbW+A1VEruxegRkHWdclBg7onsTSsW2U4l1fW5fA2Sj8YcUSrnYcjBFOPXhfDp0zneFCkQ3Dwzy4aRNjYcDgYKnp/MgYPvibK7n5U+/F0ZrHdmznvk2buPTuBytcnbpbLS9cRVUIzN6YNEVtua7mocc3WTkDrNnYz7WLHmFfN0epGNbrfjUFP7s6nxCL6RnFHsqap2Sx9ISUmGcT6e/DHzidL3zlcmvqVfWyIcxq4pz9gWp5L7VWkjLRSyU7dqmUStUds6s5LRrQoB1IuS5BFJHyXObN6eaC9Q9y4foHef3+h3Hvpk2UorBqyvQEVapvuWJV0VRzy7ixVWDq3uoCGMvlCawiUnsuDjgpxasXHMSbDjqcw2dMx9Waqx59jI9ddx1hR2TbHGu4meReUFCMI4ghH4Vcsv4Rfn7Gq3ntHy5kyCtSkCiJJqKlwvh/d9/H0TNn8pHLrsGIwQiYjKAVuKVxxlQpomSVRGz7ESem7jAy1kpT84MXSyF/uenRyrm1/xsPcBSHHt7CJj7BICiiXQuWHSKyq9CsjcCcmu+zk221eDdwJoCI3KGUSgOTgW1/f4/Hx7NF1hy873SOOnA29y9db+usSVWYxCmNP1INSJUWhhbBWjOC7ie26jVaEq5Gw4sXIGp2C6ccTWgMnuMgrnD8cTN5602/Y9+uPt6x8BjOW3R3swLTyiBUQ7QRxFql/wH4WvPfZ5zJoVOnMrenh1IU8b4bLuev61u7ZRBIb3JQMRiEQqLw3PLYak47dD8653j85N7bYYYgGzQKp+Viz4jwuT9cD5Mcblq9CiN2gcZ+0LFOcIIaa3T5VmveG2G2qsiUDwsbqoRHsaE0UGTVaL7aRvU2kj+EI4+Y+4TH65nCkyBrdoe/e7G0WyVmbyb9lUohrmMrRJdx/LEL+NbX38Svfnsb69fvZPq0Lo5//n78/M93UyiFlYcr9qwS4JTJtSrZloREGpVYQnYhY8rFE3e5KFGAA7mUz5XvfTt/Xb6agXyB24bXsHjnFvKbrQvmge2bQQmhH6DK1ww1YjSEuq49KYc0ly+cakGWU4AnuKJ568FHcPfGDawcHCC0xUKsSdTXjGSG+cD9F9GXyvIvB5zAqw86nI/ceRWixL7vPYME1dDHVlYnI8LygR187Mbr2Do2SiyCissysfXomFj4wKVXYepMr5anE0s5AqsFtP2NjF/uS6KUaCFwbURFxZJdVqIaV7mKJFGX8OCjGxARRMYhDk4AiEA8Xha0J4Z7gIVKqX2wysubgbc2HLMOOA04Xyl1EJAGntSKd3urrDFGKAUh6ZRXSTWvlOJbH3sVv//zA1z51yUEYcRB+05nn6m9XHzh3ZTryo5H2VBY2RNrVZ+hYJyDwy5LmN0tFLzlmMN59VEHc9uKtQROzC+33MmN25cTmpiHdm7iqjWPQq8m8CNwBVXUOP0eOthVPoZy7bZ6jl4tcp7H+445lh/edadN05Ag7bocu7CLS3Zey4+3DHNY9zzes+BMXrHgQG5Zv5q4RVs6sPO3UX4Ugojf3vYAD0xeT8lYxcYrOuhdjOAtm9ZSHKx5RyYyeWw2pLcIXqG1cljR3xoWu62gCgYTN//atecseXg9hx06x+YUm6AlC/ZQ1jwli6UnYol5SvxYTyUeW7qJ737rWtas3o7WmiOPnc+8BVPp6Ehz2qkHcdghs/n2199UOX7RAysZuyZMKsdSfTor0S5VCIJJqyR9f9USo1Q9XUO0Xc1L8rSP97Nr4IUL9+GTLz2FZSM7OHjeFETg3D/dSSEqc0iEAkWUzbdXaUy0AVeQUaxWhd2nXKtgmFhZv8o4NZwA9p+Z5u7gEbZ0DJPJgV9wCYZ9jp4xk2XxOm7a/DgGob80xhfvv47VIztxHV3J0YAvSSVdU7mumGZNRqG4c+P6SoT2rixYgqCVwrQi6pGUQQho/QYQRdBh99f1QCnQSeRWUOnU+OHuCSHz8eVbOePMbxPHhsMOnc1HP3oG8+ZNHr/zzwAERWT+cbeXiERKqQ8C12OtG78QkUeUUl8G7hWRK4GPAz9TSn0UOzrvlKbSy3uMvUrWiAi/vfQuLrjsborFgO6uDCc+fyG5XIp9507mxSfsz1tffgxvfbldmJbCiE/979XsnK4QXHRJSO+MK+HIjVACJgMmHt/6KNhsuCYDMkYlV1Xt/vJc60j5fOjFJ3DMwllsHhvhtccewtce+AtjYakSBBmLEBNDV1y5oLiGKFfC3eij806Vj6YE5dTIzExkzcmtKC2OcMRhKa4rXc+MQ/MQu+zcnMXJ93L8wR0sj5dRHLUDsWj7o9yzcznvmP4qm8G77jETHC8GozCerlpKarA9P1YXTCAZg+R1kyJSRjHdYpGvrPwu9YG3iaZ7EoRSNzhFwR95At4ztXsO1Gc/eynFYkg67fGqVz6Pf/7nF+C6E8udvYey5ilZLD0RJeZJ82Mppd4LvBdg7tynxnS2dcsQn/zo7ygUrNsldIQ7H1zDnYvX4jqa31x0Bx/9wEt42UsPA+DuR9bymR9fU31Gy7pAnPBJmjTi+vwrUdpaB3RoVwcoG20EdpI31k8q/z+lM8cZRy5ksxlmc36YM6/+JSnHwYjga4dSXCPZEvdO4wxQChtencKGE3sxqc4Sjgue1pbkpw350TTSQntW2rAm2JYw/ex+nTbsNynHQZN6eGj1qjIdGYBCHPLLx+/kJXMP5pq1jyV9E9zJVsGiPFwC4YiPhNWHfVImy+ZgpO6eGsm9tSTjGut7HURJJcTaLdSLJcGOkxqvlp5S9jctf01KPzQpMpKsrkSQWIgie86Sh9fzoQ//hl//6l/p6ZlYGTnjf4SEUIPEJXNtw7b/rPn7UeCkPbrI7rFXyZpf//4OfveHuymWrKzZPprniqQ+USbtcd4Fi/jZN97OlL4OAP7fT6/mzuXrqnmO0or8dEVuU9RUL02AMKsqVgHj1qRCCGxiR6OpkEzBZsVO7ZQKT64cpPCiI/alZ3qaLcEY5626m28sLeBqTRDH4Bpit6WYq/9bQTQtJLvWIzQx8aSYqMuQcq3MMk6AowS2tuJ1CG5PgbXhlup1nIDJc2Let+AF/HTV9RRNDekfoRSHLCs9joOqyKBUtoSTDsmPZVBZKOwfovOKzFoPlaQPT3suhy6cxqZgoNJeNDnC2eki0iLZIDK+NV1BnEvCq0v1uW1MEmXV83izjEoOqtsRZzROaRdFPkUoFOwYFAohf7z8Pvp3jvHpT71i/HOeIfyjsuapWiw9WSHWZT/WbODlWD9WU9si8lMROUZEjpkyZcqTdOl6XH7ZvRWfpJRDbJOZE8WGIIj43rk3MDRsM7T9+A+3WZ91LVT5JVavgAtJ7aDEwiKOXSnZsuw2pX/UYR/62C8rQZJUb65yVBxf0zHP44J1D3LNmsd4YPsmQhMzGgbko5DBoJhYT+zVlWPGJcsrBftN6ySViUj3FNGu9ekGJgZt6WmuH1F/J/Zu/FRZcFQbNwhrx/q5dtO9aKdELl0imwpwtB1TTzu84+Aj6PHTgMHLhijdQG1R4HUGoA0pxyHrefzgtLM4efZ8nNpoofJYaptrplwjyvEUs/vGzzMjrjWfhzmphFYbVR3fca2dSXXrXMYn5btMn9xVrXsl9Z9yEzqSutODIOaaax4ct2/PBMqro/E+zzJMCFkTx4YL/3gPxZKdQ43DXCiG9A+O8b3/uxGA9dsHueux9QQtkrEFXTp5/pO+Y+XF2Ixqo1JOrqntoinKWdmjBYJJ1gIjHpQm2yi/2Lf8lOcdO4ubiqv5/aqHuXHdSjaNjVCIIkaCgFIcE5QECZ/gS8kXeqb7RFNioiQhXcnEhGKII8e62NMx9eltBRyhZ/JokwwLJeaHK64kMhEKobbYikF4bHQt3z/tLADcVEiqo0R+zIZYSTLZTVYozbXyO+t7LJw+mY+fdgqmlkLhQbBfCdOYWgLIpXaTQ0LByBybNsNoQbQQdsLYHPtbxOPVcFPW/VyWNZ2uX1dGog6SnFCDUini5puXMjDQSDp8ZrGnskZErhWR/UVkgYh8Ldn2n4kCg4g8KiInicgRInKkiPx5d20+EUvMhCH9PRGsWlVNIjRenhfHUdxz32pOf9HBrNs60PIYlE34hk5W9trmUanNieC6mrqEMXXn2+ggFSRZZGuE1D6zelkxvMMSX5MXbyPG8aQ0QRC2xJtxu6QysetuAkG7Bk9FRIGDGIXWhlQ6RDnjGTiFWBcoRxqKgOfGFEougXGY19nHZWe/lTfc/BNGSuO0oeCQmb28fMZhvP6AQxgzJT5w3NEs7d9GPgwZCwOyvkdvZ5ZjJs/g9rXriY3hoClTOG3/Bfz37YusJatxvrtWWBNbhVFcQYlChTU8mcSb1WhhEaXom5Hj++eczXChCAY+840rENcgkdjVsEhVBofS9PMGQcQFv72de29fwZvfdgLHn7jwif1QTyFEIJxglWX/Qew1siZfCCqlAirvoIa3tDHC7fetAmDd1gE8V1NqdB0pRdhh6/2kBwxOUYiyisIUx+YoSdp2fE1kWssaAUjexeJC1F3dt7zUX+OWHufcyAF/N1FIycEbMoOQaSW0FFHokppSJB7yMKN2paczEU5PgOePb4WIE9ZL2YprLyVMT/dx1r4Hsvykdfxu7c0MDjVk1UuuKzk449j9OfPA/Tlu/zlsGBvi44efyneW/I3YGIwIXkZz+vH7sfmxMdb1D5JL+bzk0IUsC/q5dd3acblJADhQnG4/SL3IL0yD1BD1cioRie9748kctO80PMflhmsWc8OfHyYKk+jKWkY0NMk5sIry+9/9fzz/+fvx1nNOZuq0ruaDnmZMRFnzRJSYCUH6e6I4+JBZPPTgOsIw3kXFV1Uhac6fMYklK1q71ZVUszXW5YJJEO4iurTstpCU9VmriMS/DJuiYYpm10JDJa6onOsTqYhAwha6gr2G40ZI7CAtFZJkAecYUhlDX8cYAowW0xhRSa2j+vPcxPLTELBDJhUx2Ve8957vsyUfYZNUjv8IZTKwYFqOt976fwyULDO/Y1qaVOQQlkoYVeKQ6dP5z2NfRM7x+f7i27hk5UPcuWQNcUrQGdcKwnJm0kSphOT/WrnYkBk0TiXuvdqkhC7sHCvw7z+7knwxRBC8aR56h2DGYoyypnklgJE6K0ztmBfzAQ8vXs9Xl23hn//1RbzmDceOOwZPF/Yki+YEwl4ja3LZFLlMiqGRwi5fgBU5M72v2QpTOUiBVozO1uOSJuJxFBiFsi7lcTBQKuyidwkEHKXIuj6jYan1/VTWE7uw2iTuZLcnhJ56xSk2Gu2MLy9rZY0IaBTbCgVO+8uXGQ1tIi0Tt37GlYK5+3dzb2kDH7rkSusqMxH7dPeyrjCAMTGe4/C82bN452nHsHRwG1+//0Yu6L+HfCmCtAPFVv56mpWThsGJcoqReULHeioKTllHufT6BxgaKeC5DkEY4/V6qO1xPe9yF8NpYsOObSP86ZrF3PLXpfzk/PdMCEVmosma3SoxE4j094RwwkkLueSiuygilXTzlUyQyQMWhBE/uOxWvnrBjew7exKN3DEhCaNWykYijVc+ZxcZMhxPE5cPSBJOldGXzrAzn69eTLW2ZqS6C3S4mk8fdiYXrFjM/Ts2ENfNAKGjswhKobUk7PfmdhzHEMUOHekiTlIRTitJvCu1TB3bpqulpftKKWEoHkRiCIy3m2gdYcXYBj67+CIiowhiFxHFSKkcEmSjjBZtWcnb//obOujgoR2bKZlE0HtgsjGq6GAaLWqtBEuZZF0WIonZHQPENXdXMPQXqqGORUB3gBcAjkKNYflF2voUa605ZSGukkRaxWLIL376V8565VH4qWcu5ZINe5xYguUfwd4la4SXnXQgf7zyPgppXe8RSHrjOZq+niwvfdePSKdcZkzqYG3/UMvWdAgqydzd+mq7wDhWfEWjRbeVfBAy2RJdvWMc3XMgr5z1fD55x1WMNVpvKi/08ay3oHZRbXKsmKI7W9hl/tBKOwpEhDVj2+vksp8KKeSbgwYiMfzooTvsolJI0isYlo9US7yMhgHfXnwzQ2GBny+9i3z5/hygM8JmuxwHdX6+5t2lPkWpW0gNQteaau92DIwhIgQJvUGlHCTroCJBidhSBQ0Z16vXtPsU1iKTLwRc9Nvb+fDHzxy/n08DJqKseUKSd4KQ/nYJEeEn597IVVfcB9rW1KFceTqxU4oDsacoZRUjO4ZBw8MrNlvCXA1txLhVYaLEEu53YXNpwTYRonEUH99x+JcjjuYL919PpCL7rEblZFZV1d9JRWgNIzLGN5dey9/O/DjHXv1fFBKXiefHeF61V442xLGukPnKPVGAo0GrmLQXVeZLR7rESKH8lq9q1442aC3jyypVdlslqy7XEEWNgkVQStCOdZc5WnCdmFLQ7H+OxLAhP0hYGraJASvXweayaawdU4axfVRSpeqZtC2AWSEKJ7ch5azCseUOOA0LYl0QxFNJMTurtYixKcdVJBWLjyTh2zpSVgPDFr1cv66fBQunjdPRpx7WcPQEeQ0THHuDrNmxbZhPvveXDPSPEuc0Rmu7WFL1WkwowqYdlsw+OlbCzRdgHD64wtY7C2sKJtaikoDSqOrcFIi6YnROYcbqXTwKOHWffdjuDrFsbD3KMZhIUxpJ1RwhKC2ku4q4jrB4ZClHlWby6SNP40v3/bmlpVlpQUzzwgfAS41vXQ4il7GiRy4dJMO06+e1lTqUzQYUC36i2NReWzX1VTnSdIlCHHLeo3cSmmZeEp5JUlWMZwpL9jTpgFbIpAbBH4DRWfYAdwzSQ/W28aAU4aFs8EHR1LfRFIXVcPnI8OB9a8bd/3RhIsqaZ03G3ttvfZxrrnqAIIitApNONOsaO6XC8luk/NAYKxyUaCSrKrU3ypYYAFHgRcqSUJseMiFKS6UKNCRJ0jSIm4Q2JzlUXK1xleZrp53Gj1fdgk7FOMkEEC/CRBqJlY0E9g3aMRUxMRQWuGfHGnzPoNzWJmmlwPciwkhjRKOV4OoYk5BudIN1xdFCdzZPhxvQlSqC2Pj//mKO0SDdwjpUNSY7NcQ9z41RyhBFTkW58dyIlB/XmYhdx1CqtFCP2AgGg3JitGvbNgZEOdATILGCgouKdEVooKxyEjk286kWRU86zWBcrJCyVYDlCpQv6VgejRq10R32QokLqfxWUIrYw5YeMArlqaRgZnkYpM6VFYQxvX3/YIavJwuyZyHWbfx9+PpnLmXLpgFMLJT6cg0KDNRlQ6tBWDSotK5LLyDKKscqcUVklEOhRWYU0VDYL0IXFE7ByqO4w0DZ9Rt4EFql2ncc5nR18+qjF/ClJZfjZ5PEnhLjpGLCMQ8Taxw/xs+GxOJgV3Fw0dpb+PCCt+A7DmHUoBjULGCSXgHWVe36MXoXbi3fiZjdNUSHHyACpdhhIMgm1264V7Hup0ZoLfRNGiU/5hMEHsYopNEq0IJHV4tSHKGUIZ2OcFyDCBQH0jYdRfmWat1IiWWntpSJo8uWZCsvnFHBKSirgCb7wk4hzihym6uKjFNKGlWqwrsTXb1umRPUOMLl75On7qKo7tOFCShrnjVKzJWX319fF0nR0kxXecGVnx0DlAxu2sP1oCAxYcNqSULhiNkzWLplO8UKmU8qfBlJ8o9UeBkx4Br7AvVi+xLW8JoDD2Z92M+m/BBxeeWg7AvU8QxeNiJuwW3RynDx+hvoTml2FBNyTbV3+Nryf2Kj8VyD74a08vQoNKomaLrbL5LzAnusAo0wNTtK2omIjGIoyCYRA3Z2uU5cScLkOxFB7KIUeC54bmgjDJTsJlFTs4lHKRBl0JU8M0CsLS/IUVYZ9EJk2EWFCW+gTGT0IPLsj6qzmmzerWQaFa/hSsmXKGOT3gF1JD1x7EsFVyGeqqyOVAxOwR6oxCo45TtJZzz6JnXs4n6felhP6cRaHT1bMTgwxrKHN1QTl+0iPLfVpo5IU8wqwii2yTNrJbABHcRMmZRjqFAkiGJrWVUQzIpsqHWHYDqkvlUlSG8IoSKOFLEX871Xnsn77v6lTfhWs5hwXIPTXao7v7a1oglZ1H8Phbg1Gbiro8DQcK3SLtYCU3O/Loq4xkKtlOHAKVtxdZVrl1Yx05xRRkOXYpwiNA7JkhJjVEslxrYl5DpKOMWY0ZHx0hyMPxfSjotOj1b6UdyaxRTKCb1oFK1WMawl3wqkHY9pXTnWDw8RGoNJK+JSeSGUQCuMK0RZ8BLvtapxa8flwrROVc4AqJJBJ89WbbVsRDj80Gc+e/hElDUTy7m1BygUgsrfKmp28dSh4TfQCk47eAEffu0pVoFR9Z/Yg8fWbeO7bzyLMw5ZCL7NHxB2iY2gSawvlXMcoExC04AnhE7EBcsf5Ncr7rHhzy3gOoZsukRvdpSpnSP0ZfN0pgpM7xxmRX4F6AG0korYUQiOMkzJDdObKnHKlP3oTmncxOrkoElrD4Vi39w0zpp5IL6Ok/NNVYFpGIuedJGedIlZnUNMyuSZkh1lWm6kTif0XUPOi+jxfQ7onI6nNGk3xNWG3nSemR1DzMgN0+UXKD/2WjfnaUhpl8P7ZiK6GkZuotrBrP45bVqG0/dZUPfUCja82ijYVhzjoP2mIVlIp51xp1rd4q9GPlX2NbCaxQHj2XopOjKJBc+eO1ooEZSeQGTHUwgBIqPH/bTx5CEoRZYvlUAXxyHrjiOAdAj//a6Xc/gBM6ph0+WPhlDBKfvN4yNnnMjCOZOI+wyFBSFx5/gSreJJ8QQyhsCNeOMNvyIfB03H1j7aro7JpYp0povUEj7u2LmUzly+ZpuVOT25PNO7h5jb7TAz00nWtWZOFWRwjIujNL52OHP2IZw4cxuOinFUzKR03sqtBmOVo4XuVMi07CjTMiNMSueZkR2mww8qc7fSV6WYn5vCFG8SpXwWg8L1Ijq683T1jdLRncf1knmoBCou+irSjstJs2ZXxiAONHGtApMg5Ticvu++zOrobJnpNx+GdHkpelMZPKXJjJeGXyuimtp6tWH0eLqqwNT8MJLSGCcJ2Y+TEggiqGLE2mVbWl/nacRElDXPGkvMqS8+mJUrtlIqv1BU85pfSB6ORkuBgnNecRyLt2xprcQrazqcP6mHz539Iq7/+QobLVBOQkfDhcrmSEODmigMB6XW18AqJZ2pUo0RyQoQQRFLjKNhcnaMYuQSG0W3X6QrVUyCGyJmdg7xvv3fw1+3PoJWikN7eliXX0w+HuHw7qO5dMNfmJIZoRS7KAx9fh5fRxjRjEZWIOXcAI1QiF2Goiy6hsbSmyowFNioJgV0+AH7dOb5/MH/gkOOc+78Dq6zs2pdV0KHH+A7MSacyrz0JF466xBWDPVz8+bl+Nrl9fscwSnTFvCeWy9mLGoWurXYXhzlvNe9iuf/33lsz4/ZJMUVaQeRCLf1r8fLagpi8Eu6Ws22/mfAlE34sRUuqsKxa7WEtuZ7HUOUdjBa4ZZsBXGtdd1L7ZmAzd3QVlaeDkyZ1kVvXwdbkyKyTj4m7vBac8habJvS28ELnreAr1791+bjE7nxyLotfOXNZzDcU+LBBzfvpkflRurf2PkoQsVxk6grw3ejOo5cbRFcUGQzIb4fUSx5OMTM7B6mI2Xn59Tsav5133fSP5Jjcf9m5nZ0ss+kAVaPLabD7WZh5wwuXj/C6fP62TLWSdYP6PaLaCUExmUk8uvcSAJ4ToyXkNkmpfMgisFSxnL2FWS9mCMm9fCpg97BdeuX8tmHLsb1SpX+O64h21kkDBymqens2zWZE2fO4fK1D7N2ZIB5nb188ohTuXrTvdXFUrH1668Ux/RmMnzzpWfwvsuuJB82W6UWb9kK2JIJjlYoLRU6QvXGLI8pdsGJpN6ysovEX5KyWY8jV+ONBOhRq9R53jPvxpmIsmavU2J2bB3i/O9dz903P4aXcllw5Fw2bR6mUAjIJimaC3FN5djGBmqenfJq2k95LJw7hRuXrxz3ulFsmNyZI+O5xI5U/dq1L9LG65RrDtTAJIzz+mfYumEyfthiny197khcWUFkPMtC7kqVKAfuCIZlI8vZ2reOf9v/ZSzafj2Xb/wxkdhQ4mXDDxPjoJQi5wX0emOVa2ll6PGLaAxaQSSanArJukNsLvZUSq/7jmFyeoyME+BowVFC0cAPlv+ADy74AEf29vDoyM66/msFKSfmYwe9jFOnPa/l2PYXx5rJdi3Qk8qglOITJ5zEF26+kbzENCmPQIghElBpjVdsUGSSnyPqAIyQLpJYWBg35U/duYnCg1I4jubY4/adEMJlopl4nw24/b6V/PzC29i0dYhZkzqZIS5rH9uC57t4rrZFSXNlcwq75GKU8cLj9kMpxUhxvOJfMKXbch8mp54416oxyEVEY2KFdlpFGkqdAgN1Ho0KXEfoyAb4OqQzXV1gRBLx89W/5idHf4eXz9+PHy3/LCu2bCGQEgrF/QOLiCTGc4Q5XUN1fUvpCN+P6A9yTaG6VfcTTMqM0eEXGQ4ziZsa7tr5KFdvupVpuUm4yrqsaqEUZNPCzWe9r7LtXw6uT/j8+NgGbt66jJKJUG7rCV/mFD1/7hzm9fawbPuOFnxIi2IUWSVL62YlRimiDkXUAf6QoXPkCTwg5RtJxkvn7TshnfF46atay8+nGxNN1uxVSszocIEPv/5HDA/kiWNDnPLYfvvKygxxXU0ml2LSnF7W7ByuWkTKUA0mPWXdBzMmdxEbQ0dmvFhq6OxM0ZHyuXntamtdqX3+W63CUA1vRWnI51D9WykhnQorPuNWaHUJ1TCJSybg9+svZtXozSwbWZzstfkPAinhKJdOx8PRxZbKksEqS76KCbDumJnpQdYXehM+DXhOgN+Q72FbaRv/tfRLDIY+toZfPRyliWltZdlWHOTCtX+jO63YWVDEYnC9mCisz9uQcVzemwikNxxyGCsGd/LTB+9traQm3ijVqThu7hzuX7GRIIptLabaE7Qi6BK8YYgz9ruKbT0Ut9ZgJknSO7GRTSkUftanpyfHxz/x8pb39XRChAm3OtrbceNtj/FfP/oTpSBCRYb1j+xgg6my1fy0x/4Hz+CBHTsrNNzdvaIyKY95M/sIoois75EvNud+EgXH72/z/V29dukT7K2y/LEGFPI+2Y6gaV+rY+32ZkUGpI7IX0bJBHzj0f9lc3Eng+Eo3Z6m2wOUEIm1HPgYK0dqBE2ZvJpzAkaidNL78thZKecql0Ai8rGPrrl2YEJ+svKPpHWKuI6xX8V4ygbAfTsf4/Gxh4mkxu0k1euW4WrNGw89FK0UF7zlDZzx81+xbWz8zLkGyGcNR3dP59GN21omJQy6bE03Ly/Enk5eD4ITQsufQ4RMPsJ3HXDhFW86niOP33fcPjxdmIiyZq9SYv582b3kR0vEsbGFwTyn7k0cRYagFPGWlxzBjy+73bLrGywvcSqpfZS8xf2Ugzc1xdGf+aEl2+rqRC5PrtgT+r0Sx5z7Y2b2dRLGNe2WXUY188BRismZHCW3yGDJxggr1xZIBIWDJuXHRBLiKINObsMYjajWJuD6TYKn45bk3WI8wuOjm21EEOCqiJJxESCnR+hLxwxEGcx4dKjyPWCIcXCU4fCuDJNSR7I2v4wdQavEgEIkUcJ3aQ5T9LTD9HRz0cSN+X7effd3CEyImxbSJk0QuUkklRAG1cdzbncH76lZVb1o/r789pGHGAsblKOa6IKSMpz5vAM4982v5E3nXsDjW/qbxJ5xFCYlFeuKuDaxoTjg5xMfk0Bn2uddbziB/edOYcWKrcRGOOyw2fT02tXyyFCei378Vxb96SE83+VlbzyOV59zMu7TZKWZaGGPezNEhHN/9bdKORJvMECZhnDZYsiKRzfxvv84g/+5cBHl6MdKG9S/GhUQdSp+8Og9fPL2G/GKUj2wZmEVdgrfuH8Rl298jIejzbtlLWYcl2OmzuLWratb3IjGCXM4qTxRzaqrVR21XaHDa7YaicCDQ8sTt5BHIe5kJEoxOzNIWofM9gcJRbMumNS0clcKfF1veS0btA/sOoDZmTlctv5ujLSI0gIKpoSjnJaRTZPTrSN4LljzJy5a/2dCiZiU0wyO5Rjd0g0olDaWV6Ssgve5U09has6S9TtTKQ6fMY2/rFi160FyFb97/5sZHCtwytfOa96vFMUebUm7iYAXZZMlu6X6zOAL9pnCx993OptX7mDr1iGmzurliKPnV/Y/et8afvP961m3fAtzFkzjnz56Boccs8+u+/ckYqLJmr1KiXnwjpWUxsqJUlq/HErFkCUPrOW7X34TH/rMhXWro9iD2FcVgZNJu5ipHg9utIQpAesmSiwt9nghzgJKGAiKDGwp2tmWWJEVConEfhcbfnf8jDl878UvJ28CXvnnn1cTK2GFzuv2OYKz5h7Az5ffypKhNRSMvadS7OA1JjFJSHW1qydXGTrcZsGiEHI128srK1fFpHVISkcoJXgqoiStVzJlC40Ca4FAUKxmYW4Gs9KHc+WWjZXzFEJah4BBo3C8mHycojFXDUQs7JjL+vxGLt1wFStHV9Pn9/Hw4DYMEa4GVyv8jlG2jdqMlKl0hJ+KQKy/eVO8mT+uu4/XzTsGESFUIVG6BF4EgQNRjV8vubxBOGzaVFKey6yeLpZv7qfxTeOUi1/WuaUUKqf54OtP4piD5zJtUifdXbaw3aJFj/HrX99KMjzkcik++YmX8d//fgHDI0WbvyY2/PaHf+GR+9bwhR+f0zTGTzaE8aM52vj7EUYx/RsGyGzNo0sxuK0rIHuew8Hzp3HcEfO5+6H61PWxj83SLdalOn1+L0s7h4kHhgAIUjbBoiIhpvsQdBqiXtvKQyNbAW3zl/jNS3UFZF2f9x96PB847AS+s/gWfrH0bgpxlWSedlx++cK3sGR4LX9Ydx/rRvspJ24IY43XUJOtnhdj4SpDym1NXI9r3EGCZizyCWKH/TNbcJQtB9Iqi7gIRC1ehJqYLrWMIztncJVOUTTVpJRpHdCZyDaNobMzz8qRKXUuKa0ML5w2CRHhxq13c8XGmxmN8szMTOXBwWUVqeQ7hlRk0ErweopkJuURY+sxKcfwP+uu4PQFC5ic6mQkKDFpUha2GOJI0IG2uXoa0J1OoZWiryPb5AAAUIEhs5N683fy9z77T+WcVx7LIQfMpKc7SyrlEYYxf7jkHu64fTme5xKGESecsJBD95/OeT+8gViBCiL671rJY+/4Kf953rt43in7t/ydnkxMRFmz1ygxm9f1c+/NNebVcYoLKQUjhYCuXIo3vv5YLrr6PowIsaeI0qpuZTPqxJTy9bwKSQwJxoc4neSLUSQVqak+nTGV0VOATsX4GUUoMXGmyECY58CeqVz84nfwmfv+yNrCZjytOWXKfnz2yNPxHZfjpljt+dqN9/PNRy63xdSMxtOWm2JJbYLv2IgiRxkyboCb3EPFYpQoOGkdkHXqSWhKWatKOlFgsjrAcWO2hd0NE03Qie85SRYJwCRvlIwOeWzoegTodXsZiHJkdMhUfwRDVVCJKHJOibX5SYTJKsnXMR3eGP/58CfZUooJjOXo9AcD+A50aUUsDkHsIA0rK62hVhx859HreeWco/iv+2/i4pWLCZwQ5QBehAQa8jZGuvxzphwHbRvhzSccwc2Pra6z1KiQurDHWqRTLvsvnMb++0ytbHvk0Q189etXERajyjmF0SKfe88vk3aVzfmhHYpBxAO3r2DVY5vY98CZLa7w5MG+FCaWYNmb8evv30B63UjVzG9sYdJG0nexELJ08Xq+9KGX88Z//wWDQalSGLZs1UOEGFjhDifZti3Es4Ua3TyEnSCuWAWm8WGMFLhSkVtKGXIZRSAhrgvDZpTQxHz8iBfQ5fmcu/RWCqZEj5/lU4efzvOmzOZ5U2ZzzoKTCOKQj993MYu2Pk4x9ICwTpEpZ8pNvgE2O+tokKLDrwYciEAxruECle8JO//L33xl6HLyDMcZpMGkNNaQDdQh5sTuFSgF9/Uv5cV9aa7fsT9F43Fw52ampkbq6IdGIOOEPDo4w3IGlWFe5062Bmv5zEPbWTaynZKxVtptpYHKHZVhksSgmUl5W8C2puBuICG/XX0rb5/3Al7xx18zWCwSeQZciNMxzohTqZpdRm+mWr37oFlTeXRjtZSXUxBymxmHdgA7h/O8+JSDqn0zwve/ex2337acMIwJAruwXbRoGX/721JI27LjknIxHWnYNMh5X7mC8/78yebGn2RMRFmz1ygxX3rf+fV1fmJjn2RNnXZrBB5euZn3f/jXnPaig5k8o4vNO0dsVFLNsYI15dXC+LbEgJBk7UWSdPbSbNaNLQHMVZogV8DxhSAhmt67YwNv/Muvuf7l7+Xm7YvZKVvwkvC/uwYf4S23reNjB72M508+GI1iZtbjNfNnMRoWeV7vUZw+9flsKQ3y6PAq/rTlFtbn15Jz80x2R9kZ5QjEhgxpZcg6CXNdR+SccBxXVJKNN1E5Mk7EZBlhZ5QjTvZpBFeZivJiUPS5VoGpCDlgbnoAioout5g4jwyejiv6naMiDujcShBbv28gHvnYZ1NxtKLYVPqlwMWGEaacGEHh6ZjQOC3vw4iwaMtKLlrxoC2eWb1B8JO+S8IUihUKh7ld3QCcvP98Dp87nSXrtiT7q+c2FooECCPD9KSSdqEY8JXvXsPt96zEuAIdDjow6JLBHSrWnV950blWSD6+ZMNTrsTA3+8iaKM1tm4a4A+/urV+KW0E1aKYbBwbLvjZ37jw53/jY/95Np+78MbmBpPnIdA12dLKzaatRQbA+DIut86JHbQreFoR+yEB9oErxAEXrrqPjflB/uuYs7lw7T2IY80/w1Gezz94FUtGHudfFr6QWdkplEzIydNmkPFH6HI7ed3sFzArN5m1Y9u4fcdSrt64iFBG6faLlGKHHUXrUhkKMhiB7lQRUIRG1VlhytBA1onRNQui2f5ONgW9DMY5jCgMiuEwTVQjCxxijulajVtTtiCli7ywbzmPjs1gamqUxuF3FBzQvZWpmVEKxrO8HWUjZ5YMbWhpAapFrjOP43da60vTck64a8cKtu9w2VHIVzku5VdPZ4MrLIYj5kzHiKCV4ptvPJPX/uC3hMaACNlt0pr3kmD65Go9pEce2cCXv/hHduwYbTrOGKHJkuNA3J1h/cqtiOwuR9eTg4kma/YKJaYwVmLdym11k1wBerSIyaYomyZEK+KcZ19mpYibbl7Ky151JH+4/WFGJar3RWaoSw8gJDWSFDUKT2KB0fXHKgEc+I/nn0yRkHOXL6rW/EFwHEPsjvGORT9llMFqYjsgMBHr8zv54pLfMT3TwfMnz+CegQcoJS6lx0eXcUf/zbxx7tm8dPpx9KViLl3/IL6yhdyy3hAm0YYdBFGKUpJwwqDQUh+N4CqP+Zk+tgdr6khyOTcg6wREohiN0xST4k4qcV9ldIkOp9RSmejzSkQJIc7XcZ2Sk9Kx5Qk5VtHyKJFRIeui3poWmqW1UpB2IrozBfrzrZPHRRLzyM5tdSvaujZcg5Q1U0colCIO/PEP6Emnef/Rx3H+e17Pr269n0vvXsL2/jEiYzBu2aVU0w725//Gb2/i5ccfyI1/eZQHF6+rEyLG16hQmrgSde1ozZTpPePsfTIx8Uy8eytu/8ujzUqtALFBnJqsIclzUEzyU/38G9ex7wnTWbVpZ8t2nRIYr+ElBPWkmXEepP06J/H6Qw7hgcG13LzlcaKa579kIv6yaRkr/7qDbYWRSvp9g2CMcOGKR7hn6C7OmH4ci7YvYSwuEpgQB81t/Q9y1owTePXsF/Cv+72MVWO3s7loCaxpN6bL30ksSRZxhMjYGlGeFoIWgT2e9pidKtbFPGgFs1MDzJQBBsIsywtTCYyDShYvoDkwt5mMrndZKQVdbpF5mYGWxGLrJheMUnjlYrsiBEnSvHp3dvPA+umYzu6Cle8tMC3dzQ3Llo9bOby2eVFwxT2PctXdSzls5nS+8PIX84ePvJ0fXH8b9y/fgDE1RTgbuqOUYvvACN/9xY0876A5fPOrVxHkd51qor4fCpP16VTqaVFgJqKs2SuUGEnCkhvXMkoEPVZEPAdxNdG0jjohUSyGPHDvGpSAE0GsrIM6TlMvNIRKyLRA1XQrqupGalB4XKU4esYsdsajeKscmxkT8P0I17Uv9u3hoI3kabG6GosidgQ7uK1/PVIz7UOJWDG2nvNWnsuUVB+nTXkhvqovnKYBXxmrbohgS006RKLIOSkgxlEusUQ8v+80to/9ji4NIybdMIHAU0KvzuPKCI4SYjSjcWqcqS+kdIwmz2CcwlHN0VRl0l6UmJsVytZjQkAZOpyStfgAJeMyGvk15wp9KThj2hFcvGZJnfLna5dTpi5kUiqHqzRhq9TsDSsE8Qyq5DBYLPL9u26nEIZ8+NQTOGKfmXzpohtYv23IKq0u1MpQUZAvhdx9/xruuW+NlZgpa9V3yscpRZwafzILkMp4HHnifuMe82RBmHhku70VVlGlmdQgoKKaFblbb1UslUJm4bGaGm5JzU+S2glhjlaTyh66i/fWYLHEew45jrfe/ChRi3pGAqwa6W95rgCjoeGaTXfY5yS5sTjJ2HjFplu5dvOdvGXe6QSm2LTQd2tf8koqOaLSToSSHOUCsjk3y+tnTmGgeH8lQqg2tFormOTnmeSvqbird0Y5NpV6yLVYLMWiiNGkdNhy0MpurawTMho7Nf2NK32qnlVOflrdooCzDp7BgzvG2FQcqFNm0o7HOfu+gAdW3tByTOtfQvYjniCB4qFNW/inX1/Cle/9J/7rjWdw2b2P8NPHb67Jk07dsyUibNsxyqV/epBLr3sQsoLyXFLDUdV6M16RyHIXjPD695w67v4nExNR1uwVSky2I82U6V1s3TTUpGMDScVh1fKHXrF+B0GPaxUZIxgHJKeocDmNtbzE2YTYW8NzqSg0LVZJkQiXPv4wx8+bQTEOISHfum6UJHsTfDeqmEiNlIssVieYq0OMtA6rHosjVGkrN2+/pKWiIIklRClFOon/Tek0H9r/u2gchsJ+pqZnsSV/L4sKHhnyaGUoik3MVbWe2NAqR0WJe8fQ4xZsfROqfu+UCunWCdFOwyRXsS6Y1DwwWB5PjzsGWLNz3vj0evmE/kuFOJzWEcoVdoZe0hfBdcZ4aPR2JmU0A8UcvnIJJeakKfvxtaNeSzGK+cp9f2keMIBaP3XDb1aIIn72wL3c/sg6lm7ZRlCwQZplBTauddEbIT1KzQNmOxxlNGrMoMp6qaMQrcHUx1+Un9EXnn0UjvM0rFrECv029hxHPn/fZgWmES0mbKEUsnjZRuhwq7KjRlg5IXRshLFpgnjjt9MK2/Nj3L9tIzkngxa7ZCnnd8qlAmKjyAc+reYiotBKrNIyjgYVSsQl6//MlHSzC6MeimLs4yuPo3oP4lMH/QurxzaiUczPzeLaDe/FEDYGa1bgKB8jBhJZM9kfY7I/ltRStRNWBMZMqpLiQamyxaZZCGsFnqpfzKScGI1B0PXDKyANvVo8+BiO75GNLSHZ0w5aKT5+0Fkc1TeffzroKL5z76I6svQ4w2IXQokiGkQx375xEbesXENsDH5G8MbG1V/r2gGFeFDqckkPhtVnpFIksmEYRHBGCpz6yiN31/qTgwkoa/YKJebevy1lYNuQrQroOjUrHQWegyhFlGuukCxAnC6bVaxdwIlBhYIk6aAV1jetsFlcy9sqLYxX2FQJF2y4h0u2WMOoPUbQWtAqSSZFzUoEUMpUTHGeE2NEtZzs5T7ExBTifMtQ6lr4OsWCjiM4Y/o/0eNNYUfhLoYLt1AodZHxFlbIeikdk5KQQFxKSfGhPq+HQ3pey/39vySSaslopUCLwaDRCN26vh9lDk1E6yixsmnTVYZOVSSvPYom1bTSS+nYKlBUC0sKw/SkHXozIefMexMnTj6cviTxV9aFH5/yWj5w6x/RiTd7LAyQsIWmCYgjYKxVbSwIeWD7JpQo8CBKgVugST7qpOBbq2GPfYVbSlZ2yrowLZuz/s2nHU3flKenppIw8fzUeyt+8Z3r0aoF/6AW42yOsk7TIbU0PhUni6QW7cYtIpDKMMS8/i+/Iu26BLECNJlUwNxJA4yVfLYOj1P6GsFzIzzHjBcHUe27BLsqoowIhEYzye/hzOkn89rZLyE0YxTDuxkK1xGZg8g4UwCbs0YBKSJCdKUI7f5dr2FT/h5GwnUYqopB1fAlFMQnSHJbCbULthbjIjTx7CQ5qXE0yvlpXB3R6+dJO5F9P4hCqywek/nyYe9nn44peNq+Ft916PN4aMdmrl+zAldrwjgmNI0p9my/pTskzij0oEcUG/60dHllbzBH0bVKcILxfqWG7WVSeBSjY8G4yUuonG2+oiEDpYhUKcRPNb//ngpMRFmzVygxl5z3V4Ji8tB7vv2RoSIMxEtCIGvZ/0oR+4o41TzgU7wMO1SpavYs541pVFh2V9xNS51/WlCEoUtnpjmZXHkSKQTfiXC0UIodOsd59vzEvxGJg6/GXwnkHI//OOhXuNpHJOaerR9hR+FOYimisLyZqa6qTL4OXUo80SYpxryBOal/wZvyPu7d8QtCk8fTGbrcHuLoUZQSxkyq5eTr0aPsMI0C1JL6GtG0MqpsBy9xjVX2C/hOTGgKPDj4IF1elm2lQfbvnMNh3ftw6qwF3Pu6j3DrljWICHdv2sCvlz5AqTbtmCSNa+tClFhsREFN10wGpEUViHFJeEn0kZW69iVnOn2c0RAJI1SdtFWc8tLDxmnoyYYibhH22cbfh/5twyy5ZzVSfuNX365VNBTsQylEwdi8HI2rDdexNoFyJtcow/hoDvZJIJCyGnWVzK4olnyMUfSPlV06zed5Tsy0rtFqO5WbakZkHAzj8D8QtNKcPfMFvGP+2wAYKK3hqvXvJ5aAWAJSymEfb5RjUoMUjKZHF8npGJP0LhRNEF3DITO+z939v2HD2G0IQo+/LwPBaua4WxgzKZbH05v6WKvklPdJsorIx37dsbvKJuuqmOmZ4TprsFbC1PQYI6HDluJWlgyuQSnFC6YezORUF//z4rNZMzTAQzu2MDmT5SM3Xc32Qr6m1aT8TEdsq2/3ROj1KVRQDcsXTzEyT+hZ3qJTTXdbA0ehIkGHBuNZDp44oLYOoMeKMFZEo5j1vAV09z1dRWgnnqzZK5SYnVuHql+CCDKpxHKiwNOIUqhY0IUIk7aZ42IPgi7dctVz1jEHcd3K5ewcK4ARgvLkLb/4klNiV5I3Wn0bgqD8Vm4gRRBqnFyrVN/WNJp2I1ynnPsFHBU3JZ7LueXCjIKjulHsaPDpCr6KSDmdvG3+F3G1ncirhn7D1vzfUMQ4gKMC3OQ6vgOIdXmV62RbvS1mWf/Hmd39Ps7Z7wpCU8DTGTaN/Y0l2z5QCdEOWmTI7HQCShIyKl5FRGpMUySB5cmEBC3DMqHi2qs5XsRaZu7sX8ad/esITYRWGsRhNHCYnOriXQtexNmzj+b02QvpS2f50YN3MBZXlzvKAcRAaIutqbygxtVMqzDjzQoRVFR9eYEgWiGeRgf1rxKtFVdfeCenn3U4Hd1Zps2ZtNvr/qMQsYkS29gzDPaP4noOYWAtg9JoAm3l1wVG9s0Rt7AEA3zkLS/kfy65BaUtv65Y4WdUIWV2aKswOWjI9F09qxi6hPH4yRRn9gwmaQogk1geinHFl9XQmqLPjRmIpEYeWTnV7RSZnTuWN899Q+X4P238OIEZAcAn5oXptXja4CqpuLqhWlpOK4MvDzPa/xpOmXodSn8JweDqNLevfxWOWU+nE7A8mN50HypZNCjcCk8uEIfBKNskO52kQG4rxa7bLzQtLsvt59xhPrv4YhzloFB897ErSWkXI8KRvfvwkQNfwfzcVK549T/x2Vv/zM0bV6LSceW3UWWBKmCmhjgbGkLIw1YacXmUW//suoY9rWKDFgVrt6JG8nULpo0Pr+Hh25eRyqaYtWAa2c5dact7hokoaya0EiMiLLtvNX29GTaJIUZBGIHnguugjeCi0Epx9jtP4pY7V7BlyyCTJ3eyqZRvqcC4rmbxjq3szBfQWhGIMNvvZGs8hsSm4lISJUiqwqyisgIoqxOZ1tYRf5x6HGV42iaq85yYbKKsOIS4yhCjcVWMUgqFwVFCn7cRh4B8nCIUF0cZcrpExnF4yfQ3I/HDDJYCMs50lu38DlkV4NRMFltmofxWLwcT1k9xIwU2DP0vMzvfju90AxDG69HKRYjwtGkZjaCVywumvZc5uZO4bN0nGYm2EY3jf+vzfEbj+rEEaaqfUoZdKQlaRYxFpYRTJAgxaMWmQsS3l17FSFjkjBlHsjHYSaCsAtP0szsGIgfRiQJa0VItH6axZpI4iigtuIWakMUkc6/T+LML6GLYdMdRGPPH39zGn372F0xk2PeQ2Xz+F++lb1p3y/vdU0w0st3ehmIhYN3KbURBVOUfRKYS+YhSpDMefVO6OPToeSz68yOEYcy0fScx7AUt30QzpnRx3l/uRnW4xMbgiCIrijHqHyJxqCTGs9cq7yApMtvKsqnw3RhHG2LTqtSHIeXEeDom7dg5rBTsKCoC41L7QtUI8zM7WJjdzM4ozeZSD6E4dLt5ZqaGmORP56Sph7J+9CZm5Z7P0sErGIu2VrppUNxanMlx6a10O0Ey/6qDYYMPbGCGyBgjQ9+kd1I1q21WbyVMXsrdusCAyTYNZrc/ndOmvZ9Ycvxs9bcJTGsmtKs1fX6JnUG6TsrZ1BKtU1BUxkGFlGr8buUq4Hf2P86Su87lghM/xqrRfnaqQXQuqri7kh+kioyxRGGxFAZBCLPS0rLX/IYBjOAPBRWLsAI7eFHUpMAABMWAT778m2RyKaLI8IZ/fxlv/9SrnrJopYkmayasElMYLfKZ136X1Y9sRMQQFyOb/awjC/kiXtbnkBP2Z9Z+Uznh1AM5+vgFvOd9p1XOv+RP9/ODC/5GaBLzirLKzoL9p/LQpi22dIDdQ//oGJQV5xDwEhcT1Dx4VVuIKEmSIzVC0Hp8kyxYN0lXqlgXNhijyTlWEGolZHWJtI7odKvRAp1usW7NYSTm0f6vJ9FCIT4F0koa0+YkV66XsAZV5/JxMKRVgRVbTieXPp6pXR9J9tgrusS4xAn/RSXjIHS5GRZ2HkPGm8WLZnyYqzd8HiXNkQAAp059LZdsvJJiXOXpa4ScoxmLm03Z5QiGWKz5suxXByqk6VIEP1t+Iz966D76i3ki09plZQdFEKfsaxab5M5YU2+TS0ksX8bLJ18EdJjUOWloWiyBosVF7amFfIgyhuWL1/L5t57LuTd+pvWxewgzwUy8exMeunsVX/y3XyffkqczybmhAS/lccJLD2Hmgim89OVHMm16Nx/74msAKJZC3v2lC1m1sb8a2QR0ZFNsKo5RiKoKiyhBihrpTOZIwrsSDUopnLzNFyNe0o0QcFtTcxTgaKEvm2fHaI7aZHIKQ18uj6uFDi+o83J1egEDgYOIYpI3ymR/lNmZQXq8AgJM8sbo9fLUPulj0Ubu2PrfiBhCCSsuoqoSoymK5o7CdF6SW98UEq2UjaIUgYII/WPXsy14Cb251zO585y6Y/dLbeP+wtwko5WlCGuE47oOYX7ucLTKMC+7L8tHl9JiNuJgeMucV3DR+msYCH1iUbjK0OfnbZ6dcawhSlnOz3goRSFfffAqbtyw0br1GqzH1jUA7PAhFSOeQgU2Gkx8e4FynbbGV4fxQMX2fKcY4Q9HuMWaIsbl40tha5KQWEUxP2I5jX/4wXXMmDeF09960rj3syeYaLJmwiox//fFS1nx0DrCUg0BTAxpByYtnIHKpVny+BaWrtrOn/+8hO6uHF/87zew3/4zAHjDmc/j8ANncdkNi1m1qZ+Fc6fytrOO5qxv/4rYVBWYKANhYj2R5ME0hkp+mAa6h/1HCXGocbWpcTcl5lMnHtc8mHXtKiUfenRUyshbcTAapeh0i0zyRlvkZ1GJp6u6ttDEOIwSi5DCvl1bKTDWZVRfr7J8iIshpSJ8ZWMXIrOZofyVjBT+zMy+HyfCJzG36hKhOESi0Uro0EUy9LN408tZOPlH7NtxOrPS89lYWElUYdxYRaVDK4rRBmamFJtKVXVFAT1ejh5/Po+NrqgZ5ySkXjTFyK1TYGrvwHVihgoQhEWbz0GDcqQiUCSu+QEVkBZisQLDG0pWSW6SMzGs/IRWQGmFaFvTpFKorXZgRawlx9cYz0EHcfNvXn6YgDgybFy9jdVLN7LPQbMaj9wj2FD7iSVY9hYUCwFf/LdfUxirL+OhtKJ3ciddfVkGgBvvWUVqyXp++/u7OOmk/fn0p87G8xzSKY9ffumt3Hj341x/+1KiWHjRMftBSvO1i6rJ74wrjM2ERsa41IgPhcIpKUi6Ioh1aUcgDcqM59gM3F3pIgLsHLPJ5LQSerN5ujNFQqMRUQimsipPOTFdXoF86HNy34q6BHNlKVbvjhEcYiKx1lBrx2xMD1c+UrE1zjDTzbfYC0VRFAQiYqLwMbYMfpuh/DVMyryaraO/RCiR1QHHZtawPuhlWNJkVcB0d5CR/C+4b+O1PG/WVfzTvH/jfx5/D4OhV2f5zeqAeRmfYvwAk1J5urx8RdZoNM+f9ELu2HkbkdRmNbd3PFTK0phVuBahGG7csJ5ivJtS947AkAc6yTtWDgpTMLQAOtZDZoe9bMVtrRTi2pxf3ojBKTXXlUIAz7Pu8d2gmA/4/fevfUqUmIkoayasEnPjxXdWFRilwPcQx6FgYMu2YQK/YLXb2JKe8kOj/Ov7zucFLziA//h/ryCT8Tlg/jQ+/Z6XVtocLpSIjanwMIxLEi2QXCY5TscQeeUVWU2nklmuMxFuxrZT6/9VSdbIIHKTeiNVbkzGCci4IY6KmZTKk0qIu6FoSsYl55TodQs2A++4z0jZxiFM84YSvkrrlcWuoDF061ISml1FAAgGI3l2jv6Y/Xs/weMD38KIrYTbqQq2bEFyvAFiiqzY8T5c/TsO730DI+G3iKRYy3tE4bBs+Dp8CelyOsgbH0GTUiG+rGdubgpd3tHcPXAflkQopHRIhysUIpehMNt0D+UEXEGkKoRH5VbH26b/N7YcQVk7LWdfbuQDeBCXZ4LY5HdGC7ELbmAvFqcEHVidVSXcmDI/JupO429vUeU2rqcZOo5mYNvwk67EIHtu4lVKnQn8AEtj+LmIfKPFMW8EvmivyGIReeseXXQC4L5bW7MtxQg7tw+zrRQQZ3zQiihRdG6++TFuv305H/3omZzx0sPwPZeXnXQwLzvp4Mr5nzv/urr3TWEKrSMdd/Oz6d4W5j8giD1WbZ3M9J4hejJFutMFBI2u5G4Ssm6I71RLZMRi7Ro5N2SK3zrmt6q62GdbI5Uw5lr7S6tuGyxXZTxkNWSBohgGjUIoUgwfZ3Lnexgu7U8hXIaRAI+I2X5/veUZKMXrWbLlnRwy7Tz2y81gW2mF7Wkia1zlEZgx1o7dTlanGTAdlZ4KEfcO3MJrZr2FG7Zey2C4M7kPa73p8ceAHsaL5tAoSrtTYADCmjpbCuqCNx3F6HwYnWetu25B0V1euyXvkVKvh2hIDUao2Gb6FQFxFWgHp6sDGR7dZQZggMHtw7vv6z+CJ0HWPNl4QgwdpdSZSqllSqkVSqlPjXPMG5VSjyqlHlFKXbCnHYuSCrJoDdkMuC5Ka4gMQbJPlM2cSjlPDHDL3x7jrW/7XwaHmlcDa3cM2My7yce0roFII2ekZjMokMip+EO1Ln8ExxEcbc8uRrYCdIdXYmZ2kOnZEXq8PLOzQzZRVNJlX8f0ugUm+3mUsg/IeCGFnbpIjx5jjtdPupKdrWYl1aLT1TpI1pbjYMiqiFQi7GrT63g1bRVKDzKv+22cNOtq5nS+CUel6EgUmHKUXznvixCxbNs/ERcvZG7uRFyVxlEuns7gKB/BJZaQovj4OqbHLdLr5sk6IaJiNhQe5LjefelwinQ4JXJuUFkhzsyOtB4M7Mr1sN6ZuEo33X8lD45rmvPHtBrf8nNRMyPiNOUbrZyoiwanaHBKBh0LKhZwNGFftrlZXT+9oiBm4eFzx72fPYEYNe5nd1BKOcC5wMuAg4G3KKUObjhmIfBp4CQROQT49yf7Hp4JORMGNavy2qJhWEWmrMA0IghivvnNa/jOudfX1BuqYnC0Jkurlko28L8LjQbIxr7HLuv7J7Fiy2TAJpVUCbE15wZ0eiVqU2g5yi5glAKbs3e8y4otJ0JEil3zSBrRrUt1w1he6Cml0MoOZVpBJmnTyBj54AEOnn4F+00+j4x/BBFunVW51hI7Gizmng0v5IS+F5BxuvFUBkc5+DqNUhohpmQ0Q3EOraTyUQoiCfnbtmuZ6k/CxdiPKgc+GBZ0tk4YCOBoTdYtk6JbCBABQoUKnsAr1Sb5qbPYK6BjdZ70jhAdinU1GgjTDvlZGQrT0xRmZcgfPguTS++6ea04/OQDd9+PfxB7ImueCux2xJ8pAXf0aYfaJHbpVPka9n+wLwelkvj5pg4zPFjg3z7ya1au384DyzZQKFpB1Z1J7VYw7BaJ9hKXyimd7EdrQyYdVA5S2Fwwfakxsl6Iqw0Zt0wALZ9n7yhCVxIIlUxzlINCyKqAXrdApxugVXX1Ee/iJ7TC1bq/HBTTMy9leu51dLnZJrlcDjmsusV6AMh6szl48hc4dtr3LeFYlT0p1SyA1rwcMlK6i0M6D+AVc37EMZP/lROn/juzsycTS2iJueMMfCwh1229pk6hqvRJwT45D91wrjGKLqcX1y+STpVaGrgrEQO151bMu+M8BDXNlKNTtJQtMIkVJq6yfiqX8DRRZ6pWq63jyqSyPm/44Evp7M21vu4eovziaPV5AjgOWCEiq0QkAC4CXtVwzHuAc0VkwF5PtvEk4pmSM0eesB9RFFd/q6YHcNfnX3Plg1z2pwdYvHQDK9duryg0vuPukagRbNFJm//IbqmXG0kXEVzHoJXNiu1pwdUm4cIIytJpK7dTnveROOyMsi0Sl0mSA0qa52OL69eel1ZRorBMIZ39Z1z/hSjcpqmmFWRVeQ6l8ZwZKKXpyb6Iw2ZcQVfqqBbtV0fTSImNg1/jnH1+xukzPsaJU97N2bO/QiTWUjZayVzZPPqDYT+r88ua7g2gL5XHUy3yzohiTnYK+01ySfutMwgDtgDtE4WAP1jfSx0KqcGQ1GCEjoXY1wST/ET7tB02aYfCMfMxXmsniuNqMrkU5/zna594X/5O7ImseSoWKk/EnVQRcMkFygLu0ZpjnnQBN3f/6dx5/UOgmmtCqGKIZFPjvoxiLawOxnjnf16A5znEseEjbzuVk47et44XpUOIq1zVavtKVbNq1qHKk5FIo1REJm2ru9pFtyLlhHSmSkmdIqFoPFtfSNs8Ba6ufZVLpSS9rcRqw61FwFMRtpSaIqeK9LmjlY7GOLjElE1DARpfqmbkctspFZMiQuk0s3s/xZTOd2HinazZenWSJbMZdkjT9PnPY2jgU7jeIWSyryWI1qGSzDLjwUiB7aO/59AZb2Vy+gAAdpbWoXExuzgPIIzH33/ylDns19HDX7c9hCAEERhx2VYaYVtphHRK4bohgyPZZn9t+buAjhQp7aKVYsbMDrZsHq7k8Kjcf03giBNad2NS1xPjKZxCdZwaIb6LKcbo2BZ+wwj4HpMm5Xj/V9/ASWe1Es57DhGQXYc9TlZK3Vvz/aci8tOa77OA9TXfNwDHN7SxP4BS6jaskfyLIvKnf7zXTXhG5IznOnSmHXYOh+DX5xxRgAoN4o//cooUfO/nN5HL+MRGmDq5k2995rVM6akqq8oodKnZGuMoyz4ZLxGdeMCYCz1h4x6Ugtm9A/R15CtNmsTioYCMDpjk5XESl/FY7DMQ1eeUWVvsI04p+tw8riorO1LTR1VXY7dqxGx2yYIiFIcHStN5w+xbcLRHMX8JI8HtLe+tfLanhLRZx+jgF/AzL8fzjyOItzRYYVqd7zBcupP9u15meySCpzOEprDLXDHjm2LtPf7wmH/mKw//ga3FQWJjGUCO0qwa3QpAR8aGi+dL9SHUCBBpytGPnqNxlCY2ht5Mhm1jY/XHxpDZWf2qlCLKOrj5/8/ee8dLclR339+qThNu3rtRu6tVjqssJIRAIJLIORljwJhggw3YxhhjY+AxtgkGHhsbjAkPIBNEzogkCYEklFCOK23Q5nDjpA5V5/2jevLMalGA5f1w9tN7753prq6urjp14u+0Y+vSUX/AMDtIh9pZh1H65b3oNOeb2u2Tpz9hPX/63j9g5WHL9jMGD5wOgNcMpQ5F5Yk4HnONUupbInJbxzmdisqsUup+H+RAejOIwfU69Y8GjlZK/UIpdVXuXx/0EK9RSl2rlLp2z549Q2943907+MZHf+RezKB26jFkppmz1/WdAI3pEKsd/HO1ntBIMj78v5eyZdsModeBqmnoSm0sBj7FIGDpIeXhKpTvFroKLFGQ5ZqPM+EGOmO80MDTTS1G0TABC5nzS4SebcldzcNhK1iWhMso6wZrw71M+RXGvDpLvEUOD3ezIpgnVAaPZmddtk6QZw0pQKsCU4VziVCUVcK4iinpDE+7uJmJ4lPI0ruZ2f0ofNt20XTJcEqhCZhSFol/Sr32WRbn38XeXecQ6im06mbyg6n7fRw7/jQiZQhJCcjwBgBqecrntMmzB7cmsH78FI4ZW0Y5SCjoOqnVXUUgBYeUXAiTvmttkpea0xYbCNYTrC+8+pwz27M/52sqdfFQgqBS97doV5bCKWQKGw6ZGC5IBykGThtP8tonUcRCPWPHtrkDGLsHTvejHe0VkTM6jo/fT3ODyAeOAh4LvAT4H6XUxEPVfx5CPgMHzms++4HvsrBrnmFSvT9XG6pmWg9syU2iaj2hEafct32GN7/7yxy7dhlhR32l0m5aGXEKKAUBh01NEnn9eqSbr7j5aZqTE1RHTM3aJTNMlWtd7qImtlRBJywNK05hyr8rewkrwjkCrSl6BZaGi6yMFrHKY68ZZV9WZs6WmLUj7DMjVE3o1o9q5zE249BCXWIsWEMvk8wImCie7QSYhQ8Tz70dl2KVX998PoEGAaPeCNOeIa59hnrtk8zP/CGL839FOThu6PvqeQPttpVi/fgFFJViVDcoqAQ9QHE6ZeIRRHqwO0ZJxMriJJNRwljUIPJjLJZU2u0oBaVCiuosd9A0UMVO0rO+K2+Tacsxq5by2PG1hDXVOi9YhMm73VzonFWN5ZHLoGzqXf4Ac1HeCSkENE7Il4fWoJzCe+PP7yIqRf3XPIT0ICwxD4vF96FCrTkgBiciH28y0qVLlw5t7Bffuh6TuTcsxvSNjhKBfYvQDLTq+N74CvH6X36cZHz+e9fyvEecSCE3xSnAj6GUepy+ehVPPO5IvvSqF/GGs8/uEnbym7jRykfMCy26g0loBSNhTD85QcaVpx88J0OV8ZSVL2ZlGOc+XPf5uFdvlbRvakJNC0yIIVTWCQhKEfnTnLj8E6wdfxmhjlBKAz4l7bMqHGNxz+OZ2/tMRBYpqIwiiiVKM6E0S5RmTCkm9RjLo1NQJEAzpqiGtTOY+ldQkgCWiAGZOIBWRabLz2/9Pdu4lht2/SFLg3mmggqrw1nWhXtYHezFz7EyNJpnrX47Z02dSqTbi68Jc56Kzyc3/j++sOVrQIKRbseSCC4FWxRhmJFLtm5RNUsReDgftBYaXkrdZvzj93/sEJstkLU3GFEgnsKGuXVNKWwAJgAVKKZXjw14ctcRlRvHRClUC/VVkWbC1z956eDrHhIa7qM+QD/1NmBNx9+r8886aSvwLRFJRWQjcBduzf8m6YAFqQPlNZd94zqy1ECTz/SWj0gN/mytz5EigAn72acI7NqzwCEjIxSjoLXedaYY3aqYXAw478jDeMUjTuPrL3spq8bGBlv1mrJNTz6uUhD4holSvTfkyn0PLI8WBynw+Eo4tNDgWSvPYMxvImSrFo/JORSCoiYhNevqMXW2FegCpy55FU9b85+U/WX4ygGrFVXIGYUK5/qXUN15Gknl/6JoEKDxUYRoAjQhGl9plhbOZ1TFuHSC5sKpEde/zbLC4TQDbsd0PwaTG3/DZPEx+Zhbbtr7AfZWPsO0P8MR0W7OGNnEOaMbOCzaRfPNrYgO4RmrnsMFK57W1VZiPTZXJ9lQneQVV7+LrY09WAyZHWCmz6kQNhVKQTKFzIWIr5HAbQYplgTLHXv28P1r7iTYB6WtUNoCpZ2ABRNCPAZZLlNJoKmsK1JfWUAOG6U4EjHUTKcVZrqMhEHXpmIyw08vunLwNQ8J3S+vmW4qD/nxmo6LH1JFpUkH4k46UAb3SxFJgY1KqSaDu+YA2u+nJtaIiLO4AHQKFSKosSI6zsiKflek9n6C4/nFjZtItiiWTI9gxaE3+p5HNUi5ad8ubty7i+/fdTfPPvU4jDTdNTkpIOhkZYKxGhEHOOV7Lt06s66iT9Ma07w0r7A0YEk4q8ovd/83XofmEKnu2kvkv4vAWLCOEnVisx0QxqJTOG7pv6GUZtXkPzBRfjbztR/gpTfipVeB3e3wCvJ2tFKU6XbThQJIhTi9pvu5ATAk8Y8oYREFgYKQhDkbdoYVMxKdxrLRFwMQm31ct/O1ZLZOXULoKDtQUIZDo0WWj74GRcB3tv0zWnmsjlIqdjVzqWllAgiW+VSR5Xj/nm4/h7F0mMedlDcyElOPfZKFiD4ZXeEsaQYwufm9Ocaq7XkCKBZCfvKuP+Gmu7fxr//zYxYqdZLUsGO+SlBQ+A3bZu85EJ4yucY8gO9V5gannT4kJDzYoLprgKOUUofh1vaLgd7Mo2/gBIdPK6Wmcczm3gdz0x76zfMZemZ6rQHFqB2QLUCS4MUJacnDTBbRsUu7Fw+3YQ142ZkV/uxDXyUaLzA1WmK+6vA7CmMhu5c2uGznJq7YfR//e8eNHD+1lHtmZ7qCg8Unz2oR6APVFCZKg+dSkz80EwcGfk/CtTMXk0nbaukpM+B8RV1C1pfPYUf9CppJ1ydMvpTjJ16EUornr/sCmyqXMtO4k6Ps5whkASRtlXMBWvXNOkUhD8EkP2Hg9iM14upHWeqlLtFAwCpFVfyOKMKAo5e8D1+PArBh/vNsXPgqklt9OrM210QLTEerOW7yVWxa/CoXbXoNWvmsjTQLdiWVNObe2nieudVtJVaqye/7B3OkmFKKUurzBaozBWeyHUBpYgnzyt8KZ63NikAHqO6zHnMib3z6uVz4zWv48reuRQJFPcsRbRS0cC4GkGhFp1EoSw37dswNPPchofvnNXtF5IwHcYdORWU18DOl1HoRmdvfBfdHv3EG96hnnc6F7/s2tgmpkBl35KvUTk8gvo8UfHTWsfg9hTYMdwUBpMK+vRVKhYD/ev1zeekXv0xiO4Ql4At33YQNpT2BOtHylYAnLAsmOGZqgrvrt4GyhJ67seSL1lrVQskU2vGk/SR4SqiZvYx0wMG2UyW7SSnFoWPP4fDxV5Bke1AqAJmlUvlPFrJ7iaJzKBefw4S/jFrtF3Sac1ttMyDOSKl2IPDAXjoLUdOaFCEs0zF1caKXp0bwzVbu3HqMc+mJMKpgpnO1drSmMUTU+cXMN1xAXr5OJ/ytnDp+Ft/fvRWbM9pGR7kCP3e/pbZl2+pSnrUSAs+SDJsECmim0PugEvAboDLV9ehxPeX8d32c89eto1JrkKTt+ZGOeoiCsJJPUCPorEOcaqK+iiAiKBGOPeOwwf15qOj+TbnDLxXJlFJvAC7GbZ+fEpFblVLvBq4VkW/l3z1JKXUbTgx8i4gMT+f49em3Ikid96zT+M7/uzwP4BQnyDTNnnkRSBv5pNMl8DS216M6eI/DS6GeuA39/JOP4IhTl/MvV1/esv6l1lJLU35e2+KANptLLwdmBGAkwy8Kpy1ZQyWNuWNhN6sn5pksDy4K21wH1SykoAdnFWWS9jl0h7NLj0eteBu+8mmYWSI9zs76VVyx829RSnPY6NNZEh2BbnwfT2YZxGtc+2rA3xYGuJad8poSdcDVLtMJsWRUrYdCSMMncM3e95Lt/sf8mrSDB/TeyzCqNnDv/JfYE9+NxbhaTxpWeltYNv4aNlavbAUFd1LkZ3mplJ7naVrXWjDEg21F4HCoqqud4BsugL/YPx7fvOpWrrxjC6N7LFnW4SKjqaTJQEFG1VMXE9PBAKNSyMmPfvgyk4AHw2seFkXlfoWY3waDW3PUSo467TDuuG5jd/qiiEuzthYJPPB6claMs374i5ZsdHDdJGVcanVmLB+57EqSAWirpom621TTLbTeXI5Fsrde4/OnvIhXXn0btDSZDqsAQmYVoWcZ8Rt4KFKrW8JO/kDOwKMMDasY6bAiGfEQ6WdEnioyFrqg2dBfSiP+BXv3vQz3zjMa8S+YX3gPRQoo1emPbtqChjMtpRSeFDHU+77zcBaYSLWXoFHgYUgtNFgkNS7WRsTxZaV0jgzcf0chY+PiN1uBze3nTrl78Wqs9NdQadJEoc6+eslpT9JvcfV968zwfRqDQKrQCa1Ue4kgCSGcFVebpNUPqBvDpddsQMc9N1CKrOwRVAxe3D0/qSdOiEnS9pMreMR5x/LDz/6MqRXjnHr+iXj+r5HJcCD0ILEbROR7wPd6PntHx+8C/GV+POT02xKkXv6Wp/PtT1/e3giam0W+8AShduyygWnW7c7TN8WbCAhxmnHpTffyA7W5y0LRRar3egXaootOG19ZHmVVaTVb6juYKlcHupE6aXc8ylRYbSkGgzvb7rQwGL6u5I0R6iJKKUpqGVft+nu2Vy8nE8cftlYuRbAcHyyyrCMerdn6/kg3tYkeytH6u4ZEoSgoIfJSbo8nqGa/7L9uPzc1UmdfuqEvuSCTmJvnrqQxtISBUAoSamnIMK4ZjcZU9470y2Tt5E0kdF1rhOAXoNgTopUZYfvueUZ39e9FbUGGjlfnmF7hth19aOFB6CMCP/rCLzjuzCNYfeRwPvqA6YHzmodFUTkgsLvfBoM75ozDuf3a/r6LOGRDCb1+yRTQRvATi0mdj7G5izgfNuRI1sSp4bbdgwP+VOYQFHs+dRd2eBBuXdiCr70hMYHunhNBjbLvhJG6CfCVablEfAyhzlypAa/RdXUiroS92+rcDTQhZX8Nae2bbJh5HUqFaFnAkzpagY9CkSBASp0Qr6dHTauQGlLhCCLvCOrm1g7nU+6FQVFQdFlwvBxutBfJpXlKYB0Ww2B1VVDMAZMDRi7397T6lOWF61wbnhbGowZ7a+UOAaa7/agcEy8W8v6oljDsAis7zs1/zYoQNhMIBIJ6LvDaboj1zof0JyLMfILKrDviDBopkqSta0QEO7/If7/p0xRKIVoriqNFPvDjf+CQh5LBPAhLzMFCvw0+Ux4rEoQeab1jI2ulL2qyyZJLtR+Wkt+UpD3V4ZvM4xysgFYEgWZn3Bh4+TARn6CNKr6Yxvxi10ZKUX3wa84baXYxxefu6jKOLO928AA9N2irM+7CTDQB3S4lX0WcNfUYbtn1AurpRnxvOXsae8nEssKrszaoEmDZZyIaBGQCfn69Ugotvc6Z3j6AT5GMSvfnygkybv10dzy2HlWGJRcMMYnlVNAmr93WTdbeh2bZ0NzJyDckxpANqQrrh0JYapDMF1o9FnKXdW9IjYZsBOycoJup89YlEyDDn0ABUejTSLLcxWmI7tyBN1fru6YyX+efXv5RgsjHGstjnn0Gf/mfr0Tfn+T769AD5DUPl6JycJWj7KAgHCJfiSXcH9aGQDzpOc2p6cexLiPFhLkQKSBFqFYTdIM+hcCrawLVOzQCftvFs7I8yurSkq7NvpcUdNURUUpRNQWWBEuYCjQFzzAWjLIqqFHSvaZYTdWEkIsyvhphMljKEnsdC7ULMXYPmdlGYheJBcJcMNFK4SmF18Gq2v1RKIoUyn+BotDXcwWE9m7GCCgTEKEp4lHCy0Fve4RGpfrWaWu0BBYl7MgQ6Lyb+z1w5Tv7rrVYSrraOs8VymzjXQTKZzwMuuNhekdPtTPEmn1VSkGBHLW3+8Glgzd6uQCjABsNsOYB05Nl3vnXz+TEI1fg1zO8SoJKDDrtKe7XaECjASI0qjG1xQYzO+Z45/M/OGDUHiDlfuqDCYDqd4VEBL+37HpO2lNIFAznkpklqBmCuiWoGIJFA5klLSvQypWyyITGYsLE7VDaTlcKf3PaFv1OXpcL2yW3bkLt8ajl6zikPI6xg1UPIY8P65jWDRtyV2UVI8FaFBqNJlCF1m1V19VweLCLcV0nUD6T/iTrizGm9gEW4+vJ7CyN9A6m9F4OD+Y5NlxgTGcUtWWVX2e1X3Fu9I77K+Xj6RV4hWcD/VbHEI8RlTFORAEfH02ZgJIEfTE0TRqWOq2xjKhGB+xENyl8lPQX7LXirDSezujnT+7vUAcsK5QGtts61+o+y5FCDUWjMIX2pdo0ZV9FVui/SxT6vPiZZ/CXr348gafRtYSRX2wg2LU4wICnQASTGRrVmKSRcvm3ruNHnx+c5v6A6EHyGhH5nogcLSJHiMh78s/ekQswiKO/FJHjRWS9iHzx/to8aIWYa35008DPlVYUhmlFOCyPZrpQ50u2gQJfIb4iGYc0cCnY2oIXO+biAKYEbeBTT3ou56xaS9H30Rr8ULXSqwHmZJ6/+OVFNEw6BGVXnAXBBnlMR/NTiPQyXrzmb/jzoz7CS9a8nlFvkM5iWeovMq7qjKlFRtQuAnMbLnPI9pwJmUiXlUSpdr2l9thNMzLxfsrjb2F0+gt4tLO0AjxKKsRTGl97RNojVB6+1mit20FmA2jQJGqIR4bGU3SkVbseKcDD45CRJxDqIrqDyYlAzQQoFF6zDJwSpsIa40GdUT/j+Wsex98c8xrCIdqFUmDS4e4aCQcwpI4uNhkLkFe07mBr+aVPfdTxPOIRh/Pa1z8B3/ecqxMg6RZGpVbv40wiws6Nu9l2946hffy1SfZz/J6G0pa7dmCHpVf7mpIZEs0mgpe2rXTNI6hbl1yQr0UvNyoGNUVpJ0zeRl6uwh0nLVvOW895DKtGRgk9jQ4FbzJF5bzGkvGRuy7mjsXNzNeHp84KCtPDh2KrOH/Z83jVYX/P3xx3IatLx7S+U7STLSd0jXXhDKcVN3Fu6WZOia5gTN1OL5/RChQpfodi5izAli1pwLz18/pKGh2eQXHp1ylP/TtR4YKWsqJRRPj42nMWG62JlEdJBXhKtyqEDKKwt9x8/uRF5WrNRbpfUAFQyuPYiRfiq3ZqtRNgNHuzEZZGFUb9GE9ZPCxlL2bUb7Ai8nnXCa/h2JH9J+Fl1aHQ7wPXX1OQ7X2cdERjg+6lGxZ9zj3rSJ76uBN5/LnHEm3Z11fOpOdhu/6Mawnf/sQl++3/r00HGa85aGsnpUnHhPQ88F0FNDGGxd0LsHKia940xy8e79+8FODFgo2UiwzvEWEVDi3R5N95vsfO+Qqff9qL+MWOTXzoxp9z68wOrAUdZPiBJUNIdQMlrv5RoE2X1SXUhqKXAYrYBhTEFWxbEixSN9fw9W23YMVwSPE4Ql0mNd0ZB1NelYLqzDJQeEqGWrVjnHtHDzwhJCq/lPLYu9xYxVei4p8R6REQ50PpDfbNxHSNkWZ4BdhBRRrivCiVUjCiYyrSZCAOiybwxlm/5I0cM2W4eu+XuK92M3vinVSNImsVmuyotq0g0BkF7XPU6HJOGFs7VAJ3yUL70Qp6eaFAq2bdIJNzpJGGRWf5kAh88WtX8+2LriWppajRAJTFm284i09PHNcg0p4irg8OhHwgpH5vcXlAlCYG3bTE9LyrpJaQaY0yksdQdTOczqSCTvIagin22xKUKHQmFPdBbbW7tqFTzl93GC86/kQ+cfO1fPGuG9iZzqHEEhVSPE/IgL3pPL6vuWfPEg5fuq+L19hWLRXBiuMTJR1z9vg9/GrvOyh4BawYDh19Pltrt5N2ZCZpDKeXNg3lK700KGBeK5j2Yi5vLCdUPk9a/VmK0VGInUfq38Y32/D08K2mcxQ9BheXdN81v2k7UXTHSm+WEugsCumpIoeOPoNTlr6e5aXTuWHmy8wmO7mv3mBHXMTioRVMhA0m6Hb5BcpyyuTRbKnOc9meW3NsqgGWWbU/e3z3gypLGzCzlw9pRTyuCRasi+3WMBvH/Nl7LiL0PZLUoI5bRpRlhDuHl2Pppbg+CPrjgdPBxmsOWiHmvOc8gq/8x8UkmW3XTQLE81Bx4nAdtN+yEIhSmKJ2tZT2Q0PrJTUlSQ2JMbzrkkvYVJvlk/dc3Sow6AcZQehcSqHfrFbtGEhqFZNRxTERLV1MpvnbmF9jxHdaQ2Lz4Lj6bRxSWEuo6yQ5CJ1CGNf1PsZiJE9XHNB/BaQIUd/DeXj+UZTKf4Ysfhhqn8FlEWh8SXAg491WnEEUoDE9O7zN/d7jzXpRYqkPMNmEyjBGnYY4NnPo2As4evK1hN44BeAJK/8cgA/d+edkmQtW95UlGcA0LJaVhZWU/IinrzmNizZdCwgi7ZIIIuAFlmxwGAIqUV2cUwl4eX2lQcqcSrurWCsjeAtZs9iw2/uKzgweVLqDolWhgFT6i0OGxYhDT1g9uIO/LokaEMT8ezoQOuz4QwijgPpCx3vrWAs6Nfg1iwkVtqBb3+t4/7iww0iJIpyF2ho3ATfM7eMF3/kCK0uj3L5vj+M1ymNkuoH2pDWnAYLAOhyaxRGWlit5nTbodGS4tSCcM7GBgk7RClLr5t+WxYs4ZuQcbl28JY87UxwW7M3j1g6Mhtk3A2Xx0Zy45M2UdIzd9zJIr8FtMS4Kb/9RMvkTKEVRPOo9vMZHESqPxxbmqVrFPVmRGRvQuZCVgrKOScUjER9fj3Dqsn9hRcnhyawbOZt1I2dzX20L773jnzDsf3OfjhxY7JNWnsIH7/gGxrRR0pv31cpSnq6xuLvMsDTrdgchihWeVi3rXx+3bkhfELm14uJhACKf2imr8X62Aa92/0qQH3qc95xH3O95B0wHIa85KN1J2+/Zxe0/v4143xwyv4DMzWMrVcS2S8rrjgKP1lPYSA/K2ANyn3Ee2zDQItmkjndTzzI+ce21LQEGhCBqB7/1+SNxEN2B54qwNYPV3ZR3BdXG/XpfkoORlC31e0mtISJlXNeY9GoDGWSMP0Dil5ZpeJA24KMJzTbY9yyo/TdQBzIgyTNJO6qudpDumRpaKQrNonGqhEiptZybz1dEGMuxFYIm8hvtv0d0zNJgmhOWvIXQG++756Omn0GgnMm86HXWmcqfRQUcVj6C1SVXRHEsKOLl8S3WKqxVZEaTZr4r81BMu/qAgKrpHPyOVgbB6okxLvyzF/Hkk44icFXyuqyjveFKXuwEWOmUhZRCigF4Og8EzT8uFaEnE8kLPN76//4Mz3uIg+0OIhPv7wr94ju/wmY9kmsH6J2KU1QjwU+EYNE4LCARxB9uMTAD4qhaTYODb8jJijDXaHDbvt0tXhMWE7Q3DGIBEtuGo2+uv84XPunXCJQZwGsSKsnPWBtWOCzcy7nlOzmysHuoUtQ7eRTCEj040EMBZxdnOST5BLLvJZD+kryuNYoc8+oAxb6i8inho9EoVSbAJ8otJgrLiDacFFQ4zl9gVDU68Fyc6znSGWMenLTkDawsn9enoK0urmEqnNpvf0Id8pzVDriz4AUUPIunjIO+wPF43zP4njC6vEI06krcK21RHfF7GBy7zXE4//i8M3nvy5/KuuUTA++uTb9g07eWfU3jmAFo/AOgc5etWcJzX/+koc/5gOgg4zUHnRCzb/ssbzjn77n+xze3PzQG4hiqNYe7Aah60opD8DLBqxu8hsGrdUe4Cc760sR38GKa+xmicaBVGqxP32hkHeZi3RO3kpr+oXNp0dAp4ggw5tcp+FleT2kwxTahTkQihfai6yupoFgQnyYajY/gQ5415M7pXAAK8BECGjisoP77u+BX3ef1aCavq46lrpWioAqMlV+P0J+WqJTCB0aVUFauxIDObT1KOeuUpwyZnR84BmdOPZEzlzwRXwUUvSLTQcqYX0CjiXTEo6YfzRuOfHPr/ImgTKQ9PO2AB9PMx3agbPqhJRyNUb5B+Y65qFS1lalc+ptPY45ctoQPvvTpvPXZj6UQ+a250Jwn7ZeQg50FCusrbKAwXr6hCdjRohNodC7M+B5qcgIVheB76CjgPd95K2c88aSBY/CAye7n+D0NpG998lLe//pPszi7fyBCnReQVQJB1RIsZPh1Q8fe2cQ7pL7E79ak+5i8UF/evdgya4k7aof5kau11k0dPK1DWe9d94LO6yANeRZSlKqToqnbQqvfg8hrKl/KMq0ty7VhQg9uWykoqBqR2QRDLRyDt5s2r2m2pShqnyXeNKPBSUQd/K3zfss9w7FBgtehyKnWkZCavUP6qnjjUX/NisJKQh1R8FxcXtEroVAsjZbxynWv4ZSJ01rXlP0igeeKbQa+IfBs+x1omD58lmXH7GFizTxLjpghKKYdfckP66A9nnTq0Xzj7a9g9XS/IteVvTxIMMj/zpaOdAstnRABOd7X8jVTfOwX76I0uv+q1782HWS85qBzJ33t379HbbEfpwRrnSXG08hoCaU13mKMKQYOMwZcbENiMSPdmm8Wtb5u18RpYrDlM0wBytBC/PWU6tCYnLsiafhoT/ADV6ixkXoUAsd8fG0IPNOz2pzZsWkSTqxPpHvRNAUfQyoasYqqVkwEj8YzX6edZNk2XwqKUHWU/eloywF9ug8sjjk0j/3pQEpNonQB7B7IU7RRilC6A5JdScoSSXwpMgTYirxvJW1ZFIvpMUAnZgebZt/DUdPv77vUSMKTVryE85Y9l131LYyH00xHq7rO2VDZzKbqVlYUlvLklev52IYfo8QQBRmNpNtXKALWKFSOfqpSJ6z1pW5mGV++5Rb++PTTeebZJ/Cly29k274F4jzTyBQFKm4QdOJS/Lta0OJyyETcxlYuOPBEY2Gx6tyfvo/yfXwNH/+bz/Phy/6RwkNV46RpFvo9HTBlqeEz//JNV3JgGAWBe2ezdWxiyKbKbWyqptSq2htwFuRWmCGxE+Rnlrdo5sZtaxErBQXPJ7YJxdGYQjFBKcFIMyKsLaKAYrLoLLUtAabja0HYl5YHKkweGZOqStmL2ZFNMstyDi2ez2LjW33naiBUwpF+d3SZQZEheVZiDl2R99KnXQBx8JN7qMLTsY2LcYJO0yWju6or2Hz3VsrHptcPGUdaoJtTyrBP/D7H89aFTzBdegKjUVcxdESEUb/AO45/N9sbO6hmVdaV11Hw2sCciU345b7rqJsG68eP47lrzuWzG39EbNMevtymoGAICgZPPOaywY63z1z/K1575plMFou8/aVP4M0f/SZJZrA5VoQNQdUFL3bWvt5aNc1ppxcGCIqdmqgRZnfO8b1PX8qzX/fEoWP4a9NByGsOOiHm59+4BhlWL6JchLGRlhqirOBVE8xIiAQu2t1rCCrLJwBumoUVSMtCVso3+J5qsu48hW4IpuwsDqUg4DHHreV722/DSFMQ0ZhMMEYTFVIaaUhmDKUoyUHsBpEisRHjoSWRJShbpaAbiMooqJiybofKWZQDf5Nd+Wbr+tkMG9NAWZmhNZjafNWlPvtN6ez+KDwHb/zd2NpFSP0ilNkI2O6biBDgYRVYNaR+UH7/JjagGaB5CRn7at/jKNpCTCXdx8U7PsDW6g0AjIerqdhRZpJZlhfW8OQVL2Fl4Qjec/t/sqGy2Y2VWEp+iTcd81T+867LsL4QKKjEba3YZGBzi1nRD1g/uYZr5rb39Sk2hss3b+aPTz+dYhhw4V+/hK/+4mZ+dMPdjJcKPPq4w/iP//kpJrZdyLwtUsqB6zUyVzNJKQh8l82myrBAq1Npvc72e3bx/U9fynNe/+T7ezMHTPt1k/6e+mjnlj3UK/uJiSgU8sJ6bkvW1YQgzkhXTbQyH3u5lJ9AeVtKbWUwtPyJEvDrinAGkmmXXn3OqkO5ZucWSlOLrh5bU7gR67Jo8Dr2J6EUDCsrICwNBaUy7m6cwprwHsreAhrLMm+eomrD8q/0Z9luxmkkt3Q8SedmKRzq55bYjnt5+anNcgJOCVNdZU2Gk0D51XjlV2Nrn0Hq30HlwbSdLh/nGveg8BSoXji0NZuXpwmUMMjIbSVmd/XbXULM5sVLuGbPB4nNLEr5aH0yV8xHGLGcNXUGz1v9DLbVd/Kvd/y7w3jCkFnDqZPrOW/ZiVyy62YC7VFJU6qJi4MLfafANh9hJCzg2ZBsQJZA5HnctnsPjzp0LWcdu5bP/s1L+NyPr2PjzhlOOmwldj7h29+8HmUV6Vg/FpobRqF4x677He2kkfKpd3yZx7/oHEb3B0vya9LBxmsOKiFmbs8CuzbtcS6jQS9vaqIv6EkBXj0la+LKKJc1YPye80zuPoKhTjRtFctHRzhu2VKeddyxrF+xnO/tuLUv9gURslQRhK5uklIKMzSoS7Biia3BqAyjChT9JRTZQEkn3XNUcKBT5m4W8myeQAwl5cDyBBj1vDwob9CdnFYUoZvRK4CzoPjiD89ASK4GNYI38ipM8gvE3NN3igOMA3/kzyl4q6jHl+R3a2tekgf6NiMMfCT3hvf0swOzwYrhS5vfxGK6h2bg30y82ZnmzSgbq7fxyXv/D0sLj+WuxY2kHdfOJQt8/r6LOHpiHUla5rbGAgXPUjep2yx8J3h6yuPc6cPZvGtwRL9WitVjbcGsFIW87PzTedn5pzO/WOdFb/k0pjOQs9fMm0ubI6nFBp7T7kUcmuZirc8tGNcTfvaVXz60QsxvyR/9u0qXf/fGbjTwTtK6JcA0SQEYi1dLsCM9FrRmO0odEINXFqZqEeXxMuetPIwXHHUi3z/ker6w5fIupUMpF75lpalQuC+NKIIhbRvqaGBPkjGXruas0e2s9O8h7KmPpBFW6u1oqRDlkzlFY3O+UVAQKI3qqyek8HHgkc4WofL2oLkwhttiDMRXokZeiR59G6b+NddmH4d1ziE9+jfo+FfYrB9uw4owby0NJL+jT796IVjbdhXuqF3LL3a9CyN5xL9kJNnVLPMnub12CD/ZfSk3zN3EQlqjbrq9AdfN3oiHz5Glk9lZM2ytzYAIqVgaiRD6hmUjrp7a6dkjuVfuGGSsIbWWZSNtgeLIQ6Z518sdH7j0stt59/98k4C290Blgl8z6EywviIreSwrhhCb7lwqpRzDA8jSFn/yA4+bf3En5zz9NB4qOth4zUElxFx78Y34gUeSDEgR0Ro1LBCyiZqZr1ITDtg4lcKrg44UZkhKnFaK2UaDS+67l8t3bMZ4GeGoR6MLKEkoFBN8TyA3+aaZBTyHtT/IzOgZ6iYkUil4CXsSwxGFfm0qUIal/gJZK64GUjyqoiirBNB4agRksK8XnIbkobuEQINFqyIeMQMdl7IHSa5FRWcOywh2pBRKTxMWnopSESKOQTQ3g4yO6ikKpnTC7kFmrw4X08bK1dTNAp2ZC033W0Gn1G1IKglX7L2BtKdv7hEtt8/toJoWsJq88mxbg1k5VuTPj3o8b7/0JzTSzKWg97iUQs/jZaecMvCR/+cbV7Iw32ZootqaSMuKL1Auh3zkP1/B9y66hhuv2sCWmzdjFuvdAoy1LZjwkYdQM2p17Pd0wHT5929yAdfZAIWgR4BpkhJQ1RhyIUZBt9VYHIyDeG0r8LDlpDPNjrsW+cqGW/jKz29h5JgFKA44Wzn4+6Y91ljFQqNAVK72uaUD3R3Mm0rGpsYkR4wNsAiojMhLnT0lvyYQSwrYFhcJaVez76benjbXU11SSnopyMLgB6/+B4y8ElQ4oJXO9jRKjxKNvoHG7GtaZzYVpQVxAgw4vbasOmEc2r0sdmBJ3bzvk20BJidPCaujWe6qrSAT2BvPMkzLjY3h7rmNLCQOnbd9F4W1IY+bPpnt9yi+uuEuF+PUY43zleLo6SUctWRJX9tJkvH+f/t+s0F06uqxhfMmHw9cVmSScd4TTuGclzyGH154OTddfieVaoKEHWidUej4TL2BCA99TMxBxmsOKiEmCH08T6E8r7smhFIOK2Y/1Tx1YrCRT7i0QM3rXxzagB9qlo2MsFEtYqx0760CGRYTO8No5mWIL6SBcestp0IxwfM6fD1AYnwiPyXOPAq+yaPl3bdlP84ZiyKWgEBiAh0SW4/A6xbWRnR9gAajyNBkogi8UUbKz6NS+R+GFVuLlNdnxVIoUlkAtQyP2YHXEf8UG6yH9BeDvwcQwcSX4ReeAh0MbohoBAgRlrhnNUuHDjGf7sTYfqFVq06QPDDionwGUT0L3RRRoANX1iFOna66N65w4c030sgcyIuNBB13lCFAEaDZPr/IkVNL+Oa1t/H5n/+KWpzyhJOO4rtX3kaS8wBtIEyUq9HVcX8F1Coxf/LCj6IyS6EYQCN1eDGd/mytIQwJEZ752icMfJYHRMLvA3h/TfIDD4LcntEryHgenaUqOknXU0xqwPeICgFxo3sdeolzZ0elgHPXH86Pr7urX68RWEgTjKg8bReSeyJGjq2hBnDkzpgXX1umixXKXkLNhi1ByVeWEb/fPbYvG7SBCZHqTxFXCnyxpBQZLT0bsotBfr3q64IQ24TCsH1OKojESPWiPBxxgMKJuMib9Hbn8skHwIqw0w5Cq7KUlaXS875KpHgdxY8X061D+qwIdUbdemSSoQe9BKCSRH0CTJNSa7lzdo5r754jNsbFCxnpEmSMCJH1ma3XyRqGT33nl1x58yamxkqceeQhLJaExoSbk00E6F4+g8B3/vdKfrhhF4gwMT0KWaVvHEVrKBWJih7rz30IC0IehLzmoBJiznzKKS7ASak2g6HtL/WqNczoSNc1AuBrVGohFOZ1P8KmArwMzjv5cJ752BP5ky98o+Pi7vPcT7dR4SlYDJCpPB1ZCZ7XDzinlTAWJSiliI3HVFR1SLUDKlFbFEYMy6JDqWV3dX0X9Jh8u77z13Liso9R9FfTaPyULLuz6wF03u/hIbxCJrN5ppDKjbDt6xUgc69mGFa2Mx8Ltv5DGipESbVlTh6abKqUE+h6vo78diHTpdHheMrDSvdmYAWyjsCCET9jIeuumyICsXE5FB23xPMsOrPY3MV30+6dHX0CW5DWYvRqikqW8uff/A5PXH4YP795I/U8oPfCH1yDiqXlwrRKED0ERk/A+hovszQW6qgs6xcmlQLfY3LZKGc++eTBY/YA6WAz8R7s9JQ/eCSb7trpVIEOXtMK1NUgQ8LcvIUGZrJE0higSAiMJ5pX/dG5XHPTZocE7tG9Bgz0JvlIw6N+3wilw7prCXWSUjBdqDJdqOFpoSBpDgrZXd6kk5ZGK+m1Ce1Pj1bA9MhzWTf1TiR5Oo2ZP6Y326jpShpGVhZBDXN4KSTbBpV/HtiPVlUnEWz1i6SNr3b1bdh9lYJpXaMhDoaioIzLPArXt86ZKhxLrbp3YCuxdVmfAoj079LWwmyjxP5Gb2+l1pVlpkUhWee4K27csZNXffHrVH41z2ItJjOWbXvmufneHVCgxWuSUU24OEQ1DPxW1du5vZVm4z3joUApXvK3z35ooRw4+HjNQZViXRot8g9fejNaq1xo6EaR9Wo18HUrJEEgV79zj6xiKN6QEvjx7ffw2k99Y+BKEKT/2nyvK6QRkedT8nsj4PN+B53MzG3rvh6C8wCsKx/NU1e/I4fBbqtZsUTENsT0mOs0ESev+BLl8Fi0HmHFsouZHP9XPL0KVxfFx8OngHYBdkN9QqmzNonBinWMQixWLFn1f7DxFUOvNVhqktKgQlb7Ilq1o12GAWBpfDJK3Z+pAmvH39L6e3XpJKaiQ/E6mJ6IE/YaHdlRE0G19V3zpwD76oPdMloLHopRXRpcoNO53VuUGMMPNtzdEmBc/YN+/5V4+2GkLddCv+DW285DTgdZ2uPBTk96wVmc9fjjyRlN+8jphNPXoQdUrm7GxsDgV6wALxU+/JlL+fkNG900My4mr3WovBhtz5XZvgIFFVLyolbacS8tK1Va2EhaQaDtUAHGVz7PPuT5rBl7HaqjcKKgW9bd3uU+Ujibw5f8M1qFeNG5FJf9DB09EyiS17LvUhoG0f7rswvsezr7A/XKxJCQktY/C9JoKWZKKYIh46LUCIEKGNEpozolUKBVibHyC1rnnLzkNXiqO54pE8W99aU0mYFumjt6At8qScR8Y7hbpuAFbNzUD2qpOv6BS6e/ffce5rIGmekYA9tWllodGcYmzIEtas/X6OBhsFMcZLzmoBJiAB7xlFNZ/5jjGPQGJbMcu341BB4SekjkI6GPaOeHTseC4WtDO3OeOADJgRzI9jEWNwkfs/RIfvS01/DZx72Uot9/klbdZr9KFtKfYCW5e0TzR4e+kYnwUJ5z6Kc4YvQJlL0pStpiKVCVkDlbppZ3RqsCy0eeQsFf3u6TChkZ+SNWLL+c6aXfZtmyKxiNzsqLVjpXV6eu1CmYuHh7i0VaGQXu2+H5BSJC1qGdKFwqt6dcRZSA/omkVInxkddw+JIPUfDXofAp+Os4csm/sXTk6R3nKV5w6Ps4efKZhNpVpa7bgJmsTOccsNI0KUNqHULyvlqR1A6ewpH2WVYcY98+6zKHep9NQCVt5mJESANoNjcsQDMtD2DROTaDijOnsmkNUdA3miKCEuH4s44c3PgDJCX7P35P/eR5mj975/PwPNV6f0DrZ3m0gB84oPtsokCyZoJk9QTpeAFTyt/tAIFfFFRsln/f/lzRns02gKzUdymg+MLZb+LjZ7+avzj2KRS9fl7TiQHTGZXR0wsAjhk5hpMmTuHQyb/kmKXvpxysx1dlPAUpBWJ8avgtIV+pAisn3tbVkvZWUJz6D8KlP8Gb+hLR9MVoNYBRdlA4xB3TpsE1jppke8xWKlfVFIoprwki0Vz3AVqNsGbpFxgrvwStRlBEjBSeyKHLv4+nR1stTUVH8eTVH2V58XSs+FRNyO3VVWxqTLvnb57YtfgFEdgyP8EwqSJUHicW16Bqw6xPPU+fWZLeuMxegVkpkvIAG7cVvH2LrXP2R57vcfTJaw+oTwdKByOvOajcSU3asXHPwM/90OMFLzmb97z7m06K7XQWK4UyFi9RrkpozwtOOhR2JdAKsVCC1S7tuum9EAQbWGfeU3BnZQ8b5+Z49Op1vPHYJ/DeW7/XKSKQZD5EbfC32ARUUstoELfc4QpQyhDqlPff+WesLh7BM1e9ivNW/B1f3/R0YmOwORQ4QF1CimqEwydexmHjr+p6FhFhZvH/Mrv4H4AHklIKz6AsAVqlWLHdbiXV7XtWXeyve+ZZESeAKVyAcOuc7vMcY8kDXZWiJCD+MaSqTJLtoC4+Jt3KytKzOO2Qn/a9S4CFZDtba9cSqCIriuvZWL2XPcmdpKL6Mg2aRlpPgxIhE81oaKhl/Qs91D42KbOj2nBCThPO2ApY5Wp/WFCZMyArUagcWTMrQ1BhGL9CfEVjQlOYt+0hUYpwXw3VYUqWsRFUmiGzC634CiVCFHq89G+fObjxB0MHGRT47wLt2LKXqBhSW2xmq7QFmd3bZnnyC8/ia5fdhvV0a5ORoEwT8LB1TQfinGjISoNtEaIgGYXGUlrXCIINQVxpOD505ZX83Xnn8YK1Z/PVLb/kvtq+rjYqachYGHeB3Alty6TKm17uz+HZH/PJu6/iuPELOGvpK/B1mTv3vB4Rg7RWlCImYCo4gUMm/4Fy1J3Fkpk97Nj3J8TJTaB8FD4TwZGE2R3IAGGkRDg4sxTHWzJsrgBpUjEkYlxRyI7YFx9vYHqyQhEpj5V+iar/KBbTe5k3MXOylLR6HUdNvJ0VU//SP+5iubdyIzPJDiaC5YxEj+fe2UXm04T5VjG9btKqQ0ZVwmShxp5aN7SEpzSTfpn5uuH6jXtIsuFiJflddCLoOAdd7fSP9VpigGTMI6hljjc1W41T9N4KontsdR0ZcuCsMCc84giOPuXQAT15kHSQ8ZqDUohZd/xq9myd6fvcGuGks4/Aj3yyWtLyCzbfpl8zDviukTMGDVHgUy0L1nfnqhQI8vlj3MUqEpTXjhOxYVuAAdi0MMurf/h1Pvnk5/KYFUfzwdt/QGJdAG+oM4LAkFmFr9vxMtUsJDEepSBBROFrw1RURSuIbZ17qjfzobvfxAq/wrJwUOqvYqRwHkdMvLbvm8XaV5ld/A9E2lkz1eQaGiQtY28Bj1DpHOyuCT8reShIhwjWKT5LG7gKgbQH6cUlXHb7eN0qDNE6ojD6Vu7c92asxIChWr+Y+cZlHDn9ccaLj+56hl/u+W9unv0KCsV85tPIBRdfga8gFY9Y2ppNZttmYGMVceYheDxyehW3zs9SNwmgKOqI3fOaWtroKASpQOPQem1ufVGAD6qe1yvpYAlZBEFDYX1XM6mLWwjYSJGUwc+H36tn6NwN1dbmFBL4qNEyslABYzjylEN5y0dfxZqjVva90wdLBxt2w+8CrTp0urvQbE5aK448cTXHPe4YvKvvxqbWWW+bEoICsR1idi7IqLJPfUT3bUZC7uZWkI0rtK8w4iyhtqMgrQDfufNOrtu+nR++4hU8cunRbN18ZUtISY1mw+wSTl62wyFhd2yCexslUuuRWo+Txu5jebSAVlA3s1w/8wWun/kCR4YzjHn9QKJKlVk19W5GolP7vtu+96XE6R1ABuKUspnkZpyFBEIUo0pTVAFhR5FHm8fQNXlOVVLqOeBCc7V1bvRKYiZ1kVB5XcB3/Z0tEoaP5B5zHPc27sRIDGxlPv00mys/4Imr/xdft0HrKtks/+/et1HJZjE2w+AWtKeEiQAmgjpbGxPE1vGa3n7trYywe2EErTTnTB/BNfs24mmNFUFbn12LMZkI+AZPhSA9SlWzQSuUtoPfoGksd++84/cugVhy5SqVDveRwqskqF4BpklNi6JS/OFfPZXnve7xQwXKB0MHG6856NxJAC/7u2cTFbtNllEp5Nl/+kTm5mqksWm7hNyujLKCjt3oagt+QwhqwurxMfyS1zrXazgrTOdE04miZD1UADaQLgGmSQ2T8d6rf4axFt/TeRamEAbOpFPNIuqZT2YVmVVEXkbBz5xIoRRGvLyyc5PcDWJRDgdiAGW2hojtCzSbWfxIlwDjKHGoLeKGpoahJlnbFyuGGHck+WF7fW+qf0K0lk8vSi2g9DKC8FyKI69hctmlbF38DFZqtO0mgpU6m2f/oeu6bdXruWX2axhJqNuUeoflpRmaECjjInzyF2VyM1k981lICiTWJ7WKWxY2UfTrfPj0P+TCc17P7rmAWmrbbUV5DSdDW4Bp9t+4+dD8tGXy9yAKNGPLixy5drrdcQGMJZoxhBUX6+BlAlr3o/jmY0YxQk2MEy6Z4N1fehNrj1nFQ04HoYn3d4Empkd53LNOJyp0uwHCQsALXnc+1123iTTpYBbScfQslFIx4JAjp7GBIh6FxhQkI5CGEE9AMg7JGPgLgikIWeQUrS4/Ey5mYl+txo82bMhBLV18YGo0qfGoZxG/2nUIu6ojVJOAubjAtto4laxAbAMsmtsrq4YYEvtLhYCb/9bWsZJ1uZ7j9HaS7B763T+mNRwNEfZYQ5pfJyLUbUxNYuqSUCdlQRrU8zY6h7KTBJizja6swTYVUP4p6OhxBOP/ih39J+5Z/CqmgwdaSahnu9i0+J2udr+97SPMJbtIbD0XYNp318olZSwPu9PBdQ4ueOfOZdy7ZwkLjSJz9Ygrtm3l7Ilj+Pxj/pi/PeFpZKnvBBiAyGIj260UqvbP4h4nwCjp3lqUhsDTHL9uOSXPbwkiOhZK22KChQZ+JcmPGJ3tR4LIrz3zccfx4r94MkH4MNgoDkJec1AKMUefdhj/9LW/5MiTD8XzNZPLxvijv38Or/jH51FZjF2KYy8JfenrUejzzMevR/cWIumYXM3f48UMa/szjzrpnvl9rC0vYTJ0Dm1fW0TajSU2oJIWqKYRxupuwFugYXp9popF49KtU9tTJFAVSM02vrvxNL678XSu2flmYuNMy8bu7a3z5e7RowUkeZCvFaE3MXF/8nnvdxkuALjb9VSgNPFh4uAc7qt8lTt3PJ5afAWZQCoOediKA+aaT7Yz17i1deUd898lsQ0S8cjEo6RjAtUs1tgxBrndJ7YemTUkGdTSZmmBtjm+amIu3nE1oQq7mhABsQoxCrL+J9YDAFtVCuEimIZQq6Ycc/QKvvbPr+Rv/+B83vqS85mu+/gdcdyS53ank8X+xpr3UcIf/fVTmVw6OvScB00HWbDd7wr9xT+/gOe/7nxGJ0p4vub409fx3i++ntWHL2Pz5n3DL+xZe1lmeekLziaZUNgAUAobKUyZPEjTHdYDf48gAe4YsBBracrte/bw+JXriTy3EWWmXRMsNgH3zC3lV7tXc9veFcSme7NKrUfD9m9ge7JR5rIiWU8Gg5WEG3b/HT/adBKXbDmXzfOfc3FwZhfQX1etk5o8bq/EWBEakvbxmnRIrF0vWYRF6xZlm9cEKG856fj7uCUd4ae7/4XLt70QLUkOzecKMoJgpMHmxe+QGGfZzmzKPYvXIy0YP3f0vrxQm/zzpvBkWGyEzNeLrQxHgNhaLt+1kUZm2bQwQzXrEAo7+UuPYIoI4eLgTV5wcXi7F6q843VP4b/f9Hze/tzH8arHnk60kLSEnlaToYsDHUalsQJ/+p4XDv3+IaGDjNcclO4kgPWPOoaPXP7Ovs9vum5TCwytSaLAhB62oFGJQXxNVAhYtXycR559BB+49Ir2uc0KxgOYh9dwMRHDaPXIOEop3nfqi3jtL/8fopoVS7tJEKwokhzy3tMuqLe3MFtBxRR1xj4zigI8DEuDRUIdoUloJHe1bHe7apfx8213cfLUq5lJK9g826CAoajbqdmGbsm0BoQDZtevY2QUhBhxcUQotAoZW/Ixtlc+y2LjEkQaGOnMJnKuuUw0izYkI+AXO17JeHgsZ638TxqmQpJPvdw6T4hBISQS5veEmglZyIrMJwViGYTI2aZrZu7kLce9qMvdZRseGOWOQddKt8anDARVd6ZFSDLD9667g9lqnX9/9bMA+Prnf8m2xW6NVpSCgo9VdJvCM4NXqUIj5tN//0Vuu/x2Xv+Bl7JkxcSBDPuvRb+3uDww8nyPP3zTBfzhmy7o++6++/pd2m1STusWKEQ+r3zVeWyYn8XzdXfWyQDMJlcahaGlCYq+z+FTU5w8cShPW3Ua3912PcMTrwe/+GAAX5q3JRZtEUlhmb/AKn8RrTR18UhlNwCpneXu2Q9jxbK3/lPmEg/LOAGWJV6dku53vykFqcCCzQYWn/x1pmaNDLFQlYAQwQ9PpDDxHq7c/jIyqQJCal1Z2e44PweCNxvfwbc3P5n1U2/gsLHn0cQM70IrFmmJLO0+tpUiARbqxVYyQSclxnDlrs0cPraEkh9Qy1JIFWpXlD/oEB61n0HIjGXPXJV//OQP+NBfPJtnP+M07r59O9/69M8HujspRjDg88JIgVol4U1P/wAv+vMn8ZxXP+7hcScdZLzmoLTE7I9EBN2BwigK0rEQW/TA0w7ULhGect7xvPD5Z/KOj30fXbHoNPfPNoM8e0ihUCZ3LGSDz3nT6Y8CYP3kGr57/l9ywapT8VQ/JxoJEnxtW7K/81X7lLz25heojGKrGKRzp2R47EnHCPQSSsp2OR+FjNTsZMO+N2M7ZPMGHhXrI7nHpDc9u0EZQze2DoMfb+B3Qu67F6GGZRHDvNSZqX27JcAAxC2O3LZMKQVlneYu4Qbz8a3csPsfEfrt6M6FZOm0JVVNhBGVu+FUXwB/JxW8kKIf8AdHnkrR8128kyv01N2tzmcLugObvUb/OUlm+MXtm7jy1k0A7J7pwGXoeATJH6LpbQDBm52HRozJLCaz/PLiG3nTE/95MGN6sCT7OX5PD4gGpVg7UrkvQlMciXjz25/GtkLCFy+7kSyz9z/mio5gzcGnP/Woo1BK8dYTnsVHH/EnLC/0W/G0siwd7UfuXRJW8DuAaNpWW0WzrvzubIzN6RJilrdcQU0yUueu2X9jpnFNXoZAkeKxy5Rp2EHZeQ6NVgenDHxcb9jGPoQWxHBLGnFtWuSq6t3cPXdhjrQrOZ/r1kLbHEcQMqzE3DLzn8w0bsZTaqB1vVla0wpUTZgLMdJqz1Wp7n8zWlmmoiJPP/R4Cl7gRKkFv08h6iKlsAdQ67WRZHzgC5cwV6mzY9vsYD6hlMvOpT1vlFJ4vkej5vaXhZkqn33fd/niv198/zd9IHSQ8ZrfKSHmJ9+6ni/9108xHQibpuC5p+hgOFaEb1x5K++/8BJuu2cnElv8mtukdDsBqIsEoRw1ETxxgLgdLyfE44jxqdb5k2GZt5/wHNaVlxJ0CDKeMhT9jHatE3dYNHXjtxhKlNdDcqBuGiMKEYfOu5DuxtIb8yKU1dyAiaJI0aTSI3yIS0tOZZaGrfThv7QerSv92hW1l45/lnZBgM7JMl/9Stcnps+G2rymbT+xpOyqXUbVzPWd1+wTuKJ3e5NRVym8wwWnlKsWPmi1PHfNuQD87cnn8/zDTsKXHtedIsd4af/zi7pVhgDcxjKIDWWZ5S8/8k1e/A+fIbV2uLIVBkjgo6OAxz3+OMJAYzp82CazVOaqXPndXw1u4IGSOHl32PF7+vWoUYv5P6/7NNX79rWTB4adqy1v//pPuPCSXzFf65CC9+eCEcXYSNSeRzlPaK7JZaMjFDoA+E6YWMO/nflCCl73nB6J4gEbrWJfMsJcUsDmLt0mZaJJxcMKCJoZU6JuhrnM+jdQQTFjB2ClKBhXATq7bmBL0cBtZrhg4yMdipqwo3YxzUyofpzhdmud3xiJuX32i+gBSmZTqLECifXZFTezjtotTI8Mtn1ppXnq2uMoByGff/xLOWnJClRDDxdgcgpXRvubEi26Z9s+nvrXH+eLl94w/CTPQ6bHUaMlyqsmOey4lV17Irj6bF/+zx/vv0r7A6GDkNcckBCjlLpAKXWnUmqDUupv93Pe85RSopQ646HroqPbfrWZ/3jnN2lUGg6PI5cGbNhf58SGilhZ6nE7eEEBXgIqFQaEX6CV4jMveT4nLF/m2rPKAVXGQOLScicL3XEPvvb46Jl/xksOfQyRdoXoi/7gcgACLGYFGtZv+atj69GQgCQP+m2IE3JiaaKvtClSmRMxhqyVpnYSqAAXTaJavukYVz6+17edIQ4fRSyJWCrWUlMrcAmYQool6xioxCoq1mPRetQFrG20M/v2s0R7xafJ8BDUgKmngNm0zNbGFHUbDrgWSn7TZN0W/VdGU1y+bRfP+NHHOOubH+RL99zgAjJ7I5WbgowHYejxpjPOoawDZx7tLBDap10IaWLYuH2GdHKAJqqAZraKp/E9zU1X3N3SjDqpXonZcteOoWP1gOkg044eKB0MvObDf3sR11x6O2rvIirJsX8GBaEB89OaODOk5sA3i7XT43zjpS8lsAq/Cn4VvPzA0lWMtEmnLVnL5x79Ss6aPhRPCaGXUQrTgfzAorlk37F8b9cJXLr3KBLrsWgLVG1EzYYs2mKLB6Xy60UUpF0+MGeJmFB6oPuqSVoping9sQsB0P+cACkOBbwVwyI1mgLGMD7TP9UFY2famZkDzt/WmOC+xmSr6GVX7zzL8St34muDpyxaWQLP8OwjjuC1V3yeJ1/8EZ53yX9zz+LO+005Xjk6wvH+5GAxZ8A6TVLDdTt2k4wNeDfNOehpVOARz1TYdu/ugfc1xrIw2w/A96DpIOM19zuDlVIe8J/AE4GtwDVKqW+JyG09540CbwR++VB2sLpQ53ufvZyvfPaKVp0SnRmsNUghHDhwJlJ9gk2TdAbHjE1xxklr+cFtd1FLUo5fuYx3P/sJ7K7VmF+I0alyoHitdDc4fHyKpaX+gJmyH/Haoy7gDw97LO+7/X+5bvZmd0luCWmZ/Fr/58F51s+RNzv9sjhhxpTQoctKauI5eFgsCi1DBBkrROXnUiqcR2X+7cBCV7sLYojwKfuH5y4gQ2p2E0vagWiboexetB4Baad9izjGUul4Eteu0Ey8DrHEPfqQCDQk6PosE8uIcumIWUcxNisQ24Ca6dZYIi+j1gFvqhSUwxRjFaGaYF3pMH66dSe17C5MppGcoaiCQhIB44EnLQh5pSDQPi9bfwovPOlEPnbxVW0tomnk6eLH4iw04uJkrCf4ukfrEMFrZOjc/JsCs0mC9jTGdm9uxZHoIc9QUvz/w+Ly2+Y199yxg4s+eRmXf+cGh+sDBNtnycaL2IkS4vU7RtKSGmpU0MATTjmKRppx7YathL7Hc84+kVc+8Qy+edMdqBo0I3sVzioa1BV/dPKpA9s7YWIVnz73ldwwu4H33v55dse1/Frpssg4S4siFZ+FTNNoofW2OxpLgLaWvdk4a6LFHBbh/kgIlSETn/LYewhkhmL1Y2g1YKPUy2jW2rYyj5EFmtBcjhJQRaz4dFp9rMAuU8jdPc04FdAYHPqVolkeoHfge2PmZpPbOGH8edw6fxXpgOdzadXDBZDxYoNHrNtMJS6wtrSWTQuai7ffQ8O0+yvKoldZ7K4CmG5hSAGlMOCjz30m116/mbs27yVOshaPGcTHm6n4BqGxNCJcGBCDtHceZVz0X0Ye8jeAPF8z9hAXmj0Yec2BiOGPADaIyL0ASqkvAs8Cbus57/8A7wXewkNElfkab3jivzK7Z4EkCFulxgWw5QJohZdajNcjtDQV9UG+0Az27arwuvMewduf8TjABWu96ktf58YdO6inmYN4S8AUpbXq1P1U7iz7Bd61/lVsq+3mTb/6JxqtApbthTibFBn163gtl25vm87t1BDF9uxojimPshhfiUKjVEqKh98TpNuE6J+nSKV2Gbtql2PEMK58RjoKTArQAFYs/T5al5hb+HdqC+/rew6RGrrwx2iziTS+1F0nMG9hsOFOY8XiY8lQXfWOYvGp2rArEHveFJmr/JjHr3grV++7iNnkPkSEmo2Yy8qEniHN2m0EylLQKQ3btkz5yudFhz6Jk8dP4SWXfprY2g4BJt8UNOjIYuvK/dEsCioQZZqv3HALZ69YwzNOOpavXXOrM+kXwJh2KmRr4FT3dJLOfSt/MG3BBh4qdY41GwQgLnC0aer1fI+xJaM88qmnDBjHB0HCgw62U0pdAPxfHGr8J0TkX4ec9zzgK8CZInLtg7trH/3WeM2Vl9zOv771IpJG0hJgAKQQYKZHnbvaSB9bUZbBpU5EKNU0hVjz/tc9u/Xxzdt3cv6/f4o4y/oMOwpFqD3ixv5jpk6ZPJLPP/If+NTG7/Pl+y7BSrdFRtPEaVGM+jFG9MDSBHWJaGRFJouPYVrdQD3bgq/HyOwiMqDArAhkKO5JJ/Fm/gshwxefk0NNsacYlB8+gtLUfwGwa8eJCP07n9gG5fF3UF38EGJnSVHsNiFzrdzz5ri4p9J4GAwBhoR2DF6f3tFsnxQv+yWPWPJsrp75JqltK01awbhfZ64H7K7p1tO5q3/EL/HWY/+Cy7Zv45Ktl5N2FdTK421KBm91jey+koNayPcfz1fEUcY7Lv8JH3zcU/jMd64mNR16t3RvAy0rcNPd5dHDeMR1qhAhjRjVLH8hoD2N7Qgoj4ohL/mLJ7tCpw8lPQS85qGmAxFiDgHu6/h7K3BW5wlKqdOANSLyXaXUUMailHoN8BqAtWvvHw75m5+4lJnd86RxBmhXyVopxNettEWVCV7DxSmIBusr/Dpk5f4UJJVPiDQzfOPyW3jV09xjXHjdDdywfYerdAwtWd9rKCfIKJip16lnKd/ceBvf2Hgz91b3IQiPWXE4f3XSeawqj7vBKi3juasv4PNbvt/79AiwNx5ndbGBos7+7G+z6U5uXKzxuiN/jtaaX+38Y+Ybv6ShfEIxrcC0JBfdlQLTUXF2QUJCsYQtsdmjGD0KrUtkdpGamSElwpdal4+4KiEzi59HoRE8PKxDrxzSTxHDHjtClgcMOm+7Y6BGFIn4KBFiCZgxI2R5gbaf7PgvVpQfw/Li+Vyy5/tk4sbeU0JBp9RM2Hp7RS/FiMaIg+5bP3IWH7rtGoy9GuVbvEyR2qjvfQPowGIb3btMPbeYvPFb36Ew15RSW8NEVgS/1mQwzi8vTeuLgPEVyoo7MsGP86q1kY8ohZe4mCi1cppzz1zLld+9AUE452mn8rp/efHDg9/wILSj37YFpIN+K7zGGMuH3/kNZ+ntmejpkpE2fGueFNDabIBo1tBY4nUD3ImgE0hTyyXX3s2++SpLxsuICH9+0XeoxIPxWlyzwp5KlY3zM1x4x6+4fPsmdtUqTERFXnHcabz8+NPReU25V6x7Mj/YcQXzabfAoVQzTFAzyCORn9W6392V2xmfeh5PWP0ykmyWy7Y+rr9fAjUbkmq3CFymkDNe3pyWOTNcbAtSqkRYcmm+jXQDsRTR4kAsm1SzHjuMj9n3YQSDZcQJI0OVRZfDG7csu91Cjlul/dcuZhup1n7KGZNPZ2P1BnY2NrS+WxYtUDcBdRsgOdefqZfIRFHwDZPBNDOL0/zR5ReSGMFIj2+6+ZsC8QUZz5DYb82PJM+2uHn3Ll77P1/BNPGrhjyhyq8TACNEe2OnVTULOGbWFSb2fSh7SKXaqtd2/JmHszBTYes9u5mYHuXFf/Eknv7yRw+504Ok30FLzH5JKaWBDwKvuL9zReTjwMcBzjjjjPuV5668+KZcgAHiBKLcLJq/VMkDepsvn0zwjIBSBPOGdLyNrUB+jjKQpBkbtu1tffyVm25tCTCt58JBxSPgacUpK1bwmK99jJl00W1oebPf2nwrl+64h4uf+mqmCy4LaFAwWbPVmvGJpYBnCxR0vc+kqGi6i4TYVPivu55NoOqMe1VW+GBE01Bt7AYLRKrfHy8oarZI6KUoFaD1OEunPsSuxc+zefb/oPARsSgiRlRKXXxsyyzdhiU3KNR+gCKaWlC7KJxqBd8pXKzOXFamJt1CRmwb3LPwYxIZd243aY9p6FkWM6hmhfweDnPHV8LOSpFvzN/eHi/FwCyC5neixZUZ6CDrWsRWLUnWc60CtIub6R7WfC4kQKgxIQSzKUG94ySlIPSQxKV1HnPyobztk68ZOnYPJT1IE+9vzQLy69DDxWt2bp0hbiTNm7i6V3HqNsbQ74qFaXmY85/FfRYTKdJR3dKaVdZGc9ZKsXPvAkvGy9y9Zx/z9QEpcB3ka82M1Hji1z/ZBlID5pOY9133M26b3cP7z30KAJ72SGVwXIxScOxojeXR1p5aRP2USswv932VXYsfdbxThYyo7n42JGhlUvbciVg0NcqUc7dQUHweBGdw164XU02uz12xPoXcITRvfWL8vK2EZqtOEBlOvS753u/67WSOMnMTN8/uoN4TlKwVrC7O8KMdx6Fw+DpNQWguFnZJhtLbCAMIA8isotoIGRZKqnxBOuVT1by/ZebuRQaw6cFkBJ1YijsbaCOQ5m+w90VHIdRjCqWQZ77yMTz66YPdkA81PRhe83BYfA8ksHcbsKbj79X5Z00aBU4ELlVKbQLOBr71UATcjS/JU4NFXHDd/CLEMSozKAe32PViVZ4RpDIhiIVoX9YfdJTvusesXdq6bnjVZ9CpQoliV7rAnkalS4ABtyHWsoTP3NUe50GF25o3LwcxddtgNg0dTFOnbREhwGBE5RlLhoyUsm5g0VTyCtdGnHCRodEqaPmee8kPT6Whj2ZXprg3rnPdjpexeeZdiDSwUsnlPsU+G1GXYXVzmyXYmn3Mn1tg0UTsM+Wco/ePocIFAvbGxQC5UGLJqBPmDNNamE8ittbGqWQOaKoJNiUCcaZZTPtzFT2vu2+tERUg66wjq1r31jFI4lLHB1LPYOjEbUy6DUbcrlotAplxhwh+5FMaiXjTO541uO2HmuR+DphWSl3bcfRKVoMsIId0ntBpAXlYnsHRb4XXlEeLGNMRvBv4UIwQT6M7Ana73EjNnyKM7DAU91iCmgNKjKptxhonGWtWTAL5fNy/V5rpkTIfveOqLgGmSXWT8a17b2N7pR3v5g9VmISp8L5cEu8OhB9EDsrS/UskcEVoJaIuIfO2RE0KDArGB9CqTBo+mRkpsCUz3LFwEXfueirV+BrHa3DruyGaBauJB9S5bo2nkj5e0zmZ9QMwAyhg1FvAkLVe8WIacN2+1fxk57FkVpFYr+OO7jeV4281D18LxXAI/gYgacf4dL5npxceWF8zS3lLlcmb5pwA03UDaR8AnkehFHLCmYdzzlNOPrAbPFi6f14zlDosvk8BjgdeopQ6fsB5v5bF90CEmGuAo5RShymlQuDFwLeaX4rIvIhMi8g6EVkHXAU886Hwlz/95Y/J64NIW5Cp1Tl8aYmJJSMMk8hV/vLF74GTB6dlA8unxloZBc9Z3zeOri1RqMzVbLpx0+6hUeiJNXzs9it4x3Xfo5olPHraFVHr50NuEdaygIYJ2NEYZyErkFiNjxCREktAzYbUbUDFRiTGR+GKMu7NRoklIBMPIxoRhWUlIoP814pKuoNdyXZqohEMabYRm6sKLgvKo05Agu/ayz+vW58FE1G1QUuI6IhxpmF97s2m2WlHmZUSC1IkzrFq2sMcEgbHM5sNjv5vUjUNqZsAEcueuMxcWspLDLTHOrWKhvHYWhkf/J4UFArdKWetvtS6jY1+XeNX84KP+wGCampNIoJXhyDu9gV7Wjk3ZmZQcYbKLCqz6MRw4qmH8qlvvYl1Ry0f3PjDQPeT9rhXRM7oOD7+a7XdtoD81cPQ9U76rfCaiakyhx+9ovtDT+OPFXnpSx6Jblp7h5EASuFlLjaqSUoEX2kaeULCUcuWUAz2b/zeMb8IO4f7b2NjeOZ3Psd3Nt4BwJlTxw08b2U0S6gzmkG/+8sebLXdQvl1Kc4NCahLhMmFjrK/aiB6r5EGe+vfZ8bMk5AhxMTZJvrianJrajtoV3K7bbeQ5XIr2ztjJw8vqRSvR5DRKmLUX9dqs5eaClOTatbjir1HsKMxTiZe/n7bWq6iTz9utRP6zej/bl4jqe4WYvLnzR8IE93/+GOF8bsWKO1soHMFKYx8p7APIO15vOLtz+Jdn30dnncgW/lDQw8ixbpl8RWRBGhafHupafHdv9kyp/t9chHJgDcAFwO3AxeJyK1KqXcrpZ55IDd5oHTn9RsH7jMr103zj+953kCtRsAJKhqyqNtPbZVgIlfA7+8/9wMe+9aP8o2rbiEUDQZU2j5oZquQb4gCqj5c67Fi+crGG3jRTz/NpzZcSSMZdciS0lTUXdGxmomom4DFLGIuLbGQFdmdjGEFGhJ1AdmBoiYRs1mJGTPKgi1zT7KMzclSZk2ZPVmZ3ek8M7bkMhKaLiZx2UQNu4/OSrNtVxWkaLIWaJTCKFcvZMaWqEhETEBNQvbZEoloLD51CZnLCmw1Ey3QrOb1ospMFs+l6K1iNDiGpeU/4FcLNRasT2I9rIXEek7jyfsZW48FE1ExERVToNEb0NcSnBRzcRNBc/CC9v0BgYNzfnfGgHEWmFaOg08/7HtTa8qLUAV1CBJn5StEPsVCwPTkCG971ROJAs8JLx1vDOD2W7Yy0wTF+w3Rg6xn8luztnbSb4vXZKlh+5Z+vBSxcM6jjuak9WsGXEVrLxMlSCtwPF+IqatWLDXD89/wCV7x1s+yZcdMq1Lz0L5Yi8rUIJiWFu2tVfnry7/HO6+5mH3VMvO1kNQ4XmOsYtqf57jRPa056bzuTWFm+E6zK5tAieQr2wk+CouIkBr4VSWjIUELUNOtY6FAgwPcb5xAkce3NAWHnIPkwo0Q6PE8NVp6uKG7ftQLmIpOoeivZGXpsYwGx7Iv2YrKa8ylVjOftdPIjYWZtNSyem+rTmJsd8yk1h1jdD/Wsja5/tq6Jp0ZHJPX/Ki61rm299MMWJCCj/IUpZGIMPI58zHHcN5TT8bzdcdYtd1n3//a9b9RAQYeFK95WCy+BxQTIyLfA77X89k7hpz72AO9+f3RDy78eRdYmLsBXPn9Gznh8etpRVD14cR4iKfxE8i0Rbx80eUIrQqFMUK1lvL3X/0R2Ui7iaYsr/JY4lZNCK0gdmacXPFqdyif+KlY7pzfzZbGFkYKBkwBlb/ZiahO7yQ3ArUspOwn3NcYZ0WhP1VRRLEvG2HET9AIFo9EAhZtgTFdpeSlLNoSsQSMqgZaWRo2wCrFuBd33TFD44kzkWZ0WzsExWKXEEXr55wtEYqmGBxLbG4bCDhlJCYTn8et/SEbFq/lq/e9J8eYcYi7syZsxc0YgYYJczdT/s6kXRO7k5QCT1xQnVaOIfUyGRGIY78NsZ1PCWN1632Dy0zrbhxMwbmKlHGahI9iulgkymButobJs0+yQNCe8I+vuYDzzzoarRX33baDr154RV+n09Rw6cU3c/hRPdr9w0U5A3wQ1LKA4ISXFwN/0GpeZB5oVcJUSl0K/PXDkJ30W+E1N15zr0Pa7SFjLB9/3/eolgP6wi2aGUzWWV/CWYsp0Tqpk0dkxnLHfXu44OOfQXQHo2me2EsCuqawY9J1T9VQeBUPjCvV87nFG/FWNFCqzGzdrZ6Sn3D+4XcOTt9F3BqRdpJy7xlzpsiojqlIRCIBCiEiYU82hsHjzsZKprwqY16NTDzG/RqjXmPIgwwmH0Pag+PbXPseMBoezb7GzaghBStBsX7JnzAencWX7/sUV+27BDgST1lGdJ15U0blKz9UCbEEGJy7qKhT5pLSfq3DrdHo2VqaQmIvlL8GZ6Xfj/CTTMD8UVDaJgQVZ+UPtObYI5Zx+z27nTtTKRYPHSFcM8KSiTE++PfPZ+nKCbLUcO3ld1KZ7wFAFdixZR97dsyxdOXE/T7PQ0L3z2umlVKdfOHjB2r5/XVi3jrpoEbsjeuDJ7FY4WMfurhdolxcoUMBTEEjgUY8yEoKvLZLyW+An8MFtCx9jTZ/6t66ab2spmtBCdhEuSrY4lwNSkvLZ9qkRhJ1LAC3PANtBzAWRWLzaHZ0F7qmQ5P0SMSjIc7lYqTD8oFiwZZbEfOJBOyzo+wx4yxKERkQ5W/ycmnNNMJeSnO3UtOd1Q1Wqjlm6m2IGl7o0EjMzvq9fO2+fyGTtDWSGijoLEcQVSxkpY44GXe44NwBpmAUvg6ZCkN81Y6Paf4UgTTRJEnQdheLQip+Ky2+m2H32ojBhs4iozOwmVCpJ8zP1TGdA6AURoSrbt3UgqPfsnHPwIEUEUyvP/thpD5ttee4P/ptWlsPBqpX46HjdOutW9lw964e339zArqFn4142KKms0a6gu65YUDFnV92/N7DfJRSeA2NntWtEigqVnjzXqs0ihKFqvjITNh18aEjs0PFibbc1L0LhSplTNcp64RUfPbZEWIJcjuMpk5EpDOa9pJ9ZpSNyXLuS5ewOx3L3U2/xlaSYy7sTMe4q7GcPemI45f5HcrBEawceQaK4XF6VhK+svUzXDNzRbu8i/jMmhEsGoOHQVOVAhnNumuKug1YWqwMtEhppRjxCl0I7J28BmBxLkJMznsMpPMhZmsJ1VDdXqYBLyEdg/ljAOUEX5NZ7rxnd591LtGwpVFjNnHuuFo9odYYDKIKYO8HVfqhpAPgNftzXT8sFt+DtgAkwGnnHcdVF9/U9ZIEXOBdk2HYXDgsaGyknV2Q3JXUV3wNvBiySNopkUMCrloWGRTaCCaAwPeIlXaT2AhKW/B6zY9OSIhTn2LkONCw7Jnm8xhxi7Bpi3DW6DYOgsJSaNVZ6rgPUDEFxv3eEgWunHzRP5LEbOkAsvKJ8fBzccb2RCkvmgJVKbSeH2DSqxBiWD7yTCaLZ/DIVRfy462vwPYMnKcKrB15Clft/RqZdAufTRNyYjwS8Z1baICqWPBS6qbbpRTqgH856W+YDKZ44c//nV21ReJMobSTxOrViDTxcrdRc5wV+BaNR2c0gw0gaLQZUncn8/dtIa6loBXSU4ZAGpafff82nvCNmxkZiajsXBxYS9QPPM574gkDbvLw0YMFoPptWVsPBjrpzMNJB8CzO6UoaFt8m2+6w8wiij7U8C6LYv6LFvDrQlLcj1jZaXWxGi8FvU+3LMK9kTlKFMyEyFTya7hAHM6SiMKQEaiUgmpnOLWXRrek5SsnKnRbMBygXiYFtFJYqbVaUER5TIzts2g0rM9350+hmgNbKmDCq3H++G34Cg4Zeyml4Ei0iti6+EV6VX8hoxScxNX7PkPaFw/Ysd77nsP9HfqGQBsS236WQHkcPbaKT5z1ei7bdSvvuOlLzNYtWgueFtLYo7KnjDV+1yghChVZ/IaH1AUbSCvPIYi0K1PS7jhYaCxRlHe5j4yxbWWxJWUK3lzKX77+s6SJYWysQBp66Djre5rpFeMsWzXBb5IeBK95WCy+B7Ul5jXvfgHl8VLf5zIxQgv4JzfrSg/g3UAAqva3v6aq6n6ooFujV/u5h7HNgFi3TJvxMb0NBy7ClEBHnDLxVAIVdjAK1zlfDUuSVANhwxVCTQJs8GwOHX8tkbccX4+zovwMzlj1dcYLj0YRtqwy4BiLE2Dalh5BMWtGSMXn2Ol/BGA8Op5HrvgAniqg86woXxWZjI7jsLFnMJNsG2iqFlw1b2k/Vl+vQ50RKMFTGl95LIum+etjXsv2WoNr9m3iY494FS89/JFMRgWs8UgbBbLU64h70bRKlItqxynQ/nrd8skerRoXB5UzmKAK2igyDSZygL8AKhXCeUNSS8mMZW6+TlbwMAWvqzmAdUcu5+jjD+E3SnY/x+9pvzQ2UeKP3/Qkgl5gMK2QcP9gYeKpgVp3r7EFIKzCgbpdmoZUhSt5st/Q4g7I1s2VIfD2tJWyUBdYVjiMQEVEqls5kv0wRd2ze2ksY16NTckalkz8F+PFJ+CpMUL/UFZPvoPDlnycwFtBIiGptC3NP188igVTIMPD4JHhMWNKXF89FOM/g3J4NEppjl3yd0wXH42nSvlY+GhV4Lgl76JuDWp/DHg/pBBOndzKqJ8SKI9AeTxq6bH8/Qkv4sfb72DUH+WDp72Cc5avBRsRJwUW94zmAgx0bR4KJMpddcZZ0Py6xmsoJv1iN6+x4DUUjan2/tS0QLVeEBDNZjCXUK8lZJlhZqZKVgoQX7fmhQsPVLzqb5/W59562OkB8pqHy+J7UFtilq9dwieueCcvf+Q7aSzUnZXF9yEM3ItPMiTIq1fHBhO0J/VQJE3oAqZSCrw6mG7gxtZmKwhNo4jpMdvJfmpmeNppIM0o92oaMhbFqA40UF9rCl7MZDDJC9Y8l0dNn8N9tcfw1fs+xvbGllZbZkj6swh42rQ0naZAMpeVqEmRbXu/wVnTz+fc1T/FU+1XfdKKT2JslW9vfAaaPQTKsGgGFHbLx2HWFFlMdzMersbYlM31GfaY44jYxXS0jJMmX8yakfNRymNN6Xh2Ne7ts9QoXAE6Twm90CzNh5lPiuxpjLIsGudl687niJHD+LNffo7YumCWzBr++oQLuPyCv2NfXOHNP/8Wl23d0nGH7jtKYFGmexM6fHySnVsXiJvlAGx+Zf6eVPty14bvShaEVdP/DpTCjISIStGpRRuLDjzOeswxA8fyYSPhoEPR/F2j57zsUfi+z8fe/11MakA1BZiOWK1OLSRfdMrKsD0f6PISES1AxcKADOMu8rUGDxJ7gBJoh7BeyyKu3HUYj1y+seP+Cq3dkxxaPpkLVr6BUX+am+Z+whW7P0C/YNVhdeqgbiA6p+bclyxBKeHz932EVxz2fo5YenjXNROlJ7K9djv/veFvOaG4jaKK2ZJO0wtMZ/HYGC9l70zM41a7z/Ylu9gQH8tMPMPSoMqa0kkcv+Q1lIPDyGw2tC7S/T2LoDBKc8z4Lg4fOZEXrHkZX910J8/6yccItI+IMBWV+NS5f8TqR0xw0+w2nnPRl4bEEeVt+rg4ypw0imIW4FWVw5wSnEsRx6hN0A5tgA7LvxH8en/UoVKKbEkJFRtUmiGehzcWcez61QcwBg8hPUhe83BYfA9qIQZgbGqEF/75k/nSf/6YuJEDUCUZhHkgZ2oQY/HF69o2/VhIPbqtMzjtutf26lecq6ErW0U5IUih8CKF0oqxYsgum7aVfeu0MOlqUhzWgXJmwia/smjm4gKhNm4jt4p/Wv9azpo+Gt2hUawpHc1TVv4Rn9z4ntZnFk0iHgGG3my7mbSEjyHUGYn4LBrnA27SFXu/xj2VG/mjw96Lr9v4Ndvr97AhDhBWAYopbxGtYN4UqIs7L1IZ414ND7ht7tucvfR1fH7zu7mvdnvuMlJsi2fZGn+b1x75eADOmn4ON879mMTWWoveCtTzwF6tQIt0mXpFnKA203Aa1+54nv+46zssxmWqWbdr6t9uu5ipYJRjxlZwwZrjuHL7NhJzYMw+0B7POuE4rr79PpKeqq9INxPq+sobEBTcSb5GtEIS8AKP85+8/oD681DSwVbP5HeRnvrCM/nCJy9jdu+ik1FS29r/FLTWeusDcUCKOrXYQPfxlb6NyMLYJmHhcAa6UwHKYcBIFLGrcQDZbUpgKu5r6q755WyvTrBudB9KCXvry/nBE/+ByPO6rBenTV3AhoVvsatxR6uvLnlgcN9CldFoQi7kgbOt4GWJ+fTGv+LJK17LqVMXdF135d7PcUhhjjkpM2dL+Rh2izFuj9cspgvsi/dgJeG/NvwNqY0RLFviiBuq90JwN2cuOQxf+zxt5fP59vYvkcjg2MlmXka3INNMN9eghI3VW/j7G9/HjXuWk1hDkis3jVrKa6/4Xz505vM5bGSadWMT3Ds/O+RFQAsOPv//3MMOxfc02+cXkAEJBd6QEBed5uEJA13eCin42IKP9jRHH7uKqamR4X16mOhg4zUHtTupSS983fk86iknEYQ+5dECkTGMjRYIIx+vGEDgIb0R48b5oJsuJwGMD9kAg4NWOZBZHXSj/ZK0EV521im87bzz+NDTnsKiSVwMTQvWQJE1fCRrumVyf7C2JFlAPQmoJ16HAucCeWtZQC0L+Kvr/5f/vuvHzCbdDGtd+bg8jbE9kxdN1MJicZu+omJCFm2JDfEKbqmt4e7GCmazkTyo142HxbIn3sL1sz9otVXLFvjC5ndQsyE1G5JYjwVTYG82kgsw7vpYfPZmo1RMQC3bx5barWyu3tIV82LI2NXYxP+9669pmDpjwTRPP+RtVLKCA+2zmsWs0GXpCXAFRJrP0jA+M3GJgt9e7dXMUEsTjFEY0+H2ylLe/Muv8OTvfoJP3HE15WAw0J+nFJ5oir5P0feJPJ9/e+IFPPG4o1gx1rPwxZ0fDkmGUMbu1wsguRTrhz5vfOvTOGTN1PCTHy6S/Ry/pwMiz9P8y3+/gqUrximWQsrliGLDUIgCCgU3z/qcLSL4iwYdd4Dl7YeCGq5CaAMHVpufPlaIeON5j+S9z7qA41Yvux/LvIBnYTpGTQ3eDStZxC2zq7h55hB21H3+4PKPcNnuW/uAPQ8pntxsseP5+idOKppFU2Dj4hI2LCylkkZ9wpORlB/u/Dh10+Zn1+67iF/N3cWNi2u4o7qSii0SKqeMdgLJNcfVVx5VU+G72z9JYutdQchGUr6x7WNctdeVdHns8gs4dmx9UxXqGwNF5wbnnsl91qnYChtmi1TjjDTxMKnO0RWEjZV9vORnn+LR3/8Aa5YVCfQQpF6lKKqAyPMohwGHTk7w3qc/mTc86mwCr9/sVl5QAwUBBWDl/qYQCli5coJ3/MOz93/iw0UHGa856C0x4ArnveWDL+UVb3kaW+7excpDl7Dq0Gmu/sXdvPPtX4E8KE9lggTtCeploCuC8SEZ7/UXtEnEWWC83K8neXq1+IrDihP84amn8sXbbnIMIMuL6HQIJkvDKQ5bVuRX+xzEt4hHnHn4SmNsjO/FBF7HYrSaOPNQGD6z8RIu3HwZ7zjxBTx51SlUszrf3HYZ91aWMhUuMhnWWwu+YX0ScYJMw4bUTIAVRaBzC4241GkPQ6lDIMgk5ta5S3nEEud2/MLmd1OzuTZCXqHaFvC1pdebb4GqlFg7chY/3fVlTJ6i3UlKwZ54M+++9W2MB6upmQo74lFQZUq6zbCaY41yQpg0s5VSF4vTLLcAinoSEHcUgjQWtLb4nqu00jAZmxZnGA0KnDi9jFv27mmdG3keSwolPv/kF3H9jh0opTh/3WFMFIrsXqgw5kWuYGPzOQx4iYvFyQZsH0FFuph8e96IU8Dy3G9ZTLj8ezdx6umHMb18rK+dh43k4NOOflfp0COW8Znv/xV33bKNWi3muPVrCCKff3zH1/jlVRtaSQYdijcK5260VUM64iPRACYDaE9RLwlB3LGJxmBKUIkT/vTRZ6GU4n2XXT60f68553QunPl5y8XaJE9pMhk8CRTC5vpu/v7mz7GuvIwPnfpqlhbGuXNhK1/ZWmVn/QjWj29l1I9zF3rzqaCe+dy9sIxt9TF21cdprs9b1EqOHNvNyVM7up9ReWyu3sixY49iNpnl4xt/QCpjCJqqFeYqJcpeP6ZM0x2eYVgaLmdD5caBzyICX9v6Gb60+SbKehU1fkV3MEa/NWx/3rvMKnbNjXQVnUVBVErQGurGCYk3VTfy2KOO4mcbthF3oDgX/YCXn3gKTzn0GG7ftZs1E+M8ct1aMmPZtG+2LTTmKaHBohDMa3xPk/VakEUozGVtd02vqarFryyV7XP89Ac38cI/POc3GxNzEPKa3wkhpklLV0505cNv3zHX9aK9WkY2lmvmHS82LTsBRuHSrLOo7cfWSpP63RlGClwaNfDVm2/lW3fcwcqJUazJZ1KiWy6lSHm8fv3ZPGbdoTz/J58ithkNm1LyAybDEkHgsTcxJMaBKYmoliFVcgejEcu7b/ky80mVH+z+KXuTORLjs60+ydb6JONBjWXRIiN+grGwNx0lk2adDyE2AWUvySvVChVToOR3W3cC7eD698Zb2Va/p2dkXfVpTwYBPbmgwsNGzuNzmz8xkCFYgfk0YiFbZHP1dkCR5imaidaMBzFNnKdMFA3rUh6dANMdjKRwjKWWdGcpAVirscqQ5dqSZIpKwxCEAf901hO5fu82tlcXeezqw/mDY05m53yFYyamOXb5UjbtneUVH/8KG/fOYGsWJU7IbcZ4WyBRlkBrjLUtjdqLBS9um3i7lA2FA70BVD0FY7n2irt588s+zqe++yaC+0FnfahIcfAxlt9lUkpxTE+swb337OpPZe3YWASn9NiwHYLbebYCjCfE4/330w2QUHjlf38FgAkVoYQ+IMbQ07zurLOY2uTz77deSpo70EPP5/Erj+bibbeRyWBAAWM9wLCpupuXXfVB3nzMM3nf7V8jsRnCJPc1xtEIT1h2GyKa8TBmZ32MH+041kEj9BrtBTYsLOWQ0gLTXfhWCl85d/R3tn+PtIPfQbsorD8A+E0pOGb0BDZWb96vUr8rLpHZu7DczWI8zuaFSUaChBOXbKfgNwWMA9vY7969jCzrrbEnJPWAQtkJMJIqKnOan923mZefcCZLJ8pctnUTJT/gD044mTNWHMLde/fy6MPXccj4GJ/9xXX8x0+upKYMqWfxGsLEnRZlXZaa1QaJvD5BRic9DKYvVEny8wzV2HDhJ3+GySx/8MqHqdDjADoYec3vlBDTS2PjxS4wPG2EYD7BFDzKEyUanlCVDGUVYtu7lU6bFhm3M/mJ24vEy4OBFVjf4YfcsWcvVoRbtu9ymveEY1ZNl1IY+hy7ZCl/+sNvMTMDgs+a8UlefOSJ3LMwwyU7b0NCxxiHV2gFI5aP3P19JgqNnLG0aT4tsZgWKeiU8ahOGymX1s+aCRjxEncfdFdao8bH04ewN97L5uptzi/eobU1U7qjATChInDYyBkopWlYQynPZO7NaNiXlEjFbzEsLy87l9iQuURT8J1F5vxlT+W726+kZpIO3JuWooIAjXSwiwjAGE2aelD3wCoMcMOundyxdy/rp5Zz4uRyJm2R53zif9lXqztXofYw1YxGI2sF8mrrtOnON2J9iI0laLSFHDVoR2huXvl3ykpLSLNGqCzWuerSO3j0E08c+hwPOf3ebfSwUrHUX7MLAIF1h09z955ZsjzVujtuhpZ1QzIozEB9qbSSC5wLwQky19671X2mwPOEbLTbcvy89Sfw+Ztv4r+uvp56VsLTikccvpzzDz+Cr91+B1nqMvIGKea6Y4LUsgYfuP3rxDbtOsMi/HD3iSiEca/GrrqD5R9GRjT3Lk51CTGZzdgTJxxaTrl5/ta+AN7EenjKw1O9kBFurF685o+4t3IDGt2XHGDFgYNur4yzuzaCFUXoGcbCBgtJiat3reOM5Zsp+SnWjvK0FU/l+7svGtp/gK1zE319hDYWGLEm21YCcTXkPverG/GU4glHHsGRE0u4euNW3vDVbxNoTWIta0fH2X7fHGlmyQLAh7GNFt0B16AtSMO4OdCUn5Q6oIBZ1WhbauJGykUXXsGLXvaoFqLvb4QOMl7zOy3ErD9pTZ92pCz4NcPkuMcRjz6ci39+u9uQXBwqWdQqAwg4ocVGbQmzubeneWa3zTVtk+943qIim8jvaUAnilde/FUqaTugYvPcAu+74gp00SJeRlF5hEEv2F0/fowR5yYZVC3WAon4ZNbHG6DFNFOiFc7a46kiQoqRjPks4N49N3DJnpu4YPkj8VSA6Yg2szQLTio8pNv1g+Lph7wFT/mMBSuZjXcx4sfoXOPLxOO++gRJT5FH04INd2ngvjU0TMDnNv2SelxgtNBRWE85IS9ighp1Rv0SiwPcOibTpA0fSTT0pJ02TMY1u7dx3Ybt6NxP5AxTCp2k6LR9LwmB2hBdrfme81JMYsUFeHfyU0VL6lLNmKuOiOs4Ttk2AMb+YaNmP35PDxutO3wpmzbu6fpMcC6iZz3nDN5/4SXteJjOV9GxtzQmFWmz5FuHltG3l4sLJFdGaJYz0r5iU3WOr264jXrWzNaDy+/azuWbtmIDAQKiqZhBFIWd612o20EBYO3okn3pKIm9nzQqYCYuE6goF4iErXGJz2z+HF/e+lXGgyno6U5mPRZtgcirdCsQAquLR7CssJLYVDASYDF4qj2sdRNw6+wKdtdGaKJ/J8YnzSEWrCg2Lyzh2Mld3LR3kit23Mi60SUcMurWYpOvhSpCsA71Rg0r1gtJ3UftCVugmQCpMaTAd+64s+vcBoCFjVv2OfRvFF4KYgSv0f+OXbaSoI0rg4O19ELQtCm3wMSmT9BJk4xqtcHYACiSh4UOQl7zOy3EKK3wfY+sN9MEyDLDn77o0U6IaX6YW1taQFVAD7ZaS3nyYpex1EW+w5AMFpquIKiNpgNLrAtgYtBlaMQhWiWt+j6uhpHk7p+Oa3osHD1PewBMxdkyLAFryo/h+rnLqWQ6B84zgOEHu67giHIAtAHynDuoyN54lLIXsyxawFNCKh6HFM8kE8W7bv0wdywIRqZQCCN+nVQ8B3Y1sF/tMVY4BrSQFhGxiM7YVS0TaYPvWY4YWcF7T/0TpqNJALZUZnjSDz/S1ZpJNUklfyFWMxQ3wweVdAQrIDnKaUe3xKXUq+oAQUblckwGKhO8VLqew/3RNuuq3LKjOiyCURRw2JG/oZIDzW4fXHzl/3e0avWks9L2hF+o0CNJMh5x8jquvGFj6/NeykKcADOkmN8gUgZs2f1uEa7aunVg3IukCgIBNMlCSDiatPunhNFio0/x6TAkDqH7n1AKITGjFPzj2VrZSMU0LbExqU0ZDyYIdUjSITApLKn47G6MMhI0KOkUUYpGVuJZq17KjXM38z/3fpJaVsJSwCNz6cWiyazH7tpoS4Bp97RtlV5MIm7dt5K5JELEcMfsFPctllkxskioLa844qk87ZALWpATb1z8Ft/cdNvAZ7eZh9db1HF/w2Vpp1HTtrLFE4ri7ODxVICO29+lZU1Q7cjdbCpLSTZwjReKIeWRwfAYDxcdbLzmdyI7aRgtmR5l6bLRvs99X7Pm8KW84nWfGOBX7PhdMZDhKJwQ0/V17opSFlReRBDrrCfNtLz+hvINUBTVasTiYsTiYkilEjYtiC0Ktc+pU+uI9HBBRQQqaTAQNE/nS9lB+5eYSzPm8grRlSRkMQmppgHzSUBq1xOoUawoGsbn3uoy5tMSVVNgTzLKbYuHsDcZJbFjPH75C3jvHR/l9oUNZGJoQpFXTYE0t75Ia4CG9bsd++JqGilqScRso8SeyghX7aryl1d/w8WiAGtHpjh1co0TOsUVL0+qnWUKciGyfxhQA7B7bK+ylTcjOhdWUrdh6MTVNfFiN9g6lTauj25OHUEZ8KopXmzwGplD0syFGD/wmF4xzhnnHjV0PB4OehCVZX9PB0CPPOsIolKE+ArxlPvpa7TW/PzmjVx906b9Xp+V1MAl0gs5bwIhHhcaSyDtqfAxLHC3cylI5hHPFkgWQ2goRsM6od/tJo50wOlTR+VZOoN3pHbl60EM1B2CpuAF3Lq4m0UTdLllLJZNtY0cPXKksw8LNDIvr9kGVjQLSYmdjXF218eJ9AqWhKN8ZMN/sZgtYnAp3BlB7qbWpNYbouS1/by1LGRvw2UfNvlkNStwz9xSbp9ZztuuuZ5vbbmldeU/nPn4Aa9lyMawP1I415Df+7EinlKkRagtU9SWKbIo71t+NN3aCrAFj3jCJysoMt8JL7qeoruyYl3bUSHg5a957G++AORBxmt+p4UYpRR/8/fPpFAIWmibQehRLEX86p4d1Gopykhbmm2mXd9fDhttAUMA8lgZ1dzIdHPjU6i6IhiGHNlcB9ZtxFnqk6UBSRKyd98oc3MlCjok1D6PnD6a95/6cl5/5PMZtIBEnCl2Ji6RWt2qWt2MfveUoW4DKiZCK5+pcJJKEjATl6iZkFoWsphGLKQeV+27j+vnRthWH2dLbSqvJ5vXJcrrK82lozx79Z9Q8JawsXofRkxff1oxIe2RGtjvuKNirLUwX28G86rWQF83s5k//sXnWtd95JEvZDwoo9GIUT0m+uHvrw/rRSkGuvVbJnvno/arQljBWV48hQQKE6mmAcsJsJnFr2b4jRS/kaFjg84snhEIPMJiwOOffjIf/Myrf+OMpWNv6T9+Tw+ajjt2FY977LEUimELwTIIPJasHOWGu7a7Wln7G/8DeA9pQYiXOCuhhPRtiP4wM23PxyNjNVav2cey5QsUCi5zUStF0QsZ8Qv81bHP4V9OfjnHja3pv7jZpIJi2IyZGaT5KULt86y1p/W59K1AYjyMKG5bvIXF1KeahSSSl4vJl33zWF5Yyj+tfyM/3XMpmR0OyBR62X7dLQcifFiEv7v+m1y9ZxMA08Uy7z/naYPTpxVI0Q5WmIbQIF4jHlRWa+IJRTKa853enva4IL2GIZpP+uLymlae5SvGeeNbn8ozn3/mAfftIaODjNf8TgsxACeevJZP/u/rWH/ymrxCK8yblCRPu/bqNhdgHJPxsmYUuDjfXlMa6CDf06gwn2L5CKnmPtpREUAJeA2Nlw0Zxs7NVzouzI9G4rNzb5GnTz+Wfz75pZT8iCevfCSPnDy7BTnRiQuT5TWWdjdG2F0fYTYpUssCRBSxDUitT6iKjHrr+eQ9N1DJXHl4Kw6fpnk0jM9CErGpMpkH7vV5bIltxJlTj2MuncdX/V5H2xEq6LVE8E6V0I13w/jEpn19YppZVf107cwm7prfDcCSQpkfXvBn/MXxj+XUJWu63UcKUELzX9OU61UGw7MP1BBUboUBsOKYBU0Lm8tI8lNxQdwKlBX8hvNJq8S2kX5pT59opMBf/MOzGB0bXiTzYSE5+LSj/7+RUoq3/OVTeNtbn8bY0jIUNGbMY9P8YovXDCWBoCoDmXxTCRGEdJzu3a1nKme2f+UIgoTtlxyEKZNLqn2CgoglSFbwzuP+mKeuOoOiF/JfZ/5Zbhfp34kUdLi7+9dUoDzWFpfyk62b2LxQpJnQNxsX2bS4hK3VcTYtTrG1Ms7eRpn5JBpYlBbgtMljWVaYYm+8FzsQISd33ypYVl5E99ZSGtKulc7B7Ka3XfeN1u/PP3I9X73gZTzn8BNYXe6GRrCjBgk7eM39UF9ogZBXuHZHYUZaQoxAyyIsHki+XQQLKUE1yy3R0mWyFxGCwOMJTzmJJzzl5Pvtz0NOByGv+Z0XYgB27Jjj1pu3IVZIE+PKA+QBudo6oaW5Hm0AnlH4dZduHczTNusBhdDnpHUrSf0OM0PTKtMUaGy+AebmvZXZGCNBf4CYQqNF00YP719QjUz49B3X84/X/LD12S1zu6gkAYnxSK3XFgTyfhqrSazPYhKxozrOHTNLuXd+Cdsro2T2CK6ZudeZinCMJbFeB2tyRmIj3n7L0Xt5Jde1pdWkHdqRsYpa6hNnPvXMx+TuGx+DtSq3GCnmGhFzSYHURhxePoTVxWU8dumZJFl56D0RuGL3va0/x8Mif3rcuVz0hFdw+NhU9ybgAVqcRayh0FWFMqqf0YigG3RrxAJeVdD5PNGWdjqrEfy6cxmhlHMjBU6waZIygzFN0yRj4927hj/fw0QKJ2QNO35PDw0ppfjuFbczR0pc1NQPBCk65x9eBtFcrjRZCLQm8j1OOXSl26wGRCfqBIIFx6O8fA4/5/jjctemIFqQgsUL2qL7xNRwpN/t8S5e9bOLuHV2JwCbq7sJPa9DrXJHM2ynUotA2qi8aaZJUo800xwzuoq75xe4e2EP06UqWsNiGjEbF5GWZVcRWx8rOnd4D6aC5zK/Thw/nrADVbyWBsw3CqTGbflWYFmpwvLyAi6BwVl2m7AtK4rjrC1PcerUWk6aWIu3H/62sz5PPWtnZ500vZIPnfsMPv+kP+he2wrsZIaZSpH9WICbln6VJwQ0P0McInywAP4iqEx17SeiademUYAGfzHdb9xJmhgu/eGtw094GOlg5DW/04G9TfrGl68m7ihV7tedD0A0ZKXA1VzqcSso+P/aO+94Ocrq/7+fKdtuTW56LwTSAyGEhN6rkNBDURAEFbEhij9RRL+KYhfBgkgTAWlSBOklAqETQxJISO/Jze1bpz2/P57ZvntzKUk2YT+8huydfWbm7Ow8Z89zzuecox4wCVoryBqoiQT42qxD+O/ilZid4GngRPAbfJGxQtPHS//B3dTexTOf+zw/eOUZ5q5fBRLGNfXlF4ccR1Mkwmce/xtb4vESkqvJmXQd7l++gCv2PpTGYJiIHsRyTYQfG0kXgpJALBmkMRIHCV2pYCZN2fIkKcdAii040sX0NY+b20ch/9MDylMS0guawEmlUABqjDCnDjmOB9b9hy0Jg/ZkRN0IBJrw0IWLrgmStk7SyWdC1wVtjhu8J9dMuiCz79TBGzjjxb/iFni/pFTVOsO6ydy1qzA0jf0GDM5UvByg17Ei2YZmq5ieNJUSFymf5OuvZlTc2DfZPDCiAt3yjRTh74vJTNlv9Q1IvABIGwKJgtWuf2O8kI5Iutl9JUKSnicJhHbOlKo0st3uiFg8xavzV2HbPVxyFli6wS4w4xKvRrDv+EEctf9Y/vjIKxgJcG0QvbILJT2mqoinzRPNVlkuVtLjr7NmcfUrz7AlHkUXBmfsNZFvTzuI+c2b+O7Cv5RNDtA1j6jr8IeFL/Hng08npKushsLxnqeSEaLxEDW1KTwPUnZO80MpeWvr5pxkLHWCditMIek2fRMsV0eUqZxwWL/pABzc5yCe3PQ06+MtvNfcn4RtIpB4UtCvpovmeC2aANst9B5LwqbgZ1NPZVrTCEBxFX/57tPcvvzV0vdCaGyKdrGis5UR9b0Y3dgEQJ0ZRNg6UvrVMAWqN5Ur8GolIirzeXf+PdBSEGwGTQrcgNJFwlFZsWmvi+YpbpQbEoS2+tmqeQXK1L11IgZ6V3d9TiAY3Hk/3ZWma3YLI6ajLcdAEDmPtwdmzMaJaKojLVBqhguAhCThWPz0nmfxUJ4bzYNAJ1i1IMP5Bkzuv54j+dyt9/PAJecSMnUcT1IbyK4ofnvAyZz7zD0lJM8+DQHdYHVXG43BMGeNmMG1CzeTtAWG7iKQOJ6GZSvyXMIyMXQvr84KCIQmsTxVUdfxNIIlFiLKU6L5zSM9onYAQ/PQczqmSDQuHHlW5pjTh57Aiq4u/tm2gNwut67U/EJY0jdg8u9t3Apy2pCj8vbt1TCI66aezhVv3ZffTw/wPMEPn5uLqalWDYam8dfjZrPfwCF8sKUVLZXNShIpSLNtMx1hdf/rtZSL0UgKNF+JaJYyODUn2wcpc+fS2WqmLO8S1ZR9pAHS0MDKbwgpBPTtV8/Q4X3KnGA7QpZwY1fxiSOetLvJHuwZNBe0To93Fq3j7VUbsRz1HOk21K6FLp+mkmvAgP/akTz1zlJGX9eYvwAASphJREFUhxt5ac4ldFopIqaJ6ScDHDJkJKNWDGa1taaknEnLRALvt6uQ7aBwb4ZF+rIsuiGjiZIpg2gsTDyh9JckhWUrLksWAi9dehvYHK1jSH07rlfe8yGBDitIfUDlXKe9PaNqhjIsMgiAoB7kmgk/4Jgnf0XMyg8FbYnVIRFlriGo0+ozBgwoI+XKSccwr3kFSzu35I3WEfTS6jn2odsIaBq25zGt/2D+etQprI92ovI0/OtLUOWz0osZDz2evxoOSA2jVXl0Ib+xY84w/4VAahInJDBTJawBIXBqDIJdTjbkVBBSCoZMPnPatBL3YQegAnXNbhFOOuCQvdD0MsaJBCPmqLCCpOQKOj3YMiVuTu+K9DQKxICCH75CrG/r5MYX5hEyzDwDxpOS/oF6pvUp7DaaL4flOgytbQTghEFTOGnwVDShYzkGCStAys6y/xN2gIRdbDR4ORNcIki6et4Iy9FpjtbSGquhLV5DS6wWy9VpS4Vot4IkXZ2UE+HwPkdl0p3T+KAzWoLLomrT2OU4QRLmbv4AANtzeX7tcu7/YCETGwZz7d6nYAgdQ+jonondEiG6KUDSdulKWkSTFu3xJOc/9gDLW1vpiCcLeDH+axcMWzC8sYFLpk1jzvhJTBk4gFMnT+C+L5+TT9gr8KSVRDc/UsInKEndz1ABhCaIRAI09q7hh7+Zs2NLgOeikNaQT3Go4hNAn141NNZ//HocnoBUQOY1IRUIhAuBdlX4rhQEAmFJbvnvm6za2kZDMJQxYAC6kim+NvIkjIJEAynBdQVJS2VF7tXYN/PeTydfwMBQb6Qn8DzY2lpPPKG4dCCIdoa2+Qit72wgagUJpktgl5QdbE+nJRkm6ajQuEaQS0eflzcuant0pIp1W7GHJx9bkzGa/aaZWxJdPLR6Ac9sWMo/Dr6QA/qOQkPxeLAM4u0hVjWnSLkOXZZF0nF4bcNarpn3LE+sWJojMfmvBQgTDhkxgq8eMJNDRo5gn0ED+c6Rh/DDM/IXa91CCLxg4TXSH1SiOV6JqSsJBAwCQYOZB+/J8bOn9vx6nzQqTNfsFp6YE2dN5e+3zCUeL93Bz4y7uGFdTQTdt29zasUgVOioJMfVHxToAruebs2+xxYu4SuHzeSl5atUNkDQ5Monn6QzmcKRLkadjhP2FZenXIfChJBuMGvEBHqHlIIUQvDdiSdxWL/xXPr6nbh+D4RMbNo28DyBYeQX0HOlwJMaAU25U23PIJrUCAccUpZBezKcjqypjyUF7fEIfWtjeG6AtZ0RLFdjRet7PLvur/x2+mkMq1XNDNut3NLiObdGCsqGQoUi2n7QvpWzn7iHpOPgSdVmYc6eU3jjxO8yd9NyvvafJ3D8Al54IOyccJftctWzTxMyTWJWwffrx5CxYc64yXxxpmLqdyVSPPL6YuYtWs3UEYN4ffk6vyP5tuEaalVcqMJEQtWEySzQAjrSlQwa1MiXv3Es+84YjWFsuzjYdoGkyn3ZARBC8N1Ljubyax/s2QEleLESVTek5PkRBLt8Y7nU7xt+8UjX48UlK0k4Dks2NTOksYEnFi3h3rcWqt+ScBMN49vRQzYSSKZM2rqUbgnqBpdNOChzzgHhXtx1wJV87ZX7eHHjUry8EgUSPeAiZXHIKV8ujfe29qchlCAQcMn/NROZ6KtaVGq4bg1r4waG0DnnpVs4c/h+fGPcsehCo9NKYGh6ybIV2Sa75e4f/Pm9l/nDYuXNVdEawd8OPpv/m3oytyx+g1sWvJMNZadTlgEbj3vfX8iEpn7lP6h/lT+echIhQ8XGFq/dzAuLVhCsEeiaUHzM7sVUb2fd3gXjBGaXk9uCO/PhZp21H8ecuDfDR/Vlp6ECdc1uYcSEIwG++NWjuf7X/8lrQwBZ7oqRcHERaJaHZ/p1HkxNMcJzozJlkA5JeMGCsWlCF9AVTXLAL/6E0NLkWYlrSKSpFJTs1NE7fZKtBlKX1PQVXDBuX74xubj/xYx+ozlnxEzuWvk6lrRVmral43g6riswjEKjTZCwgpw8chKPrl3Apo6grzzylaKmyTwDaER4NAu2dhJ3UqgOmLC4fRPnzL2N5477OgFN55B+Y1kV26oMqgIkUgamUax4DaFxzKDxfP7JB2hJxPNU270fvMuMAUNZ3dqZqUCKVAZMYYbRWxs2YJbq2pRj/d/w/DyG19Qzb9Fq/vV6lvSmCZHp1ynTwdxcpZp7Lk8RLD1PtbDIDE95mF1Opn9S9sdJ0N6VZP+D9iyWbQejmoW0YzBj75EMH9SL1Rvatj04TWTTyKwc7FqR93fecPCNbVHSAErPCwnc8Nw8kk//Vx3jV8/OPOMxg5Y3VFhTBiVefxtqPPZq6MvVU49hUu+BedfVhMaP9j2Jkx+7nYSIZurR6AEHoZUUFSFgWtNQ4o7NBmslIdPKfog8o03tSJ/j6H7789iGRTjSxvGrht+35g3CRoBL9zySkXV9ijxJ2WuKkoaMAMbU92VtrJ0/vvcSlufmGUFf+O89zDv5m9z3/uKsAePfsFxdI5Gs6mhDQ/hNU4rheZLzbvknPzz2KL5xy8M0d2WpDMIE7JxwSzlDRkrMRKn9EGxJojv+irVA5YUjgZ1rwPioNF3To3CSEOI4IcQSIcQyIcR3S7x/uRBisRBigRDiWSHE8E9e1O5x1HGT6NWrdOaLEEL1rpCqzLOZlARjHjUpCIeMbP+KwkVE+k9/9a2nyLLPvey/QqrNlopB77pS1U6Q/qo+J4SR2TzQHMGxTeO4Yu9DMfywh+N5frxZ4YqJx/DXAz7LQU1jibWFSSVVSrXn6aRSRl4atudBtCvISQMOpr2rroB4l908T2RWXLowiGi9cApWPh6SuGPx4kYVDqqhHsfNhtrS10ymdEDHcbU8WTQEXx17OJYDLcl4kUpIODZ3vj+fF9euLLjZxXA9SVDX0UtoU80XO2W7fOf2x/MMGCBzLzVLYsbJqyOT5wWV0m9NIfACoEVdjJiLEXXR42VIdhJqasr01NmBEGSfwVLbroJdQc8AXPnFY7pf80iJlnIx4h5mwiOcAtMF09RU7aFu3Bpu4eNUxk0fs21cT+JJmbGVwA855f6XEuhrApjtJr+dOYsZ/Yf7IkrsnG7MTaEIT598ET+afhR9fI+wXtQqJfPxAEg5DueM2YvGkMxP6SZ/S0unC42Xm5eTdO288yVdm3+snOcbY5JaIz/TszQDIHtj6swQv51xCveueKfo3ACe9Ji3eSXtqZw4nZdvwKTvneW6mN3VeJKweM0Wzv393XkGTFpOqUs0y8tmM8rCARIj6uua4o+ClixPOOnTv6G8XDsIlahrtmnECCF04EbgeGA8cLYQYnzBsHeAaVLKycD9wC8+aUG3hUDA4PLvfgajRCMsw9QZNqJPxmMC/vOUdGmyDMaN6A/4FrRvfGQ2ITNZTQIwE2B2gZ5Qnpl0Yy+ZDm3k8NHS1yokQmWmjoSHFr/Hz55/kcVbtnDqPXex1/W/Y/wN13PlU09mwif7Ng2no8t3GXkCL2bgdpokW8N0tUdIJgPE4wG6OsJYls55z96Nl+MxKdWZ2nXVTlNTVTeTJYpM2Z7LxkQHtufyuwWv0NEZJpEwsW0Ny9Lp6gqSTAT8ZmkajqOp83o65444gM+POZD1XR1lv7Plba00BHK0dtmwFERTKSb1758dJ0GzUX1NJBhxKFfQFAHS9I9x8g0ZpCr7bST9SSglmiXR07UPJJBWajL/OASccsZOKDZVCFk+5bHSXL/lsKvoGYC9xw1h7wmFHDcFQ9foFQpl6g4BOI5H0BUcMmkUWpm2AxJwQpQuzFgIUfxvmv9XOIfSxozcpHPW3+9m/toN3Prq28z41Z+Z9NPrOfR3f+XfC98HIGIGOGLIaLrslPJSNJuIxTWId2sQq0Lgt/NI65N3OzZw58rnChpJlseAUG9arVIuCEg4Frbn8tyGpbQXjMlkZ5ZYS+hC8MjRX2BQuIEt8WhJFZJ0HOatWl3Ww5ML2/EYLhupD5Rv+KnH6Jb/EejyMJI5A3zjRbMg1CIJlL4F6vp1RslTa5rgsKMmbFP+7Y4K1DU98cRMB5ZJKVdIKS3gHmBW7gAp5fNSyrRZ+ipQeoZvZ0zbfxRDR/TFMPXMskBoglDIZL8ZozELOAuuJ4lHU5y03zhCAUPVlPFAuFIVx3Nl6VCTzPmBy19yFCFN2Cver84jPbhz/v847Z93M3/TJiRguS4PL3mfix5+CFBei9c3r1PGQkoHV1NWk6fhxQysmInr6ki/Mm6blSzfCiFXAg+m9RrJkQPHEtGL69zoQmNy78Gsi3bgSk8V1UsFiEbDxOMhXNdAehp2Wwgnpng6nqsR1sIc2W8sx/7jNr7y70eJ2yWUnISt7XHmLludVb7lnkYJ0oa1Gzv47THHoyVA7/K7kfvesHQqY3eQhhqju6r4WLBLEoyqLuaZgk1+hcw8w89Pz894sqVq/LfHmP7MOn36Nq66gyC72XYN7DJ6BuCy8w4lGMiPxgcDBscdMg5SxXMvZTm8t2g9h04ehV7CkJFaifYY5VBG33TvHYJ4p8Nn77iP3z3/Mu2JJBLY1Bnlqkef5pklywF4cs0HgMDcoiM2BhGWhnA1aDcQSyLg5F+lwy5VOqL42sIz+eKoE9mrvnRPsYHhRgK6wRtb1xAv4U1BghczcTeHVQNYVKuW2cMn8+SS5ez75z/y0pL1JRcyjufxzxcX0RjP6TGU5hkUQsD6D9r5fL992KdxACIOekyADbhQt8y/z93dbKFS4tNfU7jZI9IsCXVkM5jKwakL4Bkib9rquuAb/+8zhEJlctR3NCpM1/SEEzMYWJvz9zpg/27GXwT8p9QbQohLgEsAhg0b1kMRew4hBL/6w3lc/6v/8PLcJXieZPzEIXzzyhO45e5XsEs0igRoCAY5+aAJPPLSIlK2i6aDFIJZB07gwH1G8Z07HsdyXDy/j46khysmIM/XWygvgAMJ4RQZOpbrMn/TRk79x120J5O4wivq3Jw+i0zpfiEmf6XkaXT3VEkp8WIGsVSIJzdv4OmFG2loNAkEs7HkkG6wT9MQhoV6055K4HhlZp9fgMVLKgvhiBEj+fbkI5hz3310JJJKqUgNIrkFdgAXZLvy9piahlPrqRRpm+xTmTNWONDuJLn/vwsIdoi8y5cp2Jkjozqv5uR8F77XRZGP82/VgH4NJFNREomsz1cGDAKGzpTxgwmHTA46bCyHHjl+55F5cyGV4b2L4xPTM7D9dc240QP4xXdm8+tbnmXtxnZCAYNTjp3CxWccwFOPLSh5TFtHnD+eeQSLV2+mK5EinrIJGDoBU+fHnz2Wf727mJc/WE3CznLEtmmZ9wCZUJOjYQkPCor0JW2Hqx99muufepnWUBxX9zCiel73ZoFQc7nZhIHZeeF5QTS9vGvBSuk0t9bjOgYXrH+MuoBJoN7EFVlDJaSZfGvccWyMdtEnWEtQM0iVaj/gCuWJbg1SO8DlknEHMMLoy5VPPaV4dY5AC2vIgKdaxKTDHJsCJFIupFwCNRpWo6cWLJZQHtocEm1wi0B4gtteeJOwZlDj6hn9YsQkwSgke9Ht9xLoVOf3ggI3pKm5WYoHJSWH7LcHr7+7mmQqnf4qSAwMU+cKZu4xhF5NtXzm1H0ZPWbHNpQtiwrUNZ8osVcIcR4wDTi01PtSypuAmwCmTZu2Xe5EfX2Y7//4VFzXQ0qZ+ZHZe9JQ5r2+LPuw+EhZDrf84yUAxjQ00LRnPRP2HMRx+49jYB9VgvrOb8zh1ufeZNWWNrZ0RNnSmdP+OF08pDukf4wLCMG4yivgmKXNDWXIbFIen7puZo1EpVcBJDVIaWgNAjdoq3CYf/K0W9aNmWApIpBEEZBb22B4n17otTa60Dim/wTmfbCJGbf+BSEEASOEDKewtez9kxKwsu0UBmi9ufmQOfzr/cVYrov0487CEcioQJrKfSVsDb0zG7fHA7NTJxwySCYcPE0Vn1MrGhAp0HwOz/yVG4sIuUKS6TBcdJekBBdCHTIvZps1XHLcLr7BefSBY5k+YRjf//4DgAoH6Lrg8MPH8e0rTth5adTdoNLIdtsT29IzsGN0zX6Th3PP7y7Esh0MXc+EigYOaGTDxvai8QFT57Ir/kF9rc7AgX0YNqgXM8YN58gpexAwDQ6ZNIp/z3+fB95ciON5/G/FxuKMSd/zSKGH2F+zSMpQbrrxFgO0xBK0dSTwDInXR2Z1Vu4ppICYSkyQSQ2aA7R7tTSOSyF0ZThkxJGquvem5l55Do8uy0ZsDXLA6AFsSbUzvKYPY4OjuPzJ51T2IhJMHRlx8qYlEmRS6fKApnP5mCO4YPxUTrzz79nEAAReSxBCHiLkqAzQrQZ6IrvQ0GM64ZhOfW2A2OYUTp3EqZEIB8wODd0PmbkSoq6TXeSgelp58TKPkv8hw5vcTB2q2vUOTkigORInrGcWTemxEUvwjfMP56b7XuH5V5fiup6KFgj4+XdPZZ/xO83R2C0qTdf0xIhZDwzN+XuIvy8PQoijgKuAQ6WUJcr97FgUNuA75ogJ3HX/azitUZycDCbPk2zcpHgbclMHq1dt5d031/DgA28xdGAvLjzrAKZNHs7PzjsegB/c9SSPvL4YbPByakAJDXAoLh/u5fyr5e/X/CJKwpMIvQQjPsdNp3doOA3dPD0SREz33b0Cp12HABBxFavQj7xIT2QMmEKs2Rrn2aMupHcownF33UZzPJ4hxlqui7A0tEYNLy1pSlOhLR9p4tzmWJSknW8sCk8gUnpWVvXJ88YkEg5BXcdyXVUrw1Ncl9xJU9hWQPiKW4qcvpA5CliklAFTVEdUR7mI00w1/5+QaTBjn5HsPWEo/7znK7w4931isRT7Th3BHnv0L3HjKwQ9aGraHYQQxwG/R9Hcb5ZS/rzg/cuBL6AqJjUDF0opV3+si+Zjl9QzAAEzf9J/7ZIj+eHPHyZVsGCKJ2ziiQ5lh6xsZfGAjbwyfyW/v3cuh04ZzRdPmsmsqeOZNXU8luOw/1U3YtsenuLOZyD8MHTeQy1V1VgZINumLXMA2epy24DmqBYepVZVEgkhD5nSYFUEJCQRbJ7fn0j/KJF+McyQl3E+b9rcULKvkQTWb4EnZl3OS+tW8ZVnHiWVQzIWroYhg+i1tsqGdARuazYt1HI9tsRUyYfNscI2CwKSujJ40gZfCcS2WggpMDsFZmcPbow/v+xaMDskdmP6cr5R4kH9ShsjlaNZpUoikSENM+biBjTlbXYlesqjd+86+ver5+rLjuesE6by5sI11NUEOXzGntTVhEoIUSH4mLrmk0ZPjJg3gDFCiJEopTIHOCd3gBBiH+AvwHFSyi3Fp9j5iIQD3PS7z3HH3a/w9AuL6exKZi1jHwJwLBdLSGJJm7aOOFf+7F9c/Y0TaGiMcO8Tb7NkQ7NqYe8polYa9bVB+g+q54PmFlKOl/NDKtAkCAsV8vH3p121EpRBpMtij07aHeobO3qXhlcri1ZgpqVToweJum6OISTAMpCWjgw7EPQotboquBwn3nEHlu3iFdebQnqgt5iIsPTTMPMHTBswGIAp/QcQNHQSbvmsnlKNGpHkcXmMhM9TKXUON/s+gBYU9GmoYVNXFM9DkbhdSTBWukxWOGgyY5/hvPb2KpIpO7Nv/6kjmeKvgOrqQnzmxL1Lf4ZKgvx4q6McUu3RqDDOG0KIR6SUi3OGvYMi1caFEF9GkWrPKj7bR8ZuoWcAZk4fzS9+dDq33Pkyi95bh1Pgfhf4WXVRj1apQjEPvbSQuf9bwZ3fP5enFizlP/OXEDFNutyUCjX700LTBIdOHMkrS9fg2i6W9D2M6XniKM9u3qTJnfelJpMkL5xtdhlIv8FqYdXggBuEliBJmV1OSFcjtqGe2KY6ek3cQsox6eoK43rlQ62rutoY/7ffl0xlloCd1NCSIfCgUI1ETJMZQ5S9u8+AgTy7ckXROTIyl9F3ngaB3Lou5eBJzKgk2EGmTtTIwb1Z09pO3FQ3LtgmCXR4pZ1dEgbW12HbDtFYilTCQdcFhmnwncuPz3h19xrVn71GVfAiKY2PqWu2B7ZpxEgpHSHEZcCTqPXALVLKRUKIHwNvSikfAX4J1AL3+V/KGinlydtR7o+ExoYIl11yJHNfeL/IgMkghysBKtz08z8+SQyHlB9L1kICrwZAEDR1etdF+NOXTmV431489/5y/r3gfZ5bshwrHXvOKBlRZIBoNgQSAick8RoEWlAjZBpEk6pnSXolIRDotoCYhxfJGjJaAkhA0vIwggJLFipMASkDkhI9KZBS4tZTPNv8w6yUW57vI8BxJcGkjggLHE+pIF0IQobB92Yo7/6MwUOZ1G8Ab61fj+vlK0Kk8o6UvP9CKSjLcXEcLy+bLA8emLHMIQDojiAiTPYdOZgFKzeBIQmYOjJhI0s06hNCcNZJ0/jMEZN4/LmFOK7HsYeM55D9x1RkuKg7KGfSx1odZUi1AEKINKk2Y8RIKZ/PGf8qkF9q9WNid9IzAHtPGsYFZ0u+88P7QRY/yEKCnvRwavzSCq5HRyzJnOvupNVJ5lXzTasNU9c5du89+b+zjqEjnuS+eQt4cfEK3l3rNx0tMEbKGSygsqiEgIZQiM5oMlMbJiufyD9EqOa5VgJEskSjVdSU3rypF0ZMQ48LtFqw68pMYpeytVjSsGyJLpVuSfoho5BhMKlffw4aNhyAKw48iFfWrskJKeUjd6GZBxPCmkk0WW6APywqCbXnGEMSNjV3ctLBE5j71nJiCQsPh5p6k0Rnaceg53ncetMX+Pd/5vPO/DUMHtSLU2ZNZdjQpm6vXYn4BHTNJ44ecWKklI8Djxfsuzrn9Yeoubxz0dIapSv64bzQXdEUdpBMt1EjpWrGeKYkYMCD//c5ImGVWnDU+D04avweSCl54O2F3DL3TdZtasdLoVyQOW4BkfYmoPr8CARfO3omFx86nS899AgvrlyJ7bh5RoBuaWiW/xBJVY8FwHU81W25ABLV6dmIqQsLNPS4xIrkuDjSz2S6KaJXxmHje4Zsy2N8U1+G9WtkWXsLe/cdyJf3mc6Ihl7qeCG4Y9Zp/Pmt1/nja69je25GE+pJlaLohQrdPMqmOWOfiQzv3civn3oJi9Kpm1pO88Y0HNejuT3KVecdxR5D+pCyHfo21PDQcwu4/s4XirhQQgjGjx6AYejMnDqq5HV2JWyDbNdHCPFmzt83+ZyRND5RUu1Hxe6kZwDeeXcNtl06mUBC0WIhZTuk2l2sUHFYWWiCoyfvwbVnHwdA79oIXzx6Bl88egYdsQS/enQuTy74gKRloyXBC1PMaSnY9fLlXyTlOBz3u9twysVdfHg+AdaVEq3cj5iE4HrTr8klkHGJG/LwzGLvcWGWU7nzhU2T08ZNYMGWzbiex2njJjBn4mS0tAejTx8ePudcrnn+OV5ZuzZ7fqlC0VraGCu4nKFr/PnCU7jluTd5btHysiIEO4u9OcmUw8tvreDRP36J5rYuaiMhIiGT879wM2vXteaNNU2dww8dR11diLPPnMHZZ87Y9ueucFQasXe36J30YVATCSD9GGZhbE8WvciBoCj0pNtgSsH8pUWhe4QQnL7vJBplEJFSS0sjrvqi6HG/PXssf24JF8IBlUb3qxOO4+ARwzG04vi0QCCkT4r1PRt6FDxX5o/1w1Z6LIdEC4i4wOjUMoXiNBcCzYJAq6Y6tKZjyQXnQirPj2bBoEgdNx59Ek+ecQHXHXZsxoBJI2gYfH3/A3jpwouptQMYnYJgC5hRgSYFWirnGhIMGxqjJltXd9LfqOHJyy5AL7WE81ebpVRgImXz2EuLqI8E6ddYixCCzxw6kXEjBxAOqvtqGhrBgME1XzmhMjKLPgnIbWywVUo5LWe7qdyptoUcUu0vP67Yuzt6NdYQMNUzVkqlOCEtTwcJwC3jnfA8yX/fW1XyvYaaMJcctT+e3/dNtynigoiCf6WUmLpOv7pa/vLZ2fSrq8n0BisJTc27QCsYbSU+kJSZ5qppL45AEFxnYLRrGR6c3ikILTfQEt0XlNMSYHYJsOCEMXvx4Jnn8PCc8/jclH0I6Pnzdo/eTdx52hlceeBBBNDQo2B2Kn5P7jnTWyAJo2ngmVeX8o1jD+SbRx5Aud4p5Zodbm2LsXpdC/2b6qkJBxBCcNWVnyESDhDwU+/DYZMB/Rs475wDyn/WXQ3b1jXdYnsUtPzUGTGRSJADDxhDQNeyhoy/CcdDT7gEOpxM08hAQEcLlqm9jSLr/fKmZ3h1/kreXbqBeIF7srkj23NIt9SmORTVC0hnyxw7UZWwDxsGU4L9aNxqEtkC4a2KuJd3jFReDd1RK45gO9mKwj6XxmjLWY3kQE+pWhATkk3UtwTQbU3JJJTy0Wyfi5M2NCwIbYJAlyDQJVi0cCOrmtu2eb/71tbwt7NOwbREpjCdnoRgB4S2KmUz2migplXD6XR4/p1l/ODWJzjp+7egxWX+5Ej/65VWtlJKnnnpPX57ezbyYRo6f/j+GVxx/hFMGN6fUX1686WTZjBt/NCi43ddfOwCVB+WVHtypZBqKxlHHDIWXdfSVQjydL0TFuiOqlckHPUdaZrotlZMVzTJz294goXvr2fF6ma1GPPR3BnLVJoV+Ask33AonP0CmDpsEBF/wTQoXMsku5HGlZKGFZLIRi8jEygvjLAh2KJ0l26reZupcC5BTwi0ZHEJCOEJAi0GkeUB+q+vJdRsoqGhJUVp0q1UeqZ+uUZko8D4wOWRZ97FLVfiIQcXT9uPE0btie74SzZbNdQM+nomKAX9Y0EiUZ0169u45/l3OPsnd3Lzva+gp8g3ZPx7W5bW40m++O07Wbpic2bXXnsO5M5bL+HYoycyfHgfxo8fzBXfPJ7aCqjq/cnho+ua7VXQcrfonfRh8e1vHkc8luKNN1aotutSqjYAOWM0S6JpLo11NWi9A6xv7lSZOkXGjGTTlk4uv/ZBasIBXNfj4rMO5OyTVKv0fUcP4ulXlyL8Co6unz2g+yER11BKQhpwwSHT6FunWif85uG53P/Ku5ksH+FCqAPCA0OMHNjEoo2bSMX9poR+spHwBMEOMj2ChKtSqMtORAkrt7Rnqg0LqbrkyoDyJAkXNFfFv822nDi5hPZYki/f9i8ev+Lz2+SQ7D14ILojcDSJGc2SdSUqNNQc78J1XYSjUs5tn2iraWB4Qt0fPceo0skq0OzSEuGCnXR5+LkFzDp8Eg/8603mvrQUT0qshK2I247H7cta+Pej/+NPf/gcdXUVnAXQU8iP7eLdbUi1lYTGhgjX/eh0vnvtv2iXVtaC0SE3dddISpwwHDxpJHPXry3K7AMUwbRL8tgz7/Lk84swDJ2mXjX8/KpTGTG0iTED+2CnHIy4RLP9Oe+iijkmwDXBagA3KJARwW9OPQGAeNLiC1ffRUc0meknFoiDuQEGTu/DxkSMTjuFvtXLM0/SIfVMogJgb6PBd1fCyqxDzJjArZMZAw9UrzXR7hFqzvfBPjt/GROHD2TOYXt3e35NCA7uPZQnvCVgQ7Bd7Rf4C8eEJKU7Gb6RJ8FzPTAlwXaJFwQ77If345JkL4kTAa2rwBCUEs2RJD2bv9z+Iueesj9/ufVFVq9pwdA1UpaD47isXtfKu4vXc/bp+3PBeQd2f3N2FXw8XbNduHefOk8MKG/Mddeeyb5TR6ChqiiWyko0kpKujVHq44Kh/Rsz/Y1yvTdaTsfjWMIiaTn89d6XeeXtFUgpSWxJYcQkuqM8JmYcAlF/UrlKGQSiEGqHZHMSz5PEUzb35RgwGUiYXNOXW886hauPOYI6rXQFRyFFxuDQbOXBCbSrTU+S8WhoJVylZhTCGyCyFiLr1eorvAH0ZH5YSwJbu+K8v7EZgI5YktffX8OKjS1F57QdV6UVJsnLNkrrL9fzEE62hUNm81TlSyOl7ptuqXi8lm6ylmkapTLFjIQS0NA1rvjevTz1zCKisRTxuIXjedh+7aBk0mZLcyf/uHteyfu3SyK3cVXhts1DpQOkSbXvAfemSbVCiDRxNpdUO18I8cj2+ii7E6ZMGsqdf7oIM6AjddV4tpRXV09I3n57DSdNGkvQ0DOe2fTzrVsQblXeCMf1SKZsNmxu52vfvwfHcemMJgl2gZFU80i3INwmMaLqtRmDmg1Qv1IyYIXOmtWKu/HMvPdJWU6eVwegRjf41swDeODCczhl0ni0EnaVInnmzGeLbkMKuW8JKQht1Aiv0wiv1Qht0gi2aBidmuLf5CBpOdzz4vzM38s3bOX1JWvojCcpRDRhEeoQBDrzvVDCv5VWmYKnTo3ASECkVRJuVW1INEfdTzRf9rSusbOVd99dtJ7/d80DLFm6iWTSJhpLYduuP/UkqZTDXfe9ysZN7eVvzK6G7nVNHyHEmznbJTlHluLeDe7mSj3i3n0qPTFpXPrlI7n0sttJxcv3/nBdj41r2/jjjedjC8nN97/C3DeXq8lhS3TbQ3Pxy4ZrSF2QTDnc/e83aWgIM//9dXmzt5Bcl6vO/jPvPYYN6MUhU/co2ewQ4K1l6zn4qzeiC0G/oXWsFh3553P8vk4uuHraGPMZ5VIZNFpQ4ITJ1FjJPdaI5ziEPRBxwBXo/tz3THAiZDImfnv/i8x/bz2OJzF0DV3T2GNwE9dfNpu6SIj/zl/O64vW0CRCtNiJMqnVMmPA5CKtyHNl1OxsKM5Eg6QHTr7mdOMu8ZSDk5uV5LegFp4EDWzb5YX/vs+XLjm85H3e1fBx+5bsbqTaSkJTYw1nHDuVe594G7tEphyoRVQyZbN0wQbm/vjLvLNyPVf++iFSlovuG+hFPmCpsiffmL+ax956H8fO6ZcGqGamEi2RP7eSCZvvXPcv7r/hYlauayWRKtZ/Scvh+9c/iuN41NeF0EMF6cgFj5sUIIMl3uvGSZuXvm2DtCSBLuUBlgWHtscSzP7Rbaze0qa8RaYBSC46dn8uPn5/WjpjPPLaYhav3ozuUr6PWklBBEiJZ2Y95ACR5vR9BDTQ4yW+A9vDsrbd4mXe6ys49eSpH0KoysU2dM1WKeW0j32NHhS0TONTbcSMHNGXP95wPpddejvJZP5Ezv2aDEOjrS3G1KkjOPXIKbz9vzUk4hZ6Qs0UAar6bsLDDWlIQ9DSHuPt99eVVVqZsEgOkpbD3U+9zRlH7F0yhRGpspDwVHpi84ZOtDpwXXUuzYJABxmZNACp+j/lel00R+2TZtrboapR6smSJoaqIuc3tNNsgRlVRZ/iSYu3/rc2E4rzhIujuyxZ28wVf/43btxmxdoWkraNYejoBvnFAH0XuV3Tk0wFpUD0pMRIeaAJ+gyspdOOkyL74XRdUGeadHWW6emiqeKCUhcZAt5ugQpLe6wiH5edcwjBgMFtD71a9FXlPv2tHXEiQZMDx45g+qBBvPG/1d2eV0pJe2ecNxavyRSmLDp54coJRRR++qX32HNEP8Ihk0SB/vM8Scr/cW7rSKCjQVBVsi3pbZEqwUAWRmfT1oiUGF0SaYAbKd8kzTUhkFKLwnSBPl0TdMaSdMSSmVOmfC/1rU+9gWFo3PzwPFzHI6l7qnLytuyKQgiBp4Hur5pyvxNdF0wcOYDl728mZWVdUqGggZfY9oU0TRAMVnUN26mg5acynJSLkSP68tNrzyAYNLJlrgvG2JabqdY6fcoIRg3rg5FudUH2XwHoKQ9DF8zceyQNtaGyHpWS1oIn6WyJ8+hTCzh16gTCjsDs8tAT2bCAlqNrPEsSSAqCuk5EMzBLuFCRxWEazQ9rIVW4KNQGkU1lYp2exIgpb46eVCE2LaWamUU2q47PwjcwhFTndmyXhe+uZcmSTVhxWxlJKVelhudcItAp0W0IRLcxKfzO0sGtDqFWFyMmMbs8Equ6mHPkPvRuiBAKGpiGzuQ9B3PerOlllUbaIxUMGpx84j7dX3cXgZAy07S01FbFzocQgotPP4CjZo4lFCwTBhaCKWOz3vUvn1/cZLIQrieZMn4I9d2RR0s8AnbC4bV5yyDuUGuYBKIOZoeNsEsvuvROj4DUCRp6hkBcdBmz9LWQEiMq6bXEoWmxQ3izU/KHMNji0mdBksalSXq9n6RmnYURdQmttwivV68Lj0t0pbjjF08Tnt9J7aIovRcl0DtdetCwukhGrTC704dAsKUjxqEH7knA1AmHTEJBk8+dMZOB/Rt6cGrJwQeM+ZACVSY+pq7JcO+EEAEU9y4vLJ3DvTu5p9y73cg8/OjYe+/h/OWmC7nnnld55plFuK6H5ykSbyhkcuYZ06mvDwPKqv7D1Wdw0pw/kCpBrxcSasJBzj15PwIBg5/f+kzpixYaMbYkEJMIzeXG21/A8jx0fCtTSIQhSNTmu2ABalyTb51wKLbm8cs7ns8PoVA+O0FPQXhz1lujJ8E1BDI3O0JKleWQWzVXgmFJ1RYgPec9/FoQ/srJln6V4ZzjPOWq1UywDYmwVUqmQHGFkIpYl8sX0IVAdKleJMLN5x8BWJbLg/96iwf//hXaonFqQgF6N9YQj6f4xz9fJZV08oi/6dRxIWD6fqM4Zdbu4d4FoAfZG1XsXAghuObSE3jxzQ+4/aHX+GB1c8Z7ommCUMDkS2celBk/ZlR/vnrR4fz2pmdxyxRsPOGIiQwa0MjZR0/lZ3c8mz/AJ7sXklKNmItuSxa+tZpFr67Ei1oEfcpbsBWsBhOrd36alJAQ7JD89dpzufGxl3n+3fwquTKtrIoWZxKz3aP3Bz6ZVhcE2iHRN3+s2enSuNTOy9oMdLgEOtyMTgh2elj1GrFBZiYEVLfeQo97mQWb7kkaViRpHRsGQyttVBXdR8ATaHbpwY7r0dwaxRur8fAdX6G1LUa/PnUEgyaD+jVw7a8ey2tlkwvD0Pjhd0+mvi68bUF2FXxEXbO9ClpWjRgfQ4c28e1vn8jFFx/OPf98lXnzltHQEOb00/bj4IP3yhsbDJr071vPmnWtvpfAzRSgk0GNX35nNh8s3kCv3rXMHDuclxatzDs+09sk1ysRU94Mz5O4mY6NWW+KcCShhCAVUj/muu8BceMptq7tYMqEId2Fn4uQrUCpDBiAQFySMskoDeEWGDA5yO1BJ1F8GmnmyFt4Pf8gwxMEEwKroAiY7ip3tGsqzoouBQeNH8Grry73ZSmOR4PqkfXCi+8xengfeo9QiiISCfLH332Wr3z973R0+daWB5qjGqydfvp+XLybcGGAjHFWReVD0wSHT9+Tw6fvyTvvreOOR15j/eZ2puw1mPNnz2BI/8a88RP2HIRp6KqhrQDXFEhNzd8xg/twwrGTeGn+Cg6cPDL/QjkcOIk/3wUIS6pFBspjqkftojkb7LBxanQ8U8OIuWi2B1LSu7dJ87KtDKytxdC1As5ZuU8sMqFs1xS4YQ0NgRkDu0ZmQka1a52icvbZhZO/QJKqQ3Sql8SJqHfdQIkQuIRQi4M9JIRrbXti1IWD0GqXXJSm4bgez7++lDnHTkXXsqHoIw4dR2t7jBv+/FzRMaahc8dfL2LggMZtyrDL4GPqmu3BvROFrPQdhWnTpsk333xz2wMrFI8/tYDf/fEZ3LYEwsn+wKYdCeFIEM+T1PWrZaOwSKV/tNO3W0hIujh1KhMhXblXQmn3CajJrAn0ZP53lh6aaNJxA/kHpsMnxefywz9W/mrNNcGqFUifY2Mky+gnT+atmiTgBVRbAz3N3s8tDmirehgN/WuIpWxSloNwSpzblzUcMrnh6jO47Pv/VGMtr9igkpJgwsVwPAJBE8d2Of3cmZx/yWEIIYhGk1z1vftY+sFGTMPAth2OOnoi3/zm8ZmOw5UIIcRbH4Yc1xAZJGeOuajs+08u+MmHOt/uhl1Z10gpOf/rt7FqQytWIL24UT/oQoAe1DGDBrbj0r+pjvXNHfkEXFdiJDw0C2RAYHY5GZK+sF20pFtyfrv1JiJqK+Mnu6ZS7wU1WiZFkDlzSGpZwn/+iSR1a13CzR52vZ7RCVJAokmQagQ06PtWCiPZzW9R+jgg2aST6G8iHI+6lSkC0ay3Ji2rU68z+cSxvPHBOpJWidQqH7omOPWgSRB1eXzuoiJPdubyjsRMeoSDJlJCXW2In3x/NmPHDATgzbdX8cOfPoQnJUIINCH40VWz2Xef4eU/007Gh9UzUJm6puqJ+Yg4/uhJ/O+d1Tz3yP/y9qdtwngsBUJgrWun17AG2gwVCkr5mQBmp63cl50uVp2uXJ/bqLeiI9DtEoawf9Fgm0uit47UQdc0NENjv72G8MaiNTi5LsB0xWIhigwD3VapmRJV06akCVPGMDKjLsEON5PO6IQETo1GoN1Tn1WAl4zRVBNkU4BiwqH/OhjQufD0mYzbYyAXnDmTW//5ClITePF8740Rs8HycADHUfyvB+9+lSHDmjjq+MnU1ob4/fWfZc2aFjZtamfUqH706VPX7T3eNZHlTFWxe0EIwa9/eDrnfvs2rKSVR3iTgJ1ysVz1I76lpYve9RFiSYuU5eA6HpojCbXlpPv00HavlxqxQkXjP2J6yqNuRZLOkSEEqrS+GTAYNqgXCzdsxktfw1Mh43CLV9RZW0iIbJVEtuLrE1WPqifiSST1yxMEOt2cDMtsPpMEzKjH0vvfp3FAiE2N5T93OGhy/rH7URcKsGjZRjY2d5BI2fnTyZMYcXUzEgmlv5NJm8u/dy/33/FlIuEA06aO4KF7vsrC9xRPdeK4wZjmblIRPA+Vp2uqRsxHhBCCkYN6o+lClfsvA8+TpDZE+f315/DrG55k9cqtaKn8wlFm1MVuzFbblFCcYyglulv+WlrSg4BGZKuLZwCaS1MwxOS63izY8AGyXscLCLWiiHnYdTpSU8WmSnZ69RULQvqiiOx+io8xLI9gh5u3ajOSfqgt7XGRisdiWXFCnsQ1BSKso9WYeL6SG9S3gelDB/DEzS/zj589wdDhTVx5/hF0SYeXXlnGokXrkFKqnlElXMXJpM29d77CUcdPzuwbNqyJYcN2vWZrPYbETxupYndE36Y6tIAO28jTSNkue/Sq4+JZM7ny6vsJ2B56KmsYSN/7mk7nkLpGyTQeCYlYicaIaeXkQbjFIdgexarXMQ2ds47blydeeI9I0CExQENqgmCrS+0GV9V02gbR1o3o6JaXKbiXf92cPQLCbY7y2uToGplWmn4RQelJHM+FNVF6rQe7TsfpZSKaQjhSYuoa++8xhJpWjy987q9IKTnwwD35/Kz9WbmhhQefWUDKsrFsF8OTeCUaynmex9xXlnLckRMBZcztM3lY9x90V0cF6pqqEfMx0Ni7hkDAIJkoX2cGQDc0IkGT5hWt6Ml0qlB2YmqeRE+4eDUmAlX8DQ3fkBEZz4dMOVC23486h1ujo9uKQxKNJ7j77/PQgVp/WZUOV+kpiRvSfINH5CsKPxso0OFgh3WkCdLUkICR9JTBoftku5DJpDEDia3oYHW7X+jOU8YLnkQzNKUsS3SsNuIOensS4Uoae9cw5/MHI3TBLTc8R8pP+Vy1vJk//PRRfvybszn9p2exak0Lr725AsdyuPuPz2OVcBV3tMWK9u3uqLTOslV8suhVH6G9K7HNcdF4ijrdwIi5Rdw0tZBQXeVNU8eyXbyAhuYvBnIXJt626g5JVa8p1O4CLvfd9SpuyKBWCGo35RtGUvO5dY5KsS7UNQBSF1gNJkbc8TMec4VW3Ddd15gzZwb33/4SKa+goSvlObyaC6E2B9ocWJFg0j7DuOTSo/nZLx/n3Q1tGVLuCy+8x8KFa/n7HV/iglNm8PI7K1i7sY1l72/i+RffLzqvbbu0t5cp5bAbo9J0zac+xfrj4JDDxqFr276FGnDzdY/jru/AaIljtCYQBQWSQptijHR1Pnfa/opP4khl8boSYUmCzSn0mNN9ozKZk+YmwXNy6tikx/nvqWrBkkDUQ48r4p70qy7qCZea9XFCzUlq18aoWZ+iZoNF7UaLyKYktSvjRNYnqIlJLp19ADd870xaW5ThIBwPo9NCS7roloced9BjdkkXpJawM1Z9e2uMW254hpuvfyZjwKRhWy5Xf+MuNqxpYcSwJs46dT/OPnMGNbXFaaWaJth72sii/bs1JOB65bcqdnmc95n9CBWkW2f5c2qGm4bOXkP6csUvHsJqNLB6Gdg1OoWt06QrOeH4KUweNzjTGy1DqpW5W8Gc7ea3yzXL68F0VV8z5qr5XqKatJZ00KMpXBOciI6wHPQtHejrtqJ1xNA8j3vvv4xxYweil1vIlZK5RIj+3XfW8M1L72DL5o68rCLPk2zZ0sX/+969aJrGofuN4byTp/OZoycTDhWnxRuGzpSJu1MPth6gAnVN1Yj5GIjUBPnF9efRr389oZBJKGSiaQIjoAhsmiYIhkx6mwbz5y3P1mrxJHpHEhxlPAjHQ0jYsrKFPhhMHdqPyLooNSs7iazuJNSaQrddtKiNSLn5SkBKtKSXDXc7HnpHisDmGGZzTBkKBRNbyeBlPDxmzKHmg3ZqVndRsypOzYYkmu0hHA/N9jCiFmZbAq09iRZz0B0Po8vBWBdl9dvrABiz5wBlAMXsolo1Iu2ZSUP6xhn5BpaVcrDLVL+0bZerLrktUx5d0wRf+84JefV9DEMjHAlywRd3o8yjHkGqtMdyWxW7PE44eDznnrgfQdOgJhzA0DU0XSBM3yMaMGgIB3n5lWVEE5b68RYCLyCwa/0f/XQoGHj04be59mdnokdTaG1RRFsnIp7K6orcRIQccm+eIeO4iLYo2uZ2jC2diFR5Ai0onRNa30l4WStaukq6JwmvaKdmaSvhtV3UfNBGaG0HxtqtaJ1x9ISNvrkDsWwTHZs7Gb1Hf+xSvaXIsVdy9V2Z1hu255EsI+/8+Wt46OG3Mn9PnTKccXsNJJRTeyoUMpm+7wjG7TWw28+8+6HydE01O+kTgJSS1Su3IpH07VfPE/+ezxuvLqdf/wamTRvBr797P1aJisBeyMALmxjRFML1IGmjSZmlo2gaUqg8ay9kIjQN19DxQhoyZJBOvc4YAp6H1pFE842i9HVkQMdtDOdf2/T7uDiSYEsMLeGqbIP0yTStqLFj5knJ2W8GdO78z+Vsbu7i61//O15LonRilQZObTCjUPSohVbKci/n2fI8IprGz2+5iL0mDcnsfm/hOu678xU2rG9j0t7DOOO8A+jXgwJUlYwPnZ0UGiAPGPLZsu8/sfxX1eyk3UTXxBIWaza20q93Ha1dcf759DtsaulkxsQRrFzezJNzFxf/ZkuJ2a5qsOTOTUMXuNEU2tYu9KStPDamgde7HtERQzbUlE82sB20lo5MyCrtFbIH9UYWFt5TJBWE5WKs2ooImCSG1aO5Ei3uYHYk8+pfSUDYDtj5OnP6kRP40R1f4vfXPcZ/Hn2nJD9QZgjMORw+WUwY9nSBDJllnUsDBzbyjzu/lPnbcVz+/eQCnnhmIbouOPHYKRx7xAT0MoX/dgV8pOykCtQ1VU7MJwAhBCNG9c38ffqcGZw+ZwYAr73wPrperAgEoKWUVwNPQkyx9jKhYIma+IauMqtTDjIcUD/8FkjcfC5Lul6N46neFilLrZQATB3dtnF714I/6aSUiIRLoDOFlnDAdotjneEA6DmuW8+DpIWwHNA1ZDiIETa4+4ZnGD6yD5ddcjh/+NnjlIQHIm4RBOr61tERt5ElnC6aKOEVlhIsFxHR6erI5wWMmziEq39+Zulrflogpd97oordHTXhAONGDQBUT6bvX3hM5r1Lr76ndOKIBHRR1PPGcSWEA7iDeyHWt6ElbaTtIJIWwnGQSQtCgZKGjNYVz+PQpMPU5vpWnH71eA3pltbK66p1xDG2diECAaQQhNdHM6HxTE5Ruj5V+n+5K3sheOelJfz79v+yz/iBrFm1lXffWV0km5ASaTkIKRkwsIGtnUkcp/imaJ5E83lBpRCL5bOoDUNn9on7MHs3qfL9kVGBuqZqxGxnjNprQF5jtlxkpp9l5/+dRnoVIQR4irMipCLtYrmgCz/DQBVyC0mwPQmxRP7qw3JUTYhoEm9QL0TUIhCNQzpl0zARhl6kEGTSgkhI7fc8RHs0c17pugjLJtXWyWN/ex7d0FWNmD69FDG5gLwnHA+zNQ62jdcV55s/PYMbrnscK8elGwwaHHTkeJJxi5dfXOIfC9gOwpM4tsvYyUOoogQqjGxXxY7H3uOGsOiDjcXVY4Xql1YWmobbVIu2vk3pl5SN1DS0aBwvYPpVLXO8r6aOJiWlgjFCSoyNbbixJCISRNvUnl0cCaF+AA2j+yaCtq0WYbmQEjtp85cfPoAZNCBgQiRcMnVab4sipKQzkeKQYyZiRUK8Pm9Zvq4JGFx19Wx+9JOHSRWElTRNsO++I8rL92lHhemaXdcXtoug78BGjvjMFDXxCpEuFuV1Ux8hHX4xNMyQOofmc1U0x0NPOeiWS1PvGsaM6A22U+Q+TWcl4Hpoa7citrRCLIHwPBXGSqUgWdzWXsWd/Ac2nsw7b4bPIgSu42ElbeyUg2jtyMqd3jw/jmqp+guphMW6Rev50W/PYfCwpgx36IRTp/HNq2fxnZ+cxvBBvQhKEEkb4UqCIZMLvn40tfW7UfnuTwoVSLarYsfjjBOmUhPObxeAlOgpr3QZhdxhfj8noQkGDO6F3lirnCMtHRmdgpRoQrDv/qOQ5fgPQiA0Db09hr6xLd+7K5WHWDjdrOT9MeXec2yXRDRFojWKFo3n6xcpEe3RzDVTSZtXnnyXi754OCeftl+GszhwcC+u/vmZzDhgDD/96ekEA1lenWnq1NQE+cJFh3Z/wz6tqEBdU/XE7AB8/UezGbnXAP51xyt0tEbp3a+ek87Zn7GTh/Lg3+ex5PXlbF3fhiy1OhGKKHzIcZOZfeHB3PTbJ1n8zhpcT6JLQUNTDRd85Uji67dy8/89BIFgmQq7HjIaQwYCfhQqO0qA/xC6+eEjACTS8xCJFKIEXyUdgs78nbQJJpKkzECmgIOwXYhmuTK25bLo9eVc9L2TueVfXyOZsDADRia+bJpw/T1f5okH3uTlZxbR0KuGk8+dyeT9PmVZRz2GrBJ4q6BXQ4RbrvssN93zEi+/uQI8ybihfbn43INYsbyZF198jwUL1pbuw+SHVQJBg+/8+myWrdzKXX94mo41zeixBFLXmDRzDJdeM5trzvszbpleQZnzAZl2AYWwLDDyFyMZPeJ0Tw7ORTBhYaUcvICh9EzSLgqJm6bB6qWbuORrR3PRV47Etl1COZlGU/cZwZ/+dAH3P/AGa9e2MHHiEE47dRq9e9f2WI5PFypP11SNmB0ATdOYfd4BzD7vgKL3rvrlMNavbOYrn/kNqYJ6M5qhYUYCjBo7iEt/OIua2hC/vOnzADRv7sBzJf0GNiCE4Nzx38ZJ2aDpSEr0EwEV75YSEQ4VvwfKK1NgxEiArph6cHuQTi6lZPqBY6gb1MTcx+YT29xWtArUdMGQ0f0yf4cKV49AKBJg9mcPYPZni+9ZFQWQVJxiqWLnYEDfeq7+6glF+ydMGMJJJ+/DzTe/wIMPvqGao6bhSSLxFAQNPv/dkxk3dQTjpo7gpNOmYaUctqxvpbGpjtqGMAvmfUDbls7yBkpPkPbQFi6kpMyE1nsC3dC49PuzefbBN1i2aF2251wOXNej/5Dearxfa6YQI0b04YpvHf+hP8anEhWoa3pkxAghjgN+j+o8ebOU8ucF7weBO4B9gRbgLCnlqk9W1N0Xg0f25Se3XcL137uPDau3IjTBvgfvxUEnTGHk2IGMHjeo6Ji+BRk47S1dyq3q+N6UHAUh0y5X2wZN9TcqzDwC32DxeTcIkF1dsMXvIBcwkbqed1y6rkwuguEAR5+xP/sfPZGvXzOb/zfnRha9sQI7pyidGTA49eJPWxr0dkaFKZaPiqqu2b74/OcPQROCBx98A9t2qasLc+xhYxm/R38mz9iDul41eeMDQYMho7ILjq0b2rNv5nJdcvf15FksZwR9CL6FGTA44ZyZnPS5g9iweiuXHvdLUolsKMowdYbvOYDREwb3+JxV9AAVpmu2acQIIXTgRuBoYB3whhDiESnl4pxhFwFtUso9hBBzgOuAs7aHwLsrJu43kpue/g6xriSBoIEZ+HBOspHjBrNswRpwXT/dUWQ9J5aN19EJgLRsRDifEJc2RmRHFyIYQDd1vEQC0oaHEMqLo6WQwZz0SdcD1wFDySo0jelHTmC/I8dnhvzg5ov43bfv4dWn3gWgV986vnbdHEaMLTbMqviokGWLIO5KqOqa7Q9d17jwokM5/4KDSSQsamqCJRc05bDn3sPyw1GFRkdhvZBSxophoFZJEk3X8qsDpyuUbwNGQOc7N56fKXw3aHgffnL7Jfzm2/ewdWM7UkqmHTaOy385p8efrYqeoPJ0TU9+KacDy6SUKwCEEPcAs4BcxTILuMZ/fT9wgxBCyJ1VhGYXRk1dcainJ7jkp2fygzOvJ5WwEJ5EplJIyyrOV5YSt7MLva4ma+R4HjKeUBlQloUImTQ21dGyqT1zDEIoV69lK0+Pp0p9mnWqda0ZNPnqL8/msNnT8pRipDbE9/50Acl4imTcoqGp9kMpzSp6AKmyxXYDVHXNDoKua9TWfnhdM2R0f2YeM4lXn343G/7eFo8l15DR9cyiBwlDRvZly4Z2kmkPimmUDCnphoama7iux+iJw/jBzRfRd3DvvDETp4/mby98j47WGMGQSbiwXk0VHx8VqGt6YsQMBtbm/L0O2L/cGCmlI4ToAJqArbmDhBCXAJcADBu2mzfK2sGYfOBeXPfwt7jjZw+z6r31NPUfzJJX3lNWc2G6s+sgrBRaIICXspGOmzF0AiGT/Y6dwuyvHMsPTvsNjuPiWA6BgI4nQdNVEbxBowZw/g9OpbM1Tp9Bjex96LhuCz+FIkFCkapS2S6owNoNHxFVXbML4Nt/+ByP3vZfHrvjv6QSFpGaIKv97s2lYIZMpNCQpplHCA6GTC695hSeuv8NXnlqoTJkTAPd0BC2gxEw8FyPI0+fzr6HjyfaEWfSjD0YNLJf2WsJIWhsqpJytxsqUNfsUGKvlPIm4CZQVTR35LU/DRg7bRTXPvDNzN8rF6/li/tcmXH/KaqLpK5XhN+/fC0NfevoaO7kL1fexf9eWEwwEuTELxzOud87BTNgcNOb1/LY355n48otTDl0HEfNOZDO1ihCE0WroCp2MqqOiDxUdc32g65rzL7oUGb7achSSn5x6a288K/iqsinXnoUJ3/+UHr3b2DuY/O583dP0bKlk2Gj+3HR/zuJKTP3YPKM0bw1dwkv/Hs+hqFz1GnT2HPiELZubKOxbz2Rj+AxqmI7osJ0TU+MmPVAbperIf6+UmPWCSEMoAFFuqtiJ2Lk+KHcv/EvXHPKr1j82gcgJTNOnMpXb7yYpoG9AKhrrOH/HvxWyeP7D+vDhT86I29fqOqirUDIinPxfkRUdc0uCCEEV/7pQg6ZvS+/v/wfdLRGqWuIcM63TmDWFw7PhI+PPGUaR55SXJFeCMG0Q8cy7dCxefu787hUsbNQebqmJ0bMG8AYIcRIlAKZA5xTMOYR4HxgHnA68Fw1Rl0ZqO9dx29e/NHOFqOK7YncooS7Nqq6ZhfGzGOnMHPRlJ0tRhXbExWoa7ZpxPhx58uAJ1Fpj7dIKRcJIX4MvCmlfAT4G/B3IcQyoBWlfKqoooodAEnlke0+Cqq6pooqKhuVqGt6xImRUj4OPF6w7+qc10ngjMLjqqiiih0AKUFWVu2Gj4qqrqmiigpGBeqaasXeKqrYDVBpq6Mqqqhi90Sl6Rqxs8LJQohmYHU3Q/pQkDZZAag0mSpNHqg8mSpNHti2TMOllH17ejIhxBP+Octhq5TyuJ6eb3dDVdd8Iqg0eaDyZKo0eaB7mT6UnoHK1DU7zYjZFoQQb0opi6nsOxGVJlOlyQOVJ1OlyQOVKdOnGZX4fVSaTJUmD1SeTJUmD1SmTJ80tt3Rr4oqqqiiiiqqqKICUTViqqiiiiqqqKKKXRKVbMTctLMFKIFKk6nS5IHKk6nS5IHKlOnTjEr8PipNpkqTBypPpkqTBypTpk8UFcuJqaKKKqqooooqqugOleyJqaKKKqqooooqqiiLqhFTRRVVVFFFFVXsktjpRowQ4jghxBIhxDIhxHdLvB8UQvzTf/81IcSICpDpciHEYiHEAiHEs0KI4TtTnpxxpwkhpBBiu6fU9UQmIcSZ/n1aJIS4a2fKI4QYJoR4Xgjxjv+9nbCd5blFCLFFCLGwzPtCCHG9L+8CIcTU7SlPFZWnaypNz/REppxxO0TXVJqe6YlMVV2zgyGl3Gkbqj/KcmAUEAD+B4wvGHMp8Gf/9RzgnxUg0+FAxH/95e0pU0/k8cfVAXOBV4FpFXCPxgDvAL38v/vtZHluAr7svx4PrNrO9+gQYCqwsMz7JwD/AQQwA3hte8rzad8qTddUmp7pqUz+uB2iaypNz3wImaq6ZgduO9sTMx1YJqVcIaW0gHuAWQVjZgG3+6/vB44Uwu/tvpNkklI+L6WM+3++CgzZmfL4+D/gOiC5HWX5MDJdDNwopWwDkFJu2cnySKDef90AbNiO8iClnItqUFgOs4A7pMKrQKMQYuD2lOlTjkrTNZWmZ3okk48dpWsqTc/0VKaqrtmB2NlGzGBgbc7f6/x9JcdIKR2gA2jayTLl4iKUlbvT5PHdg0OllI9tRzk+lEzAnsCeQoiXhRCvCiG2ZynqnshzDXCeEGIdqsHgV7ejPD3Bh33Oqvh4qDRdU2l6BipP11SanumpTNdQ1TU7DNUGkB8DQojzgGnAoTtRBg34DXDBzpKhDAyUq/cw1ApyrhBikpSyfSfJczZwm5Ty10KImcDfhRATpaywlqxVVFGAStAzvhyVqGsqTc9AVdfsUOxsT8x6YGjO30P8fSXHCCEMlHuuZSfLhBDiKOAq4GQpZWonylMHTAReEEKsQsU8H9nOhLue3KN1wCNSSltKuRJYilI2O0uei4B7AaSU84AQ3Tcy297o0XNWxSeGStM1laZneiLTjtY1laZneipTVdfsSOxMQg7Kil4BjCRLkppQMOYr5JPt7q0AmfZBkbvGVMI9Khj/Atuf2NuTe3QccLv/ug/Kndm0E+X5D3CB/3ocKk4ttvN9GkF5st2J5JPtXt/ez9Kneas0XVNpeqanMhWM3666ptL0zIeQqaprduC28wVQzOml/mS9yt/3Y9TKA5QVex+wDHgdGFUBMj0DbAbm+9sjO1OegrHbVbF8iHskUK7nxcC7wJydLM944GVf6cwHjtnO8twNbARs1GrxIuBLwJdy7s+Nvrzv7ojv7NO+VZquqTQ90xOZCsZud11TaXqmhzJVdc0O3KptB6qooooqqqiiil0SO5sTU0UVVVRRRRVVVPGRUDViqqiiiiqqqKKKXRJVI6aKKqqooooqqtglUTViqqiiiiqqqKKKXRJVI6aKKqqooooqqtglUTViqqiiiiqqqKKKXRJVI6aKKqqooooqqtgl8f8BxMrLCmiQNc0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "As we can see we have a very good approximation of the original function, even thought some noise is present. Let's calculate the error now:" - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 34, - "source": [ - "print(f'l2 error: {l2_error(input_data2[0, 0, :, -1], output[0, 0, :, -1]):.2%}')" - ], + "execution_count": 25, + "metadata": {}, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "l2 error: 8.44%\n" + "l2 error: 8.41%\n" ] } ], - "metadata": {} + "source": [ + "print(f'l2 error: {l2_error(input_data2[0, 0, :, -1], output[0, 0, :, -1]):.2%}')" + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "### Autoencoding at different resolution\n", "In the previous example we already had the hidden dimension (of original input) and we used it to upsample. Sometimes however we have a more fine mesh solution and we simply want to encode it. This can be done without retraining! This procedure can be useful in case we have many points in the mesh and just a smaller part of them are needed for training. Let's see the results of this:" - ], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAEiCAYAAABURlUUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7wkVZn3v+dU6O4b505OhGFAUEFxVVBgF11xWVRcRIyrgjmuOSsLmHjXgBgQdFd0VVwkKOIKKlFRWEBABMkwpGFyuLFDVZ3n/eNUVVfne4cwM5f68WnudNWpE6qqn+c8WYmIkCNHjhw5cuTIkSNHjhxtoLf3BHLkyJEjR44cOXLkyLHjIhcYcuTIkSNHjhw5cuTI0RG5wJAjR44cOXLkyJEjR46OyAWGHDly5MiRI0eOHDlydEQuMOTIkSNHjhw5cuTIkaMjcoEhR44cOXLkyJEjR44cHZELDDly5MiRI0eOHDly5OiIXGDIkSNHjhw5cuTIkSNHR+QCQ44cOXLkyJEjR44cOToiFxhyPOlx//33o5Tihz/84faeSo4cOXI8qaCU4sQTT9ze08jRBSeeeCJKqe0y9pVXXolSiiuvvHK7jJ+jjlxgyLHD4Ic//CFKqfTjui7Lli3juOOOY/Xq1dt7ejly5MiR4jvf+Q5KKQ488MBH3ddFF12Ub5p3Qlx99dWceOKJbN26dbvOY2pqihNPPDHfVOd4XJELDDl2OHzuc5/jxz/+MWeccQZHHHEEP/nJTzj00EOpVCrbe2o5cuTIAcBZZ53F7rvvznXXXcc999zzqPq66KKLOOmkkx6jmeV4onD11Vdz0kkn7RACw0knnfS4CQyf/exnKZfLj0vfOXYe5AJDjh0ORxxxBG94wxt429vexn/913/x0Y9+lHvvvZcLL7xwe08tR44cOVi1ahVXX301p5xyCgsWLOCss87a3lPKAVQqFYwx23saM8LU1NQTPubk5OSM2ruuS7FYfJxmk2NnQS4w5Njh8fd///cA3HvvvemxO+64g2OOOYa5c+dSLBZ5znOe0yJQbN68mY9+9KPst99+DAwMMDQ0xBFHHMHNN9/8hM4/R44cswtnnXUWIyMjvPSlL+WYY45pKzB08r1ujpk67rjjOO200wAaXDITTE5O8pGPfIRddtmFQqHA3nvvzVe/+lVEpGXMn/zkJzz72c+mVCoxd+5cXvva1/LQQw81tHnBC17Avvvuy2233cYLX/hC+vr6WLZsGV/+8pdb+qtUKpx44ok85SlPoVgssmTJEo4++ugGWjzd+VWrVT70oQ+xYMECBgcHefnLX87DDz/c9v6uXr2at7zlLSxatIhCocDTn/50zjzzzLb39+yzz+azn/0sy5Yto6+vj7GxsbZ9Jvf9q1/9Kt/73vdYuXIlhUKB5z73uVx//fUt7S+//HL+/u//nv7+fubMmcO//Mu/cPvtt6fnTzzxRD72sY8BsGLFivS53X///W3Hh/q9v+GGG/iHf/gH+vr6+PSnP53enxNOOIE999yTQqHALrvswsc//nGq1WrH/pJ1LViwAICTTjopnUfi4nbccccxMDDAvffey0te8hIGBwf513/9VwCuuuoqXvWqV7HrrrumY37oQx9qsSa0i2FQSvG+972PCy64gH333Td9Tr/5zW9a5jid5wnw8MMPc9RRR9Hf38/ChQv50Ic+1HP9OZ44uNt7Ajly9EJCgEdGRgD429/+xsEHH8yyZcv45Cc/SX9/P+eccw5HHXUU559/Pq94xSsAuO+++7jgggt41atexYoVK1i3bh3f/e53OfTQQ7nttttYunTp9lpSjhw5dmKcddZZHH300fi+z+te9zpOP/10rr/+ep773OfOuK93vvOdPPLII1xyySX8+Mc/bjgnIrz85S/niiuu4K1vfSv7778/v/3tb/nYxz7G6tWr+frXv562/eIXv8jxxx/Pq1/9at72trexYcMGvvWtb/EP//AP3HTTTcyZMydtu2XLFv75n/+Zo48+mle/+tWcd955fOITn2C//fbjiCOOACCKIl72spdx2WWX8drXvpYPfOADjI+Pc8kll3DrrbeycuXKGc3vbW97Gz/5yU94/etfz0EHHcTll1/OS1/60pb7sW7dOp73vOelG9IFCxZw8cUX89a3vpWxsTE++MEPNrT//Oc/j+/7fPSjH6VareL7ftf7/dOf/pTx8XHe+c53opTiy1/+MkcffTT33XcfnucBcOmll3LEEUewxx57cOKJJ1Iul/nWt77FwQcfzI033sjuu+/O0UcfzV133cX//M//8PWvf5358+cDpJv3Tti0aRNHHHEEr33ta3nDG97AokWLMMbw8pe/nD/+8Y+84x3v4KlPfSq33HILX//617nrrru44IILOva3YMECTj/9dN797nfzile8gqOPPhqAZzzjGWmbMAw5/PDDOeSQQ/jqV79KX18fAOeeey5TU1O8+93vZt68eVx33XV861vf4uGHH+bcc8/tug6AP/7xj/z85z/nPe95D4ODg3zzm9/kla98JQ8++CDz5s0Dpv88y+UyL3rRi3jwwQd5//vfz9KlS/nxj3/M5Zdf3nMeOZ4gSI4cOwh+8IMfCCCXXnqpbNiwQR566CE577zzZMGCBVIoFOShhx4SEZEXvehFst9++0mlUkmvNcbIQQcdJHvttVd6rFKpSBRFDWOsWrVKCoWCfO5zn2s4BsgPfvCDx3eBOXLk2Onx5z//WQC55JJLRMTSnuXLl8sHPvCBhnZXXHGFAHLFFVc0HG9Hb9773vdKO3Z8wQUXCCBf+MIXGo4fc8wxopSSe+65R0RE7r//fnEcR774xS82tLvlllvEdd2G44ceeqgA8qMf/Sg9Vq1WZfHixfLKV74yPXbmmWcKIKecckrLvIwxM5rfX/7yFwHkPe95T0O717/+9QLICSeckB5761vfKkuWLJGNGzc2tH3ta18rw8PDMjU1JSL1+7vHHnukx7ohue/z5s2TzZs3p8d/+ctfCiC/+tWv0mP777+/LFy4UDZt2pQeu/nmm0VrLW9605vSY1/5ylcEkFWrVvUcX6R+788444yG4z/+8Y9Fay1XXXVVw/EzzjhDAPnTn/7Utd8NGza03McExx57rADyyU9+suVcu/t28skni1JKHnjggfTYCSec0PJ+AuL7fvqMRew9AuRb3/pWemy6z/PUU08VQM4555y0zeTkpOy5555tf0c5nnjkLkk5djgcdthhLFiwgF122YVjjjmG/v5+LrzwQpYvX87mzZu5/PLLefWrX834+DgbN25k48aNbNq0icMPP5y77747zahUKBTQ2r7iURSxadMmBgYG2Hvvvbnxxhu35xJz5Mixk+Kss85i0aJFvPCFLwSsa8ZrXvMazj77bKIoekzHuuiii3Ach/e///0Nxz/ykY8gIlx88cUA/PznP8cYw6tf/eqUJm7cuJHFixez1157ccUVVzRcPzAwwBve8Ib0u+/7HHDAAdx3333psfPPP5/58+fzb//2by3zStxTpju/iy66CKClXbO1QEQ4//zzOfLIIxGRhrUcfvjhjI6OttDuY489llKp1P4GtsFrXvOa1FoNdZfXZO1r1qzhL3/5C8cddxxz585N2z3jGc/gxS9+cbqWbUWhUODNb35zw7Fzzz2Xpz71qeyzzz4Na/7Hf/xHgJbnty1497vf3XIse98mJyfZuHEjBx10ECLCTTfd1LPPww47jJUrV6bfn/GMZzA0NJTey5k8z4suuoglS5ZwzDHHpP319fXxjne8Y5vXnOOxRe6SlGOHw2mnncZTnvIURkdHOfPMM/nDH/5AoVAA4J577kFEOP744zn++OPbXr9+/XqWLVuGMYZvfOMbfOc732HVqlUNzDwxl+bIkSPHdBFFEWeffTYvfOELWbVqVXr8wAMP5Gtf+xqXXXYZ//RP//SYjffAAw+wdOlSBgcHG44/9alPTc8D3H333YgIe+21V9t+ElebBMuXL2/xSR8ZGeGvf/1r+v3ee+9l7733xnU7bxOmO78HHngArXXD5hJg7733bvi+YcMGtm7dyve+9z2+973vtR1z/fr1Dd9XrFjRcX7tsOuuuzZ8T4SHLVu2NMy5eW5g1/Xb3/6WyclJ+vv7ZzRugmXLlrW4Td19993cfvvtHd2ZkjVv3ryZWq2WHi+VSgwPD/cc03Vdli9f3nL8wQcf5N///d+58MIL0/UnGB0d7dlv870Eez+TvmbyPB944AH23HPPlvey3XPIsX2QCww5djgccMABPOc5zwHgqKOO4pBDDuH1r389d955Z5oB46Mf/SiHH3542+v33HNPAL70pS9x/PHH85a3vIXPf/7zzJ07F601H/zgB3e6TBo5cuTY/rj88stZs2YNZ599NmeffXbL+bPOOisVGDoVunqsrRAAxhiUUlx88cU4jtNyfmBgoOF7uzZA20DqJxIJXX7DG97Ascce27ZN1jcfmJF1Abb/2tvN1xjDfvvtxymnnNL2ml122QWAo48+mt///vfp8WOPPXZaBUez1vYEURTx4he/mM2bN/OJT3yCffbZh/7+flavXs1xxx03LR7Z615uy/PMseMiFxhy7NBwHIeTTz6ZF77whXz729/mLW95C2A1ZocddljXa8877zxe+MIX8v3vf7/h+NatW9MAtRw5cuSYLs466ywWLlyYZjXK4uc//zm/+MUvOOOMMyiVSqnmujlHf6LBzqKTcLHbbrtx6aWXMj4+3qDFv+OOO9LzQBqAvGLFCp7ylKds09qasXLlSq699lqCIGixUMx0frvtthvGmNRqkeDOO+9s6C/JoBRFUU/6/nghmXPz3MCua/78+al14bGqfrxy5UpuvvlmXvSiF3Xt82tf+1qDJSBJ3LEt87jlllu46667+O///m/e9KY3pccvueSSGffVCTN5nrvtthu33norItKwnnbPIcf2QR7DkGOHxwte8AIOOOAATj31VIaGhnjBC17Ad7/7XdasWdPSdsOGDem/Hcdp0Rqde+65edXoHDlyzBjlcpmf//znvOxlL+OYY45p+bzvfe9jfHw8Te+822674TgOf/jDHxr6+c53vtPSd7IBbRYuXvKSlxBFEd/+9rcbjn/9619HKZVmNDr66KNxHIeTTjqpheaJCJs2bZrxel/5yleycePGlrGTPmcyv+TvN7/5zYZ2p556asN3x3F45Stfyfnnn8+tt97aMm6Wvj9eWLJkCfvvvz///d//3fA8br31Vn73u9/xkpe8JD3W6bnNFK9+9atZvXo1//mf/9lyrlwup3UTnv3sZ3PYYYeln6c97WkAadajmcwjsQ5k3xcR4Rvf+Ma2LqPtGNN9ni95yUt45JFHOO+889JjU1NTHV2ZcjzxyC0MOXYKfOxjH+NVr3oVP/zhDznttNM45JBD2G+//Xj729/OHnvswbp167jmmmt4+OGH0zoLL3vZy/jc5z7Hm9/8Zg466CBuueUWzjrrLPbYY4/tvJocOXLsbLjwwgsZHx/n5S9/edvzz3ve89Iibq95zWsYHh7mVa96Fd/61rdQSrFy5Ur+93//t8UHH+xGEGxQ8OGHH47jOLz2ta/lyCOP5IUvfCGf+cxnuP/++3nmM5/J7373O375y1/ywQ9+MI0JWLlyJV/4whf41Kc+xf33389RRx3F4OAgq1at4he/+AXveMc7+OhHPzqj9b7pTW/iRz/6ER/+8Ie57rrr+Pu//3smJye59NJLec973sO//Mu/THt++++/P6973ev4zne+w+joKAcddBCXXXZZ2wrZ/+///T+uuOIKDjzwQN7+9rfztKc9jc2bN3PjjTdy6aWXsnnz5hmtY1vwla98hSOOOILnP//5vPWtb03Tqg4PD6f1DaD+3D7zmc/w2te+Fs/zOPLII2cc3/DGN76Rc845h3e9611cccUVHHzwwURRxB133ME555zDb3/729RNtx1KpRJPe9rT+NnPfsZTnvIU5s6dy7777su+++7b8Zp99tmHlStX8tGPfpTVq1czNDTE+eef3xLL8Ggx3ef59re/nW9/+9u86U1v4oYbbmDJkiX8+Mc/ToWhHDsAntikTDlydEaSVvX6669vORdFkaxcuVJWrlwpYRjKvffeK29605tk8eLF4nmeLFu2TF72spfJeeedl15TqVTkIx/5iCxZskRKpZIcfPDBcs0118ihhx4qhx56aNouT6uaI0eOXjjyyCOlWCzK5ORkxzbHHXeceJ6XppDcsGGDvPKVr5S+vj4ZGRmRd77znXLrrbe20JswDOXf/u3fZMGCBaKUakhhOT4+Lh/60Idk6dKl4nme7LXXXvKVr3wlTW2axfnnny+HHHKI9Pf3S39/v+yzzz7y3ve+V+688860zaGHHipPf/rTW6499thjZbfddms4NjU1JZ/5zGdkxYoV4nmeLF68WI455hi59957Zzy/crks73//+2XevHnS398vRx55pDz00ENt04GuW7dO3vve98ouu+ySjvuiF71Ivve976VtkrSq5557bsfnkUVC57/yla+0nGs3h0svvVQOPvhgKZVKMjQ0JEceeaTcdtttLdd+/vOfl2XLlonWumeK1U73XkSkVqvJf/zHf8jTn/50KRQKMjIyIs9+9rPlpJNOktHR0Z7ru/rqq+XZz362+L7fsJ5jjz1W+vv7215z2223yWGHHSYDAwMyf/58efvb356mRs2+n53Sqr73ve9t6XO33XaTY489tuHYdJ6niMgDDzwgL3/5y6Wvr0/mz58vH/jAB+Q3v/lNnlZ1B4ES2c5RTjly5MiRI0eOHDly5Nhhkccw5MiRI0eOHDly5MiRoyNygSFHjhw5cuTIkSNHjhwdkQsMOXLkyJEjR44cOXLk6IhcYMiRI0eOHDly5MiRI0dH5AJDjhw5cuTIkSNHjhw5OiIXGHLkyJEjR44cOXLkyNERO0XhNmMMjzzyCIODg49ZKfYcOXI8OSEijI+Ps3TpUrTedp1JpVKhVqtNq63v+xSLxW0eK0dn5PwhR44cjxVy/tAZO4XA8Mgjj7DLLrts72nkyJFjFuGhhx5i+fLl23RtpVJhxW4DrF0fTav94sWLWbVq1U7BFHY25PwhR44cjzVy/tCKnUJgGBwcBOwDHBoa2s6zyZEjx86MsbExdtlll5SubAtqtRpr10esumE3hga7a6HGxg0rnv0AtVpth2cIOyNy/pAjR47HCjl/6IydQmBIzMxDQ0M5Q8iRI8djgsfCfaV/wH66IZJHPUyOLsj5Q44cOR5r5PyhFTuFwJAjR44cOyIMgqE7xe91PkeOHDlyzD7MNv6QCww5cuTIsY0wGMw02uTIkSNHjicXZht/yAWGHDslxjaNc8tVt2Miw97PXcnCXRds7ynleBIiEiGS7hqiXudz5Mjx2EJEuOO6e1n/0CaG5w+w3yH74LjO9p5WjicZZht/mHHOqD/84Q8ceeSRLF26FKUUF1xwQc9rrrzySv7u7/6OQqHAnnvuyQ9/+MNtmGqO2YzRjeM8dNcjTGyd7NquWq7yjff8J69Z+nZOPPorfO5VX+MNK97LCa/4MqvvXcsDtz/Mpke2UKsG3HH9vdz2f3czOTaVXj81XuZv19zF7dfeTbVsU549dOcjXPqTq7ji7KvZtGbL47rOHLMLIYagxyfciTRIjxY5f8jxeCAKIx65fwNrH9qEMd1/T3+58m+8bf9P8MEXnMSX3vhtPnHE/+Nf9/wAl5z1R9bct44H71hNrVJj3QMbuPWPd/DgHauRzKbtwTtW89erbueRe9cCUKvUuOZXf+a3P7yCm6/8W8/xc+RIMNv4w4wtDJOTkzzzmc/kLW95C0cffXTP9qtWreKlL30p73rXuzjrrLO47LLLeNvb3saSJUs4/PDDt2nSOWYP7rrhPn544jnccOktIKAdzcFHPZc3n/Rqlu25mKnxMvfd8hAiwop9l3PSK7/KzVf8rYHAiwjXXHg9V1/4Z5TropRCOxoT2R+iV3DZ9anLmRidYsODG9PjhVKB/uESmx6pCwna0bzoXw/h3775Zop9hSf2ZuTY6TDbfFQfLXL+kOOxRBhEnHP6ZVz431cxutkqkxYuG+GYd7yQl73xYJRSPHjHajav2crcJXPYsn6MT73syy2b+i3rRvnq276LRCGINPAHgEW7zmdw7gBrVq1ncrSuYJq3dA4TWyapTFTSYwt3W8AHz3gHzz18/8d38Tl2esw2/qBEtt0eopTiF7/4BUcddVTHNp/4xCf49a9/za233poee+1rX8vWrVv5zW9+M61xxsbGGB4eZnR0NM+CMYtwyx/v4JMvORkTmTrxdhyU46AdzVP+bgX3/vUBgmpoz5mIaKrctU8VX98VjoMoBbWgfR9K8YxDn8r/u/jTOE5eDH224bGgJ0kfd92+iMEeafPGxw1Peeq6Jx39yvlDjkeDKDJ87h1ncv0Vt9Num7Jk6RDR5lHWrlpfP6g1nfZfaR9ROK3xxRjosD3SWvH/fnc8z/rH/abVV46dBzl/6IzHfTd0zTXXcNhhhzUcO/zww7nmmms6XlOtVhkbG2v45JhdMMbw1bedQRRGVlhQCopFlO8jSmEiwx3X31sXFoCo2rtqokQdCqX4Pqq/Hz04iCqV6JYwTUS4+crbuOZXf57hqnI82WCm+cnRHjl/yNEJv//VTVx3+W1thQVTqbL6hrsbhQVUR2EBrACrlLK8pgdEpKOwAGCMcMrbz+jZT44nN2Ybf3jcg57Xrl3LokWLGo4tWrSIsbExyuUypVKp5ZqTTz6Zk0466fGeWo5twCP3b+B3P72aB+9eR6nf5+CXPosDX7zvjAPK/vqH21l7/4b6gULd/acjOd9GY5jq67Oap+S7Upigt5bpPz99NoccdUDbc+NbJll1xyM4rsOe+y6nUPKJwoi/XnMPm9aNMrJgkP0PfkoeaDfLESFEPUzKvc4/mZHzh9mFMIi45uKbufo3N1Mt19h9n6Uc/vqDWLTLvBn39euf/AmlFWIafz8iAmPjTa2nlzPfCh+KrpKFbdizr7Wr1nPjZX/l7170jLbjrPrbw4xtnmDhLvNYumIhABse3syt194NAk87cM9tui85dh7MNv6wQ2ZJ+tSnPsWHP/zh9HtSeS/H9sPo5glO+dBPuO7Sv1kNjTEorbj8/OvZfZ+lfPFn72PuwuGO10+OV9jwyBb6BoosXDbC6rttQBmOgyqVIGsZ6ESst6GQiioUQOvWIizTYAhrVq3nht/fzu77LGXeIru2B+5ewzc/fja3//n+VPNV7CvwnBc8lb/9+T62rK9rO+fMH+SdJx7NC456NmCZ6YN3r2XT2lHmLhpi932W5i5POzki6V14Z2cqzLMzIOcPOx5EhD9ceCPf+sTZTI6VUQokMlz7u1s4+xu/4d1feDVHvuXQrtevfWgTtUrAol3mUSz5PHzf+hZhAYAgaOQXMG3eoJRCHsMN2s++fCFDcwdZsd+uOK5DrRLwizMu4dxv/paJrfVYiKc8a3dKg0X+etWddYuJguf98zP58LeOY2iure41unmCe297BNdz2GXlQkbmb3u14RzbH7ONPzzuAsPixYtZt25dw7F169YxNDTUVnsEUCgUKBTygNMdBZf/4s+c8qGziMKoTpgdx5Jdz+H+VRv58L+cyveu+DR+0Wu4dtO6UX741Yu58sKbCANL5PfabznP+Ltd7EZ+zjCUK0wH2vMwnVyOYijHAddFDfSD70G52l73pBW0Y0ZZCHzmX09HFXxWPm0pE6NTrFu1oUXYqExV+eNFf2m5fOvGcf7jff/N+OgUd9/yMJf/4s9EQX3+A8N9vOa9h/GKtx+K0yvuIscOiemYlHcmk/MTjZw/7PwY3zrFCcd9l9v/vMrSRqUsb3AcG3wswnc+/TNcz+GINx7Scv3lF9zA/3zzdzx8n3UvKpQ8Dn/N8yiUfNgy1dKeaNt/Ub1cjWaKGy+5mXdfcjPDC4ZYstdS7v7bakRaXZ/uuun+NpOB6353Cx878iu8+qNH8tPTr+CR+zc2NNn/oD1592dfzq57Lmq9PscOj9nGHx53geH5z38+F110UcOxSy65hOc///mP99A5ZghjDH/6zS386idXc/9daykUPZ62/65cdeENlsYmBNB1wdVYn1FLfNdtmOQNB3+B0/73QyxYMgeAzevH+OArvsnmDeMNGSnu+dtq7r7lYfScIRt83AueC/194Diwdh10imVQCjU4gJo7Yr9GBqi2b+r7SKX9ubRN4k6kFPfeuc6uv68ExlgtVxgbE5W9D51W8p3PnNvgEpVgYnSK73/pQs765u943fv/iaPe/A/4hR3S6JejA0JRBNL9HQ57nH8yI+cPOxfWr97Mr35wFb+/8AYqUzV2fcpiJrZO8eA9sdAXW59pk3r0mx/7KRvXbOGNHz8yPXbOdy7lB1/+dYOBoFoO+N8f/5GBob5UAGmAbvN7EqHuZqTqc2lGD4VTCqVmJFiMbhhjdEMmlsbz0MVizwQcJjI8cPsjfOXDP0V5Xsv5v1x9D+98ySnsf9CevPkjR/CU/ZZPe045tj9mG3+Y8e5kYmKCe+65J/2+atUq/vKXvzB37lx23XVXPvWpT7F69Wp+9KMfAfCud72Lb3/723z84x/nLW95C5dffjnnnHMOv/71rx+7VeR41DDG8NWPns0VF96E1gpjhHFs4Fm62XUclOfWCXGsrREjoBVjlRpv+qevUOovEAQRUq4R1kLb3tEQGes9mmj2i0VUECJag+dYocB1YHzSfgCGh2BoIN2Q6912wazbAKNjtq3nWSagFGrXZajYvmc1PJ3Xq3wfqQVtGRtg16w1FHz7N8N8RCkbc1HSdeYlYvurVlFNfCYRijpNpzJR4QdfvZg/X3UXXzjzbbnQsBMhQhH18J/udX42IecPsxd33Hg/n37daVQrQaoAuu36++r7apGeG/KfnnIx551+GVorwsjYzZJIXfES00oTCePZmjzZzbvntbEQN/+7dcMvLe06Qyll6fa2WiOCAHGc9u6wrYNZJVwX/OXqe/jQtd/mpO++mef8w97bNqccTzhmG3+Y8c7kz3/+My984QvT74kv6bHHHssPf/hD1qxZw4MPPpieX7FiBb/+9a/50Ic+xDe+8Q2WL1/Of/3Xf+U5tncAGGO45Yb7WfPQZu646QEuv/AmACKt7AZeKSh69m9kWmltYnp2NTj2pRdgarJa1wz1FeqbbRNvqoP4JyLxZnr+HLsxT65xHShXoehbYSEeC6zLkV62GHZZYsdN+zZQDcFkfn7JRr8N0VdKofv7MOUKhGH2BIwMoQb7UWNTVkPUTsPVbDFQyrpAuQ4yOYVK1lbyoRq0CBEtiAy3XL+K//3Jnzj6rZ19fXPsWJhtDOHRIucPswubt0xyw1/up1wO+NG/n09lqtpATmciLACgFLVKkP67hTYrZS3KSjX23dBEwcAA0hL4nEUbYWGGBdeU1l1Tq3aDHhiwCrZewkLBh/6+3u2wQtSXPnAWZ1/77/h+rlTaGTDb+MOjqsPwRCHPs/3Y4+br7uPr//5z1q7OVDbOvgpZKwKkmnugxQ1HIN5Eq9brE6FCq/QaKdfQkYk1S4LqK6btRYE4VnOvygFIo2ZeFOA7jWNk51muocIMY6jWkEoV6S9aK0cQoaYq9XkXfMxQP6paBRT0xWZkESsk1cIGYm59c3Xr+Nl51ALrNjXYBwrUePfaESR9+j4j8/r56dXH926fY5vxWObZ/uOtSxnokWd7YtxwyL6P5PTrcULOHx57VGsh3zzjUi6+5BaijCZfT1bxH9yMrjUJBxmlSwONjK3KKTpsjMXRRINFUKCnaiilEd9FhSZ2La33LUUf6S/A2AQ8tG7a2610q9NGcJBSAQZiF6ixSVQt6Nq+G1ShgCoWewsBxSJqoA8RmZbAkOATp7yOF7xs/xnNKcf0kfOHzsjF1CchbvvLA3z6nT/ANAf9tiNasXUhERJMwbUWgEQ7FBpULUAZQbR1PZI4vkEZsUTXdxo08lJwiVKBBFQYoYLIWpETdxwj7bXybofNeiKMlHwYrwsEMtyPWTY3LugTWzDCCL1uCyqIkJFBtONY60Bzf65jhQbTRpDqROATS4MiFaCSRH7doRARNm8YJ6iFqNgtDBGmpmoMDBZx8xStOxxmmwYpRw4R4YSTf8n/XX9fSw0E0+dT2XMhxbvWoRPFjNSdfWSwDxnut1YCgDBCjU6ixiYtTdYK6S8irmMFgakKweJhooWDjVbbTOyCHq/grRtHlwPMcL+1WovAeJuA6C5QytLYrGVDfA/2WA5D/fUxRZDNY7BqdaP1ufk+0Z6uq+kG5PeX0nnNBLdev4pDX/pMqtUQz3OYnKziaEX/QHFG/eR4/DHb+EMuMMxSjI1Occmv/sJN192HGOHp++/KPx/1d8ydP8iZp/4OMZLGEoiiwW2o5fUVQCuivkLdkqDAqoMU4mpUuYYZjLUqGQaCtG78EwKZWB7Ec6ywQdJtqv9vmUZqqWiHNCjbsQHJJR8zWGw972jM0nmoSojulilJxGrKTEabNp3fdio0xI09Bwl6kIXYfC2uw3FHf4sNa0cb2heKHv905P687q3/wLw81d4OgwhN1KP+5TTDLHPkeMIgItx680P87n//wvp1o4zMG+Cwf34Gf3fAHtxy28Ncc9297S9UClxNuGAQf81ovT/AzBuqb7wTOBqZO4gUPOveM9SfnjJAuNs8xNftFUBJu4EC1f4C3poxtO/Xz89Q89/QtwjiOvDUFXVlUVYZNHfIbuhvur1zN52Ot0lw0YLptOmAS357C7/9/R1Umqw8e+29mNe88SAO/cenbXPfOR5bzDb+kAsMsxC33PQAx7//J5TLNZI6NX++9l5++v3f875PvJRbb7gfsD72UnDtprgpFiBrBkZBVPDimIHkWCwYOAochbjFxnMQa+ZV9012Nm4hywC0atXgZAWbbv1phSgw/R00PYmblO8glbDj9KZnGeiA7DwLPgTlzv3FQphgn8mG9WOxD29deKtUAn718z/z21/fzAEH78XfHbgH//hP+7F18ySXXfxXtmyaYO78AV70kmeyeOmcbZ11jhlCRGF6ZLmQnSgLRo7ZjzCM+I8TL+D3l92WJrhQCi7/7a086zkrGF4xgqNVgytSA5QinNvXIDDYeLP+9Hy2LYAMlFpot7gKKUzDahorkILFg3hbavXtV18Jxia7XNiuK1W3miyc26jYaR6z6MPcYdg82nq+C6blYvQoBIZyxcYB4jp11y/g7jvX8oXP/pyzVv6Rv3vOCg775/3YfeUCrr7qLm75y4Og4Bn778ZBhzwFx9328XNMH7ONP+QCwyzDvXet5VPv+xG1wNRdh7BErBYJ3/jihfa7UkhfRluTQCmk5CPVODBNxO6cfbd1w56Nc9CqcTPcJc1oWzSZim3wm0YCU3cvYpobeBGM77ZPv5dMHeqCUrdCcZKZG1ghqBuxTTJHOYrkjojvYBbPwXgaJTbOwhmdsrEWWqdMS4Gdd1MlUusTbLN2VKsBV11xO1ddcTvf+dpvCKohTuYZ/+i7V3LEUX/H+z/1MnSX9ed4bFATB0+6M9/aTsQQcsxuRJHha1/8Fb+/7DaA1C01IYF/uWEVQ5tGOwsLCVyHsM9HKdCVANMpBWoMBXV3oBim4HS9prEDq5jC0xDEiqV5w7B2Y51S9khv3YL5I93Pi9iEHF0EhqZErhZBgHheV6FBXCe9Jon5ENdJsz+pMGqJ/0gs7MrRlheGkbXMN42z6t71PLBqA+f/7Fr8gkutGqIdG0R+wbnXMzRc4j++/q/suffi7uvP8agx2/hDLjDMEmzeNMG3v3oxf7zyDnvA0a1BzBoio9HYWAGh1X9StCLyHChl0qdGNvBMmQ4b9hn6YLZFm427KbiYEoTDBSQOdNaVEGciwK12NuRJksZ1GsxIFF0zGImrULEba9rMSEdrhyjroiWuQgfGxmsMFtI1Cvbemzl9uBsn0+DBNFAwFkYkTjEY+RodGlRWkIoR1EJr/WlyI7v4ghtZdd96Tvnem/NK0o8zDArTw+RsHsPKsjlybCsuuehmzjz9cjZtnOjYRgQ2bhizG/NutFOE2l4L03+rmsErh6gOXkLtfgE99lFtxxRHQazLwvdgxTKbnWlkyCpfwgjZuBXWb2q0kqddSJ3PeG0y4GWRuJZ2mo4CWTQXtW5LA+8y1Sra89pbGhKeNNSHMioN4m7gVyp2l4oiqAQN6qMkxi8VNiLTNglHIgjWqmHDd4CxrWXe89b/4j9O/Vee9ZwVndef41FjtvGHfDcxCzA2WuaD7/gBV191Z+OJNn6hohXhYBx01iwsAFHBtZqc7DmtEN+1xLoDHotXXhJXobi/YMgnmF9CvPpragoOwfwSQX8rIU9cenB0o5tVtzEd1TL39LvvsGzPRdZSk8RtOKqtViedt1bU5vcRDRTjzB91YSFF/O9wfn86vniOdaGKz6nk00ZQaO6nnRR3+18f5nvf+l3P9ed4dEiC2np9cuTYnrjwvOv5yucv7CosJFCBQVd7pBNttkr7mtqQTydlabvDnYSLbmO2zGjOoHUbSlx8XAcWzYW9d7eb7gyshl4jSd2HWtB9jVAP3m6CKMDzkD2WMX/5vPoJx0F5Nl5DQWpxbggMnzMIpRLiaKTg1S3hzQk1tM0UZY+BlGza7ux6VOLG29NVN/NvBWLgMx85m/XrZuZulWNmmG38IbcwzAL84mfXsn7taGvWozYwvmNjlWut1Np4ur3mPHF5cTUSdX69G1yGlMIo6WyVaHNt1OcgysEfDzAFB1Nq83omm+1hH10N0WF9zVGfS1h0cMsh2XSs7cYXrLAQzi/hjVVxJjOxDFoRuZqoz+Ulxx3Eil3msWndKOdcdBN3rlqPqkX4WyqYhHjHmi/jOZiig2NAlBDNKTXMuWUdIoTDJXRg2vq0CjQVJ2qDJEC8ObAc+OXPrudlRz+HxUtG8Lw8w9LjgUg0UQ9VabTjZ67OMYsxOVHhe9++dFptBdA1Ieyf4SYmpkNhycWb6pxZqOGSWgTFGdAlEaI+F6dmUO0y12W/+x4sW4g8sMYeAutWu2I5TE7BVAWqARR7ZDQqFmDv3eGhtfYaYsvCwrnInsvY5xm7cezXXo9TrXHjXx7i3POuJwoi9JZxZLxsi8wllgPPhVLB/jVYYaHd/LPrcB2MozoqwGyM4rZtOIMg4tz/+T+Ofeuh9A8UZpytKUdvzDb+kAsMswAX/fLGaQkLorAuL21eUMEKBD1deBzVUJMhgQIiV+HEG3jjKoJ+l8KWoHvsQaI1UhCWHHAUphzaf/dwKQrmFnHKNh1rVLLB2wLU+qzWRlci/LHW8ZPZRyVrOQjmFAmGBBUZav0aUQqNQjzNKT+5Mr4ovqqgwVVEfYPWFJ+N40g6n4hQKET3EJaUsq5WbbyrrNVBIwjiakzWugGoUHBqEbrNs0gQifDm15+BX/J48eH7ccyrD2TN6i2Up2os33UeK/da1G12OaYBa3Lu/pvpdT5HjscTf7j8dmq16W3iEygRZhiFZpVEBY1MdaF7GZoeFd3pxzDE/YMQ9Lt440FP2srIEIQRGIP0FWGw31qg+4pd49taMHcYRoaQag0xBhkopq5Kd9yxhk99+rx62zgQ2YwMoQcGbJ2h5pl2sxq3W4d22t5QRczT2xW/69kvIHDBOddzwbnXs2LlQl71+ufxlH2WcP+9G/ALLs981m70dUockmNamG38IRcYdkJs2DDGL35xA5dd+jempqpMTVZR8UY+6+/YEFSlISy61l9fKcKSQ1SIC6RFgq5EiGohba1ok/I00daboouesIQ8LDmIp6mN+HhjQUvht+wcRUMw7FlXKBEq83yUqFZC2zQPcR2iwUYNlQJM7D1kig41wJ0IGszf4iiikhPXi4ihFaIdTMFBifUrbBhdZe6mq5AIdLZF5rwpaHRlG1P+Ub83yT3M3u50FC2EBQddDnGqEW2M9dbFy1FUqyEX/eov/PqXNzXEawzP6eMd73sRLz58v1y7tI0w00ibtzP5qObY+SEiXHXVnVzwixu4++61mMggnmOLVmb0GtBekaIAXY0sP4kDjMXXRL5V6HSFUs05G+qnMoeNo8DfBo9opWx2JQ30sl4rZTMhdZjDTMelWLBuuV4XZVZyzHPihB2PH10VQDlOS9C3PdlDEJPGf6+6dz3/8fkLG2arteJZz1nBp088iqHhvsd07k8WzDb+kAsMOyiCIOKvNz/IxESFJUtH2GuvRSiluPvutXzkwz+lXK7VrQraasMjH+sX6cZa6EhwKhEqMHbj6SgkklizHg+kFOKIzVgRGpxKb71SorFPNffaavjFUVQW+BQ31jBxbm3jK6rzfFQo6FAQJYhSOEFsifBU2hYgLGpMQeOPRt0pe4dzAkQe4EBYUMgcFxU5FLeEOFWx96pDILBR9QDojoQ+IcoOSNiGYSmF8cFU6rJVRxcukdS03ryccMCz1oeM9qidAGNKrnUliwU/ZSyT17WoHnehFQb7V8S+F0pgdOsUX/7Cr/jNRTdz8ldeS6HQOcAvR3vMNpNzjp0Ha1Zv4Z471+J6mmc8azf6B4qICF/76sVcfPHNacpUADRI0bq3JJZVjOUP7mSITvQbSQxVhE10ER+WikFXDOGA2xBT1oIkq143iMSKkBlYFxJEBn9rrStdnQ6ComJyuUdt2G64ixsDhh7onGI7RXO8QTvEiS+M7+A0V8RO2/CoAv8EGtOcZ8Zunp8AxoWo30s9BNypEB0IxlEEgy5hn5PyEHcyxJsIMUa44br7eNXLvs4XvvJanvu8lds+4ScpZht/yAWGHRC/+uWN/ODM3zM6Wk6PDQ2X2HXFAv5268NpwbUsjKvtxjFDhMWxG09diTC+1YcbT1lhoV16VMdudp1ahxdYKYyr0AgYu/GPPG1dZ5RCHIhKmqnFhVQgSK4TT9mNfIywydJpA66tSduuB3QwPaYQeRD0aUxibBAwSQIMZWsylOe79G0wHRlNMv60mFAiNHQi+spqwIJ+h+JYe4Yhcbug5GBcbWMxJLbU+HWhL+2y01xEUlcycWzPquAQiYeuRaSF9NKAQcusdWhSq8stNz7IKV/+NZ/87L/kloYZIhCHQLr7YQc7Dz/IsRNgw/oxvv6lX/Hn/6sXV9NasduKBYyXa6zbamsTZN1URSuCPqeR9msrPERFh8LmmrUCx7SiZR+KpVnuRGitwe1cesQqK6ZFQbahWpXR4I0FMxYWREN1jkttwKYGdycjgn4oL6in3p5aaq3agw+2d3VK7+QMXJlMwbU0uPlEh7izdmOKp6wSqLltHNMgbQSEluGA2txCA08JB1x0OSQqOg1xi5IIECWH0sYqytj36PiP/4zTf/A2Vqxc2HvhOVLMNv6QCww7GE4/7VLOO/e6luOjo2Vu+cuDqDYES1QcsAxtBQETE4XED74jlEI8kFqrlSGJM7CWjFaJWWE1+tYvXyFhZDP8TGMDahyozHHQEWmQdFTUNi0pbZhD5gdWnqMJ+9ukkI2kbrKOU5RWh6Gw1WCAqKSIinYT7VQEpyYYX9c1bT0gSiFKwAOjLQPQAXYNQNRnBalaP/iTUcM6kpnWhh3CfhcVGAqjUd1tKkPAe2qhMlmV0ouVDbo2BccGt6sksxOg7L2KlEZXbcI3AS695G9cfsXtPPeAlbzmtQfyzP13m96NeJJjepU8dyKOkGOHxvp1o7zzDd9lcrzScNwYYdW964kKSUa3RqoZFnWroojku1Ab9ihsrtljHeh2IjQ4lYior2nrENNfp9xdEkj7CCIiNT2LpgC1IU3kGkrrZ/ZbCkua0RXFhgx/tSG7gVORqqd21YrJZR6FrRH+mCHyFZUFLpGv0DWhtCFES+t97YjYNct4iqjgII5Ns+2WY7ewNsvIWu4BjK+pLC6Bo/A3V/HGg3rj7DPuFXcIOFVD2JTxyTQJC9m5iwuVEZ/SphoChMbwtrf+F/PmDXDkv/wdR7/yufTn8Q09Mdv4Qy4w7ED47cU3txUWoB7g1C63s3FURyKfQrBEple7WFOtIpDMNle01cDrqD6fbNfGja0XAGJNnU6UOe/HVgDXmj29suBUBNFQnmsJl8pYFMRRhP0ad7LRwy+5DwDBgCLs60A0tW2nMvwrKmrK8+1fcev+nsGwFTD8cStkTAeRB+GgjjVOYjfiYPuZMOjAWjzCEZegT+OPh6nlJipowgEnFfLEVVTnuBQ2Z0zimefUi0W1O6+wAk1DKtwsg9GWYahKlN5TY4Trr7uXa//vHj780Zfw0pftP72b8SSGEY3pYXI2O5HJOceOi3K5xr+98wdMjFc6a8HbuFuKsjSmWzYe8VRcc6Y7f1CACqUNTVaIGLSR9kqe5vYCKojq1lEFQb+KlU7g1MCbNOjICgu1QUVhU+++szAaRleUrOW1eU0iuFMQDACJAlgrNj+tQGGroTo3yYBnB5zYzaNvTUj/mulZUERZficj/Q20vCqCMxlS3FSFSAgHPIyncMqRVe6IYFxNOOQRDtQtObV5RRDBm5hZ8HpXZJVSLSYlZWMABxy8iToT3bRpgh/98CquuPw2vvGtNzI4WHrs5jMLMdv4Qy4w7CDYvHmSr3714q5tOhGqdnUBZt5LI4Kisqk+FSgRphbYV8WbNHZjncRWKStIRMWmOWgFobHVibNWAKVArAZe1wSnLBktR+MPx3iK2pBGB2KFBBULAXHLYKBLVqe4v2bNftSvm9ok84XIBx32vkuRC2Ffoptv7kdRG3ZQgUAslEQFTTBcsCb7kFSrpY0dT2HjSMKiwqs09ZnIeF3m0xmJ8NdmExDfH+PrhhS7iRvDqadczLOfvTuLl8zZppGfLJhtGqQcOy5+8IM/sHndWHda0EYhNC3+IILxNE44PV+hrIJIR5YmmqJP2O/Qt7YS07XOUIA7HhAMF4iKMDU/kwlIKSJfqA04+FsNtUGVauw79WkciHyNMkKkwK8Ilblee2GB+jGnBlF2z+toqvOyPKL+z8p8l4E1te43hoQ3OaSeKE1W/6jfZbLoxG5F9nAwkrmYNusUIZhTwJkILbWR+H8Zl9NOUNDWKyA51406BUMeTtmgs4XpjPDQg5v47umX89GPv7TL1TlmG3/IBYYdBL/5zc22CmU3JFaCpkNpqs1ulyp6p/mM+6vNcTFxPIMAumgJsQjUBjWiJXXdkTZmbrupt0QsGGxjBUhcpTzSisZgYy6I6kQsLMaBy66qr1sEXQVvQnr7kyoFKiPcuLEypQMDEQciV3C7KHHsvJIZtuFg8XfjxXJQciAzh6SRUYJxwAms4BD1adxqZA0fIg1Zq2aiWWuaSnfNolOPp2he50kn/YLDXrwvhx32dIbzLBltYYCoU7WqTJscOR4NKpWAX//vTV13dwps3ZYmmix6GhsSpYg8hVOm6wZUgGDQIRiqbx0cR2PiqspR0aEyz6dvXfeNtSjAgDNeY2JZX6trTLwRrs2pb7aCQaeBDoYFRWWuR23IxfgZocgIAw9VU9ejjkvGxslF01SSG3d6dNj4qiUGrXFgZZVJ2e9xsHjHDXycHSrqd1GToU0V6+p6+w7PTJL5bEtGqhhRv4OaahQkjRF+c/FfKZV8Dj7kKTxz/13z+Lc2mG38IRcYdhDcecea3gIDtGwkja8wnkJ3iZwR7AY27FN4k3EAVZt3WLBm3NqAxhRU6rITxdp9BMTVRJGBanvCaa9QVIbtnMIB3TXjUGIxAKulciMIPajOseftfl8aNr+mIFQ9hVvpQbxj1bwIhH12ci3BYxkYF7SriJBUQ9ZsoRCHuptP18GVDbw2pG5cLRfEjCLyQFAo1wbiqciO706a+FlbZtI8l3R+XZh7t/VaFwabySotsBczbhHhrrvWcvfda/nedy/nne/6R44++rndFvykhEFjeqbN23ZmnSMHwOrVW6hUwp5vkg4Mplhn6wI2HWpPl1XBFB2CCLypLokagNpQ47ahFgsL1q0IgpLbVWAQYGqBR+jHdRvaxVbQesz4mtqwgzcaMbm8QHWul/KoZivvxG5FVBy/1RUzUe5qRWWeprips1uSvd+KtvUXOs5BGubR7araghK1+QIiFDYHrQVYUyu+pGm1ayN+56F7zEsHJnYBbiOMiHDBL/7Mz8+/npV7LuKLJ7+aBQsGu/X4pMNs4w87z0xnMUSE8XLV+raXHMKig3FbM+s3x0pZbbdGHEm/t/Qd/42K9lGHxbo1U5raiIbyfI1J6EtW+w+p1iQs2mCxdvNTQG3Axh9URjRRQRH0QdBnxzZO++sA0IqwCNUW82zrRlscRVgSugrvsftT0A9R0fbTlYg7ymqRXEXk2zgF41ghyigrLNQGkr67jJs0kbpVI7tW49i+bf8Ko6xbV9inCQbtJyoqwgFdN6lnDBXZ59VNq6Og7UshCiJPYYoa42uiAY9wwK3HoED9uQuEoeG0b1/KZZf9rfein2RI0ub1+uTI8WhQrdqAV1N0iYouke8gupVHKCO2gjKQVKC3iTJU592hNTFaK8OAW882l7kg+Vd5kd8xrWpQsjRJfM34roWmHur9REXF1GKf6jyPYNDyOuPUaW3LNDNkaWLXIhO7FqiOxEJLhke1LMurK706LbtHApsWTC51297K5HvQr4hKXZRknSbCDCzISoHWVOf5hP1uRosk6dwEGytXWeA31htqM+eWgcWmVi1tqFHcEuJPmvoFTQtPXFhX3beej334LIJgG9JfzWLMNv6QWxi2M0SEb333Mm647eF65gOxvuV4NiNFxquGoM8hGNS4FcGpGKvtVoqoGAcRtxkjKqhUKy6uwmirTk6yNYiCyqCiNqhxOu3AtdU6Gy/erBfBHxO8cp3eGBeqQ4qoVNfNG2KiHDeKPNA1cGMLhWgaiqql7j6qC4MjuVZRGwR/vI0mPdbaiAJTgCTVaeLy1BYiGJdY2x63cqzJ0HhW6AFr2ZguktiLZC5RAdLURIB4gFHojMXGpmS1QoK4DmJs/YqwZLmpWxG8cYNjbJ/J+9FsfTCqHs+XnY/x22nz4loa1agxJW4G3zj1t/z93++N7+dkI0EgDm7PtHkzUWPmyNGIVas28NnPxNWEE9cdBcZ1IYjQTalMdWgszXC1pS/N1oXs69hmsxgMuDHfsUHQohVRn0Nt2LV8qQ1sYDXpOJUFNpi3f00Nbyq2QGgoz/OYXOrHfAtLXKWRB7QUZcsQN9GK2hy3zcTboId1QdGa3rsXjK8Y28WhuNXgj9Ut38aDqcUulXma0nqD6hHD0W4uM4ZSBMMetUGbDc/4mqDfCiuFzQHueDS9RCdN8CaiFitTg6tUGw8FY4SHHtrM/5x1NW867u+3ZTWzErONP+Scfzvjoktu4fxf3Wi/tKRJE6Kik6aqqw27NngYG3Qb9jnoJAWqVkQl4oI7scVBW415s69/Zb4tjoYIqhr7ZnqgRDUE2Boda8gVqBDrpgSp70ptjqI2R1C1OFjYUUR9CWGJtV/JG5bZzZqizXrq1upLTTe5Xrz+aTj2KaxWKugHfyJzXFkXHxtwXD9uYpenzh1aMcFu6gWj62PUYyhopJ4d6HByXbpsZa0cDQ0y/zYF6oGCsdAYFhW6LEQDjYHagScEgxpVMxRHDW6N9H4l0zKxZSLScRxIbD1QoaADsSkCm9YO1uyvgza5w4HJySqf+ex5fPk/XpP7q8aYXlDbzqNByrFjIQwjPvXJcxgfj2vyNPMIzyoUEpqfnFOCLeDoWEtiVgndgBYThUIKDmGhvskJXTDFHu94RlhIUJvjUpvjomu25kvkq0ZeJKSukFmyqk1dmd2eyjw62qOVwojYQqcz2QHF96o2z6U2D5u0o2oz/YV9dUtHMKjxyk+MZ7oAUckhHLQLSe5hZb4Pc60myY29w7IKpRRtBMZm99ds015b2x/991Uc8LyV7LPP0pkuZVZitvGHnWemsxAiwtnnX9dZ+FeWwBrXuviEA05qghVlN8BBv6LWZ9PRGccGRpmCFQjEi9s2C7gZpmMKselW1zX6AoS+DQYzrrUQ1N2Usv3YPsS3HxO72aSBtM3CQubfUSl29XGgNohNg9rcttf9i9sbH6I0NR6sXLHAHiupWJseW1ecuktUs5uQ9RWycyLebIur4kJ3mUklVoKGi1vnJfVhEW3vY8u9yPSJggbLZOx2FZVU3JdqeG5ohRQdygtdphY6BH3KPrMiVOdYV7CoAMGQgySMWscF9Pp0fT5tYLoE7P35xlXccuvDnS9+ksGImtYnR45twZ/+dDcbNow1FGFrgAjiORmaE9M6BZURl4nlHpOLXKbmWRoBKbmZNqmVdjV+mtt0UaIaX1uX2CbFVdaqoJr+tg7Qc5rTRqng8ZQ9F0BftwE7jJ+Zh/EVwWCcATBzb8ISBMWZTXmbl6ca732Dm5FjTcxhKXZ/Jf44GX7Uxs0oGHRshqn2huiuEzbAd0+/fFtWMisx2/hDbmF4grBx8zinnnYp11x/L2FocLTiqfss5cGHN3e9ToBooG5ZgFjz35SyzWjrLuRUBCesXwuNG9HEh14k2UAr0NZfRmGzRoiX0bz0pOTE5vE4sBgaUod23CCL3Xgb384jioueYYizfJAGPIu2/1aZH5Yk64oPVRbWv99c28DeK+bywP2bW8zvUazJ10HmBimoxczDm8xckplLFuLYjbmuUneFilUyiRCT3D/B3hs1DQ6dmOIbjinaxHBk/x3HW8x10qJxLdVa22QfiQq2HkbboOiktkTz/ABxNBddfDPP2G+X7ot5ksBMQ4O0MwW15dh+uOh3f+WHZ13Nug1jAMwZLrF8/jCOEyeaaIfYPWnL0/pAFO5URHFzwNSSAmF/PdhZHKHqa4I+KG2K0t99+ktvQ5uMC+W5iupcq7RwauCPgdMm2YS4zMz1Jd6odtSVAU2ktSOMYztSYRta2QblasB9929izqI+tkxO0UkWq8810aS19t42uFkpyos0hc3Gusv2mtB0VPddr4+FxE7nxPL0KFsnTyRNId7MT8A+z9qgS2GsNWVgp+kKEPY53Hjnw6xbN8qiRcMzXspsw2zjD7nA8ATgodWbOe5dZxJGJqV+kRFuvW319DQcieZIpDFQq91GsKhQU/W0p8angaBEBVtO3iRCgdBAJKLEPbSVMvYUGqw9Of7eZqPd3D7rz2980JX6OUEIBuKUd4mCK7DFdnTZMoYWc3Ki0QfumNzMvvss4O57N7S0MV6sYYlNr+JaNymwgoBbpl7wTRq6TmEciPoAY+Mx0nVn4jVShufRUECu0/1oR4W7CgvpMatJwkj6PCUObGj7CJI4GU+lxeQa0ManUogFVQVXXXsP7x2vMDhYbL32SYbpFebZeRhCju2Dk07+JZdfdWfDsa2jZcY2TqKj3rtJcWwxylpBUWuXPShNZS1U5miKW7q7zAQlGNvDachgFLpC2K/wRoXi5kYXl4YCke3m17yx7iIsJMjqqgQaKyQLBANCZV5MhwEMeONCcSM4QefejQgmFGQ8YmRBPxs3TnQXNGIX2U4tOgkNlXm2OnVh1LpZ9VrvDEMN6lYlmlhHcx/t+jQdjqfXKFvgtE18YLe3MSwqUJrLfn87r3vVgU9619XZxh9ygeEJwDs/8CMrLECrtrqJrjdDUS+Qkwbu0oGyZLTHEkhLujrjxRp9Nyt0NP3tpNaZCSGbYeYJUUnNhVhwKAvRYCzQZMY1HtSGgWFwpgSnFgsONLnzYIn4rVs2EC0W3EnwJptS3ak6sTXZrHMawv7M90jwJiAJb7M+oxCVJM0aVatCYcxaLVpuY+xFJvVhO9wEGihx4iY17dsuNuYiqa6tel2rFMaRlqBowFZ7zcAGritw7N2bnKxy5Ku+wZzhEm990z/wkn9+Bk6bCrNPBkQo2kd8NLbJkaMTLv7dX1uEhQRJooZOEIgTUcQHWuLgmqAUUZytTke0JRKiYGx3pzXdaeKjP2wVDdm4sd54dL8BhdWQOzVAoDYsTC1paqQhGIZgCJwJoW8DOLXO406MVZkcqRIsgOImaUx2kYV0TpEa+QIOuOU6fzHY7FTiQLRAU50HpY1CYbSDRbfHHqATFBA11HOYwbUd4hQaG6kWpVKDy1P2mALjOxTGLSP7z//6Pd8/8w8874A9ePc7/5Hly+ZOf3KzCLONPzw5ufwThDAyfO2bv2VyqnNO6m6eKokGIZvusmPO6rRD6/ueLXYmymqMopK21oUuYmISGxGWMqlQe7wl6V430XY4tGyA213TAB2vTUM41Cos0PQ1GrAb+9Ti0tJWIcbumsMBqA00jmgZbRyI3GF9RgumaE3yYZ9lWLURCAex9zd+eFKAygJ7z9JlJwHjuv4cuxNn6sXwMsvpqjlqOFcfYFrW7Q5WhNSlKj5miNfaRoO4dbTM1775Wz51/HmE06wQO9uQaJB6fXLkaIc160f5yrd/1/E3m6RO7fabrow4M9ttqji2q8Ml1WGVxr+1n5RQGYHJJfZTnYPNYtEl20tLTzPcIwmWviIgjjC1uEs/yvKH8d3iDX031ARcqMwnjr2rtzeOEPmm480XhPIyQ3m5YWpZRDgohEUTu9la4UFhlXzlBYrxZbolLiC1EkjmM01Y3tesZZo+pvUI2nQvzcddhfFa86VHRrj6/+7lzW/7PjfcdP/MJjdLMNv4Q25heJwwMVnlY8efw213rOnZNtkgtmwUlS0xP2PVA1jBAesOE/nUA84UnTfIxHEILmlxN9HWTUlN0lXjbbMbJWMzrarStp0QlsRq+QUbCCd0NGUm9wmJsy3VpO1mVpomG/XHhDmOh7CZj8CpJK47quX6xC9X6Tj7UyLdtTP5ihUmdFQ34SZCiQritbZxb0rN0BGNRDgZZ7r78CZmnWgQuz0DHTam4bUClGMzaEUmzrQiqdUiKxSmt1fB9dfdy0v++atoR7HfvrvwymOey/Oev+c0J75zIxCN0zNt3rZlTDnttNP4yle+wtq1a3nmM5/Jt771LQ444ICO7U899VROP/10HnzwQebPn88xxxzDySefTLGYu47tiLjkT3fwuVN/jQ47FwKzMUoap2Za+IMCakOa2pwZmnR7IBhQ3f1jlILEfRWICoKuWStuO7TVZGeUEu2uyvLEsAjBQN0ynm66uypQAA3lhTDQJUdD+tN1oDoPnLIhHBTQNnOdO6lwH2nPMGtzjN1BKYj6hahPKD3kxMPXJ6ewwllUEsrzFH0bM0KJbxOMFMfaLL7T98wSlYndTzMKo15ILPK9vIYxYtPqxu3EtYH04micqZCoz/r1+mPGZmdsMz+witOPfuJnOI5meLjESw5/Bkcf9WxGRvqZ7Xg8+cP2wM4j2uxk+PKpF3P7nb2FhQSRG2ckUlajHxUVtSGnpcR8sqHuBIn7qvUnBcvqloZOMDq2JgwDPumGP90gqlh7rhqVIKkW2qU1niBL2DOb2awWOyoK1XliN+MeiG+JtClaQaInRAiHhdrciGAowvjSoCFq/p2aoh3H+PH8HCHoa29ubrZwNGyW2yE+VxmJ730JgsHYfckVtAbl1u9h9jqJb4ooW1U7KlgmGcUWinT8brdE2WrNyf1NMjl1soCLUkRenE2pqAgGNFHJIfFdNZ5GHJWmODSu1TqKp+NPnJXLWGYViqEWRNz0lwf4zKfP5Qdn/qHLZGcPHq/CPD/72c/48Ic/zAknnMCNN97IM5/5TA4//HDWr1/ftv1Pf/pTPvnJT3LCCSdw++238/3vf5+f/exnfPrTn360S8zxOOCeBzZw4jd/TRSa3ophrYgK9veY0I+ooJhY6jK12JuxQkmAav+MFdKdoZTd+BYl7T/5myhuTDPdo06fm3lKVliozIfaPMsbcOLseiWFU6H3ApS1Qo/uIYztLpTnC8bN8ActaaKOZD7BMJhSHNOmIOwXIq+RrxCvqzbSqJRyJhXKdCkOqhTVEcX4YsXkIsXYLpqxXRVhyd6fpgFa/iZtIm2FjNADXZ2ZhSFpEpXiOMYu7UTbVO61OS5TCzymFvmYgoM4EA55dm8iqqdiKkEUGTZvnuSss6/h7e/+AWvWbJ3GVTs3Hs/Cbaeddhq77747xWKRAw88kOuuu65r+1NPPZW9996bUqnELrvswoc+9CEqlRkUlSIXGB4XXHLF3/j9n+7qZqFtgMJWZQwHHGpDDsGQ0zYNHVBPRdelbxuroFCqTbVoIS2WAzYdaTBoN9JZC0HyN73escQ3GIj7d+ymtDoHqiOC6FaiirZuPc2CBgqMKwRDbVTuqr6G9mXosm1jrYprGUo4bAgHDSZONdQuKDrpU5QQFQVTgqDfYLQh8g2Ra6+vV7JWDdf3pIxxMLTx4jF8IVykmFogBEVQTiwEuDBnQR+77DYHt19THYLqkM32VJ0LtTlQnQ/lRVYIMX4sbLSVAMQGPMeF3KKCrewd9NvJNjPjdC1JCl6/6V2TenyGCBn3q+y9UNbtytN1s7oGo+zz/smP/8Rf/vJAj5u180NQmB4fmRY7bcQpp5zC29/+dt785jfztKc9jTPOOIO+vj7OPPPMtu2vvvpqDj74YF7/+tez++6780//9E+87nWv68lEcjzxGJ+s8PlvX2x/y54m8lvpdAuUwniaqOAQFR1qg25363MH5mPdWCAY1pamtGnjTWSsC9N1k1G2DlBtyNIq41j6G5UUtSFLE9taGRJ6WD+UtquOtEnnnRjKjc1S13tesSKqaC0IY3tAWLILqsyndQfU/F1BeXlE5MW0vGh5hXEFvKZLa2paPCsc0tSGtS1wqjVm0GHrUzSTCxVkimoW+j0W7jPCwNI+qoNQmauYmqepznOoDTvU5jhU5muCePPficw0zEjHyiRHEQyoBqGt4a+ySqJwwCEYiK3ObeJjVM8UU23mI7B58yRf+o9fzfjanQ2PF3/YXgql3CXpMcYv/vdGTj39Uvslaz/ugESSb0ljmqiUmxiCAlREWuugeYjQJ45hsN4sOmgcT8Wqm6hotdjE8QYt5uFExZP8ja+N/ExWigxqQ+BNxHPLLljZIDSR2OyuBBWq9nUdmsYWF1RrVjd7Otn8NzESKUCE2HEAgrrGR2uF7zhUA2uNALupD4eEcE5mLhHoikJXrMZoWzRxoqzlRGsbBIcH1blCILFW3sAUU1CbgkFb/bqtokHFWjXfPkt/lNSSkCw7ipOiuILd+MdMICrYeBWnWk+hZ+J7qk2XvCBJJVmsVUTpRhN7Q7vYtUsl6i8RcBQSCSd/8UK+/o03sHTpyDbcwZ0D09EQJefHxsYajhcKBQqF1lKztVqNG264gU996lPpMa01hx12GNdcc03bMQ466CB+8pOfcN1113HAAQdw3333cdFFF/HGN75xpkvK8ThidLzM2z79U1av25oeE09BTRroeS94k4bqSJxirlMCjDZwtCIo2pHGlzn0rTd4k9LCdggFFamGwmqSWJI7TVJZvhMONB0XS78CYzPQNU8zKthaPDq0dF3HabkTLX/boVDoUGxK1OnetLjdxHJwJm1ijRaECrwma4IH5d0zaY4E62baof+ZIvIAsbFy1RF73wFwItYwBkPgOA5utZ3QFdNqbZVwOmzPM5P6SA2KIa2oDVve41Rt0Lc4lse7lekZrrIODzNZvgC33vYIP/jvqzjuTYfM2mxKM+EPM0FWoQRwxhln8Otf/5ozzzyTT37yky3tswolgN13353Xve51XHvttTMaNxcYHkP8z3nXcsYPfm+/9Hj/s5J8MKSJPJVSZh37s6ddJLm0qXdd7bftEoHAeJbwKk9BFVuELPb5TKwSibtTkGQgItNhTHizlZ7TTbhMjxjUhgUdGXQ11k5ra+kQ3yC+ZMYRqHQx3cZjt/sdSUMTReQ2+f8pkKJAwVitdwRqykFXNaEfUSvU0FMaKcViTao1yfShwfTH9oWyxClRVW/KqEgpqBQzwkIGRonVYmksU0ZZAp9R6KUB4PEBZUCMnWp1GJwMUzAeaUpDZyv1ALqkP0fZKqTpDbT+xtTiVH8dbdKC+NqO001iEpsRJE1mrhQY+0w2bhjnrW/+T047/Tj22GNhl052Xkyn8E5yfpddGmtXnHDCCZx44okt7Tdu3EgURSxatKjh+KJFi7jjjjvajvH617+ejRs3csghhyAihGHIu971rtwlaQfChs0TvPP4/2HthkbB0WrnNU7ZTHvzpQRK6yPKC2ONzzQ3XMYIqop1PXUUU0scVCi4FUsPw5JNmpHwlQZ9TGgVQqYwjQk2TNZO0RSh5seZjuIaN2Gxbt1OknFErTJ0h25tLZkZVWuOLaHRUPvTBe1SCWqkC3SkIVV20of4rddGJYM3OvMtVYMxSLVJF06cursXYtcwPKkLDbEVp1s8iimAKTTyiCi0GZ2U6fCoxTKZnnEQPfCjs67mkTVb+cwnj3wUvey4mAl/2BkUSrlL0mOEn/38es448/ftN1fZzSB1s3BYinM1F+MIJK3sZjWumiwCYsRmNlLJNTA115p6gwFFbcR+woG4iq9YDUEYbzrDoo1lCIpWi1ObWyfQ7VyBsvNsRmINSb8rISoYokGD6TdIyRANCME8QzDfEI4YTMEghUaLw0wg6X8ZaDu2aIFiBF5UTzGUDCKZtoMRUTHE9EfgCzISQcFYlXy7/KNKQAtmwBB5ph4L0S13dWK6V/Dyp+9jazt0upPxvRfP+tRKvGtPtXi63gYVH4vN30rFwmHJfrIav6CPhufayZvAFBTBoKI6ZAvWtWTuiC0gSSddH5mydT1sW4HQWNNWbAWpVUPe9fYzufrqu7v1stMiigvz9PoAPPTQQ4yOjqafLMF/tLjyyiv50pe+xHe+8x1uvPFGfv7zn/PrX/+az3/+84/ZGDm2HVtGp3j7p85qFRZiiKMI+3VcmZ7uQnoMtyqU1oY4U1IX2KcBHQKRYBDColCbA1OLFLVBKyygWtkDyfdO2vVOaCZCOrZu99m/j3eRW1UI0UM1dF9AQ7W6DqhFETpwUIGCkA47JMH1Q7xSgOPXNSqmYAPAe7klze0v8Y/77IHTJbZQEMQzhEtqmCE7xrRulWBpshd/XNVRWBAs72mZr1JE/ZpwQBMMqMaCb5k2KGKPgkeHSy+/jQ9+9KeUy52zSe6smAl/2GWXXRgeHk4/J598cts+uymU1q5d2/aa17/+9Xzuc5/jkEMOwfM8Vq5cyQte8IIZK5S2SWDYHsEWOzK2jk5xxg+utF+6aJ+TfPzGgdqgJhjU9Qw/zf6BGoqDnv3hliwxrw4pglKc8q7DUElFYemzAVxRKa5xMBhrhrYRqbCQ8DMlRAOxMNBOzZBQEU8aNN4pNF0JqyBIIbKb/Lh/o8WmkVOAZ2B+FVWMUIUI3R+iShmmkCDWbkm/QWUCqQXiKLLsxATcCHyD8gzKN8iCkHAksAHVblw4D0HErksk2ewLRhvCkZCrpx4gGIiICiYVBtquT1uhQbzY97/ZLS37b20FQRObjKNC/bvE7ZI4B+PEz7wvjjvplBo3LuBXHbIWq7Bgr2/gq6oHQ8iqxyJJBYzsnY0iwwmfPY+//vXBbj3tlEg0SL0+AENDQw2fdtojgPnz5+M4DuvWrWs4vm7dOhYvXtz2muOPP543vvGNvO1tb2O//fbjFa94BV/60pc4+eSTMeaJzcKR84dW/OSC69iwpUfhgjjvvfGsNTkoKaYWOEwsdZlc7FAb1C1W1+p8h6i/fbxbJwiCE0JlsVUgBYOxqyKqI71Kp4jdJE5rl9ilTbMVe1tQ50mJY0zjx5lbwV1UwZlTw11QxVs+iR6YnrSjUKg2mn6vGDC0aIKBBVP0zy0zuGCKwUUTuAVbhKe6MEqVO3aO0vDvcCiiujzk0uAeJhfXCPtNWz6oUBApzIKAaHm1uzU+M07kC1MLbZD32O7231HGxcpowWihMlcY393GdIytgPLcDoKOsunYozYWFcC6o3ad2fRw818f4t9P+kXKT2cLZsIfdgaF0oztZ0mwxRlnnMGBBx7IqaeeyuGHH86dd97JwoWtbgdJsMWZZ57JQQcdxF133cVxxx2HUopTTjllpsNvV0SR4U9X3cmvfnkjDz20mcHBIi968b5UxNgiu807pZh2Nf+gwgEnNut2c8lRTAUhbsEhCOsMP9F29/qR6jBjOs7alWf6e8zkAjWZgKyoz7RRQ2UXTpvzGbiCqnWWVxUgRWsRMMMhKtAQF+ExBWPNrs3dO4IqBciU27LpTj112s43nrNnUsGuoUlJiNwaepOXxoDYc7FmSRlbyC3OEvLI1LjNwqTFphyc0uiwzY1IFqAl1dh0uyHig0nStiaCkAMSWT9UhRUixEsWm7k8eYWa3zml0n6MssykkNnXGFehg26cX6HDCKRDUaIYIsKPfngVXz3lX7sscudDIA76MU6b5/s+z372s7nssss46qijADDGcNlll/G+972v7TVTU1No3fh7chw7ryeSCT+Z+QPA2vWj/OLXN3HVtfdQq4Xss9cSXvGS/fnF727ungSjiRSVE0EgcUcVqM5R1AY1fetD6+cPzHeKrGdmmlnrygM6EMsjBLyx+rne19Po9khrpjnpUuysAdvo4yAIxgU9UsOdU8OECinHgXuuoPtCVJsAZndelVDATDarzVu1Ws3WD68U0D+33PIctSP0zyszuQnCikdlSYRTVjhjCidxz1VCZdcAKcAGM2ndnPqhNhCiJxSFNS6qeUAt9Xo+SlrPNyzNBlzXhm3CjGQpNd9+71sjeOOxl8Fwo2UaHbuJte3YNooKlg800/iooGw16I4zmz7+fOP9/O221ez79OWPQW87BmbCHxJFUi88WoUSwH777cfk5CTveMc7+MxnPtPCOzphxgLD9gq22N6oVgI+/qGfcuutD6O0NRBu2DDOqu9dgeNopBhbCxryV1tpQTKBY1FSLGyaKBPhKIUO4zSb0/hlKur7fMkcbFvCvgdE2fzRmFj1rCEaiLoLO8lqlakHkEWqUaOvQVyDCnXTvGx7NRigCgYRZQl/wUDM3DoacVSscSqYpvlJer5pdZn5SKuwkF2OD2YwQoV2Yy+JS5OARLEJpPna+DaYvgipqDQ4WAWqYWiTqWDaS2ho+1fHfVRpa6XQvWo5pFYjhW6u5+DFQYjt7rtY1yVlSF2QOk1fBG668QFGt04xPKdN1PxOipn4qM4EH/7whzn22GN5znOewwEHHMCpp57K5ORkSnff9KY3sWzZstRsfeSRR3LKKafwrGc9iwMPPJB77rmH448/niOPPDIVHJ4IPFn5A8Blf7idL379IqLIpPR346YJ/nD1XbZmgVtnyqkCI/6bflGK6hxlM+hAi+VZHGFqvkv/WuukPrZxinC5i5NRnE/3bUs2f04ciDxT/pBqtYsCIjhVG5cWDhgIwKl0F0AEIewXGycQKZyKarspTsZJNsUA4grRkhqFIbtw7QoMdrceqJg9O3NqmMnm6O0285TGL6XhStvyFEm/pTkVJh5ycCddCMAUDdKn0DVFMCeqxz000W/TLwSLA5zY5VVNahjXyJyYcGsIFoZ469yez8cpt1mWwNQSGKxa4aGl0KmJE5b06DvlU02LDwY0/kSrUqQXO2uG1orLr7x9VgkMjwd/2J4KpRkJDE9UsEW1WqVarUf5NAeDPNG46MKbOP2bv6NSDqxCxADE5d9R1JBW16Lk3xJrCeLfUzCgW9t1gTbWN101Bah23ZxR3ziKtpqYRJOjanEwU6erE801lrAEA2K1IZENlo2GLRFTLYmjWztSRWOZAfGtiEAqGanHBdEGJWKDLgD8CN0XgieIUdO8TdkXXqFcg0RNm6R2RD6VrFQ6z65j9EVIYNeldUYoq6r4nWhnRYgZXKnuukQJVE2hwrgSqBMTcTFx1cx4d25AByouitPlRijSbFddptAdqfCRNaEAShEW61k06ndDUJFYrVN8ZDpYt350VgkMMo1KnbINWTBe85rXsGHDBv793/+dtWvXsv/++/Ob3/wm9Vt98MEHGxjAZz/7WZRSfPazn2X16tUsWLCAI488ki9+8YszHntb8WTlDxs3TfD/vnEx17epZitJbIFWls5lU1I2tyVWKJU6aS6w1gbfanbdqqCMWPfEgt3MddQUt4wlqW+6OLZSPQ6oQChu6rbJb5y88SGYFytOxgAMwTxD6cHem1vjCeGcujYjBNwxjTvZSLtFi6VLkXVJNYOGaMDgFqOu9eXaQSmsdbtgkGp2nNRsXG8bKZusA3ALEboLj1AKHFfw+gKiUBMtzBDLrvMTnFKEGpB6GIoCqo0pWqu7B3jrXKKCUJ1j3U2V2I2+vwV0klmpk8JLoDy3jbAAvflLMlPVxBtiRCVNDZu5q4XXzOABmchwx+2PTKvtzoLHiz9sL4XSjASGJyp7x8knn8xJJ500k6k9bvj5Oddx+jd+1/ZckqHB+E7nH0YiNCgI+jXiTv/lyP72xLVxbeLUhQFlaKmwmFxj/dvF5meGuhbZBRV0MCPH/ze+EA5EaRVLIjvnaMAKPzNxa2q4JRpUKbQuQwkVcwQ9WGtJq2Y34z20KU6E74c4cTEeYxRBzaFWa/4BtDID24GJBZUu1oX6SsCxDCEMrEUhbd8SC5EZN6tKzJ5JskYF1m846jfWPJLEWShiy4GgAtAVupqkU/emNs9mWpqeRPjRNt6hITuGthrPyEiDu7BWoCPJCEu9X4xPfOxsfvLT99Df/ygCanYgRCiiHne31/lOeN/73tdRY3TllVc2fHddlxNOOIETTjhhm8Z6LPBk5A+jY2Xe8/GzWN8UzNxAkxVdYwySX45xIBzoSYhAhKiocKpCVNQ4NWu1joq2ro5ONNVis+jpNh5xYR9p+uU0tk0RCyOCrrbfRCqsn3wwYGzBTad+IhiuK4hEdac5grSNfQuHranSnarT8GjEYAZaF6G0zLRmXR1NhUEdPySqNW6HlFFICDignem5FfYtqlIdiihPNKWSakuEBbcY1t2ysuf9xvlJv1BeZqgN6npbsc+8Mg8GHhScMg2F6BoXY+PZ2nIpPT3rkuqiiY5Kmqio0LFCUrRC1yK8SbvO6T6oO295mJ+fcy1Hv/rAabXf0fF48YftpVB63LMkbUuwxac+9amG4I+HHnro8Z5mW0xOVPiv0y9rey61KkbSNRMBWMnceLZIlv3efVxJPgq7kRb776gvrlYca6RN7N6UBLRmhQVpIywAEF9n27eoAwjmhoTzIuv+k1gmfGP9+936ZrZngZpYGMgiCcjGq2dv1qVwm3Iwe15Iqa+G40a4OsRzQjw3oFiqUSwl/j12HtoBJzNmOh8NJGlZhe4+xghK2SfjtumrXfv0Twetj/iC9EfQZ2x2kmx2JOp/rVAqnVPcNY7YAuN2vy554RRgKz136E/HWTd0nBLXjatDw7Qpydhombe+6Xv8+br7pnfBDg4j0wls296z3HGxM/MHgPMuvIENG8e70w5NL+JiN+Ilpr2xSnqrDegGyx9xJXvjWT4QDNiq83VqaDPjTGVluiZ9R21OI4/I5qkL+4TyLoZw2AoX7QqdgU0x2otHRKX258NBk45pCgbT13mzvq3hOarBT1OYs6y9lUpVNYRgounzKL8YUig1F0Bq07cjqE6195oVTFVNbUi38of4M7GLpfO1bi7wnWi0YwWNrs8rdovuCmX3OFFRYxxl63ukmxmpf7p1UYs445TfcvrXf8vYaLlr250Bjyd/eN/73scDDzxAtVrl2muv5cAD60LWlVdeyQ9/+MP0e6JQuueeeyiXyzz44IOcdtppzJkzZ0ZjzsjC8EQFW3TKP/tE4/eX304QdHYATz1apoNp0ptsd8aJPVOai9g0mRSMD1StRinybFvjtGmbwIlDEiJsZhtlsyeEIxmrQvO822xmOwe2ic001Mmq7hok1Da7kdcrV2nrIpQy+IUanmMaFHdWkWdwigYTOFQr9h1y/BCtDVHo112Qkmu0TV+ntcmYDgXPs6YbEymiyNpx/UKAdgxhqO11iVuWzmrZsxPtsCxVNzzZnUJsPejSXjyQqc5aICEu7tYuX7cTv0tRmyESGTDz4hlfI1UT15/IPAXBVvbM9JNUxFZJEbeodwGqDRvH+eSH/4f3vP/FHP3qA7q03PFhpmFy7nV+tuDJxh8AfvXbmzGPkUQo01WcKIVTESrzHMRVrQqopu/GtVnT3Io9OblAUutCW2iozQNdE7yt1toYFazSoraote5N42D2+nDI4E40x6fF64y1E+FgB0HAiRNb+FiXpQ4/HxM6aKfXLrbDEHODOPBZ0Td3itJgjeEl44yuGSKr5VEom5xjwkHmMg1LtD1f6KtRLXcpvwxo13T12MketzEXnXxOAQ0Tu9H9uarO+qvqCLhTHSwNYq3cajpGFgGnbPDHo3q2PYl5SMo0mhYdf9fVCB23veCca7n2j3fx9f98CyNz+6cx8I6J2cYfZjTTbLBFgiTY4vnPf37ba3aU7B3bgk0bx3F6RI8rQIW9JWfj2h+INFkD2vVndGJBiOsv+MlAHS7AZuMJBiXV2mRToLaDjW0QO04BpIAtdd9l05qaPsBaDxINeOrMFJ90DarQXtBSMXFTpRCVmnlb74ZSxBr91gl5fkjBbRVIVEzMHYSBoSm8Qg3tR9Z0rRWlvipDQ2XmDE8yNDiF64YoJfjFAK8UonVIf3+ZuXMnGBoqMzhYZnhOmaEh29aJx3TdxhStdaEne4O63MfsvQAwjf6qbaGt1agdEmtUVOo8g7BQT8EqNDZqsFzE2qCwoGz61sRFKRRUILZYYFPfxo+LCuo2m5d2iNuc/q1LeOjBTdO4YMeFQU3r82TAk40/iAhbtk71bKcMPXeZAjMqQFaZ6xD2a6tvaJcnv2EC1mKQ1OJxk8Jpva7xrVW7NgLBEIRzTE/ylkB8qC2wPCDLHxJhoboo6rq5DeZHhHM7CwsAUaino7RuNzs8N2JwxSiL91nP3OXWujC4YJIFe2xkZJetzFk2St/IFEob+kbKLFy52dLJaf6UtQanuaho8zzVDFyqam2CD5ogvd6DLoiKMLkk42KWsQjoANxKj5tcMxQ2hxTXBRTGorbZzRPeogLT+NBEcMoBTi3KHmLt2q2c/vXfbPuidgDMNv4w4yxJO2v2jpmiVgtZv3aUKOotVutqROS1/7XW3YTqAoMom7kmux1O/m00oK2ggAfGZH7EnaAUKCHqsx1ZAYbGAYgJti+YgqRBslEIuqqQOONP13e32fLgxPUIshteP7ApTzv2I2gt+G6AdgTHEaYqHbSFSnCdkDDM3AAFvhe2TAesdcF1IpyYyfQvGKNac6gEDlorSn6jmXhwoAoIkVFEkUYPtCo+QqNxXMPgUIUgdKz+RYHWxj4no3ALEW5/De0IIhDVNEHZIwrbP7ht97sFiSRee+aep9VBY81NxhuqPihE/TbroK5ZS4STZD9SjY1FFLg2sZUTC6qhC96UpNmQ4i4Ba3aNX8GZLUcp/veCG3n3+188swt3IATGQZnuP9Cgx/nZhCcLfwB4+JEtFHyXaq27llsJ8Y+Etj9+wVoAZkQY4loNwPTUfoniCVBG4Y0Kwdze14QDIMoql0gUV50g1LPpKYj6hUohxJnQOBV7YVQSm0Wp16OdlipTEVQ8/GLQay+dTrC/WKPk11LLdLOwURgI8MXyif65MLJ8FKWgFurYJXcGz6ij5cf2I5FCHk0cxmOMqA/GdwN3SnAnhdLGmFdMh677mqggeLVW1VciLKRZqiohVKjH9Zj2RelMJPzh8tt594cmd1orw2zjDzMWGHbG7B0zxZ23reb4j5zNli2TpLvPNkjMbMqAqkRIsf2DD/pV/cch2GBWlzQdJVghIhEWUjejuC3xOF2R2cWJC82/WkFs7YSsXKMAT+KsPO3df1qQbZdYPbSVTrRr8PuqBEGnKi/2uqH+MsWCZbLGQBg61MJGH6qCGzAyMIXrCEGomar4hEajFHhuqzO/VgbfbbVqFLwQ34vi1GV18UwrwYl9bpQ4seWn9Vm72hAajRGF4xjCyEHEzsEv1VIhInkZlALHN7iFKpVxj7Da6OPVljloQfXikJJUdhZ0TYGxhd+MKzZjVWz3jTzBMTZve6pFjK06yTRMwb5/JohTsca3rcEtSQmOoR68qBXBQGY+xroniVH4aKgaCAWle6Rxjc0bCjBGuPvONd3XvYPDMI20eTuRBunR4snAH6LIcOrpl3DhxTdPu2CaqglSUPUdapoMQ1mXodLM55HI+SqsCwPTgWBdTBL3oZ6DYLPwdKxcnzRNWFw6McuLwjmG6TsOJfendzu3EOK6vWZVbz/cV8Z3o5ZEhs1QCiKjqIUOWlmrctCcda/XaAIm6nRz7Q0ygYP2pnlnfAPVHm4DvZDVTma/N7UJ+yHsV1RHhOImKG2q1/npiDixizhiYx0URJ4i6NcUtpqM0GCriavIZvjqNk2wmZMeun/DTiswzDb+oGRHt/ti0+YNDw8zOjo6rcIWjwYb14/xllefRqUcgMSuPW2EhuSmhX0OUZ9rGYeRFnoXFMAU66lUbaXeHqZFFccsUNc+SXNsQcNcrGtR1J89loEC4xtMSTr0IQ1tO0IJbn+NsOzG0k2dAnmFgOJAFSOKsOYSRu1MqILvhcwZnGoIdBaBctWjXPUwovGckIXDE3EtM8HVBmXt+kRGMVYtNvUtFLywkwIv5dHWV1DwdIijpYHXG4Fa6MbSvmq5NjAaEctERBSuE6GUdFhn/dqpLQUkc69aignZ6UNF2014u76Sdyq1HEg9W1UITpIVKrLH3TI9U+WZuD8VxsaiKVtvoW6gELx2MWfNJrHIMgglgr8psgJDNeoaoK0iSf1an77vMr5xxnEd5/l44LGgJ0kfr7rsTXj93XdrwWSNc1/0oyeEfj0Z8UTyB4DTvncZ55/9f+gpu9kL5pW6Ww886mm344PZlqGvCIZ0xtw3M4QORAO92zXOSwgHhahveuMJNiOgFLptF4TCUNXS0im/YZFKGVwvQkQRBlmNViMdB3D8CNPDrO4VaziOoLVh2cAoS/tHcXXERFDgrs0LKEeNVuuCFzDcN73q4UGk8JShP2OJAKiEDlsrfUTT8DkXgdGNvR6KoBzBLfYqlANS0ZjNHQo4tTySNs8o2bSGMR/ptgTJ/FWACO4UjNzd2CTybRpfJUJhc4hTS6zfmW4URK5NkqHieEkBvPFaQ9vmobPHv/Ffb+Gp+z5xtRly/tAZM7YwzHac8oVfUZnKuK6Y+H/aSsaRZwPNAETb7EcpVdF1DVJa3NVRECVuRYKKVEfzdPJjMX7jdyIaLQNNUCgivw2RUKRuK6YroU9UQt1UD4LjR2gH/IEQCcFxBNcxNhg4ic0QUH5IpepSqRasewuWYfQVawz2VePe6uZdpaCvGFAqBBhRFBy7+Xd1hOfUA8NExLoxKUNonPT2aSVdFX31OnqCqyLcNjZWraDohagQapHbcq3K3BalwNFC0FGDVIffH1Cd9NOg6LZ7AoUtNlfRqd924nKUbvqlLhg2pCP0IHQjW/QoqcpZBHcS2gWwpSt37bMS17onqVjbmGgHVTseptr821GIEVRoBWNthMhxcMoRKmpkXUqkoZ6IAgrFR+F4uwPg8SrclmPHxMMPbeKX3/8jbmgJvALUhimCkSLiaZxyiDMZoiKDaEUw6KE8rx7QLGJ5SaYyulMTGIsI+/SM4hgS2J9snW5M7xqFOw7RUGj9DafRnlDq8XQtsDzN77OqaNcPmdpapFgK6B+s4hfClO6FoUKMYnRLP7Va/ffv+yFDc6bw/IjRsT7K5fauqkobHFcoOgEHLb2PAb+GsbeVkeIURSfk2rW7N1xT8ms95DHLj4xAQUf0eUFL24ITsaBvgvVTA10DVUUgCqbnJybR9OREVTSogQCZ8NK5ZufdsA7VeggEAoWW2JW1E6uXxr9KrOtbYUsjz6wN2b2OUwNvPMKptboVxbIGTmjTAIsfC4EihHi440Ejf+gwpcVL5zTfjp0Gs40/5AJDBn/760P8+f/ubTimAAxEjrKWhPpRAJxAMGIQL1OQLS7WZhwISjETSI4nVgvq2/QswhIN/uACmD6r0HfCZlIRCycuLYwm+bGKC+JMw2c0mXuL4GBHVK7BKUZ1P0RP6C9V65dluwD6ijWG+yqEsX+e69SDlJOqwc1rVwocZawAoA1eHBTdVOyUohsyGWgcJQwVKgx4NbQSIlGUI4+psFP0thVwmueche+EBFHsZtQwN8EYO2sVf5cGN6f20I7gFOLKrwISqSbrTNIQKBoIFISZ+ISM2Ta1MjUP6Vp/YWciNvm6Nk2eO5WsOmtBUun7lzwEU4AozteuImKTsq0PkWpDOy1TrBDjJCn04sjzqE9hIhsorUQQBW5ZWthcEEZ287SjOPLOELMtC0aO7vjcx38GYaMTgY6EwsayFQpSgR+UEfytNbzxgKmlfZZHZIhZatzX4EQKPS6IFpsOtV+1FMdUWIFeFA0WPCkKwV4VvPsLSDBDocEzBINV2OrHv/XO1ypUnXi3bFqhb+5UakH1CobhuVP0D7RWknMcQbnC/EXjhKHGRArtCG4cJCwCw0NThIFD0EaYcVyDiHDAkvvp82z/WZ3dgr5xfB1SM5rF/RPsPryJkaI1l26tFVlbHmIybBZGYiWggf5i+4rRSoFGGPCrjFU7+5ApBZXKdH3ErPCkGhJatN/N66EAKUSYCReCWLvTEGLZwYMg4RlaIIqLhYo0P76G79n3QAkEA4pgKrYmhzZ9q1NTqDGDN9XZqSZ5VZQhw3cUpuhS8x2cSmhjLhWowNi6PllEhjUPb2Fk7gxNaDsIZht/yAWGDH7xP9e2PW4URAP2ViU/JKG+qdehEGlpqfZcHaQuLCTHVZyFU9siO7YDK1yYbDakyBbdCUo2pR3KZqzRIfW4B22vkTb745QGqLhycDz7rlBYwSKJrUjqDpRCtGcalpEGHivB0QZPm1QnHhptg4WdCM8JiEST3Sr6TkTRsRmKjCjKodfgCqSUjR0QsW1dZXCUsZt0FJ5yCI1iYd8UOpNpwkEYcGsUnZAt1VLLpr+gO7stZeHqiMA0/jTq+ZIVnhf27KPl1irB9SJcL6I6WSBKzfKWCSfB1KKlHlyoQELQtTj7UDeXWKwVSUVxu7hGh1MVdGi1RKKs0NlyrVgBQ0dYY1poBQfjgjeZ2SO0X5gl9nG/2fdOXNUgyJpagI5MuvEQgVtvfJDjXvMdPvO5o3nKPktmcEd3DMw2DVKOznhw1QYeuGtd581RG+9eJQIRlNaVmVrWVyc+yY8qY5W2QgaoCrhVYWoBqFDF7WJ+kVEY6CpoI5T3LUO/EDytjLPGR290W4SNThBXoBghpQg1NRM//VhqQeH6IcXhCtrNrF+Evv7OG+8ErmtadiGuNvS7NeYvmyQMHcamSqwfG4zdPy0tnVecZE6hvYuRVrDv/NVUI58Vczan1geAEb/MXL/Mqom5bKxmN6F27kW3e/VopaDfq7Vxi62jUnYJW4qHdoaKNxIqTvIBxIJSXShL5qQKBq0CZNJDyk3usKrpbzNckMhanS0Npi60KtJ9RYvQqBTBEJSNqgfwY12SQl96JrsQrPDc0kwror6k4IegagZ/tJqOSRBBaPjosf/Jv7z+ebztQ4fjuDtPgDDMPv6QCwwZ3HR9azEpAaJB+1I3SN1krHcCOjSYpqweOlDW2qsSn5r6tdrEqS5LtFoVwQoRPkSDmbm4EMV0xChLaLtphERb64Lqs3UPmmsQNMIyAKWwKVNdwS1EiLFFz1xt8D3r+2+Jl4ASim6UOWYJUMGNcE1EGCn82IXICg0w5FfwG9yMLJGuhg6jtWJ8P4WSG9Dn1lpcjUSsJqowMIGIaiDsyb9dDANelfEg8fmUeJyAoJtvV9pPRqsv9b8iNog66wqVCBHt+4EossEGfiHA9+26+4YqBFWXoOLawLhYdShxsFhDdy4Yx7r8kGjwO0B8IObRiVUg6ocoFHSkIIS20YfxhkRV6lpMXGtV04E1O3eFiE0bnLGkqdAK0irTRlwgqqdgBcvA1jy8mQ++9fv84z8+lZG5AzzjOSt49sF7ts3Bv6NhOmnxdqagthydcfOfV23TdUoEp2bQVYNJEmMk1tyEfmSNgPYM/phQnavqB7MQqyAor6zAQHyxB9GuNaJdahCB99cSGNWRR4gjmMHIWj0LBjXVeTuQpEPNdlUaKeMWIqKabhQWsDQ0Mgq3QyroTig5AfNLk3EfIF7AUKnC0rlbueuRRYyVS4golvSPdd3YLxscQ2INS5aHJPLZioHNjAVFaqbuNVByaqkLbTe0c38VsdaJqcliLCxM5zef3FOr9CrEWfxsFr6AMHJi/mGPmVAh64s0aI7SjUg3rU6mrabBKpF1ee11rfFszEJdMFHUhqdHo9vnQcr2r6wFzlY6Q0UmFUSMEX7xk2u4+fr7eeYBK5i3YJAXvuSZzFsw2L3PHQCzjT/kAkMGUbM5DGy8gqM7WvqSLbiYxnNG20wDdQ1SnbqllugoFtY7dR5bGpqfkmjBFK0FomNhHJT1Se+PndEdA2ESKduG+0ADHdJOrLnXQskPKHhRwyYfwHMidKodoeGvjq9NXZiUoegGeLq9m5HvRAx4VSaCIkUnYMCrtc2vncpdTcJCc5uSE9LnjKGUUIk8JgMXVwu1qLeFISFuyXpDo1BK8OLUpUUnpOQFhL5mw8RA23uazl0LXiHE9xvX7RdD/GJ99z65tUiIY5+3bZlZkCCqM+NPmzfzjOSLC2IE3Y0ZNjCR+j9SJtEJsQaVJkuauELkKpxqo6sSOsPlY9c9NV7DiHDpL29CKcW5P7iKpbvO43PffiPLd5/fZfDtj9BolOnONMMe53PsHHg0+UFEBKcS1QWGHlBiC61VRdrvUGM66Ix6mEXVlnO4EO0a4N7fucBdtKwW01INniB+BDXdls4oFMbL+EEpq1ACmxWuZb0oaqGLo1tjATrBVVGDsJD9qxH2XrqOmx9Yjglh+dDWrn1J+v82a4l50vK+rWwJ+jAC5dBj2C9nlEyd0ZLcR4Rq2aMyZV0BlDL4xQDHjahM+ZiwU3YjheOHscW+LiyArePg6whivmuMooaLmRMgW/30evtnmu9lN33hdJBm3at3EhUVkWf3Il1UkYgzjYGNoGudA8Dvu3MN9921FqXgzG9cwuvedihvePcLd2h31tnGH3KBIcbkZJUgqG/gRIHxHUxBT9vHOkgyTkhTJqTstamEUdcCd4Jg3UOy3jGCEBXtRssUbLqzJCDWdqcsM3HAuCbOHR0TSUdscv12oUZp7QT7d2CwXNd0xelKG4m4wemSQ9r6e9aV4gqh4ERd25fckKkgYm6p3N0sjB2/W6oHpWDQrcQCShkpwWitRNl4LZaJZmRN30UnwPUMW6olFIb5pSkKGbO1Rlg/MdgYJ4Bijl9iY7mKVgq3i5lbYu3QnDkhNbGMPwwUtUmfsBYHuGlBOcTCRIeJd+MZErvGVdoLmEhngh8VwJvq4pakFDpsU9Eo5sqRp3Br1jyjA9PyW3DGKw1zTzZlax7axMfe8l/85wUfYGBoG3JOPkGYbSbnHJ2xfs3oo++k4XequtJ/BTZxQAcyp1A4mx2CDhtBMz8kNOA87DcoBNBWWDALQ0ytrkSSoRC11WuMoUqm7UmmMJhQGKimG+/2tFThzbAK86DfGhOX9hbzpoXDYyzpG8PXnXlJdg4dzygY9KrUYp/JoTgout+ttmRYykIEpoLEZ1TQGEb6p1gzaYtaeH5AaaAuwPUPlZkaKxI1uRgBzB3wmSJAlNDNmKqUjfvoc0KkGCBzygRjPrWtxTgebppoZv0zgcTu0G0mN7nEZfDB9s/aWpPpnb5XBKfc5X3JPGyJXanO+t6V9A8WOfqNB/XofPthtvGHXGCIcelFNxOESWVKMAUnptiqq7CQ/AaNr+oWBGxwkI4gKDVpiDJmiem8Jy22AIeGAGZTwJrwYoZglMRmR7GuRdm+HBtUZ8tHxwe11RqpWHpRShgcLuPGRdnqGYVsetNE/15wA8IeKT0afFV1a2Xmdu33GN6E6RGhHbvN97aiqswcBOb4ZWpGMxEWOwoNjoqY409hAM8x6bN39SQg+E1B04OFGn3eZsYqRcZrPrv3L+Htex3KYUufymWP3MUpf7uCtdV1XYQFAEVN6poVxxX65lQJghqR2NoTtTE/9kfrst5OyhllP1F/7CZQEXTQOKHO1yqqQ0JhrD5flUxeKXRVcKIuUqADgkEHpq3m0vguutrKKERgy8YJLjrvel79ln/oMLntj9nGEHK0RxCE/PaCm+pEZ4aPVAFRySFDjiwN66b1FXputJSorppjszDEzAvRWx2oafAFMye0v8vY8J1erEFGAiRQqEpcFt4RTCGCWt11x+sL8ONg5vY0XfCcyNbLmQFKbndrhFKwdGSUJcWtPfvqxR/i/CMt43naUIkMJqa77a4xBga8irWYxwq5XRdvYtNYP1USZVN9zv3DFRvAXXWRwOfVez6Tt+/7XOYUipz810v49cM391wPZJSCGrzhGm5/yNTqfis09Hofk5sxs0eSXutMdR5iapGDWzb0bTBZfWjdLbbgdNb+QcpY3Ilevq+t+NF3LuNlrzkA398xt7KzjT/smHd5O+D3l91m/6Fi81ksLHSkLE0IS3XKnmwyRcCttinKE/+iomlklDTaZphJrhFHWhmEbqOFUoDXSh3SGIUstMFzDZ4XUigmPvoSWxAE3wljYcEe9x1DlDCqnhAGvSp9bg1XG2rGpWY6+3iq6XXa4BrlqgiNEIhO/VYVgqtMS/thv0okLpXIbfKrFAo6ZG6hjFIwFbpUMg/Iul+1n4ujhZG+MnNKZT71tNdywLz9ADhi+dP452VP5YCLPk/VdNO2NW3e46+uK3Fl5+R9lEYGX5+6xTSZQVSwBd+SAGddpqu7k7iKyrDgVsAJkk2OwpkUnN4pxGOGE9VTS1JnJlLyiAouzni1bdDoL396zQ4tMAi9fVC33ZElx46C229+mLGtcdqxhh1RbwhgPF1PK9l8aZu+BGtZ7ubKIQjiS2/trQNmXkTG37Gtu2c6MV8QP6FXlko6Tmgz1/UFOG34ShauNvgzEBY8HdHvVW1ii9gG2pE/KBoSXXRHdvva0AsA1abEFomCacCrxok43IZxdMxPhop2Y2syfSkF2otQbdyPlALPtwkvFhYLfOmgw9NzX37uv7D38AjfuPPS6SyooU9cQ2FeherGvu6NExYS9HBrbXcdgLEFPrtNZmx3j/J8oW99iFOJ03+jcMKs1q7TOIK/sWwt0F3atOunUg7485/u5qAXPrXHYrYPZht/yAWGGOWpJDofxM1s/o0gPao9G1/V06pmoAAiGjMomVSpby/uZE5GiPpsufbs+elm4BLfWPejrilu7CQKxYD+vnpGC1dH+G497U3WOpAQawch6Mk1heX9WynFLjlg3Y4ioxgNikRNxXlKTpUhr8qWYBqvpQj9ToV5/iTF2PRtBMbDIhtrA/i6NZORUjZTkqMNfcrWfLB6bxuYPeBVKToBvg4ZcKBiPEZrJarGS4bsqQG7dfRuQgm4bP3/sbm6lakwAF2J/cpmrklwtLUKKC2IF8ehZANfknco7LzpF7DZV8IM+4z5mnHtO+VsbeOqlIVWREXqFWVFrDtcO4EhrrdAJOjIyjnRsG99VAMb/AnUb6aGqN/HnWjlSls2ThBFBqfLb3B7YrZpkHK0R6Wc0X5OQ/PfjPLimbvV9ahdhikZak+bXjGyZmQVLr3gF8KGOgrdIXg9Mg1l2/o6ZOnAeMNc4pxuHQWHSDSu9LZYW2EncdVNjiQ6QEU5ak19moSM9HkhIiGh6DgGz+r3pzLpWBV1rT8oqh3TecctFGyuTrB6agvnPnA91264j5qJeGhyEzOSQDP9uQMB1c2x10C3trXWNL29ByB9141nlUXdJhMMKkYH/dR0pgzMvT3svCoR3PEaznitNZ1qh/btHvr1f9xxBYbZxh9ygSHGipWLuP/eDUSRqVsXIE4xKo3HqO/TUFAb7EzZFVZASJUZOrYgmozCuJlWiK3cGZVooSFKersySXOHHWmR4HohXiag2XPC1EcfpCXLhVb1jEjdswQJ/W6NotMY/5D0McevsLnal2r5i7rGstJYGiAd9ahxMOSWWVicbGA0WsGQW6HPqTEWtk97l8RToCwTcFBoDPP9CQpukO4DlAZPWwFma63Exmpf2/6acfXGG/nVmktx43szGXjMKepMnENzHz0IfcyQHM8QRjY40Uqp8cJDVc+t3aU3m/ZUNY6YyBweBIPgj3edSEtsXW3ABmamQoiy83Ii+zfxeVV1aRPja4yrcCejzDwUeA6iFaopotAYYWKszPBIPzsiZhtDyNEeu6yYefB9UgSxNuKD155HtNN/J8edKqhQ0kKhWUSFiNq+lY71daa3YSfO8d29YdGvIqpT4G7TvHsU0WzG3OJUfF3ruU4CzURYpFiY6D6PtJOmvsXyn8nQp1fmHqXAU/XaEOU2NSHqgkibtKEd+jzy8lMZ9KdwdUQ1cqiYOG/6NgoN2jWYTmlcBah2tyB3H8D2EQ6AHgXVy3CUDKMU4thYTrdqH4LRdh/k1AARCuun0NVGjdPM7wCUJ7dNaH4iMNv4Qy4wxHjpK57NpRf/1X5JdvEq/pkFxhLt2PUn8rX9ruJNWoQtctU9StcKGW7GSpDUO2hKXmQcaSss1Dtp7LfxtDRWAm65ODMpLQwPleMu4/SfmQ1+rChoq6kHm8WhGjmZXuvsz1WGJcXRNDai5XqxAcXl2O1nfsFmx9Dabvq3BCXAMODUKDkBRmAiKlI1HoqI+YXJjnNzMfQ7NSZNc/Candui4jiVyAY/uzqiqGtprEa2v+TfNvbBYSLslUFDGAs3UMgEg3s6omYcTL9i01R/TBy6PMCWHm0b7UdQderucQl/UGJTlWpBmUahIf23DT3pPJoCUwQz0SGTkjT9hYSbYhxj4x8cUFEsLEhGWGgZS8UB+xqnmuE+IojroGqtrluFwo5bDXq2MYQc7bFk+Vz2f+4K/nrj/Zgu2lABanN9qnN9jB8HChhb/2Q6yWzCIlRHFMa1Qr5TtdnGWtqtrFka0InlTPOVq1OjZvcd+++BYoUFQ1Osn5he4azpv+nCvMIkxcSS3U65Qz2VRxaTkc9A5FLQIZ6OGHLKOBiq4jIeNdbf6cS7BpwqE2EB08ZU1PqYhEh0S8xeM531nJAg6mJJFvCcCvvOX5vyWYBK6HLP1nlsrfbVG7aM0hldLUUKlFaI6WFB7ob4tYiK9WKg04IItUErIBgXjGfj5wC88Rq6GrXMaEYzjDcACxbPmclVTyhmG3/IBYYYT3/GLrzydc/j/P/5P3RkMFm3JKymJ3IhjAu4ZSmRDsW6HhVooVCpL6q2hU4aEG/6jGPbKGWZRNCFNisUhDanfTbjTfpvRWwulzhWQeF4IV4hJAyclLq5XoR2rBbc0WKDfHWz+qAN6YxLyyf+ngUnIhJbrE0AT0UsKEwyrziVWiMiFIG0creCE1IzDgNulZJb3ygWnZBFaow53hSeNvVgWzXGWFBga1BqNvg03iNlXY8m00p4dWgER8GAW8NXIf2uzdIzbjq7DIjAHH+K8SBJm9faxlERfU4NX0fWQ0gcQtEopfB1xEixjOdETAU+tVhTVYscgqhLPIciTderFPgDNYJJDzFJxKLdfOMbpKat0JA1fcVzt1VhexAlZet+6GpG0Mhab8I2sxQh1KBjHukFsQXb9CD8yloadLW9d2d2y/Ks562k2DfdqqlPPKJppM2LdqK0eTk64/2fOZIPHPufTI5XMA0ZACwEmNy1j7A/w1aVVcxEvs1E1kxis7L4xHJFbUQ17gCVRgXEhTRjDa+KMEPdf2S9LAxpfZm4er127QBpenAlaEcIYiblOxG1LrQqgRHVY2xJay0U4k1zLFO1aPw7u00pNlQH2X/wARZlzKJKQSRbWV0bYTwq9qR5fU6NiaiuBGoeS2NYVBhnvjfBX8eW0kn/nRwZLlTZONVeuaEQ5vdNsNfwxjQVeSIMFZyQp89bx22bF7Gl0iMeIQMRkFAjQUJfxLquphajmAd4ggoUmKwL1QytDsq6Jc0EohRBUeP5BlyNihL+JDjjMw9wbugbUsv1wS/aMd2RYPbxh1xgyOAd738xu+2xgHN+/CceWDtK1p4pQDjYKiykWgaxgoPx6ucEqzESperCQtNvNLFQ4McZ0tw4lSrWGtHOV1aJgkCQAg25wcUR0iJxjoAnaMdQiOMTCplNuUJwnQilFJ4bUQtBtdgbsxoni0hUSvCSW+EqwdURCwrjzPEqLVp6RwStQqpS175YJblhQWECp2lcTcRcf6qhjwSDbpV+p0bZeO1vTuYajWQCjiTu26Kkawy5ZQCmxKebMVQp8JVhyCszEZZavGL7nBoDbj1riAh4OsQITEU+KIWnDL42KD+gPy7QUwudWHPXOnbyWOvaB0FpKA1VkEgT1FzCsguxVQHPcl1JGHZcEbx9BZH2EBdMZN/HJPRFmUTgaGorsbapYN9vjCETF9/btNyc6kopVJgxTysgMvzDi58+7bTG2wOzrTBPjs5Ytts8vv3Td3LWd6/k0ov+iolMw4tem+tbYaGdWlsE44Gq0kSRLKYWK2pzMu0zkDi7MskGWjmou/uQkQBGgo5cXOKq7+2y/WDsbx0U2o1QGpSSFhenSDRrtw7RX6wi4nYVQuLJExqF2ybltqcjlg9sRdN6zlFCJK1CQyc8tf8RFvnjLf1ohF38zTxQncek6W4R9nSUxmClAlS8BgfDXv3rKOoQg2K8JXNJIwSrPOvzqkwFBbIvhq8DnjFvTRwXEb8OJDXU7AERWDG0ma3VumtB4hbcjS9VtxYazhfnVvAGqwQTPtWtRUxgsz2agrFW4JpKvRRUODO61Cy7NdjJ23TlThhKW4BY+aqi2ClXmF7MQoexBBBXo6oBe+y1iKW7zJ1RX08kZht/2HlEmycASin++chn8f2fvZef/M97mL94OH1Rja+tk3wHimmtEMRiv70q8myGpEwxybbXgd2kNeyhtN3AiRN/VBt9fykEX8DDfpJ8x34EBRsk4RYaC8IA+G7IQLFK0Qvx3QgRFWe1UA1alvY/aRXHFzRqZHwdMOJX2t6eZF3ZrEXJbQpF1xkhwoAzxTxvHNUhE4ZS1iLiTMO+nzAfheBicDGxIGFSYUG1u68dUHIjRgqTlJyAJDCvqAMGvVpqcUn6tONaLRZYS4vflJfcdyOGiuV0tkm75FsQJb5l9qCjBccB1zcU+2sUBmtxITTsc3exgoMviG/iK+35XmsUIOyHoN8WBRQvtip0EBacKUmHrq922yAAkUF8F1P0kKILWqFqEd/8zPm844ivccNVd25z/48nEpNzr0+O2YHFS0f4yEmv4IKrPs2x7/nHhnPVuV0sYTFRMPGGPPt7NA5U5tGRt9jrG/+Kg03VOVok2FwgHPcwQSM7NzUHU3YaabqA1DThqI+ZtIoS1UaoyA5cDV02TwxQq7mYaSQ/qoVulg2mmFecaCss1HMfpObRzn1HDrWaYtfi5o78AWChN9a1H5WhtQmyX5cURynGiTOmExyu4rFHihVGSlN41jcTMDxj3prUgp7lDZB4D9t70ucF9Ht1zXu9bV0Tk9xXEahuLhBOpFkocAoRheEKjisUhqsM7TqKiuchrv2YfoMZsB9xpht5YZeSxGKKrhuxlaIt6ddThv71nW/WzMQFi2igQDBUIJxTJBosQLnKqpvu518POJFvfvpcKlPdUjltH8w2/pALDG2glGLJshEOOnQfpN8lLDlERd2TciiASDAKaiUI+iEJ/um2n1JYczWAKCHqj+srqMxHWwuCUYJRBvHEbhBLERRDKIao/hp6oIYqRCgMXskWHcsSVleHFL0w3eDWN7q2BkPjy6vSTXd26UY0QZSE49r/z/EqXW9PEluQ/S5YIUJEEQnMd8cY1uXYr7Tbj6gxZWq785qI5cVN7FbYwMriOnYrbmRO7IBZchpziHsq6jqeiI0xFqygMuhVWVicYFFxgmG/QifyZwPDbRB3GmzdhIIbsXBwnMFChYIb4jkhRoQwaqTErraF8rJ9e4UQd6CGP2SFEuUYlB+i/RBVjDDFxJ+JrkQ6Pa6sW1LYF7vPqcY2yUeFVlgQQLSywmwczG+P9RAfRKyAkJ1QZOzNSoTyzLnVqzZy/Nt/wPW/v6Nbr9sF1qLT+5NjdqFQ9HjJ0c+ub+CVLfTZUwWvG39LqNgFdQaRwmHJEIwYJFUuKyTQROM+4ZSDxHVRTNXBlD3CzQWCUY9gq/13NOGDKJQrOH5kLQuNs2pC3J8oajWP3hWvFeXAjRUesWVXRfT3qLNQHymrd6vzn3LosmZykMWF0e59KOhzAlzVvRDYPn1reM7AfexRXM9efet4Wt8jaIy1cHuT6VwdJTHP6L5uiccueQEL+qdYOjTOypHN9HmdM0zV7Qe2b183pr5VSljYP8HC/nEG/CoFN8AJoPJIH8FobEFRVkAYXDaG0vV7gIL+pRMM77EVf7BGQxCNgmgwsgX5prl914G9ThzSWEzT9D4nPfWtr29d0vXo2AlKKUzRmdaoSZ9RybVpiZ2MdBu/h2EQ8duf/R/HH/efhMF08nw/cZht/OFJ65I0tmWSG/90N9VKwMqnLmXPpy9rabP/M3fh5xfdaFOiTpOgR74iKigiT6XMYSaIirQELSf5tsXLqnQFDChH0L5BZbIZaWXw+1uzE4Fg4jRx7QmY3dIaU688Kag4SZQ09OPriEG/mmr6S263nGvU5yL1KO+iY+LVwYg3STGJlJ3GD0irCPv6tui/ARhyysxtitCa605RNlvZFA6gMTgIEQpfWS1Ot/zfgXEYdivMdSepGI+tQR9V6Z5GDyxNc5UhNE6DuT0p76GVQSsYKNSAunYpMorRcpHAuDixr09oNJLJq6uUrQAaRqBLjdow5QjKMwgO1FzEtQS/bnVpejezgmlkM7OItZlnbysoG+eQXpNMRCnCosGbEtDKJgGQDndHKXQtapALpOgi5TBlKCrIMk476+987peceeneO5R70mwLasthISL87cYHWH3/RvoGCjz7kKfQ19+YRGHO3AHmLRxk0/rxeGfTkbDW+3UUUUyrs7EJ04VxhWgw+ZFnz8TbzopHWAGQDB1VEGZ9jQSnP8ApNaY/rcsB9W1sI2z8Whg6eF47JUv9uv/P3p8H3LKddZ3451mrhj2805nuuVNy782cEDIQIAQaUBmVdvjZQrpFTaNNYxokTX78GtCWmP7ZwW4RaQVNg0ZRUWlRBgUCGkBAgYQEEELm3OTe3OncM73DHmpY6+k/VlXt2nvXHt5zp+Qlz7119rtrV61aVbXWeubvExnltv5JQEGSmQV+Ewkzo5Uyy4cYF5Zr05Dcd7m3HIrURRZP2XkvysDk7JgME8FBHLy8RuBZvRs8nO1jRSuPB3gR7u7f4EMnt624UrjG0GTcM7zObjTloekBD00O2I2mrH6ey3tDnkj1m8B+Om1qWjTohUPg4k1ORinHeYrE2igKixSlIYLALxig6ov7oQ9yRClIIZjCzI/jakyYjCp/ZqHzlbGICvURCd6FpXRIKkWj+rvcS0mm4xVvp9W/xOLTeAZLD6F/hZshBRJklt9910f55Z/+Lf7gH39V98N4Buis8YffdwpDkZf84P/xU/zUv/j1WeIacHB+yLd815/ic7/oRc2+n3z7b88mjmd+0C6QEiZEEPgF4xWKgHbRMIU1Vobg5gvJzIvKgu/5buQjZ5G4wETzwnxYzLsW6CD8T4uIflLOnZMYRz8uiMTjgdzVBdZqIVPZi6dExhPJvLUbqkG/YdyrQiqOi8khCQU33ADFMLAZu1VlmKBUrF5ga0rEkYvDacSiWrZnJ1yIu+Ec+qbgrvQGUeUGVoVp1cb1cod56NPwdyIFtyWHRNVaHknGjs24lg+46bZEDxGaZOcm7Eil0UOXYnEN9JOSlHlLfOkMk2KmqHgPWprKSjifkK2qyK6DQwPOBF3NK6IytygvftahSC4FO134vf6zrSxU5HqCKZUoD0WpbUmQW1g4F/A9G6bUuELKUA21THIXap84P3e8Kjz64HV+7z0f5zNedS+fLLSNhehTyYL0aYLf+82P8ze//V/x6IPXm30i8JoveQnf/t2vJU5C9uf9H3o0KAuEcRqdlAEUYx0aQ2s2aAzkrTm2Bbl0Pm9iNa0+QBKP7S/ziPnwm/mLGPHs9jL6aYaRgBo0zhPKVsLmTjzlYn9EZJXBFt6ELvIqnBQph1mP1Jb0bMGoTJm0ahz0Tb5VUvdt8REP5eepgzOru2RoMu5OZiFNi7bAO9JDnNomV8+r0OvlHBU9Hsv2F55NUCxeuPMIl9JR8wyfO7jKbckxmY+Y6mbQhuBBiRmVsxCjxDp2kvnk4DnlLtGqmNz6Bz2+2aPM12QsGxqDZPyIwcfS1AAR152sv8AiQ+Xwalc0WW0ocmmF/NWLKC70ia9NlvmDEcrdlJXMUQR7OF66hjHCz/7Ir39SKQxnjT/8vlMYvutb/jm/+vPvmw3C6vPmjTFv+ov/hP/vW/4UX/onPot/9/bf5jd+82MgQbgyCq6jHkNNAuQDoTbNSxUDIkUY937NkxZCCIggmCzEkMPMswDMLL2N4hAWQbNQdVNmXVh5tcJZejqr6LyfTOm3E7IUEpPjgXERFjAjYQGLpLtgTuYtfbvGBYyyG025LTlpvvftEWMf4xGseFIpQZVCTCeqUvseYnHsR1OmPq6K6whGPJE4zkfdkKswy31ov/6+FNyd3CAWx6EbkPkIJYQqDW1OKsWcVTs8I+VCcsLxpI/bEELl1FB4Q9HyDnidQaAu9tMrjIvZAj8XUmY9Q5MxLSJKZ/ELiBhzT6lKpqPv4MSEUKEthA2phrmvkF1wHaesCCAudgw+10oICqgY4mZtzp2vwZMhZXhZGplQ7G2aIUkUfi894mZj/PFHbq7v/NNMuoUF6VOJIfx+pw//3kP8L6/7QVw5v66qwn/+D7/H13/V9/IDP/UtFFnJX/6mfzp3TO9axslOtMHTMG9Y8UkocGVHWhXpXD9WorEhT/12nHteP2nI9sqVXeyK2U+igtv3jyujRH2Mox+X5KWh9JY0KulFBfvpE0O/efDkoCnoWRSWk6Lt1QnXP3EJlze0IwJDm/O83mMBjltjBGXHTumbkIPWlQxeJ6C2PepGlKHN+dy9+/nI9BIPTc8xKlMMyqX0mLv6h/RbVc1EaNAHA2LRpvUhfN5/dJ76pQ3jnP1ed04gwEmRMCoWYcOXqcwN2XgNqMeC4C9eibJTrFdti06dpxOt1mnVCmUvAMSUOzFlzxKfFJhpGYxLiQ18YN7yNffdHI6xo+V8Be+Vxz5xfWn/M0lnjT/8vlAYvPf8xi+8j7/3nf+Gx66OQhwcdK6Yf/uv/hs+89XP4fve+g5gfuCbslWwt41OJEIxlJDnsEAGkByKGBpjeG0lqP70MQ06hc0lJCdFVRhSXR+gcgcHrH0N6BfxsvBujG60voDgvBDZsDD1FhOyasuLwiDOyVwYJqMiYS8JMKSz9rW6T0ciBfmii6Q6RlDOzYUIhZyJoc25YI4wVU6595C5mLJxCMtcOyBEuBDujqdnCvKWchHjViREz1zMXZ4XEeX25BByKK0lFtfAwupCH4QQsqUaQqmuFjuhgjSeQi2FznsSps6QOYvF4xGchp4Yul9U0bilu5SA4OiKbVBTxm5mkZoJCAvKTVIJP4buysyzW2tqNtTNFDvBAmrb6C42MJZVEodLgyXJTBz9m8tvsU3eBq9EQ1E1EFzVfhxiXWul4eDCdh6dp4scwqYQumW08U/TJxtdf/yI/+cf/BI/8U//89rjHnvoBm/77rezc3GH61fni4dFY8fg4QnjO/vzUvecGX++Paly3AaPw8ndVEh360znEB8ZivNbZB+voC6+Md+nWfdFPJf3l0EoagNKEnmSyppV+IjjImE3ruP9tx/3qnAz7zXKwmI/2t+vZPs8d3htbVvVGU0xT5i5cbpyyVpXaa41t1cgsZ77+te4lK4vRjB1EVeLnRbfWP0slIA8+OhkB2s8FwcnJNatjYD2KoyK9V6LgCwHk5N5FKWVnajIDRQ7rgyep6HWLRZD4PE1xxrBJyGVOzrxqDH4baGzVUMuQweJwLlLe6fo9FNPZ40/nHmFoSwc3/X6f8R//pnfhiSBXrLWAuSd5wf/zs8xycoAQ9b6TQhKA6JN8TVvYHreoGvClYRgqfVU9RbqH0xAUmrXg1EUyRUdaGWMagl/jfVDUO1mGNsgOkB9++tdxyJBjzFVoE5sAhZ3o2Cg9E3O5d4xQ5shwNTFHJZ9PJZGwJeQRLacqBzCfSI767cx0Ncc9VBoRNmy3gsQSUHUqBKeC3ZEjKPAcr0cbGSEa34F4EJ0wjW30ygL7d/qe263dxCP2Y2yOSVl4mIez3fIidiNxoByYmBcplg8fVvQsyUnRcLUL+dBFH59lrxq0Hk9sLs7JctjtBWO5B240s5ZLkLtjGDdDDkBUu2vLxXmhJTV99blXT+M89rV7CNB8s0AiLXRbe1xpvK01Ekdqvgkwk5aOTGRQZ3nwqVdPvNz7ttw1aeXzprL+fcj/Zd3fZTv/IYfIptuzsMC+Jl/9U4Gt+12/pYcFkQnJflBgusZRKHsW3y6Goqo5g+7D8L0POR7q/mTUM3RkjXcuysIcOHndTpJ6/SdNMesQKzrolGZ0rdFVQgzGFcuxidcSo5JpGTqYx7L97lRDuY6IRIKmC1Sl9LwgZPLfO65j2FZrfjUq9OeybhgJwieQ9fjul9dS2cWurT6ZnumZOIdbkWJ7dxbHi/qsbFmDZ87R+hHOaVGjYfDSvir1GXvdddzWiQRITaO8xdPOLrhmZz01vanpnLXY8eWuq6TEuCA6xoM4upKzQuyiYf+w54oD2N5q+GiSjTeQlz2WlleBUTQXoJaM+d5rprjy/7U52xz5aeNzhp/OPMKww9/z8/wq2//L7RgFzZYcJT7f+9hrBVclwEVwmRx1dIirFUWqsMbq63rM8Om6mxfgml/TVhRM5k7iuSodi+Giy0Y0c5chKUjlaYYWRCQcw6SMX0zxRpP38zDtvajgp4tyCqhtycFkXGU2I6lOLiIF+9haHJKtcHArME3EJ6Nx1TJaLtmwu3R0ZwAf2d0k0PX41iHS/ex7ZRMTUnsXeVGnKFE1f1d9JSCqepIzH7omYK7ezdCFWsRduwhJ2XKsU0p1NKzIRwskpJrWWAuRQdjWEUioF7xXsnLGGS+iqcYiBJHWZimiI9EipZAFASOkCbSikGTUA00KgLq0VxPBDSFUiAe1X3oEkS0fkwARJMN2msV061WqsQ7H/qxOJ9EwAj/w7d/FTbqZtTPFHmVUBdlwzGfpk9OOrwx4k1/8Z8wzeaVhXVvLM9KpleOVwJhGKf0rs1CJo7vG4BsHrfZLoTaaFuMl5oRdfY07Ev3JvjCUoznrbc+N5h0vZehpl6ynRI1I+U5fWUv+gRTH7FT1aip1/iB5lxMRlzNh3x0cpGeKUmk5LAcsJ9mjMrl2gmL/cx8zL9//MV8+W2/h6jOXkN1kaHkTNXyyt4VztusyY01CYx9xK9N71gp8G9ag1XD+j7y3ecfN/1f307710HkOBdnSP+I4yJlEBVNeO+Hjy/gMBQ+oqy8L9uuJwqMT1Kmow2hS7WeBGgM+UVPci2YCef0OgHpUBYgeJ3Hdwq7D6w2JCk0hlZRoNDN1c9VEeeRsoVCJoI3YAqPtOKvL96xzx/8E588+Qtw9vjDmVYYsknOj/3Az6NFtehNJtDfNHmEKLL4Il+b5NxQZRVdt/oKIRna9aoJsyiQLZCPlXXFqur8CACXRdh0BtumKjgXLPXdpytptBrmbelaNQqSKTmfnnAhHlXol55Y3IqoFKVnSy7YUZM45lQY+4S2JmTxxB3wqCKwbydMNWbiY0L9IWXPTtg3YxIpicV3PvZ9O2VSppTMW+m3dLwgKFY8iqmqli4mEs9kbG2vpAv9RwmKk8agAco1U4uta3R4IbWeOwdHzfM5LlIOi161fncLAwGRNMRFRgZ2ejneC3k5qxpd9y+KPUVWMbadEkqDFoJmBrxi6oTF6gajvFIuujVZNAVfMQxfMstLqLwDc/Y5VfIdoXe03ZNXE8a01AnvdcxXtT37BbfzB//oK7dq6+mkLrz5rmM+TZ+c9DP/6l1Mp0XL+rPdyxoME8aT7YRpO3a4/upkaKUK8yuguE06EWbmj9cqhHXdIq64IqJ/MCXdy1AvlNOIfJTgpzEmzTrXz1sbq8Gb0DMlr9r/OLf3jonEU/hZ2cjFBOML8YiLyWjuulfyXa6MdxrBeB19fHyBf/3QK3nZ/kPcN7hGYkoObMY90TGX7YhMTcNb2npdT0peljzOb+a3r7mXNbxcwK7x7k/8Ah71BtqzY85H4TnkaoNxriVAPm93Fnp1VKQ8Mt1nYtaLbYJiTYW+t5cx3M2YjhKObw5wbsWzbSkNMlVc34c1GWYvz1eAGJ38ITQwuSjsPKLBAFT9VCsKWivDqqHYpxjKniGabhFe5xUpPRpX/Z9kMMnQyEKvh4jwN/7Z6+n1twxteprorPGHM12H4e0//J/ITiazHXG08Q0q8MDHrlZfguC+iuoJYbLQphLC1dpF1pRQmEfr0KMNa0kXUtLK69dKQiX41d/Lsl2sR+c+Y+tIohDIXqppI5Otugp39g+5d+c6e3FOQUyuEYZ1kzx0ZNpCMDIoOybDtoLozRrzgkhANDofjXhWfJ3nple4FB2TmJKIbmWhPu+CPV649+rbxnsNKkCkIbk7WnB5Sx3gvwWJzBflicVzKR4xNBlOa8/FrHEryn485WI6Il6RPK4aUJJq70e732lczlfylmozQfFUX2mphlDsT2ulpLolD7KKGbSv3wc3hOwgjPNaWZg9o1kHfE+YHpjVT6w6V+uHXCnopo2lXd3IV/23r17Zr2eSzhrO9u8nKgvHv/7Hv7K0xm96WyoCg2RruTC9GRQLJYT2eTvDr6+v52JwAwn49puuv635oxYADZhIiYcFw0sjRBR3UsWYVPe+zBbDzWXFJpuiEonjcm/EQZrxkent/Oebz+Xjk/Pr6px25gjclhzzJZfez7Zr7PVih1+8+kL+6YOv5iuHH+Pzeo9yRxSQitJKYF4kI3DeTNmTZWiq9bkNgWbLXfvYGY81p+ARoAxtxp3JDe5MbvCc3lVe2HuUeEX9iN0o4/k7VziX1AhBy9cRlMjM1w4Wgd4w5+IdN7FRO4lt4R6sR2IHtxf4y8WMiVRkNunHIpTDKuk5Ai8tZSFqtdWs9zC9GFOma8RQEcRX3LL0IcmxKJFJ5cErHYwn9IcJdz1nFeztM0dnjT+cWYXBlY4f/u6fmu2oNFFKt9rSUxcCiQySe6RcbeWvlQMRaRhBU5W52mqmUOy03HEyO7+rTQCNdK3g1hxdK/7lchiS+lCrQEQbQbcXZ1XRNm2uNiniNYK0EkvJjp1WBW1mdRO2iWvNfdQSmsNF0taq41S2EOKlgo5r7VnDiKASzm2Abm0/aVmr5MxyNXbMhAMTGE9PpuyYCXfHV3lu+jjPTR/nruh6VextQ88bpWHW58jUdSiWb0AEhlHBfjyuwpzmH06NrFSf6zXUZnDYEMJllajGMqUWABRfVgqGEGK8eh52HU2aSfN81r9QmV0aLGTnmbmYVzwAnwpuldFHpEpurudHsD5J4We/V58/+6PvYtKBjPFM01ljCL+f6Gd/7N0cH06WFpTZ6rhMCridhCPnKHbTULhwzTWUUJunSIWiD+VAKPtCORCKQYAfdlHFL6p50sar72pPU5oKvuvIJvNrlFTLQP/8BOOUAzvl/HDMIMkWjBS1uVk5mVYe+ZULtbATz+fBKYapX8dXVrQkcEf/iLt6N5uWNpNyW3yysGf9qcbAK9IrDGU6xxPmR8DqPsaUPDe+QkxJTMGeGfOc5DE+f/ghvubCO/nq8+/kswYf3aLvIbyqrlcJoW0j3SOwSkHj2YMbpLZONpsX+qPKPdWlkImBC7cfEqc1D67ONx4zLLE7JWbgIFXoe/Qgn1dOt3kdInhbzSdbKQ0ro79CJ/P9FUqpamBy1VCXqg/2sZvz/MZ7xlcP+cV/884tOvj00lnjD2c2JOld/+F3Ob4xc3mStJKdS0eTadt2Q4vghinlXlgkxQOFRyPBm1DIqhGQqnUmHwpuUJW2nVPrw0ddEbGhuvil755/PtFqgtWiYddgUojqGSRzDQU0C6Xfm8GmAtze6+PtTSJRMhehCFYcvbnwpLY7NuQKPKt/nb5thzyF5LDNQ1xaf4W2UlNSYJn4CMUSV2V1WOEtqC3+ccsrsc3UElEOzITL0QkTZ7ni95rXM9GkgkGdJ8MsNyKNymZI9EzRhD/VlEjJnp1wtexOfJy/g3kalSnzz3nheIWDNMOI4ShPQx5Edazzs3O8Cm5poRGsVYwpyYsoyONFRCdKgwXdK+EwQpw0YVAb3+xC18VveCeqlD3BtpOk63nnWk/HCHjFjopZmFMTfCx89AOP8lf+h7fxt/75X1ypxD8TdNZiVH8/0b/957+2vLPFD9oegHrY+16EG1ZhJ0Yod9IA8egUjS0+scGQ5BSTl/hIOHz+EI1bfIZZw64ns/lQkVaKvLRKLjTTTqAcKr1hzvSov+LOAm+I+8smYREQqzzr3qtVscgZPXY04GAwZZwn5GVYP3bSjNi4Kvl2nj+AMIhyUrNsET/diG+eLqjw/J3HeGh6bqszBfiKcx/s/mENxeK5Lw6RBB/Pz3NMHxFBVFkXhZ9KyXN7VwC4EB1TqlnK44vE8/zeY/yX8bMp14hYAkuGp4km5Lq6ZoIIDKKCQZRTeDvHA2rD1LpzjVEuXD7i5uM7TCcpiGKGHR4NIRiVDHC90mS3MS+r0hSrDvFb64+vjEreCqbND6q5YrK6Tk/VhWvHmBvHS81QOv7GN/wDLtx+js/8/Odv0dGnh84afzizHoYHPvgo0o7Bs3Y2m7yHoggCifegoVCUGij3ktk5hEXbE1AC1BIEGwG1go8DhORKGP5qn8mrP11r/+I59T4HQeuvmdZsEtV/qyEoDNXe+cwhQXX5tV6ZjulZR2w9O0nObpIxiMslt63gseLYiTLuGVxlN87nw3IkCNeeTd4BJZHZDSsGi+fATrgrPmRHxvRtMfOqLLUVdvRNtmC92oYEW3lAIqMMZIb00ZechKLymAQXcoTDimfHTBvmF0Ki8iYOdvEZ7Jj11ZZUqRbz+QfchXox13MBi2KNcq435fLghAu9ET2bNyrkrG2W2qqNpdb6UKPBr7herQD23ZznYO3zleUCPt5AmYTNdekmEqqea+Vt09qnX/oQl1pfWyrm4BXyEvISKR1SuvC9dLzvN+7n737nv17Xw6edvAfvZcP2TPfy09RFn7h/BfbjgtRVzwkPlPu9+d+N4HZSyv0ebpgEDPnIoonF7faYXu6FcIyOdhdDNOyEZi5oVCHomTCntELU83EIDYn6BXG/FviXw2P65yYrq/+CNlDZzW1guLQ7JjLKfj/j0u6IizsjehWPiCWsl1KtmYlxnEvG7MVZp5B65Hpb58m1VSIR5TnDa7zq4OPMKyfLZPA8p3eNrzjfoTCsWci0MlrXa+Xt8VET4hPYe9vCP/u7Lzn3xFeb83qmZGCLTo+3EXhO+vjaMCdFuC0+mtuX63Y23L4tsEaJjScyrto2LzR1P/cvniDiMf1ytcdegB2HVpWm19WSAkCVaMTmROYOcjX4SmUoklIxEzfflirmsetBbusSPhS+47/5Hh594OrpO/AU0VnjD2dWYegNU7S2UHbNBgWcC96G0oU3ayTgVbaO9xZ8zzA3q2rfoEJy7NmUCGCrdb2JFqkNKoYQFmJpFAhBaPJ1bR2uoS1lwUPUNusKNto84hK7TaKzsBdPua13wkE8YS/uLsIjAs6bNe3Vwn4+t69eDGNxXIjH7NsxF+xJ4xZurwGGUKAsWQr9qQKsVj7ywNSiqk2PsGsyEmpFIHg6+pKRSsFQMg7MmHPmhN5CkKZBV14nEs+BGdHFmepzyg7FTVa4m9vnti1cVpTUOg7SabN3FqG6+oVG1uOLDS9cgKQ1ttYpDQqULWbgIRqBT2UWghdD2Qtzpn2eWqHoC1J4TKmIC+gYxnnMtMSOwyYoWinwi7p0Pf9+5od/jd9550fW39fTSGfN5fz7iZLemuq3TRLQbJNVktUib2h9pkdKcnM7icBmBBQaaPiDxiFUSWMqHqEkBxlioHcwpX9uHEKPxCPGEw9CnkKUhvVu1fq1KMj6ym+8LucgMkpiSm7rjzifTkjt6rDMketxVKanCEsKmlJtJX/FwSf4zL1P8EUXPsCze9dZXJVicXz5uQ/y/7/350iNW2ppk4dh3Fqbe6bk3vhqU6cnIPGFENwYxyV7zHPiK9wXX50D6dh0ay/qP1zlI3QdqZyzI/bsZG6v3RA2W1PNW0RoQpq2VdAahWeYsRIsatZNGFbP18zC5paPU/DQuz47TWElktgiZZdSvPfYicNOXUBA6urL3g5qO8TWOpy8cLz5z/69ra75dNBZ4w9nNiTpNV/5Mv7+X/mRKgbOwTQLsySOmlLIKhISLRXwHl9DNrZWOZeYJZdxTULwQESZUva7X7q0mhMfGIKuKLyoKG6wEOOx5NILE1NNJXyKItZjTAhF8l66LQanHJM9W6xMLAZQMZS+jplcdFXDvpksFFCbsajair4rE3qmYN9MyDSiUNPAqVocTrrqEXg8StTJFcIVBmbZK7Jvp5Sak1VY11Y8PQnxooJnrOmcoL4NAu+F6AQthUNfY8/NnkOhFu3Qx4c257BcFUoQKF+A7NOqH8M4Z1QkGxeYU0Xs1IprlVqhrsbfbj1dJVRrdrPvVXmJ5QuqhpyFrPJGSFXwsGfI9qF3GBqRwmMLP38dEdy5AeZ4ip3Ou8mlmqs6nvDtf+y7ed5L7+azv+Sl/OHXfREX7zx3iht+cmm9+jc75tP0yUdf/Ic/k5/5V7/RLVV3eRnM8v5NpEDvekl+sLoOQ3NJoP8YjO9irSkvPpc1XYz7JXF/OaSkTmLuvqTQizvOWRMqOd/L7egD49t5xc6DVdjN6YWizzn3cRR4/u5VRmXC9bxP5mK+bPej3JveZBidFvI1PJMCmCysoTsm48XJwxz6ARONQ0SOmTKU4EEpVebW823m/dDmfOnee/ml4xdy4vu0A8xui454bv/K0vvZsRkGj18zAHJvuZkPtr/pFRT3C/Jsk8bAnAwSQKA0RE20nqGdQv9qZRStqbFrbfHuDYyf3Wd4/5ioWGNQu7APe0N4+HGkbZqvQwlFuP+9n+B1n/UdPOcz7uYr/8wX8jlf9lKMeWZs42eNP5xZD8Olu87zwlfcO3tjWR6UhuMROs3QJIJ+EhSIJJoVdHMhBkk8QTBvZ/d3kBIsQ+t+b6+VtqitSDr3HxAKuQ1WJDc0JNSLjlhPb5izM8gY9nMGvYKdQU4/XfQMKKXfJsE4FGeD7SwdDkuPnBiHVBaZvhSctyN6S3GtuqBAaIWiNHPv7tqcAzshlYLLdsSQumIoRDgumRHPjW7yvPiIZ0dHnDOTObQmi2fYCiOCqppy3YaE33dNxsAUTXJZgue8nZOAV1SsnicROIhGIcxJCmIpScgp1NBhHwFgaLO5Ps09IQ3eg6zy/Sp14eUgwO9XXoZtWO/Wlr36IlTFeQS0xkstw1g1ORjXWv/bkKqLVM0VXwNk1a9Cg9JQxgJOsVVis3Sdu5N2WpFUFSKLywo+8O77+Rff/e/486/6y7znF9675c0++fRUWpC+//u/n3vvvZder8erX/1q3vnO9Ul9N2/e5Bu/8Ru54447SNOUF7zgBfz0T//0LV379wN96R99JdLlzYKlCSQQxvO0OMXkqhzF5RYIMxVZB8OHQOrjFy4lgxLZoHtsNnYo2RyS3rYUEJG2pdzHPJztL4T4rG+/TbX1HGAY5TxrcMjzdq9C5BlGxRrvCZ3rpFcYq3B9RWFMI3DOjrkzOuSO6JCdKhxWNRi4Wiav6uzN83o/mvB5Ox/m5cMHeG7vCs/rPcrn7NzPCwaPLfDDug/K5YUwpUW6//gCq/MsTjE8t1V+269cgtJQDsFbZfCosvOgsvPIrFBnc/nTjK/Kyjm6e40xrbaExhF68aD794oee+Aav/5zv8Obvvb7+Gtf+/3k2emVyyeDzpqH4ZYUhk8FRvaLP/YuPvDu+7t/zHIYVzHo1SBUEXw/CW7Z9ox7EhIsF1FibAFmUiU4VxBkrudxfd16ktm0pFcpCUvxk3NvNVg1EusovNmIiBSbWSjPZgrF33qm5PbokEvRMXt22hLYlb7kXI5u8uz4GrdHN+lJXgUVLRZFCyQSqnMCHNgpd5hjLsoJ90SH7JusYSBGYM/k3JMYLpgxu2bCns3Yl5wDyTknObtS0Ftj3RKCl2FoCvpScpc94nZ7yOWo4DP2/wg78bPW373C1MdIVQQvFk9kQjG6+v4Xn5cR5dm9x1uMd8ZMPXBSJNDJYoXIKrcNT7C16X5lv0IoVZxuYO5KMLfVvYjADcJW9hQf6ZJABUH4Wa/TVmFKyiwpuuLgxcBgSr9xmPv+criIhKy92TFeKbKSv/anv49rj97c0OJTRLrldkr6kR/5Ed74xjfypje9ife85z28/OUv5yu+4iu4cuVK5/F5nvNlX/ZlfOxjH+NHf/RH+cAHPsAP/uAPctddd93afT0B+lTgD3le8nf+2o83eW5zAmZTgHD+xak1wbh0S7RmECz8ZBwMHgo8Ymny5adl2V3XFQ6nfa6Ohwt7N/QToRd1Q36uunIkWjkxV02GWR5ZVBXm3DRpHix313q/Q09nztOJT7jmDFe8ocBwySh3WM9l69mVtiKwTF5Dvl5Z3UGEY0cy7khfxB2DP8UmpUEVMmJ27ZQ7kkNuT45ITdl4gNpDrP7bVAa4xUVEFT50dJGHJvtrr9kGKFl3TFYswOR1HgiMKgOWVCHaURV+OgCTzRSFpfNuRXRKDC7ecKIIDPuoXe8d8VUl6He943f5of/9x2+hM08CPUX84ZmiUysMnwqMzHvPP/7rP77ydwEYTWhnm2hs0VpIkRYTKXX9zCMke3a+dA2WWN8VKusJ8ak9xfcqxUEUqfHyV5IixmOsp5fOEnQ7L151qh/lxNYzKeOqGBnMdzggBB0ks3jKIAiv70cqtbKiFYRqGwpUuWBPuDO+yVCC1T8SJaVkT6ZY3EovRhu534hn3+ZNbGubgvXnkIEpGUjJeckZiCMWra7luWBzzpkpFs88hJ5nz+QMJMDMCkEJiQRiRkwm/5Q75HfXMNEQAnZgx/Rk3qPTl5zb7E2iGg+uOj4Sx46dMrAlz+8/xvnomIHJ6ZmCHTsllRK/FFQ6f9Np5Lh795DIrI6NFQFrHHHsMPEKpUGr8dFwVp1xWAtE4PaCJWlr3Pe5bocCVItDSBMJOQwbzvXxCg/DQoaYqlLmJT/zQ790+j4+GbSN9egWLEjf8z3fw9d//dfzdV/3dbzkJS/hrW99K4PBgLe97W2dx7/tbW/j+vXr/PiP/zhf8AVfwL333ssXf/EX8/KXv/yJ3uGp6FOBPwD8p5/7XR74yJVZnluLVqFwub2UzoVoA3kDPjrdOavkLe8EX6z3Fs+6t174H+UpWTkTGmWO9czzBwhhqvEWibVtui05agzDprUW1p9RBT7R7vcMpqG7/33ZvvAowEACPOgFA5et0hdIBFLgnFHutMHLbBZcok6lUmNmPosSw4kmHOa/g2b/lF17bmU/VeHY9yru2toPlAjX3YCyJYIVank4P+CR8hwii3h14dv1fLC1HF57R7r65T04JyRxDT2+aqwoDF1Ivq/zaKoXpDFcfxkU6yNsT026TcFcEUjX5CC12/PKv/tH/5Hx8XqgkqeEniL+AM+MYebUCsOnAiN798+/l8ceuLb5wOlM0HP9uHN22cyvZBD10S4W5mTlFvlaCFukSDBVxI2iqFU0gQa9buVaL0S9knSVINg6DqAX5URVcpoiHBcJU2cbG7bgGdqMi73jOZSFUi1TF9zWhoAgdM6ecM6eMDBTDMrAzDL0CiwDk5NUSV47ZspBldC1mE8AMJSMnnS7Cdu3btic0GVQdsQt8XIrQfbdM45nxROeHU24aKfEOPZMHqxfolXeuTYoIPUWyYRn22sL1rHZyxlIzsAUPDu+zn3xY1yyh9wW3eRSfMKOzRhGOXt2wo6dsGcnDG3eoDeJwLl4TGpLerYkMp6dOOdcPFp6Bkv3a+CunSMSs+il0Oq+HVagKC1xWmKT+XoU4UVUW6RojbjVllKqTzcIFcrbtLEQq+pqpUDploS6joPA2coSyjIgKE2WF33vlXf//DMTltS2FK7bAI6Ojua2LOuOZczznHe/+9186Zd+abPPGMOXfumX8qu/+qud5/zkT/4kr3nNa/jGb/xGLl++zEtf+lLe8pa34Nz2ISRPBn0q8AdV5V+/bb2CuRTOEpkQxnoLOQzZQYXQt2xc75zoSphjbc+0iuISj+9BfpRu7Mbs93UHKqM8mav5EpSGtmAf1sKdaMog6gLBCEJ2YkL9mHPxCfvRmFgK7khu0msFtS8qDTUwxVzOeGf781RszNRdpnNGGdbXaH1KxSPuiOBZkXKHhR3xRFp72ZUYz0BK+lJiq/6MNSJXGOhDpMwSzNvzfaxJld8WyEPlOwhC4vVyhw9Mb2+2D2a3c93tNE9hXoEL31927uGqBsN2RhyZ89hos08Ezu9N2O3n7O+MiexCrSOUfpqzN5xgBwUNeFObP0gYp4cvqOScNj1dVvMafruFeNlF2STng7/5saepUzM6DX84DT1ThplTKQyfCozswQ8+wltet2WWfOtNqe0ODDW5YjK/fHz1me0biCt0idpA4cMEKgZQ7hEmFrPNRcGtJ1n1g6Gp7iwIOJldROevaNMSk/gt+VYQfZ3OhyIZPJfTY+7qHXJX/5Bn9W6QNtUlZz09cimRFNwWHQXIUSlJpWTPTLktOiLqKKiWmpIdM+W8Ha2OMZXaUNd9QMkMgWkdUlG7PWX2+mKC9SgRIRYhllm+4lAcd0ZTYgm2oxQlqrYYbX0PuV4DU3JvdJVL9iQoCOQcmDEXTfgeCu2EcKQdmxFV9zSpMttDru5ykbv6WS0WkztIJtzZu1Ex1tUvObLKHbuH9KKc2AZIvcSWJKakKGOyMiayniT29AcFca+o4oM0bLWlyAni1wRFa3A9t4OIGni9Ne/FdskWVAr4+lNBA4Y9WQ55AaVDSxegkNNkMeYu9Mk9M9h06s1WG8CznvUs9vf3m+27vuu7Otu8evUqzjkuX748t//y5cs8+uijned89KMf5Ud/9EdxzvHTP/3T/NW/+lf5W3/rb/HX//pff3JveA19KvAHVeUH3vxv+MjvfuJ0J3Yhs6y7TrWVfSE7b1vhTiys6zTTvNGRYxjdHoxIYb/iU224dXGckB/H1f0w99lcZishRCi9CeCArbVYJOR7xcaTWM/l3jG3pcctq3/LOEHBhWTEhWRM3xT0rKNvCy6mY3ajbKkf9Xpo8N3gHMuPZYmmGnHdbY/AJALxmmu198eiXLCwbyHCc97kHNiCgZQMpeS8zblgplw0GUnV5oEpuWAmDKRAVbjmdniwOM91t9vcxbzHSHBYMk0AQ6ERRWfOnBJJObe/b0s+98LHuKt/c6t779mCni1JrCO1jkGUNXl/xoQtiZSDnQkHOyN2B1N2BxPO7Y0Z9Aoiq+goZuWKLSGnYXz73K6q97dAqvh4i5rbqiGsvIZYreG61ygO/hnALz0NfzgNPVOGmVMFZK5jZO9///s7z/noRz/Kz//8z/O1X/u1/PRP/zQf/vCH+Z/+p/+Joih405ve1HlOlmVz1rejo/VJQG36P//CW5keTyFN1x4nMBcDJ6oh5GFhVREgGnt8obhUqtAhwUehgqdGUAdU1me6CMqdVgO0DExSWWwNwRU18ei5xb4JWofeG8UgEDlsr8RE2mmsWkW2sjB4pLGOXOqdNEJsLA4R2I1ySi0ofIQVx340YWiypaI0NYVEMN+4VFNpW5J0LvG4i2StQKxYPO4UQZD1kVVJpbmwAkEq70HQxVQhlea1ddwXOLR5aT1RjExJKcmo48/CiUaVBEdZKYwZFSPfou8icD464Wq5N3cXqQ11IXxHHYd2P70aIqtV6BMUpWFctBNmZpaqXoWkUhStKa8gZahvvbJgmwA2VCs3TomPBGmHMbdfY7VIS1eSZ/VbfOJQK0i5ApOlOs4cTeYW/eY4Y2BnCMcns2Ot4TM//wXd/X+KaRsLUf37gw8+yN7eXrM/3bBGnYa899x22238wA/8ANZaXvWqV/HQQw/xN//m31y5zj7Z9KnAH97zH9/Pj//gL0K/170AVLT0SreUTuvoApcI+b4l3w/K+Nw0aZ8wd/lwVHbgcfvVrlJnJ7S8Btm1PuUoId7NMInHGD8HkbkqHGWht9gK/96I4lontHXy/XhCZJTUHjF1MYUaEuNITajRoBr63bbcQwjHiUvHxYVKzOF6ax//BqFTuekGnF+HNrKivc3HhSMH4jloedznvOSL3yUYqfrG8bFij3yNB2RmV9yuRzVfLdVWPEWIjHK5f8xDk3PrT4ZQq6GOMFA4zlLcilpAkVWsnVdQUHDTDaE/CuM7IN+H9CYMH2UOont7Lg52VFLuJRiXY8crJABVODxBVhmJtDqmFdoUxZbnvezZp+jJk0On4Q/bUm2Y+Y7v+I5m32kMMz/xEz/BpUuX+NN/+k/zbd/2bdgNuSBtesphVW+FkX3Xd30Xb37zm099rQ//1sf44HvuB4ICsCoWVSGsWK0YOJOVuKgbZFgAU2hATrIwPRB8aoIslVUFdRJFraAS4r6bExfaUYVoqpS9sEPTaglZtMQ0MSGB2UQ7JTaeHVQ6QxKts8IpkXHspjnOQ1FBdd7WO2G3gqNTDZUfa4rEM4xG7FTm4Roxqesx1gypLuI2OMXiXd1gtazWmJ7hOVg8l0xYckdqKBHijeqRNq7lRWVhdrnwRD2ziPz19xWUBpEQLxzhyRpGIHPHA0Tq8A2XlkaIX9ljVUq1OCL2oxBmU6qQ+TjAqoqyLrZRBCblbPyqwqSov3efl/ZKimKGELK6sFMHVYXXyh6ktXxWc4PW67HT4F2Ye7a1YJ+DLRVspaSUfq6JGmzAHE5DwbYOEpHwBge9kIdU0Vf9+T9wipt5EmnRWrzqGGBvb29OYVhFFy9exFrLY489Nrf/scce4/bbb+8854477iCO47nF/8UvfjGPPvooeZ6TJKsA1J9Zejr5A8BP/qP/iLEGn+eQbBcDDSC5C9bLNbjyCuR7Fh8Hr0LX7/ONLn4NO/qPC8V+CFFdLXsKbhrhphFGBNKcweVxx5q2TmQTdtOspY8E08Eiml3UKBWhyvBSKyvdBMKNcsD56KT7sW0hSSb0yZnSXmgMyovTEaKW6YZ1dnap04itMK2NHyt4RBddKXcqZWHdtcL7iMU1z3sVWTx9k7NTQbt6DQncJ67HcZFixa0U/qlCydphxoWzuBXxpNspmOvJpzC5DXpXg0yEQrSNWFAbXHNPcjWnvK1Pfi4hdRk2W+ARAOMpcvXGFh3yYAzGCl/yNZ/H3vmdzec82XQK/rBo+EjTtNOo9HQZZrroVL6QW2VkL3jBC1Yysi76ju/4Dg4PD5vtwQcf3Kp/H/ntj8++ONf5npp9eztzM99Miy65ff6c6mktIsv5CLSuZlt7FtdYTsQJ9X+YNaOp9VOZRZS5aeV8CoVb9frCibsVvKoR6EWOy/1jzqVjSkLyVok0FYOtOIZ22igLQQDfHPokKPt2vOBREIqFMKiuM1MpePbgD3JXvMMddsodZsJtJqNGst21nj0zs46sovqRb65Bo416srZnMi8XBDc6TcztKjKN4kOFPT67coSjLzkDyUjJyX1EpsmcpcmiIc8BV0UMdSfGqELmDNNWtVbn6wrf65WMKJ4PBdBojXdh1v0AseqDVuartpCg19SLoqjgq2q02joVD2aq2FwpBpaiZ/CpwScm1Fao2vKRQVUx02ztGisiEEVImiDW8P/7+3+BO+69tP4eniJ6KmDzkiThVa96Fe94xzuafd573vGOd/Ca17ym85wv+IIv4MMf/vCc2/2DH/wgd9xxx9OmLHyy8weAD/32gyF8zfkQ8tZhAtSOxUYAM1oRZ0cY565nEBEW6ogtexTW8Iea0pu1uZ7uzxZ5VbwzTKcxpetquJur9aOcflQ0jRrRzvDJDXVJ15JimHZU+9pseQ6LSs8OuLP3UlIxRDgsjrujMYkosTHsSESyhRhz2qCPguXnsLa3CjsmZ1t7uqBVYdPwcC2OXTvhQnTMheiYXTPifHQy9z6MhBpDF+NjTlzKsCmsuviCwvdBPI+gmK1EZ2n3a+G7AZtslzNRVyWfnAt/uzQ0uFamIpwTHebEhyXlxSphzgjZpZTpxRTXN7jE4PqW7CCidNl21aQ1/PO8lz2b//Gvf80WJzz5dBr+sG3I6q1Q2zDzqle9ite+9rX8lb/yV3jrW996qnZONY+eLkaWpmljjdvWKgcQtzwGWi7DjUI1IUxt1W+NOgWKcu7r3KBu12NoteuT2ktQacGGjXNLIKAkUVmR1lHLHe2docyihsflhSUr2njaM/fyQW9CYmcegsSU7MVTmrioqtHMWwRPzxQhbKf7NrvvQyAS11lzYazrUJaC9SOm5ObkZ1D/OLIQ01p/WgkhQTOrV0tCrb7XObmrvAtNf09pZVo0kkdrVqn5hD4osaQU7Jgpu2ZK3xRYPFYUp5aCZW9A3fV+VZU7Nq7KE5m3+OXOcDPrzZ27TQhUMOTM34OkHjWtWiBLJ4FU6Q+1PlScg7JmBq3LqoAaoewJ+Q5kQ5DSE02UBo0xMvhEKAeWchhVyaQWTSxEBu3F2F68eewBWMt9L76TNLW4FR6Jp4V0w3YL9MY3vpEf/MEf5Id+6Id43/vex+tf/3pGoxFf93VfB8Cf+3N/bs4l/frXv57r16/zhje8gQ9+8IP81E/9FG95y1v4xm/8xid0a6ehT3b+ABCnLaf6NAvbAral5AWM51H0AHAOF3e/Yp8KvuIDc3Oiff4plh/Ttsx2KQ1zbWlQ5FXIsoQ8X2U6mfV4J8m4Y+9oLjm6O6dAOC57T8j63CkwKrgGsa+bBGXiH+fx7Hfw5E3u245xjRIjIqTG0pfV5qIelvhU7tTTkwgMNxTbmPlIIFfLjp0wkIyL0RGX4mOGJiMxjkgcAxvqBHXlvhmUXZsRGWUvmS7lElrx7CQBGbFNOsf7u++hi/rnuvB960brixKgtGMY3wsn94a/892ZIlEmYfMm7Mt2IeuDnSoSR+gwWrLU+b4lv9gju9wjv5jidhPKuw5W3sMixZHl5Z//AkY3x1uf86TTlvzhwQcfnDOEtNf3Nj1dhpkuOvUs+mRmZJ/1h16KqZPTvOLzooLYYbaZSmwcTWGSQ1bANA/vrh+jVvFGm6RQFwkuFVzPUCaCi8BFQWJXVVxPVgtb60iYwZStJQXjEaMY64kSF3aJYiRYlr1XEluwk2Qc9MZcHIxIo3kL98X0JNz3wqrgsZhqwbEyn2Ds2FTsbVbIZwbVWrlyUXI1zXGzzyDa7psJsYSqzUuJcQtXqWNEEwKiUZ2vG6OcxxAZQ28bgbnp22aqc6jafdjiLML9hSJ2B3YyBx1btzFuSn13U+1ZsOIZRhn70ZhhNCUxRRU3vGyfM1uYXERAF+EsBHS3qCxBCwp09akGtEdIwqzmUbFbWZDql2EXP8N1oimNNWgm71SClYWyvzgBFJNs8BVVL0dVuf/9j/Dm1/5ffOuX/e+Mjibrz3sK6KkqzPPa176W7/7u7+Y7v/M7ecUrXsFv/dZv8fa3v71xQz/wwAM88sgjzfHPetaz+Nmf/Vne9a538bKXvYxv/uZv5g1veAPf/u3f/qTd6zb0ycwfAD7/K1824xEQkuqPR7Pt6ASmGVKU1ffjsO/wmOyOIW5gKXYtZS8ovq5nKHYtrh+QkJRqLaysOmZLj8IStafFqqndtCtIb1ZvpigjxpOYspQQjloYLvaPuTQ84bbhCfce3OD23a4woe5OHua9zv3bkXbWHRj5lEeK/RaPmfNJLvRmfg3N1Cz1NJLgbQieCCGqVpkUQ2wM9pQv4PQzdjujTX2k18Bv9+Mg8C8b6lYPGhE4l4yAEC62l2bspxP2kin7yYS9NCMyjkXGOqtxsaJXK35K9zPSvS0gSVtddv2Q1+At5HuQ7UM5FMqhkO8L+V4wwqbHnlMi9c7g77egIiv50e/7Ob7us/4y//HfrIcdfSroNPxh0QiyKsftmfRAnzqH4bWvfS2PP/443/md38mjjz7KK17xiiVG1i7DXTOyb/mWb+FlL3sZd911F294wxv4tm/7ttNeeiMd3LbHV/73X8zP/KNfDPjaRYFXxdQJboCKwLAP/XROChRVzLREraksAYpGgSFoHGKu1QpqJUQR5YqaEIbUtlybsiqfvoIUZjjGUSWVrl1nBOkVJL3ugjmRURSLV8cw6bZwpKZci5+dGF/l9wpUwm5AJxJkXcgUEFGSUIT4fYL1o7Z4FERYzemLq4JslFRKDkxO2iyQ2gjnMUIiQoFn8W5r61I9sgzQx2DFYhCsETJ1ZGtiWgUJeQn1jhXPfqYsyNy+TNdpdzU8q0dVSMXhNagO9e9hPVXO2RG5Rox8Sq5dBcpgL5o0+RMAKQ4sTFzMMIabeb+yslXPXRSzJlG6ZtauK4wtUnQ/R45jZg9eqMtI1K1pHIR08QIa4lRtlxe+ZnyqqytCVzeqUUAUM6VvPBjTwm9emLwPz6cad+9/10f426//B/yvP/yXNp355NI2XoRbtM5+0zd9E9/0Td/U+dsv/uIvLu17zWtew6/92q/d2sWeJPpk5g8Af/Trvoif+qe/soyq1YGgIlDF4wRVOn7smPzufTCCpjJbaWT+HKvQf9zjYxjeOeTa9HT474KQ7/n2jtWkCtZDvGhNNuQtAIRHDvd54eUrVc7a6cThxLpThee0ekGE43oxJDElkXicGkY+rVCBlIfzc9wZ36i8t5WHvAW32kUPl70Ag7dAIkKCpfaXCjOPs4iQqiHbGJAaKEFYHxi5cKcK1xfxp1eQQSlaK1x3JETbfLN8QH/Bm2Fr9Lt2nxYaTiJHka9fWbvuWAR2bj8hHuacPLLgzVs1LiTkNKgh8IuuRgFxt6CcbVl/oSb1ivOO/+N//Ac8+4V3ct9n3H3aK946PUX84Y1vfCOve93r+OzP/mw+93M/l+/93u9dMszcddddTVjT61//er7v+76PN7zhDfylv/SX+NCHPsRb3vIWvvmbv/lU172lpOdPZkb2+r/5Z7j+6E1+7ad+M+woSzRJm4qeJDZAM7ZIraHc64EseH9LJT4uyc7H+KSWghrxCQGikacczhigKEgZrKddM0EIbrmtrU6iJIOuAm1BrSmdIRJHXq5+lbFx6xEpqoVG0Sb2XirLlVNpPA9N3Hv1d19yLkQTUskpsNQVDAASSnZNxo60Q8OUflX3YLEvjSNIhEiFcs0sEoJyYcWSiA1CbMUscl2Vu6LN3K0ffZfhtxbQ3cK+srm3LoYbTsorO1aNE+7FNA22w5Vi44k0Z2hzjlyPIzeYa+1GMVgKzar7MYgKtBR27JSjsq6YE/rUiwvGecJiH+t7yrK4o+8VGdDYIVltm1ug6tZ9NINMjabr9d0QxqcbF0SNBRULpQ+wqzt9/DgLSsTiwK01H+9DrHkVm+Cd51d+7F1ceeAqtz374voLPpm0TeGdWyzM86lKn8z84c57L/Hmf/wN/NU/8/dxi0pDPbYWJp8C0/suUN62022G7VwSFFMI2SfGyIGEubAFBQjVFsreJhJgZ7NAX7iIG+MB54ddidGbL7GOf6wjIzDRlInrtpbelVwnlm1hwgOVlUqxyg+5XPRstn8Tb4HwDrYA9lxoGzJfF8FbfTOGEIrlW+XputrStqFmoc2josfvHK8XerX5d3ZeJI7IOEq/fO1tQs7S3ZyTR7ZXOKMRmC5loXVR1xeik1MoZoTnMXrF3Qx+6xOnUjZE4Cd+4B38z//X605x1hOkp4g/PFOGmaccJenppiSN+Ws/8j/zJ+97A+ObwW2nZT6DWV1AxlCg3Omu4FmLh8vKwuzveBxClOo8BqiQk1IqyNXqOtXPPqEpgiIlAQd0JSm23w1r2u6hdwYvMC0sabTMPBSZE9oX2yi8wdqCniwrJp7gMjMh6aL6XdkzY85Ho6oHhoTgRfAIPSk5bydLq1AMncpC/b1EiWrhX0Pi2WJvQyiSYESIK+t9bUUyIuyQMNaCttrQVhZiIBZDjpKrLikGSoimGRKsPA4hAzJV+lIy0XlY1fqhRHgOdYBIyM3omxxVmGrM2Kf4Vm2J9j3v2SmFj6q6DVB4w3RFYkvNSHqmII08tvRNfVJB8SoIHu2Ic5tOIpzrQG5pPWDZtHAJIVZVFFMuJ3d2dbjsCfFkA4OWaqbZUOHZ5g5/aR8euhYQYNqd9VXCKuG9+yxv/az85i+8l6943Rdv6NiTSE+hh+HT9NTQK7/oRXz9m/8kb/1ff3S2c4WyAFCeHwRlYWH/HC3IUfWa5J2SHirT86trncxCJQXXg9Gz1rnllkmS7azmN8YDLuysj+VWrSA/lSaGPvPRKZWFULjzxb2H2LUZmY/5RHGOx8qDhbAdObWyUFOhi2hO21EdmrROaTAIuxIz1W6PvQEGCJGEtbdAmarnruiYcZFyoimrFAdBsSh3RDeIxFOq4cgPGPl07vg54xzzSsNHxxeb1lZR32RMfDIXDumRbn23llHWtCnS6YRbS9FxrXyt7mcxFNJTKAyVXwJ/bkh+z3nSj1/f+lxXen79Z//L1sc/KXTGPNBPbSbQM0Qiwld/81dieglmOMTEcfDWRR0CU2QgWr2Yl0NbN9r5u8KSQCQEODE7ASkIhdySqgBWWxasQRLWDBjT21zR2asQ21DNtwv3d1LGwQpfLddGZhb9emGzdCNkUJ3lsJQYDuwJ98RXOWfHrd9CpWeLkuIYSt5pkUq2WODrhdyIkIohQZqY1AQhkYBEEq+wLxkRdkzCkIikOkYQLEIPS5+ISAwpoWBRLEFrjgh/9yXocEYEEcECQwMHBvZNQVpV+6yrQVuUVFy1LCopJX0piHGkxrFnptweHdIz3YlFqrBjZ7H3U7+mSA7hmVqjnE9H7EQZiSmqGNhQtRqpFRNtNpEavm9+sDXjRMNT2trSoQEidfNxit8EXSWCuEYTrbwNEv7eHwYggqKotrJRFlQVzYtQBbpFT3vyc21B2rR9mj6p6Mu/5vNIepXxaHHRXFi48su7m02wK16xALarLsncMYJL4eQez8m9SkeU4gpSiLcVuD1xVJCVq9Hrcmc4LhKO85TjIuUwTxkXEblfXjtW9WdoxvyBnffxpXu/xx3xIXt2ysXomFcOHuDzBh9egpu+VV36wXJwS+hNItKs//GC+GMQ+kQMiInF0gW9MEA4MBGxGIwIVoQUYV8sqSg7Uoefdb0Uz54Zc1t8zJ6ZMjQ5e2bKs+LrPCu+xmIRz9DfZQfro9k+6/MlFCPCQTwhoKt4cicUpa1gWJev0T53PW23lpmsyl9bd7xUyJJbtbh4qlA89zZ8fDoR9tP84YnRmVQYAP4/3/CHuO/Fd4EGLN5GUl4gjcxaZuCS9Y9ImDGDtvylgHgwLsTyzS7YPleQSccP9d+RIp1C/HIfhmmJI2LiYgpvFpLMZm10hQIV3lax9+uvE+E4qITb5fAoKGprd20dmTtOu5w4S+QXLBJGhEiEnlh6EpQAUykA6xCRImPpm4hdSdiVhB3iapE3WAwJQRmp70WkytMV5tqt/4xE6dXF7ownNUEhiE0Q1r1CjJtrr33+eTPCduRXiEBqHHVi39ZGHIW9dEoauarSs2MQF/Si2iM1Q7wSgcEgJ04KxChifNikHiQCuaDlFguXh2gccnU2kkgoiLjyHhRcVd+kdU5dllt3+0F5WJBVVBWyHD0ZLTX5os993hYde/KoPc/WbZ+mTy7qD1Pe8Df/u/BljbIA4IfJ+oVrw7RRQh2fVYNBUWxGKIroFk5cOG7xR9lZj8xTH5vEjpKITxwd8MjxLllp57ozLS3jMqlyoGY3lnvLcd7HbVmN9kW9R9mveIRZWAP37ZjP6M9X2J749QAQq+hDxQ4OmaElARZLhMVuIdZIJezXCsKQmIHE2MogJSKcM/Oe3pRgxKrPb7cFsGvs2nGya6YkcyG/s8+B5FyODjvPa4cn+VbY7zpShEFUcrl3Qs+6kIdiPGkDVze/qIoE819kHKktSG1BbMomNKucWE4erBTnDa8rPobd+6sIinXH6mztv6Ul0ivlXedOdcoLP+u+W7nSLdNZ4w9nUmGotcj/88ffyAtf9ZxFn9s8bXxZ271NKVgK1/YGiiFVYnSwNEmhAcHJKGrBqCEqpQrIrCaxAGkJPYf3m+oZKJGdF0QLb5mWUaiaDhwk005hvf5+cyGGfhXtdyoLTWsAOAxlY8VoW6a206JrZaE+2hLCjAYSk2JJsexIgkHowktfJCMhfAmBiICWEZKkLbuSsC/BjiTVtVdaRLQGAfKzHY0TV5u8ha5nU+8bmtVVbEKyeElPNgsAqnCz6DN2PWKjDKKS3UpZGKYZ+70JaVRiJWQtq0KeRzgfBUWiCmE1kWIihUzQ3AQUJBYFk/lnEJ0QktgqqLy1yoCvlJFG5tf53xWi6Zqap85DHIUwwjielZ9VRTv84yYy3P2COzY+vyeVdMvt0/RJQ6rKdJTxRX/0lbzpH39D+4du7v1EChFUJAVL9XtwCoXHJWHtSW8Iex8Seg9XsKqN4UVDJnX1dwDkUDiXhRDBjd2TVoFOYVLGfOJon8MsZeoijvOoVdNlcTYKpRoemW6Gro2l5K745ppcObgjuklPZu7JEzcPD70tjTXilyYXydQQE5GSEFcKQyIxyZbR1iIzb/Ly/RjuND361dreWwPNKhWfGay4lVQyUinXPpt9M+k0KrXJipKaEE2wjmrgkdgqF/tj7h4e86zhIf0opxcVxNbNoSYJSi8K4ChGQgXwyPhggCrg8CMHFMdJQKhYQ1LA4KHwt/Gy8dVGU21CtE89y7zCtAixUl1bx8S47e7zp73KE6Mzxh/OVA7D+379Q/zLv/Fj/Nq//Q28Vy7ceY57Xv0STGQrVIzl0WsKt9aqG2VK3p2vFUhB4+BN8IBryg2HzWaBL/hebXEXtJqoagNO8MFeymPFESTtCSZQCk7BRut6GBKTZ0VIQwMecGqJxLEbT9e4HcMPx67HxXjZYtumock2eAgCcshUI/pSoAqR1GA7SgHEut5YV8eY1mFE/Tk0iZZVp1FGtiMjpkmObrcXYzmP4USL9YnW1Xl9cTj1uOoFGzy52qUcheXzoUfB0cL+kFBtGhSrnSjjWrnTLOOLpApjF1MuVOwUqdCuKJkiTQG+w0mPSRZT1uhIIu2PoDj0Hf7YBsE+USSva5C2rq+AD+NZqu9qghC0qA4q4Tnbafgs+8EjEeoUBUXBlBqqpy8+8hBEjYymmOPpTEmAEFLoPZLl0O+BNfjD6omKwaH89n98H5/z5S9b8RaeAvp00vOnDOXTgh/7v/8D//Yf/gJXH76JMcJnf+lLm9ygJkjbzIeoRjcmlBeHq6s8b8gIFoAIbAEhLL49uwVGyslzFRUNRQ8TQfGVNKs8/8J5PnTz+lKWr45jiD0mLavGuvoQvNTGLK75yvXxgHODSfA0rpXshCvTXe4e3GSd8ee8HW2EdxaBe5MrvD8LSbsRwkuTG/xufm5t2/W9tH+/4RNu+CHnTL5sDDulgWp1f4XzNiH3JW7DvakqvSVUwcDrdzfyzvBshibjyA+W9rd11mf3r/Gh0WXW0SBafiax8dw5OOKh0T65j7AVql7uIhK7nL/YeD8GOSc7GdlJLwgWda2p+UUfBNKb1blU+RK12LV479U6H00J6JOiQaH29fnrSaYFvfd8HDvOV4+aDgPAB37jIxtafpLpjPGHM6Mw/Kcffyf/29f8LQTw1ey69vANrr/93djbLkFdsMJVUmxF4hXJXSgc1TGjo5Ej363QDzrNx1AmQtGjQUaqj1IFTGAUpoRiL8wHn9AUbMtxXDkaI0TBwtvzs8VfQZ3BGI/q4iyt/w73Opom7PTmF4nSG1JbtPhcgDytE81UQ62F0hsmPsHpqI4G6SCtLNbrKaHknBk3vK1AsASYzFJDnsAq/hqgUgXDzEOhKKZl2akRuK0JCoAnbJtoUVlok4hgdHsFxAgV7KxSImTYrc7sQt4QgYmbub6NwLloxPVypxMgyKtwlHdb5UQgsZ7ce3xVaTsyjrzoLx3bPodYAzSjM2hESGrOW+4DVXCCbcekVo6w7tLZgQH4qGpCBB8pPhKS6y4oD12dUUVKxUxz7PG01cGFDqdJUBrSFElTNMtAPZSe9/7n9z+tCkMHmmHnMZ+mZ5aySc53/Dd/m/f9xkcD5DaBT/zGO96Lipktpa4KYW1NvuTRo6AwdC1c7USgrvVFFW8CHDd0CzZRKex/QDl6DpQ7lckxohk4H7q5IrFTBc0tNi3xTQ2dRSkOemmXZTuEtuTOLtTs6SanBu/BrFKa0LmaM+vonuQa9yTXWtzL8+ok4zG/w0Nln2IlgpBwX3TEC+NjIvEUKuwZi7KM7GbE0CfFq6fE0WUWDHLsdsJaLBa3BPa93OK8fBrucN9MbimxG7q9R/f0r/GJybkqnGtZat+NM2wHHLpUD/xcOuaxyV4VhqtYPx8m1dWH3dtGZCeh2pGWzOrv1Of4YDyyJ7NnKoSQbK0Ktc2JLioYp7N5V0HUq9e1+T51h3q/+QBmkjfX2ZYe/OCjFHlJnDw9ou9Z4w9nIiRpfDzhb/zZv4N3Hlcu4FFPpmhRgAmxiXiFct5dZU8yJK8WTZ0h6gD4xGAzbX6bhTcFS6mPoOwFPPmukdsu1KuATxVNdc4L0ZADpvON2MhjDJimjsKsd8Z4jKmsuN7iFuJPg9FsNktTU86hUogQknZN8AH4lglr9ngqpiM5EYtVh+dpKBm32XGDhFRfx2MoCDyw/Xbaj9MCexJjWjGkAnjRZrGvlYU2trZBiLaMWV1HiwlwXVSHeAFYcxG19zLSgG5hN/gWVSHXaO47wNjHZNX+OornIBpzMTqea61WFq5Md+beU9d1am+FCJRlPTBX378qSBvH3YBPFG+D1VNVwjhuW59q0CwJx2trC8xE8Cl4o4hTTB7gWN1OFApf1Zpj+2F4xeQec7IGAV2EakIEJbA/rwz967/97xgfP40F3Lxst32anlH60e//uTlloSbvPOod6lr7i3KeP0wK+h+8Ui0AusAHwI4dUi6M5WZMQ7FdxCfpdSoYN04lBcVpSb9XEMeuWvXDFkWOfi9f8C60SbfOTQDl3t7jXI4Pm/br/aAYlNvjm1vFYzegG5VxLcNwHdgxR3xJ/2HutgHJqQaWqNt/WXydz0wOScRjBXpGySk50Sleu5UVQUgkJupYM82TLP6IwKGvM9aFS73P4MCOSDbCyc1oqq1E/OoZt/1RoOzbKV99+Te4PT2knSgdiecgGbMTr0akEIFhVDS1LgBiuz5xXgR6e9lcT8QTavYU1VbVDQwpZ7NBIIDxlYe5tdmq/oJbBAQ0gk+CXLUqEtBcH2FH2S0J2tkk5//53p8+/Ym3SmeMP5wJD8Mv/ItfYTrOVsprfjTGDsKqLQBeA+MQqBMz7fUxmlh0mFAOYzQyuNRCVahNJtUgrnINxINGUPSlQT5afO319zq31OSKG+pKz6sg4AT1rqXKVZNUwNZxrJ3GrKomw8LipGIYlzF78bTTezDzNER4FUqxoYhdlQSdSsmOzYir+MvZEjbfUITjnFkMfWofZYIvQMP8qAt6KbCLJULmITRbJyu6pCzM+h+sOhEhJMVUXoltvA5zz2mL463AsFrInb9CL0qYUlIiBPvTuhhXyJxFqrRuh6HwEU6FpAqGsqIYAxMfsxdnZDrlWjFs3ncoBBe8XcKsurPCXMG2ticj7yrUtv5BILlUEKtaa5XBWxCBHc/exezmVt+0zXSpkqdacEOLGoinPigKhUecIs4hG5AstBbYSgd2/v6ySc47fviX+aN/8ctPd9+3Suv1xNkxn6ZnjJzz/Nt/+ItLykJDXqEq6disL6ULJtNq0YseP2bnxoji8h7lhSE6SJHSY8pqLk48misukSpkQ5HCk+/Y+bC6FSQI6SEcO11dYGDd+QJJ7Eji9TV3ls/bfnB+ZHSZz9x7mIHJuFkOmPgEQdm1VTV6u00C9nK/A1WFLwU+K73OC/SIh8sBhRoGpuTuaLQWZS/Xkp4sw1HX7zOWKCCrNTxie+/CaeilyREv1GMmHj5enpDac2T+KttogFMfVUYlxYpnaHJ6klES8hEj8SQyg03/0vPv4xdvvohMo8ZbsA2FvA1t9N/T2ehb7XR8yXeh31GnUGDFOijLP4igRiEFn7fkqOozevw4pMbd4rr6k//3O/hv3/hV2A7UzCedzhh/OBMeho/81sdWv/zIYgYDcG4uSVaohFY/q0ZrSo8dF7jE4Hq1m3qmVdsS4ixstoB8hzY+6UrS5lqw0tvaHKvQQqvxHTB4Xcwgsg4rHiO+9i00AuWojNbiXdf7axenYnBEOCy5xsTiEAnwrbPBPWf/ZmcjzmaoaRAJ9EUYGEPfGAZiwuRfGwMsjddhVf+FAJcXSUh8WxJqN5ARWas9N/WahTqPl3HxMLE4ejgQ0wpMmn82EJKlU1OyY6aoQqYxngDNFxklNgHVyOkMBeNifFyNP2HG3nxQLGSmSAqh4rep3Fl19oEhrgr6rV+RREArxUKK9juWuQ+1Iaxu6/XNK9Yv+zeaO+lbXBxqL7gIpHTIaBu81orKEvJiXiBT+K1feO/2bTxR0i23T9MzRsfXT7j5+GL20DItrS9BE5/xgNITP3ST5OFjoonH1jk4Nf9wSjzxxCNHNA5z0fe3X4dEZTu44gUqc7sJ6GnVFUns9tbvD5xcDkYk47icHHNv7xr39K5zLh5hRZlofMuhNyCMMU3K764peWFyxEvTmzwnPtkIyR1VBTxXkaoSS0QsEVa2Q1JapG14SsglU/Yj5d7ohGJLZaEGH9o1Uy5HN7k9PmTXTomN0jcFQ1uQmvkaSwNb8JLBw0RGT1WTIoDTbX//qpCPt3N7FbvBqLqNAQ6C/NX9Q3BX+FRwqeASKGPQyYTooRtPCIjg8OoxVx68dsvnn4rOGH84EwpD0k+6H7q12PPnQzJbXmwQSkGtwcUW46hCKDRYSDM/N0CVEHqRHNff1k+lWrvefk7PuyNd2aGFt461xpFGQRsxKIkNcJ9xFWpUOLvVQl7ootIllETkajHqKdQuCH+zfq5DgKjb8kDPLCy7Emx7U9zKBT8kUG14eDITREWEWCKSSnXYhiIMQwnYGm2dTggGv7kQTIWxhjCrOhRJCYWEoiodun42QvC+GLRxpScV3txcdFvFMDJtJ3lDakpKDcX1Sm8axtAO+ao/a1d/4QyK8sKdZ2OsYu3qUDJVUEdwK/uwrbS8SUje9zYk7K8lVeLRBrahik9MqMNQgwHolr6hygvRFZb08Ece3aaFJ4fOGEM4ixT3titsoKpbIa+58zvL77djikUFRJPTVbuy0+V2VvQ2fEgbevs0Ay14kTclKc9ImPiEfMXEV+DE9yh0E6rfepqo3JLSYTHr+XsdxtriEQY5lWEplc385MEi4r15j/fmKR8ue1vDZItAT0oO7Ii4iWPe/CDPReuBShZJFU7KGEVIJGLH9Nm0UInAyePDra8xrerKrV39q0GyKV+hkTdEkNLRe/9j4LcBll1PeXZ6b9gt0RnjD2dCYfj8P/45nQU57MF+EwuPqwQMuuy/oEbQxFBcGoBZEJk0hBN5UfKBUAyFsh9Mu2uQMpeuIavltoYEQWKPRB6JS0zi5vIQWj0GArPoxSV1IMqkiOdwm1UJSX1bUNckTKRgaHKsKA6Dq5ZY0Vnek9nWmlB/dizsChQrl9fVCctrrydCJJZ4i8i7epykEmEl1H6Iq88adi/AqkJZ3UlUWffbeYChGJwnqbZYfPO7ohQqxFLifIgirRUFj8wzY1WcF/aiSVN+rlBbeVq67yGswYqv2OL7Tz5MYl3leZgpJvPHg88rdWgb7ibgBlD2QphSuOJyR8QFPO71OqSgtZYTGXwvxp0f4nvxavW4fmB5lfAmghgD0ewd37yy2Zr8pNEZK8xzFmm42+czX/P8NQm7NVVGmhUSr1eluOcSpCsUENWA7FCG5H1KJblZzib5FhSNN/dRjKe3l9E/mLB7+YR0UGAaQIrtFQCPcDxNK69BXUV0Pa2CdwgmLeGh4vxSReHTKBC3OlO2sWgvwmbXXmu7BX9sQpvWiEyqcM6WOEJexrJvdTua8W4h8xHHrseR6zH28VydDKchtLUn2VaKbrgPmJQhdCvXkpHO8r1Uu9/byeMDxjdWA2csktrKyCfhvSy9m6rhaLK94C8AsWX8efcx+vz7qvo8ty5pf+JDT5NR6YzxhzOhMHzmF76YF7/6+ZiodTs2oB5ploetLFHnOv21GhmwQnFQTYrFOPm6yaySxCvzrprghZBi/XIl1T9qK5fz2oMVUo9YRYwSxY4oqsq1SG0RCiEpaeQYJm0UpCqcyM8gPhXBiJL7GmVpdS8XqxELnjvim61bFnIiMo1aTGGWmLZ+/irLEabzVNJt4fMr9m9LRraLVg0wq8tTorY8egIMYK7tc2gqP69vuwodQklMiKRtV6swKD3jSKWk8HCjHHCt3MURcTE94Xx80jzvddewJowC5w2Fs8S2bBIbtVJYG8XBg5aCRMBOCdE6ixBI2SraZqAcQrFYmFoVKSplYdMrqwWparD61KJGcBeGEJll5b4eA6PRQjOKRFHznubWgaeYahSMTdun6Zml137LH2nQ8+YoiiBJwmYrNDxmY63tddCdXqg+vtJ4Ic2/Dc8oIL2+TZXDQP3HNq9UyU5OMiyI+yVGtCrcGOLeT0dC4SO8hwvpuNXrriOV29NDosWEpNZZAkw14WP5JW64IaUavFLlSWwzCZTBLU6WYo2Huouk9d9paZXSEIth3xgGDZbo9rTYdeeF627Ike8z1cBzRz7lmhsycRG/O7qTn7j6Sn7uxku5VuwydgmZ23zNAIrhcF6YFBGTPKKsDJL5OGJ0vY8rDd4J2UnC1fvPceOh/a3uR0roXYWdT4CZhmKEUqUCzd2gh2isnDrlpeYT5wZMXnbnE1Iani4Pw1njD2dCYRAR/ref/Dae+/J7AbCRxfT7kFUZM1GwzHJ0DEdHSFGg3ofiT1VGsrcGTaOVzECosv2LBWkRSCuDZtd7r5dKHxEUjLHUhQnmyIoQG0u0N4tTFKNVSIkCgkEZpgW7vZxhWpBErqO7ulA4TUiM46RMWT3plUSKpgplTTsmw7BYaVpwWDISJiTkGvIj8pANvmL+hp29J6BIe9Zb6dYt/qpt8Xw9icyjLmmFmlWzyYLaMtU+h6rg2kq7eFioq+c7cgmR8U1YUTu8yKDEohQ67xWJxG+NtjHKUsZFwrSMMQb2hlN6SQkqqDNoWW1+FmglAtJz3c9QQ6hEPBakpHnSoqB9GvjUZqwnguvN9q8jU6PLVA9AbcDALy7tonFVG6IW2vIizOFiWQCrhQUxwvNfed9Wz+lJId1y+zQ9o/TZf+gzeMPf/rNYaxAjSBxBvx8KAlqLRBGSpmFfL4V+D02TUDhQQNXjLuyuF1Darl1mf6YnHjvdTpg3mTD4mHSOGwHuOdgjGdTCzqxopwhEVk8hnDedpvSWnTgnkg7GVB2jwEt3H96qxYKIK26fD+e388H8TowKfcoKdnX1GrkvSnyLPCLX7XMxal4wg/+UThSlTee3KcJgxWBUKljYddLAMtU8wKjiPdz0O8xKWkprg2Pf54Hp+TnUPRDcxjjRQFkRcfVkyNGkz9G0z/XRDjfHoZr3jQfP8fDv3s5Dv3MHj3/kIpPDfrhuWwvuuAU7hf0PQ/9KCOcWQHwFKV+ESAyTKyZTbBFCWm95WRShuPuA4vJu1Z/Tt3Tvi+++1aufjs4YfzgTCgPAwaV9vu/Xv4s3/sPXE+/tBgUhqZhBHb8oEnC2R2OkDIEl4hQpltFWVtGiEUcQbDlTJLrGgEvA9cGnoIkQTQVbCV8QLOB/+Hkv4Lu/8stxUR2bDcbWnoVgpalRkk5LXoXMx2SuXsjmexmL43w0WlI+BhvjrYQSy0BCyFJeKSrzoS/hj4HMlb+4NVpx/jbFd+wpQPRSLDGGUE963ndQdFj5A2Rqu3VtfVaCrCiW4Ok59P2Vi5xISGarlYuQoBbCB9INAZ+qARWpXTtZFYoysOq0VxD3CmwUrHHqQR2ok7BZRa1fciGbAmwxY66zzoYPN2g9kWoQlX2h7M0/jaXO6rICXuPVYw3ai4PAdvMIbhzCaBzmbxeVoYKcOuWPvf5pQkiCRnFauz1tvfk0raM//Ge/kH/y23+DF73mhRAHf+cimIJUkttcqFuvF2B803iNd4GVvymQHJVrBQOXwPg2OL4P3MCSPmqJjkxjqbhrZ4+/8nl/kM949nDmPc6lgSetr3MrVFYe6WcNb3T2XlBec/BR7ujdSqifcuj7GIEE1wEMUfMH5Y5TJGC3SWBpzeruySw8pq0s1H9vle9WPe8IgyUYlxJsE9ZUijDpQDbpScE5U8MHtfta8WDKCt3Kc+gH+DW1KBS4p79cm0ORdo5+d/cFbkz7c22rQlZGHGtCfM8x9rYJkjrwYCahtkJ0UoVfa0e3FHYeqLwJrZ+X1J16LawGrNsutWgl5c+5EP44BdqRsYYXffZzuO8znh6F4azxhzMBq1rTA+97iLd+6w9TlFpZhpaRdZpvkynstNzLbrvFalW4mc1DQihaHSMBLcDboCjMjQoRRMFmwh989n3896/+LH7v2hXe89jD+BLENodRe93q4qP1YrCab8mSa7r2xN8oBtxujqmh9EIAk9KTKUoQTKUSN0W2d3HXXghFyAhoQQYlIkDlRWgF6bp+QQ7HLN+Y0EpO02bn0jGbyGLxbPGeJbidA7KGAfW4OlSh4/Bcwx03oVk1C1NwGDKNmtyPkrq63+r+qkJfcsYurbxF4djYuAqcFlYtMzemvSZszXlhlKVoPWir0Cwbe0zkySeVANS4BgTtO+Qkol3p2eTMfV98Vgih2nlbn1Gl7AumUKJstq/uBx7isV9ucXHH8Sgo8+ugVkXABe37j3/TV/LKL/nM1cc+2XTGKnmeZVJV/tnffjvvf8/HqynY/V4WFQhVDUUCnQ9/r08iWm6PKpx1xdpV9mF8e3PB8GkEM4WhT/i7/81/zY2TCTdHUz7x6BiXGdxDQ2zi4HlBiK+nsBHdgIDTIfFV/Uqs51J6wuPZbuu4EKp6R3qT8+YEESXzEVNNKhjpzWO7vm0jkGooolZW62Vf4MA4dmTRk70d2XptFLvyfda0jkeEHDbBqV+91lVteHRl3kP3CFB2JMeiXDJjxhoz1Sg8YVUmmvK4220gVXNqZLvuPhipEPSWjhEKb1d6olXhMEu5MR3M7atVLhDEghmWmGGJPJAih2l1B7OCaq4Xtvry8THbhRe1uxtiefGFzpSM0+EBBwXe2qDQjycbNSVrhP5unzf+vT+/3TWeDDpj/OFMKQzf8xd/kCwvUTGIWY+a0OC4x9XEHRdBsg7ScvcphHCLLhKYlU0XmtoMSwXdWmPai+ffP/ARfu7RD88akQSNPPQdtJKQpCqg5VRWQqipghG/FGeqGAoHkYHHsl3OJWP6pggoPFLSM74S8RWqxSrCkfuI1K6Lv1USFsOiBIfgAKfKrgRPjgNK1aqoW/czXBUbamkpfh2nrlvgm17dohmuXswsgkOJhLkcBoBM69oItdVKKySllJw6yD8sygNTkJpDrpa7uBVucFU4dP05ZQGCJ+p8MuJavlO9K2mOL73h6mQYelGdMi2SSlloC0Cz68RpSZHF86agSNGdEjILBYgXzKbCMhrCj+YcIFJVd06EPA7xrPEowFAa56vQpo4bb8WZS14gpUONAaMB7ayDRISol/DVb/yved1f++pbSpC/ZVp0J6465tP0jNNv/vIHePs//9Xq2/ZjpFYaZJKjw976g1e9ayHU7rGtYyrj0vhSc6GFU4Qid7z+X/zkQmN74fSlgmz13F+hmXTuE/qtQl/nexOs0VAgUoVdO+HPXP517ulfn/GiSmoYu4j7y9tWXGfW/lBm7QfrfOAvALsmbG3EuPq4rp5bpFn5mveCbAVssQ0Fj7JWCEozfuTxndWiFykh3F/ZeiYRnqji2RZlV3J2yTnxCe/Lb8fNZbMF49qmK41c2rm/VIPVcL1a/q49/vcfnuex0V5z7ExZaH+2nv2zM/QkQqa24W2KEk0FUyplGsZzNFqn3qynSkfCA/Gxxw+29BaoIpMiRJFAUBomKwp22hDaeu9Ln8Vffts3cNdzL99CT2+Rzhh/ODMhSR9774N84F0fqQqyrcbsn6O6JDoV2s+kXKvhlgPT+bsSXMqmpJnptqpsG43D1r0CVBWi29ZzT6jDMLYUuSHPI7IsJKYFeWrmdqz3tUOAelHR6qIilXNTK+uDU+Gw6HGYJ/TIGNq8dfxs8Sg14prbCa2sHNDCrumo0lKRRzhUS1Yt8hNVCpgh3cy1BAVK2VGx01TW/nXkt1jMT5s4LSJNAbgCZarBpR2jVaXMttdhflxkxJWlqP2bNEnSF6ITVq0UmcZMl9xS7Zba7vxQgOfaZDATEySMk9LZzjbqY4ytfKLtLhpCpVmraE9vCRe+3VuNA/qYRiBOiTLFdCkLVaeanAaALBS0kxCg3XgNm/5aA0mMGINzyr/6nn/H+9/54SfS4dOTbrl9mp5x+ul/9p8DUtItKJQigskr40nXOrJmbVGg7FeQ1C4oDuJCTpx1sPcAJIfdbaw2hAjqNYQUNqcFK/0MRrmdM7D4WR/vuTw4mWt5L55ye++Q+3qP8a3P/jme3btePYP5R9c3JRfs6nUMlFSKtTzi0MPDJRwrTBXajpj5u50ZjkyLvwckvCdPjDGV8mEqmNb6OgZDtBIjqtVPgZcnBXfbkhrrrQtF0Knw/qxWFtpGnfp6sNJfofCB0e10raKqwsTFjMs4hLJWMsODx+fmlIXWGetv6LZFIJSqf6WQjITe9VBw8FZJI8HHoVBbMnIBwn4bPi1CfFw0IediDQwGQYGoB6o1IR8pTSBNuf8jV/mHb/lJ/ArD01NCZ4w/nBmF4cEPVAlZehoIzgWLToUB37UV/QpKdZFUA7ykCahJGOay3gWQEuITlpQG8WAn7YWi+tsLOINWRbRUhWmWMJqkTKYxuYvInCX34TNg9AtOwTZWp6Dz96O6PkJoOzUl5+IJg7ikZ0vWjdZcIx4vd5r7bN00AAkFfdkkUdYeh7CN/awvMreFfSWKa12rtiRt807XxbFuW/25bkNVA4yi9xyrZ1qhJCkBWjURKoagTS2GcB4U3jDR1QGaIjX0alfybkBI6novXuFaHrwI7Sc3KZM6kKw5ttyiwrMIGFOZd3KBzEBuoASsBwU3DC76tTHCUinLCzdiCsVOFDvypDc9GKkqpS+KLXWnW/VOvKLpzNpUx5RLEiNpgiRJSFStxoX3iiscf/cv/aON9/1k0llDwTjL9LH3PxyQkhbxhbcgBXA6XzBqsZ0OfPj612JYJ9qGne3jpITBlYAwsx0FSzSuLnoZvgbRMxTxSqwnjTxp5IhtiRWPNe2k5oC0txNnHKTLltmduOAz9x6dqyy81AuB2+xRC/BhflZbPM+JH9+on+XAVS887ISHvXDFB+WgrpMQEZSCVTxg++y0zdSu09Dsq3NakK3yHBKBu63nFUnBjjhKlmtTXHPDtSFduvIXyHzEoRus+DXchVPLxKWMyh4nZcojJ7srj13TDOysD+HVCFx6a94FVOk9XjB8MGPnEwXiqlyfGm984dj2ZicO6fXnNFgxEvjCcBC2fj/wiCraRFX51bf/F37jF953K729JTpr/OHMKAy9ncpVXKEfqfebLcrxzI2pgEva/mLmfvORzPx7MDegfVotl4sG5YWv0XRxv2CcMB9WXwl+6jERmCakSTBGSRLXOi58ehWcGhJb0kbJ6NuCZCE8aeISIqOk4io41vXu5BPf55Fyr+KTtYDsGUhGX/ItRHCZs8tYAiKUkTaw3XwfyjnN6nRL0TrBdpNLWQnmLV95Oaa+5KSrxapLhhApE4mr8jaCSlJiKsfy6r6rhnCw9vexi7lRDjCi7EeTKsl5dvWJW1YMACblsjt+66fmCOFHTmjiLX19jYBm4ZI1IV+VIXMxfwEqz5pClGnTJ7VV/YaF5rwoppjHBdFesvk+agQl7/Fe+fBvfYz7f/fBbe/+idMZsyCdZervbAgnWkO1iUMgKA2u5d51fqYsLCgRAqgBjc1CW4ttQ+8GmGzbwSLh/9rh1nK8LV6kRlAyogF+1Tgi69lLJ7zo/BUWy1OEISu8qP/IRmHfCNwbPc7t9iaJlAgh3OiyPeIl6SMMNgE1sDw9LlZ1kKwIditj0ZYRBVvQOuNUDZ6xXTvBk/zi2GEq/7foDIL8yK8fi7NVfsG0okoijv9q/0O8ZPgQu7ZdR4GWMWlG4yLBn6Ky8xxtMRzzffBmi0Pb3VIlPvbEJz6Axvjws3HQu1aESuktWctOPFIE41Z87EgOXVACYnsq5d9Yw8/+i1/dfOCTRWeMP5yZHIaXfeGLGez1GR9NoCgClGq8Jg0/ikImcU0iaGLpWiEFiE88OvWUPRPyE5SmrHkNmdoc3EECwXJb5zlUpIQiV/OIaIokik193TVASZOi9X2xdSUrY/bTjNgECM6u45waxmXMXrQJG1xJpWRop0R4jnRA7BwDM2WnQk8SEXKNSFlV5TlY323rt6SOO12X9AvNMYpuPH52XhBsG8EfxTXpyltQdWBJCI0abXGmFaVQ27idbaU8THQ74aSOzrpRDptYViMgeIY2o2cKjso+ijD13dO1i0kEuMV1dqpwbT/t0nIrk6UFSqXcAXNTMX4WP6xUlhEFO2pbScIf8XFwUgChknPTtARIPcvCQi/z1tfSYY4nDdZ29/DSEJaRz3u5Hvv449z30metvO8nlbZZ8D+FGMJZpi/+Y6/kI+/9RAhbPSUp4PdS5jzYWzTTGJu2vEZ6CJPbtju6/9xu1KJVCokRSKOMg3TKQTphGOVL63aNDKtAX7bDqrcGLpgxFwgWgrgOtNlw27rwCYE19jcW2Jsnj8fok6c0rCOpAEu2GUEiglXlOVHGSWutO73oPjO4IAFiO8JzhznkzuSQ943v4KHsXH3VpbP92qTaNTxCgcMtREQjTC9q8JDVa/76lrETT+96K9OjdaDxkBw74mM3a4hgy2pQhVQx10+QrJiX4zaQd55HPvb41sc/YTpj/OHMeBjSfsJ/+7/8cQDUe/x4gs/zBsN97r1FFvrzAl1xaX3pcyG4jqOJDzGo1aKhBnyk6+Sy+TY6BkfXqaZfzslTxmiDlLSqdaeGq6MBVvxKAd4Q6jSsSpqqj9sxUw6iMRF1W0KB5dAPueaGjWe+wFa40235r/5DUISytWDdypq+rnBb836r32sFo8RRnkZZqMih1bY58UwEbGVJqsMmg2XJIxvOFoGJjykRDl1/KZa1aUs8w8o1NZ+kNqN4LtQgkDEQR6tw1SvDaLbOLDR/HR9DGVVOiPpnD5LTrCLiA6JS7wZELVlj9SVaD42KGRQOczQhOs4CLv75PRj2QxsLbmlVDehmOj//9i+ucr8/+SRetto+Tc88fcVrP4/988MQ73zKhah/cQfdHWx13qLhsBwatrWCbjDIN2SHJba/OlxoFWUVluVOvKwsQGtKolx3g9NGbgHCRGMmGi1hFCy2JXOf4cdb8QG5LZDvnkjhzydKPTHNyl7f896avI5AilPh8WKPq/lOY5xpv7I6HefFg0fmPA1L19/CONi5S4Gr68utesAZcD1hfDvke4FXeDsDfgHmOp5eK+g/Vs5koRUhgrW8VH8aD+I99vEj4g89SnT1OEAfd0R9rEQsM8LBp/nDLdOZURgAvuRPfwGX7j7foKloluNPRuh4gpZlyJYfDkJxnppU+aa//iexvaQ2ba9s38eQ7Vt8XCXqVJ4Fk2//wheVfWEW1z23P5qHmTPGb7F4h1LxR/nqZTcyDqdS5UDYzjYTKRnaYLWdubpDAtuOTBGBmzrghutz4hJuuAHXatD9BbuCByZqKKobd7ewcNehRIuLfv3dVQgW9XeP3ypfYZFEJLSDUj4BBmMMFTLIamG9UMPEx3i1VZG2VW5wSCS4tZMOxQBgGBed5w/TvIWYpc21AbwTypN45XXxYEYGO7JEExu4UxSYgEuCV81XOcgaBZg9jQkQqgtddENLsWNw8Yp62JWbRfISezxFypakIQK9BM7totY2+MIKUJbBmwiNN/G2Z1/khZ/z3O57eirojLmczzLtnhvyVa/7ItTY4GGOosAT6nG1gu56ziVe/sdeuRkdEVAjoeBMvVmIR74xWm2ibSNHzKDoDPPeTMJj410K330hr3B1OmDsYv7L6K5TKSTX3YD3Tu/kN6f38u7pffz69D7uz88z9Yas9fDm/YpVKAqwJ8qdtxDz0LK/z/GI2pBUaMmxTnEdgBqnuo4GhLyTJ0HAu2RP5nLflkm46foUahnYVZEFVb+AZ/Wut77NU2IdO8nywjzfns7/qcBHBki+ekC6GMohuCGUAyh2hcklYXJZmNwuTC8JfpHFqJIceYwqZlpgj6dExxn2KMNMipVIeMFApUQPXgueha7B3o7PW/Gw1Ctf8qc+d+U9Pel0xvjDmVEYRkdjvvUPvZmrD10L1TvNDOVAvYdpho7HaJaHSrFlCVnOF33ZS/ixt//OLHN+xUArEyHft/NPTAQVIR5BdLL+rSshzm8xHMlbBbt45PLZZsuaCACjvMsqEOInhzanb0pS67lZhsSpRUF8YLI55iMoA5kSz0GohooNGTG5RgyarNduh/hUQ+JXHTyyzuITVTGpAU1JMOYePDrnaVAN3wvKRmGoFYvT+xWYJTnjmzChbdiCV3BdwrpkpNTPpN0fxSNcKXZBzBJ0aheJBEVvYJunN/d7Yh07cdb5204/I4nmzZb51FBMVyspeLDHFik7qme3HCFzwo0JSoNfEQWoJqCMlf15pUFKxWQeM3GYkyrUbfHkkJ0Ng96MGRhTVek1TUI0Rvgf3vLfYU7hon6idNaS2s4y/cy//DV++O/8+/md7fFkuyw38FV/8Uv4pV/+EOvmqUJwNy7G4oggHqKpQ816pUEIFtrNpEuWJ+dXKOMrKBTvWqZHxntcy4Z8YnSOX7r+Qj4wvm0rReTRYo+P5JcZ64z3lER8ojzP+/M7g0GgMT7NU6009KqchW2p5gWx7CDRPTjVBcORMtWCiYb1b6TZE0LIEYGPFsK785SHy+2LhWUdikokyouSR6tQ1nn+AHDsEiYVUl4qq0J+AxmB89F4Dh1xke7aParqKq17mVVfMoHfHSJHq7U3l1S1GNr9qoxHxWA2PDujaL1iT3Ikd3MgfZI77HE+X5xTFckcZlJgrx4h06KbP2yzD7j3RXfwhf/1K1fe15NNZ40/nBmF4e1v+wUe+egVfFX1bKl6JwRFIcsCnGqI9fHoHgAAzk1JREFU2eDEKfd/8DG0nktNaMv8VuzUcRfzA7H+Fk1blRAXqN7l0rrtCnVGwPX98pGJm/PSidTFwNbRbOHxyNIib/CcT8ZzuQ2Zj7mS7y6UmA+Vn9u3mUoeJvTyTA33hVmTx1AfJxQamNqoJfQ3vdeZncgSlIUCjw6/kfj8P6RGOSrx5FqSUy6FHDk8hW7nnm4rHrX1b8rMdRtvwbdUYbLCOyACB2ZMQt4wBcEzcREPFecoiE/l7nc+AOQOO5QGVdhNMvo2n4tX9SpM8oi8nMGrikDSq56RzLdTk5mayv295A5rPrUKPzJFteVAOStl0vlAAJ+YwES8Eh2XxCclduqJT/K5S3Sen1ZAhVL1rFYaKvrcP/JZ/IGvec2qFp4aOmMWpLNKeVbytr/xU5sPrJUGI2ANg4MhP/Gv3sli2BssvN4m5qRjLQB6R9oIT90mISh7wVIbdqwZNFaJLs0ERFXIigjnltF4VtFicTfnhYdGe5yUMylQEf7JI6/hlw6fN+eRWLzG1Ec8WJ6vvi2rA8e+x1W319m3YLW3ZGq5vmHpbq/bEKCub7gYe/HtaPy5TLVgrDnHOuXITxhpRrEQrjQiW2pn3fVgBoz1QCk86ILF5MNlwo0NSHQ1Xxmt8Gzs2ykvTz/BHdEhqRTElOzLhKvFkEM3ZPYetqeZ2ji/8CRRyXPPX8PKLFJBFVwpeD/Tm0WAnsfdN8GvMFKqBIWhuuBiB4Jck1TGoGJhKRTBTnO68tLq73ZcVIpCGTwP0wLJHeZofIonQaen4a/90DeQ9J5gienT0BnjD2cm6flnf+gX0Q2ICopCnsPF883gfM8vf4gEcL0Yb3v4tHIU1mNNoUyFuczdBRIIVqRRKNji04UfCe47jWgUBR8pGlPFdDQdDHHhOx7vBGtC8RVrPaphYq/OYxCkyl2wEuoZ9yvLhJEQzhKb5QUg15gr+T6ROM5HxwxstnCEtvIYVt09TEgYsh5iNcMgGhJAvHr6Yoia5GZQ9YgIk9YiX46+l8noe7HExCi2SoReRR6/FcxefT2AHD+PzCQBj9uo4pTlRbGiHGGs3Zam2ksREtRC+IBTeMxdQjXkdsw8E2su0mpLEXoVROLExRRq0SbUS0iigptZn6xo11+QKtoiMIr6PdrY45xAsdB/Bck7PAsLZAuIx7OeK2DLBo119dmquERIrxfU/EhgPjF6FdWW4IrDSZgc1byHe1581+Y2nmzaxkL0KcQQziq955c/wMnR6jhvYDY5oigoDKqMRznj336QxAjFbbtoZJvxPjuPtfyB6vjeoWN0OSI+gUVZTAWm+3XDumqRB8AMC6LBbD67aj0pnCWy8/O8ab8xPoUOj8qYB0/2iYzHqWFUJnTNWoflZ669jP9w/cW8YPAYr73tNwAlaQ36x93mmPCHywPuig/n+jPShGNNq0pB4b6necnz44xEtPIiB7Qk1VAH58R7HEqMMDCGPZMzuvIFIH10m1wGoNCSWDaLPjkOPByr4SNFzNGCV+fDRcxnm6zzVdXKwuOuWDv9e6bkHnODe+IbAPzKyXOY6nx+YaYRsa7OV/E6g+KWCiQi3OtspFo8u3FJPy65cRxTNjyiMiQZHyC2AVcGby3PyendnwaZpB1mvEneFvCxkl6txnmLzUnhkHK1+VOqG5JxgS39jJeoNiAzp6IFxXD//M7p23gidMb4w5nxMNy8cgh1GMsKEqSCwGup1BWZaUF8mIXBqh5iQaOq8FQkSwOvi4xCPAlFeEwO+IBQWaagafU9rZKBRJBSMJlgCsGUgvEGDOjEornFlzOrsAg4bxprx0L+J87NrAvDJAOFiYs5KRKOi5Tc2TlP3yKVajgq+/RNiWvhRht0He+qKCAFbUNTtUy9UChM1HOinmPvGKmnWBPn6yiYUnYWdlvqzRYWpICgFLaufIe2x4O2cbGyCHgPRxtWzkXPzXW/A1UoV42IJEJV9bS7v6rBY5Ta2TGReIZRjvMh0d1VYU2pVWJTwooE6rayaaxHEoXIz+6rudfN7hU1BKSjGvGoyp8Wt071CZ1RKw2M3ump9ZxaZjH1yseeTjjVdnfOkAXprNLNayebD1qk9sLnlfjKcagPAkGgqrwQQSNftmbONUWATNVIyPchb8Holync+AyY3lHlAlUCV5mGzUfzdVDcUcLRRw/Ij4KXUn0QDBVhWrSgwnXGtlTbJSSCWWXiEo6LHuOyhi9ePVALjXnv6G7ecfRifi+7e44dTraQIKcaz4WnH2mPQ+23lIVw3FUf8e6sz8QpE1Ue8yWPuIJHfMl178hQYhH2jWHuqrpBGWzfC269YVEVp54bfsp1P2Wk0yVlAWCCcFSF2i7n2wr3FzBdwYea98LsPV0ve53K14nrzZ2z2I4AD03PNUh99bIYG0fPhnpLsQ0L7uXhMd5VC3ZrBVZvcKXFtbzRxJDdm1dr+2wEbsrlqTuhi3VDBUzmN677wfjk61Pm9p+a2pEmRnjsE9fXHPwU0BnjD2dGYbh094UndL4AZpxjM4+3s8x7JWT8b4WOIdVibyqUgCpJtF3wV8pK6641Tw1CFq4SUg3BWlVa/CjBHcXExjYNOGcpCoP3gveC80JRCqrBypoYR886So0o1eAJAuXNos+j0z3cytkuVfItjfBfW7a3pW2SsgEKDBO18zWQgAw2Cvo1ZOo68viVDKGNplR/rnoiitBUQtDZZPGEsgUDcc2RrQsEBQ4hr6ToiY841hSHrRSAeQzeZKEeQ/uzVMP1fEjm40oRCgnT1/MBujB9VbdBxKgPrpSJ1M8KwjZMbPNb7/JWqwnWp41nd7xCn0brGYkqlK7TylTXXPmNn/0t3vurH9x09SeXzhhDOKt08fb9J3R+bfm0oywoCWsSK7tIYQ46Ww24CJyFwxdAHdmoEbhBZcWtFHKfVPtMENtcH1weMXp4nxvvP48/nIWveDWM85issJTeUHrDtIiYFDGo4DwVEMK8MaG5xw2DdeISCiKuuWGzRtktgrAFbfLKCzWc6CqUvrBufsjF3KzCS+vWA3oT7EttbJGFM7d7H6WG0NV1vGaks0TjdEXsvyL8Vp7ykTIma54/POYt78p7POiHZLoMLFJ/L9SQq+Wm7/FAuc8Hi8us8vJcrwqoLism8P7x7Yx8SqjBFPpqxS9VmDYCB73JzAq2BWmiTO/OcUkoTNug5G08UTEdDh/X36JadudOgV78hJZS9crf/bYfeQIt3MpFt9w+RejMKAx/+C/8IfCrBcWG4gg1BjXB0tlsteU1L8NCXbWjhjk3XxcpilaehLIXvAjGgZ2GraZ2wapZwEjdiAYFIp6/jqrhnOxj2tYABOdN8Dj4YCmw1hEbRxqVjMqYSRnhfFswFQq1XM1Ww8fGFU6bYsgq5SEUhVvOiVgkUy/uWw5+D4wqpaFl3N6KNgm0IkLp6/5o81n/PV8Ybk0bGp51iZADmULRhBIJiXiSJrCo6pMEZcEjpDgchoLw4iNx1dGz/qvCkesz9RG5NwGQVYNXIfeWG0WfTCNGLsFjGfuIkzJdia0dG8di+qMqlYI5ez+uFX8riUNKgxQGKU2ok7DuGUvlQVvYB5Bv8vhqVYRncb81+GQFM6ljLCbZwm4NgAaqAcQA+OG3/NiGDjy5dNaS2s4qvfILns9gdx2UdIvWsBAzXhN2uX7KkO1XGoMImgjFXvA2mIx5htC1Ab4Hrs8C1zaMrsULwrJQekteRuRlhPNC7YOIraMfl3U3ZmfUzroNN3JgQ62FjxcXm+JjB2bE2odGgOnOK2v8WOO11wDh0KedgvZAakWn+3rbqnDHPmsy4No8AmCiJWOdAUWEaMnulj2GB13Cr2YDfnE64D9mA95X9BipRREecntc9/0GWjyEYsU86Pb5WHmeB8tzXPdDCo0Ymmylt3miCY8W+5z4Hrm3FN5y4lI+np3n8SJkyluBWJRYPFa6IwMEuLBzSm9bX3EDTzFUih3Q7ui1GakSnaxY9yJDvn9rkfA6DIn6T2Q5fe+7PsqjD1x7Ai2cjs4afzgzCsPLv/gllXV3QzjK7i4SmWohbplXjIBdDmnSKMRKS1e58ooECcgAkcxNJCEIVvFRy3uwYqKFcKnu3y6agzWTJKAf7aQ5SeRDuIsGyNSTMmVcRq1uS4h974DUE4Q/fMef5WL6AkBwWMaaUGjERJM1xrRQqKcg4tgnnf2s3eFOQ02GoIAEsTarku+U+pWsX/J9a5Ev1VPqQkVvBe89E0qOfBbQlapQpzppepEWUZVC24sRsS3O3aKxxpQacjMMjrzy6tTHTjVuyQK1P2PWzsQnlAQXsSdArOYaU2iEU8NulNe2QAB6xpGaktSWQOVx8IbcGbwKpVp6cWB23kNRWIoioiwtZRlRFJayME3uAwrk8xXOtVJaO5UGDQJOl/UIAayEQoYdP9cDMRl3g966nTRU7qRleKnf7ckEKea9JyKCTqcBWrU67gPv+nDXlZ86OmMWpLNKNrI87zPufkJtCCCr4jrXWD1Ug8c53+ted3tXYQ2M/uzi0M2xneHl++sKFQqRKTk3mDJcWfxz+VKLtBv1ee193wEEAIYP5rfz/ux2nBpiwnq0TGHfOTvmuh8wVduEY7bJ4jlnJly2J1w0IxJZxroTgegUXp1VJCKUeK76MTf9lBxHro6pllxzY450ZphQhcMVIVe+dX/hrw4eIcIN3+f+8hwfLs7x4fICD7t9phovHkZf6nyH7nt0WA7dgCvlPo+V+xz6IVbgIJ4lwG9yfInA8y48XnmZtlyYMhNc6ttQFZbQWxP5M77jFiuuxxF6bqcyaq5YWts3vxgrVv32nl9+/61d/1bojPGHM5P0rEqIJS0KiONZDLq0Kgvv7sBeFTy6aF6pGpHSB8HdBqumVopFHYKhZvntigeXSuc8FwhhSLVEvIYECdWgW2uJEeELbn8O5dEJHzp6bPkMUXZ7U7w3VWqGYs2sGmnhI6xoFQMfzslcRNwyERsMB8kFXnPxD/Do5E7+9QN/lVJLDErf5uQuwqth18y4mlQ3ZFAKDIX2QZVjX3JXPKtAqgplI0DXgmhV1kw9hXhqu98286bQkPQ2Xcg8SNXQxzDFM20pBaXm9LFYlhPiVUMOg6LNOKn7MR97uvzi6vvKNSLTiLJC1ZbWkh+8M6ax3B2Wgyp0rDpS6/jfFdayyrGVmpKpj5vvkfGgwnFuOSkS5kOTlDQuyUtDXnZbVBWDGI96A1OLlguMzoBPFZPV9sbqnlQwGUSjzmYbKoahYm39LNtPMTmpEpZX3LDb6+EKhx3liPOo88jxKIQitWFhRPCTCUznvQ7jTYmtTzJtYyH6VLIgnWU6uLBlwuOqcEaoLB8+hCV1HSDtg2ffpwdVIukKSq/D+E7W84gVv6XW8nXPew1vePcDK07zDNOckyzkKqRxFdPedewaZ/pfeM4f4e6dV3DP8HN4YPROAI59j2O/KADOGjAot8c3SU0JCIc6WFrnD8yUi6aFgCNwTrLOfmyaStIyy9Tfw3lhFXM6MxoZINOSqXaHcdYhuVddt4BrCJ7gdVS3Ecx67cGxfF6hhoLtcgFrEoH9aMKNYtDZZhfFkfLSux7itx5cp2RW5MFcDwLJNiFfUsLw0aoez6omU8Pxs3poZPCxYDJPer0gOS43XyFN0EsRTHLkeAzVeF06ryvzv6JPfHhRjnrq6Kzxh1vyMHz/938/9957L71ej1e/+tW8853v3Oq8f/kv/yUiwp/4E3/iVi67lm579kV6gxSxNmQA18XbVBFjkAvnkIO9gNe+SgUXwWYlpqzeYB0mpGGqGw+mykEQT0jw3CJkXNnuuFXkxJNPLfk0oiws3oX8hX6cM0xynJ/FqxbOMi0iypZFIHPR0uLbVr77dpfPu/DF/JP7/zf+wUffzM3SMvYJY024Vu5wXKZcLwc8UJznhhsw8ikTH+O0XjBny3NBxMRHTfvlQlJb21JfYJZyKso1HqIAtapMOtKUMzw3KeeUBahCn3BVfQWd26YoJxqqN3gNiBy5KqPKI7Fq6a6ZwHXX40RTilDrGSqm4NVQqGWsKSW2CR8a+V5gHLV7mhD+pZX3JXOWqYuYOkvhZ4nnVmbm/BoF6zBLOS56LGdghFyW0kVVX0MoUr01aFs2vCDN6oTNuVeDWvB9xaU+KMkKkkE8Ws+W7FRJj2ZtSbvdMqArYUPhw/AMOh4uIL5SeuMIdodoFDXHqwj+8AjGy8qB6RLknmo6I9ajJ5M+GXnEvS+8A7NGaAfWCvX1L/ZkTZVeZT4nqPrbpavHpRBAL26FjAgvv+syv/Lwg2QnCdOTmCKzuFKo8SFE4OZkyEmWcpylXD3Z4erJAHeKAmR/9M7ncy7+AH//g1/DB45/k4mPmbiYTOPKsylkaufW86Hk3Jc8znApfjHcNcCOZFyy4zlYz7a1fJEmW4QdLyoLzX6lKsu5fHxXiyXC/eUO2VohfrVrKeSr0TLotK+0fPyx67dCwuZ/r4dSe6uPsKJszgxYpLovirGeKC2J04IoKSuDVnXUyIa1v80j1tDwwW28ZUJ+IaXYi3CDiOIg5uS5Q66/dJeNQ7JSBCSv6jEsKguLXoUOOn95f8NFnmQ6Q/zh1Nz1R37kR3jjG9/Im970Jt7znvfw8pe/nK/4iq/gypUra8/72Mc+xrd+67fyhV/4hbfc2XXUG6R8+eu+GFMXciJ4FySKQhXY4xHcPIJsPfSnKJjCYyoPq8080USJxh6TK6IaFAcfUJEENqIGCB0x3x2kaCOl1guHjwv+3vt/hQ/cvIr3hrKw5FlCPo3Jy5mguiSMu5nSEITY2UI1cRFjHzP2MYdFymPZmF+48sN8ZPQRCrXkGjH1CVMXoypMSRn5FEfETT/kitvDeVvj/DA/ZYUbPnhxfOfv7acyUyhUIVNpqmh2KQ2hFsOt0QRPhqNEKdRzpCUjdZTAuFISxqpzwLDCbIK0k5GnarnqBhxpv3Xk7CyRYFmLqqCmGnWqjQgS2gshRbm35D4K9TOqrVTD1EdVYvjy87uR9au1UZo1st5CInxU/TZjn4v3oUXNmTtWLanGdVVsUBA0Wb++SaGNZ2H+iVQU0xR786kNQlT7QFVMVhIdZ8z1OrKw00NFggcxz6tKvcuM/KX/1QvX9PApoE3M4FOQKTxR+mTlEV/+1Z8zN97UCH6Q4s8N8ed38AdDNI02W7GzYP0JymsY083G/OtuxMmFOSZOMVnYGvSHzaigS1Takl89/jg/9L7fxBUWX0QU44TsuMf0qFeFg7ZnU80fLNdHg5UJuYt3cS17Oz//+I9xo7Sc+B4nvs+J9jl2fa67HUaux7EbcMPtcL0cUqpwe3xzTvhcuBLgOW8nW+e9XXd9fre4wE0XsQ5hU1iGha6/JwsizyrupArvL3YZ6+ogjLA8Nv7y5Taao9qf7b/nb8JL7Y2e90DMj6lZj9tX7nochTM8Nt7hQzcv8oEbl/jo4XluTPt4hUeP9hDxxL2SKHEYoxgbDElJv8TGLiBGnkRdLH4lFaeRxRc1w8gwvnNDuFLhkBvHSFZs6spK5eEzPuc5p+jkE6Qzxh9OrTB8z/d8D1//9V/P133d1/GSl7yEt771rQwGA972tretPMc5x9d+7dfy5je/mec856l7Wa9701dz9/NvR2wo6CRJAu2qr1kOj9+A0SY8bkCDUiButtlMiU+0wYyv37P4kNxsCoKU3BK0qJAFTCnzZoElUqJY2EkTrJFg1U0cJq6Tl+YVAhEljR3dUybcQOlmCA11jy0eY0LRtszHeITzyXjh3NCmR5hW3gJHVOU+hLZ7drUGlGvMY263EpDXipghydeHmgYKFMCxVtZ6ZSFZ+YlRSSgGV6CVcL49TdVyxQ14zA851D4ZEZ0xq/WdSSiAV1PmZ4l+tVfACE2Cc3VW67Ni7BqSoWtShdzNY2gvruh1AadFZWFp5Z9EC7+3vs6Nm9l+110gFjTUZehobW5fkc6YhP6/7P15/CzXWd+Jv59zqqr7u91FutLVYtnyvuAN7wabxRgbTAADDiYQ7DHLhCTOZMYhwU6I7SEBA/EQh0Bwxg7DJANJZkL4ZTLMmAkePMNiQjAYsMG7hWRJV7rLd+2llnOe3x/nVHV1d/XyvdKVpav76NW63646depUddWzP58ns7hNS7WZQFGS7I6ww45OnmUV3tvxmKZy2xqk34fedNrVt/3Nb1iwwCtDV1tR24NBD1cZcf3Zk/yNf/g6ACS16Mkt6KcTvGEj6EYP3dlYzhtiDnWDaCeEl1mARBqIYZi8Sv1djx0pdqSkh0p2ANkwfHr7kB6FJler6GSvRy+xeOtxWyW6M90/pv2KJ/2qtWPuIqi8nYNhhVlFF27Z2Ce1bSV2dr4QWa45qseQiaOdhDM9unaoeHqyrMfPZE27rs85t4Ni+ZNym31fg3KEzzpGh0hIS7WLePYaW7pGBDE/rfmFKPSy4+f3jVyoW1MkmgJNi9eOYya/Re7sDDwt5JXljoPr2Ms38BF2u/SW+0fb3HV4mlGZkPTcwqhOkvqQla0LevIsuLTiJBE0o4PW+I3y6zM6SiwD3z+/h7l0gBTH1ARa6elPetZjeNrzbj/e8Q+Arjb5cCyDoSgKPvKRj/DKV75yMoExvPKVr+TDH/7wwuN+5Ed+hBtvvJHv/d7vvfyVrkE7p7f4xx96Jy/5C89HYgpDZ/hy9wCqeXeOAmoFn5jmzjTRCibvSDJUNOJxlxtCuSOYml8scEgYbeV+zz4g0VX1vc95Pv/DK74eZx0Yj9jF5meWrnJHRW+1hhPUMGubaTnFoLds3Ym4m7UrpukKmmvA/TaE1vbLGP1YU8YLq1+nzzHBhZB4Hrjo4UhhrMJI4cBdfnShpkaIC805nUKhJhQrz6xVhKlztouZwz1ZfnET1BHByDTjD0hXEiFsF93IOK7VlVUEdvN+65h5IWKabp6L1hef5nTR7z4ZgoDESJXJg2HcOasP3c6XiljpSkUSkkFBetQyFGZDJpf25zSC5r1ObEhbAr7zbd/Ci77uuctW8ODTFfQgPRzTelbRw11GfN3rX8w/+IXvw16/HZ/v1hNba07WoBvd9T8CuI10GsBiVtuqtUjAZcLoppTyZEoyVpJxaHA4+9aaEk58nkmUof3MxL83Sfid7/9+br1tCz3poMecD6A9qc2qFcivGuBWmUR0Z40Fg+fxW+ugygRZUf+9ZYoVriJYHcuhqam4303qTyoMHy13+Eh+grtcn3tcj89VG0ujDjWpLjZipBlDbMhZm3urX+bFJshqo6M+Z7ux6ixk9uJ5dCrDIUSY4QtHp2bShSfrGbsEh13SBDb6ZPruWDF9qZSdu8AWHUrwujzQSHAgzS7mYDgBHJiVD+tYi6pcd/YEf/e937MaSfPBpCsoH74YdKyi5wsXLuCc4+zZs1Pbz549yyc+0V15/lu/9Vv8i3/xL/joRz+69nnyPCfPJ1UzBwcHS0ZP0/apLfb31ih8HIzg5HQRnADldm+Sx9rxYNUsxJYwPi0RPzv4VnwWd846bCVsTgeClIrfCA16AilIsMr/+R/9PvIxYFNAlAA3vciDvd5TpgQEin5SkZlJt8j6HdtcEimoZ6jUkMTQSbWGolxTpRYVt4RlKgZtUnamAA6Ace3xiohKRjU8sA/gfQ/REmLjuIRySvIrPfVsSoWRYEzU/S3SxsS4vJOHNKXpIrlKbYdgmF+vFcXFXoOlNxyV/SVrEcTU+9rcaHqsKkjq0WJFkV1MmJUSkjqC0IpATCZcPk0zzAYj2+RKtldiCofxLUEwd4DC1kZIKewgEUGzjFufeBNvfMfr1lvEg0h1PdOqMcelOq3nve99Ly9+8Yt5z3vew6tf/Wo++clPcuONNy487kqn9ayih0JGPBD5AJBs9ChKv1hbEoFego7yqbdGIdTfbPbmjY3Z41FcKozPTETssqJRAZICrvsTyE9AfiNUEQFbqmCsl87x3B/9WYrrSjjB5BVftoylVKeqBufPfPqjcl3viKQD6KObJovxS682UEVw0qwqKxn5pANZSTjQhINqcn8TSh6XrvY+L7qatkPpUhUiwrMqd+CoXTPU5dZwOTKiltNzfHrlXEIa+0RoRCC88/A01dJGqiGDQd2KRzhVxLI4Va4tB1TZ/kJwKAmB5009TkoEkFlxOTV5QlShcpAlSNswWGQgrHjg/+t3fAs3P+7Mmgt4cOhKyYcvFl3RCsHDw0O++7u/m/e9732cObP+D/Wud72LkydPNp/bblujmr9Fn/7DO1YPKsqpB1AB10/wPRu9RyuebFE0ncTytE5BWuGwNU4wo1gY5AmtoP3Ele3rzrur4EV1HYEQzjl2oZtWEApC4QylDzCcZkWkAELaUBm7TNeFuiOfrjDsJSrji0kb4bL8Wup9R2qXM5wVck00DDn0cDRnLIQ15xgONaXwwlgNJYahWoaSBqMpXnQi88x9aika7nW9JKcyg6hxPKHigTwWQ28k1fJzBwiqcJbmEe1wZayxBFOCeJkYC+1j2580QEcu/QkiiICKYscVVD4oYEZmQu/tNUowGE7Od0CdDBHu+fx5zj/UXTzhinmQHq5pPQ82XY6MeKDy4ZN/evdq3imC2gnkswfUCsUtJ0Pa0Ur5IJQ7TZh6rXXV6nb/AHY+B+kupAdCMhRMXY8mit/RVnRj8WTqVvXPURITkjNN44AKmfEmYvlnxq/lwJ1dzKVqa+Vle5UAxb1g/hoM4u6O7sddtKuGYg2H8zxga3xF4+ZdlzBQu1B6dbtpYuFxPP9CnrtgJiGk8q4+Uzc5L+zmG9xxcB2ln4bJ7jzzmlPP1t5M76z/0QAfP5qVpkyn3KzzHKmSDKpQP1G6UCeaV2hip42GjuNW/fAf+dCfrbGAB5kezRGGM2fOYK3lvvumYanuu+8+brrpprnxn/3sZ7njjjv4xm/8xmabj97EJEn45Cc/yROf+MS54972trfxlre8pfl+cHBwLKGQpJaqXJGy4yLSjhGwFkQQp9hhiaamwYPvIgGqvmHKLX4M/c/3wfeiZ4cYfqjCx282b+FCZDBjPZjQ4Guxo0sbj4cR5cJok5O9fGawcm50gpv6+50ogc1CCIW7Tk2o1zAFu9U2t2S7C9YYzp1ryp4XTsfCtia6UY/SMK+X2OtiSXjUE1A4SvWheqCbay+7BMYq5ECB7QjXTiapEA6ZhztVQt+FTakw6jGhp3TnPCKhmBmC0D7y/blxidRzLEFQERhVadOFOxgiC4ejCoejDUS0VcMwmSukHsTt5RIXZWRkyaGEWh6/4hFXqDagt6gnkCqmUNIjj60AY/E7Bu8V4xQzLjHVAleLCGz2Q1SwWuxBHB49tJCqwFo5qPX+WU94r9ej15tPfanTet72trc1246b1vObv/mb61/Eg0gPhYx4oPIhTdfElMkSnIHqxAbaj6JSqV+kpVpXcEAtyfnooHpklcHgZjpfON/TaTdf1+sbL67KE9LNZYURwnYvx5o6khmcIO0lX8y3ONMbcDo73rt16Dc4dD22Tb7wFhRq+Xx5PU/NztNnOn2q1v3urnYo6e6DMEtWlPNeuNVq58+jqlRdxkLcNFLhkssYeosjKN3zxdOTWz532xVKtVippYIuiSBP/3BKMLKOS6qwV2zwmf3ZqOPiJ7xyAU1xZe2IE6Ra7vTzRtGe0r9UX1H3pPX9amRX1zDn2fnM0VwdW9Bx1vBtr3gnR0dLsF6vED2qYVWzLOP5z38+H/zgB5tt3ns++MEP8tKXvnRu/NOe9jT+5E/+hI9+9KPN55u+6Zv46q/+aj760Y8uZPK9Xo8TJ05MfY5DL/zaZ69U4BUN+c92wtRFBJM7sgsjpFhscCjBmzq3cQ3StDYWpl+u5u+Gj4TIw7zRrNjEB/Sios4/nRkRvyc2QNAZUbazsiO8KRy5HnePTi0xzuuVhVc+15RcE4ba4/7YYXL+2Fj7gGGoGbtuYwpfWhUGLuOS2whpNrFXwcIVyKSXw65PKTp+3MCsJ46GtsOhVDjwwpiIQLTSuutWoi9UOxz4Tc5X24zIyKiYxBCm/y1jgyLVsPaDjmphEdi2OYseHlUCVG4MLxfOcvfgFIOqv/CYcZGQl8HYmU3PnswbjtUGend2rmCJhm6dk19/FflUmveiPaMCJld6exF9rL0oI/jUrH59VGFBXjmATRNuuPW6NVb5INMxPEi33XbblGf8Xe96V+eUy9J6zp0713lMndbzvve978G4qsumh0JGPFD58PyXPGklv1bAnehTnj0RjIWmOrQeISvmWK68LDvv8CyLPUHHmLIqEnxlFsqHrSyn36qFC0XB02Mdhj89uIm94rjNtoRPjG9h4HvNOdufI9/jSDcpSfiz4izn3M5UN+RDzbijOsWR9lgtXAMiXYrjSIV7XQdH09rho/PrAc65lLvdBiNtO5OWK7+zVGIZa4+B74cIPJPi5Wn5MFldYxiV10UjZfE1dq5F4PNH1y9YZccsCoN8PQPMDZKI/NVhZKGoBGMBWKvPFDApCpy9Jc5z6uMH9C51SXdWRg/WGfeYJ51duO+K0THkw3Hpi1HjduzGbW95y1t44xvfyAte8AJe9KIX8Z73vIfBYMCb3vQmAN7whjdw66238q53vYt+v88zn/nMqeNPnToFMLf9waRve/Or+M3/8PvLB113MiJbzHphg5Ke7o0pbthcm+lLDY68gJvUz0S1wUJLWBCkNGgS3LlaGSR1U2+jsfEFFXDeMiogSyoSO2GElRc20qoBiOrbaknqkTDyPY6qjJ10tp6h+0ke+ZSeVBz4TQZFxtlkn03b5ckSLJ5CLaXrs82IQzab4uGehGMqDJX60M1gzisEDqGuhPAIuz5jg4qTsRmdUxiqMNaAf9GXEIVwCIcuZaSW6824ue2LowuTdddUqOXQ9SnUkkdPl8Ny6DcAJZUqepQkzr/F2JfRs2Q58gl7bmtBFEHZtmOOXIbHNuureZ5HOKhCZMJ54dxgpwNRaZqG+YJCmvbVSRAGGIFEYRYDXkEKJRnb9qYlZw1kHKgVnGj4W+tjlezAdx8fL9id7GMvDmf3TtOiMJgqr/yOl7K5swjC6QrSOgw/7r/rrrumlNuu6MLl0OWmfl4perjLiMc94QZe8NIn8vsf/uzScW4zKlaLLO9FVGuhKzyenefMQJPFx5hCpl/vts0//3KRH/VIN0qS3sSDrwqJek5vjqaW203Bp37H4Hqem32h6yQLqSLhT8a3cdIOeHx2oalXyzWd4ocOwxeqk1xwPXrimW5y1r7ILgorP2lGzfUdqOHQKU8wShKjJwcK97uEHNgQz6aEFRQqHKqNxkq4iZejvylBTGdSUGhKpQmVJhg8qZShTkNBJIUWzEeuGfcWJ9lz3dGFUPcW16WThqx17cdnDs5w/3h9g7lyBtXVfmI/NrijFDJFSgE3ibYoGgyJNN4pgWqTlXywfkS1LUw07Nm4Z0wyWOLKS5KQCeIuA3s40qv/0rzD4orTMeTDceiLVeN2bIPh9a9/PefPn+ftb387586d47nPfS4f+MAHGm/YnXfeiTHHClw86PS0FzyBL/myp/Dx3/nU/E4R2N6Erf5CZi6AVIoUHs1aYeUoALylaYrTPsYW4GqHSNujG//1CaFIepkyNxJ0czKrlhasB6vRyTX9dAWjwSISU5A0MNvgOQqL7Nn5NI5pQ1zZLTfZTorWLdHJvZjTJ0P0IMHjsOy6bVLZ50j7DH0Pj5Dg2DFjMikpSFEMlziBxdE3Jam0U3GEkSb0xJGqn7rdJWa+1kCVAQn7ZUomLmBh17UkwCg2EBpq1sy/63uAoVTDpilYUk/e3JsLbrsxDLpJKDWlbO3er07SSx7PpeI+Bq6IBWndj5qqkHtLKo6hs5SakIhDEXKfkEcvFcBh2Vtq6NRrrtySQpq4Dl8J6kwYZQhoSbXWUIEdGexYJvxcQC3IIl4dz23riK+RCTSeBijJpXWTIvh+glppIIs7yXWnLNnU8l+949uWnODK0XFCzut6wx+q1M8rRY8EGfF9/83X8vu/85mJhT6TZuT6x+u425BOlKjLoWKLpYaGOMEMJaSudg2pX9jJEZSjjHKUBtQ9DbIr2ZxNFVruQBm4HsMqZTM5Lri1sO+2uFQN2bCuUcdNVIMNSiZVrAljoWNl0fpSHCfsiN4Mc1KEz0ZY9GJGfozUMtLpiLc0RynmMks7E3EkODal4MhvhKadGHLtTXnTd5InAgVH1Re4pzjJge82FiZsJTybdw9PcyIbY1H2yz53Dq5jr9jsPLZzPgXna9CS5Q+oO0rCGAHNQopXaIYrnbWa+WnYvospw6LzWtpButbG/sUV6UKq0Ms6m3WuQ3/xr72Ss4956CPQVyolqV3jBvDe976XX/3VX+Xnf/7neetb39p5TLvG7Td/8zfZ29s79nmPbTAAvPnNb+bNb35z574PfehDS4/9hV/4hcs55bEp7aXBIq0RWKwJVmqWBhjGFZ4fBeyookoyGm3HgeIxYtCegMrESpbgYSUPXqLZd0ZtRxpTB4kTZGDQrQgzIII6C1UIAeIVs9EBCavTXpm2YTEbXQjY1W3lUxlUGfflO5xIx2zaojEUvAZknhraUwi5rk7qvlnCWFPurU7Hc4Y5Kyy7fguLn8pjdRgGvscGBZUx7Lsem1KSGk+uCTm+gdtbqCCLkLuEESl9LdmSYur6VAOsa31fSgyeCbKQqLIpHXj/1GsUzpfbjKg9wOtL/0PnOVfeTYgKJIwRdmw+XcMRf5qhSzh0fax4dsvtpuZB8CRmWjkelBkPBmmXxyOuSwowI4PEYm0vE2amNkTR5vSh2lgYhr+nRFFdID7W1SJKApyxXeRBEoFRd4fdG2+9ntM3nlw2+5WjK+BBaqf11GHjOq2ni+/WaT1t+uEf/mEODw/5J//knxy7KPjBoIe7jNg5ERWtBcgrmhyv/qCh2uDoybGPVybISO1tCK0OkpBeSChuKSNCX31eJs9Zp8EhUymIZs6CX61EXsi3eFyy13IlrU8Oi6HqLvtbcOrcJ4w1wQIbZsLjT5mjCO3tG0Ojm6QJ+q/wV0zWEectptzg06QKA5+xaSZyUtpDFXbMiD2/SVcNw2F1R5zHxP48i6kGzjg/2uFje7cuHbuKROhML+oi0/e4ovXDBMEfoiQtwMAGfdbA4ePhxGcJkZBWNGLKgGj/1q2HwY6XoSnGxa/jZFjwzj31Sx+3+tgrQceQD4+EGrfLMhgeCXS4OwheZ2uDZVrXKsj6IUfR0Om5JgV8GptPRWVKHVOVIKYCKWk6f1bbhBdLwPdYmrYEQV00A4NThb42nZ9RgUpwlZB2GAwTUqzx2JZA8CrRC18bC7PQqIJXw26xSWo820kRjwtMux4TZg8wq7vVFmc4xBolM25qTPtvh2GsKRvSTllSxqSIhyEhhWZLcs4mhySircKoTrc8ACOCtByT4rzhBOMmzdgjjafKtf6u15RrQl8qzEyhdaWG+8odDrVHuiA9qlDbFCCn4shkEur3CkMfrEVVGEWjZbey9E3JhinxCPtln71qi5FPgIBWVfjJq6gYSh8RrCLLrZvvLKLaQZoljqJa1tsBfGXjeVrHj8AO7YS5JyEihotISRKe/bqJYX28aDAkMMEgNi7eKB8ibrbQ6bqFZeQXGBaqMM7DntoJ0FLwkt5leoMfBLpSsHkP97SeRzqdv29vesMiXnM5RgNcVoSh2KGB6Yb4frbbAUCQNSpk96S4E57qpJs+l7LGmoUT27Ppf6sXfNfoejLjuWnjALrf1LCEuNZSDZlx3JTssWOCB7lraQUJVicGwcin3F2cZqiTuomEirPpAaeTIWPNuM6uSF9skUWpNMiFZRCu7bVlVBG1aPo67y1P8tnxWc6mezypd//c9dRrH/sUK55TyYjeAga467bImXYEqQY5FCLMCT4qAHcMrp9by+VQlnjyNRoEJjsVdqvC5zZ4jqzHndvA5KGRW20IKIrvKZqGpm17T4ONc9DbjYbCrLUm4SLFKclRSe9CTrZfrAf7uAp/N02jIPRRRrTP+8Du2+XSceTDrGPnHe94B+985zvnxj9U7Q266Ko1GLTtMbIz3iIXH6gVFqtP5veLA1MpUoFP40sz80AYgiHhW3qb1vaKr9OSlpMdWlzipzuHAXjFjS227zregXDNW73pWoSxS9hMyoiw03ZJTV0ZXmG/6HM6HWLwFJp0jJ0YAvdXJziTHtJf7hoICrqW0RPT5Z8SBtrjzjLhcekliE3m5hhkFOAjn6BqqNRQYRkg7LtNBGXLFGxK0Qyv6ArBCge+z5bJyeINrlS4o7iOKvYBnU39qjSco929eqQZBs9JO8Li2XVbaGTwlU6MlKFLOap6TSF0vZbUKE4dVQODN71G30I5SsThlgBZ1+hJ/V4ZDYbuMShoaaan8UzVK0yRCf1FTBF5cRK9ShoMCTuKRgNAjKL1LyrtLLilkODtxScJuHIaBkoVRjkMRqG+CILRAFBVGGt43lc9Y8UJriBdgQgDPDLSeh7JdLA/k9owYxyY0uM6+P9KCkVXyKr2Nh1UtLLVGmOhpqnXPq61mNsxraB1sgplo1+wubGoXm25YvW5wRnOrOjNUDsvUvF85vB6nnT9fQvH1guusKQ4xj7hs/nZGQjqELG+u7wOj+H65JDCG9IVXaJzb/lCeR37fiP2vIGelNyYHHDGHi09NqSSli0ZCHfm1/PJ/GZAOZtOe4NV4VPjm/h0fjZeVVCpyeGWdI/H9S7ORcFnUZEKbzmqep3Fz9qEmh4gaXAoujXSHcSAjc5Jv59gc9NEKNpRA5sbHB5NQy3D4RPgUAGvXPdHzKX/pgclJ/9sf7IkaBy5S6/QGNjoB+dRW78TmQDYQFC2jAn1Dl4x1vD05z9+5fVeETqGfHgk1LhdtQbDzbffwJ9/4p6YdidTwkAAxgW62Y38oICmZq7IUuqdTkkHnuKUnWyfIQEog6KllnCnozdWHSwDRGhawETP7dQ+Ecqj4LlON3x8gSevWj8rSBPXvE/OGw6qHpmpWljbi888dimX8g2u6w3Rpa9veMFLtSsdcarBaDDqyUQXrEOosJyrTrBlcwyeHVNgW2MVYehTxj5lpGkM92rcFzzzRz5jKBnbEuZYqGAjHPk+ogFvfM9tUs258wJ5hT232bof0QMYDZLdaoO+lFyoJnjhdeOcOqJTaDeUqwF6NtQtVD5ZeM+30pJ8CbqFCBRlMmVk1Gus96NQDefhYs1YQnO2rnPHhz7UF0xvrzPypnWZcEIPASrXE1KcbFSkFizejkrECLqRod4HHO6DIXI4jOF+iUPre6/RcFD+wpu+auF9udK0JFg4NeZy6OGe1vNIprM3nVy63+QO16+Z9pq/YEvnNoUipU5FDKbHBv4uLvTzUcBn7VA1ix8ciepo/QLO7Qdy6G1a8ibFL8iIrc0xN9+41yypdIZhniHGs90rV/Ny4L7xDrdu7lPDNneCOUWjYTOppjoYd84ZI7Miyv3lzoJU1PD9XHmCx6f3k6wwFs5XO9xRXk8bWtpI6HVwV3k9h67P47MLK42GhAKnhkPf41N5XT8UwDzax34uv4FP55P6ImWCcHh3cQqD57H93Wb/WNMpw6D0hv1qMWjDk05e5Px4zJ1H1y2Vy4t+v1C/IAzzbNqZyoyMWDCnnu/Npxcx0VVMIbhEJz+bABY0BdqpTYAaQQXUCppYXGyWm14YtOpJOkgE+r2QMVJVwfHr3Jx+1/xtLYLjq177fK678XhIag8WHUc+PBJq3K5ag+Hr/vLL+J1f/ejk15h9k8ZlsEL7WfPGhGiuoIngNudzxgNTl6A8VYoZ+yZXVVpjpPVvMgipSHXGSWN0rCBBMIXgk/nBgqE8SnntY7+E59x8Az/zyQ8yqMYY8aRWKSuLMZ5xVSuHyrnBDjduDrCrmDfCpXKLg2qDnqnYTnN6plrATKSpbeicS0NKkCKxeDicoS8FJ8y4Y84QaehT4bBc8gkJnoSoUGNQDTUTs8r7ZP0Gr54BGduMV76tHkPhTSyQjsrozJjJ+cL+Sg0jl0Wo2HB/U6abqdV+mNAGqZ0WNXPF8WFJxINxsenOvNKfmorKSZNqNlOHH3inF5w31EhfQMhb9oIrDbqgINrkqz2pWnf8rG9O7MtQpymZQklLkCo4eMiCoYiPKUkxLa7uGiotoWWHFbZsPZfGgHcTY6HzvoU9P/APv53bnjzPJB8yukIRhmt0Zen2J53lSU+7mc996hy+Ix1CgOSooNquUcdmdjKjrGvrX42OgN0qdnqemT8++7ZQgl8oNgGdTfBf4nIVBOrUkhLswCJ55F9JmNc55R9/7TfwOxc/yYfOf4TtzTFZhFH1ChePthgUE2CIohpx3VZ3nVCb7h6d4tz4BJu25FQ24obe0VzNFYRL2bTF0m7OQ59xvtpp0jxXkSJcdNts28VNGg9cnzvKM80a5tYF7PktLroRZ5LuDvLta7B4zpWnpp6CA7fBhikwEprLfXo8SQ+ZoMNNZMadxRl6puJsdhjHTC/syC2vlxOBG/oDBLijA0ZVFcpKSJP5HhT196KyMbW1tc+DLw22t1gv0IGFGiSja21IeMRdNJBbz62JKa0YyDYSxkWF30jY+9IzjVVpho7ekaO6bpNkd9Skpi68GyIh/UjLkCmyxOrbObPDX/+xb1+4/4rTFZAPX8wat6vWYHj+K57BS77+Ofzu//VHdHEsAWSYo3mJ9tKmgVt1IkMTO/cQqkCxY5p5RIRk4HEd+dOzD7t4Qoh6c7J99TOk8+lIrX2C8O/+7OP833/e40tuvZE/PboTRcgrGwra/HQ826tlWKVsp8VSrwrEFvNiGXrDMO+xZcdclw07j8t9utijQY2vL802EEaa4dRy2g46jYZJtphEpAlpZlmmfLfvjlehktWIEHVdx/SY6aZ47cK00lsOfT86CENalCLkBISjukm4FY/XkO/pdPk6RCAxnspZrDjcjPAUgfPDbXJnSVRJbSgQU4W8sozyFO+D4WqtCx6kunB50DauOpYQo16LGu5MbhKYmH6EBAPCjCGpwS0cSK4NvHCILIQTakxrCopUUGZUIT2qkMJ1/5rF6m4ZiLB9+vjNjh5Mutoa8zya6K//ndfwt//KL+B9d02YcUq6n+MzG5p5EuQAqZ1m4rUXKD7z9WZbKul+RbVjY3FoUJDEgSm1GWurkOZqR0K12fLirnwBQMaC3a8j3fGAKnp+D+Fv//v/mxfefiNnbh5GXKJAF462GBbT6ByDvM/pzS5HzjQ5DU6JI2c4GvW4d3yCp+7cz1YyneYUgNeEe/JT3NLbmzMaBj7j3vLU6oucvmIuVDs8LltsMNxbnWIRv23qzTzcX53kOjtYmhof+HyQWU2aEXBXeR03Z/sAXKy2qZg01lwUAfj0+GZGPuP2/kWy4EUhON2Eag2DSQTO9AfcOzzZqi2M16PCsMgwJfSzktT6xpE0LlK8Cj5C1wXEIwFR3DChGqRwKsdk81GbZuwatPkF2NgNBsL4+vCxtc/OK8WgxEg0ohrlSPBbCaNNS7ZXoYlBcocpKyg8dkEDXlVF6ujCkhvW2+yxuX3cHiIPHl0p+fDFqnG7apNgjTH83fd/P095/uOXdocV55HBGDkaoyJoZmN/BpqPChQn6u3SCnlJY0BMGZITx0LYVqcW1T1c1iiCbNKSOh6mSZM34WCY85/vPD+113uJHozpl2lUdiv3EwqsbpIaHQYPXI/DajafLlxxqQljl8yCjDDB0g7e7tJbCk0oNKXQlKHvceTnc/RUoZjp7NlmwG6uYHuW4jmBnBS7xMRXnRgxs2MqJsy1iRZoaDgUip8Tck1Dp+oIM5trRq5Jk7/b+hVZJf1r48TUykek0hvuPdrmsAiwsJW3jMqUozzl4uEm+0ebFGVC5SxVZcjzDO8MVW5x4xp1aepmzns9Zs7ZdaPEB7CweqhU8a4J4BVbatMR2rjp6cLdFXwaI3MujPWpYOofYRatxq/xkjwcSNf8XKOHHT3j2bfxkz/3xuAxaD+DLRLAFo7kqMCOy/CCzjYuiDy9FvzTrgfB5gFa2I58+LfQzrF1b8dm6mWvZNw5Zyy0/q63/P6f38/hhe1me15ahkWPWZ6kCONynpdPk7RSSgOvdWr41OGNscZqmnbLTT52dOucUq4K58s6hXM9hbSmQ79YAfQKB76/dE6N/sORzxj5rNnWRSIh7TaNcNc17bstPp+HKEbVGWWflb/h7y8U13NPfpJEPDtmDOhcGukqur53NHUtRRUMtwCgEZx8+8M+e4M+h6M+pbM4byaPuEKxn5Gf36QaBsOj3O/hy5bMa70OLl8PVCI7CNDa4qF/Hk59Yv4OzGslEypOp5RbFu0nuJ0+1XUbuI1oiNXXW/9tDWpX3zdZZf1eabpC8uH1r3897373u3n729/Oc5/7XD760Y/O1bjde++9D841tOiqjTAApFnCM1/2VD71sbvDhgUJfsFbqxgEX/pQv9Aa5xPpjKlO8c1motb3+nQ+pm5UoLFfllvu+EZRdGPZmIlF4p1hsN9j52TJqIBerzuFqPQJ4yqhZ7v2RwG0IGXpsNxgJ2ljdwdlWATuL09wNtunJ26SIhNvhldphZsnN8oDu26bnlQNylIdlag0RWORdL2ytuduXcp9ypiUbTNuOzSacylCGdGHUlwrxSisscRgUSweh6HUBMW0ipenrwmCN6pQSxYRlAqSJtqwVIi11ncquY1P7x+QO6FSofKzAknIiwTnZtcQvxnFJB5fToqp502iyYb+RkJ+tAR5S4S6IbV4qB8RFfBGyYbBq6QajYWOK5X4P9c3JOPWM9Z+h2pFzCuSZStiQ2Hnl7zooesvsJCuGQSPWPqS5z4W631Qdpc0BgTwqenmQ/G5Xfa8rrLJy01CWlLdANSxVDpLdIrIGkhOqnDhc6c5vW3ZlSEXB4ux+/fHG/TTwwWiMjqU5rYLlRouFZvc0Bs056zUcDHfwiP80eGtPHs7yGGRgCZUXab64XWi5HdFqNc1QDzCvzr/Zbx4+3M8d+vOqfnqpIQjlyECNyb7fDafRqX5TH6WI9fnTDIpgF5e9xdGfC6/kVPJkBuSA0ZFijuGUisCj90ek+gmH7vklsiVjm0yUVGyUzn5xY0YPRBQKHd7VKnH9hwYRSuDGyWIFxIjOO9n3U/xkhRTQDqcOtX8474iGgBQnEyw4yI4n0RwJ/r4vsMMS6TyAYSjn+I2Uuwu2IPRwjtureG5X/bkxed8qOgKyYcvRo3bVW0wADzrRU/i3//z35igIrW5wiTZcBIpqBFaWpVAfja/NJIoSKWTcDN0ORUCk60mMJVN6HpZEbywtDA6LLv2xoKrLHkueF1UbxDo0miT0/0hG2k1V+yUGN840Co1jcdIUBKjlN6QWUebHdRK/l3j69iyBdt2jBXFisPIpPi3W4VULrodbjZ7E28GBmsfQ+4/R49wLWOfcrHaZqwpm5JzOlnVvCWw7YC1JBz4TTKp6EmJqOIxXKy2uOBO4FXIpMSrcDoZNp7+eo0OIZEAsecwqGqMPixWDZwacgRLaHFnxS3N0VWlqQWpnPDR/UPaP35iNJxXDc4ZisriqsVrEAGsQqXhXxfW1TlaYTQuMbUCMjsqRhNMHuFVaSlGqogRXKbYotvDOrswn4KOQbySHpZh/nieKbIGNnroKO+cz1jDi175TM7eNp/P+1DSlYJVvUYPHfU3MwZHeQzxxY2zMqJ0sJmGZ9EHEIC2TFj0zJtC8b3VgfwkZyKj6pesftEWWCJaW+FLqD68csIn7uhjbzBL9ZeiSjh/tM31WwOs1PnwNWdQkiX5E3v5JmeyYDCUavjE4U0TVDkRDn2fTEKSabFmzUIX9ZNTfL64npuTffpS4VW4UG1xwW2jKhj80iaXEAyCS+UWiuF3j57Ep8dnefbWXTy+dwGD575yh987fCL3VSfZNDnXJ0eI8ejUvMK56hTnqpMI7X3LfpPwi3x8+Bge27vIloxxukFC1QLdWE53Hvb404sdiChrkgT7ALtR4QbtaH5oFFuVLcVDgZJQ5wPM91UI27funTeVLte3X21asujAUhHoJbje/PPiT/SxB6OFjmDvlW9848sucxUPDl1t8uGqNxie+eIn0EA2OD/vHonhaN3ooxK8pzqsIDWhec8K8zAdeYqd5Zq9AskIih4Nbr0pA4Kk26L7zVqXF9RyzXhy5+Zsovm1CJfGm6RFxWZa0rMVmXVYUYyE21H4aSVfCakxF/Jtbt7YbxrBNdkj0Us/cH2OXB8P3JLtkUlFV+Oa9uJLTSi8JRFHRUIiG2wmN3H/+BxHKCOftrotC7laTui46SvRdYUQvEftwuhCU3Kfcl91glwT2pnzdQ+Eokw4kxyRip8KUY+0x9gnIZqzjgdLQuSiwHBUZeyXPXom3OOuHFElGGjew52HpxfOX1WGokqjUbtCUZAQaVCrUNU/lkzkWf11LIgPcHlBF2gb1MFQSAZgW9jdk7saoyp9wRVKuk4TzqiU2aGbGAsLSE9tI3k5lZ4kRlCvPPYpN/Hf/dR3rXHCK0vXahge+fTlX/MM/tN/+EO0ckFhty2+7zUgsSiTxlUKqEdNfJGW/L6mqg13lnpYjYNkJKFx2yyLWWiNrHd9AqgocnINAH5gXKbcvXeSzawgSypO9cfYFahEAHvVBufGJxj5NEYWghviVDLkMf1dPIaxZiElZiXW8mJ6yvYL+PzRF7jgdkipGsdQc60sloFtvn4uP9n8fbHa4Tf2n8FvzB/B0PcYFn1SKbk+GzINuR1Okoo7hhEk5Jry2fEt0bSpc5VheZwK7h9u86cXb1nzPEtWIGB7swbDDEWj1Y7qpq3z67I5bJ5TsqO5XR3zrY6GQczoqNe5YIwAmia4rR7J0XhqbmsN3iv/zY/9RZ70JY9ZY2FXjq42+XDVGwzbJzd52Wuew2/96kfDBl+7bgBrY4EzaBYKn6WMJbaVAxwkgrPg0+5bZYs4ZzufbuYBECKOfTEdqktcQFDSdGYwTMLSS5zZgoTuz4AWSSiV2HBUlSFJljN47w3DMmMzKQHBmOBNmjUW2n8fuR4H1Qans4lm6HXCrJVJecah63PdCgSKmkaa0ZdQZ/K867+X1FjuH/8RubctdKVaIAgX3Q432IMZ/jO56QHqVeaQIkaaUjTGQospxT8rTfhsfiM9qeibIFxHPkNj8XSPkmXMvE03ZI9l5AYcFANAyH1CZhzJDByfRyh8WO9+0Y89Geap8sFYaN+LlaRAIVCE7s1hU628aGjCk5vYZE1iVCZwOEGgCoZu02dh4XmUcktIRqsD8vW6TLGs+WAkMchGP9QgVRV45WnPu51XfcdL+epvfSG9jQen+/UDohY7WTrmGj1s6bv/2tfwn/7DH8bogZ+rn1HAZSbkkUY+LwritNk/E5psSIBk7Km213AqDZVqa32/7Lo9fer16p1b6GMHkK3zQIYi2n5SLu250B6vCneNTsfHPUQkbutf4lk7d0/BY0NQsKe98uucwbCdnOblN/5l7h3+P4z9fgNNWs8QXkeZcmh1JRTck59k2FFD13XWmkpNuFRscn1v0NoaJjUGeloxdmlz/avoaSeeyZ/u/0lIcIih/VWQqZ/ZPcMqo+JYtKiRrIKUwViQRTUWqmR7axoLx6E1+WXXK7d9coOXv+Y5fON3v4zHP/2BG1YPmK4y+XDVGwwAP/ie7+LOz9zHnZ86R1Px1OuFcFcsZDZOYVigiUV7SVuLJBk4qu1koYUsDtSs8RK3nLxTx85D4yMIJhf8ZvfT1KQjNWFpxVeWciRUY8vOyRGYWY92WEDjnddJ9+eQFrOaeV/Mt+iboglNN7j4tGu5hSPX58TK1KFApbekkvKSM2/iWadfT+kH/PGl/4m9Kp+75QZl7FPO6Ul27IhNihgZEUq17LtNhprhvOVUMmRbAupHoZYDt7EwncipcFCFxmy5Zhy0dIaelKTGk5PFxJ3Vv/Uf7+8yqLbwnASURDyqQiGh70P4xUIURBWOyoyLo62FcxdlC6+ubXUuIFXQoxSpJs12gMYQwAuSC+IlGL3N/ZUpJuf6kB6tuOKAPYgXXc5QYjhlKnWpVbcwWUT9ksQfP00hTelv9fip//iDyy/8IaarzYP0aKQbbz7FW3/i2/mJt/6vUx5oBfxGit9IJkgQLsI4tphSZKVMRefatLyKuCFTLBi36OVrKyNriB61SrXbRxPF9CvSrWqFJ1442a95+GoFta2Yb9sRL7/+M/RMt2NABLZNPhU9Xrh2haOyx+3bt/Mdj/s7bKfX86XXfycfPv9zC46S5hxdtewCjFxG7iypcSsbCMdVsJPk7CTjqWttkxHo24qRm+8QPTtX7iy/9LkLHBaPB5RTvRG3be9yujdiut/9ZI5BmTEoH5xmXqqgo0U1O/F6yiXGQlzb+AYB59ncPcaJYXGkQQRTzeToeEUqj7iwXW3M/jAyLQdV+a6/+Spe+6avXHMxV56uNvlw1aIktanXz/hnH/jb/Dc//npufOz10O+FcHLdAbqpPxCkcsioaB5sBUzhyfZjOLfFfeq/TLXeL96VsmFzFkcQSkFmYLHbyt8k31Yh1ZCvjqBqONzfoMjnES8MQXEdFRmDvM9hhNYrnYkFVMuuRajU8oXhaQ6qaSSKtkoavgv35idXykpVuGN8ho8NbuDf3/u7/H/n/xOJ2eRrb/lpSpJuHG2BioT7ylN8bHQbHxk8jj8c3s5n8psYaB8BDvwGdxZn+FxxI5eqTe4ozsQc0e41BGOhzaQnxlOuKa6GlhNaXai75xpVCYfVRgvGMBQFjl2KqsGpbWpEDouUu45OcmG8hfOLw0lVa5/UynRrDW1kC1XQUpBqQShZABO8k51Fyi5Apto8RtDWdGaJ18UeFWVKSKgVNFip08YCxDQQDcpZiza3Hhxh+aCSrvm5Rg9r+qqvfzbv/4//LS//2i8hzQK2mjvRx2+mbdi4oKSswuGckRFSsZbRsHERTN4xbgFbFgjGP937J2tQ3KbH7fjQI0UFP0opD9LQp2V2vAc3TCgu9rjvvlMRcW+9hzgg4hl2i42VbKNnKjJZlSaliHg+fN/t/MyfnuBH/uj/446jCzz39Ldzc/9Llq6qUsO54iQfO7qFjx7exp8Nbg51C0oEsbAMXUY5ByoxT5u24EQ6nrUV58iIksl0T555Ej65e5aDotdERHbzDf744q3cdXQqPmK1OymkK6nCPUeX33xMNfyubX3djdLu6EL87jbrxrCzk0VI7UGIQLvtdSPeitRGcdf70Lw7LWO88phxFQyGqHxPbSumETBvuPnUemt5qOgqkw+PCoMBwCaWr//Ol/KK170YMWYiBGbf/lgRJHl4EOv3yeZKb7fEjsNbFx0wBLTR+hdf/MsLIS1pFlLVOLC1IdFxuClNaNDjorEgMZrR6I8KsbnbdAqOYTTos7+7yWiYkBeGPLcM84xRkeG8wSucP9zh0nCD0pu14d1S4xnG0Gs7zDtLHsuBWwyBpxoa98RwB5eKC/y7L/zP/N0//uv86cFdS487dD0uVjuxY2aCwzLwPc6XO4z9JGQz1pT7qlMB2ajj+pwK+9VGLM7ruv6wrWwVbyd197HZt10Vp8Ldo5Mdc4XeEMH7FL7XzXuchm6rdaRnHZL4+KqDamSpBinVIKMapvjc4I5SdHEjD/DxOZrtvhwLnKcuy6ywGZQArTqL1z3LEFveFreRBANjGc0s/9L9B9x758XlxzzUdJUJhEcz3frYM/zNd7wWEHw/mUPLA1rfp3/UjowOVMD1hPKUDd1tl5y7ZuUbFxaM6tDZVSfHLXtBNVO0X2uKk+2+SCj3MordjHKQkF/qkV/sU1zqB2USw/7hFl+47zSVM2vzJhDGPuOTR2dXHhMQ7JZ5GQI96/p78Kp84O6P8w2//jP8rf/y71C9ceFl5z7hTw4fw53j6xj6HoWmHLo+nxmd5VOjmxi5SQ+K3CedsmGyBs9OMl77+lPrSaXLkgt/33l4ir1iFgIx/P25gzPs571mtAgcFRmf2buePz+4br0FtM+o4PdS3J2buM9v4z63RXVvn+q+DC1XqH8eNAmAG+1LsKMA4tK8CSa0fVp6e1RDfxANPUiabW0DOyoUTVNPr0hMXZ2/UyCFm5IhIsKH/++PLb+mh5quMvnwqEhJatP/93/9cXBoLvESCaAumuPtAlAH2ZFj0DOQgPhQDCpeUKv4bPkLKES0pJnUazsEHLhNWm9h6Jqoacwn9+HvLm/A0joiNeTjHr3NfAaTWKO3RNkfb7A/3mC7N+bM9uI0ogliBji1XCy2OJMNZp0CU3TkMhJxbJp5T9LIpwxcFgXfJH9z4A74pS+8n1syS8+4mZz/0CztyE3XNkz+VvbdJqJKpcFTmIonMZ7cp1MdSfeKDXarzWZ/srCwT2J0YhLCl9hhUpHGgCy95Y7h9bgFBX0hRC6cO9omj4aDUyicjTq3WQhrm1hH5SYoGiIBTrcazUDWKvgygYRQ31IqUklAYtDwzIqTSU1DqngviIvMvJi/q2omPK37Z1bSo8D4mxS1DiYoqkiMxqm0FJ5FZAQVmeoKfd/du9z82C8uMlKbrraQ86Od/uDDn6EsKvzpjaXjulhe/d0byE8mTSRv6qAlJEC2rwxuXXBCB20gHdGIvLdC73N9v8SoMKhTdDTNs0SUU9cfsn1iHGFQM/CeraQMTrTFGSVNNPSP9m/lVDLkts29hd2ejUBPKsZNId80p6mhu2/Z3A/AGJGnf+Cej/PxvUt86+Nmzg+oKp8a3BgLq+dVzf1qg3HV5pshRWgzaSv5YbsAVpRCE/pSscjsmwVfDKUBdY2GNtvvPDzFnx+d7r558dx/dOGWCHIXfth+UrCfb0X5sZwTz67J3dOH8XQTV4YBLNwi+ErxmWIqoe0HC3Vr8Rw2nFdUgqHgZ84uQnECersLHvC45uY4HyJpbXRJcRFoJAGbBxkoMTVpoRtPFb/Zwx4M42mUe+64sPK+PJR0tcmHR53BMB7Wlce6mOsRh3gfCqMhpHAQKvgTDxQT1mbK0NgqX6cGc8HDYQumC5xVoKe4dhbGjMAIC51vBT9/zpCmNEF3UCQe127wdjjuc2pjjJ2rfYinEvBeuFRuoBEu7+J4k+v7A06lowXh2oCeNHIZfVNiJPRmyH1KV4/fGtK1VMNd4+s5nQ45lQ6amomRTzhyfdoS0GvouVB626TEB+/MZDGpVOwksC3BfX5vfio27RFyNeQuwPFtJkUndGDjDEG4UGxTqqFnShIcu+UmF/NtPIZ0gcLfvoeJ9Qyq0CPBe8F520Dd1UBes/cxS6poMLTu06yxUP9dfzVAqkgRJjdVqFmYCjNL6MSsEsLMC+wlfBp7LbTPVk/jQ51D++DueQTFI5UiuV8t8kRC2mA1yYPeObkYQ/6LQeJ1ZaRkZSTlGj1saDwqwmO9qCdDi1Tmhb0C5VYSEZVmlbvVz8FC5UEgGQelqz6vKhSnWRph8Pg1pXx7EuXMTfv0N4oZPmQonKWfLOq+G0AcakVXMXzo4lM4uT/keafu5Jb+QaexIaKIBhV7gnYUlcXaOJIA+93mgXcNT/OBu5/OM0/dw62b+yHNRiUWNE8i2yHz0VB420TR/QzP9BgKb8ga/q3NWj3CfrnJPhpSk5LubtjOh8fmnuEJPnbpZk5lI85uHiJ47h2eZDdvewQXkeDUMq4mgj53rfq1yVVNfdeW164xXPbSaCzMm7aNl96BHUmzddJmdIaZC6hXTNG9/uJE6Opcly1OZESYr4bknprS1dfRuiofHFS4YEQsvVsisJGhhyNEFWOEk9dtLTviIaerTT486gyG259yE5d+9zPrRYF8tIKjBqdCKH6ONPUC1HmqK2DDupzPQvAUBat5st3m4ZzaU3wSQnpMenE1Y1f7GqYnro0FaozshgznDna4+eQhNVp3XTgmAoUzMd9z0jAs9wn3DE8yyHrcurlPXUg9dWYFL2YpKoUieIWhy3AaCnULEoYu497xSW7p7zJwfYa+x/Xp0aQm3RsOq3776iY3SCcRg1Ite+UmFs9B1W+MhfYd9AhHVY+dJJ9C9QhGjOVCsU2hSSPURq7H/eOtBpbVrOkqsOLJSxO6bwKJnRxXXztOKF2I81obckm9kyYVyZeT36CTondTvaKpYnKD+IlgmBsLIaJVdM+oFpzEmodKm2dVKkiP2qCGS0i1CUev98yCGoMEycKtjzvDE55+85pHPkS0Tkj5kSMPHvX02CfcGP5YxcslKO60omQeqDYMPmtpuTO0RLdHgaorsKFhconpgxM2o6QDKLejEYHMrduvLeEnx/Q3CjY2i85RpVqMUzLrm1O1M0qG5SyCh7BfbfEbF57O07fv5QWn75yb07SQ4xZ58Atno+IcKDUVp/sj9v0Gv37f09m2I15y4x3cW56OBku406owcmnsBzQjOGeuv/ApUNIzoQah3Y+n/ncYI+KnsuniQhHYzTf55N5ZDstgrOwWW1zKL0+BbUfc22tuF3J7J6gPDiKbOMqxIck8YuP+/SWQqc3M00+jqMw/oPXpTTBMTNcTLMLoxuA4yg40GAiq4ZmN0etVTF9UMSOPPSihtz7srj+1hd09wnvlFd/ygrWPe0joKpMPjzqD4S9850v4yG9/GpLlHiSFBl7PpRLgVXsxmbtDEFgf0jl8tkDQqAZPbgt+tXlOzLQhodBY9UkpUAb24fpKJR6y1kjP9K/oid0bichNQaK5KhTZBiZvsInH2Pm3uHQpX9g9ycmNETv9vAnGlM7G5mLd3OSg6LNhS67rDSaGTGQ0XgTTYUjE29L8G4wFiV2iJ8aMR7hrfB2pVFOOP1VaxsKs/yJ4uCZGQ/BZ7ZWbjBZ2zAsLHruErWSSQiUCoyrlsOrhvKFvA2rSQdmLxkI0OHS1nqEK5wfbOG9btb5t40QYjHo4Z1vbJwJDNUSHfLWGyl17hhJFhjDXdGd2bckKnm5CukU2aBVLq5J0pDHNTx4K3pJS45rMUuWpPia8NwZxnjf94NfPpNV98elqCzk/2umpz3oMj3/yWT5zbg/N7MKXWRC8FcQrXgJfVyu4zcXHIMufBQFGs2nqcXwymn5Xyk2l3GECq6ogTpGq5hYRa8cIugKemxkl0XvhcL/P1s54qt67XmXuUyp1ZKaKna+F0tsIyb34/fyzo5vYScc8dfv+KWOjJ1WAr6b71nmFT+/fELmX8rhTl7hxc4LlKQJ5Zfmt80/k9lO7U8cW3jYRj1kHURcVEf7aLNRwhZHvse2LJr21jqyUJJzZOMKI57DsRxCL41MdyZ49b02uMpR5LXfCA1IVFlQoRopJPNY4cJdx/kW3Jp5KM6DblgQRyu1w37bv9u3D1qbehQLrQEcOTQTcCqhuEeilSJbwhCef5aWvetYxznbl6WqTD486g+ElX/MMvvI1z+b//cCfsAzyQGwwDhQlKT1elWpzOUpL79AzPm2Coj7bBAACrnEOLqNx0msSmX7t5YW2A7+9IpKxIKVQ7rgwxkQvSO2hLk1wA09ODEYh87iihoUNe1yZYBJH2nNzt8CrZXe4ye5wE2vCE58YpZdW9JKuTtLBoDmqenhCqk7PhlzXw7LHUZnx2K09spl6hFpoeA3oS6UzjH0aGXzsLGpcSPORgINtcZRqSXHkPukwFtqkjZAJ5xNGulgwAVTeMnAZuUvYsCV9W1F4S+4TUvEcVn0GVYZrfqhpQ8Vp6PC8yDg6zDPyKmkZCzKV7z8a9fB+iWDTCMXqzZygX0o141omEAjCuYFdl5nxGlLvTLtQusUQ24dNnzow/SR3k32JoKkghV9oYONj2z9j+Fvveh1f/uqHlzAArjoP0qOdRIQf/Iffxt94w/9IkdlOD0Dr1cWnNAAa7ZzsBZNTN0hsv4ptv3cygmpT0TTslSqkerQzHcstpTjF9HMl4fyBderkuRSQwqAbSwAQZpZc5ClFnrJ/aZsbbt6j16/mDqu8pVxhIHTcAH5v93Y+NzjDk7bOcyIZs1/2+f2Lj+VkNualZ++Yq3XwCgdFnz+5FDD1z27tc//RNnfunwaUnSznMTt7bGUljz25x6hM6SchQqDKlENn/VVO/t9Nyn7VZ9MW9CTIw91iE1VhOyvYzkq87vOFw5Ps5bPFzctJFaoliv7EWJhebfu7ryxe7RVR7lSWR8kQITtYI920g+zAYd1EmEil6906VW588ll+7H/5qyTp5TcEvCJ0lcmHR53BICL8nXe/nt//8KcZ7OfdD2QLOs+ULniaqtrzv/gJNh76uzNGQ1Sy6vbfSR6MBm+Y9hA1C5z5d3azg2Rkp5Q5HYTCpUlJwITlhXU0Fz81p68MlUDam81JDQpvkIPhRJVXqjxjVKTs9Md4NVQ+IGcYUVLrqIzBWWHoegxdj9zVQkX5/NH13NA/4nQ2nBEIYf6RSzh0NVSr1qug8AmV92wkFYjgvGPkUrLUxbmX0bR/o4Ej7UDE8Crs5X1yHzC0D8qwlsyUbKVF05evjpoIQhdbrDSk0FiYMgREYFxZzh3uMPvjem8wxlNVBr/QKzV9LZrL8re3jvKoIB3QiXOzO0gPgjEwG9cI0a/wPKfDBR6fGVfSrPEgpQ+9TprxgtvOMBdHE1fjVH6DIq3aha/+xi9deQ1fDLraPEjXCJ709Ft4w3/3Kv7FP/11tJcEX71MeCoSu9HOOZzW0G6i0cCs0SDhY5whHQkcKWrn44FqlOLkgtO1ZUdrn3hBR0CP+QLphS9zCLDff+8pbrntIjaZfogv/5EWLhQ7XCh2cF44GPVQFc6PTjCqUp593T2c2QgNP0tv+Mz+DfzRxVspfYLBc25wivad28832c83eOzJS9y0ddQ4g1QVz6QmYv3VLbf56lGFT2IKk2LQiLI3ISMh9fQ4NDEWZj01k/1l3tVYtbWpxXg1Go7LosrrL24CtR2/zs+qis0hO7y8pyPbnYQuhCgSlNVYniJ81Tc9nxOnH171C3D1yYdHncEAYK3lO//q1/D+d/+f4f1qu5xbFae1fum94k5msdBs3uNUkxI8PMaD+nrLtCep/m489PahUHCxd02n03pqfsX3mOMnOuGSc2uTyoY5e13MS3ClIcmmPf+LipfDuZRRmbUKqAWniqtCQdlmWiICpZeWQh+U6/vGJ7h/vBOiBuK5dWMfaxTnQ6rQ7Lnqq/YYxlXCRlri1FBqwqBav8vvlC7aYSyowsXxZkfoOnioqsJyMh01QkEELMq4CkXO0/cqXHdFyM31aiid4dJok3GZMe1PDP/6qC1UVTvPtovCePXEggIWyZawLToGpQi1MAvTeTxke0yMjNmpXO39VKQMGW9N92cjeBMKu7oQkuo3IBm5pvYhGN46KQwtq0mRqWpo0OMnY6+/YQebPMw8RzVdZR6kaxToW7/thfzSr/wXjg5GIc0zPtS+birY8S7JOjmJxGNNmHPOCVX/uQDKuLPGYWruBduthNDhUvfw/GTq4ehwg5Onh83W9eFVl9NgnE2Bbtw9OM3dg9P0bUj3GVYZXifaou8OvQPCnfvXsZMVbKVFvfKOcatJWe8nbFtnteNoxt9BZpd3s59CE/USe/0sYughQq66SnuOVE6Q8NamJalrJockXz6flGAHyug6wZZKdtiaatmhqpjcM9tQvDlkjZ/yiU++afmALxZdZfLhUdOHYZZe+10v5UVf+bTgRk9sUFjqRm4tahi6kdCgbQWykutNjI2pV19juLg1VohFQpcIRdOepS9GE12dHdNA+y9wORVmDtO+PcbPpDHJQpNXSZJ6ovZCwr+FSzjIe6EeoUw7BUvId00YupQ7hyc5qjL2yi6I1OlrcJip/l4jn1GuZJ5RXW1Nm7t5xXNSFNd9fq/BozRuFd2JQOkSjorepKlb65jDcY87Ll3Hn++e4p6Dk4zLSf+F6X+JqfomCsfVTN5XgmCglAmz0ZmPI0QXxq1uznVjtRlKRkRPVNfVx+d0KKGeBkGQSWi6CoXMXagatcUdGuy0Svg04GvbgwJNbTA2SocpKkwZsLXbd+nb3vTylffki0VNM6EVn2v0yKJeL+VHfvhbMIkN9QlJq7vsojRWDe/D2hp1h2em6rf2ddD6RcwT0rqxJ1yODs3waFnN1zHW0bo1zgvVgpSmscs4KvtTxsI6dPfhiSlUJRubnh2PhFKP03MikHb87Kn1C5003kNRGvIioSwtzluWF5ocz1CTYgYNbw0yi5oAakiLW7YwqZRkJJCYUHvghWKzNdUyxVmE9KCjgZ+w6pYA0O+nvPQrnrJ80BeJrjb58Kg1GGxieetPvH4dV0LjUQo49VFhbr299YtZZQsYeu1JmDlVKJYDMZAOIDuKTdw6FW2dqnWY2r5OKumqJi2tGReVdojoMnmJqrCf9xlVybLykHo2Sk0ovY1NdJaPhdCnoIbOuzTe4I6j6/AqSxhpu34hIBCNfUY+8yONqhBaBqi8MCoTRmVK2WpWNKzSuRSomgcOy6wZVznhvoNtLg03CRn4y8IArWuLsm2ZUGgEQFkbpRL+LiQWu8dPRUhDqkAqCXCpsf/CnIFBCDMv/ak05mrPXIUKJDFFqfGutj+AOCXbLyeMxoUunbaKkRlrQsof0499vbzHPP4M3/yXX7psdV9cUpqUw0WfR5IH6RpN6Euf81i+7mufeaxC+2TsJ27qRdQxnRJkgSYytbGuYbCj8OntxsaKx6HkgTyAkwaT7bVe1kxxGlUuuyB4yewc5v3mth+VGV84Os1hdGAdh3KXLPwJnRfOD7b4wv5Jzh3uULhJ1LmOptZU37fZur2yMozGGVWV4pylqixVtdpIkVUCYvr0xyMNuosdMCcjzKIi5+acgibSOETVQLkTQGJcV6SscWyF68kuFeG9aV9DIzZXX9APvfO1JA/jCPTVJB8elSlJNW1s9Th76ynuu3tv6ThNJ8zNVArq8IkJEKeRqiyiKTVccXoOcbTQjYKypfV3aZyxJMPQk6HYjsWlLux3FlgUjl6HSSwJT9YwqyGkKvOLj2RW9HwITNMwKFN6C7C6p5cdGuZ4XWldTEiVLwxONulD58fb3Ng/mlrX5O+JsVB4y6AKdQm5S1AVerbESKhf8CocFT1KnzC5/gwjnp1sjAD3D7fp24qtLCc1vqm/UJTCWax4zh2caLa3Fs3yH0nwHqqxxfaWWQxhHOMJnFGAUgS6UJNiVCsUKYdx4pigptS0KtW2w96pIRyrntAbaiMEmktXSAYldthKJKh8+EDr99aQJ24EUzg0RhcEeN7Lnsw7f+YvP3zTkaDbtdg15ho9IulLn/M4fvUDf7z2eFFIBw6XmdCgs0kVhQmj76aq3/oSFTUz03PN5rD9BRjeBJoE40F8MDbKLTo9ssfNTJklmzhim4S12fQyKgqLXIFXWgnruzTe5L7hCUCpvJAYHwuhu2RE1zyGQZWxYcupnjznB1t87mJozFn77z9/6XpuPrHP407t8rmL17M33uTs9iE37RxwWPSac9VUVpaybMsYCEaZUlWGJFnUPBSqYRa8jIu87q0pm4avS6hBzauPi47HZD/qJhGo0BSsFmG09scL8D3F9wWGrVTU1hqlVPrn8+natrZcaoeLOnjoxmbG33nHa/nyr3zaioV9Eekqkw+PaoMB4Ju/4yW876c+sCB9JpDrT+MZGwfG+YkhbkKzHpHg1UVorG1RJs1I6hxv6m7P01yr+asK0QaXRt1LI0rGopd2xcscGOn8BWpU8lyRgCjqBO/Anppt2HM8GuYZRnIyu5j5qQZM791ik42kZDnIZli7Ec+F8RalN6gKxihDl3H38AQns5wNWzB2KfcPtxlUGQJsJjnbWc40eEJdtBaUfO/hIO9H2FiadagG/O/7ip2m4c/ApYxiPUV7vZU3HBW9DmOBju/T9wGFKk+CQVAp0oHMWI9TLw1sLsuErgK+hmOsIxItQdkWLiaMXbjKONccieB7oMOJki+tyAUiE/7vFRM7d84VzKhCavHGIKq85luex3f/wNdw+sz2kgt8eNDVVtR2jabp5V/+FHZ2+hwdjdfPNFJIco+2IgHVhkGzxXxAgGqrJQscDVCGTI0LqurmOchPEGsdBHVKYqHq6mv4AJ8/ObQMq23UQ35hg52n7pJsr3YILaKqsvST1VroerUEE9pOC3JnuG+4E48XnDecG2yxnVXsZGOseI6KHodFD6cGI57r+yO2smmZpxiGrodUnsQ4RkXGpy/c0No/keX3HJzk3oOTzW2+a/8U9x9tkWR+ysiqHJTloqLlwJS9F2yrL8+E74MbRUdR383funZUQIBU0cRDJZ2GQ8hMUEzs9VTLErcZsrTtGObSTFdQV413uSlkw9nYS6REppuWNeK342Stbded2eYH/9438rwXPRHT1T78YURXm3x41BsM3/gdL+L3futT/NHvfR5tSYTm/UvMwsSt5lH1RDxKgtEQPbn1PEKEUq2p8RB0P+wCIZ0kpiAFZUwwhTLVbyxux+l8B2imx6idxvRpLtVLUFZb5F05h4oBwRPf1QV5ds5xmZBXKTedPJi1iZpxCuwNNzixMcJ5wSz1OAngufvoJIOyrvqecEwrjmGVoQijqcJiOCg3OCg3uGHjiM10Gh5QVSjUUvgEN9NRTzVge/vGPTcREM4LwzKln9TF4kJRWQbFzI+zhLwTynGCL+sfLnghtTLh5IlOecPUCZoH1I9QcCxofObmSAlG577BOGGO7zuaehk1Id3ILktzELAdKaZh3xKBP7M2lxpM5ecZZNsLK8J1N558RBgLQBNZWTnmGj0iqZclvP2t38Tb3vHvUK+4jq6sjX08s11a+6VSdLanWWu/60/LiJBP3q1Q10ZDUgiuP9lmcoUOoBipBM0u8yFU0Pt7DLTfbDj85ClOPe/iZTuV8nHG7qVtkn5F2u+C6Z44ZmvH0DoLPdkbcefBGdr3rJeEBnPjKuGoOMHs/fRqOD/a5rAsOLt1NIXgF8BEDIaSP9+rG2R0XfR8u7ncpZS5Z6MFSVsWq9StEEGur9fllnKUBgjt2qGjEro3Z2460uAJacdCaAplwZ2ssLtpkBNMnhtB0FSxQ0gPmaBuxcvz/RCxEqchEyIJtZadTd2g0Xe6+LquSIfzSagNnZp2haV46cLRI8JYAK46+fCorWGoKU0T/sHP/GW+97/9Ws6cPQHE309A01DoJoVbGDaa21o3m2rtcT2mG7ZFhIxlJB2T123XZ7cvLFYiehKMj10aJ0sMUqrLG67kg3R6bCTvpWlOtogCLFwo4L1wuB2RHZj+ALvDzVAkPdrEqcE13on25GGh3oeCtpCjKo0gqcmp4bDoR4WdmWsKf58fbVP5yVogRAX28j7DqjYyWtfhTStaMD+f96bBy1YldsBe31jIj3otY6FNgjqDzw0ufnxuoiEhmGHSMCHxEpR/bX1iDUMylMZonZwYzDCkvSXj8DwlEfxkKjLQJgUpmJ+rvnDfDVwolSc9cjEMrQ1Use8lIZ2vi6Kxbewjhy2tyk9tQypfo0cmvfD5j+ef/ePv5su/7ClLleQFr0/4N+t+ppUQFRhd33JFR6/k8pSS+ffb+FCvNJcOqwLlkgUu4ucK9mgWbUdwwww3ns+5XyfzwnthOAxQquUoDQ3HmJYPzdiYKtoli2YvIEsq9qutFtLd5HaKgBWlZ2tm2aYwaFyl7I425+TU+eEWn907Ex1Rx1FQBe/N1NrdWjIi9o8YpBSDXogot640/CGQJ8FwGFsY2fDdxz5MuQ1yIQF3fYnfcmA1FL8nijtR4XcqksPocKufDQUzgnQf0kHo+5SMWnrH1CLq72GDHdFNuuDxUiXdKyZ9F+bUkMUPk4g8oAyIh5KuNvnwqI8wQDAaXvfGl/Ftb/hy/rdf/DDv/5lfj5Z1LGjyBCvdTsDapnw/AjZ6/7VOOwqNF8OnNhDaLuPLIHFCehA6fE6SAifepSb60JpeAE01dH0UbeURLvAWIHhnyUeWJPXYRJvlem8YjQwb/ekuyN5DVYbCLaeCjd7xwiXcu3+CzaygF737eWUpqrQJ6RYuCUXSqYL3mBYz8CoMipTdcR/vE5w3TNRTJbEeayZIFErIBe2GhFUujjfZTnNAKL2JyEjMdbBWXd48p67zKJ1Qp9dPOjMv42RhfzFMJ7/B/O7Jmmdtpyg8GkWiVirczDgFm8t0saZbwNS1JTBap2725SGHddFV2ULnU0xVSQ+quD6mJTfhvfJeMW1vbWuS57/kiQvO9jCkq8yDdI266SlPvokf+eHXcnQ05ru/733s7Q/JN6JH1wjilGQ4SVNts2G3YYLDqOMlEoKMqHut1bSqK/siSo+CbeDbwEYCMjaI8fgZ9GqpfWE17kNLuJkxJAfdfPDg0hbZqTH9ftWssigTBsOMXlaxs51PibyiMIzHGUeHdWFy5P+DHtXYkfQcYjQoyFaR5rQhTaf2uk87nxVB6acV6QpPdpP5aPyC/j3CQdELkRujlD5EjBXBrdHHZsFZcS6kGFXVug4lxTuDy2dQ9YR5mNQaqm7mnAAUFnohCqHbHrc9rZVm5ywm+ovNWHE9sMOa10trNglw2D42ne0xlQorTrCj6caCk/UpdtztUEqGFekwCK6Fyv+CSMMTn3L2WEAEX1S6yuTDNYOhRSLCX/yul3Lp4hG//G/+c/OwCgEdSa2imZ14jaQ5kGSsFJkg7YdcAja9bZq+1a7tWCC9gBp+KvPbjBPSfcX1Q+iw3mlUkLEG4yQWK+EIKDRO0MxTZ91IJaHwtafhIoy2mEBYoytTXAmIJ+1Pc4PByJCljsQ6ytIyHPbizQiSpsyVJHMkqQMRBkWPQasAzBpfN0cFlLxKGVcJVohN0hwXhttUEd5OEby3zL5ZlTN4L6RNapAuUdmFcZVgZN6gEKldW21vzvws3gtFYalaaURVryTNQlM5WbGCYIyBdkC7xt2LSZggXQkhRD0GUiYoWXF7ejift1ojXczHM+L12hYaRv34lt2pSOIUm2uAR61gayvkeAuhR4QZu+V5marBGC/c1DZUueHsCZ76JbcuOfjhRVdbjuo1Wk7b231+6se/g7/1tn/L/YMhvheguDURym3BlKFWRwG1gsvMpHVx25poUTaAdKC4nsbmbVBuhLSRhRCuTJDLprcL2RHoUKmiA8k4MIUgJKhR3EaQE1KCyQUMuA3FbfmwvQI7NJjxDB9p/TnyKaPDhP3DtrMgeuvzHuM8Y2tzTGI9u7tbFPl0qmibvLMUw5onKiZzpBuumTPoXNFwiHw+sRWbM/2DVlFof1FrcF0HCodFf26fyLJjllNeJKSJpyiX5txGCpDm1bBtvbX3alzlinXUoji3YDWkKLXsvvSiJdmdrMd4ITlSTBdwRn2+6PxMj6IDVGrveO21bCsrQT6YEpJxaEBYGxReFVUlOawu847CG77vKy/jqC8OXW3y4ZrBMEMiwg/8zVfxta95Nj/4N3+Rw6MAQCxA07feB2VJVZoX0ThIjzzldsj9MRVBmNTzwiTsB/iqhkOdf2WEgIok1cTzpL3JTkMwDpooaeOEkBDe8hMDQwXECzKehQRVpMUg1Cq+7yCRaXeBSgdChlCUCeNxiivbinxjQVHFfM00m46bi8B4lNLfqILXSGFYpJiYMrU7CODNvV7Ms1LFN/UF7XsV/g5ha4+VwH6WYU97NRTO0ktcCxUqdOR0MxXEPqYviSjGhDSi4XA25UkY5SmjPGVzq8BaHyMTXawwrMxVS165BV5+BMhDP4WGQsAIkxtC2pliCgmISHNFI8GTuJw5R2WlfY4klMeYKgoqDc3bkvH0PT46GnPDyS0Ozw+o8moCPbyIJAqg+jJrCFYR/sF7vmv5sQ8zEq/ThXsLxlyjq4cef/sN/NL/9Fd4/y/+Jr/0a3842WEE35Mpvr+QZt51AZI8bC63JdY7dL+xNW/3s2A7cTsEnp92YOeLF5JBK+c+LjUZCclosu7a8dFmQyG9RNFNP+nrMHviSHmRMs7TGfS2NdVDlTnnso9RAWsqtvurcD4XU2Q9S6TE/BqNAWM8/hhpp+35ymU8v6EYQSlNd6qqEBWHdaNPcb8DXII4T3Ik2H2D7YC0NaVEzXXBvBKAWmw+E02Y6VYnldI7qNG9Yr2EgO1btjYydg9GoXePuzye+IKXPIGXvOzh2XOhi642+fDISRZ+iOmJT76Jxz/xhqlcC1Ewo4pk7LC5J8kdduSQiP5iS8j2fHwhOno21MY4MXe8fvFmkzR9SB9JRhFzu36Pp5w90uSfz3K/Zrolv+4cw3FgBjZoiJUgI4MMDRSGKjdzaSeq4KpFynGgqrCdea6qMBrGOgkR8jz8XZQW7wWpi768UFTJigwubaUPdYc/J+cVhmXGYd6j9AbnA4pGXiU4T7OG3f1NBkd9hoM+g6MNhoOM0Wi28RpT38fjIBSs9c3v0c6H9Sq4TlDq6XnmyAOj8DvMHeGlwWlPhwZbxXzjWWxnXUfMBW+iqYBWTwWNSF22UNKBJxm3EJFaqz6/P6BQhymPyfzij9vLEt7zL76Hxz/57PGO/2KTrvm5RlcV9fspr/zqL7m8gxfxa6A4ISHtY4XrXIHsMHh8zaL6hFWnn5EpszSv6od3vzwzH3bsRI+sLZtjKtliZ6PA4Ys1vjEWVvf5OT4tkzO9xvF13Jc5LHJZYTeAeqEaJJTDHgvvV200rH9apBD69xo270rJdpNOY2GyoBU3dCJmp/maQnroSYZKf48WutdkvqJ07B4sKnRYj17+iqfzD/+H73xAczzkdJXJh8syGH72Z3+W22+/nX6/z4tf/GJ+7/d+b+HY973vfbz85S/n9OnTnD59mle+8pVLxz+caHurP/emd4WPbOGRMrwlmkgoPqtiYenAhS7OrZernic9gmQQQndShvQOKYM3uOlbosHzJLM8WkOYOT2I++r5fSiClmMKkfrlNoMEO0ggD0qqGSbIXkY1mClO8zAB3V88azAqaI4N38O2srA4JxTjhIO9DVxlqQrLeJhxdNhjOAhhlVUN4CYF0N1+l0mRc1hv5S2Dos9BvsFh0Q+IFs4wyhN29zcpq+log3MmFrAtWkio+ygKw2iQMR6kFGOLqwyuMqG2ozL4ylKNlnmb4v2sgCMbPkOLVGb6yjxIEXHaqwVXfRmMKIRPQ3RMqqCIpAeedKAkhWKX1DLgQ+h5iY+qtTalbtutItxwy2l++YM/xNOfddvxFvwwoKutk+eDRY8GGfH4265/UOapPd4uBZ8t14TrR6l5thykwwl4wVrn8+G4ZTyii6dI/d8MHwzKu85Dd/vlvvxFZNNuyNaeLckv9jj6zEkOPnGKwR07VEfrJ0nUbKdrRasgXI1RetkiqLj1zl3/q6Wg9VQKrjC4UY2lveJ+CWBjpGdZnKQCewgb95rjN/pbRF2OJ4X+RSUdQzZcYh7G6INUIR3O23lkqWX00+9/E3//R1/3yEBGatHVJh+ObTD823/7b3nLW97CO97xDv7gD/6A5zznObz61a/m/vvv7xz/oQ99iL/0l/4Sv/Ebv8GHP/xhbrvtNl71qldx9913P+DFX2m6+ZbT4Y92lGFmTP3dlB6XaMgrbXEHU0B24IPRMDOBEBS+ZDTBPZ594eq/0wGtiAQNXzFOSI+EdC+iGxwE4ZEOQ1fQbLfVeGUFNcKgAKlmBMNBSnmQ4sYWV9iYirSKJty5NjTaBkRVBQUbDYXOZZ7gnUG9wVUWXxnGwx5uQW7lZN1RGMw34W7+HozTpYVSimEwrDvjLfqVl1O+38ft9dGjHm63T3mxR3UU0rZ8ZXHjZBL28SBjwRwYzEGM5tRCvBTEhRSkuVqEMWR7QnZgMKs8QvV9MOvJblNBXYthXIiYNYiGi/o0OMUOHekwRB/IDD41y51VEvG3jUGs4Wd//nvIskdoduQcBNiCz6OIHjUy4kH6WZWAV1+eXE8ct2VEI39ipHEh1U6GPDgCTBUcUbaOYq+J1KIo6T0Z9r4UGZnl96CJMKw3M0DSr1oFzy0qhfGnTzK84yTlfkZ1lJFf6HPwiesY3Lm91ismEureaqQ9mJcVy+YR7UgVWpNECOlE5zbQ8xvo+U303g10P0VEsZsOk/rJ/Bp+l/SSIbvfkF40mJE0sl/yBUZdBb1zwuYdhv552ylDFi9yyT6dgF/MfZYep9ixJztwZEfxc+CpttOFj87s9q94xdN52pc8Zr1reLjRVSYfjm0w/NRP/RTf//3fz5ve9Cae8Yxn8N73vpfNzU1+/ud/vnP8L/7iL/LX/tpf47nPfS5Pe9rTeP/734/3ng9+8IMPePFXmp705LMhRaemFTHQZBigJO3QIaUPTNzHw1a8s1OGxgzVh9o6dTMyDeOiJ7giKvcyOVmM2YoPBkUyZH0BFz1XUhAVxRhWLYKX3BcW7UiR6Vq5xNoE7wxlnrSuJsLOxbxQbZCK2qIwMMjxKFvyTmnMLxWG4x5Hox5lVacbCXlpORz2yIuE8dAyHqSMB2ljuNTz9v023i/7oSSuc8nl+sjQK8CBVBYGKXopQ4/spOFaCWbPBiOhkhBBGAtm3yJDQQZmkorWMg7tENIjs7Zwj7eHKbd/p3stKBGNpyNUB4bfrS6U7zhMnJKM/DwsnBAgiRfdSq+hqVxiePfPfDenTj9Cei500NXmQXow6NEiI7LUcsN1x3h2VbEjhx3HNNa6dgfWlsTLuJOteUZNniZqXb/fs6mEQuD1dsxafEUIzgwzMKT3ZtgLAea5jVzUPv9ymdNyxBkl2SyxvY5FKHB3Hz+erWUL/+b3b5Kf35g/rj486mSFM63mnMwZDeqhGKaMDzKKYRKi6EycUTek13G5pEqAPJ2BqGWUwvkN9P4+ri781mAo9M4n2KFgC4MdCb2Llux+i+RxrtlAjIONLxiSo1oHYD37Zkp57dofPknecQwRNn7BvMnQY8fTvXeiNoHbSeeCXFM2pghf+sLbedt//61rXMTDk642+XAst15RFHzkIx/hbW97W7PNGMMrX/lKPvzhD681x3A4pCxLrrvu8l++h4pe/tVP52f/8a9xNMxhjVBYKHAJhce28vhE8JkJiEgRlrWLFGIO0gpPekxtEtfqvRApcRGGucdMe/Xwj80Flyna1tkXnYcJ4o+UoBlNF+smDFoY1DhkkdNFw/+q0kR0n+lBOsspFiazBCW8Kg1pNitMwgRlaRuMa6fCMJ9gCqrGkO84oWqC/zA6FJK0ItssKAY99hxIj8smVWDcLnKfXIuowDBBrEf7ijm082OQELYd2+AFVEELxWXg08DI7VDmjlu9MCaKQ0Uopqy3x9thypYx2ixIsGXQMFRDL4xZncbkPq5n/thQ/2CgmG4YaIzhqU+6gZe+7Km85puey+njKFwPR5p7jheMeZTQo0lGiAiv+7ov5b3/+rfQdbyEEmRDiOApXhTXF9QYXEZI11gAhLHWegiyQe3EQNCZ/YuOUyJs5jxI0BTVCl3Ng+xhgmaKPzkDbpEL6XlLcXaJFaKCySqSvpv4urpobEK/gSWrGp/bpHfDqLNJqFco3OLogCsNo90+rqiFY2SOovRPjFEvlHs9htfvB3l3maSL0lEVJDckY8Fteuw4GAjQctbFf00B/fuSmJEAVd9TXKf4PmS7oaYtNGhbeLmt8wZLTyroHyij0zJBWGzfBh+yFmYV2+wgOEiLTYPJFTUSQFNqdMlKgwzpoGAkG/LreiSDElN6MEK1lXDm1BbPeeItfP03fynPf9ETHjkQql10lcmHYxkMFy5cwDnH2bPThYlnz57lE5/4xFpz/NAP/RC33HILr3zlKxeOyfOcPJ+YswcHB8dZ5oNG/X7K3/n738Q7/+6/W8+p24JhVQK6jBqP27LYCiqjaxkGS6llLMwlzvjFTF9R7AiqnSVz6/S8NZMKPSha4zyINzAGtpa0qR9adFs7Q8yhf8OMt2XJwlxlSTPfeINEQL3gHCjdXFw9FIfZxKsj0+epSku1vxmux17+W6sKjAwyq1Jr8O5JHaUpLRqhb4VWeLkW7NEo9WkM/6pgc8Xmx4wqtM5vBjRGnVHQVnqaUNdAdJDz2LFi/OxPGxE6nHZjb9dUP+NGphjiD/y1V/Btr3vRZVzMw5OuNti8B0oPhYx4uMgHgG9/zZfyW7//Wf7kU/esHjxjVNSoY6Mz2qSmFmumJS0kmS6CXlfSCPEYR+D1Cw4UJoHScIhi9y3+xLTBkFyymJFgB4Lb1Pn5FKSAdGDh1vmahamagsGqHjeCLyw+t9j+9FyukpDpqd3NvoqjlNHexszc0qxxvL8BVeDhAb2pq8/PZM0wL95r55gOO9StEtIREQFPSAeGZShIIjL5fRSSscHeM/mxp45bdssiZbue/n4YV24RoH0JvRVEggG6CGEvGbrQ2G08yZVWQh2O6xts7pcuod43vilEh4wRTu5s8K9++vvY6HdgBj8C6WqTDw8pStKP//iP82/+zb/hV37lV+j3+wvHvetd7+LkyZPN57bbvnjFkF/28qfyUz/z3exs9+cY/hy17mb9kthCG6WwwbSfExwaw7fL5xevzRwLfPFBwetQ5AQJKDqL6rZqnuNmN4emLRornsxQMMM6X8UEZt7RUZihhcpAbum6Km1f7xpSzXuhLA3OhWY4ZWkY7vXI9/tUR5bqMKU6TENX5DhtOUxnjIVZaimzbnm6UTsiMpd6mBuY9R7V+/wME5dQG1KnASRjweZCkkvwGnmmG+Mggekc12DQEFEw9VripdZpCbYKn87b4j293cUGwVre1MkFNIVq3/zNz+Nbv+2Fx7mKhz85Xe9zjdaidWTEw0k+9LKUn3776/iGr1qBmKSKqXROLRUgPVSSEbEvgnbLgTXeOY3RwPodvxwy7bTX2fnrzW12RkippAoKuZSCvWixRwaDITtvSfZnHB4aOkj3zyWYS2noCdTe3TYW6gtbh1prVoWqFC5cOMFgv08+ShkdZeTDtHFUVbntMBbaFJlmnSk0WiO8MCMjAPDgL/SnLa041pbMOYNWRpCVpqdSe3y75rAxAFc8NtlgMmd2ECMOEnWJIqY9dxyXHrrOQvtwnJIcuZVQ3gItRCU4sdXnn/y91101xgJw1cmHY0UYzpw5g7WW++67b2r7fffdx0033bT02He/+938+I//OL/+67/Os5/97KVj3/a2t/GWt7yl+X5wcPBFFQrPfM5j+bF/9Hr+2zf/K5yb16KCd5g510L9LR2EcJsBxAnVhsx55E2u+M1u+03j/4PCN8tN58dKNc1Q2vtMGXX9jk73dbi8TmOhvi4CM5IcpDL4REOjOAdg0cTiex7NNDB3H69eNSjTsePk/DVJ+8tS7iKiEakoRieGFo4C5qdvoUv4YQrWY3cKtJpv9tY9OWHdpYG5tKf6/KB5qB6WxAfNuxJ0bIPh1DUnhOjKrEDwdCNXaNjus9b3YvJ7rl1zFwVFejDdeE0lzmEIUY5F3TlbnTvnolgEXG3M8hZ1NW1sZHzNVz+D13zDc3ja025ZY/GPLBLW8CA9JCt5eNBDISMebvKhl6X83b/6avYOR/zORz43z3Gi5tgFOaxAkiuivnEq5ScMbpMJn1cN9WR2ccqSorg0HK/L0JuXUP0+m9jRdy5oLDRNu+YuUoEK0i9k03VvCNmeJd0z+Cw6ncpWTxkFdhP0+qoBCWpkUDwnGw7IWEZiPaYXLI8aQnt3dxsUiqIHrXs/HmZkG2VAJlpFk3A7OkiQzSrc364oghP8+QzZ8EGOaJAZIRWp+xdxPbDF8X+t2dvfaWTUzqcuRq1Kuq9Tqc3JCPr3e8Y3GlymmHIB6p0qG+f9bMC+tZZ47qgCLIswqMBznnYrX/vlT+PVL38GWxvLf+dHGl1t8uFYEYYsy3j+858/VYxWF6e99KUvXXjcT/7kT/IP/sE/4AMf+AAveMELVp6n1+tx4sSJqc8Xm57+jFv5iXd/B9ddH3Ku62egNhZ0SX1CkiumCJ/syNO/5LBDH9JNxkoyDukiUrXcE+354//tmKXGQk2dI7T2MAt2LCQHYAfBqyVVDDv68N0O60Y+ocmPGQmUhNAsgq1M9B7E/ypIBhYzquF4ZCJhKoNc6MHFDC6msJvCUYRt9YKMDTJYIuHqW2E03JZS8Hsp/jCduRe1vw5wgtvrNdCdK90cNVWCFqYbyCA3IWLiBS0sOk5gkIZtixiCMt8LQ2l1XZ41MMP3GtXKjuJvw3zkZyk56J+HpJy6KxgfFAopol1najO0tQYH6VCnjpulICgEb1c7Pt//vu/hLX/r669KYwHoeFAWfC6DHonQpA+FjHg4ygcR4R/+d9/IX3jFMyfvTf27ewI4QMdj0I5EmzJ0yN0879i8L6DJZAch2tc/1OABriOz2pYMwRGQDJVkwGU/b826PY1Twdd8onZYtE464RGKGQvJ+RTRACvepdDawmBzM92AEkju7mM/voX55AbyiU3kCz3kvhQGBnKBg9ChbjGMqJKdCUn93gvDQY8L53dwLkKVNprt5FOMMly5RkHf1GkEf7HXNKOberXLuI9gIOh+hu5lS42FEOqd58EraRlznhk2F/2PC+9d0pCK1JpPgGwE23d5bAnlVmgIOjWnUzbPVevdtTWi4i9+8RP5uf/+O/jWVz33qjMWgCsqH74YdGwsw7e85S288Y1v5AUveAEvetGLeM973sNgMOBNb3oTAG94wxu49dZbede73gXAT/zET/D2t7+dX/qlX+L222/n3LlzAGxvb7O9/cgqeHzu827n3/y7v8Gv/6c/4Sfe9X8E3djKsZV4cSHq4DanXRWmAvUakGmidBGlSS3xyqTb9BKai+C2nsdkEDzYYiQaAIqPxb6mIHoVJgcIgilD2/iAET7Z3h4DYMaCtzqJSjTnloDqAIGBlWA0did2Bk/sHNqrrZqZdec2GAiuw5PSee/jNXiJifssZrA6fRxV/CQ62V9Nc2gpwQ4MUgaDSVF8Br63xJ1Sk2cOx3x6BdEzVxe4T1bWCPJ5b1Ec48Lzkl1qwaG2j48ePKNAHr9qmMCWMZ1NZ+9JN2ldMLfEffKVL38qN998evVkj2C6UjmqNTTpe9/7Xl784hfznve8h1e/+tV88pOf5MYbb5wbX0OTftmXfRn9fp+f+Imf4FWvehUf//jHufXWW4+/gAdAj1YZ0csS3vYDr+b7X//l/NCP/gqf+vQ58H4SuV1AXa9z6KauaNKSDx76e4rrQdWTyD+DsWHHgTUUW8qa6twcNY+pMHElzoUZutecns8Cm3Xd+1eROAFnw3GXTPA+X9CgodQyxGhIuWrMlGg0ZcqhTTg8d+p4J000poMcY7XO4C/0IPNIGjRiX9gI7BFpVqY82KTReFujLYTAJOUrMvxkoPSOFi/PeNi6b3IR3ig295hSSUZLHgLmdy27eiPC33vLN6y8hkcyPeprGF7/+tfz7ne/m7e//e0897nP5aMf/Sgf+MAHmiK3O++8k3vvvbcZ/3M/93MURcHrXvc6br755ubz7ne/+8G7ioeQjBG+9lXPij0a1jMUZr3MQlTOKoLG5nyALFOPeCUdKelR+NhCmzx0YaJILiOftMbEf00RGslJhLprIr51k7eI040LiEpmHELTUkYFV2UtRdLU4dWZ88+TYGKHZoNBjmyMOsRjNKyF3DQQctO1AKvX0uSMrpLWc56QEBlpPu3c0FxI9mxjLITREu7vQKbnkvnIwNrMoUPJMBGutbk/Or0vdBefNxZmL23qNsa+C9ZdJuPSxZ/veePLL2PCRxgtuf6u32ldeiRDkz7aZcSZ09t8x194PqaaBw1Yh6Jdj80j9GrrGRINfLy/r2zsKv2D0DSrFjHpMRq4LTr3MsOga1vDl3WOvTwwagATwozVyQq/5VGjqCiaKO6UozrTUYy1zjvXNowWkdIBDytQWHSQooN03lhofq8Vd0KjfD3uHYvrXpetNHGVqLw2kYU1yXgaY6FZ6ZpLXrbGF7/wCZw8sRgO96qgKyQfvlh0Wd2S3vzmN/PmN7+5c9+HPvShqe933HHH5ZziYU0iwre97oX8zD/9T8FDu+DlaXhGZ84pmMKDi+yi9Nhx6PbZwKIRUI98orh+VO4cARq1nrueLzh8w7xlCz+/7vxceyXituZvBBMLs030MjeXFJV2cd01D3P3BUGcTjzjswW/MzegjQYhXtBckJENzHAmkjuH/gBLmb0QEC2mXsYuodI2bBzYkQlGmQHXV9SFNWo/zJUcmvn11OfziskFv6GLmcGajLa7cD0o9upoconriECt7K/d1bPWShqFpNZIJKQfrPAUht+3u47BCDz72Y/lsQ9SJ9yHM4lqqCtaMQbm0Xx6vR693jyW79UATfpolxFf+eVP4Wf+x0329i9Pg2/4bxsEYYUzXJnw/cs9pxLYatvxXm+HFexLVy7xeItpwqKBzMjAhscnHtfXy9RejkE1S6ydVQrJUXAMiQZEofJESx7PXcAKktg743LWVX+Oc7M1NJKVVn+4dcmnAu3owoPwQ3/nd7zkgU3wCKDjyIdHAj2kKElXE33TNz+Pr/rqp4dw84K8UiS0QO+ixuKP31XAJ9IoftL61F08NXrDzQiknFeGtTU+yWMnz3ISVagXZ8bT3mRBMNWkEE2mpwVa6BlLKBgAcW7HitSbltLtQo+B3sWEbDchu5iQXrCY8cRzNZXn2fayL17MROB0RTsULAZKECfYIyG7YLEDweShbiPbtWQHluTA0rs3fKYK9uauSSaQhi5GaGbvgYRrWZi3GpWEdBC7f3fkoAoBx924FiKKhp4Zl+OtEI3PU92oKKmnWZxdKzXiy8zlGSOcOrXFD/2t1xx/IY9E8mt+gNtuu20K3adOyZmlZdCkdbrOKloHvvoaXTnK0oQf/fvfQr+fPiC9SmZ4/LL3W4DipHQ6qNY+X/3vTCR73cjBgxddYIpvJ0PYutuw/emU7c+knPh4Sv/ODoQ+OB4PXDZWCE04YyRg68+FzXOG9DAYDr2LwvbnhXQP0kuw9XkhuyihcdoaazBjMNXl3bH0CLKj9RvuhVQk2Lxwecppu3h57RV3DKwR8777O1/Ksx6p3ZuPQ8eQD48EutI2+lVL1hr+3g9/M1/+sqfwH37lI3z28/fjVTl5apNz9x/gmqaU3a/XbMTS1bmqHeOFAIFZecXYyEnH4AhhBYXJL7kohlyj3sQ8dS1aUQONAmIBtYXIssZvguBtu7hvgRui7R1xobh3bi4HyZ6hOunxSYhA1FKrztX3887ZqUULilZQdy4OBwUl/rbNk/zLb/w2XvO//ivyI0cy6LadpRJsRH1SaFKF1BCaoM3ZA0JyqNhhOK/bZNIsrb58CY3Z5m5P/J4cxXNoaKjmk9gJfOpEQrqviNemTKPqh+Y5azl/2lGFWBxuc49aCQX8okEYm3p4nLWGh6xAjOEpT7qRe76wy2CQs7XV4zVf92xe/7oXcf31j5zc8wdCoVnjCg9S3H/XXXdNFeh2RRceDKqhST/0oQ8tha++RleWnvn0W/mFf/Y9/Pv/+BE++KE/42iQs7GR4pzn8Gi1a1lhHjRhSTTbp1BtPjgqu82hqlNb151SphXLB0Ja12tpUI5t3nIwEXh4dik0OBs8uep2fS4LizTGyOLV/uRXvZpP3HeeX/joH7J5d3QGMb0ORemfn3zv7dZyUBnfANVW93mTQzALHE9LSaNsHEXHURkchOUm0/cgRhN6+wRZWIW1jE8Lvd3gaDrODyVdjs915hB4+lNu5s8+eS8i8PSn3cK3f9sL+YqXPXX9kz+C6Tjy4ZFA1wyGB0DGCK94xTN4xSue0WwriorX/aWf5WAwXgofXSudEHnIqkJmgjfCpeGLAbQCTRQRQauZ2oVa45SYcmQEFw0DWwaPjVqoNqHqr37vleBlmVV+651JESMXLsBuVhtQ7eg0FGi9Nj+Zq06h6UzxQUn2DdU2qOgEIi7OQcUkXD97DkfABo+dr038MbwqX3r2Zn7u1d/ETds7fPgNf4Uv+8f/nAo/nz7lmOpFMLU31nx0pWql+6HXgmahcZoaDb8NMT3MS0AemTW+6pB3c08mx3jTulbV0J25nD48HYb0tSaqsVRQahQ+GqNS4TkSTzAgVGP3zvAbikTmN5UurPyFr38O3/j1z6GqPEliHtldOS+H1kG5iPvXRfR5qOCrr9GVp5vPnuSvf98r+Ovf94pm2//6K/+Fn33/byw9TiFCIK/3PtXK43wTgxXUTts0Al5Jh2DHCueDfMhPRcCL+kSL1jAJCM+nKRZKb1fJDsMA1w/zltt0rrdOva2j5Z3nIzQYyy4Yihtn3bStcEyXYwYmTrS4yYrBqWcjSXjrS76Cb3/as+BpkO+W/Opn/nThGroarYmDjXMwvAXcTJp+cgTZHsGZdEwNzOTQO2AqE0E11LVUm/X1hZ29o5DCWlM6CHK5ceitazSoYnIHlW9AXpq7u2KOkyc2+Gc//YYGjt7aR1lSyzHkw3HpZ3/2Z/lH/+gfce7cOZ7znOfwT//pP+VFL+puivq+972Pf/kv/yUf+9jHAHj+85/Pj/3Yjy0cv4geZb/elacsS/iWb37e5B2afRiatCUNylq1xgMVyRZKMvQN/KopFTtSkoEnGXpMoZP0KB9SVHr7Su8QkqMwNo1QnXUhU28fNs7rWmExU6cCQVCmi6D41yFaqWhg9dKBsHFO6N0HvXPQv5fw9/nALG1OSK/yMq+oR2rDtorKVPhZNHh85iIjMXxscrDecL1s8M4XvoIn2dOkl4SNuw13/uElvuXd/4pv/+lf4l//9h/hyu7OmuIWR5ab1KuZhkRSBcNuKuXLC7YInzqdybgAa2uH0Ug4gN6lbuEYjEWa58QUkB1O8+m2cTF38OyGIiBe1KhI2aGPDYRaz2KMykiEYrUFc12hrbV81cufioiQpvbRZyxAU0i46nMceqjgq6/RF4e+/pXPWtqcqlbEfCKB16/pgRSgt6ukh745xhRKtufp7XnMaEbWqJIeKJv3KVvnFDP2bN4f4FttEZxAvT04cYfSvzBX+bts9Y3DwY6V5NBz4g6ltxeBGXxwWG3fo+z8ubJ1l2frC57+/RqiszFl1uQxFXfFGbOLi9SYFj/SmX9b+//2C17Gq29+Elt5QrInyH3wT371d/iK97yPt/3vv8behRFmCW/rlB1xW+/S/JLSw8BP54upF1AF2X6Ayu7vMVffFlJUCYUn0QDs78VzzIxLhrP6SPvv+MUFGVF/t4OKzXtGJMMyyIX2M7SE5RsjvObrgtPCWvPoMxa4MvIBJih673jHO/iDP/gDnvOc5/DqV7+a+++/v3N8jaL3G7/xG3z4wx/mtttu41WvehV33333sc57LcJwBei7v/PL+Mxn7+e3f/czYKSBoASid3gaak8J3ttqwy70Dkn0KicRDtNZRYUQXYhjskOl3Aywe8ZJU+wcjoekDHNPchEnymt2qBQ7LPRoCTFvcz8U1s3XXxCalLXGo0IS8+prR0T9r7fhXqwyWZUQPg0RDoEiKveWxpjQSqduZl2ghoHRhYJ/9Mv/LwZIXdieU5FLxceH9/Hxu+/DmugF6rj0ZSpw+N2Y4JNLCBUbYki97X3xMazuQ2TJ9eJP7epw+2KS+vhx8Pw1XiMfYBXrJjk+ATWCqKJ1BXy90DjeFnW0RcEp2b7DxE6TxoPPTOO28kkwThY5kd70XV/OiZ2rHOViFV0hD9KjFZr00UA7O31+7O3fylvf+csUZTXvUyLy2witCoFfup4JHt5FFPH1DYEnuyT0Yqmn3wCqDIY32ZDi6KA3mBy+EZXbLkfExqUYjZ5NsWmd24zh1OcCehEt1LX6/NKasJ43ySf704Gi+zA+DSYNIzRZxRtlvr6uAmzL8VGvQidH1bViOPjnv/5fyMsqRBkwOJRBUTIoSv5/f/SneCDrd6fOLiNBAjJhpSGSoBGtcBijIyVUtd0Y99VKvstiGqqJGQFrnNsWsXZxtOSeSTzZnDEVZcDYx6izQOFJDkvSgyI4yJzDHuS47YzWzYzzTp/RGOH0qU3+4re8cPXCr2a6QvKhjaIH8N73vpdf/dVf5ed//ud561vfOjf+F3/xF6e+v//97+eXf/mX+eAHP8gb3vCGtc97zWC4ApQklh95+7fw2x/+NP/H//lR7rzrEr1+igJf+Nz5qNROSIB0GF7UcqfD8xQfqFB/EF/smJvvY0pSTdkQqir0BJCS0BhGJDIsnXuxw8QSvM1Rme08v4+Fz0nMvZwJ8ZoypkS1UTqmlPjpTeLBjgS3SAC1yQNFaGOfDA2iMDqjaORbUivHjTUS/k2GBGQHL0GBby8pWvYaL8WMwbd1X10uqJpLbPGDZDBh+AJNh2Y7bjP8MDgZgusJbs1eNcbFpkzR0DIlTU5tM6YMKUloKwwePUKmYpJOpIoZO5KRzqU1mTLUjGgaYZiszhUWWmv4q9/7Vbzum5+/3uKvYmpAD1aMOS69/vWv5/z587z97W/n3LlzPPe5z52DJjVm8rK2oUnb9I53vIN3vvOdx1/ANbqi9LznPI5/9c+/j//wf32U3/rwpxmNC246e5I//sTdmHIebEAcJENPtWW6nTqqiGv5XzQYCzATFSxg+27H4WPMpBGckblx8/ND/4Jy1O5APbVAYeN8fNBnIpFTozu8D1NfPfR3leEZml5BKsvXpjFV1YyF9ILFjgzVlqO4uQ351xFtKIRszzD2iwv46le32IZe2RHBXYPq2j+Tw+a9E0edjWlEUtJEXybGUzASiy3WE0RA7zBGGpathXAzg/xrGVUOkiLWNsQByWFFEo2FmmzhMJdG+MxCYlBV1Bp8f9rZ+eQnnuWdf++1XHd6HQF/9dJx5MMjAUXvmsFwhchaw1e87KlTxT3/1Rv/+VJFNMmVqu+jshapbpBV+iYlqMkfFA3FtzNeJ1sEAWOr0ATOp0y7/7tIlWQE5Y4052x3Ks0O6IRzrb8qrVz7GWOinU7aHKNhvKsh3hbcFFEJ6VS5hOuP43oXIb+e+ZqK6DXKDmOUpQzHzAqdJtoR+2FYBwyC8Kk2QkH1Is/67PmSYYwSzFyjqYAS0inv0GTGJAdxGiDrluG1qzbza7xvdkHTHluFNYlXfE8aRaKZ23vs0JMNdGY103N4VUhaUYpWWsRbf/DreNUrnrlotY8uuoI5qo92aNKrnc7eeIL/+o1fwX/9xq8A4E//7B5+4G/9L53ssOZXNve4/nTDzyYF1U2P7yKB0Al+N6T/iETwiFXphMK0txwmMkKE/vlYn7Dk3OtQHU1Na2V61QEanU+XhOziRJ1JBha9AOUZP83I46to9g3JkelMJ5ql0GOH+R5Ia1yooiRDSC6GCMV04Tak+1Fezzi0IMjw3gGUG2vIItVORL1Oig+Y5BFlz+tUrR6AHVUkB93FI0IwHCgcdZhchyU+Dc/lTWd2eO9Pv+FRmaI6R8eQD7fddtvU5kXOnmUoep/4xCfWWtblouhdMxgeIiqKirvuurQyxSUZOcpEJgxcwVS+yWGfKnYSsIVQ9XTK6ySqjUJpq8AQZguvuijAeHqqDUFt8FQnxQQr2i0Jh08UUqajDMtIQw6/22IhR0xGIRIxVTxNSKvpXwjFc1U/FuZ6CSk3EUrW5kz6FXSt2U976UVDKlGvDCHhsl7Xkmu2I+aYbXu+VWFsWxK6ly5C1Yo5qck4fHVWV0PcSjRWTCuipKHWJR36pTmT9dmN02D8GQH14VqNcPNNp/jqlz99xQIeRTTJGlk+5hpdoxX0C//6t1enJlYE491O3mtcSE1cVz0TIBko2hN0zaLq+riTn4H8lAb4VhPqDfqX/FopM8chm+sE8Wkqp6lFtT/LQe9CMsc70z2LHRjKUw63ETxtdmywAxM6S68iDWm46XCBeIobu4qe6/2C0J+tY2hfZzQWOuVT/DcbTQfQ588T+yusup5m4mjoGcHmHcxJlfRSPrWGlVMq2CIIwjf9la++ZizUdAz58EhA0btmMDxEtLe3TgMfxeaKaBXz3IMWGfLUtUG0mTrChGJo148aZwv1op3+g9fuUHZNItgYxbCOqTQotG4ItJwJdAYThO6Cag3KcjaCsoTi5PzBySgUBosP3ha1TOoF4vBkHLGoRaaiDY0hMBvxaJ2/Di93hc9NEewe32dhnUVdPL6IFgmC6UFCUoSUoXI7Lmxmnb3DSfTClOvMGQ40BSHKAKSHbrpT5wpSQvRDRbDG4J3nMY+5jp/8h99Omj6A7lBXGYn3iF8ec161/xpdI4BLu4OVY4SIYGRdqFPi+B59n4Bm5viRr+h/2LgIGxfXzNm8DIrsa+EaJoMijH1/cc6SKYXe+aDmuJRjaTwmn3TOXhz95QEpx+umK646g7fAgqhz94SCT0HHOuejsqNq/Z9Wa6j3QN/zN17J17zmOcdYyNVNx5EPjwQUvWsGw0NEp9fJ5VNAJIYJBR/TdcRrbL05TULYp5XgKg+JmTMW6r9tHrpFd4aea4jNCsSAS0L9g23lonobYOCW0ZyxsMyT7SeQb+k4KP6uHw0CH3P+/UTpbsoTTEgZaivxgkBsYuYziehLK5agrPS0p7miBZRbMg2BqnTWEMy5gNaUxyE9S+nvCq436blgyvmC6LXDztTFcg7Uk9RRCW0/IMsjRlubPV72sifTz1Je+uIn8sLnP6FpvHONIimrEcauRRiu0Rp05rptPv3ZbpSTmqKIILq210yLmSYfC4qP3eAtMmI1E0dSs/1BJKWj70y9o/W3N0SZtt68tdNp3fHJYO1bPE3HfN9Xp121JlxQP0IC3synFi0/cUcERxUqpW6DsYqe+6LHc/bm09z8mNO86hufy/U3rFZ4H1V0BeRDG0Xvta99LTBB0VuUwgoBRe9Hf/RH+bVf+7XLRtG7ZjA8RJSmlttvP8Mdd1xYOEZEgqcgvsimUnwijbGwkLF4JRt41HrKvgnFYjNkRyFXXmfRIyIzSkYRXUNByknBXH1ScdHjbFgoaJTQOGzC4KTjZQgseLZ4rI4WNENc6/StHEtjQiOfclsmHC2G/XoHUGzpBDMcaDjfzJLFryEMRDC5kmm4LheFWBshqn1ZNleSgTaFz1UffG8Nthu7HYlGWNUlPZ3W9/yEeY0qkgchYPzkOXI1GtISevYzb+Otb/mGdc/4qCRRnRQPLhlzja7RKvqe734ZH/4vn1s9sMspsSx4HIcVOwZbPgjPomGiBF0BYwGg3Fg+cWMsEORSb9c3TS7z02ZiFLVIPEhe12ysXsgsjPTSRc95y+ZJKmXjfEn/YtXI9oPH93G9xdDi4cB1rEJtnG1rU82XYg2MqSIse2JxWykyKFde//f/zVfzpKfdfIyTPrroSsmHLxaK3jWD4SGkH/zb38DfePP/3BkJVo3pIq3iZHEasPDXnN+USq9yFNt2Lv1IJBgFPg0eJo3tgUMDMJ3ytttamW9NIQQM53JngQIc6yukDMpvQFuazqGfTBYZ06IrqxXyGg1IW3IxIknoSKm2Ji5/U4X71b8UjtMk1CFY6kJuju9RI0RBXCy2tgXdhd+qpEeQHemUEZKMoUg0GiwLIjvxelGN966u15D5sSJhP0s6dTaIViG9TArf5Ja2lx3QkCRYYAvoK172lIX7rlGk+NutHHONrtEKesqTbuJZX3Irf/LxJdjoMzz5WI+WAdc3SOWP54mePf8yT0sbeWfR9gXH19dSnGBlHVyNLte/6Ni50wV5Ete2c6djeNZw9Jhp5B6plP5e4NWYgHzk+lBtSITVfgDWz4ofwuSOU58aTxkhtlQ27yk4evwaeeSq2JHHOMVlZj1H1LL1jIJHTlSxuW+gyyHexsyiuUOqxQ/KDWdP8Pgnn124/xpxxeTDFwtF75rB8BDS059+Cz/xk9/BO9/x7xkOpytXm7xNT1OsKgQjYC2LQScRxST3oafDDAmxCdcqL1MXQ3dKehi4Srkzv6BkGAvpkmAs+FSo+uAyjR1Eo/c8FkWLY7FQ0GBA1T0c6rW3KR2B69cRjRCxMMXEg66xE7IS0raKkzJRugE1illW+BbTtDQaVS72nrDD0EOh3aHTjpTsaH6dtZFVbU+fu5kfGgSjbN83KVoqAXPd9YUptKq4Jpv7EEWZNYLqDp+7FbZSlBCZ6ZTPGiNGop2C8uyNJ/jqr3za4vtzjQJdQZSka/Too5/+ie/k7/7IL/Ph31sSaWgrwRxD36h5nw0w05elHmvrM+M0SUaO9FJBfqYXYDZbRoJUSv/+MfkN/dDrpYMpNV+dsnGuZHRzd9GnCmChd8lz8g43map1IzbvCxd49JikWV9vH/q7LYW9BvMwyuETJBRGx/VC7ENTrYOj1LqArh9DlROfyzsjFtmRww4dbsN08uH6+Gy/4sSfT0LPxZZhcGsPV8t5kZC6HFOKREFnU89qSPaxJztwc2uZ+i6C28lgP28i07P0nd/3lY/KZmzHoqsMRe+awfAQ0/Of/3j+9//4Fv7zf/4sf/gHd9DfyPj8Z+/nd377U1G59aidaNLrMCtpjROi4tyfVVBBSh+MBQWXyTR8KyGlqAv0WlxIa9FUSEYa6g164G1gUknszFkb06KhhiAbAkMiikTYKS5EOsotCa3sPaSj0IVaNGJP75ilHRBrvpyMoNyM6E61Aj5z34RgXNgynNNlseFdq3PyIkZtqlYTNpmgLyWjcE3J2E8Kn6V7HutBRxEKsY641DUjLnp42s3YiIbJ2CNeqDajICk8pvT0DirEhS6w5Y4Nnqa610KuZEcOE7uHNw3vFtxDfDDMJhvCyFtuPsU/+vHX0+st7kZ7jSLVv/2qMdfoGq1Bxgg//s7Xsb8/5D/8nx9l/3DETTee4Gf+x9+YPGcr+NYsKcw9o00dwrJxXb4qYa4vS4iwOuwwOCo2z41xmWmUWZM77DicLN0vyG9Y7lE/9akRUnlGZzMQ6O06Ns4VpEcONcLglpSDJ2Vs310t5W+b93kGZ7VRnIVp0IdajlgPJz+r5KdhfFrwWUi9NaVH5BgADzPyKjms2DpXkgwXR3QEOPH5MbtP2+iORMffeuO+6YK5dOA59ekRe0/eCLJFITl0mMKTjUINgts0lDt2coM8pENHMvQrWZYAKoLbSjGHxfR9FnjjD7yCr/+Wa314VtJVJh+uGQxfBBIRXvKSJ/GSlzwJgP/8u5/ht3/rU2GnB5oC5tCUTbv1+Am1kJGgVgZ1Ar3ngyJpWw2BMsAlQnEqQRNBvScZK8kwPL1qBbdhQtfoohYm0nhyQr3BvEbf1fytUd5dUGrFK8nI4FLo7+mUYDJVQH1SI0sj30KIWHgDxs/0GuggU0Fvv/bqh74GxY5Q7LTcQi1ccXEzkKvltIC1rf4KPmGp8LZl6L7sMqHuICfxfCZXegfzHEOI6Fc9wHvM0NM7mqBX2EqxuxVewm9l/LyBtY5QMGUQjo95/Bme8pSbeMVXPp0Xv+gJ1zxHa9K1GoZrdCXo5MlN3vCXvqz5/mv/z8f59GfvD4pcHZ1d1Iizg1xvkTs/kAqT+rR2H55Y3BwcUR47cE39mc8Mrm8wlTafmmfbmVTImpKhW1yipRqUdBfSKTfvybGFsnlfyzBwyua9JcNb0xCxXkYKvT3P+IaQmpQOO+QV0amiIfrQ31VUlWy/xJaeS0/bWN5du32ymZu6fXdJMlqtnBsPJz87Zv/2PmStiHKcdueOEel4+l7W2QRb9+Qc3r5B7/6C7GhS1mcAM/QkQ99Ew7tQ+1bJWE0t5ck+fa8886m38KznP46v++bnccPZkyuu6hrB1ScfrhkMDwN64YueyLOefRsf/9gX8DUikjrURq80TIqiZsLADaoS09ulikVQqmTRKz17uKmU3qWS/HRCb98hvs6NF9QrtnS4NBbuRgV+HdIZDmSK6IEqw3oUMDhMZVCZDvkKkIyVcnONULCG7K0aEnYtcj50gAZ6B4p6g9uUqPSH2gpTtQyQGBUxdjqtqO7G2oTClyxWCAXRvT1HtWnwltjp2oWoxaJINJAMQn5uMuiGuhNd3d1zGQkgXvmRv/9abn/8DZc/0aOV/BqtPK/Bql6jB0h/5U1fxd/++/9bU+umjqgd1lxZOp1KSjAEXDa9R2XCthpjoaaaIcV6KnFKcuhIB36K1cnYY8d+AnWta8A2L0jZyXYLsoOyeZUU2L6zaCBL2/MmhZJdWo/pmQgRbvMIv91Bs5lE6aCKNRHCqU+O2HvaxnJIclWkUDSjuXdSKulo/fc+yZXr/mxAcSqh3ElQCdGA3qUyNiydP78A2ZHn1CcGSGJxHfVosa/aQhmzlilkhRd+1dP579/+2rWv5xpFusrkwzU34sOAjBF+7Me/nZd/RegKHZS4EBIN4dzFxUeNkl9T9Apt7Fb0LxRke9XCpj71eXqXKoyLzWdmGLQpweStfKMlVAuf9slM4entBsW4yduHJvzata7GW7XkfO3wuc39RGlWxY49ydBhcz9Zs/P0div6u54kDx878mzsVthCSUdKOgpRC9MyFgA2LlX0z5dNjQQw1flYWn0ruhermDI0V8oOPf09T+/Ak5QzMn+GhOB9MuViL9UyDPB1DbxbbjnF424/s+boazRFdY7qqs81ukYPgF74pbfzoz/8Wk6fCtjWNe/GBWMgj0AnU6KAEP0st820wisCRvAmRGgbY2ER+p2hiTzPOneAmFrJSqeS0oZ0rTcqG+fGZHvllF7ViJEF787OXcVK/iaEyIpUsH3Pmj1oVKm2U4rrMsZnepSnMvoXq8XvsCrZvuP0Z3P6F90E0fDYPS40Rjkqdu4cc+LPx2ycL9dyBpkK1JilkYLLoeYKRPjKl18DwLgsusrkw7UIw8OENjd7vP2d38q5e/f4/d//PP/bv/ld7rl7F1+Hg0sPTnHJBDZpRjdvHjwTve0hl70e2M02Gg/5Ag9KnbbiewpeprsHt08d2YsdeyprqTFas4MZQeMVqTzSM50hdSk9yciRDCXksC4hb8P4OnXIjjzZkZvK3VcJBWLJUOfulxCYbf9CxfhMQpeK3dsNIXhTKem4Ct2PBdRIKDwWwRQ+/C5dKQLxN7HFZTCFOJ8p/eL0g0X5zDGlYEXwA4A3fs9XXOvMebl0leWoXqOHL335S57Mi1/4RH7vI5/j9//4z/nX/+kPQ+Qg8u5iJzhLpAK/ESG6l6UWSkuQLCMRXN+QdHjM2955n9nONKQ2ub4lvZRTnsrACv//9s48Pqrq7OO/c++dJXvCkg0DSJBFAVGQGBZBjaKCSotCRRGXukKr8r5uuKBVAa21vLW0tGqrbUXUitQi4oJSi2BVBDe2KigiJBASkklmvfc87x93ZjKTzBqSkAzP9/PhE3Ln3HOfM5k5z3mW8xytUTfPimlG6GK1+XVpVyFUJfrc529HGuDJAezVFPP8mphGjiogpIC1zoA3Vwtf3AkBS4NE1g+msZO534eMSh+kJiAMmdDcG9pX4i6eZjLGMtSSEqIliiJQXJyHcWMHtr6TY5kU0w9sMHQyCotyMfnCU3DqiL74+U3Por7OBSkpuC9B8ximc9siwnMrA6kyXtlys/ARLgYFTC+SIggycM5CSJ+BMp+WOh8sTgmq9sGTq8KwKmGef6HLYJ5rpBlO8UlojeYNiiRoDQb0TDXqQjx034LqNGBraFk+FGSGbWMZRKrPLM+npzfV71a8BM0lzSpVoTIGQuaG/7wHMisRCac0NyhH8BZozgh/k0QQAjCkv7xu2y/oFUXg+pvOxtnnDGnzvo8VUi1HlencaKqC0aP6Y/So/tBybHh21UdQhIAkc44IVtuhNpwziFrsSwtFwD9FqwLSrkJ1G2Hr1MCnn1TA4jBTK631Oow0pUXbmGIAMDI0U+81rw4XQccZGmCv8VfSQ8B5Ejm1J6iTIjheBBE0t0DaThc83TQYVrMqn+2wDkuDDHO2CApUIRSAIFO0BMYWLkiC+McttQSeEOVNjrcNpnfvHnj0kUthsSSx+ZsJkmr6gQ2GTkpxcR6WPvNTvPTCh3jj9S1wOb1QVQXSkKaT30cg3T8ZCpjHi0crlRdrVkh445yZsqT4yCzLF4g0kFktyNKgB8u1CklIq9EhVbPKAgDAMNOMgKaohZEePulrTiP4OmBOyIpO8GWqYWVMQeZeA4vDgL3WBxgEma5FnBODaVJxxqn6CPAC8Jh1SBWJ6O+nv1/VQzBs/txhA7A0SEiLfwInQDEIqsswy5eqShQFTiE9NhujT0J16qbcMaJEgfZmN6LpdwEIg1A2uj82fbIbuj+trVv3TIweewJmXX1GYieQM9Fpx7J5DBOLmy8di4F98/G31Z/gq13mQUyh+w+iEpgqEn2QEKbTIlYTf79kU2EoAopHDz98Ewjz8gvAjFhEWVA3LeKb5m2yKGHGQtj6utn8LgBY3EDOt+ZDfWmKWS0p0qI5VMiIg/PrWBLI3OeL0bAZigCMOFFeIkA3Evu7Nb8PMNN24xWoCIbbmwnif+/79O4OQxL27q0BAGiaitLSnrjyirEoG1UKpR2cVccMKaYf2GDoxPTokYWbf3YObppTAY9Hh5QS993xEj7fsgeA6c2IO5FLAmlxJpR48wERFJeEkWn6Z4RPwlKnB0ufRo9oNL2g6OEhWsUwF8SkmQpA6NSiHwGzTrWlwTAX4QJQnAaMHAuEJqAd8JrzoCrie/BjTMQBeyLQThiJ5RUqOgGGaVUIYZa2U70E1UtQPDq0Om9wMzbBDMfr2TazqpHHgOI1AF1C2jVTGQoE/1aKS4flsAdQVZAmILXYX1XhNUAWtWkwBAhDorQ0Hw8vmgan04uaQw3IyLChW/fET3Zk4iAjfQEitGGYduDs0wbg7NMGwKebC+MPPtuNeb9bBUPK2FNYaBpEFJ+F+RoBElDdiX+GSVMgSYPq0uM3RpysmZB5W1ojbOoN6cPcYOo3JhQRPv6EKh3FEtJ0lCWFEGY1K4NaDlISFIcLwukOTh+kKKAMGyjNn4ob9pb7I0aEMMcTNY+2RJUf4UYDNV2/4bozUVZWiqqqOvh0iYL8bFitvDRsE1JMP/CnogsghIDdbnrqH1t8OTZ8sBOvvfIJtm/bB7eryeOhaQoKi3Oxd09N080EBDdCRMqvlwTF5YPwezlkmgUUOlmQ+brFKyEbdehp5gJWjbcZy1+pKThrR/AkWRp0+LI1c8EfwxMjYJYRDfyS4ZJQVRWBoheEBL5wiUZSAulfQkBx+vwL+ejRGc2pQ3Xq8OVYzdxaCCguHdaa8JIcAoDqNqB6nCB/+UAKhCvrmsYtVQFSVSj+Z0rALIfnk6YsoeMI/N9nQHHpgEuHtCiARYUAYLNbMO/BH0MIgYwMGzIyIh+ExBwBKeZBYromFs1MGZkwoj/+vuhqrHjvc7z5n+04WNtgVt7zU9QjG5UH6iN30sIDbd5nq/VXaIuQMtN8TRs4gV7oSebwR8D0fYQ8QYm+OA7M2QGO65WH7/fWhst5JKm5QoQv7GLsn2hByOI84NBRD9UDvmaHp0kJxeGC1A1QRlqE5/v/bwT0eZJjoGY/AUyedDLKykohhEBhYW6SHTJxSTH9wAZDF0PVFIwbPwjj/Kfw7vuhFju374eqKTh5eG8IIXDLjc/h+z2HwmpXk4Lwg2GIINw+aLXOsGPhtXo3DLsGvVsGoCoQbh1qjdNc8FpUCN1iesFVBcKjQ7i8ZjqUUExjw24JCxmrbh2GPfLHzNz3oENaFUglwRM1CfC5dfjI9F4Jrw5FGjAsSnSFImOHbQlm2pIIVCMSAorDC0ujD95u9qh7KABAc5uTvrXOiwFD+uHb/Yfh21cdHD/IH4UwJATILCOrmvsymh82B5gRI8XQQZpqyhyIFvgkEIgWBcsYmuMXIVWUAj+HDCvB3fOnIL8wJ5F3lWktJOOXxaMutKuN6fIU98zBnGnjMGfaOPh0A59s+x51DS4U98zB0NIivPavL7Hgmbfj9iN8EvYaw1+6OnDR/zNEZ5g5pmZ6KgXOgzEkhGGY+sFrOrXIooHSbIDWMh8+lrMoLO2IkNAi/UCV3yjyGbDsPQSjdy6M7MjPDvaNGH2TeX5QsK0kKNX1kAW50YXwR2cCPaqagmGn9MaWddvDjAUSArBZQKpiOpE8PsBmmDogsB+lRd9+cQOnOydpDNlsGq67bgJ+NGUEF7xoT1JMP7DB0MUp7pWH4l55Ydd++/TVePXlj7H8rxvgdnkBmHsG4PEGN30REdRGb/Ce0ClDceuwHHSYnm5PU/1/8hlQiGBk2qAcdkLxGSERTgOKwwCcXhh56YCimJOq2wDBTCeKtAFMwDzkRwHM00ejmQ0hkYrgvS4vFJfX3Aze4AUJwMi0wcixhxkIwucPz0cK3/o3Y1sPNTZFYlTFX7tawFLvhS/bGnHSttR7zQlbEoTPh8btVTjj5BK8u+Ngk0fK7THTwsLeZ918RoRSeEEFqRuAIsyTvxXVv/GcAMMI8+oJIMzzddnVYzHtitHIzGrmoWLaB0lo4XaN2IZhOh6LpqJ8aN+waxdPGIo+Rd3wp5Uf4j9ffhd+Q+CjahDSqo2myELIREXNDYjQOVUx1z/C7YVS5ww2Mfv0Qri9oMw003AAoi+IQwimsXolpD2xzbcej7m3zfrf/RCGRMZWc4+HnmWD97hc6N2b9m6Zc66I7rEngnbYBbXKAbXRNH6EVwcMCbJpoNzMpnGE/YT53ScCfDpkg44Rg4uw463PEdC8ZLeCMsJPvqZ0uzn/BwWMphP9KcGGNPfIJbDwz8tLx/z7f4ShQ49jQ6EjSDH9wAZDCpKebsPls8aiIC8Dj9/7SrNX/R9Or99DH+F+Ab9H2yfDJiEBALqE0uCB8IVvUA4aFYaEUu+CzEk3F+MANJcPUhEgW+SPW9yvS6C8aG0jhFBANouZhtPoCZeBANXhgeL0wVeUFfTQCwBqow9Gumbm+Qc8+x4dWnWDuUEvqARD3hG7FYrHgLXWA8OqgCyqmULqM6B6zIPu4PZCOE05KnfuR+XO/cF7YcjgZBAW6QdMD5yIHBEJGg1SQgjVVEwBAyh42rZfKRlNFZh6FmTjmpvOjvduMm0Jyfgeoi7kQWKODYYP7IXf3DkVF97yRxyoaWjxupAU/bAvERpdEM1eMBfIanNjIfT/DS7Te27Rwu4LHEoXrXy04jUgbSrMlXKEiK/PgFLbAJmbASgC1t0HIYzwM2xUhwfp26rgPr4bvL1ym+6N9FxDwlLlgH1PrZlCipbzuFrbAD03syn6EejL8G/o1g2otQ4Iv3PtuUdfD6ZZkdUCyozi2Im3kTlECMVjwLCL8AyCKMy97TwMG1aSWN/MkZNi+oENhhSmbPxAaBYVuq/ZhgN/SLU1/gUCIJrnXoYgiACnB8Lng1AV05Nk0SAaPRAeL2R2eos8fAFAOeSA8OgwCnNMRRI6iUuCWl0PxeH2b3JWAKu5pyOShx6GhFbjhN4zE8KrQz3UCGSlQ3PqIMWAVAC12gHV6QFZLBGVFAGA22umXikCmkcC7mbvo9sLxW8stHgf3F5AjewNa/K4yegh8qAQgbCzAVKUpqMW/alOAWNB0xQs+N3M6H0x7UOK5agyxxbnjR6Mv63+JGyfAwBo7th7EIIOoubpMP6NvqQIKDE8p6LBCdis5lzun++F0wOk2ZrmuFBvvW5AHG6A2miFUZQbeHiwnWhwQ/v+EIQhgQP1kHaLma4ZRW7b7hro3TIgbRqs1U4YVhV6ji24oVirdSJ9a1WYnozYlx56OGizNoaEWl0X5jQKGguAGVmIlk7kdwy1eH8joKoCQhL0OEbG+PGDMGYMH8DWoaSYfmCDIYXJyknHj68cg5eeeb/Fa0cSjIx6r24ALhcEUdOcD4dpMBgSJAQUhwtGToa514EIisMN5XBD0AhRvnFD5mVCplmheHUzkuFwmuk4AqBg/n9s+RSnD5bvDgWVhmGzmHJIQDvUAOHyAv5Un5hefpcHcPhgUQR8qgZkpAXzdUU0YwH+vFSi2GHfwGQSo42iCIw5+0S4nV58vH6nWUY3mN9k3nfS8N64a8FU5AcUKdNxpFjImTm2uOSc4Vjx7udwur1hRkOrzo0J3ixMD7mMXBkjuNDW3WYqqhCAYZiR1EYXRLodZPcv3g0DcLoBlxcKAKXOBbXeBb1HllmoQ0ooDW4zSuyHAChuX9yFdvq2AxCqZi62M63Q88zUIKXRi/SvKhGt5GsoBECpcQAeHcKqQaanAf6iIcLpju6YU5TYziIkEHkHAAEoioI5/3M+frt0LXRdtjD+7HYLrr3mDEydeloiPTJtSYrpBzYYUpxZcyrg9fjwj2UfInA6TXDvWFs+yDAApzP4a1jo1udPf1IUCKfXTCWKYlULIqi1DVAcmtmnx9ty01Bmhhm+jlMqVYREVpQ6J2S3LED6N+IF6lfH6QNeH8jRAB3mngY6dBjI7waoasz370jzQwUAUhSUnzUY//vQj6FZVPz7rS/x+ssf44c9h5CRZceZ5w/DpEtPQw6fpXD0SDEPEnNsUdAtC7+fdylu//U/UHnIETwETiZQQjTqp5rI9PTHICxVifzFIIQ/mtrggmhwRb+XAMuBelM/xOk71vOF2wekmYt2rcELW2UDPIWZsO2tTchYCPSj1DaabV0eU8/YLJAFeVCcnuh9tJHyzci0455HpmJkWSlOPa0f/vHap1i/fid8Ph0DBxTi4imnYuSIfm3zMCZ5Ukw/sMGQ4qiqghvvmISpV47F+29+gbraRuR0y8Se7fvwzopNLbwR8Yg6z3m80V5peU8iXyBdB9yRPfjQdcBmjd1HcxkMCeVQvRmhSOpG0ewkTwIO1IC658Y/kCeG0RCaA9yilQBKSvMx79eXo2///ODlCecPw4TzhyUnP9O+hOYtx2rDMJ2UAX3yseKJa7Hxs2/xxdf7oAiBkp45+L9H34CveTqrn4h7GAAEqu+J1ugVRTHTNDuKZqLb9zVAbfRBO9iY1Hq+eZRacXuBypqWDwhFyrg6IhjljoCiCFxx3Rm49PLRsPlLrhcX5+KmG8/CTTeelYT0TLuSYvqBDYZjhJ6FOZg6a2zw90aHC9u37MHe3QchQw9/C53EIkxmRBKnlPfHZ//ZBQotM6cncEhPjC8OEYHcHpDb7T+ABxCaBbBaW3jryeOFyEiP2VdwY3AIQhKEESKnpNgbxQIlUcM6MVON8qxAXXQbKa4yABC2sS1wmqaUhDPOG4a5Cy4JKgKmE2MYAMU5lCRKagbDdBZURcHYU/ph7ClN3mjhkvjlr1abkdWQuTRWZAEACorzUL+/DjKZxX+gAESi9whh7hGTMrpeiTcHRzgM03LYfeQLOCGgeH3ILshFXU1k40MQQG6vWRwjiozNxVBVBYYhkZ2Thrsf/jFGlJUeoaBMu5Ni+iHBrfjhLFmyBH379oXdbkdZWRk++uijmO1ffvllDBo0CHa7HUOHDsXq1atbJSzTdmRkpeFXy2/G5BnlsKU1W5gGQr3UzJAwDBQXZeOeJ2dioL/SgmiDY+OJCLKuDtTY6P+CmZuyyesFNTaCmqckeb2AyxV+qE8IQghQNAMmdHI2jNgKRQjzWRGuH95fGzvcSASKofxUReC2Ry7BL/96PW57ZCouvW48Zt16Lp5+439w9xOXsbHQVQh8BuL9O8ZgHdH1Of+8YVjw8CU4oX9B2PWIM2bIZ/y6G8/CnYuvgKIqUBKt9pMMAeNCCHPRr7TyGZGizVEq18WVp+VF00EV67ZGd8y5YcjJJXh86SwsfPJyXHXjmZh25WjMe2QqXlg9l42FrkKK6YekIwwvvvgi5s6di6VLl6KsrAyLFy/GxIkTsWPHDuTn57dov2HDBlx22WVYuHAhJk+ejGXLlmHKlCn49NNPMWTIkDYZBNM6MrPTcNN9F+Pq/z0fB/cdhtVuwZ6vK/HrO15CbbWjaSKUEgAht1smHnzmOmRmp+HRv92A91//DG+89BEO/FCDGpcTUk/AOxSh7jY1NobXnQ57kUAuF0RGhv9XAqQEHa6DEAqQZm9hOFC9A0JTAYslpBsKPluE9A3dMDefNavcBCFAXl/0yAkBmqFDV7WWniy/PIrHjb4D+uDAwQY0OppOfu5zQgHuXDwDxw8sBgAMHXl8jDeM6dSkWI5qW8A6InU4vaw/Ti/rjwMH6uFyeWG3W/DcX9ZjzVtf+LfE+ec6/7Q+7dJROHPCYAgh0HdQEVb9ZT0+eX8HGuqccBx2xnxWQt+T5hWZAHPhH+l7GM8ZFO11iyWyoygZiCB9saPugghU40Bp+QB889+q4HWrTcOFl4zEdbecG4yus4HQRUkx/SAomps2CmVlZTjttNPw29/+FgAgpURJSQl+9rOf4a677mrRfvr06WhsbMSqVauC104//XQMHz4cS5cuTeiZ9fX1yMnJQV1dHbKzs5MRl2kFRIQP3/kKq5/fgL3fVCEjOw0TLjoVE6eXISs38gbbPz28Eq/8/u3w9KbmKEqTwRAoLyclZE1tXJlEejqEqprRBp+v6QWLBSLNDigKyDCARqdp4GSkQ0lPazImDAOyvgFKdhaEpoWHshV/eNs/OZOUZvTB7Yl8SqN/1/ioicOw6V87IDUtvG62bpgKRxLuWHoNzpw6Cvu+O4TDhxwo6dcz6nvIdAxtMZ8E+qjodjU0JfZ+Gl168U7Nn4+Z+aujdQTrh46nutqB11Z9in+v3wmf18AJJxTg4otOxfCT+0Rs7zjciBmjHmhZ4jtAQCfESkmKlTrqj4DHbRtKtLRWouhzfySZojyr78BCfLurOubthb2745l18+D1GNj9dRXS0q3o068nH6p2FGH9EJ2kIgxerxebNm3C3XffHbymKAoqKiqwcePGiPds3LgRc+fODbs2ceJErFy5MnlpmQ5BCIHyc4ag/JzEvXuXzj4H61d9iqrvayLmrlrsFui6bGFMR00dao5hRA4h+3ygUAMieF03IwQkQU4XyGWGf6XLZdb9tlihZKSb1Y4kAdKUgwKKR9ejW/5CID3DglnzLsbmfz0K6fH4y041GUOKqqCgbw+MmXwKAKC4T3cU9+me2FiZLgORBMU5eCfe66kE64hjgx49snDNVeNxzVXjE2qflZuBG+6bgiX3v9JiN6+iKlBVBb5GNxRVRHY6xYsWNCeRPWSx+rPbgFgR5njPBnDBFWOx9bM9+Nc/Nzft92vG5bdMhKIosKcpGDz0uNbJy3RaUk0/JGUwVFdXwzAMFBSE5zQWFBRg+/btEe+prKyM2L6ysjLqczweDzyepgo59fX1yYjJHAWy8jLwxD9vx9O/eAXrXv0Ehj89qXtRLi679TyMnzISa//+Ebas3wHDkBg8oh80TcGyX/4TjfWOxB+UoBKQjgaIhpYnmAIAfDrg0yGdTsBqgbCnAaDgoW8gaoo6NE9V8v/8ydzJKB3aGw88PxuPXPNHuBrcUFUBQMDQCb1K8/HQ8p/BauO9CCmNf79N3DbHCB2hI1g/dE0mzxyDzNx0/PVXb2Dfd6bnXSgCZWefiOvvvRi1B+rx1ov/wcEfapDbMxtDTy/FR2u3YsMbnx2ZARCJeNXyhDAr8Vk0M9oQ6TscerBcAP/v6Zk2nD2tDOfOKIfX7cOGN7+AqirmWULSrNl61e2TUMFnI6Q2KaYfOmWVpIULF+LBBx882mIwSZLbMwv/++RVuP7BS/DDrgOw2Cw4/sRe5kQJ4OJrJ+DiayeE3XPRNeNxSeFP4XHGyRn1T/DpWWlQYYPjUGQjI7DHAUR+p38cJUMAPB4zpQmBud9/yqZu+NOoQtpLiUlXT8AlP58IABhx5ol4/otFeG/Fx/jvlu9gsagYWTEEI88+CUprN+MxXQcixC2r0oUUQleA9UPXZcKFp2D85OH4bmclnA1uFPbujm49zTSMwpLuGDwifD/XxJ+U47lfrsLy37wdo9fwPPHjSguwd9eB2IJYElj6xDBSgpWjRCBc0rQ3LzPLjkdfuQXpmeZBcPf94Rp8/eX3+Nc/N8Nx2Imi3j1Qcclp6F6QE18GpmuTYvohKYOhR48eUFUVVVVVYderqqpQWFgY8Z7CwsKk2gPA3XffHRairq+vR0lJSTKiMkeR7G6ZyO6WmVBbW5oVU2+dhBcWroxY9UhRFQwYWYopt0xCelYaThk/GESEuRUP45vPvmvZIVHwoDjz1+gHvFkz7NCl3+MjJYQQyM3PQa/SQgweVYrzZp2Bym+r8fay9ag71ICSEwpx3pVnoHRY77B+0jLtuODKccCV4xIaM5NCGAYg4pTFi1dWL4XoCB3B+qFrI4RA34FFCbefcu0E/OOZ9+F2eSOn9giBq+6ahPxe3dDvxF7oM6gYby7bgCfvfCEY6TbbASBApNlASgLn8QiBDLuGRmfTIXK2NAvyj+uOkhMKMGHKSAw69Xi8uewDbNu0G9Y0K8oqhmDCj0bCnm4L66r/kBL0H8Kf0WOOFNMPSRkMVqsVI0aMwNq1azFlyhQA5oa2tWvXYs6cORHvKS8vx9q1a3HrrbcGr7399tsoLy+P+hybzQabzRb1dSa1uOLeqdiz/QesX/ERFFWBNCSEIkCS0Pek4/DQytuR0yN8M9CSD36BrzbuxD+WvoPqH2rQozgPZ/1kNL7+dBf+8sDLwX4QzCYyDYdAFHnoGSdi0Rt3o76mEV9t2AkpCSeW9Ud+Sfg+g+P6F2JkBVdqYSJDUoJE6uSoHikdoSNYPxxb5HTLxIPPXo/7Z/0BHrcvaDQoqgKShJ8/Oh3nXRb+WZk4YzTGTj4Frz/3b3zy3lYoisCJp/XDaecMwcJbluFQVV3MQ0stVhXzfjMTo84ajC8//AbV+2uRl5+NYeUnQNXCjY0rbp/c9oNmUoJU0w9JV0l68cUXMWvWLPzhD3/AqFGjsHjxYrz00kvYvn07CgoKcOWVV6JXr15YuHAhALNk3vjx47Fo0SJMmjQJy5cvx4IFC5IqmcdVMFIfIsKmdz7Hmmfexb5dVcjpmY2Ky8/AuKllSe8D+PSdz/HK/63Gl//eDgKh//C+SM9Og5SEnr2649xZ43Fi+QCuRHGM0pZVMM5Kmw5NxKmCQV6863rxmJm/OlpHsH44Nqg9WI81L3yIj9/dCkM3MHjk8Zg8cwyOKy2If3MI9bWNWPX8Brz58seoO9SA3B5Z6N0/H1ISLBYVw07vj4ofj0BWTvTDQZnUhfVDdJLewzB9+nQcPHgQ999/PyorKzF8+HCsWbMmuGltz549Ybnbo0ePxrJly3Dvvfdi3rx5OOGEE7By5Uqur82EIYTAyHNOxshzTj7ivk6tGIZTK4a1gVQMEwdJ5rGtsehCOaptAesIpj3I65mNy35+Li77+blH1E92XgZmzDkHM+ac00aSMUwUUkw/JB1hOBqwB4lhmLaiTT1I1kuhidgRMJ18eNf7Ms9f7QTrB4Zh2grWD9HplFWSGIZhugIkCRTHg9QFfDIMwzBMG5Nq+oENBoZhmNZCEkCcTWtdaFMbwzAM00akmH7oEgZDwALjA3oYhjlSAvNIW3h2fIYbhNhl8XREOImcaTNYPzAM01awfohOlzAYHA7zkC6utc0wTFvhcDiQk9O6w5OsVisKCwuxvnJ1Qu0LCwthtcaulsG0DtYPDMO0NawfWtIlNj1LKbFv3z5kZWUlVAozcJDP999/3+k3kcQiVcYBpM5YeBydj2THQkRwOBwoLi4+otO43W43vN44J5T7sVqtsNvtrX4WE51jVT8AqTOWVBkHkDpjOVbHwfohOl0iwqAoCo477rik78vOzu7SH/QAqTIOIHXGwuPofCQzltZ6jkKx2+1dYpJPdY51/QCkzlhSZRxA6ozlWBwH64fItN58YhiGYRiGYRgm5WGDgWEYhmEYhmGYqKSkwWCz2TB//nzYbLajLcoRkSrjAFJnLDyOzkcqjYVpf1Lp85IqY0mVcQCpMxYeB9OcLrHpmWEYhmEYhmGYo0NKRhgYhmEYhmEYhmkb2GBgGIZhGIZhGCYqbDAwDMMwDMMwDBMVNhgYhmEYhmEYholKlzUYlixZgr59+8Jut6OsrAwfffRRzPYvv/wyBg0aBLvdjqFDh2L16sSO7G5vkhnHU089hXHjxiEvLw95eXmoqKiIO+6OJNm/SYDly5dDCIEpU6a0r4AJkuw4Dh8+jNmzZ6OoqAg2mw0DBgzoFJ+vZMexePFiDBw4EGlpaSgpKcFtt90Gt9vdQdJG5v3338eFF16I4uJiCCGwcuXKuPesW7cOp556Kmw2G/r3749nn3223eVkOhepoh+A1NERrB86l34AWEewjkgS6oIsX76crFYr/elPf6KvvvqKrrvuOsrNzaWqqqqI7T/44ANSVZUee+wx2rp1K917771ksVjoiy++6GDJw0l2HDNmzKAlS5bQ5s2badu2bXTVVVdRTk4O7d27t4Mlb0myYwmwe/du6tWrF40bN44uvvjijhE2BsmOw+Px0MiRI+mCCy6g9evX0+7du2ndunW0ZcuWDpY8nGTH8fzzz5PNZqPnn3+edu/eTW+++SYVFRXRbbfd1sGSh7N69Wq65557aMWKFQSAXn311Zjtd+3aRenp6TR37lzaunUrPfnkk6SqKq1Zs6ZjBGaOOqmiH4hSR0ewfuhc+oGIdQTriOTpkgbDqFGjaPbs2cHfDcOg4uJiWrhwYcT206ZNo0mTJoVdKysroxtuuKFd5YxHsuNojq7rlJWVRc8991x7iZgwrRmLrus0evRoevrpp2nWrFmdQiEkO47f//731K9fP/J6vR0lYkIkO47Zs2fTWWedFXZt7ty5NGbMmHaVMxkSUQZ33HEHnXTSSWHXpk+fThMnTmxHyZjORKroB6LU0RGsHzqXfiBiHREK64jE6HIpSV6vF5s2bUJFRUXwmqIoqKiowMaNGyPes3HjxrD2ADBx4sSo7TuC1oyjOU6nEz6fD926dWsvMROitWP5xS9+gfz8fFx77bUdIWZcWjOO1157DeXl5Zg9ezYKCgowZMgQLFiwAIZhdJTYLWjNOEaPHo1NmzYFQ9K7du3C6tWrccEFF3SIzG1FZ/yuMx1HqugHIHV0BOuHzqUfANYRnfH73hXQjrYAyVJdXQ3DMFBQUBB2vaCgANu3b494T2VlZcT2lZWV7SZnPFozjubceeedKC4ubvHh72haM5b169fjmWeewZYtWzpAwsRozTh27dqFd999F5dffjlWr16Nr7/+GjfffDN8Ph/mz5/fEWK3oDXjmDFjBqqrqzF27FgQEXRdx4033oh58+Z1hMhtRrTven19PVwuF9LS0o6SZExHkCr6AUgdHcH6oXPpB4B1BOuI1tHlIgyMyaJFi7B8+XK8+uqrsNvtR1ucpHA4HJg5cyaeeuop9OjR42iLc0RIKZGfn48//vGPGDFiBKZPn4577rkHS5cuPdqiJcW6deuwYMEC/O53v8Onn36KFStW4PXXX8dDDz10tEVjGKYVdFUdwfqhc8I6gulyEYYePXpAVVVUVVWFXa+qqkJhYWHEewoLC5Nq3xG0ZhwBHn/8cSxatAjvvPMOhg0b1p5iJkSyY/nmm2/w7bff4sILLwxek1ICADRNw44dO1BaWtq+QkegNX+ToqIiWCwWqKoavDZ48GBUVlbC6/XCarW2q8yRaM047rvvPsycORM//elPAQBDhw5FY2Mjrr/+etxzzz1QlK7hW4j2Xc/OzmbP0TFAqugHIHV0BOuHzqUfANYRrCNaR9f4C4dgtVoxYsQIrF27NnhNSom1a9eivLw84j3l5eVh7QHg7bffjtq+I2jNOADgsccew0MPPYQ1a9Zg5MiRHSFqXJIdy6BBg/DFF19gy5YtwX8XXXQRzjzzTGzZsgUlJSUdKX6Q1vxNxowZg6+//jqo0ABg586dKCoqOmrKoDXjcDqdLSb8gJIjovYTto3pjN91puNIFf0ApI6OYP3QufQDwDqiM37fuwRHd89161i+fDnZbDZ69tlnaevWrXT99ddTbm4uVVZWEhHRzJkz6a677gq2/+CDD0jTNHr88cdp27ZtNH/+/E5RNi/ZcSxatIisViv9/e9/p/379wf/ORyOozWEIMmOpTmdpQpGsuPYs2cPZWVl0Zw5c2jHjh20atUqys/Pp4cffvhoDYGIkh/H/PnzKSsri1544QXatWsXvfXWW1RaWkrTpk07WkMgIiKHw0GbN2+mzZs3EwB64oknaPPmzfTdd98REdFdd91FM2fODLYPlMy7/fbbadu2bbRkyRIumXeMkSr6gSh1dATrh86lH4hYR7COSJ4uaTAQET355JPUu3dvslqtNGrUKPrwww+Dr40fP55mzZoV1v6ll16iAQMGkNVqpZNOOolef/31DpY4MsmMo0+fPgSgxb/58+d3vOARSPZvEkpnUQhEyY9jw4YNVFZWRjabjfr160ePPPII6brewVK3JJlx+Hw+euCBB6i0tJTsdjuVlJTQzTffTLW1tR0veAjvvfdexM98QPZZs2bR+PHjW9wzfPhwslqt1K9fP/rzn//c4XIzR5dU0Q9EqaMjWD90Lv1AxDqCdURyCKIuFEtiGIZhGIZhGKZD6XJ7GBiGYRiGYRiG6TjYYGAYhmEYhmEYJipsMDAMwzAMwzAMExU2GBiGYRiGYRiGiQobDAzDMAzDMAzDRIUNBoZhGIZhGIZhosIGA8MwDMMwDMMwUWGDgWEYhmEYhmGYqLDBwDAMwzAMwzBMVNhgYBiGYRiGYRgmKmwwMAzDMAzDMAwTFTYYGIZhGIZhGIaJyv8DnMEXg55ILd0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "l2 error: 8.63%\n" + ] + } + ], "source": [ "# setting the seed\n", "torch.manual_seed(seed)\n", @@ -971,44 +1077,25 @@ "# calculate l2 error\n", "print(\n", " f'l2 error: {l2_error(input_data2[0, 0, :, -1], output[0, 0, :, -1]):.2%}')\n" - ], - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAADQCAYAAAD26DD6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d/wlWVnn/37Oqaobv6Hj9ExPYoABQYIKsq64oi4LuOb96Rp2DWtcdV0DLmvOrquyBkwMiqAIGEkjSs5KHBAEZmCYnHo6f8MNVXXO8/vjnLq3bvp2z0zPzLdn7qdf1d97b1WdOnWqznOe/IiqssQSSyyxxBJLLHG+wTzYHVhiiSWWWGKJJZa4N1gyMUssscQSSyyxxHmJJROzxBJLLLHEEkucl1gyMUssscQSSyyxxHmJJROzxBJLLLHEEkucl1gyMUssscQSSyyxxHmJJROzxFlDRJ4hIrc92P1YYoklHhiIiIrIox7sfpwvEJFLRWRLROz90PbPi8jLznW75zuWTMxDFCJyk4j044S6S0ReIiLdB7tfSyxxvkNE3i4iJ0WkcQ/PWzIE9xIPxAIuIt8uIu++L22o6i2q2lVVd676tcTOWDIxD218pap2gScDnwP8xIPbnSWWOL8hIpcDXwQo8FUPbm92L0QkeShe//7QsCxx37BkYh4GUNW7gDcQmBlE5N+IyD+JyCkR+RcReUZ1rIh8h4h8UkQ2ReQGEfneB6XTSyyxO/GtwHuBlwDfVt8RNTTfVfs+kuxF5J3x53+J2tH/HH//bhG5XkROiMhrReSi2vmPFZE3xX3Xicg31Pa9RER+X0T+Ps7V94nII2v7H18794iI/GT8vSEivy0id8Ttt+saJRH5cRG5M+77b1P31xCR3xSRW2KbfyQirbjvGSJym4g8T0TuAv50euCq8YhtnBSRG0XkObX9F8UxOBHH5Lvj788GfhL4z3Hs/mXeg4na5+eJyEeBbRFJdqJ1U+d+FvBHwBfEa5yqjfMfisjrRWQb+BIR+Y8i8mER2RCRW0Xk52vtXB41bkn8/nYR+SUReU98Tm8Ukf2143eixY8QkXfE894EjM5bogZVXW4PwQ24Cfj38fPFwMeA3wEOA8eBLycwsc+M3w/EY/8j8EhAgC8GesDnxn3PAG57sO9tuS23B2sDrge+H/g8oAAuqO17O/Bdte/fDry79l2BR9W+fylwDPhcoAG8AHhn3NcBbgW+A0gImtRjwOPi/pfEefv5cf9fAK+M+1aAO4EfA5rx+9Pivl8kMGEHgQPAPwG/FPc9GzgCfHa8/svrfQZ+C3gtsDe2+Trg/8R9zwBK4P/Ge2nNGbtvj2P23YAF/jtwByBx/zuBP4h9fjJwFPjSuO/ngZed4dncBHwEuARonYnWLejfu6d+ewlwGvjC2EYz3usT4vcnxjH7mnj85XHMkto78RngytintwO/FvediRb/M/D/4nj+O2DzTGPwcNyWmpiHNl4tIpsEYng38HPAfwFer6qvV1Wvqm8CPkiYSKjq36vqZzTgHcAbCerzJZZ4WENEng5cBvyVqn6IsDh9831o8luAF6vqNao6JJh7vyCarL4CuElV/1RVS1X9MPC3wNfXzn+Vqr5fVUsCE/Pk+PtXAHep6vNVdaCqm6r6vto1f1FV71bVo8AvAP817vsG4E9V9V9VdZvAOFT3LsD3AD+iqidUdRP4VeAba/3xwM+p6lBV+wvu+WZVfZEGn5GXAhcCF4jIJQRG4Xmxzx8B/pig+bon+F1VvTVef0dadw/wGlV9T2xjoKpvV9WPxe8fBV5BEPgW4U9V9VOxT3/F+Dkt7J+IXAo8FfiZOJ7vJDCNS0xhycQ8tPE1qrpCkBweS1BHXgZ8fVRfnopq06cTiAki8hwReW9U6Z4iTPilGnOJJYL56I2qeix+fzlTJqV7iIuAm6svqrpFkMQPE+bp06bm6bcAh2rn31X73AMqx/1LCAzWGa8ZP19U23fr1L4KB4A28KFaf/4x/l7hqKoOFlx3ps+q2osfu/HaFXNUv/7hM7Q3jXr/F9I6EfmiaDbaEpGP34M2EZGnicjbROSoiJwGvo+daeSi57QTLb4IOBmZyQr157FExIPqfLXEAwNVfYeIvAT4TeB9wJ+r6ndPHxdt439LkH5eo6qFiLyaYFpaYomHLaLvxzcANvp8QFDzr4vIk1T1X4BtwkJf4RA74w7CQlZdowPsA24nLJzvUNVn3ovu3sqkhmTeNauF+9L4GwQT1CW1Yy+tfT4G9IHHq+rtC9rWe9HXer/2ishKjZG5lDAW96Tt+nG3soDWRUxHay66xvTvLwd+D3iOqg5E5Le5d4Lewv6JyGXAHhHp1BiZS3fo48MWS03Mwwe/TbC5/hPwlSLyLBGxItKMTnkXAxmBMB8Fyuh09x8etB4vscTuwdcADngcwRzwZOCzgHcxNnl8BPg6EWlLCKX+zqk2jgBX1L6/AvgOEXlyFCB+FXifqt4EXA1cKSL/VUTSuD01OqCeCVcTtA0/LMEZd0VEnla75k+LyIHoYPqzQBW6/FfAt4vI40SkTTA/A6CqHngR8FsichBARA6LyLPOoj9nhKreSqBN/yfSpCcSxq/q2xHgchG5J2vWy1hM6+bhCHCxiGRnaHeFoDUaiMjnc+9Nigv7p6o3E0xLvyAiWTRlfuW9vM5DGksm5mGCaP/+M+CHgK8mePsfJUgDPw6YKAH9EIGYnSRMztc+KB1eYondhW8j+Dbcoqp3VRtBIv+WGI3yW0BOWAxfSvBTqePngZdG08E3qOqbgZ8haD/vJDjUfyNAnIv/IX6/g2CSqJxmd0Q895mERe8u4NPAl8Tdv0xYHD9KcPa/Jv6Gqv4DQdh5K8GB+a1TTT8v/v5eEdkA3gw85kz9uQf4JoJj7B3Aqwj+NW+O+/46/j0uItecTWORMZpL6xac8laChuouETm24BgIjt2/GP0Nf5ZAL+8xzqJ/3ww8DThBYCj/7N5c56GOyit8iSWWWGKJJZZY4rzCUhOzxBJLLLHEEkucl1gyMUssscQSSyyxxHmJJROzxBJLLLHEEkucl1gyMUssscQSSyyxxHmJBy1PzP79+/Xyyy9/sC6/xBK7Fh/60IeOqeqBMx8Z8Kwv6ejxE4uL5n7oo8M3qOqzz0nnzkMsac0SS8zintIZ2J205kFjYi6//HI++MEPPliXX2KJXQsRuUeZOY+dcLzvDYtSX0B64Wce1hmXl7RmiSVmcU/pDOxOWrPM2LvEEuc5FKXQxdLREkssscS5wG6kNUsmZoklHgLw+Ae7C0ssscTDALuN1pyRiRGRFxOqot6tqp89Z78Av0MoFNgDvl1Vzyqj4hIPPPpbfV77B2/gHX/9z3TW2nzV9z+bp3/t5xMe485wzjPYGtBebZ3V8Us8MAjS0e4iLPcGS1rz0MINH7uFv3r+1dz8ydt5zOddwTc89yu46IoLzurcYX8IQKN1xgTFSzyA2I205mw0MS8hpNZelPL4OcCj4/Y04A/j3yUeYNz6qTv4k596JR995ydZ2dvlP/3P5/CV3/tMjt1+gjtuuJuDl+zjf/+HX+LuW49R5iUA//quT5K0MoxNSFJLf3vI2v4VLn3sYW6//i5O3HmStJly6PKD3HnDEcphycqeLt/1a9/MM//LFz3Id7wEhIpwxS6Tju4lXsKS1ux6qCpvffWHeOUfvJWTRze48omX8t+e9x+54rMu5NPX3EiZl2xv9PnFb/wdysKhXrnp47fyhj97J0kCSZJQlh5fOi573MWkzZRbPnk7/a0+ey/cQ7OZcMf1dwLw+C98LM998fdz4SPOjvlZ4v7FbqQ1Z2RiVPWdInL5Dod8NfBnGuoXvFdE1kXkQlW981x1cokz48jNR/mhp/8s/c0BCmz3Cv7gf7+Sq376r/HOYVNLvtnHD4cT55WFoyz6SJqOtCsn7jzFiTtPQZKASSi3c2786C2jc07efZr/971X0eo2ePrXfP4DeJdLzIMC7iFQPmRJa84P/M1Vb+cvfveNDPsFAB9+96f4wbd+HLtxClQRIxRDBzVtrXcK6hkWytDno33Xf+Sm0TGqytGbjkxc66Pv+ATf/5Tn8crbXrjUyuwC7EZacy7yxBwmFK6qcFv8bQYi8j0i8kER+eDRo0fPwaUfmjhy63H+8S/ewztf+yEGvfyszvnr3/p7hv081GlvNMBa8EqRl3inFIMSX5aLG6i/mGmKdLtIswlpCm6W83aF4/9974vmNKOcOr7JoB/67Zznlk/fxbE7T53VfSxxz6EoxQ7bQwhLWnMO4b3nw++8ltf/2bu49pobOZs6evmw5OUveNOIgYEw5/X4ccq8pCwcxXABnREZb/Ow4PpbJ7d5+a++ak5fCk7evYH3gT5tntrmpk/czqA3nDl2iXOD3UhrHlDHXlW9CrgK4ClPecpDirqeCxy98xS/+r1/wnUfvgVjIE0NguGXX/EDPO6pV0wc65znEx+6kd7mkMc/9RF84r2fxnmQdgu8jgjCBLk4Gz8Wa5FGY+zzorrw1dw6uc1r/vQdfP6XfTZrezv8+W++nte/7D0UwwIxhkc98RLuvOkoRe5wpePRT7yEn3rhd7K2r8v73/Jxrv/YbVz5pEt5yjMei03sPR6vJSIU3HI2TWBJaxZDVXnX1R/mt5/7cvJBgQBG4NFPupRfeeX/oNHKJo4/fWKLT15zM6t72qzt7c42OBjcm06EvxM0afFjuvqFb+QxT30kn/fMJ3LHjUd5/g/8KZ/5WOBnG62MKz77Eq7/yM3Y1OKd5+v/57P4lh//Sk6d2OIdV3+EsvD8my99HBdfcY/SoiwxjV1Ia86qinVU8V69wNnuhcDbVfUV8ft1wDPOpOJ9ylOeog/33A3bmwPe/7ZPUuQle/d3+aXv/hPyQZRwjAkT3Agiwq+/8vv57MjI3Hjtnfz0t19FfztHJJiEDl+4wg3X3QW9fjhfFXxNg2IEFYM/fXpuX8z6OrK+CsMc8mLE/KgqfnNrvpRkDM3DF+CsDZdyDspyoURlrKG71mJzc4DWZkKaJXzLjz6br/3OLyZrpPdkCB+SEJEPqepTzvb4Jzwx0797/eL0DFdecuc9au/BxJLW3D+46do7+OSHbmLvBat88O3X8vo/fze+0rB6H+asKpc86hC/+4bn0ewE083LX/BG/vL330ySJahXVtbbHDuyEcxDEbq9jZ7emLpipCA1JkVVA40YMSuTWhn1Hvzi8N1mt8Fgewg2QZJkUtiaQtZMWTm8nxOnJ7Uyhy/fx3N/4xt57JMuXTxYDxPcUzoDu5PWnAtNzGuBHxSRVxKc7E4vbdRnxgfecS2/8oN/hjGCKvRPb4cJnSRItZAr4D1ehOd+24u48PL9JInhrk8foSgcKEhkGG657TRiDGoMtBqQpXDidCBQqyuw2kVUkXYTvetusCaYnMoSc/hCxCaIMTPCkIggjQwdzKpoJUnIPYgVMKAmgTQJYp1I0AjlORQlAnjnOX1iG4yZ0BAVeclL/u/V/N1L3s0fXv2j7D24er+M+UMVChT6sIgWW9KaewjnPL/+gy/lfW/618BXiDDs5YFpcbMMw63X38XXf9ZzuejyAxROOXLXaXzpg3AlMjITj+mEBlozAwUE6pEsXtlJ23ImTfFgK9KgskTLEnUO024HWjJ1bj4oOH5sC0mSiX2333iMH/n63+c53/g0fugXv27H6y0xi91Ia84mxPoVwDOA/SJyG/BzQAqgqn8EvJ4Q8ng9IezxO+6vzp7vOHVimze++kPc9Om7eOfVH6EclpDaMMlW2tEMVDtBCExJZAruvPVEOCaNzAJReunnuNKj1sKFBwKxMgZNExjk0I4h0SLI+hpyYE/QzKiG3/sFUkaCliVQFBP9No0GXgxaFoHwZRlycB+SF0g6SSSw0c1KAmODbYLJ0WEOzQy8R8o53u0KGye3+c0f/0t+9aXffc7G/OEABRy7i7DcGyxpzbnDx6+9gze/45PcdO0dfOrd1+EHtTm9gIGpUOaOWz51V6A7dXpkLZrYWWYjSdA9a3B6A7zW3kQd/68a6NI0D6M6ak9EUGN31MZUkDRF2u35mhgRWOmGwITp/SKgyj/+5fv4sq/+XB7/eZef8VpLjLEbac3ZRCd90xn2K/AD56xHD1HccN2dPPfbX0RZOPJhCUhgGGq+J9UE92mCJiYQhKJEvKJJMC1hTbDWJCZsCLSyIPA4h4ltaGqg2UG2U6ROODIzcq4bEYBWivY84hRNEvyBdbTbDPs2+5gTG7BvHbPambwpVXQwNj2N7qVOOESgkQWJrJnB9g72cw8fee9n7sGoLgGVdHT+13Jd0ppzgz96yTt41dXXMMxdEHIu2UPSSsnuiKbkqL3VLMGvdtDEIr0hZrOHqKISaZNX1EBx4TpurRW0ui4wKfb0gPRkD4zB7+1C3oZTG3OXt0pToqrBTB7N3NpuoJcegm4L8gJuO4qc3ED9pC+fwky70tohV9VqN/j27TBG6pXXvPTdSybmHmI30pplxt77Adf+621c/dcf4PSpbb7gix/Lv/+PT+I3f+pv6G0NA59SmVucn5ysAr7dCMxJlII0s8igwHcb42MrM1KcxGoqp1gbIvgLF0w8U5Ncozp5ntpWswT6BW5vJ5iZTDxmTxe/1kEG5QxRUECsGUcv7RR50MzCvjRBXT6fwFiDF+FbvuK3OHV8C1UlSSz/5ouu5Lv+5zM5eGh9ftsPcyiCWxakf9ghL0re+LZP8M73fpr11RZf/ewn02ln/N3rrmGY13zTjFAe6JKc6GGiRsZ1muiB9dGc1VYDt9aB/nCkFVYr5HuyMb2CILiI4Fsp5d422ekCMRI0O1HLsQhSMTKAtpvoZz9y3HaawKMvQW++E7n97snzmGJkdqIzEBiYM0RAKfDP7/kUX/Ps32SQF6jCnj0dvv4bn8bX/n+fjzE7sUAPX+xGWrNkYs4x/v5vP8AfPf8fGUaTyTUfuJFXv/K93H793agRtJlNiBU6LDHRlOOzBLLIkIhEG7ZBu41JjU21P2JCSysCqQ2mIoDEoIXfWQEoEs1PdpKBGe0DrMy6pVd9HN9NpDbzVLzxxc8S1Ht8YjB5OTYtpQkqglrh6JGNkG8CKEvP29/yCd7xtk9ywUXrPPPLn8StNxzlXz9yC2vrbb7pv30R/+7fP36nu3vIYzdKR0vcvxjmJT/wvL/gpluOk+dBwf+Wd13L0z7nERSli/4ndQjl3hbZHSEQVg+sB63IaLdAYgMDIwJWKNt2koGpjoOgEW4IZQfSgYN2kx39Xaaglx6abdsIXHIQvf3uufRqxMjswCgpBM1zZQmraJTXkf9ghbz06NFNfCsFIxw7tskf/f6b+eMXvo0nf85lPOlzLuPtb7uWEye2eMITL+a7vvdLufDC9bO+x4cidiOtWTIx5wgnT2xx1e++mbe84WNhksUJWnjl5ltOoM5DpzExaVXArzQorYAHcR7xOilFROnmTHLBPHMzBMZIU6VcC5oQMyhJelNalRiZoKmd1dtCUC8bM9eOrsJYBe01MDtzzvepQZzHr7XQA11QxSFIb0hysh+ciiEyeRLOMWBqktNdd5ziz//4HWE8PBw/usmv/MTf8JZ//Cg//xvf+DAuhSC4XUZYlrj/8IFrbuQ3fu8NHDm6OZrzChS54z3vvx71c9IroJT7Vij3BK2qdYKZl3i1Tp9Ss7PGwwi+YWDgAn24+AI0L2ClA0UJR08i2/3553Zb89s2FhopDCf98qZ/0zwPvnnT0U+NwJCoMTMCI4MccX6sDY/+e5KXaAymUKAoHB94/w184P03jMbk7W+7lne+8zp+9Te+kad+3iMWj8lDHruP1uyu3pyn6PdzfvA7/oS3velfww91dacIHnBrzbDQRyjgmtH3xQT/Fs0sPp3Nl6JnsTjXGRgVoXrPytWU/II2vp3iWwnleoPhgdYE8dMYIRV8bObDNwxVbEG1SWp40hddydqBFZqdDE1NuPbUccWeJm61ie9mkVGKTJERtN3ArbZQI/hOY+wYDCHiaZH5q/b5ve/4FH//6odvCR0FCuzCbYmHDv7p/Z/hp37l1Rw5uglEZW1t0xgcMDtjok9dYtFORrma4qcFjmlzUC3f1FxE4WXkuLt3DS7YB50WrHXhkReje9fGhxuBViP8zYv5bQpgbAhoINIya5AnPZInfeln0+o2STvNkRapTmewFi7cj6YWbdXMYJXJrJnhpRqDIFAKIC62sAOZFULW4Z/4mb9mY+te5MV5iGA30pqlJuYc4K1v+BibG338jAo3wDds5FrGoo+vGIZprYsFLWfnU6VK9VaCWtTNn3MKuExw3QbpiRzXSmauoamh7KbYfolvWMpuitqgSck2yon5HFSyUK5muFaC7ZV4E7Q2vpNwY1oyfMJ+TpzcxpdRk6QguR85I5tcsQOPt+mstsQIfqWB2DnMmxKlqkgAFcwc05gCf/Bb/8hnbjzKlz3z8XzW4w7T7+W0O42HhW1bVSh0yaw8HPD7f/K24O8yB9VcPaNVJzIrrmUxWztk8T5TQyKQQNmypL1y/Fv1VwQuPoj2esGcfGAvumclaGmydNZjN96APOlKOHYK3djCt5twyQHaq23uWmshX7bGYGMAeOzGECljtGMlHHliIMGcvgvQiUzUvFvV2nHMfhbAD0p+5Bf+imd8wWP4ii/7bNrNDK9KqzmZIPChit1Ia5ZMzL3EcFjwmtdcw1ve/HGO3b1BL+ZCGeV4iu4hPg2SBChFlqCpYEqFUhebP4yMbNoKqBVcakgHjqKboFbINgpMMZ6oGi/uU6FcTVGB4b6gbp25igjlagO32hhdw9vgeDfcY0g3itDHeO2yHRghzSxFZik6ZkQIbz9yOnYgmJJUBPGgTTP63WeCGfjF9zv1sxI0P2VnnH+ismc7BbtdYAs/QWNz53ntaz7E37/uwxhAnWITwxd/2eP4ked+OVnjofuqh7DHpVL1oYobj5zgj9/yfj5x293c6k/TyMDWqpHMzu+6/8iCRkWYWYuqhV81aGezOeHUc9rxDYP2FigyjIHHXjHp09fMQk6reX3TeM7BvejBvdAInez1cnr1EiwqICYEMFQC0KIw7nFn515OrZn9cfqHSsNshOtuuJvP3HKUq17x7tF19653+OH/9qV8yb99zKKLPySwG2nNQ5eyn0PccMPd/MPff4RTp3o85alX8JTPv4If+9GXc9edp0LSOUAzg0vNyClWnGJ7Ja5pEQ+uHYdaBJeGWWJ7DplKHKQwUcOkYiJcQ/BZ0KJghHxvI4Y7anDBcaAWNAlmn7ItiIOkP2dG135SCQyMS4MGx2eW/gFLdrIkGejIV2Xi1IoxmufwZ3QyRFICVVEb89JM2eE1/qc14uMaFtexI4I0cS0B10kpTeyDD+McaJrgUFx1XO548z98jPf/8/W8+C++j7W19uxYPASgCIUup/L5jrJ0vPNd1/HP7/sM3U6D5zz7idx66jTP+6s3UHqPV4WuQb3SOq6j1Amq1NIoyFiCquYeTKZZqLCDucjbOie0GFJ6slNnru+mEOiXB5/CiSc08Q2DGZQc+HAetLdTx59J4HftFNnKZ2jNrFNz1eas4KhWILXMEfVCnw30DjVQK9hhSEPhUqGoTTeTw/GT2/zM81/HN1x3Oz/0HV+6c8fPY+xGWrO7erML8cpX/BMv/uN34GJkzlve8gmqzJd1k4tr1KKKCBOwXAlOZr5anafyqLimmWAyKocz103DRBQZMUW+YXBtg+3VzClWqFx+fXySLoG8azBeEKsw0JGAMo3+uqFs14hVqVS5dPM1iy19IDqNILWZXGft6FMI/jg68raSMnx0TUNpobERmL4RzyLQP5hhhwlJvDdvZZKBmb6GqY2jjeNVeoxnHEZuNfwpldOn+nzvd/0Jz3r2E/mqr/k89u2bU//lPIfbZVk0l7hnGAwKvuf7X8Ltd5wcmaVf/boPc/oRCWVnLEgkfU/rhE5ofYEJRkWQ8b6oMZ3hR1RJ+pOO+nV6ZgtPucMrpUDRERrHysXzNLZZdCwbVzRxWTjKDj0+DffkmwmnH6msX1/gLQzXLKjSOOUno6emETVJagWXGMR7TKEz9ziixwK+kZCvZ2QnB9gi1oSbTtY5NR5CEFABXGsqmivCZ8BQsU7527/9IDd/7E6+8is/hy/6d4/FTmt5HgLYbbRmycTsgPe8+1O86IVvn/itWnwnpIbqPZ2nmYAQsTPXE19Q/Kg1NVC2BFvIRJSPz8ZSiVoJSemMkHcE1wrmm3RLkUIZ7LGYyswtQtE1JFuTphc1kK8aylbsV3WpBNRFYmgNvf1hAo/vD8xAybYXj5m3UKyYCZdxkyvJtsc3DUXHkm2U2ELxqVB0kxDOmQRTVNar5ZzZKefExBeBxOBdRdwDY6ap4PCYUjl6dJO/fOV7edXffZAX/MG3cdlli+t/nG/YjdLREmcPVeWHfuRl3HrbiZl9ZWuSbjRO+VmtSp37mAMRQaPGdnRNAzI3iqlG4wqPpgaXCXnXoEnwb8u2PEVLKFYM3Zvn52+tLuUNnLqyFfzjIlzTYIfgmuFig4MpR1sG1zETmtp9H8vnR1DF9ou2Jd/TmfgxOzbADhzlShKYmmHIX+O6Ka4TGJbhBR2ad25Hh94zoH5IRZOmabkIvgFmAOo9H7nmZq79xB288Q0f45d/9RseUn55u5HW7K7e7CJ4r/z6r189V6MatLVj1aSa6Asyp535ZGKMvGtDmCKKX01wKHbbk0athMsMmjCWqGLCy/4BGxibOEFcpsgwikQGiEKWt0J/v8GlQXIRp6Rb4NpzGKuoRZHq3KYZaZ1G95OCN4rxs3elEqSz6fwxPoM8s9G0LPTbtdpQgHiwueA6Bt/zlU0t2PbnSHlzx1mYDU2HEDEV8/AUhaMoHb/xf6/mF3/5/2PvvIq85yE8Qr7LnO2WOHt8+MM385kb7p67T3xNSCKYLhZhkfVHI93IuwIqJAjaMGysJ6ze0JtvagLSjYL+BRn9/cmIDviUkD8GghCWCOShgTIVhuuWopsgCslWiRhhRnCXyuQO1XpYdk1gtmr3mq9A8/T8vpUNgzamQsAF8gPNyYHwdQ3V+LhiNQ1msHlMSTVuBC3STN8XDLRLII2+hINBwUc+fDNXv+4anv3sJz1kfPJ2I6156Om6zhHuuONkLA8wi1EUQPxctuYPY9gn+JHtZHKfS4TBgYThXsNwb0KRgLNQrAplx1J2LJqOmQ0VYdA19PdbXMKkl72RUV4HH9+xvAW9AzBcD0mpfFNwbWGwX3b0fVOgaEXiOWNDDjZtjbUi61uZMp+KVnlf0hjKPfJ+lsg4QdkI9z7Yb8lXTPChqY/31LWm+zWPEFc2bZ9N3u8nr72Tb/6mP+B5/+uVbG4uyGNxnsFjFm5L7G68558+PVEVuo7msXHiOjuY9SmbwCJZSYSiGxNZJoYyEUqnFF2hfyCZYTKClsPQ35PQ35+OhLSqLczYzN27IMMlcOLKFiee2GH70ib5vpThvoTty5r096Vzc0eNLlTr4zQGe5K5dEoB31qQw6YuQEUGpjIL1Y9x3Yz+BW3ylXQiMGmC1iRCvmdeccs5l/VgSsUMxw9oOCz5vRe8ia/7mt/iVX/30KmivttozUODPbwfcMPNR+kbRdtBg2Byj6kRGmcF68MiqTaYYahpJ6q12meCT5V0ygTjEujvD2aXSocTfGLAi6Foe9Le5Dn5CuSdeGz0G5ESkpxxlsqo7cg7StkOnZiewGqh6Cppb2rxj/Wbyja4DJLBfCLhGpXKORBV8dEHqCOIl4XEVKVSYweGzCfVd0HKUB/KxTBJv+1JeorJg2ZGKkpjmOsMHYd7/JsJkWEguCxwXEm/HJ1bFI5rrrmJn/yJv+YFv/et8zt8nmA3hj0ucXZwznPjZ+7GeA05XiQKJ3GBbh3z+BSGeyzZ6R0KI1ZC1ZxVv2jJTFixa4Q527uoQbbpg9Nq1PqoETYvjz4sQUk8anuaIRjuSxmuWXw2rRWJGuK2iZ2apQt1rcs8kpGvCW4qEgugd1Cw5XzNdx0jZ+G54dYCmcVnMEwN6XaJKRRvoqbdwPZF2SwDNt2UKs3jBUlvmviHm3Klp196XviHb+HA/hWe/u/O7+il3UhrlkzMHHz047fxy8//+5oDaUz2lgf/iqJtKNYTUMUU4QDfCD4pxhH8MZIQ7VNN5sG6oAnYvlI0BdcRjJOR/Vlt5CGSeG7TUHSUpB9MQGU7+L8AQbNT+cgkkGeQboKYqKIFXFPGxu0phJ+FfA2yU2OLkSJQarBVL+REAgNVNBVUQmqGNGziBDtkobpVIgVUifbweBk1QeoxRTzNKEXXoCjlPjvWF5aQbjgafQ35IGo35KscO1ng5MRPs29K2UpIemMbvvfKJz5xO6997TV81Vd97vz7PQ+gsOuyaC5xdvg//+d1fPKTtwNxXmqY79U6IUD3DkfniMNNm0+mEU3JqnGOJUH7Oir5ASN64DJGAs3Jz2qRbTiSnsdlwnBPMkrzIG5WYKiCgMJcFrQxP9N36NM8QhD6dybBXRPDsSdnZJtK44RDbTCju5ahe6sPtHHnJuYzMNXvVd9SQ/9AFmlmlATLyo9Qx3RkQuALf5Kew/ZjsIXOHlahKBy//Euv5i//+n+wtn7+RknuRlqzZGIiTp3uccedJ7ni8oO88CXvYDhtShJBM0NpfGBgJEg3RdQ2Gi9YM3aeqxgTCBPdNQTNhKIRCVTUCHgbpKLwhZhlMp5XhfKVwXHMJ4FJwTI5ew2UHUj6lQaFWTv0NCLzULbBDmH/vg6b20P6ZTna7xphX/w65k0ESASXAKYWAWCjb4rWDx5rmKprVuaucQRFvP0ETFn5tihlJ9jTR0QkVYp9lsJDtlmSDAOhDlKexHGREeGyg8hUxudHDPWuO/Qp8Pt/+Gae9awn0Gicnep4tyE42+0u6WiJ+VBVbrr1OCi0Ggnvefd15PlYwzKSO6rK9VHAz1cMg/XALCQ9JdvaoRRJnA6+JkSFi9f+1E8WIV9LyNemmvHC9KGxa4H/WOSEs/DmwRjhyosPcP3p4wyK+ZqlkUnHENJJrAn52uTC2TsorN48P+pq7ueduzVmYCD8TcbzadRMfDh1suWalv4FhvaRfML3Zt6V89Lx4j95Oz/yY19+Vv3ajdiNtOZhz8QMBjnf98N/zo23HB/9ZhbYcFWEfF8aGBgZhzUjgjeKT4SkN7Zb15+1t2HTxrhtl4M2GM8KwyxREIIzbRbMMAuPSYK5iaiNQStGRila4XdbgBmGEyqGI18B3Qu3sc3+bhs9qvSiV7AmUBqCtknD/ZZdSLfBDkJ/vKnpOwRcCyRnzDwQiZEdM3aVRmYG05rbaWfpWi6afC2hjJobM1SM10kiRND2yPYUsZ9z3aEqH/jgjTz9C6+c06nzA7stAdUSs3jfBz/DT/3Sq0e5pRKEeXleBSjawuZlGbjga+EzGfmh5KniWkrrbj+p6Ki0LAlsXmooVsJOO4DW0TD/hRrdmoLO0TosmqazPiSKawRhCoVsE8ycGG3vlc/ceYxHXnaAT9xxZIFvXoi+rGex11GIRBT+GsLG5Ur7dg3m9HmtTDEdO2ImyGHOZ2Umn02IMIV8NaFxekrwnRLkipbhde+7lh/h/GViYPfRmoc9E/Ot3/tijhzdmPjNOV2stY1Obj6Z8mqPGoCyIdg8alvi/rIdnVoTJmaATlOwnWZbVMEuOqSu7Sg6gekxpVJU0pWBkjgJt5UkmsGq99EDR/Ie9gCwqdhhJBhmrClyzdBOsQJFDOwJJQVCWypQdjSYvTw0To4J54jYWc6KsGgVBTBvbGqRWiNHx0URBvVjYKIStyeYsRT46V96FVc+6iDP/Z/P4cpHHzpD73YXdqN0tMQk7jpymv/1s3878VvpPZrPL6MxMh0lUXNZf79N8BVxTSEZ6My5px4dfD3GzLyyfRhWb2ZH7cmZvUwmNbKV/4hXZXAw0IWqiXwvSK607oZkONluUXiuveEI/cNKdpIJ069WxGE6ia7o2MSlIXGmN8LWpdA4AY1Tip12el6kEpnC2U6dhUNnhLJtaJyec30q4U0wKvjTBc/66ufznGc+ge/+ji+m02lMt7arsRtpze5iqR5AeK/88Z+9a4aBgbFtuo4ZleMipw8bGRYTqjAXXfCJoHMid9RC2QpMR9naYb5VmovKyW7egZVJBsU1FZf6wMAYxonnCIyQ7waNSmXeqd9l6ZViPfZbNByfQtlk8m0R8FYpupCvC0UbhvvBdaIElcDwABTtcE21UQI08ft0/5WR6vyslMAyJ3RzByjBGdvb8FycYZT9uGrmU9ffzff90Et5+Sv/mX/5yC0Mpyvp7lIoUKhduC3x4OLu45t854++dPa9juHHM78LDPbVntsCv5KyIdM/UawGh/lpAUsFNi6F05fBcHV+P89m3lULuRJM12rAtyIDU2mJ46YN6B2GsjmnZa/4BAYHYhtGAz1Z1dj/ycOHF3gGFznyfR6X+WB29mCcoVgVtg8bXFXphKiFmZMGYt59uoSzNj0tRN2NQII/ZMiGLpRNgyZmlJYiH5S85nUf5r98x1W8+z2f4sabjt63az+A2I205mGriXn+772B17/xYzseM5EKvym45pl5vpAZMmgwdFqCqh1TNoOZaAQTGJkkRvzWF3NXaWwiMyAeJrJREiSYYkXxrXGTUijGzxI6BXwD8jSILmYoY0ko3qJrR6ajekN80LjUpTWfhr5oEj6PCBjjv8V6vL2YbpwyaGfQKUWLMnJK1uicWPFsc3kV1VF2dZcGE9YilbK3Md+OVVwrxRQaHHw9oygvAHGKd8ofX/V2Ws0UAX7sx7+cL/mSx83rwa6BquDvo7OdiDwb+B0CC/rHqvprU/svBV4KrMdj/reqvv4+XfRhgOOnt/nWn34ZvZODue+nzwym8CNHddcQti9KQ7TPDlABTSoTyxjBYXfOCWacgyVfU5ItsPnYfBQ0IDLOyySz5phqvnoDwz1h3lcKXSpT98x1YbA/JOO0A0Y0RGsMz2Af+NVxRdvGHTZm342mo1SD1lrAtZXmXWYyQlEEtUrvoNA6qbgU8lVh9Ratl6GbGr/x+aaICUUXDF1171VaiWnmSFFMEcoRuFQoVpPgzxRN+q3j5dwUEKdO9fj5X3kNiTVccslefu2Xvn7XZxO/r7Tm/qAzD0sm5m3vupa/f8NHd64yb6BYNeOZWwt7FBhP2qm33qWgWahbNDH54wvtk2A3rgjFiINXkCRoZcQFB1dNlKIdQgxHKlczljLq065YVXxzsj+agp/DyEBQz/qWggXXVezpEC01IkQSiJSo4jINUVMQQkEFZMiUtDc7FhWKtUAo1Chp20IByYbghp5mlrC6p8mJzR69wqG17MSUwf+mCjUfj6eOnoG3IQJD0JlQTDWCdqbUR1WhGSXk4GF8HxXRVqv08wIUfu1XX8cVVxzc1Rl+K+no3kJELPD7wDOB24APiMhrVfUTtcN+GvgrVf1DEXkc8Hrg8nt90YcBytLxMy+4mlMbPaQrIav29EES6pVVpQE2L08nstuOMJWUTRCGa4bGKYep0RpbmZcqje28eSlC2VF8xiia0GdByMjqJhEbEmvWs+YqgSmZbFdIt5Vidc61CALTMKv6B607leHe2rFTq1B+0JEdDUKHlOBaY0JtchZoogXfErajRlsU+o9PaRxzZCdCpFFrvYHtWu7a6OENk+HTkeZOm7pHjJsN9+EUsu1pxY3g2oZ+e8o0JIQTdsjt40qPKz3Xf+ZufuJn/4arfv/bFx+8C3BfaM39RWcedkzM1W/4F57/e28ce+jP49KBsm2Cc1lc88KOMSERX4uyiZCWYFPIhRDuXMYJYQKBKKIJp7oGMBGuGLiEEDFUcTmKUmRh8tuYGVMTKDqKphqig0rAmjnEKhxLvfhrdd+xXxXT4tY9TkJIpQyCpNPqWnpbBZoGBqTcN9m82RSSvjkrNbRJBdeEgTpIgdhWzxUc9wWSgYlq5FEfU8jXgoYq3YYkElyXCq6hpBsS2hIouiGBlykCg4aHdDiHohJUvK5hZrMOSzT7uUo7oxTO8QP//SVc9aLv5KLDe87iTh8MyH0Ne/x84HpVvQFARF4JfDVQJy4KVIaINeCO+3LBhzpK5/mun38F1954BAimS5+4YAaJx0xI/tGJvXnc0T9gR068owNHEyMgyQyl9WxcZmme8GRbwQ9v2DGYnFhSIGoyEmbN2SZGPI7W3bAzX4N0i1HWbteCYZXZv84UTU8tDSUJ/DwXj9rxrglblzHhtGtFaEuDLT8c0azhIT/bBnCm11wBErCJoe8c/X0g+0zcVwAF2dDMOugmUfPsAw2p/Oh89XvF8AjkXR0xPGpCtJiZGRDierFTdsLJjn/600f42V/6O37+p752F5cquE+05n6hMw8rJuYNb/lXfvN33zC56FbSd/yqFoqOGeVkAcAHTULwNQ2MTNEIGgY0SCoaNSQV8y0p0Arnlq05RKQmMI0YmSmoKD5TNFF8N0xBIDAtdfONB2qq4QlUfa7tC05yQBorJlYdzxQVRVsetoTtdoF2Yth4Oa12UvyqUjpIChOS18weAkA3y7At4eRgMNM9b6JKXEErNbOZaiMP5i1XT6+ggm9ORUFZwdnqppVhI2ixkuGYEa2SAYruHKKK1/AgFXq9nG/7r3/E7/7et/JZjzu86KwHDWchHe0XkXrK0KtU9ara98PArbXvtwFPm2rj54E3isj/ADrAv7/XHX6Ioygd3/mzL+dTN0+WEii7Btv3wWl+UrEyQral4B2D/Tam5J//lha5R9JgOtm8JNQcCnmWJGptxzBlmJ4T5usF0ATyPdSkrLO44eqwuvZn3GIoxpp4NLcTKSQqOFV62yWCQRMPEyYxxaYOVHClCfXQGrOm7QqfdfgAN5w8yaAYRwpV5nbfChKpnDDzaSWMmLsZ1O8rll8Iv4fMx6JBqzXDpPoqu+f8y03jXe/6NN/3gy/ld//ft9Bs7r6UD/eR1twvdOasWCoRebaIXCci14vI/56z/1IReZuIfFhEPioiuyKGrCwdt992gq3NAb3ekN98wRtCRArMMjICRQMGe2xgYKS2GTAtg+tY8q5hsC4hfFEk1AZJJDiIRn5AO1CuBKfWYo2RPZfpa05BqaKagubDrXi0oYHVrEtAC/xP5iLx+G6JWo8aRa1Cw6P7hki7RDoF0izGI1K1u+Lxlbgy4UGrkDjIPGQevaCkXCvxiQZHYK1tKGXLURwoOZps4xoOnZrNKhruMZYymHYORIL05tIQJeUaMVRdxp/LZhzrdiTWQJUe3TWCI+OwA87qWALbacyUEQMz4hO98iM//DLuuvPUDic+OFCEUu3CDTimqk+pbVedqc05+CbgJap6MfDlwJ+LyH1S/8zD+UprNjb73HbnSUrn+ft3/iufueUoM8RGBNe2IXFlBr0Dlq3DCduH7EShx2w9iyalxS+pEBbMwQWB6fDp5L55x54V6jTlHioD1CqkMb9DVGGbtSHphT2SAwPSw9tIa7GzvDDWrAKkjYK9F51m/eAmey7YYO+hDWzqGF7og3BX++eNMjxc8sm9Rzl1qE/Z8TNt+6Ynv2Tx9RWlzJTNy5TTj1K2DiuuEe6lTJTBurJ5ubJxhbJ9SMe0zAhqhbIVatiFbIOxtl4t4/HZ4tPXH+HnfunV9+ykBwgPAK25x3TmjJqY89Ve/vqrP8If/f6bKEvFe88Vj76AYekm2DaFiYiYcjVmh51TGLFQjxgztm8uYEaFqIrNOPvYr5juP6gug5bEddxkore67avSpFRqZgESRcv68ZUapAhPec2N+q5TlidNFMkcWr0rUW0xN2o58SEXTV3bveLxziFDg7cK0eHQN8IYbBZ5yBNjwKUesy1hgo/CowMBlJFaqgYhnFuTXDWNyiM3roQbLsismjiGaqsNBKbym/GZIIMpbYxqbGPMwNRR5I5X/d0H+e8/sLuUEKrg7kmo1ixuBy6pfb84/lbHdwLPDtfTfxaRJrAfmF+58F7gfKQ1vX7OL/6/q3nvNTeQGEuWWTQTdKiTCsXK0R/FWxjsGxdV1ETo7xcaJxzptlKezqGZ7OhoGhoNc0AtJL35mon6seHPeEUVBN9ywXw851xF0cQjamYy904cJ0FbbC7qYxqRoHoBM5uqItk3pMht1OzOQTzeGM/a/q2JZMNGPOsHNjl+2xr9izzpCUi2wwH9R5ch/YPPoQX5hSX+mJD0bEja5xgJhD5VbDF7P4KgiY40vmUCm13o3hz8gCp6BuMAjOkosJAgNNIV1aDZyYKp7Z7M0A9/5GZuv+Mkhy/acw/Ouv9xH2nN/UJnzsacdF7Zy48d3eQXfupvuPbjt9dMRMK1190J3WRq9Q3MgPrgUzGXgRlBGFqFTHY0cyqRYKExoy3BN2YmDf4Y3kCxEvpicnBrDpzMOT4yMp1yZILSoQ3xwglRbSmBgCQe0y2iDbmiDONWqt5KLLqkGcFMNbpUjYSOPusMA1M1qGsl6hSJqlj1wHAqVlI0OAuujm1pJvrfuAbYMjoQV1EXReUgPaWCFsL9Dqe6sei5VPyfGTOCamWCqQnnKyav2Rbn4D3v/tTuY2IQymkHrXuGDwCPFpFHEIjKNwLfPHXMLcCXAS8Rkc8CmsC5jg09r2jNu977aX7h+a8jz11Q3lEyzMuR0+hEVfWRj4VQrJsRAzOCEYZ7LOl2iZShAKspGZfiWAC1gb4M9wVmonmcmdpiwMiXxFuluMBjtwURDw3FDs3cd96vONwFQXMhfUNyVzZiZkZaY8CtOPyekqxZS75nF0wiAdMp8Kcrm82U3aoEEmh0hrOnCmCUdrvP8FST4mIo8GNTT/22reIOO7wP9h3ph9IwIAwvcjRuE/L14PNjhyGnlSmnaHtsr3eAyaSkEEsezFWnh2dSM3Pnq5ZswwXaUpdF548QEMoUfOiam3YfE3PfaM39QmfOhok5Z3YsEfke4HsALr300rO49D1DWTr+5/e9hLvvOh2uR3y/nYbkUbMdAlVcQ/BNwzyvkro0ZHw0aRhiMinAgy0ZhfsCuIZO1gZKQYZh4teLPapVyrUyTJDod+IqSWYHmFoEEU2H9qNWI1XsypB6AzpXglIazYIkcWEIPAyGKUU5/+UUEwjkzp2CtO1wRbAH6QwhrZ1fUy75lo+RTuA6NpYxCIdrokgBdl4hyum2pj/Pu7QR1OhY+5YaykSj2l8xpcGU46rB83Dnnaf4nd/6R37oh581uUg9yHBneml2gKqWIvKDwBsIOsYXq+rHReQXgQ+q6muBHwNeJCI/QhjRb1e9r8k1ZnDe0JoPfuQmfuH5V49KBkyM/jQDU+33IfEl9UrLUwd5C2VLMI5RqZGR/FCMfS6CqZYghKVji2+ohzYVOg0UXU+xX0fmWtf1SKfEbM3XiChRo1rlXml7isND0lsC81HsL/Gr4xXfLGJapm9RQGpZ6bLOkKKfoVWJgyL4xRijLDIitPcNMR3P1la76uzURYIPjkQtbuj/SKRleKGjaCSj+k1lJ4SMd25VypXptkIenGny51OidmVWczwjTBkhX09Coj4XCn22TkxaBWYkQ1Ve8Px/4ImPO8zlVxycPxAPEu4trbm/6My5smmflR1LVa+qbGUHDhw4R5ce45/f/Wk2N/oTv42MK7UQ6Yk+SVD36bS0X4OnikSSWFSN8AhM+OsaQfkBQYIalyMY//WNsYZGUVzmKQ6UaGUOqRxtaz4h0/4joOGYKUjqQBTbyVm8ko93NZo5zSynkTgy68hSR7czIElD/KJNHTaN7vcVEp2SrhRjov0mnmOMx0QCtYNCaxIGtEXwibE6MWYVA6jMyWoqQeKZ6FEcu3lvfEWEik7V+2qTSHiCf5PPDGrMwnYAXvuaa/jB734x29uz0uKDgUo6WrSdVRuqr1fVK1X1kar6K/G3n42EBVX9hKp+oao+SVWfrKpvvB9vaSfsClrzJy9/N3k+62hypqVcF5Q0AUbvfr5Si/ir0RkffcKU8P73D06eB8H5fbg3aFy0Ml0dchQHdKbmmipoZ4HQJOBW3cR3MkUbHrfq8CuTdMjPSeMwD6pgOg4xQfLbd+mp4LhbmbBVkJ5Q9hP8HM2qSBCqghA239FHzLwTa5/7SaA11VsTx7d/YWBm5p07/VzzdWbHTUNI+ATDo2Mfmer41snIBkwfV/8cc1Z9z3e8iL/7q/fPvc8HA/eV1twfdOZsNDG7wl5+Nrj91uMMB/Mdt0zpcdPl4iPUyljioMb4VH/NOAPjjJOuELQ5zaidierE6RdcjQaGJQexEkxG06S3pmrEKriQXnu02yjSnCyaJhI1FrZEzJRqNp6jvv6b0moUTPJ0SirKnj3bbGx0UKNYq6StHon1FIWlP0wRGyZWu+nIGmUgXCIMBwlqgiObquIdQaNiFGMc6s1I0pq+31EfdrK5J0A9CongIFM2lXS7dp5A0Yyh2H5MTEbRGtHnpmyOwyhtoRN+ND4JtF7NpEp4skPwmevv5g9/54089ye/cmG/HyioQrHLKsveS5w3tOa2BQ7e4/dsdt9EUMf0MfFd7V0Yi8smc46RMBdKGZss5tEa34RBEnMzpR7XYb64WhhoeMrDQ5LbGxOLqjtYQGNq6RbILyrmSygquFKwyQ4lWwARpZEWJI8Y0GoWGAsHH3mMfJDiS8Ngs4GgdC/YIl9U5InQhayRU5Zzjpkvr45/K+Yk+KKmXZ/T3jRcMzCRzWM6cpo2BST9+Wys6TvSTT8qjaDE8gkwZmAqc3/pERd8aLyHF7/wbTzxyZfyqCsf/HIou5HWnA0Ts1vs5TviXz9yC296/b/gF5gCpIhmg3rVZWIOBVuliA4hu/UWvCX4Uti4mM5tXEBqORLqTDWKb/sQ3hiJUsMYyp1EtsqLNYk2KlXEekzTM4f9p9UoaLeGiMDJzcky762soJmWbPYbFKUlScsZBqaROExc8Zv7NvAevIaDjEC7mbO+2qN0gq8PgtFgeWkqzhtKZ7HWk7YHOGcwnfE9uzwQqFH/p29jB8KnKWjNV0UjMQ9+LjrJICVQZgQzX3+czGvimcYkd0J4vjYmpBIXnr9LBFsacIucbJSyVN76po/zYz/xFbvCrHRfM/buEux6WlM6zytf9X56vcVaOHE6DuiLjD0iFJ1pyWbmzJnSHrONM/IZyzZCqY95UBvS96cdg2MeNy5BMFDQllI8coD0TPzu5wYu6KI+xb1ST3E+B1lSst7ujWhCVR7NJEKzW6AKjdUc70MuEmPCgdNujBVGqVQmLqvBhC47M1Nzcabjp5jKsgtbnWBW6txWc/adc5pvCH4omEGgKS6BpNCxu14xv4aWAMNhyRtf/9FdwcTA7qM1Z2RidpG9fCE+8qEb+ckf+guKwkOV7bLGqCBQduyEKlcIi2HZlsAkeIme6zKeKVUBtRj+e6YMv0xPKmHMwMh4/1AdMzOiglEkLdEiGbVlM0drZUBZGoqinnAmOOaudAYjP5n1bp/NXgPnDd3mgPV2johnvbMNwKBIGJTjypOpDQxMfcJbM07pn4gjsWGCNSzkTsnd2GHXxONBcT5MSmt9HDsZddVmnsbKkGGNkZkgMonCnIgBCNJmUVNfSxF8BoKPQYwGmKqOqSaYjlwDpBxn/UUEKWqRAongkvF4Ulpsy5Od8Egi2HI6gilsQsgHshsQwh53F2G5NzgfaM3P/cqreP87rkNLD2vZxEtcmXkqJjneFAK4WOV+OvPuQjgmaEYd40rTweygSe236ph4jXxbYZQ8sw4lbZU4rZnSOw5rHKomCDHxatXxRhQ3d8lQsnZBI1EOtk+zr7XNdpHxmVP7qLgyQVlv9wLjMcPLRWFIoZ0UiAQhqldkO5ooSlc5vNTbrI3NomFuldCbLtA0TwdP7aHO9ru6nM+EzUfApleaR2HlzrDLB14K8UrzWBloVryMcUGAquisGubXeopdOXZsc+E4PJDYjbTmrJLdxdoFr5/67Wdrnz8BfOG57drZoSwdP/fcv6SMnKyWoYy7awma2iC5GAkp5u2YQVFfmYjChlfGxULGDJAKI6mkzvBPvv7TmSo1+sjo3MKPk5NlsiXbLLGZx2c5zawkTdzIaa6RlbiipD9s4FVopAXd9hBrxoXq08Szd7WPqtKwjsQ6kpqNuJmWDF3oVCIlraTAYyazMMbsoaKedMrHJYtMT8UIhVQIGoQ6hcR6vJ/VcYtAknny1KExcV6Us8IBhpB3Jp+Mga+ku3rFb80UHSi2MEF7VhCc5phkXIlFJyVnHMlUC6mX+qOonkuiaAHaCNkLfe4xwxoDpTrKXZVYsyu0MAq1Ref8xm6mNf/0ruv4wGs/imhMZ1J4XDch2S7DOyJQdBOG+5tBTRAXUvVh0co2PEXL4LOaibj2zk48waq8xw7qAVGhcQoGB3y81IJjS4m+dDW6I9Do5gjQ205ZXRnSyIow72PXN7cbDPMMEaXdHNJqFmxtN9ncak00bxNPZh1fePgGmklBYhTnhWGZcNvWOgAHOxt00yG9MmMq+BwQDEozdSM6Y0XpZkO28sYEI1P1DWA4SKtBnIF6qZnXp9B2IcQ7n6f2mjWhUUYhSZkoyzI6dJQqQsZZ1YH+BUL7iJKdnszUjEaNfwKuGdYorwbbc5iair6etLDR3B15aXcjrdkdI3Mf8PY3fpz+9jhOVoCyZdBsvJCKJ6bE1hFxUROKhFW2lbDwyai8PBDL3cfzS3CdEJJncmq1i8Ixk6amMIFco5YIZR4ME5EwtlWSxHPSzNFolIgoiQkMmtOg0VjrDCLTEe8PT2YcHiF3CYrExJjhXCOeRMJfbw3becqexpBWWox6N/SW0/lk8aUsiZEXte6LEPvjJ4hRcDdREusZ+sWcukkVEoexDjfIJvx1tAoTj/4xUkZV/LSjNKBN8N4jSKjNNAQz0BpTMdbMaBYS3pkyHIeEvBqLIBWFEsE3bCjGF8162elyREVd4XjJVW/nm7/96WTZgziV9D6HWC9xFvij3/iHCafNZOiww+ikGW0j6WaJKXr0L2pPrrgmMjLbHraF4Qr4NJpvJLyjKjECyUHvMUVgUm5Pgm/WAiZFPOi6Q3qCDu18RmbE1Ye+mMTTWg/aW1XYu6dHav2MgmhtZchkHgNl/9om3XTI9qDBRj/QC2M9j9pzlFaSY+PUt0Z51J5jbOQNPu/QrSNBSgRu3VrnZF7VMhAMnjSZvb4ItJKCzXz8blc+sv1+hi7UCIwZEhHFWkc5iryM+1aLQGd6FoZ2dPzE6dVPaRgGQVA/fp5jrexY+9O/IGT8lTwIUMNV6Nw+ayoSCOHkzUinRHBdg/PhBs3AkQ7jzZaeD73lE1zzZY/nc7/gUQvu+QHCLqQ15z0T8863fHziu09kxMDUmWUUpPRhX8W0EHxhRraleHC+Fs+p3k0BZ0NGWCRGJyl4wgI7TxpXo9D2jOrDT+4Na6wNx9lGCQqNpqORlphQphprlGbNAz8FnA/hy4l4SjW0koJ2UtQ0RENOD5vk3pLZktWsT1KjvAo0Vkq8monyLA3j6CY5W2WI9zaiCLpQ02CM4nyYY94L6qERJSkjUT08qzcG9TSbDpt4aJYM+yllnqAqaFFlkoqHW4UqcGFOEjzfZOR8q0mIzJBcsUOZKEdQHY8G5z1NBXEhR8zcu9NQTRgJ7VclJ8KCMxm++vKXvJs3vvpDfOHTr+RJT72CL/iSx2KTB3aSK8yJ31riXKK3PeToXadmfh8xMLXvdhC0d75po6pyrGcZSdab0D8QKh/XH53PoHdhgbbCu9Z/dIEU0Lg1wQwnGRlFcV0P4tGGIMMF713U5JrU0d4THDdMpV1ekDphdrp5LmhvkhgfoglV6Bcpn7jtIlDhkpWTIwamQifN+YLDNzFdBujS7il6pzOGLkVQusmQfEFNBFPTIlf84OZGk+Ewm3t8PBJEEePptEM9Ju9LhsME9SYEJGzbaFI6g2mkWkRG5p54M/Pc5aJDtk9A4pgXq2cxL+uPIGYa1wzYHGBKD86zMSj46R/4M5701Efw2CdcwjOe80Que+QDH3q9G2nNec/EbG2O6/GoAdcOt1STx8dwIQsjCkVbatqTsQlptPjVT6z4G8d4gTU6XkSjKaMy6qgRtOVCfhXqjEyNrUoCG2+skmUOI45OMzAsQYBTGkk5Q0ys0VETmSlHNuT6YauNAcf7bfY2+zP+LtXHacIiEojOodZpvBq2yozNoolTmekDRMZFq9FTksTTTnJWG0O8F249vT5iFIMlVYCELDIwlctMs1NAJzj1rekejvf7DPoG78zIJKRugaK8ft8Vw2mZm/ROisljXZOZqtej3ToeILWKs4KtsvvWjfqFR7aGHN8a8LpXvo9/+NsPcskVB/itl34PzfZORPbcQoFyB+3XEvcdAmMpfGLHAiY/9/iGZcJQJJNf7UDx2Sxznp625IfK0XfNYHi4pHVTimqMaolZu/MLQqZayRRSjxbj7LuKBgbGAKI0OjkiikxMfqF0ZmQ2XoQ9zR6pGc9bUNqSc9n+YwyHKdmC8009aeboisqlnZNslw0Kb7DiOJHPZ2JC6HakJCocO95F1dDqDEmzIAQNB7Mho2I9zWaY9CJgrdJuBzqDN3S6XU6cyCk2s3F+DGa6es8xkibHDQ3XDY1Tk0u/wshHU6ZOBZDCYYeTIeTeKR9+7w18+L038DcvfTff+SPP4mu++QvuY4fvGXYjrdldvbmHGA4KPnVtSNjpbVD9Y+Zlug1waXDC8g3B+JANllGNpHhQbY2aRl1o8ZmOEk35NBQyVBs+q1XIxtoWknE+FUwgNiLRKXe1R6uR02kG05E1HiuOVpqPIoYm+iDEc4N/yjwYlMtWTmIXeOjPa7dCajzNpGRvo8d6oxdYs9rhqsEC1rAl3XTAgfYWBzo91rI+680BiVGyxHPp+ilWGwOMeD537yW86N9+K19w4AoSO0v3q/a3zQa2NaSzt09rT4+0O8R2hwu1JTPSUOCTKDqxfEPt2JlkVUkwF8anMtJTSz6lWYufvQUpa8mtVJHSTTBSZeG48bq7eNkfvXXh+N4fCLkbzMJtifuOf3rHtffI/8mndcGlhrNowsypvq5N6D2qoDjgKFcd+UFH71HFuKijAGsldEo08WHrlGgj0J6kUZI0y5hAruZ3IUozKxdqZOLV6URhaaKfBg6ubfF5l9x2jyKBKpO0NdFvz0DTFjOBE6owKBMScXTTAevtHvvXN+mu9Ugb4V6anYJWd4BNShIxfN9nP42rvvRruaDVxc4xkVXJ9vpmg8bePt3LTmMaY4Zx2iVmhLMpRq0hInJ6KDYekcY1YnRY0A41zBTrVV1LSTcXSFgRRe646jf+geN3b5xFx84ddiOtOa8p3Mc/eitJGmqM6IIcMHW4th0xLQIkg6DxqCxJKvFFm/MiK4pPNSSRMuNCjSNtQRYYGgyTSdsAMSCpIplHEk+SlnS6A9b3bpMkwXnWGkc7zWkmBa00X8ighAZhb2Obg60tVtIBdiqhSWBwprMu1U8PHEDL5qwmfRom+MYkMp70RmA9HdBKipF5C5TUlBxun+aylRN0sxDWnRpHNysmtDup9RzsbvOIPSf5s6d/J0/ccyG/9tTn8MjV1YkBHhMuoVQ/4imTREkaHiMS1eE6Pq+yRS8iLCZEJZVtDQXZpiOM4iAVXci7gfF0mUARsi9PoDLCA5K7iQKT2kxxq63gGF7D1Q9CcqrgpTR/W+K+462v/+jC9A11KEEj7OdlCNfJrWzOHgJQdPzswRAY9P2e4cWOcp+P6SJqgooQTNh7CthTYNoljdUhnX3bdPb2x5m+a7J/O5svLFVIpORAayseU+tLDbJTHZZ4nepthGBqrnLAVJqdlXRI24Zkm8FJWWnYgm4jZ6U5HPnMtFrFDHOSNRyd1QHPvPICnve5X8yT9h/idc/+9h3ffCXSZQOtQ9tjWjmjLgEmatItaKySUefwHr4hHHtyg83LErYPGrYOW8qWmVWHAzhPcqKP7Zdj2rMg+M575dV/8c873OX9g91Ga85rc1KaxcqAdVNwqbGO0HhAlSh1p3MIi9Qy7NbnYk0L6kVDefoqI+wOtExFg6loFF83sTd4+ndzEuuxxtNKC1SVpFYsLVnkVR/b2NfYZr3RHwVANG3JRtEcEYa1tMd6MuBYlZ52ClY8FzdPkZqKWMLApWy62Rr0TVuGkOv4fU+6RSctMCh7sj49l3JksLKDk53ya9dexTUnP07pPKd8gxDzeWYY8ZjEjNOfu3jDXmKdp8lJo1CrUxV2awLlGpiTiplJqCeBgRlJSEpyKn6ORSCNU2zMn6itJES+5h479FEyV3wrxfbG1GvQy4Pa/wGKXAq+f+e1PLLrkS2KDpkTMt0/1D6jQAUxJ9GUtSVfKxlcfpah+1UUpc7TuCppo6DRdHP3gWCN7sjAgHKosznW6NbMx1WnRWDoExLJ52s91E+lnFFyDHk94ij+18lyOoR5pB5O5O0pnkIpvZnDRoVr3bx9lOe89fmczjfouRoROAPEKCZz+HzqGStQgDlTSHHtEq4DZnv2ELVC/4LYvlPSbYctwrvjowk82S7IjvVGlx41u8O7dN3Hp3NB3r/YjbTmvGZiHvfZl5A2EqgtIOIVjZksfSpBrWvYMUeDSpCeRqpZR0zbCgihnsZ0Hpg5eRw0OuwiBIZoup6IQLfbD/ZngVZaVH5cMxCBhnUM3SQJaJiSfdn2SISpbqebDjkxNFjx7G/0EIGmKxj6hNVkQCKOvs/ouZT92RaZmSRuLVuAKP1arLiIsp72GPoUI56uDeHc9fPatuCi1mlu760zj2AYgX85dQ1WFJvAflOiHk4NxgRqp/quYkIdFC3NWG+YE0Ioa7XflDDm9bDEaswh5JNJN2d7WM9Q7pvB16CqkG38WDMT6GFcNDKD9zoiQprWoieY/zzvb+y2sMeHGr78a5/CNe/9DIP+bEZwl0D/YJMyFpiVmDhx3hPxCQz2BLO27UV2oGIOjAYGZvpEjf8tWsxkdNDESYfWT3Nq2GG2wciAzDmnjn2NrRhVNGZY5glwm0WDts1JKVlL+iiwUbYpMViZvXqGx4rOVEMek1dP3yezt6vQSAq282wuI5Pr7Tx6/e6Qz0YNN57ew139tTlH7oQa+yDErLqTzvwLtTISXQsss4EFdVhhuA6t40LZDBYBU3iyY735yvMdcgsdumj9LO/r3GG30ZrzmomxieGXfvOb+In/+TK2SoeP0q84pWiaoNKND19cyMzqmky8EC4JpocR8xFfItdglBV2XkSZaJAWtM6oCGPGJYGsVWASj3oTHeo8WA0JpXZYuKtpZERp2hKnhkRKDjU36SZjiWeolirM2aB07JD1bOzovC/tsRqzvFVTse8SVGfzm4hA05Q1Jib0sGE93WSbtaTHwKcMphLfiEBmHE1bMhxVqwvnt2xOJ8kxQKlR+jJwQWeLVlYwLNMgcfXna4yqzJBpO8cPLeUwDYNjAR/zT0U7oBKDQOaNq8SU4tXYVprjccmWsM8RiuoB2SZI1MbMM0X5zGKLse2pakaAf/slj3tA88cogttl0tFDDU/5t4/iy7/uKbzur99PkY9XKJ8Im4/sBifNKc3ItGmyaMPG5VJN7lCDu+b46lOFHJhWiFZ0aUprU30XCbXLRs4WEhPTqcWKx+n8qKUqN1T1qmpklrpJzp5Gv5ZfapyHahSlV2vHY2jJkEe1jo46dWF6ijvydU67uZn2aJqc7VGV3IoxUC5snGJfus27Tjxq5rxgJg/+hFqb65kpeMTqCQ62tmvmcM8j107gMdzdr1d1nB7EIBD5GMYtMS+XG8byD5kGre/Z+MRU41FjYmavFkbTG0PZCgUhRSHZzudZ6qbOm0SaGJ71tZ939h07B9iNtGZ39eZe4LGPP8wrr/5Rfuy5z6HZDhy6r2zSU6GPAFIGG6MSiIqvQhzrWhaJ+UQI0pEpGPnMVP4zQnQMzgJjQqLjIolNh0kcSeaxFpLU08gKVltDOo0SawKDMo7umYTzZlwzTKBlcx61cpzVLMfE2xKBRpVAIqJpy5F6uCE5e7ItrASpx0hMIJXkZGba8aOOQC0NisVj8OxJt0mM4ifUUWMIsCfr0bbDKN0pK8mAlSSnou2JeNq2wIhiRUmN0kpL2o2StWZvdN3qvr2OiaoxSqtb0N3bI21FrVui0FC0qajV6B+zA2NooVhVfErQ2JQV0xP3F0o6IKYglkXuRJM3HXtN6dDUoo0EcY5Pf/hm/vpFb8c9QBl9VQOTuGhb4r5DRPjeH302V/3VD/KVX//UEVMx2JfNFpeNobYV30H8u3WJhISblaquUlOYuDlITqTI6QSGZqJeWFUiYGLLgRJMrEZvLBirwfdFhLs3VhkM0znVM0KvVIW8tBMJyvc2euxvbY/yxtTJYjin1kqco13p86hW0IAYYfT3cHaKhPm0pu5nV+FgthG1zDuntt/X7kWfQcWK43MP3D7BwFSwRrl05dSIXlYQ4hrggyA6OBK1VaJ0DvZYuWST9StOIrZEjcevetyaCwUxzZilWwRNouW7+j61v3OH0tiKfam0GmfhbwXgWwmuk+FWMmw/56W//vd8/IM3ntW55wK7kdY8JChco5ny7K/4HL72Pz8N30koO/MVTEKQvr3AsFtLUrdo7fNh8XNdgs4qVpTVVPExAoCmh04Zytqv5Jhugc1Kmp2xicuIo5WVEwyINTqR2luhxtQIpQ9B2wbPetZb2EVTW/gT43AqrNge+5PNUdvTo5CaSeanumoqJZc3jnJl8y4e1TxCxw4jYxKQyLzzqqESVtMhBxpbHGxsjkK/R1eNnysGyowIacgivL+zyUpjQDPNEfyI2zeiIx8hEWi0S9K1AViPZCWmGUO0Mx9NQTpDZKpvrhlMg2onhVslFo2EEB4vsEB4peq0FH7yKmmIjFMPR+88xV+84M382o++YodGzi1UZeG2xLnDRZfs5Qee9x9ptoJWsOwkC+2H3ozfL5/VfO/qqLQ3KG5VKVdilu9SQhK2gYTPhYGBgX5tcwab+BFdmdM4pU/I83RORejw9g5Ly6CwJOJITclqNpxNvzDnzIrmDF3C4ebJhfRpxc7WmDLieXTzLh7bvoPHtW/n8Z3bsJQcbAT/G4PuKGhZ4znQ3uKC7haPXj9Kaub5/QQ0au0Iylqjz/72Np1sSKqewZ0dXG6xjZLuRZuknZjWwkD38BYrl24EbZkBLLgVh6aBxswwM3UGrxm0+ZWWf8SuFZ5kUMnKQrXu+1Y6dx2q0yjXSvCtDG2GYJZ8UPCx993AT33rVXz0vdcvHK9zjd1Ga847c9L733Etf/F7b+HoXad49OMv5gd+9qs5GO2CkpgQKbJgLJUYtdKJx9QS3M09XhTXoiZ1K77la6mng6rRtjxiNTIojjSd9BvxanDekNRyKSTiSYwLBG6kv4AET2oc7aSkYcOEatrFk9SgWFOQUlKQsmr7rEe79KJ7GzvzVcrOkNjuUHaaTNzIYXgt6bPlG6TiY9+a9H06Ui1XbQhwYXaalskp1XLXcJVizqslAjaePW0PT62S2mAq8xqS+m3njZF9e1gkI+lMATuq5i1gPaQFejoBscg8zWwVdVZqCLGvm5Iqk5EwWg2KjiHb8PhkXKU2jJSOX52E4JfTSPCDEuMVdcFHfzgoeP/bPsltNx7l4kccmP8gzhl2n4r3fMf21oC/+dN38ebXfBhjhGd/3VP4xu99RjBXi2BtSHdrhh7X0jlcRDBFqIZM0Weq7qRJ8KcY05ZKQjcwkocmbUnJ2hA5Q9VoUFpZTmZLHAaHGfWlZQvaWc7B9vYoqebcJJWhGSrH2opiDJ1FBNbS+ZUPRaBrB5xybSrzuaCs2R570gHrDEa05oJsk57PRkk8H925i09sHo7aX6jozKHGKS7rnKBlS27t7YnmtMXv/vaoTpyS2ZKVRhE/O6Q15MDaJpt5g4GbNZMnDc/miakQMgO+G5zxZAC2XyuxojExZjWEsVsuJkcF6N4x1UEjqFFcw+KaCXZQjn2kCKH62kwn/O7wiqnlRxsOCv74/1zN777mhxeOw7nD7qM15xUT87IXvImX/+HbqOq9vf+d1/GBZ/46/+dPv4sDl+zlZX/5z6PyR6NVfGqGl+0gthgFXyjGhlID9Xk7mscCUoA2IgNTlREYGTolhOnZMSGZZmAChEGR0I0hhOuNPg3rRgutV2G7SDEmEIRRUqmIwtvgeDtjI1YubpygbQoEpedTrDgScVg8Q02mGI7Q+QTHqu0x8BmeULdkzW6PGJiq7UBwBqPvHZPTNkNuz/eQaxL8cMyQth1rXYyWXNQ8xc2D2fK6wUwkFH5cq8mp1K45Ho+hSyPTJ4h6kkbOoLDkRYIvRpQ+/h+Z0pUSThnUTJmD6hohDQuGWkI24InnOYZPhXzVkPSChseURGYnXiuzOCskg6AW10SgXyKNBC094jw2sVz/8dvvdyZG2X3OduczBv2c7/nK3+b43eOiey99wZv5h7/9IC9+/Y/yshe+je2NMC+aR4cUa+n0FAPG74omwdxph+Ca8xgeYtJM5ujG5z9XSfwZGZgsKTm0thFEpPjaDktL6S3tNOfC9uaC8ycnRDVvt102oS2ujnDeLOzHih1yaeM4G2ULRVi1fTpmOGmqijS7Y/KR8/DjO3fRNI5PbV9A36V0kyFXtI+OfP5U4VBzg1NFi6FOJ7ur+gU3be4BlGZSsKc5qgI76u9G3mTo5qvj84El7zXm7kMI2doL5kZnz/4w/7lDyA5uCsgPtrHbJcnmMDCNjSTW/6svTgp5id2oGMeg2r/purvmtn2usRtpzXnBxFz/sVv5v//jpdx259ao1lEFVfilH/xzHvuVTwxShEShu6zUt+EN8yYsSvVK1gaBQTwu1PsbwbWCHdwOlSJVtFURAhmF3xIjZ8ZYLG5VD76T5jSiZmU0iVE6aUHubUjulOWRhwoakPU0MBhDzSo9QFizbZ9OFf+L0LY5++wmVkLo5kArR9xJjUsaQ3isDCmjbiT4q0z2uaaYoJr4q8kAOMGWb0fzEoxrKHmMQCaOVdMbhXD2XUbPB0KTu8DEpOIoVciMUmpNmgGG5SRRqfrQSByqgjGhblPl4Kdexg9eiBVhpwpCqsYSBiZUuO4Gvyc7CO0rzDjjVoxMuuGwxRwiVR8wI2BNMLInJpgHnOeCw3tmX4ZzDZ3VbC1xz6GqvOrP3sOfPP8fcaWfWXTuvuMUL/ndN/GqV7wXCO9D2nd0bu7Ru7g1pi0jUTxCBLXQOgLbFzMOBphYnCDZEsr1nVQ2Y+ZCkp2OC8ceWtuIFebHaCSOLDrbnMyb7MkG49QO0aTUd2nN/y1csx8X+orJqI/MbcM97Mu2F0ZZdkxOK6vo1PyQhmnTsyo8snWU9ayHRu1R3QH5aL5CrknUHAW6VhfYVIW7Bl2aaUk725gbSl44s4CBCe25PKM+5tPQ4Ptb05yEgVGI2TXG59keYKKpsD/VpAg+E1yq2L7gus3ZK1YDIAITZU3CWrT34Mr0GfcPdiGt2fVMzM3X3clzv/a3GA4ddObnX+ht51zz3s9Ara6NEKIDKqXM4CCQzpGACOreos3Y52WqCLMmSj20brQ4jhbQM6PKiDntKxL2BTNLIiVWoGss1myymg7Yk479YTw9Nopg3+rYIQ07Ge7ZMcOaIy10dYB4DYyKSigEScgIfGFymq4ZAMKmb3DaTUYIzYZfjrGWDBgUWTyq6p2OmB5VONjcQmPJgrWkz9An9H3CoaZyIm9zbNihk+YYlNt6a5ERCqUMFkVuiYAYJW24kKSwmkwKRW5jfxQsITSyTm0FTBlUt1UtJt8MDE+6Hf5O0Lma13Vlw54HZwTjYtmJ1EK1+FnL+r4uj33ypQvH8Vwh+CjsLsJyPuJFv/F6Xvuyf57LwFR4w999EGsNZTkWXhobBdknCnwa3r/NK1eD024NQohYad4N/QuZaV8QpNAFa6ZCGisvx+eslefogsfeTMuFc7hiTXKX0pFTJMaxv7HFvrQ3UgbdMVzltsEeEhQngjXJyK9mxMjEa9/S38ej20dpmWGtflLw59tv+1yZnqIlJUO1fDLfw92uO7/T9T7Ga7QkZ9tPmnQ2ywa5hkK3lRanuq/ISiCiXNjc5FRRUGpCN8kZuoRTRXPE7BQLCxmGRtOsAGlFWjBfG1OsOdJTQRDUseUqmrTjmqEhKnb1JiWdKjyr9U87hOajIM6hkYFRK1COc1V90w/++wX3cm6xG2nNrmdirvq5v2W4GVVnrQaY+V1uZJbtYjYOrhpu4ySkop9DnIpWLOooC16gBUUeRcMD9U6wSXjRnROsnVbzhjpIMGZmZtoSZSUpONjYZC0dYMWTmcnaSRZlX7bNuglST6GGoc9G99QykwxSxxYk4un5DBVhxfTZY7fJpCQGMADKqhmAwobOD4ec6SvBOU9V8DqZz2HMhIxVtkZC+HYijkKTwJiJUnqLIlzSDqmzhz7h2GB+Ijyv4JzBAJ1GQeEswyJIUQrYJFaqXS0hN/ieRapq2AhUhRynHrJm4AqQUpAho7Dq0b0qlG3BbC1grUx4B0w5TeHhV//0Ox+gUGvBnSUzvcR8bJzq8Zo//ye8q5jX+bTCucn3o4IAttBYUHb2PCUwyvlq4EPmPa2QvWDegingBVmJUllh0GFgaOYnultcWiSseUrTFjxh5Q4ONYK5SUVCVFE87nDjNBc1TuOjyHZLfw+f2j406lv9mg7LW088lke1j3Bx8yQXpVs8Kj3FPtMP4d+xLy1xPCE7zjsHLQq1Z/DlCddIxY2mVIVt35gQdGaEQpRV0ydJPSvJkC3XQERo2YL1LPgLni6aDMrVEUM3hmLEYwWSdkmWnWLjZJthf5x6YlLLpvhOZDCrsRn50FWaOQELmxfD2md05I+npu7sHY7xKdjZVESAIqWiVXbkjS3IS3Sly+r+Ff7D13/+zoN5zrD7aM3u8tCZwt23neCat8cq1UkVszg7OVU12Ki14sNr+whEIx2EPd7ETYIJumwSM/wu7ofuEG8rIuiozLviXGBkxjqgwMBkSfCdGDo75xaUTEou65yknRYUQZUw72rBCViCKSUVT7vm/T9P8moYx56kxyOyoxxIt0iNqzEw1T1A1wxiOGTo807KakFJg4sgRjypFKzbbdZsD7sgoYLIOPQyFc/+ZDsqbWWkJW2Ykgvbm2SmYEJGUSjdOFOnEkxKzSz4GFXhpeoJD9sCHRd8EaJ+d1Gwg0p09l4JzGxdqpP4oWwLRWuBShkJznmEhFXVzZjEsro+P//NuUaoJG4WbkucGX/+gjfh3c7vvQI9o+TJTsQCtPS4BIomFI2QN0QJWcPz1bB4zdIpRReaiMYaRTFA5pFuSXk6iVXcdWqDQWEXivSr2YA9jQF35Ot8aPPSsMZO0ZtqvqbisOK5tHWSCxunF952qZZrty/iSG8v/659BxelvVAfaard1Cif2zgShblxf+f2VAkJ8ygR8QiOdbPNlY0jXJyeWHiuoDRMyWoy5EC2yYF0k4pOhPuCtXTAha3TM30IKSBqlpvUs+fAFu3ulPOy9UirwOwt0H35RL6woE2ZHXyfxS2N60/FwIxCVoX+gYyZSGWt8sloEJaKEgY5eA8bmzzmcYceIGFpd9KaXa2JedUL3zJ+v5oNJupIyNhc4DoNShPVsWlw1FU7tk2qgWFXgvMljPSpSi3RXYxemWYwXKYgVaLt+ouisXbJ+JfqRWo18ujzInSSgk6zx6BM42XGS3HVEUE53DxJM9Ywqpxt572XQvCvCQyBQ4ABScjoErszrQUyjB2FZUG71iiPsMfwHu5064gE22fBZHVZi6djhuxrbHK87AaN0cg3Bjoy4PZy3+wFRr0P/RsnxpuUqESVC1ubHB126cXIgjLWBVCVWi4CAVEaWckwT8Jzc/GhV0LRisNvK2ZoF9JKqQRuAddW2J5D+0UoOpD2K4+kaJJyOvanKYIzb7iO4p3yA1/3u/zpG38cmyxSW5877DZnu/MJZeF486uvmfxxapIoQYWft1KwBsks6akBPjGxWjWYoSPvGoo9dqKNMonExkjwi7DR3DBFbFxnnB13GtKozWEBRNlzcJML927gFRJJuf10g9R6hmVKlsQolxETEVI2JMbRsiVBILKYM2RxCzTLY8XzqPYR7hyuLexjQ0r+zcptO7YHsG5yHpfexlG3yjG/soP5WHlMegSL43jZZT3pjShGqQbfgzuKPXP7U9cCb80pp2IE1rIhqS3JXeU3qHOL5orA6t4eNnVsnuwgSYG0atJOBhwaonc2kR20FFViTgQ0Ha9jkwdB3jI0ttxYq6sglabXK8lnbh/fsSofeN2H+Iv/+xq+5XlfvfDa5xK7jdbsajHt+o/eEj7UF4HShc05xHlUlXK9CRJzPjrFZ4GJIQm1cUL5AZlcM+NnWwTOebT4mfG+wNjoaJR04h+hUvUcVIw1orQzR9M69jQHrDcHNJIxMcpMQTcZcnn7OCtpXmPIQ7vzwjKVoGINRMiwYvpcnJ5k1YyTPY3PCx86Zlg7XxaGe1pRGtazz26RiqNpHE1yLB6LJ8HRMUNakmME2mZIFtW9lYTTNOVcbYzqOEMoBMltXjeMQGI9640hh9qb7G9ux8JiUnMom/ybJg5X1T0Zc2tha4/rQy2CVCUkfJCWiyaUGROO3moCj+TRcHypiNdRVj7TKyAvg5RUOCgcR289zv/6lhfueO1zBe9l4bbEztg4tU1Z1DLLLZBqy/XmyJlbM0t+oE25p4lvp/h2SrG3yfBQq0YAau3F85Io0FcSeRVa7RsEoahTFW6tbQ2HJDo1b4NPh0jwJ08NHFrdZl+3z0XrG+zv9kJhWULelabNWct67M16EyZtj0SBYhoarxJg8OxPt3nSyi1MZt4LaEjJI5vHeUrnzLV8PKHPFySbtKRAZorWKZaSC+2pkTlpX7o9yhMoAqnxPCI7xvxKSowEQoBygapdVWhaT2Y9qfGkO9SsE4F2d0iaBQZm4hFXa8VauGYQoKfaUiXph2wQk78zOZQioTikAs4jhcMMy9B7BdnqIcNZe9Of/8qr+dBb/nVh/88ldhut2dVMzBWffXH4EBwiRquzqqJeUe/DWx1fAAVcy0wQESHUMkm35/vLjELkqnlZvZAmmJE0+sqMsvGa+NdWyc4Uk/iaenQSyqwjb3Xtli1YTQesJMOZY6rcMZNtKi3JJ1S0KoZEPAfSbS5LjrIum6RSYClpMmTVbE8eD3NMVYHQJTEaqmlK1kyflJKGKVmTbS60pzhsT9CuhUEukoAOJSeR2uwMgUGTVU5T4+b7BSijNOlGQjXsdhIKKuqIM5m8njGKd/OzCQNgdaSZGz2l+EHK+B6UkPRDFAkm/C2bsao5ICoUawbxgXkxpcf2HXbosEOPX8lQa0Y9FECt5ePv/RS/89y/4MPv+CR+NuPYOUFgTHdXAqrzCavrHcSYsaZ3XlpadD5zUtsEoXnSB43wNOJPjZPjz9jAxGADrZGOwySKrBRIu0RaDlkpME0/uly9wTQZM15DPy98ruKflL2NPk1b+djVDxRuHuwbRfnUOztmEELaTRG4onWcL9//cf7dnuu4tHGcFdPjsc0jfM/B9/PDh/5pgtYIs4KYV9gMjkOIwCPSoxy0m2RSkFFw0GzwmOQOLk+P0TJznUNGOJhuckXj7miUriplKwfTzYlIqUwqM/n04EAea9OJ6GhbBBForc4m7xvdbMxdpUnNZOgVnGJy6Nw5PjT8nTI6VetYw7B9IMHkLgYN1K7RaeEv2j+Xdfv5//zbXP3Hb+XuW48vvIf7it1Ia3Y1E/OlX/f50TDqYLsPG1toUUArg2YKrSx4azsfYoq9zr0jIUSYzEWldhwC5aS2JZgYfP2tm9TUaKhZ0ukO6LaHdNtDOq06QxKKnC3SfCQS1LTzdxucChkFFkdCyarpszLSqihVRl8kTGEjsCcdcHF6iovsKS5INlmXAYJicew321yRnOayZIN106dayVMcXTNEYrZMCGHS67bPPrvNejIgMyVtk9OSYbi2GHTK1FShYUr22g0yKUmlRPAzYdSZFDMZgDWWg8h90NJUOpQ9zf4i9qSGRfYiGPnJmLEpSEow+bgApK0ikOo6exEqTXPlTzfYY0OyqdyPXgMBMIJbb872QuEfXvx2fvFbfo/v/6JfYOt0b/qI+w4NKt5F29lARJ4tIteJyPUi8r8XHPMNIvIJEfm4iLz8nN7Dg4gktXze0x81/iEY/qmnuRUFyctxPYxpZqeGeQJTBeOE9h2MX+7qkkapcraJgKSKZB4x8y8jVM98fM6iOWBqJqV5nM5G2WKzbNQEj8DAjI+sZmO4TmZK9qQDPmftNr50/6f4mn0f44ntI3NTNIQgLROFE9hQoadmfB2Bg8kmj8mO8JjGES5IN0mM0pBQsEhIkQWaFBF4Qut2Lm4cZ2+6xb50i0saJ2JOrTHWk9my0k7hSK8bQ8mnxaMdNLczQRs1VJoIAY3+L42TsHI7rN40WRSyzr7MNCeCNi3DtTkaMhFY7aAH1md2Fbnjhf/7FXzX5/0Er3z+1Yvv4b7gHNCac42zYmIeLAL3u8/9i1mHpd4gqOyrRWaliURT0o5DKMy+mzouDGgIyajUKL6puJYGH4n5CpZwTlLS7Q5IqjojQo2TD1y918mSAtU+K47UOJyaBf1WElEaxrHXbLEv2aYVo5VWTI/L0mM8Ij3GuumRMekIC8HHpS0FKzbnQnOay5LTrJvhqI7Smsm5NB2wx2xzMOlxwAzZLzl7TR7zSNQlKs+qGdI1JfvMgIvtBhclGzy6fflchzIjSqFJyDshjpbJSWXsNAwhf8wjmkfp2sGIeCbi2SyC6qt+9cTChSubWJlnGlJUlaw5Owajy/loDuqAW4GiE8oTTPR80bpjGIc9Ruc7mS1GU9kP0czWfor6b1X620Nuu/4IL/zJVy640H2Delm4nQkiYoHfB54DPA74JhF53NQxjwZ+AvhCVX088MPn+h4eLDpzw7V38uH3hLTtIzoSJ6xofE+soO0MYZEHR8ACBeUEbCG0b538bUdfijnKH0TY7De58+TavB5MfO8kw9q++cQsMy6kXyAkypR4fCIlDSnJZDFjdrfvzJ0+o+zGImxoixPe0BG42HoOW8+6cVOmpMAjFlgKLFaUjtnm0gRWk8tn2leFvqakxrOW9FlNBlhxI+au2gq1mKniU6eGTe7orzJiYCr6fYZxGubJ4v0Dg0fxNRPhcC+YHVI0jMZqdvAY7pkvJGIM7Fmdu6vIS/JBwSt+/XV8+iM3neGq9w73hdbcHzgjE/NgEbiPv+96bv7kHei8wljbwbCsJi4alelIQdyshKRAmcmkPSHyJ9PmYPHBlKBWQ1XZ+UYPEGh0SozRKSITuCXB00mHIMJWnkV/jnDhls3Z19iKTqHCwAfH1FRKOmZA2wwxeNomB4SchIaERbpreuy3WyTRAc0ItKSgwWyyugpJDJ2cIYbkrJqSVkxSJwKZKIeSIRcnPfaYIRbHmhmSih8VkQwamxLr3sMBc5rpgW1Qcnl6lEPJKVZMn33JFpekx+jaPq2Y9XfFDkit59LmCfalG6ynPVbSId1kyJhAjDucWs8lq6drjIxSaaNS48AqJp1klELNEw2VaEP2qSgeQrEOfgcb+NSjPvNv9YFVBefQsoThuIZWmZe84+8+cOZr3gvUlQPT21ng84HrVfUGVc2BVwJfPXXMdwO/r6onw/X07nPZ/weTkfrz330Tw8Gk9F4JRhXKTsZotdsBQihZMU1r6lAUYpZ7RYPg1ADNzdk+r9iOYaPfwvtKMBjvqWjQatqnVaV3GPXR07ED1pMebTOgZYas2pD0brwgeDIJqTDrVrRFWqGdWbsgBB20SkMY0a2OwEVWOWgcbQnVGHMsBqUlnhSlr4bjvsdePoYluBSMCsQCQ004ZE+xZnqsmW0OJafYcinHyw4nyzZ3FWucdN3ITPkYEKGsNwZkxs/41IS+jWn19LbSHrBnZRtrJ5miRppjVvPg5FtT0RarcPpRk6/AvEc897HLDjohu/PSXQwL3vLKf9rxmHuL+0Jr7g9B5Wyik0YELl6gInCfqB1zTgncqaMb/Px//h2cqzwuxxBAoySsSSQWtUPSbU++YoGQ+wACo1JW0a7x5XfNkBtmpDeR6FznQUulSpkiSGCkoqtNZWbKuvlMNsx6L40JJeqNerwICSUXNTYx4mnbnG3fiDKIUnjhULpF05QjhdGqIQYxB2KaGUeqjn12NjOmCDRxM6ktHMQw6MWRThVzU9W3rHYE57uSFVPSjzS3jsAuCPttn5bkbGoTD1SVlRyC0T5NKchJOVF2sBI0UNPo2iGnXLjC3mybzBTcnc9KGtYoh1dOc6S3Eu2vyrBIKDUNtZc6BfnAkw+T6uGFcrJOJgcmfizakG0pooJPQhj2xDCpYvP6d0a80Vz2VkD6OeTFmPikKeT5qEqtm6fFuY8ISRd3JGr7ReSDte9XqepVte+Hgbpu4DbgaVNtXAkgIu8hvCo/r6r/eO97PYMHnM4AvPVVH+R9b/nXEKO/A+rCEtQUu6oT9dp6B+xMojtgIk1D3lEGBxlZOkdZ87eTEGlgFSNVvu4x5s5hUZy3pLbAqQ0FU6PW5MLmaRq24HTZHh27anuspvnoHiBk6o3pGoOykbAizePZqvW93rOTbk6G2SlUbvy1oRoNkxHIVGkKDDSnNaX1qY6/xPboq+GYb3LMdUZZhVPjSRmXIzjtujNMVWVuM3icWlLjecLeO7ju1AF6bqo+UuxTKgViYgJOVYYuizRf2NMdUDrBq8HaIOBtbyf06x2On4s1GOyDZi0qfJF4PIIqZuDxqWDn+Vj1BkEjM3VO3W+0zGdp7X3FWdCahagJKs8k0JgPiMhrVfUTtWPqgspJETl4pnbPhok5ZwRORL4H+B6ASy9dnMn0r/7f37N9ehtNspkHrQCNaANysyKxeEhPu5DGuWUoOqHUgMQXUa1QNseEo356qF4sk2+YElLVq5IlliIdkrSLwKQsVJ8pDVuSmhKvQiKeC5pbGBNypFhR1pIBoo61dEAWHWjrgTUAVj0lQtNEoiNjYjA7toqSRHW3ACXrUtLHVlF6c4hgaMvGrW4aMpFZKzUkOp4+NVEo40B1jSP3BY6x34tVxUqJQ2BU+mDBWJmSlg7xasixpMxP6qIa6kil0cV/a5DFopDjxHpZ0+HVhMR31S2OVpz6gIV3oOhCeorg4DtxTHDGm2BiUGQYC4B6qpx2o85VDAzUXh8j0OnA5hbGCk/9909YMA73DWeQgo6p6lPu4yUS4NHAM4CLgXeKyBNU9dR9bLfCOWWkzobWFHnJ7//UX6OFg2xhKejQXuGjRm+WkXGZUKwYipVAa+Y9inEJDCUdCr2mjhoYv0MCp1PUanAO7UwGBczLv6cqNNMSI+A0mIGqtW0965MZx2oyiGkZqJm7xw05DKddkz3JOBfKzg6uSkqbQnsIEkKwkakJMX3/TNDbmXQVAlk0Yy3SKItA5pVjrsvYI20e5rMIFs8F2WkGPmPgU7Zdg9S6sI7MOT6xijUer8LmMOTiqI9/YhVlLGiXg3RuOwBbl0DvEOz9OOQtyPrjno5vsOp+INhm6MnXM5rHhqP3RDUEFsjdJ8eDMnP7SqPV4Iu+9qkLxue+4Z5oC6dwvwgq58qxt07gvgl4kYisTx+kqlep6lNU9SkHDiwuivfe138Yl896lCuEGdoOcf/GeXCzjrFCDCLKNfgwQFh0sqCVmVcvTAgLlkBNJVHbr0JeeLQ0+NIEvz81OD/tuBucYztZTsN6WknB5d3jYKDQECasKE0zZE/aD+UGpgo+1pGKo2PGK+n8mB4QlAtbn8NF6SoHzRYXmD6ZgTXjyGoM2dRohpBmJhmY0J6MCj8vIhV1E1U6lWm0+j2J+qZ0pIFRUkqakpNRBIKiGZnxNEzJih1SkMw4/UYd2Kgqbah0PRuRJAJZoxyrwI1Ov0bj2/eAF1yDcTi1jvdVAqESiIcZKulQKdoW17RhwZLI/KLY07MOyJVfjHRarO5b4Qd+/ZsXjOZ9wWIb9VnaqW8HLql9vzj+VsdtwGtVtVDVG4FPEeb8A4mzojNwdrTm5k/dFXK1FOWsPryWjwrAbuczr5ECPhF8w+AaMsnA1NfYCSVgjJbcmnNc9YMz+FwqVc/0fY2PFM/+lc2RRjgRJalph33UVoYw7EobO2/xF/p+MpfKYvOQkqBc1Hwkq9bSNEMuTzewCJks8u9jQpCYlwgOoub4DK+rlckaSfV+VQgpJYI/z75kk0PpKfYmmxxunCQVz2oyYH8avoeACGWa1lhxo3HNy521dBWS5oIoKKp3Bfp7GZU7mUdbFaDwpCdzaCX4zNI/0KTsWFwqlJ2EorcZnMznqclESBopX/yfPp8nPv0xZ9Xve4Yz0pr9IvLB2vY9tZPnCSqHpy5wJXCliLxHRN4rIs8+U4/ORhNztgTufapaADeKSEXg7pUDwMreYPvRPIesMUELVHTk2KsQIghkMguuj0ntPATVpwHXDmLATibtYCZQtMGC1VvBKN4JqgZSzyBPyNKQkVcglnsfjibjgcZWVJuGH3K17DElifi56tqJ/ojSkclop55PWYlhzvV+tcnZGr6HVXET2mwRaIpGh7nJKTarRL13EAlao3m/SyTEirBqekDlGilsuQzHmBGp7qltczZcC9FQmiCQPc/RQTdqXtgxnK8uRUoCpB4tzCzxdBAzhZHvDZEEowgCEVwzhFlL6ekcDVFNak3wmUoVkxqSYXXflqyVUmzOqnAlDAHiPR9680d51rd98VyH6HsN5b461X0AeLSIPIIwt78RmOa2Xk1gHP5URPYTiM0N9+WiU3jg6cxaK9RJgqCeT5OYGTzSGIAsRY3graFsSsgrVeUdSwXXjO9jXXNRfxTzHosPkXE7QkGqZJo14pYYjyJY4zm4ssn+lRB5Mx39DXCiaHHYFJxt0Eil6anSJxQYUvwE/QGwOI4NP0QQ2KAplQ5WSDE4FDe1mCdAuVBLM09VuqCPBG12PpPWNqDEciDdZI9uh0K34QI0dXKAgvDmyIyjkw7JXTKqpZQZhzVjDct8pmkWzfUBg1PNkDm8Or66rfhabT0C0s3wc9JnVKdPypB4tXHSk5QCzSQa+EBTQ77eGDUprX00j2ygbs6YiVCWnmNHTnPLdXdy2WMvOmO/7xHOTGvuq9b3Hmt8z0YTMyJwIpIRCNxrp455dbwo54LA/af/8RwarQxKhxZ5UMlXW7MZCA2EZECewMioD9WJO4aia8hXDWXHYHJP2qil4F4wV5TIHVcWkbnPSbHNkqzpSDOPNbEuiEIrzTnQ2WK9NRhx8Jkpa7kZqhZMSP0fuX+DG0VtzkMyyrDiSQk+M0MsEmM0Q+h0n31JwWrMvSIwcqCrYCT8lhG2dYQVSVgzaXRkmz8m5gxjBsQ8MHNeJQ02aKOehpQkVLleAitjjacps1FFLZPTtjl70j4HGlvszbZo2pKmGUs6Zjq6qNaXckpy0pUSGm4sbXtCRWsL2gQ1GjRlHcYh9PGvGMUOmfALDjxpqDzrjQZi4jz5Dt5tqsrJ49v8wY/9Oa/4v6+ZP6D3BbrDdqZTVUvgB4E3AJ8E/kpVPy4ivygiXxUPewNwXEQ+AbwN+HFVPZcJKR5wOnPBJfu44nE1Il+U0B/AYAhlGbZePyQY29xGraHsWIqVsLnW2E+msQHZtic5kyoBwASfvMXQkOCusnDV6FGSOD774jt4/OG7OLC6vaMQVPhk4vHLwpdCyaSgUEOpQq6WU67NMdel78fROAZPg4qejds47dPxAouQYMgwo+DoJoYES8YcQYIoODLOLboThFAzbj6UPPoFZcZPMHbz8ngZCcVpjUAzKVnJhqzELL4TZiNz5oSZADb1rF1yCpPUVLj15xfzjxUrISrWtQXfILg+tAVsiJCt6AtMLUXxFrSRzg94qeFDb/k4P/zMX+Wum4+esd/3GPee1twvGt8zMjEPBoH7oq99Ks/5b88IX4oSsgY0m+hqF7qt4JktglttgjUYH/J9mMJjhg7fiCUGkqB98VslUo75aRNK7szAV2amBQ/DtEqStD45Yoolb+nn6cxp2YKCPdUlUnGj8gKe8RqrUXuxZnrsTbdZMQM6MTtuxww5aLbYb/scsD0OJT1WjKO63RBBBEkkIDP3INAUoWkSMrGkYmnLpNtulSenSoI+a4cfRyRX/jZ5LfdD1QoCQ1IUg+BHprDgrqx0bc7eZIuDyQaj1H4Kp107aKriOFsJYaJrWW/UthAiAuqzpxq7Ip+6cwFtuaB5cUGdX1OO4aMpOxnGluqqP0Abi1cKnxpIBCkV12mPTE8THXIuSjCeYS/nL3/jaob9M4ni9xAju9ac7WxOV329ql6pqo9U1V+Jv/2sqr42flZV/VFVfZyqPkFVz2ms+IPFSP3MVd9Jd609OfmmVlKfWvqfdSh+q70cOv5FALutJCfKHVdiFcWl40CDReKDdMe0YxT+a2BYppzcbp2VX8J04rnJ602uPgbPhm9x0nXY8C1KLBbPmunTlJJmDLOexzT1dNbcEszRhhSLiWamRMzMglPPbDsdQTnZXkAxNyXFuI2ey2b2VucHujPWGJ/MW5wsOpPCCXWTVoiEsjGfV/064/Gf7E3ScLT29ubtGvfFh2K0MwdpLES8oP/jL0L/MReckWfIBzl/+dv/cIaj7gXuPa25XwSVs6qdpKqvB14/9dvP1j4r8KNxu88QEb73176ZN/3NB+htBTFYjYFGOnrL1Rq0mU689QJBOgqNjP6qV9JNyPfERTTSh2rx8jZEJqkNar1FWpikXc6ZZCEnQelMNHH40bXL2sJe5428QstUVa1jG1i8xsXZ5By0mzRsGWy2hGy6qSlZM0OSUZsaIvpqfZJIWx2RaKhS1CSdBCERg8WMTBqJGLqkDLSMzroBGcHOvaUuWF5q49yQMSPQV+hKzpY2ascoFo/D0DQ5HRTo0deUU65NldmrUut2TZ9N32aoFh+zg9bvCYXVbMhGMaBXNkLhRlf32gl/e71sgpcaERs/lmymHt+obpaZm/RU8KmOrjKLyCg3LOIUt28Ve/fJeH8atYTx5Mrp1wh333qcS668cG6L9wpnsajtdjzQdAZg7wVr/OQffhs/+c1/uJD5GF68hlpTW90WvgnBGXyguKmCoVVU43Ad+hfo6JWd+14luqP1YmPQZG+nP/N7CD2O77ko20WKNOf3OFzXc2Fyisc27oy5nSw35Ac56lZRdJRW4UwYqB0xAdUIjhiDSqMQ/9bNTXVvxiYWIeEkk8x9I5qoqj4b8RxONrm1nI1eTKXk8sYxEjwlhrvLVU67zpx7D3d/w/aBiSzi43FSVpIhp/IWQpV0d0InsmC6heemboHDS0SyNf93RCibQjqY33q9OXdoHXfHaZKNRVlcwZWe6z54Li2+EfeS1qhqKSKVoGKBF1eCCvDBKDC9AfgPUVBxnIWgsmsz9hpj+JHf+TZsloaU4FPcg0/nO1uNyg7UICKYMkjI1fibMtgkvQ0aGK3pMqVffa6OVqhl1JyH1daQobPkzoZ1S6HwJlREhVFoYWBzhIQ5Uo0IqXFcnJ6iYSubbGVMkiAJEX9Wned/PB6HaLgxIjTE0BJDR4L2JZkzu6wY2pKyIikdSemS0ZQEK5YVSQKzISFSKTOh3ZDMClpG2Ws9mXE0JG4mhHxnuIlcEy0pOJBsUp8JRoIfDOjCmkqVRmZPY0AnyWkYR7uRx/DxmLvGKK1WjrEekeiZG9VGWuzw8EpI7mUiXVPWxHEr0EjA2pgnxoXyGM6jG1uj9ysfFuw9tH7vLjgPyq5LQHU+4clPfwyPe8rlC/e79dYCj9PZN1WAZDClzanCXg0Ua1oRgVorNTqDwlxhKcAYBwZu31ilFwufqlZJyyuDUciemmsyN2Co4tsf17idxzXvIDEhx0zDOK5s3MVeE/xsCj27+sCKcHPRxhMS26ViSCVoYGbGR4IQ1SBogDuS0SUjk4TMWFo1ubqNJY3ClohgRGiLIWFc5s4Qa75JTlsK0qgtSsVzYXKaNTObrbcapW03J8Ij/tJJCi5qnyazZQijnqq6XTE71pQkpsTEQISynzA8PV8bBJCdgtbdzFZ+gZFa+6x4BCMMH3uodt6sBhHg4KX7z6a1s8d9pDX3h8Z3VzIx+SDnn177AXx/wDf96HMwdk7ubV3wtHd4A0zOiHioQNkATcJaJ6WGXDFWESc0MhMiW4xCqtByI+ZkERRDoZahS/AKe2IcXU0phAgcL1YWtrFuZyddxcgM6/H5svPLHtifYIFuYANTQkKLhGyBAi4QiooABdu2RUjFsk8aZMio3clrSdTyuDFDgZJT1SWpXyOEOmZTYdRB3exom+HItFSHaohM6ruMzHo6acFqlrOn3aOTDUltYJryIgnKERuUISZVyA04WVCYDbLIU1URA9MXNsPI6FYdiZsZ+FliVLhQsLSRQZaNNYeA+lCwVIzQbC8mdPcKusO2xEIcueU4b3/VB/mmH3oWF14eCf70RL8nuX0iXQpZ8zVsJbgk1O9q3y40jxLokChZakJtLxM22iWSLXpwwY+sVEu/TLljcy0m0oRx4vyxtqhUy9YC84rBcWG6McObWVGuaBwJt43QkfKMla4BPll0ub1o0iAlIyUlobGgLEnsHik20Bgx0VtGWDMZe6VBGmnKPAf4dq08XhAOlWYsFDlxj6IcTDcW3L+yllSlV2ZhxZMY5WBzm0esnmC90aNhy5FZyYjSSByJURKrpLGI5MbNq7jBfPpqhtA6QszOPH/Bt4WO6NCOU9cryd2b43d15O83+e6u7e3u1Mq9wy6jNWfHaj+A+Og7P8HPfNWvAUFzUqiQHLoAb8ZJ5xDB5CW+MztBk56j7E4mpiLmh3FpcKSqIAq2F+zTmghqfYhMEsh7GtUOUZQpDT632Fa1+FbtKyKefpHQaVQl7gND07bFaJIl4kZamMqBLmE6CZ2Gqq4LzFmZOISQZj8RHZdf0RnlEw2CxqWKGBipdeP/OqXOnUZdFVxhhYxTusiXQ2iIpxHtyDkGxS6UKBPx5PHyqjDwSZSoShJx5H5sUgrKFGGrnMzVkBhPMykRERqJ465+Fk16lQo7HGc6Jf5UFvJ8DGWUeE5UICeUFagLzlMDYRxoaigTxfbDO2bcFBlSkH6BPbkd9d4mOBPaBuQ5ZrWLP34CnKMceO66+SiHH3mIc4Wd0tYvMQtV5ff+1yt481+9Fxu1uipmpOUchemIkB7ZJL94fTJL6g45UXwmWEdQhkckW0LeUU4/RiPhAQzkVQXS+NZpadENQ7o2rKoVVRcMGoZ0FD6HAsd6HS5eXaS5Ee4errCaHmO6sw0p5woLAG3J/3/2/jzulu2q64W/Y86qWs3T7e70JycnfUdIQ0joIgmhSWhCE8CAaAAxeC8oL4jYXRVUEAS7V0HN9QNeUS+iIETe2CGIooAECAlJSHf6brdPu5pq5hzvH3NWraq1aj17n3P2SZ4dzjifdfazVlXNmtXMMcf8jTF+g5cN7icTx5ZUIIYHq61OJmHdJ4PyvPQAA5yzoCqYlmU00JQKh1syhISArqjqip7JsGyTUvQYTyKytPIORXHXSdJoyYX+q8/2nI0LXCi2l+5CiL9reOSiYrhlfER+mMaflqpYUxtUyuZNUw4f20IdXaoOhSyS3QlBp/glKF2qMI59BvhAtLnOKzV434Mkl/sWvCzeX+B9/+vDa+7ME5eTpmtOFBIzn+b8X1/2g0wPZkwPZswO51RHM6pZHlgx6yKPkfDHHsyb1U5tCIoPgZtdiE3INxZ1kppHoAGFMXPwmYagqmacCpQCxWJlY5tq1fFgggvDGCiqpLt4i9CuwTM0VcPhkIpnaBylD4TXGv8nKAmuhx8lnOucmbFtykhYJdQqqA5Sby5VYYxhIKaJffESAnXr1Y4RwRCQlnWv47oU4ONeXyHBmrNgn81Ms8ac65Myxguphr+nPqsfFXdkuxjxi8WFChdmmzTBKzWkK5Cahaovq26RyU6nbdAemmmTgaa+LgApC20RJ5cWVh3IEVUxJYEsccPiU+m8Y3busAezrvEXNZ3GtF0ZjQBQ5/lX3/+zx9zJxykqIeZn3edpWZFf/pn/zS/9zP+myCtmRzmzo5z5ZB6KzdYrWgBVsscOSa5MY1HIlv6Zuq6e0VCTS5P+e55OIJ1pSA9sv6oruwuDYUmWVYgEnZMkjtFwmVoBKr9MnN8WpfSWm5P9llM6jMlNs66oakibPmNnbNkCFQ9S8qL0Ii9I9rEheg+DZ0tKPmt4kTuTGXekM6yZccR8EdgOAdldQmWEgMKsk1AiYM12hdwbEknZSZ/LRiQPXbdYWmQyrcIGt2YHvPHse8lMiaBY8WynczY7CQOLa9nKAt1FsoYX0RgYnZo114hrfSo6ca+iIaTBuPipIqVVfdkm8Fe5dFErtO6JHM5JLk+Q4zKU4jN47P5LfOx9D6zf7/HKCdQ1JwqJ+c3/8Du9A6suMxBeDG3y403pkWmJ3xqQ3zJG0/B2hUKO4QDVEEznh2GVtaw3lGgV9wTTCYKWNGiMaoAo+00/xWmIGwnHKodlxu2jo1WLXZWZjkipFYlnkxnbSd6q5bGwwUdShpVTp3+1m6KOfQkDY0MsSZtCffmalgLtbBzkglC2l45rxEDvXkZgRInoRUrdZSSgJJTUKZqLOx6y5T3eK7mmODWMF+H6zDTljmyXe2Y3E0q/ByTGiG+1Eopr1q6tyvdXum1ECTHXtVEqAgm4JARi2qL9kFYPb4gQ48VW41DsLZ24UNHa+/VuB2NC6YEWTfgv/9T/5Lve8a3Y5NqItK4qT7uNHpe888d/hfl0aQW/PCn4hd4ZffQi7sGE4u5zMEib6ufm0AUUV0C9MrslXb98BgYXQ92uq4kAaeJJk3WunHCSgCxo66huKzOfoQh3ZlfC3ypkpmTL5J12ajGxmUZP1mimGJ6RzLg9nXHoU1LxbJhVTdCH7krMNshIUXyDwlzt+tdteEaa8ww9z667wv2StThpukepwpEfYPFsmJxNO8dEjWkkFC0ghdfqh/nA/M615290LJ5ELKhQrNGVbf6qTm8MFKdhsL9AfVsAXH2i7kEigZdsAFRhwaUK2aWD1Xd1tSMggneen/vH/5U/86PfdPz+j0dOmK45WUjMJMcvBZ2YnZ1mZdR+VZtnbQUvgqhgcsXkHnGK8Qs3gcQqxmsHxjFKJ2wPdnBVrCP9h3EWeFAyU2El8MAUbs0EJUG5BPUT8nimOsLgKULgRqtjyliKtVkCqQgDCVlEqRgKUVwP8Vw7G6nblRAHY8SQkWCv8kpsSlbXrgvHswAvAAoVpupJ8HixgSyrtaqpM62GUjGWMlTxbvWriDBJajypVDg1OJVugHT824pSc5Wdtbe2irItRKPxghekFOr/ms4TapuszQ5UJZ32cNKI4EcWTQ1uaJDlCXG5EzXsZsM7UZWO+fVMs/bHfJ6WFZlP86vvtCSSVxgXkgTqextW1IopNbiQjrnfgmAK6d9HiLNb+HgHfYhs+1/BM0rztSgEhEXXxWIrFFy0BRs2JxHPTBO0GQld1KFHS3CkYdBZgVO27DVggLX6ow7MNdId7306STX0bCA9a2yFPSfcV1oe8wDVWo0lAls2585sl1PJhCQWgLS1ARPlrsEVTCtPSdZ8plVGYiyuroi9nIrvYHJptKY3gAkL6prCYrXDwaW0chEIJIGXSg4nZPdePna6aiT274P/+6PXsve1ywnTNSfKiHnlF3wqvmoNjixDBlmAb+PEvAzy6TDBnR2FehJEpVIqzijlhlCNAzKD631tgtQvz5odJPVI5jCZbzhc2p9RWiIiFD7BqWmov/2xkGn3ZNt2RiKKw4a1isZr4fj6sGFi707KOb4D6dY9vpqEzAF7bOCvAENJSURIRUikFearkKt0jJqQKaBk4snEh+rbhPfd4KjUNBVpa1o/VaX0hp10RmYqKrUxYLjdl/CvxyAoV/wj2Lg8Xg7W93VmUt9NkGDAVGMoB0sAsipSQbLG9YwQiBgTS3VqhB+tcgWpaiBQq+/fYND8/dg959c0/DhF4cnyxPxBk9e++dPIBscEni5le6gq1R1nYTkrUhWcIvEzuFJynKSztdYyyaBkfGbK9q0HZFnV/L7s1qizAhFhVmXMyiSW9ehBQaApCBmOrSdl4aHqdEAOVJownXW9u9a36Bgt211AtI9Z0lV1NlKCISEE/dYfQRgb2MeQr8TorIqpnTEaAp0nbsCRGzD3wf1feMtDxRnSWEC3r8XaiJk7S+5iRiSKquBd/HiYHwyZXt44XtnW3amzYdsu6dkaXR8hG1HFn9ng8POef+3DWpXJwWo6/hOWE6hrTpQRc/a20/yx7/1aBuMMMYIZDmA+h7IMKaqzWYR4NTK6Gcqd0WJ5HkWIaY4QITkY7q8/r1pIepRLZi0ydoj1iFHS1GENWHEMk4pRWrE5KEjs4q0t3UIVKDW/wNIgRdk0i/z+TEp27DRehlCQkZPGsvTBIOnLihIgW7MMW97d4R4XDLhWmYlgW6qoTlsPH+mgJQP6LMPwPZMQpVMbNUZCccuhVEzcgP1YpXYnmTEy/RNDrZCnRca8tGSJxxqPVqBOwqcSxAIbPcSDGgK700loRwdQZcRFVmSTyFm/0tVoQAr4zOJOj9EsoHXqdWHA5C3EJQYz2sQw3LhehR8C2rju87Ssyle+/fO45a6zIUtMJGSSDQfhM8hChlmSBBegKqQW3Rqtvgwt14AA2UxJJuvHmiljdlJrrSZAYizD7Zx06EisxxrIGmgnIiTS9y4Kl2djNpL1yNKtg67yq9uZa8ZHy1t4rNphz42xzXhdHbNb1/gi+XUoQ6fHXURU4sKlT5KlNG0joVyKuQYDBhRLyCSaa8LEZ1RYHJa5puy6MT9/6eW8+/Bu9qoxE5etzT5VIC8TLh5ucP5wzDTPmFweceX+U+w/vM3FD51j9/7TNL64pXaSKex8GDYuBNd0MgMpaGJmTK6s4UaNbcWHZgQGCYef/eyrq/N4MWdu2bnano9LTpquOVFGDMAf/p6v4K+/88+zecsZRExQLtYGrpi8gKMJ4jxSOqRyaNaPdnRuqAjGBci3i6GAy8IqXK2QTASZAx5u39ziL37OHyIdRx+qcZhIP50kSmI9iV3melkuBilcKWp4sYXcSN6ZmDfMfGU4ekxTFVokvOuq9aolfDZ7lVq/6MofdQ/7V0fpVcKlhq3sp7rJgm5/tPNXBz/D4NjzIf1vOQX9dDKl5rpwashMfyaFV5iWIabGqwFRksSTDR3WetQR+AsqCace+I6CtbMQUFffARHQYU2CGDrjNoJhs3J2VWzeMpStgDG40+MQGHVwCLv7gcK+02mPiHDH827jjudex+wkXf95WlZlvDnkH/6Xv8AX/dHXBsPFyOIFNAbSNNRSyjIYDvGjaN0uy9IAFGCw1+9qqQYwuQ20sgzOG6QAg/B5dz2bb3nVi7GJ4nPpdkVayMsaqbwltUrWgZNDRuRn7Hysw9y7LIpwqCMu+G0sgddpsQQLiMNQAg/UtUqha6rQN+6q7n/H2SLSQmEMgZ+qEOl4LgzKGZlRO+frfqfxWgpnyXW5wnRAfW8d7ONaziSnyzo89l2Fvdk4uLe95SgfMBsY3IZjNsuopimUICUrQYNSwdb9YKuFsRv6DdaFjxAKRPbctP57uTXEnd246gSQDRO+/O2fd+w+j1dOmq45UYG9AM55fvS7/jnTwxyGg67/FAISUxQwGISUa+/B9BgyPc/WlIGZ1wdSk4apt32QdcK2HbA9HvBTH3of1VzQFMRIo1TWc8VorLMRvylUmrBfDjiVhiBegwsukugySnAkxwTUBlI8iSuIEFMyjuZNfY7VCtSrl580IW1Xt3qa1McAmvZuNxhSDapAWQ3o8woFtmN85N4yZxBdRkIqJVWPy83iKZxt6jEFP7ZS1elLhMc+KVNyl2KNZ5qnFFUI7hUT6piYxFNM0yZaUYcOqQR1IF4aA2b55vkBnVVRsSEhG6XUJmzB5uH7sqgxcLSeRVNQztx2mu/72e9eu88TkqfdRo9bPvbBh/mFf/lr4ctxk4GEkdu7T48yMJXW/tJmIJYjmN1Mh/U3u2J43rkzPHbPEQ/ef5liuoWfWAavWBCUGgHXeu9bJ25+qyfu7WzObj5qFj83JXs8e3CeM8kUp4ZDHXDgN3raavVdIFOHR0gFzhhlLDHxpK8bzdXUK2JhIP1uuj7ds4jK6VeqimLFULPsLqqvLWQsBQNx3CJHzDSlUmHXb3De70Rd09/nRAJXzEOtdUbhLSPbNcLmleGDl26JZ243JpiRRwYzvM3wu4NwPT4i5zbsPrjCijGyCqhJCOKN26TptPTvDyFjdzQMaO/yRYqQJIbXveU1fP7Xf3b/DXiicsJ0zYkzYt79n3+XCw9eRuWY6basIMYWmEmB3x52FIwC1bAHpjBQvyUSLWBY1EyqgdDLfsbli9P45liwhko8YBmkFdYKTgUTX5wacRaB1C4MEmtCiuOkGlJ6y5lkws2DeSz+GAZmScKlaosN2x+s1eZAUASHcKSwEXlnDJBqDTcvWgi9Xci6jIC1ho2EgXQ141pFwHtKlDS255HGzKpbLtQyZdj8IgKn7AxxMNWuW2WvGq9Ut95OplwpN6m1wWE5YFIOCKeXxoBpuh//tKnHVTFY2oJuOphb7P76gdipLyeCJkq1KegMhpdcCBrvHKAh/R8C2Z1zSJqgVfi76ZA1iHq2b9rm9C2nrnJnH4cEK/JpeZzyz374XbhrIbITaWqvtTk41onagAQrC0TYJKG4n1uK+/zIpSutbwmIohXUdoCRkIW3mN5WzsZGWjRI4qlsxqTKeOXGvXzOzj1191F1jCgxCnu6bMgoWzJv7CuR4Nr1wJEGPRLGdlxtx/0MsCg4ENoZkl4182hZajTXLE2OjnYyx2LbALjTOs47Q0GotF33fVNKPlTcxEQztDarRDFaL7QW7TgPH53d0lxzuALDzCUMbKhrV3rhPRfuoHI23sdFr5u/DJhzBbo/CMHecYGqlSIesv1rRClEAgWEU4aXKsqdZP2rJmCngcOH8Sh4KapofCUJZCmSWZ79imdjzHV0uJxAXXPi3En3vPcBiqtlbbTRmcqHmCIWn2oIVbt2SSSm8qmAiQukCH/ZPLgVYPHy2XltAMU2PGhu8c4wL1KOphnzwlL48JlXlsoLtmGNDFCulcX5T6UzNpMiDtfFagyEgpQr1bjhjGncRcx7oWBFyNVSIUx80/NGnYR0aY+PwdDr2WDq9nrOobr2XVW08WFPfcURShkvJwVSWoHYGmpITWoWwZYYgW07p71McR6uVOPOfl6F3XKzuTqvwqRctFf5/tdYBIz1UAnkJnwcgMeN11yd0s0Q0EA6ZafK4MA3Zv8CtI/XUtazVevdTCwyCMHpkqVgDN55Hv7IY/zs//f6FmY7aRDvjSD3fvCRa943DusgnYDMZXMAyo04tfvFsckMNh+CZHLcAxGWAyTDwsiTWSWznsS0ixEqiXE8c3tvoVEEdrKc12zf14mhqf8+mxyRUrGg5PSkOO5Kr9Anc4XzHh5ywiUXsiEThAxDJrZx89T97ys1cC1SZ0/WH4BkTWKEEeFW63lp5jhlXODMird16lOmLQOm7tfi/7UoU58FF9SSelQxzH3K1Gc8fHQK55dRuD5EDhh0EXVBAt/LcK1XaKkNZfRoycajFUkJ6dEqD1H9SQ4d/txOMLBFkOEA2dwIn+EAMYaqUn78B36eKxf6WYufqJw0XXPijJjbnn0zw/EgVv5dTJYdyRZwpR+vQpemjBNRS9H4OmVmydcixLiIesGMhL99aw8FO3aICWhHlrqYKbswG5waEusacruNZMHsW2qCV2Foyv40Z5S5Zuy7ISWGTEu2mHVcU8uSRg3Z1BGRpfRhaPEnXF1qQ8arUukqw2azX7yfDmXiK5bDCWMcNV6EFE8mjlSqHhA4iEEbbrH9ashlt8VWUnA6nTAwwZiduW7WT+ltp7XlTK9FXwnxMGU9McR/LQFdSZeCEOOfdr5oQKrw3dbhBhIYNTUJbsm6lEE9yUm8CSs9Cqx9aFlRzEt++af+V2+fn7CcsLTHG0FufcbZa99ZQ3ZIp4RO/byXHrYb1I6VpeWKhro5x4ndKDDZghF22QgxEhDeYVJxdjjlhacvRnK2qMsENs280Q/LYgTuSi7zjOQyN5t97kou8+Ls0bX7t+W0DZlCiRiM1CjpwkC4npPJot2u3miCgSXQLjwncYxNFWKHgLmucWU1zYQHZ4DtJOf1pz/EZ+98hLHpD4w+LAZLBlHdxvIJCIulHpndEuLs2kf16YfsiiMpA+mdAOlcGVypSKYeO/Vkew47cWS7Fcncg/r1sQ3xd2sNv/XLH+jf54nKCdM1J86I+aw3v4rx1gi8Q+d5U2+meVRpGuAyVdJRih8ktPIGQQIpUHbokXyhdNwo+nXXgBKyHJbSejck89GACRuSpL8k/cF8RGo8w2S1jsfMZRQ9kVsWx7nkkA1TgBgmfsgVvxlSj70w83WRt7b2pAlEM7Leyq9/X1deQKORWN/dUitKKhx+7TEiIQqmUMds7T4wYKGIE0JF6z7xBPbhAz9qgu9qZb1hi8gV031wVrq9S4yPLrrV/rjZMgneoi0/UnxNVEY4XGpgyAWELjuIPMHtd1AEtYKmEojOTEAE7cEsVJU9tQWDNBp8Go1xAtwblUs2Oia993HKcSujp5GY9fIN3/lFZMPjPOoLK8LftNVybXQNlI5dI6zQybfFlKyfeIDBHd102GXvVf23QXn2zmU20kWCQI3xlpEDZu1VCWTi2DRzXERKF69qCIptf4itjYT+RZhIUxC2wq3SO/QsRuvv2mrjiYgA4xj4LBKIQftFmfuES8Vm43ozErimtu2Mz9z5GH3JAwN7DPdGcy2guYFy9cGHd0I4eCbMzsZEkmxpB6+MzlcMjnyz2KnFeEinnmzqMZWSzpT0ypTBR86T7E6jEa2Ld2oJsRER0sH1ixo5ibrmxBkxxgh3v+SOQG7nHDqd4SdTtCxDENMwxMIMRwnPe/0L41uyNECActPgR4K3YdVspwSa5nWG6/IYau6MIq0UarMWHQlD/vJ0mexIsdFC2q+GK0SLO8m0GVSCZyw5Qyk51BG7OmbXj9nztetk8ZmrofBCXeu6v0eLLZ6W0RI/Dk8ZlY7T9YZL52pUKeOe1/rOisCmdN1GoS3YdSO8WgpdZdwVgZEtSGPNqFoSo2RmwYshApujHBNh9noMl9MEdUuvuIKZGOzEYkqDJkGxuCxQfIsBPwzBvels8RpoKpRbhipbUnWqmNJj92dI5aljX9gcw8YIjIlxQw6qCkkTBqMBX/In3nCNd+8a5YRRgd8IctNtp7FJEh76imlSi/LaL3sZnI0uzh5dE+quhQ9GMMXxnFTrRbGjBTO39/QulkRCzNlu3nW7qsLD003un5zmvvmZtbaSCFyotnhPfjfvL57B/5o/h/flt3Pg005cTL02NAK3GrDXYGhodAF1dA3KkebM/GqYQGMI9nTWI9xXJrHSw7Vpmw1bMpaCbv5SiCt6rDxFX3hIoHfwvcUib9qY0C7ssIzoqILODP7h8cqxnR4bIT8rHNwtHD0DWuF9mEKxc489ykn2582nYfKszw0kl45IHt0LGbrtbDpjFn83HVC8Vz79DS9Zf8OeiJwwXXPijJh/+3d/gd/9lQ+ixi58pIDmOf5oElJWy4pXveElfPD9DzcQPyxWQ+VYcHVgb/yICtn+6vkUQBRNgltAUdywixNrY7iEYo/9Es5eqcX7xdoswXE2mzIwjoqU/XIUlUsI0w3ZR+H7WELZgQWMLJQkjHuLQgp5pHLKWRrk8U9LcA/Z0ddB9gYqPA6lwlFExEVRCir8Me6jZtWkGo/3sQdr7oTCXLurkpGp2GDe+OJR5bLb4MiPj101Ggl+/0UcQJDTwymJcY3BIqIN2Z2I4p3iq9XX28wMUi2ld8aP+IDIiavdRC2JSzc3DIVE8Yo9qkj3K9LdfPV+iMBogJro448Iogjc/vzbeOM3vX7tNT8ROWncDSddvPf85W/6v5lN4sTa9t20MBYxwiXnqMoFVFuPBw+LOkktXTM49Lh01ZBRgfmpuO/KpBx1TlwwOS+UzhwD2ghHZdbElHuFR6dbzN2Aicv4qfOv5sH89Eo4BcCeG/NQdTZWQDIohl2/wYPlueZSWr3CqzTFWtvXX/9df+bekO38aHA1a85cS2ZaMNEcar3jK/qKPtYZkRCuxSn8Xmm5z6V8sMzW6ggFiqU7/bz0EmfNpNE1Vj0PFmfwWFLx7bC1RowoI9tKoohNZtZx9+nLSGtxtPhElO4wCZxUS/2Kj2nFPlYIcZYSPg4lPcyRyi92c0pykINXpHDBsLkyw1466CIefYZly5D5//zI17GxdQyL8BOQk6ZrTlx20i/8k1+krHzghWmJIDDP0bOnERF+9T+9HzVCcnZMlaRhtVu/FKPVdEgBbAnpIZQbgKkNmMjUKqEEuk+DQdNYRAIkbUs8sDOapVOoCtaEYm1iIJXgp91M8gZpATjyIyb5gC0741x62ByfRAdR3zs59xkD05+2O/MGFY8Tmtwfj2IR5nEozac/icgmqTqSeuJeEo2DdF0Gk48ITG3AKCEbKa/vUXMfYKYha6DThkIqIUPCKzxc7nCow8DSuyZlr1YWHsN2MmfqEnKfBk4YYGhL9mdDvBpUQ9q2iWzJkkKVObQ0i+eoIEUPL07c1jwOBePWsWeGQL3RpaqZd0zl+vdVQvq/upDplaVQVXzqa1+Etddx/fAJhHJvVPnQex7gaL+HybQ2MGJFa1X4wH98P8k4ozoTDW4TA0nbtNRtUUhmnnLTkswXw8NbKLaore7lE2PPBsJLFMrKUHkJtZNau9eTq4hSecNj000QZeqydoeY+QH/9yOfy83pHl99829xJp2QxVnmkfIUfnl8YrjsNynVkMXiq/t+wFSD7+MiynMpOGcrKupsHzj0jlKVsRiGokz2vpXAk6topI5oj7eC6tjij1NfMlPDB8sBR3GcX3ApdycFG0u3zKtyyZUr+syK8sx0j2eyh/Pwbw8/jXqnmU/ZVlYMGSVkRTZPo2WbbmYFmSnZn4xpYuskFP9VBd3yYErMlWUumj5RBvuQzBe7pqUPxkprr/gaYA/zYCDA+tpsfSKCtcILX3n3tR9zLXICdc2JQ2KKedE/k8Ni8Dd4q5JcniK5R1OaGIXj3iNTKckBUASlUm2A2BDXEFIjBZMLJgdxEeGZplTTRc1n5w3Oy2KS9SEOWQS20zmFsxxWQ/bLIVfycasqR7wMDAduTCau4THo88cGkeOqg4QMJTXMVZmq50g9U9WVGlSqRxSdpMWu9NVbarahK3EyNUoWQaXmo6yiMHVXSmzgj1HLlMBnoYR2siV23/qYuU9IYohyZjyVtzgNq8dREpxpGqt9toMhQ2YSMHad/q2V9mrJcDwVQm0Q1X01ayoJCzTVkGOnVJVf/Xe/gffXedlywoLtTrrMp8XKGGlkKZpWADMrMJM8zH6GQGi4pqBZvWByYyHfjOfbgSsvCUUAqwGUY6XcUMqR4m1AgIu9EXv3nqI8HBDD9ZkVaUfXlE7CXObDo536jKkbsk6VXyh3+C+7L+GjxW0NmhFct/1SxrG754fRgAmDwmH4cDXgkQouecd5X3HBVUxV2TKGYYyLCb2qmrGxvGBQDUhuX4zMXCsONCfXWWPAQBi27ytGFApVRGkqhffmWbNQW7RTo0dQeOGDxS2d7RM/oFTbcetXKuyWG+xXY/qUhBE4N54uDBgAFbwzaJ25tOnwp0quzlccmolAe9QlLWXSEoFQzqLdkcdhQLjK8+v/+X3XfsC1ygnTNSfOiHnlG17aA7VGiZOFGgk1a4yEjIFWvSWfHvOgBcqh4Ef1CpoI62ngstIW6qeEdNwsGk6lRY5GpCZMmN4byspSVpbKGYxRBrZERchdGqFGYeZTzs+3Vi4puDKEPCoUt74CIUb82ltCjMWZqqWhsuCJvU+ebsxM7T7q7ZUqlQZ1VQIVEMgqhQ1qht3wUaBUQ4rjSDMKUtDaJJLofkopfFAuAU4WLpcb7FUbFJowqVJ2i9EKrJy1Au9qg7KJcfPRsEl86Fy1xsBVAtNmB/oVqjUorFTdXvRlyIUZp2pIq1Q1WLrec+XRXX7tF367v/EnKCct2O6ky4te+Ux8dZVRUgdZeg1khwfzmOF4/GpbBcrNCONkwvwUzM8S/LsWNGWRKWnBDUNMlh+CKxL2H95ia34mVAVTYV6mTPKMSZ5RVAmCMkiLltfg+Ic8kFBY9pHyFF4lljxZPUYIJVWcD5XklweLIjzqB82RIoFSIUOabKWriYgw8wWexULLq+JRDnU9tcaRGv7HfJPfKcb8djHmV+abXNIh95c7TGPyg1O46MZ8qDjHB8tb+GB5K/mKs0F4qDjDnhtTekPhLReLTX778BnNPVhe8YjA6dH0ao8dthxqWmbMGl2TLgGA5U66dtHU+dkYGGXXZseogjH8xN/8hWvZ+3HJSdM1J86I+ZTXvgjxq5Y6AKe2kSSWo65z6owsVruAJiGiuy9iu4hupNqjUruXmmyC1htTc8a03xjB8NzNm5c6FSa0rWFOYpVSE2Yu4bAcNFk1ZeSTqcViefnp1/DsrdfiY02PqWYrK4SA2XjmPmHPDzuGjGpYQZRqYhHFEOxby7oH61GcV+bqmKtrFIlT5UALJlo0qEtFi6ZfV7Oc8qZDEu9CvYINfA2FN8y9odSAuBSaULNKlC3lUmhCoQkeS6EphaZUJIyjj1oRRknFOClAldxZpmXK3FnSpAr3ohLK0lJVlrIMH62fX27qJxrche31Uly6JdOlGyVQ9NVyUyU76t4JTSxua9DKclLISziaxUOiITOZNuR3/+2nr3OKtR7zeVpWZDgecObW7eN30u7fUkXCueU5amlgqkCx3fI3G2GwLwEB7hy4+K5Z96ftYqdnTR/iw06P5wySRfzEYuJdlYHJeNtz/zyJjLjgtvlAfhu2U1qg7oLnJrvPrt/gyGetLiobUnCbPeR2e8hIys7lJn10AqwiMLV49RR4LvopB5pz5AsONOein8ZFFBz4vsy9oGP2vWXfB30SXNcpHy3P8rvFzbyvuJlH3DY5KQ4TPIM9LSmGK9UW9xc38UBxjkM/5nQ6765hmvsTPqn13H3m0tr7DAQ9U8MsfZfvlWTWo2uA+bkMlwguM8cOW93eCLF2HDO8owGDCEVecrC3roLtE5QTpmtOXEzMuTvOMNoaMT2coTZO/CLIzhays9ldBUX/tS1cRCEUovFhqsDjgQmTlLgQ77ISK1ODOOusbE9jEWxnQ1570/P4/f3zqCgiSmorBkkVGWNDgFiaOIwosyqNHA6hKnMWy9dvZad41elP578+9hPslRsh5ZGS3CaMTcGWmWPFY0XwGHIycp9h8WyZIoJEC/+3Elw1olBT1HlY8TyrKhOq4KmOL9wUh9VFuQ+HkmvJRqCfao6d4xtUwQNz1dZAX+znFQ58xpEOG9REo7HlYkFLh6XUUAgBgbkPyJUnxMcI2pD8JeJDaYLY371iiGsZa9YIiXGUZdIE2oVzBqI7d5Q2MLACJOCMYkoJ1Ye9kB5Ew3dJkpzFnBXPn0582Fe6KLCmlmp7iN2PFavzovFro4oeHC7YewFXXkfsVXk6gPcJyK13nuHiw3vXfoCCzCu0Ly27NbNXI1b1jIYFU3UVuwlgmCR83rOew89fvszF4ghjdZEpZJRHD7YxomxkOZuD9eiFIHzxba8gd79NqS5UWpaMXNOAPiMgSobjlmSPTRsC1CcsarGcNTO2TNF4zgbapY+orjJztRnBVZV5izc314p2pJ8qlAgPuY3udSwGEo15EU9bx/YsdJVSo7+KcODaLqJ+c08EtpM5l8vNZq+uVgtfbts55IHdMzhvEBOeifdCvXqRy+la4w0Cc+/oUt9UI8xuGzK7bRgYf1XJLhdsPpovbkzLxalb4ZpklrcuTVb3jT/vXzpi+1T3nj5hOYG65pqMGBF5I/D3CfPiP1XVH1yz31uAfwt8uqq++4l06JVveCk2CeyNqIaMjiSBogo1IsZLGL8INnfBaEnAzuJLnICkAr69Uuh/waQCXVeH3kBqDKV3XNI9/sHv/Qbt2zbYrtAWRb7XUO10mFZN0UZEmHuL+BDpL8Vl/sX9fzu2kAXCNwOFS8g1Z89vsCNTziSTTqDtvh+xaQpaMeyd6yqxqFZUBLrwbdPNAvAoy3Q4sFKvDAUmOIYx+vkI35vKbaRB26MLSzj0GZf8RgeZCbCzx2uoIOtiDEutl1Q1uJJaZyg1BAK3ZVqmkZ2325N5ngVlsiwC5La7uwIGfKYh7slLLwxq50p21Do0GjNuaEgLjxsnmNwF5zyKKRx2WizSHrc3QuX1eYF6H4vgxKaM8JovfvnqSZ+MfJIgLh9PXfNlf/Sz+ch7H2I+K9DEQBY5p5yHfOEKbIuZF1SDZPFixBmvmUKXDpFKw0LJhPXU6uzYFWuEmSn40Q/Hmk6EkhxiPONTc0oXqAi8Cof5EOcNp8bzMI6W2hIqDsuf5JcuQM2lHfoaiPtKTcik5O7hRcatgrRCWKgkVB0DBrq2WamG+6otTDJnxywYypvQxZ4LTTGUS87uut8O+GC5wyq5XF2kJZooKq2F3HqzQVBKNU21mfpc/ehM99fKGS7nYybFACPK6cG0aSRtMfNawDuhOrCIr2s79feoYZHoha6kaVAR8psHDPYr0mk8V2O1KRxOkVne39SS8WwSy013nO7tzxOWE6ZrrupOEhEL/CjwJuDFwNeJyIt79tsCvgP4jSfToWyQ8v3v/HOMT42RwQBqNMY52D2Ag1VoTOMoEx8Cd60L5QSSSc1TEAiG0nkkm1rCDfvgPVQZpQlf/rwX4Y2HgcM3s1040BqPNctaKfxdNfwkgSfGGEMeYdKhLTod8EjcJszjPmNbrPhgHQmPVDsdxKHTZWLgG0KBcOCFKhoJTpV1ld7XtVUSaiJVa17atsK+4De45Dci5fcqnioSSjGoCkUMHmwjNX75oSCUaqla1xp4MbqAL4R01HiWzjbt/N7zZ50iWQM99fUopJPVuUYIisgLYAQ/sLixJdmbk0yKhTGkGt7V6Rx8NM1iNWSAs7ee4nVf+1kr9/OJisCJS3t8IvLx1jWf86ZP5U1f9xnIKINhFnSNMZBY2BiEjMfOicEb07ikF6Qqi/dHLag1pHtKtqekR6HkQDKBwQGYkG282pe77uKZN21TbZboqP3QwvucDqsmzq69bVpmVK5fHzx/60KLDGHx0ZhaHbosDHsI4gwwXGEAXYgqPFhuM9eE95ebPOqyqGtYLN6WRCSULOj81rqiMgbs90lkOAg6DtMUuVwnEvtQatIsjrpBt617ojREpHUY1P2Hp9nPR1RqKXzChdkmFycbmFSb/iwSCBRbWZYZ05fFJy09cw0umNnNWW21hc+8QC7sYqIBU19FJxC9JUlmeeuf+kKGoyVf5ZOQk6hrriUm5tXAR1X1HlUtgJ8Cvrxnv78O/BDQnwv8OOSFr34ur/2azwZZKlqowOFRh9FQgWozC4G5rf0FglupUKqx4IeCijTFHuuPCCRF8Fc3leyjnyBXxy/fcw9OA+Hdsk6zdl3AreA1ECgNbcU4liBQhQ2bs0qTv3ClOCzOm8gAsyoVXcRiWdqFEwtg18MlL1x2wuP1YIT0ZihVOPApl33Grs+YedOEIdWPosa71nO+BDeRSHARtRVq3hNEGM4vC2XkhWoFLpOm5XhEd9uqLdUVFyB+42plEH/3dKpYrxyWBcPQTirSS3PE+YWiaWKxus9YREIByCzl7/7372NwHRULypMOthORN4rIh0TkoyLy54/Z7y0ioiLyquvV/ZZ8XHWNiPC2734TZpR1J4D672w1KNRvZvG9ak0c0dfjLExvTqnGpuXsbX0UTv0+ZJeJMz0NM/Tv33OB+w93WbFTopg1LOGC4vxqdpzBcevwsL+xZp+aSbt/n3V6JhgHQhENCY/wsWrM/8xP8d/zHd5fDHuPO068wiWXIQ17jY86sDvjr8kD7O8nMJA+DHnZOBVsnS4NPHK4FWkfFvsppgkSlqVgSREwm+uYgoOYXNm+P5bEqS/ruIweEXwW36I6uLxlvHROvvxv/PtTXv0c/sh3vvHYfj1uuQ665nrLtRgxdwAPtr4/FH9rREReCTxDVf9/xzUkIm8XkXeLyLsvXrx47El/7399eP3GsgwIi4BPDX7Q/2oLhHTZBBDhmMxCklxIDgnKJbIPeq8c+PV6UlkxfpstIjCrLAZH5Q3zylI4Wx/V215Rpw+rcOhX2X1ryf1yAPACDj3uPTpQ2290rflNgX0Pdcm4WmFNSZhiOVLDnIQj0pAGHQ23PgnZAyYaJMfwsi+JV6Hwlkptr2GnKkujZ8mAWDOyTB4KfUrbgKk/poXO9F0IYOYuKJe0ZwiJwKkdSJOlnwWyjAsPXF57vU9YnkTa48cbATlGPu665pEH1zyLaHQq4K3gxhnFbVuBjXlNmkqxYzsGTt/UaYDth2DzAUiOIJ0KphL25nP8QNfaHH4N8Z0ioWabhFlRCAUiU+PX8i8tehOC6itdfYdVYeoTHLJyXgUerrbWtjvDMlNWj1NdiaGpkY9DTdjXbAWPNS0DRqLRdXzoa7cveaP0j7sXoR/7xZD7D88wdcNjEKE1umZN84qiogwvhxtiiItrH2skrbsUr2R7JZQVlB5Kj1q72LVNNVJfwJLc9+HHuiDA9ZJPthRrETHA3wH+zNX2VdV3qOqrVPVVN91007H73vasNdsV1LmwSkpC8Gm2W4T4hB5xWduaPl6qLeICPjD8SikL6Nh3WxAT4hy87w7y+m8jHmvgyA2Zu5RKE0q1PDw7w6Tqr5ujhEyeiR+wV20E9l9dbK0/V3TMXJNm5VAbBk6lV+nURxcYZrqkDFtt1P1XDSR2+yrkTXhwFwHJsRSkIQ4HYeoH7PoRFabF+aLNSZSAIgXDqEvRPV6DsXuCe61Sw5X5eIWgC+BgEmMGZHlca2tgrV5wcijr0RZDk17dwXYqz/CSJ514SAx+nFCN0/73SoCt1WA6I2DTazfirlWeJMT7cUdbn4g8Fbrm9Nmt/kxIgpu6vHWL8plnqG7ZgmEct2tWFy5bb+C0Zb4N+dk2gsiCYHONlPM+naGMkoLUhtphVjQkbUoYO+87uP0Y6oZ6vAj3FDfjVDo6wCPs+k1+v7iFXJMO9cHD1SY564jdlAElF3y/W6nQBXodOKOE+6oRj1SjtdEkhhB70lHFV5GAFgVd2rripo9tcV647+gsF2dbVHGB1a4bBYpXmJdp6761zuUVP7UrcTXBgAE/UtIZvVcndXc6KkoZPjpj/MAiDifYxitK7li5roSaLXkyuuapQHyv5SofBp7R+n5n/K2WLeBTgP8mIvcBnwG888nCzW/9zi/ptyKNge2NzqwlQLY7X2E0VKC9yDDrXbzNpNV+0QQJ3CIKWtnokw5vm43w7rTIqNyigJr3gjUOY0JacCJtN1QYGo/Od+hynYU2JUICJZaKhAfLc1ypNmPb0qA0YDhwQ664IXtVxgW3xWW/hQHyOt5kySgpoho4UMuut80KaKpw2UdUxQuH3vJQNSSPwbdt91RXYoqjT7lYbnDZb1JoxmW3xYEfB6WIxMykAXMd4hlysdqmWKo0u2GLBjpuUXNwWAUO4gvTTQ7L4Uo/vBfm5WrNpWb7LGnFYEdNoZDttbMZ+g4MD8PHxCYl/DvY85FLqKVMrOD6eGJEQmzFkgyGCc9/5bPWn/uJiF7lA+dqVCJ+3r7UwnVDQJ6kfNx1zakzG7zyM57bBxvgM4vWrqbaOlhj8FyrKJCfYWUi6vV6tI9zhvnhAF8tiO+ohDMbM2rcIrjT6/MYJtWAR2ZXT4c68GN+b34ne25E7hMO/YArfgOPZa4pv1fcxL3lNg9W23ysPNWw+PZdncWzYQoq4H4Hh7X+8XBvlfBANWTPJxx6y3mXcY8btRZKq7Jw6ixe6HSNGSO1uwfLoR9zb34zdPR5bZjEZASFygsH5ZD7j85021p4CRGgjMUd+7yOWhncPEVb9A1KLGUTS9i4AWulccXEjz2q2Hhw1kGkgFD4+FpF4Iu+7jOvff9rlavrmvVdeooQ32u5K78JPE9EnkVQKG8Fvr7eqKr7wLlWB/4b8N1PNGOglpd+9vMZbg2ZHbSYgRILp7bpHe0KdlbhNhYTigodSFU0+CRrGoJmU/2S9RhNZmLwWWSGLSxqfYiPWbTKvMxCOk2UQRaQiIFdFHNboCaCF8N+OWQnm2NEm7iPGkUxElYRiXj2/AZSeWahLjQCjGVOIgsf+YCKoSmp4tQ80ZSBVFhVPELZCuQDQ67CvdWQDRaEWXOFfW8pCKnK511KhWFDClJZ9cd7D5fcJhMdrry7HkOug2AzKNxf3E6lIU4oM/kKClp4S4rjsWIDG+9H7kOmSFEZctdDvKWBvbRPREAdgU3TKKQagnhzsHODqWsqxX+03XqNpBWhIU0DDC6lLlxPSyfzmxlMe3zi1arV/Pbvf+tTskK6yirokqo+4Ym+hYB84xNt4xrlE6JrvuabPoff/NUPdQ0UVdzWYIWVt2Gp9tp5GXz9EnVeptXvLqGzdGzO6AUzFfxIu0vL1vG+sswORs1Rg6yvplqrTxgene/wjPFe3fvlsza/55rxQHmW29O9wBUsoYWB5GTicSQ4jSpSuy2kVNQBwlsmb26ZAhc8PKzEhUvYcMkvjCAbexqQ2r5xoZ2eB8LkioyKqQaduNizQsgA5aHiVC9yKyh7xYCHp2dIjWOvGHE5rwnEws3uYfGIyQP9N9vNbAhbyEBTT5srpn4lprdBeqRNMkG3T2GnYMgow0t573mA4KIur5KioaHm1x/+ti84fr8nKE8igLdBfAFEpEZ8P7C0X434/tlrafSqRoyqViLy7cB/IrxzP66q7xeRvwa8W1Xfee3X8PhElZAxkCUh1dqYkAq5ZuBK4TGJhziJMTbowIQYl/g+2yIEbToLZCFiPASm6+Lla7dZCXJgQn0MEagsvgAnHjtoT+4S/6/RP929jjasq2p4LN/BGGUnDch8Ed1DxK44FTJbklploqPWCgsmOmRAyUjCy5xjqbxw5M8ykoJzdoKa6E9e1nKqFJow1+AKOq2zZqDWBkzbhTTTjFTm7cPZd0Muu03aA141Zg2oIRFHEu9BqZZcParCxGdkqmzYElEl95aLxRYTP0BVmLtaKSlWPELYp/dZC03Bx2VRDTEEzXMRMIeCKcJvbqDhuTrwWTBs63svSsPeq6rhewXp9JhlhpGVuQuvMJkF5DDCbtko4/TNO+vbeRLyJIPqHg8CAnArAQF585M1INryidI1RV4tZuW2IbPG1mzw2PY9t62nv/wsWi/H/NzSbq3Dkl1LVTn8ti5OsvJiLXowHq7niKll7lMenp3ijtFe/GU1XLf0ghXl5vRwhZC40IxUcowoToVH81PN2D9jD7k1PWBscjZMn0EVOp8AHkfVM90060gBq76bmOAt9+bnuDk55HQyaYwjh+FiuRXYwW3e6JpwxoIDN4zVm8K4DG6rhLlLqDThIwfn2CtCpuPicR8/gKzxOLeKSotAul3iEvBFMIR0P8MUEcE3AY0pt+HgWbD5oAY3do3oNqdXxCnJfkl2pQjp/b2R3Eu6pt7PmAXsDozGGdngqaGBu4quOScibZ3wDlV9R/y7D/F9TaftFuIrItfHiAFQ1XcB71r67a+s2fd119LmNZ3Xh5UPabrA946jCk9s10qMK2i10C4TLh6SCvLoofAJGC+BHK9HTG5wKU0hSEGopil2sGwxK6PBAmmYu4QNKVsGzKIPXuFyvsFOOqfwdcDWYnullvPVNnclV3reZSHXlKFWiPio0kLnpzrgwWrAM5IrDCRErLQtDY9w5NMQ0IflwI+weLbNHEFZlDIM/zoMh37AhikwKBeqLfb8uIPteIV9N+6spDKp2JQ5F2KgUV2T5agasVuGUgJ1IUeRENOjzfAUXCwjbeqV7/Kd1oCypdZF7oyu+KLFD1PSGDB15WpNFBXBVsGQwQfjJZ0RlE8CZq5kB5HfY12UtSpSeDS1ECsdS+VgMkW8osYEBeMc6j3Pe/kz+9t5MqI82aC6TwgC0iefCF0zm+TYxOCWdIvkDh1K72TSAVuUgNTV35f2a6ozW3AjaSairq+A6Eqw+K2qu82xxFypGOM5c+qQq4tw7+QsZ7IjRraMsRXdPaxRLsw2ec7gQu+8WXjLwFT8/vz2QEwZx/mFaodDP+IFAxd4ZhpVsxjHRy7jvvIsMw3+lCEFt6X7jMwqcpnhYgkTQ6mG35g8h1INLxg+1hgw58tt3n30rObWeIQXjR7m5izcC1W4WG2DhJI0R9WAQ9/OlpLOInM1NrbXaiSxjqJHzwCIgSRmJ7kLGT5fpFqLB5mCGyvFGbhyOuiZ7Y9C1qL22Pr9fbLDEPasiUGlJ4JGBAYZeI9GlFeMWVAD1EZMVV3/wo+1XF3XPGHU94kivk9N5M91kue+7K7wR/tNq1wgvmutmBTQ1AaUpiXGK+mkjmNY1RnpIZhYTVTWPJz6VTJFtwV1hmI341Vn7mJoEwTPMC1Jk1h7pEi4PB0zq/oCY8P3uUt5eLbNtKm11N0e3Eerk2eN7Oy5EYdutJRdEFK1H6lOcUU32fdDShWcwkwTdt2IqQ4DC27LUNnzI+aa9hDphYDcPTfifLXJrh93IFyAQz+MBkxIg566AbvVBuerHSZRgdQlGCoNKdWqi4KNRmBgK1JT550uJJGQatkXPF06u4Rwga+EapLStkjtrGXANLdJwOoiG1pYFAEFrA8IjIoGfiAVfBpD/dqRiV6xeQg0140BeAd7h0ht0MS0f0kS3vhHP4ezt55aeZ5PVuQqn6uJqlZAjYB8EPjpGgERkTdf9w6fMHneS+7A1JNAS5KjvPYBhx9aK922xNJrJEcuGLW07r1q4Kaq6Abv9j2cNtzqwUwNZmogh01Jec7OGaxxbG9OedadF0kSzzRPeXh3m0f2tjt1w9qiwP2Tszw622beMxELytBUzaKiLXOf8VB5hg/Obyf36ZL7xjDzAwbqY+xfPZiCXKnGfLC4PRow4YLnDLi3PMfc9/RDIBPHkJKH8zNUaglJ1eGcuU9499GzcFgqDFXMU/rg7A4Oq2AkeRYFc6cu48gPWR4Nd23ucdfmFZZ1DbCih4MrCab5oPNb7332oLsD+gJ4TR5/EyKXUDi9MWHv4tyQo7s2OHrWNsXZMX5g+0NNjIGNMWxvhsV9ktDEBESFagcZ3/yXvny1g9dBnqSueUpi3k60EfMt3/cW0kGygMyIN2syRybzYMxUDjdKOsGVCpSbhmpkQ2T71FMTHXVWSQq2YsEPs+YpCIJUsvKbd5Zf++glXnPqOYyzMIDyKmFWZpGV1nBputVjoNT9FCbViIv5Fo/MT1H2QEHLFWdrt43HhDpNPuVytdlRCiKLarQFKXt+zJ4fM9MB5UrKYXj9FGGuaZyg+1GHqrUcbMiytO6jMHcJ+9WIic84dEMuV5tNTFKdFtmUS+hZ8lkJxIC1GAyVNxwVGZU3MXA6GIj7R0OKIg0ovoIvDdVBhptkHQMGJbiO1jxc8SHd2hTB1WiLsFKyR56kWNwlnwR+GJeAWkHVY2cl6UHRgXblaN57pmyQ8Lqvek3PlusjT5aASlXfparPV9XnqOr3x9/+Sp8LR1Vf91SgMJ8oufWO07zuTS9dGf/ilPTSBDMpgq4pezIDWvc3O/BIrotZziumCAkFtiJQOFyDxpWpkFxMMIcGc2RIDhPyx8A9qrzu+cIdt+yRpY7D2YBLR5tUPqF0Cfuz/oqlSiim+sDsHO/ZfwYfPry5MwkLseDjkp/goBrycHmKQz8ij8G8y+nNinB/dTYY/u1zKtxXnqNvelM1XKi218ZIC3DFbUYdI5wvt3EKjxSn4pmVOkhXJPTmt6d3c7HciCZP2OvIL0qfdNoXODWYsZl2k+zmRcLRPJAHqgZ+1ck8YZYH9MlXBnVCcWVINUnQpbGlxTqqD8GUsHkfnPogDPYimaYDLRQcFKcHFDeNKE+nTO8YML9lTHVqiB8GduiVdrVemS+/tML2uS2e85I7+2/udZAnoWsaxFdEMgLi2+gXVd1X1XOqereq3g38OnBVl/WJNmJe9Kpn87a/9BUBfWm98QJIUSGHU9T5UMukLggpwYDRRBrLdPVBh49Ah3N/3UNQFB9rMC0345zyX+99ANEEi8W5OoMoIjYEnpPVARvXGBL+cipcyNvVrsMfu+W448mo3T1OTSycGAomXqq2Wsy14bwLoyj2RWkQk/7rlFZhxpai0trG6yovhzR9C5lOwUjKNaXCUsXshsIb0hi/0u8cChLSRGHTjoGE/TzlgcMdFEvhEiZFyuWDDQ6nQ/IqpSgtRWVxhcUXdmGoLC1hkmT9GsHGSUaq8PwVxRY+fK8ArXk4Q+V0TQVx8W64WE9q3dKsfZ7EkqyQp11HOWHcDTeafOf3fSWb2+OV38UryVFBemVGq2x0kB59YHxgCzfz8G+tU0Rj7J2uP74We7Rgf22zwD58eMTv/I4lIaFywpXpRmeSnhbrKxyHaI1ALnml2ODR+U6zzSOcn+/wwOxMZzxfdFu0S6o0fGpLZzlw4+b1r+9Q3mLKXRaRYKQcuawvKYxCLWNTUL+8H5rfztQPQtwg0ty4Ls+b8IHZnUxcxmkzRTieJ8cAtwyP2EyGeG+YzFPmZYLzlqP5kP3pkMP5kMonOA0Gi3rD/NIwLJiOMqpp0gx99aB52hu4iyrJBDYeC4VAdz4SCFYXi5+lixGhOJtSbqe4nSHluY3gaYAmW9KNatbWVRkMe7Ilr6c8QV3zVCG+J64A5LJ82utfzD/9gX8fvrSDneLbIzYJcTJJ4GhQYWHARDEuuAPozumhuWjQNtQmPWzWgqBD3/POhAFVFcrB7pDxlkOSCcuMvLuzETeNJzS1nmMGjjXacC+gBm+i/9lWTetzn/FIfpqz6RFZhHwVVthrPYaLbptbzX64NTKg1JJE5ygw8xlTP2Boik4M4rIc+REGz9gUDXHdnhtxxW2wYXIUaYL/PAYkkJjnGqp29xlJFRbRioGUFGJW0KXmGlRQVT6wl+F10ALHNKRT52mXSTP6jU3qYnZ9NDbaT0jpN9VVMUXgilmAPyF+SqrForR9JYIEKNiALT1J0X3OAujGEIpy5VUZbQx43qc+g6dEdGUR/bQ8TjHGcNPtOxwdzHoN0lDapK046uVxF8IVp008Q/sdUAjvoWn90DsOZUV/tOXwIOHCvbdzsDWpW22k8pa96YhT41lsKSySwmIpTvwEo+XR2Ta3DfejAbPFxA34ncO7uHlwyMiUxwbUo7Ti1yCxN1PoR0io8Ap7fsx0yfXUFlU4chnvnL6SFw0f4SWjh0OhV2/47ekzqRBOmVnTfoXl1yfPZUvq6+oFcgF47/QuXr5xP7laMlMy9/2TfWBH8Dy0DzBYE+Dbeq4GwGNHDjcNRkJ1NKA6ykLQXCwEmQrLjwUUxi2+xRVUuO9aRCh2EtILJWqE6swoFqz1aGLBCGY6h8J1Ds+GCV/4ta/uvznXQ56krnkqYt5OvBFz53NuQUxY9XZy9zTm4lvB5B6tFM0MfTP0IoZMO29/rYfsPKRYpyX4OVQ7rL5YazCr+nkWWuIKx8isgj9OLY9NNtlIC0ZJySgtsRKMl3Y8i/MJF/MN7hjtdy517jMeys/ggduz3TVGiFBoEtAXgZE9y9wZJlXCkR8y01CHY2xybk4OljJHw1XU8TAey4EbceQy9vxGU0V6z20ieM7YCcN4Uz2GqR8A2qkuvSwlI5w3nC9GDK3rZEHU5FpOhYeOdlqlDOJ9qYS8SmORx56LF2ioMCtCMHi9WwXV3GM6KyTB5EJyxFLatKBGKTcFe2V9AQW1gt1fGJodGQ3gaNakQY42BogR/sr/8ydD3MVTJDdSjaSTKl/6Na/hH/yNiG63Y+5E8Fmo+qM1n4uJ25eMkXTqKbZX3ZdCDBp3Coks8IRlY0agf1ZresOunWHo3+9wPmJaZGxkBWc3JiHLrzUcaiOk1IT7pmc4qobslyGb5yVbjzLTATM3aHie+kQETEwSsKQ8Z/Pl/N70Ipb9WIS2rf9WrTUFzpdByX5wfge/P7+NRByVLmj9HwJGUsTadPHaNCQhuLUOhIAk/+bkJVRatJYzq33IK8O7H7urc01XowASA3ZYNUZMfU4i1YOZyooBI6Wy+Uh89o9TNJFFUQgRSIQ2k3B5bpMsVmEXaxgMU1748rt4y7e87vGf7HHISdM1J9qdBJCklq/7ji8KX3wIilBr0dEA2RhDUSGlwxQee1Rhj6oVWEsIVYmBrqshWpUmX7gTjK85QrofKVl5QRuGRiNoaXG5Jc/7mTUhTMRJLBipSjRguieauYypC7CwU2mQl/qS9t24VdRtVWaaYWST19/2V7l7+w0UGg0YgmWVa8qBH7U8IKE/hy4oswYeRdj340UAcCTSqjTh3vxmPji7gw/Pb+VDs1s5qEZMOxkAS1evoLpNZl5A5VNmVXAx1aR2pTfMnWVapcyq7spJgbxaxw7akqmBmYXSYAqD5IJMBHtgsZXBlMEvLWV4vqYA28P7IkRumFV91LogMGUEy9vsfFF762gIoxFmPOSb//JX8i/f8wO84KnISlrq09rP03JN8savfCXbp8Y0KasieCP4UYJmtkmVF43oXY8yN5Ueq+SPI9wEruF5Cf7hEdXE4l3/xOu8oaiCC7ePnE0ilPHY/BT75ZBbskM+8/Q9nM0WxXUDX5M/tkNWUm4ePpPPu/WPo2ikiajr10mrzlH3hZy5EPxfb1OkZcCEa4SQcGDxzceIJ7OORNZcOOHnLXkh+7Nncnm22UINugPiocNTK/WRjuPcaVpx0glBqK1RcyTYctXdqCbML8c3uuYe65J+8opUPkQaR10jwc/FrXee5gf++dv5gZ/81qcstbrdr5Oka048EgPwR7/rTZy9dYef+KFf4HDmOvVLjFd0VqKDUIYAp2QHJcWpaEzEdEZTtdOHF6KALcMCibhiMUVMu22z/c4NLvGB1KiNp5nYSqKoGsp5ytTDaKMIqXwSYF0UpkXKLE0w4o9BdgwPTU9x0+CI7TRvKrfGi2HiBmyYPMaYLK1wVPjo7FZuHz2Hi3nJp5/7U/zO7q/S1rYCHPoxu9UGSkhtFhMI83bdmLTy3JLss+vGqHRdQ06FfTduWqrqdAt1IVdAPGgfDC185Mji9CLhlbNUvqKyoV+VN1zJxxzlWZO1VEvlbLuZOOCXSis4gVZMTAOcxwyABdoSuGFMwdUHnURiqhWfQOiDGkFKv5p6bUC8hro7RnjTN3wW1vZD89dN9OStjm5EsYnln73ru/jbf/ln+LVf/iAOoToT33cjzbPWZc9yC3rQ+D28pav6ZnAFZreFv/vQGIntrwtd84nitjzMUpgnJBsldtB9+C5PKEXh9BICsyQKFM7wrPElttPVShIbUnCkfYuTYHj890dfwGfc9GnsFfC6W/8cv/ToX10xmkThcrHBxGeoKrcMJsx9xsV8k5Et2ErmS7Et8T5JychUnd8U8OJJTTDUlhEWVdidj/iVy0d4TRBuIbOOT7v5IVLragAfVbgw2eq9wV1EZknXKLhpshpyYEAzhTbaonGxVMHsLGw+tmYZpoFEUxPt3oA6EDH+bXIX9ErTUUL5nSh3POscL3qq0qo7/T15uuaGMGIAvvjrP4v9vRn/8sd+icp3H7gA5BUajRs78wy0pNiwuKENzL11UJ10X/x6XjQF1GU26hV7h11bQPL4W9o6WACrNVgBCGWRURYJaVphBxULjaScP9xiezjj1GgeoNKlNzvoQ2XqMrbSgrrQZUsdcanc4pbsoOMb9hpKADgVHpjeyzvu+TvsJGfYSYcI0845jqqMQz9q2hOvpFKFYosYHizPInhGdsHlMHcJRy6kK3YVooSaSFohCBaHq/MUIqLz8Gw78L60jil8imoZyrkpHOYD8sqStuDjZREJi2GXG7ROXReFMsYRtOETjegaLVVXhedcd18NgR+m51wmEt71+beNghsYJO8xi502x6Wp5cPvfYgXveKpRWGEk6dYblQZbwz4Sz/yVr7+DT/ExdpaqV94E2e41nvTZNsb8IlQjWLwt199qwQYX4LZzbrq9q5f0mMMa0VxWy4ugILyqSYDqolHUo+WQq1rJBMevHiKW84ckNn1L0fhU957cAeffeYekiXySGuUgSvIaaOj9RJBuXX8KO986D2886H38Pm3PJsXLNWEdCq85/Au5j6NmUbKI8VZts2UGnVOxDNOFqR9qoF8byereg2vWhUOpGoVd4zX4izvv3JrkyquCLkT3nPxdl585jEEOCoy7j88w7wKNc/W8MkFGyI3uEtDNI8rzoFDKwNDuougaHT66IATFewsjMmA7OraZyuOJiZPk9YOLiyGgt7yi79b98m0eI3u/9Cjq40/BXISdc0NY8QAvO/d91I5v5olAAQz2Qc0RsB6Ia2AKmiHpIQCpRrJyqwl0AruDN+TI3Aj0DQ0rZkGX7YS0pAXdklYfa8MBkNZppisrp20eOsP5mMO50PuOrvXC8gIcFAOmZQDbh4esJlG6CCexGO4XGywmeRkxuFVmPlshXvhSrnLfjXg1ixnYMMFznwSDZgI2apQ+oQZCZU3AcIVZWwLBqZCUM7n20z8MNwXcYxs2YmpURUqFazAUTVgECsrHlUZ5+fblJr2Kov9csRBHlxbocJ3oNtrhy6l1jFjUXjN50lQJPVD1IC4aKrIrGbilc5A0xS0Cohbuxs+CdlJHbNWwR5qE0fQ1jtSz1hOO+/LiiSB+C5JLdOjq2HJ10medhtdN5kczjk8nKOnhqsDWyTiEPEr4RUstm1MKKh/7ReViPza1vE+skaboIfcapIUAL6eDFckuLPrjdunj9jcDkzch+WQgS/ZTFcZdZUw/h+b7/BfL76Azzh9D9tptyxIYjyF951YDEExBm4eLsj2fvH8xyj9bbxw6zypDbxOD8zOMIvkeMF9bvEqTMpT1KPusBoytCVWPM5LDMSF88U2W3bOhi1aWVHEdoTdfMy0spwZzvBqOD/d5KN7N7NafVqYVhm/8egzw1NT7dkn3o84hkQAJ1SPjOO4ih3IEwRFpvSPt5oNpFDEt3A4I+TbyuCAxr2lNZ9QpRgRcCzirep+RCPFuNXoJAFIE7wJIRDFvKfsyVMlJ0zX3FBGzJ3Puonf/vV71u8Q4TZvA/uuG5gOpGvzaMQsiaKrNVKIsXvx3Qg8MYrPoiJZVwNtrbSnyhCgdeFgi5u3DzsvaOWFwtfkUMp9k7PsZDPuGO93hp7DcOhGXf9sfSaFqQvVn5UB++UGm3ZKZjylJmwkOUIgg8qXDJ+gogNHhGpdCXYYt4TvVWXZSuadW3alGONI8Bj2K+H8bAuPkIjHrglnT8QxyxM8Cw9h5Q0GT1UF/7q1DnwEWTz4ag3ObkEHiilNswJqXVRgZV6eA0zgfjGVNjEOplIGRzTnWDlTpWEVvo7BF1BjEByu8rz4lU8tChNOeHx/npbHJ6PxgOS4+lYtQ8YD5ZYNC5wlK6GL+cZDdVG7rd7JlMGwCV8VLcICqo6JqGPSNV33jBczX5pWbG7POuu8wicULsSTtPt2VARiNhHYK8f8xwufwgs3H+Ul2481qEwdgL+cVu01LFjq1razOR84uo3f3b+TV5x6kJkMmPkUCLFvk2qw1MLizlzONzk3OGgMGAiM3fvVmFItp2NUrGq4lt+9dDvnZ9utNo5/91VrksoaOl/cM1dJKFEiikhw0dtEcftp14BpjpJogNQPZalJoC+/oTgl+FQZ7C30jSwZJ81aN15sclDFWLtjrm1nE3sw5dWf95Jj78F1kxOoa058YG9bvuKPfTZ2TRi5EGY5FRADfmM1DsGWEXFZon8VBZdqdH9E32u0IxRim4LNDemhIduz0NAYxEA+T6h4PRd0LmgRVv/5NGF+lJJPM1zZnoCFWZnx4JVT7M8yZkXCYZ6Su4TuqBD2ixFXijGVX1SwnVbJSjhGfVkzlzJ3lrlLKJyhUmHfbQTOmdh2qTYaMNL5hMrT4dwH1ZCjarl6dFAItfGjCrm3HFZjHpttcVhk7OajJtPpuIyl84fbrcrcQZyzHBxtMJ0PmOUZR9MRzll8JdGA6ZH68LiSXUdsp8s8HfEYbyGZQjoP/x4nyTzkRvjsmDgXVUya8Cf/8pcz2jimfO11lLoSbt/naXl8kqSWL//6zwgxT31EJkQdYUBTwQ9WodheuhDA1XNjPTm5RfakT5T5TVBuB0PHDxbRbBrRgV5pTbZlZblycbupuhxEOKoy9osB0yrhqEzZzYdUalbiUX7/6FY+dHQzzktEaYXDYtDhoArdN3xo/xYS43jW9iW20jmnB1Pu2t7jkfJUZNANx8xczV/T1jWLvnmEw3Lh3l5cVogBrFm5Fdivhty2fcizT11inOQsrIjldpdlSYcpFPOEYpZSFZYqTyjnGeU8I58m+LyHa6M5useAaZ1mDYME1QiqVEnmiq00LKp6g5UUqZTssMJMXVjArQv+zRI2zmzwtj/7xcdc+/WVk6Zrbigk5vZnnuObvuuL+Kd/+z/WwSOLjdYgIhjn8HPQ7XRFsQgw3PXMzxi0lSIpDrIDUAvlGFxd1LQ+KH6atbmH5MAGV5MomIjQtFbvKgpjh/qgKNQLZS54daTZwtfhVdifb4Tj4luwkRWkiaOKRQxT65iWgxCEG1EWp4ZT6ZRbhkcN70zTXjlsMfMCnpASbaGIGRZdY6lfal7M9l65sxwUQQFaUbbTGUZC0UuvhsNqQOVNMziVoAztkvVwZTpkXkVfHQavgThuNuvjdQj31lVCX5HOdhzMOjFlJB+rH7vQBGUns6XFVFzYdpsLBdpsFX9NWju1DWvnMQp3Pudm3vhU8jUsyUnzU9/o8rZv/wL+yy+9n/OH85YukIVOiQSKaqV3MmvTB3R+95AeAV7xqTQheoqSn2FlWamD+K4KIdB8JuhQF3pp+Z1XYT7NyGcpt9yxS5LWL0ZYUDjXPUFbjYbXWHjfwR28/+B2EnHszjdIxPHqm+7jtvFBjFmxvPvyM9ktNrDiuPdgUdUyMxXPP32BwiekplzwYF3FwGhnJS3Lo/kOqTgET6kpRmBnkGM44KN753qPaV9fzSHVFu9kLaqr3uK99Gi/axAFO2v+XBwdF8vD/Wub6bPL+eLYSiNboXZ1DYAIf+qH3srZW3YeXz+fhJw0XXNDGTEAX/mNn8PP/dSvcen8YcsID8pFACrFb9lF7MqyIaPBx6i+ZXCwgPKyCZQKVR2k1veei0JST4gSfJkaW2rXP5lbZNzNx3OFJUnr1EftlL2oTzSvbIc/pvQWg+fMyDOtElxcQe2VG+yVY1JxbCVzzg2nTMo0GjDtTitzn7JhcjyGgyoQ2j1eKVzIIqrbdirsFmOGtmRgXeSPgLxKyBLXuJsqtVQ+EPvlZcLebEzpl8j6IllUv4R7K/Mk6Oz2ofV4diB5DZ11n7uUkB4sPUYFnGKngRLeS3ie3rAomrmkb5JJFWOsQgNuYEgOy+ALA8QtVu6f8ul3X8stvX7yNOJyXcVaw/d831v4c3/xX1MWrrNibtsOUscxLImqLviKdHFgqEYi0Sipd14kFaxIF0AIi6+2TdA7ZALScLg35vRNR8c0GFGlVTWJU+EwH0cXcsL/vPBcUhPqm00bGoSaG2pxcOET7js4w3NOXW6d4eri1GDV9cTORYRpCd4QCUUZ+2RBE0GDKq+cr+w3YJr2y/5SJUora7EniyyZxMSQ5Q6VoSxFsRni8JpksL6b7xWbL9c0iOu3FasYXvgpT12JgV45YbrmhnInQVAuP/LP3o5JbJg8TA+Uaw2mXL3TSiC1qw2e2nCpV0O1vrFzyHbBTunlgnA1bUltrzTliNqKLgSY9h2/zA7ZSUtE45wonc9RMaRwtgMB10eUmnCl3GC3GLFXLYyM9j4Q4k0gZBrtFcNjyZ1UIXch26ne76gcNNucr0sOhEKW0zJtrsgjTIpB4+4qKsPDezs8tHeai5OtJQMmrmgjJ87a/kCA02ueBm19KkIwb76UPh0/fS4iIRq0rbpKCqST6B5sapOELabwmKIOxnMk0xLrCC6symEqh8RgPWOEb/g/37D+5l5vUZ507aSnZVVe8fJn8mVf8opeyL/99pq5rkAu0h3UEW2BatjsEN+/mDHXw0O1fDJFYT3b/MpBXc6q1caba+hBNn1DdrfYWPqEactN1G1l8f2oXOiW0idXJZEL+/W7ZytvmJerrnMgcm61uq1QVUJeWIrS4pxFW0ZWh4Dvan3qyS7rniy6AYPCi52tDZjVY42GecmNDH4gVO3LrW9Q5JwaXC6auUiNhEy21tq4LS/+lDs5d/P2VS7mOsoJ1DU3HBIDoWDbHc88x4P3XuzfwQQFYXOPS01jqlWZ4LLVFXbtElCiQVJXMi7B7kG5EVZQUlveS9QJepxR72TB7gkN2tBngAMY0/8mKMLl6YjNYdG7HULJgvU8s6GNeZVwfraF4rlzfMjAVk3mKLIonjZ3CVMXAu3GtiAxnlIt8yphWi6C9FLj2EhyLs+3GKSOjTTH+eA8yqsEFC4ebca9O7hXS8LvZWFXeGLCvdJAMuUl0H83hFOt++oEW5jQspPFqjdOFP13JbbXBAIrPpFQTkBp+ICSicPOHEYVKRymTvEX0FEK8yqkQQLDjYy//o/fxulzW71nfCpE4MQF232yyBe/6WW86z/8LnledX5v3+1k7nEquKFZvOKm/42r6swjHxZLEA2hI0hymN4cY/c0xFDoMnfmNRkwoYci2mS8SLMwWmpO1ny/pvfpGF2jwvn5JtMqFFQ8Nw4riUbXLJ3PY5i6lJENJTucF+7ZPcuV6UZ0lyt37eyykeXcu3uWO7YPkBZxqAiUpYn8MREpdiHL0FrtXKcqIealz6Neqyer/TFINQIjgUssPQjJAZi4gOq9TRIoPup5aABSAFNdnF8VKs/wYo6tF+CdEMqlGwe85FPv5Id/7G1rTvrUyEnUNTekEQPwR771dfzd7/058lZqmUIIsosiHpIIy3lANxOMClqxsGzbUK4hcr5Eyz3+nE7CCirEtsTG2pb0GnIqpVYei3OhUE7TuBhQxjvrjZJlmZYZ1nhGWbWiI70XruRjNpISY/oMhdDPB6encAgGzwNHp9gZzLCiXJptkruQQriVzTk1WKRaTt0ArZSiskzKxUos8Ltk7M+DVTet4LDIyGxwlxXOcjQ/fuWmGjKOfCW4IgnKIO0acuoFn5uFEbncloLMorFSu4FqhI0QuGvKfqOxg5SJ4AZKGh9JUz+p5mhwvjF4O/0bpgjwx7/9Dbzlj352f7DeUyxPB/A+NfKcZ9/Ms+6+iY9+7DxV1b/AECDJlSQP7g2XCtXmKrKgBtwwvBthwlvEXIRKx8roYshMEgS8Up56gh1XQa+kHOydxs0t2y/YJdlsKb6ryGQyQLK+BUX4HFdBw+CZVEMmVYqqUHrLw4fbjJIS5w2zKgT6WvHcNJ4wSoOB6NRyWBoScTy8d5ors1GIy4to8D27dfyL8KFLQzJbYuIM5hwdA6beL/RXG91dFRZfmMXicvk6as6XTYfZ77qUFEXFkx5Zqs2wX7kNyQzM/BhwR5eYmo1QbUA2XTrCysKDENPC2lej8WEkWcK/+Nk/xZmzm3wi5KTpmhvOnVTL6974Ur7pT38+443BwnNgBV0zuhaTkLYqDwfkpeZh82YNPELIxa/bsTM6b2wflbjGWVRFm4EfrCzBVxbvLOpWqcOXA+/aUjnD3nRM5Uyn2qxX2J2NOZiPqBpku/2mKUVluOfwHNMqpXAJc5dxVA545OgUDx2eagJ9FcNBMeLSbNww6YdsqFAuoGlRiTBvu3RCYNit4grG+Xpl1C/qIT8cUEwyqjxy/UeDRasQa+QLg+YGmSXBF10X6mzuJ5gpZNNFOr248IySo+AS9EmP6tYu8V1zUcsD1CumjA/fGnRg8W2isojIeK9kw+wTYsCgNKRZfZ+n5cnJ3/yBr+VVn/YsjJGup1JWa7IrIa6q/T0Oe6Y3C3WsVTCMu++KINhiMXE2xUl1sZ1yDZK8LAp231LuDvGzlIPfP9XZuRsz0jpMYTZPOTjaZHKwKENSb/Mq5KVdyVZqX+0gLbjUip0bJI5RWlGpZVpljZvKqeX8ZItZdBd5H7KeLk42uDIbU/O5LPrYdm8JhUsXbqtqfbag90KVG2Z7Q8ppissjLFIaKEzIKq0Ecgm/5QKp4rcr1MQafUbRDcfwspDUzLwaYmDSo5A0sEBVVvtgl+ii+sL/bO6D66iOk1zaXn8vS8f2zohPiJxAXXPDIjEAX/H1n8mXfs2r+Qc//C7+y398L0V8o6X0aGoayzX8GEmmJBgqdTXihiblWhy3UWxO4BiJ75GoYHKlXTBVPOgoQpINMCIrb+Z8mpENK2wSESMfiKEGmYvfoSwSisoiothEuXC4xSgtGSQVlQ81mTQyYs7KDNIiFPVG8SocFkP250MqlzTjyxpPYn0wtBC69lsgiMqKCmuUwlu8mk4si9dagbdWKip4J+TektiK0h2ThoxSzLIYYF1j8IvzaxvKbZVwqZlQ67pVokIyW3B0SBlrYdXHulAjCUcHPTN5CLBblqzs9iU9rCLvDM0N0sSg6ldg1Ze87CmqUn0tcsJWR59MsrM94gf+xtdw8eIB3/KtP85eMaccWDCQHvkOV5Mm4EerhnujG1SD+3INWEpHZQnZvlJs08TdyVyQXPEbrf3moJFXppbs8qIMB4Cfp+wfDRkPChSD98JknrG9MSeNAbJFaZlOB0xmAZquqoSDvTFZViIm6BKxoeNlBSZdXLjEavbDtCRtVwqRZqSSGE9qHaVbTDsKXJyO2UhLKm+YlhnOrxqH66SqhCTRJQ6YVSkmbeXMgutF6XcbVcBA8cOysUTtREhn4eJMocF4KWjuczoJC1bM4nmLU+y8S76JKkkekjqaYreVZ3Cl6OiZdbK9MyJJnuJSJsfJCdM1N7QRA4HT4U//uS/hzE1b/ORP/k8gZB85PGS241NMZiGtsbYqBMW6OrsoGB6V1d6XSKMvtOaMSeZgSqWMJTiMFyQWmVQAY8JEnMSyASVIzcZvQQexDpM3FLMMMR6b+Uitb6mqBBFPPuuy6lWlMhiVzMqMWZk1CE8aXTCHxZDd+YiBcVTeUGkoIOSWsoFqhCRN1hd5OywGDJJFxoARxYXgmVg8bSFFYSnyxes0m3mGozIoMYWuggm/+XI5wFdbBl+za6cukpkDIvhBsPyTqWBaq8JldKVZHFnFVgv3UyAXi+9B6UlnSiAaVp55x1keuu8SFB5T9dwbEbwVbMuIue2OUzznBbf13senXOLK/ml5auWmm7b5Rz/6jfzNH/73/NZD50GEctsglSI+1NPSpD+OwpawcV4bpKbYju6Mlq5RWuVRavEw2JOA6Eow2oUEvaIBQXaAEdQqfhAMJJOvZtb4kWc6HzGdd1fwl/ZSssRRVUJZNBkKTY/UG/J59LeLZ7AR3PeqQl4GitrRoGBrUHTqvC3fBSVka2VLRkyNyOy3dEf/HN4/sTtvccX67RDQ3JWmNPZpnSXpCYiMVTBKesUwfGTRx+GVek9pHRUTRooQ3wTEG7J4oMlESeYRiUsMpzeHXNmbks7cVY2DevPbv/3zj9/xqZQTqGtuWHdSW6w1vO1PvI6Xvfyu5jfjQ9EsOwsfKR3GKdm+D6v12vcY8/cFkKrObln4UZQ4WU5ithI0qKbxEizxNtyr8VWW+FJXBlMaDMEPK84ghWAObciqKQXmBi1MGFiNm0iiASOdj3qhKrtWeJFbihgUO52nVM6yNx1TuJAZUEb2264ILqI+faIqzKqUWZkG4qtIfqUqlJVweDjk8GDE0eGA2Swhn3eJ87w3zGdZKILZvaUB3l1H3AUdVxEzE7K8mt8lZI9dEdJ9wbTh9fq4PjHxmfuwk8vCxGNyz+BQsVXdc+H+hy7jnWLnx4TbNwVWlLNnNvixf/kn1+/7cZCTljHwySq333aKH/nBr1vMtApqBZ+aBWdM6x2UuE9tn2sC5U6NyC72byjvoyu0huYbF6kGY12acRyzH6M7U7xgZwabd1V6dIbgbm7FDrbOB0JeJNGA6UMzFhfTjS0NumBnNG8MmM41L8lx2MKybhKBJGn50Zp+LA/wfvSlrWvc3FLNl1K6hGbm07UKQzC5ML43Yet9GcOHk9a9rw2WfoO1ZttomvYhgy3bVdJpCE0QhMopV/ZnILLC3tu+6va/b/n61/BFX/KyNX3++MhJ0zXXhMSIyBuBv08A5P+pqv7g0vbvAr6FAMJdBL5ZVe+/zn29qpw5s9ms5GvDpBZTKl49DG00cEALxaWCH0RFIZDMwRcRFjaA0eZ1VQ1BXNVGOAce7CQYPi7Gr0rkCPADOu4laCkkAm25mbS58A0uN8hOiUl0rXEBgisNaeYagwAMZSEY8cwmA0waSPbKeSCTy0YlSdLfYB+qXadQgyF3htwtYmFcpRwdLSpZqwrVkgum3uY9zCYZPk8Q65G0Lict+KI2xDQEDCiRP0OhkPBpKwoN99nOWFUf17IwUEE0GCtoKEFhC7DFkvLQSAkusr5AZEyFVBGe/bxb+cf//E98YmJhogicuGC7JyI3ip4ZZAnGCN4dc9NbkITUxnsK5UYwPJZHTG3smFhDxxYhk8lnPc1G1BgXdJZP6bhKl9EBFUVyg45cz8tc65CriWKzbtCDqKe8MOTg4gaqMDo7Y+uOQ2RJ1zRzukLZQ7bXJ4n1VJGMbpU4cFlrxb/nFq1ABh41ind1mvjiMHFErh4ahu/leyIFJAfC8HJYWD4uwjtdbk4Y7np6k069BqRXwQ0sydStHccC/O0fexsvfcVd/Tt8nOQk6pqrGjEiYoEfBb4AeAj4TRF5p6p+oLXb7wCvUtWpiPwfwN8C/vBT0eHj5PnPv43/9ksf6J3ThFCzwqlHSoNasCoYp+QxRa4W40FL0OGyQoi8DtUC9jUqkIffFm5ZxcaCbsU23Uympq2wrJFCglspAS0N/iDDZdHFk7DWPapKQGWKReOzabCafNV1HeXTDEYFSV/tFYV5njLIQvwLQF5aZvE3VLCJb1ZhG3qWI+ZLjUjTp24qo+AnCVQG9Uk0VBQZuxDD48EcxcA6wjPwY4ccGMikWWhJBel+jbisUSlRr6lEBS/dbaagWUp2/dOtv72SzPzityQiVaVfOad42Nge8ffe8Y2fUAMGiNd0wjTL45QbSc8A7GwO2d2f9W+MUbO1i6mGKdxg8TesvKLN9/rfZAZFzUkVV/bGLVa89c/GhQw8PyAYLMvTqAr2fIpeTvE3lbCzFIHpoZcJu9U7m7kmbq++RB4aczS1TSTz5LEN8r0hN730QjcrM+7vVChcd8oJ7vNAPmesYqw2LnIrNrqvF/uuXdx58Fey5nwAMq6aelNmKqFcTGzbD5XilAsLqJZ+Tq8I2a5B4mJnrQHja/h+dbss2YqagC65uU3hsPPuxVRDSzJzzX4NogN8yVe88hNuwAAnUtdcCxLzauCjqnoPgIj8FPDlQKNcVPWXW/v/OvAN17OT1yqv/4IX8xPv+OVArb9mYrG5YmO2STUU/ND0vpC6jleBMCF6E+Mq6udZBsMmpGvXELCSHhDSJHu7E1dkXsOgSQVK0ExCFoLxq6nbGiDQIk9oh7irSuv76iqlzFOStBXJGrVBCOITylmwylShyi0+TygIvnARZbBRUM0GHNg5j8sJmbfIpojp7fsJkihSmhZHCwHZOrSYXGCuAc1KITmUa1sRORrl0wniLQIrb7yYUIW6iPe8JTb33ZWUBC2iiSCt2Jhn3XWOL3nzK3jjl76c0ehxVwJ9auRk6ZUnIjeMngH46je+gp/4mV/vT7uOs63Nw4zpLbih7RZ+XD6k70eloQBo3EtLz7k+zjjC2GoqaXebgRBcai6koU7cyDdWUPZoSnFLD5mSQjIMyHAbDREhuMAnXR2EGlwO8ysjRudmnXZmZULZ1GoL4p0wuTzEFYsbY1OHzUrc0QBzJu8YQ9BvyKiCzpdqHSmwn2AV/MCT7duOO8jMYfRwgp2BHyj5OY8aggGjsoLkd07mA4Fmg8i3fD4dTiqvjB8pcQMTYvkSgssRsPNV95HPLEVmSGZVuNCtlNe+5Jm85a2fyUtffgIMmFpOmK65FiPmDuDB1veHgNccs/8fB/5D3wYReTvwdoC77rr+D+XcTdv8+b/6FfyN7/13IfSh5y1sVwVI5hpooEtYSaTR/gY0brOldCc8IhpjaRUACy4MSqBeUbUb0mYvtC4IJ4Rgvcog3sB4aaatgCKB7W5F2hqlWCfeB/dOff1lbhfKTUBMMISKoxRqyLdRXML8cBgMjmE4Vx/LJy1FB6ATgyyczyFTqEZdSqFJN63C6lINaCJoArY0weU3X13ZrIgS45wAE7LHtIy+52Vl5D3ZoXbg3UAlvuY8Io0hORgkvOzlz+Rv/uDXHtebj78oyHGujRtDrpuegade13zDl7+a937oEX7jPfetboyr1baB4UsHkrRggvb+rH/Bo+toYVjTtLGM3pgC3DqN3izvwVxJ8HcUYTzvG8zUkOxaqtNdhCa5YDE3O2TbrbY368+OUW/ID7PGiFGFvYNhDHgWxASDyFXC4WObNHBrFFckuDxBnPbyBdYojdIyaDzoYctCVEgOWRgtPX0VFuPa5sLoYWnIMev7pcu6I8rosoZnmgh+qCGuUZevBOzck+SQFFHZlBLcXMfMuj4zzHZGDLKEH/iuN/OZr3jW+p0/EXICdc11zU4SkW8AXgV8bt92VX0H8A6AV73qVU/JnfhDr38RP3x6g+/5rn+Fcy34ExoCIVjogmTiw13wghsv2pGYYte7PPGA1xU3ghAMmbYiERXsXEPYR9JtRurEoPo0ClIIyZFFMxAn6FGK3/CQakgFrGr0xjWjRgiQ7NWkLJNA1qeCuxL4GholmHhko1wxYDpigNLCoKvUVAkuIRVIfOjnLEHaVaclHN+m+Mcv+BMaQ66KPv7aMKmIhTaPuTCF7DAYMU0Wh5VV360qyZHGwLq2RMRFVle6tdxy6w5vecun8+Vf8cpjOvKJkz9IAbxX0zPw1OuaNLH83b/4Fv7ij/w8v/KbH11BB2yr7IkASRGYn8FQjSXwgTSdbe3Y+qlhCV+W9uq/JQYgD4ywK2Cs1H9KwzVj7h9g5uHvdDfB7hv8ZvDF2okBByopuuU6TakCqfbbXuJJhmHh5T3sH4zZPxx3LK5sVOA7iQBLfQXwgs4sDF0XjVFw+xky8GA9mhv0KFspE6AJIej/KlKP+ZpcsFmIxXiZzjWqYuba8IIN9pTZubBwNdUSTuw8G4/5VVezp6lavk5e87K7+eav/kxe+vzbr9r/T4ScNF1zLUbMw0CbAOPO+FtHROTzgb8EfK6q5svbP57yspffxQ/+yFv5gb/281zZnQDRPWRXX+okV7RSLIrOoNwIpGlegIwAvdJCTTUE3a1d8fQoF1EhmRCs8EEcIEQ+kwZoEVwVFYMIEvkHFDD7FjdUNGud49IgDG7RYOBYh1Qm9HO8NEtr2M8XEgb9LFgF0oJUtDLo/gBS3+8uqhWnFygMmrbOUYXfQNDCIpMQertSh1Ii6hF/rGm6lwOepYr3JtpproaaOgE38V8Hw8stxEUlxDT5ECcgdXwCwSBKlsN56uYkrKyk6FKUo3DzLdv8q5/8P/sPPCnyOHiO+uQEBNXecHoG4K9955fxo//iV/jpd/12MMI92ML3KvrRlQj3XYH5KUPZZvWtAcsWtKISDfNj3FC1aGs8rLigO8MmLIbksQSTm47RbrzBHHQHvxym6PsS1PqgG4YezlRwJaF2bS8WJmFhJ1sl02nG4WTIbD5YQZqKWRbj4I4xMgT8XobZKaAuousEv59BbtFZGOMrFxi/akJAwK8m0v5TFn2VYJzUhgwoyVQZHLTuFzC+BMVY8UM6rr/hxchi2rPQxfdnIgnwF/70m/jiz3/pNXT8EyhPUtdcb7kWI+Y3geeJyLMISuWtwNe3dxCRVwD/BHijql647r18AvKKV97Nv/m57+Ab/9g/4YGHLsfMl9VXp2MpO0hmHj+0GFVcJLGrianCP7K2/nO9emq+AJSQluCGgAo2V9woTtIlmJg+rNEN4uuA1rp/8YudQ1VH/Tcrh7AHLiig+A2f+uC+qqUSyBN8tWC1DQO1q+m0xmnXXlx9n8yCIEqhDgqUQkgOTKeNjvHVuh7R1gqI7nbx2nHtmIrA79PuW0RqskM6LiOJ/xONNWjiCiuZryJnK5dY3/oWMobAX/qeLzv2uE+41KjeE5QTElR7Q+qZxBq+422v50v/0Et4+3f+JFXZT1u6WM2Hf4b7HjcwC14Z35rz4nuXEIrNur4aP9B5TzvgzDH2QY142sO066Y6RsQL4i2UFp2CTmIAbZ0oEI0FTZTqjOPi7s6ai2/9YImrkzU9iO5xvz+A/fYFSlcXrTv2GseDtz2M69E4CxBaPJ8PBsxybwUYTAl1kAA7caH22jHS6Jgl2dke3gAGzMlDYq4aoqmqFfDtwH8CPgj8tKq+X0T+moi8Oe72w8Am8G9E5D0i8s6nrMePU772D7+GQRpttZYFWf/VjksTwsrHzj3pXBlcdmSHgZkxPYTsiEU+fxXbi222qbmJdOF23gr+ra10Few0BJbZXEI8SOSnuSr8WU/syy+R1v2PycdHCbJnkYmBuYHKgG8ZMMvZO522WsbJys0KfbBHQrJvMRMDs2BE4SDZj0Fxrf/sPBpbGlxF1yTaNVhEI4ldvK8mVos1cExxx64ExaGsLZStgVtIW98RuOvOM7z0413q/nGKEBCndZ9rkCaoVlULoA6qbURVf1lVa6akXycgJddNbnQ98+y7b+IZt52+9gMU0onrfA/PcfGvxvFWb2/+1cX+nXHCtcXcP66U4eVjLdRpmFIIOnboRkV5c0l16yIb6AlLvGZBsDMYnBcG5w122rLMrsFa62Pj7hNZYxAJLU4eVdLDa9Mzao+3r9bJIE14+ze/7gkc+fGV66BrrrtcU0yMqr4LeNfSb3+l9fcnkELweHnTF7+Me++9yDt//rc6ZXcguA960Zl6v2SJkURDVPp8SzG5gSLCiK2x1FDcx/3VRFSgxS8jXvon32V+p+V+tQb4cn/rFYrJwVamuQhNlfJUDL6Jg1Liqm8FhdV+NGYoCfPcYSpID2yDBJkYHyRVdASZMIiXU8pNQUCDai1b6wYTjMJlN5GZB7eP2hgfEw8VpwveFs8CiTpOoqFp8sDWrCmQL6jQw22KadcqiIHxMBTo3Noa8gN//as/8SnU1yBXCbY7JyLvbn1/R4wZqeW6BtU+UbmR9YyI8EPf99V891/5aR5+ZBd3DcGPbQRxeTjW3/1w6cf473FvpFSsunKX5QnON3WVEKkCk7BcrheIMLvTUd7kn3DbAHeMt3h074jBRSHbW/QzOxCqLMQW+TRw6BSn6MYZQnDnTbnmPmQHAYmpBnTddhqzFwVMHoyYY3CjxWHLOzQshtJ1w0gwXJLEUFWOz3/9i3jTF33qtXX6Eyyf1IG9J1FEhG/79i/g6//IZ3HPPRfY2R7xN/7WL3DvQ5dX9q3RSmD9ih1IYvCuOAK6IIq3sjhGoCZNC6H4AZGpCazWt60hfXvUHQnWgcwCxb4bKW4YJ/7aUKldM2VEK2rIFaCEZC/E1BAqECyUXOt6a7RISjBqSKzFIGwnA376q97KhcmEb/hnP71wZRFh5qpuJqRwav2JCkE0IjfzAN1qFpSQ+GDcaKvgGYTf0mnslgub2oRfg/3I4wOLwo692kUX1+Qjg3MRd83jvYjnNVV4VhujjO/5ji8ChdOnN/jUT3kGpi9F4qTJ1eB1uKSqr7oep7qWoNo/qHLLzdv883/0x/nYvRfZ3ZuCKH/h+36GsuzB3wVcq8ZSn5tCIQbDt2TlObcWHRKoAIZXwGVQboaFWO/MG33knaGjynAqmCOPS0JpBE2XDo4LtGyP6I5abB89ZPFjxY2vYZKLC5CxTajiNXzpc17Aj7z+TfyJf/OzvPsj93dSotEQvygElnRTKNkBTO5s6QcP2SWCC+i40kIRiU7346KTUCagqhdhGshQx1e0mROKHRju1feu1daSkaKNP3BJllCKM6c3+L7/6yu4dOmQF73gdm69dWf1mJMoV9c1x8pTEXv3SW/E1HL69Aaf9mnPAuCb/tjn8P1/6xfIq1bwVV08UjWwxQ6OgSrniqkcLguGhXhQUaoxuBi7YWdh1VCNuum89WRebMJqDqEgOciQRcqwj0XGYsBGMgsMnLX2UQkGSTWuV3bLKE0o7+4zafy8QixYmdAMdqniOW3Ct77k0/h3v/t+9q/Myauct/6df8VrX3A3iTO4TsBLfY72+cLvi5WgkM6CwsMCZV23KEpNKuWjm8ittkVMP8+O6FQTDwSD9fOrj4rPsdTG558d+khQGF2BiWAKZbnMnDHCaz/r+Z/Y4mpPSJ40AdUNGVR7EkVEeO6zb26+P/+5t/KB33+kM4d5AkeVCkgVayD1IcKqDC55/FAoR/H9L5VqKFSR+RcfXN3GgRto40ZJZsHgn51Vqq1+PaYuFCFMjwgxH3vRoCdMDIM9DYkNEhjJy7FAKiFzsg8NUsguGmbPvLZyxreONnnF+Fb+x8fuw0+UX3roI7zpPY/x/DNnMSIr8aMrTMReGVyCWUziER9i5MrtaIz09A8f0Jd2uZh6oylC7KKdw3CvxmrDcYMDFoulJV1DqZCGZ5nMfLNlHcqWppYvfMNLeOlLTrabul+euK55qmLv/sAYMW353Ne+kP39Ge/48V9hmpf4QCeJbQjNFJtDOVbceIlhsqauj4iBt5GVk/C9GgWlFKBICZb+koIylZLEAbPc9mAKMpEuLCk0RFlCQEDa869WYWVSbh9z0R5MLiRTpdoEsRKuo/axhcsmmSn/z3/+rRDXAziUo7LgP7znw+EyxjQIxlpCqHg+TIz1qbq/J9OgRFTCitGndTXYVRFV0v1o4ERFU7fnk4juJIoa0xiiZh7qtuGU7MBhYikIseCygPyEkgJ10LaQpZa//n99xQ1owBCMwCcH8d6QQbU3gvzQX/1qfvDvvYtf+82P4X2gWii2DIjEVNswiKohq4saD8N9hQNtvMEGQQ8Vf0U5uj3UEbMumON9Y2h0WTkcEdCJWiLScOpjGsZCDwxU/5TEBYctgm7Id4B5/6gPteLCJZkpyATczb27QmXYe3jK/yjubUL8CjwPXtnnkd0DZARmsubY1vmSmTbowOhCuD9JDmUSUd1o4PmEpljvqgET2rKlMthTTA/aoPG+NccJUGnQ76okR35BkBoXmbp8fDzsWXffxNu+4bOPv7iTKk9O1zwlhJZ/II0YgDd/6Sv4kje9jP39Kffdd4k/+93/78o+6dTjM48mdf6jhomvWgwCceAyBRP2SWbgTEABdKD0hdqJCHamuEH3ZWgKv9kudbjWLqDaZ9s28euvGhXIEnFl6KOQ7itpDI5LZsr8JhaQa1yhJNOWP3kJhVYXUJBBHn3So8WhvcZHdJ/ZcrHd5MHQQ2M9KgWZK5pHSnbtryqbzMM9SeZ04gHqEhCahyyophCZKmbuGRz4zu0K2WcaGJHrziskRviJH/sm7rzjTM+V3CDyJILqVLUSkTqo1gI/XgfVAu9W1XfSDaoFeEBV37y20acFCHFV3/+Xv4rprGA+L/muv/2zfPDeCyseCZtrWNS0UOHBvmuQAIUwucY50lTBQLFzKIeKpP0+atGAPBQ7wWAhup63HtQmPq3Tl/p/yzqEcE5b1Kzkq6IE4rfBAwmmDPGEJVWIk2m3N4PBYwbj+jM9fRkWkR0rYM1qSQWy/fAxkUjT5JAopJPFYbYEcwWqdKndpiENyQKtDnVPqQ2SbGLpkiYo2NEsZANQs+zCi6iOwItfeDv/8Ee+4cZwU6+T43XNcfF3T0ns3R9YIwZC9eszZzb5+3/vP63dJzlyVJsSiacUW2h0f8QHaYKPtkFVVElqpKAHbanFOBjsKm4QUJekiAZRrchaIhBSMOsfet6hRlmdah2k9TWA8YuBJSqMLgSI2KUxyyciHFKy+lboItpfoMm8KjbopnK3+pJMV803GyuEL8PC4hWdK2TxZC2O82Si2FrZLSE/tYIXr2ihiDFI4YPyb7md2vsrwdWk0e03GqR81Ze/8sY2YODJupNu6KDaG0HGo4zxKOPD91/sjX8JSKmiSVjppke+iddo9oGF+xvACeVms4F19Y+Gl0P8SDUOaEO2Hyfgx1M+JPbBFtoUzF3dHsqK2GLRj/QgwU4UtxWKMtrJaqXttpg86I76fCs6b+nUxgvDpfBGWTJg2v1Py7h2kaV7SkCz2/suX1uAmIgcXrFPGsjvVvRSu+8iGCsMsoQ/+x1vurENGK6qa65L/N3jib37A23E1LL2kahiKsiOKqphgC3EdXFCccEqd6kH0625Yepso+V3VjUwenowLrpIopHihtf4gi912kR2W3sRylj9VqqADNl5RDijb1vT0KUkD6UXQgZQhLdl9X7IUuxL/W92pLgM3Fg6I9fOWvqxdf3Sk1lVi60UMxX8GFwS7mk6j4y+QuMSWifZkeKSisFhP5FUcy2xT2dPbXDTmU2+5qs+nc/73Bcdc8QNIieMgOppWSNrHpOoMjhYclesOVwIaKgfsLLg6WkZEiWdwuBwcfLjEhfWidLUeuzd5lJCLOGyoeEEs9sps722kWTWv/DonOjJ2ABa64els2jIXjT5MeNIJKDkLYqKq+maJDGcObvJS198B2/7+s/irjvPPonOnxB54rrmKYm9e9qIAb7ma17N//zVD/dvjEF3pvIh8rwnDkQVsiMfiKkGplEsQihrUG0usWDWiIcEA6OBieM2TbSjnBTtVDTtFl0LB9cp2+JhcNQcGFKyY6ZUDUNXIxarKQ/DXci3Pa0y3N3+riHFEsKKx5ZRgUWou9nXe5IJpLPQl3IstEs/dNpSsD6gRn0idBehq8cr2ZHHFL52SQe0xaxq3TS1/My/+Lb+hm5ACc/3aSPmRpAXPedW3v/RR7s/1m5hbU3ax0zW5RC8lf7B0PsaCD5d0OWvWgbLDUijV5b7sG6R5YagVkmPlMGuQ60wP2tX948FFPv0QFOGZaX33d71bTC5Z+ORguzQ4axw8LxR//1ZVwpbwj2Sq02ZtX5rNRHi6/of11d+2Sv5trd/3lUavXHkSeqapyT27gnY45988tKXPoPXvvb53R9ri702SGIA11pRJcmVZN6NzDcO0qNQ0dYWSjKL7LFxu7SVlWqI41BCRg7hX3GQTJT0QEM11Bibg2owhtYRDbmQWmyL0A/jQzXnLGYjoAHhSGbKxmPBxz687LEz7Vyrrtd4wXiqz1HHCsX+DfYIxRbjudNJTztaWxyhtkxy5DCF797rWIlN0NXfvZLtVpjck8x9MxEYQiZHX1GpN7z+kwB5WRbv13+elhMjP/Sdb2aQra4d5doSeuLOrXH2OI5p/yuqmGnV6JF6Tb2gRAAAHdNJREFULNlZHHtt0sv4qYYBOV4+r0owYLbvqTj9+yUbj3o2H3ace2/B8GId1a+YqWfnY8qpjyo7H1U27/ER2damnWOsq9YJW/+qYuaO0x+YMdiNXFa5Mrhc9t8fVUyhbN43Z+OhPFxvzz59pbJN7kmmyool1RccTUBhvvANL7n69dxo8gR1zVNFaPk0EhPle7/vLfzO79zHT//r38B75QO/9xDTaRGosS2IBLTjOBg2+IxZ8LhAcB3NPclcYmZM+F1ZQi3i4FIRhpd9SMFMwkRs5xFCTkK2gE4XdNniFTtR8rMhOyeZBWPJG6hGZsUNU+uJZA5V1jI8mn7AYF8py0DOp3XSzzIM0gpuM1WAmW1OKIZWRqMtZmjVYhTszOOGLfILBSmDAWiLYNyZMmR4lVsRgp45hgfBN1ecShuOG1Mo2X4VXHo9CBkEd1+dhi0Cdz3jLN/2f3yShXco10yz/rR8YuXcqU3+yzu+jX/+7/83v/X+BxlmCb/1/gcodanI4jW01Qn2p+eghXJpXMUQxkS2X5IclbiBodoKAyqZVJi5Z37LADdKltw4yuhChc0d+88fYeeO0fkSW3iO7kgxhWG46xeBsfHgnXsd+WmLJkJShEUVELmbYOt+ZXZOqMaRLDNe/LV4jKTyjM6XDC9VAc1uycajJcV2EovHtvUWbD6Yk049Cgx2K47uzCh2EqRUzMSRTj3VQHBbCxeYKXQ9C3B0M/kaDSfQNXzzH3stz3vOLddwJTeQPEld81TE3j1txLTkFa+4m1e84m4A/tGP/SL/7md+E3WRwCiOkjolty3STr2DYPgkgpSe0WGXWrzYtlQjIZ1Eq15CZk41ClVjSUOwWjaNBywObZ0vICpSBgPJFh6/FwJga9ePIaQv94kQM368rtQNaeJdppBNNfCtVDC72QQ3V6tDdQVqokISahKqcF19XA1JGe5LDTOLhMyMwb7vLhZdgIhNGQyV+vfhpTIW0OypUt1znYHAz/NVb30Nn/UZz+XlL7vrhmDgfbwiTyMuN4xkacK3fNVn8S1fBWXleNO3/hhl5SNHSXeM0Z1/wyJKFpFlq1wqLV2hYArPYLcKlAYG3NBgSo9EAr4k9yT5YnZWgjHjRklngZUcVaT7JbZQRo8WbD5aNsaG+JL5mbST2dMcKpDte/JThuxodcDaEjYfVVSVbK+gHBumd2ZrXGXx+LgQHD9aMrpUrXV1n/rIlIO7hriNyDKuMH44GDD1PihsPFzgDQx2PUnUh2mu2NIFl3T7fjcHLp8wxB6dObXB1775VbzhdS/m5pu2ena88eWk6ZqnjZg18o3f9Id433sf5N57L1LkFV4CGhOqYXf3bceMiCrZoaMaetLpapBpduCwUxb8MRoUl80d5YbhuLBUbWmubN9j8wXsmU5jZkM7Hmfu8NlySdu6jbhPHcjmY1p4TbzlPOlRIIlDwDzqmZ8JKyqJ1rjEvgwue4rTMfC55trpq2sQf09zZbjvYybGoi/t3YXg5ho4xbU2NYbJNdohApw9s8m3/ck3XNsBN6T0wN9Pyw0haWL5W3/mK/juH/53lJWjNC7Er7mAZHZAUlmKSVlCSNtjpC6lMT6/WACIB6kn8GPGT0gXDuPXFJ7RI7NOtt/mI0UnQD878hTbfn0Yj4RFU5111KXfj32vlGorxVRKeqWiPJ10eXO8kkyCq73cMjEDyR2L2BgHp+6Zo4kE5Drvhgg0XfCw/UCBX+IEw9C/4FlzoTaxfO1Xfjpf91WvPqZXN7qcPF3ztBGzRkajjB/9R9/Ie95zP7/4n3+PX/xPv0dVBTPdW2m4Y2r4EIgxKop1AXrUnuC7QJYnnQEq4dDArJsQUJ+lwF6IbhsbXDI2j3EwXpHK4wZpZ8CZwjHa98xuyVbqiyixnXk4Pj1ygTQqSjmSaNxIs1qRuTLYcxSnWhXOBLJdRzpXsqkPrMCqaGbQOnhv6VqAxm1UlyzolRjn4+d+RV+sU1x9uiVJLN/0LZ97zIk+CUSJFYGflhtRXvniZ/DOH/1WfuU3P8KP/9yv88j5fXwqeB/csjUrd68+WdNmUxVsqUpzbZ6oNSyKvC01GFFQPzAMz89XAvvbcXwK+NQw3I2knz0dyjdh5741cXu1EZYIKoLaQFGhU081No2usaWy+UjZENe5VLCFXlOykqm0IcjsGyWiCtkqbByKcK7qr3UyGqYnvwr1k5UTqGueNmKOERHhFa+4m5e//JmcPb3Bv/nXv4G1hvm8hNIFH25iFiRSlYbAt+Mb7f+ZsPoyTvFL9TdMpQwuFRgFZ8GNk6CkvIYgWMJAbJIHS08yDZP/8HLJ7KYW3W8Um0NaeKTwJLMu/pPOguJsd1UIaI+ob9iDk3lwadXbbeRZKJNICDVV3LDlhvI0wbfXImbuomWyBlquf48ZB4k1GCOUZVDOg0HCt3/HF/LGL37ZtZ3wBpZPVAXZp+X6yOZ4wJd87qfwGS97Fn/qb/4bHrl4gHeeYtnf+zhFjfROOorgRwlm1l1JqMLgoGJwUDXxf8dN4T6zjXFVL3gaTRSR5lP3+UXlyN5OdseyAIMDz/ixPLi/ikDnXy/SAsmlhsxD9yRdG3HcuGS1b+I01J5qo12xPpK1BlXFxxif5z37Zr73e97MzvboyfXnBpCTpmueNmKuQUSEb3776/mKt3w6H3j/Q1y5dMQ/+dFfpMgdFGsG0brnvM6yj4G9Pg5am7tYTyhyykRJKkWrEHNjygVKYee+qaeStNALWyobjxZUQxNcRU6RjZTs0TmixCDbpf7IGhiVuraKHJutZWc+FGdUIZ1FmLnypPs5pvSoNVRbGT4zSOGQyuNTE9Cp+En2C2zucKNkNR2zTtNsLZ6MKn/le78SBHZ3J3zKS5/B3c+6ac1D+CQT5ckr86flRMjZUxv8yx98Gx+45zEuXD7kF3/9Q/zqb3+MvFyDmhzrF4oZej2HQUBj3NhijxZumQ7iUvOh9J1CA/LSQYe03UZAZVIDZtfj0hj3ty7tebl5K9hcSfJ6IdPTB4nnr3zLaFJkViKTHFGPZim6OWi2dc4Zz7su+1IIMUU+NbQV+sYw5cf/4TfyW7/7AMNByme+6tlsbKyhMf5kkxOoa542Yh6HnDm7yef8oRcC8FmvfT4/9zPv5lf+6we4eOEQgE99+V289z0P4FwYVOp1kcReD7DCYWYF4hQ/TvHjGH2rkF6ZkkxS3MhifGCyxceAkRbfiSlcIJ1qjT1TeIwV/NCsMCqKQhpTJ60Kt2wNuaBzXFX7fJZE4//WKUgP4hUzq9B0VTEZVbKLOT41uJ0BSelJL04XsS/OYS7PUFWkct3+SkC3xFh8YoISGdTlt6MiUjDTIrAYjxIQ4bWveyGf9drnf1IG7V5d9OlU6k8iERFe8pzbeMlzbuN1n/48fusDD/L/vuvdvO8jj3IwmbOzNeJ5d9/Eb37wgf4Gopt5dLHqrpqXx4YSEZJ4jPNg1xgafadZfwUAJCZmIaqD0kM7K/Ea26/NjHVsxIg07i1jBa5MkWmx2HVWIHmJ39kIZKSd1hW1ghzDoCtKSJwANAtI7w/+1bdw2y2n+NIvPHXtF/NJIydP1zxtxDxBOff/b+/co+So6jz++VX1Y57JTB5ASEgg5EVGkIRBIpAEIUhATVyFBASFEJQgrLtxz56DoHsQVgUFFXejHHA9JogBnwc8Ai6gObAR0CAQMCKShyRB8pqZzEy/q+q3f1TN9HRPz0wnTGdqmPs5p+dUdd2u/k519bd/997fvXf8KK5ZdS7XrPInMlJVRIQXX9jOl2/+OYnOjD8dftd8LgqSdbDb00AQl2RyaEcGp6GaSFsKcTxIO4gTRyMWdnuqe74Yjdp4o6rBEqyMm1/PKUCAaMpF065fQ6H0d951PN7+ews4LnZnGisdwYtH8Ori+Twd14Oi83flqET3Z9CY7S+V0JbFHVOFF7PzxucpVsb184JyDovOnc3zG14jrfhZ7ZkcBEGedC222CP7H8U3vKiAJ4j480CoLajlB3bieN399FNOPIorP72Qs4LgcsQSsiZew+AgIjQ3Taa5aTKQ9xnX87hj7VM8/PQrvT56K+1Svd8tnDzPf3HvAMXzsNqTSDIdvCFobTVaW9XdHZQXU6RtgHvOybmAR2R3K9FMjlxjNc7YWtzRVT1ab7qabwpbWiXlYHWm/Kkt2pJoXRyvoS7/P3QtFZBz/S4e12PFygWs/cqv/FNEbbQm8DTXQ7I5qCocrqkEXUbdO33/L5GIxfvPmsHq6xYxprGu74IjgZB5jQliBomuFoA5p53ALx79Nz554Z3sf7s9/0VXhUzhcEBRIOcS29fZo2kTrFS2+4e+m5yL3ZbEbajxe1c6s35/tCWFrQ9dfdJ++2r+eU+RRBoJZuW121MAWMkcVioHB9Nkj6mHiIXlKZLI4dYE6xO4Hvb+TiKJrqGYgdaojbRbeFUR3JgdBGYOVsZFOlOQdfj9+udwXBeJxSBIjO5uznb8RUckUrRSOKCOh1gWagVJwC7gBDWA4NpMO2kCa+6/tsxP6F2MKrjvLHfCMDzo+q7blsVNK87ngnmzWP2tX5LO5nNbuuZ+Ku4i8n+stSCAsDozSDJdWInoTPkVodpg4bfuFuXiAEj972TEKgxKVLHaEnh11UQOtPvvAcT2JojtT5JrrCY9fVx3qyp2j6CkM0PV1v3YyfwkeaKgqQxefU1epILlekjGwWrrBNfj/q88DJ7ixWNQ1yNQith+C1NRENcV4ImCnXZxq236aoX62m0Xc3rz1P4+mpFBCL3GBDEVwLKED3/8dNbft4Fspms1yL77XYv3tURZ8Tw0ncFKJCAahboq7P0pvMY6v8ah6rfStKew97XjjavHa6z1X+y4WC0JrI60/x2NxQpaP7qy8CMHknh1UazWBIyuQzqykHOw9x6EmJ/NWxAw5Vz/uCp22sknv3WkIOcHbK7j97drNgeWVRjEQemJ9PCfi0Qsxo6rY+/eDj/ZuWs0lgj1o6u5/XtX9vs5jChCVjsyHBnmzJxEbXW8IIgpTtTvE/FHWZbyIDqSSDqLxqN+l0sqizbWkZ8LQbFaO7HSOXKTx0I86regJDNE3m5Dcg7saQOxCoMpT4m2pnD2J/wRQ56SneCfN751P7E9foUu7zNBqOEpks0RiUTwuhKVXQ+rpb17oEBXki018RJ5fv1fkVjExotGyDi9f6A//KFTTQDTk5B5jQliKsTHrzqbl57fymuv7CKTGWD1whIUFPc8SCT82gdA1kETKbAs7HQralto1IZMDitIurL2tKFtSb9rKOsHI/5QRhtisZLGZadz2B3+ZA6unUZq4lgHOvKGUiLQkLZOSPqtOlpbDWNGdQcwff4/xRQFMQrYUZuJk8dy+30r+OW6jTz6800kE1nGHTOaZSvm8+Flp4/Q/JcShDDZznBksCzhzn9Zwg3f+Dk5xyWbc/1p8CnDcvparqTrtTkHcRzU88vpP1og5s/kK7l8MnD8zQOo65JfXDE4fdffXvOyKDXb2yAWRS0hN64aK5kltrfT/06XCkBUiew8EKQHCt7YUX73e5F8Bb/VpUwE32uuWDGfeQtn8l9rnuDlzW8SjdhMn340N39hCccc01D2+d71hNBrTBBTIWKxCLd//2q2vPQmf311F1VVUR64+wla97X3vwRTKfvJZPNJsQF+rcbzWzdyjl/z6Xkez0MTycJuKVU/mCkDO5H2W0887dMNRfy5Hbr3O5MICnakZNZfV39+r+cpXNs6GrVZ9aUlLP5YM7ZtsXL1BaxcfUFZukcm4Uu2Mxw5mqZO4NFvX8uGF/5GS3sStyPH+h/8X74VuB/sxAArHhbm3EPWKfkdLhUMlVPFEE+pe70FV/sZhVR0PvEUe99BqO89nNlvyfZKLvxajG1bHD2xga/cfTnHThoDwDfv/MQArxrphM9rTBBTQUSEpjlTaJozBYCmOVO46cr7SCWz5LIOTi6YDhf8IYvB3pwzjmfXmy207O3AdT1wygs8/NMoXkcHZHP55+JxrFis+7gkU2hNdYEZqfo3Z0GglO2/K0xVC7WJoIk0Ut878U09D2y7l0+JwMRpR5FsT+HkXGbPPZ4Vqy9gyvR32ZojlUQJnbEYjizV8SgXnjm7ez/qwLq1z2DbNqlUttc6SOC3aKxYfSHrv/FrsukcfdHtE/3Vvmw76O4t8z6M5OdHEFeJZHKF71HGpH71MZuOUroTaajrvYp1TV2c0Y21dBxMUV0TY/HSuSy78ixiJRbkNPRBCL2mrE9PRBYDd+PPzPF9Vb296HgcWAecBhwAlqvqjsGVOvyZMu1o1j19E5uf30ZHW4Itf9rOw2s3dtd2orZQP6qK1V+/lFg8yvrvPsXvn3iV1mwapx+T6UlxAANAJoNalp9A63nowXYkGkF7JtQ6jv+6IPdFAzPptgHHzRtP91Bn9VuJiojhke05W17QzGxlMtQc1UhnkFQ8qrGGL993NbNOnVLW/2boh5AZy+FivGZwuOyy93Phhe/l5ZffJJdzeejBZ9m6bV/38VjM5oPnn8zyaxYy++RJPPCtx9nx+j/obE3mc0u6KCcHouu7btuFiZ8lX1siBy4S6U78735dz7ldSuTNdbYlENvuvX5UJsfYiWNo6cx0/y+nnTGVW+++nEik98y8hkMkZF4zYBAjIjawBjgf2AX8UUQeUdUtPYqtBFpVdZqIXArcASyvhODhjm1bzDlzGgALLnovn/rXxWx4+E9s/+tbTGuaxMKPzKGqxp84adUXl7Dqi0v4zY838r2bf0omlQ8Y/L5j8t05qn5rR3EAE6DZbHcQgyq674AfsEQi+QCmtsYPVETQ9g7fOOqDRcw8D8lpMF05fr9oOl3yveadN5uNj7+CawWjFlxf1+RZE/je0/9BJpXFU6iu6WOFSsMhon22lg0njNcMLg0NNSxc6E89sGhREzt27OepJ18lm3WYv2AWTU0TERFOmTeNUx66AVXluvPvYOfWPfnkWfC/wz1/uPqasLMr6CieWK6cIMi28wFQcfk+3q+6Jg4Rm2RnYZdYVVWUq647l0UXn06iI011bQzbNsHL4BA+rymnJeZ9wBuqug1ARB4ElgI9jWUpcEuw/TPgv0VEVMu5e0c2NXVVXHT5mf2W+eBlZ7LjL2/x63XPEI1HcXMOU5smccrZM3nyp38gncxyzHFj2PbyDn/uqlJXvcuELCu/nc11Bz2q6gcunQnEcbqNRBNJf7RAfR3E4+Dg15hyWf9cRfM71NZXccOdl7P9L99g/+5WUok08eoYkfoq/v27VwMQrzbBy6Ci+ImVwx/jNRXk+OPHsfKac/o8LiLcuvZavvSpe9i7uxXLtnCyLktWzGf31j1s/v3fqKqNE6+O8daO/YMvsCruBzHpICjpb6I+YOnVC5l1+lS++tkf4rlKLutQVRNj9mkncO4/nYaIUDcClgE4ooTQa8oJYiYCO3vs7wLO6KuMqjoichAYCxTc6SLyGeAzAJMnTz5MySMPEeHa2y5h+ecWs23LLsYf28hx048B4Kobl3SXO3igg8uOuy7ItSnEikaJRG0mnXQs21/aXniwyyxyDiWnMldFkym/68iyEBEiMRvX1WBlbUHED8jueuxG6htqWfO7L/Lsoy+x5Y/bOPaE8Xzg4vdR31A7eBfFkCeEczccJsZrhpijJjZyz5M3sm3LbtpbEsx472RqSwQCP777NzzwrccKW2wARIhEbSJRm/rGGvbtau39JtFI30OeLatXl1Q0HsF1FS+YV0Ys4fQPzObyz1+IHbG577c38dtfbuLggU5OWzCLOfNnYJWR2Gs4DELoNUc0o0lV7wXuBWhubjY1p0OkYXw9cxee1Ofx0WPrWfGfy1n35Z+RSfq1Gcu2qK6r4q4Nt3D05PHUjqrmxQ1b+PrKe2jdcxARmDTjWN56bTddnVXFo4jqGmtZsOwsNj/zGrWjazj57FnMbJ5K83nvIZd1eGXj69Q11HDK/FnYQXdTNBZhwUebWfDR5opdD0MPTENEAcZrDh8R4cSmSf2Wufjac/ntLzaxd1cLuWAAQLw6ytyFJ/G5ry2jbnQNdsTiuzf/hMd/tBHX9YjGIjQe28iB1hROtvQP4dyzZ+Cl0uzZeYApMybQNG8aM0+dQtMZJ/K3zTvZu7OFqU0TmTj1qO7XjJ/QwPLPLhq8C2Don5B5TTlBzG7guB77k4LnSpXZJSIRYDR+0p3hCHPJ5z/ChBOO5sGvP0zL262cek4Tn/zSxUyYmh/tM+ec2azf+h0S7SksS6iuq+LZX73A97/wAG9tfZu6hlpq6qupqqvivMvn89HrLyBW1XcX0HwTqAwxGrom3sPEeM0wIVYV5duPrOahNU/yzK9eJFYV5aIrzuQjV87H7pE8e/1Xl7PqtkvobEtSN7oax/FYe9djPPGLTWTSOcaMq8eKWEyYPJblq87llDNO7PM9Z546hZlmEMAQEz6vkYG6kgOjeB04D99A/gh8QlX/3KPM9cDJqroqSLb7mKou6++8zc3NumnTpneq32B41yEiL6hq2ZHhaGuszotf1Ofx/03/6JDON1QYrzEYjhyH6jMQTq8ZsCUm6He+AfgN/rDHH6jqn0XkVmCTqj4C/A9wv4i8AbQAl1ZStMFgyKOEL9nucDBeYzCEmzB6TVk5Mar6KPBo0XP/0WM7DVwyuNIMBkNZqIKGa+6Gw8V4jcEQYkLoNWaqQoPhXUDYakcGg+HdSdi8ZsCcmIq9scg+4O8DFBtH0dDJIcboGZiwaRqOeqao6vhyTygijwfn7Yv9qrq43PO92yjDa8J2j0D4NBk9AxM2TQPpOSSfgXB6zZAFMeUgIpvClJBo9AxM2DQZPYaBCONnEjZNRs/AhE1T2PRUCjMjkMFgMBgMhmGJCWIMBoPBYDAMS8IexNw71AKKMHoGJmyajB7DQITxMwmbJqNnYMKmKWx6KkKoc2IMBoPBYDAY+iLsLTEGg8FgMBgMJTFBjMFgMBgMhmFJKIIYEVksIn8VkTdE5MYSx+Mi8lBw/HkROX6I9XxeRLaIyGYReUpEKroq2UB6epT7uIioiFR0WF05ekRkWXCN/iwiP66knnI0ichkEfmdiLwYfG59LwAyOHp+ICJ7ReTVPo6LiHwn0LtZROZWUo/B+MxgaOpRbkR6jfGZEKKqQ/rAXyNlKzAViAEvA7OLynwWuCfYvhR4aIj1fACoCbavG2o9Qbl64GngOaB5iK/PdOBFoDHYPyoE99C9wHXB9mxgR4U1LQDmAq/2cfwi4DFAgHnA85XUM9IfxmcGR1NQbkR6jfGZcD7C0BLzPuANVd2mqlngQWBpUZmlwNpg+2fAeSIiQ6VHVX+nqslg9zlgUoW0lKUn4DbgDiBdQS3l6vk0sEZVWwFUdW8INCkwKtgeDbxVSUGq+jT+AoV9sRRYpz7PAQ0iMqGSmkY4xmcGQVPASPUa4zMhJAxBzERgZ4/9XcFzJcuoqgMcBMYOoZ6erMSPdCvFgHqCJsLjVPXXFdRRth5gBjBDRDaKyHMiUulpqMvRdAtwhYjswl9g8J8rrGkgDvU+M7wzjM8MjPGad67nFozPHFHMApDvABG5AmgGFg6hBgv4JnDVUGkoQQS/mfcc/Nrj0yJysqq2DaGmy4AfqupdIvJ+4H4ReY9qyJZkNRiKCIPPBDqM1wyM8ZkjTBhaYnYDx/XYnxQ8V7KMiETwm+kODKEeRGQRcDOwRFUzFdJSjp564D3ABhHZgd/v+UgFE+7KuT67gEdUNaeq24HX8Y2mUpSjaSXwEwBVfRaoov+FzCpNWfeZYdAwPvPONY10rzE+E0aGOikHP5LeBpxAPlmqqajM9RQm3P1kiPXMwU/wmh6G61NUfgOVTbYr5/osBtYG2+PwmzPHDrGmx4Crgu2T8PuqpcKf3fH0nXD3IQoT7v5Q6XtpJD+MzwyOpqLyI8prjM+E8zHkAoILfRF+BL0VuDl47lb82gf40exPgTeAPwBTh1jPk8Ae4KXg8chQ6ikqW1FjKfP6CH6z8xbgFeDSENxDs4GNgfG8BHywwnrWA/8Acvi1xZXAKmBVj2u0JtD7SqU/M/MwPjMYmorKjjivMT4TvodZdsBgMBgMBsOwJAw5MQaDwWAwGAyHjAliDAaDwWAwDEtMEGMwGAwGg2FYYoIYg8FgMBgMwxITxBgMBoPBYBiWmCDGYDAYDAbDsMQEMQaDwWAwGIYl/w/OfhkceeDzgAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "l2 error: 8.45%\n" - ] - } - ], - "metadata": {} + ] }, { "cell_type": "markdown", + "metadata": {}, "source": [ "## What's next?\n", "\n", "We have shown the basic usage of a convolutional filter. In the next tutorials we will show how to combine the PINA framework with the convolutional filter to train in few lines and efficiently a Neural Network!" - ], - "metadata": {} + ] } ], "metadata": { + "interpreter": { + "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" + }, "kernelspec": { - "name": "python3", - "display_name": "Python 3.9.0 64-bit" + "display_name": "Python 3.9.0 64-bit", + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -1020,12 +1107,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.0" - }, - "interpreter": { - "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" + "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} diff --git a/tutorials/tutorial4/tutorial.py b/tutorials/tutorial4/tutorial.py index bd8a899..b927a10 100644 --- a/tutorials/tutorial4/tutorial.py +++ b/tutorials/tutorial4/tutorial.py @@ -15,7 +15,7 @@ import torch import matplotlib.pyplot as plt -from pina.model.layers import ContinuousConv +from pina.model.layers import ContinuousConvBlock import torchvision # for MNIST dataset from pina.model import FeedForward # for building AE and MNIST classification @@ -130,7 +130,7 @@ stride = {"domain": [1, 1], } # creating the filter -cConv = ContinuousConv(input_numb_field=number_input_fileds, +cConv = ContinuousConvBlock(input_numb_field=number_input_fileds, output_numb_field=1, filter_dim=filter_dim, stride=stride) @@ -142,7 +142,7 @@ cConv = ContinuousConv(input_numb_field=number_input_fileds, # creating the filter + optimization -cConv = ContinuousConv(input_numb_field=number_input_fileds, +cConv = ContinuousConvBlock(input_numb_field=number_input_fileds, output_numb_field=1, filter_dim=filter_dim, stride=stride, @@ -182,7 +182,7 @@ class SimpleKernel(torch.nn.Module): return self.model(x) -cConv = ContinuousConv(input_numb_field=number_input_fileds, +cConv = ContinuousConvBlock(input_numb_field=number_input_fileds, output_numb_field=1, filter_dim=filter_dim, stride=stride, @@ -196,7 +196,7 @@ cConv = ContinuousConv(input_numb_field=number_input_fileds, # # Let's see how we can build a MNIST classifier using a continuous convolutional filter. We will use the MNIST dataset from PyTorch. In order to keep small training times we use only 6000 samples for training and 1000 samples for testing. -# In[9]: +# In[8]: from torch.utils.data import DataLoader, SubsetRandomSampler @@ -233,7 +233,7 @@ test_loader = DataLoader(train_data, batch_size=batch_size, # Let's now build a simple classifier. The MNIST dataset is composed by vectors of shape `[batch, 1, 28, 28]`, but we can image them as one field functions where the pixels $ij$ are the coordinate $x=i, y=j$ in a $[0, 27]\times[0,27]$ domain, and the pixels value are the field values. We just need a function to transform the regular tensor in a tensor compatible for the continuous filter: -# In[10]: +# In[9]: def transform_input(x): @@ -260,7 +260,7 @@ print(f"Transformed MNIST image shape: {image_transformed.shape}") # We can now build a simple classifier! We will use just one convolutional filter followed by a feedforward neural network -# In[19]: +# In[11]: # setting the seed @@ -274,7 +274,7 @@ class ContinuousClassifier(torch.nn.Module): numb_class = 10 # convolutional block - self.convolution = ContinuousConv(input_numb_field=1, + self.convolution = ContinuousConvBlock(input_numb_field=1, output_numb_field=4, stride={"domain": [27, 27], "start": [0, 0], @@ -284,8 +284,8 @@ class ContinuousClassifier(torch.nn.Module): filter_dim=[4, 4], optimize=True) # feedforward net - self.nn = FeedForward(input_variables=196, - output_variables=numb_class, + self.nn = FeedForward(input_dimensions=196, + output_dimensions=numb_class, layers=[120, 64], func=torch.nn.ReLU) @@ -302,7 +302,7 @@ net = ContinuousClassifier() # Let's try to train it using a simple pytorch training loop. We train for juts 1 epoch using Adam optimizer with a $0.001$ learning rate. -# In[20]: +# In[14]: # setting the seed @@ -332,13 +332,13 @@ for epoch in range(1): # loop over the dataset multiple times running_loss += loss.item() if i % 50 == 49: print( - f'epoch [{i + 1}/{numb_training//batch_size}] loss[{running_loss / 500:.3f}]') + f'batch [{i + 1}/{numb_training//batch_size}] loss[{running_loss / 500:.3f}]') running_loss = 0.0 # Let's see the performance on the train set! -# In[21]: +# In[15]: correct = 0 @@ -363,7 +363,7 @@ print( # # Just as toy problem, we will now build an autoencoder for the following function $f(x,y)=\sin(\pi x)\sin(\pi y)$ on the unit circle domain centered in $(0.5, 0.5)$. We will also see the ability to up-sample (once trained) the results without retraining. Let's first create the input and visualize it, we will use firstly a mesh of $100$ points. -# In[22]: +# In[16]: # create inputs @@ -406,7 +406,7 @@ plt.show() # Let's now build a simple autoencoder using the continuous convolutional filter. The data is clearly unstructured and a simple convolutional filter might not work without projecting or interpolating first. Let's first build and `Encoder` and `Decoder` class, and then a `Autoencoder` class that contains both. -# In[23]: +# In[19]: class Encoder(torch.nn.Module): @@ -414,7 +414,7 @@ class Encoder(torch.nn.Module): super().__init__() # convolutional block - self.convolution = ContinuousConv(input_numb_field=1, + self.convolution = ContinuousConvBlock(input_numb_field=1, output_numb_field=2, stride={"domain": [1, 1], "start": [0, 0], @@ -424,8 +424,8 @@ class Encoder(torch.nn.Module): filter_dim=[0.15, 0.15], optimize=True) # feedforward net - self.nn = FeedForward(input_variables=400, - output_variables=hidden_dimension, + self.nn = FeedForward(input_dimensions=400, + output_dimensions=hidden_dimension, layers=[240, 120]) def forward(self, x): @@ -440,7 +440,7 @@ class Decoder(torch.nn.Module): super().__init__() # convolutional block - self.convolution = ContinuousConv(input_numb_field=2, + self.convolution = ContinuousConvBlock(input_numb_field=2, output_numb_field=1, stride={"domain": [1, 1], "start": [0, 0], @@ -450,8 +450,8 @@ class Decoder(torch.nn.Module): filter_dim=[0.15, 0.15], optimize=True) # feedforward net - self.nn = FeedForward(input_variables=hidden_dimension, - output_variables=400, + self.nn = FeedForward(input_dimensions=hidden_dimension, + output_dimensions=400, layers=[120, 240]) def forward(self, weights, grid): @@ -463,7 +463,7 @@ class Decoder(torch.nn.Module): # Very good! Notice that in the `Decoder` class in the `forward` pass we have used the `.transpose()` method of the `ContinuousConvolution` class. This method accepts the `weights` for upsampling and the `grid` on where to upsample. Let's now build the autoencoder! We set the hidden dimension in the `hidden_dimension` variable. We apply the sigmoid on the output since the field value is between $[0, 1]$. -# In[28]: +# In[20]: class Autoencoder(torch.nn.Module): @@ -488,7 +488,7 @@ net = Autoencoder() # Let's now train the autoencoder, minimizing the mean square error loss and optimizing using Adam. -# In[29]: +# In[21]: # setting the seed @@ -517,7 +517,7 @@ for epoch in range(max_epochs): # loop over the dataset multiple times # Let's visualize the two solutions side by side! -# In[30]: +# In[22]: net.eval() @@ -540,7 +540,7 @@ plt.show() # As we can see the two are really similar! We can compute the $l_2$ error quite easily as well: -# In[32]: +# In[23]: def l2_error(input_, target): @@ -556,7 +556,7 @@ print(f'l2 error: {l2_error(input_data[0, 0, :, -1], output[0, 0, :, -1]):.2%}') # # Suppose we have already the hidden dimension and we want to upsample on a differen grid with more points. Let's see how to do it: -# In[33]: +# In[24]: # setting the seed @@ -589,7 +589,7 @@ plt.show() # As we can see we have a very good approximation of the original function, even thought some noise is present. Let's calculate the error now: -# In[34]: +# In[25]: print(f'l2 error: {l2_error(input_data2[0, 0, :, -1], output[0, 0, :, -1]):.2%}') @@ -598,7 +598,7 @@ print(f'l2 error: {l2_error(input_data2[0, 0, :, -1], output[0, 0, :, -1]):.2%}' # ### Autoencoding at different resolution # In the previous example we already had the hidden dimension (of original input) and we used it to upsample. Sometimes however we have a more fine mesh solution and we simply want to encode it. This can be done without retraining! This procedure can be useful in case we have many points in the mesh and just a smaller part of them are needed for training. Let's see the results of this: -# In[36]: +# In[26]: # setting the seed diff --git a/tutorials/tutorial5/Data_Darcy.mat b/tutorials/tutorial5/Data_Darcy.mat new file mode 100644 index 0000000000000000000000000000000000000000..6b9a06d47a7695a59ba4ef5694808a2c6d2138df GIT binary patch literal 7119287 zcma%?V{;`817v5CiEZ1qHL-0^Y}-$4+qUf++qRt>-(B1u#UJFRk}SR%Qqh&gL=riE|b2HWSJL+y{YO?~sK z{!5+DZRg9?*9I6mY$*Dj5_cvWm+DXU4;OdFp-EK)&BD*x59HKOzRPzA&xF_hb_M#_jTjfQe z9wt$EC$oNCBSEXBZGC&uS2u|Hb_47#(;7ETUHork!3qD{S_O4}K)xm~#sz^>W&96P zyJqq+agrZIOE*@ClwSJ9;1o!I{=HMN?3^6qTay#FSARFCt?J{Zd+TDH`yb14vqT7f zr`;UEJ}cx|_)+X!e*BS*4g5=q5LF_KH(|ZesQ7wbV<-_kp2)4#72G|Oo@uhy^pWZ| z2Q{FjMPM&5`A*w(%32fAg&cm&6W~IfRiU}b+c+F3T zWKibWlTyh4u??v#)uPlPZ4ud}@?UiRHvO!V81C?J3#mquk>|7-E?ByWQ%Eajss|8q zahL+y15_xn8YjWe{j~mB_HO|8~p7DmF;jDXT3^k z)xpsVzl$vw%^PWqc(DG82y^~Vs$;wCV}HIQ$2ntPw+Zs<0L)Yu9`+s1K1M)K8NQ}o z$01+ER3s?m!c|?6ApPf5R*$ocY&+3LMpZsU4WUB9;E_Nq^Xyc1Fzlp4;PB&<&kgo! zvrp?PIXzJy(igZ}dp=sIt`h6c=Re@o!5Syf3?&h&&@57pdGEzA=CB#Cq(!h)_u)i= z@uXT^jZt!1U^`y;Pl0AkYt~p{o=Q-~FOKOo5?V<6HeLGu7&vmQc{DSXZE;5@Ma!|4 zmcPAQu#(A4EH%yJz$=r5ba=ud|7>>uMD36}U*l-=S9ET^YE5>Ft8SwMsUjtN|6wQw5o>S3RB#fIVa39ln66bU$y$S;0GZ15EF;j3em(*eiQ ze&){_7${Yzi*7?C9$r?leu{;~@AGZ=o{7XIzd>k?>)M81VaKSu^TIU{N#h^1_SqJL^SBEAkkDiv!88hSmq9sF{BdHHbag!phF zjN-YwGtk1Iz2vS@6(Px!t~8vzZ)@Yyw-bE410}(&)raC5gh~dIo z3@sN_7>uR5n<#@4naU7>bqIAvwNOA-no`3J0%{a< zO=#(yVDcds36E&@O!MYsRH;NNDBo{JG;4yexbtBt;3G8Z%UeTYEqW3T$i%Bl6s7I* zy>shNJDKpJZ5)|F-gph(c)E7c!2I=4N2Vmg_vs~L2ch*~N_tuBZ8*-crO(saW@JLr zLtYBr9Pfa>rGYL*dq~P9-wnwqa2yk{xN0cX;LE@^ZA^` z=DhC3rWxt_GZQblx_6N^+_t-8FzDXO-NUaaa?HlJpwiW)p_~vk@*SiX`la51=Stx@ zRED!H*k@);YK7vKzN`kIiWQ|hD;3kqMBWIv!<`8k6*-+m(7jbtGj`y!s`l@fW)yI2 z>a|ynP&s*uMcC4saGgD(@`%CwH(T5)Tx*MO_iP7yyNSKtym(MkaR(KNwBUFg>oZwSL)&tD|K71f_ctX_H*|R!ow3)i9k?PW z|8UWwd({|)y3G{8;H~ER$6e5>91CBf@%&BrB*&f0!1N~~`=dSNmqhX6hNx`AI;;bi zHxgpQdbAe5yyQj0v+vKIcmxh@)y;XK(M+pkEHD_D(8-za@bO8$9eV>sudaIkIx;g1 z>NI)1cO3MNr6w@{q%h(Y#)*)X;`$>n3&%+ ztC2ewwxav!>%H`WlF1G1qSeb0ph$e$yZG!m2@F`+jy78Z3R_kJ#t@Lo=3xCgaI#nt zXVbAnv>(#Z0*mJ~;@p@H>eiwBbDv2*RlSrc8R`Be9m4Hc`T32%F8V$c>>~ep|DF%( z%px%&?7Sug`E@gGxU+Y|B)vCETHzO}Rn+*IS~S!n@$Efp`5)~Q+f=1b+$^9FQxM)5 z!Ls#Q>fT|@r5+H+Zd}pk|Do*{K@oVc{x7!Svx%WR8%b2Wri#D46z7Cu zXB|4U?wI^(0C;(}A;XezG6%R$qmI;eKmV^ui%;S(B}Vq~!tsa$gzJh%x?4hStIv%w zcN=iVbNPtLrhrfBQA|x<*U0Uay2HEb$g}AYw#dv!O{l_j*jKe zI}HSE51Sj~a$dk^W8nuNm-YeWY)hc;HI|;w4Y7yn6A60H+!qVjYoEtk{)Y6hETL?6 z_`y=}0Vb`uQvRF85p=%9rF!F%w#Z31q6Du}M5_0e7IpV^w3gcNxU=$DyP$eBHp6;h z5U_z%YeEtig+?yM4zZ3D@x!D5F z3jxz=e-(iI;r`SjBZfsjxFqo4Mn#g0A3%Gqjg^ekS!KeQjT=r-uW2W!c5Ph=ws7#6mYoX77n41Cg8ZimjBh(;eTWorh zaG|Q(%<6+vJSCYlhLG?28k*SUmM}5i0QXW@-eIpp8C)SEC? zqQ)7|2WTWtVz(A=_EH9iI<&{7Q3`Y&u=oh|rdW{9Mx%^FYI=A_9GE7VCO20R+i$i}{ zddT>csD$(!d%V7-#UiHniCxamJT~e0H{^U)hhw@XA?Rt?GX5y!X=bhPZ%!-n@bQnV%1NNFew=6Gwd#=xv8-8_rAAW^R2PL!YiPOGUj z+7pNnK7rZwPd~(-8hYSHEU)qb9fq$S1xDr>S2V#&{?LBjVAq#QvE`a>l@9kj*sA9H zEvuXrb|lX~SG6jnnCbQVkS41R*x{Nwwvq&W?VSMlfS7?O)xt$DQ$l^?Ld9)K8q*e! zbn8KoI6Oc;dEo?4SYt^$T-H}W>)L}=R<#zB2px-a^h9H@XNmHAYVp_i$D~JtM1Jga zH2!;1C6i2yY<#Q4$L!#9=!o!7CuD|RB`ZH0nXtsmmyJLg%db5D;-IZYt2?_qLP6El zKY>Y0>G?YHM-hwBMTILv=lu4~Bh%s$EvL;uo-L*zpxSmQtv{tAx9#@d_4SFuqmVsw ztmG+l4zST~DCGf`TczSnSeM%RZz$1GVnYv2=6N5S#;>E)%RIKIF2i!BP4t(7QYOmO z4>qbyxeHAG1G>L?n{V1UV(kO{YLwFTVX3w-oueiNs=?9bw}KksbHo6RC9S$jys)D^ z%?Fk@YYSc2nE?*CRE|mGPee89^q%wXq2qWSIwHT{qwwy!5nYD$S79UdgDpM!?5;L2 z1YR@JB#FYtLw<#+1?79*%0(?PYB9e00Fp9v->NsL7xxF$Qu9m5CnPtizE?+yE`Km_ z<=bUN8OMZ~Z++5deZTqI7@=i>r2jZw>VQa`b7Y;=8;W9akW0F*>UrBFwzy9J2rPc! zCTOx7RN_SbK!nt5q86E`qO$ImE08^*Pl4C>fQ@TRbAP&`lIU}q0hT+o8eF}4N$NT{*bR8Y&NM~wHetIRw_XFSR(xP-%#L7m4b`LTiduB7 z;>Dzt8!A3)AVV9vAnS@Qo(d?9KfmTTDVE1g!@hJzWolGQMm1WY(FQ&P%3oh%2kwHk z9W;$7^hCi{So59^KPUQw1Y|I{frB6w=@z`J8><&W=02ZzS1g+~Qz*l^1yI{ z-@VE!Ig$rEuY6>r3>{+}hBgPIGS;hhKN{uh@wN-H`M$QH6A+WhQmT|59jD{xdsfBB zy@qC|sLuf;B*y=`Yg*tw)qfW*3mj$4=-VkOzJ+V{7~CSAshMm!iVx}omErw++BX78 zL`X$T)||&15)e`=Yc6)dO2!Y0HEV1z@~W{dcJi~rrWEqpIKI^!qZnyEmCwj+R0S^f zD%2~SQu$T}MZ%{(x>(4$l6OGU!k{a$X~^n znA&(31+O(rpC&8eV+UBD41Aa<9Mhep1pqkdQ~Xlayq(wK2ja$yb}(h`6A7E{btsH` z;HaVl=RW?Bh*`5Q!FsU=^$R%@Nr3$F#If=3Ce_ptsea2}m1bq){5r0$_Fk>r%r$>o zYPl|NI*H|$wcRG2mq(GaUmGu^$6y~4lFuZ^i^WUI^LlI^{b0v%Ab-A^ufk^26tm;? zZGxixvm9WI-qTaEcA}67I(!OA?>7e^L$XS{bN2?sm&0AQ_fBSyOg>Fsw%~TAzn!0* z`(*^38FlHlOwaJIYW+Tc=vlw^{o%iWq(okL>%-$tpP}`fGFOa#pbRYA9pd3_E|F)8 z-75WZ6V03=ml0$FRDc~}{^f%s%LWi5|AdvatS*bC-5L^V7PJQfYAcW;()s~hQnM|? zN?d_NnPTgr0}ecf+|t=bhcHMqoQo+o!yDBr&_X{kZ99#vQtm(mgYLTDqc(ktiw11- zl^sWqKuTILMO*>p>&~l_OHKM~=AH#NRbc}Dirarh+~fGk=hvXfDUuBqwo=73ps47T z-3d}V6R(;w_bdZ&i0z^7f;dNLAD!{a{%7j|n6ofNHmreS(|x3?$;#6@n!}o4rV@G;pgT)-FP&7gxL%I{*-Nbn z*PWXD1b*U;j~c9;n{c%Clpnf|j;Uk%#5v_bM(RND=B<-4J;l`ST{`ghDd*@^!CGjM zaK_HEYv{i;o6FpbJwGiIOgwjAr#~tRsF^3Q^5a!m_$Nj;>F4Md=#>ng$LEvI#Z%2+ zN{SS-3%u9V4zpbj56Q75-x>jXTufpz6f0nd5_kz;ZVoBuphHzTLA~vJ{9hF%*E`f0h z_AbTV*zjjNcX%hZsouD7C%0F~D)UgW(h+yZsv6v|AZa`On1Z$kSov9)Zn1jhNifo2 zXf5_y_wSOAna}2qUX|?K5j3?Xg52+KOg9L7cxq^IwjOYy@&s}WnvDOeEjw=V6e2Jq z3q0s6f|}RLWMNB0MFw)Q{troO`U!$-KCX|mSiLxf*nVgQl@u6|{|M&yL zmz~`D`Q~K0*O+{>RAAyxJ+5@vN(|G~jKKwCM1g4GQ|ngo=6H;y+*>*$JSmD8P>E-> z@A}wR$e_=T?m@wvhl%x1NA$2#QU*!FwjDmV;65Q+`!w)ObJ6KbZ3nTOA$C6Y4a3*| zzrYZv8FLWAjHgGFw&afCf9&j^p4^u_@m)ovsds3-Qp=nK8V*^*jr~v-mV)%t+Z~0b z(_{*W;at4$R*HwtKXDqqG=nmDvW4s?B(|+GIE!9}api@oW`b|Q=SEjg&)Zx<)oxtm z3XkkZ=9|a4&K{UW_Z3pwN3*}4E93p6+6cfbb|%@yDWRq~m*Om1Sw3pnXGGNfuzMt8 zx2}Pkcb{Exv6q>wS6S3)Hx8A;9xY$t_~ti6jGlxZpO4(!t2GY<2sQn?C;>is=Y&!r zyN9^8uR%h2r0uk463pxiY4$HpV4@;l264Lx+|=D+&w56L*4igq4kL*DulIE>NjpKN z$`r-KAat<3Fam z&?h|^9nB)_F|^?o*49zTE23{vzpwDc){?zxEy9s`oIIWyIX8qnCwrEFVKA1ZkQn2B z`2F!16D;YbUgKy;u_qf#*Bz?)5BVDK2ytSj=2r%AolsJ{A>v1`qhp5eZnSPPKbNRRwAD92DD+29mKyblZtbl7qGMLF%d4wQRC zf5*2g3QBRciBcwp8;VDVtJUNt^o;Yx1@4F5_3bYv+d-!et zY5pbgSY`6YHCt%lIh}r78akR+KYe(dEcgv!eY5f$nvl_VT~x&&)lwrcrH|VD9jj)f@htK^md2J*M?zOdG^q>1icep$x)qFXr(Dqv)1v=e~gV(XI zYa1jz=Hdsn7_A|6eq0To#c4Hc1-NCLw*m^h!czCsuBAT75uDOH47aKt|1wE&%bqIp zE9AlS3Ot(Pj_nC}+41v+ArxKkLb&Mf=f=6Z*A^a47-|RfMdyyE8=%Oi=RxRyl(5w! z^I1ua$Bp+a1_nQ^AejOdjqZREomZPy*mgQ>oWAy`L}RTLaQ3bhA+6@OGQi>VRU{<( zN1cR<56&WmQhZ%^!^{{RzWwP_oFyA{Ri z($t$tw@)h=5v?esxZAb>@{+;{%%6Oo2$A+XAGIp6++Z2*b6n_`7?>a1Uf>+jC_Ffy z?7rX3Q7<#G+yTnZZvhB_VU$M|m)iF%iRBm?jbWkWw#bw; z*I*YCwjuA<*NU=3B;3osb%!lgV|Gi2-{pjG|NQ)oRhx3LQJ9;RfTxI^s<)W*d@FkJz~}K&GdX&8Huq^ucX9rzI$l&L zNix<;wB2(DQ9R==r8pJa1I?k=C@co4LZo)9zLxYJ$>wBu-wWq=st8Jz50>f zUKH&AZ~n2*0;Nz*{XJMz*!t1tX6SV_+0#!iBd*Of zPLXV;uaQIAXqY2B8CzRVd-u)(wR~HHMS*eVKsB${?t+bwb+PB<_O}(IitWT^lR7I> z{td0<{p}$M1U-+pYb{Po>vt?;J&rYcY@8c$!l5ewPzTj`R$4K( zJ8j%()Ea3;5AMxJ=7IszK(2jmmC>!X_*ahEDXCfgOMtW{OYzUyKKBXQn{qpHZzd~( z%62igc2U`;CTmPBY;z40Q(J*nHUE(zJe3vo%Qx+JI}-R5g(B>e$H2b+$w#?S>_1Nk ziMDK~#IpUK*wI1uD}DBuGo$BYLsyrmY)KX^GBJKs*GnbONYi$Yl)sI9>xW_>{MmNe zQ$M(x5OJX8CEO^tK@Y7%pVKW}*7XU10~Uq1PKB}0k7Kr{U5OA(JGfzEnl} z>2E!cx)qxve>PO<={p$uMSIV$;tP%^?U_cf*;5O*=b%&0h*dDOs(AR4NcS_J&|vp5 zRgKW`HDKY;j11Md@y%gqK>*IDIvsbHt0#{8ArI&FqCDP|%>fsJLmp}|7UuAPPL~5ggN3w(uLI+HAmY=gfD@2oi;hO z)pK0=`jLsZ+eyvCLXDO@Az`m{yPMIm5Zw3Db`8K&2*20GiCsw%rhg#nmM5Ya2_(qR z;zEE+4sB5o?^q(9PyL{(mx}PEO=O1k9+7u7zS5X$h1q9}v_fyGkxm{bO-nE~!i6HQnmx+ro04@O z35tzrR-m?8B_9F%{J_hjUI$OQgzwrZ9R=VH$#!(nfMj*4gR<1juG7}PlU=UHcIBUk z=6r3~>WMHqHPtp(RFfJ6N1u?#@*w!LsOymxii$$AZkx0lp?vB_YY0t>1Kk>}_%yYd zC^ay)&~q|>4?U)h*wf;@ZSipVp4|x9`d9r;WGpYNVK3Ia=;tmvO6L~M&G@;koqa_D zKkA?o;s%))5ddEST2_^=1zerqo3DA+@Exhgx#?F!yJ<~|A6(SqQg5y=x)8b@)~ODlIbQGN%qt-5U?-N`mgiYZ##DFWU$VZ$(YMm>Xc`HJBxP5F;rcW2WMkhEO znjOW|k22b(`an!E9_WB$%Ev@IJul_Bw+7f=Cq8@r0&#J6#C^?wclOs6iJOS?=XIGg zunH=P5R@k;R^P-qvf7C_#+eg)%$pE#dshA($38Pi>*;ILUr6K0t0MjJ9`l!##8NA` z6%$oR$A1Tfaa8(}%Q_4y>@P(#x|4?^yl5m$*5ik>lkUou)tLsQ@kSq&JHQi6Uo{C! z2BBiSxgm3=RF0l}#c%RKivViF`L@n|vXOqKV$r=m8k~QqD!z;WvIIon$0%%!c6{>(023v&K*r;PXE4 zcZH?gWJZj;K7|Frk3hUFDE_@Rkr3O)Y6BrvZt!aWe8$fJ0@@EAWI(CbYMqJj%=*MC48>41ppFxMaT|^NJVImcya7%9Sn?H3zD7;w zSdGK4L8iW+82PT>edqtxrD{XudvDfV9xQuu(;2tdQQ7n9?^bg~mb=_KiT14?AU!Zl zT~>w8(nlcFyuj`E7We+lQ-|nOOQtANeZ7VCmWu2NfI&jHBA8HkLRSA<#^0hwFhh#i zl`$XZ6WKSgZf(on6;A=^CF>qT2VWM#=H)b&w+F5phAY1;0=JLi_u5S0s9bVNfB5ZH zsd9asa`NwPK+fJ>lTynv-;q5yD5P`leA_Et`cV;sohjsz7>_n+d>o}lAz63kw#TN# zlOWp*I>BPCqk2HK2v<-UUv1Ib-r8PozS{G>BEfFXrkis)7Qz9(=foH_H<-INTRAw{ z=W+Ml!6Yh-`QU@fOa0!IV8sVC_jA5Mu()qx(sDD*_ScX>;RH`$_&fpP2Bl0IxEN^^ ze|KU-fUSp_2)M}8Cng$&PQP16s8Ev|A}7W4ZJu5^Njti@yDiGq!0cdYG|eJGLT4$d zNO5!GvE0{V8Vfq9)m{)?lQyQK6t}jnxmE@{43e!IyBS%$h2jftokCE2)5MHL6`_p_ zA=q~A&Ye>WeIs{AOs{p_v~qw?|Ng^dabPf5H{UZ|T0PHrEvP*Ib|pg?(xUXJ=fvQ4BSlWLq@h?z&4m}0Y@W+=uAre}LSsC-hx$)8dtdNTy=sSrS{ngNl zIwE7yt_X ztFAz_ZcSRV%8jaH3N?Cm4g=U!E&}g@pG|^H1on+gGC3eAoxlzESd%R?se0bJR zF`eUpSXwV>*NDz6gAP+h(Ew`LjXQ za5G8X;E@VIU-e0uN>JXf)Jd#fKS5AM?Q5>*y$6DQ!olknjL7iu(&#fA38+B8Cp;=3 zG^l#z1`JOlTd9jnpFzDEZ@Zj)Wemr>AqR4-om9ZHd&y<*Im`V{(TaK!kRh3>p!#!w z=jUnfrL!elgFCaFFFul|a3oizsAPl0WR=~!wO*EoWN4o{j28X>27B=wWmJNB9u-R=< z9JPY1rYeNqFwIpgXz{pf+7H{2cFxqoaxzf!{!FLs!<&@u^20V%h&%1J@zY7!>R&!1 zJQnRKfs8!!0#e;%$2A~I!CkSSQiNK<`Le2B@E0>l8lpg8s#5O+3o|!L)64W&w8XVP z+d8&$k0WNPpi^irBBT}E;taD^Gn%+pN=!8t+6|bIK2py9Pj6(ewb%-RSvD!}RJMRr zrjlyT00w^~K0GBa56e}o&p_g%k6mXmV!X`B$>8CyoZgw66eXnlG^k3&1tq>Zoq);)cpJd4nlZLNT;+gR*NP=a-oo$U+$~fZ;o`|iJqUoaUF!hQ5!{T1bUw;iREr7zi zJJ!S*s`X(GXriU=X1=G=6tpg6#}M2jN-eNwE~B{`xqqP3u8+f(;1p%$>+g*@Sa1Kd zxfq#LYtP1U=4UxE-j?u2u(NT;u@}(Wo|08!XW#v$2S7|~@>S%7k}nQlrAXuPLKR^m zq-UgSJ?iDkwk+g9$mHv7&2XtBQhv#g;GTROWY*-lK55pu3jw@+Dg;GQE8%T9yFZCW zK1EuVIN;b`x%gl^sQ)D!d2RMI5(ukC^!aw73$+@VIIiBZnivAH*gMg!cosdH0IR2# zP5;doyu66_-74dVu*f4=x&P{$^K`N1dg?#%ZF37(i<7$#|k*a)q!sVFCN?e)HK?( zbr%YE!=H6nnWjfQk8q9!F5fMpUsCbc_$>PnbMaQ4m~j19z;^mJ)OIbQd#eB;z^>6PW^6I3$& zhf_Q%y+Q0Q!AU?mb@>H-oP`eqmV5cAR(eX>G$)0!Yi%sRR6e zdq}2f=!wC)YOEGN24NpPd-!o%3+>5vcEn&m6JShD`E|^D<~ql>!|~3!fibNyC*Ik6 zq?3-~yn4c4v(L?pc4{bJqH(|vPceV^Kh2nz>PmH4HvHNNx>A|B(Z*FaBg_?IC_(?P~W@>x<#FBj}MEsp~g)xcOF|O@ZrP-a; z-N4jzv5usyAd<^`4)Q0W+i(IwN7t~SIRP8dy18bheVx|>>e!i+);;T-ZaUnxj?-eY z9yJETCq8R7^uQMb2vT6?wL^RHP1Nkx={cb~vC1njjzG7O1H%xs&Ig_C&yI@{596*6 zJG~y2+*lriNAfe+i2kj%HfAOy^lW`h(#>i`PAWlhx~`bdV^0?%3eTjT@sEigT$1zU zRuoU7LI_D}6I^~vSSTc8a#XKQ*iaC(?bZ0W!Fs4fl`KSq9*SiI1FfnJe6PXD-;-Sd zdfyK-mT__XrKjvJO!Z@Sp}j>+M>GkhRPl5%l!Z*7TF=`Le@DkoKecXNq|=J)V)@gZ ziulw|ucRuhF?j2kn&8R#C8wj~uK)pL0(IwfL<|xdmI(#%+(pwcRes?oNhA?}tVeig zH_~pQp4n!pn2@GCHJgK*fx=wfG{q-Q6Af-&GmBATy#TdrTOJc$M}@o zN_1ie>z8(wa)!eGe;R-3S_y8llZfK~tQ}gv?bCoDV7+fg_`6FQLu{0pR@t|@QK}EG zq{*~n_n-g}zNdL1@k6rVMWCVcJ|Uf|3}x`@1U|-0u5#u&J;m;LCo-OQ>x-${8{Y;W z2?LYre6f!;>(bj_XKFx8vZ{+*IrU7KSe%ecu+LZ_J^pzCR1ewkc} ztJav;Vk=A;mwr#LqQ{ZfVNmpGu+tTfPU8rZ1FT6Gf)B6ig_P7nW9WZvU@`C+$w}82 z{{Ra3G1-*=kX2akuHMKmarD8+R3+{OiuTTi26!#=;pnwtDkVlbcMShb(pY--QGdzX z{=)HdnmqxOLU#}BxV9VNjOI*PQN6?jc_(joUQ57}ldi>E8APRdGHkwoSi>Z!r7_?3 zN4ZYJaM(S*oRSP^WDCr8A&Pip-z=GQvUNN#sQ(wRGk2|Uu1CMg9mDRu`sT{u{gAeE z=bkmp+~p!O^RRZ=xc_lQeRPh@ek*7&0pJTwNj-wg|DI2>1#e?A!vJ<_Yc+~1IQ1%S z`|RF-fBs1zFZST{0rRt;n>Ectqtq2a!azr0MfDJwP=Cz`XMr)C?WMXH-^f@*YZjkz zgpH3x$utn(J7C-xEue{j%;f_)29V{r=Xi5WE6Ucb)>zl{Ui~iaxoC`tWOOZ~Z2?`b z8UJW3C_X*QM%cVQZk}EZ!$;e^m^$(+v?wrVENn~mOlvagZ-L}mwBojzHPfW zFKt%hdmln5jM-xaf~~^eVGYccS|G0!gGNY5sP~(3pzCnPMX02jBm#O=66>Vv2Mal) z2{w}e;?D}$Ma2#6=QgV*%J~8m3d>D|?J3SO9&V2g<_WRh@5LlOE3e4KX#~*mgFLzZ z{omKwR?`2t4zl|;NxN7L?+l%A#cOVFkL2lWlsp?9^$xdD%Lrk#md76dJFPwdFGCVt z_c9s=YDnO)uA8nMulWFB?pK=f63s&z>-1<&EGVA$43uxT2V@~v&IazwkkY*QkNY_# zl0Mzrqy479K6ef+|J>97Eo|t-tgs^z0^{Fp>g?GG=x#BX4c3Z_yFFjm3_|XO9<_Tp z;~oP)=*mMhjPTHWefxHQ=^02%X5e206_sZzrc^>-bPb$T<_^gQt^23Gw$&d7er*Iy z(~2C29HjlSa!hur%**SSM3Z{x=#&=ggEg8OGZ>qJ7a7=0w6AsZBa(G`%FV(HyRu4# zYg9o0^b?zTEQyJAq=roK&WIIxnmsGAIMB|Rn5E-Ml9G%vPL~dqCrjesRc$sqb6iTU ztFwsARC_0+KJl0UYi3^?*)4n`m>xGeZm%ZbFHVx-}+!rXhEQV~PK3|12PHM}RhwWsZ+aS2dh1*M6I=QFgy>ed^TX zgk);+Ob53vFCr_j7@bFgcJgJdJn;$ao{nJrF}ipM=$P!kJ)45vypsNNEJdn+q?x0v zp(L^EMD|xmjPu>-ZHHfy8$Nt1rmf!h*7Eq7|4Cng)C9%Be+vyo%wYN&zICImw5{O4 zzgWz#B)S*Zlwm0Bfq?)i%8uXr2QgM(VAQM|y%rJIL6sL?beeQ9q)hC7u0BERZ;bYZ z7JzcNl>x8aSs$MQfba*ziO}ysbpsaE!p+zvIE`6h#qNLmV~zUsR>j<UqYHGH&zMWX*;RUjZ7{@f6WRS1=cQ9S4IHdix|e7yNq zoni1Sa=h;4z5bZl|6j^gmSi53i$tnn$>LOJ;Y&896vCA$L{d3Z<+#}KNHHD6i z?tf+rn3cFZGV-urLzheI>-M;IH6KGuS6t9<*G%lQtMV@5HIgJcG&K; zQ&nWTREG-;R{G z6!s&Lbj+i3LGerPtxLOQD*uBKpx%A}I{mQl$EYZW$|GLm8V-RXjjjY-IRF6_dK9Opgc z&MZC!c&g@?3vqB{9oL5mYlF&gz$!roApi?~-0)qFf!5%S!c1DO-FLKQ{;jbJ2hQIj*^~I|$z0FdHrYq9aO%R{FTnatYWA?X z5Wv*O9Ot?(Xf*p1A_DU1CC<*OCnQq#to6LnX&bgAf`G90@95@M>E3~;5@>R}+~0vP zH4kYng*hg;)^)ertp}zG5Ffyb)RZt)mHHyG=8rjd7C~B&TyOMZF%=?6KbUHVwIc=ys6zUmoFZA^738Z z7^al?#`39QWvH7Mv<>(KOB=m zL-61yyn)lMG3{bkLK@YcC7Wt`@_W;No#T~;o-|KgGV7M`>Fgu7UT>_)4+5HUG0Ro+ zoGMgzr$BPrq+Myl+(Kf*?6HTC8*)yY?Txk%cNWeYzH@(Z8{DN;D#X=vl{*Xi0W~fc zROv^wTAnyRVCQptmqjm;bXeCMg`FuCgwCku9J0F#St>&%xf;|`|0(*#31$p|XH!+q z8aNzfa)xTQH?f~^+5OLtIhrSD6603bareg8$OC#r-+Q5F;x*F^zCR^V>y2o)X*#>& zopfT#Sq`H@JjF!qxX+xPyPGKK{%e!I7t@2&v zW3Ia3tVf^sI+1ZOIn?-P{=}-mXoGLSRy>4M;6#D4%K>g)SbjNk$nxJiTV}FsBf;lq zC6DR?9KYemQrC0VS&;AfPq?sU-etUI60Jzl{#LnkQ19y%-|l7KdVH~@P>SG8jc|>! zR7ch*y2?taD=LQAcy}~=>`rPY^N}9n{FAL{#dDzenqlrgH!q&|CT0l2u(m#kH=9CL zmsj#+EP=*E6B^sqs_@XEhls&1uLy?Yg*?05@K*;ixaSy{jKX@W{h2?f-*6Z}REM$Q zl8)l*RTwQ9Q~8l$bYY6K%5y-8+4=3fz=qjw5Px3NC3rUPzIExs=mrb858=>_eHV^r zl_71iZ3zXvu1TFA`-I3N_?xZWl-^Zih3D7_TO_NCu}J^rzX6z|5DlgtS(;^bHIx4Jp1YH`F3x&=jU3v&?yaJ*xGWeOqm5rx!Q zrHp2DGx|kDGlYHPp^|+G6!yO~DwJ#X|LXucQPdqRkS8~$_lQc|9yh#tN79}!@wu6; zS{6}@cmZrT4vN8d2vHDBo(IcyuCxD;ax5T~T<~48z_os&yo--mvujeMzJ1ImBDerZ z)p3g}dKzrRW8;EEiLkXYtgQcKZ+iJ2%(C||DlgX@QQf^Kmi&};*j}~6zuP6NM0cKB z0?y#=u#?;Hpe?FJ+&^b(&J74v+`~6si%bM?eJEmHxE+(Dx4PipM&RaEONI=4cf+?z zO^b8Pd=}oXWJZsYV7H&4Q?ZV1`bR0+yfN}%kTpU11`r}8tk10|eT-y@QqNt)E@_GQ zmAn@{RT>Dz1gl*l4r_1L9SQBuj=$FM4TtftG!92BLSGm1l;wW5D4DarksyTwgN%vR zrCSYBIo8OGQ0a-wDLlmzT@mfFvRWBMq@8S53*K01Bh$@4XL-igu`3l3Yxkv>{&x%5 zTAx@zyq2P@b6{;vs3SD(_0}sTB+SOMoh;W#*cY%( z93POpdAnf|z+MF}r`Y8m zf7*m!q6aE`yRMm_5uu+7p`ZnT-DsPs=3IspEfEn9o(AzUXlJSCi}6Y5Zba#}H~Og!4`zt6!(Lr>}OQYPA6(McO@K4$3*h(m?lV7_r+xQWh3QY6dL;njpsK6 z>R1Gr2jqxkPc^z2zX0C8HEZ;9Oa~K>4<4}wvSqR0DpF)m!+o>lgCnz{iXl%q zo-&b8_NuqZc^zex7?2FH;=X~GJ{2=4vg+%#s`?Q2$?Dt=5 zKz0-8EYu&$9^TN;tNlm>wjD?PHr7%OyAdR}JfwCLUSv+&0QaR4T)kPmZ4%$~pj%L6 zxZCz+BGC=+5ZXrgpTv)QiZFo=l~YHl18g*w?deMf&xkbUjYl!VuExASdpx96ommj8 z{J{K=7pFv--a}1QYl7G5X{}3lli!*t^#N#!b3;SFq#1R?y)xQ4ws#yxBqVZvxW~6< ziGPZs$6`~g{tEpvPxkS)Cop4FoCU#?_SGeba*^bg7fxc_$CLn8EQE-!yV>y4k8%`>YcZHQAwL3fI zkQID6SCI1yK6V&JHv9GXHGRxjPhF>1D+0av*x_w+d*SRF1@pH(%{p2PTd4sYiq$0A z2No#RQ;&_F(Re@+FyX6y@66QCGo?HI&Lpvrny7qfwh&r6_3+FUrxtWDwG@l=%tbsG z=eDzVVudeHpRc{R{uedfMZ)Wod*YUFhEx73W;jRdCPSlc_`0_DEd_kX(Ol>F+;a&r zGh(=Um#>QX`u_k>K(D_cxsUzpBm!rXEF{m;l9Xfm4a3#!#M36Xz@cC>dEZy-ce+fH zu-JRJTyf1uy=I_EdcX?2YnP)NBPQV#C3hicdIkX>9?BiF=OgaJ#u;ZdIzUxRQW75@ zgjW{JzcIO7n24RBOLSo*41V2rK7X%NQLnogaeBOQK<@tbV?C;EL zws1XXQ1OkXx<{?ew>Z*(H+KY$xAJc7Jhy;Q zYptMYhu!z&K z>V&E0PUrNaDbeV?$3PQoKNg7fdN;wIPucTa@El}rrv?>h(Gi}6?4TU(9%Kfc zd8l)L1bKa&r#_j@qTFI#L5FcNEN*0I=Bf^2yJ_@{KFbPzRJ^ZQh^xUtUyYov(tTi^ ze_|iHzXN8um;EdiW{_B3u#Y-Q|q{a{(Lvi zE6X&B9h!h9ji}|Z^?bx>1HEdb&N^bFn{p@CsR^ADt=H3qYw&`O!+b=%8GC;4F$6Po zKd4=@~)BfxS#=QtcQRounqpQ_&l2 z$jx?CoV+M}y;p5VDLA+!hrM3cgEE%!*x$ShotDwOm-G@~Vjo;yeV_(%T3jZ}`x(jU z4@o@AOKtexf7X3-78MKc?K2*XPUGkG==(?;fU{T@J+tKmcI_NJGl>ftj zXBBT)PcJ7ia}dc07frP0;r>wbBL60OqAMl*M%|gqnWRs>Xez>enZmTObqZ^&sdnJ?XureZA9%k?d4| zGEl#<3;CVT`v1!q!>%vk34`DI;BkEY4PzcE^4|97>{%8h_tK+X!-dxobHO^9aiJO|gMP-Y>-!_D)>)(Kc1sX3OO%}8=u3jKx?RuD@QnO*K)0@*_IZib0fEEcpr=Jg(h z-la&JM&S-5e;i7lvu%Li)a?xZ+v9jNv@zH4<^)!rx*d~IPQy*{rAOvFJ0N)1b&0mR z9)UyVa!;d*P_nr+^6Cv?Vv%ZQmo8X^u()kiSI2ls^XfiH>nqhr=<`qeDKHNAFrppS z-2odeYiiN&N}PS0csq)<3(;?%(yT@=ApP*O3lk1vL^wdJLBEKP>~3Azo}bP@7KW8B zpOCJC)y%^7Vyk}m{f?Pca5g_>6t_=3A78pC zNCZmc`IGK;g3ctzFkW;C-;Sm3-K91M7S-fae0hT~%?wN3&eVtHhyY8O&|dsA3s1gF zQwJ`lepQF!MHqz~kXUza6w5;BlnFgc6|?cH_;6B^|VVhj}s6!mUx|3ZxWRs zhOZy5%*7rWKi>p#1|s@5jv-2nmaNyh_(Dh|3!KcMKU~(hrz-r>%cqK^(35=n5-U^q zp`jo;cd`uK^6Fvf`+D$Uc`pK$7>PF5^2^15S+w|4h6C5FqPcl)HaCurj9zQMI-|`& zIt(-QayM}i_mlbSqXSn^#aQxf@6{m;jfEwgfh2nvf_9Qdu*dTdwWvunWXx3 zg3lbxqwTKRad#tmL}vJG(+u|ISf)7&36bQ&3BD}`j3lYppfl8{9bWsavI^Gr!qceD zuZE)qu>m1Fy4bq$Nhm5d-+mQ}!Npeg^o@`Z8QP&tzqXI=dXHKYvq1`j6X?YHajeSJ z*+X|T@q8_4Dxu3xe45)FycxO?caWVah-DmQPvwG8!AP32THB=SyU<7uonAUVg(bsh z^-A5n=sEh3ZhI^pk!}ia+mhIg=7^J5*@AhAk#`iYKRi1t(VC0c zp%ce@c9h|hm00Z6!b#l8w|h76fr?k52XK8;27JDq$o6>F3hKJ<0%p^OH9HqqjYJ#=vR`XxqX^7L&yQP~3Sc#dY0)4^(T2fZg87m#y1hIgF2|YWS5v*6rA45Y& z-WPqROLkx&9I`ChpIsXv&&SR4wSWwOurhVvK|Df1)ei+mrwz_{xcu057j6t!I;CVnX#Y6{0r(#4|3sH$Vz4?76YP6+@D>$80F5HLFE&a6(s}oSLJ>+nSh>;m~S4Sz94P@7y zkP9>8jHH8&;neXPRY-rH_2|BA4-TY$gYfYhoX|KJS&w3D;+D|TBa0~fWGc)_%RvtJ z-*A@TVk1l2XAh{biV+VUW$vt%t;Dl!)^nXe8N9dqcs@&8MqZLR7vug3_$aCvIer+$ zz(Ua8O**3F;AuHo>+TkOrra}EVw*x~BTMERt^e>?+-c9VIT}*sYZShIrWW(zBOHx! zYxBsX8I=CJp8N~>lD<&bhjaIw6Zv%K;CMIhu1nNBgngO((>nU_D(8lYUuio|3%~Z? zGu(|M^EA1ao>k(+ajpPqtp!9y(FN~Tq=NR;%}we14-0tLvA{b2B@1^&_y!{U=t$Gc##D7` z5p0A-<^p2Iq37hk`1M{1z>)kb=Q{;L*FXPz_hAnE)cg(WKGKosjUN-OgBD?tWpjV< z2R#WHV&@6m#z<8Dl*Qke=OGnOH0GBtEa2#;ujh0L6 z7oQy+n)ZZDg3;y3o$`TR6mse>ipMb$({q3C6_`@cW;4ZI7A!!1m2z-+nbDJ$iL6-5 z>uHdyOXi)LE5J5$)_D2IVl-u3R}GM!#l;|IU%um$P%@GlXHLn$?}Vixs(Bkey!R3e zzcr4$xau)+&q2gLJ|!%}G>*N}UuP{cwh-s0)COtYCd6Ct_RQ23fPTVNfi|TVnk{!k z-rB|C@p8CEh4Mz@N_CK*Nw)Q(1+Jr~x2QBU42N%`&QdO52e>q!BfLj1@iTNkus0>YNp4}-Vx zd6f1VzuNMTBspfyBE;&wNMg)1E1im-7>=~}A{4H3-urE|K{ z4I9I~zpg!9z~sNuk&YA1IJB4FWl%RHo}_VPBCjr(eQ;5vB~=3V zsJEc@{|70#jq+9C=)(3EcGa`;pPy)Bm)QcVPjkyHA$-xf8bvR4@fvzxx82pq4KcnVeWw%Y%Sy^N*;NqgoO-%lI}fAx9=+ST z#7J(9#yr1j!%7C9w{xDYVCfoGE#@_kh*lAFq>iAg>B6qGh`(U^vCDI3FfFM* zwSS7J{K1Pym#O$IZyOcpT^W7i_%vbxrL4Cx`7 zWANOrdx=Y>6Dm?1AL=-kp%=WrtmtAV_Vh%mTszD}0#ZGVsf`8TPp$BBtYjhH{^}7b zF145%Jo|P;>N`rp*jEY?Mo_zZ_p}jbKD=0`IG)omlb1dx;x=0?;;$*!TaAi;$dKA< zE7iM*jw4AF>A6A-DJ1ud?-_@X?9V!pj6C?4XVD4j48W&3g3sS#0`HGM)?~I}C&S0t z86G^EMAU~(&R(<(t>AaDl8n6rX?#*_Savo{pVB|%GEs{#}MUGSk~@tC|J#I)->-%=nYT1qRs*+ z$*H;~2lqfayYyknze$Mx3DvQhtcQTH_T{93cG%qNRe4a;00uJ+{j!ERC^wpw_L#TA zA>sI&sWtBwo~qZl>fHh5R=WQv<($yyd*2cb(|`x$rB9ejI1C0|EwXMM%x^#$iYO zWn_4zhUrQ6V0!M?&7Enr*y#HC%Ro~l^7e^n^*eUKn8PjW)%hi?|F*23zuJP7U)}xh z4^6=|m}>s@#b3BR=a4g#8^Z&)xqDnk_{s0+Cl&Yj7tnBEOyvx95S~vO7`x-Z6 zFS_h2z32#qN5xb6*Dpk$+t~hDx)37{G~K&|N-^lc#_nS|g}CoEn)?0IsMr#8xQ8Pf zeYGDP?j5a0lqkbr+uajjieD%z*PKDXytqutNh(CvhsM53-$vLOXjuYX`*HnX|7cKg z3HAy&&`b^VkRbd)#ZLBv)L(lN6kOgbQuI+&ve_b zZB+E%80e{v>j7n|iA#RXgY43h-RPYs(Nu6{_0DW3Ua;-YI7gviri_dYt#pG=cOcH# zVU4GEN(hY0j-XC#Z2RrIQ~1s8|2*1Y4xXn=?c9~e@%^Q`ZFWW`_I^>bSZd9NzJr{e zW6cEaeYCH5!n}mgQ#!o2R40&88zbv)-T=>d@54EVW)Zy{K2cm)1`=z@+-Nj|h2skm zai@Av+a}en$yE3f0=|;$Xy0XV)*D@To*p-D?t-x#}wZqn{4t`9RPV^+rVbfPdcH52J z_?!}&cRrO031us1?v32UBA0)e%aN4?%Igla2)2RIfO6Q*nT5z4bV%yXSccjk#*A4u zHsWNQv~cty9eERz)Hs&)4?S%>W;MBVWMrSNe^n3#?(~ZSJ;lxFvVP2TzO(@s#U6Ui zz8r;R^rYH8`eoeQSz$IGl7ei?ZAR;%IpiZrYjohRy!-7y$7X~y1(y8@U?VIK<6vIsXp_2R0tnT zf9Bw?b!kytcocEB zlSMZiS@Vk4V?xD-bC5d}rZ}KIi7>g%%gUxgVZCHH@1FQ@C@hyWj!k%SBcTXi|;~zsk^yqmLwwesr%R(@Ww>f!2AD zV%%76kjuHo7dyEspVwh~z?8;h@lVh_EDI8DreJAa;82@GE_|fNt@3$jh}+Gt;`a7S z2=00xRq5~-Y0rY+e;1#J^x4~6%j`?AUzu55Y{NLbXj`hztt&*2MTFf?-9b=~@m{CC zn1o%MS4KtxAKBwHVke+80{`03KZ+ddNLGZGUnC6;Iq>MAEln;nnV;#_HSVJ#`bfww z#Wim1dDRk8Ycr0mNtBWuT21JX!v3p*bY#nL<0-o_X2K*Z%(83k`xS1pT-FIK;8afz zX-aMcTaN1Dz^w|LGN8Y(PqYiC#8~PfGKCw)ofQm!>hZv?d}6e!9mP>npDr5IW7LnP zckh=u#2Sq!Zw+Zda>pwJo%_w;9dzHlEvyq^BXw_+*7Evby5sjZ&Ar(4esOc8?If-l zq?{0y-Aw#4Gsot*XYng?&Z%Un7mFt{Zmzaf;q*b)Eq)g&ap|pGzq$M%7%sH-)5k7? z99hkhpy`0o!jApF`q%EeHHpio`j{2?DLsA9#Wh63bR;Mcxppg=z)#k2J$48Vex_J zT3>T3e&j#C<{tv>l&xHJ#Athq&Cip`@XQvz;P$8rd*9yI3X!aa>YjHJ66F*4p-??p z`(qX}TF0L>UC%`j#XMm8U=5trBHo0vO+(2o!?i1G8JFhxf?Ev6F(F{ErDKg?*}pj_ zFnLd4Wex6;dI4F*8WEC>ob`89Qz2YD3VE=e|F@Xo!+h!9%yZbNEqd zoW-j;3TE>S*0){^fl+_?jX+m7cv>taJ*LMXZm%d`x^5a~qWSG76gogT{Ne5H5elSE zmCrvr(1lO8$`43?s6#7r^#e-w4C2{61}u1oAVxJ7&wM=#eKqq7X?6q9R-uT!-<8mBR5bBFB{wO<$=X(r%0;T5gKL7v#|Njh^ha(ki6vpknqflm& zlu}Vfdfv(iC2b+fsHlX7WGm7#!dJFLrBo^-8YCopWbeJlb=_<8`47%{-*bNF`Bj<^ zhMLiaasFW!WhjS{oYIJ&3p&3Ds)>gEp&20(x;yji$iWVbS&XO+Of^8A*XPM|??ptl z$uBi1FcC#I&XkDaYM7^xJZJ{SrR9Qz>n_E#J71ZY zHJs+-{5lPfwNb@K_SN7P^93!-#d_3aF7`8=%tzhLhrEG_e{rWwgUoLW>b`Q3 zljt|mtQ;y9FwfznzRz5im|>e8b7K*0wv0A?b9AtL{2^Xy z-jCDFsRB+?lB5FFdvxdn7_v7tH^~{t%P|>Et<6P<4hW)u8=Hh~%A?OuI=iv8VCLKv zg+{Qv5Z<$Sf{9F|f8d|D9>7|!YiHPEdf_0i$;oClg>~AE%ci3Jh}vdYuCLOG37_9? zoJ+M>b-6$9`Knr^B~@~G2~1)C<17(%9SYQT+jdCnPU84xQ8|vi4CMCa?KFMGNxb=^ z!%O|OhP>X+qJ2DI5|e>JmtvJ`V06^Ww`p+l8=0K?sblKErQW`5AQ@LHsbN*R{E`ym46xA)5{Q; zj_VTCIN$zWXz=;FbTXAfxmV!Uk#~%Q;Rg3>PX2ks?&k0_yIBD9h*8PFjv25y_xE&E z<|CGEbDjU1VHm3G=oHjFfi*IF5Gc@fxaBSc| zSIM9$B(BTIQ57eUNJ{43b-zgFCBzpy_EzQuk}mljzP_v@L$Jj*T8d znSFq>_NiK&T`%;BePv!1Yi#$J(0jqxA9^m&a0+7a9B=$Lb>qWFMbiMiS?EVv=tp19 z#iZaWvFcMZFx{`Up}Lx#{1<D?``n>pe_gV@X4c1*Sl4c@u+yy&3 z@&>RvpHtphjDmsnZOKjlbtB6Br;<_=D`|i7Ug(9%G@PARGmWklCGU2XD+gU&g5rU^ zQ*Ym;vIFWg;mkwCd~V*jWsh<8tY#jgvs6 zM66(IGGc2Nx-2ZZQ0MN`k-`)U|_o8`=^4voTpF*i}XtPevD z+TSi(PC>20YKJ2i9j`;DRi}OGAy;6+zHn_EM$*BK77e|~d-b_ZR;eB-^V?%yMbW@; zNysyDei%s1^?J-eL7!M@LMy!kDq@Q^e}c17zJAPZQ&0({WY`7m+G!XWsd;q#1|ykG zmEOKOa~e@E?Y_$RcRaw z<`X>@+c|(sMI(7CwcNxuH*|}D?J^1ja|KoN=J8X>MSGQ0C)V#ia@(eB0(91WX&iqB z!B+VoOkZgl!oN1{Fd3M_s(4qo(7cZyXKC|qQb*|qaiCkrVW;0zD;VI|8S zws4;K_6ui~hVK44xrA#of%_f>4B-0H=_Hl*8Yn8<54)Ay0{*Abx{5uW*gAfsO5`#V zF*ck%&87bvl}@E2zXO@b*q!=*o}1$k(a?@M#90n*_MIKSxS2@Z=zQYMlz%w&=Z@hz zuXzkw#%x&X=t5vUQx+@R%3WM&b{&wbfwV!gQ8MKp23=FmDk<_1kp!{cBu6TW&dhL@ z`f?D1?1=RoemjWXFW%bTCv;c{EC+rIZbY23(Z{Uq#oV=kaAEv_A_BjouSY}G~ zF)tLazl`> zcuy=X`>`vRN%)jU19WAg*L?P!gR9DIar(Xqs6A!7*jCw#1>W~HlMIu%@HtjgrMm~r zR!?rZ`*q;bJ54W3=30aafAu)O!WBt!@r!@@1Y}gHQ3)%&4-hNaAGD1ElQ90vTulsQ zY}wEI?Ndf_cjSoMfhj(6n0?=0Q>97xmV~WkbgG8#!T)mkt%o3cQ%rMZdJf=x~tK|CgpP2iXV0Nq_x^Agf+Z{>u~~^$w2Pr?QJt*jK=JpqQ1Md3n4| zC!hwK&UnjB@BR#q1II+mP}ib`Bk4&HN6kD0JU?mc14G7YPo#3G|Bf8kiV zPDket4egq`ahcP_kfpbkf9&nW`3m;j)gPYQ0O+jA+T)hvnx1a1mufXnmYZmIje=f2kvSK~Jd(MFJabmzATl?JTNyp>O7`vYF#+FC7!A*f`ZpEJEUi6q()@y9bmP>$h} zJ!3?}C(*5TtxS2iRQU0nk|Yfr9xW|h^X%l-k1z%Cv3~d|Srlk}qN3+d#>Vc(aTMPl ztB**Tg^}<6wCkqFtG z#L!q~FoWkt`fZE07s3;LMS6bjP_3cN9+}FSOR}m3%#H zTtloxwaegEbX`G@jgD-Acgd;gJY-YW>KMnVVU%YY`EZ?+CVH|jCBn29@W!``n^~_E ze#Y)hzs5(f$57`+B3~+!)y0KvxAtHo?eEBY*=bB(sJ!4JGLO6G^<2<8f}0T+B;*Ch zuzmPsx%~GYtnzhi-)v07H}S{=zy2)XsHclS+uasO9lCLNN8|+9CF4wOk~&f7$29$S zs2R*LhI5)cb9nbLUac&$A8cNg5`O>s|W4_p2Of$A!qT6eOfh<+_>aFgr1@%+$uFQy){rpyz zoEz4K{!HDJgMLL|TKzl6ZqoqfPd$I;MB^dF9Pi|VH!_egYdmjIode_dh{oqELok`{ z66Ak7h%amD?^TQ`hV(7RyJpJ~2O+<_12R;gA$r_os$E|s*ForF}5+ed3wBVfN@`MVAlQmyS;Iyp9t zru2{RQX}YKyST;9t(%pUdUgdYh6s_=S*M*hpZ9@HFP)3ihk;~LBFCJ=?QBV|L_x@%T>P*AL8kst=C)6?h zQ&KxxBdmH3sm$P{K7H%zs$6J$2A|`2$xM{u>c2d;rb67SM?Gr$AEfgIMK|tSM%S@{ zRXg@qqx>n@BjTp87&;pKY^WZr5!;eI;~B}+j_tcoO_k&Kpa0ldwCmBN>!J2tRDh@z zG#50MPl6nBn`B?9|I$T)F834L$v&5x#IAfC>tceQ%{VmR#H`k@fVnnY5V?DRU#|pa zj6IFC6^|+5tja0)CQQ1D&o*Wzvl808&pE9SI`##(A7b@gPdsfjiV9M=iBn!-R;f!P ztd!rVwdl|=dHIFySx*`U7FkO)cl6??q~idqt1!7&*|qDzbsF|(9P_^zJbhh}_~-TE&qw`* zrB4*lMPyqtl-Y^PvRO}Az*%7rOEDv{~%c5l#|k#Ta!QiS&$z?8JCO27Z(U~~ zGg-Yh{`19*6>s!DqCcHhhmy8Oj*0_JBwysGI<-fLoZQ8i&N(-VUkYtfQ?zCjd|cRn zJFyCxKi-}WjBLeBf|Fa-!*;NYOLe~-9>oc#wC%zEwXk()tI_rE!rtyn?i#88kTo45 zdA48~;tb72!H-(;^ka%mTyHbl_Z{(jv1cVeJPWjbr^-jZduO%Jat=YbGQdAXW)2m7 z_ud%3Urmlme9>%P@x6Gfe6e`5IV3e}O5Jd;#JbXVw#>67$j-XZ#&&uH&*m+ZxQ- z{Iv6%KZuXRPTb=ko6<7grYUgG8Vo}#g-=UMdjKQ9I94fr9z?z5$++Kpn8*uXr2}N| zJWAYkwq3OmB0EwZrwJaQz@=*b5q;?`x(=tRQFU4oxV^4b{%k8=ghm~|kxKzb&g|H| zktuY0T<{XiYJ>Y}O;c5;G93G;Zeo9miiUWGyuG>t#9@Tqryxzm#}RS2?^|TZxrd(O zl$m7=7wxfU$gT$81NR_Dg_Zh}GHLgM({M1l%Cd&17m4h0EUBj_u!E`h$7&r$GDxnz z8+tqeolVPi&T1=jt(5-yqiZ(=awPsaf15@&)u$lYVGa=@&cPC|yFokV`AsT#1aC}c z3>c+4aBVu;YjZ*u1Ogk1F7BLzSBT*6ef*uc=X|%y%wYuPk-xop-J9U>H)W|rC=WA7 z4K@_A*5aX&M(nOX(@=fjb|l~pD+y}e|Eu1DnY{g&#hg*vfFZ#l@3^#O>{xo`*A`a; ziR$?4QXH)0;2&yn3F{EY5A$>x%7D28T84oi)J&Xnnrpgo0qVH^4FLgyiHN6&2f4g*PW@|z<^KdYyWsbm3Z>~{mxeB6* zx96fWJCVZU<|LNV2xHZK!!>jB2#Mt$Qr%vLsc#hd7rl(+)bd_xxY`U3w$ii*_LrbE z>yV>Z%oGl;mZ@OYEJtE{Nt(FpI1J*1%rE74U~z$_e`Sb)@P<$|tIt+oXHe_WCzkc7 z%diMOwrULtaH7ho8H~ccJ=;}r#kXu*dKC24l}Vf8cJ10<{cw}|eaSJc0eg?_ZvnLy zYRiW2e!i_n^H$5Hyxtm6bMGB%`y@afnC9~+hw_k-Kij#VD@>w#i~o_{1Cpd{+3@(& z3QiJU8fPgj-i(S&HmQuMB|M1!FIl380wK!jw_?j(h>bHdwbElJ*WM4kR%o6>M}Xd4 z?-&aD&2@hFakoOFTd8|^%@AT^Cm&1Sp~F~2=-N_YHF79=wifDCxP^tj`2Khp4?WIj z&26c~PrvbMP0A36sFA^g>~8c5%Ng1Pbz=68U$VbzCH8-_;ePgX80vo`o%i?-qv_X# zbljC5TsiYGAu)6kHp=D3-w$w-<6g%e*L-6p<45T^Z$*TOcwbXl+|!l1eN{`=hnM3; zrWsFU%P>^bJZ@1+so>8p%vWFW^UacDNpxFgGC4fzf54oM{wvW-pF3yq@np&dia9@7 zV3IKC%BY6VR0yy6iZ8x+{=xWabSYTRPf#Z2($O?}Nogja30rjo!dlIG@!#jUn00=v ztytv42nTOc2L z_3Pxba(M2kP;s_oA~u&Vob=9a!VdbQJ&ZO@2ygN{J@JE zxexnYFlHp_YMkT!=T?!Ys+R_ISN7p)ecmg@2ebID;@|Vvz7~-WCOn>0=Hs`sMj~xy z7<@wKI@`Eb@;aCHTP`mu%)9=3B-J~ECq|a7>v&6GZQL|us>4D!q5^Nb?4x7NA(e>s zlik>LysY86hGNeSC|>r%}u-ntHxG_z8F2&%3Pc>cFhaC!wo5+p%%) z>H7~XCJ<*jS|GA^9FOkYPf*ic@ick)`6j1ago~|Wy=6BBK9O57ITyJJpY>K=MeYe4 z$V>9(Gms`l5A?rqYH*RfXeF^bqcuQ8!fuzEURYfU95g-H`~FC*1q)R2aKKN+r;L`_0j*}ZLXQ!h@%4(cQxi}2@QugKV z;s2n(v#BB`IUj+>jD}vjns9zW=(M904cWr2*Xao?MA)@c_nSKxF_swLvp{dfj&}89 zqY3mC4>tll$%a#3RNmYIM+>V31 ziqcu~t}nwvl#7{{qX5xTR^7G!87sNgXHj$7Y8KniA<=h{nS`&Gn7mTWLwu|H4@z$A zN8-U7ZEGwRA#JmkgQ%@0Pu*Jg4oWc)QM+AkE)8rX&(u@YG_Vl*)o;9=rx;0|&ESDJ z?J;y0t9ztcmVt9n?$s@g0q8E(Jfhgvqf5YRp3XjxH>trJJ>plm9cd-Yr^i9K1ica$ zXXiniI2HPeR*J$cDL1+2`|+=Uuy8hgYX;gR?EG!Sf`=L?f;d<=I)`lsXZz`n%xsa|-itTF=lmNL}%n zl2l91bwVW5XrttGFEhCnpUG;svlHj67xJ@t8OTtgrb%hdER^0Se9q!)N7Sx`_ZNd% z$(wVh6V0-j$W%sJ)|~txxM)6Eq3Z`x`|Iz7jZPRWWT;Bjy<;f7C)*3{(9QyN1 zydO(%RcahoIOJH#c;3#l2cFM1i9LTtM{$p(qH-fY(OFgYL+%_idGTyA*I>mX8M+fb zR_>-CoS)x7VRr=<{F17FMo!{wa^SXtlar8e-&JM5!cXq+%JY9c*@=Yc@+y9p0*u7}`L&$jFJn;m4iq@<^a~3A3P@;R7pOa4ePupdiQ6)5!TNH| zX!N9%SG2bw+Aoj-?pc9{=hFsBsQ#_!!7ddNtjmie?$ek7lip^nh0Uz9!_G&cZ^9&irWm z6~s>h?yQfv=`jV~Q$3~2EX|m786JsUUk#zDpN|tmX=v1R8_;5|f>Q3M-#m2_pxZyw zR{h?He&H)MFK@J=!RE-0p%=x-ahRDjaa)4IL_(8IU=^DDG{W^u>aoixB1`-661sS6 zmshp3kt=oa7qS8=xHtQydfy7CuTX& z{B}{j_%Cj9Md#VO(Qrdf?b@2CL9F>{&&MV=1C!dsLu$=a5LJ2Ed2dTCdOwRWaQ2Vm zA+Kl3-J1-gz2Q*e&@KiNJ0^Tl@;wEN1%4K!pbTsE4&XwpC`sa5^3pj;h2fUkrRfh} zkf7<2m~HeA^!@?!&$MZjw|IQr`)LMo5m`pfw^wrMxZ04KJtMicZ`0x2pCgdpQ5^I~ zQ-mxTca~Uzs>hbWLxnlKDJ#;-quDwI_lhr zlWQb@--sTCv-F7$J4r6mT*fIA#7{-kg*X4Q29m%ae(#CzcLp+AA^Y_!rV&=ibHi3@ z7RI;kMI3)!4Vl&4nr6b^QKjnk#q0tFg6j&t`NUHZ9pJMwe`N#;1xc>m{&)q;Dcs3sNEm%x2?yKW9Fg}7L`;#-oi~`5n21pB zF#Gf%%wYZi!=vvw+0-D#d$12yM5?=3au$0piHaq2)A2>*Sk4K>4t%)u)Oq>q0&X=| zUpP8k4e#2;GoJpO3*ET()wGuynxgipchf*lG;?K9+OjM-60JFL!>k9LDj72k#ifjX~dfPB(16 z4-M27Np-_T?CboT_H4WZHYdEyzrP%VfLv)lXH_r$2LJ&7{|uLhKNegZ#qF7qgjBLB zWJc1fI#)(TR8&YMqLKzuL{=$ER0vr~OG3(MXdtrp-g`Xe^YGZ@^$*<7z4!M!=X;LI zUR9gohigfJ(P|d{9b;e^*Sm7!S}%+ylYS4rsKDUJ8T0)W#V9i`7!N(%j4H>Sdmfij z(H&HOthJ*Ud0Ul>gOqEq{OkTXW9e+z#J^JgmpO!M{6Rfe0@%r|&`GwY#XrvD&hT#uhcBJrD%|?ZTZ4&|c^ zYfh$iCv^Jz7g_C@NaE|^S}%Da@~CO`hT3@vQs$hzJ5+uQz4kZk6HTbFp-1aF(-&}A z^vRPtktTF07$(rV+ribVY4%`VjD&VY9_hI_2?_SAXDTY|5Sik-@YS>jbUTjaf9K}0 zWtHN$ryT-BW|Mei!J`gX`0KpC9ZCnSAZdT;pacn{y&sHbU=wMQ!+UfA zp5OQFma9=F)k$}r4}Hi%WMTR^7W;4xk2Z1KXCTgz5-+7k`Y|Km^HcWeJVJF4KK7l3 zq#QSiE4(m*dZwJPlgi(a>*vFd z`*BSA&pGCsvyfMteVd;=hqgUjo%9L@k}h=dZQ(Z_;yxWNUvO>_0m93l=`xJu%#Br& z%RE%bdzE{*zwANx%sbPM9@Q}OVfxe(Qw#q7!`m7!4?!?QvOL>q!)dI67~ zS?^9&rK8*VyuuiTjU?sODb+X)?zxN#;aqZ9m71_kOd zd2ltWQy4cH!k>bt(pU1RaP*7Wq?pb~aPkr*Y$`IUD&UyH8*tsT_J@0zc~IAHz^71Djep+R&GvSv6c z`@1I{_e$!fVxPvNLMtxv43^NTSwahIorFz}IFF{#BsT4(Y%QhM;&Pz>E@rJ9Wbka2 zKFBeRrZvnloTsLt`s%jXpKW4@@G-<>SQZ5V+iXP;}5g|U_hV0 zn6Dwi+QYFiPiEoJ+`K1otQ5ir&%ff)n8y(nO?ql?;}I1q&*|yukNYssaxb%;n~|`tX4ASxtHTECV`qZ)@{rs9 z;X^MUauIsN`&BxzLvSj&{w1n)84;FzKe+kW$pza>KTOZ^li>~LNAq2JVN-d3p`oP~ zdu_BvCr-CQS+Tx1*SQ4uRQpRlzwJjQPj-YT&j>0v3Je#R^`ppA#roaPIV?GEUcXzX z1%)qd7UC~Z5&6NL=Dw{L&nRy-FL4SGz2K%aE~jD0j%c*bz3W7*++>(he<37z{G*>a zRN~^)+s9C;fg$IZ^#$b-?0=^vOw}vHpYT229~IiLduRJWhsZC;qUefRj*fsKYBtw* zoPo41&ZmkEbz@_bm(|p2Zqicz(p|2PhO^xzjrk7*$bzCn8$_nSz5GnSFMS3E5!_4> z!L?wBxOeD6b}!<+n+(m`Y4|CvHd3tFiw0}2-`~A#+AStZeor*6 zJ<>RjQ@=ENWT#k3kMG$l+*>O!VEC?TJIgGLIE~tQj*ehapuMu`GYjeGU){{IwF*M} zABdX>(xDi*Z;N|d14M*giw$M8!ttof!g+I6!v4zlyxQ*-?%Cbsh;fi6nHzZ1KI|O9 zyL0l>;?IWhea!VD@WCZsvhT5GYEecXsxBYhb@KiM+Sl#UvxweI>P>Pq zG#q)!f0DmA{z*FWDm z!#JxPupICC6Ekm8`>lBw;3pK>#44ml*!bskL`uKFylcY!V@o=GPL8xyiNY*Y11ghoQ#JK?Ox^8|S=lVsd1qx? zw+^D!;qlRH%3ZL(vzkvxH5jP8SvETUL+Fcg>uK>eP=;EL zd1?+L{lIp%A7zWUSEpe7BdQ7&*Wzj)K4mA53U$sL-&%>3j~${^5dl)8>1loJRtJpA zsz0ThOk$U9a1-ZGCh{<*Av5LE2vRgvqJ{Hb;g)m_BcC15JGj=;}lTTPY}9 zcVoPy`i2 zJb)ISzcCr_b1}Jhx~5RM7mS|M3cU|liDcvQarUD$JagSJ67AKB*aV{{af4;(etKb9 zT-S)ga=X8?vFyb4^4V=>#Y{vYm{wrTx#HiQA9r+X&!B5dRESa?3-LO3wMN}XfXF?a z(UDK0Al2cvx@=Q5e5(1ju~~Pca+B(goxCM@C=g6u7vtrPbUH^ zGZUt?8OY-U>{Q{92>z{Ps z_3sQ_m*!H`Y#3g3y0IE%E&LsSH&#Hk{f47b&jh@dI&9PTR$wfs)U~#}6Epc4{z^;V zz%{o2tHO&R#D6;#&vJYb5mH*(t5X`G_wia(RwV{TJ@CZBe3alX&)#GPwA12%dvK z3_o-;6U9G|V&xa=@pz(*9OPTs50kx@=Q~z%(Su+%y`ydTyckB4@@F9uN0at*ig6Ha zCDTC98A;-Fa=YoLJ>%%tJFG9dh61l*MmA-~1-zv=oULEe1%-@;(kQ)Nbk-X2-SgW_ zTJ4Ou>PE*d`gxN_vJ3|a7kPN?i_r{dzf{<$P3>^37Z(k9!a?Y?9RZKqvT@ICqc6{$Ma)Kp zy*FCvRTt7M-sk4hkZEeny{tTj<{yjI!&>=}aSvjjjpiiocEwUJUag#GSazUSe>Le1 zlHyQ5!%pO=u0P72&tk8g2iH*>Hlln*zsyOPh0L?=Z89@&#?amiztbAqzX z_O;R!qfaiPd&^#v{FT1*QS;}MsDT{lYR!CJJi<(zj`P+0c%@GIho;Q+GQZ%Z&foBX z(IFVTHSuLwU?v(~N^NGr&6qdOeAP=^LO}AQS(wKRYMg%VoEf8F`#qm~v#F^tmNeda zxqTML`WLS{QAT0==GHou@^0v7#|uR)QgQ3fmQy|nU3kLSyqT&rjZ=-M_Xe9Sfdl)E zTiQlYp{r!}l9z$Jh~pW#D!+(9AzSMk>C0eYx3He;qCx&}UBd0OE@(uj&kb9(V6HE` z@y4WJZG@s6OQSrGxR6!RjN5bfl$PbkipI3AO$W%}R8I17BO~ejO;n@U0fn9ru{Y zua5ujtdCGfB{Ih}Pq^tBU*Z>P$P*E154Z`osoJBLAQzCdks zYDSXr&nrr%%%nx}!wFuqRs?C3c*GU65YYs7t-J9HI6rNBHYIHnZZ#$6VyP z&`e_f=rH2rLd!#z8o_YUV&5(Hzc6AA`sW>8g)>E!NyZK3sH4?I=1$TO60x(cD!CGx zr)y%r+Kxi1DC$|jU?y_>EZSnOjzVr%Y16p_^AOVHW&Lk&9TW)W+#=|p{YM>ZInW2O zP4Ny5@dTQ(!YjVI*F zil1>#@9%%czLH-`{CbI&IC=E-o}sS&4E|;OxO*aT2<69bR7flQLyte}mf4nGEDB!t z3d$RR^;?g(x0Sb$sCPH=`hSf>hqBv2_jetFJuSHMSX+?L6g30QW1Fv?8o zD#m6$4b7sps8C@_uM@8;cg%%8X~gtn+IEljMd(zo?LGHjFCIR&31X`6fbE60i_6;F z#5=^?d6qtl^*Jl4ep5Gm1U&e5W%3c_qn!CsVk7Wps@C%S)B`u>t^E-e93;@*G}SUB z7Y$4W3?HSIp|htdneo^tXl``LigPq1M{S>E9v_9|?ynxAp9=B)6`zaZ0bW9JkI~Y< zGJ)9^JH1qe9>3>+NfA{Gbrxm0VJ$$6F!%c07xXm8-F zXm@RZU|!H?*P<%iomSh?dUg(+p0{R{>7dc`+jeu%4Usf{zHuD-7j%8s<_y6| zzQw|Jg&&?jy~~XQ|6$eZ+Zi3I6g<+nyX}3(ASk>=<8$*=ygipEqU_Rx)oH#gL+o_; zS6u#=VgC<7qV|URuZOY6@xaCJ^)qmCp~rnZI}N1@g-h2JW{|w~KDV{hB*NB5(>>Po zqM}(T{POBfyfow1yZogViMRIqo$csBH_!bNmncpm9m?MWRT-k5a4TeNybs*QH+PTR zsz$~TZD-795wa+^*k`KN1Fp}HyR`;$(0Y%9TkHKOYJT!AD(zh1MC%^UJ8Rp(;m(#5 ze0wc1aPo-@)|!H{`Zu=unsH1l9lyhDIfZ%eoZ3CsR0KROwWzr`j3*Cj)zOi;>c`p*PsQA9*J<2KZE3k;u8~X44K8%H}RAjjedAC>{Q&U+YL&jqCVS01|srKcJRnxK2E6rx_$IH zJINiI{Di`4Y~LJMBB;PX+?nj0H<$K<$FF=!Ymy3m@_gsSem0_eFy^J(ihqcO|Clf+ z_yBd4FI~&w^N8>G;+rx(iLkMZb{Y*%=%m%}eqs_G{!koWkYe!p#)@S$tl))}zb9Lo%zQuijMVB0>4w zVXJuZpyJ=q??2B%oXch7wKvYd&HB%q=86d%sbZUQQq0CHORb=Y6J7YK%izr~#!S9H z?~K2%K8y`pm-Gx-IuQ0oBT(q*0`g3s2)+qi`HyFL8u`f#q$Hc3P#Z)?YWLFf;59vX zq)Rc`WHp6Ub4LB0hO;;>Y!;U=xsKQxx%7zg)8W?Lm#-C^52phM(|B%9qF7GO+rO?D z@nv-8kS`Q0i82anRZ>ytpdis~(}9HUjm+8y{^3sR4m*$@SX;SR2z?nu&Cowlv85(F zsTZ(jlVl^sGZ}vbH&LJ%uaLs8Py_qDmJ{}71^D-`WckviI=H=PvZA9BlpVW2$*9f1 zFZ1_f!?o3DoPD2BSwhE}PPJm%O8>awa?98!W*Bq%vFo3gO~O*;CYw!O3#NzF1G}?_ zQD3sWdE0D1eyqLS5D+Rz%xZ17&yzVU?(92rBc74O^fq%g1XN*LxUTf+72P-~S2+q_ zn}GNJ;A`xPZSdA#w9IgCK=jR)`pK34ad*Ng+zldxDA1Ng5?RR!`gvVt!?omh<5S15 z-a>RYXXuK(o`X$Axy!a)RQQX(eseLHg}l#XtWdqukI>(BH!o}%Lc$x9&S!F6Nbikq z4`Z*xJ3s#2Hj+%lc+sb^FLMfK`F#6y8AZrv@lyHxAO;fQ?)>|V4h3>5Osrum+)Au} zcvCBN7&4Vp?j9NxWL$aa=C3ABnu%rnD)#|wq$GcwI#q|cFVA`=bh~iG ztas*?;vxS!)EgezwnM%2=xsvRYb$6P6w7a);iIqg-_3B6C<7ncup z!R3fTvlI&_u@=nGonGPlsN``69o|}SrAb!SC#)h)HiF`krw5>>5YYUmi~>=JBs{QV zC+hD*WOMm`<124<;`^*QT)EY=yCsu~ia$|t@v_6n&3_jlB22-RXhYdwmkJ>_e?-Zr zXcdv(uu^q1hG6};fJuIO4RP8$>04mRMa;#EL|O$Ih}j3b&yOnjh)%%M`QT)BQcp?b z^0IG1$;=FK@~_6^hL9^hlq#GGRt=xyVj#UXl8VcHG0 zFtKQ{p*)2t>aGzIxvv0lxGMv<%# z@nf&e5FXsW71!REfnfI@F;B@AKAPV7<0v+SrV}Q@wcR7oA9%Er#yJcT4LO%MM+zd{ zwn}ly&0(t9zBOZtfqYKo=Njku`5U?dA5j%F=6m&h3(+kzs@y-@ zhoPCMj=1t#IG*Q!@bjw}F}tJMTGZNu&dyhHGyDbEXS_~9MS}{SoP$v+T~l~BwEt)L zVjY4+{5%hYt|QSN0Zp;WbVTH zz0wb=_jZ;Se(8d`SKNPz*Ji*R>zDK>YzVwjrt(V34LHrgsAT+U27>RrrXLCkk#t)r zK4Hr;2pwzY&H6kCwa-Cn1DZv6p%}X@dSeU1tBJ;4MH(WrHMcWf&cPw) zB=X098vOc~?Q^P^v9G3l_1l>RFs0iH4eahg*U*xz1!E6Rsz-FbTRVrsX_xAh<{Sj> zj_EI1;q2xn`vS$~I;1%m5xvjTs8zK)GwMe{S4ZchnmP?s<8{yf(OF4v(c$e9T=g)v zQ%_^umIiLYZHwum)3Eqq^+GXm0&~_J-_mDBP|MS8T>YsY3dPyN>zS&MrDC(C~SD*7pM@{JL&+3O6bB_StA9Glg#1gHbo`52MK=$@j2mHlz(?Dw8+%B5Rs?s$POfLx2wYHGU}{#y&{eN;<4(TFJpS^gH@w0^`c<*1=)@ zs5>g5!*qWR#zTTSYEP$d(b|*ye(DAiePc>xz3&3POSmYcxBtaYJFAxe?#_Ysa=(i4 zlWK5%XEHqdcme^XQoUJzG(2!Txvb6EiOtO|p-rooaY7614E7yRPqeQrd@}%V^U!fd znI;4@88MA9Gn0*D3DNID`j9#6=KjjE0y3-no8LK?!curiX-T^QbvzM2&e>Jrt5Zk2 zTh}aXB*bKf2WoI_;Jo|!m__Wkb5cj*PZn$`MX{I~$L!VO@a`49zQm@>Uy~Y8kl@%N z(=h-~X-del1O>WBQ}v@MLPVr}V2@GO60}#@AN>1_ff%-YH?LlK&%IxtCFcwV5f|Au z*+-wofv(3E^SaFt8}y2(^K6Frx`$JpXX*GK009606qk2A7G4{N?M-HOg-Dc2NRscV zh?Ff+Mv7=kLx~@XhLVbuB2f~FO3Fx9X4!l1@z^{bd%fO2&wc(lpL6bUu4`qB^$!|1 zAJI?@@?u<V*svNViXMNypuM_^gP36Y5?-lx$a1xEmG9R{tLLUJbL#p&T0=X>t zN16;|F(5h2`aga$@!)_*a{~i8E+-LR9@z$^puCYNvnudN`-;W1*5JzF)DSTjdLrzj zm0fX^ip9MizB{_Wa++r`4B~hl(~Q3pRAGswN|Nha<0SByLjdCNHh;Q zAGk8Govi|AgWYtuP0qsM(f!~$rhXimI`r7(%mj)Y@6X25{eoJ`P21S~MI@wVxeP~A za8&TINcG8KypFIrG?m{Eop3FokWmWQf2;Y&CQPIK_YNVCcTA*D{h3)%TRUC`-5YnT z8pgqEl`qq>Xs|u}m*djYK^%|ywdL)~6pZ}oBx^|z_<97iXJWf?>Feg`-}@_ZQ@D&J zFs2jC$pV-2C;7;KN~X_wSQUx#_L#jk=ei&`(r~t)w*j_vE}2bx#7X`|`-GG4yHMM@ zNtWtU4*m9kz|-r-A+tG3+Ttk{w^odvYPVNmcW>{FgNKBO+>75{8*ONC6b{xEmFkD3 zziQv$tu8!aT_>XZY!Kmktz0kPOhSi|qxr^>J{&gj4Q7yNK+E-Adt>Y-aZ-o*JEn%v zn0In_(qtX14Wko`s%Aj@JJPnJPn_g#uy~RrUx51(d(5&$r{Ng7F)J#m2o+%y_xW_I zP@(Q}SlqfEW{b9MX09|)>P^3Rb!5ZrQf!=0=PaJaJ(Ag@NKfQ88mLO0m_w3z`NQiX zJ?Pot_IvzmJCfPoKltM?k66>z#LYZ8tMPCHC_{hhNY&$AZQ`{V0v~>V(QQ$wuIe_}|6Xv$!x!@UVVws+1A)04= zkQ_V&pWII$(&Xq!K^%o-bFh;@`yHL>jcZB6wLF`Io@~re!s+&{_FcfnEoTSB#~@-R z)@vtE1*5vXth-DmE?jjLc%s*b&%L>Wt)gtC<2lXZs2&A_a8fq?(};KHJoMC3C$aK6 zGT>kEIC|CW8|BpK$UWvWALJRS;B;wqJEYf(T9bcDU7VA6-B#)1)iRC*n`5PB+EQej zQM=EzNqVwfUC#UN*Fvm zG*5pwN!wWjnZ=EJBr6)Br<2<~P*{bDy_~XQ`&Xc?z0TkcXC<^W)*9DJGmyJ}B=(zD z7QB6WHJ?5ihL{qk>!bN0Snsbqu_>e)|I8jIy7P3PHoPkL%vB0PyqX*qu1S)^9Kt2? zEz3xIc5`2=9TRz#GDfTLt3;5WU)sH}eq0H;(%bl93Ohy}vWNFJtj=4H#@2u?Ourg- zQ>~c7qd(W)JUYZnN`Alhbv?mJSaLL698x7oU=fSx)51THei*ydTQZ5Jct(5ubyN5y z>n{7;ot_*en6ZAo8XuW$@;KWKhrTUp=BE7^WfK*(y`pdA`si+saCjyinZKlGKJ4HV~ftk?Joql)!Ll-`o4VAk7 zZbrw)#?5wzM95@u__Dvd2-&kINF;k3J!zQRcsa#GjJO0IdiS`2pFFQg=v%v!hNio$ z($b#gsB~Eyb7Qg#rrX+V)KzDpv04A)k)$4kj0Am5NbJJ=yJB~TLLRcD)?j~ic@&1( zLLXR%3NY%bzU@pkGdXN9&UApk18rKy1}Vc62#HD-?33aoJ!em(?7NqV2Fcj>@+R|W z)f0NROQ;jhl9&9FLIzW7Od~2pxLqCOTLef zoQ-SJs~P1X!eaZ}&hBL-0pqe~4eW#nhf?sJAO4Jlv90;e+pc!pJGXpC@ku4L1>6o~ zIJbb+hPt%o=MuQwPg^TiPvfZY;#nu}B3xXNXVS7}Akl9-q=m0b5}}X2Ixh#3u+W|M}fLNw%MR#Z)c(dHg#yBPren)R&R(o}=DKc3lJb<00UdoGUbmRlg-zrI!l}ztH zx2V6|0KHka^u6bMF{m}r*d9KP(Z<~;`(O40#g?)ax2LgWEtw*IvIiZewjX#TyP+j+ z{ax0(98vdfcwUR?z;&UqrS-mogz2?$yV#;4(Q@h&sJPgLTp@oe^AoMG^ZuM;;XMsLNNa+p#<|vf`?K2_rizQT) zG4?}Fb9UdE&hKmsIhtJ*RTeGprd)_ga zca@uHo9 z=xc#K-v-d-8l!&Rq7X^PZZFv$EP=hOn|EPgBL)Jl9jJ@1f>EaIu{bvt^6sQ}?B)Mz zk-pBxL#c?9q#owmf9_T`c+|C{M?Vc=Gj|-D>c1hBKM!m>e`K`|CpE8ViMHbJ$LEZ` z+UbWa!NKLS zVQx+>T-WY=lOEQMlKvvEaPKJ$Fblt;JY7T5&Zj9mjPMfP1O|Eg4YK5x?m*kGm-&$V zI64!yVGdi5t0WeU&4BI0o2tYndh#mA=3wO8MTGrfnADQ!#PnWyJGUeXBql0(*1i6R zT&dxwuf%wW!j;!A(-fO=eJhh-f&~Y;E^)5mS}-@Emwqf#w5AV!hOB(UPZ-FSMTZ~h z<_mE7Ywq#%Paj;Ui$8ZtGm~r2yAAU6sIVGMe_?mD3T>L*wb!=}q5t|*#R?%Rg0;fQ z?GudT*Uqb@wb5PRdUfw>qCf+(>ex@F)d-WDI$XKF^TOouULR!@=_Op2Iq&!Gm@vuX zF7P<;laExKH7mc6J&B`2fu}?|Dge_BFD=JMaLVD|Kix?hJ}})*vUVT9hX8@+-v7Gr zbIp8J{r)v%-J`P2(hpX7ijFt<*xyV@xt8V4I5Cj#F%9Y(ag7Lci(LPceio(?S~XSI z*oko_xe)z26H_{})bx%8cu9DY>t(ID@j(2-IjJGoh3BX|_}73X{#viEi8XNc-kD~9 zfrTjX>e4;h(2vJXr+;l`;v!E&FI-69&qh2?MCsCRV<%esGoHF!5GP`q7F?`OjO5wN z#=NNmZRlB%giA= ziA5~DjhCE@3AuBv?mMKXIy(E($HA@ig&JhWN*?%}Uv|7yj#tYj;?apza2V5Tc|YvJ z{oxu*^JFS`7?3T zo`zejtYFFaPCWLj+@-tfZ!Au>t@_~=_-B!kV_?z*j_N793e&ZuB46vtXLUL9Ety#_ zZmI=QQk%XTM|FXH3#$ua1F!n~2&Q)2?7mU^z`X*`C>sJbB3C&e^QhmgJJX0@ zy_X`S*AH3c9TxtY(5tk(sl*2W%l6KIt6`7O$qdRQjXtt&jNdfj-O>%4P@i%OzbD-VVWc7YbIER z$wqpkE$5fO?l5w>sCyX>5|Se}#WZ|7PRC29Jc!tgnSDNHP4Jvmdl4l;gMH0lM6h}; zJkpp(wwlwE5*?L4QTv*pruNst$haGKA5KYC%}>B6P}pkX&ID3-*Zr7#%dqMRYkvo% z~tvFcyO^*yC- zoe1R<539=UL%5Zk9q;!-*j4$xoRyivl)YuIMKA^NX+`^V;+e_k>jnWv(G28S+b-Xy zN@Ao<@qn)TwQP8bN$#;!<|T|}5?}0Fx)3^-%*oz6gGCeH^m94Cadu~jw^QlrKNf3e zw#$Q^ylDyDAZ{^&!|ijQ{Zt$9IQ^u9vt1vmg&i}J#pZFzzhH2?DIIy9c)0b6&@j9V zw@81wGXU%5C!3A!Z!GA8ampD>3Vhq>hUl~Pd>=6e4|c_U7XIeiIxxq|rsL$YCLnX<2wF}OsIq;=LGY(UORj$B`(NM zS7V><;BDqsF4F2;<;>4li&N%C5=-DCEV7H3{*w#uc99F+6GKQn7MLy>HVC;z&0CkK zRk(TgQv8B+17yS^YPQ{^fMKGUhhI#RSU+I(PN6Z8l0mT`B^G9KKd)8%nOG@i?3iBU zlu%G!YgM>edKmk{tV6#)u7#g~)C-bK!K16*N4BufL(cJ$H$yQuapp@^-H;_nGE)0E z8x&T}_m{mv@3%#0aq~ZaQ%8YA+B0m~Rmlxz+5o5U$4Ek_et1#TM~n{Q*7 zzyEiW)dCAFzFk!uJ1-)gQkXUejT=m^!j>pi;=0Uw!PQ#`AJ{0z|OVz zmM|CYu9}i3NXjxUHH#1Nl7QZnPi+GJ$`BHDwp|t8_j%e z2kqPkTMm~|Tz*w{QkR~KY#RL_n3>K-B0Nte1f8tM2=n3Ne3Pvhx1GsvywZak98*#W z?cHEkt}^Kj09^bLR0C@si(4YuwXU^C!q)aH#%qKL-1ZPo8QR#h~>Q zPS1yPFjwpyzT!{|bvGebiG#v~(%i$`yPD6h!KwCLW(~OVBI0yu@n2M5m3B9mZpPso zVbWpB^AKiEs@g;u!p6;P2|?q3utQtrUHPRRh#E)usq~G)x18Z*@wEm-e{73*@^l1! zOq*!qd>cs7N!M5BOY`u1mf9M^-HxuGjFi|*Wnj}PiEMrI6X}{%SxRUP=zSYkwx3vn ztz5T^=C&$iyE(J81kB@j?O)AdiA5BA{FSFbrD3Z0(c@s_AvE(=lH!bZ1l-Cx`C%6g zL4Q({R2%bP6zTf0bk{u8_DZfO#56-SNqJX(WhXY;UF)Or(;$7tg|o@+|K51!j2sg^ zDZ5!MDs}1N!@Z(b^ADIg3ecOtV|$L&}HOrSU)bQchF1l)j^}%VsVR7 z2VNAFi0K=)Aw^u@p-8nC-#*#BBDcy=qt(OJUN8aymg&fCk-eDbl4U#I&rHG#bKa^} ztYE89xQ4)zIGI*#kmL8y0nPjK5n*tWGqZK39GknKu=!qOg3&BembU-A%9@LYs8Q{b zRd2NT>d`(~$3fz(9tO_sA47}4VXhVB2IO*-Won=6!umcg=ZpY45@|ty;B!75+40Wo zo~6(b9JSad^!Nr~sIBmO_T?~4^%yJlR=Lfjz_~u~!8#IiHJMA}=qk58i)3)lDMp__ z^xnU0?8N5V>!GQEZirhB`JTGCf?<7~^_nx&IJoD)l?9(V$TjVXqH@!bAko0;`l4QB z`u-f5x9>vCBSYmAQEdpP+S^c4W+7^x&;M9w442nzxqg8@8(soBFGD43@aqekyF*4Z z{#z0D74fddb04b;(FeTbO?uBihOM0np@jfTn&k({FyoHX7Fw25IK@Q4Eg^;Q!9S0CsEZE9CZ@xygbz_IXZxy3$p*Dc_Mv9Q#@hUKWy1!tzJc?)Q^g3xdbcE}ztZhLR7fCml zQ@Hh8n0#ADb}RSE60adJ<h7afJwD)yUsJ*j!9!p`@C zmzb3%jeC+MtSOdg5uM{D!NYp*>w673V@VKq{ zXO(C27MFu&Ryk(j=+U;`W{jA>Jg3RQOG?)6I_N>yj%ZJ-;J~%1C_Np_JXtskH?O&5 z-lSrvy9(Asull)Gz))|)Ehggm-rf3$Ob(*8Ip53L(h=P%r6H;3m54e}`ofA#fX*t5 zemj}BqQY%<<3X(VWhVmdBIvqPr@kdA#W_I zP+g(&oOYuRY!YwtQan3weSmdY$7up?-_&$oy{pH;V+=Q(u8bq^-t61u&=zEVi#+C2 zHjRyc_R}X!w;^vr;`4~i`Q2TT|zqXp>0>bA0HiwHaYlr-m@L~27|Se3}X;!x_s>Lwtryb9zI#|r~$E! zQ~sWNgvlw+tJ7K{VuU;^c(WwE>NTSp>D%KbP`OK-Yj*-4xzymZCrYIU(&xC0YDY&A zdgwvq?eQTP#pigKEG)vZ1})5AR=M3KBXGJ_hiD(xMk$_?x z_xHcdkX?g!iu^C)`llfnn(LONHIBet2Rn1ivoYAU$@NQM8&q{V8Kn1&ftsioTLqb<{r-#x+ggntUR<5K&EzYIc<8vP)} zr~|BNKAfh?6S!>JAVgR97vUeG?(Q>m3?X8PS50{ zHcWu>&hUgq7agh6SdzFVmIAFwo6iS-=DncRSt_Y>UAd_6e!q>A<4nrdiiuUn>aP*A}rYF;tf4YS^z z8Quac7mYK-IRdA%~$cejd?8~0vZ)bGm1k6Q7y9_1{=&4y;4)!c*o^*=(H*Uh2* z=XU<=I|bNaq;RR#avn?iPP=MWd4y_oy`%UB6%VZqm^$yYz?>Ybo4nBq=P1M13u{)e zXr|ZMx}BbU=KtHu<~9KOw4du^G)C}wgX_0YmLbS*bIz?f-jD0Dr%!rUOOPb}ou>od zv6IWP;k4ARrJzK1x|n*gk+TKva_qcA7~-WD&wN8qqTc53DTtVd&_q_`^0`{*&NBtX z6t18vM#f``uNUnhgI=EmIw6=O&cnpi3Q{DYLs^-^p2E5(&D&^TI<<9dZ+9AEOn$xi z?%DvStT%_GPq*TSj>*AM(`pzfSg_nR5hQ~q{TmCz97TQuzwtk&IbZLk4h1{J-s(F8+pj_ zKyk4!IVK{S`+Qlz?;md7yrDALGKfK6Zk?s*E=XBgp1svvhW&LO>nJRf$jD6IctMJZ zq?!gjI~U7FGM%h_jyj2w*r!v!O($iE{1sK^Z8wV0vlMnxc=G}*-SYL9dRP7Y>krPG zDKl707h9KXC`d$npUYS6uZMwd?cw>f31|g<*QI>S#V4La54(4;5bM!ogIlFl;OhHD zb;+8-trs#^-(43VpK8VF>3k_j4$RSdJ+gpTqYN}B5jwKz@YuJCrCt;;{FZq3WB_9) z6>=;8j^o6fqCo0{QeUBH2x|>~-wTIrbh0*}T3!AD`d-zpwksn0OP` zK%YT{ufXw)Ref;Mq(?m{Y=P_ike9LPIa4KP4!RzDeYw? zyx%moJ*UuMDeZPQ5SM`ltY`ue)vK{}+5B^BnX4Pi(7 zRj%jGQ^@7Y-gd$HJAO+YA5RMEM*U{j#|p!Xn94P`a1ySDSU_r@fN>`tNF--HWT7GU zj*n!FJp=v`!Lz9Wtxzy|vddUw05Sd{spg|ipx*aY{H(Kp_^qMgBfna4+ppb0n{5=_ z=2>4IV+2V8=f-4?L!3nCAUAt3KMmi1_l!xi)FaP%*I;U1D-yTLuioKJ$D2B~hU-QP zD06f6_j=U=H%CXGTc$&}T0yC)V9$fy=6zJUTobZ~oBy*I6(T;7oYVKzSCdlK=^C#7 zX4u=a*lJmiV|Rr7XR{mJmO*SWZ;V_-x`w8=lXn7YY}-*MSRulil9cfJ0szrizl+|yA-7=pdTse^J2pk7E13G zG!BhH|MD*jd9!qcuXqxCORNDQZK5)4*&}F->20%a>4f#?(coXyAv|=KHF}&NPDZu~ z{;f_aL;n$N4%&e-2pl~aq~}=&X-DPih_oo|D~))Vtlo&I6vHFR8z>}+{Ix!0-GS2N zEj#SOrf_Zg&2Rg$3GlhQyo)hrpt&<-XzWoRh(Va@;IU3P(0{Gh73@bJ?&RNGQvvaa zo_~Ss7%;t0!J)WD4F6NQ?q=7CUhW%@G(JvXYrl@*lpX^sF2#tQ6JNrlmrASl*Hjcp z$)2}!%0}U>#|=X4W8iNsjk-qrhgbTnUi(6O;Sw#ixx%^;j)EQQ%$SE^tC=t5OKLHc zUJ`TYd?$EsCp2%DZ$NgnOTB*~4RNY1)1vHMIJ0<`K6iwT2tGe~VqRzw2ds>yP2ATI zzmIyVNsWKtQqXr}gqww=v+h(Y3~7hA+iit+8y9d;xxnHog^J=U4w-i@FM-N&Z>0Gb zC&>#B$V=p#LUDokt~(a3kUnzMihEx@%3S<{*({leqHMKya3eDb^5h<7svJc9_l6>l z<}p~Dk?!xa=z(cgSUAN>-m^aB@8Vtrv)qdq>$(c8_}3eMYBPld)_L5QTI|QQ>Z>+ZFIvI5 z!v%hlO>k>;Jj&-fhPxLU-r3nqqbyFvFCpj~V%Z)FgiN=ByGOo`MY03)tR~^zm#eWM zu{W5{QkeL2eHYW7szKcm`UUyB0>u31cJbQbYEWjQ>wIk$d00`aOyh(vg0})b&JhsPVyBWkDk1b%dh1z(msDw{1@pD8}SF$sm!? zK}b!vChDG};n?ifMJ+}#Uh=+UG31}bt`r5kkV+16Pqf-(w1k5+j*Blim`jk2y|2cc zPHrathBrKVit^F_EcPOeV;=Ra^i7J+bGYObD0Z=60y`e2J}i$FCBA!7Ov4}6z*j2J zJ2!#>^@K(?A=fO}1fLo>Wy(fqM>)9*R#oA)Q*zn0xncZ!F!k%J+bS}zDw`I-(Swm! z=Fyzt(>N}&WMU(~h!YCupX#-AK(Q$+%d({%11z*RnVln;VgxC>1e765E#&GiK_-$q zviFSmlMzh5YPbIIWeUf1T?fWW2Vq^6*0dqJ72Qg9oPLx`MA zqL3X1Su6L{GZPOkmebo8vXP|~>(MhyAwL&5bs0v*VA^l1+Ac8;$zKzbG~awURc+Eq zmFmQ;1yi3L&CB_Y=)21~IE%)jHylb%|6p|ZekZABC(-s%WzxsXfjVT3xTP+xo`+o4bnqL1Fv?=r-cu$o4 z(myo^_l@A(@jHHewjv~Tz(?0ni;Y;ws`})Lv_pzDDA2F48pl#E(;ob-hbQg2eM%Dz zP`3^dtzN`EB?>6X!h@64o1M9-E7XfS+L!(FQyEx%yvwYhY5?C208c=$ zzk;j`Y?+C)T~K&}!~pDfT8Cws2$QE=n=0ivnMf7?Q>G>ETzu)MI#wN3jPExC!msug z!+E8An9;jQe5Isy*+ns++qsE-#_9)XbEe)$-#1`&0f<`weNZthQH}ZxTlQc&LtZwE8%X8mtLCOmp6#7o;JH_ae_o6Swr?i0T;QtZ~a^9 zVl|kq?6@`fnVmGP&AHw#&p=>wEQg9T3yHRVeXe?$?>7zCMjPrGCfGz6b{-fE`)L{U6tZEjoFa$mS- zw7Il{^Jis+$rKg(3ZI7kEZ34qRb&Zm#2>@bM-q=pAU@LG+vGP3f6GsAR;cojH7p7DDvz=g zfdc!k0`B$Xqkv2Ioa+Ws_B@h8)yap$7lYl>Hy6RpxLE9Ya0bmDH}?-N4CA-;d|+k7 zTJl=%VmV`L9ePX+13e~&AbRB46SvjbNUjTID-dHLcU9TWn48z4Poq^Re5nWfkow?=PT z^q10Zo^T=;wP;q4)jfEr)Crov2swsc#3zo$Ha-8ROt= zb5sr8(15N68IHKXHk_%or4`+2!))(I8IFWW)a08=aBl8|tu?oBvQ9U)1?fI;Flojq zr2v1drVtYSGMuwM9M4Xs5Q z62j|#2afO&&gAa{?M-YX=XYRT8kL4OQ{S@{jb|XNB9xhx$x5D`*qcb}>%}Kk`YGMG zam=kr=h^AekD@yIKOY%(vLr9{^=RMnUCTTvY&R7q-#4;lygN)GGOEr|8|2a1AwwF?af3UTxwlkbvu=2sMa?)tUWUb6ARy?QQyYl zq7WZ{V>xeS8ajbLxh5eX^(1{RDhcn`ZH(VEosARD+MKWDmUpw>cyu{!0(ZX@c*zO$ z%W$%}=CBdh0`$l8gX<15y(k#3tS^`qyCp}jf&IWOxhOnIUNSM>Fu#M$h& z$iM<39W=Azpu1^KZm0=@(~Czh);n+J^fph9{w(sBAeS!%DJVC~E|~Th3Sd`^#E7 zg~*t_thgjYA>JcLZC=O?f#*xLreI_po;M4b-@Dm{w~1H$RQU&yCpncO_HhY`&)gsR zl%!#;ZE;(8aUYCRmJ%vByU@1aRQX+-3fsFy`#0N*6KjtR)oUHA&?^(!H&(sWi(0^)#GLs&jZQG$29%lzRl@yyW~pH11m1`hoz3WHAgS?-Saiuc@~r4c z%@5TLq*2VVGi&D(o-1+|Hj*Ove{=Hu^QRwy3AEU-^ji2a1~s?46d@$T{P4H%d8Abh zYQ;&dA|XjPlZwXJ$$jlQrHumXiMeQ3Q|O`fBq38PjT|h;)VC)`1JmYU>Z7ysC;JRK zthTF0mMrhKnbbq4Pp>Cw4qG}^6Y4Q~{C=MU=P1_rulTWeJ_}v5f`i&C7g71+9W8XC z9_yY*B`NOhfXgPS4@ZyilC1T^Z?=8u0n0@;OS8jcXn)Q*)}%g-{#`3pKAoe(iM{Np z^!^s8Wp-XLcj|?{-2IMEz7@FNlD2fEn~BJHeW{c9J_xzNQE8TR1~^x0DAqVkBFWfa z|E6O%PLyA_t6`BK7Q2`p-{e?C;G4SpF?)s}ocK;xS#3E#e^Yx_X)%$G$!~(nj4{Ni z*e95tZUOh;<9R*dS=?t^J9s?17gVcgar5PW&B@RiDPLUzxtK(cvDG}JVQ{b}Bd`Wv zpQOny<|gA>4ZFKgP(S1&c%MsN%EOr9hoqV|W^#kVD#7ozfFE(Ms#is1!CZoU^$iLW zkyQR^pQ~1YgNw2A-WSGj(Ngm%?Q}kP19r9Kx^%e$uejYu2=H z81MNuGkmn!N%~6Lp07j8|4?9|DelTo++Xf*+H-RZ*JMqPu*(iYx?uKYcyc#RI`0m9 z)>Vt=pYS>Wo}t7}$01McIlj0VEc0VQCO>yxU;^z)#)-KZJ;**Q?SE)D7g; z{Jl__8}^%locZ`7zuEyb-T5h>GQ1H4&D;tIFHYDNhT{dc(N zw%rsmcz^uP+1iam5#MYjx#ppmcK!)fw+p9YAJ;vWqL34`S6*{h7a_WMhK0y*kmk>? zT~0sfKvA%2?odTFHfxaaO$GDtau929O=Bb1#jhmiU8do`bW4p#KNs;*^+n)ug%LD_ zw63dS8iJ(S$QofIeo{?)>G0qJA30fRI-GAnhvsgbMA?HJgt4R~aLHm8FJy;Dgzedh zcs9=pUL#hrXFF?n&XGcl#0m#|JI+jgp0Bmt_`Ms4JFe}l*}Kfm#8CqlzZN{$!YI2? z(}QlEP{jimDP-D_m~eT~wjd}(0>WF* zt1Nq+WSB~E*rgSuy#CmKLki0rHb|N5*JdKRlY8o;i)he&8g1-vQ-nPZ;-+WynaBnm zmTj3@qmZANe--syl$?1~#Fc($6S+TeWo2;m3>Z$-*G4TRu=|y!#97o1vB!FvHGLIO z9B=&eqqqp2XY^e+E3pzPmE~0G{#9hUygA*$nnJE+{t}Ou6C;0pXWBikt|9lLLK`0$ zQxT!$Qfhx}9vM;8fqv^bEC$xh7s zmpQoi%Gjs)^$gT|FaJJ&wgrC==xmZ*=HofD`WUt~>?E2p!niFyglAKk3g@hP5P#xR z+*<1il(*IwvPyNpd;6Hchw&zyViYKUHDBHb)GLwpx5|+;qbpeSeG2QtJX6wwN1^Hx zdOclx0z#wV=R8-;B4s^;W74AscK!`p4+x2p*_ogJcBRgOPxM9cb>9wX{V;s8QRN@* zarC@@G|5EbHq_HTj!nWSwcJYHQ5BLlehb{N3b8SOwI*g6e+}(d+yDG^%S!5_L_V8 z3bXhV)cGtBIiR-Mn1tm`A-+Q@-N3B?JY&1ZBU+$FgYU-b6eDw%15=kP~0?cen{ zC*T&7Au|iH8R;8bTy%tLibO@Lw_vaRrn-+_bc~C>HEDmzPlSAoa{sc@p`|{nnd2~u z>VEyW-2IY7$ZN}d{{bcvX?MFTf;xnPyBEhT>ncz`uitCLS^=J`bNj7dw!@@c?`&?# zA_hNvVTzFNLdC7UACm7c`zlX>gqian#BFSLeIDJ5gPzF`zbdkjVAP0hX`6!d;THdO`+yE;<5DuYvOv6 zVpQegK01QaDhZlmefjY1ZN5jm>3EQ%azJKFB;V(MXU z)W2)5H--4`I`5f68AQC!%o?iTDBQPnN4zZK&2 zs*OB5Ymm>^7PG;Eo$NStVNImmKQz~QOkOn*ARaB#)PE&giL`uyRmcA2UX6`Dq$yv7 z(k+KXcl)=)d7XD>HCF}RYDFq6`4;2yq4Yz^FIJMBv4we8diaU9u!$RbiFnO8sulc}O^qFq8!6AoS?WlShnBSXosnyP2#bZolu8 z&uI7H%$c4PL-$U2PyUdUG{{BH!G~^sfm0Bv3fli;q;r{nx+N|98o>I`_+p|dGpRkF zBd*dh2rEfP=g<>$yfernVP0ckdi<`XaSIKnIx2YmteWxaqm6mTSO>Z-SXiW4t6@B_ zuJ5YWB&-h1xd+|qM}_&;7RNOVSlMgL^(#_{2pZHEi^d@B zls~eUn~);ce6I7jU(DL8wc^H&H z>#Np-l8)s)r1wTPNY!Vm)+LGY|g*0096043~F26+Bw2aWb5PMjvWm1Niby3ZDH#=_p`;=eQ6v;1Gs@n3T`T(<*UEVPd;U7- z^Lx(o`+nC=EXZEmF^HyuP3or%3h{K;%$M@6UIf-WX#bNuitl{eqUScRBTn1*Rqsyh zLfEYJ!LV2CBtax8q(yuhv%+8RfyPSIJT&@aT6;0oza_;jViMVvS4KqR$6>ZWBhNT% zVe);2zw0Oq;YbM*IU>eEo*mJum=vZX-QxJKV$%-jiB?`S@~Fl})`7A2Jq?gJv0XYN zs{uPFUq`;aF^1f88JmC0HbJqiZ0yC2j^%UL{O}vqm>MxA#)qe&IiQ@RQ@*N$Ymo(Qv8qSDUHQB!UOF``ml6nmo{qh3Ji#Yy9 zc?G9_4pi^lh`(k;M_z(pw$%z2a&<#Xrilg}bnWLaye;W4I-vV?xN8nOzPr{Hvn`?5 z#h2;eDmr8*#k=I~CXxK)LD+7GKIj)|NAxPJAgQ99B%CpnarZ(h?$0KZQ&G> zruMyVwok(8{MGBCBkQpKZm;5z*hVx6IAr_Lm3JFlkeF-a5sEz*pX(+e=n`o80tWdYjl=W@l& zJ8?|T%X}&31G*H%Dt4Ue!sL4A-XkYw(C;41E1O0kv1(V>Xmn1Xf_+Fy%b*|06P69i zyniuff5tA^eiVPWW^(5W8HoA%=9O?w7fxQUj2AT?#S8TZ=Z-CQV$VB@ZW2oi#zec6 zPb@7!wg214i&DM#c|SCgrZ^74i|;g@UUopgT%?;AWh2ac$v8Qt03wP}UTbuw@qA%3 zi^91X%+ZK$$-oS>YMfkdgtUOQOzEw&4HGeR{`_BzMm18D-s&4WEn%X~Nm`|=4I1{t zas^lO@yd;Tc;fL0J|0froshsxh6Qiv+4)gOfkyq8n;rj_LgN8-wdWJvxoBvNAYW$m}TK8m8f62kz2ig3K{0wGN$K5$ePfBCsDmL z1jp?6Fzm0x=dGI>qdaDDd&Xns{jJPorCYmWTU!m-7P%CTs#1wKD~slIHyuT$Y*=B_u8wA*;Sax!w0MF{~Tu^m-6v+@`oyH6Vxzegsvd;bX~6}u9Z0c zh{GtOaS8f!cSO`44dC>&rk&RUmH2EbG8wCGMNxqbob_uk_d@c^uVMjGtL2d!4 zCtjSc$>k+i^y_{08!HhS>WUm@CXkk+l+WNP22+FACS~zf1cejZ=Y_xFm=;ipjaBIA zyS?d>BR46PYp!mR7P$~2K>j(~d~|WIMwSHs!(&SG z*kUU2`Np3G@b8#k`WxGg0s1Y!E?qHVJG05d*q{%0vloBGsq}%>Dd&yp{R(`zXCU+M z?kH5UI9yVN1~6=%_RFxk7V&ho%*l2pV%Mx|=dpSe3&Fe!j&^Oh)Vud<`2KNx(*E+r zMXwW^qvB-eGCOfDNX^x%vJq@Q=S1ul>tUYS9g?U&fddJ#-fTsK(EboorfbUpl_5&y zRc9e}kGGh%6)g8g&{(fZy9n9iZL~|6XA0|1AJ!eF*1$rdna9(F4qlPsD(Zzrcsp!w z=u95Ol}UL;o1`%qH{SiktvrFZbL&g(g2zG9^rP*LbC8`s)P){<{07?_!Ybm#L8f3L zU8r4wBIl&wtLIYSj&7h!Cb=RTTJQ#SG zZdk894k>ZrCsN-FaAd+cQg*f*`rUkrSJ^AjQrMMcbhaC|8~3P(C63~f8*9Bj+a~h* z<0pR>kq%5M{qlSf%Sl`$r>i2)Gq9`kbE*0XW)i*EP5zQ84elch%Im5boY0rj{UJM! z6Z>y}^;%N{4lULyW=Cd{ECG#lBX+W{v-ex>pK&y$(u#Df8lYXauj86U4c^;QH$uJz zOulbSdPM87;*Z46=ga-t=E*4EtzV0-%>&ex3N$4D78ub*4T4KE&Q{CJKxpClu3H8z z@DU9Ui_EWq@MK-tLUb>>Q+>yAm7A>iab@R|XT6Z@4YO<*n?}UaosBM>66Ek_htZD@ zXAmWL==YN~W5|(|TK%@53{SN)Zu7q_gzt~Dp?lK*;^oO>B0?h*820)t#Pf6jHrzLU za9yL2r)qg08%aLy{t$FcdOd}J?v`Q!#w@mbofl!w8NyxRcgG~;CsC_8DivhMKptyp zVFi^+kjmzEH)9l38}X(xqj8L6U-OA9>_=VXF{u9evFR_?pKoRyhtameum1Rnw?+dMe-^Qj0%Z ze(g;yD@6K=zGA8LDX?9a(7XAYm;Bgs*fF?x98vM@ci5T4$d+9_x%#IT5vQi&uV+;R z-g=F^Iki4aS;&UxUyH?spV9N1T6*zI^|MB&N?V)X#2p3Ryl!7WpPsR{O#zK*=zV$aRL{a^fQOEXjr;y)|L3T z89`CZ8$ELtm-$67CquLwd=YsPDoUeBko(GR@TeIY=r~W`^8;s%Pk;MNFM)l%(60@l z)8OlQ5pV6VwA|}&uFfY>NYt+9R(wt^=yqqjY!ft(t8evXR%KP_q8^N5a$Y1 z*%&6=W57@TnOd#^H`%Kl)Ry&Kfb62Ys=9Kj7nGl4YqLfvq^ehjb=;kGx%aal9#Z5a z`4e1i$-=B8qW`{U(t|vN^fHo_Bbf-lkcXdy2OVCQ+C4pwl%QpoaneK2PEgfusoZ?n zj76s>v2PzRk;e)q^4L*;?L)po=^E^$W3Has_<9;1*FFlpUyQN6Q?Xz>DDSzN%!v{mz}e9h)LspTEnPEGG8xSm#h#;658+J z(>e%~(Ua|$ELg}(jR~>W%sYs3M=0}9$|#gu6sqY7Rd5M&%=BB|0^@+8pQh2p$UjGp zm2IfO71pnD?Jorh$L20q9b+Eyr{5yFz;F%&+haxF3X7A7L9VXULtLb&yyLMYqZ&>_ zA#+R1_dA+bJF-TJLPQsydn?O#K-boyLM}^?OzSyJ?qA;1esL9t3TC=MecC3P!P|h_ zLzkj0m*=LjgDPtAW&n?7T67FJ>Y&>Ew=%?Q8Vy`en)!4mpiC8EwdPpnH}`EhZ|{u2 z>e>PS)7ITMFjjZ)c^3^uC8z)6AF0DYan*o*dp&l`d7RjvK8o?l^(i5(LujMF9kfnd z&O@MPa7HpKQT?l{)6F>t7o*O@yLDEQ5Qf3-*sv*R?sygVsiP9+{qGcJzYHR~q%=Wm z{VYVnPCsGO=mU)_yCi?lEcj_zRfj%L;q6uy`+bb%eBPgLmRrk7l0PNcz3wW-rx(_H zi?6bg>(^E1*k>wG=V1`O$M`!wIcC(iEOYr#jCe-;coXP8`l~9ZDMV$%mUXKWCvn;S z;a)L~KX^kkKUaH$4(m8goyX4$plNo~Ro$%}A~V~jt(Nz0{h0{cyTP6KtT$hfxuzS8 zKpydRxr!u_eHVX&We2V{7+La#bCQ>-4Qc;lbduNs%1HTHp+wuE#}GQYyVnHjd$a^tZU(O z{&Ihv+M06e!g5|Zx_Pn#@~iPTaE#6EbwA1~s3n#+`NXKWlX zG3B$NLJaKbmm04wo5j=~Zxp^8MNT;LMbz}cVeEafvibl%{b95j1hWzjq0wP$Nfy#S zqP%5|kTCJIJ?FA=?>J|kR3AnWHUWx99c8um1-l(tc#9>W^nllD;=u^JlP3xS3 zly26_xbLl~jNH$Z*Po3mKO2+ZXieh*+Yc+9S|Ort5mDQ`V+>hx${f~-V&ubRhG>r; zD>-Iy?a$WqavV@~oK;Thz`mo4I=3aiK*LHy)U2-`PTy~?JDo9zh+7e)*pit%Nei`f zU*^+9zwcst-v;47Gi2hS^A`sWRAk*-<|gg)!dm6Or?JAN@SfD}E)*Hg?q)ta4xb6Z z>E?(|(7HH(sx0^Oia#t_>X{V6yUBIMi4`>PuD;&>@qHf@y@HF?8mi&B!j0n)vSFQc zX^!uC9rjq*KM75pf;&T*ZPA`enjfs?9j#qNpq}gBd6x!gxbjI8?|)!PKUlbZt_szv z0lZ(|u@b{GMfAql9@wp6zu6R*i{n9~t8Q=UMopRu-NY-)!X9LGbO^t&7{^O9*_>N845Xx=ZCPDB53g6(#80X(VRsr&Pk;3| zn%#JLloMr%ii=yevvem+JeHbex!WLdt^A7N<_U01@-4(X;U>S<+{$EUuExPTJ@-@H zxk&f!XR8CnSV-cf$GktSCUN54LzV59I0+?p#TH|BL82{VUg7+p8@q3C3(B0CLv&5+ zboyRC;(dML0Y`b6Q94|eFvNpQQ{GA1S?h~_;vr{7GrF|!=g1aGJbGdZarfSf|wjIbA zZN;O@!(%ah6*yw~Dbmul0aMPwrUA1;?>QDX_F+-$O67m*9XPJ_Hz8QK8#hU6J)3SFW+?%^x-v8jd51mDI?#)k zOnV=k?d*lwaIE;s{uu~+4s$s_<|C2)dk-oIF5;8HdrJOcesXwMtF5x#G-edpo`}v= zVSV&I-`@5y2&VdSPs&WLvf;DIgZ2HW z#%SS0z#=%WmE9vT0^|V?PoweXDO?iuc95klLR$82B-5QrFm*i&KEA66?+@ksHw_J7 zPq2sHo$f&#I~i-g?&&z*iXY|tTD<^+zZA7~ewDDT5WShI_76&jauw^oP2qTYz{Q*= z-N@qX<*2fqLesk6qMAV?(4=R4%$S)0zW~Qf@QQH=FgI$ISC2s3DC*fa_Yu(k8P-@( zSjcE0dz`Zh8yUL&+2KW&2nkhKWmMigipN1cS^W}UQGWZn*Q$r@;3zP_YepYR^`nCi z^o&DVx$WtjG6u#>CSoiyyP(mP_UCt0F5d1GzkujTsBeD}slH#5>?pDDIQV@WVTV>c z*<&t6*1e66{WnY{H-`RP(C4j!fXPs8V0asp+k<=^#xfC~eNk8{dkBxs9%_%u_hX{p zz%Iv#O8!eW80>PMK}yPcL+zSNt+z8luN4)3f_*QR=cYA)K;sHJ*hYW<$ZDKIyVKBb zy|WbZu2?~!Ep>UG*=Zll9#F5VR zM4Y1>d*g@h*rst3xl_}P27jnzNVlko>BKZr9(60ikeSHNZD6*R6eM%k#%3OW>xJhk zL*A;yITT%f_3mnu0I5E6L}neGN<_|Vws2EiL1d|CxBe6;h6q>S$=~^Gq<&QEV%gnM z+|ntOia%3|Q}Le47rfh0==|UQ$9HP5H~V(aeeW4?B;`=J!Wvnw{z=w@YGFg;Pe80}>cHd_fFT2}x z>irw=PQy?yq>=_>^{!p<24bY?&+c}e)IlUJxdd!5oWd5RS+Cf(t;AI>CSE1458OU{ zF1M_z@k`|0oM1y8cA0%R;iy=L-$(hsr7F>oP?Wbbd{%(yQg`1@KF&%q3{*_kYE8lM z`QuNesgh(!`eN^9Ul!u-=`XcyTMNQVD1Xn>7!X<#`6m&y08?fqmPalfIJT&pO|fMr z8qH@mtQDb>^8yu3GIpJimCo%n<>*D}n~t=sE1ih>swUXF%%^gWlbfcl*WrcfeTgQY zap3RMD&HCg7D9Q=TU9Ht>hNW)V<-Dy7Leu8F4T#@{1G|BM?L7aHrabHwF)!VGm%?w z3_@Q*^Sbbf0hF(+lDU-Dh1#hfJ}(=vRv79##tIf!mr*znS|3Mul1 zv=0Ida8g#hVR=j;L&|HaZCBB8?3Gr3H_LKvwzSEIq6-V^mNPPS`Os~`Ol)EqUOVLa z+6T9SSMDGAw0xOY?oH@UQ3=s2bJL0r4MQ;Wt7%r+cl+ZwxsrzykF#steTFLp#-&}I+{bFXKm zc2S7+si*a0GE_p6Z7Jd3XmAOq8gpb9W8lOK`UQJI@~25wDvX_u{i$aTr)7S@>EpkS za#z)0t&_D#;%W*J=iM6hL319X#b<<{6fHt7{z08Nn8=%5<8A84XJ9GO|HJH?D2bP2 zm*1#5gad1}Q~MQ1F3oHT`~WZ(HeR0h87 zcRItc;wH1+Y+Q%#@sR9OrW!W`C$Zko%+ccsmGHXG=rB3uFLSa=R@6BbGNA8b`9hFF zE*M_;v`(rGFCWra*HX*j>DwBAbD102zIu$hODuc4P3xkK6gx4Hw>VoO*@;PA(bNMY z4D7cR_ASe1CSGg$R|Wjnj`Wlujg##xq%u9_)c(RMSgMKkNO`U&^wNQm0@W_~UAgM~ zXZ-{ek9a)ltKcBwD|ePGKAML#C+o-1oEY%(CuX*F&ci>c&CkAS4tF*rO2%+cp~Sgx z@5`}D*p2j>I=!lWayT~SSX8pSo% zroj(}ApN$l>V1$Pc`7-4`R($alS?pT=};=ef4}vve+^jnslI*wZJ5LL;gZWs*zFbH3ukVOyr53R@b zI1??Uv-%*FNO{)XA3VoRzMRjt?tD*2>+7~Eha-y!+hh`z8^cCQq~dk&`*V@KTT^82 zo@&9h*NGg@Y&&t%t}=^zXB9Rcy|OPSycjtN>%CTI_rYfm^`X<|VRStCHRF3|7&cdB z&xGhsVe75$&M(*3p@MtK?Gft$R$YEae;m|@j>9#pcLZ}0<*N=$p1%i>@X_8jtGyEw zDFiSiJc@kEBl$>WZ%7>f z?ioD#GJLmmasuuTUd%tMu7cjvxy%>GyV2t?xX5{A5|3=Q&>|BCka%f-d(2=BX5Fn$ zbJ?*H-d4)rvz(G-)xCGGmBf?mGu(|8^z4yT6xxWyv%uYXYt6;j2f5`w^YJ ze|w`R6WO`a_gvAPVqB3h?6CPbfh_^`%>fh5unq}26#lCfRxUdnDUMw*n>9aL{dm{EW>by)WNnbF9a4{`0lwQv|WBJ z;hDeS@wWUQ{uY*sHy8IjjD|yI*uK#|`2OT(Ych7E( z@EO=&%})xYuO+mpz5IOz9OSHutZ4#e22XA8CHpA|66t|!9rOoNxckvTD}MPOXz92X zYCi3RmU4~*OIJCxc1ty-`z_&&h4jCOh#o`-9@d%PT(j&owL%lMRN}Kr$@DBYh4g%( zv9JU#;-#j?(rI6I@;=7ve9r)dB!+E}VjQYk&QDbCkuWCm%xzVzsbB&0KX1SNmCk^z z)=JYYS7(vHa0qZ)J%;AC+LIY)Ch$yDN%qFx-&o~ckeOIbB>}>xY+gS82Vo-bDmTkb zB57*qb}K*RuS!hg#@Ph}#0U;DSwJt@RJqF(O5t|rWL{`Tl)Z$(3HQ)=42 zVjMi`AnzPH1&iNtKQBg)<3(7KW69M#nEhqVsCqbtVNagq;9+@^d!T4HNzH=Z8sE_8 zg?&(eA0YEfat`VDKdNb&4It zW<``rIB${{2`NcZLMbGvq@lEwqCrVWB_V_&8Ih40W$*d7_ut;UK0V)_=l9&#b)V;P zEPRZNym*uf`B;^N*RS$GqC?d0~HA~=M=3b z`@xsQx{~{57WB_GK5AM`;2+zO5c~BsozVq4e8iza z%1%t78`~)lqvZdTA)IaFknzEF#HXdft?%{(%0sJ9I*xzCS?1HWX(u}nd)_}MEM)<4 zqALCJ9#goRtg}5(kcqtKU5w#UT|)bpq4_h6(}>Wm?{N3vBfBa@6}lBhF>OO%;O5^A z*24;4h&v5D~jYG-U{_Aa824XCo z>?2|`jqE9oLfxQGa0}i(xWR{kn5274N?%(7oPxi&Y#GMny2fvQMm6v~XZTKnHV?Xk z+RqjwXTg&oQl)rd8gJcxC!KN2h55Psm$Ki4NTOgzq8`mO9zfthi5hwQwm3R*O_2OW2;|(vXUnne5_;+}= z3!i2Zz8zAcA>ST*T;F_=il7vd?qu4H>1!gd9xtqbL+$C`2g?m86%P$yyG2X%=8g!R zH)JD4e=gZ9dQ#D;71C7VGK13F$2p1_ImkQK11C$ZIS47#&hviKiK#`QXS-Be;W)p? ztAM@^X+5?y?{EHrtNCjx_s}SgS$lpfEA54`>~h1qvTg+ZYT8y5xCl3E;V}PqjZm|! zTkt$Rign&Ohu`k#hK7#$#g_kgi01lH);&*#z?LL(Am6VQk9+%nwA=iJi62L;mvSXW zhMSk|*Pc#Vlm9dStz8i!eR; zS)OeBuc{HJ`8ezi9?+BS*zmcT@ImYheD~Wv666K z4$>bofn$$TuF!?>5Uxj~t!er5_+UQ!tl{S>zNXIoo6PG#jki6gQDQap{CcA`nAXlS zYkL;m77AQ=?(nG?w}9~ZP4hZ15g9k1KGWAU#Kz6*$MMuzuVddjpO-2zv;6Sr@#Bo-Z})6xlXX5Esxv!MOlRS(b4|=%ehz!`;}%tvN5N5Y?CEhn zDq1KvXAOf2aADClsVk749JxdnZf~#%S05mrhshgIDH%67vybw^VH2Vp)#LG3^m-``Td+l$}85;7NcTw~nZ4dmG zSnmHBpT@tloBEog*ZyC7N9T3M5%3)p>(SOvf%LAEHx_kfVR^Uc;o+PixCvh2982nh z?kL6H%whtUB3y)%-gLro^N3X6rx~y*t2GaDPQxJYaihik1qezd`7u^75qE|6L(83u zXi7Do%i?4tt9t*Og`SOKeo=Ik$EXv!td$>kzN-h%=r2OqP=|-{9|k&Hhw!j0CYr{L zjtD3=Jx)}XAnz<6PVSWJM1yfx-oRW163T9_npBGtcGqpp4V8UZ_`?}Y%kcxWYDYHv z>kOk*oBL5*+$?ey ztGzl7ryn1}pQ{bvUBEWE=Q}BQGQ2Q)JaQ6K&TOhuH|a^o{S$JMmnSix=p_~RwGaP& z{FFFiF>o!*e0msSYuKj+rhM zGOoeLrwJ{YPv=N@v%ef($Cs_xzS9yetp=?z?rOYhkWnoR6(X+YWlO4=eK-<)#x`4d z1nU2>g>TSeCaLP%bcQUcSjpCYF(Us7&1xTxs;n%7uH~6$jMpp-zgwQ+S009$-9hqP zw-$`e7hcCK6v8D!es6im3{p}w6TezaA!mtytGaqVt~p#)j@rdb)cnUQC03?!kaEf~ zgKh*Yd3Haqj`I=&pIw4KWNC@(WqC)lV-0tG)3EKsHRJBWnkvQPIEkeE%UzdB{Glg>y?Y|TWEtx_1>B+USiZvp3{r+H8 z;UW~~ufJV7UydDrGJCkV{$Xa?=h-)*F+?jF?29;GiH#4m#2Z<9F_QJq^TMrk__emz zW*q59=w!Uw^i^77^XKqTM0OJ-cNM71?|-Qjqwm1Qre#uON0y zEZJf*iz1+o(~KRzhYla(lqM-IG&aKA<2=wO|~{+q^Db8#csEZ6C3%0fqC zvZi=$cGh6yPj;rM7gI=^cg(xq(t(*b$|GY5jktK|n}pzNI&v45$FwcjNUmSLa=)%5 z2{|-;n5CWy$2M-$Pxhm@rB@xCC`&`G=ml>7hz?lns7X8cts7w<3-8=Z-ar(6GcAK8 zr*U#d{p1hlnzg+Se&21`3H`|fcOG+1;Ad8$*Xf0iD^#4G;EU|%@Bed;B5ra2FH#^oYV!5Vwqu7D@uk&QWNb zakB7~WG62JmA2%#PhdYcYjUMkGl~_?TX}z{C#KiM08>D$zp9K{a!68;vrIt1ZmMDf-33rFF5dZAvckL3?F>&T_{ADJ+Za;IA8YWPYK2>GkE=G2~ z@%k#!$v~E<_FRElv*7Y>mn_z2Az#JL*yzsF68;El!LVn|NHC5MeKpqr-6u)c?`f6d zMa37l&uvRs*qs$+X*`MAboWVLr=Os^=2o5jeidH~--P=bZ6nQeG1?oHv!P#aK5_Qp z07U(0ubOx>ku7u8Hc$4pVN+4@L4i{_v zpWUNa`@fq-xwctC~h#AK$+?j)}6(3@R4WEeKWKK z?{g+hZo507*BFv+dVBy+&sLSGbJ^_lk>|?`bUK0DbxP8%unM54bk(Qh+Mx=1_^>Z(1$(7${ zUoVT&5sCYJo0o46AzE(6=U zas)r|V>0cew_L!PDKmTfO*EwEJ6o4keI>%^UtPU@wI3t5;``bUOu=O0MsbI47n)~N z%RZ&l;r-ZI>Di_^IIOQ$K5j2c>aq;^203WSBcBt+iQX*ageCK_dWk}4U2=(Axi*6x zTc@K2w8zm@?(@y)GacFNc$7(1vID*^pIkD&LPZ_3fDlEh8#9})R79c)61{#E)q}J$!J?{i| z2dh=GCubrvwA)JO^)lRCb(Re2dJ))Vp~I>@3Ij9sl*^QUsNRa=($eaNINi0vnCNMk z$hn7>ep`XRUm3r&^dPEo-mF${Si<2Bt3q9YSv==&|Kg=S57P^V{LQas@L=|mg1k#7 zqBYL-&uDkxsI`&dp^O@Q7O**xw7CnvvnG!|reh{FLL}qQ8#$8O;CHj{F9oKZty`v? zDxj(~$k}{!9T|?ZI zWitfC?=It0Qr^ls`y2!$T{*R^ML~JhsJQI4PKaz4Gp^wq#?K9j9SbEnNL%$R^xZj) zKqX!A|DqRh#CWyWTVn;GFXaD~9B4y^{-)rFxPH8jQ_q=L^QtpikDorLD@3NdY~Dl$ z3u)01^trd@Z@MBZ633G1iQZVUhlyZ6E^uwJtEH~x{nOmb^zw`(sAVkv_f-l4;x>9D z_kKb6>UoECa&xFj=aD)1VG0*@CVDb8M1t`fTXk z_xRjWv<3E2W?s>gt?`rJ60R;I%ubnhWGc3qekeaRdhlH z0(bdyIvK5bpojkL2pcM5BL@t%3p&tyTl=Sc*&K#AiW0Ay*W=dkk@-OLA-rDiRuWO$ z28&O{AFRh2iJeEe+v&nC42R{)trS#%b*~I>&PWL&mTe;xmuq1c&e(s$tOA?acuw?( zQnAn8@af^%YSb)?46R@WHH+g5dC@U;+<>PF8C)Bu^Yi-=Wiu{& z;_EzKth0@@Ki7o=QapzDA{ww)JpH}6|2)_Ww%8k(^Ao|aC@!ZeT4FRX&UCw&hxmGq z4@Ar5p=Hs-gDYYh0)|=JEjP`eY>QOsvspUAvc*~2?jZ$^W~mv~as%L7ifsRwGJ=pz z5&_{=P4G-V+vmB)&jxpPU8lb>j{SqzYL2Lj5R=Z4YR39`j3+(#w&&9zm{W~Tw`S0i zfl%*nTimH|k32FNeX$EUsw0ex!xH3n^!YD|wNu!p6c(P@Q-LBWdAgF>E^u`&EQ%RT zU_DQpN2nkt;mh!P*}JI~sNZxP%rEtX>GmpEDUJ-@Tcjs5j5aH!WE>qYt022G3nzCiDj0lc zAX6=W`2zOJk@8CqW1=L|Q68(6P_ljm4xT5!9sJHg*vC7CH`rI>amn-}zQ1ez|9sJP z$YB`6EEos$^TsvgSxn*-S!Io#@et2pzHWB7|~KjOM;t(R|6v1`jzA9dSWKUC_- zpNQ##ygv*5ubgpAajK;(R<43(@41Ph?mk@All;V5F%O~9+hwKf^JtSX4!Cz?3W4hM zAvrp;82TF;p6J~RyXsW6?>b!&nCeRF5U9uQ7^hdx7rNl$8ro{JmzB^s*^Qg7-%O0( zdZ%XY>_EG7tck&D6(0VPiOvjKN2X>p66Wl?uswFK)qrOqZ1z2SL0Oop{3jq;gxX@bNp$<;}RX#&$`jn+>C$FSAoU+1$Uqp*t8?TtA<33mpkCrbW9 z2nsk6b(XyskE28`J<98ZxM^KpX~_hlcWEXGt&C#lo!w^9nN3irW$zWezJxU0pdcCL zbtInen2_DNzZhpx;&(VUi_p~LIZ2+`@ZIw>!1h`lGT*o))vobNKoVbgiYOHaHyyE% z4bFv@;mgxE{+q{W;+XIgrd3qbU6Yj*U52B_U9}s+EtvS2@?GR(HyXM)bEzJ4@aWfS zKX4--nG=GiG)tI?ca^?r?La-8Hu1e!2xugR8O$JH3kMYlX72uTH?un zmm;&Z8K)e$#;$uO;fVWAN?Ok}T*z(fB-OQASES$LB#mqB?-*eKcwp#ND=+VsHX2eCF zDCvq=#R-t6JYywQ_1`$v#-vh{%s^g<9RGCRY8szsuf3`j8iAp3xyCTXM$+jf%XM=`a5dZQpHKMiy!&eMFr@|LdCqlcUt6&5rXA;^B0~X-2vTghM z4|5pje)_0&%|8k*a{j8To<+oweJ2=uC(-*Ti2a~~6mdDXeErlKZ%6ot`sM5?M{0d< z@&@V}Kisx%i!!Ld+h<~zl42(z9y@=oy<-X-x$?putQ{`{g_9phXP|eN1uxJ`qNa`y><*y_XV$y(B zdfz{t($!cSm()zl3~rqWi_qtYlk<+YO!&n_16KedxUPSz(TG9Z88O|EgEAg3g0qizf$ZiNJ4-t)7=E zaGQ7T{zuV%Y}dX*d2@6DTH8%DPEpzrTxlz0u+oI4Aga^owpqN@D8DZIfRC`5T|3WX z#6WhM@%fMuL2{`$B;k>59-MkJHu+_bqoH&n@#uj$xcM&ntL~>KKkeBSVyVNBcC{RS zG1v=^tB-9*!uud&beBrMw-#Ys=7~g!i#(98RDQbFW3rBWR5O08?Zd0fRt|hX96spE%EwP4QYi*1zowz(J1}vhvmA-~ zJ&%%J41j-8)Z_8x37Btf^(%1TAbiK%KN|ZqgYrI`Uc|2+NkyUz=MD;yYF8S8s7>pL zOCGO_stoizh6svu9>@zr|Te~SUpaKR|&3{kqI#4erK4v*O zi5p%gLNC~M!ZH0&+%QcSk{)|kQ?_xFjZyCReE&`&lg<24(ON!t3=iG3US=XfnqMut z^w#F2IpRHit{(}Xl}esSu#wUSLws+l}FiLG`U<%MK=aXWvQyL_!jRmKWu zM$UBLOlah(3!&w>Thu-2#?MHM0}ZZ~z8FNp+53O)_6U(O`KQtSQk;ZaIoput0S&oj z-r%2JC`^`YqmRhst-zC(XPPFh9eEFul~g)wQ02u%x1q8Im;Y1zCt^W4ySpYq zBT+2XT9pf$&lxV~@6wVcK`+Of8lNU^W=cQoR^VGqxHO}cgDK0ZA!Ag2vM0tPH z)PT!g_`v-93|6WhrKzP4z*?wEvw(js-!J8+EEea%I`gyn$u$oi*h|%1BE7hGn|f*E z+V}XTGn3J{zxi`lBAxSBB4+TrASdUG-Q-$ph#9lG8$GyW~orJ_uhN&_1a{7?+>`= zo_o)8o^kJpn)1Moa$J_%RI&NY4A?Bf`}_A!BPIIaN8hk2TykQqG^B8oRXQ{9a8Ds) zWZkwEmJ!^SGalFd*$cHB*T2RljX~ClsV>cE9A^1j-Ljwe<6?h~{CTw&)b#%mrLmd7 zfv?>zF)d@r|NT_y$bm+5+-}(aa>E=(CsXfT{wz#>9yqLKAX)@VK0msaI10L7Rxn+9 zl!=`W=!6=R%i(O;EY};=jH&(|IzgYOaYD6a#N&K5x!%S@3r-u0vj56QXV^X7lySYx;N|Bzp*Kevx3#vwHr~cXgYv0gY{D8q{Z3esn zTP?o}Ov9P^Ozd0JVNCCAwtC@H3C?_1&NHU$|E|}9C$M_-HqDM zOq#VH-KT_%VR*;EJjK{a=-p>k7XSVemFh>0v<7J;}@$zv)L{e3dbtU73hb!n$ z3xxX;{`xU?Vj*gc(v&m{bB&$93w623f%A){e@?QJ*F09K=Xy7h;vb`ZSL||Ne&|%$ zCF?mHF5nyUmRm$o=?mMmNqVwN`=5Zw;w*A+84K&D6LJC`L+QU71rDwO#~6)v*h zV<MEFU@U*r7~%L1gHpYQxeepJmhh!qMcF@2gzLB{PYcBAW4UOw2rxo5z*?0>J@pb7&A}0`AfiY*`B89!47Jq}r^!r58aNpscFUF%1p^z6o0 zWmC95VHzqUSBfY72F&4CmvF>9c2w_77j_AlH-z7qMmbNi)%lHGNN)WrsYc~p|Eo(G zf&FU`yTJeQjwd78dz8*K)29=ysmy)xx+8c^mdt2OClMeRlT7B!ZxC1p|xL7ss-{_ z{l54(cfh6pmUA2vFFDC~CHRqS53=JwNQ76`V=%DCs={@a%7-6)5))<+`u%3gx3p@U z+rAL#k;z9cFC0%i%Q*!WYq2FBsy;}&th?o{)B?W9-MzHZLuhXfsp<8eg00fAhw27H zSUMu9a3!M(zXNk_3{v}?={8M~5uC(+W2q*iw+-l?Fzrh1n?&iT_au|4C{g41a=#@Y zAFJE{noYW>ZAMF4n~jum^ccy}#F#I2siNdd zph-84PY(Qrv!gSjSV+TDH~Ho00qVQ8pX}0@f;m5%*vXIShQVGd(M-=6TWEF;QoykpsB8r+eao=ZI# z0Y6)CTGrYW`UBe-hBXG^OSx&D(k@0WOZXKsHqnrBqtt)=M~h*f($iHW%|Nat=hCH# zH6igS)40FeJnn9;e`-$EBboTpv?|(GB!2aItLe6c499~D-czl(HCbOoF&#ix`#zcu z!EXF5FNk#=p&{x&S`q`A2XXSk$H%GedC0QK+m~Qa3O&cotkU^Skdm*zhHZ^F&~EzF*LyuxFSl#1)>(w+PSDmLc$(xMc|p4x{k*2cvnjI`H17 zjkBh0gWX8K`FfT<+)aKS;T|naD*gQpE+3*N)wj2oWN)M+bQ)}NgDr&!G=CMQ;y#9u zsrBuKS7tHnd8A?SO9Rd(tkZW2?SZ#-U#;=TA_f-nA3t5#K!(2eX0!5e63rsv3pK4G zr16W%mu`g|n5{gqVdkAf4pV5esml`h9dfEo`f150hVvo&G-wDzdF%UYH#^XEDOYES zil5)JTeggW&BP9Madf2*)nP^9UmGhfeNAzaeOIPyxkwd#l zFzpZx5!>Cy^*wI|8@42W%-!9Kn%A89g*;3oo6agoLVXESOiLo4+$#|BqdZ_tbqX>C z-$h56ClQ+5w-PQy^&3$c&$r%g!2-jef8aJly5lzB^eqC+mOaRhI^MfHJ?tTLW{x2gs!2c1cb z@HCQ(Z5kL0nTfE@N5SA*S)d#JcrVpy4nq1;l!D_;FbVLUtsNN0i+6q6BLcPfu~T=a zxk(*9-Y-dib(xi1%5Bb9*w=?C)(0C*8#st}8PDe%J2(idKHcnLcP3Ks=DW9lsTlEV zm3Xl&Z5a=o?&w9t^`K2Y%Q&4{Z@0{;4-s5-Sa>@gC6Z5_mw}Ur!H^{iBxh$jP19qM8M106X}m8 zQ1bprk#%i1*5@7exNwJpmfk9DR`qIBOFo>LXPTDH+cj#8l7aTIVu)5`89#w{<%sIanOwaeTfB>gN~exOeqI$hm1)VJ)6X*(Zs^zx1XU4O)_^l^+IdG`!)5{rIs#K zmusv1VxLB|*oBa@++%2o(fV4!Q3R{C8=1%6^-{5dt0Hx*8twA3KQ8)CaO}d1RaNjRD zt962b6xPNM-0%@2yB0J%)b?g$iIV2_SBttwp-8?$4%pW+W-U=^Tp({Gndy;lrtRJ%L zK>oQ&&ZUfAjE&A`JYwlan$OO|CNEaNuE*GWkZ&A*X_fcSY5qmzRM!5~h6;2_`dqRa zZN<6N6vvWh^_V%_s4>36Oz4B${7vE-VBI)idR?2F>>OTVSMx1EaeuLBX7>o3rZ0Ye zEHVT`MaP@#E$d*XscKCLZo%?c{p6c_eTX`IY-L-u80o0wvYDS@AR@{VA-=ATWbFCl3tNnKGBbrtx+c|N>=c;Eao4>M>gU~ zci-_9FE`0AJ^s>OL7Xh!dVD3iG6!CvL&m97b9gx)sd%&QAB6bJlvcafP;exl<;ZPD z@?S;b-S+VYs5wX;aV;CiEy>=wmf`{!Zt@uU+Q>?@uWbG@NU27|xA(%952*OC*x9Ce zY&}tb_K&|Oa}b{cB!~2mQgOVNw-9DWLs%R=at+FRQ0^aZvt+%D-!5*BG7#c^aEdbXy#iGjQ*;W;gGz7ykVE8?uuH4s0OptapcfH1pw z#_gZxBNva)6sZ`}6O9AUuND2_C8s&I{afwfCQE)VMDsl6QTgBL?h5xJG_j?|Twt2Q zO_|OY!(o#cpXzDJxY36lpUMT<*?Xa;8KbXymW!Od*iWCu*@KQV_mZ1WWg&NW!j=6p zE2x<7cMYQQY?le!!;6mds1eTR{kDyT7%G>2%e|R}9p7v^taumk-SF2r$HiLQJ|{P8 zr8NdSl>$Du&c8a+e)`*h^-o~4+F_UDPzR!pChM^UAsJM=Ug$Q+|_B=bap4i6} zDv%LIlEmau9-b{u=$l-tJ_;MPDkxo1&)5wtEN{I5eJZE$G4-6Z2=ZxfD2T=a#;j-iS1#koWs7XQB7YOMl>d z3vRcr;RwSbF0oYz>78o6G8J^ybQm6jd-oZ|aS^+^i){Xiy=c>P zSk3>{i>+{p6*ifM*Jy8iWYi)mjF?WvWHjJN^soi5AP>=T>T%#1nt`g?o^!gfO~|D) zyd3qU5{ZT(d9u`eBP$}%wP-j4Q;B<7W#JRleHFE;@Xban_p>cW2DAoyap(Pw-oMlgFs=@v*o3#H{(-Qi)HohUFe;7Gu#&bGn30RCXGI`Yv zc9~Xb;dSlc@cUttaeNvYC*qTt<8zVlB{wfnV+o~>rY~a@TkxixrJg~2041s}jAk7a z6k2Y({WM?#xs%m<9@Nnh^Fvn>7ML?Y*GubdAIRO&Ll1R{zM(!4saX+Xh2+B2HG zd;{QNu2ONO`uS)dNf!%qI&xa9%iCT=loWimlk|xDi_b!bp45snk^ zIlE~NPvWLe{WJfI;`ML(f~x9?A4_tuNHjPJ+bFw3b~rre9Z)ylQV8)Bs7 zn6=4b5d*njB1Mx{U4|JJjArjM zzt1t{y{o9k9zMS?hvE+Sw$!o=7dC+J_#mZ_g@e#$g&g9HZGhW)`+ID&yyPA8>nd^a z3W#ay&P^1KVa5IF!Mi?tMu(SG8P3(hjJsPl`NIS(Zpt`ygybN?T0TPjEepA5s}}kFS|u)+ z7pyy{v5e#Hy9FrcIY{ZT#|~aM24Tjf`hnYH8H1M5Q(e5Y#9twHPFIPFkB8fx)~in= zzpi|x!*&@<{uh&KolCLpz;EIby9{3m*}PN7$C30l<6yZbEwPj8-%;t@jb)~6f#=aR zi2HA2suYio)uh3DY6J7Q@rwT0 z>4ajmkBfK=bj~7JZ?y5e-#F%VcqaC~9|V83@IJd&oe-+I5WUBki?k%qv~OYPKtL0- z?Cs)okVkHm1569he>z^dTdM@8YtFT<)Gk3gSW28ToQVh(*|MJanT7T`f4NBCe+XC% zj7ok~g_HKbTvlx+pt2=UV)L&eXyz}~Kd^3v|FA~D={-y&;nB+I`}7Gc^=7vg&d?I? zXSXW@nAee)?GviTPK@M!7hH%uC|WE-3C>j%eZ$;&I-UpSjIU~5=PK(o~petq2*Mo-OwLU;WnI_`c);sYH| zje|pIml5PFo?b>R@3rK^->XpXy=c*H)(hqXE-Klzort-0TF`j|1@>DT7}9(@v6>&L z-l#nV(TRnVewUlj`0pvFr^7NfC!CFJD{cb$5+t8DIRZTk8@I+CoTMoGVUxuKBXJJ@ z-nFx=69Fzuj`w@o(6sA8i>+BVKHn5b5Jm?Yc6=7pn4l&5te^F4`qYE2#uoy#d#7Ok zxXj`F;R?vlC;W)NS%t!&jD`)%>|}SNB}3qAL2~U+Yx>a3252X4@<`XAAg=aCSJi$F zQWwJ_WKiD+r7NdG+4c?NQ}cVB=3^A>8dbE(KfMB;RGzBP{T=wZSGn${1XVvqVuO#h z%%S3%(ZlDwHL&aC(oJS9!;Du@YA5x7rzBP=Db+J*d)(lYwuJ(f?FGXE5t(SOI0Z@G zc2v{5)o{>E;VSNX%GvheL+i79?Ls3szIR6xcbFIv;4*X<+gk|z{mk)R_bMSZ@b`X_ zVh)a+*%%PID+b#F^M9RkY=!RQcV7l#{$aT!c$~ep1$T}`<=iu;A+~SD?{Bi6$NWhr z(V~}2Fn8zr`q`@+t*#0kI~O~Uxo<+;h?@eoNjW1Lz9L)*x^1%LG>bJCY2AC$E$}R7 zQ3%KyK-Y5ZuJvY9*t5^`&%ER$JllqQH|SG+2d_7$rR{fIXl1?F?vMqA$+IB~DdSN3 zplFl#n*yQOZ&vBF0~o%l#+S)bi)Vqp88M+_D7&oeM1)#Vepzy-nL`&6k4^ndEU17) zr2VW8kedj5gm3`D=dLGmLjEeSaAv;TCL5HSrIanbtv7i`)ofg$P) zBv)s{iU5BPNN9#ZkI4cIl)^4uR>_0&Ud^kyB1<@P*@AHBFcR~$6ldnuacJ!6{MJU- zi3AdTZ`r#AZ=26D$R3~}s?1)_8H;OZ@7=d3)IdS>N9z-31heuqyk z_W#%QUxXh^b}hy`QY(IPl4P<;>D5 zwv4Fm%8&1ZeXA_pDdsxVcGr69O$d>Sz~(nBk2%TvC?QqJA2cNRWI1G*HjsKlM{C77 zP7<}#peA2!0nz?l2403`$d$i#N&ng+c-z$e^Yk*IBMB*!!rfWn&)$`CzXe zl+FGZiMPvq9DG)g{Nk#fyJ$J=r5~)uH%!9lp3vW8ZFx8&`>NJXq!aoQ0VgLW2@%qpIzxSN5jK6$mN?wu&1S9mXNb7BFn1TP!jTkfLH zXH!ylcq{e_-@PpGxfUu(B9+2aeZKRr<7UG&9gz(_ohnV!hU+e$Z%F!$Auai{n6uR! zX6DkzeGmSGiJW1tS6n}I##{^&56y!wJ2q*{t{NQw`eR0sp$lxs6TEiIbmESH;E}n| zN$Aaa-(@Q7#h)OlPwCm?XecUcd&tm;y!Bk7j(#*mrhd`3Or;6yKbUN~zC4QH9S7Dw zkLMv)8O`keL5$>X|LzPAwjM|geLA+&z6rywM)^w@I#32FVR5xK+|&0{xJ2!H?ToVd z+sGcY9C)ZC%{l|gz-zBM`AT5^TAoqob``$TFN>N6ts?^OLbJw4xJiZ70y~dKBQhe# z-T1>+z>9}XYS)}KJDERp3M8He2sVG$fYO;^7E=KODLZ zMlEA_$iqk5#Eow+pjKyVmgwnHgukkPuRTzL7uu=UIm@abw@s!`Q??aroIqL_GVJGy9;om`|M`#$Z*sMjd|MFwPQECndt-5Wvpnj6grIb;C}!B0RR6C zmxnu+Z5)QZc2?OlAtbY8BHF0iTW?`a(E#D4$A zD-n-J;qi%AvP!xVZ5z$EpSd}KqU3s?rt!bfT&~mR4jMv>TK3v0^-09;x*|}NPerg( zXQj~QW#p)IS@0UBBQUn{ME|Mc!t@5yr&W65goP5NvXf+APIDLMo=L-mj%W^Ef@bDeS%a^@Qi8VI(X{mvQ~*L3H3zN?D&MiCnNB6V7HKW{klX zznIs+w#&a!@-!Q%q_ye1d@u}KkKetlQ*^|HqtHlt7abWJFS3*USO+7AzYOVWE2xh; z&U$XT7sOQTYb;kA%=0!r6T00EYvrgmkJc$X@5uFVb)Un+_|yXjw=dAS6VcY1+zO+7 zr(<{IdZ0SK%ShU@5me?S>NPPza!WHZOMAW^<@#9{4=nMM52MR^oKnqrLp{pcYE8rD zCvU1~dj~NV8KGeDxE5+$@0Gg-`!RQ;cKTS?;OhSm@r|R~NP@(K+Wxrl5TW|bKZPzV zW4TBCF{@eu-YwZ#lG~H`czfS{HScajun1r2m8t;kq1-dA5gJ}T;og-{&qksBni;Bk*PNMgUqaS(Ib=vn7!;Cx%y%m`}HWg zuuVs#1iKtHhp#=Mkbu|O5BnEJu|cVe^c^^4n4t6(wW z6Ku6BK9QYx2WHJ2XI#XCkw;5f^(#sPD8t&?F?5COYqZEm%&?KkkTIJ1s$v^4K@Pp?O7{268jqt6hV=*!vn znTii0`|8SP3Zc8)&dh7Gg2>XwEmBa6CgmfghB#8YI`OKR`;GA?deV1dR44qv5;pIS)2}Y1LEsRd#gGaMG10Yr ze)=pu5wLdF_sSL}lRwxtSp-ZY`RRC2WqcRtmA=><_vpYmo7ju?DK#klB~!KY7=={N z?p@lW%SiSd^FP3PrxOCjE<$R2129(!S~~P(9Fbp^D@=wc++mX=f_-PQhi?R9*N zvmSZcF?NY+&B$UA_2Q*#g|utivnXE%^0>tIiivR#CS+sQZkU@!3ynTB=E84`8z{FY z9Iu8}u}+`=9aeI3s>9gs5eGTcyG>3ct_e@qx#j)Xzl?tjUm6{h*~kUm5$pP~A+XvU z?z$U33AF>ZjL+PLaq~^h!;E+avd%_NtxArH0Gkt2Tg3T^p}_FhnGbWY$<>|pYbd~n zJYVJGD`hy;v-fd+X(bk|<>?Nte&?R_UTRrC4ITFmNJs^J#U5idmtWkqh&n4b7~)UE zMZR>+m{A(UP7BsAHIE`Cqvy>}4{`G6GykRZp;{a>?Oss3nGZwTk3PFEmVs}GvQInX zC0e>aJv;ZH1LBT`zM4Wy$VlZMSYJ1cWJZaq3-n81d>uyqU8Q39v-5_(C+2XU|NY)G ziCu7+mTfH)?uA$+>+GA-LCCxab#B{RkL`ha9D8g=ku$t2<3v*v*2G92Uy>Mw{QI~H zt8WuX`Al)&e0>7;W9i}C%(D=Qko);XJ{6f0gVOQtKOo~t=_4HDI1`^9dd-Z6go_(& zQa<&=%$(uG&fW%Cv_)8&7R_M0dtQZHV=aX2tWy#vx{;kKCAC;wkI==G#xsYSVKMV* z`!(J^91T{M5MAwy13GQ`mJKVoZJRU|X24BECi03dr{qCJvq7IHa2XCmQlT;Jz3^$1 za3jqNsEFbp;oMjQx9*7C$7b}TzqjK!tyOw5Y%uq&!?>q`B}FkbrqU1&w6SpMzR|!jV)?a^GWcvVrBc>DyIcryz}S# zjNn&Rx-xINaixIMp?QBF4j7h}8EtL^SJKICqLo5~zj$6d_*FgFD$g9^Qs5;&wG?lR z{Oy3Yw(E>(_$<;}vYf4o2hhfE{~_p2E&l3rZ+T4_!@6RNbam?y{5e&4_1mx{F`?d1 z(1Q^9Dd^QZt2B?aB98HF?g9)Y8HOxLQ*rrp_aBDWt!TV-NB)s#Ic~SV{b3L`hc))S zMSh&?Nc3~ngHmtlNh9-v0OKPIZMuUSNW7NOh~eH+c&afn9*vsE*GuABWp&Fq z8pzeM$z>dQ4o`#CuM3m4nh6_&=c_S&<>2OBR%3`5@kp6H{}Ud%n~#0HP9f8lbwVPm zKEktWxiQLZ2x9%3jL!tw$wlE33A(f)yxwaN%qKMgLEh96j_O6w%cqTA{m_AZ%A@tC z_&cywdHg1|h=#TjO`DXOKae-$@hLh&A)OWCyq-g=cOO+)&N{OI-Ci$??YF6Tf9gTB zz+ekrEb0F~6R?2=NCwm+@GmGR#zsLOe9SKf$wH7zy}lIa8P5 z%2-rvY5NNnn?F90+%p01XKAB?cKINd1}|ijyRkPWTxPU$1^<$z&qZBhB58&W8TuaM z2&QKW=swFrDoh+sXI-O^avtOVoaTf`H2Zy*wp$Y@jbFAUZe4hBtY$x~v^i&2` zdo?Vn=_}(39pUURVL$U?gXk&_B}tht^w_FX-(I6wZT(Nfw_gN72(O^29Hvxi0l#34cR=1PV;ID zL-}5?9`-W7W!MByTNaez#kou-K7%LcbA@=4|-z7#?*@~X##O;tEZ6} zn5=L=EFa#xayRI&)ZuN=6_2yKSV)Nvm$tei1Ig<>RnxP-4e9Sx|Jt2e#z~v=X(8Q= zq>qH-pQwD6c~0v<1*SK}zJD8EzS@U3Q@(mnLj9Kb(?@rwuyl6Q5#H2n6rSgF z>U69|rkzQMw(vBhYSM#_XDovHaIQGqViJGqjyubL5GAzH;}^xwwZZ7QOZ8*BpO8%A zn5CLjVQg>G&eZKO5dQ^5H~%iIX~Z7x{R=pmJ=x$pNW;1#$1XE%oyGOF|F&$}OvTtc z=W9W4XOMAf&{$-=6D;z_OOBWf!|%d-DX#Gz1cv(AMf}%>w+2FiW=VrE&%Hk%!0;EB zOMJV_+^67|-nb=>iHdz(ymwxTP2l;?XNQ7froi^oN@3_xIykQed1&0s#!s2xH6__p z45;5(j$P$PyO@oe()=(U>=fEhPB)|Ys*GZD>k`rvdbQ`}s*zK?JjU1BhlI$fGo~tk zVH^K+`~CJhnCw^E;~>}%w~}eCMhSYd;z2&QKq zV%RH21`_k>ySCz+axnkWHY$&yCnB10RU&y~*nY3}NtL!1 z(eVX|k5}Nrt=o6f=_^|HY+P~rGJ+5hp&vmGqj;3U&mwByfO_pPN!L~p!mzDkoMu>y z5lSCZcoHwsG_UDqbnn92?T(8~j~4K+BH{=A*?w#eQ>uNXSp$xHUREPkvxsGHXp*3g zAwEfN=mJfQ$T}_5yy1`_2VU>l09rt$zbaQfg?gT^#RYc1z$JJ-ykB?>bzdT8zfAmv z_O&-DF&1SAcaKYxI=Fy8rsvN~^l}q-qfC0Z6osbUXv3z(hV0)XVok11Ioae6Xz-=0UmsjgW~Qcc?rvu!tTVLf4=$6?Pq1|0yt|0_ zoZF*YJ~EPrZ8W}+=QAkSL>daln;@FbujYS!5xET^4uvA)=vh8}+ud&l^OqSGiDC&n zm6mI6@UW9LUn8HS)zspS0WC^@Aq{S2?=}qX7(^UZl5#|`5HH&OS#+u?q)~Ri@B5l1 z82f#_Rv4HESF0Yn`H&^B-IXr;=Usq+&iLd)t4UDzhqn)B6kuTV%ma>@)m&*^o{Siu z$6+}J8SY6|LpjOTaQM;SHt0O z(XJPnd$|n%h4jJf^t$#&!z%2X?mjuTKp~$5w|J&qW+npk?3+v<4Zv}8cj#}rE-c1M&;}F@8+h5)}2wa-SzA8rEbl*Hs7^9ah&6;uWYOuVhI)!j@XR2Gp(2>uknxFVy zcC7m8UZY)B6cWb}w7ffko*ZGlpf}4rfirq4kLRyVz>=4H&lV>tK2x0$L0v;0gdGge zDxfE~cAKZOD+m&gyY4-PajQ9LzVAN%I|~ZB;TI0{R%0qOJN0FE6|6rhR;#j)f%{SN z)wXrhkdfYBv!wR}er-clQB_q~)29_k38Y~$hQXQI%}Pe}cxnu*CsEm99~SdSi2Rup zpLMx12v$={{M*yH;KPH^2R7Ac-nrxD(5o1zFY&MQI^6|^5xH>5`Z>sz-4_3+vVi(x zr-1N-v*_mc{j`g37#ft|oTXJBTBXbI{(7k&^y9d%r zTkBt?uI_=~Plw~ywSdFV#`6H(ES%=OPw2fL!KH>HJN8;n;gQs@e2eN)+>!2`Ae`xV zunEt8+vlS8^rfEa@=5$;$ft(8PC=3H%2ti}QM~RP+~dL7iVY=o2fE$q2vzTWtY6{k zt`e+Zlwlr5qluoA|HBr@jUW`Md=NvxowWSL&u?|W;$C!y2QDVtm zn#POZq)LIKjO1=p>4wcyJ+L)A^zYfoQ%G**NE z!g?mJ)OJHU)H(X(#X)=#%4v%_%s@UfzxCfXk%gUU-_K6VPU2*9!&R~ORG7A@j)ptb z;%R`Iy^QQ9EmB|Be>SKJ&oG*wJeT0_Da5y2 zCo>DK9>_*EN8En(4;g{X7hGdRNaeD)q;O>y5_MTM)A*Q3nEjqs*H?2;ocz0(_iin5 z)G;8hdwbEZv+cxbzag~r@70%M9mIJV-pgs!Ds)+BPJPy4CX=S7b>+&ci!*;az)N;Jv8Ko9 zcR+rdi=ls=PXwHS(FvhPyOn;bfXm$Z%pV@ZgSWwY-w@l96b`s@Ou6`=rI1XRo zKT+n$MHW(w9l71;iMF&ft}O@>A7zohS^3i#Ib2*B!14u|XO^lbjA~aoHr#OaK|M^? zmxVe~Ct$|=Dp2dv49sWz=Cy|Mp?9oL%)_}9^j@lOE+3x8$p8u0Q7Su0o_W57t#b-} zSARRj9_1%;A)VoG!zR(1yXEGX#7~^vAU|7BP={Zg{vSQ|zCo^LG?D$+iw~kY;Smip z_^Om6%l4i^WDNPAifYebTRWq{2a`eEexa1Qe+vzlYD9#c0y^L*U!@n2P^OtLw_e)SAu#Z1bD}4|et_iff@I`#;4XE0-WeC|D z4{WL!q$gt4KkwDJKJY6x{Y#Op#*>|s(Uu`I=)V6+#>$hG zxM?QDIhphzI@F7KjU5yD66Fofds8U$Dm_)gHG*Cf1{=HW>qxS3#6;WcEW&-=Ukc5Z2$P&bi1;?4~+;o6{Ib*oNZhr!jwUZyWEGlvpORqba^Q zWq1@+hXW3}!d1u+WZL~9qyvr1rYctZy5YLc@uN&C1BrP2%=7H&@2HSZ`X$FbgNHGG zMjOx4@Xg)8@XW<}2qboUJ(Uw61KB!CJTF)KnIpN;XONYge;nm$TR4P@)10X{;_1n@ zfQ$CSls@ddFk`nirW}PkUx+8Wa*{9~9*%tfVPtr}-%Z=YPqYOkzp|-rB1M$7qTIm~ z5b&r!KX$wj%{|@svySxQsHbjM^2s__hi*Ik`&K2Y^G?y9uVErZ-&kMq6!4Pz)1O_g z1TEw1K#H`CpCB>zqJL|CjGOeE`*oJ+RU_9$ytr`tJU+6#W@LECNGv)ZPu|?qgG0vO zy9|$s5c4#~Q;Th_m{@+k!ob}N54msRx0`+=xguBnRn!y;gkr^`?K-jVZdGLDObb#^ zc-?pMrx5#%2b11Rjf17M?UwGn4k#Nv4fkc7z}?;1*Z28$V!Nq*u!nUU=u4%xKlWH9 zmaaF?%72x3tYBt$cF(48`Sx>OS@l8;n-+M{mU^5Ic&f&=UqLIZqBERh1dGvU7`^X zYBmqLdkHd0d#F&nwj}IyXc6N4i=TDR7Ga6Lx~X?J8>#-S_*mp^B|LvWP$T_#&-t|8(qf?YX;^}?zPOtW8hD@RFlmD2> z(henm>y~Ng)S7V#&$AF+uwEO}>c&T{%daY@hcSQf4{K`aFm}AkK2Bn*5H4xtupyR( zEIo9~XS%&+<~i)r*j_Nr#w4f^=4(y$JKs=gack2c_8V)}AgLLC&MI4@q> zIgEq0D%@@BTX6l>7Il&ERs{I_pZP7=0Q-^e&e^|Ly)~p>-TFxUNlB7HgO+Kw>Sfej$h+tMb_%C8 z0$Tjs%F#Q$kafkm3Supjf0MTNU|;ns`+4bQxGE|&7xPe&kz*>vcZ@{BtxIR|M{FKXkQw}2yrFgq162+;&i|T+ zdWEw0IqL2nklR#1|RSjBpSK@w_CH(L-{i^ELfpW3zu8rLJ z_#XfO|Njh^hd&iu0EX?oceIC<%1BA&J(W}%T1LpKgvv)&kuoBojAWG2Kt)5Sq(%1L zE8DgAxVYE+{0HZE-gDmfdH6OZ9Y6G72)}FPI~u~-3HRsp^bf3z#K+Jye{|tgn zNxX7D8r7%qp**zd#lJBWcZr>-Wa1@#Yj)V2>*675|JGT^DfVEOaY2xk855zWXQlHb z&*Ot|RlMFD7wOJDeCBpH6M4sUgy+Zld^i{b znRJ{2UuEO)({&yA2tqv6SJCY6klw^nf8mz=L=1o9d+Z;yCe71A8)gfU+ z#nlpHE;6wFlCgbwC4M&X$2q=bB#(C?G3e4Tj)n9KYHeXAH#rK7UORRp?8UW|8r23E zJld>mAI(Q17k7Iv)C}W?2Xo`5&4R>et*!X*m>e0`nmIXhc^n$?p{YMj@}N5+8}Uny z0_%Oh#INtDf!JeR4?mx3MAPc;w7=yhOJepGV@bl~tLEfsoGWCysyNu+?lhvjc!Yo1w2E|gyx_{;PRFnE05y-2 zRy@yZwK1HVfO_4vdC|OOjP*D78b4Z1Y=jwkLw)d5BrwMyLVa1*l*6PUqvGr zHBu2iW!Vbh6MIr6qblG_p$kSlpukK^(MT||2B{-9*@@|6xJWm-{4u>1mip8B%8_kQ z+!42s$XkQk&wW@d(`jIOx2}@Opbfb%we`%`)F620V+9k>Zm3F6ReVWZMXbM_|5we_ zh4V6(9S=#&AWcW@hBZZs)TlAulr3Ap#MX9!H#IbrTO?j^rB`9r)aBBsc?BGqrPgT; z^g;4s&eNPPv$&g3MspdO1W$*fhov(!={I}#FY#glF8_Iu;k+~iuUD$u+;7dm#j4&` zeqk8r<2+j={YGJ3AX+ca3%erqHDIDbhM^0$U$E`*;a&>D zsG;Xp^NvDaD@xzmY!P98VIOyiRUzH<9+MnPE>i3Nl&t+iMcePdMT*M}d|watSy z6BsuUcc%8Ukmoi9mC=3+cq*>#FeBQHn#*S>BS%KSse4|ap<);{HM}zlixaR6i|ZEr z+y~dW@Y;;uldv*v(*9si!F99vTK{_#B<&HGa$LtsM48r}cKqIsH07`_Yrl*kVwIid zj-e)Kn6C2|(f^GWCa3XNdkWwz_wCkrDGhZesty_&&cf{psubjBD-l zo}*rD#3p2`h1c6!{9W}%|Kduo3YfSg@BQ40Gi&O8dIx0TtkI{n&(@DZ&A%*?^*%e< zyXciI)yG7#UUXi5Y)r@Vt8)ydoXyC*IHs^hpda*@G0Q({BWO9b&cFEnG~NmeII;H3 zVz*@aXCW6BQar@q>~?bmYdT%6j3G{BN9Q){`B9)?D7ZE=t_}i?zjX4AX0Uaum}x^B z8?jOe3RRbDz`73-Z=^4?6NYV3!8_K^;g-xD`|d+CxaTSBEo#b79#$zD)jSj+v}IPe zsgpejcy%$UyNrRn?)#u^dvO8r9T%33yf_J;=b@hltC@+Jxca6@dLcq|f(Q5Ovk|t& zXv*r#lc=l>`{XKJfeoCUCN~2pQ0tZ1Vp97L@eW&L6Ac)N+HJly;bnPP``Ue@?+80F ztd(q1jb6f?>eXCt`5Iv1(mGKh#X>gHn$K^)Uxxm#rhFm|^Qe4deBlap5R88trfZ%s zk_6Wc47H8juvHmQV{&RnUkHrPaEXy)-o?IO6Z&AQR+Tg$!$zWYZs<@RDU$IE{#l%I zLzrdQvE;&>2lJ+=%RYe}P;CgNc9c{iOGZ(#F{BZ$kFUo6mf#~3q1pXX+I(b4e7+#w zZ4q7FY@Qc?tRhuLUTXIWct~)$W$>&cRj;HEus^AyALqn-}vM4-Oz;i>~$w=W%?jwuw&+YCzi& zzi(XG3s@g{JomA|6zF@d>z%Z(#@Z}4C9CBz7+kF{9MkPYWMN>W{B;Uc!rpsFGk0K~ z@nro%+dphoH@;dODnmjSLh^ zuT$)tKyT%q=AfVHC?ynq4=LXZ~Ngnd|1p(GJi3Njdf+y zn`1}uo!r`<-!p$&9d#i! zd9Ov=P|B72e%8Jh2Vd<~fEs zQ}ukC2H_aqvELzn5T}2stjj6jBt9VxrU@(zWZ2yJ@Mc>IcExbneG#TYo;ioaNRLCH zj_FtX`*EE9qziHRKB&>}$C6`b1kk&c^$sHEem%}3GDVYuEIzKBL|xa4M*bJEsRAN$hPU#FJ9|2 zk)wix)7Ht}iJ5S-@+ki5 z(~Hed>}%F)uoG*h?l!74GwJG6QTZ=u4!)MH+k?~F!G7?^tH91)M4j9qp~o```UekB zZtiIuE^(3Rb7dgw4=7lW0yYwSDlUZa-5{dpMo8!bNfPXLbX~v-*R^dldn74dhtDjk zv8nVa7`|!P%`w784D0{yIJ2)7rz3RKMINsB!_!MYODW5kxUHHVt~CSx%`eMht9VGU zk%5pcgCM!DJ7anws2dqe$>&(^&p>=_)o#m9CZfU<^3v-gH!*g9tg5lhOx!taNY;rw zT%<&D9XDnsDl+dJlv8G*bfWyo%>6>hQ{Bp$4Z88F?st%sWDOp?O!2fFn!{kabG7`N z0)#!@W-I@Mm+a1-*u?*Uk+8U2)l_<4hg2P=I_(WK93+pwvi>Q6`;FsU1YS+TGRQ=J zaCHap<#NQ=UvuZ@Csebsa_gRkM)lr+J;cMuXX#&#xo*R-nOkxFlkE04#m62^)Aj!Qrt}TJ%&O zGH+8uXjP3kW6u)R?AM005N`bqETi~cxIR8DrXR)IqYFNbFXF|~$ZNXCxXDp9RjW^o zRQ&PkjMCjCLJV`L3G(uE^qzek`Yfy#nsp_o3cruR{}g3r{vRD~Q=(yh`Tc0>de|wv zz(6#Hq{cL-s0h7sc0w_QnOrxLmfb(VL?k;IBQEMyforc*Le@zZqEjHyuX>^!!%O;Q zg2TUHxv=46xK1lr#hFe{d-h^m;aJ`NbxRPJHrO#(HjaspJlwycO3~vh6#Q(I#x>`m~`l_!f*XeEP~dvkUegiK2$r61@^P*ey=Ja zRTr#poykdJR|#l7KgLOvcWg6pk{QE0majz$x9Y&{TV-0hazC@D3@pvlN3dyB_L&JP zkuKIh&C@gjN6X*sbFD4l%pRbKnYTl2T4H7=do}*d9@bgBISqNwrsn&W^^j^{{B(z- z4x82(s^tDRj5Co!yL|X1NYB&WhNtiP5PezE(Sdatj9*wcB%cu>0Wss-7$Rq}rug2K z(I4~Jqh*-q;86>Oe8VHG1qG3vyv+O!`=SB!RtRZuY)ykF;^I5Sy&vey1TF%FX06I`4dFGQrq_}_W&8^sgn zx9yW2Dd?>6i*Ru3L~z>hu}G6~^k{17y}mz+?(5cEJKd?UICw2!&yg-PT6X>FTgbrl z(EMv{IXVuCidu(+im!MLM@-_4Svc}e38pp*kd_1CauH9tiML1ZnS<$dkPv<2lj&Ut zt@}1-lI+s)&fhmDu6higLzKK8v~*+ahW>t=Vh&<;XG&R2atXd}ueDtRx?mf{+eAMx z1kdP_)3QBN7#@ksJ*qf~6ZMntyygcXru{>sH-L(C7m>HSqq@*mNzIdU??bS8MRh|2 zGZ9c>(9$rehuivyTZxBy(Eg{kU*>2nB9|sFwJ6PVuL7M zehF)iS={OhVIecBDRH-U*1_Y*HnljhMGOZhGi4Vxg2I%cY^%Xc1b_A1eX2A7H^sOu zk}JFF>TBI&7Se%R++C|og++*@+;mJV3nSTAF<3Z;Ssb{n<5l^rA5?9p; zZ0est?wNm?8|o*aCnp)RX5S+I%B{@~En2`Q?If{Mi+(I^)u8VDwvjk>Iq5GyZik1S z=Cjv}jR-D}ljk@*hX1Briz^cO2xIDHW}CeYxXf&C=zE2ic%J*|;MKrEqL?o%S@w-1 ziR##>-N;5<6m!z;hlGe`U&`kZo?dK}d@D@3Mn$hs)kT@VT*S~JZoE92lhkXzy`3b^ zPU@{kl4DL3BgX3+eK4DwJlnHAWNBg!0pxd`!>S@Y%(%BFjn<8bcaIz$;+tUG8BLd7 zGmTf2(%QZ!6*y%sr(wE7knBuL;M4xVN~FhL4it9OqtHC?noPhXGNUfud_0~D1ETJ8 zrDGTdX^i*oZ|y*B`O7nBeQ2->OOn#CS@8$kYd??cbYW2^*SOVLn3y+(7S|gLVvA#e z`=bOpepMHSRZi?6OP_D^>4vsqZ(@RThE5ea1iAj6Fl|E&61v{MtVd{AZRMe?E~wkQ zTR6K-gvhg&FW~FZuCNPtVnTNKO2dA$d7PoMj}=no-%lSrRN78*bCQoVW1+X_9#;) zc&?u_F0`3|*}W_`*)MfSAAYjyG(rpD)I-RfhJ>$9uu%@?PeS zKp$4$HfB+F>V~n*p&fy~%{YBm=cR%~Kf0uLspL~v_A^X}Ib~x%?kPUFUlY2FQBAi0 z{w52N?Z5iZzVM%cG)s}9_=8az_Ef=gqUZC)O*Am& ztq%G5tQiW5fwgU2P4Lsx=Df-@jD7qSiVUxWNQPp^vWMCb{0nJge8vn!EmWXWWt5+A z#N89}{V)q^w>#ZoD+>{4$qYU?Rg2*~>zC^0h0wC^ob%uq!*Gl26kBr-!e8^Gx98CC zoAYO(SUDRBq^%R-?P~z_HNU2=?+RD$^DQg)Wg=r<*Yqa+SqWWngr=#}f^&CuVoa7+ ze4l-5-}<73*uJ5qyQYefME8!m8p*e9A{b9-H>EC#<~Bj)0Jq^lose)gI2; zw}edr9)JJ4y5fs&v?SemDl)&b?wuQ$#f{J3zLc==65r5Xzppp=$TF=v!|^@?8P&Sm zyL*g{+^6WBncP_b!{_JMd-E^D`FisK3ocd?sbX>?wuFL*_AES=(e?Q5J8{}hw;!SP zyJi&xC@583^^aSfl_XRCzL&qyfk97C_xW?vKG4Av%3lGUe}Y_?U{&M zpr{d2s&Ia(iIYKHhA0K~k3PB9g_2xDTQmP*$feHr-sj*XXV0`s_3UOMi$Zy&(mUV4 zdgghZZxk!JZE_(eDT{@aId9!1-9d%_+M0aVi?tAnrv1Dp`v>tM_o{!2%z`H8gUH5;m?LW;{5`|W7!+RZ`^WLvSl13q=P3-p3- zj$6=KU4V$@m6a$m3}TS;c7In$E2gHdv-bb2fO6{k3?g5S2)PFRv!Yel!lrQU*48mR zSftL&CRW1WKOw_?2F<8g8^Pzc(kE2+OG8tqdNDBY_m4vx8=)}El$@4n$1$JGTRvHA z2w!9TClcQS3ylleZ+YK6M8H7x5eW5AW zEW|ra<7Im$A%5;doCaF)`(~c|Jxxxc8F*HNDSi$4X0L!#&Qnml1Ah1$bTF7LS^l+Q{#4(cpF9GW-`386dBoj0x}c?~b}B%Ux44Z5w)#I(yL15oxuyctwpNFvq(;#xQ91%Y|1~7ka?Tx7$o4XAaluvr3#|hoQ)}_|E0>C{Cm+UDSHY zPKuR|va@GRfJd%DPqqF#xD}s}IatdqnA<2#;2;uzm>%IIs;jdVKc@b=xxJso zt=X*}%0~q>_@_(J!7Dcvr7K1fj!B%Sd>n^+k?7CT0~r|p=iXXh+Kc-(7ED8&y zB((NTVoEznPOO%baO|z@2o|41HPgxROP6PGlk0(7yM+iT9o{Z%Wio|tS#2+G{_8`m zO81Vb$KCKKYN*T@n}J`(OzGnle|6^Ht9@*I8Y;^E(zdgc`0kU&#*x8J-ndo#C%Y&} z+;xs$wyvYW>s;8P?HDU*SmuA5FZ~w;hv|RKsBm|QWei`*f&UL{pqoVp&Qr^*9%ofT zk7H56?fnpT#U-iU$sC09R=f8_p$z0{dUWIH)Na*D{2ExR5O{_h+ z3RMj4?41u7$&aI)QQ~H`_+Z#-_o;Rhak^658{^swGtE8`4&xEjr^Sa_xiOR8R6~u0 zC>m@VFYeBJ@dl@B>-p3VEnr??(6EP>k+_^Kbkw^#jt;&4T`oqopedeLdaIs`Ez@^y zscX&RPIKo_`S~gEQZ^QRd6bKQo=;AtMM5Ogd2vP)Q}A|=r7JY_LK(Ydd^LrMh?AC? zcfb-hT#4QDeOE2s+Ab~U*wFCBUuXXz7Gd&h@YFGmr5-$(m0ulh^b2oh512M?Y{l#Y z9y$me?-o-pmv0!sPNm*&+U$Lh%o&7e(^E((pD+Zfn>9E|OKM;nk zKL7v#|Nj)&cRbbK9|!PjWN(s@5+#*UWXtOqNmeLDN@yV>C6&^$ijru2HK>I4KxLJ( zBH4SBJ+JHH+Q0kz>+|1voO2%U^L{a6z{m@D-ndEZHo zBOJZ>{nuaP*_ByXSx?=$U{(W)b8|?G>?jIV$~LKP>V~kGi-bTh$(qSh27dF2&__vK-pvcE>Mb{qvwm&A&8 z45Ls?DrWdND}e?Q%UjEFDd*#$+|DU{`*7cs@$eruj)k7DKGcj7?vNbWKvrUs`KQ6u zQkclu>YkJ=Bd2eHiMxasSkMDz1$1zI)fTfMK0E1;&v^OrgF_<7PL~&IWrj z>ZHht{71)k3@u@KOsdnho@%&0e5a4NE}VLGTD$JnD5&inx$^wNWa2-gVDGj%;JcT* z{i^{u?CCsES+athu<-Dt40Dn5N9K7Pj*eg?S@ct7xd2hDbV#WbTtvT%WnxYmg;=vc zc`CT26MX;P);lb(#&-5Y3hS;-V=<{RvZ|{KJC;y;yQ&^9xi7x2jAGu~1`S)|i6xXh zl3%t~We%~6hmI!jag$;rj>0=)42T$+|56UDg$}LkkH6az(ubc{Ei@IN=XHl`J2xF> zh1REPRVLB7@{#{j?_ntX5pQulN5%Qu2>}ivrPx)@vrpcXm26$;)w*+t4&KGq$8&>g zh+WUo;4RMc$SdGDnb1VV;DsEQ^MjmZ$41_rQU3D?eeii^Yik42hxA%kdbY!yS3&ia zXFdj(^)zgbpGB{K=cdYIlQ6O{6Vtep2_d?3Yox;z=vkBT1_>(UGf(Kx^PWGT=qp&w z;?oD)2b(?O+So{Bh0ZNOjsaAr|MD>{>__>o4TogASP13ChfikA^<+)I9#VgvhvOa* zeyN?)Sn-|FdSgv5PSTX6*0j*jJ9$Oa(U^{$+Bo(e?q1AW^kmP{Y4}N%+0?q9icNdZ zjTx?FB{jA-pNrM&KG_7} zyIOn3ezu`F(6`{px-pdPwJ$kX#!3#Kx9H8{k|Yl$to+-vTajX(b==}|DOh|gt?D#a zkccONF^iT|B!(DX(t7h1hfR4kc<=OLcwM3YQ(Zb-BEmKsU=&Gvg<}Ww1WDE1SG371 z(izf>71_Pl^lya$noyQ?&97=|I07Uf;$r5VU?oDR~~2_s^gCmG~Fs{5FTZ>UhX2t*N;3i8|=K z-f*NqM}}lIlq#)b>Br`dQOf4ZQQTD67 zXPdsdZd}<;W9Yh6V{I;7c0Rlq{L;2gBa@Z5o7VP=U%C>0yE(P*X;NXecu$zpPz~P? z_vUuC^}{vs(6wlvpJ=_*6n&fTtJYb0y-c;FEJaqFQ|rX;c9&GAboKwg` zsx6ciIHEbpFNWi~=pw>PeoScA#DfkQ+H*cT_Dz~iuiqEr>64B}78MnsK ztHdcy%aA3lLit?YeEIW_A74>q{XDAs^nYG9Se4{z8gVVg`&3xGeX7%)kXt4ehmaisWhaGii21 z=6h^TuQr$KM_c#JQM)iMq7}ebam>5}yh>L^WmAS>YQ#&C=AFk7Ba?pm`!qfccsuv_ z=i$QD#XTEMXHn84-)AHpFxgmW_{?eur|CzXTnqmpC$N4ncxeKndzU|} zSU!zwZCAJY?3zLwuVHfHeNJL}pMv~*&h+bB+HmW) z2A}xuR^;B*W6|H&h*rye--VC$f#ccobN+Q~#5^E9@z8d8;v6)gbMbx~Tz*%*zbjUX z_I)DXl*U((r6Fmaxo7>jnI`#t@_h!*u}_VN{-9##-RdhZTByh``#O0w@*lGMoz5qB z3lo-m*V;{NX&Aons@-7MIO@mQcPE*!lU3i?@^6bW@Xt9Y-ugxt_||90GcuU<$+mh` zj~Eppg)8nK=4T*gVCK>xT^i2Ieaf|S?gv*KU*PI>Y$V^FKR{Ykf)t!7GW zRt-1kOz-RyQJP%BtY4gFol_%5ZO!)7a8dC!DBCl5&omC?7fL4A{DHw9Znd5sF7hXT zUm=699((;9Ei6xpkiBLL^Z8r)amIeg%=r@)`#sxA>XO*V#asEiR}YNh=Y?~gPA6XB z@RsonJ~FeYTQl%#-lKbK-g*j7QBtHyEJ`}Lj4a1r8FFz0)O&O^5MY80pa zt$^sA6uPt6B98UD^=}g4AbRs2pLN@r_dW3?D5WD8(Vt?BPCRZ$USn>9$1Uc&9ODjX zA>E)Wrv8dl=!Vd&U`X%q66jJ!2diCLv0dHq=I zvg0O01#QvpO`V7w80Oj^Q3-C36;535OYm{zwPg2)YRL9A%nWChQ01Q#P?$0YmFJxLn_gDIrs!VR^27mn-n3AdygP%h zPp4csRt#fh>W`({optEyxwJ#Afxrb88ei+%SeB&C0Yl zf$fkieEh{Jn1j@X-0)P}HjAqhr3RnQN|4QFwRj;-gRigi^&-YFjty^N6;@*qL zMT!OxU>-AG_^T7;#vsd@A#o23l2lwrKOUgGq{9^|-d8Eg4bG5*L0 zkCcSSy-2?JeIl1S$JJ`4%rn;a;wHEPkdR;g1Xc%GCAZ)rsDg0M9Z=B`(~0 z+sjI1XuD2@#f^ZaxKCFka1A+jYHUYRixH3Qg@&4)I`h}t~N2$2R?tp5w;ndzX2@d zT(+UXo2B)nv#`vyJSYd|(Yl@P_CwemXmyMuo|{mv+*-;%-Gm0my0fbO6WCEFlN-96 z>GZ0#w<`N*kjzu{ywAE2w1v^)dkzcOeCuPWvr``~h!*aOJ4=WCR$T4SDa+!v#XYsX5Er<4hy*>$~0eVI!0vHXb-wwK6U#!3AP`{3fikJ51HrI^vYK}D>REXt7j)Om_ZE8ZWubgq)pBZ@H2)gY#n~r71M@G1HhKcLtbPE0e3~eQ(N*N zz|);9vu+wf2e%Z4o6W%GNUK^m7V#q}#?7^a*ugjNF{O8&V<^ts5tnQ(I$^drTUw@^i33<8B!YY#6jA-7Abkf**E z95l(dHUY13cPb}I_B;biw{}6$VG^74_cIcbXej?2D&nhIg-e@1&u?$5MuJ!8m*SEM zEY`>?KIR>Op+iae^`%SzJ3z$0NEM$^@@o+z@=N!kWPXf+`*Y78?Nc;VE&H%tf?tG4 zk6t=3^+1^Da(R8<99RsoAEGCPjxWKoM0kC5%_8=eQtmxX>%;GIPUkJH*$}W<`WMXI z40hscS?j?@BQ*Ie+&%#XU4H@uOvy^dru%DnhLc?s&CaMYEl34{(Gxr z=Dg8b|J%ppFYaXSca6V8hwbI=53}ME$aC)SpZL~}4ml!%E3T}`#oV_dMFqtHaP5CNF0C^GlS}J+ zht}2NmrJf4C%qRz(#Ce990SOxOAB1{QGyJ-{-SkKZwaG~N|ncUP>AB=Ut!_-6)=4M zQ2#p9k6~5;i^iFAxMTK8n{U1coKFt57Fg8dKmC#=Vm*(<1*=o-i=rgku|o2wB!z_a zzKvXy#zztatGDxx{+T>mpshk_a z4%=1k)z$-e&1pA(c(D;rgHkz%Wcf+XSc}BtTpE^3C#H(Ii4(4*&9ydZ48-P0o#WIV z0=qHG?xDlWNNzWq^44oqoY>E6;I7h%8?A-@ORb`WxBtPRzQ6@UJb2s4_pSs&|7i*M zbq>Osi%*JW$2i6n$3zQm3lUeLx_t{X)$qS0A52{8;9JQizoaWl)QM-9Q=mAh|2X;} zXl4!<2F(8IT@xcWmMLw$sBI`$D!a* zrNAZChN7I@){yQ_#2w}3Rtx1LYd2bupU0;m6?OWd8D9su+sFP<;y8(5+J(k@4TI=v zS{)^)*a7W_iv6qCa*>BUX{$2%b73B_)#iA}2sF)%mWj>{pgPNMdV~8Q_6ukY*tvG1 zgYI7ts$L4(_KRm!dss-+*QWfVv=Jl^nLG$|T}>puEN)zQ%0-5jPflC^oxzQ+i=R33 zR}hnPaq4TBUe`UbPDu1h2i_mZlS_`OL#2y`^gKs7LN*D1cqy@rB;M)u7H6I-)9{f^ zka;%5%YW+@2vW!vf#QhIyA_CLn_wV|+Ba;or2Bk4K!wZ)sXt%VbCMkPz6QILM!YB$ z)=Yg!$FXB$9tWhyp|vadn%m3_vbWkkGQU#z?Lc065O^4nT_5^FlmOIE#G!gKZg9ivwVa4c4Nid$nId!9aOKbb;D z)^4|kC%!YFYPreL8>Y~~*P!A!(1RcI`I$TPdXRNNV)vPtTFgwiDbbI1VS&9~J=>0j z`1$_T{LgDM2^;AAxoS-deq}NqC>mD5)c+}4X@VFr%6+j;b)pBs_lAetpA}$T&0JQ> zmnl>|vr7#xqGDL3#H~cD4qFbJIk%n6dSoTojRn5xhMBWtc&jHNdp2?$@6r@m*Zyt8wl7r| z&yrc(xIXr}w_z3eZ(Y+y=gl=xmER@Ou0@Bw_juc&P%09050<57)k5mo6N%`_PNWR= z%NDPqf-1j3&T)MqJPKp~C?8-UG;8yg%DX4_qI!vlRSTaVm7k25#Ob_;@tgN2+Nd>_W^-H6kok4z$reC zYci+4^K!6~{URKj?xnQBHA(;0_nRLPJ@oKM9n)9;g;-JI-c7;Alxj2MGlFjhYPPD% zWq2BFU9ZD*Si;pfAH%()fT^3KyJZia$<#SsPRPIy<$-3Jq7b3mFNNOUNyX#{I+nqqXnz8QmB6})<8GdymmHY3eA?0YSXrrh&U~EEGnIj(&UwLduTK`vR(}mkY(n+VVmkz9tLLB zPCw(8se)5UPh^<)Fbt}tq;y_&LM@qRA73382~@wJQWx5TE41Zb-@2B8H(;&dU&$ie zt%#Bn6K{aa32XDVUsb5gG`^iBG>KcO+9D2DnxHrFPj7KK3mKA6?p&ssjZEPy!zLkFG;SixTz=bYYEr491Biv zW+9(we>?csR-oOpz$BFEM@z@&hri8Fqt&kEHOEHB3BH0JOuf6PI$|=6!S)t4cIi4y`L>?q3gsc(<>~Xh+Jji-cestWTZjnM z2U@*rTEI7rPX#`TgIF%>*4$*oO479!ebyyTpuIfeRua>vsxjS4iZMbYFnbHm%Ig)|z7EwdIxE4a~VkHnm+ccl8WvyPwxa@BV`wCB=Nz z_5aXdVYTP*>v8y+R=KXb)Pl!PWMX{J^+Sng>V#1gKk=4d?Gj!z0j<5dZ8r8bu+FSY z>^9*fg&%h<>^{&10~OUTs`9<~&o}tMk6m1(A-Q_#>YeYnex_Zyt9S^W>!&%D7kjY! zo0fvuu0fRkR<%qDX~jhA%JNFrQp9|T+SQZFMn<=Eg?Q@sBhdbHk?IdA@=^8+Z<`-K zS#z~!EJ=hyI8CTuPx`GPv-_k(QdFm5BmbrT0wY0}%0uIL_Ol2>i0mbOWZu;CjD(0F` zZl!f1D0I7cq4PA@+YDY_w&+A@bO5hRX9uc-Hl_7;F>r3f!55YHDdb1Jx>;33AD(uz zI>{_fq2|5Omf5*;CM_S?A0<;+uo{><2+vO=N>d*D$zYW&AtJ7Rfc6pUWyW0Npo3-PB$`I zx%0QhmgB6w+I*1kEXK@tys%FlhofJuHRPN3E>>YcU>{9(9ThG zDFmL?&gz9w=;XCChBSP*uQlJn>}TQYto>dw_od%rT*}|vh-#&m6-=JyF)y> zuL(6Ba_^F^_TanG78Nz`Da@vK-%Y8@L)<}4$G1(aB;0D%CiTsYVA(Zx^XxbSO0oNR z-u)WEg~_>%Bd5k-zI@KwJAp!u>NCXqoa?Z70e45s^SY5O$f|zT9zsUZ>pO9H=-EHKWSNSt{E>y>jg`xT!Z}FW zspuP1S;KH=3$}@6=4rNzbZy{E9wM}T@N1O#Y9jY>>j~4gA|##2c)R908zJuuj-{83 zATmV3`pB~pcvc;DdmE93wU4~^Jw4Wq!i)#|QVTeVu$tYU`1ua(w(?HMHtxhQIrp4z z*(Ca|S-7uaq2Y9t_}I!9Q#j#mtT6nRf!)s~HaSf(U8UE!Y~|}oaMR7RBGiUZsdgde zbJ;4Aot!iJQG|h~ekPo8^_75JUnidqg|>IzVE%J2bwjOti{`w5&O4SxVWc#@Q1c4 zS)=SXnoh8@X3rKwQSwmbP*4M!HSUH>Kd1%Qu$kbskZH(%JE%m7Y6ZLa^j@nyT;xrq zNz%XOTqu?6{@0n^hZni(maZj3*rKv8Nu9M0^@0g1i6LzuQXP)4%% zo?q*0@4a8|KkyvSbKUoGUZ3-LPKYUsONP^tthBk>@$6M}iiez?Bn8m_B<3z%I1Krk z+i46<^YAI|$V;7XLmErU?1E1_q;`I|UH)eQxe@&8X%sFJlsDXRJcpIYST-djgz^$W z=F=Mgeal9YS7`m0&*Lx%GA?z$umsQUVVjKo^u&DEe}?+EW+Cl8cIt#*CrpwqYKVRq zLS6^mb`!xG$Uj`TVd%t0Xg_^#9`mQ*?Bj;KtAE&uEJdlbqJxgi$B%YC2<^jkm?L5| zXox_sFpZ!70t||s=VC5)VC3SRd;4422}3}fkh?l9QEl*}Vt+A=G$#*E%1q#&Pm6%m z%m@tm8KUp1auF%6hhM+nuZC7{*lNd*G7#_UapG@y3GKPD^!@1qq|WYGz$hCX$$9Y6 z!KQB`sZ7z!9#Q5db$f=bcLXdzd$jZ8tMGp~KK5Qz;cqXDX+Nkb4UXYnrRH>0Z4)@H z^Rtw^`Vbtst=cAni&$=B9?ZlJ_jc-$#s&$i7s=s}M1=S^7t# zx$!iNQv-MMMRdbsXdp^Lq6Yu%YilrbsDQ@C%f+tzOeEs{w0my%G)`>~DxT%Z$F@0v zoXK-Eq)Oz<%N0L9V)WDZv1CsYPDhI#`sgSZRJq3+7m!==i)gWWl&W7{sGDJrC8GkxcAkGpP?znp%=Wo;rrSZ0+ zrcHn5u2eUeVue+I99%)6PwYt7T^h2qr~TAi83lY5v*juW#$l!U+YQK5e zC|nacE(opNbBR@U_YHkiY_3xqcbpu>GZU4c9|Icjw0>qs?#CKb)sp-y;kCJZxsuWl zDof~0?#tavti!rw?E7^BtH9fHnmjKkQkP-FVEgAfwS*MK;gSac<+9-UEZq$jx`tD{|Qaw zeD}ZL1*=?mH;KDlK1WM#*WCUlQ{M=wa>pE7t4RzxT@6m38Ail&}}Jd@zWSj>rhDU%x6i2pch3EB(M_ys+Ii z!}o}l@b&(V)cGJvIuvg@>uUc6$K_kQI~3^2?FZ$`E;0QWpE|NN#Ci-xW8;o_44G(^ zl~dVa*$+ikhwrCfFp>J8wsoDc9k@we?ZyN)r7n@+U9; zlzv=`goFPz9u@6}uGC}Jqsl#C+L{0L(;GVSv#@S*rDOnZfgcKgs^(!hu$m)hx)_>; z$BVNiTd=|1OwfL`9!DyUX7x|3;+fjAGiO{YR>IUDnkjOVJ1KPH{N8^NDk5rV($Eh> zvJl7M(T{?KXv#&~I%sLQnpPw>Lw(|eU8+tevUvxOd*2oz+6EV6N{-T#Ybp=k_s7wY zs|kKi(kc09=9q372^&ZLM|qde&T|+__s@v>T#uNs?7oR>9q<%v;`#7Jncmmq{YFa)w^E)c z#;@S8NS3KuQxob!ZkXI(JI{r~ax*6v%aEgP8D`DLMm|JsTjr-5Gs~=>94^m7U0vW`vG@o|corL7s@C?D=}so1T@R}*qV|4Q%dx?&c;s#MM#8r( zx?KK(0AX8duF6?qAiA=G9o4S9WPHIdCy9Rp2^XLI9>11vZ9W!MCdqvGYkqdjb{mBa zXX*7trcr1eNrzoh8)9E_m~7GPhep<{ymdM^QOcv-J!VM7(rk~3R%8L*-@fU`NJC2` zc!sBxSE|wV?Ypt6*BI0?u6b}ZvJfB7O0F9fe~|vlH(;WC9I17!96GNW&?3@Am2VqD z5vTdCkdz9XQOy*nLou_3{R z48P~W|7}WCyR8Vd{I5+n7A_$9^^Ii7NiM=;zMG5Q;3v9^UIpZ34P%&c`%V^>mMkwa zsBf#S0PE{h`~o8VzYbZG?D=BAb4C4-zh`uyoNdkaPR)Tq-fAB_{9kMcy=Z;+AG?u-)n) zemtNKTAk~Mm4)zYY7`Y83c5J&snQdkPXQa7je3!q{5x;heH^-d%fWO%>o6nFa_3ZG z1tRO%d-CMzh{Dpbx%0`}$f54fmmWW;#XILivB6urfwrhacb{({4~}caEZKI$s=h*H zC94G!T74Tn$t)mr&n0#h*J=2c?Ju?|tV3|1BRg0+zld?vKiyV2KYi zK7XtMemXyQxY&2Wqc*B2{pcv#uMzukmN8UZy7ziux&YhXmRVJt>4GdzD~uT@v9&-a z;Z<-4GAx;xtfU8_(PYAq%OXa$8~*M)5%&)v&F?wWLK@NOrEe{BKMuOZ@-2%jsZi-X zkYnZBitlG*jy0W}hLsI}+~9mU=swKL$v$Kvnu3>}(hIJlP&}nw-DU-e>eU$urH$Y% zJ{!<3LP5jGdzL`qDezxWpdTE~#mUouTLbKtar)%vA@A`-3QXTUqzTY_)m*WMu2q@8$GmLtdxf6TPe>-C` zHgf_a|7N-qw0@&mY2nt!p;45mIdMd7Wg;*95^fI~bir5n&G7XJ3aEn@eJcky}9=?Pfmbx$G8Su`b4dK^FXpT`>qcVXXdILp$Dl6%@u zo)mnhA^r1j&i?YP#6CCqb){Qa2xZ5voZlgBaIg?fjCeVZCxOhj>S-6?qU+1%MNfh8 zmY`VowY)lgVTqF_t^v;)FWhN7L&b@2OdI%(sW_1L$MV2;8j>kz5h+DGhD=Jr9!0%u zJifE}c3)^Y{{A(L@W0d!qfcpWrm0PEs9YMD<7XrjVW(3slQoAtjZgGbJsbRk2)>`FXNFqoKj!>hUYD~?atJprq+q^SUaJ^7_Pg?t&$+?%X3xc%S4@{zYSXryj3@~rKKZK2AX z$XOb4PFVkh#yAskW$GqO7Tm-!$AKf!WefSr9QnxUM=nk`QyWdGli+<`-%eGgA!!K~ zK9=IEh@N&}SJGl2A6WcK%xr7nYyM}8&$BUDn&!tgEf(O9)Zp9)8&={bI@`pPPz6)1 zfr`{1I?@~`<2~?{y@6*=!(u$uUpjwHMG?NI(6U zJ0A{Of$H!0r@)*1(o!#a7){~N1#Q|X=yr2`(f5FgVYT!G%JZ!S+oPeNZiKX0a(nRwe~N|{M!hK`MT{>2%kvv z>lRt_?T{zeaPi2RzY>$4cN8HhO2PU~V?Clw%&t+=nMk(fv(0}xhvDXNiDq_*naIA^ z7qhVCB!SP`Z@#LgC3pDkN6#GDMj`{BG@nqLf_C$g`cZTsUZmlGlVd$DmwwB4T~~#e ztWVD#&@dB;279z>EJN~%r`M(N3ap3Tr@clqczY%{^V!;b_>Mkj6_QWE-VJ7t$07#t z-?^VhD{7X|we$7nrg}lOsOc9RXF*L(gDd^oT*F81HuSi^_#;z~Y$Fz;@wpcZUti{hIkA%0WS`BRE?T0MeRXtn zQx^m-WSTBqrXuCNO6rtz5B&dKeWa+^36*`bO7*6UM8k^3_R7OvupRb4bvR-Y&gMq6 za_?#|8WpU5>}&~^eqE!BTXSvCo4QbsLXovHB1KiF)*vALc3k1|0CETD7wdm;6G`2z z8?uIa&=xrQ>0WIo%A!(7qO)dkM&r(HyO(oN+S5g{=9+O{+9HROm7CaZ*VvG;*2knR zj@xyk8E&zfk0xJNuQ}SnNM5TIMcV2izKrA8`ZCAJdu+|c_0M12yOo0w(YJRLy(nM^ z$(j32nS`m6k3C~;4~BCDWFP7D!^6cWaBqqz8Gl=-vdyjlCCcZ^%zjsbF6-r0ja%`k zG;on|2#yDBReQ^1TpRAB2pzBGorUkS(Q;ppS_q|eo~s{WB;T7)-qkf(M6~$gs}UX= za$K%tKX*nWp0Mupe`?ka)|s%N$8{5E((j%hQq8|StCL0@4uoWx2`+WuF{wRtpgX%TbXCTQsvq1O!HB=CnSdH z`;LRhIPHL*LqDonei@{MR^U*r7iElN6v3jjA&br(xSf#q(@U`xRW{MtyGHY2))e`U zKXw9#l@eawV&eW10=5&NP`$~__Wdg5q?a^zbP4%EUtR607vOs^B$)gAJVZ{utWq_dK|J@l9nxFI@NhWhvo2dF zn8vRN)Rv2o(??&()X~wCPo36|UHVnHlI@sd%)?IB3$sx(e|5qk#8+d~aS@!~=Kp-_ zTS9ms@5P+z8rj=AXm; z4wH~6w=^rF&%&*{Qa1;KtKh`6Kksy82iV6_w8r^badn+%l4vpE%i|BOEoOfry%F}SI4oZotUm4 z_D<^)CmiX$Twz=+ zv{Vyo|6;EKHgbQYsWwaC|4yopZtS}*}7?~0vb|yOD-_ebQmvQwcIb$Wh72B zo79uU+A#CSOh!qq95gp~PtWbGkAE+k>2lcF?gaHUuC_Y!L-}&AjM-$M5}gl zqVxT1ybif?Z)fogY?prxp6jo`l;YjTUp>c=ZX!@ddn6zH7UnNplA93Mr>-``!bBLU z7y16~o4|Ef122hQ8gk^iQmNQ+4k9!a7!@l0l%W_fP6MMS-eOfyQ|KDsezFjVieoPJp(W#8K5vd`3y{*Qd5LT*HF)4J zE1e-XfkRwM!Cv<3$jSjJXNq(mT)OO@Wq;}gbv^aq2exUjcIB^g%UZ%}x?p5re5E?hp+k7rNLE;VF|kk?kX!!uWk zv9UKOxBgBcnpkJfuj~DR-P7y`%GJJNhlj*guA3BO9ozEot-&0gX%?}vaoEidv^?&(I08q_ucq&A(Gu}1Rox3sKOxV( zJL70XCI)$vsdi(-=pRVpW@s71Dg6hs`xN`YX!|HsFQXD9z$lSwolQrs~tSfh0Oo(YvV;?SiDi zTfT$cJ{z+EPOrBb(~`>dubxhpcY>U~QW<<<4vux-r(`St;{MZru5It;F{zO}u``8^ zh|JMxI?)Z_(1#hdZGme(NN`v;{Gu7-=krfkzh6bAXyT%R#tNR$|M#4dJP(e5SCgVF zbJ(;_`ts7jQ79Rd63UQctPI%=U{NZc!ZM!ACCX zWH%}_#eECrLzclA;$bNnxr$ki6|p^)EjWw|IuQ|T&;L$YR$HKe`C(%r_t6e0JNXQ; z<@Tb^!X;9|eE~G;bCHL`XHj0}HF+T}9W`z*c?!zw@I^0vA7w)~XwU5U;PR;rO0yg- zaeeCvFTIe-M1LzB2J@b{I|-2Rcb|NC4mF}MLFD3n%Tcg$B~GvG9zxOiMA?jnI?yJq zddfI5HRnW$73cIK_tW&V*MpOW%9E*W!>d`Hg#uGj@M$dyQL9r}ZLC;sgA##xlw zy?{G3=A{o6hAvzbz(f9astF`Pb_VzJU{oT$&HkID1QL)8pYHVY(*n9!uP$TiA?RnX?40FRUq>J{5v7f>t9wVhOreH`jSw9zu=q7I~ZF zJy?)^Khb|~iI#}(^Yf$i7!wR*IkK9869Kjs@dIo5t*!gU&%6LGVm(fO zh2{}6GO*Y9IRl}w^YNo?&PMSO1~c02^AP?#W!0@%ib-uoq22e#Q8)5_*Ik2LXwmAi z#(K5l$5?^4&Nl{fT$x@?d~_E3US22~NSsAZ=ZU+U=-J4ni&v}}R##Ec?*$g+AC!L0*#X4g1g*9F*{I{99UyK9%a?1a?O9s{WMgrnP((ossL+{nrSu z*DEsOmxf_+@6eRvu4%k@ED-~R447Y6|LlE*iiVbow^>RP=+*tZZS`Ii9zBdvJKxa; z8qvk_w0V?*wloYC`e8OLyo znzPc96z91}gKLAh?_XW3G|Ww+^n2_%Gbb?W9r`d_rVQ2Nc_|5JEAZ9f`Z}Sr)hKH} z^ZqZ>1WvpQYZ-@U)-enfp^mo4*#YhEwi>?eL8cs=LbON z`ZHtQYhm)LrSErCTqVSgivCxlp9_Q7>w4BzKOvQWW%(WbC-4ciUi;S9vDO_k0$&Wy zL0%&)<&}L8+FvK%iF2YOT(=z3WMd}rROZT2nsyrUWF$+#N4yd9v3y@Cwrf54G@JJJ zZKL>A#=9!>rUD^Z&B63BW4LL0w0e_fBPelA3isK^F-;R_9n(Jw#~Yi|d_RoB!hfCE zo?R>Ge;T0U`XCWMK8J6OD$j(9$sGl1{xCibCLGLzD^p|xSrG< z-e58he)~AZ{i_Y=XR+-+nb`*6mS>$V2P(nDSkv1a)(LO%Q9 zbpO3KEos;wxOmBU6RG}0o33q=4XQzIQLWV~ddHvF?qAo1csq`wA=O2sofUQ|xLJZ9 zb+Lvje^sXU{i2}#5}hcm)=uL05h8E<{@z;lVj{}2k3uBV zYvG@5-?Ocmg9v*zz7p3RK%d%MmhVC|L~O>%IDCYLq`#CXPiJUCd4J%~4}puIgkr1f z#%}P{#um`=w!!Y#zf){2z1TauKI+ZRS>z@-mbE)9{r`VPkYPY7!oOcKII7T!2@giI zV>^4H${8|wPP`rJ-HP2}+?&YIpW_8A9Ia3d4>~OCFF+WkR}|fTQIH(Hdt^#>0(z0I zSGbu+pw8pA)l#hvS^8phlEH(B9)5d3q@xQQ6>9H#-6cqpxcQ8q_Ii^2?YaZ`H4BZX z{Y4DTzfq*mb}*%U7Mh(QO6LmuAU$+SMt8ab+e?y%;&mp#B^T4MS#lkj%{^K(Vn9pw zSF6MsCguHK_-I_!H2LJ&7{}h*JAQx;Oh3zdnd!)!NkyPs3h@xl-B}qlnP*heWPlcpJ zB}GP*5m97BvUjrg-h0#Ee!buCZ};zFK*924 zaK$1F16r3TVN%3*mwnMYHQVgk`m;@5ycO>S0*7}8~cDWyaNY}wdYy|JHeCC zZ}5S)3a?EYW|vdw$goHDz5i@zh~?(M+cWRlQ4#cx&We5zTpZy^qQ>L!$s6-d{+L-CF+VdHz4M!*5nn@H6%Mq zDed56ARj#XZ}P>A!^otarhI$?ZIOu`f2gK#SvpT8MvIQj66;iz=vjD=HYd{va+6{D zUz~enXHYG%iA%Az5V!BoAAOQgiB~blyZXDU5PhzMiS?9>ONSvJigpy=PdQvY;} zmkrd#t<~ZfHdLld&x2mp%IfLYWem3zsYa@eqdL~eJn5h?xjXr!KtZVy!sA>kBKE&w z#c)IYkyR#YtXO+Bb;Dp2uz7QWdk=hR+7q|De~lvuUbs@s&Rvhr*UdXa8b;7k6nLr7 zsR@(W=h-bOGnf&5qdkynJ6y;t*X~b=WToQY+%boEN`=nc}>~%IX)S&(2yc z*N!7oV)F8Fze#ZOm-a_|9>n=XUa?q?I=ney_oV;H8eD>pNH7i7LG^*+rQzLO2s@&h z|KeILG#+++?JjOcj&e)>j;3L#>CI%(l+uvnoFN{wHB{s}ub}P&Yc3M>-`g_@?78p` zqSr17S^}qf=!Rh7UYxC}d7b}o1&+3p?m7`Q=<}d{$1O}t?DK^6IL_4l1+_;+2b2>!U9 zdLnPbQL`r$XjfJ{cfMt3BLh^O^x1a z9-6_FrzqFfcq)=|={8SOWGVz?clab+=)v;^3EnNIM=)JIn!X{X9VHpr>79;(B)Byv zWAsZ4ob}Cz^K1A?&Rp5jTdh8%NfpU|NScGp(7`UYD-)2ND~m~WsRI|Yi^B)M8N5{H z_q7b}#as2Q;ydUzlRerCp5Maw$XEX>(dosrU>ZLCPCY6MM&eI2)sD==RBrFoyO|zb zb~^ult-BJeH5Pn_sONDkuhWC)Jr{BEpgVieh>F;;PpZgX;w6eJkz#YwLS!MIgKPP} za(oY>w{NFiz_8EAH!o#cB3%%tZ2MyU?mx1eDk|n7FApz#W09>u?4_blYAOS04!icc zAnX_Ruc$sSyh}}7pH}8B>(oHM3q6vJqga-;yE}b~o}9OTD&cK91jEe0Fs00K;PfMYtGq(A)G;4#l?_-7h6?$Jv{Q|I{G{V&Flc(7vN!j>Wks75RCz zUMj+=XYwWHXD-4I&`3HeFCn_-t=d_=B4o%_C+S5@p*J9G@{>vqB2+i2&hd7Ew*JsS~FEI$<_sM40l3f-ePmi}D zm$E?K)sMoBx>?Bk(ggTIlb6fo2S8EDA6Oixm@G-~2qrx3Zser;KP8uGR_?A5y_u&05GDyN2#4DUNk z!>P6gWh>>^9wNM?TJ3X!*!~&FAN_Pn+&Bj(pFI^{eqRlFu{3s7mKt1_`MOp#Isu== zCdTCRb6DOc&%Aj47bYuT?KLy6#0NF&N``-Pc)WR|>D}+NWcFBlLEYpegnz2lPlgK+ z?Gw4rWwv)gE>7OGRxkrUJ$H)tTIGVVFx9R#DFj~?qYYf^d(mj-5>h!pLC7w_k1l<) zFrP9w=qyc5`d0YrjBQ5ns6;eRT7Ug+A_kJ09h&hY{)3>w%YM+s`-fa|9m1>A;;vO< z9Y{#A>;7gwh?V$HAyIlwU|BV95fGY((=(ItA74lCg`8l~Q<;K(EJtE`$TV=wA*Ge$ z8^>J`++WbfKXer~o7(82HCrLOX2ii4Nl$1D z)!qlX&0|A${;tfY6qK6m*~tB45I=W^@HzKaqTHe4*%Pl-r0M(HiZ;>{y%)4OB`mYB z8Qc^WcVi7nKgZ3@*LTOdfyt%8zYiO#vz96S{6y*g>7u)KoEdRs zCXC^YbR(aqkyCZi;rUTIk{a2%!)%(GtnR7(;yYb~coO9q|T z_~%+Pmr*v78`;;T%yKFbW}rqJDn`L#ZO2BvU$lf#OL0imX$Z58{9=>AY!GdTaoM?qgu40xhvBslF8R zW)$_#&mw%P2f(@V`1H(<1?*?#`}(l44axOMad+d}p)bTrqt7{ytYefEiL^qD2@3|y zDo~Nbx%s|khsMD*uwE3JRHQqB(@W;`42Hd~>+eo&M0}pEY@D40Nt~}ta1&)E(@QW4 zD4GS?GgFw|zlyM)!6#ao%!Eli@~{?Jfi2_byh}xOcu1cRe&XsXRzjYe?zNnP3l}W+ zEsjEWrCMsZtpo-pZ}JY+vXPFFk4rRBRWNb1I?flCj0Xh=i+Xkr;g`P8pifFMx*6zw z2P~JcCMalLvCbd;ZZX(TorjDoiddju#DxPv1>d9du=nR4QSIjw$Ta4fex;v_lb1uc zm5Fs@z~FHKFaHXR-}3Zl%X1SC8H0&Ix?a3i45Q~e%Rp#^?jA7}Uc_Y8s4u=|&m-v6KACjY!(D`#5RfCQ(~lmS0&k z!C`~^)v?x5bQ@_(vWke2J9LLW3memrstw|7=Xqw(;w{oayRQbN54DYGI~%a+$UzDt zTPN5bCrbQW-#^FiX?I^vjsen#xrfOzc4iH$UDeCSJyX6bdrnlLUL|3R9o-^)9p(Q! zs=S7It>Ro8sSfyj*lqgSjE=nL+f%l|o{I1+c%s>97V%4kC0id(L$cXI`gqO+zAIdm zpQo@9A3qzFQe_6>#Bbf_eu|HHe%~7L$aD;s0f@L&*!#)=M7mS=?fg>-!)5b-&YMT^Th!l6!IFx^jW}qH zulrQ3f;`jaC3@nWv-`!)TSYi&;JcW+V+My`e2>|ZIDq7Kr=;r|E2z2gK5pqrAC7un zPZP^zAh&Yg6@W8lrIb){SiM88A47YE?E3f$>?IyQeN6nRKs7G&#aZj@VuhEKhF3 znez=Ro(~v^`Lo|)k(freijnA<9}J``DcLEid)-4$IbYUPtVF1*sB`~QS|WMme275i zG}!5e;tGSRApShbG4@A466<5Mrb0(y)SmmEdxeHrJB2O?{QiZ2>H{JS1v4P8Z7eB= z=fKe9#qIa56}7=`r_MJE5!-^u3xg-?p+zm>!M=ru+`Rv|>bvIIWyek!in(*;4j6{nZ3 z)a0Z^U`3_gFjn)5mAcq^q4V)=x?9r>^tau5H4@W`PkUq@1k`jOXs>NsOTjeef_j{G z>@LR%3Cm+aVyjSTc*T5f#~7m1`}V?&ihL|D$k?E>2%5-bmj`UEpz3-&9KtM49u+dK zER-^mn1q^N(%w@T|0bv4*0+FsVHQ~hDO$qQS>hWSx{Lz*Z9nApw?l<%PuWEIG9EIG zC%?&_g>ai%sI|s4)XI#GhAkE2f zqu%!pt?GQ-p!v^zAh8QfUtjd}R#ISW6>4#$TZ~YAG%@hA1Bt4;>TFf%Nh@!Z$)!KD zsHH1n;i=>%>>@AZ`>1-*MR(sp}X6dBNAyZ+8q^T*1LW=QRSYuB^RPY+Kf)hPrG!13rEind}WOyq)-(rlVhT=gbs z=X-9lPfDk)WU3jai&SjSC}R*mWa_q@DMoAr#MJ+FQW236=fZ084+AIIc!e+jg|NY_ z?c~lngx`ukbbhK8vn*NdMjG@a)FW*{c=Hst(|L{nSwN=0gr1`&C98TRKjrelYZ;op z?|VJ?V(8A#x6HtDv8yg4d-{fn4o~yF z5BvE{;D&ljQdsvaqHmWyW}xLDf^#RAO!sn;g$DHrtF(<|=l0bG%lJt+vnI*@{*emT z%3^9)iw1muZ>jOYvIz(GeO`(x9ENIAvT^dwdHCM=>K&1k55`m0O_!p|pkT~VZ!}g7anA!R`Z{}P>u3UlJZr6SUGs#P57E@qd!bX#I ztp&DU|2FrW8b#Do>Wa%=Ll9Vuws++pMUJ>vN|8o4=v4RKdrsGZU5Yn7!;est&-`Co zU2gP3SB8GfUUvo(t(K8-J$-1gi_t!y{sWSUQu{YO%Yj_No@^$`SzOY(^D^CP1}UHS zFa4pOhCLUz*>2%BP+Y4-T)gQ?Rzk!UO}$#EN?-Sr_8JGS%X>TsX@R6zW9ZuD61>Sg zux~SE6kDo$W90;>3AZ$l%=jV=nQyCd-BCtG-pHA>+mw`ohwtV=?e)EKpz34{Sofnt z{#=T}QLCU%enHa_HH_k!121h|n2GJ?xTu{oBM7qB9-2#}BWJ5z#_|LEA+7yQb@Rh= z1X=ps*N<65ia#q?LOly%>Qwp2;5LGD7j^t^?x!Y{cM+xCzW?CW^KHu7WfKBa4;+CNlFq^rgH*JEmAlBU|HX$)bI0kn!$WBpWH%Y+UEM-6v?JqbzC2)M7^5 z=j;l2vu2-(U!^0ZO0(L}I%Z+fd|`*BV^Yi{PUzqdZJGe zr|#0qLR6~y^W!WFIIyApZ-fE`^gR>3ecp|@IKKBP`(6Q}&zkqS-AFW;xqa}Igcj<>6nndO~KBFxg8xW+G)ZS^tOtLe7A6+@o54RKt%laEU zgnMTB;2k+BGWe$ObGQE}Vi&8oei&Q(6nySL>!OzP&hS800}X1ieGo!Uk(G8{OL%(Af=}f!4dHEa z$RzcxxTyM0v_@8foZr@ICViET0a_(j|slQ9zHp2M9h+9?g(vj~%1JzCaUjC!q--Ze>PGTQX&Eo)pk ze8LSrD~~1PM#u$rQHKFsV@RJ`>Z(S$m4W@3${HGZJolC-F5sot;ZJf4`M8t6ch-w- z9?4Y339(yqao}wV?QfwzXi4yMUZ*ZX^U(C~mqJ}o9`Wipd}I#uN#!eU=37WC7Fng< zHsM?KuGsn+8j`9WTRJX0hpdcty5fUuWI;q=i!ysFDkQoJr+4&0jxREkmy%tYW^cm3BiDx&np@#44WAw*OJ?l>LW3gMBdPZAP!@DO9ROX_dLO|?fB zN<%fsPq!SkyWWRX&RcE8>;H6joB936skW}zGLcgRh(2d6d4 z@>f>Y{eE0{A^lz}L{tr1kMM{R=C^T_qOF~HJ}mu6HhK!r6(kcH_ec=+H<9+6;#QF+ zH7|E3W*G`BUN?^fRUmkvS}^-gHR46s`6au%Q0Pocxh%4Vs?RT$EKbjZL+M2Wa|RXB z=h>puXcTyfp^CFQlh`udwrn^^!S6eFoppAUL-jDP z+T_JTxE^G_@H~7D=f1jMd3S-IEc9>cP_A0Uo>EQu4W~GW@@KV}%O0!PU2Ajx;P2mH z-n>{wf1(s;t^u6Ei5_e#KJ$ts8QWZ@rjY z>sjY9%bnb9RD{kt`eS@{8^rWk{#Blu!dR_YY&T~Yj@^Ir$+tHdHcZBxHX92-b`q%ekQJsAo<3H@b>Zofu*9fTxmL5+k^SJ0v){G5AES;529_)nII_V7cy>4*GZsk3mO-*j=qzDDr%)^Pk;&u3U zW-_m19GQ_oMP%HcrR5KmLge_caicF2u{LT`65^RfW9&k3-P3Y>p#4uOyt4}v7jATz z#B^YvfaQej`RXekvJy6{ zb)n}kJ};>Szx_l{teBz^~XF~>Q;_#CFvQL8Z^oVaZKt;VFP0h?pB>ymT~XLws&O%c{iF+ zDB5-WuVX!Ye8ry~7-b-(nuYE+k8LCsG3E#4zOP_HumAEpFK$x&+a=qNmxZ|dAOE&3 zzZNbuAulX=*FA!}zby;?}38+Kgg*6vK}p0dx0`GR{VMiot#1XWr=sg)I! zov6Uo>AzE(1}E@c$K-NHdM_3|cjjWjKrg6`H2!CU$p@SAGk z^{nI==Jyx;89UaE9G}Zl1HoO`am^!2>Q@h9c5+hXuT_KN?iJIJz-i3;lwQr=GY(!u z0|Ar%Rm^H`3G$StBTp3jR0kh);-)3D;z1r^vies3@Na!OB6N2_!slfVu9%X42NLG6 z!Kvb5oiQ~je1GWi|8r|?NxYshjX{HcjCh+l=dw!vgGqdL!%wX$G>Dl876x{rd*)93{9HNQCYqK8%==OOndK0B zQ!9kr4A^2{w}5SMs`1AATJQ{v94OPBL5RFel0!lpPHF@O3QN@?@gTk|sJ3IQOZI*7 zZb@?Ka=Y^=M>}rco>0~~JdPZr_jKt33F4a`s2#+xgrM50D^)g&c+4hrD*aR$j>@am z?X#}Lq(f`kmAze{`uA6x&duTBepzwlFH`t%7VD))S;%>ow!4y9g;05=w|@P*b_lpE z?2UXeifmJUuZCYV^gY;c=v3AqggvTvYA3Q0tu-GQ(s-vKx0P!PpTLafBs>#!7nxA(n~Zb31WcCS4g>GuVRB3=rP zjstiXJ|n0wGYq$m=miH^RuY_beUK%bO5W^v9luk*8^Z-YVlI9&I8>$aMf+JN%qa^3 zDr;$&z2ExKxS|()wEBRrkEh|&u=IsTtOGkY?e#V2?*T&~^8wLsOe7=Bg7^28CVY=o zf7aqO4ExIU2P2yskupQ8iO){O=_?GiPdszMB!A{d#PKPNM%ggvlUex6dOq5)fkGV8 z>$fxY*5a#g;@V|+XB7LMr1Jdy zGYxItWG=fG6k>BmLGEKF8%g4gVb5ahf@zso?RM-_%=Hb>;vloOYH(;+LX*Be^Tz%We9G<^a_ZzHoFWtl zp(rlG7qs+2+^`!rp5M1yGF`$^mDHVgG-h$%X1xio4-bj4_R}c3xQw*yIGm6!0LSU$ zF1+v9h|G_)u$!?{kk?XS&3{ph)dI&K^G0;RM9q_Lu*c&wd7#u zs;!jeH0**N^=|`kv-V%IMdh0$w>lUSgHH3 zl_!tZX&liJ>4TJ~ua`|_CU^wc>~^Ykp~1p4ce{5Tj2qunolS4RrQ+-Pmp!_}9^g!;^5mw@B>3(9_rVfjOKe`Xynt*8|ANQ@J?Bu(O zX`D}9JA@nNw^LaJ$Pa5u*~s@HaAY_5GV|Ah7BT20Q&5RjA>T|K>ieNPFZP);?fFGK+nW%b=t2v*F$f0_j&ao$U)%2#BPi>(fGtaZ=Ej^k$pXF2NTjU~ z55DWk9#|_zs{A$_&|mSVU0SK}5u$BapY^IG?)3y*FS?5_&Mkq)y$~G!nt}S29bJka#0yp_>SRL$(vvD~ofIhprAfbE=MD`)B5PtEUN3{o zdzlO_>rs5rjLyqk`DZuZ3+Q_Wwjz+tcv5$$60fdzds9qjQ03Be`Ho35zP@=V&@)ty zNc5AtOWn9E{^fA&gcRw%^GK&ntpl(2*e;Yg&48^>^v&b%tBDq~tK7?$1=Qu<@woJg zO1{w4bi87#knCqHvg}`uEK^0-Z!NuWcv>bIn>Y?x>e^9FwOL3D%bxgL%ual_g?ijD zDMNP0tJB;igP`})=*rh8OG*`nkoI06OiTKp(#w^BPm4m>$>NHB%d?X@y{9|5=9rbb&>AF>bXC> z?Y7?``}yen*yDC=+x@eU;pK{-RiC=gP&SM=Th?e!|5yThYKZp=8^U9_{uyiyj;rc8XiEFRm1FbISZ*vtsP2#!a$s@sDeS)TEQoivx8N0 z49+HB8Pv;1kht#2y6b|&sL7UcITbSm(PQ~HRR5a+Ig}e8qS+7Qc&4b1E&UK#8@9mg z$x2v^`^@hoSL5XGY8{(n{fLp{%d-lu#$lmVS03)nM!Vm|%bf)!D2d)+!eKBAKj*O< z@ii0p73u4;T5X-)ne=5c*iEJ`&3Q!ZRte2 z^Rb{)MI)%X^W2~+ZxToPvP6TV7x1IZF^bKQg=|)Dta$dg2YsAXH!r>wCLY$W&cyO{ z!uv|vM7Tr^4y2CNg{n>Bk-F#&!3Y+j@z1zqNTeCuoz^Ed*t3x}YX8&)=P0D)qN7`L z?j)X+yEkuN>D8j}pjwKG&E+~l=bsIUxUl%SvriS^MpxVss{%ff^wDEcPm!6hq?#=?H#Omx(Zd|G>}AO0bZa~}F2M2! z{VwVHNgTEwSxavkLVK3*Yo&*aNSXtd@Mxk&!)D})LH~kvfXn7 zCg2$){U&LOok;PhYCdr8!1lrZhQ}w_2+yVSLn0O<*neCg%6hyCjSDsT5wo3tT6E`Yj zX557hztTdUmvliRSNfnrP&*U_&U&`ZwV`m-e*5jWLs0)ZzNB2z0|^yAWy7yaP#kH! z{z{*Zcvl&&on#$ANMC1Tf3Gn4c}iEMk&Qyc7G*b`jQocuD(7zJ-I;>lc5F{s(cxHY zk*&qg5l{re4C)FgWL8vB_V;l*ytEFvNGUKA$;C*oviUi@F|HYtXDY>$q}X-FkC{l5 z!*RQ-iurK%%ym54{~K?)lBV15b--!2kIU)4epGP?4?1SeA-Oz;x$ZL!Qu{b9&bt)g zgN$inc1!9G0XoY>lsG4EwDWoWq zU96`+wmq)GIqeT-cQqMFvz$S~0+og+`v<<9#j{}NKDtm9QVz@OdaDj~_v4DcpzUqp z3G@kReSH1991C&IFW1tTN%Q1hO*N@yXiB@i?~NOUCPSC_4X#=U-pq^G)?9_l?_{Lu z)G=&*9##%|k`TNuas(V7` zT<04h$zQPRhf)~^H@xh5b7T;MgGpN?EG5W@#(c!ngFWEmj;IS_T7=E+y|KmYaUMLn{YM4g6 z^&{s^UF_s^_oJYwhDr$BmSv-@qGNMNP$jK)5PtgnN7##darfqe)>bV#+EVg|E^slD zMEm?puP;uZSl=uceRN1jjrrU%??tAKu*=ue6G*t`)S^AlOAb6WP_GCRA`+^n&wFSI z65~zukL{!F*xW!<%gaxK6{k*}w_Yo*);;i@9UVt5ONn=}DIHv&`uF5V&*Pv-_xt(A zKHO8H#P;y~2iF336Q343f^4?Soi30hySeo0K5A3RMA|)n?Ylf=Psqe3{dPfOf2dHe z=x8zIn-9es9n8Umxb*fnCTZYNk`&#WNyGAkiG4eY+wnz}BgsyNlQe{OIt{zBkUXWy zB@u&G3@$w+POj5vQo7h0C_x8Dzzv_*eezDr}pSV>I@@VrfON}nXiDwM-t}2H|x>NJ_XZiRPWalApz8*b4 z-Srbs&mh>`KGs)v3C(G`Ngooage5|ase9EwY!#PM;iAtVY=$pF-?tKdvSrfm_OG1R z=&I$t*X;u4GVzA013dE$Pgq6w=gTI<)r|3n_IyccV9;7uG#Vg`=Zl z#Jp|C`oG&d;1TD4&0V7g!OtUC+pOqh|15p0M;Q-M(CTCn6|Kd>GmEXkE4f3XwxsEM+RDJ%T->4e|v!XofiOJ6r+@4@9E zo!2i)OYuR6L}+PF!L04#_2n<6SQYK>Xe-K31ifE!j~H?g(I$$2#!VtB67D;~BX7yG$>3X_Lo%ldEtg3b6T!Z+C zy5*ngqbt13%)WPa*>fJ3u5SCs@K%wiy6S&UpXvblvheFK&tKFi35DA{Zb5D$ja8k! z9{W|3tG-+xglOp9>(eg;iJqZ%ir@k-nc43l$RfLh<-1{h&yVqvb%lZIhMLU8fFWu6 zm0um0pDA?v*i2yKD(|g)DttsCF2N1-&qrSG=hWKl&(JHc`e9|MwX^Y`PLOzi;mU#V%mP#rkUNz#PH`O+*yd6~XEd zug#c$4+fT56W&d?qhtA%!SC1s$nB+kv9WK)`910m&8K?cy4m*jM)`j1lPPE*slDKl z6nXv1g@Jhg`2F#Ng8!q)al15ciI@n&WEX7pX4Qln;wM;&CDaXrPZ^P zUIp1PpW~Jf83_5YUp3OK5S0%33oou`W2;kRg7mLO%x3s}8h=8^HHC}ClfsMOAKoD2 zGB*UJOTV8OiC2JvG-03RF4!nes3wNzqFz?+_s8yuARU&if%$6B^zIiROHMR1NKg zmqiZ@YTz(=>4Ct+4Aw22&N?<#jF@u1MvHqi{EE$KJLla2gS`SO30pf5Q_((WCsqZG zaGL{hebX4YdG#a9R6QK}O&zYV)j;W+3Ht$umAS6-&we|*mfYsodKzumhd=ZW@LaRf zvpCIkxQ}p>-S2gE8Q;#J##VnMZZ#wM>uo6$yE35Rz41No4^G%ZDBn%5fUy_{bAutdxUT;Ll)2$WDg8}ShMkV>yY!xf;u;FT!_H$bxu)W=r#m9*^cfoxCMT z${+SFk?*V|GR(Vj$0sIo*L6U{KRp+z50&!Xe4hcQjwJ+pS;)>?QY|ek$FLVXp9`a7rCVa-?b!db6Tk6U(tDvUE(V_b8fgK?(X=?`xX~d&M}bF8oSIc ztgV9Z52d+w8imwRIp4k3ug0U_I$0LjNLptzy{tyNVZfdHF75XS0$0t4XFQ{leQt|a z#Mv3i^fBpT%J+D5WFB^F+d7X2Wkzd*ZnF`e?5Q8$OvaJ1ZPl9H$rXq?Stz#OJQI&& ze>WQYO@nC4O$o=)F(-4Mv*LUflnsrt1jGeN)nlKrTPbu{rZUpDYIlJ@%PCu}pO++@ z9pK26nZr(fwLTNO8YuR-iqlqj(Q@eboag)XL^brn(X`TD*h=&l@iwG^E2Y@Xrn~{? zs689rxlQ1Fl!dnS!BH%irCoF9rsJ2J)Agd0%Q)n}T084#6WW9_^ax8IJ}BBQY!PB7 zRu3QXuRAk^hN3N(n))W8BGN6td4`vqHd&=_5l znuiMuvi3^SWk@!&HM6v%<8Q%M4a)jP+z35C5;rpdy+@pF-``9lOF@w*XQCX5w}?uk z-za`*9Av!nxexr!T0iP<@sK+qJobzZow&*r{WY(<77s4}*vhO|0nZamQ`+kJcwQ29 z$Dq6dmdys?3?nrBCpE=*o4*Q19rV@^w+2|_+U7Io|01Qux|7GG15bRsKiy+tCrz}? zJF2u=Air&2cICMV*bK;DExtMd6FG~Lq(xp*B_P$IwPO(tW2K+Jteb(xp?WJ1$66Td zscg5Z9Dtk6`sGZWm3Jvy^+MptBto;-zVKgaz$UHq>~&mx#BOc+jRI9sLU|F~r@O+T zFQ&DG4yn-KnIbyPnw^c0KT`~@GLPbhN(8fS;~+k`9%hWKppdC{H3vSDgS`*W*6PoW zc3Hd%!|j5Th65>IaG{sanHEFV=ltGtTTZ1TBu>68FTeZQLTvS~ML9?T7w z1kqvla_MB1>@ozltls=2pcZPcF7XQP>c>ORmIocWe59JCB=BSc3%T85`-p3)8jA{s z#vQ?3SRG{*J*(Td;+sJZQOvwV%pyYEFSZ=EaxsA;se^D7J%4puydW|C+pWI9w1g+0 z{HR4zgIM!@pie)6om`4+Y(AGT4GtrUM5Gy&Jot5=`Pr6MAV+dM5HOk>T&^HO%CL`Ln~@ z!WY5d9Gn~+T8iX@s`diLvuHb&ZF}AI5ER zVKx$rk`b@Y9kqJK0u5R^3@YNr>>()pivbR+-I72gGe!MM~?GznO#gduKBUBRc zs{UYte)r0yDEF>7)`6ZboaN&+grd@r3x4_CnCaV4Q)@^iS(h@h=Q0{Gw^K>$t`Z%o z&0lidtCnCt>LTyGvkK`+G{q-l?Bv|q)*BTw_2{k-_K}v5Cz*+dtXcjIq2~r$yv{}% zgmzhqxb{-WbLEW8$#yCcxns0#IPX0a-DX{$Hc-gK#^=YFPqGrKPV{n={1md>%q*U@ zRby4>xLWUjg^>RoCiSp#3ZK<3i2VISL&c}RlMkvhpe^nkRjwvP)~1nD|KAs1=P_iE zrS;;o@W(5jm$->xtr3$&y+KbfxK-CnEXX;LUfR_ z^3mFUWb+~5>H-Uir|;?h**%UMazUD1W0N?y5XW6$#X=O7_Z6HGVItfM+;4pc>LA>{ zus}k(P#)lKLL914Q4@Q%H@*OZUrf2CK1_h?c4uvhMmu8ehKYEDb%6+O*ndEJ63G%T zbIzC-Bd1!pP4Em2AD>5X^Q-j2?U(Y-I6H1K*eas?{(cv3JlJ4yxVRDnxzjrEj&^+iyKT7$I8Y-e)7lGR z$5*3;Zy88(kVC|jS}T+ixucjG=+G7Wr}QimWG?$wcB^$sdxd ziGsC>q~_*17_*l1bNWxCcAc+om3}U!d4b!P+J`Io7#_JhoEaQyZ+#~jv zWys(yo%!W4fw|!s!I~94&BQQz;Cm~s+_(8=(?%ibj87!>v<1lK^)a(T`9kD;RjLk` zPCxEV#*g*pjv>i+=%IZy6Dcb$e!OaD1K8rX@Wx&2!JSjK&sZV^$jbzXEO{{y7S=@j z$FD08W^$YV=ewSjURAxZea8^W3hDz_ckmJZYv=rQ7E55KW2n1ct_Q~?``gR%_=)6y zVZjl?tpDfr{jVd&(QW&At;z~d#<&W!$q&uL<0q?xQqmkcO?gZz9yH?2!;W9l9OW1n znX)}3*DydHk{+meR4D6AB42|1UKk2lKo-rG2!>A#8i7))b;!#&a@o$5E5b` zUU{zZlxMRmyiM^5-ByP0)0YP%^eBXZuV?DQxjgXOCp)b+8-~YeH4UZmaY&A`@4i*m zjX~!rYNkI8H&@H_aAlXGEc-vDtq&-~{*b*E%ccoPNIYEYzjXuQNDG#vD$e3gQ&!IA z$D`o0;|d!+!a?|%1H)TR&Vc>#m4d3hZRr2|?WL)DJx)DJyv8?}0ji^cZsQ6^<=bu- zc=}-gwYsSkn}0v?KL7v#|Njh^hd``e*rL9s)h?0@= zN~J<7LPTgPqim6x>^RxSp2s*i=IcNBJ-^TWz3%&ZbB;BEH**XxFV<_84apKd)u&o- z&le($M`cdRjtT|2vf_y&tfWGbpRs?e7g2^S2cvnr;8#1UALq|b!d5Fj%CcTSyQGSC z?WS_<(*O9Tq;nEVX2143UZ>(#M>5yJSOyGOuARF-IEvWwS*1#!sIVL;BMws&u(2?* zh}0R!248_Y|2)_U-OxW-|BnE9cOu`aJCTmOo9Dap4snr$K=_yKX2(Cr&b2u z52l{7jzUC8zj=GE5e@I^Q_no%&qV#qXjy;x5RS9FDBl)342xB7S0($7U|elAhk`8+ z;h$HidO9(Isr4h4J)slWUtAt1uggo~Yd+@4?4HNuOu-J>R~;yHcr0u=+y{HALj0Ev zbQHM_6?HzDLduClCoJDif%-#6@^{8K{tb+0>esN7=yQM1Uw9@)sy1HJK50pZpd91o z&{ihm;>R0z^8F9kC5!y=v>m~JY!S5a`t#Y)7x-k~Q{O~EPhn%^Z| z8V<|8$h#1p2Y#)ZnSx(JB>B*;IurdMSP0x1PX~#|;*im$b zDr>Y!cwi8Vew2T|Hu7#@Vj%S zdmW>q!P3#~Ia@!fzD|2}iHa2bFxyh7*1a{T%k^V}w ze+G5?sVRJw{;bPv+KpERGJBQ#yI}d#JiPD71cpAU<~bcG!>sa4#V9)(LX7O((u=w< z+R^PBPvIhcEvjVaQXB01*iv_8RYSz*rF`1m-#F_!+wS914R6gN<^07;1U?fx<WIa9yy0XB8 ze0Lr$hG~9wj~Yfh+ve(r)=8#6m*Ywp}#XT?3oeMukQaI#;E<^!lzgxUe%gQ8nUe>x zG`plTMCTC+#mM*mOj{j~11p?fcaW{ZDb3>bxjC+j{f(LSV|e^~adcL0iWeL;?#)!1&= zdLeOs5ytPtF2zsLU~ov+^UyJQqBdm{HJ8dn%pd6A{%?yPFCURh!t#uTLhh zgV{6l!9+X6pPX11__6`_;zZ-%R0tmBe__w$S&4jsPN7=-^1bR&<=J@C(e2oJGu)Jc zmDe=?+cvs^1USe%ELSf;T62N^B}yNZM|$a7mDma22etH87b<>ReeAx&GX%~^dZdEW zBD!C`kyXFVOiEw$oR{XWgkV%gRFN42X$H}wna_LhI>#9uIkV_!kJ%McNJGDWQ;WcG z2ZkgyCBm0;5V5#P*S=y5=3TR*FU^=pl~AZSg+-8TvMYFUGKYb%A6Zo+kt@jM!{WbB zrB0zaxWGcEtQ}ECq0B}etq8~oOnbYh15C-@ccWg7Aa2(F<~~0bvfp&n*89Q+;*!>C zc)zs)MsI3(+zyxHoA>cfR%v0P7k)Fc`_3TNIL9cyxSR*cnYYdVtr_9#my zOhyKVF+PYv-t^JA<#&bHTK5g#7{fXvIq8>KQ_!d|Kf-c&07rsa7fPep$UfGxwTHbV z$wdAhkv^FLY+jcqd~C%WPDh0$d7t=(AD%Xv_w%~I9cU0azjG4VYMCxPMSXY_@9K0) zpd5vf@3dwfP9Sl#xbBGDINobr+$z3q0VZMrkSwWzSob3B{jD)Heq^z`=sArWGnzk! zUR2>EyS(sc6HXGdOR#U>GGE?pmQ45vuNpvBX=NE>h>bAIzT%b6?1rM{nBaEXVTcCssyl9D zA%*;_Q&a}&U>s|>)^?16HnpIRuFp)Qa%XzqV6-6d2zq4Mwze00uJyH=33cGF)X1fS zlHCXh{F_3%qZ3nxV~W+g z!Y#(ZR`bVp{7g3%t%=Kw4Hv1I7}1|R*8%BilMETrYN*WYF0^(kh0jx`2nwYZkJ`p+ z>ujrW)vZ8xZgLP^pPDYojFki{$9y;75F*-JUzG`Q&*8Ii z`6e4;m}dmeEjD$Mi0gvq+Ot*aD@#t@%lvf*z2 z5ERsgFGsE9Ak62aR;`fi2PHQrKRmM?i$0$XE+`5RH)o#q9tJB>KDL40^D2JuZ~XPa?$*+SCds(C8XnWM4|zjT!qqO>qfw7 zXLd-zu^G>(YzZumt>EmL+)es8N%Pt_J7Sjm+E+f1qMa~=x&?I|dI|^mCi;*|Yt=Y7 z{Hg~zmV0_fNJWKtEgLEPk>1L;qW}}xj`Cf@y->ffHHdj+5EF(swk9t1V|PD^jiXRO zms8!}uTqKWt;U{!Y+R$aVGOC6Pc6SJ$&r$OIwNdW%)~(4rp-ch605ufos-=} z$Y%a9*9*JG;rvOW_rQk^{EBa_kFjnA@&Y@_TEjA|7Bh-ghkyfv z5gE((RUAu^VPO2)1K-k7IpY6faz(Ii4jhly3N|nIJNG;0J6qCO3FTl9IV05x9y*ns z%1=Yqc8e0rycxVC)g?7FW)kzg`J#DDC5GH`dDKrVB2nbD5|?8S*7C?dj`mxEr);X) z`;vaVnSb`7-M0nB^>fkm}SLp(*gLu$d{E_ zJ%oV9;x!+4mZLu5TXaGA^3K3LvwZj;qAIKle`Y5)LbU2xwo;!G*NgDS1OY>H)?}Dr~b9VRT3_S7LKXCKsYU1!hiqn~~+*AC==!S|k zTo0ltT=o?ttDik?)9eu>5m65eT|Ix}>J@`E4{pzacQQW8SZ5wwHNk7*q5%){$c%v-168mR#Hn5PSA|#fR*0rd5_+H3@2^MxV>?ik8{aKKM!={&zbx! z!7((59;mv~-o6N>Rdo)@Z>RBNvubr%IUPg&S=M&;)39`VKJR~0gfy!Ew<|KcAD`0q zm<+PDBeSR8K4N)?Rmnv7{^0n7PN%@oXa3VjGNoIau+d-_7F@J&s~vg5uhP#8(lN}P z;Wg%7hAS+e11B(hjgNWWaDO|DfFARl6Qq!L-qJO$f_HULT zNvFt3Wmhnf{q(4{xqh7FRZWCQ=7oI3=}4b3_%sCm5;ID)3IhYDsGO&b*onjIlTk4? zJ@Az{o@A9bh?YJ5T@n8+?^>aS;jkzF;40OBxVnXt+)>fKXmxoKXC>{fNj(!F!KNJc zeU+0C{bUsI{?#D3&&0;P>0u$C=n?C78jnD9_ucHZAKJleI{YP%ho8(1)VI+S*oYdd z_x4{Mr3kWrlFpMhfQ(riS)Sd4*lF_M4~&4`aT;$`cq3XfL88jX`bAzaqqut`T@OJxl zXmm81KR7Xh^S`bebO|YtP!V!*d<`!?x*X(IKwdw4gNclN)pf9HCl476&katJ-0u7JHVxAzRdud%h0oseI?BjOSr>_2>mK zI>EuTB{5`t0k=dViKPk^R$dLJo}8^v(vxXieP9x~dpyIx_|HK7vfkYfOJn$(>*3|` zft9F#pFi=5e*&E+-_2O5G7&42x|7LE^LW}|^D)e_3xQY?`Bdv)&2gU)&Xsf64xj1N<|!`NG(YkKJW#WH@f#;iKi)NKd@`}b5?r%XUB z+x=_%opCr=IZ%9#Gmzn@`ul@>7n-8E{rR{@;OFnUBjXYk#*ErKRzZV!9W~KeeSZqm zi>y69E*X6WETs5aX1f^c5%-J+L+$JwG(RY*~?_&+sJC>DvW6FNG&7ldY%|_p<8SErPq2Y-9 zqd^RW=A_gtj^cQBRo=6QOQ3pOjQIA73X6`lw^L7jK>Wm|{_4a}L$7cK1X2&| zzsETaBVXR>>XzTwC8oGCW~dd#n{`O0%NT6Zsy5o}?ZkVgKl}6+Gr$%ya`>)357DTa zy#0G&2#$t=E?jlvu;eNEuq~dC9ExW4U+|D1Is?3!Es?)raAhQ$d1L{c4;3}U8Yb{* z%hA&O@;=;JC&dxvVh$w?lnLxCL)NJ4yapY9(*bg5WKwfg^vqkSD>o#$vjF z$3gQul-CSHeQ4TMO?M2no&7kvX#vg+Z^{O4&%gmk_FkWxLdd^ZBj}7_EGe8`n7f7; zs#ou(bkZFeVtCl%x@#}v>7pSKk|g+ zyfF)@wu#-Xzc3FKuP)gr<5GMHjbS$w9m1%me2a1aEG9M1>V-@7peM*~iFS*E_Jcan ztCW^-V*1>Xc{zSEucb_rf6GpIpFgAR>*OY7ynpKM59Q(Wn=va6gF&QxxA$yX?*DMx zJ5?IXJaK-%LRaWB4UCz7<#m(2sM~uoOHF1yLJHe>^i~olV=ld5qkd@D z`0kZ1<|PaBV(J@;7?60fY(dNe5Px;qEjfpY@aIqdc3MdXFMUP3nL;~KKN&sTqs&V# z`L2C%KbW1k-HUGcd8-&-1HK;p6fuS;*S??Cc|QbUxywuo_XSA%5yKP0*5#0VIPtt) zq5|6%6aOUE3XpJKah*%HBFmoTG!!GkL~P9OpZnk@K-5O;$5ZmT$a~l3htg|j@vEt1 zk}Wn(>2*Uh{K3vqr<1H!J5oB>-ALrN7Vs@-^8#)1nW*f^}}Cx^R)Vk%^3H z$5G5bJWUN}ZN_)u*BYh^Y-F(0NR#!I{z(sAw zYGQpaID(GwQU}{{x9$C&%5$U8F1skY^6Os&ewuBJ@vK3C6q}NGF&kOBHY{61`e4$@ z#CY~rn$(=+D10!plC+#S^k{AGJft|*9KZEehMfN^7pC)N1nM5w*FSLX!PSX6xrFa^ z=(&)yx$8&?I!bSZgz9pUp*Jr+2V7d_|BFzmHottBEXJJuYp?{@=%RDl!xE(8{`@r+ zo9~$Nk>a%z9>Z#f#$Dn^Y)xrc8GGq3 z+7q_rMXIePFRnVXY#Z(Zz3Te&g7H6am~2X=pJgKFnN#{N>5ihAM}686A98=BV@K&8r)u#|wDPax9C|y3l$!Q1Rzq1Lq1x(Rd$bO9v=7@& zNH=&d6`ne&5sRyng2ujo%b~0IaChzDPMnP_cSzYw!-Vb62F6SY7K2XkFbOVuFQ<`I zQaBTd@7N(B>4DB%H0M?ON#r&7PKVl*pu}41{6$X|l6K=j z**pIxl*=4n@KR$U8vK`k7xWAugp*n8QSJzS2t0aIBFIXj!%Srkc>jgYezn#$l3&0t z7uLEmclll=B!8v1O=IoJ7Wa9ZF)UOS8HC4{BmSp1kIhUMcx?lySN;uS?}eLH+{vxD z75P;CM%@owb>kGZuH+<%c}0hmHxFSfhs{po0v*4$K3(@EiI2R~il4n+FHP4p+smbX^)frTb!5H8 zY5f+Y8M5X2WKwZH^~M@RPT|L*!WC)iC|X={Rxr%Q;2odaEd6l-TUHi&CGyUJ9{=)z zx8)=n_u6!1E)0OfaO$Yz4oPx<#mUi{vy+HP$KI;LP4K2Bhm8>?a(gee)=04))U>dq ziU9_Ct;0Aj8_=P(%T~U+rURX@ew7qDfz&bYzaO9eMpxL`T(+wtD5x*ZyTScUp&2FJ^om4KA{*NYqP0W1Ixhw=US_gQH9=VD zo=QYO2mW(NwQRYuj#L!!LdKbeuo1KHU=VDeEwul@rkFJE;m1F~#xOhVdCmFYSp!y(IfH+UQP;$AS zkEb&0D_X0Ty(Ko_{eHtm*h)#HlrFN6&#xN{#QW$Nb194|;qO5GH71F;#W6@~4L*MG zp$?jtw^4-2N}{VLG^%0Pfiaz~zRn9=#Pwn3P@Ksew!KLSZPXivo@a(uZrifQhdvaa zqA<{z?7LcXe;bsN!p^nt;2>cIf%&XIEL%#B1D97Jgaw~LjGZmKO>$)c+pm1 zIv2o4H100-OledhJ*+q)FQpu7Y#kHh6!}T#y=gi_YYpM|YZOxZ&PoPfB4TeSX&t;M0Q4p`UvPk*&R{`c~Ip2z7{DckUU) zJ3H~)&U<(W$4WJyq-CD4D)~evPS(OaEUT2gm4!%uDGZR^OhK5v#f9S6J&@daXz@(L z3SyU-;VaEjfb^>ReYf}YLqpl+snfbHP=-s ze_igQRXOVZ(nAp95_Qku5+fB3Hyb4nauYFH&brWd^N(^a1gW2X;S zq>K<1ztW-})b!S4``m&biD6C9xL= z)owS$kGkMq;5R}16!SDQCx#JHy zQE(hKDiTZh97_3eI*kDX-^5U(xjyh_MKXRY?>YsZoQ?I_gXn!G$ynD$!+{MSB=XDH z39F=-Y?D+U#tNq6BJIZTKL7v#|Nj)3cRbeL8^#}dhs;PtMnou7lIv8GLfINBO32D6 z(jr2oK^ioSl(v!aMOKlOy@l+(AAA3v-~XTUI_Ey;y080vy*>tEm)Drdw?KgHXzzS= zHU8ZY*fp3l2hO{Fes5D`$@7qW63AT(0qvX@mP@U87CN$ikM&wos#l_8%hQ8+$FdK4 zqqWEh%k}Q9q!8BCyPHa6Cg5c_J^Qe%5t5nz-B3NjL6k4it$4)_;OR@BD+fLL;X$Et zhX!?`oB3U_?!*vM?mm2@BHoASI@g{|^$FPZYGh~k@-5AYHPNFc);GXKn ziP`gAxIXzbyEuOsA2$nslv>>)SDrv17mA1}a3aTI6c+l%agYt>Mx#E6HkG_c}L;LQHMAjfHnCqeg1q(41&B z+;m&wztZ+o7_MoH%$h`}tHrj)orM@?t7S9HT*bROC+l{pCd34(-*}`pkFe-O^%wsQ zp`^Y}#VTtAoR-Zqn?x9i=(Q6Er7l!p(@BdB>qnCCtb1-tp3x*kxnF6GIZQ*^b#F(J z?KsAnrW)gl`%r@4nS+vth^an7!( z%R~75UTnEYd>#%)5i=KaIZ2xEfv-sqB}f$ST}K2X6IPg5LAkw3Wi0&w#Icur-*Jdibx34H0Us}aQ{+u$koF(|ph?<*CQlTB!nlPHvgDIz7PI-eH$lU8Y zvy9gB$lWt{NLs!Tm%NhosE?UQ`Szt&zPTpsA9bn7Z&<*_YD3D+vvY79sf%8b=!8!2 z0b#4qN!-3E5yo9piHG?&glkR>LBs!3qk_f&&gegJE7M~lokqMYbU8zavx#k=Da=Pq zTAJ#O#!^(gmldjSX+=-q?eQn{&FBtxS9QFwga+u?{~M|I@*jy0e?M$zNX=O(m>$Lh}5v_nlOZYfz`oE&NYYyRyr z14%olKgP6f3CSVhZ8OICNKYK+<0+kljtifxkHsRS%C;PkKmQkYV#}RVvF%76%6b9? z3V9zQd~f_O6H&e*pO99;K^$|f&L;QslhIR_rw_FMf=0*op8=AiIGOjm#>9?7x?(1) zgm%yo4vB41Vxvp2+)~?0C;1n33MOYCD^QVTIcGI@1bVdNL-Dxc`ItF>{|OQwnj* z%~$;0$VyV9O`<}~^YM?zc#GAoMZ^ub*y)=N!{zDT0uD_sA`o}lz-FWh{fbvvcMKNe z_$?_L9}`~U$9Vhf{zD=}KG=MNtOzqXzQ0Jta6JBPsrz^c40^8QBVKtA}5V0e##Jlag(caV; z9c5aM8!oHi6Ydo9?^XAMs5`Z2R9xRoA2x&^@|R6GuCS1@Z(G&PY=7Z2UH{E{Uc*@9 zWFOi>X~2U&<7a{vM{#p*cE8-|GQ?g;J4$J-gI|;Lr2b1LvVETf%aH3R^a50t*p_*T zdQDLamo^t^N;_Tnb6^P;{{QWI5hFwLWJYRko*ss?b@Qo*TRZX3I=X;0wH_)Krfsj* zmf@W3rdv(6+(es6+$BzT4xVB@V*6?UBV^xpVE`@zP3}D*Xxm|#-{7*)(smMt)D-J7>JM6^H7Dv1!(^) ze*e*}4@nO+6*aP`xck5=H3vLm?4i(xLafClMUyQ$VgZQ)1&1PaXz^>|HQ4Zyg!=7FRHDI4&DAQUW z1sz|t^iuD1TpDD5W){?rv$I=54SOcxB!5(@U91}Wql+Sj^w~)SvvFF??o|}}ls@=+ zh(c6jeoAnBt3qb}7#Gv+4(K_2tW4c9i8UrWEfy{p;`04pY_7i-aQE{wo~FP?9BIwj zwOe-@PF7DGG_8g~*hN=Uc8#Fukh|FGRYu~yKT=7d>Njfj0$LE8iU)%NM!R$;P?Wu5 z@$k$f4qiBXNYQT;JGOuGJ^uC&j)WCjvp0={&i3EP)zNNnH_Zp!sA$B4H?opH8f-i@X9q9F>|6RorRfZYlX?KHWmFgbz1^=1~_ zw>oj-BP}G=};&9?)*_4ADP5EkKN^Jbv3Buc`A@EP4o9K&QK|rL9F|J|Ga_}15tlN zxnssh;}(JX=ZS}Z!S&o@U3=|H9EhY#U|(oQ(Z}uUZCKmD%%5`jRy#fE&$r_B5bZ%y z2-UsiuprTF8Y}hQSp^S`!2ZX{{a}}4%Osn?-)gT>bf5^LQ^kKP8<= z^OMXsbK;#{z(*m|4gB=vnxfj9w0wF}^4({w-)jwV6>_#=cq>HC;$ZpaqI^6!C;!$Y zVjRuV&MDdfbY$1<#Y=q$S1=`UXQfh&o> zrWPy7ChvAUO{u})S{Wl{S(;yr$w%xPqmU3+Gm=(34F9|@UH2FkkjV4pQMVU`Ooj%O z6-KsVbaAU=e8w#P6IP2B@@6NG_zRV`f6GJJ1^=PX1{5+^QhmePW*FP){#dV6vXk`} zInA^$)xt&lL;RF}F%X{f}<)Sjqxn{n)FS+V)%!Ave6zrr<1 zo5!!~*q=&Rk3%QvfOp`Q8mRsa&72M!M{Ms!XA_;8?_hIF*U$UwT)u z%YOolmozl(@8?-D$IjZjWc%8)k6b$%DZhrnEUlIzxZJL+2X z8f`Z;!q516iDhFsE)PGbO6=ky-?_bt{_b8x-`>RLwe*#stUi9@%{dKcRafru9gMWP z=drUQO^kgx;)2bl(%K~Dh!W-zvn=srUblzi$f%L7t>hFJ~7O&G~))rayBG5GKn&(3{ zk`?~ryw~SNq<>;O8hN1)@sl>pa*ExgFKzX@}#x=C`gcvk0*Ao)XX)L3yZ@eWFDlrp6Xl&lX9LQTbn<62Hq~ zbW~qi?#dqsnmMySh>F5P3Gr^#=|r^2DK)Ea?ZCVU%C z0uH1!V7lUNm^V)W;vI65DKV3{DKA^;M;S(R&YOeZMJUAP=-!_ib}Yo5AE~50%+23ZKb2why!r;M6`+nr4I``Nr zVv07t3v`_T$Nf1?y_9x16j~VE3EV^+3=DctmC}*+T&Y05wg$v9|MNIuvxaCf-yHM4 zO3QbFY{_YZOVC$!5fQz#g6@f4?`pPkJ?o`GW1}ZQ}yZ> z4B^l09=D^ybmaL4{u3vZrxE76qIg|17iIDN3R>%Gpz_zD)Xb_2XO0IF;bR?0R@^h` zpvgwuf#qW5`5!sBn|1yiZ|VZ( zk8Ru$?l}Wy2WpD`V;zv)^%eX6-=I0R^Gsnx^&P23I1&>M_SK?f%s9$l` z7#?!IF?{ax8{KDWpKWJnAws8u;j-7DYqQ`S-{A z3;irIvU!K*xao*PWq$Xsp%&S>#$-(2uk>Q69JOf{N7~WxCkloV?49pl7*b! zr&Fq#vzBlV1ZupD;~^?vxrTktuOR40S;D%<`B;d|$$oFUgb5k9yHwjDoZQhY-{#v2 zr?lm*>NJk>8ok_5C(lFT1dndwSO#VVx<;KL zDpa@@Zb@)4kr?UZ4I*+}0!9@6XAG&kMdm8LvFTNeVMg@$-hNwBPnNM7PNe&x!nn>C82q2Ne}a<=LefJI_H(%vscf^Oh0yEa#N-vl;{+ zi2HTw`UGqgm|6c`TSCVeSF7o@EMzBL*tl#l2;+Zd;bYvierov8+PS3)dyA{{LlxVR zbs+8hU`9K17MaC6DC4;BW|G^6_FhW-Hztoc&qCIU>2rKV0~jdPcTX-e5mR5E4fo_~ zu%M@Ddql7w`oWuq#N>ELCxgbH*@PurXxvUw{L~K?;T=2N9Q)v;H*MTo(g{A*IL;5B z|DkkmhluItHRRu<`{kxyTK<1~esHRD4(?g^Hwe_#Lc`Shl+@)s91O|wF>jrQF6-8d zGv9^DWvh>iX7_3!*psR@;!A~DeAc7t5_YmFJxR`{c@PnjafvS-dQiqRo~B(ek2tt|9eS=fE)d_CGN-9Ii$1wfFrJGPS7uQc2hKy%B;^ zTR2~QpykMee;-IZrsA7Iv;I}B97twwJ@CZ11->^+SlE?me)Z`rb){_*as4Vkq~iL( z5XqNf$RtkuOuEC9&8zUqKK-5RzdQts2c0z!eTz0FA^$^BpOJi};8B5BCq6iA6b*kj z1B((V!C|!H<4b;qm?Nwt;B6LvtLrSr*`8fg&t)KOr-rsUbXB6~VQBkbmv&5BA4(et zoj{%LqL-m{8J_+s(Q8PhB80JNUQoLMdY?`nkZGEPL`6#1JA+}^U%bmmxJMzGxx_Oj zNKc;ZwMboWmku@gI~OWMGw{Oxc=XEf2!_ra`5Jh49FAK@#6Oq}V!xd9zVRy+`1;Iv z@BWMh#0fsT=2_o@`y0BOM*AD^v5Y5t&w)SKQ0=j1#WZtH&J2Zm7{>rut5_H7i zipcz~(==ZSUH8^#QIx#u)%^yOpD4d!NB2*786wA~gL?OO!sn-DwS>_;-i|y|6W1vM zpX91*@{@U_uS%m4dB1=DJNp?Z$s}Mg0sUd(J+g zC9)B(yB>?L2M^)7H*wmMr4QF*%ZR71k*8U58-|i3L)wNaKUwc;2Bb23JvSk5NRb2PG&SfF_D08x}c?0

Q(e!}FMg9REwBa1wnJ-%mDGyBD`8Jl}{C!Kp8}k*ovY~x&)qfv46c)(wn^+Gb zUMe{xu?DDSuKjcmQDD6s&GMG>A>sD9+t9TBc$Dif5pwcgX2- z^E6zVXwx}Z*aQ7*`;{vC=up^x6Z^J_TF@!BJ>9NMfYqh=ol${RAf}61Demy0h%HT1 z4=OjJOaAmxma+&PVj2w@{Jr4O?7by3E`$^kuwN2l8h~Aa5iv&9LfQ9M(+sUs8=U7^()80IKy*B-^BQYAu+OpY59jHF9;d;EsT>L@KNO++S9f)@hELRy9j!26xjIl9s=z+bc&5>?|uk|zq|XJhcdCwJt6!++}#!v1A_ zqId%GbZSFb3s%73%b@DxVmw4Sbn2;lFrmeT^$*HHo1peL;yh7w9c1MA3s_@%Aos^_ zT|w(%I10Cv+bNZBV7RMc#S;$~$UQW9`h6gi--h8FoB;v-lcConDbQ4Uwc)Z%FMOzG zjUE*v!#)LG{uLSu>>K*kq5D<{RqYy&<|WTS4KY#JxtRwg;@+>VK3IoKs;t%yAIkxw zE#B6b?+qqro{|=DqhNoMYicKp1fW%x;BlB6U6yeZ5waVC$35=j?{fC|vl<%ZOTeIw zBmZ758ew7VSA4~8oHDzfjafz*5Z=?jm>z_X}}-(-3KV*E37)M`2a zY$7lZH8$YkcEZa;b2SicrgPD7U>9_Y;)B^__|Y@!C+E-XqagXsL*_hN9Ndi2(Xbt& zM^`+1R5?n?Q0&SnwH!%>>+AZuKfbm=qh&q$lq?OBKB-vp#HI(@hBf#(tU5udBPZj& z^&|{b_F2Eso`haLu?*GYJV;UFxyZc595glmA#Y>}p)jm@t>PvIy-YVqNz=!|?;U3K zbA<$mYLHj3*cyY>3mC=Qx(4$22c6Gb63Z!B_&;!lIB5^`L9&mTb5 zUp+cvIf(F&yTv&#VF?NkdJSe);9)61=eu7R0Y2aoJKqteKq{2;+A+y~ICVg&n)03o zrFhRXEWdYI6&Wv{$23hFZYO6R(jP{s(p%O+)6>_)yoo=i1f6+rSZ9 zRNU&11E?&n=L+FOuG#E2?A6#1>CE5J>%9ZupWffKOl3xRqEf`szwAikS_I$Il_?Oq zrJ%v`3kMfk<7&R2*#&(!5ze*{JfyWwALXyb!bEDDtF3JhXv&{HqpHydQ>8!sU*2hi zvNx%%HUB7(GvIF_txX1uD@|c~E)B|I;%8ee83#s>ZuJAtI^Y$DBW?R66ViMYVapY{ z40c*szyI#>`N3r7A?gKsB+L`1b)1O{-I0vDD>z#Q`z^AxTq?Z=chL>PCnu+3bk%YJ>;d7Z$iUb|A+@i~71+2x+w>*G4tZK=e4Pd_@`~67reF ze8?fej>HMAAZKJZ+jxI6BbD|%JZUgAYK-8s!4JT!qq(g3hm8X`y*z)g_?O# z_hE^1kePvzuN33b-L%qP1az^N!z#fnE7H%Ylw}E~6r*@^! z6>tvQ>2Y+12;~+?$7N&)eiKW^R9|9{`ZdDvvoZ?QaNSwp=^cYNI@FXe?l=(k=F+7MJq72qJFWZ4^kg$v1y1)EA-$HOg` z-N&CgXwm$1mi1xsDD)V8!io2+!SA)FE5SW@@bh=;`NYPEE|2^dO*%}2G6OPfcLZtB z#cO<>lWG0nb#XDgiER+{e1Bt#Ln~n+H-WCe0uNp7#lNe2hG9HIE@H!a9&#d;*?tJE z!CYlxSeIEpjPJM1dW4$?xv6&)HJcSMq+HzZo+yUQ)0R2RwC91rZaH)P2^-Q~>B-Oc z-T)R6_vF^}3izb-cHjAGKWK9x$Exnl8*?qaXcf~E*cQl}_(kv_$EKU7tCNSoYw(Z( zWs4rg@J7L~J_}l9zm<14Y8gIT)&5c>q`{n)MA>p%KQJZjO6&gJ*z=bwe&)9bVCL8$ zqZBm=OK(|Tu&sAMHmA7Xy_GeX9{fpm7^nf+^1fNu;azBYtHyS$h#M6%c8OgV#(~(a z#4|URQ{aetNs1O79pYCp?Dq26%YEOYa(&HfaLGyPg*{_8aQ9DFaja2+=>04Ha$qMs zi*nzWX3!6zRUyjy)ze_3b|Zq-k^p^i85Te0`A~hrTt4Z`3|Q^bo5cL$M@`a`B_D2J zkbv3G>*o()LCrT>4s{ZMcH_nQo7F@R5sMtlts@+-LS~dq)6=n@k~z<yv z-ExjDy-x@!w-B0b6Az-F@m;UiPbwkjLE-b5NN#lZ+*OtRTsXj_M1HLI9fPluS{_Wo z!|>Gh@>R2vE)b-?Qz-ApL5YY~ z-~((ZA?!Y}=)^QERi(+^uP4Csn-~m(GCewo4-t6Djst=f{gTSiKgfT|?R%=J6HGNQ zg%aFYxHqP6?sudP5;Sch2PD_veonDi%OnX-+TEt5gI$Qe=;wK)6%S$GZ`KgBD$?N;*kk`Yr-2G39z_k`yzpS^H9}Qfb%0D;|^SAqP zAwgYmZ#=-D%z+m1#76z|brwf!T8bJ`x?`ZevOm|ZmkefQAFmD8upAH3^sxYuiZZg7S# z5`8*DZsjQ^83sh$puTK&-U9P2bFgfxg7EU@_;d{|&Skn{%4y~O`Zq`@^g(Z9- zw+=4~{>cA2Icyj{8Ld>7Y%-vcQ%nnQKhYrNd_9S`+bd9QH@!8vlLbc@gKj&Q41nji zBAuPzTTm~t_)8Z}z~MU8{W`c2uuF0{k;T~!QDOX<@z>Wt538e*$XpA?R{ukNbws1 zuVIt#QiKgiUtUE98d&IOUVJ*Y0Y_D=ri^a#pqIEEYchWWK*3JPxu}Zb}VtBI~3T6*_7+Y{IzQ^iZG` zBNC+l9c%DS9JTG((l-_JplUx?rp{P)bdhYjV~(AI#Ei9-++79~ym--PA&Cq|eeoqo zi3HJn>X`RDJm|2MAlv)EUGU3Hnp7ui-i?( zrwJJjCwVc>wT^-s(qA?T?*q!o*WOn`cYw>+)p;8xiiD#$>Fq3@vr zwhd%RRB5~`Vn_r{f=;45hbS8D{+)5d^&@{6n;nN>_0s$a1pxx6oEU%d$9_L@*nG1%+enL)q;^hF^BRF` z@=wr`MLF=r`ueBb+>eG$DrR;%wxG(57~g(n9M0vh-tyY!Mvg^0LY1lPhLSTaBFw` zH3|Y$-0IoRIIGk~g0R|;$SV8-JUiv7<|jytsxjp3f(!;kFLvPh z%j19HfU2&Rz5X1$<4_W;VcCFz)8BRikJFJo?yu!*$x=(}T z)&8+rHM5}chHG{_Mm^wnrS03@{bP{3T|V66LIuJ(Vfut8zv1R}g%TI3PB`xGafHow z&o{D8jGR^;fe%h)hO>e=aLTy%({O$P1SZSHw-qO$Hqb7!+>Qt|A4xgIELiZETEGYD zEraCD+nL!0EWBt8bcyon18!cdM77E+95{D0^Wm}>YRJ&=&+J%%r?V96#499-DbUpD zUmk|w!)Dw)0{rOM6YE;0gS|j!mjAw3wGaYstRyGho&|k%T|HX$5ja_LTR9<(9ksZf zp*G|#!{5maZ_RQ%Y;l}z&AmGUZAa`!wj`IJH?v#c(FqT7kIJIXd|Za{FB6Y$h+yHU z%c%;IJ`uVt(c?cgSg5h}Fw{JOhrAiF=ojMCATxSs>$=D$NG%o|d!#)M&nVK9*t?rB zNK)shdu#{1D3ITNlJ09mo84 zEEncldx9=2&l2Wi3lW#(@x;p&K| ziS%BtVR`+hH&$;Bj_(h!<_#jjkjQ;;y+@l67%JVXn1zQ6^5HC4-3buJPBMu+B>_oj zFqq@61hV<`-f`#q5^TO+IrYG52gd($ootZbfsh(SGnKAdI1^v=x%A!(ph$lVqIZ~r z|LSsLns`^hDyKJ;n~N8jW%~cgH5>&>l9dEcBO^+p{Vn~9g#rh3#dyoLSHWpC$;C$e zC*THqoqtLWfsikE^h!GwlHW}@8)1mhvZl*Yoi_&l6tXFAU_ZoJGTg_WT!Zz8vB`{= zYWLv2{H?TTdoOQBRu>(Z5O)3@S@gp=%#QCI58}&*-~!`OiDnvvf`vU^-kgUoMES&U zH!@(8*mcH)Cm`-On={?MHF(d*knMf_AIyaRObuC`f}*Q>s=3Px;C;t&s4r<0mX015 z-ES&{hDtl4KmD78+=O4*F|?d0<=3eyANU+DSTE^;5u^R9#0rNRJ|Z zdN!FvE&`>3u2#Em24+8KD@0~+Afv#^AwR}#c;~d~|F~ZO$&Sq#N!}iY#cyj{d10+;3y@shWo7iR3!0CeOTy?8;OIMfn<4H=NQ-4|5M2^PA^PWy zp0v@UO17T|D41s8-F;n}IQj>O7Jjk=ar@DDduLT?#Rf!89AS6+GzA~WjJdhixKT7> zuB_K)N3RSb$K>@#09|}^jA@$&ofQpF5fo%XS-~NiHZTL8?wgy*@zY@D!2Ybff)m}; zuO}Ne4};Y{jHC!#E8Mn*-O0vIsFiGAzH_byxR3m)_~7;z6y8#)Z#ecm(Ly%mV$TAc zo0BTX4X?wGev*yl!Z3*2P7kJV)IjDj8PUO0Y)FlIur)K30rRn&x{4?&g&ZxhjC0~m*+tLY85Jj;(K5*;If3D8V+2%YWa#NG^n*E#oF+6G5Ee_ z-=(H@K`#6Jo6xBh$nGDhI)8Tv{%Sj3JYIzZ?FUKm*?H z39q^b+W^mWI3$^N4n9|`I6eB^4N_VM;x0FJ!=0=Od4uEAKuD)h6X?YeC6#%~EMgvR zl*4%7H4^Y$)iTq`$HPih;6$_xFUn~sS}wgY2rF;QfBX|G0C!WKQ_7#`fZn&A`8Re5 zXiObl#n$(sKlw-b^2C-vb1YfNC<+e>$DZmOBn|_Q(0!9=i+MPCrDmdMY64g)ELeVK zEI_4#4}Pt;1IXvTiI!ZM2cC2(J8soZ;1N*y6}~Y6oFe^F-8EAn&u3bG_r(%m)nkQH z#PM)GpT%+K=oVzD?)(cXjl1m#$^hWfQkz@<1f z*WhbwP& zni!Yqb{M_XbJbqG03!YdUzK(xz{sr^s)O|yR5cSYB@{LeXHxY4W$+54(n*Eu3$ZN_ zx;{;3*0&A(ryuK%H4Q^#^^UFnBm*jrW^vrIWI%(){`Q5}dC`PKuIeZMX=uqBbZOM- zgWCK7-ol7VP-x#0)s5Ke(HDK{+)Gw~X58>%Mgs{3F)Z#45jF_OoCE&Plxvq z9_F-q3|MLBL1T`gKATAb9j?ng+;)tR%q6NyfAm$e~-r_Usg_X^EJX^+|xCR zbp$*eT?p{HH3z+yMBEuXSHMwg`Js6|H&S2A+L&O*!@=w-npeS0XxYvcn_a#4-YH=P zbbISmxLnz(U;hB<(aye4gToMiemc>wh6+15)gr1%v%quz-Qr~qB3RL6RvdbdgSZd& zl{pXA;6a)X&&#Giao47VQ3!pJVXUU9m;h68-uiMU7Gzd)@Ry@B2V$a?S6OiAfRApdDDBw< z7#z_%X-1-gg$Uc|up1pBGAi}mNhSd{YvkI)>pUo?xW}PoaRQVG2Any%WQZ`cZfoS9 zhUd2g-Z1px;9g6tBH_jk%nhXZA6{fZeupHxsVw{`e5zR2a+U%8jqiB$$&Ux|)D^Z~ zt(XE&A#@EBOpDCTi+%K-%z=;Py&u15Cqb2-qAORxjL!e46Bac>Y zi_NfJaAlBb6sDU4MoVt3i9O#t_qF|fIs*-|J078S9Q6RX!e6ML3kR_mPV5fRZ3A_# zVv{pL02SZK?l-0%gg>TVTGPoZpuV|bPG7zT9{A`QCHycX^OO&nhl?QVlq$BXues3w z00030{|uLBJQrLThV8w#R5VnCsDy_5@REoIk|-iuDOpJf6-`Q%QE5p({1J>BIknS&9Nq@>{+ zLS!+qC28ZHIgq=7*Z&HRAS;$#H%Ne+e?8H{+}KaWtX2W1OS zrGj%7dW}9#-&!jI7mY5TPsKF0JnGo;U3&yV772OdGt($zo(~OiYs0sujJ-y4*@zdq zx?*bVj7>7VpC07qGL5TF}B^8xSAwHQua~b6Ql0M zoLptDjvW=b-}&>nu)rX4U&Y2fOX49(zu!qKz3W9`gt3c@(KOoDHiw%gF&VkFVQ0|k8)Mch62itdDd>NX8!~AYX{EPpg<+F0Wv*aA&kM6Imd)SOV1N>SW z=tPb9Jz5CMFF1N|S8e|6g*H>1ub0{Jf0Pa zzb|fuiR0^pcGm&S8Pg_kaE##f4l&p4Km921E>D-)UxzY24l7pvNpO3#vHaa#hi=-d zs^YSvC}5ADS6=AHu>=oxi^L%u7jsl;V`;;cO1lz?SIdx!9liCr1S2tJR)qWU1m?zbi;^6s!BsnPs`MZy zaVTePT^Z|w_Qk{BFRC$;Ed2xLimJQd?)&$sN&O@QxT+PBeZ1gu{c#}|uqyfdfOT4qV=ulG6c6b~Dw+~o{w6tKetfA|nYzEzD+~!JC(-w1kEEyIIulNhnE;B&A)JTu0dyn|4R9Kj#EDF$$Ro>8YY$* zqHkU4Nw)o^wGAmXkV=Rwi?!(ng+n*l^YIb}YSw7Qtv3+0=k4My#tk^|Z|q!a!Yt-# z9P%xXFM%R3Z}96~Jvex7jW@ark|+k@Zwkf?pL)nc zY{VWVHWu*_-(!j2c87N(+b{9j*@jhcdYueP?1q83dhK%VIQC4I&~yfOz%qG2b?c{gQ1u3To;mXex3>Se zN8xFO^Qg&-2E%qR9lR_Qva<%Um&;Aw+#7)8Z;sc6wxZ;oy58po`7TIJS-ie7PXQA{ z%9+>m127Rg|3Eo{gM3=pe7wM=6WT`~=F2lCA=7x;(xhh`@s`33(kczejbclCsme&a zTn@6<2#@1W+T+#DI^DP`smkv&)rwuFZ1z|7_JXe~^9N7q1U%VpR3+tgVI|<*;|nqk za9t6U)6kj4g_?G$yPyBTK)FuEx?~EgB^S#MTCVd9y;`1$a1ZEh&Zi~)ZidK;V@5&v zDjNFCbXNrV$W0;9uI25-j#JmYabU$`cpKc%-WCbqC!GO{nSKX_>G;J zKQ*b^T*-I9jFX6j42^p0#)D%yH*{KL1j2_cgIxAek>qpkiJn_%$Yw#|!ey6IWO?na zZ3@W2?lej-pVkP>9e&3R{^BB!&gB1)`Z)wE$3}N|0dXQ`Ce_j`TZj#Je&)R~UV?sn z$ijmEKg=31Z(?}DNc>ga*3oXGCcNwt%R9Oqkd}VF3H>HBnqeA! z@UHnQJ3_aS42c$AzmdIw%DDD84aG@V-EprjuB0Owmlnd@@~R;?pU8Xd@(Zvno;u#y zIRmC+>5K{D(|B}PrEspBnH;#1e@ouD7h;Z7JFYM@kx}J%7J2bTG-mf?+^MG^`^Nw) zdvpyd1iAh9#&w{_tM7|h&;qUp3pY)Fp1{?xsL&JjGYE|dP&scoj@@BA442jCvAm;C zS$umw7zUVFye;No2BR_oi8(wDj+|zrnSvQ}$SX$izX%bxSz}6~CFSEeWsg$(@wbkC zU&hD~)anazj|VfMay7WX!pcI9S$Fz8ahk*Ph;NO)%KW7Jc@5R2J^lEWJnZyN zVHF)ht{%om&T9?Gu zUnbp1lr=bW{?H?PwmOmvnkoAS*g#a7=@nRN|T*DRjqU#eQq@q5mtLOg_D{JiHO%T-*yR(Y-V)Fwg| zz2^Trh=*`>=g8aF4S_@Hfu^)DIb3-X(ybTf4w-S2 zLr!zAF7h*x7GS_yT4!s#Yg%?ZcnY@ge}d1mk~qgFnE`g#WsqrWA3HY zC&Y+^qN8l3aSxW-xxPP6uY~pWY`?)L9iY>C=JKsJ1^%(eclHNV!?VS%^3T!)+^(vB z`rg@#M+3p+zo8*GsD~f=Q2?Kfh$G7Oa-3t7EpW`sNF$JMY z%QS`2MKoRsX1e7vhpt5yTcfIfuvmUdqsTl6^Ovz(t$3&iV!3tb)_uj<#p@>1iy=hV z@bS?etw7;hL3P0}Zt`@K#mDeZT;z1(1xeNOU0A+sEV`9u1)ZmC3nr#};7lf57Zo@N zi)Wq52FD2)o))?B?b#3>oU*(AuYivjO-Www6Z(e(VKXaJFIsWcaWuNWSY3xF%Kr$v_cMrR#0{JPpiJ@L!&@!^Ul~YeELHDf_}X>N(U#p zT`L>$yd>TxPoxBQCl?2!YU-e>D|fuqV4Ww|LiSiw*Wizz99#H_LFk_Ah%>j{NDdyB zES6;M0Gst!b+h>OeAn>U9GW|VU0>5re^6y5g<@gVueWrA`B==g??2jM*2mtXjHKjxk#Lg_HPJYF&CB%?JGsQe`P1?557=;Z)1IB^#_>1V*FS1fkr&Oc zcY!bvIsa=0X=SCb8u!TNMbetXopQQ0ix=JL=?=qT9mx$xF_Ed#mvTAPJR z;~(NU6VET1zeLCI;>!$;CGan@wIA!B!l|R&p>y4I#PHrZ&%Bv_c-z;d#1}G=;m;k0 zT#40~2t3Cyx^)6d7QUC|4mLq!_-tG3({@bkx*SozFo&1XPD_gG9BExW`|+~rD#oJq z4_-Pvhr899n(yZ4aquY{CHO}^N^5kZ^-AW^6cy~9TRnwsLIF#xsnh7XTM#L0SBuL1 zEABsE&=IB?1FimTePH@9A1Pzd2ia@p!ZGhAu_~gc@p<0}GEGGxb)*XNQMXN9)v1a1 zSzpf+Rm1qIRgv9D+l)+341ba0BUZzyvjuvCNH?Ri(Kx@pe^;|e|DSZE#Er51iFZAu z`4?ED%}3DI?71W4@OoaXD3)4^(37JwC%S0`CJ`9o7s|cNNm?jnyUt1uz@O>6gV?@t zaJ=E4_*K6KFY~pfSJm~nqxMo}o6;IuhjF*3k&&=<=QD80(i7?qCxd?1DI^L$Icso1 zfc!KP(f8WZ3l(2kiG+5ubUrLmB?Eb*D;!G!!`}4vBc|i#96q4L`eAD-C|V@>$bBUF-gPl^{y(3 z`ZJHei#DgWecwX71^F#TA5@^`R5sPZ^fY?TcYjX(Kuz>4_=I1`lz{O{`^cMS7Q*|{ z+*CYf8e;!!H|uc;5w#PU7c2L35|08-6=$9i+|)mszei;WvLBr4syfSH+x4LJ9Q!;z zn2c}ojh#ZQrrPIATR6zi9Y;2(KV%?I`(9m0SZ+he>oXs|l~sa@DtmJ7FE{D)k92sR zJBI6hn>mk2Ex;rtTi$mcGf_KFT_bRbmXtIpzIiA&fKSPPe^w@~BJJ%+)yc9Iq;ws< z(}OV>1l~TdIdlwK(S>rg2euN=c{vN^xDkBPI$Cq8z7o%-+77V`^&mQ$MqKp$PdwSr z$GOF&5yiYsaoqJ|$o%_9Q?0NQS~E7G*G&7cM7?KV+rS_;-S`wqKbM0q(uR&+f9S}c zJKYqWtJFmKgkYI%?KC*QQu(W41vds&+-_Z-!@X9IQ#LMb&{E;v|NG4VKA8S6^%J2X z*2jM7+}}3_**adO&qY&+VH>YkpQymd#3t78TO7p7*Pd(FJ{FSuQ&{A4TNnH$_Br-l zTEd*;>SfWh>v{Cz>+BW^Be~A)Xv|{GlP{=D*`i4D#^q%t@C}opHP_*ly`%JA-=`3yEjcy6|f{FHA3f2vNC? zO(CMA&_7)J-H5#d=eu6oeygv>;F{n>H1{8D%#h-5?y5v&#W#&w^dY_Glk@5B8d$DA zX_{Oe!Hv}^W<@q3vOV%GpVpl={1a2Xv88Z59|xL*8r(*3ye684S%is*TUDC2@9crB zbmm2^nGA?sb_?{oIf1>_X8Gbf>(IrJ8D4dXio}Yad1|zC5VZ=TPpkBX@WTi4mHXSV z95DCcrG6(OS&$^9F$)genh)BHO^CU2_{+pXC#;@`gr}CR!TzeN)K|S$ByOIKE;pnh z!N=v&vg9bBd3n=fZc964Brf^b)Hg$X`{sgWQ#z6;Xu2Z5hn=&Vz3=p|`;pLs_w7t-Vs7MAn(NL&?%ix?O_xf6%@b1t z8%hft!t^es99ctK#!Pmv8Y`g-{h(l|TZNZNG!(YF8syAs&Y$$1g4p?e9ikVw$fgvY zk2G5;sMlAgP9RcbKvX9CqE!)$M>l1Pv8?yx0Fy&XP8A&1vbgP78OgC%@!S>(b8xw+ zE5TqWMy5rA&YfQO@qmaSk=?r*@HRW`u#kKR+xIRU)z?02UADf*-G?$FHjE-LEXX}eu@75m zIX@cQt3_-0kxi;P)Z}9@*R~{?L2N6KdfV*Nj+DS4xvYzpGih1hOm;?KV1p}DKsQMMstRreH01twz0c~7scC8t@DJffZ0*uh`Micu z*(P&|^dj8(SFIW~xC${N1Ddp#6zDUvHmZ2Blgz`WjstE?B!IVrlEXX%#^4PL@LxmA z4k@Ltvg>`NHWywoIg4GJ_@B5sE3o?yt3IhB8 zp~?K#bg&335na|?dJsMcj$;q4Qsk+~s{exXlR^gK?H%qI6~6>$8sk9Uo1@SRoxD_N zzkt@qrGAT7@Bs|yerosp0@T#Fk~FDETnm`SQl=SQmTG!t>WWr|a1!5ERh5GI??eBO>N}(P5n! zab(#e;Xi`?Tbp!Lh5B*#odQovR0l?A_4x&IE3il3>27>R3Fd<=9x9(GN2i9+-r4kC z6q_4pl{~6PG-GJBg7pXj3!k~^mvfT8d)$cSw+@_1eb>~zZ3daP9lhU;CQzL2a^z4W zGr2SSowtg)7u?_P_$nRD!^1~AW~>@FC(Jxq#uKtpJ5HQ)7J*hH2u z81SaP?*uOqYDx{838x{YTv%DrDrSi7m=0ymA3jNGg-LtIordn6y2VGlf0G|p_|1LtyRNC z?A}=277Xh{pWDfO@^ch;rfh0c*wBIB%ewDJPxpapN5aQ7vtG0_&6ixann%$7j=4j@ zLtyz}+?(NEj}7(~6ZUO<+4+0|n_-F;}+l z>VVPdkG8>Si)a;2ax{nn`b{g@RDnwM$sH(S7~?LX*m ze;kB)=0m{)RTNk%XlUQ`m_Y|macA;MDekuercZyHj7x>q?_DpC!)-y$=9D}O*`;|)KG=K!?Z3_G zL(Z;3QX=B@@b@Ady#G{c+to!piZ#o!j4MYUS)p_uE0U3sN{Y0kLPSE!OsFIwMWv#A z$)+L_NoDW7-`C!IfBxP-o*&PB?sKlg5a@5)9>hv^snr#KeKHL(TPub`mOY3Q@j37{ zeF#mg_5UqyXCR6Jd9UwP3}8eiA}h~j7NZ*<1au9Jq1{_?Jg{dRTnzt&uK6~C^=kO~ z24xzexiWrx*Y0kZ&CBT1bcqlKwftnA8=1IlKL;0|N%$oP1TS%QATD=!KBQ|I@^#-M zuiCcYjrsb!`%#EHRT>ur8>{eX=<;rT>H>yyScfLM;Xm{=v{XAEI+Ef! zZ_QS4g(Jana$6Nb%T>8{Jn4aibkL`v$^lqe2ZZU16eEbo`uK6rDr6tns-ouJ0Oma* zx>sL!qWv{RRAokhNPeR3&S~t$yn~3{@TEnxo$d%^z1snYn}3Dq*q0&vtwZx+)i^3e z(YE&t4Jn*Fdh@`CW*qJqb9?f11>eqGdrQm5MAUAly>O~(MRADfgwn-1EcS&QcU|Qs zH=|$CD?HO8XA_=Y@z-ld(?I!u+gJzT{rt36big{IYIE7(@y;d`oMdpjA<97hYe--i z8tXub{ojYRp0$|ki|c%2JrDK=VUM|FsJO-Ztd(uK0sPEH4gZg96UlkWICMlYA?iHQ98{{9RO;u+smTGY1y@e=sRp6>wb*W6#b-;IH} zX|u8CNE>2(%R(d%2opOEk9UStW)dMzpU!F0jsopAGoM|2WI;Rh%3LoCnUkzK!tF?b zT9qy%jZ!Vlx0}E1f5J>8uU5Jl9-$@2Mt5k))6`K(r3$0)p1pCgf4&L}-*3h_I`flHI~GIi z>u3qXTi>=WJ}S!espWn)-N<_~_Lc7e9SMH2SP)n-i;#$jhi);$7-0Xfnk7ArKV60} zW2b^tZrUu-Jb>w-c721Z)3BXwl6y2e23do^{k&$wuz0>xbah&as8m_fiHQi2Lst&& zr_lA_Uj0u+jmK4>ahFeRd(#Ad#~!2Fs|-Y#Ei(R^3mqv*Qf0`f9LM0@tGhBE)*{yM zSo+1qK?wCXE0k$N0n?D88Z$Nyu*|3@3SFn5BlQ%>u?vExKenoJB?$RJw2^Rasj$_ z8OIFVt14(#w*477mxY}6gdUaC1BmbvPu-^1iMZG2H+Xe-LX7>)RTdxfqD>bLBl9&ed|fp4DY zp}mz5WP98jthI=&qAv|^uk=95pGEDR?^d!W)o<@iVg+{Ia!5G%nS)$C(E3l^jfT8Z zPc`>-?ZZ3TEywn=*C4Ye%PIq1xEI?hy(BULqGdLuIQ$!o0c~}S;;h8j*4}f+n~-M{#^=;k0@D1T~v>Jx>Fy9mIm!qjc0J| zhTKa*sU`>v@23AmnS@G4yy~}B3R3UpY}z2Vk^H0MG;n&F3`L#Oj=}zOkoq}ut@&Li zY8CijPf4tTChkqluwo4!Yqao}?kqrhrv$I?x+>g1tk$NK*NH^6+$?^fZUj%uH(hM# zMd5}KV)dl}Dklaarfuio=yYz6?S<+!|7?iS>>EJPh8=VQ+lS%!TXFV0Um?!v+1Hkq zmm^2FtzCD`k9iZEN(-$z@S6BvH*sPmBNGOTicfoxVjY<1=e2|lD3nfA=z_OM#5%2^ zMU=%92=Av3VjwnBnT2T?TQd`b0w(KWIa*QiTaS)x5%6~3W4nkJ*VKhWr@K&JEj<;s zbsj4;#&OgBT!f!~bGW^iCi$=_*W{XQBStshEf8es1rNRB{mz&Ckjh2>F z?N$1z!oQCAJDSx=T^T^wH@fWAwpGk*-ut&$g^@7$OB(Hb&qdOXJ{MpuoQ7X%4U3vh z7rMUCoNzH8N7Vbn8oI~Z@Fl1-&gUjSq1kpcdZP_1SqXBi@T4;MD_EJ6KojYkf32A>>g z)jb`D;QKq?CBm&0Hqqsu8RrI2n0~bQqf9&e`Pwo}ea7*2w60gGXbMK(@6lxW)?mrr zOaGG{C+Qa0e!oMMmh5{GKPH^r51+v1`kk^Js2(_1&EdQVi*iOr^Z6A{3tZYP`gAees}e3QzZ0`*<%8BUT($f`&QjUcPii!x?^C8 zZU)tCjq>G(_{km04b9Nkv$$>0AFw5ij$EWK9}_pDBkNpp3yb*&LC&n?+IrBDz4v6# zU9_Bp?3ulS_G`KDqcHow3{NidGsNC#Lvk*5gm7u+-W`DSS8E!*i|uIje$gMQ*Nj{V z4|d!Av!F8UY-)Z=PZl3~oQhWFBY_MCSL2_p`A^STrSHE=knQHgzNdzY^{*=*ybb<` zdlAP^ol~fV8u!u=q4Xd!K{+TtiIHq>;V*BO>_L0;j$AvoVNg^@&G@8-@TJQ%VLPV)9bH#@P*Nkg1GJ-)2}VzC00Ym~&x zk9f(>%Waja!!*Pv+EJBiM@3-#*N>U=<;Xr;a8kpx6GQ9HU03fNMQ28wqi=mF4*EBq z{Z+_JvKsE~9B^1c8|zV*qkg@R47n}6w_zAXI^VS3JFjt?m1`CAk8z|)aKx6Ut-w=Q z^VhjVDkkc0+4XIngKKFt&Kfo2de8{Znc-2e>F+wCdua&w1gnh9`$S2yqRHSMjT9WS z5wg5*JcqNsp9dUI^?-?%ZVTHSEjc=HE=aws5^}Di>kl9KiJFs}`ofATksR;N89=gd?lb_o7kgP;D!=&+*-SVMYjC5a@ zrXh6)r~Jk%J5a&CH~53{Jer*u%l-@K!AV^K9_HgqSbA2p_pW6fcC!TTFZNnN&2Uwz zrS>qq?XR#FvQc3n_3oeg$RfN3o+^e(a*=K z5+BbClIJtrmzyIiP%+B>$gq1BaR#o;90yvk-s|wpg+2Z;hCo{df6nITJZ`cz{Yi@?z~CEhz`?i;a%4OS<@J)-W`Kj zW$N)LNnXI&l&5?L#Og2=xux$8Cj(&!JLeRvJO}#EjJl_32XU@p^4(xe6BQruV217Jt-wD+VQ_<64l72WSA;m)yv{|Bce%C?E z*26T$XbM+7?URStIEVnta^RiQbGX9JvB7@!Av!p|>|s{qCu#$acq21-NQ3S4Wa*zd zyv-2FOTSPGCH2yip~(zn(7IfA+`J1xg&R5UZLh*n+S}1XQymC>-mL%p&;lkIn0h98 zX^529QTeR!KJ0GK3FlO%Cn|v+mpwaHF>>tcTl=~i2tUuvdB1}S8^_x+GN0$5-z9n3 zS*Z^yE{Asgi5!9F;w7am?X%cNw)rU3t)Ttovb}A8CECOuNt+~fz$%;L=lVS~B>fDH zkHGO39QJ=;%E?`W+Gmo<29;9BT>TLeZAKf@yD&iD7L8!{`F0%V@mv_dYQgpDyskun_ldSHSLFA zQnNbSomMc?eJZR|Y=UFqyidcPS+FN$K9EqMCsQXcnMmB?Cl14#+1gImLwrr2iA7A$wAoJBCkCAu0WJBm2}a5^@wi3&q1BD?>@t^R>X{$XrG)MKwUsdz4aPT zeBJ-(f$MuQQaEzZB%dV-pXwgO-W8uiY{9!0a}_FXy=k|(kw{P8wkyqN1XaN1j{E0L z|MF3LBktdoj0%J-{fbuqMupFV16Onldk|CB$hsqX7+>u= zGq|lbuE4VFoy~^f4qWM5J!AT68R9FdZC^+`4tLAfHLlJ=&RxzfQn(v>^Jh0N7R}<) zb}p~4rHz4n-FuOdbVVGytXYe#FvJtN5 zza&b(VI*!j>jQmU`N)$#=GPk?*8Z1a{?eb{%%uKA@sC~O+{9SoZQQA6efUim_~_G{ zR(M!sCq>vYl8x(QyEvJr5ift*GSL9lx^@rS{w0ib2l<#k9EW@)BWKLo zeR>UlwTL-hi(e*gGRAA~%=Ic&d+`k-)p*r?$!M()oD-`Zvzo%~3h8mf4;@I^@%G3l z!#HM-O#Sd*oWkxmIuk4vuAi$rrDW zTi<749xSDy;h&pw_jpwU+?a|2vJFZq}#b1lBnH)-~FbZznO9 z_V~P%90!RtNdF>iT?Nfnr)^9f)5tvXOU~^L4>=M&mD7?o1<8g}K0&+vk#$@5cuS8U zG3?yG^~4Z6Is0yPfNp3R>fsJ2)t3wLX~VGIdu1jPQtq|xa6%W_eHVf{rYn%k+t>Gb zdk4bDRch_N%pooA{u^OyTG9|xT6N>=n(hU6ory|iA#a{VolT(75eq>9!P9DWc=w*B zIjp(|;%6eGQY*(`D}V1kk2@76n}jL;ZWHLU6&22VundQdQN6qQX~q+`7BP{Gpc3Z_(-ADFT=!RA>w(wZ5}fAE>B-&3=;i-ps2G&Vb%m!0 zxlx$Nrt|F&{6kZN zJ~EzGs-9ul3N7hC5h=DxEDt(Tr%F5VzD|0J*0D?~q(L z%TJOy9h45=ngWYeaLl2lL0orP`Smn>guu&u#KBw4y zZpn2)?_1ODUEV^ZukOpsIrd@v+YzBm?VLc$24>g7nBP#g%U{QRe-d;4l8Ncwt@vGe zY!^@57&e&3{rA!B`50 z+@+se{w;yjme20*ID2rwuK0{S`w%``pBHYesKvw{(G;J=H9a4ao)2}QA)hw$Y}mPr z3RAxiTix1*A#w2QEB}kj*wC-Ju`_cH?XMMHZq{BxK%SrO%K!>y%ARIZ)#fpye`b6z zyB$_qn%V-ieMn_^Cz9aFR+=+K7m z8TS~8@RzDr@7T&ApRLf&Qj(7cM-01+)GBe;I6mjf#kGHZVB#ufK!M5|IZE{WI9k4d z=E-0+6i;uPP#T_ujcjA{AZHCKf*k$Vhfkwu%k(eqsBtK*2-DfS<{@$Rtdka94T^7A ztoYPcKsbfw6^Bm)Y;D5>z86nJ+vp=ha7;VGPc1rLtX+WX@|%5;hue_o(y649G>!2+ zKXpTByD{EkQjzvy3j6BVee$m~!%245#p@O=q4w%;(q&rn3B6A>YWoIZ8K2K(Wko}7 zCexl@f1aC6SV{!Oix6_E#<#sSwhL{xH?;DCdeC^vU8OI7ZEqHVTSUx@Fk~(LQf$Kz zEUQC*|B-A*KE}nWVmbSq zvPFnYnM-q>HCaH%``s$#N{e{y=(uDN$Vl#WZ9lT@Hy`Pp`TD-;69vM%@b+&D1x>=5 zwi?O{aOpHOWTw=Ev1X{hUT^J=Q}Y#^9S*7z$$0+vmU5jc}VZ9)(Z_^w)Ep0 zr(m_g`tkOhHrPsM>Tau`U)Am8z}Erg zsK>12&mA`Vw{@lH){8t55cw9NCO^&M%Io0CdO;%T?G&abI6l|6(UZ8R23jYiI#JhP z>atI5jf))YEYFUtBZp(9jBN}X(Bjb=>g*j01=|_+O2-ZuzTfbAC2Jg&I;~8P7bf7y zyLC&w;w)IC0$fFl$H1H_xp-nP3sF2J7Vw7ZORE0;qe5inbS8V(cP0{{+kby=3oX%+>NfmvI}b@G9O7iw<~>2u9{uaO zA;y}Rk}z2gE7z!{i~jB4y~1vfu5FuQQ3uyify}m|dYHbLIG8%ZKnhvz+MnTSg`A91E`_BX-VYRf)}=EN&34wP zy>24JI!#8Qu3`oU_hqJ4WG|s@_{H(~bQaR?Qc^_|K865>7mChVw8Z_DRzZe68@cTj zd56zpt(RJ9KR&oaoOC<&U)3+DK-By#;VRF5sJ=LS>9JEYN}P*0Z-v(5uvB{4a?UIQ z%an=V{zX(72FY+&@Q_HGd5-n$-QbLhbTD?Wg1elsNWOa~F6Wj!F72zv4Y6sVU({9{ z*`1PW%sUCq;>`#N&^xT}^dG_rq!}zw>(^IO~Xz{GFFZzV8}=a*p`)j+J4EOpA^hH2ua{6A9iD zIRmv1G1NhpZe)mQs*&;mxD0kBwYN?pZ!XR0QXwx1b&M`k;;hB1V7n0abr(3 zF9XrKe&`)Fl7b_j-K@<_OAsM8^2pSZ3Z|uNGV80VvYNLO_&%sEMR1Zf$8I`i}04-7rL~tfNfW=O7O8$aK6A` zpfza$b)R22Q(kr=XNz%+Rt6PLJ|DwkgIADWz|W(ZCQi2g*GnK@9mA42{qaMo=0{m_|q!O?4*C zDlMgCg^)-_ONB`G-h00`uf6&FgL9teocq46WIr=2j-@GxCMO0za;X7TF#JeY;{vkJ zy*OmqIRWX>b^OlJ*?3CRcfMb}0TPri%x&EjaK2$O7&ur9z2FzLvUF6aJUM1wd$kQS z@6@bcJfFp!E&W%Ol2+^t6gzb1%p?MoOgU~{>p@B5Hp5>VCSZIg^vkGNE1b9}_t~}S zNoz(NPwCrIDE{D_<9srLp5NU{3ktO4)6hG05jHMzJ&yW4eakLlm9nR7+ooO^XJ4vg zGw4D=Q_QK@a9)z`!o;|EG8gjhVtm~HdT_v7Vf9^D2f9}SQ(A>9pgFr~<2xg6(sW&+ zLeHEE{ZQWkllPrC-@3SckO70c~*6|US`y$812rXIIae?ni(mbY)Ox7?NGLmPT zH<%Rf%Odc)mVn?Z0S>Yhkz>O{_?K$(^Sdh)3J!a_u3 z58yn0igKYI7tI@y#LPyn7Sj%x29MxZ>$8JF@lBxhRm)Xfnnc@Pj?%OHyOE$Tr95HN zg)BeUD^0%->G@w%KVg_;vubf#Z1K(%%Mxmj`fn@*M5dC2`_1?Pa%XcOyOs{0v!b3&-EP zdTC`At*8=khN2Rn>9CwspS$sQ=Z4qZv`E`e2=KZl$|1ksk@+mU7;YR^@ zLUlEC^%uZLCp=srEkJZj_Ip2W9Y)l1gsy_|g2Mtb~8FwXyu|dK@n~wP=&xjiBQn%3Mvmuyrcx zt)C6R~C%qAcOfd+f^Ep9{Mmj#jgpMYB^+IU$24m6zSXiosk@B zsL!xu>%eAOuZ>5)cjL3J-q6+n4x-h;E6aXLl%&4gQZTPPhxkk=UTB-cWg`!RHxyR# zN@2j-hGPP8nN-efC0eq4KA5kKi<^khG7aP$A4e12ruYB@8S>%$M8vL$S~&l@HW_t& z5TmwJwFl^%p?16MX+lsvo-JKdequR`!4oF-;|He@rNiU;U~wIBXEY0I;2%IR&0TlZ zZ8a#ny>OyuM;Cn4i$BF5sz=IylbKA1yC9ctcZpAE4nNv8ce5^wk+Mm{iM%W(@>7<3 zbU0=lN?O%Pez!YOv!}UcPB9O|55`OE7CTYomg%wnKq~4RownSxZ-cOUb~3gI6ZQ3` z#Ya-cP;vhJ-NGdbjMCj4f+F%!!|su#(6ETBB;{6JOh1N?=(%MGQ4k-ySLK%1JYHe+ zz;BoJBt9^9R^UZF#v`+bYVCQ6@M*RC+g+JR-;z^=$#gHc{f(kto-ak_xBT+Y9|n;4 zsU>ULv=2vuyraghHejlOumx++VtME07sl5Xp=KrS6Rp+_iKHDyZ@kAK%c*G4FFJ=n zj)u$9Czs(wneM4soI`BNS?v&x9&l*se3kjLgpfkRuc{+!`#jUao&A=A5A$MWT%L5~ zfrgj@lf5Jvyu7d8Y$6GTZm(6>70==zJ=+EnI*L~z(QE)wK(4>Pd00v2PoV|<(h_)| zk^4iaIY=;~_tK}XIKEIIyud~QM{=WE-PAlr2mh$A+-`?tea_Dl4`&gO z`<&mLrxp{_%D&bfG~}c+&Z&A%p)Ef50e^T7es(q_o_N-Z>Zb`tHhfhWw|em9qDnP3 zQ7(%8x3wQV(a)uq_qRdKU9sxgz9}3Rv)f{w*ox7g8lLrf<48Yyu}4&{4@#>U8+tZT zkvDt3J>f+gmZA>JPZ;-D#` zQkC5*p3Spzr%6^LXooK?uftltt8LP=+gXXRUa1Q^>ADd9C?|BE6E|^Gk*%1RWF+4& zcNvJW%pu05bNEpP17S?4`RS?2OV(}a7^-({fd#eFcwlS{9429r?Q8v_W&Eu;KfVrK z$0Lp&)1Cr*{_L-i>%zoV)*$|STMvxZT`y8n8pRyjwCS@fK_a|cFydkUAg)=OE0{=j zV^8M9wETKHGJP6vR*jla7sBhz?^%sDhY#$*7ukvB*jQ*V`!Kfq$v)n(+J^FfY`UD0 zlc3$%bYfd&FX{sr_MR{61hdv5W_2eP;*oK1`Vj*Kd+rVGF>e}zZG!AoY0`wZPknPZ zUHTAnKiWfeC=VOhRk!#V^y0|_%QruI8}MImye+L*9|}~$mMY^X5nl8Wo2;AhS!$bu zSnV`;UMKP~Cr{#V{H?!!3#+J*_xkqn#}H03U-9rcAx)k-uPScrpe2omBp;$WDym`MCGFl3pny zkg9DQ{ID4{j$-`Zjou=t;eeF7YZKbGZ!8gV)#``!GwJIu9B)BlR^^kX z&jz9rxX*ZjaRq1YsJipYGm*-Cx9aNlZ+NVr(?9iqfhec^&J8}+jgLQa_XmrXLGTns z_SBOOJPzEES{yimx*mZ>?M`N*aM%SF--a=MDs(gNTYj=a_snt6EITnNU^C{nu7~R7 zTDg_5ZhZL@c0ISc4GF(G`sQ3Ic#?VK%2l~pXas*M6!2gn=7UWRmWiv7t2?88N1y}u zgYWAV?yExVu}aM#Sw=Ff!6=hs*M+Y;{`uTmHUqadN&(J}Ja` z0rDJ7H74(-(aE^$HjO+RNp~OJv_*Fk$xB=`T2?ef-t|ZIshfPn&SYwmhjs?ea}hnv z_v8qRyKYFkZZiaTp0n^+9D;mel6FOV6GCKM0$krUpvuxPBK^b+3T7N;#`=d*Q_D3! zd69)E7tG3N1yV6H`Chypb>LbhzF+IQq1YH2D(u>fBm19(J@uj>rZA+(oMsjAD}f5; zTcpUo7hBeq=5Y}PIX~u(TmlUEh^@N_4J~o>llRW z7qkafx=?1M9knHxhRCh>KFZj~P6Fb(HFOpmVCZ?&t$Gg+dCs-z61y}jseHMAZs9it zxgPcUY|IsqU;mQh#mopS1~VY7(~BLc+dManu5B!9+t9I8j$8@+eTV3UW4QB`aQ z+LSiyZc3!WWPzs?PBR#>o|xWrW9^;Ab+$&>&Y;lhEglzLYAydQcsZt`z! zJ|9$7=h>gEh@!(WIjXV&L^7PZ)Om)kpJ^d4Ha)CEKeCk zvJrpVgj50g67*k{VFLeO#GL%mak;(;l?i04o4^VrwaXnAg(Be z-4NI;oHU)i2*JXwJN5f(!4R?2%e5TI9wI{BPGDZ2p=D-;H+*H>7l;ahz&e zn^uDbXI_Vaa}{7@v1aa`>B8dC3Ss???Fb0&emK5u99DKmF8cpyMXR`RN3`r1Uj6qj zY4^85oZMx}nVCLoBFVfr3@nu@wV6oURk)Fs! zzI|&e5Uc8ha_MT}`ad*8{Pek~`({Ge0DUipPnQ)zv~)~<{@*BXWFmdZ9w_PhkRA_llZ9U zdE`zhJIRevw^>%LM|Ziy(Ssc0Sogg8M6Q%5`Rq|PS$S~~s#nr2!y-Bn{o(75;c{W} z%FulOB*zenC-Q=lbbFB5IV=CCeFcZN#(!bFJl>(v~1zA)@pWbeUEwcbGkp;}xBWy^>V>_=GguN_87 zYdxWB-YFi`1e(TG23h?Xgt%yCNUh~h_3wSzwA~EEI?=)W{>UKa+}JPc9g-lHrirPH zQmgnD7900*@DFrzL^O@m{c(sxM&IULGr~vb#wjzQxOd#*=Ou)h29 z)#l`Gn3{0=+x+Rk=Oj`!(X|Zy)3!RE7jt0CL=wE7uOdYCv1nR^D52Q>iZCwhK`}?9 zgt@k~%|2E7+$#8QG_kJcqHjms=J^BN!+|7j@7Ief{|5J3yw=URB zi5vZED?`+ei!66KI`J&9%`4rMij&*2{-n9Eli*`~u2wvwDBTu!)7?^tY}hK57GA|c zil&5(#z*S#YsbH;hPCsqu!$STRJ0&or*c4MXFs&e9AX^a&fvpm?uKiu?4)f~D9iBN zGI-|INmXn&8g!HOy=5xl!8`a``aC_UIocEQHli1`xeRgU;#5qwA9mWYmZN@lHC;QS zCCK<_ZWjCJWjOSdAFhy{geSSK-*JVNsPX)CuB1$&rG#ZjE@TD%I_2hanf%1WCMTuu z=pqhZ`xRT^Bu^+zde6@KcVJJ)hLy0^5lEktc&X0X3|XH9T`y`A*wg~mlHafSXq%%$ z+0`Cg>6JJW_mF|SyQ?fqzt&fY*{Qd6KQ`dmi%{PnO$x|p{Yl2H9hgmgr1XSu2o3Kw zpFWplAoI@|8Kk~Slk?+@4%hhviL}KIIt|Jq%4A2|ZrHcrbJXXQ#FiphwJ`VYE}&o` z-ePIU#a0(>-Xr(?$&@lU7gLtSPb4h4O?=lh14 zSmwXKb>C<0-QIVz!QvH>*`eDFmXKX%;}UBymd9(Br85YDbzUc& z3#h2uZ6>4C*o>SH8BaV$#u0c-<4nbgX}qm_*QB((0{UT^8+}(Mq5ZIJ-_PIe_&&mU zLPd&>^uM`4!^=E~^@Gh1Qj7b+QbCzSp1DgJuJ5O8dj(g@1Kf~Md`*{z*e9dGZD(_$cMO22mM4fo=& zn9odv84aQ9;frQ+ra;_lEc0n64Y}k#-zTzA2fw5%?J@m~e%CQw+Pd!|G(d4a6ckgfFB6yU<Iu z|KRA76%Zk`@)k$mcn_iT-3Reit6m5*X=m|P&fygOftso`*ANV)-t$C9Sy?yWiR5-ZHSD8m)Z=RFolrjRpi2lb$ce@}bxYbAQ0W(?JT=n0X zx^aA{5?jZ=c?dK2J~6-Xsf3JAQs>b9E_7_XAG@fY4U?mrOSB$!W5;-hviqxQux>cI z*F0+gACpV$A1+Md%JY5DcWHwB!=#Sv@6&LO-ob2{KLL@Fhe;RDv6E*s|IGiT4&r=+ zWj51gA#(bOh>DQn65a>ycYhq84PGHlorL*2I8gcIWaNKsu$*o;=-fqxrJfegeM%!fuM=cQ=byv$_EFX;Z7DLBd+0cySQlE@I|O~TL(uW)zF_T89aIJ%?ziuo zz+6G0PFBU*xj8e&C79a5J4qiKUDO2s-8*EyEzRSwYwfSs1=(n?-SJ0un1;+O&&HWJ zi;+!lxXYRUTl38)E(sg<--Ft{yy+YRE+YO)gS-9h+Wr1Azny4iAXP_ZAKXgF#DKC? zOu@)14*z`PDDt!ueyTD4Hxnyx(9`6@t)_0Yp3h(%_8&&kWhb+ZW1J*!p)f@%b`<|4 zLL4*;gvs|SOS;~*>xt;+)uOUvb#R;ee8;1)8|*TY<#|i3C?s8%7={MHpg-_)%ySyM zp7A;HjjkgHq~`e@jx8YAU2DAKTOVfV*)5L9^O4$X^8s6^K@a1@?`Xe0$ucU7rgkZFY~pGp;IrB=JoSt9Nf(y zr_|hrhLQNlthL-qy<3(SUeyW<`>>q9v9#ptEnTq(YaILi;JbB9*P5Zl0}1;zKRU>{ znRYvSH`WPr_)s**&?a>EpqD5c3E*}s&9adpPq)wgZ3>hmmuFOFue;F^+RF{KC4$Xp zyBP85i+ct7!5O1 zHFU~#`(|zbBAD|)j@I0IG8=!|Lv70}=A=b;?|R(&mUpz*_^j^EGv1eWwXl*GmGGmTh81IY(u+%-sQFtv zMb}peX2l}WlF4ppa-M!vE!GdSiltwXRdq-Ss$0&to5X#wrYXT6Q%Gpub#-KB1%`LO z_;0kP!tsJ3Lmqz#XITkVH%-hoTYy~n zVegY(pN`ukVL)wg0+GEq4K(%MR$!eX|%(etdol{=P3P~$0Q%xLCoP&O%(L# zE@(e$V097;tY4HUNE@G`9}n)wKWh{`+lE8E0j> z*~3geFl0G?cKZYQp_MM)BLfK8Z#;FRbry-c0?1Sb)- zb-(b2GKZpR;V%_;`|%`cT?2)A&7V}2%w6c%h@DZTq+#xwx1D#_+jg3kXeLN~X$z@@ zzKs6c8m(dceA%Gvv$+z6;uW{s%4+etr-S)K!V0nj+#|(pImo8Qm38`;#*uQTP`W~h zju=Rih__~3Bwj%)df(w%IE6%=W4yWy?P+z<&a3=nn^f?qZEO>0qnNLrQXGc#r6|E5 z2N9AOQ`^#(J_F>}7W{1Zhb5m@CoUBsvYb~{6KOe&%d5KmbRQ{*e0o`>qOH;?w`I+EVFtQT9^3%k5fiNzm2}}#C zty+e2lkBrRHhmk1uw{FjVQD5W(W*5#x+QP{q6t=?iqB_b$gki+-&0=*^girf;_QT( zul&DwDivSW|7S3%!b7B|O#ajCZ2-;XYpbCSOPE)ka4wG)B|U~_i5&dB5Dl4Dn)nk6 z#TuCvFVi|`a@~|WQ?bUqnkNh#wsnD#!*lzfaT8>tPVV%4R0n_B8@CMvXK~_>Y)o%g z7V@oK)R0a~wpfi+mwAbj3-NP5=X5#|IBhWT+VL?i9DVQC@R6NdP_?YyxpNXX++FTG zbf6-L9s7Bm3sowk7DEMx%wc*NWKeUxw zY%SLOGFF;$}`VZ}fh;F}W7ZbH=)2LOn=J)S?uruldWi z_`2(_M$zsv>X&i{3dGy8A7+r3gq zMNQD{{ioiyAk1@e?z3wb##Q216e7nUESDH9P3n=n^^?-!%d6OXV$;-PlfFt4=yJcZH!an9keiz9_cj_$;rK&Z*l(bDdu-3$ajaas>e=EOtJuyrFr*ZWCAgWI3w&cEQM3ErU&nnL2 z8S@L3k(+DWY*fG>TUG|Ao1Xih+qJ{gt7=UiJJ8~Or0zpj72JNcST#|nARByAZR*k# zsG1*cre0scNiK!BiSF zJiaE-Xfy5Vxz0q`m`h%An$i%j&u45b1gfBHLK}aLjRHw0{!31Nz0l=4U-{#C4!%04 z$Pc`%2aUy>*z(36q_(IwCa3j4!)^DLOp8`TRJ#X?ISfMi%z|Hr-8eo!tI4_WVh|&4 z+{*dcEf_2-OTNp(M6?~Z+dRFO3$6LX0WZpW5#Sy4#5H~rMcY&OqwWciz>H*N+o4g zLPkVFQAQ;Z`IQhUl@QsKz4zXp$6oP&Uf!>+>vLb{aelvtz?+Obs-OsQ{(DL6u3kAF z4*Tmod6I`-k0Wo)KMtX@#`xm~S}Q(0+4k2tn44rrNh)Ra&x3z>?5S<+AROBmcsxFK zB9D7=h|!*fL^EVO+I+YP;i5l}Kfg>N=Ea9Dv1V1l#JJeegMAqLt<4{28dV|VTR^bF znmSx|(&Xx;&f?)Ub2Y_MPI4!1QLU_C40>)%RIN)4MDE4AJj>5bJW6%oSwrlMjO#O2|ABK_eCKDEAE1p^ zuvXfM5UUxBM@J{daHHU)gV32l9K14d=-#IhWO$j6nB2&~aA=G9fs|V8{=NR)%xxZW zCQZx0PPrEY``_FDELgyORh2JXOI?UKP+U^>bQ)SxoOy})Js2o0KTFYPCQ+xH`x?BL zU>KwGYC32N*Zo*Uo8MLBG=_TXIA@#Ir`8ZhBoQxfSp zj>IZ~yK-M<(2;1KZ9mY8<>_knhm$lM;(FRIX-^O+?wDCqfz+fs!Hj` z@sLx2HI=%2ix3@ZJN1(17fQcM?aDpwjTd1&!JhU#7?FFO>^DQh?E15tl8*_KhKNBW zhL??i^pdd)D5SaX$*+4KMabx5r-vJr2Ql{AK39X|4T?QJ#VGsM<9LJRl$qQdei%=` zP)zJX{4MRV0^df|?T+=^>Rb!vx>F%;0y7YCIJ=PImIKy3y;5Nej3kZmLZbltge5Q#iaHFx(%=i8oPSYWe9it!qwat`w&Evb=?#$LQcLucUs}aC<U0EtR#ojg>6iI;b2cKLKWPKEbbvi6}nOjrgA*4WG0&yC;{=;N1sf ztv5%6$suvKv{x;RgxX#I+wV70vCT%#-gIFI z2ObY0tbz*nwictP5@F(_@_56bh&=JS`0{{KyAn~!7CI2RmY=x!#j(wQYQ@ZsBqIT? z7N~_MC?AdMh2@XX(QTAsly^&SDr)LN@Poiuws&HrCUC0%%Ao}$yTA5QSSp2a=6Fcy z+B`f?W-z*;FHX#-vV9)eEMtf4-}-Gkxi2hW0Epn5;{MRi+{GkBJ&^=O3a@e_b%y+YgsZ z=Eh!Oe{p&xUf7<2hm>x-9-}=-qvvsBG<)qh-1SLm#40<9zh*6%kibVWW8TU0=>3F( z_eak6{bTTzfAHway*Zrw?YEQd5C^$y;`||SpcJ`j9t>}}%Ru8eb6ot`43uqMuIyG3 zAuqQ6(92cq#TjOU>wB3QNGmIs&a}oTUQRRnGMn%cor<>S{AXJ++IfN_^$Ig_4QM=> zH_b@K0%}tjd}^WM_5AfbcOOKTDaWr3j6!F`WJ?c!4sKgcQEEl&u_4%Sk-=mT_S@fF zx*gqxdvo@a;`IGt^5T)d$CF{~bF3~6Uqi!J%6~x|e}_=tBzPp-vKbr=%(5E2jKqv$ zKJH42U>5a*vf)BEB$zMkXWvZ47M~L*1ym)7Hj}{~u0meoV)6Gl#}g|4F7G}Xq}hn5 z+KHZ>tf4EOc68NB2jW26%UC*x` z!a}Jx@$J_=g~WvEj_Y1qyi;y-}#P zlZ&`~U;f%LR0q)&@pIFYjHF5aM%j>+G@1N)Op?>H6FG_AJ^8C6AQEHuu8oM0Si8e! zdj3qLaI+&Ht9WUlSOHFpc!{x(K(`)gERe10?bo{tgs%$&omt6u;46!ze? zX^NvD8xzszJk4=JfI^s6Ee3-N7r>t~_5S$NY7|gLYJK`z;NYKMAu0J2-_2bG*L~?h z`hL;Qk2l)jVLQlg;7>(&j^BX&{y98trJD(s@?V5#_|4&>rW>=Dqh^Z@jx_k z4N=@>8mqQ(9QUdyq@$gM_}}qxgvTO&rg^Bz#pgkwefoY3t1rkoeGb!@e(+a*JG7H$ z3itD?ZT51D5^pZan;pZA&~{`Ap|CTOXI0e#d#>^l$8%39I{m{Kta7@bR34APv!;)O z?li!RdR=tOy#?ew`<@=d*G-?p%f9v}=9&0Q`fz9jX|T3)|kAWpWcJA#o$ZbKH@~U zHje$^^j=tBKrk`n>x`YX#DM0L^V>$r63IDXOo0n{5 zoq)wp7E|jFlVIT$Z&`{EAPXC)MO`k8r1Dk$@|GAm^3O8eS5UqiuA{+iKX%gZrFb{~ zPhlr^*v`c4JU<5e^wT%@ed@zSe_ySn-fBGlTp!85Zy6h7iwrI;a*(Zp9x?f2UG#ek zwiPo>BCbkmKyLdu#x+k?rY4O;>SH!VI!&Bhj(ZvOKwXYBX|ViVNZU+UWfngwnhKMv zHm44LPUt`&Ti1M&Zx_}Na2X^#@4~rFef11Bf3ZtY>(vd7UL@rB)@))GBd;F(`tE&k z8EZqcP@GVVR{^_poYQ{cn8T(rCsir((rg=h51ns@E}Zrmmc20FysfiL7Kh~(@c-^pRLD74QTt>u_3+hxe>y|xE4FHXdrI*gMLH$hdtYNG!ghI` zjh1F7D__f1nha*~{+QP#cgX=riN?Jh{?dlw96hOtzx4bk1pNrpX+@)6!n(@Dc?h2I zbeC4Ffkmg;qAj{ z%B^{!K??EOm$}XA3@5QaJjk(ysR5ImBUvXmG80GcpwH$l(gY_@xy_&JhRz+03v%Da zU?_2D?93ZMVyR(rcWX8~(b}}Z=gYqC5$ZcFtb)t1sPqsK@hulsCy^pSytX(ya0zQ8~-?k444IaZHI{@IP{L9*uh9SNszza#=jTzh zyx)|iyYvy&G7anW73ur?>T7q?%k*C5r2Ve#cn>6>M)_8>w?e_h^2Ff-^^m)BaML&8 zDHI=^lB=!A#Rb_4ji?O_q?`ZvmlS_N!l_66T331?p?<@l+58|EWt zc{;~N_KtQLYU$sqRNv^%ogZBdnUw!@*DX`OB3UzT_p@JSD}G|Hhy% zmasZ5NFi*-%#&dTqiFtSX7So~0`B9)XFP(3IF`yy1 zpBmhsDIZDWx?c6M~kN*^R07G?g0(8670$GKZjrvIo9XkElH#T)qYQ=N)na6IfmR_ zTS#?GcgoN@aZ(f^?{40+4}`YnL1Yf6K2r~`KT`z@F^=A)?U@y&1Sf@Ib6r6y0{G%7aFP_BB@ zAf!3DH|PcnxnG=nnIVvw43-)^s$eU?ax$~;%`=18xmHP@uW<hCp8utF;g?ZTV3o!)&WnL3ET4mF z_u>rQGGWgeccC`B9!ItvRcEB<2^Oj>a*{2t*-;^wdF|r@+_VWtQ+`{tX*zGa}kKy~jeNYcH>i_1zYHF&^IcJ~|yzLIN&B z@5V54CcNBet`plkzj+NjWF@aJ=h+1~Ok?kc&lj?{_ak>=^=fG~ofn(CPVo;;w7Tl{vzOJie1?L19UuLUuJJ;ZQ?9WF`m)oJ%d8a*DWeABj zyyc}%3rN_ytK5j%1?!+cib4AsNY2I63TC++BrjO{TY*s{s*In=d%R;NAGQAcV*e~j zs*1JyBjkFq{aTa>13hnFIrARhJjF*2y33V^i}I2yzU^!b)A6vfQLc88XCT!d_`)-} zrco}w_tO2-G<=bCi;_584-1APr>$;$f?3A>m8T_L;85t4xh^I^GIy@ci>32H{SIG9 zk)sfC6g1(}JMZ1W^1%IFClV8cra8+%z$T*b)(LY9|m#TUYBF21A`p6gxz#wmFJc&j2??(ckFJUyo zyRluTALj7^H4eY~U|rUK)bkMCS6WN&gqlecmfp~^z#tl$of2o(X3k^l&Y{TG_MUabDu=a^-e+w^06rYg~MtZxpsRfq}_kZf+;sI(N%E|yXQB6ZRUQnsWYF@ z*>hB4Pb4Fe(k;>F^BIMj)Tueg(n*9|z0Ih0aS-*AW}z!?W7xS(<(aQRExaB2U#8H8 z!Fc(GW9&sL;#_Lj%$7RQvvJLTi#}2$a7uaYc8h*6hi2#1ec&Qm4hh8_rlXH9 zYu2K%CLz-)WB}}q!S5qBFF;mc__Y%MB5I$VP2>rsVz7R8u>3b4xlbMYr1o(b+Pv;R zGnS|@4Pd_Se4rl(-R~^-t{=c~Z1Uvr@&e+>fb5p_ti(Hc-$K@*HAJS^Oxf0+o$TLX zSFp=cfb^wyp4c8dhL71tsgs)jkdk@#AiKd3R_$fk*0K#_bi?7lH}%*_)X7&*s9RPM z?xoFPH@b#UKJDhEu{UAW(&kH|^f<03nD47g?T13+g&?ZY0*-3({_elt2A_Wa+L`Hk zRI-#KdpM^Lv%Fza}-2w^i)vy;5VKom>o5A~{)V$b^FvlGVobPqaM;E^j!j#5hG zb(R)ER1|{JDn_uf=|h;Hj0lml=z1_S%}%I>+H7`4ZFs$O>erksh1_ep?G$mFl~}zx zKAWB}ij(e}TWs0}use9Y>UTz76852@^_^fd5~VE!%Pfj;g@0UVj^zR1o2hil}Ej#NQX z@!9uo5z{Q5l!i&&beaU!`{I9;vrJ^csQuX+4hFKa8sh3HQv%%!flDQw{qXda}7`1R<(QpKBUv>Z^J(R=(C3U7RzLzUUc*QFJf!16WZu%+#_bzxnoiBRL0 zUs^#_<#xr)tU>H^eA_BhDn$0lJp99E+KY(>O7Oh?EHV_?1@9K}5bg)U9HDIuNJ?lo zn<(o*!@ngi=lOqln69+7r0^^DQdqjH)teCZW$4x0{wd711xu>cHbCsx`4pMTRv1W~ z509aYgC}Tzu!`dl*6FKnoc~4lk*R~r!zI;Vm7L@?Zl}WTx&!67NCWikALZo-)T8jx z9i~WHAO7%_xh+Y_5vMX~$DjODcu=cow+0igz4SV+yH!^DY~lX&-GNBo)OKIk?nUu3w| z3aj_)Q%!GEG3_E$kb9*U9o#2^H|tEG_4+B#Mzwl$^p6V$>rBE*zt`i@bS*6F3k2nJ zd+^69z4e$2J=cQA2Gl(#5&W|B>IJV3ggfb<^qFQLYO3aI7k6?J@n4@G*S%{(nt%*n z`V(eCN@jD*J;cb}CPO(Z_dYn!FPC6x5^mLf_gZ2(Ny@pVrH=CgWZCphM|t{N9IW+D z?>3%;!WUcBb(d#RCadgv&)>C>BA$DnRj321c;%> zg(iwhFPyaEugN*mJ>qAP=kd4_n6e06|9R>kXk%_)H6%Nc{rXN`P#Po2=>4)U(TRaH zH!K+`ALS)>{-G*%F5Q^#J@|-Wxf!jSbEig*=i*fU;Hl@Fz33LFygigQ1KGD%uZTaK z#HMNMo;5lvVE=M+Ha2bqiCv8kw_0{XRqWn}POCx8-}&&ms7;DA^IHhpv9%fmhNQD~ntAM7!QF#8WW8F{9g@RYvZaedK(9UP?*|B>W(Frv3 zf*5X~zJ(RSK;r!d>{hNE&0Lr?7_-IGWL&2bmXAbuaW*kX@YjSBJ0@v&Ug; zAC``y?E%-rUaKFtvh}`J$OlH^%XO(0Cx)@&a_x4`L;Cp}CO-PNOu#L-O0Y6~2tf%! zce!@d;M?ISHh#(^mQ*8l_Bm5ABCVRka;_7yyB5a_OQlG0;=yIUTXfDgeT8Hu3wbMc z#?CyDhYb14wp`G!MN;Oh4EKj2n8ocZmpDlwnv4eyi2k<>y>8dpY-uVsR5{;YwBRGc z6SXCqM+fn=-`&D;FBLWG8;xfB#$okpxy&f58)HSIJ;_^^Ve)Kuvd&sI(z%H0lqaX8Pm!FvG&~w?NQ_3I8 zM9ifm)USvy<3NxW*IWyo>pt!M;u5v+5FHFwy*-Stf7IR!c8!1`>0(#@e-sie)RT2h zstMmNzHL|E-iqCcv8z{qF5@eM<97dlB4o|}cI78cU7*Mr|J|2Q-Z4gGYdD{cttauUe5LCJFA{m?lAzl)F14t`8t#eX3ZLJPn*1 zH7@U0uEF|-J9_$a^j_%U`AR;Bij7}ohM1Ct$ur7q;P*C0!XGFxmVfLIDhKr_YyTA> z=Bt#W<&X@S+?$F3gYuc#=s46(H}5+eCKdxcMov64=|(V>{n9XMQ6w{E)h zAIAIjXoriK$P-6%#~!CqD7pd2CZojms2u!=_OSMR{s%gx$+=T5vk;VG9k)uLg8OFZL&!{_(sVKLc3~?Q`vL!%1BKclLcjoEWj$ z5cF93dnc;uLJilctU!!+Ogi*yKf;S?EG{NOk@& zT>19}bvEF=y})-`WgEIos@T^{F_7aQjv7zrXX3^dt=au;ZD0>B$>DRD#p0`3H_!jo zqbDmj*J^t^R20``|NP$sGE`Ed#oqKI@M@Um?c`1SWI=!Fmg2|%uonCl92*Sk$ zeo|!K!2j_`54wkl6nDcX40iO-R#B*kn$Rq^xYmvx`-bHb|1y!~aK47t87f@;_;!u7 z^+DJ|eO|+*6(^5oZQd3+jOYhxCKHiE*mJ+f#l~k4cGogvUtVa0Y=Ks$3Z3tkUz7*T z#_AyxzNb2EW*9HD_q5II8i0GSYYUUk2<*CAoIj1V!b@S%K8u}+On=zOp3}fZ-YW)F z{%LK-37d#4ZW(5hUVlfu^t>SXKL7v#|NjhEhdUKq9KQC zu6o=nd~=k8SRQv{5$F~oJQu`lJS#syG?it4co`j`I=T&-k<<9a%-s7gZW`jhH^i)| zEQPL`#h2dpbZ9EiDrIgMfSO;*;avej1OYk=jlA6$k8s_P$hDqq`4f0x$JHXd&fGkn z`+6P$?8Cm4fM#S^-4DMJ%R;tk(ZhDQFG1nbZWFm5LPV!uO?#V3FO;h9J^0|#gy%MT zTk^i;pd-v0&T(CMA`on_k-miQo}bI_sElGwwnn6_ z{Ui5j$E6ZXHy63CENnxRTlhdo*(_|PaZln@KT1oJk4D{RK=?_<@Ew*OJSlgSh>RY? zmpeaGCOh*naqxF-#J+iGYi=Jcu3{k(+Kz^+mPSB{ezLvHvH(^AtrBwQSqNk6m98zL zJ?JTVoaNIp1cNv~!S{osC{O*C^Ws1^{M-gY{$s0xiRI@N1M*X_LaM+1D>~kWS$DRq zZ9}{ni{nuCYO+Ryt5_zP24~({=>iodBBSN``=cx``IbjXWO`l=<#X-SWA1}+uQL%+ z-NZ^BYusAFNLqy6$r3!$p~FCXM(>9yAE66}OSO_-)Eny#7( zkaUB~ts5siU5dRzM=-%2Q{elWjkE`ia7P-|LdMcUY`DE0`EQ_ zAf9zg2L~UnBKEzR6Hi)y5r&WtN1`paX9Z5N}S8E>P4o0y8H<^g}W}cVKcL(t`%Ieupe5fv(rCA0&g>9G0>80i-Ns8&>oP5rLTk)=w>Ukg30LXq83_lvd37`RryUa@o2O zGBKGD|8YLf^iK!&a_Os>Z<@xWu5!eG&uU;K) zi#evCPP~b?s8_FP#O`}mB}zAD!OTa@iERTYGSM5&rbfZUTjTp=WiNI+KmN)w(FJ#A z^Eb(?%X|=X)o?XuB{MX(D5WAk^7WtTZ@a!Gh-T~vTl8chR)!UJEM440XP{wc`krp| zeSLDZ=kGk$qP=5Wi;e6~U$cJq0bvsROCeuFA`asU7h-N~@5Y1A3n7oyXJM4-7Ja;T z0Y`Vniq_lz#c%V*UCfj`H1Rzx(dTBM^=DR&Ub_&nXV3SGeAI(TAhn1 zeg$~X?#AF<*5%+Ra{$w)dia*5Z}L}VBi&D5P@t~GC4w5@82hBPL5}3IavW%IDS#X2b)36CxH;uJ( zFgKwj7&MTQIdE%1?SXujA2H#$y}I!5So|gm@&gl63qGMlT>P<5b<#J zHM=)xzGF|NKVTw@Jp}$Irw@vz?4(G0#n*|2dK~y7 zdbwY405W6h_Z+LLA-*(dED+X#Ty9bSn>S`q>1=q=czoH1n?tm2mrSA4vi1VM!U$em z*JvKl8;3ye<672%<$PGll5s0^4vLMHU)!!z$O-u#ZT0#I7_&rkZKVE%g>B%LQC}7^ z7n6P|!;Oa1f-&-ud;8F>6Z|Rj*#z==2OkT{oRv~ixMTs>>Im)7Uyp4yK!O0lWzekywV;oE^v|v69Lh->S|PfNLzVq zcmy3ELS(^UCzGt3uB28ip_+Spp3SA@Jn~_g$xh-SM=m~S^FQBC~wFB+eU1dCszm5u1h^ zT?LK3SiM0wG?sM+I{y15KYZ!}i}HzAJ3cp|sB+@tRNXY*o9}!3Z)_TUQ9eDp-U^cM zy`5nuTmM2sm&r*^p%ZC$crrY#09!z$zoyW9#^Ej!Yo_wQw4Ouo9sSjrxv8&`u8JG7YI1ID}9-A&8jF;9NBvX!>Ga4yUP6C8K zXXQHObP5@1-&IOKw~pK`oY8slPlV*2U7Ov~GJqSmlXSoBoB}JOyMw|02ge_Mx^8@S z5F|OOV&A(dJg;KPN$D3Pt7Kp9TCL4WcI58-E`6g8;mJP+v*ap3DJimF5hX!3s_C3f z>K{cjC;b8QvhK{=hrc$J^AXE);_E!mQb@OM>3VVJPJG<2|Cg>bhs+R)Z{{%yF`%2h znqeD;pnKxWS*-!Y8rsKJ{*odVbUo&kO`Y&{d!X&(SPHjf?Ot21cD%|YUmTLtG4dp{ zShczihC0W7j5dx#bS`5XZMqL;ancdp|MlZtyJcv9R|j@&v)!$8G6OqLI)xrE;3qr& z{-(OwQpnZ)dGxv;~|8`8`J*qEZI${jv~wYjZI@w(MW{ajQ$vwYW^2Gsq{ z(Ze`ay*YZ_=MIdFMVC6O)uK25>)-y4fAD%e($?wK45K5nVUK!fFt606$hcI3n?)f0 zv}h0VU#xZyXcs5CEUq;_RXd@^f7eE~XB5$cdn=p7`{7-imRUEzOGNCtReoOVMQaOZ zV0`gcys_Lb)=@KpRy8^PRGWHaTS{I0;J=8?-X=L8Vh7=DDHSmKrWcN0l{CeK7MwDq z`#;^;iN(1%S9;|b+De|N?+a=}aeiffwnHm4_g7qE=r7=9m1+Lpg(jpp3n|E1&4Dr_ zbL5*-4>lGbamz?)$H*I_fNl0INDR7QO7?P)Pu{Vy=I@2b*3N8B3athEaJ?p7m6i0Z z+Vk|$VJ6bs#oz46wVYeR8b>PXnaK6nN-OsQR&w8|yl20^Ah~!pSp3|sBp5EeQx`na zj*6&zzO;L@IJ>)UUu6~(`7Y;TmmvBNdZ!)7)BB6?vLs3^hIaxv>$h$6ej-E?{%x6G zGVI02FO4=U5;l{zqubPOH57p25_g+#U=m4D%2(sKYH&3vN2^naoxBdsJoe}JIHGNn zlaDBik*w6!4vDWPag+Xo68)hKg|s+%56ygZx-7oTlj+8X7kL_W3Iaql_K%_V(GeU7 zS2TG{n2G!@|NcYI=3y}YDy{8vJ)~W{GsI`x!08pM(;_QMW}5ZiwC0V2>5uyGNkIlW zCjQy|5Mw9jtV^H9N7SQSJ#Fqqb|l`UOcZdpFcbU5H;EA(;|S9d`)e1-O|*Zlkm$%* z?!%)G#xxAriMhd%8Qw$HnBZglvEJ4V|MB7sI;9m{THa2t96RuJE{dk%KY?1}_0^`M zALo|nj+AaD63JfMvO0DGTRh!96tgeyzvyc&8lMXB&?_*fMsXGbTX-dvS?9pzuwpdy z!#o7OrhNY6Sq1xm_|@lca*{P2@@I|9+Y!+>`|+?;5B?b%$xjB1VXtEsiL+?Kipxo* z0;g;6P+?Pyx8M@|XVoi`v|Ra5GAA1eKhZ-L9idZ1rEWd_VJKj6&HE( zU*hOis{w4V`7opvG=Mt`>n8jqIEd-{Ps0TD*pz-PS1Ne{IrAQ~>#uT=_}wO_{1_ah zvc1OcbO0R(5_ht{-YrHh@);Lsy7qzHU$@Wb*AzG++G5R4cEN$a#zvJ|jY;pB)1Ms2 zK($Tyt;;_RCGB+D4O@Ql?%q#f3FW^Cd@GvUWYvO0e)7-v1kS_$;@M=kV*(`1v9;>= zVhz-3IxWJqK5*7dcd`{v!ZxpI+i8P!)Dxz(EDo( z_L{%(*1Rk+gO`hpZ+Okvus8|fh3Ds^O~r{-pLKmtsUQjdea*~dpbtJ@ltz5DW^n4n z>w@W{B@i+BaP8ccQFxrqP`xELhhxn=Te+$H%R9!LCv}09Y&}^WcK=Wt*f-rBqeaz1 zl;2lq?x85zZ<5-wSWQRN^K_rMn-mfV)=+LIF5>AN({=yKH0A?ZV>WVhBhR6vYIM&e zlzztbz1T$|Jc>uwWj!2*GdBmT8v5}-P4$}F#0H|^ZW>nTz`!i)or7`7rC|Ix|1EfD z7cLQ(Ao9ZVn@!PY0*4iNajEdZGdMEcV5| z`__x@YgWQ%3^<5;#zP9vf4$fj#o=A0J&3!CWgRDvR6~2;)eFTmcA_h&n=y5Uhv;8i zWX<-ZqHN`~Nx1a_So>~|9g%2w-hKt-kuZE(i|c0V6Kp#N<-cbXQP zi~sf znU7q{`7k2+Eb}oF;VoEtT5dA{yYLlPyT_W4Ci2MsPFou?0(z&_CAr9hL`l`0Vqub2 z?dK!m+5!&?mj0+TCZhdH><&xEBocmdA5eWq!<*n})sAv@a%cBYxkVc*p>F@W>*xbP z51iv!R0e)@&p~dGfAbVkxfYuEe?R6_|I|T^#;4 zi#u7{9IVy}6Lz_f-^%ZXp&+EVyTVj~L~;3+Nj@upt3y!ukj*G!AIb|0?Wl#|9{$StHRTWHG!`OO$8#MdP}>+pq7p7mmX-z-8+s? zFSnl11clV9DN^pc3}9Wuz?s9s9OSj)a>kr0#;T)-xE^V=!6Y)Y*l#r*DV6)5k0;S! zKNFmje`O3qS{_Mp5)7EXzv!}Fn~lV-*d@q6Ifvs{ZrI-$8pp@S1slRX7h+yNE46u2=0iVt9UG)Psh=mL(6~ z(NRRDxms#oY=Z6aNY4cJW(cgC6zrU!5W&{A%k?gO=opKiP(R;+V{=+V4%m>fTN0&Fu9V#^NDGZhB|$<_k-7`5to!X>RQ-_ z_>5M+D~eSJdLMrMKo7X5uw}a?^mU>lV%GW z5s#4`=zRNfN9*+*?yr8#?3PmucIy)NHH&myH1`;f$Ymm*1l7ux)Y!;ecgXGwCalDO zW?HvCtqV8f|HxOmQc zh7tCA^wI6X3TQfY`+k%f#M+fD^nS~4SloIl!kn)It*ud;MtMd-b_IF4Zs@|-B32fO zekvSabQRrG9Kl^rdf$f~`FO~AS$iuB7by_yv)Mb&PU@$+w${Z@ptB?^bJ1i0dO?0C zE@zA(_SK<~Y4uLLw#$FuykiJC@*5cfzHEf@bPHwpNe_g3I<~VkFfhN>!S%gVEvR;U zgIZC{!vaoel~JpE-dy1yqN`Stv6hBFPv^qQO$Kd_PpQ{xKL%4yh% z@kAck(}AANJsYnGiIHq8HO3m17JQkxt)!>Y4zGu2LJHFsu|7VH&sy>?E=`__skWTP zZSl*6Lxoc)P?IT1u%#j*jAFCNe;9_l$3;A@4&xmyOV99QC#VSu)WZ>fP*tBPcTVsR zUe84^BG{`CI~H~}ux9{9M%`j}7pu_9$GL&Cst25jxyh@43z7qgSL9VYT98_Oc4kc-6UEten>Pj0@mfFEo#|BpT2fraHA_YitQqXvzP%O^#k@CV z`)BZF{I00Oo<0;kcrKb2GYawdml-KS?Kt%PAgk1?<$YuJNs3OL#7c^^_}jon3|;pg zP><_?%Ol%&@}bMTQJZovgaXOMOdaNYJ z<0cMlUe8XV!(Qt3cybdS>M3PolML9ooH8v*sX$@&)jFGl)98vga`1B&4^gANc@$$- ziu_TX6-pvwh^GmXBlq}-*xZ;yR%i$IC-bG85t>Jkm)DA7(+=o8cb<7Q*bcFM-xamK zwt@9;l=5o583_3sg{ti6!_`yb!7lwZ;9#?x5z`bQiN`5oe(xl%$)CGAizEBS)2A0DjZ~*@9vpjek$x*`En9or*_y{7YPvR z?4=W&Cf%^KZ0T1w83D5+pGwOdJ6WQRyv^D*j|tvW**2XqU>n{u{r3O|aj0HznR!!) z@W`$=b4nUOUR~q2>*_r)eLZo(?)Mzha;I+(hIc`=TT%Vka&KZy&4D2u(9i+OTFo@ukW&W8M*zI-Q)oUr>%no0sv9#~4UD)x=fu zQ-D~ih3{P*}oT2WRg<9K`%d3-B@CaPvWeENH*#zkfjgRWVHpHl0PnZx~SMy>%Kn>40wsec7I@}f%R#0VPIv{!b8 za}z86(et%AJ;+O3CE@NigEgT8SD*3}fmlxV=?sh`=+XTv4HG3;bSsi}R-J)CdX7Z- zJsLg=R)@{h$&v#jTh|Qi%EJT8jk)?Eyu|(5cGHJ@I0zSe@S`-H5!~oM_*hl14rX5u z7vC!DLAaaWx}ZO!kb3VwQndCbdM+}Q{dqV@+K-*dX%VBK`Izo?yx4`S?ava7B?l0g za3RLXjfsft+>_V+xC0X=EmgvDOISq{Z=}{O^Vxj8P?akKW=}4>H9Fh|z6V_yqArWr zc{6xIVOi&$=L~!o^;eVLgh{faI~`Z*^rz2UUG7D(_TrpBXz(1d-?@;z2+@EurlPbS zR76(k{@aiXyH%$fMN2AB*Lw5LQbaQ}=j=FLI69#-qJCMruLY85vf&#|!oP11JlN8i z$jYFt{0V<*kYRjhC973GRF!_}4JRAiS)rV9Y-e-cu@Z#I`-@Gq`=vn?ZV zUNfK?$;(6zY#I@k{8kSk{m7{ec@m^3gSK)huo8RrC!bj?WF-S5DFxqUmhpw@PyC^E zBWA={aiW@ooVs4!Mq}q7MQ5pBncF#u0nfJW0Y7I^K;t&(`qPHfKlVGxCNsckR<)_r ztqaWj`<-hVg~`DanIhjR*@%es>9|9Tc05&y@x4XoA%S;(TXvt|BBGI2?>>F)#pewd z6gvWH@WW}P+L!-G9gI>8oys%r`*4nMv2jZ&eN z8!}OeXET2Dw4Hfxi^gqWqSyc3g@+aEp04h z_Sz8-YGpShvW6a7xlrN9G2&~!o0IRVjO49U7pS{^kDmF&iK}vVHDEEoTbD~KqL67-s0l{Bt=pF+HrOxsK8S} zVWSx7bQ)2W`pQmT%V%nFuy=s^ZQ7rP(ndT@~!7Ohi_PN(2R=D?eU#M)y&Cb9Vr^P?P!|pwGrdU7NzCYh`JarNm z8wSs_B`(0nFMbD|88x|16D{sIKaXffVyCFfMd;Wng0{wWLT+V8;}~Tc#+Lg7R@~`H zXc^al(C93*UPwqO^F={CXu>J^HwVd*jrWmg<0MbaoMLqAhjCUtB*#o;{e9g$gH`$( z>I6#ZUC{}eB;&Z-i?z5p#n*Z6Ui07?M!|tJT}9KDuKtuU_n<%V#Dmhu>{W+%t);uL?iXhX%0g=)t%2 zKWD+^bvPk3b{W(kb~a}xRw6bsRX8-P2bYW_H1Fw8fX|c7Pq(H6vZlt`t&@Kd+~w*T z@pl|^0Xffy(m2RD;aRzBUssU0t&~Ca5jCkUWb9YSpdy2-+g3vN4P*DVo=1T$bi}ii z&n{AF3R|K)WBC(%u_-sTYoUvVgj9El%A|hAjlk;yD`kDiN{gr#acu`rF!h;IwQh_L zo{JQqS;B{`tT@I*I?^Iwa^*}LJCRupY#zHhFZ5$&1#%BnR#4TO zZ|&ba47*F6FDhv!5i_I0pKsHEue-v7H8^GwsUmhr&1@JSwDsIOlsA*{IAd1n&lzxN z5$fqXuz=60rmDNcd*R};{pYYE710#$Vzd|S#LZF@`{SuI5yTASHTrLv zz+Vwg--)03;JqAXTy?Pw+2n{Z$Iw3 z)-aKLwXEBq6DD8MY<^r^g6@~~1dUMePeOn-Mva!#csqRi?AnAbI)-d1V`}oNJoLF7 zI~7SN*-`appbZYkSeOQ=m*A2xA4bp5MXns{;(cSTK?Khp)O(WI2F-27-;+Gsv5KE~q@aLr_0*{39?y9$e=fBVM4a%(uPaStq)u1NtHqlQ=C3Hcw z@kOk|@ecU+|5qQhtrIdm_bZNeP?3VSE*?ff6X>aZ=#YG81@kCu-ZY}@c6(_7wDXaEBW@y)W~jaWNzUi)hL1b$v0 zE%Az;LYGa{w`h@i3{GzgOLN;mOuUtt*-WU2g#}Bv{=Pow@T-QK|7(IHPWi@OSwvIr zf^1^?6f8WbLWe^~v1RwfYt1d|xleo9Wm4V+ySG|AbnfHGv1l-{792ycjNvmT`4J>u z=st|jKI{|o>;73JN;0Zt$Kv$4NbxD9wU>HLpiG%N{@3~&HUf8bw#d{%@n8GdSHe`p z^HGud!5?k*G)q+5Ef)bj#F19=Zd_chg)RP@o~NcaJ_`G8)Dg z1=gY{kuhi`n#!E-T7}5?UPb4MWn7Za6{V+Cp*QkOO%!V<=C{f2lb@SL_&W)qXqpy$ z=;4%nTu_0#w+c9IE>GadubJoh`5a`X_@O4J&nmn%O9f9TP?Nir)%3rQ=tERId6AsKK%U&wGSNNS3FY+EoHH#WU=G)x zH&Pr$VUhE~tn@$R*loOu)6J+HZro0LE*$|swp@3~9E9ByyZWVfT;#FtDKmGL0koMt zUC0!hhv!Ucz`MskarzM3O`Cm_P+rxTdPrT3d*%`9ZziU3SZa?ms~-iD_wz(~_lS@W zmCf;ILrNhP7=6j>3_E#m?kjzHm5w<0CR{GRI0S>FHm-dV*iim3{?U!bkNUFLfiah2Dr>YX}+JCmtn=P!We4x3yo$ zQ(&y-ep*(ThHMk|tEO$~2M4buf3fBiZphb2TP8N*X;f#7FUvS&rizT~KaPQURqWyp z+r=Z!L@g2%e(T8a$EaGZ$)Tz7TeVB|-Xka@+OBx@mn0U9hAeeOt7IzA;OZ>LD zBkvzf4h!Do5bMOtyPgxvySv~lRwpO-x*y&4G#l0mbFnBClcp3o4;t2?QDgIZ=mez& z7&=YhO8%P7w8IplDrm$0ZTJpnHF}v}u4S-l=j&Wq&-Hd4N6ChwI>fqN;Lxt6A?}{1 zCfPZgK>H@V)S;V-^j?49ZY|k`Of9?bS*&xY&EMTmqca4a7m9Bldaq%MHY-|+uK|i- z1?pZGX-M-&N8g^paoD5}>{D*(M&2uDw~Xg2$Z`K2nC`f4-o%#IhI55g_ky^Z@M-zK!%H7% zNs58N!L6g+xbIULMq|=}BGZS`ODbK6jyzB>dxMtroUrMbdo~42=A(Q3@Q z& zK)s`cjp*q~nKZaH<5>is_Jc%Pvh3a4TI$P8{`0KldV6jNzX#u@rUf+Opb%5osr?M( zu$Efvsa^B9Wxn%t(&9Ka9@Oudrk%w{Pmf}czG;|WVlo~wXvdqRI?JKm6gbFd2l;(% z!k72~|Dv`rkZtA0(e?9C5^nXNOKQZ=*Hlg6{j@|}o=K%QjaI-0G zss&Sm6mQ6%Df~2J+&C&cis;zkZR69U@K{=NeD!G@krhTJw!R%0;5bwHY;_c+`x0$t zeAj!Sk$p809S5W2tA$ie3NA=(A8eu)C1EC?x{?la5wqCHjfk$pv6A3JFBkIBb7oa0 zJ)#=1d_KG(2Uif}2<^uoXo%Y7Q|a7oUGRKzeCmQyJz|bA=U*&hB&W^$M!q{WqO4D7 zfOr~+M!2~K{3m_@Y;s)xm8{YI6b&{2h4lWYUab-v`~ z%6YK4j#R3IH6Ye8tJ_qh2Jvme-{l=QTl&-r!4&&L zMz*I9@&Z3C^C*qry7uqU4Z#jrWj$CJi&;WKn-}NOKRS}>yE(U9jDy_riB)v1Z9v$~ zkdXteWuO-kRDIyI-g9C&DZ-R8crttr7AkH4O~pXp*T#Ohlx;oU^Kv7p|FTDWW6BV2 zX0BY{b8-Y1IQhpK*XPWrvDNx!@eBG{J0%|&w8ELovv!6d1BXqnYzZCg!{@ww!HXBU z35}ec*Ao9A$_!r1KVg}HMeqrQSJS1~ANE{CAae>F68mC(t7~ALeaa{Q)C4|0f247I za2(v~#4F?&Ke@$nVOf^{FHX;H&7vFPB*|$5G658Na$lKFBcrTY;B>-u>p0w1jQ%jdM+$s|cA2tYzg{pGW7IQbyGP5)EUR z#gtaTenJ1~f3GHB-05(HG|ofoq6N zGA>SmM`dpghxk@F^V0(D$LA3B ztl2({t^rThDibDirVuBfq@Er<1E;awJj{o`!vszq=(@O94oz{D~ zj4}O9%IqR|(l6hUE^mO4T!p^sG8JJoX&4(w?*vKEnJAT>L2#;!`HpA3coF)Oz0Gb7 zY$+1~SC2JOhvYjTuHWS?thb?a! zs*|fnu0PPX?S^~sr00v%z2K`23){2CK}I{b`i|0;L-pB1b=XgW?_x%L)z%h-^eG%U zT~!B~C#pj8o0$mrM8d{0)6)NvCzU`^F+Vm66K z^*7Hv^Q0!tGMSX%>x^VeMRO?~g`KDi2c|F_9D;j(xA-fEek8Zm|JhnRgJj7Y&-l%n zU}8`wA-_mVnyI3nz760Y|5-KosBLNi#iHKoz#VE5$=LggCw&8nytVe_Y3LvXbLd8~ z?r*LdPFt)ZS;)QmzwzA@!5t@?5P#RbL73L~iY*>4n_GLEljN^2s++7Xc7 zUR)|SiG!{0IgbvGLeaJ=xpQh9yASQ}Z{Z!rn-tl1R+^&Zz8k-9%4;?vsBHRt4?`uC zI~BI5y#0XU-%YP%ZK@z-@9lnIVF8ci7?ln((UTEr4H|FSPWbJ@P^5b!{O*qZdv$*k zDQuc@>2j!tnbzm7;cp2rJAUcN@b*^hN{@PE9XNqaaYwXlw$I|Z?COJr^}IgYw)1ZF zw>ey$dp5+g?s4)ySJ)R(iQB^Of^SOALz1W0HN=aHocOfyE0gdfw%W=wJ!A4iPTSm9 z)-M92POCxU`g-rao3r6o@xVNuB<-yyKqPy=`MK@|J0aT9?*+z*s<3zyVC;UZY%Al*tHwho3xDDZxY@RMR~8D6lG zesI$H(Tnr6k}TcKllUH}bctEC5BqD~__O}5^W)pZ=1Z69iTS@co5sL3u=fnKTwt!j zP)M5fm-$BArCktvUB8A8I=`meR~n#CpS(TDq7i%E%wM|@wS*0ZGqSB3n@Ej~MbW=^ zOIT9p42%_7g(Q`AmZ&o$(dWFVwr!Duw@eCRf+bX>Sn{^zWGg*kHS3;Bmm7srz0+8E z79a7DsVO=~DF%nF0G0o`mz>Lcr??c~02#WsyI-+);DQ^^fp3CK_~|&3l9*3To@}~1 z(zua>Bw0`KFF$RA(@sJ2D#c1np3u7eJ*f{yA5LCTkEw*KVh>wIS`#*I@ov!69)tIX z?8|4TxJZq=)S09=lTZ<{lg)J*!S@#eyJ(CD;5!mF-JDkp>HVB#d>h&!(SP!M=9vr} zX+8ao)2bWoccUzLnRto958;=p>$wzAl-(;`I0-k;@CLboUl4gSExz}~4D4IKi-y!R zqN}dsn}NUx42m1asSBnty*2xI_3rii^W5c{y;eCkuU(Z@<>Vp}#p8y`@(d*7{Ssqv z2nFtS{=BRjzhQKDz#yx)8*jBZ^BTtb5OU8v_wKqkA1*(f{7{LSgslCnc*C@cE`v`N z&bRw<<5G*~&Buc{DeZQZ%5Dknxr1K0F4M5%7qxdtpdv>zImA|-dy#ro&P_OU4*xVg ze%uUe#hwbYm!?Jo5UrwBQ987Qx7$rm91Id6rM0#`F}`UidTr;{-!O+ZYtL&hzf(Z| z%-{NQoq;fYF#G&#djoC}zsKrv1t`*;_xn-&3pqWvgZ3r%L4&G%m)p8O()_0*ES5|` zF29<2zO@ynQHVa8nR^)r0G8ywt6A?BvFetQQ?S{(#Ex zz96M#7<+=xKbbRbhXTv_?%1vxsJ4aEzR6-C9dW0h3c69?d@65W&-)%6SI&4XP}qm) zE5$nIR2<~E-OGh%suRe$zx|c1*%D4^kF1r`)FGcCLRjtC24Z;2?7VbSCAe7MEL`|L zfaiDP%KXK+$+w}ulKYwF!TMw0H~HZeu*4;4Jig3G=+ZQ41Y9`CWz|-vFx5V2W=Eei zygz`#$l5Ubb&sSHy5xLCr4bIw`nFYO%aD;u%?gR!MC`Y>iY*qjqpq-H%sgTNZqwN* z;mRDufV`S3TKBjs+&*#R>-+LvhhgiT2_`b=tdaDSX9R=k-;_4*Zvp?sD6b=7)TGxd zyXsEV4E|cjPt)r*&JfF(E0!Htc)&b#>uMj~NbRD?3eu1_0@OZ9Qk^&< zOl|LfW)k|=HR9SE`jKz-Ey^Qo5K(JY?>pqSzE7v^Vgtejgebt$Eg-Mt zBBS@Q`ElwxMq$P^tX17E({K2m)mPZU)7ZG?tO=)vE57Fab z{+(qpw%+U56pagRgJ1ROVTywgIbwSJR`xbJ;#1ylaA$lKM>W1@uQ(T=`-wo5i!VJ9 z`;sf|$k~fyzP#nyrqexP7V@^DnVZ#h6d~eKho7F` zNF<4J@uO`tL`!RO#Pwkl6dD^~y{i}Q*MIM<@*BdI;aL{7^?zq2lH#$RloEE%OHSzFz26~#0nn)%)?rwtwWV8n5r z>L3kiv~jh3QpHV9c6Rz03@@S3NdDWSpG%;$dx~X$VIn?qpNe_2NAZl&letQsiiFs` zoVMU+BP@}h4=7tqLh8}?Z&FSo#L7n2V^sPdT(=@IGH`pRa%Vll=QfS03bZ4~ z>+X0V%M#>5DoRp#m(Vi4-%DuS&js`)M_l~7@iQ;xwP|h@#2tbR`$PIL`DMP3{HcbY zMQ+G#o(|}8?;T{mFa?^kH!kZuy$6mvCcdPF82bI4ngI<3p@^*Zps&Y3sgX z+?mxe($MKb0A=eLnyv5Q;Hf%N5ZVd31LmXJEPTYsZ~NB>-C;cJ4)qsW8^L?c(CM#3 zzu}({!)bGS0TC{n6W(NW;55f@HseY^2HM_p8+}>;r@ZDB3x5ux6&h+OMO_6t??X?n zaID|6H6DE0rD5$T{D#F0GCAY%R4GtTQ1NbhD9wO^ z!ko7>vFzR0z|gSAV|W}vfo5HyN2{QCG|xH7eGVu2OYQc=HDj?wnaf^k34V%yJ_^#! z;aXx4{ayNeyls%!HkDL|5<^bjOKzoTGF>{@;#rLnM^Wqjsbg@I2)twxS&P5Iyvbj^ z7m+CWpt?h$17p2!UXPehAS6htc(3CC?r-bQmU}!4xfE$JKx@{xpOyqVu#<5*OL^S?lkWEEUqIqLX@fcmV9hdK5{kF07pQ zaNO+9PRiZ}noBR1!0p+%YNJRGW)D_=(k<%%>n*0~>>1a*C?^sY+cBo*A>SKCc_bq=Qy<=W;vP!i$N~!vXx-*6~W|%}=PMNFSu|4y^ms zylx41Ggxx1`X96og74EX*L3vRsSblp(RD-(LeJV_;=rt`Ml0~ z+mQ3DDXmOocX{^yZqFt>-Cu2|>e7vfl~nmKF)^~2HqJhMX?+jpe$QBDL?d*gkM@=m z^_ZByuFj`E4sO9)K9>i_;5pMBoVhxI{{a91|Njh^2O|}17=~r=2ExE1~C63GTErm3#Ve!Z>Eh%6IoHW z119kdM3Q6O_4xl7$&_)=!`C%g*us2vYuYMiQq;je`oXjpU4xF9wNbTjK2NQH0Trgt zi_RU{I*tg3FHLc_+~kr(KvwR^C{9`~oVXDsNPNsfFAU`{lf;~@Gqz8g(VpeP_nt<@ z(E5G$mnl?CuRb(+>S8zQ4MyXve=I^;`@!9Oew2AU{ey=Feoc_9`rM84mHpAI& zPIHJ)6W#5=#6f=6XyrO-(eT<_z~`UjWqV z8Y|jaFq4{iGcnum<7oKZTXpbl7s%x*zej6|an^=6!u)3s-k*}zyYMs_xt&AXwq5K% zS>E{E4RvwS9ekxiuxJS4CU%*O!hOhC$+{-H<2USlRPV<(tw4WNNPHx_2WnD;gH?$7H{JS0H zh~97LYb$XxCHJF*`ch_3XBWPxiAa1MsYSyoo_}vWr(qfv>}6&&hssS}>tsE85VYb$ z8>J0GG$uBU<@*f&Fx)IQKRSyX*M73hX2Bp@R#lJT7ac?l1Woi{#%D`WUzk=GO!+#g5H35-E>wcM1LBqw2z zJHiJ^~fItTj_8d+4~O#UsNurH`XDoHh0ke#WdUx?a22SXop9#V=(zMg5`**mE$}^ z==`*m)jeYZ$+{fJ4_eaapFSvgUWT0V@ScXPVh(+qHZhVnHloxk zT0&&)Y?&WLSC=r+wvKcT4npFD4@bz>4xBVnOw)_xBQYN<-Mroxf&Gp*Tm8CLumlZE zjeB-s&O}?Rul_G4bYq__De{oDc7>XbWfK@?GkTcHH-I~nKS)Y#FK%)44SW<7B5jK{ zz1Q&%nn?n;g*Gqa;h+C>_o&vPJkDj)CtgP43zIB0Ze4q_SyBypJpJacR@rvi|IR`@tYQsX&6>cLu~{vcy#{i|PZ3|jLhLF>tqhXKA@eP@Z52Av zx{JALOEL{^(oLUAt$V>r|Yl&bwl9YkH?D7X=qx?KP9lS z4bSg$aXYM@fyHX8am~UZaHZY4(%-v;6KzsV=_y0_ZhKlG*Hx0_5*HtF6Gn18=2nrn zZUJs{Dxd$R9RY4}kpb;k3T!JMoDj(zN9@H)6}1{Jaw9R=jbn2IZX1L$KS=xsC-pPi zt#2z6M#e1Pht(8}r!{(s8@@mpYxpvcQ5_!m=Zkpkr-4%G<^1930C)xS)&%bzfNf3U zsvlzg7|J{O_2twe-t_0PwN&KcOF{kJzBddcS^1*EbAB0eaZ_QjieVq(wmuEMB<77) zmE+y3o=K7ppM@2!k_9-tvlVt6W+qS8z*y2W6W>NUom0N8BAO}61&mUCc)8!B{JMWF zCMQ?==VGbQ(M|qO#3*TwU&| z=DV!G^@Giyio-MLa+;h;-O5fjYO0z=7tr??82DNyYzZ!xyCe^r3XuuRxcnZ@MeJM( z*-e{QAx6I~yw@yJFnPA?pmotd9GVRKCbX*_H4AQQ6gPHYX`A7ZZSr&Q?JZ)9px;^Y zrhl!x8O$WI{jtJ58ydW*tlcYA3S`GE-Io;yP$WFSv)8K$2h`_;4!-?|uOd%&QX*Gi zZShR{w!It~*_;rR;mSiEJU$g+qcejWrrU2TpXtDN8H$<@P$F6}ENyuA#!*G}x&n8HlD>=-x< zd4~`gsZr>-xeJM1t7sb}SO~|Ba>-dW4zig={R{5`1q<^ISNq-hNttbHt0g-(NfVe* z3h)_*>A}TMQk4~`sy*SwDl&re{@IBIt2-ep_tE(`y=P^mbrewXH8V%2j)A$cCR2ECrN4R?S~%S^g_4+GJ0 zd?uoCfr^yR*Nzh5ew;7wp@y<^k}OAASO35AWDhID$NS!2VKnKvX@4HQx0@Zs%?^zt z`Fz8{&QDy#EB>3!S;Jb4ETwtA6fVGMSh>0=XDw9r86HszoP|yhe_@wy7iiB9rF|8i z#(#G2iu}@AaV0uG)QWQj9ZQy{tbVj%`?=p`(SnRb_QxgV!7cMpx7aQ+f1?l%J&cKz zrFI0x>h9A|sKVPtzvQ2im3Z8m(LCwYjiJ|GP9dW8uso-s^1N;w!tNC5sypq-&Z~CQ zOc{jO4pDP07a9~*bmV;>kD=`J_^JOKyP>~$AyDHiC+W2nR9b4zg&UhymxcHD1Vm%4d!Qr>M&?r~d0{^73c+%q+}CLlW$a;^cr zm4TQmVJEbcAIkmA*@#?o)aAOwNmRM)=`>tsAr$Gba+hlYw=(!#+KnEpo{NY` zG^1?p0q?y@N2a5H5a4CZ^!*tX9_H&+IM3za5Ks9A#+V-HZ2bO^DYFLS%F@c^s>4vJ zF6q?eAH&2@7nPrWPyR`7elKGNtzB(ub=E@&)=McgpfQq?Xs?s=KZn5SrtK~APLvc^ z?T#~*U?8EnoKnV~`EaiF43+nOio;UrVf77-Sd{SDyFqXqmk;cXb@b*V3BGUF48EtJ zC00DQ#BvnNbJNS(_9}#`08K!$zkV|&;8_ET>z=VW{Co}?!^@wue{0davTAVSsxjDo z6AzT*?Zt7g;#FL(-FS5K)|k6-H_qj<|C+3rMW+PMit>Lsc%0J{`c$2fl(9aP8XA-% zl&67nB4?-=Np%i=l}Z0( zGK!9*kKd>FPKz6Rwx;l3oI1yI`PY{oWM@z>_LL4ITC;IsouvTD@Mf|~yj|qxj#TZG>s=Fs&E75ac!1Sni01b~$ zzS&??BSI*)yDFBl#mKhz^?cs@R}uN`xpLmWrts0R_(gp%E0N~Et+Ucj15GkJax{Jc zxnoaCZbO*tegAC7>q-VM0BLibRtY{pU@h|RpgI#FhBSBBnlGs_+RBU!pqjtan5ZRyCy~q zM}*oT>k*>_D=WnSfVK5J=J~mP!SEx_Tj&anVWD! zN{FgfUy6t#Y3r9KxCnRKxrToUV~92780y#UgfBPagFqfG;&`2%cJ4D9iF3A92x4x; z8z${176!az{qvVe7xj6`mk0ZeyAF|J5+D&LfPP9bh#* zjg1N`?fW}hpf$tEnqtgEG=6P!Ke4V4FJ9_?KD~Aj=T~$%8e(~fy@?2SB@c1%}Y8rast&if;vTiag&|p-J1+r|G@orUV!7vLbyx{jpS@=05vYn zeJX^3lyLqju@39RCF9jT`zB`~uX<+nmZeS{F7nbG{mw{Q^m;dYYIWe$=s`=zCro52 zz$JXveGwlx)~Ww$E`?m`&+w?#U6B2Ady1*K7FLgczE8Sd3S*vuKMr)R&{yWxzUSG9 z>Mch@raDLP;$f+E=~5dwI%8r=uJl8M_IUTx<#9~(UUt4UG>YGat|kF}-T1f?BpY2v z=SjblJ?>>W=!4C>&c#uvU%G2m+Oi0zsE+CC7a}C4OUU`%CRGyacqX4YmWH3&&kfFA zZ$kPyAJ^(Ae$phnD{8$_DIlR?Ik2k=mWR3Y`RKe{5cutEs#gPS-yXVd1Wq!N8EPi9 zGK+oc+?4|3BjD9^ZP*ppjijlc<+now$Ukq3e?Ar+SaY~-PmvP?iDA9IHFifG*r&P_ z;>BiAC1EbzyS^6R%BSVoEC0esEj7xOkBNNC=~=c+jgvOm<1&tH=pDC%+~ zLbD=qof6&COrFeq2&h0pu*21w$HK&a?V;BR_I-Hu!M^hawF^qkS4CzXEuo0!wPDQ} zx_>2yg)|maV^nL)^%y^PQj)($T-bjY0fGZ8(e6VS?@K!ps@D&LgD*FzrVS$`__ov2 z2R%5a>6drp88dmxq-x_NJ_(lUH}a)_d%*AfxIXOaHnUj7GB0=8ECEp(1!Vf$>?F$TTPxg6c5b`01C!pmS9`2p84O!vmG)_0l{ zN7%?k<_@E#;US!t87+U~FGvDuF{~MCbT4_7Cm;MX556NaD#g2k;G`r`T`JiIvzR5y zcCK+SemU#x-Yr0m&--0pO0GlE(TN3thzTgZ_?yvpZ4J3Ncs0sqLo=xB%GIkhUc%hZ z**r(A7T&5>I~mNzK^Cs19OUhW=GrLDx590R*%8l2B$g+r&=Ju3HNDnLO(Ck>q zr@7rblGSq&7@To=v1}H*oVkDIJ?cg4Q3&22Hf3H5ecvKykgTRLf_u9WgBr0ZNc~Faq#C!d@T&}jB3_Sa^u)VMyQF~>trEm>l zZM@8BzM^^@NRi1tU)7Br-7Hz&PbT4=^WdhITLUE2c(eotmN0+TUe@#aJj!N;$7PLL zVW@Dy(KU^Rs8Vh(Uh^*G44#l@K0Ah63ObU^2RX^|Wr@#0yA_COT$8*ByEI`4^)hmk zVJ2IIeZx+#Y60)Xfp4PfHSjAb+voIq7T z9l1LWjVS}4neJK?QQn-`=UIYtSEqX3u?iBI(R51w)hU?r{IZBQr|;cY)LW6pPc-Mb zbgT^7h)JNUQml6q{2YT;=FGXsCtdr)3Wa>cW$oyj8pBcKQxm67_t%1U^7r*YsVP_+ z1n-uTYJnQ_mi1kd<#70Eof00}1N+0XzqV)eBIhNWT%=43gz_K#y>n(98*bW=@9fiv z3$bX+(V9n1#PyTbLK9$pI}xaIvmSdI^yA-|u#u*LQ~J(yUn`K*&zwjeMuyyazvC-> zWbgR(dY5k!M88Y2QpG$K3VZqD^WKgkH$A;RYkCr~{(?5{3*5vyE+$bcvKo=|ryuHh z6@&G1^KN;u4ycCZd&7{G|J2Qf|wBgnB*k~EKe{f^&p5v68LU4yAWzCCWxI9`6 zu%z?T=FbNh&S!HG=6if=J>7mHvgfqOSj7e2^k)Zf|UP94SV$i0)-z7D!)Y9Dy z*-%;?PI3k3-%6T*f3vsYxwEzSsCI1M-J%-2u(jy?TE2*5KYsPuPjZmAiMp~i zE5o2f@1|I~G86L+!Xv3he8ky*OIzu|dc@`Jj$XXSK$MTMsT{a0Odc^bo#-xWfz|T6 zyQSWJaHua!Nidfq?l%v$@)*ux^5ysQ`$hBUp61oRp;?e{v==69-P(tvVNcE1NmKFa zvc*qky=heUZ6DM#`H7uJH%5x-)!-KA53|Z14)Wp1eJiDzew1AKrg5}j0^FBc_>H-! zs5xfSa_QX|9vi*X{o~P#4%wcTaaDR=>az~bde5RfY&0vl`yUpC7zNd0OVPU3XoTTa z2V6we`qu8(NwYR_==5S@Tt;VQ zp2U)jb!O1TLHPg9y07?whbXV5=sP$JV@urr$&s}@#MVShAr~T9n!nj7;7-AF%d*Re+ z6Wca~+_#Ee7>okBlD6@*KrJ|!mUdl{n1tw$^NQ!t36J!(k7v~zQE1ZJb#Sx+b01sp z>GMutFjM+M8pn6sme;P^y`GtH%kh7Uxg$?TSoUYaw-Z)&4aO$3kKibqH8rBePq=8? zKN-Fm$F2)yLOPe2h|Xriy;g=r*xzQV`$TpUtRrJ-k0j{*ykW1Pv1tS3qD7w@2lb=X zXjU>hrw_N*oA3XvC`#7FIZeWl1`~!Wd*+QLNML{D_ouhGh>MA@-=J?3T&k>|pQL+} z>bH$vFHTaC+^wPUyr~zIM(YS6sTn9AeJ?%|%};(z$QM!7XOTkft+b;KKzQWCJ~c`$ z7PTq*U#1t(mwR-)R;?d8NumGkwVuPh=yjnv*0Q9Xv0wYCl?WLW4S8I_%}Rb)yGi|K zn}o`gYNQwoBl-NDIceAA2-x@C__@1q8ud+Kk3B5~Nq)DwywF=_BKJtNl8d^QAU5tn zDQ_p5FHFY@dky0j1o_S0G(a@w9sdi`hdIaKbgR@csEJK%hzO_u9}W4$*}QqA3slR8 zTw)-}Y}b4YK6N0a@}87Q*ElYc0yA}bZ))F)xscjBj`nMZy>rv}iGl`mP_>8xQTbs} zFFU9}azkHttY_gO=9d_{*(lARDgG@f1!FT{&sROqFmsUk*h-Jgw17@dVKpXS|t$GR}k z+@5J|FHE}3ES%*%*@%YTn<$)ah8pA5hZ_6Y$?ii+{zg*#WcKCjtf!Ns_!1(2?S5`O zB0bmyw{M+8Ku-7ppNEZ*u21+azqf3J+I>jc1Nw$)Wah4KtH?b zBut-Fr;`oSc=f(8YX8apO*ilBYiU-pW)Y%y$!^BOlQUs%i zH&(&o8gGZ^yHco?yc(Yz@4>XrmmexZJjCd;bW1wj6Tahj@xItO$lR|dS;Bo#UDK$` z>&``9ZHm>dW$r@UwH<4C6`4r)>1yY79;-nFSk$|;W!j3<8Rf8{q0V+nLDWnv5{$(P;15KaxF>Q=sw)Iubt7hc^ZrJ zJYGdiPOdZV9&2Hc7JIcx2!^MC{ZNH z6?cW_cdkeio}?F%HuB>z|7NH4i?@Pbq6V>CJtwZ}X+=n)4|s0q|` zsi)7gr2g|&(K0mGG;x`^QE<4jtbmWs)zZGxc1d})U}!FhzA0M+pTo5c1Jo(VSw!mR z_p_0`R^ijHMf=edH{Gi;$V6t(FmKBzBlOk}ThtFK?H7*X5A zm%!51j)>Ryipq+6QTah*aQ8bIB2jVnLlxZ{x70J|JC=Qef6`)sCbreP>FGUHZuIxgO8sIpD2s|atLa(q?#BHVs>Pf#mH;IiS_8434N zsOs$(V@_#9qFKwS!qb^(=sxtyEUp(M^2)I1HVP7V2vN9xkKyk78YlJaNhnJ#S6tfD z1;*^oLgUOaB>GMTZciIPOIQoPT!8>N$!j*6Au)pWf!rs$wOL86nNCpq*?F+^1U+k4 z`h~lzA2@ja2!x1uV}tJf9+hE+y$cM%Hzt15U zne+~s)#oA!tbrUK6vp5(+Vu7o zRNRfa|5kDcH!}Pvsb_kC#Zvw$841EUeB(T1Mv#6{FV=@cjNA-Q)(+O-CLM!n`>sdek2LJ&7{|uLRJQZ9V#%;2*N7<2*@){v|PKDC6 znj#H_O3}^;B}FMS38~DcL@1;(D;e3_#pN2;#kJS#?{m)QjNkb^&-W?0x2pQg1QU+y z!ZwwS2oZDnhca%4<0vrwtI$Rn0_~H~W-ZrxsIFQsy0B*wsT(d_<@q!Ox$4JUN@@!z zwAJC`JS$INb=Tv5wg{n0-aam*u#8AZq*+#c8bh9)tzG4dMYR9a%)Ebc5Eg$=om%8( z!raoe^O=$`dF-akm0H9>VovLO4#%nz>Np3h;$#PI3>P%m@1aA}Ov^81brXyo*&^HY z2XSJ7<3r)sAuJ{aNE_U$K=bzSMS0n21jMx^Nl9~%SnlE86*LM~IsCh=B{+^5|Accd zt!S`a%^_;sJc`a+P4{+3iV<^q)RTt>3S?kKN+{>WRphb7owGJo%ZWZQ3ue=3g=9+T zOY!U$^qme^uKHg;j6c2Qp@kJf^*l?MTw^!B=*6j?n-nD?m6YOIzDY>7Ioxd-_=O5q z5f&m>48B$Aet&~jkRK~n(VQR6qIca>FOh5AxHDK#BfnOXw2yG&4wah(+U_KFz0D}} znseX%kdxScTTgAV6(Z`<+T-FX4AgTa6Tb^Bi0j!zS_94@1qQq5+5tysde+|4<(!FJ{R@PMEw*{5~MLvJ2&#jelR*$VyBf zc|iRmI|;th@nRWgEmE{1ljv;}*l_m9-LdY&3F~tq)6_gfOKDle(i*S=DW}I-dSH6) zb-J2c2Rf1qeXA#y-Zgii(VgCl!hM3mDf8n<7{9WjuYm>@jw?p8TAer*@ogc>fs1_Z zGf5rXUxX=Z45%k}BiQ>y*@;VZ9GiTf{c`sT66`uOVQMH!{KbzJtUEmlwfVE2=argZ zQkolnQ%;0veE7#Hd$zS(ZX3xwEd=ChM+swQ(n z`*=y$>F8mh#0CWYcxlaI&PkdlH$PNiNR#bu>o3peccTBC{s(UEUa*|{9C|uVhCCT% z$rPoQyP;tu_G_Cv2U#s_2x;BAlFj7_msj z=!?70{i9ikssC~rBl;pzvz$HR6`07(SKl0%^&400BKJQ$+KTFdJ0>g5zTm3fsjMfW zz2K?)n;k-F!6es<_Ar()Y@C`c;HaB`oI1PNUhi%sy~$5cl%wP3Iz{h@WEz}yHopzF z7b8-77rUl~hOzy4^0$A9EF{ri+s?&i2Cq+5y>B-vLU`M+?`KbizA@Vkwe+oLhvH)E&BHVo8DUmoSau`V=(W zzLw~4s20I0k)2uBr*Q4HwP{2^2Yf?41P4_cu*~_G$KThr2pE-gxv0uON=lz{z4TYG zHM?3IsbVK=iZ^lCJz1ikC)3nckH_up8HRlJ-J(r_ zb9k%Ps%)9jh>KD`*Xa25qa!S+-SNLp+$kOJZkX)^C3lzEv1fF6tUYVi8qtNfLOVS^ zuUkPv*5>S(-9LbZ;~Z|9FGPvCVvK|1XMPe(B6?ScH-K?uOW~YwAGV|)-}3Ji1A>y{ ztOxjpz#XooR}RMIfQ-EM@`#SW?xpvu zOf29#H-h3Jai2VUR`P1rg;kQel6V~3;ZkBRM8d@0b1~xhNh|H!FQq$UFmF_H5bT(R z%_Ar49T7B8p5{wl+%bZ`uGWebL40J?F*dt5o1M6m-GYw?l?iLXdAm04b`%YUevw;G z2iM;|F}F`G2svWzrxi8=)dCy+$I*RAZo46RPwFp{dhMk(-%r77-^!}xTX{&#u@zf< z#d<)~;2L=+G>M)FFZ0lxAz04N44qXP!NsIsE=>yVJ^DwzqE3Y@>)Mf{F=b$0e~@};Z6DH@e4G*fqQr1r ze17-qY4B!Unkr8#MgDnBlr{sk~bAWp5KsM;{GUyIzUCXUt!o$gak2S~UAB`$-g>QPJW& zF@g7I4{!LOK7~-(2L3eRZe)EwG2i&92*#7AHFU>B$zZXu%e?Ohd^es*H~cn=poD9; z;`ay;s{Jh)k2So6o%FX2yL|`OLnqIRgbLS+<^Id2X2AJ2Ol7SL7g3FQrqCRjAA?#$5wdQg zxZv}-ZcM*^n5}Cu4+X8KKirOUkI@!xnIADp^nssnMBRz=suXmIA~w~4tcM`}i&ot%BX zj0EWEvMJpeh4hC5O&$&{_!IF*_Vq>)(!VvxacZ;~{CDCgq(QU`~1}8yivIR+1)sWfFzO9LwUh>F_&X9y(*O#3|WjLlgdsc<^%hgWz+`V1v@c zAL~i%xVw?|EV}`BKbya4SvCp^KS#xHxmrZ~muLiQ*McuNc!!$gAY}Z+s}9PskUcMw zwDy&C;#acdMCu$n$q?|SGVOWDXwuOiJc>=IRv#QRi{~O{{-WnbsnR5g<=md!=Uw>W z9whIj+lOt{j7__SC5UU}F8T;NAGz0*ElKVqAmJM2wD2i5aw%ZKQqgn(&G#IQ9VpFYH zjW7MIEy~F=D2T{E@kfG+dsnj+EGUam==&0*nao0DZ|AuDqR$|r)sI{92| zTA}M_rWm&@7Zn}1Q``3S!gJ@_X;1BL{4kQV8y_2k67!p5q{B2~MK#A&KJ=o_{BdK2 zF%3P_e2x)@eQ?TbjBnX0L3|!$@_Gw0;Q1|AtW|m%347G8HZo_R!dCaBb!RDls7ikL z{wo{;=@v&+eHoaKIlPQ^i3z`&G_Hf~(&Y3Z-IuRg>Jdb_n5+FC8{w`kpw^mllkD8v zFJ_N);oM@T^ULEOVeZP2Zd6zgE9*p;h)pwiy8XfXV9QRdxsq&~(AA6?saZN@S3Q)y z{)>AoHH=bUyBmo+^N`c1;@#2BMox45;`a=cBx%p;xE(lqV822`sl6Z>PCh+Re)^n5 zs-@B`US>_Kku`p=8iZTMo=nx!Mxi@P@0gRYw~ zP_T2)GpAh?l+83})X?R~0~4jP<=^`7K{FuD^tljGp52qbS6+aq&gQHg53NUk;ojk6 zG#bJM)>CAP$Kma^;vW&V@5z{Z_e_uYVXPgi`Oy zHFqKC)5`Bx|Ii`ty(@Hl3lm&dcb?SS$xfanT{n=pEkjl}9C=n_yo^*`|7owNCrnOl z7v;z|8w2If2VQ#56r9^Q;tuvvA=5OXskVCvRtDW!;NT`*rWdar9AqW&4&Qq287LCw z*^aTAvL;+Tm&Cy`Ifzf9<=FD&2h3%>vfzox=-a*2n8$FDL&3#SnF?c4^1QzO`&mVQ#_{2&f&>i5)7mmyX2IdxKb z(qyvebAMXYYI0`QNwwso4Ds``st{G9;4j{Z2$oV&PCvY&ZmItpPGuNu`X<`8%9Fvtk9 zGH)Hg>C7E%zOSW7%VV?+gmaT2-59YOjZ6NKTAgx$g_Vq}+057k@e=t-;qdtIVSH@Q zba}k=A9hM6wwX(FlN8$>HvjT#aZ`)1y^s9~?Z?dK{p}5yaEIja$W zL9{_tX$qz3BE3Ef;~2fzG$w5|fuN{I=bOqpP{)``_^R?9{(tYrSLjKQi%=+%pUNXg}J7DBk%+YmPZ|+8sy~c~u3=Gs+K`tS#^>H@A{a>VZ*7 zLnwnqfoSX%KYn2iD>;8G@J~YGC|rsb*1u10$FATN)bNGnMBu~q*QuL3@yB4#^WI~h z;PJqM|AzT60#AK5^4Us(Ymu?d)}JhdE6ca~(xGuYDBOQWrF0O!vcx%Vdo!e7PQ@RU zp8~JGfH}>f9Uc)rj~3a+;2O}M?Wo^`XxhGTr;0Ju2qZ`!Hm$>PyY-_XOLgj znLY%*@#H%AYzluXL#3v;+o8$(>htaU&Vc{@bOgNvDE)6T*~o8;=u?R^36!>ZJzu4&A2 zUh8z%qr+_S3VTW}9kd|J{WRwW?B(Zkxq15&wC~PRURHO3kNc$F;j_!hIga(;OZ2HXUxcBs)E5}A5c>nMz0OOz zz?FGC$v?6N68`6zu05?tUH?1(rDHyhlqY!aa_fZ}{Z^20)DTKz*T@N8X5!f_)gyM# z9Jc*oZ2W962%R#ue<6B3xXH_=wCNTVZ$CcanA;>tw5rl3)$TE%8D-=D-F*xi3MZ?? z*UzD4GWPb+jz3T`ptZKTJw=?PXiiNR69U7LJPJRVh$*qK=9ZEnj#{O~nPyEm<;_|& zlgCaTyxMT>XX6~Ilg)4aE9^p=`qx8}?{l#2rrD)z>1N!09Bx-&%BWiA*cJUhMEPal#jfrmcvS{zAeaUei9`g(o~l9vD2WP zb1(aOc{MCQiFIZ|2q=#Jm051=NpH5c&Bq7_u!0 zl6xmC%|Qq5e%WsIiGht9LKiEpcOub^Po8>3fxJz)ue+jw3NN=)$uWLBB)UNLrM!gz z`CUeiK8dZv1yxX5fd#tAeP5e8ehDS?!D= z9f@k??^jgOQJ6mWf>}QRSD(+JKPQ*+3kP4rf5ww=&7n8-#&Qq?9r$bwE<&g)Sp-Y|j^c!-_9}&U6JTGtqu^k4H;ScygmSy};rvSWOmQX~Y5IP9 zxUPN?8tFUjw_IOIc2!!CE%aLO2A`AomeY?^wf*6RPF>KJpIWtQ-yFvK{B1sqbRxJX z$jV9gA6zx3H0^X|@Q`K~{l{`S;jWvG70m2~tJ9A|W}-7VZM(BG(};_fy0+MU6-r<=Hr|T}hm^mOWi;>qfHLV1_KmAZ9i(4|y51 zV3)RZhh=CDewo%haaA8d{aPNqxaFc`K6`B6)sh9!|3(?U?D_=?v3$&(UW(LpH?ty* zlnK^Z-VF$u#pfqJC$B$ez3~Ac2HtUS?iFzeX&i%A3|Feo$0d$4wSB_wo{PN6 z7iYI@mn2PZgsSf}EcM6k=u(5LOw5n?t{Pd=oz5+uivwS&@Y7i(T&gHWZXaCMUN+T>iyxgci}=UTK2yeH*u_sAhNEiM zF5OSiz6UF%-q$=-) z@GRx{5E&%ajoP6Y*m&+3*{5tCSB@w{mB_$Yi5O5Ca-yJm z?O0i1H;f}P^L9^uL}sB>R){hKV*V!$Zgh4c%Yc(-^1>qg#@fp6Y#Kw@swhMD!T}gX zh0rpVa*}snwvo;KQRv^e6cbcU!9$tIEn(J6I?Yj-xV60*-eHXHFE1w$Y$~CkQB@C$ z&BA@s+=1c`?a_~es8|)XTZg%{{-52-#5$uE2#fiv@2lk`m8UHWXulNI3U+!uJ z%dN!^O`Tli%#fyd)CW=GzGD8m*nKKOZ0{BU2+w|qU2iZ>3hq9 z;^8rSe4SVO2&^|)n5)$@kTPl5P9GbAiq933+@(Hz(p#at<-ljeS(_f zc>i=BmD<*R_t$ch_-e*CgUKe8l}m@e*wK!w`ZrEK@GL-M)#%X&?|VVorgpZYfDh6eZ(6wlI(v z{aeF1au{hcC;naOpNE)sE%^~xiTTWiSJJdN>=jSs)QFnF*6rUiESLO4*m&;RdtPZ` zrS|aCz=u{?yT9GmIKx36?{jz^7qXP!-9-jJ26mxJx0XMm=qG4$o_#U<+To)*w>It1 z3>@~{Ttd8VC|~w3ic{!An$0?YyMvu@3TP6SzA}s>52JlKIDX)g>s_BrKNd0&JwD@g zT$qH>3i;T^>3CyXU*Bw*hpMJbRgHXh^7c#UZT{Xq#0W%-Z*3SsUS|%IC3F-QQqLvfy%luxF+Rn+)IG zasJ3g+Sq@uekCA4+P1Gdt5aBuZ8|{@p6W3m=c4Scbd-(g22;9K`NyGlk$Ela!7!Q= z<#Xu`%ZPeZN2i+8Al!5Xj3>$mVcC<`$hVw{e=BT6=WZc+qM8%KXKLe1yK^TG_t@livPB+{w*f6#J{_fi)M={`0}J6QC_|q zhi7bt?lmkx|Kg)33QN3@c0rh>bEz)54Ie%BC00Ry1MOr-Q7>4MdGGu7_rj3<=(878 zR-!K%Y$xm8ingx-@waX@U`)bnL-*cU@I6^d#S<$lmP556&#Fh~62zHtjlM zYcmPqP`cr>S)X54CrsF827FDN#iX;uji@j$eef!VA$$SyA?fxyhI~Q2U6}f;c*^CMZ zdCGeKPW^-P@lUpiOe&E%{nhvHV;Z%x{Fge~#!&ovc=pyoF|t3F)q6gho&594IcsXy zj!UI6Not$sKw)*(E4#))Ob%?6OW#As)^s^pPq{vHJHF+Mb`c>n<2R*j#v9}Y|_whwI#tsKxLuB2DiOOSfoH>EeXPJ+7ps`Eq#6a29Sfqthr$i}0OHtxDSkF1~= zfz>&`p(FF!A}OW|Ct0r#d|BcyUr#m{M;y}k9@W?g=k9vxd4PKUeZ|v+xxQWGpsTv&# z)cy^xw1vrH!_37t%|`59-D$RGq!~hbH`~81>G-CH){5W}1>4-SOFZy*%gGn> zbWB`V7Eolg;$E{ziE%~^Tn6>jrT*)}Zl1N{U6XPoW$(AlvqKCNTKDkVM2>-N?aAD8 zo4a9MDiO((AxxMN%_{{C_hDX`x~*+ZI*jhkcm7Ld;E&9NLOrzukG7bWkDZ&x>qdDM zm3<>1LxrXb{sXv~W3eqbuL)m{A3v!iGK3NHe$B%Yy*Ql_YQU${hr(3Re!cKkP}P3k zJ7YhC-5d#dl@*OBVEs6jW!DSVwQGi?1gOZ1y7o3|-ypJ|I$ZrK(u}zMrp%oOxrvDL zjHMB{$(<{1?*l#CKuHx?WvRhM_GpK-`&$Z-@AF?6WBDld{p|j*_c9-O zW!*irkxiU%XurB}H1P%EZz<~+R`%hy{*nE+o{r+&f-WUhe;lswczGIBDzW+S%JNrd za&hQv-zyP!`cj>3N@6=jiPg)mJa4ad!9OA4K>8Bru9&lxtfowy-_A;S@-O>HZJfrtF#5cwC?6U8kGsXsgo5sidd*_bIxuXs*qI~p9ZjS4 z3}Y7>8fOEhc2HOdRq@402JaZ`AEsr5RkD&VV@I<0wlT4r8e6m7yA94o-bxDn6x{N* z=GNOTLrT(@*AA*Nuva(JCLyN}eOh~V8ZGx`|&G0s@p7{ckDnmJSm2Bh? zU9gnp;TZl?dAzf=SCZ@t5gKK5H!vA>>A`vvF(=oWd4%Ne%ZfJQCEBHTt{!Np!C-cg=ZmF!XFoEzSklQ!R++A- zGU8s+RgYoq)hCCMz(Ce=rzO9)RGQ*-7{KYI4Wo{C`%w}pxjv<99_yo+Vb7N8SNG{{ zqs)al6u(iHyrjlSI9z$63;z=$N~vG8C3~l!kzjaP=!*ooKay~<;@U6*47R!l%rbHL zIzON10Sde`$C8FkJCOM8w_kelG>R>PO><3VkVZQ*Cv{Yu9JpdAX|drCPDhs?f1uC< zR#m4$so-IR{vK1MLj3RsQ@p|pop7Hqyp6hlBQLqU?f zgDKtWDmz&|%&sjJxsDW=^Sp7oD@GWnWBt06263U<=e6>$3G5$z9Go9pfv+33q7H=Kb>#2IKJTTqk;!Ywk6Gte_j6ithAvML|5$>SsShs%U$mm-%vxRRwC@N@ z?v?wg*$8eSE&Y3cXP~Z2S@NtMgK^rj$LG0W$ZJx~H14*6W_ZEIaylIkFI5GmbqSF* z4nIoxPcFiE=J}#_$`p?4m2Wt{gOLmga9g+-%|c~x1C6RtfmzvtC6kW-IN^!^6G=&%Y)8u$PPbT5)0)dOxiAx9=%OANQTr1&>?dPTO^5 z@W=?3f|<5g>-8gl?|z5X=Nll=^}y-Cs%n(x^Hega(*WKSM~jEu@Q8XQz*}2|fqkW^ z@A-Rh-g%_gJYAevW(3-ph7aJ&q=j=C`y{LmtKH&Pq~iCV^luzuyySE0OO*{L`AoL$6pm~!VPkp1PO8$JrB)RPk~OZ0?6!5W80I~{ z`;AyPBJJz69O@_VV)KKoS+TQVO;a(NvMPt_`Jc1$)j#0HD-|xOFon{-IO!+{0rIeq zL3>Q22XEFtN&liQOSre`%~UDDTXOC?IL!^3{SV9Nx7w=9@x+g>u48ApFI*#MKdi$FX zmuN8TseLM{LLm}47dz59>)=0Fy05|P4dU|@gy`JNvuF!BUoG?8!>T+v^>Dom1zM}CCog?O8$C^g_O#D zj>-<01q(|;l0jMp>h{JTJjlXEbfv4LSMl{?#^dSCp`LyWQ4U#I_st+Xa6@eQaxK<9 z-$fJL(}d5*eyuzBX&yS}(Rxq!4?_3LD}HmMHUzlmir+GlA;$FmpHu^A@YfQov>%y4 zb!lxqxum99(8$sNMO+54A zEX2F&l#*u7FjgyQyFK|q!#~6I+#)s1MBF~=v2IyAQgr*zj?yV4F@I3zDI+s!@q8<- zI?qK;8XH_|O`zk(0sFoEZo-6-%Gr>tM@R5DOKm07III`WOEF&UfSOEbaJOy~%5}d; zZ_${9zqS|kBlkQkEv%h`C-}(yiIzRXF2%T^&T7BKq!W?WM(YzOlVGXvmi=>+o3z{< zEE~Jg3|618fMffp@cn*apIGxehBqH~y^|_Vu>R`pUp}4Co7ti8t#lE0@AxdKd;Y^q zXWjwNTV*)){$^7_BOj@M8#XcB&q!`uS?#g z3Z{eC;n-9LEl%hDbUrF3<SGb5h5%*+^ukn+=ra~7_9AqHwm3H^9jyJJ|XlH{cRwa|XY2^b414Qwy@2b1eBPZ`>+BC{h#TmEcVfSj6@$b4r9-nVKg zcKn!u(yx0;vrH7S;2dD&dV~%t)pj&JVgMKVeqTK#FHRIoUzRZlQL*^YFu+W+1WzKl z+k1a@AjtpjjYAG;V16MUpmL%WDiY&aPP)@rd-I6+wLc@E#PlA@jqF80yJS>Hdpm|8 z@!YjK14$FB7A#u%$y|=cB1`QuF4hI`OUJo9aS+4K`jDmOQk~KoU07ujkxd zO(-oldD~=~a34FI+;1;}N&2Jm+5Qel^^X3#B(;k4L(ccY3Wo-yPFMaO>czzX7wgyn zK{B5GY1uEU5$6lPk6N>|BKpR(m0bTawxw0=J0hNsfO3now~mcrCPee+dW~tctbf)! zYgYwJL6M5W)>f1@*9~5G8^t3X+3|+9K4{9^o%<~)HZpN5y*gPpcHRBXug z^EF~xy)tK2AX4`IhnA05EZ zU%`3`_ZYSWy?PS9x*6U#KYw!F*M$P*i;`Nlqxg?9>R6ZD0Z&J%!rT9Kf{*H`8TX8V z{CQ$*@oS+KvKcRgERv>?#I3o}T4MmuW;;}>_`7kSHWwxF9eDjocpDRyoA{Oor2qWN zMRqz12{v1_A@d2daNb!aVr7(LxNSv`d&NAhY(jdm=Y~>ItHB)hoigFq6=NY!$L?9V zLzvhz+Axgh#ADu3W=qxiCbX#KNVoM*;P@E(rTz~K=ns5$MdMr-H-!h%#RK^X zQ{TpI+&{N>RQxo?y|^$x?EHaPV>U?< z!ay&Kd1y--22*HrJ(du%wGS^OL}RQsGZ6hp_r3{>PJ&G#<5fE6ICM9s`Ar%hU27KHQXw=1!qOqtpDwQP*zdcdZxKxh78T zx`YK3f1_h}-?tX|@DUtc9(~KUz)ps=^O`2|s?r$+dezv}j> zqmY(jO6`*|2J)=N!eHG;7E(AX?0ow2Ag2Fqe`mVF5ABrVW$RT#Ski8aQ`|9y-Y^>d z@mwoH26sO0J5&#;wlgm8whw{ZR{8oL9p;LS9I!`l-x_Q%X3+HM1l=Y$L~EiUQScJ6}q z5rM!RZHovD%k|4pU&8SNU(Bq-e!+9_<@NA73j2&dvmW2m0A3j-O+^)nPZwTjT){j5n8 z1CdUS9}&6I3Dz5N!CIyrI3z#97I{FNjCZNLC{-SVyomJn>YinMNR!WNNM|7~qYmbC zJEl>4A&013>4Db9c*=_{bMTFA{xY4l2(jlX+l99e!wU;XA6=#)>ag~iV8(UCBC|8( zPj4TBpB5#A^j6}dYSgYOwH`3I#>supOoM^BSn0!}4yb>4`bB|00g-E6Zk%n$4C)ysLYj4Cr z;*{LkmVeliVzG&gvXj8c{m;nmMx47JpEc3B2sPQF<(Nagpp-w~;vT|IPQ5V9P97ga z)3bIC+u9De`BIERr)9i@;zYUUbfX z0(&Q9eo@({aWF-AE!WQ~`1p?myDoMjH>drw*3>XU=|N(pfixWG4La)-{|AXD0t2nT zRUpQr^fFDq4QD7PB_41OB9S$cGnP_=*2Uk9$H z_#8xxiVU2?X*fkPAF)Spk$^B2=Tk1@81g!0aZW7{oVN?6PGyh7l4_C?QP+Sq_||Mc zFa_(OyjAP#hj7}EafmsLj_9nhkjVLFutlZGrQYep$HM;@9)BK#?^pgGC8HgPoz?(i zK%Kt{k-F4{#y=%Bb7G^(RGPr^g$c*zsd$PA75bmSG*O73lG zf#-eSxH<0v{C)eErW!hi4byQ)_v-Q!_a52TX&Q70mVHT!FI&mAUxJxG=Q0x~L3zW8 zw~Yw)NjIN3*9y!2h(nWF0)+oHr`_2VpUt?F70mFZ5A9Oa^){W%#GoXI&q}Qk@6mehqoUqc1reFNpM7W6kmngj}Ed8j-ZQ8kE3mcK&6Io>Ev+}Qx zOPsT@9nkB0dG6xjF$is`xN%8prT>>U)%+D02G4Jl_c_y1z+Lz9mna9(W-n52IXQ=> zHMiM1{icz_NRB4oE`t5VV{(i`3wZ93?GbZ|nRJKUWYbkab!sKI6sL#IpZPU{%rw{g_B&We#nGO2cE1`FZJI24 zafCv|#C=1qGjfx**^qzt)>8A!c(Z8RiW{q$0QyTXG!9bNy)Aw1yy{i{*A8;P;m zqHY#^MDZGzqpWlr0?$XkQm>{ERi)$eCVh-#d2hEes}?I^Y0mfCJlTtL-~C(VBLvBQ z->DL5ranlCUAGo+o5X`8C2rfuPF#EJ%;!$8gqefM=D4c^Xj6Z-)VgO5rVqT`)p}S- zp+Cj5{qrwm53lCei)q4s@tk4)V-&)FBipg_xghaBoA7ezaszmDL`pbQN1?PZe|yS* z1`H8-A1aHbNbd24k8E1)xcuLDi?PG=C~|SL&){Yxu6m}FHJpWr)}2b-m9YfY53?bi z#=}@DE7tmJB}mTph?q-hv5?sKRnHSwxR)dI+1@F20sKdZqa)iN+_c+xUd?d`D%AaL zRK1nE(QSTk)}Di;J>aTSxw?$1u!=x>d>_PviA2q#9&A74ZTxiG8j{_7M{UmvhaL7_ zP4~LMMCz^UZcChDAO&u-DlZ?5g6(ipN^Ct942nmGuX4>`R)GCfpy@QYM%XB4-NrDz zsLkSPNkdA8rEK`|bt|$iYF67Z0#k+Z)h;Ym;IG?!G^lJ8gR|KhNupoD(s%x4OGPgt zk83yyj!dI%GW5p7ZGE^T{=v?BQ!}(Zb#n}DX^`V!J<+0)1vU+fx0Ok3#M10RL<9pn zx#{b<;r{0dgnF8;U2Q=j#&#Nmn$!uT1b%W)v#E!9h{_bp$S^j{M25&Ft|n%(!j_@W zx?!N;a@ogo0N>;rldh>W!=QSIhh2FJ>Kyyd3F|PDPn1WmSHG&m>BQ-^$8OKzWq$9! zuQfC@>AMc_IJ1#T{bxoS_KktJYLv@bvKjLppQ`C)B1A{$XyxYHZD<*nN}vdL<6uTT zKY#W=a0|S14Hhg%;%M^r*4{;o|9QihtTF+?Q-RyJ-m1okYP03T5h{MKr{|S#q$5?S zFHU%SKPEohEVyD>grMjgRZjU|Fq0S&7X4fgxsY_}6IX|E*+*xe$NFl7m5Ig)Hc`R# z+SdDfH!txWrfTw^?7~udXlRn@5;inlu)OXwjO;#3Z`DKGgfC~)pj*@wjOE=~beW4$ zn_KhrO!y=|w*@6^A8Q7g$FC$oI`p@+YJ{Hb!vs6-KGK&Z@} zd5arHL{Gv!t*&{`j~2Y}UaUIe*@26_etH^X%7c@5yZ=EPzMO=0{DDW>al3znRMI2{r? zK@S;+@hHFh%y||PapTUrJGsU1oVwd+bb^i;N>S!PEgllykrQ%EstM88x3_M4xuPSV zzLE7poemo>= zFzvWg-_1s*{~%5EYbUr(#Zn&sUdf@c+7U+;nMrzed)Dp?EBchVM|ZRt!;o;d2EWDx z-ku*-tgh`u!huV)tx5fm$$iTu_-+7qw(FZ;kn6|5e|BkdD?TD?K}rt8&KcqtIg5gj2pZ&DukJf_+)7BVpzvQ=xf@-)Y<5`^{*~=c|G8Ay{P^}u?KM`p}{3$dB~TsBzyR}@YVn8>B+)jB=rXC+XqggL9g~R zPuL=`uKwDv#Vi5_vzzIjtB6@%ZKAm?6`Sfqj<-dOLb1CoP4pK#>9Q|=x7<95f!7f~ z8aO_I&wzEa;$LnOEW*FzV=615yNH~o?&$^7lP_s^GRCkA#!Zot48*iK)M=Tw8@7)Q z_Y_4o;=qCjn_s~IG>-^W@|jK`+E!}v$Uk;6ELro*zib@$52bDd|2SrO+2(9=$MGdT z?nnRKYVdX{)vrz)goW>ccYWXZ$k)hQo9dp9L4+Rkx67pmpNd8V?Unw4Dd^A*_V4pJ zr}}!MLwXgC*Q+u|9q)qGor-CzI2yQ9EbD4HsG!8y9~3|S3o_L_Ewy!YXumF#xb}mO zyscJx-1>}{Q1^!u;gCiA%I5odqi`D6j$Hb#;xd3Vvp-FP6HLS}D{Z6FxiNhGGw)t8YaA4 zQya6o@ZBynrZsg2RxGJ5rxdGD-(P*`Z`uUJt)drm)W)%E_qHid>%S;qpv|oR+=PLP z&PPjkrNM53J{7ZL96Zh1YuEX65r4Z-;cycw5~cREUsqd1g`VQ?@7{&j^YPueoo17` z<65Wlxb!cK)4P-np3LLwf=BDa$SFMj^zN*|s62^RcvN!GA{Syo&K0_)?BsabLB`Ym zJY@L3GhO}57(B-o-)Ts=|t1CerXpBqHfk&2A|v}(z<6!L9w zync8m4XJsW8de*ZkZIMr?7%hw-|j(mH+nA2Ug*D3cCEmx6dM}b%?3CwMw!?~bYat- z3M!9o2h1<&Rz*sF#3sEg)|@{~#AWW|g&lFN5THHgIr3%*XHUsxB$Z7fV4K^e&no#a z&p%Q+$Xknd9*19D-B=764hC(O@p_CEh5l5m9j2Iz~XcB$o2$Vi2g!`J0r zC~O;HHB?xFI6ag1!14t0>e;WV_b?OFX`FP%AExAq!8-6nL+sC`guMKMgJv`IHd(nOIsF0QXJW6ebx3A6UhIWUNAmwW>y7GeMTbBIHs3iIt!aN zz3qpe_hM*Gb&JrJl|4@kaR@8-BS%-Jdq*Na5its5KlFf+_&5wM?CxmAh{WCnYuZ1o z6Qcg}9$_P^Tx$!(1&0ta(tdAwvI3%RPG8r?aFP4U0rwL2OyRV8tl5t=CK7v+A%Sza z7aj+SF7M@FB(o-K$cVQ=v&-M`kkdRqJzxL$(Y_&+nO3TK zxz)j~KJK?B`zmrvlDR(VC^KogK!jtBsIW0SdhXHJ23V@*FYUj_K=SRD@5?-xM9xMH z4-5ZsILb7%AGkXP*Y~$g_Dpwxb7+DRXE=zwQfcRwQ&h~I2;#Iaq@lTUf1!_NJ*FxI zFWCPER-$J@+1+dUUk|4X>@&*d3u` z)ozo3<`=VAw=_f~W|!c1KQr~#u4S-({_Vgu!cE@0zsI&$-T1QGl4n|b3R~}%T&~>A zMVv~QM7=hxyl?%wmE-+Oh}%DOdQ`_i8i@)?DK9xJ>igYg$J_%C2 zFEWxs^U)L7H{tc2RU_X>-P3yW54pi{NdPs(|7t zXR*ubqnNRyWt~)7Mbz`{GUPt7khimMik*CB!Pp{qxx$8-tljXaMQMmlF!^5M0z z0jxK9p2=Legp$4jV;QD0wa|ANn{DwJ!`5Z9?6Iw*Xs^4` z@Y%Q$VdbJqx#mr1VHUkpQJMzlpR^AVVZ)fv$WoHbwtz2fRgNM{P^?@B7cesA(v>HQ?u{wRuBNF77hMoN|99$E4~00030{|uLR zAQkQ##qGU!WJF1RRHTy1c`FSnNhJ-6Qj(A~jG_`zQKG^ZNy%0e(XcYJ_uj7Sn)llK z=g;@g=Y5`Y&ga~eJ4MnOa^NT~kW9nm8`YE{-5D5!sR)VCsQB9a`}l>mEJTz2c+>cII_?Pn zxy$C21AGxnyJl33BPFFhy)T-OY_s7>-^VU!KWS^-<=lqL3GQLHxxV6gm0**!JQL}4 zZK+ZbYew#+8)V&0)(G64{urdi&@U^cu`~1AKar9Cb>_H;0aABjsQRs1BCN1@r;ij|b8uN6F(-3hJFYPnWdSxMRJiGQoxc}W5Ndb;lL2#$V;pSF~* zgYScC#@#d?QlGgdu&jLo63+G3M0y5kS6)#^mpx zDG**YGkZ{`8A`%`48k8VP?~G7gZm*Jt@hS7%*t)Jc)RI~8Yef29Db~Azhemp|7J;s z-|t0r>EXtr;W~89ChiJinup{IV^#HQbm(nzoaEd~$LXtp+@m3gDOXKN)7tT?XT44+ z&k$PMG+0A}sK_`WU1UAmhvR`>37(lx2g%B@)H~VJhjhn>=9S@n{*o%rq9SaTkQc;y9=}*H` z-O@jL!sD>HC^U4dpO37G_uYLzVGQ3Sa#x9aE+Lph_|v$>1pM?nW>2@(!NX*8@b=Gx z@IH1TZSN#A(b^za=lXUO{WT6RYF765Z{m}?eI+|-vT{?hI&qB^z7`L;_T!O;;v70BBhp^TALP1CZ7qLR_ zvtLSC&^sPKdR?>|ww0GQui4pxFKZrJXvtHMA5p_8;>b*%n!Gpt<;+Dq;_$;ei;py} z<=Ar0p%xKg{SRl@%CS0JkxT0*0}GMDinbzEusLBi_vdpR%s=rqb#9?T&Lzpfr-hja znyRcia;XECxVCf;rwzeNQ?xJm;uxN+XKga&EyJHV&AFFm&G79qu2uaDdxb$xhezXX=i(iUhD8K%WujwSV=IQuVZYhVqd}*Mr zHXWLLtm&KfGVs67&GsJSD}Hd&y>wynKOA;RDiys)}C)_!K;)|&axCdQT zFOM!l+)iTsOS}g)-_^^4>#2BGUKp~RSd6mV4-X7-n2A)Z@mA4)vv}TDc{x{@3a%YD zf6)Z{&~=FMvTh|W+LH}+dzSjJ$jx)yT9%nu*X$}gHZq8r!>M9FI~Zse;Cz-I(+H`0 z*J)K*I?@h)B`&56aO^ADwl7J7+z~g=r&@hM$@a%Ptj%VzlihyZo~#k{m2ob)bug1L z_8&dL8ZK*h$R8BJju7+a4px}lI`7tQ*wtt`q*WH z*6?)R?B*mgo>`B#UTi~Q#%$4qK2mcGwB&<$4GYr7YRrm<;f(encZ zLwHAdef>o%D_J`!%vWF522Uf7So&I4f;TeXC0)khw5O=cb)*xSmQju}2bf5x*)Cev z8)5S3QgNb65+P-4^81U;C@_)uS#n`+5Li!si=E~rZ+TbAGclT=biHS;%V`!HUG`3} z$G0N$e&%b_xlW|dDE&P6gPnw?{OzP|>_zy=;YU3gec<6fnj@6li{mr3uQ~6qli3Q1 z@r@Rfu#z~luP1O3&-3J_c62l#uHgGgi&9w<_1A+>^I|31PwUqB6^y`yE@AO%QivR= zVY}=cK8%@^9+6^KPGS>~^xxNTb|S5~wC&PwHqtR9LRp9(!~2JxoRzdbnENUJJ(f9+ z(oaG+&Ng(y^rM_>3pXc8c6^z+iJzNDS?Vm`{MZKFGv$$ME$5)DtN$te2`_2YRc*E| z90Vi4FZ795GdAiKtyNItCfR0LBDBj>cw{`XMXh%bhjSAYS%>Kuk{7=2FSi88YX#Q3 zcsk)Y-?hl@N<)NglifX~MyOO94%Lc`qQu-@{>g(Wh}~H=CUU18nwpJC;vZRv;WDR# z%1Vx(E0JTrRo06d!DCmi4Oc;C`|kYyzHu0CWLzG9KZKdW9W_PSW+4pf<~xd zT}5>#9yO(19ZhE7i2`%7;fmi=DRQzpqeFNq!7Y8rzZVCO+&C?&FG+T)C!QGh;U&)l zza2m9UyW@R)F5%DeB3LA!tvJ?D5cQvso2aT=au>&Dut6cW`qh9O>~1rrPuZRtt$L4 zF7zy8ry#L@%l)?}vI(n$9={s87mFC}LhS#T($SmQ3dkdfHzOWmXn0Pjn<*Z45Mg5Qe#y>9Xf+JXWT+Lh(ssrK?$)wOlB8R zg-TiwI9%}TBaH{}|fS<#I} z?c&Y&W@L0|#jZ7>!f?=?J*ROVT2)L9aZOa{?n*SeXEg&BgKgaFuJe-i-2s2RsumD1 zo@ugJRtw9)*gJHoR@5q8O;(JUfL+6F3r*ezq|l-q)_B(Q7Zv5^4b1~Z)z?s59scoJNKX@{HEI36<^b4pU<24KmpsekZv!s1nqL|5yvVv zBJcFBrvElKneabs2+y;IkzOLx+a|vEzvh8lL zy2}_WZO=>YH7rJ{Qg49s$!?h1KG`6{-;Z?y0#t!LRp{IK`{0w9W!&&DC~WVT$83FZ zVPIGvLZf51oc%_DrUj4kMA9t6C)!h^{RZKb>t`$(!bY@QU$55suOBgY;`DXn8JJ+( zwmhEFgzj}mqgzU7kdpW}q4jYZQQa|C#9W%(Rr>xyLMs7}w4Oa=mz~A4*`eERJBJ~0 zGf~0Fhn*ODSIEcT?n9arXF2ns9K>j994Z&e$K?}R&wcAUVNv52@bO9)Xf+9&yQTUu z*RR6=lI=H^%_SaH8_z=e*MC~x_uIkQw*2=c(-aEFEIaAkvv{L*mR^_k6Ka8iVszCi zXk`DdnMWZPJ9O^fyKtZyPja$jKTu~O6|FQQ{izb8gR0#73Ym#Xpi!dtKsTbx8bZi0 z1GnO04kxA$;_p&~Mcf<{Ng8{!wLhg5W*Z`WUQM%+>nC6OFvavj*|*T_sdzuyr_79; zx|xYh?DHL6-^9qM`AtP7e_di8phHcUpu&F8@l?Ja1%aN;M>5WH5?WLsJ$zjql3&hn zucg!R_21HevcK9;aN@q?I<8KTWTQj18tmlq$d2PLIr@>Jo|PuzLqXi69;3XCg7S-Y zk%A4Jq$EU8lks;F*D8t+S18QkKb>!ZU%OT~J;u?v%P6uaFHW8fW+!Z8RF@=H4sts9eQpSYhe++DWxg>O#^-@Y!agd4 zi1~Wjb53po0aMB9diJd-%PH9YH;;+1{(Ziu$XtWc&G4kLpAs|SBIQoc_#1!FA+RX#gymk;vKR^7$(+EwI{V!2 z$BXD$+Z@rjuM0nm<@pvmhcOg-&*uAzUXzn(jHbuKko)Sv`tQ~}m=`vFRfy_BfvL1y zK6M(~G{?Jh;_1kA`=8DGatb9wt79p<70oH7Lz33R%aQ%v#-ZBucxBA-#+4&w60}XeFNfO=$42tkKoLn>;C5i zCt*_9u}zbd zWp)mM*+xEu_W2>k|H?a@zp6ltt0P;!YqJsBcPog!oWPE=!)H&)S0McF&F@JzY~)vJ z!{TRA3iMWgIrlES83CnpYDq_j5WsBE9x5{qUgIN|{5XV(r?zL+`HOUvPCxZMoVn8b z4CmhOty$3@!(C*vNDIl z7q9MN3F>$6>7%Rd^9DQ#|A9kK|i2jbT` z&AG_4#-)!DKPTbrusqK(B}H}*3iS?cEdbM{cl^?dJ=m@Hc()N(J+hYfWkiMdp#Gjm z$0H9W@||DR=F3lJawlwQs^c{`$@6Wbomc3D&qJDVOHn1N(wGnA#0|sko94}r9#x1N zk)O`m)dBnBsjCm1h7k4AnnxHys?5rQA`PVbp~(h zmkE+lF^OA&{(MA*b2FvOex*Ojj)X;W6u{;m(=NY{Jy3E^zi!Ic4W%0IyCuQkMlBbxHW7 zrfuq>G7T;-v9Zd-bntDf>5Zx5Aes9F=Jn-!5R;K=>-{+gha|jY{yfVErO8`0?oBU# zjfI~QD(zn3?%AQ!S-tQGZ{}eN$%9dC-F_3vIW$suR@>g_#INf#`KyvMXpXHMF}^>K z(-OCxpV<6C>(#lUl8$OvUU(c?)SrXW6RVzvi`8IE`DlDw9Rv9m4;JHAbf0Z{N7Y4} znY7%ocI5ig4Yy0O)|1L~yi=~q|oX|6(#DQdGC7o?IyaPr*Hf=9m2KN;V3fN1LZ5p zn--IKNOgWjG{vS0c9PLjc~T`RP+>oT^X)_EwpsayQ-=$mZ)w8#OK!(o{bEE% z>QryPYaK%0W^aF2)dipZlT75FAi4f8LtpUU1RAaOoU|`p>0ce;7i;4=$?e4QgCA7| z$g{Ba2?vor*gRH>OyL;?og@5f6BW%wDvmzcyEmA3?}K*lK<)3N|oNwnZ8B!;8;Vzt5on2Afj0@l_AvZstj& z)z>;utY$ItZR^TC#`Eh18`D-ebv}l7qytIzlTXT@P2jJ^6(ybnedtX{2^e_7fX$Jr zm+7?wn9MN$W=az$ehh@v4Xo~OW{~65 z(zZ*2i@ce1j@sbT2+z0DR+?3fFyGx>+o!#Te3L#U^S7WD{*^W7@*Upel!A)tWK}Iv zI-fTRNRFcQ{U_I;(+sRnJo&qD(=0Ok(k#2prx7^oBfV}f6S0@ff5TZ=49D3SA*aP9 ze9+|G7=2HYG>1Lef6H_b=i?s!3fz7lo{nzfbA@Zjnt1zAFIQ#~c3s0DR&WkyQ(rE= z*ZT{5jf>E-WhE{H`62adspyLs*wJyN8R1nme~dx)6i2okXyV%A>JoRrHiUDt&z`m$(821764eEk*9$E@@Otg(w`I5*`^2J) z1vZbs%;Gx$i*4ZJ{tJ;y3HciuWe!5`2p;;i`R3`>&HN?^JU4hDU@g(3vz$U zKp;|YwfeFU>%;?kJO_Ir$5%*69-D^x-2x?Mxpq9Pj~G0}M1_pEhpdS@8?kn|x?@B6 z8Zy>oW%2QF5{{WT8Xb(9fR*Ww!7*M2oIM6uTkmp_PYqnv<>p;DA+yA!w~zyMzC}}) z_xVWiFF)EWMa2<@&EgKLF1#_VJrZ@72I~qlZrSst$j~fz-WxE7$dtXkI215&cD+h>|{iuc!AoW+ceaTBhX@~86mDq(LN@AGQ02OsEjb90wFv2RmT?u<$kyjtZVMA|t? zs9_Q#`2`($V%I)(e;x*hc;2$hi2?XDyc=Dp5+P~L+uqLwk746Fr`8%}P|nMXF7yL~D;k-6GNTRv?BQfGE5c-`&B zy1CNRVC4|?yb%LwmuIMrKDfpWOtvAc= z1>e2Yow{sOct>9?JD)KKY5@P=91$_%xGvTFUjr+dS|u>-VNig_NBvs_WMaY5rS#>^ z^a`h$%BW`Fn!?_I_5G};c}QHR5S#IfIt*F<6Inmh4mlP5jh(^Dq`tl4ll7Mx#QE`U z+|Cz9QT9I1S#z3*~s||dC3^3R2*3eFy$N9UD zS=(px5ZuqT`06?{(PdA*WUnJbc8PG;87oln#>LQ_CC&v-7nI%Gx2z$=uBOo-#eM@j)bb95Qe$$Jm7(VG#-@6W?lUJDOb->_Xa z%SgCklNQ4RdwO5T`(KbzkIm$)FKt# z!daDSjkTDw;p$Pw7<^AT?3u8r$3#K=qpSQB{P`K|*l=qGmt)RnHGPsG=8Yza&h5;^ z+SGbOQ8WWnjKBRCp1(CL~4bMeuD{*b+-Kq|Ena6n`V3v zC)cl!o{*%`(4I=0e5^)=8&A7|Tx2D3U7s0zImAM8f^7A~M^@&@`*4(>zX#2f(4P5m zRuU}im@t2Ziv-qcMD~BL#-*%mkFGp^a`!E%?<>7_TQoXu@VuNl&BxpPoUwavrgIPDNxpk{9tya!s&k}ateY6aQ4|# z@qo@rq#cb~m(DtY;g90~-Mh<7t{CSu##wbk@_&EC?kdis)Jx)0|D#S&f-=(DTc{Ya zUtHFE!cG3jyWP(JtVm`Cyl>3kPe%79-S1WT46qgQ)x|N5F;; zl}$vYh?Jy-NIL&lL{vsXRH!JkB8ilgRmv)>B%>%5O+}8PzV7Qj z=lqViiM=H|*a(e}JlC1IHawTwaw;e_A4k-`-?x`6!YKoNQ|=vO_+G>GHaNNi=-;!a zD0c*jEynR@bE_fXDrjUkx{MP4mpli=yJ0Z0{m+%?Wk?VH)Jzsw!k7H0j)DvMD7yWZ zTlP#72BMhW^T-s!L)PnU*vAU=2WIB!DEH&m)RlX`SSrD_zr)rcbq;T+bV7fwQBeHF z$ay#2FnT}IyB~`lhuEdEV>I7q5g5Rda&BKQoOB=kobO;Gwx6sSg@k`0Q>KcOr(^<5 zmrAmpzN07hfq^kKTi286iLr-?#}ATO-%hXpRwp2&=B*gOMgij~kE7l$tmNrLOi9}F z3YY>!vofhmMnD#>UewA1p10F>0eGPJJyz_%$MP<|qSD*!x^N`$-!< z9j~v@3*{u-)n=Q7>3cD{$t%orunjA|dYa3RScu4T(RIoH8u7!(>C=i(6{1PD{!kb# z(STs=p4d4Y7cM`0;&m5zzDZoXS75=URe+;1)#Gl%9*_z3+4Q~vxOElxSk>1QM5RP=v{f@{VE(JEYF+L z6IlbpJ^!gFWp^R1;M0*HJt^{u+CV30Q-hJ@nC5W*m*{`3$o1N|3Mmix%`S6~q07|E z#Da4G*=aSa{f0xRE>v!{x-yK9jh@#eBWIzu^ZG7dhFk=VjcZMxqbHB~on9Sa+(Ia^ z+u1mEdN6l5HtqezJIFcR$0o+Kg|wJ?>2Vs(BTy+<{jw}QF=p8PEKM#8ocqs9N2D$z zs37j*nENm;_nb>$a&Ln6(Wb_Q{(k5%TGBi_Hj4bv@IxA}_=sI!=6rrS6>>BMWpeZU zB>L2hg~~H}@=<+Pr5rm2G?^_M!<+kHZP7JrY0`^1j%0r`zYaWx_PL-!8d4%XQw^UnjZwjW{=

r}q&#f;y)O8p61GSg%zWc_dq&t23f-X8yl0y(GhQJ-m`+7b-=6XC5GCgc? zn4L(~KVSzx^v_46lTxLYeorz@5e1R`^mmoV0{> z(;tju+)_q=HhL0wT%Nw9N$y3?_0(%$WQP%)XD*$6Z5pz@i@ZsU)9BizI$`3piljdg zdAGN(`MK3MRrkDAnAZLW7y;9O5Gp?bNAl8Ov6R)cvh6x9u_0lEf+=Y7{4Hu z*Q(g6cpPbo->v=@QBfNGc+BkII+9y)tYI*?84j)6PjD3$03E$-!D*$ad0FL?m^p=X zcdeq&j_vr6N4{q2j^qA#YU*9?22k#|QaoL0NzF+XllG@Qcqf*&w?UAGynU-Z`b~Wq z?QHutMP?TwMNMK#MzRf^>VC^yA;mc16vH;#^%uQ9Z-Y`Ry6~@*;l*RCD)@0~I!o-C zLaC(tHx3>OX5#<(Jlr>c6Wde|$b6$h<=2fcE$=DBBx@ zXnYoCBURj4wH3Q7(ekZMem_?o)U~-3oz=RL7~gB&^0fhFHKV1DbWG&xY}22xpR*XM zmGC+IbP`RPTD#I7^+L#ChI9Q8KZ&PwYF>Tb1JizM^V$bXFurRLd04Fp?4}=^Ok^2| zMuTrA+uFYkYgP+CYRBVe|1px-E%lif-q4fcpOpsgT~s7`TGer$U?M_PUu(}` zZn9{z7MTNj>)o$oE?mYd>z61HbEgsiq8OZZ@E=iN;t1uDS z@v@M<61Fal}I`9U*?Yz^wGgl_{#+tHlUb+aGF z#xLUp1L#P#=t1wg@=0)b@Ji6Eb|5uc`s9|9at4GEe@O}J2`ps$| zoTuWxgi2SzxM_Os#nc35Vh)N4)eXZbR$<_(UMFrYUAMZGIfK&g3?t(gyW!d^b)$Pb z4N;4XI~TcS6spNz1N>OHNbij-eop&U7)b^Ems6OJL*nNnYHVL2R#Wbo!$>{E`IH6> zw@hJi+-7>G9XH{N{&c?8r5c+<^#_T=04D#{1@ZIlBI1c}72+FfaEx_y>vqvd4E&YR zuyw42kS_U9DmxCQQ`fn?>bnvCadc^HtP3JVRSRLxJ@{4=a*gH46tu?8HjnmaAiv*X z@r?i@S>UM@IUp)ZHcxHd?z5o_`fl63xxL(x_t?VJ&`p@=Zm3aw#5jWzE<3tX4n{Js zm0uWqH5>i{zVBW4%%RWa+#`#m5wsoDQK%4VM&)mf&sQG~K;D9;nJaV%xuq3?#EEw_oB? zYJ;Mv!Ktg%ab%`t#r-PbCKf^=D-}N6#IpRwLwyeh(o|@kbbsR<8nbc*Gc6d1{-2yo ziJT#9ef^KwQgIF<7GJ-zIPj1(rI`f&oeV_PO)c+plQhX#v3GxRt^xWll~T@%^y1Bt zx;=ImYH{4;VR+%~KK$-FE5L{a=#R`}{Cq2{b?wIkM3y105SL3^NQJnGk$b6Q6WS&& zYW;pUh2D_#d-TPvxVadaa-MYp?8kzwymqbWFkbw8nv*cm<9+pl;>1HPEi&2s__2Zz zzx8D&sqJvGS$A;z-D=44ZvDcs#-q=DPHgV(N{8s=u4$!S3SRRXJI`L=BZp3M9VoRQ zgP+{#M`O{=_!#@dzK5w2I@Z5^rgON+l%zm=`OR_scwuY4--Cj7?av2z-f$6m$3d~C zY6fy5EG4}`yb+2VFB}KYuo3p8_@Ccaxk;a&DU*>E6(`hPR}U>#AemyC@F{!}eX1fd zcWyO8!OSD=drS#J-ID+KunfWSomZdN=V1)q`g-uJ?wYPH_!+O`-fkTWtOeJK1mK6;OSv0V1vIghu2G z@s4WZ)6Y?jJ(ueEf>swX+}d;0F}M}}UQI8h@P4db!8x%&)uP=cV31jEGkDhlm*1Hiu3J_@;;rVuy~#iL#`?g9 zd#VH6f7By=)^uA{d^tanXB;|o!tWG=I2;rciIxuAM|}!LJX=w|KMTu& z_SLo)V__iIcv$KU_b-69_Cmao@D%PubD6Fj>&8^PP14aJKGIS?^jO4ujrSV01;@FT zQO4I`A9Jx8eCJ&Co@&t$rLG&W^r**b@+OD**ea;xso%1BNke$f>!>rlVI=L#eEYhO zjKggp(M&Rikwm=I4IoyD>VwjH|@z`-;yO>n9OHZ#sBSdJKPmM{H7x?!x2lBWJwN zO`}0VLurFkH@2VB|Em0eo~Zxy;clU~2EuezKlIcl@7cXJspVfcMT#enHQ3X+JJoIG8z}f3@JBY$E z|LCEnTFBAfsTS&tf?jH($zRDzG-z3sR9&2ars?7KHxvrQpV&QQa%h98TI|I=PdgC0 za8|+Z`P!W7DXKq^iqX>T%PNLUr1FkWd&f30vbk}aDeD@y_8K;hw2OFR;lZYnh356- z2Sd0cS2z{Y$GlRP3>gW({V5;2<~;oTU1_GlPDNMR$x{xgBj_woulO9+0y+<}67X&i zzZx4{-p{P{xApv5&YJ}Z-8Q{EW>9e`A@hdpk{}r!FB8__U?wL{pX>}+)16c%RrJnS zKkggzHe9gmg&OnkS#z}x#24(5uQ6T19HZK614cgb=3dYA;=v`X+FQ|$B=x{7h`~fR zs1_I3tzLh=ZW%VQl2Riv6nIQ8Zrin{qt8d{$H+5&axa~KQ$q?D>DDw>2s2|M`{H!d zz4_;0ITZOfF`JecT&Hw)eH_H?=6MJ_ z`={p}Fo&Bp#}$mc+i<8L?X6+pEL2s=VZJrr&I)^*okc%|&D1lwS@o=BsmW~X_RSkf z@L_Lx*>!?MV(0Cj#RUxH%F>y+2l=g7(l9vtq)qcuCsQKGowVC%`@FUhFPYhcTTkvI^GakS#tQUDd%)LeztM<5i}RcVoAI zuz4pWs||S%t>unq2#eR6nUQ*h&E~>M&A1Y=nBSnpLK>UAaulENkQX#xx^nJO(J_>> zZRkN%uAli_Ed{!l zQTRS{0X@7JNXKycx zYyf6JnZL~+-1ZnpyzXht3R5b>SvDvas3Y0z*kN#LwBJ1niwe z;f`e16+a5{V;?q_cCnD_Qycoy# zg`)CY9x}W!t=>1T6??6CZ4V|bfyOv`AvC)Ms;rx3d9N+PsBtx8aIqdGhf@`v(^eub zQ%XqDZyrBBlxUu(VIt8x-jy<&45Eile9D1`k<|Tlra$|Zld#XAg=*gj`$txx5n^;? z$E8rJbtVsKG`FFQTZ)Vh%I>I;J^izpHCd==K{xCrj^T4@S4>Cg!36Ob!g zNB$no{^BCqi3iP#j{fzX$l{jM{>(X#`!tq94^;Dj<4O*<*7{1QV0cT+ab{BMm{IXP zXcQZh%VOJYXJBj-{HVc|f|}nlUvdvmg4ur|-iUPwN9F-%&E?y`+Y!3&1Y%ZbBGByq7)Zl{(QVU3Wh{xZ~o zP0{qCrJPT2{8VpTMk5b#xNBh`*)W05b@B~S;tXVlqw;3s$09VdDmmo2jNq7A$fnS+ zVG!?Ido*m?q3YXnyWq$$ru&j@2g7@DDAYS#Bvgp}>XvQkrUqfDj7t}*>qa__G{cDGJmNon7>Tc zaNVN5WFkKT74MWE-c49ImH##LwStwmD0CsLAJSh^uHI0rL$slBw)l%t{9 zZyPpf1do;BUiY-_PskOgEZ%6ZJEbmPzin}x=K zX*hgL+Ci+kvYDsfti_(%RK#rMlH zi|g`)$t4}5UTx<81^=zgUujA@ zA+q#B-cGj-KanMP^l&?#k*f+P%c;=y*|q#Ap_#s%E=!kt^#n!G%$Nm1$66qiz zKAWg&h?XZ^Ew!Pn-9dRYTcr)({j%CUH|N1bu_q%owgtPcJ?v-WYQ=^1MxrThUHBp| zTd&R3hKmRFM_XNb(89cB@za|{bXazI8gq`|V(b-#DxZEJ(soDdG6(tKS3WAQnuGD4 z?Z+%vhTy63&W?>b39$ns>x5r#B;U6$it{RMC4vvCEJ}rD;5tCtdrGPWnoAu#WqA6%*yLFuR`MK=Sjz?MO?6ap*3@M z8fu%k&429ZfS=yH(E3UaaFMay*YewW1tGZ|_y>fgUe0r%0;X>IpzyubO%Ns(?6q-DdoZrV%)3La=^ORIzJ zK_30K=d48FV%TMc^@AwscQH8pdlfl#s8hgCjrK)O&ka5hI)zozb z9WIMkQ<9f)nUC9bO1&Q~x+|Zyp8f@un=uo9Y3*w|n@evzmI~ScqPx3u5b;5Qd$Pmo zpipMA`y&4|G-6}rHP>|0?vk@N%C--ENzT9NH%HhH)Ou;o`->3|IbSnn+fmvZ-p1j{~`8#!SCI@@yMj8F&=+kg~R!h zQTr#Ruxne?bBbXbPCTFOiIx3_@@I>}XWjn6)hZ_A-+#j>p$SwrNlQWQg4savZzi%n zt(tk_u_#FlJN+(pI|ZpTY+cq<&!O<&CMFMe4q_6p=h1DSapVe3XFgn@CD-4d_odd^YQTB$^MMs}n1{mZVn2b;*}#1i&Z z{c&&~+pzghDL)b8-Bg!n%}NB>N;+WPhUAM!KXC{R;S7)b!G6v$C@8)7y2Gy%43oMK zc+bzkP+Q+7F^r28Nd>iho1cNq+aDG)>4T7+NjX<~qy-5|YL-_p1K%W3x-I4X2tO9R z`{~tXsJ>75*6Fu_wA^{!OS7Jh$R29wO0if+&gzEjHBOkr9G^!)E#m^-vM>wsj`pI@ zx0QjvYXVb7-|emxu@JkI*uL62Ml$JgkIl43ifF0qy5lq13e8fjH0qH7ILP=4A9kom zfnn(Xk^2D&RZsa^=6%n&p z#+^@&_Uz&Pu!?(jEO2rfuez%OwFddfhPXx}=NTa))^j0w1BWQNpSj1(E{B(_A5(NH zQf>pG;Tir^+kv{*zr`kN$FYNw$6frm0Jpe0b5_Rt@c7`V;3wC)Nurna{V#HBJ%8Sz zJgl%3iiMgw4`ctLcy;m={q3#9|BAE6x~c`xL>>L`+r1C|8Bz_xNz&t6m+1^+Jwtc-+qWf%q;=XeA;3$_YRybU_=Z8lkR|%0gNh8k#MZ+{`3SpFxvotS z5Ba%4N6srS8^e*Zp8NT_!R}^1tQtOtyWNB5O(s}LLF&)=bx~Caj4e4eCRd6#{+0pO zEWLQtL-bW_xX22V!Ow@Y4S1Y!L(oc>iqHqc2{%a(R+YVHr`oy6>RSHoRYh(vA907f-u+XCqv4TjD;QwfrbO z!&Io!3GX3_vzuZY91Xd;ZG~H)bGsSdc|BNG4>_RzeG#X`^F>}u3?fDnb$)@p_#XfO z|Nj)1hdUNr1IF#0O_aUMNJGl#J}sNJN{gaWD2Yl$lgv~^$t{(3Uo(_s*q9)3duiW!j16zO*zZ9>&hd-<(BT!fmx@lShBAF6#?HT?ovh>>Sf z*`)hF$wDpT*d!3n62W%*S0ESpKM#cPYQLy6?}2MUg#DEb+{EbEm(&ZX<2b~%Cffeh9NKSag|Q0FBSN%dvolK} zo^9r^W2y^>!i%usmkYzVyycUyry&JVfsC3KMxumIu>3e=U&Tx`m45gv~6uG@U%Sr6Bg5qX7>!6X{=j z)j{-yWT?Z{A(XE1V3t$L#Ll_*)$}XOWa9emAU{4SqL?x%@zJphZ~kbwM_Wf>QoX?3 zT#}vmibuTfsvUz{L1XWhl@;7Q{A%#0aw|$HJMYH)=tRTmQ({js04Jql12ex~{58^e zbtHQnjk=yU?(lSDg4%M1k}656Hu)@x%a7ut?-}pi*Z9b;ooCZS&(M5vlVhvb?H2Iu zH;^mj7=`spMV?CjGzPt1Fzk%&LGF&>{7QNX*8j&<&T7O(o;y`Lp7o{R`Nz;rQ3b=` zCp(NYPIckqS<%OA`BMmS**!cRKZ?D3cWinULr0WbuQ->~t|g@vJ9q0IV-ru`K9%s$0{RP)UGQJ zd8SBmrM64-mp8-IFB?>~K`2XEc#H-#pii$K5$LhySon+Z5-k(fYb-}*@l84N<1M!mj6M+GU~=m(91N0w@f*vM@r$Cr_IfWt z=IdW~ucl!{t=KT1-M)?(|E;N>?Pexhb#ANoceKG-CdG3Dg`U)!`Pkfw;2~hCbUvjx zh5W37htgZx@yxzltm!2K$;fyo@9SO-{_YQtJ&xueo>i)LRIe4;V-1Pc%N4Nrk9)4D zun}yB)+t4s%tGNz);{@xS+M2iaBDYFP<=Fbx1UoV5_Mv8!#?EU=jrBW=kE#;$5&DN zbUVjDd1}L=t}%o5H!8QR-t!S21|D zfQ99K7P2Sj_5Pq|m5{T$mBV|s0w?zDsOYU8gz<@U9ek37M9W+63!Ga~l4n&WBh(Lx>2g>Ca+ z2d;)^AaSi;>CTifcuHLg5R#{zcYdKfd2t?}?r|Mo3Yx>EqR&4ca8qFNx;yNfVKbT+ zwh|{R22x?VMfcuF69k)o$JjJb;3)L+&A#dm6n)wzA6jw2h6(i?`Z(F1`w< zxh);mvkf8fgd6MO$Ys<$>s>OSr{&W@R-*ltxo!^_0KkG=t8>O)gnVjUS`t2F@fGBhp=^N=5 zFG4e5?vi<7H_lL;v;J8R!sP1X*QJtO*cw;)BC$0M1qYbDHB~#ov8^riw+Rn1(W^3L z@$5lbU7Fnu2Oe_6(QfTUy(&~3vK0<2@V~4-{f4tKVs~sJOI!e3Ia!9McipW!L7Hu1ne(c&RiUbf{0qR*1=6vXx#EqyYvAC+;cukU+dSA>XkTFaqfCh z=1TZ7dFhE!zk9m6Dm%$sT_61TKojDuc6W=tO2fx``NWdKIw*a+D&=iChkeVXyuUWL zWAc@nW$|1yqAq-5HmIt{gtqhTlaB`xPmK|J-;#y2Jk>bqVkRON(~uowEk>+|PEmY0 zdeIQC`%*$T5w$$3I$1|q$TbNT(~nUjnD&#AIecmXF6|tKTJC+=^y~G^XPp-8q%)cA zS?Go8ue)(Bc0(9zIQ7Hy@&qz$&wsO-?8Lk88&r4LNfVs2NXZo$!iMwVk`Vp7V*K53o=??wi)A+A~LVTKTq zp)-5n=D|SLwt_W!hLkGD3xON2MrCCV;ZseA+Cvk1 zLjSPyu1Nwtaf-bhRVXM&9&pu&c_puMw##d1@Y@*<-De!6yl zsUK@51&qraOW;$SIx_67(`g@|JKvlcR=BE(RB2%t0>9Qo$Mq5%rS&V4!(G<61}a?n18;AqPQYQUWA-l_QKI4&Q((56nb`RAS?`f;hby_<5u!#% zj&^ggu|MV_;)_R=&yAAG%O(WDDr5&j+t zcYZ_2AU--_iwL>0QgS(zV-h*h>`wa9R4j`*3^hyekOv}OpWUlyJty^4pQR`lvx0xN zo3eJ|YqZS9xWHAoB|f#F-eVvM_NkR}rj;m^ZyB<2s6zaUCzCf_rlDaTW0%z=NI25v zmBP*IK~0T)p|3ZCU+OVm#yWdJ=MX#bp-_NCh;j==Tpvd0hovd%URthdJynjRuo8U> zFRc*eMl8iHuhSZBMuO~kC%@Gc{9Qd~<@LT{hkZn;_l6Dx)^7{S{x<@5OHKp(H8tQ0 zXlC45+<*bOmYxLd0i0KI+!i!6i<}GMl7`|vh^V;h!=c}aT~9Ak-^kJvA+|4aZmN}F zHssCwW7Gz@y^W29w_%S1kSg^1~MQqecr780b?i9~O&jAyRA z#AOe6ooiqp{Ktjv>>H(0aGyLSw}u*32AX@MdU3(uF5%NA}ZnyA>2;?U7k}#X5 z?d#*iksKdfRMa;Ox?!!O-d}rhF>Tw>lkO4dkdSbXZ%r7uSuXD$nU4Akw!1BL`XHN8 zXwbEfk1XBv&RMV2jh^f0WhlZzL?GE+qlmE#Hr0&MC;u)%p?#f4>(K$o^}ykP@FI4x z(?^>5Ex~WxTHs~uBIt?~B0iUu!#KQMLtDEO&#ZUsw)*fBPm)i5ats_nsq;&*?H5Op z?nZrbAd`wq<*O0)UQ0+n%uqgDIElxTSC2j#?M7(jma(RZE?oG~?yY}?k0i9#A7~aD zhkA&@`?K?-s7*fiVsd6438&AT2-{K)#od-+9#Zdcq_O9aYVj!x_sxFsN)vW1>>a!_$UsJNN4x$;uVAW3oG+l3*8h=JQZ|LZ&`@>$ot{`T-p886 zI*ZJsmY#dmBeVm;8~EK)Ryr|gM4gtV`S*nN8rB0IgV4FKMk+S{C#>V6eO}ozl9?#x zQTrz%q)0oI<(t7EET}0ByOvThm+Kd(U&BOf0ywS}ZXd$7i{{~b9#XN?+3zZDJOOUv z;%LBAkMn~H+g%lVu$k*#n&E*7Y@nCBV`)DDRW2K*Ma@oJY>fDM@rMjqtMtI-DlJ#D zZu2TFt}qe%HQtk4rJSTa&&Gt})BxGZ%c2VsQ#kG4b6nbkj_mR08aMSD!m6!sVDaw> zJatu|#E-BL^KH4zGF+2*z#)D=Uup>m_LAEwnYIui$~qR3LYO6nPh$E|k|%1Cb+FJI{Wi`J(RYy5-0Yv}CIf zN7D9AT$k0QHm@FRxvT$#Rk#v#*1BG~jdk`*rTu0JhKH?o@3OC5O-55Z?5SpXe`-|5I>~C6&{c7mGtBh>t^(YwfXK zAU*!|_0CZQ256S-de;f{iWm>OxJqcPUQrmfr+{aNm;8r~yky^L;mhT+i&%0UUf6uR z3|g^ntn2<(;F-}8Q`c(>BzgaarPnWLobKB~XU0sy%j>7U$I`DQt_Cx~Cqo%Y63_3S zCp_E1)W5q}*J>GDt9nPR*0B@5xqzp0cPH?$Q^Qm0U=J+njhLG2If;a>om?HCX83 zr&DVF1I^rD2jA#7!!TT-#Z)&JF2PLk+_XF@e>i%@FKiA!T?IMU#mu7ZDIw&P`==Ixc2*|>Y@aCYDWQF2vF#gLn88n4oRTJeTZVfRw$dU6j3`I|4#D^NsF zcoy$DGu$gcm-IW~ZLd0@94Ee%7|TF{7PK3VtXoF-vdb;{$x5V@Uv5r2QG?K+xpAAp zS@_3zZHsjfA{kz#HNU&-U^jU6y+Jz_4UxNY<1Y3>^o--W&NrX;T(j1L04*mu?gA{U*w}^XgwmZu{b!Aies8?CskU%f%0ZA$E(aP@QVpw zV!b;FA>}7N@g)@~)vPUWn5jomY}n@>nr=CQQmPjWXYfMcRB`Zd2a2n9dd!Rbjmo#FN1%EOSW<)gvPWDL2pmy){zVU!LIaEnwjMU9tGG3ws&-au0U0w>pB&@ zwom0Z_D;i4Cg)A5!W1HY9~>>zXoMnfna12I1$?S!6{LJSkvzGP>xR+@Vq)BluV~S@ z>v8S9uzia-8bDFLIophPg~nlYADU5sU2G$Qy;x42;hTFq1z#oMEz&&=*wJoA|DcVP zT$>i)JhjL~IO)Q>3L84`oR^X9tuGrn-n2N=C(cXe#lIU1&JDof5>uu(+W<7KriIGf z;U~5w9?X^(1c+iQPp~sxIQ}U%Y~_*rGsQY}6oXD$1T~FsP zVTCMYC1py#dpnGG&LVv^tNf&jt0j0Yr4wqd>@~p;*Ad=#CxW!ait)N>DYwLM8Fqn% z_dAq(F_3gs-)iR)q&R&u+db!SVsF=e;S4&G-0`jZm2EA`7t8-Mq~$;J1{=wioZpyP z>-o8U^B5N8E*(-Urh@#jI-F1Y-)8@7|0R0U5iipP?W|%7L}DKAr}OE+;J|rRI*u-I zZ8t~|VG$yqr0c(5OdCP^(S*FQ^L?NgHde;WEg+$4rBubY8ox&Z=EP6L|e6@10ONStcjub2N2BuSe4Ek|6&(5~N;TBi0JI@6ny>U0=MiEOLNwp+ zN#pwd=h)_2K!x{a`f7%7PLGLKihP{ z_=z03#uaFKpQVqcy8y3u$LL7FM8jg%8V>SFrub9-;X3dh+fgmZHHVGYBv#s#naCBc zjnBj=qfpq&<=#cxGbMfkMyX;$+j{yWh6Yl@;Yp9x}Y8#*>at`4#VocZ#p{{aKR{ShoLn;@moIh z+|6(py-adHF1M~?p{;eC|1}lOzqV`VxOU>OLA0i3zA!m$qZ6_vdky(Jq`bs=NtR@G zrf-)$D?w&66f5$1XuIRE;A~pxBpUbn`}|ke0Lf3|t;bM{RM(nw7kcK9E#h~$CX<(F z#a%r!wXg`K_aSCCbgE#Rw6DU$xCXXuIhIr%MN+)!QL68;dDJ+yrTA=FfSmaI-xfQC z$PLBsE`fG*#Ak|SU1VuH)SojK9gSW4DUkiHSFf3u_&tNx7=waW8|H}FuO zAE6>wSowm2`~+<85YAzaHiX1p4Nkw4fxQ_v7M48g2;0!DtSqfrsQ7>2D84d_C&884 zACy?h?ity8AtQ^Jn!Ua9Jh~We<+o~%(0ub;c$bZCA~QLoBDP^EZU!pGIn)PxYjAi% zXzkm|e{h{tf526{0MEM8rqd4v$Z5A>lQoGZrn2>!zEy^VPLx@+UY(P8`@ImFCrFokoO#_ML5 zn{ht+#YrFQCagPe?oRiS0=I8rK32o6xbio5ZHM?j9OC{VBIVJA1%H{zOGm^>@=wc8 zj0@8cxz|6VZ9+wb{bRKnmLA;rBO87totNBb2{tQI9LEs#*i4w|f5<8gPJAvpi9!t@ z`SYHgaQexqzUTHd@-{smy&O9U--Qegdx=ThI$Nx5so#j{LF%KDhvWFiSwcKZdJ*fp z(zoVWKZB@dCY8`%Gekz zlqrHoZZ;xD%Y|W2G$%2$R?Qv-3yHBRJJ6@v1+DNC);ezNq`{C;zRI43DBpDnS(+Mz z4BdBwi`7G*Cf3~<;pHLrS%5x)V7gHCCIao}e z^?m8rffUz`#cswO=sA74^}QiK@r@mF(WdP~J(csjv)Oym_HiHQyZ!~7mhe};___uj zi>Vnqj6PtGQO#lvGb53Ia{6t;I0eCZul(E2ttUznnbX@1IuNll?Ww#GGtsc%)C^Y| zz^9;G3#SLIi235jay+9F@9aE`_oa2gjmNTrE{2NHt?gA;7&|bPd}!Biw<*Y*A*AI` zA9T*O*h%-$`uVH+jjM5aaIc|Wj#OnJiQ}zX8mxKA*%GGKiw)B_Ug9NqhOY$k*}Vsz zy<{Q#&tDL7ztjhXi80IbNn3lf8GquYb1xDr{oQBZM!B>?xVG0OsYjkz&1}79n%R#SoxKLSqVrH;wO!qFgM)mj+Mb`7U5ksg z+tW_u&tutRT=A128!X4n9&8jR;mh7O#v4Y^a6!i4*n?>d1?&%C3$4YKOKGXM>63J7vDVn9qjnXwux+)T$LrfV`XOuOKt-tPnA#Gauy9SZ^m}3Gm_KIEvMEb zOrY~rPmz*)Mr_Wy?Sp_ltHn`OBL5C7TL8w6%xF4nm; zVt)r5CN$DD3TDyHwJ}(vf&x9wkU|Af8aHmtk1V!thDwTk{Nwy|cpmlT_w-szZqHoj zjW3^v(aqrJ-Y021=Or)GnZinJJQBp$RxRSejfEeZ7)ntvz^Khh>44?;;f33)T*To{ z*`sCY35e|!kJ;_n0FKbgeqP-=$dx!Btr=Z_YgmA{Wgj0&EO^YT$yrb9hazE;EsPO zqu3z!Exx^G0{affnCX13g>;O?pMT?ZFt%E6Uza+96BWDV?;Cc(rEjxpn`$lc*zTC? zBy^%k_8H$x%xl$W1_@5VNb1QBR{t(2D3@kDjGKaZ$X}Z`t0NHCU^kXpL&2OV|Njh^hdUN*9EI(@_i9jNL`Xz(o{AJAk%Uw#l8~a(E=hw(smKV~=}RfAWoM6U zUS50ey+8lKbN!xkopaxjAB6ubqZfWYJrVUn{cs8XTzdHr1^0gRnhI{^BAOqxexFQb zB$-YV_NI+gbjw89o_Ay<_pQ#WoH|WQICvdzs=4>!Qs6k(rov$eh#NTnJi|h0tknBd z#)Zk5(b&URU8122-Rcl_3LM)1^H!J{L}0qHCEfigtlKl>`+Hj@P%Ck#pfww}gKadO zF3w|Ovpw_SEMb!Lt~x~PZU-DA3zR&2CCM3{&vqx3i_sl$&&vGY9M1Ax{Cae@6?X2& ze$4sOkVG8m&Kn=cN8$3`26Yx96xuX-c6%oz3S(DflzX8Z`@3oT!vbt^ojLdF?ijox zGF}SiF_6l}%xQ|=Bz(5HPPjjyC+Fjq&i;|5A*QWET{(YRQCafEQFpQhpLOm_)TQx| zi-n=mq-O}<*;KanTXmyJvo~C}d=-WghAp=b*J6SG#DSsvAJLjo^iqO_g=8!}j=XhZ z3anM@&L6TBA&ea6GRJldK&FJ!_*H_De0grAQgyTivD0>Sk%P5ZcW1UXMV10vU7JE# z$8My!1=lNuP9vh>I|ye7j_C-xO+K23dvBj;rq>YEelBwtt&X7Fs9oG_v=GuhXZn0AinateOB`e(f_ZL2JdCXnR-L{7U3(M~6c(9i zn`yLh8%>UHD~0h!(SpXsF6@69;_Svck2H@%ll!U$u&uRK&$qk-B_SN!`WK}LE2GYK z+rB|;7Uy$mkRJta#Q|O;Id+oTnRUTGt_rkV*V*%o7onNr`Dj#xog}WlcWB-<2^$Sw z<$aI)aV8@_=%foBY4NDvE!I7RjYs3d8|FGd<<&N3e9le;nfJSJFt&3l=Gd_Q7ZwsvYl?%LE z;9M~iZuGDTZZp9hietl2i&XjiMQs|FhKskKFJ8M7gL^gWk9=gj9)Dac(E`tq#@}a@ z$1y+unr&u~mE6cGyLc<44abUf+^-F_LtkXEVKs9ezL(w|+VfhB#4>SRmH9M+eeIp} zE2XsLK;@yyU2D<}5+oA} z2U>d#20--?NLOT@#ms*xO^in?F{@U)b%)_v{=QNK3)tw$t_$SvZfP!ZIz!g;bnX%o zPlshML6j0juV8tSJ4LoZ#FEoe<)@#e5dK7hJDSO-$gii{bc6 zWCz4J<;8igQgMaZNv-?r4-}>+ZeuvhOGM|DD~i==Nb%bp&dWv9U|W*P&sU@;3*}+F z`!>(wD7~S-##|MihR1D8o$W+d9j%lDc*wJ7c}~>P0hCOYJ$RAQh^cpFoyWym@a$b6 zZ$s1^jJ1{?GURiUkgSgrCs-QccOr~+gt7$w`+Vyz#dYJZk^qmcE*H6-#;@UYVg#<* zW;}M@?O?xt!PZBUmxw7B8>jm~9f?B)YkS$P+c_@r%~rYR3MsuGM&_>F;K zwuocP#55#Q0+qToOW-gbvU0hl2}8Wuby8bLk#zoTzq9)|tP%ICw4xGhCNDEdNDU5H z_Rx#&>c#8sY9E2hUbH#KNmEZ%;~>q|=zz3N%rPvt9~_v7k8(|7c_|HN94iAfo>^bdf+q3DBGN(W*uG<#&J zbV1MeeM`z#TJrwXjFsTucId?p{8iVRL1?z~y;~DqkSQ*}Zs#r-CJo#XIZMHXS9T}2 zjdBpamZV`lB}QWPG%%>aw*%Uo;k~g%3}pXwYOc_K3(%PK2)zBX8$PWM`9uBZ5dS19 zIn;@X+*49{RWBe)zVOysRwcyZvz?ud!|fWhWk|DHTaCkA&EmUh#{!NDCS||tE{A2a z)9;;yh44FNuexYJOGfhaROrHm$&oviLjKC#aJwcyz5S##aY<-TO8oCH4l0*?I$Xcj zKMJSyuccA&N$N{(us1DPuywd~*RBuL(&EP#R@jKf=}ym@Lp_)(C_4CIT{jAENDi-C z$cHI?^ub$O#}O9!F!#?%cA_%%rJ?%F1il&MNPc5yA~(Ck(#tyOh%E0zD=w8*JlE?N zI}=8Mz}0~m#oJt@J0{D_%yI}@&42Hx9q5Fv=#in<(knQWD5@m-wH8~AnZs{u!$^3~R1IwGSx^YD5M z6_kxkyB%)~VV`c|vgwXxg!Q}>yBu4Dx+D5ps}4PQEO8~gBzXaOvCUr3!}_s#X_q?3 z5Ec6i*q+^+*-RR?iOXH{8^r$luLe;KgZQ+>Gfts0k&%h3Nq$Y$cuDj8P|-1ZvS-e- zFw~fX90{J&UGA8K@0(vdiu{A%Z#b9UTeF1enc$b=QT<45p(HuDQITWu>6Td?KT$8} zCENyWP~5oq$SP?CuNj@rW$4ln+OmRmE-B1J`KUq+k83ZyW_;M6%m|Q2N9hzcZy7|l z_-N6}{V~W1vW-8fXaUnkrf=LkYZ1>aRuH1rkDoiPp0IS8fyvLMN@pD&qJF_I_#;ye zQa_0oo77O?A`}qh<~@syTSP#d!bQ>#=&EYPwZNO(h&#uuA2B!H)}Grihb3!1VdJ~& z$jH+8rI{~-IOpelBINHfdOlmens`q`O6d|fs9{AIRrs#Ovw@X_a_83PHP1rIu0*6L zM4a3fJw9uq$3v=|HC>YehtQ$8gqV<7=$cZgW>%%3sunMcrBIQpLDe2Jp(pNFw^eN& zW+waNWK`bNE#mS*qLyTT7iRD0p5L3)i3bO~wP|G66EZcG>NK>rXM5x4zFnXvw{C4u zI$}gmcrB?V&&dSj8ze8-D|Tb-NJ{J(_gP2>OkaB9w1BMK-J4{?hQW3)>vPG^Z^~Ol`;GDwlq~^{_NV)N6sj&@!Tl#zGIoCAYxHxrpmwFHS`sL+|*Y3uh zs#pK0briOmR~hQ9DVWNiyM+~HpJDtr?s}^Q$$(g%^79pTUndngOMSR-@w;!L_ z$c)%mdHbqi?6bI=<|^RdKT zq#Pk1<<4@i&f`~VaevazS#&TJwVf<1fdKRSJL#W0prq>%H7LE-ce1R^(+#6gP`o2~ z#HbidZBjyCXv@J~#a_da)`6tqQM)LmVQ{ds(w6a6<4uRsSmu!~e4gu|d+WHK@2Eu(_SCx`VZGSn&Ao8_HYfSDiAPoV(i|kYy=(Q}XXEsjeLgZ@$FQ5~ zkZ3Q`j&PQHr*8}iirZw;ovJSJC)W?vWP%}px2|BYa- zE8yQ&7YZV78W8cg4)8s=@#k6$9T{Euu^~sR8~wtbrpb?1@sH2NR`yLFwB0y5>m|Cu zv#UG5Lx&2F`JO;0Qw}0=FH%_IBO?i0FRJCmLk0iE$9#fSYg{F`C-;fdB+~o)qwlZf zVR)xjkIFq7@>l8gjdNe=$TMn0%7zvJBAvV`ZT+T1Y&~JUDCS*_k%*`u`KM!eCzG`I zNFNPZPz}u6kXM9t%0aHO)n(u?VkuK@rXveKQxdK*2$8;sj#<}+K9mRyr0)%tA`X?6 zoH27{=+CjLQ}vy|4_(d)vo#*F>!E({a-b*4qcu6L0i8G!5q~ZqmWNnMRKbc=C=L5(M6+(x%$R4_`?{c0>zq2Q+r`CzR2}vBO{qvh5ak%JmdHplcRds2fMus>c3P zdQ;GtXH(sAWh3daJZU?0WzBchVr~gkEg?Q5!7C$U1(7oHoXYLFDBryNxX5<}9X9cs zKFZ8M>BK|fyg(7+k!{&-QN~0}DoZXH>=*;xQm}ZB{w&n)2%oK^FNfJy9*(n#9cYPP zygD03N4(ytX4nvJa#)Dz!lF4HQIpE-wPE2Il*?b27#i>pHQugEVSWfbBIX>>* zI##lub@oRZ#{_=m-QV~oVHsmq{1<6s=TL09OVLtSKk7vD1hQWtjj zc~^Ej-W|^prEXLVDa&iOeA$;`c_iszWk{#;+rzi*5pZ{i>oFx>R)gyjYg|(+Zl8HCJ2Kyfw67x7x6LKfW&{<-hpAN~)UFkEgvIk*hUi-VCzsmu?BN$6-gT;-;io^Y<;VD2u|Xvg zo__ZiqYj|IUPeN=bs2ThJZqF(2`{dyiMvSy&{$5}5~;;O-f=!i=U{Du0%N9yNDnL7 z7O<)v^}7!i6`Db@oNY*MACfU*sloRq)97oGt0=g)p|EqX55t?%DO+yW!LpSx>fB)- z^2*`a*6OWHM4jo{_2s=(jLfCZ7@Idijb2^uknIx6Y{W<6mc|hj5;gSLY!lLJ1(|iY^P0347T=UszTBB}Dwj4}s=V*E}*9xTz(mC4cgJ9g#!%hEX9LwpR zd~D~J@w`5$rO{;>>vzOtx{tGyvBcOS{fT~9?ns)D(3wOkQ&-@(Ay)FXW{Y#L;#!{0 z;7%g{f1t5HXIIM2L!=#Mf8EogC0jIkyxJwH5Yf|Njq1I&QgiMTIC5j*+US=t z98Oj2UN~6`y)AFXZw3#;sL{wqm2i-qOU?Zq3Dfv`;Fb^L;~rc}dNs-hpsi&ri|E5D$zpUNoj~}CVRLyrtfBR2#?T^v0vc&r6Pz&N(V)K^fhv4y#&hY+E zdh%SbL;K7rcH+9qIl{(9Pk1!-8M=1X;HZGx(N3}QHGg<$F&w;t++w$+_UARI>pQxa zcvXW@<;o8Gi|vT|z5hd{;|%CI`{tA6%VFQKg_^o<3SO$oT7Era_+0kYb75O0EHd=- zi`KliuQVCif6{QsHBJ24jWIkmH`)=;!9m_X`04-eNe6oE&g~h`U%9wccD9&y7`*U`~9~j)7|1X?@ zp3szp9}N2G-EchLgUr$1*`~YaJR_zKEZ75aE$*)-%LrHee)}-}wsJcUw zb$!=Ql%>86v$Ln7rR>1x}Ll&ScIgyB^W5bLX{R(i5Ar zgQZSa`|!8saLs|vIlN7;*?GcY4yRhBA71cdB)c6=OxxpIp~d0oIVizIEcrek{}jYP zSpLA(kF32n?+R^i_97-6ed5nB36qZQ&HpGLv`G(B&TY3FeYiG1WK%XYjB-k6rQ8j6 z(i?eM&8DjtXJ4n*Fj}&aW8)_4t}m_e*JO#crQk3?`|8yT&=9YESFJpZ``{OOOOSB% zVI`FQSUg(rTK#AATh>`{gnimBQZp@YJrz1HVWxmU%H^V9WZ2;%06p2VSZ4Y&- z!fe9!os^O>yyiG>%q-1DuD(ww5(rMSsgKtv~baSWsLX zH#VIFhjnK4XEsjKUTz(EyLkw6zxHnWwpfKDrEQ&KiA*HC-gMKT$q<4Ujl~!5(-9Nv zR87&fz6zYY-+KBNE4dP^e393z13RqdJ{cTshfXPjy0=>`T=x51*Ycdh*$drKuEIkw z*pz8m(B6jjPj8K-X4yzUV1}dJJR`Z3JIC*2(~Rf(ZP1vK|$Ux!w0RSqXu%0b(;?8fwDAKziSlR2ZLZ!0oCC`d91gAR)@@zLB8{Ogptpy#He)PHcU) zg&edb{??usPT~V7`S4Bl^1gDM4=p(c$|P!wKm2#arXB8|S6?;{ra|`_!@ts;I#~P- zi(SwdK-?Wkmid@DSd{Yb^|q!VcN!)F!ntV3f2yovCpR+@-?RMt<%ZhPF(o>3NMIV@ zUKq=hPA+2RyOFx?;uzZQ@(1?qcn{7KW%h&3B82y?R`RxfI&v~;>IiEB6#*|~V(u@F zVscXEm-BmCLifx%CCj`ErK|}Nx%~}@J!)^ED>;U!tjiG*IimFIL8GtTc1Jk}(Xo=!w{IK6SJN;T zRm~BE1Rl8~=gdlURGpQY{1y;&{K^&OxPLgDt^ZDxu^km9H*=2N>qVK?jNNs~HLrH} zFS|Qg0IkQnc@sbPAyB{6rqGFlJnBp_i#^9nns`3@PAJZR*P1r7a%zna5Bjl^jooOC ze!!e&MoZ-FzTcIgS;Xe*Ot(O*F<4dZ^I?gc1Fh(;AEDzvkZ-?HiJ7(?qZ0hCyP7F@ z>=y3rIkdK04}*#ubs0$J*@$Ev1r}mh_M9mvg@#;`+;#SBN-bon-mu9i{DpZy{6OUB z3?d|g0;HyD@P16&l2xq^52Wq)ooi@E%b&~Rabat@ZKm=X(bV8P%3hhJkDyFJ*sacD z9MU;uwg<+_pnUJAf|ooMt*TaDQY`7X%s+YYg4qP5+!z+#J>(&70oy!tySs7PF*NAO z-Z@C!er@8bR)q3g)mdx*Npv~CE2K><>>BhFj{=yh4*43M*l7Gl zRev!XE1h1`1N!uY!E2SJzHA5~{^xhC-s}L6S?93pnr9s1r{7Z0xs1m@nt2!msW@-I zt@BfymN@FHdzU{vikufUpYGERVLASG?ZCNKJi1JYN~oUzdr}J_w z$gP~`5vgcE>)VP$ius*r@hDTe;!eSUjfFqY{bc-2j5|HJLPG|)5_`F&THx>D;aPck z0!y8eF1aV?z#QD&StOH<%?mr^axEKxYg(J!lCtsJWn@z7Lp2IqjvhCYU?w`>=!BBq zmm}O$;Y9dpIL3oHQ>Ft0FHJ-^1~_EIwL2WZ++=X)V+ zy(I&A_RZ4E;xY|M;STS-MAw4k^xHEmuU0{)vHpQ~gdq9wR?>t%L7Q~t3#3=V?}3N-uTiHp{@~ZNYku{Tme`vdy1Zd|4jw%TDc4QuiIy>EHJPu+ z_qv#`I?^)an}bA+tza$gz5V^DZq3(z+q{tG(BL6cK2*M^^?lH{wpJ=~ zF_O>A-}tPPX^F0_bpORyQ)vBOUhRK*ZRb?I71*{+VorWP>-g?IJnG$0dr+2@B%0+s zjc}wV5%ht_2g5sXd2oY7%%vIhK8x7O^@ELg$mV$Gs*mDAm8?DAmKyZVZO!%-XbI zGkgB+y?K4SAMgF0d!F+gu7#5M*;z!~eApK$IF4aP%EG{rf0*~6d6Z5?M~*4D@|^Em zg>{|R%#-6iu-jZPl6$cV6gkDj;KT)V-8e13raTG1o`mB6x~Cv~C4uYn0SY{YsU9qk zbU^CSN|?Oq2>RWnMtZh%V)r3so{yq~I4LrBL?yi*-dfSwDFy;0+b-mBXD%JF{-}5B zr9>^Vva4JTP!5gl4AIG#|6*b5@W5AJYGRtKy4}E?p2S>kt#c3ShK(@8p%Sh#$TFYd z^88Lu6pYXJ_6oGYMP)UtRp%RcVt1Ov+-nB^VS8;q`C(AL(jR3Tn8&yPQQ7@-4gc*m z7?LQXCUVI^DxVSniSjDA2R)n1qo3r}-Mj zRj&simx=^cy6j&UySr)4LSK^q;iOJ@;mRV)5A zvKH31kG$?uTCr*Q@Rl7)qhQ&^I(kI31>+$>OM}bRXbe^^-*aaG#T*xSnp0WGsM`*e zK3_IcTTVL|3yb$nQ)D2Z)PI* z|4e-?;$$T)XH!n{7t~|dw73RcXE~Y{mE+|^X27Q_lX-ut7MZ(kj=%m?heJtWEe@m) zdVxG7Q;do{=8?Pe$*cvhKKi$P%{AUhdII;;Hh#JAw;Z$`E0MJ0%>Ptuhrq~T9vwb#t8w(*b_EV$WV-d&1cl^vS9|xPz z0osclt38gfuch6X8;8}~ zduMIdT48D^w&7~^IOG-chTpNwpg_pX?%sJGqTC!InfCNMT*X5zZU@feC8w3tcgJx= zN6XJg^3xDHu^Rd_*>hNC(T-Oz&4t1D8WCQT0yxQPvGFfAB1fR^)w}h4GkJ*@6Sp?# z91ai6wM;~9q1SU=qgBW`Mg6HV>x709_E~dJ!nDt{aL?2d>SrQ$D|BVz>EQm2g&(S6 zl09{4=+QKJHXo$+``qvfjdQkL0U|2J7 z5|?Y0zvtZ?#|o#(iRc<8a^lXGg{zcyY)e(y{`3(YiT(>2I9yJ;u)YqIGYP_u(|tH& znsi9v9viVNe|y6@tsnDNe%$estc2rqiuyhEbgVoigPJz?^ZKdl8{+IPrk@r|R=}R}UVq~wZJlq*y2#w1+d%fk?P@N=B{9_qN!rx8bn4Y$w z(YZ(t&O zKl_oltwDX4;zNX&tQ|JFDn^7PLYA$XX^CV&wAqE(LHKFx6ZUp*#1om))9L2a#9;7x z26tC4?5^M0KJmB>A}Ix2H&sU9C6k{a^==$fe^Yfg%J7n>tWj+SCR1=alXgj!pN?c& zFuA2APvh)z;K}I&Z7{Doqp9jUf@f0f$-CWFG56_sNpj*at~G_Lbevj3M9+r^|3xnH zJD%p68!CcmzQ*{Wq7i8_!jYq(+P|155T zfsFPT%5iJY-~-R+%wcy95?{u(Iv|mcTIbSN^CGRFytrvi+#4`_#r@7&&mg=s-H(Kr z(vuxeX$?z1GLZbxK8u)AMj|)zEI1&w31Xjr$GtmOiB>WCcJsS4Fuo8bzIU}6OpoX2 z7OymeuEkm>rf~=xdKS8UUeJ*6%0!z{!ybGyb4?019mEHgU44#$6Zq>;y3^CL4CXMgtXoRfxP=cKXi2LF6R26Wjk5;QRYtCr2|c@eQ|p&FxhHPq{IdL`f!6 z4^>X-T|A_i{^8L|i#e31rS$JI$%hGCADD*rA|m&%%dk>6n0ix299T*bFi5%MJ2VH{ zL%Ed)73ZNX;}*jwIRrL|?Og3F-Qb|0Lc3rZXW0E$c~yH6|E=SJc`psQu_znnXgY*? zRZX7%0w(b^*k0)Aa3k)~(TOB&9>MJ4)t6T$mXI5ne44>bfYc_K#=mfgN4=Qip@I{$ zP%M?dNq2J^zx(Yo8`k@Juehe@E&3^Ry@SA-2^VOyF(2y?@Iz@9TC{}=NU+Q?Q-gw8)eilAP5?7k8Ec`bCiS5dgKBE+r@1oFjuk%Ch zw{hKSTN_?)H((XMJBczg+q9JSW{8d02&kUy#{A-EafuQJGV8v^b=h$M7EXuD)E^8( zU`~TRK6DV)g3b-e0W9SH-S^pA>Ff7DQ>W{EWC=$i*gtxgG$SeUX`zah2+904GM*Dt zgY=@x+Je)a7(bTtQ1?1JN!)EWIlw=T8GG-pLz|e0u!@Q8;dL&`)@j}e<)I_9?Cd8L zo>L$m_&sgx?=U!}R;1r;orQcS#ts z-SyxnPt}a>(wrW~WkV_5vkVWQWI`($61tsijDMZ^=p;2Mh49&z!=va{zqvwbsKVI- zz8i+Bbi}V?!%PG%1u8=p86!8l;29%X+V^k_x+$UmT+GICh((Hj+ecn9TO=TBAUuhf zZkxKWuS_I*XybTJ?;Ktvzp~z;*ag}|TboYSA*d}WHnq0S!*Bm4Np03X$c||)OBPU( z-Wk1GK_5P{N6hV&o7yt6ZtoxY*VKTrcsa^`x@J(VX&G&ApTtq?{s~E+8U!w!jIr6+ zj9-m`?C##9Fj4NhZ;;DGe1d9oxw09F(AS175+CLuNm2bH$H+v;zirXy;s%gk?r-cJ zw~VKS^v~YbGm~w{r7es9E#RqLf>%=~4+-a@;gC!CgNB;ay**Ox@X&6u4e+T$*xWX~ zFJ43NSTM~Q+d)H|sKrz#J*dc&6+a)XB3fcy7#w?kYbO$Ucoa0lsMvbZ<=Ka zciu(GXa1-{jK~c^%DZ`N$aJyddf0@EEVn+KQ0oKJzNIHl^UG-57QnpL$4>mY>yu1u z3Nd&pc0-^V6VbT-teC-;i9zBP@O`18y|=U%SI!wJU2p7!(xpw^ zE?29-Q!Sf#Nq7cqXJhGK2rnQz?bVatY6B==_7HVA*b8%+*I7D3(@4(TswJN_h=tKB zI#SOWNNTwAezvAQv_&7+mnM_YIG1yldrvdsI}3t*y9Yq4>M__lPEBaH(2WLP6edb+ z%^vslV)0VPU%H-Y23mEAG9vFMVG^2O%tXsTs5(l+`zl6}Z~jDkYhW&%b*8arKy$UXTu*wC_)Iuw?by^k&2|(zG)(#N~TY$m;u$c4{6M zXCC<ajj7N9coIrt6}Uxbv;OP`0QL zd{wf3A%oOpG3fp7uL3=w3*&jv(mo2qy2|RME#tW8H)qx4OHD>+eq~L+>Oys^c&f-b zCNdz-R$V>Tg!=877PKtGxH%ui6uOI^+;EQ&cJkyS!fK(k{Q*aaA=}Zn+7*-VN;5st ze6$z#w=3qF9B4?ZE1TSaW>#GiDe_vEvFlb9?oD|-p!#PXAV`DJ?9)N+i_6b zyrfEZ6G;dw>4S zNh@@4#n2qSkE_Kh{!`BDkHqn1vEUp>Vsq~EJS(wS=do&B_ zR|i0vTJ*vdT9Ij);B7rT1+OQiPCJ%p$o0T8%PqTlFwktn`2GGUZ0hH|df&FgDlQ=9 zkKH;?*zd3UZ(D}5+Q*h7@`LE=QjCbJ8A8BpZ1dL9egwWd<wf?rkWJ5=aaI57m*uyZk7+2c4Kvum%p>N0Yi*e_k!y^PDW%3;sU7f>9duR79K zj4cH>C4R@!5RN1BjXYO{$bTO<7YF3`B72g3!H)SpuB}xkg}oIc{*wcB0v#(*<2k%s zDl?0$*A+Sn;eV0#EmEs`g^Fx@=P&sE!Z0p;dc41Qq7yH_d@_5za~$(8eDZE3jic(M z_~WE4XSbhyb+=;=rb=MTC zMhtg`tnX9jYt5Ftw6sKAlS%D*9v>NJ*6*W!yMo<(w|{XI)T5e-lTj$DaeW_M-?{jH z8U=o*BFjHlL*i3w`=1{jXjGQHTh%&^(|%v)IoqfBln9b(RqIDh?z3v#>P&w1YK7b z%y+7{qgTbJtIMtizh+xgWEckFn0`?6`B7TpO7An&dT<`PEi@jKN*c0b+i_;PjXjV} zh$K4$szKgW({Z#<<3`kS^cVY@b#LGljlS9o8o{JogQF8@)(_Dz`muoso_tVQ%`^uG zb?YHXu~DcEJNX^kFpQeridWw1RpN|5w^9o>{ljKKN2th_rc>_BFJcP< zDW{uMp0tqX_1}4n}8*wxn+*$li2f+%~wcZ2GJfay~A4=$7K$wcO{J zp#(M2+8P(Lx@DbL%l^y6Xg#0F?eU4cWf)_Bk)o410iz}zIfm;D#JpIbirUAjTTgR=QcO%J=V?Zjl70$&c zXr*o1@bko>H%@iChUy_8kT@NKA1F(NSJPt9gAM+dvzP zcD_5uyw3k9m&=(a@_9&hwCKoI`T_7g-TB|m*bbE1&gxuw#7LOj8V>D#)&pAKJIP9^ z&5*ITJEZKuP7J6uwHi`7F>SUYZ1S!Kv$bbE&9Hy~-rxgH`ZQ#NPSu{E6Wz%9e&4a` z_AtWkS(O;ucf+D@|KgDB5L6mUtZ4^U@xqqwd}xDu7c5N9Hc)TPAAukyPZKN^%}a+mvo>g zW@Q=~^f^lU;{Qv_u?(;+F1o7gD;+~6;1e3ZR4vOEKa`q zwWog&s7A_0=>rFu-ow9f<5lyo6{ybOxxckxy+@3{sj?{yqu^+paxUF8_FZz`bnnPC zCU-||zjS{V`I!d-ncw7LXYS)!nrJ%Wt`{j-wzP>D%>Ff+8|i^)m+;j`t9z;&BEf@Kcl`IT*N=TC%D3U6(?Fh)n5PHgUDxp zbvO17VP5~TSM~RCq`b`%)bj2?aY@8KkwzMFW}MnvL0y0toqYXJba@rr7Q;-%OUd_0dk&*S}rch)k&wRk3Dzv*jHFZ?Rbcdq#^LuqicX2EAh;+T8s>g#?6 z67KuaucmJfPpB_Qj^H1CY;8<^%mZb!Af99 z;*K>cqLJsRS|&4q4+rCY{I}P^G?XpSnSTx)=dHrbMd~rBo;WtgKL}$n*J#e9IlQTK zYuu*9Ngn?2IpleC4V{c{&L+K@fU4-$d#uO$VSQ!;yC+9A{HGnfj8?{=nONk#m;EQQ z4>TO!yVQ*qo^O@)soW&ss?-ODe}g!BeC}qaE(O9CV+{M9>tJ&Jn#fcM9bs5vX%5}c zjpedma~TR<;Qu5$)B25pu(^q(?EgtiUa09OTnwy&WkZGI(Thxkr|<9)i(A}8=0{4z z$B=paF{Blp5h_C3_eXl;kt3ii?mDmF+>FIW8uie^Qb>vBTBR?IBSP(@)(-k<7-=fl zepMdE@nlEK`mF=_O(!*-xjG4HjdsqR4&!)tq>pDQg_aEahFe8m?Si<;0WP`FdAy9e zM#(pAgWG@IztS}*FqOafVwV~_@iScGPuCJ7pC2e353x#s9j~YHk<>9v?~vdv>YfIh zTtOnwXC`v9B(0m%r60u$PbskajnJomT%va6Lx*Ev?2PFU%uPN9&a$;*i_y@NAkKbV z%!>S>)>eUYbQjr&YN?2Y?@Tn^o*|T4hpv22T!g63QiZGvN}?1pjqZDYd? z6f{$FR~jl#fu^PJw#ttsbQc?zTpgsKA#mTtnG5XXoSo7UOSXJy#JcWHUia((gZRMO zb^j=6xpk11hMyS!v^6ssIzVV1>eey$&V%bjgldg^7i#vDQM6j=$Vx@k(CWIcdp<2a zC{pzgjS4fQfWH%4BN;84^jhHJ?7gDAmzI#!{)Y0x8LVXQ6{+{1hN-jr`yqJ>e4V5N z-S_d4hHdVe&@MW$R1BVLk^`tVA zZ8yTW?tSS(hoQSbgY7@)5BJ^u{*IZ{ENp-LQoRWqd5xGaWmQ7ypdTb8SHL{%bT>0# zZJpzvbi&tn#7+iw(E?Wr-0};XC%F4z^59Z-R`w8lGOi`v7NsJaQv(|&1ty`RxKTj# zQ5%YUiisnCEkw8-qvqneVPeY=$QPJ_{r&EFDee?pXbIOjXjzTVOUget8_z&}XYb1} z`E_5Sm!{g`)Pu8!3}`Ix&fx8Y(KH+PKfJdvzZ{)03%zDL#mnu(;MKNpZ17+t8@6q@ zy~s~R?CWCs6<+2+kZor@zi%uA^xYzh?p9*_Jg0QQdY_zCyd<1qz(#)0P6fLhtHA#N z0096043~E})@>Mu?Y(zpYtTTlzSi}iR7xlrm5|j?loC>@l$3~uB-x=*64@&$QC9YP z?d`>D&(HtA=XV^>eLu%_o|n%aqp_-66r9ez)L|mEm3S8YXEVoG1+5*vnxFl{A(Hs; z;_<*g$Q`_I;AAm^qSB7no}>>^xpw26%flF)&l+@pG78fd+v+Pe(J+~`n3rFkhn@BX zdpzq{$hOm#KN*swh=QAv@0a0D+~$@_pPal6E}lix6BKEpchvW=>C`mdN!;4B-+`W7 zR;}Z{KQxwT}j=u+MJ*gRkFNPt`w?QtnbOh0(Wwq1i zTk&w>^W+OP24d|iV$^0JO0p`b(P?{Dko0%Wxx9cj@VL;iRzIu5=B4zf{62Fykj2@> zV^@cd_vgw_W)DGi=-Jy%BMd}Gm2aEa6bl)PIAkbsnw8vij*ziQnZ>=3=PA2>G84Uk zD>Z{vz4&0*-Sza-G`?H(m3e#dlDca?+ZZI6iRE>guFKiYo}#!VD7;M`JKpXm%0f{hP%7^p78_YqS&dpJM&^6J%v(nMymK7!=7 z8%*QcldJMWY~3*Z9mH$3{15Fm4CIYC4fiaEIG-@=_kGNCH*+OiC^VxN(UI$orw3OaFUP* zn+{*0(32N~MOFSEYvI9IL>!%1iN3P9%?n0BQoZH=4I$br2IzjPcqISEM(Vf84$X0l zIoia(F0Y6A!(7u0`rnAWuaRZ%FoHdCc23UmW5^G7w20m`1Y4gum4Cy75MZ+@WoD+K z_n9xd=+$wYsTZzcWo01sU#qr+SGL3Kz(MuF{zX*PiGA?)puk>fCNg4T7-y{VwLIJS z$)2*biF3E*$hM(u_O34}NX-|weV#vrr@vFLuN$63)?3a%b{!5vrYGa`#Jcgre^XwZ z(RVZv5m%l2KXIu{-oI<(1Y{1E?lpSfg0CC_rk`K;Ls9ZLW%0p3)Tw3~P~8~G87WW8 zLbnlIGyShWrF;Q8vKrl|XO|&)wEDl`@DdE2H?NH6YD0P6frpl@KTzz?{zhW46qc%8 z!$0}kD^+g?YzSjoJD)jpDqftA(-|AK98SyCFwA566_A$vVu^a5XR_O`nyKu*nBK9G?;)D!T3mlD?`C zrFG98_2@h`ei0_}RM1z*`sP8L!@>N$UbiEiIv3k8N z^YR}WtQA!3+s2rPX`WE~>qTC&;qqbb<+2t;-|5OwDqaBP@bjLA<4okmr@KzQVHDiE zp7Y?6eiv+&&12hh#Yz13qvd)@6HsDXIO|zi3bW1CgC#|*WPa~0rx0ffZYQ_hu>IVQ z!&|2lZg8;>7AD@XlWkQfDyrLKR9pd(Pp=MN2%;l7Zw?CXI5UrX@2f0QjfU~_b=6k#rR(#}TORwC+vUb>gmH154I4({UV2M_(nEqXS+p!BtW znD3fIx`syX_?=c{s7T+8v|O5{@3yHS)MV?XL{-i6bmlsp<+59}^#ez;uH z3yw4cRkN#O@Kz3a`olF7^J~4Y8oXsAqd6@CakpfMzJgV!d!z$5!Gq=_FRlyREa2`=AA+F2h|vVLtzpn_bJS*mx1J6*AyM6bmK6W zsxj+@5u{8+-3?6`Mo-n6UE7tK(XF4XW?Dc;v=^LPBg90Agwfg$^})-qyHOUNWZr@D z5#^0eto7(r3W#5Gbq@X|uAi9o8^L25C*x!|j=me86}%kS2&>nQxUAK8WdA;F%OhPj z($beh4al2=TVCUd7vl`%%Sc$#AEREBsGH}hs81pF#J2IB9^8Z{?=|DdW>%6`)PL<6 zn-a18&)`dLOdZ08bKGo7JJ4Aac#D2rH9Xhr7Sgef;iAamMqcU??w1cdV6ASzP`h31 zQ?prgRJd;GS~CG#m232SSDIkD@b{9f&oYcO8^(9rwBYF9|4Ln`G<-`Q8PzvpBtiZ& zEF1j=$PTN>$N%`biJ-R7v}VB)rflUf8P$P;1=q!bz6Pi$w=2suPvKak`QDk``S429 zcXTW7f>dj(hJiRAnM$Ge^5PuDKA(=BrkPdV2LJ8aT<{O6erK{b!GqajA z+Lw0wIsb*JZ}#_W&Pnvi-MPi(Sc`oV>}&UClz`oC>kpsX1E}CEDsG+~fa_>@t^3Xa zXi_BZ$6OeND$fNsm0L8FK6JEFSDHXgQ9IMl(<=xHYd%hiZbFA?!stCedh%LKEIW#! z6Gds&KN}B@AtjZiJvLj2v=z8(`tit;5|hB0T_01i#L)k_lD8k)?xy>z2PScK$%lX4 z15OfkSpN1KsSXGr%c?J|7<=50{awrX2aV6I0{2~-MfH2?iwk;9kmNArQY{(4)lA{6 zU(StKVzRiYRn0<@qSqRUT2sMbd7V38!z$0R`bKS%R-ij{nnPmcHynk%QiM9&(L8-n z!N92;4(qblmwzciK4)IfOl=27PMC8I@S%V)eI|BHL@u!!QyJ(rX^)6$eB83M2*+9#l-zzYT zju={S5+h=g-_5NLE0W0#qmqf5i%86}TQ~3@1-&A>`ZaH`5C^uGN=EORaOKhVh4|n~ z47k{&m%QtNcX|G#p-&S;Llc9WD9d`Co^>flhqT?i8sLKqPx6D~q$>+m~E3x8A9}B6e zSQnkLn!}-MEBisZ*iMpixG9xQwltjQi%r=RlQ8&vH1o z$~!|xPJ@{rNPTqigq2GNtll!Madk)s+2zo*5I2lN!u)$1q$&}1g3X~a)!_M~qM96guw+Q`n6A0!y`Ewl?Gb!M8Ihy>o80CyILa#GNu=CLK&_nJt zoHa60I=<40*n+%Bd(RPg891_LW%uF2aIr(Q`dUI&(mb(aVG38fcn$kQg^6dsxOKfd z6LC0EqF=nJ8}b{gil=n_c+Gn|yn2r~!{ZR#kNy%tE2YYIfPK6=##I;6B zJ^C*bF?mUS-W0-4rc>t5gm5olDLj_jj+u^pzASs&)3yggYc9C62GdY2@#jUJG6xx@ z<0+99Vk7lsCvEqBS0;K35n=l88o@25Rp?jUiIyXjF?q>q#GQFQ)Vg*8JJ)AE>2aF} z$58*-!I!Jv!N5O$N^+G)PdROV3r)jUywpa+wH>^#hl}C@=}Eq-bC_)?1#zK=GIdjD z@Lt|P$mtauxx8!b_%0Da5?OziT9GV3>Nb=H-#^Dhj-DK4jhCZ}{?U3zlI(6g}2uNCs83pyzx%w#Zl zt0haRAW2^KG7j~fMYlpO*URiGP$ZmR_#4i^@n?;7f>{kNU9nNy`t>`;=5BELs`jFp z-bIva)oZ@?4!v+2?*(_{rD9ICaZvK)UFR((ajK=WLH)}FgiMbMKj50jdKdbOMK5a6 zD$LiQSjkLS;*|#-i@Ly3`FHHQ?F7#G-lqh`i;ykPHVtnZmLxm5Vp4rhrGw(|HBhmt z8_{(J`Hk{ZIL;r7H!NJ_e(lPkN{LozFLP_&axOugbpBoT-_>B!nRS)8NJqYenFc;k zY5)U$#PhbyLEL}NU-3r04QB$_^<+~xNO1uDr4qX_NO0!==NX#aM9wGe+Jb z5ow zsxL7CzXOSv1?A=-_lEAIl*L-YIH|g>6`M#vim>C&hDFGiC4K3dZpVe)Ox*KjtYjZ^ zaiG@0HjK4pxwc#`h4%ODlyhSJIB94he6O|{Y8y7!@ej{Kt%xwod|gEH@o)Plr5C^y zQ_IWwvJ(!h?h10rf<$&}GV}WCc0`yu?Z2};gYqNB8)G}VK+O-3iHu<&pE{0|hVr+- zf%ov6MT;`*8_!P=|2PHdtFd=z8yHAS4SVl}@jjfp{z}Vqf{}#Bz8UfO%|lMscW$me z*^Hz!?~4{LG7^TLCKEo_SN-i%!Ux9lUC_MFAw3=4j)cPxr{q&tefQ9~W1{U6-YIV6 z*Op5~{p+FuvmPd*-oVzGc%&JfFHEJk=5%7jFKz2c(mdGWG(IPKe@E^Ss*`z3HPphW zIU%e4$Bf;iVQ1nv{6xksa{Zn|n^4(y=g4-5s4ZRfy}O!g?!`~H`HrDOYhz&DJU1EQS>ep!RpfJOTP~k3^T_LYqqArijR|}_X4T!mnGIRQwgF-68g63_B%Wi`}}g>YrC%|GcL# zk4Aj~turqCWV5u_@w=|0FP{1y{!rTjHr>9uF8gWh-}Hb{1{C z8Z^7bzKcFr4c;YXX278;;O5-*4~?3oyVr#Ukr!uvY;VDL)e}3j3cEpkvNFX?xgr$U6cquKVT5qCq}4C zJO4ywWMWWSsw7yp6HbFOvTAcvNED+KW}f9Fa^C_i{Ac5gIxNdoFQB^*(-ZxO9$c-UstPS^N=#Fv)V2VV*mr&WuBoq zobh@Z@?tMNk@@wz?ofX zs{yZDgFeL7bRse&qwLh*cDRqoT2C}|!AZ8s;Y|)5xxQg$u0ToqWA~?BD&~U9rM{)e2I4Qp(`Ehwhn)GkH#K&H@2>0)c z9rNlGsE>O4^;xi!A5Q`bxGFkuFxZK+Y4AJLOPNo+wI0OTpN}ho>D%CT+^F8=>I`iB zu4gDOz||x zfaQ}T{NoVv@XNQ-o`=7S=h;^SOGqdvDf(X01?!=J>Z81cC=y^euW*F|)l|N|6VKBz zd}#BM`|dGhZ4vp^cCHrl_OSYJi2f}AHevjb} zPuDfgN*a(KF+7>w40X93r>n=Op}}W3H_*jR^a8g2Qj48M;(~Gd!pmN$SXIW1Q99rp zot}G8U=jyu4J+$JdT{gsgY)ssMM#95&pvoafCSJogvcIxVq$-{?xqtrNlx{Z8mwOR zmxV&Z?0{*E8KsE)j_$-YV~<-`x~X9N@a)IYZwzGjCHlK{1*7q$CMCkmy0p{y zV>6_8d|Ydz-ixyThyL;V*1&KCb-RQA$bHf){1M}aJ# zmx^?xDLA61-l!K7PYj>z>SZQYO~YJ;p?&Z%J488QIS&a1h17T10z~YiqORPc0QtnQ zqnaylE!kcF?Pgo806F?B{`2Jz?Vvlf<$c|?9%xS4uh1P>^}CJxJ(F^Zffh>oaN!^# z=nN0Y8FP?b?&*QD2{a_X8+at{y4r`%#ojv{QiVv-w#0ZVSz_Y#$bZyq9==CUnE87Q z;ro(ZdoWFm=$)kY>+my@)9)t5_^1?Q?0vgc_&5WZ2sFveO%otgg(RnXGL53e-gg_q z8<4M3VPzGw0uj2v?Mn8Q7?C@AP)f1@$uZw^V{BLVYrpnfzyCjwq%rY>k-%G!H$ z+Z5jJw&U(x-LH4@83)6r37i<`y}AF?7DeO~*utWST~Ig|Q&Xwfk!QATk&0-cd^43sIna_^p=T=NaU7+JqAacA{x> zM5yFdEsnH4Ra&Mm$6%!cSLpx+Z8=*K`CK`P{CcmdRHa(vd3I1G6DXoc=GIOff9D8Pz=yyp;1(T=V~gARXqI(;h)4p7bL)jRQ- z|KV%v_FNeH>KIIDQ1C-1wyJy$1w0!**mldd;CQ-xu(@h0=I$Jll%HRnNAB91L)`Ra zSir4(=G`Fn+`PQaeKpsnR3v@suk(<$x-P{IuL97gJ9FBX3?Rm-Et#`n1ko=Q2fLq2 zlIt}>#~&4ml7)gDrwq<7;+wroXG_y+9_c>$tjozsN>oAyjVvdp4$Ln>321TJUD*(KRJ^4l)wlF)etvA17{FFQ~0& zCmGg)e)q%wVNP)Q+hY41hR?S?_M8}lcZosq%fMM&S})8%8(abzj|{Q(9e|XouHdtq zg{ZG)Frp4qusv4D`Hp`EY$ypqrF7%i5!9aArr&}K@z=gNy`2MJ{2uL+qDh>UU)SAT zFb0`G{ebf;{ZPA2Ee%Pa;Lw&KnwktV5n0RCuUJS$$5)O!sSD%ia(pb8M?ZrLJ(-IU zkw0-#6gTen$04#~eg7AkAt;+p>2YqH#IJ+@vDg0)CEIx&JjyC+aQUHzev9Vyp(%iJsjA}?%#nPv=O=6!({%woGW++{%yP4e60A~5q zb|yY`NKRsS_OZGL%-+S>_I%%P!PP-a>;N07`Mx5=?I}aH->tg9(AI(ROHYnTv`3@6 z@n?_DNp_M%IV$TNIs&@R=h{8_bcDT^G0~=hf@*d54ik~V>h@6KrhDuChkc#+9{>RV{|uLBJe6%6$F0cTdqhYBg^YyXRSJfhhN4oE?2IUTbnJB;dmYE#kGJ=$`}4nk>-*Q%F`YOnkkCgDN{0hS(Cwaf z)V-LO96Y{j#+j@nZW+HK(ihsW?rhEOuNxS+X-4_}?7}oo2kG9iTGI;eZ1V$`50B$N zHc2|?B~J44pI|u0@kxZ=h*8?n*NyE%|7~GP?7@f3*Fy9+qfq@-G89qOhmpjAKbG_* zScg`vIiW2?C`Xk%9XBkZ(mJL|W{RIQ)BK!%e^>;)^D_Gymodzz+>~6urUO6j?T@t) z8N~G5`=rd7MFdCLwiv0hlA8n6DI=c^gz`^XHn^(+d0YQ=z1>2?<4YkeS(5+o*`eL^ zm-hmKDDgjrOX(Qg`rxQqLq2kK{tdJ0F`)C>X4>QeD>-q-f8UviejIvbWyI{oL2kX= z*09lL5Cx?dQ|^sS!PDrc?cQQhl99||XK5}(_Gf;0p=2scbZ2XLFSAGxC#k3YyBFHg zMp3erIMxU56KNOfgcvA|XDz(Eq6lqmVTY_JBM?RHX`Sii5~KD~AxE>=anrm=KvJbkA~M^}=_Mc=YYa%UwCf#YA) z^*f;8$x*=QU?QI$HPPA*3zCFJOism&L;m2pr(L=?IONNU4>3I^*RJuZiTs3>0!y#qI!2VM!ko5VT$k$pourV(7IZu8uX0Wy~o z)%>Cl1(dVKjxz-)zI=x+r!7Jrl1Ykq;|6+qbI*UdkG|tgRK0p9mdezSoVf z7bo2=`U?=Qkn#;02Wz3y=e$PPZ3G-S#*UA^ccL=g^={D%A@cC!b;jqFqxg~dSywxF z9JQ3FE?OBYk>At3mCV+me%)qeeV0b88S&t^@##gklef}?rx|dkjwjsS*@6G4Z^oWB z(x9{QLTr}RKTJ}Mb=-e8;%A`Kq3RqO7F-TQjrcH;5HZv9e1bg?m}%5eUA{xb*XExR zuQ-XEd9mbP%|bYHO5M5|NdwEZL!5GzJ>bZ8zZA(>MYcUK50e75oSR4Crp_bW{$SaE zQr`9_WEZgcUTwwo#8xP2>lobHUIyQLzFtKJJ!nYhnJQ|S#T5TYL04)6Ol()%HiWa0 zZSUKD8*;8BBbg6a9%i;f?+yQjiXcwXY~B`@a8r<++pNUn+~0?FBR9Pb#oF=4mRtAE zOIfo1)Vmrsc5ZS_ZrVF(`UO(6{u9_;I{|mUI-zfrCNN3nv83kr!L8}}u_I49(N#|u^d+_C6uU>tux_yo&&OA_a)vUVA(I<(0?`f@~^i3qhCcqJa>Br(j&`dUuaI7SN;yShIU ztz7i5)YB9=cDAMtN=_o^$K9v{&zrH^R!rYPxCOsTxwhJQ)xpNFxFprE3(mV$=z%)v zcJ*0=wiJ0 zV9z|1gyOcSE%ZTSbnV^VrE2g8w+{80ji4&)%O>kxL&$pmL!g0!j(G8woxLg@=;Gv8 zH`uI5ER=2;n)eN$d)O-M=uQse;r6QN-d;|!)+RAwTUImJDpnW2H5|w9LKQcsxJ6{C znysm?Y{!!auGz9j7%-jeWEj=2ApI&;0^%Oy5Q}^ty@qsS*M?@j9pQ8gG^Rb}%NmAl z@}1w&Z6lZosyIEqmYFbhy7h}I3z7|v-yfS5&VWtU*s1%1ASn!Da5TMH#D+f!e~8*B z{JS{0-Ji5!n2Gs^|Dj%_yrg8Th@C-}pATE4I}^#RZw+(ZqC$kOJbWeamV%T|M}@>b zbwch=lT__=9XLb&(gW`?6T&bM^_m|9AyfH$gM~QWv^{iMbPSgs?XNpx%t3w~F+boc zGy;9sVy;6cR+7c{nD zC~h*uZMXf{s|70bT4l2I!-jD1wZWJ31B1A~32z3ee=xpReyovu3{0BGvV}4@iJ9Qg z$?UXA_D$5GpwB&v|N4)^)x-RBW`N8OWMb{vr&s!=EM#7QGV zZEa`=3(=Eq{7|Xcf&Co)Q^L!A8b6^**D~ZMDQvy#GN%|g-FfN2kt^+xIQ(8}k%OHK z#4zH=x+-wQMrB^}X)eZYQ{$wPTcF<|TWof{2#;Re&Xs!80jKOBnU=d#aN_x>>uWrN zz%_49sw$6S;%9j53O^c}eHMp(^ z1qqw&_Q1&X93;JFa4=9TALs4=7Tqdu!lpC3O^U88p*~o}>Z=Zn2Eic8<#IF2HyQ!kTGmxk<-)s<^^36t@J zbavxfI((k(_`u^a3e(|Q{_WRR5YLteJuW{Q!1jB!_teUISe>+VlD;#7s1>{Q6~r=- zC!nAX%TDx%cofRt?Z@I_wVaTsO88QSj;u(ohjUdO|Cnqy2A^!kn&3sS#>-s08rz90 z+FGghxm}ppYN55~IU52YkaPFLd3iqax$JvziPbQwlN2sQ*8M0tX=kMj;;z~Oi;40n^we6vcRDl;kD?VvyWWo@*e5+{W?wM`0&c}^_odUVMLxISdc|AH)g#Pg)7ir&!4vZ+Fp6$* z`c#XAwZR&mF+G@j2u32~f%&WGRrf(g> zmQ?wz+mhR1Gf}&!H>*sjo!{t5mc8JUQTCbBIOCq~BFXw`dA@AyMEjVAIobvJ?E9t`BD1XC#{0NZ_Q@1RIrc=U^`$Ch* zJZGLnJ;+Vwn$NeyJ|6+AhK<~&IChe!lo=joJ%-e~7SFjPh7flrOXS~WUxL$4GLLnU0UF7pp8sQqWW~J9V7IMHgY2O-y zdGxEqJb0;H4Hfh4j{kQ3gGyjpK*7FI8tgewpVY%dG0W3ay$4!n zJ$Q4oX2JjNVgpxTJAwsy43Dnw#4W{|!1_N-L_4i1^&v|wURV2He{$YmdS{McB= zoQl5aW99lfbZBfoAZZsyMQ6n0wNE66FnuOl;^CEXT*@jPapai-Q`&t^Pt@bz+#U8v z|0yJ-)s;(K?tqZ)g{P1E`hfKv!kd=${>)GA-6^jHgx7EX&h6WdQ`WKP_!1~M(H{|E zY14r{TmCjTc#J_p&ieL=s}yWc<5({+y^;_OsY|(%?Br3@_Mp?eG<2^}xmRJ&P5xe) zR&dGVAft}_Mk%j`@b?DRTUb*enm#15-a~|JEM0Y_BSet+80`^}9ErrCeEL&`*aemO^)#KU+rrw~FnO**Q% z06Y0-3+)lp@HtfP`^&TgvXNifB+{3Aw>g7{yON7&wO-0ziXK9VUU}E%Vk#!eR@s{d zOya)M!7N*PCCbTfg-=6YuoTDRkX*EgyWm*7LrzEW++c8q0gTlkhRfmG$fQ9gPjB&Uki zu5&GO0}Fdj>icCqcB{r$>-OMks)LzUa31dHNs4M6SV3ClKlG-Bh!MTEP%3NdFt+=C z$<_%dfI+3!rg$rMLcinB^hdiFk4Ie2J>(g~0n>?=G{!XUYYEnks1?DeuB2hSupe~E z7thSsjvVl| z9S=29bLp8PBw}~Pnx4dYgv2nI!ha6n_vJqI2M?RzJ9*0dn`;NS>JB6^2m=Q)Qm!xc z%;1*At4|KHtH^op)A`($Wl*76vl}RM;HsT^q4Fszq-LT8n)h>(fgwKekAZz~-v8Fu ztg#wW-zEjMYbG#zc<;^!)BL2!pEGi&cGiljsjqwvc&A#g{mn zyZNaS#CbGT)AAcPaVu1{d%aD8*pyvkJM?t9M;hvdrK9^mVW<0h#51rtdWW~6eLJ+P zd)bEWRb%~^uh#AIb6A?lt~R&kC9`Y#C~NtqF=vvZKcq&%Z%c)^0`~@(sfNt!7OId# zdKQwlrOW+$@!^5eY3p!MybQeGWyr%k?3RLFb!$wc0p@Y`xKeuFt#Yq!ioBXSa6 z>(ltS$RNc#LrHl8DaDtf9CK?SRp3@3VNZc?_n%W7RSe)-*KH{aA#%LI=aAXuT0~rR z59$3jiId8)I(t5K;EzjV-wHQD65Gbt{ruo4)`-pV2>#cP!{iFz$r)RgnJ1hol9 z{qky?fBZwFSNDQW+ywG`WWV0x%0=tr-tX%f!?=6w%# z4}O~6Q3+Xn*bybBP@Xi6IANLB(sA{u`?_U~vq(FV|LpgYyFUdQn~!LDXan@8?VIW} z>hMC5+PT!zj@ZD6GOkoDSxo5lo z&Cw~K{7CHfKfSEmq$M9v|Un6I}DAL~!gX9-> z>TJ!Z5gcjkm+OLd5h-7{o(^YYhlim@8n8a+*t&r0+$69^DB{}|He#a}lR;^x!exXt zc2S*!h#kD0dL)9Ch<5CMCb7K#+sE~1PAzlysC;*K!YMv-^$AO&W4b7*z2dXo@lZ6R zBfc;)KeeO4Ugfy=cn7SumFw*h9mP4tsaKBWHQ3C1*{VP~7aBs{cRVnKT1JegnU@&h zw_}n%Y-YTkm zo>%WfZER<)@fa()z;>)jqM;l9>&%`j6;>enjicnfY6{ryXPviATi(I`@5e7iOyIQm z*+%2nt$04V_Mq6ZKkVLzIkG9xaMwPeCcC~Dk@w#>`9=MPzIMlu`zaO@H>BgkNhHWB z*eUpb7)Ptk$;qhjGN^ql&c6C=1@U^BbVw@41PDOC71 zi4h#Ka8aORy3Fhn2G2b9}|b} zl|=r-bhD28F#MFv}aY^!7I!5*f+MxiF0BsJIi zm`_X>EVt||_?t^XjqOCoiLpr(2mPn9c2<}~HaNuvL{8w*(cyE{wVWjP*VdI=C1>$; zRkGNgb&V*Q+32dPBTRPQ^iy|eVJDJ?t$U7EOObJdRPBeulB9NmXEdU`7u5|X{!49G z?xi%>9;+kuV0wG-$$_+L2uItTY}?38^2TCL`LE_83`IZtUBc7g3*~ThK3b0@qw7Yh zG3`i6@4d1pvz8=_muPNCnnF`%e5hJA6PeM->9;z-Mcz$IxjTNFUhYxxhHZ8oDCIum zxjSS6ht$q=xLsaBV){B(Cdmv#UH+EI(nKfZKNhEHc?uJ;0~^y0)zyPRH|>$=EP=a4 zo{>v;BUqlF2)}+N1INc+@Cr$EqkOpbl%?4eEPcBaK75!)aaMmo!XFyAKKmYRiEo9> zQ^Smy&@2cjRK34aCqx3)ST_m(p2qN>4>Lzwrm$%HR-<(d2Z`8`?tW8n7LB2&x1E1o z3P&3kX*H)dyqW!CKh(uX3ee#$jXQ1J|4dNONJG*68J7XrvwfwCiyvf?@?& zZy0eCxjDY6tH&E)#B%ABP(20r!` zuHmQWJFt(nFJtgr4X*5&x{zc*g=!Z?>pH6h@vqFLM4%tD2dr9xcP)Z#X!fzlzAls~ z|8!LRPk_8krHJy2&cK?yG_-vE6HeE;@?Xd>(6`eu=x#7WbcW*T()jvH*A5`7kV^2lNx`L2i<$mx8uRHE^tsa4QO^UX?<08J6u9~+T zSco)_G7oiC7jnK*LxgPDiLy?{^<2FrNXl-mxMt9g4ffc#2_&}!SWCXBf)8t5tf5CfcF6Ii z#4jyE%=_1sln>%0W|jWjk?kEA&~ZELwNsvC7#{hTA60_54>^?j>}dqQ4|f z+emAr8?PXr+zwa1XdH+B&B`L02OBx9|6RmDl#QJEMalGk-3&(Db#>+s&CuKNUD0KN zhluAlKH2oP2LTFv>zkyOb8dll;!nu3PxeTM%+*#QYgQsr(Df^rDKpGl(pHkYQh{Zk z8phF|oU+B~x+vKe)L!nM+JoLzsZXiPoJ?o(3zBkbg3z&y6tmeX{5!|2Qs6>`!qt(o z2Ny=c{^N|`ufQ>6D6$Eiz0n0`+1QffW(zQ2PiMSb<^zp~$9@Zh^?`BGjrNF?A#G&I z`l1C3Im(_irH~>_RF4jOL=DYjG3MN(fQ)61cOHx6EoCN4dRq2^uR7p%(Qn7d^8T9j zG4wL4Sj23xn#EFQ9u8Jgj_LUh;jx^^9|`6u)NiVMyUwZ~+9eGo+-dC)4tjXRphATl z`!%<^s&D{zUwpqqvmFA{b8Qc53J2*Ha#VZ4S&ir0!g#An*~pxY$kE_BZsKFpJ+mru z2+gYNwP-(vaffHA_*dx+5PYNP=iy~P?hUyWwzCBk?P#`*GJ=Ff(bR5rK&j-Sm`Jy&UJ~3jRgZQ1E^i*Z;h0sC6fn*y|B40N4vq+qQyU+{RUptKdq`Xz# z-!wwKcsTy9P6MP4iqihf_TYa20096043}p-6>J!X?VT;NA}UFek&OJGq!JZ{1|=k^ zgi4yPWF?`}k`|#NBQr`8${yMCbR2u{WAmQR&zI+SkN}?~oX= zaHv_g@GlQ)**Eec?@%y1Y_sV1WdyHyUz(r!z)O57l?LLQXxJLTb=lCQ0~+DETi>pm zhThO0L+|>Pq?Kdd)Vp*N&sQ|&?QCKr{ykm?{mkd^-|FMG=W1)fBOJfwH>VIeujOa8 zY{g8p4PqVs-jyN7)Q*ni3^Agtxo;*qW&n=Y{2vrl(@|@`>Wsc}9nOuN=;27INBiyJ z@Ockr5|$_|TV}>hgdP%GN!}T7D=G4KDR-b;`7)a~<6i<7=#q+A@`U-KW253fnE4J>GkC!u4#dqe#V9DE*$g&iAti zcO01|im%WS5;wVeCU_D8sZRD3MJhO>^2cBEQi0X%F$R|3@Gvv#{X)GEv9aK5R7;*m z-k|jS%PcyisDoEordi2$>%-sOnCG#iaU~a5%fK~08Icszjx{|ky%#%#$>V=wCkEvQ zA!)n6=+2XRIF2dMf^?`@eJENpCVdQha`*I_T<0RAXNo+vimPEP*iE05UBc752Dg_J zdch{nzW-pr3R2G;m!N!V5I6g*^D_A{YVzL~})+m1I;dB+wubz?(zY+K?wR^n;Q-C|STftmf0!k6bpp~~AOXc5tg zJ$bOvbnSxzhqrR5Knt#=nZD(#;wCpvH(gjA!c1n|>JNX`>BI@PGX2}-EF?TxEPnp* zG~T5=GtfEIkA(*Q1U+aGdm&S8)2};jERWGBz9Mj zC;ikE)^ic}^FwQPi?%}IyEE@?4GKKAigj6h6(&X|XZPWB4^CcKTW_FGgFiQW>98F$ z5h(8#i{hz8=#CnrXQAnE%ne#4-OWq9cO9~0H=V+R_NOOmZ>=QJrl0gJ-uELvI5(lg znVYon{>~pgS_O|&-LIYr)#A!V2k{xt0lZr(HWu_6$K1CfD_LPJ09__Dk(=jYi=ndA!+aRT(nt6{#8W%tSA*@o2BA2=Swu`gWT#5i4m{ zx18(-C_cH%lW~iK2w{l6v$hRkye3!3!%5iE?wwsZF^}60tW%ey3Q#Am9+{Fg2)0y{ zLJH&EIsUwWYZna%qolN{sub)gv?*u5tw0JXhgK$)4WT&1dcXe0UMR@LXL3vOk+h=Y z4-#Fg!7(wOZcxWd9!i_5sHg}L>XXIFSLvg8QXMOoW!Z;&{7jQigJ&_?xJS!q%Q#93 zrE833THvR4ZRGG*31YTB%&fb)6TA|O*7r=Bq2o-zzs7i%Z9`KGo2_m}3asFA3*%pC+hoVh-HjPy@Bpv)V^kdZ7HVHb(93 zB(5L(Q|kShkE~M*dXnsx3wPtK=O5O!VCnJP=zT^G33|tl?+p|p!j0RXi?($j$XvaJ zC#4tazCZWn?WW^EOr_1wCt}3wQQ)BDwGq62Xz8;df{m<_elF1OyM#P@#}`XSOL4&5 z;ozYbHsVA}V4e?K0Lxhe?_&y5q~TZ8(drp)A{bn4n0RFzF2cR`yi;^I%|-;9y46D8 zImVc;y9KI4KCkbTF_YL$t|Hfq`G|Y%ELXYX0-iFAATy{^+<|8pN83&v@-deu z&bBYF+I93{)u(h<$)ROj9jqTSDP6#*)_+pFMfxCRIC#Upmv zOA#QKxBrtHNo64(21-*KHcjIF4W1}AK_-F=%0~H})2QeF>$A7-L#E^%$x z?AXK2!uWso7hCi8foTknrybvR@Gl&QiBuN@h&%HyJ8X46k6Ft_Ld_2&o9|m3VpDCB$+!*>BCmL^pK3c zYV;oMV_$u>6Tj8Hqhj_75|>of@Ug^h?C9wHWBQwwJnb|JRlU=V&oO*kcC8mA&z73a zBxpGiT}0mu;-X zFmYVoX(Mb$g-H$jAI+O+!qSdzN7roA&O; zKpP&-B+_q}u#$)j+xVg_J@}R=*zM5Vja{dH(@SM4A?ybIS~3l_Ctilr2Ud_iTKlac z7slMLlC>Nb;vsj6Z%VB6<{|r5@}})ONyWb%^~@uq4Jab_ufBaDLfQk5+jKg&gV&Px z-1~1d49=!4nHMaetXe*Wa-{+M-mRkRSEXZ*;nq(lwS~yQ-2HEo*TxW$T6&jA0AI93)@T{CA9^z`Pt1%x`jDFh1hn735ahL7c)$HnF^zPFi;$Am}5ByU}PL~JZ zVSD_snHLQ#bmwN*&%ETlF!lJ_PczuruXiV4=O8A1t75KLS7MdC^_f;n7NRIPz%oB5 zKpd1J>o0n-5+l0FKA8~)zg6~U=C|>a94Xmd)r(E|`S!NsRrLYbbMSeV?_=yk@6d){ z{rNCY7D*`mHGuaEM{Uj=pF&PakFJjZ4U3T;YgW}Y!R|-GT^lsct$kq&(Zoq~$$>GzE z^@tnilrSuy!l~ywO=3+d3-Z zQ{9SNMrPoA=uXXY{3MnS@#%11o4|0_u$)$5Co*)*G-AADNRpx5Sp217Y?qT@nN4X1 z-(NRdHx5QUOd6w3to{zIa2uN+eq*>P|MSf`%NZ%Poh3FZC30If4 z&sN|uPkZm*r`^bw6R&>MyOvNq@0l6t(vaWbbN9=c7F>T2K>0mGgHwSS@8jlP#4?+O zO>#05!Oa>kfAluMMB&1*%!ow{h-berxYvu&hdb=9?PDctuCohH?dStFw4Y0@hT8p3bCri(*qk5F60nJvNPIqh_^n_M`oo7^` z?p|>hYD0aW?vI$p%{1eae>&@Md)@pJ2XhCwJnIF`N=Fd~ajUaUj2!LVb0oo|9k1*Y z(-t2y6aI5P{$IY(aN)v(^Dc~eU0LQ4v0tbQPfZhhKMi&x;w{SqZFU+&FPrb~%i$x= zJ3jxtn#@i7-sO7bbyIQ9anmQ}y)4As;f;=!ZWoTN7N(zM@aA;g3B|AhCQ^1#ec#Yc z7E*mI;nJ#EF~T)Ne|A<@JQ|Q zdnZvQV)*sWBTla#Sg;&S_pNBa*B0rq?>hy_z!l9&83``3zJl}qilYsv>M2|OXS^PM zHdRiGR~MnUL(9*rmyWe2vUc*avsksR)7GG!hIgqyPMyx9;oeHBhUd!;+_ub09}%Zu z*C)f|*D*A_yz%8pcv1ye*^WsE`0-v_m3vMt@>EhM8GNS?;i^ujK%yZZ>B#*%zVc-+7e#O~BGdH@*Bc4Y>xd?&uWe z!T3b`gT(xLoHY5a%5se1BW)FH;x3HBijIX~9NLwfl0$510NqIdN85yRUvc-=Fi zD|n|B&)AlHgY%{lDJO8)jKRll2VL3j$I;NP`esrKRNUQIr_-Z2g}e5Y^(Ptpx@G=M z(P29Q;%IoBCn9VD(Yoy73)&M9J{jqx`D6r*Ce0T#S{jiQ{wD8x(g?WOd#5V;gven5 z|2M~tW6{Ot5e+OPPftHS-fscnWgNnuzbBD!O7?(;(g1S*@UlPM{tcqRX6E5* z+F+8wJNllz8LJvyN9EMU;Q61TH8UqS5lbxUq+Q@3bp@;+M^`RGwyJXM;npUsPTy?w z?`t96dU;v*zGEd}7DB%QOWNRUvhUmr-8x9MUJv@afr@uWB3>TfHi7$!8etF0%i%M~ z_k(%sI9~o<85Fm142m+twsBX>aA~WUR(bM2RISq2aM8@jVqX<0rsdeW^1{aI4w#r(1)Z5_9-e0BRmz3S>0P%UGt&{2%Q^n~!T>I($H+OHq{EWebgy_6FVWX5 zey2A11N8XQue5q=aqSM#zDXJ&Gb0&f+}n=H6?=9BG5VyIND+1o`vg-;KA*J*6B!C< zv+ut~MdN3U3QoyMeA|BBZg0#Y;@fw*Pef%S_3yJksa>7$KcpDr8JUf6kzGf)AJn4m zO=7xK2@mn5N6q+Um4G+q{+FLmI7yd#pxlbWUWkcS_31QB!1r0#fV=QC7I?hor3AUj zoOHI1t5F+v8vVHOMn=23Q0RC<2rO2QK2aIIB% zE7>}#BizlX|H50bTe*INsAc8zb!}uJdnUat)D{Q9#^W9<1wpcRP1oD_q<_$GI;DD` zX#%{I1Nz|5 zw)#Z4tsv1bi}JT!$40t?le=8R`mwU3L76T%2nCgDA;&Tv(qb>G_neI4x?G2S)8+;w zjV_zjS#uG!wxupyEiHrDOy6G?6!%R5hZV9P5 zv_Z3TQc+gD7GA?+e?M%T#u>`omPxBoWNuC-M$2>@?YS*Ey1NVWU(DG@wcBBKXct95 ztQ%$iuJ?{`{{uPW6q3o-g~+2>H>CXkqSG&CJ@b1mvf*~mr#C8#I1t5cA?H>L!HG+1 zHhN9C6r{Hly|DtV2bbLSCKqAF`uH2`A`^KsLH+Ui8skol{(5jjqYCc(c#n;U&qKXS zllx#uC#YlgVOMT{L$QLyiT<^X7^2Uu3pDS;g%j?&YyXZy{=A`jX$Ui+ScR%y?_naT z8oT~%X6Gb&Y4RCsHuYe$7u&+hNIL$Fuzz8l6eK4+v?WrmF>*IJgxX{hg}J)dGTi}^ z-;>QeR5FgHu6r*Gg6DCa(BGV=bs%r-qo`zdJC5#IU2`sf z1X{meRyFvBlbFj(`moK6!zuXo%ul0nNNJVs&o2=mGF6iO5vOO-eI_-g)3Y80O-qmO z-EBfuv_#aIQ{C8EP&YNp@Z@Qa{;#LY3y|@dvXp1p4xfQI)&_=;MZWSbEV5rozD90e zofbL*j_su-OKJ5_rvcV;B&$v)} z3|Akl_!Rto1*v%Um@S#96W?>L{9BpM_&SqZx|~E^Im)%@17(qOd;4Vu9fwWjl`W z222;?!@mSC+SwkQJ~2LHoZE|V=F@T&GI@C9Sg_b|d=5-Y(|MBCeNZ*sdsXF3Cter} z9vG~oqTeolwHW6l8skqbNcd8)$bRpBZQ(o&RwRXt*bRciay;#rV?R=C{J43Q8o_`4 ziR0hP<5)ME7-xKU9Kz4Hv?MvNAjHuTqhtBJf@6E!X@6 zIF4v3pY&aZ!hetKCK>tiyE>e6MZgp$vV$cmIu;>vpH*AaCmVW3ge%yh9f|6F2i`4y z$Lm75)RFRPT#q=VY`Bk|wD9Rk$B37~DpbXLX%i>zd$tMKbCH5O2e)Pj((ttLQud_@R?=E|Y<-@>BG%3Yon6xVhneg7ak&R(5ozoD z(uOWUzU-`BQSe|JnJK88F~}Une^0;d=A{opdZ+rfMRrya5b;CH(QOny{vV33nQ#yb zNPCQGv|(P4_mFM%2u^4J@JygEkrd8Y4pE^Yycdo9du3(-H}iz$697g)xxdY*ID>Z$ zdqNhl7{1-kjXsNWk3-5N82RE@`DP%nsRc#@8jC3}H;^v5x#0}yI&4mxR8bY_gsX4; zV$d`@dB72^kW$czTLU-Nhzg4m&*MfmKQ)%nd_&^msV}o&7TK<=9XScV^8ZAs+G8k) zR_z;>oB)@4M1ED&09?lQ%X%DVC+0&MYhyc@$i~yg<)_9Nd){6wAj0sIw3fRjI`=uq z!Qt4|YkT@ZcRp`AMy*C(nJ_Ibm~pRD>~^_r9steN+r;!B9p5uvnL&m8g&) zDXeN3rs>e&>@j)tO+_bi^J+d^>ukV}u&no$w;28qkaJXE|1h-qyCmloXsFBmSt#PQ zjPWn0)zg@m$&0LkIUkcY$XXs*(h;h}q@1|=@PE??Ws)CDW$VT3b3>oi*Uw;`X36cn zSGw`h>3n2y#(Sf6CM_du#wBQab^!`%ea`P(J#|MMa9h< zn#E5_;O<}D5O$G`G>P%~5~(2y~_{G5I~Cz6Tyf3p6R zlQWJD5zRugPutN{7GAdpKST8#W28E`@fuX>nWF@9D$M6uX>_=8d@g_~)T2l}c>0`^F^1)Qz<~ z=QILooJ8cyD)HcQVUoRzk3URs3{TT9l^Qd1kO`0I=RFLs4t{z{{NsTI`16&9zj(k- zzC00l$elg|9jlCr&ecok4Emn@$+Q5sqimFDl1)%pqHPRJXhfc2ow<17Fn--rn2~tP zNfheXRMn<=$=vaa+`Fomusf?i(Ro8N0`=!)c;|}{=+mKe=*B!Ory5Ye;nj8dG$=CYjSLHBZG6iyad zq<7+cxBC86p`YN36-+&LeH5lsvkye41j+vZ009606jygV7Va0dWzS?}B&Cp+O`Rtx zWu|DWNLo@^NwkzCqKwp6C4`JZLNx4EWbf^@=Zn`KzxVh5^SPhro_o(d=jeQju}hhv zK-c5_o+CZ8h}0>$NkZvPj4M#+ZOT%( zD?s|os1?WUGI95UuL?si6S3C6=yB?t1d$y}@4wGG2f2^O6AfdE5c1T~*z#a6DzyJ> z5qv_y=}#+;5sdjbNTKXpY@LOsvVoqJ@gRJ~Hj+(By^vx1dui}iH`2Lw9%<~NfiuYO z^4{uBcz<+Z;^tr=E1h4J9_=0nWBUHHAuYoQ8VEg|{i7994r{N)J{g5jR&4w6`WX}) zTALY?!b1#1U)}m1nT+{g^Rl;sr!bh{F?(uc3Uh267S19JWYFKJ^}GcOX-p6+5xkI% z+=mx$pU%z4@%+{1lK&dOb9lp@AeU~a+B#_DO18k0a%{wRI29*&nIye<7ztN|zk=_} zE--BlqnKWu#N9`pzAHBupc2KGAZL*S3A+s+EI8URMHxSp8J!NpetD)OhYFmMQ<@aj zXCU)8?-sG#&BI~OQ2)AFW^$PUz(k7vYSPp=G+0!lMtFIK zfA|>B;^{iY`ypQkvAiqRD;Ss#4hH1@wa6mB6cr4V!P+@+&_H_@9iaA zS@Vcj@L?M^sHMw=rf(wAcZ_lwkJaP#Kp2N$NDHp;3r)~Oxyazb6prmr2JqQGz+NGQ zn>^WT6QO>YnRIvtCKz@yku#y~r*)df@jkcPZo9}BWMbX~C0I>j_L_{pM0_8j1ZK@j z>XvaY#Y`;g2s3eYj*%SE?1f!@jKfgxFns(kb?;~4B0)Ii;P z`WYw5@KEymTsn*@nnNzdd<5?7+m?zu`XS2u@_^(+0aD?-{#>_dHoxfx8~lvIzt-36`X zU1Bdt3HBZx@fMe%;ia)dvh~p+botkn?z5hTrPh}grQH;Kzx=I8ZY%x$jm#VBQ==fZ z@!DF~>YZ46=KE%}`Dt4Uy*s$vkC#@^(Gl`ZwmB!>Jho*0`1%bD1s=l3WWd?MxQJ~R$5 z)zg;SWLe3Z?$ON=@5j)?K-}$EnaH;OsNc*-R}*mq={Y%58t!g#a$VC{4-svJ$&|nr z96u!5V7E8~e*T^+4SSu;=+k=KvYlurwpBPLEY2XNGyzkwU5CcEa**f!Syu5gEaY9(#LU!MHj-&P z{q2iH3;N?3d&PMw0rRkm2F*F73Pj(XsjkBw_X2sIyk=}tlFl;k8bJ9^Q?>2fOPJaf zCaO~231(5xOQAvo(2g;5F&vygSJj@}O#zh%DVQ~jqIBW@RFOqhU{N$JSe%E~UUYOW63N$^Lhg(wmbAOk5xOGY=SGv!jM*DS|cy0w|f3_$1vJ4`s zt6*?`!wRU=w^F_v@Dok3#QDzAY^45JxE+|yOpaEbOHox@P0k*>`N5=l5po9l&vbM22$`8Zet9Wym)qi`RzbvQdY2=<$0z70RS z@as}!Vaehc8kBzrCJa;HA@uar9xDctujt15?)Dh$eT@FR&>zR{zz2b5F7&!DZ@gdk zX9Uq_^^+*O8OXzbYKL2{3X?O^*IxuqrGWp(Wn1ZQlL-H*aVJ}yhJA{1)NK_EB+qtM zOx2Qsn2Om4o}I|SJFDw5zL#=wU?$%nC#4Z*vt1rtqT@K?>~E^t*b0Wr;@dfL((raF z@#lE|3Vhv;e|6c@hq$A*O)C|XxZky^U^H?C6|es)ZZQ6h>k+DLC;jRnBO;x?+bA8Q zD^!P=RsV1&uPEzP#XNSqxYmb<=Yg1aCYkPJCVOwH+VVW_L0;Tv_9~_^NS&%%(Ga2H z%kOraF5@7*)(;pD=TcB_n*Z<8IW{t&xX;c-AMxt%(b3=DZ zgqXX0bl+;CMuZf`KX9f^W7>?p#4mmj7D=to1m_sY=^nuy8VUsjx&O(c`2dvfdpxzzWhSrK*q$%Oj>C02=C{D_QKZcE8^o#C7y! z(y;vkN~013PMx2{2aDuXDa#H__ywF#s*@veH|>2}b()b+!+*&#&Dgk|lPTr?Dw4-3 zcH}==KmGolq+Dm@CXKt_2(EKyA+4)#&7Gn!lQEv2?%!;qP@W$0KKPpoqF3`$y=DSN zy@FDqwmrDdRQXQn1`Q8gcIf4MvlEA;59ckn_FpRbREUym+v}R27JVFz04-f zj&3+|*sKZe9)@^F=EnLpow#c~@~CvnC^{~F`?(`v3iG@>7mEu9;pHsF_f(w zEmpe|0jo;byY+ zspku&c)nsi=oemuzjJNb2`BT=QR%ydRdyM!-!Hzn6U<7UHQlpccwU1Wug|zHFjT<* zLCozjZ%NXb5NaKFqYlOXs^cNrF*p}oZmKj`h1Z59araLS!KHY~J}ZNY$F5uwq5O>G zbridL<=qvCHkI?A%$Y}K0HxL0ycR+i8;`fHWhM44k;{Ps!o;Uxd-bKdPEhu6Q|1>Q zVIA|CBE?8~@~c=wrD69n!e{v}T3QWb=y8e6?ejG#5S71{F|`C=E3u|CKZfx4@b*gH zKNQ4OZGCa)#27So{5)aiISPfdH3xfH#K<|BzCoYx?WJ#fSmH*EJ|$sn9!0PjqGD4 z+d6a}wD@okYRnVMJ!dCi|3zV&q7ett9sDyKy|Ei=pTjeL+0P?5t9N)nn1}d9m)h>Q zxr~vgoR?p+tR{7v|2%xkT8bV~ziEz&S_IZ+e&)8Q#hu%l$2`7_VcShceO|=Ipk8W)V-4c@cTS#3@5Bk> z_NiER9A}?&n@otTK)AUr-N$hdZnV{Bb7lKryFT!lOVI>I*B;Li{8GI4|I^i9uY2#o_3*Q4eH$br3eu{?){z^1uTw2hAce#YvnnF|d_?!9$cpK}>+ zJfHIQzoYj-$@xm?{7GW%bNc^X-k;t4$;D(9dAR7m&()|1x({RZIxjL4FNY1eD+;1y zv`)Y>V}P!2$K^Imfo3;Cs)?9M}HmctF&N1+-j zmNs7bS$w4tu@c9neMN?GVmVfSxrc?Q2A_ysCoWEeRJpX*R(*lRi48XYjHoEPF~)a6 zV-6Qy>Ii*nXCUMP~{iqz@HqIi^WQMZ5XBiF(a)lC_IrO_P zQW4JI0vZ1kQP1{#NA&L1*`EskV)E=`W5Hm$o)t;I*Idqq%$ID|4|zHtg#D8$Gpd z5EZ-vUhmS_h&0g^7KjxfAzYIcQG;rvLH2p--A@ZhTDvXzBK?l;78Ps1=)g#lg8xk! zYV@GWs4-(%n!XSFZrzvjYJ`54{OyZxx-m7NouKN#N-T{{ixe-7fqyG=*xwx!(Ehvm zy(IStDl9+ouI%R{Qmeu~-Jhl*G)LYl#e4=|9fPz^k9UBr;M%hex%K2yxPOB6;|5e* z);*-ESc~Q^2E$j^*on_`2i_V%DsrheDEk}O$aK^vW<4t=vM`ttO>JZ$m$i2*s2%S? z?vafl+>vy=#IS#}KMfhZQ7ae4DY%~|JUn!59K&ro{=8IfqGImauxY*@FA7vm?P)D2 zbCXHXuw*4Q*HlA99D4BXs-{VkTMPEhta1xu;vhybv|-WiUigN_c~cA<5KpSWVJ3;A(8^|FMnc2lt&SusJ6yPwG#>FxMOTBMiB5N!bL807VQ7T$^{}v zFmt+Cm0TUbpxRWVscIj-2OZnAKfePRG7la4+jCJ8=v^NAXB5T{{G=+jwj%#|QCs!I zG#Db+CRC4h!hcK7!lB(g`0<*sWuBYD4y|yzW|JC-)NWyBrst=z7wgSBD=27qrD*yf zoPjW?JUle*#z10E`m}AdF2pPDT*j!~xmZ?GigeslguAuRLo`XdXFp>xYf+QgK^PIiP2(9Gk`?RoxCT zkOp5fy?Odx7|I+@T{auQ_V3SBg*H-gOGooh+~CpzFu(^y(|Dolr3k z8$FUXjPM5-@NH%!vG$BVD%yBR)SycC6FC}c3in0Se_KU<6x%;8-$lV=zDLUB>MXqD zEqnbnc!+<4(bD@{Ol0kw$r7bjaT1$kA<{EYhVa$qRd*{Ia8Y4QYgJ4&k}js#NJUa1 zQ?Ax0)yzT?4hXsGoTS0|w~(Z|(Gp@-F(i1?>p#sDm=|uU!O54&&yOk2nOBzzDjo8RPG%yDa3{D5ArCygAjl;f1LhlA$ zw=9=Cf8PB!j-6ZlS$8r2f*aG^VuxryR17qK9}DIupFHMUJm|bRz9`DZWkH20q zK?!X3Z*5I5-x=(tWR-{c*fbIL; zz9j`_lKAmd#05bSf~&8WxK=Nq_vnYJfKLT*;Ed~c`ZI+8{7&x8Txo_*e|c2w_6npl zEIXQW3?poQSN4r_G}w$@vD>_D7)J!ZHQBrMV6KZAeA0Rh@?05n3VwaC+IwZuDuta) zD~_C9GV6h2r^??)_oz^ya6bBSuL*3%qlvaAgJ_xPzYuG{Nk&uccM5h&ljH7(EJQ^= zqsd@*kI3~gyk`&gT1uqh4c}l3zdQ>umRK3wZ9fIsFz3f!b2;#T8OO0jBnL;Dygn@R zQy_6M_{{gnc9`>>Zc~${AnA3zr#n{xg4l}`elRc+{pdGG!9R-a#%JzneV;{$oX(7B z(h3ALtir5DbKu!^=y2cRW;CoD7tYYhLiM$8mxj1XkyYOOI#6r~AD+!K8%O0p-|> zMj=L$#y`ZzTGIo`^suUSjzN^KzERb!GzDiJm;Wrq7|Dc}s)e210BA3z`9Gv_lW=i0 zzp=#%h`+m_e!-E7rqC{nqI2v-;m^&&Q!Bzm*52UCg%A~@onp-%YO{=aJ+5L z8yY$1Eo0{X{%%8uZfH+FXk(u3hDq^;c)epSu>NEE_TzXbj8&N3>+dp>Z|93^53JwqF|*nr zNq%hBciqm~fyDF!Uu0)0V9p-Zc%q%1lsvr6cw&l*b?+<3n2#}&Jl9l;)ix%w%8EOx z_E{A{#z&ibwc$I@4mG3U-+yM|4rF( z7-}V3kJEf=VWjoKlzL1Zr?NL@M>8 z*#sCiW$3)N9>T+o18$j|D|jYaQC+u&k;vw{MjiT9fRvv){%;1d5VQK|Xh~8D3>fx$ zGG3bl-#`1e3305%np;-!T5k!&Jy)^%X*a-pYW-@qHhJQ~Y!~R0Qvs$=e_mw{M?yQJ z>@=9mus$p8$B_LXZl!W|b6XEUFHDDl-C-JsdY#^G3z&vvM^C`v1S)cZS;X$x=fmM= zX_?Gn4wBm`U|8laNnBppbiOF+K>3W^zMozX5pp)Hav1ALzmwsjEZw)Z%h8OOb>>iQ zc*#*~M+r_}@@#z>G6(t74bG!O6JU~mYWAGxP@^l^NpBHqF`|D5_L_Ual}9dZ#T zN|QBVpU38~aXq$b7YPuyH9^YEhZayAy7k#vk$xD@^01#Zree>)u(&>jhA-#uY!u|} zz;ChHOZvhrL|9)+UbR`WM?0yz2h5@yl;S6vZbYm^8!WT}s&5zHz8N-Sa56 zw*ofTM#Oh=^kSA%Jx!}}5}#79-Wt_pBB2*%8*FU339n~PLxArT#`Nz`be~^EyiEqr z?x^UZ^LsHy-js&g$hD=^Ssv0LVVd42&Q79LAAcVS+CbhO>k%y}senUwk>k;Gjo{=7 zesh|x?`w?Q+olAlxX)-?@I{4{R8SLM2rLdEMnAKrdzha44ht?SJ?_q7%1Tnh#9Mvy=J0`3I{D zmT-VcS^mV%N;Kt#1aS+p5GnT_(H@aCB=3~WE{A6;Xxse8uH5Xcr zu51~ac}Piobn1Z3ATr9X?ETr_4p++)PTapb;1ZeXGHmq+lf{$otF4(ynBujJ&xPYy zvph9?OllT)<_^^O*fEe%J_RrDhypAwN(Bomv|=SvzP!EiH$tsKs@iF#2(_?Yze>6n zPq*J~H0H<$BdcDy*{>z=eg50|a=r&+mSM75VcC^U zBVdxo#jIdn5=#r&u!`j4T)swhj3!-&lQooHEV2>hA9~cn7Ga|O%dUcAxRZQ+!&ULi zkC7x&O87os?}F}dyF!FI6WKC0(0xL_3y((D^y!VXAvn`x+x@kzc)n78XL+F&bKC!B zn1?Wse|ttdw$SkwkscQ^h?&KMw@;nsL`LwCN8dH8b~OpA=W*h09Ea!G@ZeI~1Z12O zElT2gaK-+^+gLSGGSV8tBK@EPzuM2I_Jo(?pVgeS{Y!eD^>H*PHJgUn6GsQ}$BW?N z@#T`)%1q2Ggmm^6@{*N*hcPxf=_eYj1}r4gA1_H;iNWox>fNtu~A?3!{u7S{>~%jj?UcUtgM`|aO9 zEOehS!j{T0+yG0ymu6mkmB{t^QRB-#hajc(x9`*ETU#m-u`D!*O!M|NYzzH(ymqL& zu6_XCO&8u-?HI>nmhSabvIwb&DvLk)>|~gfKedQSzO7=?Jb5TB%ae`${td_X z)^v<{|E1^P?L(t!v-qRbf3wDrgIID24ePEdL9xx#ROOl$ybax(xTvE@%ygQyyuX)Y z#3|3~tyd(DdA}LwYAXd#{kHo)HA6UcyNoy9obK!5^L4*dMsetG#>)QAQAj>Fx64IO=qJ zz)WWd)ZtuT!Yoe2r{a#*r_E!%cM^xYxgcTwcCyFf@CtqwF-U&hJc#`5jZCB2REU>e z%L-1Pf|~NVx_vjBp_%Di>SWJEcGcPb-cck=xancXOEly61~ zb$;f$=_JgYwzm{(R%2<$={SSS!x-1OnDRMe9?P1iC5-m1z^B{2AoUzK(Nq1@QAwS_ zrwH~U)dd9OvKUT#6po$C$8*&M_F8%!SAFO zt`5V4P~oc)D&5@x`O*LMkCZc${>OTI1Pkh+T&TW}p=Sc;+P(jpTwa9EqhAX56WK_* zS;*cdZ+gy;c;ecAcM9ZILhoEpFRF%QU+BJWg?OAJN5$o73@>fknWUTtF$c1JW$FBEgNY7jk_hRJAGdB;$3Wi696VZ` zT>?MPCQTdJNwB}1a*$1_!Ka$9*TYT}fn76RYDjGW)uL|4Y*I(?`1~&QZjEuoYZ&PL z$2ExW@|luc9OGaP8qzJkH3I$>wwWir%;bG%aUZu>2mS{D0RR6CS7$gDY!tS)>{Vtm ziV|N+iTlx1q)ihcAw{T^l0-&jwM#=rk(rg5y_LP!``WVCEA#XFxvq0P=bZc8gYV~M zjc-@yu;KL8eT^U5@y~GKvQ@}HvAg_vWBP*kxQ$KvF`$H3rL z)cfr^;cn0kRjum!D!&@!pX<8(T#T9Qi+;T?Q)3Fl8yW8T_|TB&|CA|jY#ECO4;Qx{ zFTwCJiHwTBo#=T(uYWot9|gX`W2J{mAj_-fZIs`G{2}v)tZRxO7%s{mQag*mef2*Z z8++jEl1aDXxBB0N{Xzn2^N2s&Gx$(>9#L0}DH%GGm{|7M_|A)ul$V<&8aN+2dtI)Q+z?(MLz>%tp1;w)DX2iBR#OtWMm&6|=RDWgY2%P}w5*at72d>$y%j ze7!j{k>>w#;>foesHi?Ki@Q(-hoJPL zGlPq8an_g^y19bSrJQCOm&Y-AwQxl2TQ8n(Y|?qvJc>hIX*%Q_~sd-QfW!~?0$ip{XpW5c2A4sHUd0e-v8ZA^|=U?J9G_fRg(-m@( zBkz_@m06U4ZJuA&=noa)CmhS&#FfZrxnleF*A@8jg|S!cMmUm!t>!JX%kY5nw2nyk zFdkkLd>G$JL6Y|gtsf8iaFj>j`mTaLh&rmv+4c^>Y$Y}7Cqp`RUrJcVRmnx9_aBld zY>+0uzc0*OW9&rhUGThe@`mQ6hWk5e){*$hX8FE?Njxwc5nWfqK)BO%MSOD$aQn0{ z$A#VFxOao4C+ai}U1A!<#$f=YD(0kQ%NQEHST8!PA4IkLBA%4kz5bJ6+%o6P;aa!BOl80d$yS6fJPeKzOcUI_${Gua@ zJXX%?Ucw~Dn4-wGe;Ip(Ql%YM?^VjRR@C0C4TWqHZ@z?1VbgQx;s;Obq4T$}>1*@^ z%!e-TIwM0*ii``q?uspe=3UEcZpuZhw97?Sl$X1+woNoEvf|W1@ z=B@uz*aG1+uNoZ+4Wda(rW@!P$j5-|YaOVp3!O4#Ivp^H#T_z)q)?HCCj_v z=kEFQcnJmDH4-nTr2Rv5b8LLq&jRdPGBL{h+KY?N*blKvbC4pZj|NV%BVb&-y*pNw z3il9rz8h%8r8{DEw>bq##C5v3j)YIbsqjVN5r?K zwLr^9hb=9KfheY&GVsq4CR>^-W~tnCqb?CZzYg`h{Ltoz|J?WK^aF@{Q$y1P?1NAUVV*fse-WuWV?7B_1JU^wr&m$X+5!o@CbGp~IwF#4-RWU;z#)i{Ur3*T3+Mc(~ZRjrmnJY)7aEj+NQXcjr4d{OMM^fhoHJzP@rT1*nJjUE8dhs z@XVp&;E5SL$R6Bd`=<%+P(8Pr?EVGeD_ri z8geYD=BKI4D7|fdt-`wkd!7HYX%yDwep#JW| zEI*0r{uMD;`V(8WitRP^oxvlWPwv+~(-9YYjc!3%QKBCiUHH6Qi401xj(@9QB!Uii zG7Pn-&{rI~Gq%J)5;-Kz2L^lK|5eWVPFD?1Cv@@nmUQF!pRq?xd@a~znp?5SehyAA zskUxTi}29W3sB))!I8nnXT55Du<-Y1H;@-5HooZ#U%7j6_3S>eq=hMDr=`69FK`g@ zHv+f}BDqPCXyIGC!Y(v*T3k{uD@A)kj6hq`EVjr`*G0TugqX$tjs^2kEEXCpP4lkm z+HaGPM|8a8`RuN%g4f#M=3*GVoJ3EaPEIuPY-1uj&m1!;df$s|*ZUt&?rOvJZ5#|i zaZ;pAfV{BCu^+~i#=T%Ks79m+whYDGsC;_BgXXPnEa7| zM|UeA@<2{B=wvm9dZg?xKcgdjUwUa-j*7Zj{=F+_Cov<* zA~(`A3B&B@v9a8FWQb*SvM0^s@IR9ZtB+0itYdyop{M|vR&mE7le_Swo>lpnX$sE8 zMLFFl9LK@!3whCp?WpHQ7)>M5oiaYyFyfd0QFnqPvsFII@!8lF+o^=%DZAoc;=Gl*dw7l!z zN>Y&0aTgEWxCz?}ZQs!e84_{Bx67-m9Y5Wt`~&3zz^_Yj4PM1dV26T<(XI)Y(l=If z#W0bt%CR!E>Jprsk&f&Z9)QtidTG-ab1-#U*4!H~0LhJ(jLvVz;1+mWGI692vG%T? zcJYdn)g+&lrqKQ&%X$+eYW1=05B8q?C&on4SnQn^=U|#aEdpjh5lq zwqxLk3fsziL3wOjH_slUv%@NDK9(>fJ4BWJ7z9wcv0Q)ORT{+Fovl z(7xTf_|H{Aeokkg)%hQKtgSEG)0W`yLd8mutpe{;wow&_C(!xts+Z)BDMZh9Xj&_E zA&Se+J7+&9`TQ#(W09{Dx7ZbK+NUhy^AWail{6OOaJ}qocsm<$4v!wmIKPH0c8>LJ zKgdYb4;>PdTD^-{`$G%&clV<40&l5o-U8HkcMUD9FM{QT%Dy|jeVE9)zo3!GO1_$0 zD9Q2}L)Wjw?3p)hP}Pq=baSy8eL1SVK7C^3q8eYO^OIFy?KT-ZZ{ms*$IQ}i}W@RU$Yh5(!qq~v5C30(K zMUIhW3x}ClHOOR~c5OLeA0SCrE)$h361EO}VY;v?;*)i~^#AeOr}9~ZbY zdvfWixLuHS-fnd+iZ^wy2mBa>`~6fahg2$_aU|^cWZ8|!I&HstX6VT&GyXFjFD9{5 zw_^I_@o6N4ZR3QK068$Aw@`<>bT0EU-s;Go0eEh#D(0d<#Xl8 zZy6IKo>4|JM5)cAJ4nTPGu8EZT1+J92AkKUem|IUy-yGAuhK{qT;Czh%w2$G$t1Gn{GP_X3xip%Hb z6pU?hSB{ST#mygDi?eEMAuS+XfZJmjNn?s{*aD*bN6#`-&TkB?o0pCvbu3p zu2)0p)jW=#`u%=9vItYm?~lk$)nd~Txl^ef4CKI#Pi{jKQ#kF}8hkZj2~koaYELrT z!S*5fI%Dt*+y?UhJXpn1y!&~!o8xncvrrxO3SPuv@toq)=~nFaPunosngeD_-dTq? zT{seb*>|5>3e2T^oPD(?VL3Z$r!iR#+iyoH+eQ|#?S_=wKiXoiyGdU8S)6!C4k-PsM@T>K-k8RJ_*Ocg@%<_<3HWqSy1Zfmm)=Ayrp!~I_v-x@ zEo&+qGCmn?a+$<-=8oM(d>ue;?%MUUb9j@WVIOM3MkboGY4_sh(Coex5c7eXEJ`Ekq`z$>fUbsGSb~7uHe`~KV_EnA8 z%axjH#t1xEATks=w2`P5VKele3hdnWW!4*^h`Z?>W5Z!Sc z8GY_@Vl55&amrPShTV{-7h(U8frr#xl%Lw>NX55*X;fx1jPdbux1m8Dv5QYnREM4Ebu!~|8?ZG;Tt;Mg;RF|#lN2u`qm!`!KF*6&? z-8+crh(kvwiNvzfHP}uir3R&ay;%oiuQ6JEr=}LyW|KQGfSXeH}5%xU)0%TsnMh`d(Tzw&BW9e%f}&X$XLMCkrz> zq2G|gb$e$Qyo16Y#F~}h^3C5W+4A-H;SkKvr^ZNZLf9!=?$p6`dec5L1D&zNaW4is^3~FL{-RASdM-rh6xOxD`M+0T z7t$NC>6p1v;!F-sxKsW~&rl%H&0N;pRF992$)(lFRI~~w{%KXC;ITG?luj%aubFoA zok(IN_4hSm88XK3ZBMNA^&e9>GW00&S`I(adr|W{;>k~hK5kC9d1wOv8tNF!+o!M~ zZSNwlBTjxyy|VUDmL}!L4XJp!+D{nAI@Wk9z6bsi+F!v;WWTN*h>aLR6L<4ic5yL= zH*pVe9T~j^yAw0bOPTplQd&id9>J5^S$y9dcy2b*btxI1s_+NaXD#z z5~MLoW9sj~qd-R+SL;c9(zrDBM}8DitUM+>&zZ=t?|X<<83o^&P6rF;6`?N2ZsflY z!#GA$aV=cttFt+;Qy9 z<>eX>Q6DJ=={~qSzIxx|IfWKY+h>ng_52^7(KT0(CWJ-Ry|8m;Cj2)yD<2 zGuXFfL)`t=B!dtIqN!q1NvBhB#zZ`3GIQOL!ZwWOLo_*~qw7#SS%zR1{$&9gg>m+8)9CN4s}N@5%-KfKn~SdHW82`PgRwHf#% zL=A_{7C`D`lh6+H1aN<}d*XG7iWP=<&ydk6q_f=)bPeVwch{4+B<(8H%JAP337bX@ zvyW`*%sMjbGiq%2QqyxRH;uU5H9W4&!^i0%B^e5MKR47 zrX1D%!rF)gv@|_4=tjz=AKI>s$>_FeS_)U>B0(lL*{R3Ne`LVrj zCDJoFPOCCK5+=caZ0$Kj=*W-X6|aBxQn4|}QdE*kNA7yGrn%M&lDwCe z%@bGVvB|la)n>E-hVr#*gLcx9O7;Am?msHvvHe}B3R5=H=ToE{rKotZL*|dQd@X_m zh8Fq055gl3F9Y~j^FiM$fpV`I817|K^X?l*=Ru=e=lUjbX1MYS|C$O6>FAd&C2^AV z9FD#W)!mS-^kM#P^$)gNH*%Cd5G7B;I(v-Vc#ZqL3Xv73!}Y;0$JD_M)}mJZ*w zv-_~sb&tcE4_!DIX!w2OEHBwQdviR2r39aJnr))%MlgeN0iEsaE!9I!dx|(}`X}m=7O~Sltb|&nSKIwNGuI_ix zyDQgn6s$^I7azz-5?8t0gGQ_(M4wNIoo$+d{5tz_s_?zcglJ%WQS0>)lM!qxdY!$$1J%jje?Ug)G_AaA_Np~Xh;60Cl?I$Yb{;d z;r%B4-4XgVYR%s^7*oglqnpNIq9+%TKpR8HOtz%22?P0LQk$o@j|$fEVziql%wTJ@G#^(t=IKPwm`4qmYal&47p|SP7@8xM01uuT$SM?^lCd> zIBwJ6wA>SLtDpudDS@9qw+}#C&i-Pd(lA)}lufs6&P9xeg5}85PFR|bcW%GLMlL4i z{E^-`w3GN0xA^o_UVWd2sK0<;a?A|qehDOOc(;JU zbXt4=NG~cD3!Zq)W#P?6#sqycDk?o{sxh91nM!Vs$-mR!8~fhMo-orySxNj zF@>UikEUSpxmy$I`zSU$PxKUDXG1V(*Y#GT*yiRJ?})7;2f zXlHPK8u9su6{BaGZKeFgPuYHbR&*Km1h=&g7G~gexTFE&ry5k}r?7fvPvY=4wi17# z7PvR+iuS)~K@oNKsES)X_7R6}B?Bs`1BTr-WvS3?J>wbX$3YS~DtWZ7%MeL5lSYp# z6o`BdWjEu+65iW-}Gx>b*En^ zZg>{421_iJmxjTnc~hZa^BBC>^UFo7)(fT_Idt84JvlZoR^GNSj^#*m_w09U0 zAt$d?LWAI3zK1zC6^WijB=yfI+8Nqiya&c`%+xc)`%FKcXt>xu8C^!7@8o|?n>oqN zaTi|3ktv+`_Wt<8^StDS=E9BHUV74Ot9?0-Hi5g;sl%h4ZQ$MbbDMheAZmiLT-Hg^ z@Vj_lx2G9BnR_UoZ*)V2Xp4!YHeOierxKSFw{tpihc0CExg#~u-r@hO>lqVq8?%0T ze`yNw*Ha$mCgtE6zoHubfiZ-oh8m=0(vdSRSCxxi55qKkc}P@r0Ud&7JCaWti< z?-=2o#TJc=5p$8H*efQ**|KH=Rxj1FDb0)|dX2wn)6FS-vkX6>6I}!2(CjN6hZ|t9 z+osysU7iFptWB?;S-=Tdb`4tp6k@ytZRr$+$>D;5&(g`OdeHo(Y)Y>i6&obAvS=&d z4bwm4tR+A^BDr-&p3rd2F->;Nq6N8OaqjA#3}od&q}7?ua_qC$QybOJM#&)SCgY?o zTu8IG>?*0ij?r@q9&ZL<0AWC$zr+4tob9$56eVP~X#~(PtjbJZA25#Ci}VHsE+cqs z&-m`x^CE0a$bPKp!%J>OyuEyWtQXGtEFlN_=aKg%iTUhqVba0c5N0XBOC~2wRayFS zaF@w{d*{1GNVLT9T*#Y)^7BU=S*MxFtq+=eoHZIDZIH4Os$7M;Nt`wz;#81Cx5}4` zT!gOdiHh&)9$z`Un$A-ngvj9Ly@I6_Go=q z^`Ixdr#d9%t~PJS6Z3{O5PJ8`l$!+qQ}K!W1`)J@w>B)qq8k zb;)uP({*Tf*G^WVd0i_1p>QYe1%w{64_QXo3eF2Oc8}tX+H6)pQZ6)C+azbj4Pcp3 z4r^9RJ5~QV*L@YIZ?=OEwqT8MvwV6Ria& z0?oB4JwtfV`K;RZ5gl(6{XV%63aM6mD-l!Ff$tQNFMSV+(fgRg)_Y_@nowWu!63{zQI97}_i{+wSX+!TYFRu=C{_w3y^1 zN%aq)(X#AW@6}EeUhmm@a5fjFL4KJ`)=pI1j4W>a!%J3}UfXk?y$b{BDSg-?Os*(U z|0TSr!j_tk^vfO#Fy&H+d?L(1#`wAJfKB7rs+(kW@AwpUZXG`@I@Ay9^$QPV-{zvh zDY|HNMDt!VW zD;3{LsoYi|h zB2c>l_h!NdREMZg87g?!^(O;An~cA;O)Vo80;`KmM&*caT4l0o0uA;xDJx}OrNV}G zQeVr3ovc(!596`!N8A0~lO+{%C>ZeR*fl$Xm)%cRp1fEFX{(RS5kn>_HT|A$dpd%$ z>ZdnS?+l{fF(RhYvmMRNA9db(E0LH%gFa8UL5M5TqwZC(5$+#iX6sEkNlxOuw0K4< z2K3Id9v+@UXK&+=5Ls5Tzl>jH^PNTv)W-4+t1%#D-uot>Ng%pO&dV#EvYzK5I)8Fk>QKkf-uY@m z)L)pi&RIm)ma~v+do|3(GU(XWbUAv}vliTo(5vou>&AL&&KY_d1B#2;Z`yPz-MV6FNKuLCU~XNB7_|021o>*`>dhA+oLK z52CzWqbM(#xPPKNM#z+%blMJc-I!${{gpGXL_#$NDF^$y>+8XnQg`0*>ssPT6=Lg_ znuA(M?6A4>3{n>U8~)cXMvU*B-xT*@5mT!QN<=z4&}+r*y6XNs%C)-rbSv-%dMmO@tV0 z%$DRI??gxD|~(kRAb@&_M_jG zhwyIlCbQkF1MB~L+3=-7h*+N4L;}_^aHh*N=6l#Mw#{z;xM3%Ss?l?9-pD}=fRKs(rMcibg)XViJIevrtPUT{t4HZFk z9!CWWI${1!>F4ZiS(0bXpq)R+Ns79K0x26PMDxWV)l`R0th(zNa8!dnt+j~s^A2AZ$?&MsHg>Z)MWPs19oy@`RmisFS*HiiO8q399_7->mHX$ z4KMi@apGT;HW$eXI~0F{V-(qIe;c#MG~-W;lY8CWm1KB$l(}V!m&7Ohr|9`D3_Fc# zcK>}cgyi~!WmSJ_A#`nmgXuerZmyYs8Qe=8dRJ~5{Wurfooaw0)FJ9kEj1Ct2i7ihyJxF5ZB-T$7t~XHnA$ID(4B0V-bIZ9dt{oajZ^ixAknvxr zIQ-}p-%kdL^{ob8<^j7Hn=svIw%~edEs?F{5|^Fq$Bft3>~paT zxOMaSrmKA1gx=m6bib|KYhj+P9qH3oAMFWTgx}^CjbiyB$OY>D_IoytjI4jx$1Pb%?4#WH z`Bok>>xx>}LzGq$xez7c_p@vzEtKB6Ac z{ae0%6v7KRTh~q%;hm3%mB6)8ctma7w#JEzsJjmH#2g!i(XJDh3!+4bxzX{CB25O| zU+g*)x`mDxnJM*(SV0W_Y~l+&v5as^$9MMDN|C~8>&0i5^5m*Wth@;gW=D9=!y;$sOVQ<>sAka8~P-If9&1pG{-?gT@&r^J24@jYw1ji>cAC8ZOLR? z%As-zg*2@pQ-VD8YAzcWqHLw2xRa^)ypEH2Hq!4Nep(GF2lGE)QgShz?BOIF z(2Rd!!kgG>*~m9MHgdSD7dJ<2R?T{kLqsJ`ICy*pFI#%=otYlM7M9GjY^ypTaQ6J( z)8;vNsBv>_qpK+KBSw24%nah8#MA2%uV-}0kklbw)>@LiS4`Ouix zn?7*+FZ{go*H0U>lPi0TrB)}-!a3MDQt;Pm-gP8VVV~+BG?pn%%&3`HY5gqV?#Udh#^}WOO8V2R3qe2c>f^GBz=NmT~?BxCB8+I}<&Ocs7M*rgG88zh&RZenw;J#J(Ck}G= z>XEGV7do+l>K8(ExQXXe&veQ!b}}b8>`+J*{;ek3t3eCMJ6Qv{g$xuUOc_VytBS$0Kav{xpS1-oR zgva+4oVU-5kbCCVgYRCp<7jh6xPRqJ@>*6y!Sz}d)?p}Lt$iL%oQ}S}x`S{tvMrDO zIsu+?gXPP3#}Ij)B}6i69Nd(i75_f}L7fV>pXUQ?Mid7U_j0L z%f&Fhm1O&xZ)Wx>J@}D2BgnsnmApNB(=}`V7%XVwr#hLTgf z)F7TddiG;Lbqr@un%zAf!b4KtzvIpjsKuuB`vmxf7opa*!K5K?84!zE*Y8_ZuG=+Z<$3Oaz+_IM{wZS7X%Tc)9- zm$v!1K7|BR*9&M8F2eU%q)%)60GizPORY;6CHl!?$tS&+_9ykKxHXZE9xt;`_n8ft z7(2~%#Dog1>+X))k$q^S7rHqx#vtaanSbqrJozQ6vv!#E+q4oy>~lY;lstyQXMHY4HvHs6%dOBTvuV7Qx^pgu zh!C+D1^sY`3H+YVV|#I~2W4!9Nya&%#3&)^X`D0{xxe3U`=t_bqI#R{vFloCViNUi zNQlynhU5=-JP%Ibom)~5ZyF5(j+3r*uQGhBSUCIn<^p!8e%--7&PHU~P0g+zXCg`l zW{x-NVGw^Q+xBBSu9w&smE2Gz`WA9~zj4jLKTlOBbQy)*n7W}=pv+6m0;Z&%InBT? zYMjT>lb!8lx7Dpq=JoWty8cdG8P z9-K`p@5wNrB5eJZ7I%xEQ0=$z@97dGuiu;hjAe{MFy1uF>FW&6dJXKnlFvshu8h~_ zEah;Y>PSL%Vlk3SyKgWKHQ;k7-$8CBH_`d|aX6f35~9)%PcOSuji>{?%n{udsCWDc z)k+wE+l7|Ee19RbS@~_JV0kU3uGYDqy1q2mo&(%tV_lHHRue~w5F~as+~$2Mqp(puD^#YWP%=oLHbs?vz`)v+sX3XJ?i; z-nJ`B*02jR^bgIC#03eZ`FwF#${fsp?7kORmWhuKJw-hp)3G2v8|z`;h0NAvm-EHC zV9a`SgXLu=etEX!2>Q&y#=HBCc2q6u)ZGH#^Dg;=#vb;>6IAFtb#H8~>_YCxhI!t< zbYzLFv(ZpxA*J68tE!qhVdJ~);N#Rr&<5D$ai$#w(R$hXv=JzWXzf=bwXoh3ESvg( zgS@|5-*oydD_O7n`QMJP9(=WQ@}@X*5j{5dh3^k3WY?V|xo)fJ;A?$O4%N_*QrmJ_ zT~&|_UuJfSeHSIhcf*C_6(Vq6f8^1RrJj=HN#(LmXvLNB?tVXoB_8?^ zzumcfuo=fS)%_RLjOGz9c`p1l?<8stjTzkj$x8Bf*4@{4VIx=h0$jhUwZOT#dBfWc zZD?`36rEGZPM+r*Tn^IgMse+X3zh0-{I0vJXjjX?MxOirRncYmK4!||D3p#1w@Ygx zUa}G%sWa>u+n5NwF3#(2B1Y)9;)RVDyP>KyQQzRoP7XWd@WtHhg6)@uo>N+Xa4=(5 z_Sv&GxF!3rgzgWQ`dRLBvXx(WyU!0U6f$Hz|BZ?-V_F-4YW?Cg;{gs)GKUv5HNr`5k&orEp zxxK$lc^sF5y50<3Wg%OoC+yGr z71V>+8aG+#TXRrPuiN!)ein3@y0q97PLi=RUoYLh8w0GbceQL6B_;H^&-vMt(EQC_ zX;d`_^5d4{RP3A<{T-|&N}^ICM|S(L5v7s%P}^Wh z;;qKYzx}QxVV-x>%8cCb@(EH5{do=2FT0 z^I;t1b#n2ttvO5-20xfrjiTYSn9KtQ;VI}{Th3mg#6f<9KWUS!8bHFS$Tl_all0!~IB$3yZ4@V#5Cg zd%pg$Y21$W7|n}c@{Wtbr^Z*e;g7`ss@c7Ng6jvNCfrp_H2xFFkH@;ac_VUgLi_J6Gs+>17Srk9-@q$Qg&5%xd!Z zz;EbrzPYt&$|E9%vpyjussa7&a<+H?GzP%My*>4ZB&0SH+4+ z*|Hi$gr)4sKGlRXHCZJRD<&aUx;bR1ybW2^HtumMwa}_|390))g)oOn0B5}@ahGkY zb5{Z)o0l&%THnj(OwIm|RHa{4E#_7zFbW zcQ>WJ3u4K#?ZRt1P-{9<^{8|dmaRM4DDATd_N|W8>1jY#(7bjLp`$ZH?19g18kq64 zJ9Lo_#AjIs#hh zA-%=Yzt~$nC7?UVP8?bHy!gGunUo-TU;Pa|NVDe&41dc;x<9Z>KE5%FdqT%EH@=}m zjE8PrxW60sO#9v)dBjOtgnDY<9}pwA>$T9iEgDU((eY-&4XB@5SM=<5E4Ex=dV~y* z#krEgk{>=e&Ni9Hm;&c6EsW`#(xrf#;a!aqFaJt&iLU4i5~W(Fuu zRwF>9ecXdgqHXJ_HUEWvxTev~LU?CzcZSm~?|uiIHNHe9bFz@%+?V(4nXg6E%Z*=F zhBNR?Ix=Xgwj4qirun6`CYE};zQuz^7V?hw{kh2zCd3k%fg74Q$s4C&H0e*7mZ?Uq+;Iy?*84U{^-gwa&jQEzg%4aedLeD@muI-H46O^El%B7w#H+LM#g#AOd8sm5w zuXUWnXNUWx2aI-j^*vc5%rgb+!4mPr9V}$Qhw{`wI}2g#x4-KIj4k<{c&9^JV?GNMa3g zeP3@>;ov9V=bp7#b_$V;n#ZQ^igjXK-d4qwV-Pv4?+bYw#$l*(zEu0{D4aZapSjHa z#r$cFoGUz%B;{Io1)D}UXcbA}K^$zv+;DMpgl`c;vqM2o5?P6z!fHK3fi6THIwI)8 zB~I>kj%k#KO)lm1N<^?L;spHAqIK%C^4s9$j1eO;pnt4p7H zvRaHdUf>MU82pL8eH*!~b((Q;Q?5mGQ7>LN$5trC3K7NEWzSEq>_oqH})NAyx3y~xur80_v=0YT`)~0-JdK4#jg(_X=8HdTF{#5+wX2_*YysJ{H zhEQ+htywcx;z6TIK9J=g%O*J#rluy*nEtq7Cb<{Cn{PNXa|RG0(#@l_SDCCiZ7Sm> zLC5kS165T67NR;js3E|!fHh(I@wfVi@$%sfJ#S|!iLVvChctnslk4-uPf< z{)HEQK3u+I92T2>PW%w6g7^zHbt%DVtaqfU2iGy+U3}Ux)hQq6LfOnOMKnQK!N`gMkuya|jBvCk|<4xFWRu;p6ctSdG0cZ282%{`6N)UP(0Ua#wz-^RF7#JDx~e zE&cUDzwKWtG=xbKCE_B3-j6wp4!VCb8!=lUZQ8h^3xm4m(PN&14bv|BV?EKFz!>uZ$E!9h5rEn0RR6CmxntR zY#7CDA~P!#5vfq9l&_pe(xQ|?2?+^l*_4??Wkn^?QlgNAq$t_S-g~{a*Ldyy`3s)w zI_G}Q`JMF=2#f))Q47B>D4^W z;r33W<$e^He(1k`;u8}I{ptTewR!@TRpC*EZ^xkY;bQu+b7P?6aUYLSU?C-gRa$I+ z`HAYQ#Vyx%#UTAJW1#>;CH8HdlXy1L28As`Qa!m-D7w5yp8r`X&Rv#cpdQLczFwYJ z{3s)d`xb50>%5L=*bQxS^OdB*9>-z z8#P|N#71_WsW6Z}Km-5IWtRK4Ysebusjm~9Y~&NSkF|70C$uE!w$|NkfN9c+a1Tx% zQsm0N94grX@A5tSrti0+oc)}hM$7`%iMX!$ce)x^3L4dNxO1STdh@zPH3u0S4aqZ` z8%L{wUWqE50C6}jC&ZyKf|FcU<|;qf$h3g}`aac4$Wo>s@;v_wyBA@R95;qAb-gb} z^vong%jGF2C{$!uHLllS>PC+`r8y~Rs~5z5-!{OUPr%fvUWPQ} zSpH3zp~1l*Tpg)>kc@P!I3LJD1i#)&JN~v3OgqMf6FSzC4a)AZo*|q>>gb1^{eu+P zIM$r5jv9t+K+axT`4rwX%=Y&dtCg1)wa>m{6w zWY78?2l52xp*(dg@N+U9;S(AQv}J0>W9o}na&bb$>|c>p@W?bOiubc;6;rS!pI6D) zvKHBUE|?5Y*W#CaigM)b4n)4jm90l%6jkPIerRrF6&u*@>7Yo7=0DitQ3p_`BB>8~M* z4}>)1R>tvD>$a4D;SAiRFD^yMmM3_>KP4pMmVaet#1+ z3OtzS_JmcpgU?`@F+FV&>gu)cq9m8WbL}rzSo#R2>%{`@<#r+R`L$U=UqNzq0|$rA z5(OjeA_9-&8sW6bqTp3x2RzHK{xjI{9b*geLuzLyP%W=m7Bw<~caZ~G;kL6dw5Z*$ zEY%3hCW)9O<976O>AaM>^#?nDghv>kWhVCgPCa9GjKubJ7z5V@8V>ihEh(`vlDvPN z4u3`#@E|{`w(w#JUR@I%>)g`;ubag!0!)(RyTh8kvh-fqDDxG3a;wE=G1gOOPEg=h z>t(gctOsQ(4gW^BFcI|^^$WRgYY}pS`Z0Whj?}4B0`4XaA&%bLjrxj-MERc>=#TA1 zsmEZMM{X%>s>>VmSg&iTspyJdu#tklMZbCc-(Hg8x2P;F|a);sX=7fV(8N` zIui0vdW{CE)S~pEKlRp8 z`7I1YXCe;qfYFM z%=Ii@65{qp*migpa$H4mbvnG{o7#46=eP-cE@;`R$;Ux#3$puvPa?*4_lsKk9)utMV!bhyl|1svE8)|xMOPk+U!R-+DXRJ2 zpt5-lF=>4za(k=~T|>V6*)ETuK!FlDJvxbDl>@SG(k9T^Rj;2bQ~@3aIiscr(uB{a zLZIqu2Mj&5GKcrGlAopx@xfvX2(6c~h>m3>`b8GWm9ee(vDg1+`Uf%6T;Gx&mNJYa zU8@tHzYJigI{C)NN7d*p(aH|pS`G;Nc5F4ML*n+@&@WlzIBBFB>Qlf*s@enC=*#~= zN7c2Dc}*p1qQbskW12xhaGJ}P#xaV{Cvh!%FTJ*#I1!`El9zYrhsXo!kaE*97WU?- zyf>$z@7>oGnJ=9fzvqkW^iDWQyzqWeHjU^XHi}Xz%MjQZAbccp2K}eJYA=;^;9~4` zbzi%6K!?Rk!peu4!v!VlxuMTh87nq8*&%^X)&1doOQk!;?>=Yup z1SQud)1ZH8`;>@L4YHpr4~&C3`WOksdUqE=_ov&t31+rl5Y4P&P+Q z2NFD+FBwUU;OIhnt%h+IGz>iSDzuj&XL)neDgPQ!WL)ZNN|#V*B<`3fK8fD=l3&UH z(Gig;o?A_K`{A9WD;K!bi1Hnpudf)f5?W_O?!ikPkX7T^C!*VdlmqK;yxlzo8pUS2 zUvwR66mxqo9$_ZED@U1yJZT6$BK@D??|d*h4Qpzw>Y6@us`$eX8bs0}n-bEdF`ux< zWRFi7ChfK*X}tXhbC=Qwd3Iy?w%gNL?Z!CfwB5ae{?)JMn2yxn-Yygb_@(zwaS{J< zx!|`x?TBzc*z5j_fef4+sIz&~iKzZyreqgBa;jbT!hg#2#Je*Tp5JTXzr@l!^kM>Z zg?Dd-kq#V{^mcxblwu+a+^a=P8aYWxl}p^IZYoV%$9A^&tE#aNZj%%o8*#6* z9~#48>h-*y#UM+Cv zsyXK3dLZL-+RgGv8KN#9O0be%!oIy@+jZY`gI3n2QnIfRp%Kl$>RQ-I_uqF~mn>OG ztni4#Q~PH8aW>|^YF7zMp2n&D8Y^(wFnHHw^}c`1eSA{fM?=cGomQs?`(eGeWM)W% zf*Oemj)~+hNU|m5a3!whp#2ZgK`RQ(_}kMq(F(A?hle&1zS?)jQE5+FCa|^M+1aDB z9&7WA9!Je|qTKb$srNVjVr^n|fPVEN&gFcR2!Fl|ZLS8_Ye9W*&e0-g{#Kw=#qG*& z(OER#5ZR$_F$jgn&IT{-|G`46?beec4Y00jsLD#~hqBbZ@f|n&Fz@{Hn$qJr=v_*S z`^>;XRA%o{E}vs0``zR6B92TVVyou5_N7Ir^syXINZ=%|&ClBpZ|Z=%#>U&93X`GR zt>yEi;GPZqQi*%Y4ewUt`l4I(kOPMS+KeMO=>mT{eX+Wh+wq z{%eOqywcjo@trtMpO;)&*nunT`;X?`8G#L>PPMs0K8zT+H#CUUqEP&?v&&XCLYFkw zFnezkQEdsfa_jE}i|1SC!iH&J(B}0;B4ot;N$#u*ti#M_#oR?ORLV{q`Nl@q-W9)I`{b62Ilspd21j z5#@Dr=*JYkawV#FB{d;hV3DiJu?Wf|)ZLP%bVPQe)uHyi9oX@*z1KRd7RwDD+`l86 z&^NU1!tMHA94YxWqxY^5UZSs5mW3yvwIaRPT0aiUk+PW0X@9|0`2L+*O&|6hmMMIx zSc0iclj4^rCNMu16%u)W4Y|MJxn($SH!^$WNK1=?pL%AOOQ7!$;U5#O~JD*2Y!8D?X`e}yWH{OQY3K7 zCgWStB$%fRcW#*ehd@>-=Yw~9z_`$5B`r)rhuZ*oVVb?VEBA8UTNsBOKd0a(n*qGb z*Hcf_pfK}UTIot!Vv2L>B_6K2>aE{K36q`hV^%iMV5vT z`|e=eyOug=|1B~|QkX;NtC~KQjWpcRIU3oLy$DVZbG}chzu*9$U^AY1^okw0U?DS( zw_c*n(gicnjeNqLp~6R8Zpe!FZ~Xyd3AZOz>1BAy6cuu`wi==lZ;W5;ZiBM<`9Fn! z+L6?AQ`|E*0UJl0p3`kz!ek8hWhb3pj6@l43(KFvqmZ8>H%6Dh_p$dO?^HhK-zL=G zj_rZm!P}?348Oxz=YZw?ot3M7Bc)Hhz($Ou9c!*L6@fxw&A+G5NfvI~#h)qbhn;Og zk>YV0E-P(+wl;hME@930dcHD~j@)hG3Vt2%;hyAD*vm{dYsxX!*Rd1pi{}DacdXvg zlX0tEEtA+Bd1dgIupkL?_Ya!ZlP7aVDyg+s#*uLGD(9(FG;HbeU{lbeBR7N2el^LX zL7cHLXz)87d77?PzJt;Y*Ulu9y_3^OFfo=Gd$@vV`m0YkM5t&SwBPxNwGSiu%|_o% zJE7GOme!3a9DaMSVDH^&jP#awMH|hd=z}0we~7Ye?T zjhOy6D6SsBPJ&l{*#y>hz-`Jm$Nab;F%vnhp-)FoeD&Vi+|Zmxvt`NQ)2@@4ul|-6 zK0ARkZA`W_rBM{U;5B1=Ooe}tn26LWS85e2%kOfeBb66FQ+4VF@o&RPqw0}991nY@ z7_7Le^LndY%yR>{qfsdwDBlQ$Yq6!(ml#Q8oo}7t8wy%lsSI}?GZD2H2SRRdY(vUs zIUhq|eo|^LSbMFf58EzfRAy9BR=KrhscL_s^?4D4Aoz%ef4_?3B>h<8u&w(Dvm>;WF-?;|gCd z*oCmVh>O{k#R%5z%*z?2Clp%=szqQYGT54aJEdeJg!_4xiG4Mkatxb3a`j`dY{mb( z{xIAZiWmCDmtnWr=JYjRMzYJ+BV93!j>!CQWHlcdKz4YjSEt7?Qkpcy(`g4QqoajX5aIY;eB|3EE5%!T<1F0{gdMc1#@za2LohMtyuOabS?-%D}-@=;^UdB|g9 zBbN93(#>6FCEuJh#_cLL5;KV)9Njm7Zo2de=e3N)_|5j#hqqQaY%PEM&E0gQ_uPm->B(~-#`_m7o|9SG;( z)MRI9f|#A*z4Y)7cx+Lc+wD7n4B0b%wzsRm`MSCy-ieB~&D%$M-6s$jD!yx2@*ga{ zX?wJbDUj9}rSCMz!|V5o0zX};c=LSTo$b&Xa+!KK;E--N%)GYvNGmSFrX|&}nxPVA zp4VkIr;lTR5--2MxdguM10@G*Xqca)`RS!DpW-g9hHA}pC za{_rhWD~`%7re7>vWu&Hr8s9Mx#HW2w=rie!*36vk)dZt+p0d?&2D(Qs*7tD)nR08 z1c7qm8Jb^*!CM#hrh98E?*0&pk6zueTW?fa(_NoMb}FBc&Upsnt^dr(S3DB~yJu{t z9mX&{`pefbauO38URRx(r6DAu%4Nilk6aYZT7IXKjVGhEy|&gBNSO;tNoK6WpJkIR z*G_ao#f-~C2e)%+0t&)P+(vF&sFXoW=EaeT$DlZOrR0h(|OrfwxcD-dT9bs&@ z58M4S8zSF^QVjnLz((t+#ifJaur->MIz(3m0qvJux6>F&tcD7SIGBr(x7v~huUW}W z7k_I}hGA5%JP$Ty8N(_4v=j2eQ~2V3L2OcZE!o5B6jPkqjfsM^Jf=cMQeX2R<1RB3 zi5iNsU+`@K>-K{y0zZ~9J^wI8T#K9V-=0%G5v4#{|1#Zo`!t132b&Px{anpKO>5T7`i^1f z%vd#LSa-sdGfZPW67ohxE*9aR4D+P^r(Nb0_Ftxsa_!KIh!eM%NH zFy{Ybr*WYJwWD$3&t=w=qh^*3OkKSY@eICxf;Na@`A5w@ZyV9~9tD(>XducMdjhjiu;6PC`ZL(#^+drP#8c*|Ipd5oMAlYc?=rv>ThFM<%xT)!M~hG z!PBIb*f2AVeqKK&S>8Ul1zlVY$)aG>d+m-d@#DDnZ6N6VaVn0K^<2(4x1NaP-|X^f zpN6}mir5J$I&xX{UYnN07}A4ZM%BnuL3`B1t+~pR^sP^OnK)UGx(!l1fBZS4F%5%aY^q6)KB({ zTe}n>ruu}f?!IRDeV(N2-Ni^g$!HYj&I=R4*zr4&B152)&&s#E!a)4H*GISS>%{Me z4t5IKbNE2C6I~I*_uemWM{fhf zJ5uC4c8#I*D_j59cn;#0*f2m@RDtiQ*hmxnqKntZIZ|Lfdni!*LaB)>XDb+?NIum7x^!Qs1G$} zAQ9`qp&&quTeTagsRgv`&3F3g*LmJPgWrG)Zl3bMVwggo4<2Ebq)p>Ro67><{?6~%{_bFD)(h@I9)qTLE^^5 zsrS|S_*udz@il~sWDl13-HJoF!Dc(W?Q}nWnJcVxW4Y3a|f>ao2xoTzYh0KIuSmK<)g zF!H@YvsPS2M8FZAaq=5tFK?zx_w>Td=j+1G2WoCfZH>0i(-cZalrwIHm<`o-Sub|4`9NrVgCRp(ifZ z8Cf!VG|c9|ODxJ8LDr!0)56bPFuWebUzy85iuJEAsqI|CwWP_1DdlwJhTa!OpOiLy zQs*#I(3U5AJ8p#>{?d+t6RBPeqF zB6!s78TLI`!0hP9i8YI3u;tY}lV~;t7uS6UV^^q%ejL1$Ie>~ywFiQh+NBd9s9zp>#}KQ^d8&`M+olaE*Gter3R zpjfPIhs}W@2ptrR8{q6fvB8?R_D&OcDkXb0Jdg%=D-mD!f&mze+vsnv5h=(AWZb-WABo%ifY zOS>Q#&h@%%-u6{L(V>#D9 z^Q@}C*yr4j9iufc3Lj^#zFv$6sjBiV`K;tz!w%t(f(wx14=l{^s)y$X(yRHd4Ae*l zM`wW`c_|f~7tGy)3t6KR7yQyNpd(quBVlv~(^G*%`p>5xc# z+*4jd>4}Gt-Y8_jdNSC&SL?i160&P9TUmhO7 zg`aZCR{i5RYsc+w{B0Nltk-?ydPT_Pl=!uIhbCYc?dRYx$xfIzkk9(N7$E=ZTct)Q zSgg8s_ylbNtr>ddZ~n(ajQ9XkK&-!?{=R*56nxRAqNJDS(R#3q77($9)CSaXcD!KV ze{DODR%bQhrZFEQ_IEdCR0Np%DE(maI+NEVRg1%4#jkk<)S~e@Vcq(z8{(SA(M$Er zMCX+<%OS5d#J$o^Do$z?w@%%)G%?^NjvrKd-Md@ixleud8^sxTsO7sT@bVGr(MM61 zhD=0l_aDlPDjPArk}x8xT8`V{my!~4YLGy+9M*JdK$1o@wJv=e>iNGs^ul>bx38AY zEjdmSQ1{B`cE&8ME9un5^mYV^q*9gERlt+x79=IbOvJeIy+c|WkhP?c`}bfscH~8^ z-@wO?l$a&E(S`*szfe4l3nPZtH>x8DC4BG(Czn$LXp4#lwGyrgww7ZsMKM~kPv z55bW#NIg70gj|*k|D4ut*f)9<9ayBobG1q4+Xr1(`{BaX@o^?%q0{kFHG>M8;E+z! z90h|7GF=z%w8L9PvQ)8o1gC5KtG)A?$(yLcgzQp5vd59-()6`Ypwi5get1#wd+mJj zmYs8W*(fj1c54pB`TeJUE^(7e*(1V&TED;(p8cURKOb)1>Gyqko1rgyZ(ou?FMhgf zvGSd6!Kzg%&+DY~;C~}|M@$YgDa^jHtn_jaC+_-g453V5`%QmAv&#$k?J+29Ygq`H zmzgT^UA@rnoN;WK_zFUQKz$ln0rB{J`MrClkWuyPN4-uCwyGrtf2v_4u?xR;*e|Z| z>!)RSdJPStesAhLrN$v<71;hNn}<-aq*AX>fsH`a=0}e?Nn!WCrt_PJVR!9`=FwLJ zh!iUts#Rboj^oz?>tuwLc2QRda~TI&W*cIE?@nsYm&CJ!nfy|FWljBRO)>zy8miHq^^3 ze6rkH12?_BX%@FQ$_(ijKt%1B<*;6x>brbyX`I2m5f;!^uoG(&+5r!Ps1P;)6nKeU!iVz>P0fuQ;>5!2jZ zw3sjlyzmksF$wKE&+Y5O(*v=O_-Ck~D9itReQ*HJyqGJcZ0V>__!iICM@OX5x9otM z6daHA-7VfTjFYjhDrY~_;1cLrzRRT(x(OYFl~V=q9IiVS!9M{V$rk}(X1$Q=URSr* zW)`WN_;VVnI-nK!wVl_ZA2ksc1;rnzhb-Rpyd1U#8E+ne(5S=~^Snm9`cS&+ z@Tz4vDaR`{sLW!!If)k&}JDG7y1F#&ms)p$126P*w{h*nRF z({W1U=&~3T?rB~?_^yl@0WBut*N}TMxP2PxOi8k)%QYBudGcb3!9kWovu4gkiIRFB z&ED9gF4TSael*kmK0X{B*T~>hAcKoL|8c9$f?d@@^a*o6?(e*HBr&oTT>Rq)*?ebF zap5v42p&U$e(TO3)D`Z%U@fPtY@|lOTy^|E zagx=M8XKj+Kuu&?7zf+CX{bwvn6WVd|w9kXn zAG+~<>P9J%Uc$bR?(CT3qGU?zxMXe<6<@Pz|2UlEC5x;FYSPZNpkOxKif`>Ko(cSM zb}$tr$wc*9_AzF%@1IAaaxWiQqB0BVMU`TnTUkC&v<6EBzxRL2szywE&`Im{Q*dYG zgr3ajBY&f4`{Ld&B0Q;((|R24Vd|wLGCnq*y zR<)m>>BJD44Mlh8mKH->ql}|TaTMd{wus(0;3dxQ^}m)^_9H#M$m3(-EDVl$%H3w~ z!FIF3i)$7Zp}Wv>F7Wz4C^{_!@;CM&{N~Zq{C+HiJFWTv6JaJPLa!{ycs?AzXx-*L zw+!-dx78_43F2pxEMj|{h3qvk4?nF@gn-RT=g*kXps=fy7VOi2c9EUzPfwS^VD<@1 z_@h3UZL@U^=okV2zfHILg2vD}5+`;{um`S`bo-IV1F-rp*lNR?UTkoD!SP@#GYKDk zdW%VI6hE!^bvwKrg{gKe*1c>4Q~BJ}Ei3tG75NFh>E|T-FUVf_ePJz;T{UbLC;bI^ zN+mJ}5=W3RC#t))aR!^-M_S!EGY=*CGY6|ru#vb0LppnUJ{$yek}cDJLF>Arv8-n+ z0)v0>9+T-oQ=f?&eZCd`JLzJ=4}XHB#c`yBFcXFKl-H@p#_-ay-)v7`aL4e=F-i@}b)TZR#0F|J5<`W5xTn9A9G*Z8QPx)z4dkG;$&HuIZn*ofS3v<20J&d-km&<~DClGk%(|`>RHxcJlw+nL{foG++di+jq;-vjL z#9X}-0~-r?KklT0$6sA6@C_?D%S8Vn^F@R(1h$_```;#VR+sP8WfK-6VDcclVsH>D zQl4CPAq$wQFOthYK|{?^&Rnv+N7n6Zz=o1PIh)Q7fa4hbsoy>p!uljN%QkWn zD$OaG4-)A(WM+57;lDAkq#b#{$Hq_WQ)UgG3C*Fm_zmOU;sjQtcf35d4;9A$;+RVm zNdG;dEQZdCUo)Z;T1Tr9;$rTf9m-0qS~z~_i&N0W9__uOhnwtiI@@ISmzmfcGOYf7 zo1Jh4J#u@?HV6sHzoEV9)1Yo@ed}UChsIh_ySgWX`2CPqZS$ES*a=qB!{WFJ&B>wC z?j8+Pi|sFs6&rBA%13;Jm6@!YdflZm+KmN)7yCPF8*xrb|8?jKPIAUc;ZBE5H>~77 zj|NXR;|J%{vCyA19BeT15LXo)$ef^U7wfM=YtZcrJM3^63G%>EA}*#W7gy zj`2+tnZ!NL`-SdL#}WRqsZLj?56<1szdpRxhw)pLQIx7S&|2?2_Xy5k$unPfPs}*> z_TM=Z@UjIK#a2b9=4RoeA?P$D(+Z>GmJhz@_G8g2l|%RQDC!le-FS?v(B*K4nv*k# zc7dGlJ(JzI`&x0tTx1$@{Sl`=9G^z~eqq{?)5Y-PYplPR{2P&Mo2U&d9u%%EAi?)^ z5!>58Q?7uO^#03#EIUw+7~#NQ9k$h&IpXQ-u||&gUZV`$RICMuXTD9Z?OV*h1)XKO}oQ^5Lr&xL9CVMIGgUov>VfK$6fxdg7wLf?BqK(B(1iO-SYl|t3HktN+# zbe*3JW(Mu&VRr-o>~hSmtw%hkrtdeXpN6MylK=qM%>durB1tx`Q?B`%H;atrx9Q%Rt;kk=o@F4_1<7v$qltQhAUe~>%uD`& z<V6t%MYnSZ;b0leWPl4)(Pp)P;vB zebwV2`@*cESB=(z^MjkQ$$AO`S)H}&y6CuSxFPUk_aw3@4CDAZ8eUW%iF_2^kD{pl zPbc3@Ks}q;qV88K*b_}_x4VoXajC6Gt+^22x!Ds0R(!Il?$c;NE+1Lj={4`5Hv*+e z2~NqjNl=7VR{ui}o{afNvI?`20PA-HPmZ^uNA>9)Y0`bN%sJ`-D{)Ph+Ct$d!0IGMCcpAHVskZ)sqi<# z=kW=n9WmuN(dqDNQ*JK=L`(yWhUqx(UQ;jek&f-UeVw*1dQev6K69vP0KTUjMBW#5 zqikDCLkkN#QFu~XBw09s)IFE|)^4F;-rm#E)~yL~zKhAD0%I_}c%WjNH9vW(d9%>x z>^gF*xNfs)TN)TL*L++)4B|j@+D!Z1d3fHit9kok9z5pPRpSmWqh?Bb!w%XnTso2C zo~ZK+w%VgtjFLNGnkmC@iRnUOK;y7kQ74k~az8p(lwqd$&?`;pMNpp_9j~gQrlRl}=Oe5H6)`&s3`lu@{Z zYt0EbmTUy#}-=O9N$au&tnR(D{Pwo6&9#UDH!;RxDwh?$%y)NwTo9>@s_ zltRnH>EXg-52R@L+4V1iLaj&f6W6Al2J;v?w59NeV>{G9r)F#&f%pEX>wX95Smn-M zTR;B?Z_G~imfBH~$w{gBUtvG8x4+D}BE~>5LpCE!cMf?|-I7A*3$Xv&vpe@?3Ndo- z%G`&55@g(7IvYxvf&J@l@zy)+q~~mY@aw4G5E;u391yI-tyYa-9&ROa$9qg%(WMGA zIhC(WE+u1A4VRphQyI1j^*F2E9K_XX_VDI`K~xUh7D<1}K#&BpG>a-7#_~zBhGnA& zaUHZxBqi{R%)ZUZCa}^Y^#)IIND?K!{{=;RcEW;Ik||&simGqwu4@bA$$N>r^?8E~ z^v=1dJrSKmd%KBE>dYS)-Ex)ah?s$mhG3eE!xTPlzceSf!sFZG`TUesbVz8wsz2g6 z0?dv&y-}7R7A@Mxe)-LURYqBD(3nL;VlvkoD?20!<a;G(ba~`i{I{i=j}vloqOZX zydiw3JCr{)^%sR{FC?_R`|-bD>qiyxC@>AORFC~Tjl-6zEuMdbh-`YoJ^S4ZBv#CZ zT}f1g< znHAVi&>NsD5nn2^nS*40@4O~?w*mht{BLW{ws9=H_6e{Un#5uwt(0459$&AN@`Uf7 zMii@Eecs<;qzb3F$yn2nTj0#SXQeNmecWN8Qa=U9vl|t*CYK=F*m8^bim&ZDk)iS2 zhnobhyLQ^VV*qc~)PB*lqG87a>VviMJ&4y68K`&QB<}=ht&SJ^u#JuFSf^b#gv$g3 zn7^=-k?&t_?RYo|F5eXEg0V`xpgudo6}7@4C4KEP0}_PpJ79RSjhS37NXu94D@GZG zTYvS++%wczH*p@QhspD-IK%o1c#7%U#P9EgulIHPShH~~vSghNN}|E0)?e_)ct0v8 zWu0%b3_&@U{yk-)4}&{*IQUj^l6`qMRYrF8phhY($g_A1Ap#Gb1_qm;7tL9)+hYvM zr8f3AONB_+ID1*_+y)ZzEyp?_Hw|06i`WHP`>Ic>U*qs+gC-li0J`1tLY}#NwnksF2jJVmKBbfide~omBa3OWg-OF zh<554Tm8EXq_;&0*1np=o^AF+_ckvfHddf1UZ?~oM@@sZPIh7Yt0HHS{khn*@8V|4 z)nbfsuGkxWW^9&{QUuO4e$LU&!@ezVa5)TS$Xbx96D-lpqLtl}KbDDoSL z9b3j$YfI-&-*H?$Sn}1NMUc=ATzNb4x&#-B-tQB>Hwo%xm4ya%PC~RJ4vu~jCcinU zS32Z037s1L-@pVX={?I#JuugULVY2n^SkE}qH3n=FE$1dkK1mC23C5^@vwpG^cH+n z44Deh>V#l`|FrP*JQB>?vpp-Oz$9sI{`c!FDlaG;vf4d@QpeJ3pHzg1gpNaJY~ncn z=JaYQuW&W-&!zekd{m5NoD)3RAw_a;*`5EV)Qb!QGt*N%rSPrvAANV3i9{{=7jA7F zhrQ6pz^!6TqM@D6TQ=wqzp1UX`BdWs}f($A7t% z+K)89Gfh*jVe3hmNs3T{IFiAsYnowXSER5_`|HHk?krMlm9Y~(?4)N`%BG!&~e z_KDUHfzu}AI5W#Awrj@Tl?j-@wT0T|yNE~3>|W!6G-y9|^xb1Lir-4Lm(MoRkt*K0(6~H@Z3+nnuFnc^ zYCflKZPZVA)tN@>jg+CZH0+|u>lwr;1r6%_$4VmK4ZD1eDZsZ)^f2C)IroOwx-Z{T zBK1)U+*97gANni2C{+@;7^)NzsZr!RZuf8ilkqXP|f zx@u&nJ}oymv<}J1Jtk?Xbuc@i{>-wr3hN$)`o$lZ#fEx&+qXa2$$7T&o!+AD==2C) zzI|r`5hrzCzGe)-=Od@}zdMa^W_e{|Cn`W%*ROIE{`wDP4$>By_A}sgj)mLN8LacK zmCzbn0OYm`n|)y-LtSU|d6QTA{JPgNiN}YbC74sAQrrjk%aQT7pU&a$!j6x@M&+2B zT{V73br4mLO#dFez(IcEJM#fs3XHtC79vb3h)ar2yxiN1Q!#g!qE85tPzeW_KW~PR z-}m8Luu=~$Gi|imImJyB>@Iw}5IF&nHn*F;W&aSq#ZP}glZni$zI9B9k|dWm6&gl8 zVk0f~>lJA${!^@Ys=v*YfmQh?P2mr#G4*9(&7n8Nco6Y6*7|)f*v5;Kk6ajriLoyhvgulr4(0lSo+ zaiZIr0i8^jzq#X3oXk9RK}m$L+z;T>-K9Xj56HKM4t+sz(&*{gkZ#cRA5p5grl2|Z zC!6O7Gb#8v!Tn%p0-qHG{wd29U}KMq(5){;;L(`cSIJ33)AfNj1Z@yKmzj1*x((^l zYbrGgt6=_bvE>wlgUGKPNNtRs!eE+lf3*Pv4aVwEMLsWKNyBV?LUTF(GZcCH$+Qb= zM(3UKO7ao)%QZYo6B+bhDdZ1RgE==Hh0XP?h3q@BrRQ=UL{YB9L{z?U{R(a9~ zecnJX>%$AMoV%C5czF>QKlyjpCQab@8X=jCb|I2}SlT}+Bp2rEml8R`X5ho=rrJHl zM(&F3Jg{%K2pK8SEaehYBO5jCE7zy;kkEhrW;K#MkhYq2*|v*`=wEzc8U`wKi>^`r z-E2YJkyIINr#4)!HO-bGEl6H#lINc_gWvI%TtO*wXq{1u2xVp>TUwsk7pn{->wvhC zLxCt6>fE5fB1VM~&3%xIXACnBy=fg2V|XuTy=eS>EjgjlDk+uMi^LqKIlcEKaE-5! z7m=94(g4?t@CvWHvm1pYR`$HPNTF{1${kTP?+OSK79^K;yw`lW+yW<-h}-hL%!ISW z=3<26JkE~2NY`{6glG2u=q=?fu;FNDABhkn?&r&HQ}ZG-C_aNxN#=eGO}f{t7FG0Mkr!1|9#$3PWKEXM0zRV{|uLhI~Qyi zh3zdnBa~55MoFcp^HL&3LW7c>Sw`hU2$i%&AyP)0l1M1otL(k~?7jE?{0HxIz2`dj zee`EfJjk(|gm0J%8)wQaUTG_A{YaYwagnwQB}~5|c3W!Ay0r{Xu2^o8xHE@&bJeJj z2nJ%aqgm+0!#orxWoKvecA)L1L=N+n?PON(na|9(VmJldTjb^cf;U64W^p_I!bo=; z+MI@v*X2bc{eprgi<7lg^!-Rw)FHACJ(z28NR>3`McSxwmg9%tV7vq&-+!FsU3-D4 zk%K7FWKBBqv85T=XOHABH3VVxy`T8;FhO!M^!jRm?gTCvy`Ep1rY7{dWU+tGU+gUX zX8)Rh7}u?zw8`yWf>*3uXZ-LeKA&p-nld!>)nr4i(8c-TyKrY!q$Jv&v~4=Wu*;b+eJpGH^>?qENaX`V_{Ijyr2u zhG-~GAomO~P9XYh^ZwH>p^?J{kjev@AL$Az075rN&ub1*o z!c}$E{YLd1-YehPY85<%a|@h;wmUeSpX z3HI(?h3WH<)lZ!?&5Gp(1hGy{lbHE3mv_ob=p_jvS2<>Z_1lzzt`0djr#6 zG^;&+x|MkljxRkA|8-vmlR?B?$=9VgXb{&>t+=&ATPE^(_!<_z{Af8K=Qpyvi+|Ag^gdd?I^2a8qp z^qW!3y!F+atTk9)XbCCz6e2oYH&cz==!k^8ZFX~936AfyqJJtdkGFd?j8;EXAi$tf ze!E64q^^JTc#^ZR=+k>TNSuX7U7W}$QCM#Jz|qiPaZ8A5iklVx$#5Q3Wp zxZlgulDuOI`6~;}xKlBaL~)wM3vp9TTjOSU@6%yE_GB7mWlR~>)BNP{=wH`7O-aJ) zeeTeSs2^~de-UVr)P}{Wz9NDADHPb;-g9v;Eg@SnpH-b72lFmf`LE1*u;Nk|D6T02 z3$Jz*MRFQf-@VR~uWUeF-5z@pc?$T>4qYqUREx9wB%R;?VImS*)d7_K3*a^5RgM*z zLUf;AV^!`lwj1t@%-}6Y6xX7X>fR36o(_6rqFn@;@x0A>MS19pRN17lr5hV#$Ayh$ z3!xLfSLyAGN$k;SBL)(^u&WrfnKSRk$?IL}d{)%t&~J_07UMY#+V*RD*v-L;X3uZl zd>(Sr)9n6*cd1D3OC9F1okJ4$1MQ#tbKV8EgEHva#z6D#{d@sJ}sOxlV@{w6esr9esKG=P{&Ot3Tj*Bf`gvECP zKU*V&TrP2w@Czqg%uKs6dqgf%q^khhGmk#?Kb*wp;d9LU<>zpHpWVZqd&h9uAmv&} z<0?dtIKDcyfs@Q0+_}GTxdr#r43|&((-4u#`r1};DiXp^8#Wp>h={soo7N2tfUCD! znyUyoYWV$|;F%Tho}!U0?@h#k7_ED$+g7n%EbX%2_Db+uk@FTiyU;LV`SL^38XOC( z#~39mu)iwQ(WbZxrXLFXtZP>g_|IB)nsFIXULCQKjq}*2=U`mn-T|uTV`F~%X7GWp z>Py6W{qkCQxyXCr$S;T^!xu_#lI9TQ=nTOQ|urir>mq^%u~%td+qJAQ&e z*hVnn(G)JfqN{nuQVFxZ{R++gRHUKqKZ|9-Zm?vAdebsYA-unm+gy4W4r;b0oE+8o z9UbB7>pG4$)_cv@Forz4dp74>#^JrW+E|%;1}7CN`q#vA@R7-5$G}h;KIpwZ{++!V zF?Z$u?b8tw%Y#VUaDCqRQ@kL1UEG4>gagr-)oUk6FCTdD6uSAxI&~~70r>50B?$8C7kMnRHYlgR zimOaPL@}uu0sqcqkJYXBsnu@1Od4uJV=N``f|rS0+xkR{Pk9fq5xAzhc&`yVY-du% zGwTpEwd=NTNEyxth%C~{(Ga%^yBewQROCEgyvlQ@B1A9UJ|EaJ3X9Dn5ot=}7@6l` zyp}>iU=&+ul@A}8Dj42#|7i>Ugn!@a`kI=2KP2@#+>?&nKRIb`$+U*BD_MO}T+GDb zkBnzVDm5|n%8akP*M;z!(STozrlJD{aZg#J*Ly=$ulyt{%_b6Dk<%cxG=d(=&2JtBw+LjDKvb9S<$<>FJ?3~$}dcdp#e;38G zRwouQd%yCRuWT8p^g3uRQnHXI_QAW|rW;3Z+#gO5px_8MWy@8qN%)CgA2$pf1KmH) zI?vp7e_%|i&U7Au4ex4aWdIdf+wE!Pv8^6e{s{>&%uATuW$YH<*aC)hI3@beK{Du~ z(A1(Jd5}^3C38fKjA>l3d#90#YT2$lUB@O^7WZ#*44uT5PA3cMXLN*hJB|0FgM)Am zb$y$fmyeS@d+n@~%kZo9X@+L_B2;oKgFWf%@P^{rrscVQZ>4xelX3%!dfB2v!&u3- zz3G#hdlq3KLwR^$-3KLZs`VrVuIF&(l%!aZ&jd)i$<(8r z3F74ahmFnp39KZkCig{%Z#M+I-U;}x=PKPTFRp@j-KT!}XSv>~g3aL9TRgA2aO8`s zU`9s+(xczmB)E^`cTJfkZ`>*ZG{iO>m8K*9|Lzn=b#=jVxU?kIlb389IAp5M+l_5; znkVu!#-Pi7p9Gjq!K<@Zy40JUR7RCQNZ;6l&t63_Gy3_EQH;As?KA?9a4~1ajq~XJ zJ1?X3c%7Ryy6;fFf?cnxruo@8N!reF7rus8aEAS=PLHM|?w?o~hW^kH4M~GE<@sSW zuxfGrsi}kYbm;ZMv@PTnU9nlf4=Uncz0p*O=Of%r^P)d5Eg|-sPQ{X78Jrkn6vLZ( zz+QCD?0)_{?QdDQgr9cVR6g1otQM^H7sAFWcy#wi&n`8(B$^lrh*>E2?gMH4JwirDdncDV&V*(*ItcgC9a; zQZjaFsP6pA(XG~iUADfz$^@pdeSGMJc0LQSJKNSU9$JjPFZ8EXpN>F{F?epD?G}7LNG<&HHTfV=3q|Vj| zMg0qlqMthODdG@+d%;h<=>NL>Q;m~s*j$}k>%E1f$-XVv_Phm?!c(>`mC@i&5DUvG z;vjk>@zYXgM{)N44Qh1@dZHue7V6ktgSf1ggN}x+XxMz}OXl1Pg71p|i%A~=$F5Z! z(Y`Spu$aFvx$Yrnbd_!MxJAiex|}i1`ai@@w##S_un~=B?t`z6tb1mmn);2deyC=Q z*(BL7K)@xRC%Ir1XAX;o|1z&eC}A%1v7Sd_bgwQCVJ9E%^uE{lz62@Rjao+Yt&r08 zWw*K82f4^N=^(ceNKC5A^)56)>0ZWxD#-<05chSKSEMG@6FV}Z);+t#b-Qo6Gza;6 zUnk_-Ln;!#IQ=So!vge0uU0tJH$jVsRw1Ky{oZ8N#!RvVIogLTpKsEW_a;FMRYw(x z=J*lSCbec<9~LU`%&W&xi{Y^drZVt*JQT@)L{BsiP^)BnuYm4jsdY_%Hcn+`r50=* zMs+wgT{WJ9)YkN@iwj){RDAhmAzFawh8P_!>8HR;Qm7;=pO%a%XB7LZFq5wzi%be` zQ4vi8Zd*oOcG8r_O&vDMM8p%-shBAp2;rJM`>KBeDT&dN_A9HHx1{uG#h2r`c2YLy z=Rw@)1XFyM@u#4GJoX;DR#iVQ^h`6 zuo-^(G!v0KHjqBUGZG@!i|A$3&WjD304Igd{d4v*UVRbU-EUNb@>)^;^PSDmtb6!Q z{X;G8yq|N*(aJ{RKZ(wflildHsjJ!gwHi`BX*1scb>SEXm#AM^CraLakZ~C8Sl^{b z3gR9ykW|{C5FM*=P|F{E88q#=(`RTkpFK?!x$~mRtV)Z11j5iyyDo+FI zUvl3k3Xurqq`f9e!lY)1@+rQWg#>+|qlQoq{Ia*V$n((>r_l2yZyBd?llkakhJP7O zHHOnZ4d_AEGb6Rc%}uai$!`6)c?d@Sx^BAnS7DOU)gKu_PxjcX{ZiiFf$f`}B`-hX zCZZ4MC@t?h(0lpbmUoFGXj!Yhx5=D*v5{$G0Vo_fcejZq#1?B!!l z)bznmV1Iq|#2jocbw3G=ryw*Wr#hBr1zK~{u0azU$cEzN$S6(ZwcO{XzmWC9mDk&K6kA|jAl~7aaJnACC zT9|YGAzsF^EOxdZkF>T#xx`F@Yuk60H<^XlC#=*+H`;_LMr-dnS6b3P>g!~-onOqZCMra(jr}X4JLL;uL#_`YKTdDU8#qvdL^Ef1%&r8A2 zOHfVPCax}wX6s8BWLY$R_d`>&PnasJb@U7=B~i0Q4r-M`MU=F$UClK-gjdX zOHo%ur+M?R?}fRC5z;YyJ#a7~p&fy{tOoXuPU6ywA_o@z)DK$QawwV~4(R}i8tamVb9X- zXogVk&6lY%wYZ{@O4nsbfoZp{fQx!64oo)`=OjaJN_eL2mu&Q~uL;>OxCjE&B2;jPRa&`Wz7a7=i4-OmP(Q8v?(ujBgX`%aC( z?0~|#VK)xaTIQL{d5nhqoY8K6L_GtO3r8~(D2dlyCxRCha`pUtC0+C#)s2o3H#g|FyDKJ`qqsyEG&1WHhD1uD!A z*#00+{bMfa9YoHspEsAm9O`=he*Jl&AEK=snPb~Fk++=>Grl=@<1D9te6|oBiHrQX zsn%cvskotPT<1qk#0wi4@~(0c``CiRU)DH@h(cCplwJp%Znijl-!P5f9vT_@8A zIPzk1b~!rvivN3|y57Tot0&L$uHoEjF@Cm)=T`DRIrOIR_%m6qsNg0({Pkm2Op8#vOgk4=)Q!gjk+pqpYmmJCVqR(& zKdJKBaUuNt8syzwmA>25!tdSKYWg~lOL`8R)mHe6LLC$KugV#alC+#U`KS|*E}3`* zr&q$0v&*L@bsV&=_A|pqlL$Y-82;XG3Rj*f4YGueK`g$X^g3U;UVdnB{a6LD_6m2=`9*irbjPE5W8ZVRtX!}}W`6`Er`>qSpa9aFC?F{whA z^IoBr*iJC+tvlC~+=`tl_8DyKoMeXi&+A)t3t*Q}EgpJ3j_=w&3ZL{=@R?nYnX{t~ zkG|4uGuqVv-5$Yq$M-Eb6lN~yq@RVbqIYcK(LI zMiHpGqkYrlD2`;W2r;`06Pwsez8P0|$lSPi46Z(I8V4(1EBV89A$xqfh zBW*s5!!(@xJravie&mu-&A~n}h{fOadC-Enp1KcQ$-UUVy|gdk%nDv5_wH?zWFRFW zH+>nmu6t;v%?q}C4#Gimrg6}Wg7(d{n#q1ccw2A8X-;O5DW0htph!=~f3WR{+trJ2 z`wt!JSIEQIr{}4sm%9+WS>SHO>?~3wvgLe!HX>I`CvU7_8KX`+>}09g$xE9lt@nRB zaNb%+jarO}bW)U$M7c4LV_{vN`kf{)9d0NQPg9Tc*XjZ}&x;X1s^KLietNRaE2e$t zU^ss5ae7;oG>zzmugR|T|M0y`Q!dVG7=EVwllNZ^q4aGF)y%B|XlB^|my|<6+uTMD zt0N4g=?BxT_Q!+JKYp?Id(Z}=rAdF;y{HEHDi+!zN7m3(?9)-sIS+^4B!<7cry*3d z&>_5g9x}h~wB9)1g>GNY0aVfoPgf3*9%QQKK)#0leEqE% z$4Pd7;d6{#?|sv;I`u0fv#3?uWqFRDgE+kNN#k27fWfaALHoKKcp0r)y)LhY{=2a`s8eYyNkF`*SVzV*NH(5ZzR<#jBpd^@VI9UE`#OGm*FOX2;j~E7KDy3@q(X|W&Cnzgrmp>?=V=1> zh2UJ-@O~I2g!Bz=p9GV;+C;^ZRd^n#rR&SxP3GFtWQ$)lqN}uM?X+_v3^&^(F{e~O zWV|poAc>8_;A8fUNBkJm;U%k-3J$a@LJ4~3bWWSmQLVSf`fG4T#^kxAnw4F&(PM^EyRXd3SZ zaj8zcni{B=o|}P;6qCEO(Hw4jhjx3OC} z*)}oJ9`N#zx)ibso;uE^B=wENli!+aI&TSWOHV`n#_Ex=_D3K#hK3|^mybO!FNSeU z4z-0uCZ5t#+aKtlAY4>TUug9o41GU3wRW!eFRiVntLGG6F!DAk-JS(2%U3hzigB<$ zUFr&noWNy%KZ?}#BJ4h`ZKM93iIlcU@ixtN!fl}SaEi5=h3$Sk z?MQCB`)DD6i6|=#pW%O137rC$-kZujVE=k%Qp&d-&igf`>$NyZ3CG5&`PexaM^x2a zNgTyCw$)j!!^^m|tve{XzaG1GZMv5}UxTTTpxXUaJlo`$h94%{Wr(F_&eaj=d45(%Se=a1HCy4`|wUAQ+=6g3Zl0h z=0EM?Bt2Ij{Ak{q1s{u+k&60tpVyFUJ}y3h%H(6#G(EyZ@T7_Fv4`v=PVfByOBf@0 z@5{5baI^>S9)uyzj*Y+t zVBGP=4+oYI{vkF}L7JWzC?8P}I@pZ0pL%rnZ!r_oo$Ac?uPN|w`{2TIc>tTxntMri z9^s0+wN8oAka!*ylpFP;$jf*Op65e6*i`w)R6G6%Xf&D~okht({8D>fiw{NWF^8nr z_iU!6mZ}{a3E()}_TWV~4)0tJFHdD5Vbb(Qw?gTNgW;8Tt!JmOuSQfZvb7E}{^`DQ zwVMe8Hy2Z800X%u=5v&`EDRyvV=~OXO~5>F_dx%Rf7p{RrsQlihSP!(^!?X+(Dr-7 zgxp{rynBKU72fOzu@0VB9%UqFznwln>(qnQ&cmV|8r8P+2D{$cEma=ZQ`h=NQ;bFSHw<8YCCB&M>yqc}NF$i|NSM!aLg6K9!q z&RkVjveBQ!*cr9>ZEv{=V>`VPPgy-G`TgoW!LvqkEU6;NN97>O)J=8idFcD>{f2Ia>FJ`EG=qPZyp+YN7 zmx&hcT_-6fY~*i8D3grVCgNvzTFz3v8|Hp@Hdsbw;+2DNkIcH4{SN>D|Nj)1XCM|{ zABK&`$|fT#WG97)iu+K1Ns@+2Wt0eI7AaCu(vlFVR3a7HM5L_j?7jCM4<38H-cRTA z`K|l9hE80Pk2ySqTkfJI%Ws#_ICnN-&(Ju&$kbeS^vH$WaQ!Y8=>>4!;P8|i9!1~i?+XToL$Jpt@Lt;csdnwg2r3;;&JmmKAfORz%7tNMAT0Pn>z2qVp;i(D<4C z@leVV#x@8YOS#QUEGDc}{0$dD?j8;k_UMARu`s`n_W~4*|0s0aeDo5GeU#JjP_6&NQs}Kaom+M@VIMb2)@aHa}L8D`RW!t(Q(d8mB|LT&Lx&u3KeHh z(XQtHn!x%<)AYddS$JzFOTW240xo~{6}#I5=+uc-I=!5W2TR|bHzl(ZR}o7J+rw@= zz9IAM=-@JB-tKB$HWMNzCicaQH?osFN|p;#aW;;8D{|eKP=SK%Z4cglU&Qgfa(Z01 z=*at1DvAMCO>kd-(n;WNCB|ksw`bdQg4=G}b*cde>A2{AN2s#`Y9}fV>FpkX+#ufR z?rlYKHh%hI+bVNxjeq6Pp35I&Cf%Act2;PtT z3+}yWWPhnmsm%oQNsYtAd=#N!EDiy~-EcQ|e%8yb|*l{r3*prY!%}&-GHQa zwD55;@;AjVFSS^sFQEkH6_g*rZfTx5XN=to^4e!4HGt=k>?v&h|Eb2`5~oxY~tQ1di4hb zk&gUVWRud03;!h8UUT+>=fw-l68Tved9M{$vu7ZZjm8RIq!+9@PG9~L&4X8;Z1yr; zCk|G9@W1+m2A^e?X2T!V2-rIGB_WiKEFPCMGn-*0ZSO|n?&Nf%e!86HurwQ^J5cPSd z;1^zk3+CgNK5wb;a!I_VMQukwxL!um`dob8)AKPUh`L$_#d+ZnZX%n>{^LP;C&I=k z>-}qlNDTeY9B@~|_4Z<@kU1Uc-+#+gGi3r}`U=gPjA$5MAFrjbcLF1Rp*tlN$Kc*= zA@E8i8v_7fK%c)R;TH4?W7xvFR+V#2KD;hudhF|1#QV0guz}%0_)gf~acEh<)gfJV zDX#@&BH?S7@e1B{m-s%`Y(q!QkB)(zE#N!Um#@q{4KF#a_e$FR&~3d_WGmGM4|`l+ zHk^QiBJZ{ZyF$FmV9uLL$OPT*-!;=Nq5-Aaz>oXpsxB z){b1kDYKF$?xY2XMtE#dc##FiF8cWf%Ssr?4ojan+6*%}>Gz^banw!kl+?&mWFuyjkz?I(YS-*Z-PGeRVby7Z-n3Y*Jf- z(T#b&w<1(5ug~$7u^EP>2$!eTd>b6*4@!NukS9}4mjXSXukIbU-26308oV})xr_I( z67G4EQGUldlsyts`&YaIx&NQ?G&WMywwMsFT94?7|IQq?9z##@(DWglMR=M_zR%RB zVNY^~x(9EqOMa_t?&(dHzHs|hqbWi&8qDx)K=!W&O8OfwR7-u_~> zQ&TL@u}&I=83HLi2*|zCKq8BHPteCoeYvrz5IP`_@fi zPZ3?5RSZAr+uy<`n9fKTHOFJPh53k_jf+RsUQuFGrt_?YxeMBky(d{lX0cGqe?Px} z6u<2?7h7wM zA{j5+#IMV_h>s6lU&ScV6a9TB5`XMnLyXd|T8Q14$M#+GEY#d?G~7wf%r%`wb~(F= zDjOfMlX+}+ic(>3o?|#R(uG@}3RsHExQVh-us?ku4cVcI!v0$aprxOF=7I_xx$0f!vpb{_ zJz~d2h0-gq^uW_*u6+P;pRH*B#bx7z*S8i`^C6s=vI%e9HH57O|M{_9Cdo2iX*U zuX1#iUn(N%B%S86@vqkK32i{4)-fw!$rKH5J%o8IdVhx`LN3XZ&QAC}dW{Cw6mf zKcvqYpZfM`HMbHkv?)05lUGoh6t*QJdIDiNu!*;t1XbzF z#Sa$-K)*4hdcctenP_(N=zFX|vLZw34xBrh=O$prU*J-P_&cSp}GOy2=2H_XU zQ9<#f3J<$@C+5_Jc zR$^N}Hb8BD%KCv26%IaGpWfRR;8Kfi(c`_D7{3l{!{f8qee^+FVBG{Vjh>w-G~gvX z&Vg~qJbOS-`bn%O1NjvnCfR&@HBaeJ3p&K)Ad&0v?xn0IgsJB)No^m5=}{4fuU+E^ zjeG9o)!c#k2W3~~nW^Bn7*}cp?@)fl`I3cv6e`HrcdZ7VS0pMP{GpJQ6T{^SN$liDQ|~DOnP$k|NQy1%A4jBc zLHl&o6u#{_+njN296{w5)`VWE#*U)+r{1z`>Br zYCj7L1tto)|Elldr7f!*y*6M_XD=Ud4>@>0>edoAm;~K*w;zLZimUsc^L1!j|8(8R zk9LTLg&v93?1txCW+tJtRK$DQF=g}063S0xGVlC{+$FGuLOA}vKXO(FjD+QV&b^u(p((YqE;CUV7dzw$+kX?#;NiJ^1q z0pnv!hoIp(D3i{b+!}VW`K75!c*O{g2Bdi;EVSSf*C$G3FdLapeN&Q|RSwo&4t2ev zMX(mDxQoB-*c6+2SzGTH-0XbLF!+x_KET4S_}e(vbdpyOH5M@W(Y;hAu?HLO?PS$B z*#(hW`r)|wEVu|7KVd$;IuCVRn-X3Pp+`{lM6v!7G~dj`*oSfuUANzg0woM&R-)(V zW0O4Ctvg*9a=IGZbu}(Gt!E*PF3uH}EOV$h6f-w7RR!5|nV&{$TJh}72gW~ky6n>qDA%i$id{)@sY-*&yMzs-BK04Hn<7KVZ*AYo|B+%ZnY z#faa79IUyBU^>Rfe6<10@gBc_cyuE_ncwxwMi!F$Gyh7Yc>`YPeoWfm+X1P`&)iuL z=*XTi20N9-N*q1#XnLlu4u9{gTu@Kxz?1K4ZKI0<@@=rl&xDhaS0y8dFkByS)6x0pRN|(0bjl%rg`s9SUj5=j*+9` zXO_WU?Vkzp(kZ2gjMLr?+-J}P-Tm9-Zem5{cqi`zs&83d+MN6 zbDx7S-MO6LA;?Qsq;8Da@;-;eZLq}(UVQ#f7Ize$C^8mCj6 zCFVj3q5A9GFEHh)!pa-!eIcM6aSb!QJH; z=y#U8kU0-$x>Vj&ZRI6e6u+qLM*lBxfqVDz@b{*o@#Xw@HdHI`#s@uG zLb%AR!cO{0L~)&234X&zN~@Q)t?V7bRh@LPzRxVgsWW?^*`o_h*R4J}&1OUK`ZwpT zXFJh<0Xaq*BapX08v1c!46TogZU(>Yfc<~g`>&jy#k(f`hUI`3+=~c&X70M`sZZ1A z`nrm7Z%W17jf07pXoa3t*AynhjG1f}ax(}@w@hByQ3+4Jq@ssD6tb@AmOf5&q5IrD z&gA1u$U6RS()BStk-b}MAHDY{l(IZ%8|G$lM%HujeBBsSOgzvv>n_6tI zxZ9CfwuwBqKIuU#?#Gj+@ypNK`;ot|RmfO_i_}-M?g+E50jrY9d)GL2A|5+zSE<2A zzTNE+>G5rb2Kzlpr9GqYlJen>IzU5}wC025YZG`|ds0SVumVj7k|s^11V~;}=*O0% z0p$EM(Z2SAo;2?dRX!cIf`iwt((k0wk>t94&6%G%F-XUD>yGJKqT*02Qj)X;N7l@~ zA5nu~^5cZYcq*tqs;bPnM;gmFSa%G`jb^CZ8w(HwQ z%gwF&k;!&MsJ7#uYv-I}tN;nyH3(+g35bV%4>-815~9*-bDgVop;td{6zj`I-U_zu zQT{Xscb*1|yPt$f?_+~8?Y>#q+Pu2C@pd;ZUGrEpI?F?L-;@`3Rc0g}G8d;$K3vO4 z|9w8^;hm@}bR_s`P1Iif zWwhCtS@(vIqj5}A()&gyPHDEMMLk@A9gmlR={F|wH|*nqj}oKUB2a71I?w{m%^AlZ zZQ&#j_02SuhiWlh@?e5dcgW&^8_BKj=j84IfqjR zHo0}UGZVX!lk5(W%UFz?9aPzv2eag=DLT4S{k+Oi zj$aW&-xxnmV{5ASI7M&*myWMurA01E4FimMyBgpnr)7NRdM^&`E09>eNFo15gd^|i zRKbfmFP4R^4ssf&eZGhsNwbg>p3>hEANN42kR!TXlZX5kW#ekwz(|y$Eq|PRm5+W!+gJmmQRFgZ z*IVWG;BA+SRheBIl>9rwAEk_A;mL}eY1A^54-I}3i>(H2Fy%(d`6;{?5pYoT?#Bt` zuevnlcARgppOGR|?CxDrv%JDUZfi;1T^=66dexuOky>pSdLeo>{YNhZUn==M>>k9T zdQJT9rE*lheJEVFVHy9)`m&2IF_9mW0|UeTy=brft9EhK(?eQ?D5<|^FutDlcTQpo z$^$Y*g-3cZcJ$n*sxxayxyJp@{`0&I>Jo1iQ`QO4`DIfFH~9Ij_YxaI)!!O-EZSZo52FVx!CK2ar8TrX|Zb|>Z zBh+xZBkM2HclfJYRKnl#WBK^4jI1v9&}aA*!m`W)%LMqg%sPJ%K?(F2qo( z0rmnNoM(`a#0@^&`u7HKBpvAm&n6KTbN{M>+%Up3s-{NfJ8@R(wxYbrGMv||EWMcT zgZOlM?VE@$@WwfFeXuWwp5%_7GDfT<{Xj$ZS3V&k=vt*s9hisKnIq9HnoaPsj(==h z%R+*1^txkiD-LgKu013;4ZVy{?l7m4bL!#j3>(Qf)#iR^w}%fVLDf%HRJ=Y>%o+`3aAYP z56J!GAWub`zWH9}A=TF{I-H8z5koc9t$Z@F>T|U&-<4?4%D#VEJ$M+5avyeh2$q9+ z<|}WQqzG}(^|{p{K7cPz_wPzcppfOW%LWsxoX@3IsG@E7u5G|a`hjON^X=eSTI25`JOnWYnT4Ag z{DkG>-mWF_BAh==ha{nT_&Jqq4P@$pOJ-1!*mr(1yZ@%StI{mOLqir7RGQ%AFk>N+ zzRG7BGUxn!I0@yC+UB8`OYqB6VY@21j+7pFHE$li1jhKhY*qJ$)%}k>#;(Rj5@Yp- zDWNM6*z0{wc2RzZ>X z)wPEY8OU~>JZMQV62`<7+ZUH-vAt!Q-^6hgX-y6lJKOp}zab__z(9_i6sz5*)HDk2 zT+wGi+m=Dq$@(0jIfpKXL}woDK2S6}=PUW!adutKw+x8|ki1VD-;XnrlTPpL>~zhXG8QEzsbW*tA5d+oWm%# z0Q)q?+I0?7XbwDnjlY6ID3bNb72Hb*=F)w=Z^K`3*~<6n7t|v?xbe}_b5YXlXT|ES zHUe+igs3C)l`yCfNZpy;gD~5gr`}PW$ewNyQ!J&BDYp1Lkpnd_=;hA&ad#O`oQtXY z#>4OpbZoo4otc#P(Wn(B{V3O;Qg{E^0i$Nx^Zx=V#Ob7=qo-LXj9$o> z;r>)ys*f{T$65(v<=$Vc!Yhz*p#Io4K!siJT0Mi}Jj78J>`OO1^$QKCl z^Uh%)J9<@Z%Cu@A7tHf?W`8xpZ4(wpR=G7l)jx$Q+yd$K8C~33q}&09MVe`gJcpAIkCJc;KKXPoCW+F`9$l|hRf#yZy>YP>Rwh?tr=SZY~?3CYSygQHZW zWkhT+wC}_54H9CmuiJ6sZ@Pc>tuctIsEZr-(-R^VC+6nWk5jtYQJky(^EV;TuViy4 z${wZTM_7ig&kZ2NYY!aW<_q^ylCRikh>Fq_U=jwo2yt44vcAGaASc##U&4g3>ES#iP_62M_PG6q<*N#C*@( ztq%NcxUkV}HRlJTn*)QnI`H6^w92dx4W^pAH^zRTC$~pdaium1dpJ~Xu%*x-qL(kW}3@qpJd-=}qyJ4IBNr&wmE9u;B@vZ3RJpKm&0RR6Cmvk$G&naEKa@(^ifAfD3z1SNDGDJ)(jucmB@)TrduBY(-jBz#;^*&s|G4*_ z`#qm?GD18=!&KRbF8kUm0kcgY7wzm{-H{?}X%7O04>OS6TjC{hbOdwCSA+9M>!9Xj zUE21r9^QG&6Yb2K@JlqxsC;M;Tbus8Ju)Fcs;-7!w%?Y6%CH+RMDJGPRrue9ZsQ?n z>)$jj@LNH;Z=6vNIxq#jR+FFv8Wqx=?l(^APeJ3Q_T9LG7373bnYM=5JW?f1R=*t+ zC6&*+YK%`$!!Y2WKqz|^GPYFEzW7oI3-eaev;Kc@Q1-i59V9}IsW&sSuJaICl|(*` zgJUS3_#tJnbrNp;@Ai5%G=M|KDfjGfJ;EueoG~!7zamGjN$!{VWz&xx%RTlMMwigsxg#Mi<8X z6f^rvn=##?Yjh`|37%zqAwzSixHUg7cJsj`d^RxELjA|F>hG-q!_DsDm8wrwHdGB&VA11#( z_?1-H28!UJ&-Y$Xh)mz;)x^V{NZDqR*zWlks|Jp@D{dc$jth*_U)AD9m}imNZ#J@~ z`k-d#cRKcITyKoo`v-@pcDg!!ZOD%;3;vZcik`-eZxVwkBt_W#Ku%IMT1^w*7BVXk z;C23X^`>bUIXS4?vkW3=pSQGpY$I$`9a)E+yCAG)-dpr>1^FiEUu=-xg_$eN*N$&E z$w}CHPxt?Y${Ww2^)kYw=sfd!DnEtzMRR|Q-&qA#%U|2XhUtj;BqmnM--R6w8`hg; zcHnpAeet=0erQ!?e?0bzg+!efz4tJx3I{zaAKM7@;-16xiAgUyI1XIXn7`No!vfuK zL3$qyW^Aur@?<52I>NWhx%#2G<$T3v#Q{7Wckb)0>PAcPmh0M06R7qL%L{k^3%eE1 zcrscjWb^t}f7_DSiDk^zVzYrhbc#ECrXFS`uIFWXed78Mie0R8za}Bp-F56}2?N$= zt|#AKK_Nn=x8BS0t|I-r-sF9K`VnI*rMgYHtDzAi*{px06?M6({)YYx+@`h`M;)ug zja7%YDc&yyUtOQ;G;c6PjV8$4V^D#_Abpc=g7&r@jh^Wd>7?!#YbwdZdkj)oQv#?adXKaZAcn_ zvHw)hUwjN5nH2dcL`JW@X6(IPi)ej5i>IQ0AvPYYOT9h?$=FvmJFE*KA=uNCGoFnr z|32)b>++H89V5c73k(EaT|LL9DoQ%F+edvLGQk;nI<{{MHxY?Zc=s6P$Zc1uPduBC zp7c9sHy6_(=_JlJzH=V4+ibcn_l|<5E%^PtD-AmnB^qmA3lg^DkMG3Qj$_L;p4AhZ z=n%%^n`1j0An7%t!70d1QXC|r=RyPsy(Mz`MEX3$etWH!&}&6EzxG?5&m5%LZ1YAX zpL#5ceXqCT9D~DCTC%G5915cZ(8)-Ji2NYPVt*ccj6eP4VzAw8@ie>YA-Eh45S+Mbn6J(ufyH{FKKA$;PO48=(ByUuLG=zhHR zUn5+SHi*uYH`dRwq^Z1!PGk7Ui$R9^z;_mWZ8kKV; zk(i&dbsl6RH%H7I7_w6+l{q72yu^`fzqCFsYSto+&Esf*Q9W#W>&eTcUd( zvXb6}%;H-ybZ}}auCY#Ig4f;3<3q>-4m-!zZ@3~uMpnsFL@)FJf^~8uIV>b@%LXn1 z{ZW)SCpezj)rj-eADdkamwZa!J^n;1g)lA3sshh0V%t@tDK~cpKs%DxHQ9>4QUNMd zU2Z~6S4%7y8Uj7)#x~I!D%PpL*mi5S1MRF){O!L}5N=4lzWUl2-r=P4z|wq1UdkKm z+{Zw`19i(v#Tpzj(QU5(+KG>6TD1M;^RQ4CS#IRC2+d2LJz{n2WbE?QONk5PsOY%x zt8WV%vG-yqS(z}Ao$RM8-jj!mRFmQdww*|R;->s-M3o%y+^e!rga&~a#$kgW4Osi@ z$Dk3{IL>mbZe5YGDuy)M`9lb5km+XPG51gypXfXm3ia!{hg@l_HnB;o2(JOuR`Ry^#@t?yji5V-dcQH(+HLE&`e>yafs$rpU}+j z!Tnv)Y)+-^xOhx$CP}UzR%)jgW|HRc;Gp%@f4mil$axuVfNp4u93C#YGk^%T;1`Vo z-RSaaH#|2Y_ZDf$qYt2gd+dKmYUorKp} zb|6H&nsKC*gG86=ax(U?l8;Z?o_w~Zfp*!}>YfifiRk#TGe*7(W>f3F?=K$#E%U&) zsueTXns2vXU3n7wt@WZ5rdARPzi991`V?@}Rn6?4l%ZnN)^KmT4lr1DxvAKV)+g{Vi`x( zzuG$yt7|ayjqWPDor&kqKIDDZX@T#XP9|GgD+(H}O`Gl)Alx!e-==r5ku+}?_p5F- zxLBm6C~HuIRhL>bFFUc2K(DB3&%1QIk~%d|)5nBP2VE&Yo{FP8!UhhtbYu6){XMdQ zfAOmQCRZv?4a|3Psm?y?fM@eZu0QR0ICb!zQ1Z=bTq@J-Jbz&XKE;&<9y)c{(OFP* zUB46eEpBa}zgqzY?L|O*$pS7lyV!X?W1?n9@b_2QgE;k2)K~ReA*iL5Cs&&-pyrvw zwCBn}$Y)ONdKO=Wp26k*E*I*-91EMxx9r8A2HkBZw+te0*K%rd+)|#@mrRwjScCqJ+|V1bZppI%oJ9u3pL-KcZHX z2k{kG1(uED!{@si%#IRhhTl3fs?0(bl%g(cnl7Mud$-`NYXg`$Palx8q#}gBHr;-5 z42p}|Jcq5i5o+L}a#mA>WF}vp(etCjXV13y=j&L=hR14l18PgW)V$#CwUk%*)3scr zX%pa`Xf$fm<|5A@I2~4aISq>s8~v{sGoZSx%qLV!h&cJ$#IR=#qUKjsvZhuSUij*M zxl+^yZ7ZXJITk8DoBZ^bzuphA3le)~I&vVubmdb>tVDBnT)GmIgLE!)?vr1uOfLSr z%P!MJMfKdYZcq#>@re94C*Mhf_XWu>ZEu&}#XY^{Dkm3tvTsd<&LRsjdw=Rx)z1z% z%r~@NI9?2g@h4{|OB!%Gl1qx>-hlZ7J5T!YGEuB_WB9;(Uh>g%_SPhmmvjUR_pfIg z1%F~$k!*f5ViGH4UMrVFQR`k=>oXRjVDoK!Y$>k?(tA&^Ui*t?e%((_J{`!9dBFAX z4i$Zmy^S)Y^T0gDaglOk1aWol+t@S4z;)NGazriF5f3i!1be>QPWd75|dMT)U|B}YwtUC z=B_P3T7|WM;&vK*i2CczLsay5`Tn^hm5swHNh;}|1|SytTkVKUGqk0|_ea^cfwMQ= zM3346{sh^Xjp^OUy&C4_VNnlFr@OxIbS81Wt+B*PVG1sWHvZGMmh$<=!kMI74R~W6 zkerms1T|vjzxubcu*i+^6<#@quI;`_ikq?_EAmG9#P?wclx8=EnNJ{D$;RVh${-GN z{D>c4E<6_sZ!R;TdGIJ#O%Q$wER``oA!f&c)U8+lDVGL%3u~cd*g; z1&xgG>ko7b5$-BjR6W2=ex5flUTdBYr$XWFM+!N~u(nH3_KP8W*_obcaC!{MySLga zI!r>?aF56I5gu}&Ucr5fODBe3+)<7?w$vx`8N^mrh@4Fewi=GC!=oXpe@)s1dS7T; zY#$`LYF?sVeQa@9ns-!u1OnnL> zFT6#!4lVT(zXOjBt)mdJcuCJ%D=PffOYY*FTSvwQ|Ffl?;2;vmzaI9!*n*%M)#EEJiIbm? zBuA=-`r(+dJUC8Z4EKh%bvM}6LfJOq(xT}kUU%%g{9h#vTwAvOT$Jm?>usN_a_AKD z&CEkLm!E@3<)b@Yq!It6s=3M!RH1qu_bKBwQwY5zd`EP01gePvgF5N&e58p zHD#z(SPTnY&r1AOZoI3Hp(QK&~e>2^1_Y;L!u(ivJ?;S;bp~ygo9tU}>GAX_306$R>Pv(y(Yr;nP zbmKKT@laPy51oD~PZq;VjcX0)kn?Sq;5b$f`M%{YV z{5ITVGmN+5J9GcNoq%s6Hh-<7U$@}B=<=vMt zc*rNk3j}vVFGukHrwS^X)|T6fpKAdnWk%0_f{JsS$~Dat^047&UFg{9QUvTesAHBu zAu?8f-2B!kkcDX%kq2`f*svHh_r-#RXoR{bJu_`XG)rx&q$`EkU*B;qczy+Oie%|c zQl0@9&iog2z)nH@N&A5MRZFpmm;cIi60g)fVJ9-}rkaer} zkBCdJAVS86PF)$IBmV3w4{2j6u4+j|OEU@)^lsI;s$6zbYnU?9cCrI+*PG_m%r!zv zttHJ$y$d1l&ei&#@50K$-Hq_Cz~2`QO~)?`LVD~Sx7%hW;#DpVx%-x(S*u*vae;=K zKes3UNLL{*VQs6T+!#iT^Cqh{a}&YM8?!2hyWr|GY56>Bb}7dwef1G-MEKL}r>vJI zG4?2sQ{-U@5;irb&70D3uw8|BZ`(BfL74iYj^4CS&lLv?;p$v?Z@T;+go9VK8#QGkeA||yENKC9y8P5Ye&Qe` z2R2z09UlkxF2`_-rZHSvUpFIC$VGBkBEof+{KYeWFl{D+o!qGV&#itl8@Z6JwLa}S z6}u=l6#FmJ7(e+zHTjbeS)FI0#ZRr@3U|M7UE)XbC#6%$v(Wo&Rq)b_Le{7VUJ0j8ptYw!@{n*3o)-Mp zv1p><`L!?6X({t?BlM?onzMK>n8@B9wltSqzRLTqcH+Iej=kMsE%Lz3U{-%s6C6kP zYi=2@gl!e4$=neRLd`fDZKK->wikkFpH)T3XBXk1q|ilJKGW3{?w*11pWKS7N0ZPv z>(TLCVHzSwY`sF=MzFGevlBPh1R7F%v^+Bx@ny1TD&C%z#HHS5e{_5TcQn5icQabC z_xTa|i#crMic(u-^r``@H^cASAKSoV&V4)8f{koyPn2|+?!=1VQ!)}svrv_8n!lj7 z#2vj=U7oAOiPgr=9X(P#7>stX|J*ZzMxw+U;Mjn0>#){5&5e)j*RoxBJifNZA*R$l)Oh4T0)pOV0Tt+G_nsRg?ISb zRx^=&XxMLMT|M&D<;~s()1WOWtY^-kqA~a8l`h*-xHwxJZ>05L{Qa$(%EOgt`zL&w zO@V=yxck&e_Az|!k7Ps^ExqfZzpi#c^%z>Lh>962g4DX)ESK^Hn6lfSF$!Zs^3a8- zHnAqe*viun7M4NM+`R3rHxD^xQ?}=tLa_j*k^$PT%P}gZl`s+a85H~4i=ac_ zE|!P&;%R$bnerHg2=4lGwoj9d*ql-F{CIv2Oj)gz8pS@mI==keH%WGK+tywsC|!`u zvr6k<-%dpWMNUm{ChD86zG0o?t8jF2%%xW(_*`ArXZ0TyMHJf}mK!C=*{Ekb z=~9jJ2SomzNuv;hI|4IXW#ovg)Ed{F)jfy}+)&J6MIj@){WNdOR?u3SLkTj45rV8XGTtUpxmzTW?FDHXoANN-Tu9Fo-pV3iug9X zxWA)ZlSai@Sk;=g6e`-d8k1+A4`H@Y|Mij84G=h(dCpn67aMlL*fnGt{MTjz4YpJv zS?|>~5xqg|&eA`3$GHs0eYX;?mjf6bR2J#CUPcr(9RAzFv6QO|;$t}&)7Y3A`n>W^ z$C6$N@Am{UKux@L=Fj75ys}P`NP07b=-B(VixL#_VQ0U{@*nKPDE{r0-1CXJ^ZgG) zE{6&6{ZjUh5y~Wfh23+NAO?8a+)k(^|G}kYM}ix74&q8~?VQ0LDokDnOP3eqBjdR9 zR_nbzV8psy{NdgUCrJ+_*YPggV6%u7)9XZ5RKwd41sWc-^VMBi+YT;Tk%y-ng*3~Z z%huo;gn(arPKMkN)K5O;`|ooLBw|&=!j?}Uy=G%VOb>;$6|KG>cwrg26DimGt}zWs zYiH-Wd;9T3^%rGJ+CQ-A#J=&%7{OUR{&xd3G2#%ue)ao{Ie@pj&K~sw9N2wcXC+%L zCM8~5&93P{QtNfc#O7u=2~PE_*z^+)H-}o1f@aXqi9lyA^^HJs3Ef&~LJ30gqmd%}3}l;nJBd=2kF?Vm76YG%p$&t{CjdaV6^FlxSb5nEXrQ{P=2z){^+3p=d_XjLXP3Iwo_!yNtt1~XJd@*mb6 zT04S=dkR8A9cZ{IEJe;bh!c~BKs&n|y=b+Ob-$xA2Fb?N@8Xv@J;nO>g7(WXtcu;t z!)G~)sMzFSM)T6XXSAn|v*TDXr?uyT%Oo-+qxT)TT8rR_@jodtMWFuq?AazihBG63 z-bF8Q>HKx+SA0_cAkXnsLQ1U(=l*M_YMtyyz{~E%;43tkhx2GX(kO!HK@>D9Iwk6#k*opgQNW8OF8&^zOG{-!X94;;`3_3jV8X6aWeT(Js{)5z3>l> zgAbmGdrrem<uxaRkg|75kw)X9#xUM6e#5T$u*CkDJ|uN)<+?tmVfbf2e-is zFK!a3@Y<`(SBRW(mt~a*Z^ZjQnbBkWUV9 z*=Y1&4*L6ExF+$gB-zScbKAZw{cl^N2KyTw;PR&3m1*rji-zF9@+E)X!fiP(G+%|A zLXR8Sc*>F6tkfFyxCxf##~)f3%tKFgYTvDOYlzN&ymaoz{U{Var0+kv#8IComtV=X zAiw_%7mw8x_DqK4D0T1?^^h+oL#8Ms^zFgZ1Jx|VFKBnB&zCX~|J#+m5fvD8Wl8?t z(+F=^Z}`2$N6n!aM!{P?QtOf0P%h3v2HIS|Xe{-GUgwC%x1&3t?;Eq~=gAtRI*!at zjP&-bFG1 z>5Y{Ssg|tdGO!*uhhP_RGvs$IE&8gWFg0nH1ph1 z%7flslZcyXbWjAZ^wu11hukAS*2L~2ST?*{|Mhzpi2U@LqYLa&*+Z>OhjOPd%V6!Kkf&83Gx@|h3h^4MFW#&2>s{c z`%9b-x+3FxjU@+Z!--V}(jtT@fp&c&`6mpMPTBu6qr#fyoI3yOdDJJaeYdA_6fSyC z{C%GYksJ2suH!%s?(TZ7z0W-lrzamrzmBZOj%_)mXUuzG`$l`{U0xf~RUbU2^XB2v z^T{3bcT3PLsJHIkNXLNM$10AoN$?w&aetRufMxpw-5y#V)CS#-B!-N@R=u(w$tkE+ zxV(K({SV$x2@Zba9EWq6WWkrtbTnwGw{&mdA$(8rxo!va<5;bFOVnXH68)MB85bvD zdrHfA_Xl2L-DXq3Jv)pY8^635_hlp7CoTDtvIb$>7@unOXavrOEEF^P7a?5sVNL9P z5uzzQFMrltjl?RPNwF*7AWbQM_xBceBc*_2SK*dfyfT0LZd!jHW&@mtY!$N*C_P+8 z*J(n-b$XzMSwCEMjjMbtXCi$9cOKrCnt?Ejt6;P%9nYWbIMHX-h1`=%8|0^0NaFRW z(9bvLv0_&R)B%(nx!0((y89;$(?Z`}h*B{M10 z@SSz|wfw(r*4z#!R+6QSre+CgGg#=?r*xiPg1#;HnST!b@T-|DvS^!wnTF0CAJJi4 zDZkjOw3Uu4{u;^U+lTSW#>k&G%}RLRbUu3YXdIKQA@A;|R^x?E*dqZECUUu9K|m|RsOZjMVD;HuGKxoAkiC)D=0NKL&YUkFetND6Hq(tE z+|*t;ntDv}N)AF!&HTH2OBu2!&tFj3K!s*ZYMQbV1-I?w2UHHypwT9ta42OAzXoiD zevTAEIPz+$0e3wnvnl7>U+2Sov-B2)GG@Z2N0kcen!xk5_a+5*S3rtexTV0b9IAmA z3to7OlNd>Xq>83SsIQb?-MRZ4ob@FfI-ZuHl#{7H@WudkR=uz8Y#PKs(#iLa4VlU5 zJ}RY8oQYg35UJ10A4NgO(XaBw^;pRI@O-8~fC#uMu~Am6Bss26UuXJIFul)hlj+Y0 zsD9njDCMU}tfpR_KI}ERtm96W7rVNUrYgcpx!ewEud}B8*|V5T*`uW)%D|TE&uSc2 z&>@$X_DWcF6ha~fO~1Pb;rrlH_l-zV;_o=px9i;)9t!AB|J%<+?v#45&v;HDX~zBD zE0ZyNGjxqTCOC`GlEXL3RryHv@ocK?^#Sx2t#N)Gyoe+&%OW*JadJOQ-m-tyI0h&d zTKi%suz!^>d}n1h+*s63R;Q znNMu9u@WF#uW#Hxpi>Q=f-7rE*vr5=NwhaQ)x)EO?<`N-ION+Db-F$Zkb7Z17CEI$ zFu1gKv;E_7xGD*_ZGO-JVZG1SsPfeau?w&$`OHPS)|rcGXf~p&ikijm(}$OdHuj;q zLlD?25s?`(0FiBsUZWe`Sg_kum^t5pU<1yWfuw1ebiOqX4{JdQ$GqJW$x*PZk6~R( zuR{E-1i5vD215&uip4)1ge7u=xP(d%=#(adp43S=_lDJPpXtX)aXq)8`66^#ebg>K zX+!|+j{0@2KKw4UwNKRRu|bzS?Be4;s z8#~O>+Rza4VN4`(1luy#Tc3*KBt`#fw(f{oNq7zioZDUX9ogkf2dRgHe@*H< zg8j5bO?AhR@?YCakqBPG;`EQOqoAzPI$M zX4IuBcFl>GVny`+J0dHY$#bii1SLlr-jzpcDp-xed*XKcs@_>}d9(HyWtPBdeo0mE z&M=;cM{(Jzr$WNQU(#Hz6z*&-f!B`F;aL8Aq)agtN3G`-5B9MWpSAJ-COfEbVxPBR ze@n+{^|MDy$49Zzi>0%>kCR;H?)v;yiUE-xZ$|+sUec9sA^cUi9o2=rGSwM0WL%{+ zSzO^JX|s<2SU{)0;@kv9h^OGw+WH$BQwZ5yNy>cE&B!gnIlWSv&j9nC?riLAaU~M zN9Wfx%yZn9R{zaO{**F~tF4>GtoOyef7!;cH{Z4;SZ)wn73_nFyHtqe>I+^ht9sxt z<{9=Tr4+mUeR!>`*a`pDbNBqe41!{2oyqONMeIG?!i=v z=+UFsv$6#CQh-2U5=F&F4?x&{ch}Yum?=dRl6c z;|U#l4P#Gy#k)Ye61$^>jf&028_(6>q`=uqTBQ194h)&S&deH)qU-ow?}exqJb9ib zZl17+yZTGg2dOQ1=Gn1EVsiPuX=7{!JBQH5c`~V+T8!bRj0lT&G%#d;Z7sae2IY~B zcVA93p!Mgm_9WW`!c{+0t7`HgUB~8e#=HWla&KweZTVPN^pIxc$3zs{o*1r+T|nE( zOw*{LBAiaTTEa)I#FG^xD-^Wl$lrll5#y*jyd2I`W6JuBm{0=~FRe-_D;>Y7#5RCW z>F>Ym+YLhSOwfdR@D!>NJil!9nZ|p!o%@21({VK8kN@Yxf1tLrj4wKQ1^LV;e*V*H zQ9?N}tkS&f$4_}iYD6SM;lM597WhYjJYhe#TB?2&!I4+vqH6|WUqcU%SO16KGHPF^ zrzaqm#d1GrU<^YKf~$1wM=`)q(M=U$fbUAfluY|_zIRz#Z)_1GwydAdq+$ViF|YcY zzVi}+sfAEc>MY*ND+RGRkHe*$Qnz>YEG*RXg(Ur#{hW!Xhds0(1I4pi!4)h-Zt)cV zf1e~tyW~RKwM}E_rft$RIMo7S`fAD3OYNY?3CgKZJ8`z*S<8q`Ih17JjA+9Cqsx07w-0VT=r#<$@4+TN5_?fOy`83HF^S&7?dF@) zyRfs2qv3I!ZrgCu z=06$~#V+bZ>#&h~rZ;4Y&QS1A-~a5~W-5$ySA+;ff=kL#NS01lL!Xop|7b3+- z2v4ow(%gak3>m`@_o#4d9$;tfVIcUR-7^t|9_YU@jaG{6#$s5X$?Nn^n4GX!to+DC zj>=BByQlO+=VotMZgC$@wWfqOJ*U8kp1|`ah>p;V(sjAHf@E6TQHqCs6|w0`mYC}O z4nBs~so=6M)M;mwQDUZXJnzHmBjV$*%zuC0jh~a0YjQl!TA7bm0S}p+NIuGEb?$`j z>cGR?N>!KkE=)Uc$~dlT#g-$H1%Jg#aox_4Utf}q9N!c)+WmSA4Z|)adAxM6yu0ut zyLKK!slH_W>JsR_2$uh-+6%KQxAYQvQ*r)w*V4OTehT$PP7R5l|0N!6*kb{vUgxgWDx`ALV= z+cQ&Z>v4W-cZH<+1a4jm%}gF-Cm-&74+?lKNS4?OUbJhf5T<{Bb}CZ1$ddk0bO~24 z3aVVSlCR95@ljS)a@!2z4eO8YxHgR2rMv$f@~lI~&Ev1HbS>+{z(9zlbO9QPd72f> zGl&z|pVntKfi1~C;qC52P@3-NmOLa#j#jvZ#oA3{M{ySA%6mF0t)l;>Bn+dZes`z- z>$N2E1K;y^tlfw*Ixkzkw*-!w$}Sc5b2xZJN5)rw5FzKy_qE<*BU<;j8}YAXA|eS_ zwW-crB*gl{9<8-qh^nsnbS`lbMxWWQ6uo3%p)E|TX=nsdQma|@2in0F#C6!@6E|63 zd+tf&xharaFJ<;B7on(xaf`)i0evw~7vsX4P@H+stm=3Z%AHb&Ehkt>_xYnWd9VMW z+UWbs_e1rN&@~VY%pHS?!21JF8deaA#wdwR;e&9$w>fLS#1PgjG~6hyW#EB=yaZ45 zDAGy{)}7cf4pFsH_wdc5P%D2OwX?hhhXqetG=}{{&Z)@sS6USOZW(3zBb5uE$9;U? zs~GUzmfWBEtpO%tebRQj77^(BQtmpX31!kH4%*ywh!vfV+LzuBiqiaatab^K2K6_W z*!RJPi8n&ttP6X7C{1Q@GT`!lM+UR@IL@bh{}SGoheHOhqSjXxWA}v7r@YR5R5aC= z9oRFE9-U5J#eEAX|L9#FMk|2W*Mhn)yXw%#-ut3ILY}y5)oyyYp#qPF{h_IH*~8NZNU7S+a`IMVQA?sab-%9C#jLE7rzXRVsusdNY{%g zOsd<-WR_Rs@M4zie-dLjZDX_Dy>be7IR~C>I6=qn!`}Har8HRVeSDSw3Js=wX(N3- zVkFp@OV)pS2{mZ}aXXF*5LfnZ4Jx6th^tC5pME-y`1^$pcUCcxT{DJenh&gInUr0y#7~clYwHT4=~upB%kW z4ww1xqO9Z^1ou3%4zOB6L}bR4jWZ9~n3>8q5Z(jdGWQrq-zoI0iPspaZHL?O?Y&j| z8*w>*x9q=6ArgOIgYk5kLw{UXwH5HcUL$arr`Au?dpm%a-H7*VQJ;rP|0Es6GU$~ms$X9nU zLp{b2IvGvvYc@^5N)UCC>BF$-TxaaCgNxWnwY-sV=|cMb3tWwrU3m2{MfW#53(=f@ znxl7m1kTyoiNAOo{zbS8r7|dg}V@YwsD*Z)tW(W z%Qe%Ax_X>Vk^ExRREj#=by7{k6!1uDaXULN=NA7U&!P8|&^7T>5!l~@a3qpafi847 zmzt^{>A=b}M|}4Au#xk}{N6^)bt82~LB#QL&ZyhMxvwQON;4Gr7U+l8V9f#`4{6DS^Ohl>gSVyR4 z9u(__U3Es6b42}?+H6NRP9Bda5B=GJdZS}kx3*DGrg{BPnN1ZM!?U?hYp{^~9V&`{ z(r2;L&5e`KY!vPrENzl*%tE4Qo6tx9a-;yvx`F#OqJlW}`R;M>Fl|x68b3AGJ!fuo==5 zE>Hf7WFn#>o1-*f9QLNwCz1u~aPiI#KiQzA<$jcB>#)sS4!Jj*;I-`0!$RFTI# znLQ|MX_RdJQV4z1%=2bT!lWu_y}VbfIPs5|`S8`f5e2`TzV2}iL7n~JsZnoP5){5& zYOsNUjxDRUZYr2X#LI*W(zHr&HqB+zRxR%}jFbOu-W*(Bl}{A~jpM_Q#2ZNy45S+v z*4hmXAVRLSjoC+%&^G6bUbLQtUK_pe*Cu{qCGlc~gCY~@lP+lbkm#Kom%pcF%%3)Mx^(LQG?!)-Hd9I;g8qCMN9$SAAChaZ*oGpJ&+DIhuf8Ic5CQ>w3 z?`XmzKTm70L>0uvolYjo*5b;$Z*RvxF_F95qj=O#audh z_IFx`&B57DPd)Q09S1{iWqcDH!hVH>O;M?Iv@fKK=iHiu*XmC-QlZrd2+O=7%0B=# zlQpY7Hn0-wQ(wGQKT)C3+x1K%g$}K#+#tTML$Enln_*ThND^!=`B(lK!a#tQPsjT% zc*pv-Q>8eGty~I?vSk=r3_0_=ZuLkS4pC;b%s^f(xgzbJ963!BjW{>QLH6BLC>n7o zLaZHsEmP?v$W=b_Sh)tC+dVTlWsBgg98|gLV+WXa7*yq?I<+f% z5!&DC%oW;$1Fh>a_Hp(=y}08_b~R%$l*g znhUVv4sPb0$i?wsEt+dxA(T^0&rX~ifYV}C2yYk#zSYqNSDo4rzOFLjbYu+(N5J?^ zV>XibS8?r?;%VG{9xFP!pMf>EDuip}<{&O~$2*^=0s|lWzV5l*gJ&N0-?ZEFkW@P7 z$5ow+jq1bOomW$#bIhms_Q7l%S#^U;U~CSViKP-g*;F|ElPYLE*o*6D24gN+Gn2W3 zTe=~lGx#+aWo>nN8YPbMk29_bk_R75(<4-JaJ^7A@Wby(#0LIz<7#0iugkuKJ3L-N z-XD6vu=QR?KJ>(0Yh)EBjTsLr6?CXL##8qE69v@hn z*n~I{_Xr2EX1v?HyKtZ2B+hbc3kl@SU{NNr_UA7q5?bo5E|5J4tM0iO9z!9*@_W+I z`0of>Q~aL?of*U{r}d;*coO0_C{D`0l7#crvFTqCeNe0jkPSLj0(x>$$xXiraBXqg zV6Q&9oC9}S1H|UBRP!oo-}DR$JowTYFA5MpnJA~^&8;vmqpW!So`viQZF=zN=me5d zzooMFj)1Ge?O0tv1KudbwLCSEAbUPiwN9N{#C3}oErV<+NNc?|tVO0Vz~MCdc)Svx zM0X79yFqol^EBY*H1`Yk!QTr9-o;Yy5hRpFpiYILT<1Z0<+%5*F<(R*JNsq2`Fc$L@cx8~aM^{pq* zvt|XNaZxYNIidh=QQGXMHzkApf%t%)UitF9mTsxd>cjlDd=Cb-12M5I6Ll&Bu>R_L zyH2PZ$u0k~Gi=%+=WOirygD2AnyQ9Z>8>Q2ZSN#=UP=<^uDjEDu>}=-WA68_j7CiL zhO=+n#7Xp;e^p8?BM7YicHrGhW@4gLxXbcqHCFb04bGJrz^-PU`hiai(Dc_8^Vb+f zP}BI7*S=9?e==m<{egjbM$Vbj*t~8#HU4)YfXRc!; z9lXgmn0-=bvG!q3*UDHnQhisPiFuiajFbIR+nnam(lv!x4-ul^#lLB#;|z|KYG&6n zT2ZZ&9u`ZXB2Z(ku-)-)9N^oLfu9v9Fz&NR+BS~1^x7l310%S@78a6gFaq|z>V+fm z%ly&S5$E@D3atgb%qIHGWU9yQW`tlPe%&A^yaq<$qZX#O{VxmY)3vQX)Xzn7M~Cia z+Nl$Vt3p95b(%1)y<`_-UxkWR14@f^4O(4VY)%!ilQGL3Dh>x&$!sOP;lCXf=)CsA z0S^bUq9Tu+eA)v!e=qj{{#G=;T{*bINQ$(s`l;sS-2lFIE_HDZY{X&lu$L}n22-UE zwPM=Fu&J>y&^e5SRJ8;+Fm+F1b*ktkum1+15UwM1&2toj4-V~-n_Ga2{u37|qdH`5 zr;1jZ^&>Q8@S6B8Cc^usHG9Pc8sZzbuKrX%0KenEqvb04VX&rvZxvmXyydwCqJ?@Jy^_$PnBnHDc8{7>VARK(*(w zHYCKdc}SW~ppVX_=;T-pW_EpW_ncfnYDD@MZk5esXL7)Sy|m&aH|5Pcb@%UZ-Bi(Z z@lG?eO`Mz(Bd1WFVOg}?vW$@q~8$p zp`_D<9eU<3V*FcScxCUM;gTwB&$k(UCBR6GdnJn};+H|SBiZew(ga>ujMVVkFJXDa zu=0&S6|!d-BX$UMDot|K`q$r>s`+ZLZE70x zrVec6%mB{$@XcjU^&o2#eVR!%HK8%Pvt&H8h-2a*?{X3rF)YlPlElG76v56BG?s>c zJG_qP%Phik!KQUrF9k6vciXKO#zm-X{H$8GHqtSA5n)w!&YHWzbQPvXQTGy%PM4E`JPCm zry@%t(iA(D2k_Ia?rtSBqnc-ro~Iyu zF|BMm+Y@lVndkks%S-4BIuT@Y^bbzm38ffn>49aG;-c5YBE+gYGfp3>M#l5YT4mbx zXyPs2xApZR=ns}8jm0b@!RR~fvzm3BbK1is>(&K(zy8MbrFn2EtDi6AT87~43VmJX z90U!E^0yQ(!g%!CackBlIJEp_SgI?;y%`rTr&Dck(K6pn&5#bomlEpY-)GT7A#~W~ zdKH3ipYdMdr6#t)`r%1so#5fA{m(mO4xYQ$ud-g~Lz7p4Jri>UA{29068i=bdbCDs z)p`Qv)vq5}9`A$r=j{5d(=&L|t&{FwoQET6re7@%J+J=9tlimE!wFP7D;pNuX(M{LLh^UVBai^i1N_<(Ge}qWY2kQtGtSW_}XvH*~$B zYZ;$>*@c2!m`UK+g@@a1C<*)h^A)15qu4(D*v@`_4XMvH*nXX$CdWU$?c$5B0oTRK zan1HcWG*?Ua_wOylo#**kjq#?cKZC*DEUSlELzRT85=;x#CzYG^d6)NX&=rw59$98`~a2yq3xM&=2JYN9OXR?x~h6Z6V&Lf&gJ&aeDm&@n+I$+CLYUz9uU7g zs@jLbul~x%8|NVHCv|7@C zpzyF4%d??pdmjwoj7X@8cM2aVWn>I0mYD_jn17dv=qTFEMwZOnm`K2A{M9ebW6*gT z#orUxiTWY0M-~dJNbU)$b&3)oYYcLOS40>{RJG8l>jC9BdpX9Dbz{$D6`uU@aVtfS z!5)u1&0L5ai4w{E(*;YjXD4Pt+K_XHQQM+=C%fS=h!QU7fwTUf&Myoa6J?PlYeVgF5zVZWfR_@Yn#O*Hdai~2g!4G&zheKCQK$Rlm?iG_Htyq53i zQ-Sx($NyWXT10VC&c4CPdRPyy3slE8Lg-Sft-Dk$*gyZRl<{XG8ISH6-oCQ}m}?d= zJspRyuj_I~@e+R3x0lBrt3gnXhUo}<2X2JciziM0g-RLYQ-7v>80ToqT-nispEsj& zf9sXu$@ATGcWcH_G@wJQwEFS-V{6~N!(B)>h|Fm9rX?jo3!%1*vsn0bXVX`y1?Whu zot_=wA_}E?gDZ9^2usMc`B}e!n~x3rp3*F1i%FH#Jp~?Ocq8#Yjxqt_wS4x`H)~Gf z=pPfUG28=hBgMN>CKP1pX;Hq_r6q7GM@`A=)??vpKfiQIJ90EUgqDiy!SvAZR4&yB zE~sB;nsZx2hNPJL^b>mW&ivX>R&3HQnXzIv=)~%#{qfGq>F7u%L5H<~O_LNzN7Xv7BS#;xG zSb((0c;KfFcCunpYU+ES1#kNWlQOT+k%Z#l@rA>yIDPDm-J;eco==ZDXZqH{Lhf6` z(*5m(mrsq|Cvk%x#i6W9=cBP;p7d@D-4ZTVwqCksR0sz3O44XF0HbB;+*q1<#BbHr zRuHVj_xP2IZ65W=wX$z2(OE}FkGXQX%p9J1#ull+q9U1Jg57IfS|D=eKI`-CtN3Il zbb*^?8A(dpXtMv#B3PpT9n1UzJkDfI2Q)Q8{c;jdXIu_m%tjmti0Obm1wVyi^)Ce6 z_}$)2 zER-;tSL?`DfYRpanO@=yf!6cU))NMfPV}<0ogKgOF)$#Xs za|Tvh^Bd zH&YWQ!TueNZOus6fA!MqSqtpL_Fo^rx(*Tgyxh>j3Ak(1Hm5p{;>-`hC&u4p-qQ?Z!se}b;1DI*`6OIOYV$B!ZhZakK@%le3RhmJu%aPT zmoD?XYp;STooqzR{&~1)+U|Hn$w0(k&o9iLTY?h*qG`?bMyLkJi>1?!fq1UG_PNyu z-}u4fK{Aavu4A{=IeHPSO+R>FY*|D?#MDgt?|z(~rq4c-%1+dd#J~E)w1z{GM|#AV zR?vTwSwN?(9u*25K05PbkW&)TFZnr#l;Ji+bqTjh$T2_fCf`LYR-YN(3SE>*v>ZSCwehe9n_MxK26r|$-u1+NnBc3f>>$RCWm&g<-RYgZ-0@TrvxJqrW4>YG$xXr>Om9%|{6KYXJWt}vG~}s7Hiv(jLG_>2JKX-f#Qz8-Gi3lT ziBvKE@YITfjMwu$KN#PKPtD`4Jm!?7rG!2Cm(eOh#J}HDl&is?>yI_)Cc2P+I{=R~ z>+$+a@`&sC9#|;l313oLM_3f^wg*=k$d}#m6VeNvIP08y_TD=Vl2XK2Y4M{M_N;+X z$QwXcA*20~|JKkDr=S{fmyw((tvnyOe-P5q=ZyjlHaIuFRdw^$F32pjG>g>FU^h?o z9yX&+?D^o<_eXybQR<3X*}d$9O7z649&0Bwtc6_ezN05WW5rD`)Yo7_pPnJxI*me4 z{_soQ)!6gy>7LFyA@WnC?%T{oDzck8tMts92r#eR-ZX(NB?F7 ze5=~cUn3?VnW*sD(cvFFM40y}ZtlR56w24Ts3=K%7hRTb?>P9Z%_i^mGLq|^{*}i9 z>rke=8bP19hA$r|?s#8Yg_Vg!kp0{Y#FxIQT+N(^uvk!Qyg(bCO^QEc8c0V~m$HJM zY8Q%ro{bTW&4FEiUy`@v26s-1+*b8(gh%t21|Ab?Qfka1I2=0w8QaIVzqc-8X%}PZ z)0D&zQe&YX|dsSAIt*M$pgH#}a5o@u5sA50F` zzuw-@gXHRvXrFlt9E{#SRFav5m%5X4|7&`Zeb(4ZIjj0nCjSH`S1e4A;f#VzE&w)jgQ8ap8LXz$MTxMV0h2j8IF z%0Q@%V#MUBM)5T=_MG2Q8WNs;iiQ4YH})S=+5TCj5-o|LR|ht@L1D=ya+^EWxi)%(()~Za2L~F! z8sEBK?b;+>2$~r`Hd|0+ zBLNRWuj*}~CJUtoTg3S0FxlP8@pGmYdT&Z{J3kCTvc_SQwsI1SCTpKeHazEAGy_*o z?Ex}2=`%mc(t?Md?8#_PHLg61+94KI48zDt0f`kZ0>wL<8lO>+n}h1nA~u=$p((Uu zeOn*Mf`VS>!X((VG9>J;_2ch42+B21=k zX`P(&D4q%_`7+5&tXG8oni#T^-d=6dr?H)o=?<7UxV!{P`O_(94=m$m?(M*{{&mnl zXFU^ga{|+`NBHWuE+Vh~32TJk1f=4r-d3e|z^ThX*V3;WtwG&k&cni_CL%KMnonhhv3uUMCYxxfColVT>O^q1*lIl7S7xwq}_hV{#HVJP580F=?=U< z)$hZ3wH|u?ZC`|iS&06F(LulD6{O$ONX-_Wz=;dWQg4EnAU3(3LD04iR2TGKvuyO2 zYRz?7wm*-p2C2P^FenO;-w}x7cjfT8`5iaq1AQUz4wQY@_ z&O*`B)>V6RJ{0FRYqQ&r!MsD^Ex+L)0^)^J97{_Pd-x<%_qAT6rzi_i^Ux3)UcaPs zQ^R15qjwK^!b&K$akB?Bqbt~k{El(G@qJT$4hn(+(2#U83l6!zgTi_dj!_Z&Qt9lHChm4bwNG^TuFX@}&aa6MUFN^(-h zYqv+v1j_qjC?lS4+z+o)ZMp?r`1*G`HDsv?GG}amQ^)j!ZT3sY-y;(!Q;)t#_o5y0 ztHKWIJR|71ukQ0_J|D|wycOXyIiTHrkBGE)VysZn_tg9(Cem29Yc9qfyx7wJz7+S>G)aF&HT-|Xc<&n@h4WEY9woy% zTpY|Yi96Vepp19r){PY~F}KOCmv4sXKeHP1YuQj0`|ele!A?RP-bXTXY$Ln6q%XQk zcOsUNd^+@KXGsgh^7qVX|K^Zuw zHlDF<4xayJJ1s41@$h86sY3WHHg{g_Yg8D9rjYbV;LHHPBB7y3yMoD_j?qhB*D+eo zHgJr)8@uN}R^+=g6ZXl>b5UY6B+{s&)os@-)bD-vJCj-i`;0U(bN3{0n! zt2js5WopNgf&Dqfu56+G$cy{^d6szbGaGrkI?Od&&qWH@TXgnTcObGrm-E$+WjIyt zkQj|x0Nu-J2N9cU)X%@@XQrM);Fea(Jjpq%nWuTwrj4U8i{`F%e+P66y^kx8ci}N* zP}U(DF%o~xlc`#76{?4>mnT~+a0YZ`QS2#W4Dilc7#BuvbWiCLydH zVTt4Ahk}bxwg0F_Tk2QWA#!`F z(-W@O;Mkbzo1(6b-riV5CHbQTr&X*!jDKVyqAq#*N2S)#|6$~F%i=IBO^g_`Zg0%L zYVwFJUo#~21yuvDRin1c)I6%C4V?zgLP3&ws0gT_5%C0 zZ>h7uVmn~`P-RM^6Je_d+nGa|Ndrobe)-%7J3c1KA*~r~;$LYPU1KIM_b0giQ^*9n zFK6nU>JYw|3v@eh4j@f%|5(Z|ezN86(4ev_HK~>pYGs^dCmb#x=X$*QApT&2SvrrJ z9F`Cf|8|9f6t{mqqHN4qjllwUZn0;xzlrif_!9uYwDCmP59)L zXDu>@LB004TeXIQc2IVLw=h*IY4n#SI8^X^*5et4L-zgB$l2XY?>*rZ0G zpiy^YuNouCxm-T-dZRBn1*n=Rp5i83^$!}~7^%mDU4=vA8{TM~-P^~ZGmCxqDg~cj znZ}Ja?$($SlZd4rIK_K(0D}e{wvr|pU@uQJ2)a6qA-(rP$MXv@;dk|X+;0lP8Z~iI z%Af~ppCgqr^eKqn@6kl5Z?kBvek8CtWMf~bcc{>mZgBF>w5OeB6Vk*I7!1{iA>+N; zS$w!3Q)*e`9IY*A;@_tbb9D?iKZd=Dv?#z~c}6=Y@qC!oZxS+1>%plfS!E0xeLg1Y zTiqxvD=~S<)z1;%fm_o~Iqip+pt8QVELN6^c)0(I{S=;!;JCd4rBPJ~Un$|}Z)t{~ zHIx7T#Sy5#Xg_aqx&gG7w_*CQ3#*R`bvbe>AQvWhGVWR{rrM_`^V0Is;r82yHIb2I zaBOR`^XDT&N8hJ1Uy)3&*4BZototsEeScN-nj*Bxa4{2IMyl1v7>Ll&&O>dZQYWuZj9C7zVHQs zJGUm#8W|tYTeJ)nodkhjxpVNV7>~F9R|(ozW=xWgDG1UMS(@~R@Yrf=LXqYKM&ImC zO?bVI?R<8W`;#chd(D#F$GtniA8&d^{wF(;Jm#(PtCxzXG+f#HIdU3n!#sle#`Wm? z$ZO}U*bl3_p- z_{fv<43b;P%z$gOYrGvYh;t$zFHN&ilaczmou}_`kV!9DjdA%EP-G2iJ6&fcS`IkAyO)=^QFv#c zW9US#^K!^`tu-{Hp7g1GFo!+ji4iC0t068k%QAI;8i@l}eo%1F;O4m?<%Yi_7(3(a zwSObrU4r>B))u*h4`V77(5E z`S~aM0q`C@vz}_Q1by#o7cbRulg{L8@(V5V$T)Ox_LN^8>>jROQ*fms2^X^O*m9Mk zV@SvAkz?M5=Zh!*ifzY^EnK{(tMXx~*PiZNItAZ=3H3?l35dQ}&+-2?hpcd`Da!m| z#5O%(*G(S7GM~l+EyglL_?>1^=3fPF99rFrPCU`KcV=5#$D}sm=9xAV4Po6)@nKBl z9f#sHwNwFGctnoquvWry=3&#qiv_qwe~>x9(N~JtQygwow4yjy#!O1L7JUi{&d~+! zICh6WcpDuvDSZ4bz9YH{MHhP6*Q5u*Id+$)WV8eS0{{U3{|uLRI2LRahhKYS(-2vy zkX@3f-$U^s%E)X`DI*nar4S($m4p&)WrpmmlF^X8*K6sx5d9Qa-gJS@UPY->mMF_+}(uJ(Y*NDk$u$Q#8D*UI_4x|}wP!81n_KYg$OOBZSqHQaHnrrb@Q^?s z>a1!C6@L`XGjhGhFsXEzCH5>EQQzxSqUu(N6X%Z43tsAifZ%SgIQ?Ff?zoz~p<@H# zj^fhYc7;NmhPN8uXy70^)i3wW{OZFKL5}?;T5O~v)rneN?6UTsItf=GU;iU&cyc%CXA{6cWcT((~c>05sBr3yRN|!lWs_?(|qICLgCJ zWj~w3BhQ$RPH}%>$!f2dxnmXr?-aFPC$f;o3Y3GRX?YOae`0BCCHrxg zLuzkAS`}_+Xh!_&Z9oZgx8~xGGK5v`YuDb%M%0RqN+zP=&8B=lcn~Fb+2y=Mr(mb6?#xNI1o^@YQO5NYqMhe!`yzwQS|%w zM;Ii^lM$=8b-|idun?K`xb?LbBZlQe8`>)2aLmDK`s4<}^?otfO>7qTwDMBKgo;7; zujXm3OfPN)-7L=9Mo;Q42dwSun}!TCgM(-}b*Ww#}iv$gQ3OoNO zB~;>;o@2qvp=k_kv%PywnTG1fcw>p56Yya+3!H53f&4?K*@*!vhR(g;SN&iMVGBNT z$AfPcx-XwK{IsHw4y%HN&p`~NJ7UnNGHn{n%Xj0(D*EvL&iXty`Xw~Xrx%C3k&|iKu=TKgZYn8}i?8Fy}A+z@CnSz1#P8V!KW5+jDjK zXtR^F*UxXK67p*g6z%vcVQcY(3l*3Aes ztp0if?FcjdpjuMTNdg|pp7g)gfsL`m!Rk*xPTvX8j_F|}W-`W~eJx6$opop+QMMf~ z&j@kRwNNqF@~vwt%UZ&J-rqHXcMg(5Q(-kLYlv5b6hq0$9y?Z5>(GG+c|rrK!`pH7cl zYGNqE#n-28@(NmEnyg6&Uk%k0b8TOOT=F{K;T&I9@}61M5AO6bB+xg$rNjBpEwr| zjnWTsig8_t*k7+1DO8G=ezdRMT=QVOJCgmct_iUm`^u>-f1o(|oOSfyEL?0wd-SK6 z$-SfB*u~j95q3s}U;nxo+4rL@+I)LGLX0inyZv6oud6#WUr5rxNHy`i@p20NsZxK~ zd%K|N#3;LebOM}0`Bz^p7ho=_Slvi-8g5nFP&8x=ddf^8u?_c-g(l3Fzwo0f;($v04j9{&J=*3L+gq0 zpHxGu`bqr$pze9QwFbmU2O^vO6nIsNJXA_40KPstGKd?>Xqs2^Hl>w_k@ z45Eyh7a%>$Mc!qYHw3(GL<*r-D7IrEZ*185%Wv@#X0iT4&i!=|yTpEQMrs1(>F>SH z{F=g;`JaoagX0+I4Sy)L^a~|vIT=5CI0^F>EAL*pK_smlO7=Eb!6Rve&_}Jn$&Dtu zxq1l&uiE^gtXiSi{9BCX#7Fu$ENO>rDWodO{Lc8yD6U!vaaVk-hMVs-gFm`dr0))W za#pAlJp&o`8yg3qe;{pT#%e3sZ}^_4qO}qUg%6L=s%numo3}=-xfbt^KRCwIDnzVH zM;7R4^N<(_a12)Xff=U0Ump5{FnaLS-`)266rsq9Z6iw$#7ELzOyOsPc1{cfg^Vj$+I%sf5T(pmO<{)#XsFy)(k}0Ut99|K z09`<$zyA~$@%wmH3(LVZgv~4N(G<@FCUuVb*Jw4s_?UA_eJCq=J|0kV`(h=mLgg|; zxPM`X&LX?qx^~EETL@fF&4q;=vysfnDQI*E_L=Tmt*c+QO05EgJUT5Ds@ge(%#`dk zrFxyXu{r5kqH_rXKeG?uD?KsUxUFG_dOrk<3biS>mazHE_LzsJYsi4^2jk}=3`BH# z`&!q=AF#FkDe$_q8rx&pY+2(OiH(5r(%+zI@V4~mmGRVIGVNoy?no=%P%b(13Uz@w zaO%+SRj!WrEPH;bu@Y|`B_(-u#-Tz zg&>RI^WzR>c$gfiY%bo0t52NRoqMV9PYX+Q?dBkg&RxncI)U8G?`U`Rl+$5laQ(fyI(f~C2IGU9Tz5biDI?98ubV|T9WpUV*#yC8i#hg znZoEt2UX|XX`FXCasT12cZPM_jK@3JuaxIF{F~9qSnlTNQMF)r7r<&lmYcw!t z4Ta=iKPKy!GY4e@o1~BnGiV=WIo;65NF@F^(+9dTku4rg`MJv-kh$bpJ#N#9mo7Es ztyh-t;B?3iThlh=^>|+79IHmjws`XV@)#Dnx#NSTO0Z~p!g|^K7ao{J@x+DA;QS6f zn+;zlp`v*GRKp`KA`d9HjjUgkN>#jM=FkZf$jdPmmg8rxI9n+aKI7fOoJg#boc*v_g@xR;Q*G!+?y6TUq z$4$)XlG(_S&0oK$Xz-Jwi1datqcad@iVf1qYQ*US%S%GCjO1sLjekZ{C(KPhcDJ1U zhbT**?w&bjQl-K5%E~7lP7QQ=b}#5j^zya7%_oMjt!hxr+iLZ_&9j#mR`2-w!rk=U zkG2!LcBaopYe(=aZbQGK!~i;a*4C`M!%lVyIH)yvtnS~$>d?iTYY0ao)vt$(k4P*_ z>D+5>#P&muOB=bzpv-PB8@t-qBK(36H2;i)$9ys)A*~#5!}%kaHmoE4(uu#=Z3b{a z@=%)7a|ZG$j%LVoo_Ux3J2Ur+%5NqmS>yn73ryZJHnn7~NVOky8cv>0g2h z7i(aBFG*TQvKhfjiSecRf<$Gsg^ksdLNdCU=ysd^#YNWiMMJZ3*kS9=phYIq6=LZr zVof3U>iQKPh)5FN-rh!Y%prv3_SI82`f%Yoqv+x7Y-FQ=?GSswGT6o}j(CajlKPBS zv1^3+h;pWsynFC4bY3)Swks~7Xy@>z#F#!LRK_2(u&jiZk6{2~`U*OpO3H{j&mnw) zWr53|hD~#2q91mRLP3osflad)4OcQ}-3RaH8u1C}jkwN=#;+h!D3$(6!m9T_ zb!|Dh%dI&D2U)fSXpqkHol%enSeA&&mk)FKnqXSZaY_a8=|OI|sQD z>+r#_rVh`&ulY6>R3la;ks~~{0ag_WB8h9WQI&nguHeobMsGjXa!?+`H9BAR#`YD6 zjl4W4CEkTPYGUZv>Kx^^G>Osk6yt=QHQ!R?;%fC=!t4|#Kz%FT8p1t~4gBZK#D&?2 zTV@1zdI}w}OV4ZT()*6t!XlRAtNfFyZ|7L*!$(BY8jQqKY0&=gJ%kcji#L(M8+tvu zQKYQb`OK^n%)iQVj&L&(ZLvR(n%`C9_un)247544pAo-wX~Qs>twQF%#WIsr7S$&H zcf;7Mr)uc8>icy6`L;3aUjnoG*R^GPx-r_XR?~XC3YS}^J{Ic^f=-`#;jPqP*k#0B ztY5c?`S5Iqnz~UeTU42BFDixN=T`H3(oOK^%o#q()r%uex2_0tuoI4*oevUNTJiOy z>pY`tBhm!47472xLHrQsNrSQ~+?+FKm5QxKo(N^%-?R?o$QtryTJw|S7=znwm&Y;I zCb;h*KMUFWl8dhW3Ke?KL|*eV^O7R2`LgY`j6_T9ZLLvm1$y3`{r2?O2(q08Ib$Vz zF{A!@(PXj#9L~&-{~npZOJ$esf;M#I)L$>h(@$#P7-nB7>OBje1nOIUuU@djarj)SXpQ-Dov|_q99s z6zJ6;d0mCP@+xPsjU;oJsWA}GruQ~~lKT)Qs`pOg4HI!0EO%ZvIRTEAhu!KM{^7K{ z>7s-{4{T@8McNlri2oHPk|n@TwnbOJ(0v#K^L6t_C24igdT?!%S-=&F+@11w@5YaT?Wgg{$ARpmokRglS!*r zgDr505O;9Y??Ud~tf$W<>4{iWz7*s4Mub{2D`>klAf2UOJid4o2NOi*+|T@m;Mu41 z;}=R%lK$nJPRBC7mR(3y7nwmd(__IxEndz4q3bB9p;)}`FZY*cWd52!7!GCITo07>m>U&c(wsZ8tfG2rNNCbuSNH=hw`re6r zO7A(hGd%Q~fG7Xc`uYcwpJMhtWpn>xU zD_L{f^P$YaE=Yt1tLd1{gZb#&MgLXbJRtR-t>^Ak$lfy3H$1g~>=)PS&QA>BmTb?d zGjCf_HK)UHQN9{4_;y%dlu#m`JeJND3X@nmDxv55hKhNkyJ`M=IS8BbyNQM`RahMQ zyUec7LzpyP*k8QBMH;51kG|8Y!)`O4g_zHiNR2WU>bNig(UP*=>@UX=ohkZW(V!S! zH}3E-UKS!*l_~jKQwGrcH{lztfSH8eEpGQWp2w2>MKAM?C0vqr=gSV2NN?+Bf7Irdj^m1oCn)!9Qj@%Gq|Mq$rdQs$TM&frfWcUJDCWiHi&o%V1d zyk!!l(UM2q%{fWFN%cR4eaoo!Q|LS~BTg)L<^5Zbp<%enOX7WE2jmW0Pl>N`;t%=C z)*P*6yoxgQ(+%Y%O-@Nu{Y$(gO!{NxxX=i?YpPNrn`W?$a&G01QV00<(bhyguEC$r z#ZHQ2Or)Thui_e+#TJqN%yRW{*q;vhq#QpChwHZf28^rurW!wp;*lV)2cKGu2o9jQ z#rc))rWKqsjLY5CIRR&T6*`Hf9+)w=uH8Q0iTmZH5yEZ@Sg7a;Wzc3OC$H-i1SCyD z^``vs2h>(1pWPfC&CN>s4t_1(qtpx$%Wt%OH*0a_5!+&$bq&O#UO!$g`GSWMPY)a9 zuEtq^A68#81RvYd$!g&hct6lDVUlTuj9Kc1Y_kpooIUbNVOzr?xVna`?9g`;1oQL2Q#~}6dITgd(zbyMr%|O9q_qB?&PAFgY+_+^=EgYLf zSmn(IA=PnDgz<1KPNmP(h2CHwA@_)7_s((nidVTd_Z6eGE%n!8Un3qz|5nTh8HUHt z^4<4M*$L}>_A`O8dT41!9(HoAhQS#lo%MMO;0fCMm@l#o9n4|eZYLi$kWH)4Nqnv=}CXXv{BY=w*Oo*BD;0%Xu;B(QCTLUhhO9y;aw z7diJfb0nyZVsw0j8n3p>EuLw&-KQII>waA0=~rXmj{3EC#|j-${ot|w@Z~Ce;dsI+ zF+Ty;X~KH+!U#S)@XdD!QX$9M8J@j**S85?_+Bu!?m+%k?q&yv%CYH8=@B8Tp53H5L1+D~v?gv3UOD+$zU~ZNkwKCgMeJ zBUX|(1TKaCPX3@pJj_-(W3@B_7mwj&VNC|YyK_dXUyh&r$>fwsz4HN#8%KwrR0oOR zm9X{Yl~BvS(lL@h1sUJFV0&7P@R&XGRlmz%Ao-`SQI?*hF$epNIJ%W8Wz?I?~UUZf(-`54)PyMd}E3i;A|08n@(eepP)L~ynl$AniNT8pq@-pLtr}FZ z{|Y-{GkO}H{$DkQf`=}={Zs&l=i%=H#U{|}B7kh>MHnBsUYgfCf#7t%+m!4MeE%-B zzhKobF7rJ}n5*c;^1hL;JR&_95SGxC{@j4xyz0B6l55D6Y=ox0Ee{bXJYlhZbq;fc zH;HC+x8c@)DZ`auCSt7{e&5=&6;95#DW@My!+b!dg{O51BXb{qeE*k%J$cW}T;%A; z53aMidTD)Vv}DOj>1l!PwoCn<@>Tex6q9THQI^DV%LS}+nZOz8c~k%S4t#1gN^A7y zBF9;u$2TQZ;<2LDI5mPZ)CNaQdF%_M%#PQhqGu z?6Jv4#BK~Kx^QbfSq{i+)yBc2mZqhJLO_!D%9Q=z0S9f}i3so51{#(t@u?pAQ z`I=nv`fNvA2 zs}g08{M#oKC?w#Iz1f`UB5u^)8LWHFOAeT5->r{kA*u1Ty}JTw;I8rwJ<>Ub?ct7< zp2=<4zW?0xRrM;gnE%(C^^Acik34E(WLbiA@UO1quyHg#w@LO3Sb#PoXTToye~3xs z2~)}vC${%$h6WS{ArL$ylz(Iy>Lv z5>5E57>Kkk&o#%XVZ56xRn!n@#)j_kkb!CjLgS-Y4eIwG=fhhscCU5_tByWV6{^9Z zEnAqn9n!HJoZVi;MZ*idL&CGihQVLlYww0-sC?>?_L8iJyneamZayp}<$$$TyCyNr81(q{y>PD47|%IQ5bGkN)>ua|D$JQQ5H{mqdD(^c@t*~(t*OvHv0P@tKZlE{p1Lh> zIuS5sV3K6j1ouRqvmJMa@c!<>dc&(7usR!u7m{=&M&xX#KPHfCT2d9fP=sMGu4_U& zTcJ5LeRNcD5}%%tFMS3qL~`qevm-nILU5a;-Y>68cpA6Y?WN8lOro9cxDpj{CcNJI zAyw%1wo^!o?!wvN!WiaF9OTI>&z^XlW=uB}ShObb63fqr{SRwA%(Q4G^F>4hN2-6$xcGb_*SCOQb|b&p?)$`Xb25EtL(j9d%N6=d(EFe z&-0w;JZHS`dp<99W+7SSlPHlm=W+Y;9yXF@e44vAyBS*srNxsxM&b9Y?)D(*M}U|> z_|60MI4B_}vZ`$mY1K{+?1C)hXOBa^WkVH;*mYYkTTH;Nx_`tpdjx5NFMHhgQxMf9 z@sMxN2&|@!ACy?Ik<)g>?3^$S+oj{#l-LJQ`TU+rNo_A?S`<&K5gPO-o)s=ebil)6 z)#KDP^VoFZ)3zpW{im`rn!f~TJ)_B(-Ol$&AaLZ1^Y5%*(6Z^)X z78lmFP{o9=jA;2=KM_(E&5?9 zh0tpKB-QCZnB2st6ii(~)=oNIU1PybW)4&onk-bp`J7x$(U1tye7b7!No5yg+ZMfS zB`5Ipg5f&WEmUxILqa~V?P-f}2dp_8LBc+as_QC9A&3Sr& zW?Ub_CHgxOOIZl5wz8fjgOf;684v%=_TZ*f1&R+xe%nrn5Zwf=+|;{ua54FxqVLd z&0A4oxdU%*-+i2-q+xIy@30*c3eE>!nOAX%0|BNRAipEAHl2j$Lo3QDcFB`tGn17FVW>T%DH%L9D6^GX{w)` zfPur4r8-Ij1~ii<80R=im)=zST2*l(Rp+PcWWz>2t6!~G9`D3tfOPATUu-0G)<-%x zpauV3SPky9A#4ucW$7`xh+vnqeFu+y#q(_aOLBMFNooGp+S^V8h>{8w@w!!wS2HIX z)&JGNZf|}`hNUWbv42UE*0Owl6aGJH-&(*H_Q6E-j3D_J?@ssqU4g=ZATQ}UF(Mey zbd7tAkGKuAJ+~-p#pyOKS)O-PplVk8RpJmfMOzuUM-M^YobzTX$p!ZWBU)Z)Gx;WE z(tn#{1a@ll-&{Mn$(o&ek`A#mknHO!`E~OWPQPDROg_{P)BFJp zMTCu(u}`9Z>O#YX`9^3z+`I3NaxE_Y&QSXLq#7=RDj(Wz_JNOIS@@bM58*9o$+Nte zkFqr$shKrxX!w||ch`9mXTMIHHu4LQ>FC&S@eB@fBD2jWt(}4gxhIZByqLkmitYzB zh9cydpm^`e zLyhf{WJe@zui04+;vDzL>R~nmxx>$_#lF#TU@F(1wycZS-6rEJ-ZVnb@ulh!IacDb zB{a+@k(HQdO~&oqHjK5s*>vr-tc2psafQk-FGmU0+a^H0*z0rn@8pSX2{tWCi;&OT{$42b_*SePyOGS&FTI)n~ zCw^ZFxXvEPM*`|LaHOB6VfFZYh+*g;N~g_r!s6SoopDIJD?Sy03fx~_$j`!RDBRy} zpdU|*8y;Cjv5=?;O3~QnMqCQ4c6hwE9cig9F2$d!aPHzali_+l!Qwt2sznf~?0mndQ9f z$h*_T!9x7yBB@4e+R#&~ADs?LLDL zjEnvK!=o4L^g5%pKX4L{G~uhEc>@>=-y*FmR|Waxl%Q8y-DnK9-l%(th99g2*O$6^ zN!jL!k(&yYIB6hoJFlo3JhFv1wj?a?V@W;CI%ulZqqpE1rJb z$3-~DM!Tw~o3Z0Ilk>t3LDKz^Gx$eF2j<7v`P(*$5n7s58~Yw!aw*l9anP6DNK6J1lFTqVAAPnLO+C*RuATPuoAKPwNgXbQjv9372b&kg zcXlHc9}0vo{@6=_m#&9%x)%!(HomvzWW+pNiZt z@%k6ZbZnB#hBa3e#ILKH`^a}7hyC8AKrvyWIjz<>x9s=A?Z3rGV`YeUknz%Ww;|+M zeMrA8OU0TyuRNlqnjv+FYi+X9Bz#kneUAKU!IJVz4yoa0m@04lr@c#*D84uxeEuUB zd49C*aQv|<&@XpBWY4dK_PJga9hYMYZ?ajo>g2g$i(kOBXc`C1s(=f&H=*1 zIG%s@$J0msIN|YfTVGNM%9R8Z);PBz$h$$0jU@{?F6U*}4NSwbOJ%Wx-i?J*t_obU zbtu>_ks|$e5LeqA{8Sm$pohLw7Pp;-fxi2lHjOFtmi@JtQ0s-OQp`DKUM(4Sf zC<{@Z==uTnC8+yXZ#kAh$IN}%6>3^6#8dF~ojISCWJ!$LmJ-v50lmG7wy)B0E9cO! z`yR4n?2wmPbI&Bcjv43eYOcoZld_giTNfdAy?oR-X95Zx-=d_q3`1)ChKv2~F7R$< zm)Gnb!wzD0q1Jx@J=5+DSA~VhkC1h;_cu^+?B>fwu}UVi_w1>Af0>3O3(0)3O`{lL zyW6v~Yz7_rLZ|B=@sY7twBa?zi%2Tkonf<*jxDRMZb*t)O`bIl|2lSb4C3=6eofzo zV3%2(Y86UBWlxRr9jQ*R235w_kM=-Kgx=UunTN=VkU*7&3S1jID3BGzMJ^7#a!Zs~ zB)jCk|9NZFiYo#!%?&HrNQ>}io$u|P*v}gt8R5-BUZnh))Z8pa%53XcDUA$7aUWx= z&+P{1R`<;8z$%1Xyr5c}QG@c#x3@F*_rUQ)j@8PY<7lUe*(QgG5-GX0d#(QolWP~k zMiR5eK$ZBp-_WlOzdZWIUd)x?`-hmLdr!|mdXakmfY2DkJp6}Zid*2cUH+Dmdn0Hm zo6qwf>%#7rZ@l(I7DD}KZUVOXENJhJB}4e24d)NI#kgnjmxv(gzuv5(-&dF2M2 zsMxNsaCQpio0i&}rrC+f)41)o%X(n^#_RTD3LU>6i1MF_Xb1oJK+@N_N&MvE_|fQ7 zfp^aF?ne72VPe`)>Zdo4)jFBSgKh~C$1+F?vi(-f~wP1XaCv{`k`gM^1gi z>(%Y(Rnu+yRNI31but&FS5WXScsMNkMnnD>jx4 zLLlnNo|zUVeqFd=&e_RHrt=~-W;qA3<*@#Su7j+kXaAvXG(BFGL36bxHk*sP@(gZJUDAShR1HtqZqHa$j1{S zsp%{$NSr}axkY|EvPExxB%TZCsjkm9`NvDX*>97bX_y8*Akla=8wD?VY`Z#lb)fu* ziTUqG(@<|e+H>$ED|u&FI--X8KNY#NjDsl6W!8q0vwk;R2?r_gZ<)?1?!<{=bA!p1 zazsJs=&ze|Lr7k_{KoPi9e3T#IdfjO;g5=Z(K~e-?&~^S8kQ5LTbBGueZ>0|0V!r4Ea zc`M!y*=z51W^EpX`}-?COCvp~7@Pa9DfSm3j}vmtxdxZ}O=jfdFMqK#9NN$>HHPez zii6bfF>HO)n#9jriGti_H{Scb5aCGGReW8E15q&tmLeA5w0YlY7JV8PN;Md_+`7Ql zap&JJ)<2j{O?YD5z)lP#Jbk&}bfdlQ0-eK!ms8(3R{aUpKOm*Vqb*3Ageb6zr@4s=a>ER`jEN; zhyNJ3TYIL4#`y#DqS1!Z}4ZB~a^iFbdf{+CT{VCxR|x^;|$u-VHR)vB!| zf&!-!|EjQ&ukn0>T`~hWFj2cUZ=?eMw(UXs#}j4`G-_Wze=tf%Zg}hOv?`y$tqnyCD%w6&m`6twqIEdork|V0Sx^UBUu;{1+3u#?9(R}7!7gmK; zaivvG!^`WRso}ROT)y;(ks>?=*2Si4-=Z0qV#zaT^x`MALDn=Sn=}aa+A1G^LWjr6 z0~RF*6v*zR&Zv6n1-Ki%-lzV*KRCK{Av9FD59O8uiyZGe!5mpyVcGfzH;2v|#OQS* z@7d$_s6Gm&nV;1vEhz{z_@8{srDZ>+D{wcOHRF4Q<_C+*%e_x4gQ~ffhISR&l^Ye4 zpqrEg^VakutBiSIVR`;PTiW{ctSOYKjmLNCvymMy6Q+hD7^u3-ab8LCH)bvEdPg<- zaXZ;VyjP2kjaiW~pN{onIw3^SGj1I*k)hvp(#pok9dE3AzE)u*k5jXeS&bW4?izk{ z9>CJtth1J-9oVbM!DtiALu=?COWKK9&^+FDdOaG#Y}`jX{_Yvnx>{*(a9e`i8w1B9 zH~+#!sr0J-XDST7sPe8n_!BXsHg_yU^I)EH#XHzz9vbbD-T0f0_N9Pt^|C_5QZMao z^2`AIoimSa3>-whgVF5f`!@;+F2=2EwwuI)+co7ao=5A=8XMlqlozPj=5*aD;~h_a*d0^*dt7BX-3BH`YCgGAP?#33ZWeCu-0 zPjb^s&OcUxjFOexv~yMvv-`8f+1n}b8+E(Kpi2_-$b;W4GG-9?BE4@mY8rf}G|N3d zjX?3BOrZspg`^!dI`Pc48^U`8UiTfNLv<>rDWaE#vpj=g=c49tcmK7*qA(ixjU9ID z`8OgV$VJdadIeeXjb;k{9D&gi-9>V#7B8c3XVUfOp}0(2-|3oKTq-v68vd^o$48|vZ&O{~hht-ry7IC< zH!EkArZ?c7Pm@A7YbDt1gKKa32@p>g!~7LOoiJgRIY=oMf%43_^!L45mqs@{8zvel1YOnSsFmF~18P-S{kb=JG;=MYa zhcu=*lT?9fgjfj-UeQg&DsG3;11t(;YtSyLGJW~q%NdL7=V`^DOMPD0-5Kz$+Vy0l zYyuG~v!-b~#xP>U_l9|J0yl2N)f9JA5vSkCv$diR^{U+SHFc}WZ?5^V^BGg<`oQ9% zLSrRP^Y<&8EvGQfUZlmHLWBBahr}B$G^DncDi*F1BD?-L#irb!MXfVq%-4MyPWOc` zz4|6Xez_XnqC|}0NUgHW&#E36`ANi`3t#SOE-hYnJ~iTsu6Jq6KoeHj44aG&>zE@rTRPIn^B1%*LFDj-J3dh6B%mTT{-BIe>=Q|rh9w9-RgVs>oIvCPwvF&qB2~XjquIO?2{IcLFE@8X-a1aS^5`5o zf)iI~Hj9!h8~K;(Kl78Dj$Ki;sS~&-vu3@QRXa=`-T3}cs|G%+#*%Ak?Bx758;@J9 zoygf;&1e0Hf_bL6ti^JUDO7zl%zNE|cSVPmCKy%QA7AIw;!D zSq0&TDKzQI0kHe4Y@PpIi~a|epR@K)U~hTC9f5v!B0nzc;I+F40g^$uHa-VshKi)z za4#}y^pd#^8R)Q^6B2W)goS^DdW^#e6v`?~-OQQLb<`UuTkgABeM|hNeJLV?>*eMQ_p6vU@#C)@Wf_pbg(TDoaHTsE`IEo+2ivKPu} zJQ;_enbGsUkE7VXdp6eHs{rNlxk}Ju3Z=m8{`(?KLg^flq~t zEwz98QI&OG@mC-VIh*T{ZWKp>4vS}eVU`GyKKG>QdEGBe9x{+M*Dpuw##+x6PipX^ z%d6+v`hJ)hZ`U^X*#-@HpO^{065MFx0^WQR8dHO4>ZRDZjbBo(EKQ&ZK5%|pJNdnE7GryOPru{kAYGaC650_t@@@O>$4n765_DYJ_kesq+Qa^5 z|&gW9m738PeQGsU{neY;m z6OrE2kMFjO)X@3?@Z~A;4Q-f1ZD-K4=OavVsIRz>q!)IkgSCyA|%p}n9#j5Ps&6{flmChj|EILI~JS@_g}zW zdUb(>-#GSh9c?RK%R!b2Q<_e)&sI{`hhdwQXjZ2M6H=TwpaOz92 z=)zVbzcV-9&*BH`4Ho*gYOt6JD*bHiMe?TFi2v1fA;@o6PV{0SlKu;M@kp;9l#6k5 z?k<(syST(|r924E2<`k&4dZauk~~}R=pTk2TuDt3YesYRxj(6;B?wvw(DPoq2<=@3 zKj_jlJp1`eVj!Ukzd7=h*i$PYQtxf-VJS@3GJJSDGMX{QCK&iH;0NOCpFC`-uE2 zQ@@;frl%~r4rldbMM7h~8+ZqDu<;zt@# zALPF`!<>Nz?gOLe?N<_r-fqjZTS9N3_hEx!782ZUZxNGQ3Wc;g8aaxEKzi%L$jW8T zvDm8cHE#-6)4Y`rxeAl(3XS1kY0LaCwdR1w(|EOW{M)xVKCB@% ztD19Wu}{Ext#idFQoD3RY$!9ZG5j(gtl11#%j@&kO?q&4_>*ep*b)@-j@TMb(qO2d zXDr_Q8M~r&1i?bXHX#9<7uOVs$=<=zFV1ri7jh%JRu^GW{C)HrWh#QlVv(}F32UF6 za$yRT;@s^R{@J`11fArL8C`y-&D(Y+tbRHG{&zLQIoBw#^K-UM{?QEaBvzsM016Cg zI~GJUW>Vj3m)8raWkhy@UU_vdPe&^ro?Pjmp7;l97Y{Z2&n{x^rn*Br4W~i7c)sLw z-xOTg{8!&^WFdE>Q%hWr|AmzFCu54x43yNm1;1>_fUnigI&1e*h;*ISZV;VB<+jLC z2jz5Z`|n3HPZS@?qn>b)Pa4Md%C&zRB*(!^nc`quHIC*wru~d6FHvu`k(SG)!m;=E z+03C8ghx=(fPG{fo^?#$O*&MFuex^7VtxVAUv6I2-oi!t=L%~SGUbS)R<{V}Bp+$3 z-JGo>IfB!d#bUE&W-#fvQ{FI|g9!8ey}sLcdN~&dhBIv&5TdIpK4VBl>syY+X6JcG zocHQX>}SIJE1t!~51~d~;;*LHATH&JGPkp_kazlH1>3}TsR2jX#=lEawj-e>OOM(C`{^`gt8hv zX5jFQ_xgKDR&wuMVf@^VVVu@55cB^%ha)Gy%Ldm_@qYjS0RR6Cmxnvn?;pi^$jYWd zB_biCApuP-6b+z$|^9vA_3pTNl z?!(G`vkd9%W^k6q?vVYkj8F>+)dad$xK#X4!s2Qlylfo#jZy|d9>mLmhW%VFH!(-6V*32b6ajhHBF2Y=`{?d{Vm5Q~qHer8$&L8Ja5 zzwU8Vz43T@bW_%P6=r*;?A+Q&I znDf`p!}YQ=2b&d|5PB$KN;;tcH;o>JmRiw~%dVd_>P9Bbkmo5maeNOQ zITE+gW!ZWW;tp!g?EZDKGiL`uE5^#eWzZyz@NY z_!HP#7~|t4BuR#}4#UFi6zC5hi2N$ogRcK(mA`Kr#15C@`k2Z|ENA*2P%@o>@L`p@ zZl(z=+<5=yWacEy8!MChzfK_W^MCa2bsI>PQ%sf0ojEAk_!jbfppeT~=i<1w%wj^< z<-RN%9dS;pMtkTy{Jxk-7z=Tb-6H#vjH1VIQY^8$I z5oYL<(gpuE_m8UeeW+~wQ_DQm49dIv`{KhZ@YLkS>ae*G&q#yaEUJAR{$5e#CQ)ZM`a4Wh zi1emTzNjl~MDrPq^~;S~>|*XpoC+^O2;1YGPhK@6n6t?6688Eb+;x0s7^qJZ$!`k*`y$?DC6s81(iCVG@}{lE?W! z{2vFw{61iDPg@hZBFsW#+_d#} z=U=6iu>N6g1$M&ZnM%fjARp|=i(MnsC@jF5knbn z(bL55E6zgev))}E$=|T$3dC9`P7f+7t{=gAN*2eBi9BLE@~E! zfV28=1bxv6)NG<$?Hp<7n?G*hFwQ~(B6~che@w%EAgPBZiiy}SC!7}h(TN<(95LCV zd8p7bww|e_BX4xV_;nZA$uhe@pv>qF!t;zWyiSXUWQZ4A`n~Rg3%_rk$k!P-{5g@S z$HG7|>36(lv737E>8oW;_{4!w2n1`vdc+vkfe#FiyiJNXf3Ye*h|#UFT*N<;aACcCkf3FVN<3 z!RbILY#EcD?MbF5@=RO?1v`3RlW)F!#FLL0gx^S%@}c4D7oT~X!xZ9VwIxjSSvT(8 zlf9+#aRrp@&0XTOer$Gdms~KIM0NVhUll7|NLk_vaM(s6e5V!_RBh>r(Dc)I)0})X zEmq%Lx;&2nuXzz+l{#!JXE#tKjkt2grt0!qZX128pm=(9;4675*;dtt$tdF=K|+(D zJc{M^r}2}L$Qbjuk|CUl3|tl09fhE6I9q7qILsgC_s-Q#p=SQ`_Yt=#+`W6E*T`xV zPw;d~CBFk67V;Yyy9aSZXFBLd%|DncT{AGL$wBnlq^(CrC%|c9C}eT86~P}DWRJwJ zz)HpO&SG~X)|K!#t6NQA!_nU@X_h^ZKXM|rBRn4_B0SyV8Uy$>iRt+ER{SqRtx{;X z2O0dSGOpv32tE=|$k#k%Y2EW2|ImOSS&8#kD+_SjB6GvL4my&0dc!$U?`fQ_|136| zm503sYNsxgRHEeTs|}%o+sL6=+ESxUExfLOGnr6GS?dcC2FI9kRNc}46!&BdXY?~G-@vQAm9v;HZ zJ)`TqoZPy~ zN*+F4Z}_!f4%KzL`@-p#5K<+=>@Bqn2KB+6S_$05Zz5{?y;&dTmxpty+m|q7vamzK zg@Xh*e$lD197poDOw+*g9q^L8P+5F(5O+4^c6hC%Fz+K zp{QBmUF*sAkw}4|3sbmS`Zti%nhL(_nj1ZB+Yx*w%$TcwO~2VZ6Tf?#i0-AMn_B1U z(C9J0%o{j`JwtLX6}c1G;n)CY#Et4nZfPTiQU zGk_EUG2UCpX2Hwyk?(SRJ8T`trEE8hfOTQjD@TEj+}?UTi8|H`RhQYetF;TLKFG;= z`S={X#3}T{ixk5A{POAD4jm9y&))B#H;h;Mqbt@Cbi^}0oc{inPFSg(3#pLE#YmFH zC+@{rF#2?>GHeznC-7?5x(GHx+?Y;P|E~Z=D(hws+R+evn(va`8t=S(6Yn8;rWjuz zTHZ0b-wx|DbDe)y)_nGXsxLJ&4M`o}1oopH*lj&)5vI}xw{^a;(oefF8XhHGc9@?0 zny^x*9U6r3>iW^FiB4$oTQI1u^@n`2@V(SPDk4fYFzc~!lPlY}^eN)PsEUB9aeS@SWcCAnUT zuM@KNt-_!F^g#H~ZUGm@M&vxa>&#|ci`Tc<2QoA%0gFXYrLvZsjDC!#P1fEYJ#G5%y zE=7XKJ=kr|pwkOF>%0@XGR08X+-fv6F^^|wj@(+gJ`BIWXT{Rt45X)_bRkM?5l1YJ zx1TX!A)w3r_gTIJm-w1Z{$|pVGP9|)pT{R)x9wr!O@>Jbozvp7>&% zrpD_2@+uClyj!1_kO$8y--KJK6r!e`-SgS40Wp7cA6B1g$3x~151!nmBio;TSyqo{M_i9YI^l`9@1c8k*S3c#fCM zz#vBae&O2vTX*~oyLez0`-{&xn;Eo1y>+vtQ)4Hd$uc*}ve%=RwY+z8KsI)o8tM*P zQNbi}>6o+q+D>?S-?MWoJvqmw#8AJp9;cd@U)1GM(JsGlZmZn@miSEFvxkZi+pMCP zFy9Azw0qCF^kSkTQ0C8@9!%{Tr&}L8j*Br0ey5jmprAibRe`!JGW?cZ&I#V_I09LYN>Gfb;J{{4Q+OBByfrc*CnFGGg6!Mfq=SFuTH*ty0&UpY! zK(xO*(u=qy8TrTKt8f!he|z4CpN#FDHIZ5KX~9+QS9KX}usl8dQBtTIu^EoZ?P0A* zoOp4O#q}>v`LFlZ_aB7Ww}0CY@U_DGqCvXb!69tba4d@L5FjO!4Y%jrhq1JQzWdrY z7ILI0TyZhD91YVEPL<`;c=O&yN6Lqpc+kx6o_fkiekXn^;4~8$@)ZLK$JvvLt?VU*-=x?UXRF*)nQFoBg1m5ySTo!A&1 z+&8za8GB#Vob=r(K$PaaOQPy(aV=)P^2_;o*gvUCN=%$Wpof;xk+?3rdClG-a+r#M zV7j1N>HYXFbi<|5dIsz?sp5UflW3=;s42`(<72aq_Q2Yoi@tk-jXZAuJ9kl_2MIjR=arug;j`22E0?H@ zWaFP?*M%#6AiR4Sw+NO)F{PC$Y3)1O9;L=P%k8A#jcVV2Pgu!&>)2QSX_P>>NhWlq zeFjcqv5VfHD!{|?Z%Js=8h`G&Gn8IE+|H!Rwi8I*RL_ z)==lpM}L6Vxry&Zcwwwp70BKX{zik4Ba=NyvHbE*IH3jE7U4Eq|J2}Qiw#XVghCXR zZ8(<`pZA=DLhr~O^q(@k>UIX?WYgsD`Y`>xhum|eYLr^}d)KwYmD8~I#N znpD&tycohaErb8Aku*HpJa^RSHHEC77`XFGW(cRpcW$wi7=eetgp6X$0#0N)iw&*q zCVpGTlu?cae1H7WKdytDNX3LptJRmFy}wj0x{U_f>wbgScotH6HFnoyRvuz0!=Ny8 zRE&Hv3#q&s!%dbi+TKL&0BY&q7q;J?ML`7P!WMQ$B6E|{b(C%hw{3FYe2b_?dK@c@ zzib=MKkF@K8>L}yp?T8SH#)NHx#yaa`YP%eSFBs-N5CN-;~K@sNi6JJqdvLNaPY9E z5NrA{b|%$$*j}AM)n*k}3w2S#QDeGlw`T<19vj64Ec4NmpJ}hX_TC0b){7EDBXIY3 zVb6KF3Z0$Dr5iaHAl!P+e0+t8Fw%{i44-QU&!>lf9nLWjzAR^H`k)C2ynJ*k#Ci%W zGG{4&wlrWj?`+WKP2A*6iurZEL#uG#{b=~Z!8ACh81@cKE#ZH)q1%PaDq$s{Ftg=w zCth(CunMKFAYjn_gj8T7=yJ|-O~0&zpH#c(WC;x+0omdQ?=zDhQw~=ydQ76|MGH^q z&>#-o4=PV-TEcVQv!=%{E`nFz+3=0>6ckwkMaT82n0w&4y5mR-B5poOYvQTFc*=#e zYo3h|cUM!@So{Me4d=QimQ%R2D@VINv=)sy5~cEc8HkGBURm)qUgA$1Jk(n~g;Iz0 z(c0BLcyMZSxBOTE&R*u-@3zK;mxFgIZfWR;)fq0K!l(i4Q`_vLu;%yB$d22YcXMGL zo8?k2SAzT>!B&bcMMy97+mV$qzt(T=#>`h|@sHNL$7W{^G&>}FuH3DMAJeCoJ8gxC zZm|}8CCU-_!uOP%-EU}!<~HkfRf6*7pujq@QKa}8b|kxXK|>O^sBxosC&s1hE7iZo z@BGYf>$;#76weZ2P>c*|3yoio`N{E)RHuY<{A9I)P4JsQ{aP;wvd!&^MGmF%$A-jB zq^vk%N9J0*TRqlxY(|Nk z#>+$s5wI-RAg8#G?@gN8_VL(`oED8-F5Kr4>7d zU&>Fd@%7;wa-6yDt?;kvR8HPpf5E>-$R5Y7#DYFY6K0ZArF%uyp%SX2NfR9GG_>scN0rlIBt1=kV;)FQ$j|Zm&3Rf< zHOG6Dr1tRr$(z`Q_*j`&xVe4$(vknmRrkL6TSY2 zV_mR)S99d@RvMg?qnD;eMiHuRqO9?33U50;INPrE#eM7q)+tcqeFPp9VzV&T>F^ZL*eMgc}+_LhunEE z9zROWxz`W0sY2+>I*rev4_#J{V>dc+G1y zB3^;cHHe1>I_g9AB>{f&h(26I=-qbmE54V<%k?J&x%YmSQ))zM#`H*7;xr~I*}erD zk70M2yF~XZda_A0s?R+qADjVWp*-LJLb&V4(NNuCjPtNCJb2%UAx-5m2c;IQ-@~%= z`1e}u6>a2DR9Z)ZDq8gP8Aq%aGY>B=lBOSGNx1R-YM* zT15`blwABHlJejaDxvJD(}$wO2x;S=S)hb>SpKP8#DRJ%#mJQrXoh>;4BfJp6SLiY z?iVTKQegHaHvJ_83bemvFJ8ohB;(;zTztg2^nuiWCV5cLVyfXfx&)>&r|Vqr>50aU ze>Ywzv67jpmLFeOMF?Z-`NiCa{A+!>&tiC}8-q9VB2Gsv!b5MNA@~ae`Bn2(b4Oe+ z7|(U^Bq!E^de?lpXR!f=B7Ys4;aJ7gElWhsun3 zNdN0?_UHai;mU7UXMfKDuok@Zy3am`hXp^|N{WSvY>d4ar$8U_6%P6~x#i&KwYnUI zh%qEP6=+>?nE<1#(C@NuGuU!XNpv!70YX(y-tp?3B&>Txhv`HMQVr9-?hd066MaE8 z7k4VozWQ(`$(4p5-X=S|l>UK7Jo}}!95->7TDTx^Xl)k?w703(Bx0S0>)251GOir^ zFujwh6iySzc-rl{@lCNSI`Zf|c3wZ7ZCq9hL*4^wrN;lD@XY4g1GQOf{M6go@sdI; z6n=4L7Ei-9Lu_v(OE2CD^{<=|T*5o`4&S5#8m_vT9-I!D!F2ojG;P%xJgOy1Q<;re z*R2@8b*vnVo)gg_K5b|cU+3nZ^#_zQS|75W(!e>jb023&{Tg>GY11E~C(;L#ygHQH zux-4r?y>AVp2|GZ<g(Cj)M=HRDL&+C&9iqN6XTAH}VFUN}R-#QR612lqjTyX&usU(J(uv}~idMlF9 z*Mb2@X8rQl0_55k_ULtH`LOCX$a!e=6Vc{%^=-;E5FcyP(pBz9o}2IInv8a^!nnaS zupa@J*YzqTw&I$?xpe01Jy7q4`WGq3x7NYgK_K+Nw*mZGJgaH1yaH91 zVjs;TQ^?r==4#vRQQVrVKh&i-j?$0xrsq8Q34LS5=&;)|q;&4Ex;Zlwi!TDw@g{U+ zv#Vt@?^+HfbG!}c6=EabiMJvLt>@yE}bD)!deqjpxjU|L+Ygx$yXP4m5nE(#+fSRxq$%HYM2Py=7I){0I-E88^j}N_ z9iiK(YW4cf0{Y|+nC1m`BjLD*8%xy+dh4XeBlc0@dX?jnu-z~ovp0!Zomu-Y^`|&J zqvt^1mmX^Ps0~{*w{>Ng3_v5rU{B?tMR*E#({pkRA({TYxS-D@o(T9@FqKbYE{i`@ zhk>75S^5!J;z7mz>24XS(F6{--?NR$W*}zcg=gGKyV3U`H6p~k1rA?Lb^Q;_gIVC# zYEOy?NgYnU|2dnTl&7TkeaR`swAI76R%3L8@p*qaF|Niw*Zme>-WH*D_`s8nxh6Q8 z$yCuh^g%5|-`xDs99%ClFsF$Rz`oXnTa&*BKNp_}M9uYLbCbZ`v{VM-q-P~qBGV4v z=wJ>9^dXe>!*1_w4Oq~+TsgtHit@Lqlap^Yl8Me8{XG(5#42ZFpLWJ?7=#9~bFbxo zzLB%oT;e3mRpcM<=cXbhD@OY}{{k3`k`HU%EkMGF>%J4t71+Odh2H4Z1SERjcHCfX z!?C%D*mHi(uwEZ_#MQ6{m5Jjnyz)#$$K>F(8B02{vCnbaY58HOIJD=Sd@+qM>eT#x z$7)=<8(A0D*n_x*8uu}UB9tr5>**iJ!*=J%&Q_MSU2DPlikz(`2s<57X&c_gssDP7N-ho?g0f1kv7iEUxv9_t_3$bM~e zbNuxj_JpwOt_xd&ct^*UkE$G`LG0adu=EzP=)5USs8Ns{U_VxP%()j&sE!(nua>do zlieBB$v}KvZ~WP^XRWV)`fWeD+>F&jdu{snHKFj4y^ZFMacq-WXYt--3HmO|-TiMF z$h3Nv{!;oN=2>*MD>QHrjYmaC0(XtVHv03c7_lC7{u!|Jw_icCMu5*THGV=y-4^lhCI_?dijvohl`t3OtWXl z9cY86jI%(%(RIYC)}XslDSGk8(`Zbr|%8i#Be6pDm}i1qVN`_B5TBed7w z9+aPp!QkAjGoGr;5ZBt>tecVtE88!fCoG3xtZaKWC4UOl%gOh6#p|GX;ccm%b`uUs z3k|#8rQyk`l?R0v7SUhfZ=JQ9jtD-9=kDU@0xwtWybaqjI!ZSQ$X!_gVW-L637$po z!5A0GoOx7xRPMe&ZN-s|(F0E5#aKR3Ty7ZCj2P{b>#X!Sh&tTs^G{$N{|5j7|Njh^ zcQ_VY9ER=e6_S-oDncnEjpx|DjIv57WR;*&GA#TI+MpzbjY)x%YaXcGp!WMt|><1qy@H(NS>z}m>yN_?m91c!ldiy>ey800?MWmnA zSMEbXScU6e*^R_sUXS%t%MRK%pyJDQ`{>qb2qf$dINQ!b1|78NZ(du3zWuk$S2OdUrH`xY=mkWP~{sdZI+12rWox>r~uT?Z(8Ax`3>XY4<6v<%KtWMrB z3Ir|NO3hg+;jw*3WR>S{m>kS;f&wr3;4*yt)v@H+b*Sqa1v6WwG=brZfq$<8D@jHJtYU5+ z6}TzvR%j!*0*_^>U1G(RpbJpdD!!4AQ>$qMlIJ=R(h-qb%SAzDK4Em=m<97&)1mO| zLok#5KKgwd70weGckETE5D)Za8f>8>$LiyJSjSsol(9dEiK`F3!}kKbZR>F}_glVbl*HUZS6D)#Vz8||B-n}`Rx1{|FRb5M^x=Ky1MYzdP<8@{TpV} zVh%Q?xmZ+ioLRmyfCH-=Bb2|DVfQ=igm^GG1nCwDb8!;_xV5Orl``r2}#2e*9TP{07d!lYO*gQAPe(f^jF3Z8xT> zNC-%1zumN0Y^-0#rLWFllS|p~LE* z4{zu=B6ExMEZ;Tf7DD>;Bt+DlW-%`wX(g8qAMc)n*i^=$TXuQ) zDDm;#D*XtO*q?6HE*^)0)6w*U*$v3ub4$!Ah=Mttoa>J5^Y~jXl($dq?n2vSp|$$`T*Q3dT6F&h4N2a=cO{mq0le=087vtL8q%R(9c(WT#gf9G(V*Nd2SgS+SFf9YnGyWFjd9NW)Res zxs7*BJr6AV% z$Yg1LE!3K?4Se0wh^(K<&FuAgpsk&tHB9FxvX48o6pwEps#)*TPsnt@aIEu{wnY|J zZ@2d|USTF4f7KsXrVZom>anrv%?yODS;97XngYL_74mMJO?dfpW{YYGE#YyG;jwHR zhr4*30&n#g2JZc`*AeXoRoB3I{)Z5W9eTr0(VB&?`F=O)W?FJFq9TAHlb$Sa@5-7R zqGGxK16AM_4KX8TEvM;OiER6ip^U5bh~N(4ojE)W#%;0Gnk6QZ9~!Xkw(Km@uN;X~ zCQaDs5>VC3K7obb&r}=tcH>Owu!^&LGnPzb-&vnsK%+)pPci=_!jiA&QkJ_Qk@%dJ zZ8JOZ;$obxw_1U&pOKQz+!E+zxANyE? zbfiRFS-SK57!re44)SbdCQ(fL-WjJc5>(`%K02T>CH%LFdf7GvV4yMBu!@fA6w}ke8vOlUCA=D8ACy(lzr4{G)QT(Mgmj z(+)p5yU0df&7ZQ;n5%)c&e)}g8Vh)$`jPHYY6;q-ZZ4~M=sq>CfCwAEseW+Sn z7qwesKtpaGIp6b(g02psY^Xo}Q1#mTf04I<|2VGK-(R++Fc9y|WUW~47Nk7bP%Sk! ziZB){4(*RMc>gIyi$;}!#1w4!7M3YQ{N>^wID8T(wgTZiEbo89p8rwrw-eQf|F1+S zR&*F6UsZ-`eynlc%@wbKl`&Arg)}Wv4t9;3{2T7n!(Kl$n7d;EvjZ5DjBG|@r2e)l z))sjCuau`n*TGD(u%=@RE79tBLYG%ZLk3@F2Zz5NMDQ-2m6y`GXtn)Y*+M*|AV{zlaAY4MzHI~-$x$ly%0OO z+O410g`Lu)phjZ9*7Vc@-m6PC$jR`M-M0eo{;W^Ok(szKF}_(S z`yUIxEh>x%TS_!FjW5mzCJA`W)PKi^Vs{-uAWqV`c zfJ`@})H@lSP{)q1CIj8LE8pfBLpz06W}YK+zk4vvqpEVedm86&ePR$0<0gZgIkul<{vz!= zozS2>6Zw4A#Z+B-8O@TThhhY$;E^I2S@FIW$C4e={$z-doI8IiyO|kD(z@=aPaR&u zW89lIU}PHNiWeB3ujV3xS%qfVXad2HG#_QY8AoAqb*FA%Jrw`_=ikiJhp?TU+c~vp zNK9GI1n0FW@S5)0(s6-}wB;`6`>9aCFg8%6HB3v2BHnJwzO;;!Cc+X~Po|Onz>aO# zsTq_=y^GgK>_!)zg0SA99PGZdhkE&CCq7;;>isa1hlgW3tc@?xkk*v+K)1^+D08V> z|3QPE+@JS1zH*g{+!Uqcll)7V{%5+gue%e)i#dYwm9-EmQd-?;*@>eki#T%TMiIMF zNh{!E3k<`=_5`{NLD%Sqq;EZ{ta33R{|GmlRIEBd5$XbuL{-mkGrg@nvt#*+%E4`fPfz|r;p2U6O)|F>_q&%F}NChSLHu3geId=E&fgl+7xE^rH3{Voj-eNr~xy0^w9jm zwe}Sp3vQ=;FkmDGvillxPxd2Q*6000Z#t6c{KS4`n3+_S-7~fDYe4C{oeE|ulaRmr z@f2q`4H?g?WIED12S@ut+DXM~@a+7ozM?h-u``zzbpLcCRgH7qsde3;EAZLhQcNvqfCz{VvILSdmz+7QddXq+oxlQD$dX1wy6xUOsgHgHTDqR+%Uf z@~4?ygi^c$>6cG}4hw#V_nRoq7P($Tr0n435+8?t#?Ei4W>ipi=U!&~x0`f|B+>av zx8aVvO#gKX7rE!C+bx^JM2@tZ(+IE4z2nz~i)UGwNtYA-sfQixM1Dq%B6GWIErwze&ok(`An^#_B%%JI z0D{XTPuidgw={Tu$iB`*LpK+zbJ=2 zJrNJR+v1yBk8`KRPrOANWHfpiJ-;=gWT9!EOtBE|8{6W!PA)*iE6H-_Gb&uzOjq92 z&%^gXTih+z7TgbTnodt@1oN`N2bcbOw7IOhh3_hah1HgSd4dC2DOT3BwycHg+^@zI z^&TWj{;*-X-Hjz1Oy2Bx-3&g**UjN+D{$T( zmB?ejOV-WiZ9izrw+c$5R<#c5ra?dr33=5b@ zot!}a^SUuO)?GQ)HCX_G5*J6o%@m|9J6|;mn1bxtSoM1{tx&BsXWXVf2}P1{PiB&X zlqLF195m>Jv+=w`Wgr8oy_oZiszytadk-emSc1 z7|DFad)w{Fkw|Njja;9<#(PUnvoEjYqOaty8=vPq?0ueZ`QQ& zm+Qxe^?Q>}2{4dnGaSuy8l$lLRDSctC2qn#wcU;Td@~A8ow(`uo1Q$Lt#90`z6ePL zCt9n;Y5do4>(q{v5u|9E_zxZLM}Wzmvft-_B5$Cm*7(T~*lkyJda8?H@m4C`f{~V3 zTm1J}?L!w1%cKQ5D>4yDVFhNrCzF^;`^Z%Kn1EpI^2Swb?W>I zo5mq`UeJE9f`(Y$JMBLCs0r+Cho%p$pTeW!;LqPpnFw3>!2V3h90=WxczF6;Ek4V- zq|XbsLY8C5dNbQFe7Lr1ByMejZML&{`3MC;;&q<8eJem`d!s+%ULzEF>6KFXir40$ z##a^=b|O^Ta_bx`A5ma@e`}X(FDR6d^0|v;a0*mE6Z3EtTJ9B5$Ljkal&7>y_P=#x za{3Yu5SY)@9M;-KW0v`t+7sH|Wi z^m)CwSgvhFA49XoVa4B=R_2j>#Phs%Mmv7p*z=B0YK^NhxP(%sXox^du=tGAKV;s$|^&q7L*t(i!YSW2x}uh~^}Q8x*$HJWwG16_>ug_il&$W5d{1o=VX4 zH^lUIRDdyc(w@pIPMoR5lcSCc5R3S@lGOJNm#z6{ANF^mC$5FhevKD-DHl6`U!4R) zY}WpFJ~Bi$XM;NRbT?uS*}fII$U*EJe6E|;u#e09{~c0{d^v zF$h=SVEvnD*5Ew!eYb7?z}5|p#uOKtH-@*1Yx(%T`@hB>^r==Hy#BZj zrEjwSygS^6j+*3}*fM&e{JhR`ziJIq`tRKD{oMuDerC&>t*y9oBj(D1Uu;BJS>f+y z)&=~qnn@V1qe4A^VdGbi8N8%M4Og(VYuk_?WWyhJy$M~}Nnzzt6sUPeTYnX6!wr!#z6b$cBD4Qw#!eY3M9wUW zjxn$C`JlAd-%3_8Wp4fQ^7HR7P!`r~J2Hrf{A6qWhygV5^nYmL;wMXkx$6!O(UHKZ z%g=R3c?m<^(J(EU0i5N_byr^FjJf;e^gCEtiDIHLgS1%_dYl4X7^k{maC)y!!r@NH zf82b@tFjTwU-j6RhS&Z9?TXYND;82PmDJ5%)DC}{*{7d9xX2BrFPjI#yRo;9`N$^0 zH7|Yi!Z%Wtj&RSZYFp^hk*A`Dn&;QNmGi7yebz)FY7~QnHyi%NnVRwi!+Ya!bC4b$ z{8gbg3)J_ z9dAF>AY)^GU&e|s(Gz)M*Qv`$ICI~uvvPWZ?Cjno%eDWS7hERK7nzUfckHf|u0;gW ziVdV%-E${xYH+dNwB3965Pntn2J3Xwkw~)#v>pL{Fp=+gU%QW=IHb{3zxY)T zXYOa$hELHG^FUvlxzHtqpMIEqAaDXLr$gqVSO;N|zh&pqlWShgn14~%ITH$hV|I(Y zABC3Qvod{?3OtzC)KNb|L*!S@P8Lb^for6mjnYU%sQ%rC6Jqnwb9QdOkwQmyT#dV> z*H({$SU29&B3)?w$hxAY+l&0n7c)o}al+lJj&x~eUkSD+CpwqrVhh6D{p zR?QClg!}sCV3)^Dcww@wxyhvyKR0pYZ51Adr{XILpJY2Y8I_MrFZAQytgppb%Wrt} z9KO&h+5p2C<2XOJGQ6vJP?`0Xi->wWZ2q;hp7=RA*tM>4kIvLfW!uoi&t^XlT4wc9Luv8jHFhkjCN5d(k(fJ&pvt=O-`;SNOi=%*h+PuxI zmX_G;vN-mIg_9hjBPwz0>tL*yEq6A03dPLRMwdC}kQ2joBuQ-&KjsS?@6%SHHg^kM z5BC!02W*DK!uwzw9lT*%&iI;-2x~OyEh1`x%<|jLBfius$O6qcI`+mS=_EU`w@Ys? zsHY)PPriM>%Q*)_Px@P*SZcvnnsSGhIso3Un}pslb)iB_GOsCW7@R-P`_)zANH!7O1~wLTlVzN8v%RaUp9|CUOy+a6Yuq2q z=`vz83%wM{5{6w<;HmqY6nEIxSDswzKs%zY{ zbZ=K~3Jb}XvGS$P@)E_vyDm^SbRpVn>frDDG~}*iipau^CD<|kHhQqqjHey)_u5(~ z;9|5_-fHhSB%9+qdyU3nH&oB3WIK%I)!j9_i+W(5-gLa>*;eAN(h;}xXAZ6w6)}6H zmmqc`&4}kFJz1O~e8xWGm^S!PeC%dF?#umG*weTS!<#|ea#8C^Kv5{$n=A8J5_B1z zQLD$GANSoC^Yr9P>dP=I+cH$f=NS(179q%Eo8|$hE@+qS_3UIX#N>jf*3^a>IDO~6 zLumWpYCiSKaBv#>b9=tMiyDJhFiW9T!Z@6=lCIw~tpewz&)?)_CK2S|?CR^$jN_7C zeKLfOi2NLHEN|i_4bj^Y_ZIUI{ySdtw3;Qj+_mG%JM%K69@mYW5Ss#bDBFQYFP5?J zsyZgHZ7mlesi%B(TQIdF_q`i41&qV^`J#HFf2cnpe1G5&1(?XRZznY7DB}a-9(I<+z!6uN944=NAHE zc!;YfvIT0OUEt_vf1O>{(Sx{4BHLz6}ETbWySYA#}_>)MPp2!>Kla!Pgw=C4>G86V%GbGtHb+|_Da%KP%ZSAlO-K(2tOP1zMH)45Z2Rp`B0M zG7bfqbsnS85{=ijYG?m6!dG@IgYj({6*&mAWtMT>zeYb$aGsuWt-pKflp3u2h9Ix3#MGOC4 z5!+v4q&P#*&W~lyKW?7O{-Z-fnnJEqPCuH*Nv9H}BV`jPvM$x)2<|~n%fuoj>;2l(sTCMK%ed~*^B&loIUB8CHv&a3i#f5SC5Zpr!kaVG4UyRa)sQt# z=5yx1ZzeYlzosgElda#;+1RNiy-I=4H@j%A<}O6`%=_($AHcORb&IR96x799ab24k z!v6pO0RR6Cmxm)1ZWzbU-Pvc)QdW|X3Jr z@9e$K-rU)lzxxy3=Y77<_w(8AY&VMcZh;`tU$R@M7oK!VE`1$of@s@l_rd`Nl;due zyXMS_LbXILr70~#guB<}y}@?iyt_PonhT5Ea$P;*%O*j!WY$2(9*17(6~6o?N`>6c zzYkfn`wg?_dsrL$u_$*Xh4A9+B4`eTRh86E1J4xo$Ne*1AaY170eAQq(oImyaY>s8 z`j8-uocTO(pQUS3PGCeBDScjVw-LDE^1(`8n-*d2ml97|a3G$w7;E$EZD8!G8PoNJ z1Yr?OJ_jzXLCCpr$E_4HFnf+|vmdB~^?rX5X+}o$lvq_`JU0dmQ&vT5BAcLPdjpC5 z#iDf$%zLd<>riVqE|Rd<4Nko!r$5cJqMUcEnOZy;l$oIsv+qs@1`UE|eNijiC|0{$ zl|KQ>H+N2{dJO}eE@^dRb{6VIB9|I&N}|va*U^U|Ls0#;>P*IP3nVq1b2y~h0%;xY zN%OaaQFO2eF7+@5Rm-0kB8nA(;N!rH&3DHk`-pSB(flUtq)(nI;NJj~ZjqziOH#KvN_dsG3Z8K_1`gZdUTD6`jNz;o1({ef!l7v71nKMjX?;J`Go&{Mx_ju>=jmr7w7I z%>#k`Z~a}LamYPAZ>FXrjE3Lp{-f*P0OM}2FHHn2VtQsC5y89zde`&c->+N-HNqxe z{?0T=rycb!dQXME5uWnwa&x1`CS||8d#fN_wr18N-44r1?=Bm@r$I)m>dH1rEnqaE zbTgo@2AH&8aj|KPK;oCZroHN7V5rdR6|mj_%_9}s%0uID^8Dw;+1opCXLs<1_VNG?9{IDylhxX6w{&JsJfafzE z?F;uA*kYEbm@8<7GkN_va@R*8xZci0be0IS;fJ}qo!AiTzfYNN2S#E1M?|sj#u)rP z+?ATZOM^a?Ki#(DtpNWkT2m#QL-2MqUU^e)6lNurW4|bIA@j#YLlPtZU{?K|cI0

W+Lv%Owml?(#mg^>!2fI}yJjV7&*fB8a=uLs%}G(cOUkE zq>hf$)rCgz=Lbm2t=qmP}gIKa4POo$WL^U2y0}0x+{+ z&`QbK#c=s8NZFYGTJm`vu&aG4=`5q5=tLyeza@i7WU6$><5CdrVPbStUxvxFg#RAt z_CQ2dCApD}8p(cfEfaTN0cJx+%*UWj;4YdduA$`2KPO>-z#ofb{@Th1aSwp3kjCH* zm;(MpW#>dGGK>$?(A&QnhWNR3_nzGj`0Oz1=*&C=4nkeSY+tLvEH6Mj-K-hjUaHe3 zOV7aLxQ-9pf5_m=`Ju>un+EA)2}~gkbI{vccDz7*7rI6>nX>$6pi09)2)FwORt0_E zH({qC=d<^p_qXQ2PGGg76+a8?$1jSs>5TzZ9LX$*iv-<5vXMl|9(XzO8pA*u1WbGc ztHirz*i=fo!RbJc{>z@8KRd&Ou5{k>adsiWa&Fjxl4E_~^Y85B`#sRw6#BAeL%C2ISlD=z&01Km_*`a2}np`>;iX1x57`qIWOs zy;*p0WI-HR-ZJ*lv04D7KNiQHYf;|&=Yv?MD*;V?=?i3Z(HLz7aXOLpl0W17rm!5I6qsrH<_IJAXAZ@%~ z>>BMV96ZkPwa2pu+S{yI-4y9G_b?*#7`9ag7mq@>qng52xiG?iBlfVEcYtZv z+Lud0?Qlu6Df#-J7I-kAzm30j1SMGovW`EbK^^;oygJP_5OL(Tc!Jt2gxI?Nom8hn zm!fF8hwkiw%#Dx^hPONCy4FK)n1a-gvV zEfeY$n4Nq1lLJ|2zBb!KQ;@4Dx_8Qm3VHhUS4u>ZKu=5X<>E>=p!K_!g3+5G_j2Xu zkHAG(kik1zj8SrH`fYnna{+X`FRt_)o`&B2s}3d2LWquimFHGG8KO>4ingD^AfKR> z?+&ILaMbPlhU>ot(8XUJRBxF8S}9(<9)%m?=?^c_S+b+4nkPEK#>>Ez^+52#{Xx*? z*U)@MxpO9_`Ci7kEpVcuKv=!834})$vFG=@AwEEVJ0qn8Qf-AMw@21Mny070YHl1( zH9x%Z@%APyeSp z29?&73Fh$)Zu}5%dSEpW?FXA6)otqr= zGVOy&nc{kQJPwJ3@RutlLtx1rME=M{g|c2pT|RTH6XcIaYWKcafqNH!q-|$R!CzTJ z(>@D4vMmq3_(p@mEsMnMI?pK(WEncpY`hBG_m75#7>|LuOlE_bQ42i!4W7x;;}8_* z7c1fW7czpq_arbFgj8Lt3MQt3TlGo?uR;rqTrgzTx9tUXIfJCtwGpV4xKD8Z%7zX& z>S}(^9)Y;7ZpyF9QvV2M9*3^p5+%a!RaV1_M-|X5 zQ8erRcMD2$iEVOhJrKY@*R{>i0s+3;E5*9|5WerTM3YB{9DWpB9rGLjZq|nknBM|u z%XBMjzJ~~w`Fm2OG&`VA`*m+Ye--3kUg0=ny#~0L?=7Ok!?02FDWf298NRty@?iHW z0k52{xW~E$iIFZG9fd@oJ-^o3{0WN=9dVsKeq;kW=S@~a)ya^NyAbjE2tA?+qno?K zw+-LEhz4`V^ns_7@qLWL6h!OuC@V;=g0YTK%IlyWu&UU}-KXkB#`&Xa|Ke#;5IK00}>KxwPXvS+%@ryu-Q&5N(T)M zzl3op7VBr-KlTe6P8{m;{yhedtu#p)Ei2%MRsQQ~xCC|+Q$Ya@qwwmqI9p)YISW2DzOwJp65e8ijkzr*H7)frzO2UDeO~z#luTXt^~3 z_I5K2(anR9w40YM>qn#2@2AM1>B2|V_m>O`=Ut;zDoCKf_#kVm zxeNre;;za(l(V)HTvVFj=k>A- z$5sv`%@^r7N>7DU8gbG*x~o858NMJuqU0x>H-nb17i3i}xmTaGgQynWU}wVwWL{St z`Obd`z04-LM6k9(17H8o{A2ClCVtMvJ+>Rt-CW%p>ID(@cN$;IZ(6i!#%uTNeLWP< zd_LIFvCoc+lO6A>{z2@t_GLAqIAU;M`|wm|8HBHYS$QKsg83tP_Pczv z=#xclPJ+%JB#r#q(~Dw6#SUAM-eO$HMOe1Fg2EfM!+iC@Oq;MOVD`z zolq;RxnrP0g=C9tjQp8NAfUioqmnZZ5u`lM%Qckw6mT~R_>sV#m8)2&PY^kAH1>zx zT7di)EY*h57$kO9oLkeE4CJXo^}4cYSTtZ&O`~u!`?&Mhe)e5h?!NV3h$$m-R6RXF z=v)F*^(bY%ydKD8U{O2KfJ2g*zA_yO9bhs>BV!xT0wnsuY%;V$KFqSp-}?zupVIf@ z7nUJuxz|?z_ypXk{Pi7w1&hSe-yDyz8imKxpDU>FV=$S&-*h0b9=5NtozErxgGbBs zzLT!=ka#+Stn+La=9Q$xIVk>I<(6n(GJ`>^-5QhD^EL2fXQ_&g&;bR+MQi3xR&+gV z#qv$s8YGo;bzCg!fwaS2t1clkkaoaY>N%OPhnMcXq#(lw(i`uY~@b4+(zTvc5A$)A0T9RJqbU5*TP{oyxg30?x&>N{8gz zU@^F$<$m8Nd{ByI$x-NnvL5}ppw4}u(U5wv+CK-{T~*Gnn(Dyi!ez%3<$bWtCD0ZZ zJPWfPT2x7w*pX*_?8&D+gV4sEq!pD$;gpXOLC^Ft=#RPfodaC0P-go;#eJ^_e$t4^ z-YXu0h;1Tg1Oq237s5X-#Lj>X(_z-C9S-!eQmFK(@(A$W30-IT&53TXwM1=tQKLc> zuNBkK4h(GdjWN>G@LNv%$!p3!WwWrTob_)5uj7xg%Xl&z;5X!np`$?>sgt*?o^`^p zE^C%}b_|le@!3HmZ4pqHvC4;SB6wlB14~mkK?sE%8WF{z@9#Ag>nlT#cP)&iZetWtQPWyl%TZ*@IGhjwJ0tzvm*p;Fe!PvbZ> zx@Xes`{U#ioKQ;*yV6C4QiuJ_&eu(X&4UPsqJ0LGyC`I%5KchKhaxRSq&~xKdhzE+ zatGkJYPfs!N)1@h)dy}ia@%%DBYZk@;@9zeyD;~#=$)Mj9zAl3 zl@LvChY>`Zc=sL;l27xUT)~V$RbMf6sox$rN6P?DK(N2^)E!xcZ|;7|yTThF&|Z(b z?>`70e-UK*Umh6zALXJDXiFDgzu%tFA-q%WveAZ z^I$TBXN2*2O4B3i4Lhn9Cp>yAd~YCgf(Rc%H5;_rrXVVuyyjhtL07ZP93>BS0wMPh zqeE5)U{&?-ykQg2`6~Fnbag3s+ZQX=-K>TSDbF9j8`*+KR5@p~dsbl7*(#gs4jrCEmAJ(7l0p?lxPfzoTfOMdw&oF}opEjPKdwX&Nyu6xMMij~5 z=A@8oacm5(eRK;z&RFDa_h6=@V-TKa9VqXz8G-aO`kBDq1Ew$hH-1~vA!gg7(m+Rx zm`m=-jZu8@}TdV0^^j63LVznV4rvis4`n1g8NI;7eNWszSvJSes>0@>X#1G zDi6X5W2bituh~#4;n>wfk0?1|>nVx4MnI?i%EeWL+0bUUp6_=`{<66l7wy+ca8}S) zdiv@TR7#g-lZMDpnwD0b!(R@ZoLbL@Hjbb-4)5w#vgaYSHTrB(3=0Z$3HcnpwF~DZ z#^#MOv8dAh96>Ux4}M$Iv#rcswZjonD*> zJ}k7h1wCCrVzBq6IX4EqFPc-Zl%9&ptY(fs(g-(OOTP8jw}QQvuF&Gn01%QUQ8CM5 zw8<~5Clf}Eb|h4Ll;T?#;Y1x5TltX!{<-}YO@dhjJr*Sza~W8 zjF@F0^(RMD&rO2JJ;@8zvTg9&zUPEqFcqRrF5E5fAVa}38!o$J^Kg{Q^~G*G22~yz zzL18NfuE`Gp`W%e^5&S4Ij*<_XRq)3a?)bZ<-^F|*n0_>6Q7?f2%mrg(=C>W{V|B+ z-^n;Bj6ponaZb2>8gyH-NYPwj7R1g@;;jdJfnQt2eQX|s3~v)~9~g;{S)7(Gu{i(@ zUPRA#o^6oi8m5R!3LraSeIQ?96$A~MRfi}ZHGE3%iTxl3jS*KYbux+YQA_5ru+}Iz z)^{)ee$fISCG@JWKHG42Cb{xk=Q_ll$nbl!w+aSfCJ)UD2}om2aEnm$4?5(erP}6#QwDe%?RMg8UCH9UOOQ2fd>H3yTzAJ`fj~6U?;@ znui&)t;+^MF73L?&HXN5E0y%F9GnH0qP%OPeRLG>JKj7!I0CmL{ADsoT*yG?xJ}H- zJ}ATHOImzkL!7yW5j`YuQHTXaAg`ShuDvPvg(9JHM37^ zPnTgWqTf|25QBaOA2juDp>WjoQ`anPC_VhfP+axvB3uFL3GcljNSgVbrRGA0Hx_&j zvs-&Gwz_5@McK=7*EtzJscu-gGhWKVJ`Q%ntv{%auK`QOj?KiE9ze^u8&j&w5WC)= zESpS=y5DFQ@4uLbm97Uq50xPfP)i)MWGn{yiwR zS0!m{Fd?ybjDC4M>0q8E;b0Nk2{=7rQ6gpE?m3N`ajtH_nPg%<;%Eh-xbCjar6$lr zb;+mC;gN>3#;2!es1fs3=ciwMI^eBOjlY}>FEXv2HBZ_bhA_SWOVlH@aBx zNHRCqEs}a0Li^oHWv~>^;H)Wos7FA1K_~;qjYs*LA3N}V{0dL7_fTOg+V?6 zrRK`vKJxcKPoO=(6^l~C4d;@GqcG-(dEWLAha@EQmV$^x_|8NyYBV9kzRdZu zXVO@dJnMSJpD_!#-+Fs_T)-m~GF;B_W)dV)LdEYKYlBc-JB`%&PIyY9ZL!Hajjr*K ze~PuvLBVYm{Auq2ka0d{cPEzv$!#8G&JAjU{rbbBM-thP-oo=4Ehbi^(4>1;aH1Qg z6@HD@@{`~jh5s)cCV>rkCh(f%JbbvUpeV{&1e+?Ie_W=IB8Jp!@lga4=$?*o8~0#E zhmXg&OK+^hw+HfWM3x=6e<+4;ajzRzZ@K?xOwWmE&*GVrtLH(aJa6H+)e4MhyR;jy zw!v!39i~{BPB?wb<(TBPRv1!4$4k;jVY-*$)zRCmD4oEm$r8~Fi>gkYecSEe`qIqN z>cI?H+fE+tu;M|0>>3HaBJsGh4^=Zor3#r*h?yO;flh_>%dh|ELlHRc##$Tpt8FX%tea| z`4+rbCRd@HdMf_EggM|I?J|G;rU$;5{78y1Yyr8e`;IrxQlY?;1oE!P8idMUC^r6AFJQet-9k7KJ5Ay$}5`52FMN`JI&>cp2{LPNwWnAY;&z zWvf|G!J^hQ6EMMl`tk)m461PZ z_b0J!2sU%-S$$H*Anf!?dHAVzFlXC6V?VzJ@|Qxn2aRzEKe5e~M!yQwN}gA6G&E?G zOFvFPdlP2-TOC8Om2gbwoRbQP2;J)M+?|gLph@eRm^ZNtK&5`lShl$buCcWz(D1JV zYg!C5d9)k+jU7FcBbK52sd!s&$RK!ihU-V-u;{aIU#eI*89Z#AY?m_k!BMjpmf1!? zqfn<{Y;+Q4(|4#wI+nrcI#Z$8yHOCkO-*oy0kANlig-#p0bj+gP_rJG17%XZrJOM> zn!SFHN-t^(W~5^6xzn2MOoZf(u~Off z7HC!{WUJj-hwu&?O)Ux+e>&;pgwC`;hVwF3Uv~~fH(2DY+Nn{SNcGRYsxGkKZ!63f zV@0Xu3g(tNL*V5&uwe3>1FdiS?*-cskOjt|IYny#cJFQZtZps=)*#9^bzvUre`O{9 zqiu)eWWKQJns1}d2 zH&fkEe5^ZG_*1C^xE(vZ4<4oThlbs)YlAKD zQg!=b$oXn086evE-(*M1Plcn{7Lcq%+G*!KihUJ z6)r>Vnb0fe>v1T-)m<&pj?(`ZsLyMyPk`cuuI4CO0utLdq*GhRqn8#=G6aWdXwTS) z?)R90N6CLOPx(;(iK}HtSiTkR43+Eu&2EEm5s%l2k~8p!or@vMx&mTz`PLS$mq8nE z^v0W;JFqBcGWY2A7VMdqbQ?M{As>M$i3Xot$du|Cf5^g!4qcP1*eAEcIGt4gz-$HJ zf7?^vn_2`aTN>{e*Z7#3WJir&Ep=cm#4DfG=QnJtIR?@aT zl0_7HX82Ur(ci=6h0m0Ch5Zmwk>9)h@)UZhar$O6i!{_s&t|k)@#doBBR|uNRCv|$ z{@y`h@zY7uwxrNVeA~8ceyAGR_a;@(b@~!s!jg62XN~xe(%OW{qexXGE{Jw%hojUn zM(^xE+zDmEIdLn@W5)ftiF$ONU(ZkCOeNw*ujf6UwOH0$cP&0shb{{(O|GV}x4%QR zF~g6Dr8ykAz?00D+sa%!1`rez*T@d~0CnWIyKgjkldYTj{z*w4$JU$&>ey6&GB^=< zXC6#=o$P#9n9z#ZJEgBvX442Ks?zb(Z#L|Crggvg%#V~FUX@mU*ogz9gEIX4Dy^4Ohldzf?99SYSu&_6_RPD`rTyIA)!7olK4i z$eXJMCyEuap@|9x84y&B6u0)^Lz(zyu-_=w%<;_R*LLH2_)(5S(}wyZmF>CQE(qfn z->WfwfN++CML8#v$KkAqGlN$2?N(>IOS+KQU1q91N+Sd5{b7o&c5u@!q|N-(0AtDa zT2ny_K6!{TzPkDs_?-pc&_0bJ>&i}#L)q^TI+GpcWVsQQUVCy%wFb5&=T>#O_TV;e z>4OSE8$KUm>0J23C^jTA1i>GXJ8$6U&@wA-?nsfDe)T5u=9tUZ_B&7?)>uhj^b#+9 zE%JbH9k@kV%`SJ?WJ-~@RC}o(MbSGiF*~&o9L&>sWZ03;$hprpDiChBO|Drz0*|S! zZc{sZ5w+q#+Jg`;qRT8va1Kx?^T+k{lyMx|eVMspT_0LHOg}JV^f;YWv3?_K6r1+m zh?O$*Xzpb^WD9$7TmR7Ry3&AsOfkD{d)}ixIl>U{r^g?qc{2Bv?;)qm|ZcaCGN$7`XnRgbmDa);|`CQy80 zy1H?-0ps((z9q~afs$vPA1SgT>!8L&*)51aH6r-fJ&h#i}-bI6om$$1)iLg1x zWdAm)u!SuuN!o5f#*lev#Hhmmfus_p4*&oFtJE$4c$_3xcQ_T^|G)OkOd%^HQlw$a z`?So4gp4R7Gb$9Rq>PUe63L2CQATC&EqinAJ+AF?x!i00?)Ukf=XpKndCqgrKkxH; zzhAEx8wP_x-EtUu%Fal^|MveaIto}Rn5DsB4r2Zv|65cPFi_xh*WK09!3D$gzeCFV zfAiz>Hv(u;&vC<=4?TOJFgekSlOnqS{HtJB;2Txg+6Sjf%{d;>3_~_7!h;z#W$-qUGPwBZ$rs?0q7I621y`>7~lQ==Aq1mRy~#FPEGZKhnr5& zZI)sXKN}d=?>qzTd)?;+x@N#ta)c}7QXkBrmF^AEKIjZIeD`X26n zIjnLCyp#V$5L1;dS$E{v3%mBUr zuAWWdCSc9aRKDQt0cNk*#rKK5u(L6q-*<8cyq^Q5|y&pMR)>rf+Y&j>g3Q-g53 zK$;Kzn}qt-ys|y~JoJe%ak(E}13fC1>3G&gcye6TGBbGyx^ymkNQ+Y;(TAO7HT3;( zB2$HR9<9N>I``U~aV+?G2psv&%ZldZs@mkOOM?A=JtMg2WV$d1-Us*Pp z&EP1-KWJv9mR*<#;YrZ*v4?f#`JDVv~tC2}=TZ5htVMl4w>Y=C;|&$zO8lVGt(zvDE{ zfOrEJFAYfaLe(+zblZ!Iu+`)Ao0NYT(HglPbu`35v`*LZ-+xo!-(~#xD(5yRIuP$; zS0{jf`F;>?=Kzwnej>alvz!=<^bzBw>Veb0a%02Rl z<)h9u&~2Un;z-g0@LU$T!AIagTFcmTRejT-$=>kyydF1NscEd7quB*NL8UA~Un&$8 zKJ{}dWCmIWqEqXu)K!PWIv7y zSv)w@>~yLOuE4xSPOby{8g$*K<3_PNppZ0?GHtRB9_>s^hNugcmy`n9Uvr?Wg{_3~ z3IgaQ_t&m{sfK2D|EM=_Xed9iZuX;`7VR>oJUVe@9#o0XN{%}00llcd%p?yJ+V68& zZt0^!CCszGgv+t;>Fj`s?1@s4F1eLZ@OJ~=7IEqly;ecraCswCdmWf=@hQH0EQ~%c zB(A@_h=UVPT$NGB5?to_^yby_0La|7Lbi9P5&31h7BP|pYv=oQ8F|(~U)tofn#elr zUJtq07(s`8>>f`BY%-uLY%j9>Z#2TU|HNFr9iE5s%c0k@Ln-y}lD#ooJpry9>6k)t zHbjQ3ygz2miLhZpHxFa>KwaIN@tXk_N-lfUz42m1dwl6HW12DOz$c=2lmiuNTxk}( zk+}y(hZ*R91yUg`8s61$Ry=6v+Bm;b90KmNKbji*Lm&Rv0>x{WzbffWtjU!L?>Vn%UkzBo==1|;^?+so!zJ#gHeKlA+a z5Tq9uQ$1v(M$bb<(tAXhP?1>J9!K01NT0G~xAZH5^Wu?I) zxan9(hfd4iwF{7&gQcERMC)%8(EsO0d*jDis1SYoJpR`J$REFQ>Yh;tEavYExK_|2 z=hony2co-x;dFQPG2a9#W|=aEwRylC>P{*?I|F$lZN(jXWC&R>t&FZ+hPUXn!W>1n z+(w@EFbGe8m-UhIwzo`Zmfv>MBAWqK_CI$@U?hR5hEvRWQvxKcn+Pp9cEXTLtESPr zQSiPLBlKuS5M4CZn#>g=!?>uZxL@WN_&rowKH?yRc77F|OfgG`B;EEiSPzQcgmTiT z#jv4glFt*I^bexWf#>WaI>WHeJxaHeI|kPk8i?t_s|lc@Xd?Ug6Bgp%q-R8Hkbpy; zCXdv)3?%Q&rMC||;NP9{_nXf~fH<;ZUwWPlH!Z#nCkt0W+E42*vD6C?67VF5n97AN zYB{{>G+;vv&Ab~19~(i(hP=m9AZnKI8o%qw+D&ZG$@5Car@ZF z0JxULjzy8{Ajs>{)!bYC5ZWfL1=bXPe`)BQyfzKmwj|x_rDNc;;&oB=-Z}`hJh)&= z)eoiRhYBC~^#GId96P&H57eQ$qQSfKP?aLV$GkHEVokrFcd^T&?_Lg$G@)FG4@hx( z%=Aco_Cvx$0}>pFsQMAxzXt@F4zmRv8uTMqSz>e#2QG(O6N(ypfW`6X!It-faHQ`; z+hZ3xRD1VH_%QDp1O{hbH}KknD00v_muVu%MEyu@q4aN2h{Yyt1r;i!6Y-jPMu()7 zd*Z*XVSze)pUsJ(9xi~981*$gWJ@VFXt%dRSJ9nF$A4VtKc~gj;A&RH@2YZGS!xI{ z8MfNOmDFgiAUM3OW*w+f+D)CqxX_OZ?p^(Ng6M`RMj@Jy;# z7<1RtJo=YFed)tLW3~mr>NgNp4Mt%}OIm0+h!d$?x05y$TZB_|R~ycM8wYib_e$b! z{qUBBp*N461aCDIp1KQkf{5nu@979?bZ?ZG+Q(}eihGzkGH_#1pV-pQnt2elrv?fn zS$Bibk7{A;3P`+XxBXZ#1cQuy z5?g#&I2KyHbMx8?*vnhIBvEusM>!(5`qw5LjAV17O`$~v%B=yH9uOcU?A~cZg#}3e z`>{3P@CLX{zn>?Y)`P$IL=g3lev1E*P|dWcgQ%~+Ep^-|_YI=M!dnI)c}V_L#mp-3 z^7qFFC6OUWI>#vg92%{)eZLbw^&=}*1>UsoqBGx27-z2sA`v| z0VDZd$^K10=mi(|k-x6P$So$T+}tu?bf(Qd>6hO*u1gTXram$6 z)XxbxY?4%Zi}K;FNHAgm~B|8xpHN&tqPiA1JCb$r$m&N zNz9|nEs#+v)*Q-M2g`YhDV0RZ+?kxcL$>LIhW(u#yNX%R`+3xat*jrEr09fn_m)AU zA-cu$CKFPqd*#Y)D~@ECt9A`l#$md~y(jts2Qrqo8@q9Z2&HWM*#mC1@br`0_bir9 z5D;TDmBmo}`xiQ^kQrK(<7(E+@R9`0fiaqwJlIidve0`*ZU&_DG4M71_XwzXv^;$% zy9lPQ+5}eau%L579+rZ3eGvRjlkbq~DqORj(-3;N4Yt^q9i19v_`UGY@IpdA2;y)u zV{S9>pz!zMg9Ahe^BoSE8X19`_pNZhtME`V6h!sBa0KimVj~PzcHvw5y2-fA9EiNV zRb&x@hswY#-H4=7sPLMYx1sP+J2;GvbCm_{mWQ#X25_Kn$vbx=EqIW{ZFxa~4@VFv z#Wh5PQlSb912&fHB!Jz%-!CRffZe%Bp8vQ8V>Gf8?yL;x&Vdw7-UTciQi~8%W}E^k zW{j1l@j5hLZ(!_X>H`ng{LYWLw5ak^<*a+v9yo2uN|Ww&!KQXm@Kb&&)UV%B42@Yp zgUd?lZ`}rai~ZwVnl#Ae9$lj9>qf|X${Z(9ZsqXU zFjYh0xjJ!GzBOo7bCc}5vgfX}ZB85*D|EzaUswUPmdZIM1`#w6D2WkwUjtX#J^4qr%Mfpr-k8q1 z2sX2CZ#c|QAxYyEe>d zVG;jHG=2_jyKd_`dUir-lHxcag8|8i`!#ZIb0Fp$JU)K67vamllzG>WSZFSMef<3M zaVV?%K`xubLGtn9aPjIbNX&6kX)y zb@mG$mK8nHebb3xB|yF)hT8An&rhgb=a zKCqd#gF%X0&Zz-rgy$aL9Pw#`(Q@4|`Z$V?u6UVs7|j8X3Mr$Qe+|CNMl#uojza4R zTO~!MYRG$X!Sk9K5#sG!S?A_Sute_LQh8kkcJ2L1Z!;EQBj+W*a8MH%tb5l_PcfmH z-T2B!MH3K~`;x`Ryc5VKt6?^^z3{smt1`Sl2F!jx<#ZYQ;c$p$&tTXXBv`!L`|mpg zn%m=5^;PbJbDloPGJOy1W!TEbNm#h5mKC5)+yD^}euTni!SLko-Fde)xI6p7Ywac; zu93WbCO9{N@OOlX>D~m4{^Z#Fnmi8@rNS=+#rEK09B=aLvBQW#BTNQIiBv)sA{|wa z2B9Ly?eYiXK@gjKu|C6t2d+y@u3t{H1Ifs%&G9iU`gU1l=Asi0cH5=pbp!>F{TR`t zDU<<`2`qs8@VuK=_xl-d;7!Am6U2Bcrgm?*~jw)Ib^oA-<#Qrw}aK`wVUB)WV&0a05Iy(emhR=-^qM9Jh z+$iY!}l=TC)|_cuxb3)D8hdfLinbWR8F#^HSy2veLURA-=ySO?E*ErxEQCS zCsYeoah^|_Ul&7C#C^|aS&g7SuzKz3Og?3vo>pbEqvZSS7jnCr1yFJ~2vwhDK@GYt zrjMRX!h>Oh;c|l|c#k`p;UGwZ7}yGV(c}Q|{?hO})6R(MBzSY2nIRcy4Cs!@?pDBuOaHPJb$fx3A+Sp@?gWzz`|HIY zdjNN{T|Gv93`{P$HZJH)4C_&j*?ZP|HRIZVGLrIc zxt}C74f-9UvKm`h*rRSfYu0iA$>N`tdHo)Td(CNsVSyw#ZP%C+^t2B&ZXNYi9pFHD z)RjlHGP)s1>t4wZbrv)nW5woFo(~1tE@WHXVK`w|!}z7C5wb!?^aZy%V3dEJAyH)= z2sl0VGo@^3wDeP&mmn5im#$XFpTYtEp|06&70O(UZ9br%F$JFGFQ!c-nNZf{zcbfX zHzBUCPmq6i54P0o{Y@ps(J5x%FhgoSr0yzLN_Tn&91rAw|4H2sJa1mvjTnxBUSVtP z(|a3mjP@?=$__Ki7Cxi=xseua_qhl#;l)sca~%Jt$OFhFR>FCLl7ns-oos3KWJ9u8 zmA0vYM)2~_z+GzW2G{GIjECfK5TcgaVN6GcgQ8{*`mEy+=X~)=l-D@SW{h46ckTgq zd&1wZk0#;zPkPZJb{s6SOsKgvVZnUJN+(Tn7;F;XtOoMYps!{E-(I}vgy%XEs<{+D zt|Krf*)rV$QQhrw9`EolRo~2@^n(PPQApHrj|;^ZRG-$;+JLj1{fn;C-5{D|cqfR! zilP<<781X$fXAav*S5GBaJ?UA9R)Lhefe~Qdyn@V7Ds(SrN(nnlTawBtctmG7~LGWWtOkn4M~K< zks1`e+*&D7i~=h3Z|YTC(+&-4c6iKhk)%8(m2#aGQSl=TQE7_hRt8=2Yb$te_L-Rp!NjY`0#f+)HU)#TAFSe z^jaUMJr%&h1@0X&#jRb~i@y={WT*~os?g(rEFxGuVxqE)A;6Q+&iu3#8Z=axlt1)^ z8Z~?wII7G*1T#x!yO3X_AWiQ>Wgf5!>B$NH?oX)DbxWyznm{f@M{>jGh|r>>Lgv$3 z6yMOO<`$`brWuMD)GpuQ#2^=}6Ib)+$iHf*Se$O=}qJ=A{$S-v32R*-2C<3q`WhqpT^eYX|I7(Nc`XAS<#`ay)? z;(n*lGuv?4o;K()r7jnJW>{LR27xQoWnGW*&*$cg{!E1K!~2cgxhCO7=w>~U7rWFA zngpdUYi%4TylHr~g`EnSD(xuIz1xPEBn?PPnC+*He?qpM*9m{#U^1bN6+pN{}Qm={jB+Wk^n#3g{WTR_F>rI z+0c2jHL!Nl>EH}q1CmzqdPTxd;36FN{bP9$J$M>TFOppXRCh+7WV7+3%ATd7)Jb}j zP_otgadsE7=cY8K#yHW@1{YyppCXX%<+$Fy&4$kW$+Kj)n*uN2K|{{U326J__aCd* z0??_G53}>oAhy2)ui2bM&?9}%c8&#h#63}a^k8u(%xfn4WzXY5v_+)hNIM>e0-N;B ze+r_zS4WI43#@?Yig@^I6#-7Ciw|AB2}y;<7*UAXu8uUDpIKSa!}45j{o5|#JK@QMMrcOj%{I%X5}XXjb$&oUvlv?3ooZ8x;%KgQJ1 z^+T!nd{k-AD(s4LD`yr^>XlscG0vYd?}~Fogv={o%WyLT??{HBrJtsqyi<_cr}x~) zi68yCs2%$qD}-{-etTi8Hv~SG=c{U5=0V!*OM;5|G-$Af`<|C$M#FX=Sx&0%L25$p zX=jEJaQA;*Wq1|`4ChaWXWS%!b4BwF3&knu6~*rbrgwoz3xiDo>nt3#6nkjkNQ=ss zR8EK~h$HDPRtep@8OZX{rymGkfUm<-Q9pO4VMy{`f)YImDh@RtqVbx6G2^hsfqojK zQ0C05`(hR(Ro1n$T2>*6cV%?v(bJl?!kLys(Cs@#^{2SN2ruwzB|4*U-8A*XOq z{9VA1ra&(z+C1+~Z>d6!FeZPPVrN*;^>o~WRDK*dv?WO!gU0e*~2{W)tq1`jwpR@gIZpy})Jwx@I*U`?%Sk9oZYOjUsi zG1XH*?tSl0{go4Cl^XaevhTo=c%Q>{vmF$@8^4--cmaeBmw9E=H^Jo7drL-(PEf$A zOHn7!f;ve>#rhQy@CIqR+?rI#Gqy{>f({4s*FOg?m+&I#4!Ul~`hDoWD@${FkOBGO z4Gp+*E9+^5{T74;N<9JYxUbSrVD^{dZ)A)(KrUz^b3b+2dHV=EixNUh- z6p43J55!s?Koc*Khi+iDU?y75=u%cnJI}7A}b|A8QH63%bv#`hhsaO!!hId`u+jW5BKYS?(2QM zoyPrx56#cPBeM#1;uZ#O)AJpv3GIh<&9UDV5zDYX8I!=>wGJYhu6o{Imm#|TqHF~e2HDG3u6&~&2fny~ zb>&+G$ldU}@+yb`k5jM}MwOk={!d3oP`(|sBJ|W)L?}_At_h>4?Fg8BNVxDTfdtPR z)vh~i4MBe@r=cW|0CL7uilu&>0fXbWmb&En!S6Z8)V$gh+${~Z#846-y+s=<8s7*! zo)!z8kwlQ)%i{g`jtp1LO7Y}JRA{x%qkAT04cxbTnmn5^p!jmDpOStS)c%}%sMw7I z>Ll}$&pa3i{TCW&+S3pB8zb%fRD0p86KOH+3<)0mXclq}-2u)0;xOvtopAO_W45EyA)uK6c@+v!$P0ve=7U4!?53Riyi%FpN$dA^j~RZuPOh)M04hF}$!-+~jY z=)c9BERkLU$Ufflw5^x{Q=eD7=7LS|{khIS&*`gA-A#{y<{R)OWk4hX3Z1~1=Vg0E^G!yO0vlOAI1^c@+66_>9u?9v>_7>(wO z%W9EEK4?Q+Zo@WDz8` z2wVz2Yp_scH2t!i0OImi1&6n~;WPi$bS-}}ta+Jr+{nWNVRp#-?|oh*!8kfvkTL`$ z?*@BI0b#_PKb>O#kO;k=lqWcoS#+FZ`lx_>fwA*y9xnR-;(N-_$kmr+F5LjbUToxFm@N(Hz4oq7QgHs zCGyYE$GkDaf^f(a<%v7}&`+aSAIm)sMo;tvpMArEK1P4hL9HEHZH=es-fRFwG8`K5&r@_$gq4#bWGS{9VR0_xlyI`fIY8}y{j4(N{A`Mp0!>Ei(2Kd zgclva+4+jm{3#=9n-knScajc$t156jjK#s>_a7C1s8A!Ds(ke~)s!efD(+5`3mv*K zqMB;{um_euZym#&tAUBfAI(Be%t1q5iEI1<3EZD{w`aT}Lfp8oPWbQ<^wc3FF^_i@ z_}Y!VI&HQf_xFVw8=nKdVIP3M2%5E;SS_;iRh-uZo@Oz_M^Iu6lnb4A3e7% z8g!c>I95KE7BSt-kj6{3K;L)iXSQ)u5b9JCw*gonTPIJ;kmdkWCa|S1@*5VPWY&ah zb0W8MnM8-{|KRgmDO)A25xC2*-XrhGh~l*F{S&8SM#+s)MzpLH=xC$$Wyd3HVDi9D zKhj_e(4b-%(WU8UyfzM}&9^%i(j!hb z5=Mxf04xm|)K&C2n8|n4zNI(}QXg7YQbKvqXm-&|z$Zz><~r6Y>C1z3rB?462oqp1 zm!`3|ivVUrCq1I?aU+TE;Z(FgIZ%|3RIy3}3u;)M#@qLFLFdrU-;(z&@Uf)0NRE>l z9WhRbeR7i%HNEr_!vG4)*MGGAct~iU8M4)F+(s zM3F%`Me%vhO&F1{@d&V_M9%o*sYgGqz--AGbAHqV@9x4g$%Z;e;t{vionb~>mqH3^ z%_-1M;6M3~y|9}PFnvb!u9#Z;UxUw}_k#=Cs ze|(oWU^;7?PA+T$TvVHHwaWg19~-?IVb8JfQZ7!*`AZ)hx!~_9rMM4=PaLg{*;#`j zCYP&%EC1m8mvc-DpYfo+ck>k0&KN{FO|;A=?}BLYu2*K;!Jg%>zQH}GM3y<;%ZD^) z!67##y!at4k}8;V+fZgkg!eZ$F~UT!CA9kIYb}F#ey&(dOD{~tDz{ah7=l<;rUi-s zZuCmi@%iD5HCT1AMn1#=2=h)2d0;PuA}Po?HOn-Zrp_?EMz;-(>gC?88+*`6<%GpQ zs!FSd6ce+-S@Ppmem+faG+_K6&_H23*y!I3}^fjf_vNT3+Wv};nd3g=pT zbH>TtU~VE>jZYc@;a{$11%A{hlI~AcVMHOQu`IeAIynu6&RP%2UpP>KW z3*6h%_33gL7(i7lMK;Uebw$OmLUjV(_pV6W%Soc9M{M?~lx&FV=geG=A~nKI2tNq9 zwgO8!g6qG`w;>`t;@(UHEh22ZIHC|kfGo>ik!rh6XwW+%scAO=o(;m7x@2lps~ZsU zL1h(wmrD$a)op^j(MCks@oiu`uD@R=vIU0eg>hyRd*H@yZE-Y@3Vn6C$@F2U7cQ)r z-PRqc1IoTJJ%0rPurcVIEhy;)Np6!D@`4;_pAZqb|DG95=ACnHn#F+qMqT^eDP~kI z`N0MsumFuRh1&i;EJ!7UoNcKifbImG-jUgxgiE~3gDaWT=$+%sPbyRd(0t&%&Gvc$ zIA8PbatAGg(FUi#fYSh&Gpf$w4)QmNBCzBRfe4@cGLw)SWC)O#SBAz-r1 zsso-0GoQPkf(0V(?Zw`rf1o;8<-nQP2m##s_jg=t4)S@(b^OpQC|Z#BM^tv1a_EPyTbZRRZj}Ts=OrNPzQqEMkHeF+gD$l;L324^4Ip zSEB>gAxN0LFlS~1oI<1eLzMR*rz+6n@(dN4X!umRqrDByCu@viq*uYfwLZE1(?7__ zc(IV})eM-+%~vp2ra{2%^UyuE9^mrN;wB&Xrv3ZLaG!%*TR!wjvzVFy$w!ApB6>DJ zso~yB%uP0AlPVMyIza}S3WvY^qg}8h8yvBqxC)GXSG_V*n!$V3|68-)Jp86ncAG#PD*V9+L37@X}L^Ti30_(*|8Ow4Exa~N9 z|1vQFMwt;GmVOGOmq{ljzT6i>t9d6|6nFjsIf3H?IlK;Jo9vuJc$pDXz;TL{i_}O@ z^l>E9OFV>1jhqtl8HCZHfMVK{-LSlL?hb4GIGlgBFZ8Rt2gdi(Z``ONKxhjo|ARX% z5)9#zHnBX42Ht;`Atnuj{?{OxBMhvlxl6I}B^L{g^sn{;Fp6&qO;RZW5 zl_l8bm=3bu-v>?#9i_|j8_?MiOpo+9(MoryY`il)+SPQSv5-E9C^KtSc<4;GhckeDGc z^coX^MI_fKif2fVErOu88~4`XhPwqhri!C$9R z0lPK|pHmQ)vAG$>uJVcrM$sa_Q_0mjO)O~VoHd*CdmhxO8?$AY#E*pex$fBUQzCCn zZS+*<7JMjs^~CPpE<6?&Rdl+&3J+LUWOZ*bAU0$7bkq4B_&TmeUDr4PS2SPR=FSk{ z#|OJQC)5fwTO`FYfxEFH7D@<>y z{{tCD-BPu^cF453`tffH1u8gu_P15Yfmf~O;bzHLNbDyib?j51QJFe{{H`|mHlbF; zntk9;l!G@WB1s^o%Bhg7I|MPgXBBOT+n|Nn{1B9}2nItwS&Svikn-|urf~%=;=+sY z&v9=9c_hN^zpe!kR9Vo@Gw6msZtm>=A}G;xQzQv1!h@DW(mXYaxKLfR`^0MzPP8W> z>g`Ff4S1W&TFDi&;6W3@yI)6%FiNKwotcAaHE(l zA--F#(=ZpweWi5r;N9DfUy2^$$k#gT_^XU1aFgV{@TqANSZwmLoCOv^FXeir_F-Do z|A^+T%!3WEJ?YbAac>V^1>Gtz)L({MRerly;%9-PAQ#)FN{ez#igA90v?v&RxAtyP zGc*}ZPN5&n=u62@f$Ks-h^JDq@k#>$>|HQ#a*8R@TW74evfT*Zu`w^ULP7hj7p$p^R}e#euUjZSo2R3lZn^u~+2| z@^|u@r7bTGbWy1hJO2PjK)AmYWR#e&vinTKt?3Xi1Lifz(}V>NPe~MARdQzV4-OpP z%VLAwNgyO-mR=sX1AcMtu2#1vA`$IRvNecZ3Us5=gJI)sn9yEgzeV= z7HX+x`-Stn;K9Ayj#2i5aOpM4F-d&}*f461>Cbv$Cn@T4=D7(Nd(W7ZtYGOP`~u>ggGTLe3$5=bmHKCYhy&tsqi4}pU?d?g;`Kw z`?r0)z6GGuGT4Jv z@uJZLdaWXnU0Biiq@*^o4u9`nmsZTjL3@jVt#ivd@I8qA!t95ECuKMlrL+#HbNKcq zu#^^M)!k4(y)*@BySeG+1A7qJCF)ZrNry(S)+ldVFriAV!S5eyhk+3n_TFQE0m`BU z%x}D5KsVIA9P=Zo(2*^vul4`YqWfG5#6=!fl&WsY_Uy?n$k68b;Nt0#?%($ohRqx( zH4mHecX9^G1Q zhBj$$6V1p!aMP0fJMT^>%!tR{I3ZF5#}qSt(npEVBBG)yaOe+sk#BM}?a`uR%9?Uf z;cF0Z@iwWkWdW9r2cn)R&>*&!iO;x?18}qEe&er)G>CS`ctH3(4N`X!@x}A^!0hLk zSO$(3Feu4MAv%x3c+?mkH(dl8FZ-qyV|SqN#^@U391(a+=>7~I%p*`(p^2P2;ERNm z$d(Z$(&*KwDVm>#k4Lr64u{M^-79(dQKeO=ALqU3X+H#ldZDsecbU-F)2Cv4yOyA| z^!4=`6(+RcF%b4~dlgbNA8+UBuR5+M6F%VQOEUWE%A!Tx6kyW!7k`B?5+dM}g z-?KPO<;EyXehWVoUO)oL0J+m;>OY~5+T*)isVw@yU#fTN!3`c|}mtUipqvxf83&mVB}McSh3*eS$)@w!`h z*CMn|XX@;o8i3T@3+HPO_!s@a+aH)`0PCeXo)feK(zz*(ubGCSqbznz=_&_mzL0Db zG|~?{7bdcUOj!|TI96;EilIk!IAbeu1oTDj>Q}aO0;6nt@@#rL1PR>C*Q8kkCYd7t zQxzOYdvch^Dya|jSZncOKWD*yG2`3XbU%3er0!XDO+r#&m3&Yg9TNMeaP@T5Iy74C z+CeoHiWj=Tk8c)3U6WceFYS4eji050`~4LVb;Z>rM`6HdAzu9>#~|d>JM6y|_y<`x z$~Qjc)1s#ZucBhZ=@He5I`>%LBS?bDJ7!IT9r$-eYH>{r7WcTG9@zDDkM0!bV~JgJ;dR>i_pb-1&L2QOK`5`t9+p z8AzYATAJZr1^F|NdQ-;QAu;Hmxm&~lbhA6V=j$>dnS_Yj-h>_yPIz(q(Nh9UdcHrp zyE+5~v?umzsMcWEQzNWgmjuL23!^?kZWPNXO?>M-6Y+3e)K^U}p8~~ubD5O((V+B}do4;`^DvNYND+8tA8;H~ z)IW7wA%Vfr)=6Oo9@^XBju_5^Sk3LzpUh|As{hLEUUNJ&+;pFGyHAN?-b<|?)7t^J zruh@wVhbR7R#5%p4iU~TE-K_)kwkj0t-c${ z5#hx-#xg}8(t(fv`o>x~2=>ESEyTJiSdTebqM6N!B)d^;|Akp7H&e70yG4yWdSAOn z6E`4A?VRxojdkcZrq_M+VHwsm&7T*}P$EUMIMcZ<4)g-2P^yewh5U?9*Pn;t!09@^ zj@Nqz3LZv_-{BpHiMq$fe>bdvo|~CC)wf|7pgujDa(5E+F6D=Rn59JV)W%P36PDl= zRsB21OfLjb>|6notj(h#HP4N6-YjK?OfCte^`CAA6 z^Xj~0e2&9D)bqu0KT?^1nxw^!(Mtrluupy>^n?P{_v{N#lh}}Q6Jwia3k@nECk$+* z)q?-aisO=_H852`eRYOZL;b*h+q#(XVx#kt-JQ8 zD}T`2@KkLg&3rEifoZSqagf14hqnzo3?kvft3)=f&k!r4-a)b@(JbZHdGhq%SXgas0 zBxgZl!|ZIX6Ae0&e~LH6kpO8wSS>Ew;bG1^=ZfY?~iMDbVJMHwhfQx?W z`;-p>)>(GMjycRg<|EdQ&ZP~DSONc&S1-8%lZ zB<>ptuH7M%6C8iTVnpY!9-eK`Q%M$0^caA$ei0Rw&?QJW^&9aE9)%z81pPlZb;DQL z4BpJuW^l2(pD!}VfMn0A|NCka;x~&0b(2@1`E*@sNYo$* z3Y7djn@fQ4K`*O>^V8t|KheJp}rZk+K8=HeLF~_@xe}|z`nFlWRcR-uXXuMg{ zf#(LqVNDy#Ky}8_AYhOZ74hzLmv{7nZH87}uQ?-<$Wl3nFiyOUHyk;9n zw+ZLpJ9&j1^ygq9{*ls*bvSQI_;fpX3ep=hqvMyiA^+tI{P%aIaK}h)-ad~C@uy$9 zx^oH(&+*Cm`%X1r{P$SpC(HnBbd=eJaR{Lk;{&Hh{tSYhVeC*TBOVCp#u1x}1R#E8 zh^dKRfKc|!k2J?|@WnLsk)!u23=%{!E~FuNSSf+^CXYg}#+mH-Gjp(!pDph$_;2bMngaXORET= z?MW!7)%neCg@=~!3$B%^tH8_{y5%80b&&T7k`JL3&bO8Oe)={Kg?|*Z+63tkTh3Yu ztA;r8)}|-lC|Cmafd-e5L-R24g|w|7Hv>(N3sRUbkl~V^$FVkrX<%QvU^1M*hHh>b znw)DIgQu)stds&-_91;cKwRpr6hv< z6=WF=9B5xxnnZJ)3^L=K&Ha)Ls8}`WdOqC@gvpDPo_Ts01%Kw3Hkfw!_A%=9L4{Y311O%SD`p&0|pZ^I`aQNe&=aH&DZ6b|GreIVLJQ=#VXy0X<5|3Y5)MpJMJ z0gf#eaK;6Zpp*L%XD`DpM4!YhEz;pYKg!|E>Wd@j=XoC%M`jAd=|-f{)~7-jb-$Ng zZQw>yZ=Mi&yn4Y}WJaD{a|48}55XTU>hbzLh^0uHFQJQ3c%~kp+-= z(qf5iz(8@fp%NS25QI^QZ#p#bAsu!ce~1@7Vt+GY#i=w2g*7u**JP$4Ya-BxS6mq7 zm8)n!*5g9-p~tP|PV|7+(XAEDXQi;QNVSJQKLCA8I{#5pErevIsD}H>cslF$L<;K81Q)W1x#sB-M-%!QkyJLo@mVU+b0RpvN@>p9uv; z3APRX2LJ&7{|uLhKNV~khL64XE=njRm3Dk`zeu8@jgnO~6hb8xm6?=LGEz}#l0sx< z&+NUj_dXnZedj-Tf6x0o_kCU4yZg^6zF{K&`Tl*h^sEWD&rRxBe;mgpzUfuy?SvVJ zFXai5BxQTB_29cMxM+%}v>7$RRnYk$Q^ybzH`8>N)=c2?_h+MT>I-oq&F^E06Adgc zI%v;TG{ep!yjlI{3R21}TY|;s@z_-Mm`Pt56b8f~l-C2(`{&#p)-IrR zh*|5C2Ny};m)SXyR*V{7Wx4n_ok;p+t#IWg6#*Jf?r|zYWS`fw$f30q(r&S)i$}K( z-!j>c&+p?S37gD3-Ct5+mtD%>+f$7ZAFI-IH4!rXU%Fe4Tn!XQ-ibu6p}{cFX0&&V zimN_U&(dX34BZw+HobBiteu3Z$Y-ggy}%6Y4F?}&Plax zc987HlgEpl8t1dIg)7&Ex;%swwlNyzW+zs4`Fq$V(eU(2+XnZGjO5kDmfGu;eK?Rv z&39fukM~Dzj&=o5F~mIT$u7h}YIbbM>KkmusZIAyZmkk0d9UU#|FhvI9=cLI+uVC_ zY2nF}(Y_q z5ijKnB899}v_@B}Q!g@;b+i9m4c~n*ga+sde`*8id!{#hK=D3K0&_eds7Oje>o?S1EUy$t+p- z`|ziE{Ls7bZla8eI4mr$49tUTqpCc2e;LFLWQ-lsX_!^%iF`c1gj>~a--i;rv6&*w zuXnZ!iJ`;c?%(S{NsS+WCD4l_uRX1nk5r&a_z9I|^D;XBtO%L}3?WaA-FV^5DBg4w z)@WJJ;aTRC!Jd){yfwGbp3|v>S)#`0D<%viH-DRWWWp$}t6T^aX|06i%UZib=KQ2Q zKJAmuQ67>e)#m(m{ zs<6DX;6IVs4xuu2yP&39SdOogQ%EC#`cYBJ{i#acE;mdeQzVB%b6NiyrEM zn&BP2w(3eaKMpY{+$l_s&%T{2pA{uP#JXu&4PwN!LpnF(9~DKTQ?cuHhOu7c_U9@E zUQ(sTZ7g?5h;ZC(`}giJ7fBKCx&8iW6>^GZIWD{^L9xfy^A{@E$#6*6g1&($xwv`A z&htk*#JO!|4YG@IKk`Kwi~b~3dUEgPs4qag{e|5Qw_eoOWw{>PEKMGlm|nkKK7(QM zCiGGi1GyNbKGrfhgw>j9Z|oVW@U_6^mF4S96uo(sVW7-U;>=5qc8er$TswrUATC46quKbV(rsx+PwCV4qObioZO#SkIClC3RS{_WT$A<=e)yIlnm6~ zpMKSV+L??Nd&hNT`{t}yG}>2i?|K%{-oA)S+;miZ~Y3qoYayW(2Pi(&j) zDsO(3T#fG4;<;s7t@tkO*(Yq)gpJp&>x+Ez(2<`a<1^omQjc4!8^;!)Au}!Ll+}aV zvBgR2SLX3jQbf9*p&g+{rfZS}YH?Cp<4I2Z3bLAf8)RxGQ2fAW?p1js7TRxjKKNJ< zZ=FN0I!jo{&D{m8s;&u8dfuXOS+g61Qs<_%jtda${Rg!#1g;|i$5$RNC*{L9LVtL` z=pUS3&RzGSRzk0N|T+$^KB*xI^h z)P{$N*yM^GDN7i{%eP|Qt}K5sYnHuyOSK8f(z7`;PngNV>J|OJ2glKr!D)6WZ5k++kI|ug?Egiy!mKyJ(Yn}@k^(M9UejKp_oj=Q-kPLUQk)JYXC|oa|4xA zn{nJ^X`<%-YSO9b_5A1GIi%h)qY52*Z|jqvP*e|1RsIeWgKhn)LxOfwE_X#@_x_D0pt>VP%{P1MMCO&sI8LmAF>#HC{m8mi*g~T`45(=rlF>&|fg~ zK63qLw1iJ(u@Po`9a#O2{e#?QDtJ>zGMnDjVy(?;~#;4q}2LGJFK3uZJZ_lvInr65Q&J^xct zPNO1nU#KP+A!k&zFn0aI+Hb;{=nu$sl> z@Aj|2qeF|oqlA{wr;4W9sq2*}63AK_zaT z8CqP)n8S+hufv}<3zJ>*-`!KD#_=&vyKS+*4M$!XUX;1h4)6MdHLSi$5VrIxAiZT4yXFO6jSk*=QDc1EtdwRhfwfJLLcBGm`2~!A3K_ZhZLsY-b`p z-!%l%(z+g1(DN*m+F8+v*tc;-st+6RJf0fbEir{Vvp*d!wXeX8vfz=lC{1>(-ucf+ zz6Qq3)KyCNxyeqcqgki;rm)X1;YUMSC0e(>tmtv3@A2LTTXai?a4WHmMXrdML~H%M z9ppzt;lt7J|8$v2Qf&AiMq5q-g`c|z7)D^N9hfE-)Q+@9UQwYaRuaF7dGVNDJ7g_S zG5k~*1B008>p;pll)jj6@m88g=ogy{2KQPK#k_T8{jDBsGEY*md_|x8V-2Z>hE~*e zlwBf9)6lsm?53C32dcPiT>(E0W-qitTZD(f9rEq2T|*yyy1b+5SBB?7ZMF3=MQGw= za`~&nM@%e@PZuk4lPPiIf7`FDB`)5xsRvTU$ZDq(?!s^QiK9W0r32RzBC8_5%>A4K zYjrZ$hx}Pk%T(gF`EZalzW?G&ZJRNjp=RRN*ABlgd7hYklYavDp z;C&dct{^{+A0)-UAh{UdMV>#k>7sMWl>H7nhE&Y*%Zlmq%wfKv-|W>v7P2kCXIH}U zGQ79y<8F^>#JM#ugnJFfAeFp9{mL&E@_L8t(=6U_-$dT zA>iDPL}%@5p)M3s)w(74M?ottH$5(rnc4cmf~gR3>S6CrY+)ztMJF0` zg+++Rx2?O`hX--I!TY*pI}_P^J4RygFNJ9OrDQzbn+|*DKWb4AN3l8cytJ%uAp&FA z1XXsm@B*B(oKF7K~L6mN6xcmxL- z>fX!dL-(=0`*R;8{)6LQ8y^qm0X*|}Q@Rn~4(Xkl{}uTxL-S}?w(5&^ zoTz{Q=eTwyhBml8Q~yrSnGK)J&ntG*dwe0LR;3%wrLpbPfvxy`X~o2q&PU>_+Rnaw z-+_#$EKCd+#-P#_^nHEVIHbQmB|0bNNYL{Isb8cH)Oqvc=dh>uE5p;UMHEVu zbVsbt!M!bciy0n^km}g9CH8&=qSrTHxe>68J$V|0Fw%28E&Vk+dkxgy7Cv4%TZdC! z*;B0U1Mp6Ah_9`v#jx&Si7WPvc(OIaLHU#b8Fz_u3kn)VQqz|U1b-XLgaqBAF0|AyaSmYTy4L_5wc%XpNb=S86Y z5w&huK3Vi!;_gA}gENlP<;9RtVtBn5(xi;#s)g--5u$W=)5FSk2C|rx)2w!dhFZ(D z(;qB)!7vuAdnjNGiTT&L^VKV{@!9P>8(JmAHW$}Lo)I8w8n?dj9_oYiC9fo&FLUtP za3Hfml8dCvG1S(se4rrw&uEqJY15F5rY2;)(ClYDM=l9XT;ezBE_OzSYMTyte3 zJ|WlqlRG&{-TQ`M+L<}j)*Z`Gv|uHH-rknMn|X=bsjInFHDh@DNyOoO-8kmXbGrnr z?!ZzwpHEZ*3(02U<-N%yL3W8MhxK>oLvo<*Z+!CC0ykkca1PGqnTDs8d)OV35tOCfQd1pfA*FAx z-ifFDgD?@W{rH-ZoGFNqc9EWkcxLs!ecwtUypI33ba*ZFmPcOPx2Oj9vPsv3R4h(Z zaY_a@(LJk)X2O>_i{k~twAU~A$&V6_L*{BV@O&vY?6Ged&DLkHvhEl}gZ+Q8>c)eh zN`6^p-!zHnykh|^1&v57GvxYoj)R1U&UJOaAHeqa+{uBBj3lOSG(hXX0_+FOc@H0) z0L`W2!;P9`c$K>h4tdmKy=nBoEBhMM9Q0qT*w>2EqkQfrR*i_us4-2`7{?vHcgi(A zNpKx-{T(NwMC?tyw-=2~;vN~kzxLuH+zR62ugKE9NvA@g(vgL12rPK=A-4oVM>1D7 z_bj4+pI{^BDRGk4&%06Tc@?t5$8}HNRv{0q>W)jbkAmfd#Q9RoW;9TFUKS>>5}Ssr zH4kljAeBUpaA zUcOkk8uoRL<#i8wFzNZd-mQe4ysc-njWS<=Re)FbPr^d>eLM3o)JcRKd+5KuZE-Ex za4fP%e0~zD4&nK{HB~4&Ft_D;SQETbX?xyt&7s&~&FOb60%T(FXO#$)yk_btp`EB$b+Y-MLmz}Vf*W>(w88y750hEy7%o1&GN>Uvf&g7@Llct{Fjh8- z|72>yVY%r3x-Z;B=?}MIjYb26XVa--X+x-zEeO^xuZ85Bul)8EbS^A*`E}iI3g&T_ z7db7s$h8Cmm5{uCkdc*sX1^M&i^kQx6Dx=*-&hf*$4FLP>~@apYr-S#oarqwBUl)5 zH1Ky~B=_U4{nA(GAOYUG;ituVpsVC=((T1SB=5e|TqRS3z7HlC{W=1rcb(CJ4r9oD zNQ(*&Z${nL{qx&ajpNww!B;DD)8N}Z@~E(77SakM6WhnBXlAWBqHv7{M$MO61^c&> zbRo*1dT0;5$IQ#>JcP-wp!5Blbnc!%F715RfSxZ0=c8$kOytLw56qGCG+e?$n1uWi z82?D_Ja?rZH>c%l*Z$~*rTgctPei8?=g#{vbR!kPDO1)0yXm}kQ`mpF_#Zm1?dlTA z$_DK(WlC_6hbUOs&H5gB$pf<3q7aN_iDT9`+YO8&S+_hvK~iN!*YPR zKPO?BEMiQ##!dWQrj{LGpdne~gX7`heq=t(Ep4LrZghy8ewDj= zugt4TncWHb3io-*opxb~Gd|2j+ed!<3->G{JPo83c>W<~_SZ;aQd4x1M(nCWBl2T&WY-s4QP;WLS-8!<#LW zO5MnLw5el9;R2!@Z6j!tJvf)*HP3UU30mAyTFSLd#661XwtwdoNQA$1D!soco!6zp zzR~Zy;-v4BqeG}rh}uQ#n?uNB|HJ|9RE)|$vJxw2B__wcBvwhzpgML#XTik=yj&wA ze=UxQRJ@N+vohi*_3OT>m0asX+Nit8s^4_a_UpYVK+lCcHD+Uh)vBjD$yY&@R}eA8TY|?qvmy|#FCNaO#2O@`P0l^@_H zx2O*;oXpDwmrmc1o|OpU9Zx1ZxH$;zIgP_*ewzO8DA$@5AcID`-e&kFVsevD6(55b zvD>q=|CDtbHaIY?ILg+bNM~nJuiH2>t>+!xg_ww!wQTUa4I)I3FLy78(Q0D3+T)#% zR2L2^+4TtajzRDkm+^4PBtrBZM&IcPlP&DD#e+<<2>vktN9M*dWY)?eyIlK9yZ>P+!P(lkfr~77T-xY*xDqwP zN)zFc{ot88Xq(YJge#u)fk#6mNyJtK+LanQ53v@X@I68A)zGY;y?^N3$G={wRK6Mm z!A3`C45(O1QgtqCZo-PMQCu~DIhHtbGu4jg()+0}zbA)*6kp@p?#devp_Yo9JC)i| z>Q?1iwLrykMz$84@h~238}sqnQV+S^yB*kDx**EQW-I=D06Dk(v$jcg!C>I+%)`Hv zbndOpk^H!X+>xzcx3$zmIHG`qe|`z|o<*w`=U1@T)IK3%cM*sB{kMhUUE|cO_Kmo)#{a=C{8E zbxP}nOa+^fYN@;X>76cQ3+|<=B{P!*PVyvhs0$M-{`()qX24qQg@tx>JGfcYvuR8d zuv56@P3>hP(l1-7+)lN)^M#d~6SGMs4G!>X#hf$sgH%VHg8kE|s$?%u!;g5tzyDrKf6XaJq!M?O<;P|@_}ij$RM z3w(P;FWFq>CSIy*uAY`*By(map2C9dsMd`s5$mC1M7;Yt<17_5G;hAV3q6?4Pnfyq zUIqTIc8!E-1idWx4A{Q0kX8Kd3XX4ONMvx^Yq9t)%nUr(&-l0#(P}jV$_D*VHOhIO zME5{5H78!-4_!FDjxF@aS3aUx)@}7#unYHhJkSx`K8Uv9(-CJ@n&B2SF&MFvofzoV z-tjn6fh_JWlk*jW*#3K!J*VS1Ohr4jTJ*(9UjD9KAJ45|w_b^Mv?mW4DqSa*Z!ie` z(pIY=RVm^mXrO6iQ3;>Ve~74_Pg_HDv#ciD{0VAo1QjmeOWagN@Zns%3WF zSecJwSwF-~#1%V49rB7GsIk*}3z>k0Lb%DTBUAXZ^Y)KT#f(IM)|B(>_I~W0iaoSv zT!FCvr!Avk!$Ka~?bbD9SpoZyEmPDf4r1a-lMA_23za)OxhywlkhLpLF#5&_j_spn zyx6Nq!Wgt{wubQ$-TTx%nng0?N+#gMmse6C24` zWmX`uhJ`dgT;b=go=3lO>^ZjdUex}2>X=?!jW=Uww(j%m$MXo;h!Fu{Li@Dk;j38| zl9Xa@(;wIgUk~>2?#3>3E@;Ni)Jc%vmw4PPWdw=)%ZNVB9o4w>ozv|2^>{dE`f@Ri z|3jwv&XO~)hu~Hrc zNYvn&zK_+q%tp+uu9OB7Bk>b8tBYSVjz#x%w-SSUAg>;zrsLlV!@3u%x3xAxH>cU@ zyyq+`g3lE%IQK(SKtVdlqYww&#TOj6R^fsa-+@|>d1!2-Y~#Gv3j2QU)xFdy97$p> zv~M231?Ln-kF%>u@J4l;&fHemq`h){XIhJ1t35qFKgY3fO{iX)dlJ*mexic$eP1Ne+^GE5!ue8GN*0n`+UkKqsXWO_6&I)lNdu&>&DV6XS%Tl zAAfK7U60WN)>-k{bzt}#DBN(M3)ONH@)TVr@|VU{mqhnl#og(vpPjA+^RxL=!`9vS z9{>RV{}h*pBNc2L#*Jg2>=i1KD62PHazBxgQC8W}G_q$&LI{zp$Sfoxsf<))l$E_B z`yAs~2ghFD`Tm0Ee(v$RuB&R~3VR4?9r!Mp{(~BAqtso@V4WRT+{IhxN|ax zl^Z_}{ya<^RTeDB$t86oS$Y=)mn$<=yZ^yWKgv^VhYz94`Y#5~POQO_qs+(frf%SS z8k$1XV@Bmgvhke(eeh7~Ow|$V6`=B&bhZdw21PTsT#m>8!2Lu|?qUT6DlM(z%uB-} z52_l%JDV-2dHgb%YmEekNuGl_PZmKg*ZxahQ0$x%_x z!1Z)-l5+$rn($8cdyv@=&qXnemqd2J=^cSB&zuf9>3{q3?%Ec_7W~Ad*7iZpo8?7i z+XZ0s_#||kZw}1I?S~I^+0m11(br{#J5bU;Y_*v-0fz-=r2B=xgUp`FvRULjgb+T8 z`!$u?ONuUr}k?CBj(<*1yJxMf3XS z?pl8uhWBgVhaG#l(DUl9(%T)}$iZ!tG4H>5*e(w#H__Y%AL+*5b7QmM@u{BTU~m_j zysm8i*dBwCbiVK@RJEI|HNaYKF=4YKkLIlFLo z6&(8nAI`6Az_?LUP#|s_G`&jHWIpXcN^m?!E?}2+An<{@b621(mtg{bRIJb z(7gyu({TgI|4||dg6p+G4iZ#IUL9H(IRNg5FE;t}wn4Duxmu3S3P@N=aH$S%!uk~Z z^ptlC=*D+v${4J}nIi@#T-B&h1#hxq{NfngwbSEIAk0AG1QTEI9vAqwubngt5c@!Shb5pm5P#y{lpsDi-NfT^Bk) zD0Oc8(%v2@22iS&`7MB^a=yFJk0Hphu*e+>5I~F%Z!6RsWkrVic1k-1!yud7<~`6w zjbzWX>>ShG1Mfsm&<~(RNfD;1Mhz|C(8coNXLKVR`BwZQk!}Jk4?o{ZPnm}zDeU850&x=x&m$CMNYtXOskTLekCJ2VI%$VG(hhIr@?bhq7pd?R4${xa?>a&H^ z4lWqv;gymX?M98-MI*G2A7e!=wk!(e&MR;fm(mhi)d4kr5~N=r$KX8wM2wgZA?Zk{8$i5DlIz@|& z?%qM=mYdM$p~=-;OWu!j;U-2E(@^?E@D|9-K-v%ERaH+sWa;*p=4TK=#m^*E&YXP5 zdfC@jgK1HMz?t%=GP|G|ise|)*a27Lz=``G#=yyP30G~@3Wd5w)4mB@==4D4>!D^Y z^w98`OVtr(bTQ`+b;zGxxDxr!5`vdNR3J5U{t^ZaTz*gB3t&Ze)qfTUcrzkZo#j$t z?OwQB+pS{3{0A-?C}hO$Ga{EX!I@|ZPIP>~{EzXEKDg^WlH*<339b)*zRLQ$1W&N< z`UYSR+RHFEjS{B7=YW`aUgH=dDNfJ2oH&3?%D5=0n>(;fyOi<&eNKF8+`lH;0SxOB zQKoaXfaPJMNK2ONg3s4*f)Y`EAm=Llu~xnYd}Ob`a__@IGS?fwF6lln zOLCa)KfD8LvFv*+mecU}7j5k~KT2f9##wafxd-9GIk=CDTJ(D1T6uz69Cwc~s=%xPH z-JgK}#Jat{M~*^ay`6+TmJ=^t7Plbm{JSg=^Xj)UqNmNDWK6P-s1L({yq!&{50exEZlaa>_AnN#*ams)R`5z@c z*~?%?WreE`{vjOX*{!TU{@D#pi86_*BjYf(RPH)rNRPy_+6U`1c3_|*Xn)Nd2R=_; zDX<8w0bf1DyJU|+)Z~wG?Y<@uwNY!l@vIGmgWyK*^$Bq6aTcd}KMA;%%bCYQ1<+Xk zdB4jhSR{6X=?E{+9u%L7Fv_|&1?!LhCA=k)0Fzp<(=0`aMtdp0+Vn3&^y5Aszv4D9 zxbcL!qP!QJF6SRR5THczvP*X5*XJO;xjIUQ%(aXUrU&^kTd){rrlF!R2VoLglvvI! z;65*`{aJ?vg;gJ|&fDvQH=zkCrvf?vqpki`C1eq9N3}_vY`_7x`c)T>9ZtUC^52tX?6+f_~XxzkE8|4@viv&WbxzqMqRUp`m>YNG~@lXcRVp{+)k& zhch*rP&hpI%zFy#Quw`PX;xu3ilV#q0@;!?1>VVb{{fjj|gn_84TgVA$!C z%qgc?xO5`y$9vWJY1xr>CeodLdTJ@C1`WFD$XFQz|R>k@;{b>YMTkP;9(7Ve3eq`_JW3AB*2m zV^TcieUk*IxjGr1HInbB%2k31OMwiUIO&YrIzaO9vxy;*O*k6nCL$z021AxJf5Pt* zVYl3ha$2(+MzU^3Zs>P||Gm-6O~JEZdhD$J@OcXKvHkkE>ed1L5$gMZx1mNPl{G2) zfNk(k+SFx#PJodn^}DhqI_?D8x)M@=%0?<1l9e=Ehmk5(JK9OR?VhW zh&{>TAw4_+%Le`*)uYFtub6-7i^44MBs4dDXXi&g#NhTKIYAU!Xxo!}?erC3nTBZvGFvfj2W zH9zwaUW2lgCLS(^35XH?)YuZwgeb7W&2I(&B6Q&x`+?o`#@Lg_14ES3iQUa=ZKoXG<03aR6gao z2uey^%s2Ll;KgC$cjpNXjC$CAa@3E5OxewL{fn(+y*9nXP{o3>_j~fp*ceg$n{)4c zvjtJm%~AJj8k}hHGWTc77B=KK6*QUbzXRbt^j&jJOD=#?5j$iHMm|J?*8Z5FR-Bs z!|<9?pc~`S&X3G%U`BXF4df}1B74uy=W$kaPnJ4ObiEB4Saex`%lAUR@aP^vln8H) z`S+9kccDIi`Nl=B7NAV=niug_H{ zKq&jOnDW9l1OyxNwZ+zhpo=y6c2S-Nxzg6o^&e)Q%K+ z4=GqyeJC&C;8aAXA)7EQx;7}P*7ym7o}pWK?YBg5i|fn^d)^P{1S)z@hweg5X8Ut3 zQ)(3692s-PoC6^Wy+8w+!^nXCWwq)3u=&PB zDw6phNGw$fPs&xo9koH%wiFB!AWd-ehYkTPrp+Ms)g-LDS0-q5o5Y6_1-GE=m_Ynyg=lxw5A{T&ajQ9I>%^4ub zJy!PmO^+sOc9G%eZ_AVyc#V^CiWR`ix%SP}OqB8u(IrbR5XCc${R6<~9DhP&!A3~r}!74P$y5Kr@HYcxL#I^#BYGboe*ePU-b zO3eR3&sEu!{!3G^Sxrha;h%uUxjV)eU+ltET#IP3|0E=4I)C=6?E>YSw~MrY&%jAi z>XD`0X|N5RoPK393lbqU=N``g1A4Rb<}>HUphbtRjNuX>E%DaIkQhWV8 zrW;laDz{c1F{8EfX07+G?Sh`V8;liU5ynMZKTM$s5{F_7vkIw@ou;hHi*P(xMOH2C{81aIQ~v#0++ zGsk(pE+-zu^)|4GeUu&b+$)=%x1~nAQ93!w#tVR*alJ0!umH6B4yWB;FT%`a^LPsF zda%Q66x(@s0HOCboAh6HlqoB4)9=+B6tSq^Um2%GY&=R#`QfOd~>z*KeG$=L+ckJ;$2X`4=MJs_zTrk>A~V|1*ljg}`9u zD28tbj_LDMXEYCipp)~`(aJi|Aj-wpyVisKvfhlEY9p`*oGw2%vH|KA%}NKu9bn%a znIqLokBo%3u``n^(3bDJ^LKIqnu~&%8orS4cBIH~nSLB@OU8*ztC8SoUny2-js!#1 z9rq^sI)Iq{?1Iqgc90L>GqqG}fx!Kg%2Q`c!NTy`K{(wqIhQ?MtKK|-3pGdX)p4<) zX}L>@8Z|v2e58$*p`QY=VbY!piV&g7#qWNA&m0)&kh%UV*klJc039Q%wX}b+ zh&^FP;GyLd^oS__nh@Fqr(Ly{OO2Gsm*Zb)(H9&9BKcuCy9y{c+3_eSz7u}j|I~rK z*bD1bF;f~!D?B8?)gE(^ftmnCK)SyJ;K0vu z-Tu)7t2rlLOJ3nXRs13RtO8xY*^;DQAc95TAGy3(o~wY-LFeg?$VmuwKN8oQ+Y72J zoY&3uy8w+wJ>X8C2W{j(cr@q`GOxR~!}NsARUK26;gBiNoMQ>^9chK&J2xGyf8c;c zAokjn5H->{s%#oV<~m_UzMuw6jV`jg^3-pzq1e0vh7)GT(D9c$cJx1%;NkHm|K+7W zz?|ah$t=(hg0{hdEqxnMwPx?u^^6xu*=3Q25j{G4DtS^(ibB>TK2up#O6E|bE9 zVbFhAu;O%?11Xsf{C7ap2%qL>CE^;I;Qota} zFHV5Cv7ImBcHPSzu?oU?n|Jw}tf(Gy$!w};31TTl z=ii;00A8ozul5XE@Fg`kaz>UKS@~Xevy1-=D%|A+PU0+#VbrQJUsIu}>swP=SPoP| zWlOI%f`fdt9uP@q7@R5?q=fAE>5x(nOC0mmx4>q?!cfK={aT|_+!?AJIuL%LSs z$|s0lX3sRDx@CciwJ*q52t(#+pHxTkdtq`_=+R+6z6DdratP$YJ*c zNdn|w3Jv#e$Dr1whg+NZE6^utWVkuJ1L=d64Q(+iFv2@6SoDJhaphV5Xl|fGAxu#- zk6&&=-$o0cA#M(Ybv81d7mb3B&cz3$6L_dGdMOY5Yam{ABh+0358ssQxY76o5O|** z1p2PPU4ugbtU^Sf`%uL0cdQ?Te*Z|nS+E1zBhA-7{rU~5y6Jl-c2=PDUFezn@9B|> zk?d-j3M(4lk@iM zsDD(*W9uaiW@Ag9C?;S7=)z$Cu znua&L#b=UO#{hF~GeC=l9?b_l%~9vx1PuzKfu|pt(K4syLOG5BAw7D>5_TM%JaU(T zPIwGTuo7|CxOQR7E)QRyvdiw~rM8HYgpW>&M#ZONTowQM^`G-9Z4|Uw@d#qr5g_6giA-1C{Te}CQtHFEK0{W zUTo5z1wpfq7amgMfFW)ER+#GnV3-f}ir6lI?IGc~5po|Y&xu)gp2kCfDJw^J7aa<{ zAQ0nJKLCmyY2PsEt8l68_uJM~vfemmC4c44fu}*@{1S&~(ADG<>3c&pFn4$yKV~n4 zG%wyVSsbH9=k5oq;-puB+4$iV>3(`NeNHXo^|umuH*YQ$@tzZ%e3K$Zn(755ahWXn zsvbx)z@?o!zW{zPGJ17#8;U+%Th8TXL6@VFqh8@TkyRj@g1GnsI3?W1)9EdO7R4n$ z-v$ztT9@^V+~Ps>gv*{{Vw=D@BtB}(L5b{tavb)M?*plJ^X4p%R>-UfmBc5K^W7si ztrOe_P;LA@f}Ls-lB*OiohcrLUYRP^;XHcuLE-M(fotuM$$d4pb(RPfp5K%fg~)q( zM|a>iyCAZ`Po;7f@4!EqYPJr+TA+SZ>;00<8Ig_J%&Q^oz-{Q3e6wp2B1cOpd@{x$ z%~>MYW3&mVR8eKINCOyVO~r6kQ6Pilz{c;4CGe7OI;!c?FccQjoO;Sdg19G4|Fm8$ zLdVwe$C>xWA!ZN5X00;~I{RrW*T)xO<1&?`>iRMS#Q?7@SwHzM`h^C&?885e<*>8S z!$7RiJN;0C3f(fZzjDT#3I%BOCMVXl!SmH3>XjZ61bB^C7xGSl=wmu3R!;&1{>sF* z=yyXpPf3?w#XfXktLZSb-(lS#dDy~`66NOPGOyelg299kN4q3SH1bMLuwF+DiM3`) znHL{MdsKYD7eJm{rVrNr0yQ!f78c+uUV&!H_l;VsGw{qPuzTWQ6}0_}oE6X10&SAS z-;FPOAb3gmm;cT*@ERKoNpmzor|n<^QF;RO8as8kzOf?}jRuFgygrDmVg7t~a2Y<* z>dlAKE&|o^EqsT=1k@{D_^?(p0Y0uI;iN($#07>#r~3ATSE9X)v(hL8Nd8<6^PK@z zu~JKgqZmY=>#AldiUW$Z_KTTgr4Xwdv@lQZgUceJ{7}&>JQE=*p6)(`LIfM}J0acR zYA&^9T0zc>r}iB__^t!rqm@23>Sn;awr$WEnFqmazZ{~Z{wngc6kcEPWE7<5hKGQV~k4pJ|= zoxE|J8hN#T>lk@I1oKkkcK3ZoAPl3pKOWoiX@Uv}_;0(IC_+8VagAr)+1K7no?KGSAMTF{(8vfPIB%yPXj zu(y|G$UYCm7g-eM;wwO#Vkv%JjR2$ptrJpL2vFRSligI*03P|c!DO<(Z&%yAtf#mM z+E(YjLg73-tzUchN9Yu4c_DURLy`lr-l~-^+3AETRq+XaJRW+}Bon@N(V&5qv*T%^ z4e+HhQ8CPb2v0+HYB%34ftj(CQIIJHSmkD&ZUWXwZCG_ewxPJDiAc3BTgC4)%2MNBSt{V9}F1J?zj4q9oP`y(0)i<-R%iDS5^1PAz~Yx4r&j0UeF`=WBv_~OxRGIx1LS8%P!pV ziS!Dzn*`jU*6SP&ePBCW>?;?t09Lh@{;E1WC|aJzOf889r3pCGniHnU`eo#cOPdBa zxw{9a@$5)Z{%XzNYgknFioTmapdX@QVjime{tWt`zexBz9f4Uz!%-^Xd9bhNwZ@Tp zKxE{$kWj)b7!WQS$R0ib*PnqO`-v;?alXWcbD0Eson|}FokY>EKW10j2fAT2tmfBa zJpxeH<IGoo(!3=7a}sW3JmW1nIR#&p=}1Qx2SG>CbzatX4Q8EP&u`jH0gK{I z=fbC*kSk*P`_S^@!&-Ed9xCJY6sh=90vZiw5NWoT>}dCih9W#dM(e-Z3QI zwI0QH{vY7LHj!x31CuB6MGrBrK*MD4m%kmmpkbTiS|!;8JZ!&;@y3n}=|IKGEma;~=f2EfsF_7ciaAhNjLB z!j2lYW^NG&wGr&Pb~rk;E$dLjxV#QC%mU_oX??)7#Sz8VJPtu>j9jM4+aSIzmXLpw z4Fzi{J9E-^LP~#L_Hp+qILMkP{1`P39VAJ=uiuzZ2C4XrWHwpv#%Z`Oh7Ey7utp|^ zoRf<&S*N8-mm#^@`pMwb5cE8Ixl=LEh;qe9yY88N@Kl8-uh?<{UZ#78MH^2+iFu51-UYOL@2hqU;0)(YQ|N{IA3if z18(cIy5j{&mXqfU)nf#V?0;>Y=@t;)9DK3-?f@8jxV+B|)05g9+M|Qi4)nENl3{OZ zf_4~V$Nu9CB;vVwbiO$YY1b6Asq`O$c&K3d{pn@A)hM04L7TxHZp@(JngYH3 z5f(BY;<1T)k%s5uE<_}35JHy68y`I%K-m|quMGuDP#Tafu4L@P%RG(+4HrS8d{@xZ z_*Fj=H%9rkeiS09>#fCiF?WFO^?rB812edIG`#I`GzYoJoanVjc>q!C8=jc_WF%9! za{_OAPGLLKz~VzP2jy$o#rs~Ypj}M4UGPyu@RpUNjDwY}q(dfk>_tqe-JjIkz`AyvOm!Z+1}k);}ctVVjgXGzsSNBUPj7 z1GpntbiFWzf_ypFuq799vd!?Z-^(E)`h&VZwh1Xi555a-9>#%q)jgVQU68ck(uLm|QZ+-l z7pSuUZPxAaX5-7)*IMLqFySv;-tug{&oGW16Lr!bj&hTNnma9SCpbviryc7i@;OOc z+##dcvjW8ZN{#``rwJT>?mP5evKk&=id6X}JCGdo`9pf^2x7NdL{rsf5oAMT$ zGV0>C@!k_A_Pv}}s?BF$7pW%ZUf+-V)Z%A#!F;5G?cSH792O!~%N9`QOoMFhL8e=> zi-^ei8Ic>dWsl&;E=(_G}X|9TG!d?7oKA%Z*VPfE9pk@{boTvGiGu?r0VCP zzA0pkn3#+AF%a#gpUd_1T^MDt{?W)?hCf%NJl*bzk_X?6dLD)G5qH;1U1yScNE>I& zCpXX_cOf%ra%>v3FXj7`R_I7ckT_q`O+m6I?n3I)UJl~Koc!oPB?a>z9QWk1R3Oa6 zUMyjhgYZNhRBFiVae2Mh_nHPh&IUY%k5N0GbranuC@@=@Y zqUZF&M}oxOvi^MAjE)@pd)Vxz^Ab+mWJYKyb%EVu-{kv}3gmmwWb;MkA!$;*Nl1&2 z@I3s)b$V(FKNH^YxSXP*+sLAFvY3Z_?=UuMZW=^{*@^LFsUoba4*Hla)PV4b3qNNQ zd5Nyudx6Ka8PMHN4EiVBfHN}FZ7<}qU?3F5$74%@$LmU8X{&lz_;80uhArax=ot?IAxAwtR8BY_;Fo)TD2m{aK99y_zme`zcWO<2+~EU59|~Ym{@l^TBPSBYNyZ zKT@k@!tRw!VB(!`bC}aG)DB#JH5$f5&Zz`{Nto?Mb@A`FBbQpxP^ixDq|ZSl^4^Iv z%MYN1eXMg&P#<33DB5*uv=X~*78#z^bCG4UZ{C$^X>hRbmXOnF#Dz>xO$#;w!d1p2 z>F6g%uFvW#nWk01#dZJ52d`=oZ`2kWzwirX=y`gwf{AGRDIJQk5+r2m7YFCdUOd$N z^jqmlJ8VDBPcyRj!kJ$+Ih=`^SkN!2#Ph9S%;velkaja@Cq8v~U#Gz`WBsx9e>%|i z*-xjmJ|9*Bx~(=*rFieGt8Gf_z-A*p>ZbD@m|FMM(8p;F`F8U`7Kb$t;cG}yE{a&d zB}L0n<8vJt)62NH@BA<m-X+x(mn!x}Pnw3EwV zg@SG&U4>V4)esB_@Kq`wN8}629@FEkpk8YKHM*9OP}K!Q=%^e-aqH3@0gXzi*Vlh? z3E?0`|IxjVW~+kGsoDHL>ldImi}cB1MzS%-Sk|X(1(9CUJ}0V|z;;;6JEo`yuubr+ zF&Y93^ZCvYhklG55$ZB}+>4O@QNJw-{G@uf$&`o?9eExZa^&RBQ8a#t<%yB&0Ow1W zyve8i=$&*>=X~CXAHhD)WbK&9cNyV)iLeIr>3VDxJ=Khmk)j#z6i)K+iO<|u*K+uD zSgsfeG$LTQG-khfEqwVeeV#us2E#wcO9osz@cNTN)bjive9n*Ot%{FTz;ZkT*(;0kgXCc*VXdQdF2^mTL+GS^laYbqeN7=Cwc)HltzTHSc zYS+dPFXleb8+Du!?^}Y<;^{B7oD3vr?qqqxS2ohzFKQmMc^(^zf8JKl7)FHVt)|z% z7|A`;M*m^iI)utAK4#XN0Be8Rf6$>oX`xBPf^HrXMPlm)H+8@+)X=Y6U%go=RxAGehg~((A8uXbCTF$} zyXu5h;G%Sd;r9ncIL05a^XIEEd~bKmc7UKVwZuFpe$5pjNn$3UYoDz~PqLo>zLWVq4=-vR_-@^#Ba}fx7h=vt z22B)43-Eo2(I#g&pr1u0-}X`bdzE5%>lFS*_v z(>g(_Iy*ZJ>=&qvLj zS>zzco3EbQR!V`CJ#Pv-h7l)N(iGy}hue%Q5Bpbpp--(VJy~iH1HorrZC>S-s6JU; zyQCgGHY@y~&RvVg(bufRG#SaKm&P^2n+BjoIn(i=rVm~L?`Is=O+xDZ8{dMr-B7=f zI4=>?4J-NQ0~*Lez{snP$*^*060@w-EOyo6kCW(Git3-}Ak>f8n}YF7J*r z^GFRobC_?1n>eY3D3FIWh}ysOR#mJLPND_U{-RV2otxR4sXB-J@~a8*+lpW}s<1xd z+Xzbdt@(Wv>!7N>Q}SRO2a)w)S!ch8k8rRqY4|C&BSe++u7ueXY-2q43R&i&Tf}nx zd6qfUZA0DDoF)8G<*AvD?1k5719ACM7Lv(O;+n09}4f7~y)Q*aKVmPwP!X-QWoa?a~Z3pB{SOwVj{v^Lu!4)rgSW z%CCA$%4iV(mCcjrwS>!jeyZwkCc&Vdds%rV52_#T+P8%?VUndd`nOvegd=#KDg@3$ zN2TbEMnebue2WV1q;*35F5Q@LuMDwhsPK7wy#e~1;v8(&bEqhr{%!6~#g;cI7cbi_ z;%)louB2!t;yYOA@-257caGCNaj;YJS2p*W_-v zuL>(6yy2~f8Hw~sU(@1h4zlyrMrOvzKD=YpI&TrpK#11O;}@eAG4@CPN%M;=v}@1x zbFE$FMroN~>%yO4bDE-gWUVDTZ5P{BPR>Ku?EMo7=?MhAsQr+>Zvq!+<9{D)=O%$& zuKHEmeqmsuQt{6xUXs5y?7)imETTu!y>x6ku_N@wQnOqw_8LpsT>2kPD5EUHvm4?P?EeL)ZJeBD%gfg2j+s@8r z^lmXKFnvygiM-(2cXj<(@oH30xl#%qsexK^-5wYY$PA<(r=sOkn2q7iPHeurxVs>} z4e#=|u&P+LAWi3!c(zs#s9PAhs7`}ml(#fpDWbsZ29-nO@CH)1!NJa`xfy%aD(&R9 zPNVoLOP_PmGPb1~Pe^c4QIR2<;e4PMf3>PqY?u2W)njHU{hf#OOl2Cpoc{&U*@;uy z+8ku|rZL^$_8#Otwt6^VytwLV*+Lti4PlpIh@XmOCoa1WC!{D2;%J#glit5f$ZYVJ zNqO7@(W;tfA6l1jTW?2<)b2cZ6h*jZSum2<(V~~uCRbvsWl`J8+ZFsv|9I^3p)Ne> z?>bhtzY8i3?_IW~bRxYn(M2S394UGee-qADA#VT5$JD9{Od5=++kF-$ZB5Q}lQ-ze zqrZMT`?}bPWZ^AETa7$~*wOJXRIXs-zKZvLtM}@9rdd0bPQwSf%+$xv+d$*l7U9J* z2vdv9f9n$lp=fe>cfT_gM(1Y!#;x*(*}jfr=IO$u>h|k>(Z)Pv=sCu>erSc6Oxwhb z2aOmwe4bw9;W!%OXQOAt8t}+{xt`oxJDgbrlsNO*gmx_R|N_6$ia6HSGk#Z(KClB)L>a6 zR8eNtGp#Jnd7a{`#WC4>H3gFt#M0xM+GmI93EMN?biXg$MC-|0f&8P)NgfF7VM%d392qdR?cX-<&*7!fr5*tme6M^ljoK`qFp z%4(nV`wP0xvFVpKCHMztB?XB>{C1F~sL-!q>!n8_EgR}#oe?m1IfIjY7ZYF3*g*rw zIeSPtkH9=z`}3Rl%U4KH!>ag3tl9U8#mjIL=j4uTWgtA6kuuj+8jzn@H2CRl7Pfv4$kkn`g_qQJYg%I+mTmRIKQnb9DeTna zgmXnWf8S;L;uH;QH`!^21*Kp>?|k_tn=NG5xTulVYTgZ0Ute#wXCO`AO)W)kwBnwA zO>ZpIEDSZdc5Ad$Ky!1>9nLE=pn6X|@(^G3j8YTX6y8Q8oi6v@a%~3*y{DXSs5p;{ zTWMwcU$vltY%|P7i{`&tqO+{UeMdT#`cH%K!JW>5XmI+d@~-tvF@~tw6)|t?u|#L-pczlYE_$vl z?sCFJ?a;Z-<~DPn`baHV^-Y_8)S$iDYh-`R&^?WyRz%{0977TBHM)`cJZ_TDnj+OdHl@N%5t7+y9%6mNVv0Y#a6 zPjm|#A*B|_Lp#7g)>S3H{_jE|T+ctC1pJ-FThUE>T;>IcM&gr7(>g2BC~GOd0cZZ%`N-HM?O}M?ahZEIdekqU9Lzb z+5&IAbY?F=>f+D(nW`C#r{>s})=82xhuNq7?oVPDU+G7)OATr`p~TGj zNpA}s@%Sr4>GK-^^?PsWuAv@y$S9kiEg!(%+|A!|+k4^mNFl*0X9YEM|LyzNodtL5 zQz84gRsS_OQF4`a3S!X7SDjd7078G+`}x~A2;XVfV8K=YN~!QpkJKN; zo!I-<=Udwl-uER`_I)gfO|YYi1}iaAl5-dLEP%|ws1s9-7}0LgSQb9SNKDgqUt8QW zh)cJN!c^th2yf?Zw40}5*DK1`M{n1WU0&M8w12f&Oxj;CzO5P0j4WR|2+^?Hb(^-a z_RK1m@UZ3AFq61Dzk~)B){s2MRmOBxNqy_Rt_ygeD`puk6Rt8-aA_DGb{pK;WOEMcRF$^_m}-0-6cFL_vP!Yq98P6 zlclprFJzvJgz@g@CT+ji;^!XJV%Woe(}S<8xl=OqpNw0?P&m(j507mj^d&ki609R3Yir|%~k%qL;Fw`8ZkOE=2>YgrSk|3dV`>s#t> z#VAmbeCR2$2=NE$yG8YL5oAy^qV=&B4z-KwjSkZgSI)O{ni)pp;fIzXS9>7xM#%Q| zvp&qcN$AsN8G=iGx0>X|39NheJk8f>4q1zuXI&CzaQ(cqyyW#ZC`XBIYud<6_C9m- z*s4!Q41|KWl22z;=5oHbvDh#GGtZ&XBH#BI$Rd@R;|GG*0ByJ?3re@LBo5pbW z+;MBu)J62l6$}Yw^x{I3xX_jtLY z8yvMae(rHd$Bng(*NWfufp+f<-+|acFmoMvb6TH`h*k|0CluBqKGE=3v0OFst}h=v zldynmn-ue;27V!M;Gw)-<_O}29vrn!`Gpb@IT8Q*EFMiNss8q>LFFN^`_iHpvb{eD8Iu!Z`{!M$8M8`qwkODz?vGtq|-uG_~*N?@rW7|DZR)abMg8gycjTWx?D`bGLKlN;Tsx?*XqpK zoEITkuk^yB6{eBRw7zm_bw6Cpb!_XY>w%qxn!HPg7-7-ef9Yjj6=E%2*JKY5V0Ztf z7dLYj@ve54*n6`fNO}zk)m)(AG|OxVmtQdwV z4`pJRt$qkYiSO4O-@;D5>gKg<6YfFqXlI~fz8ukVW_|Cw>H|+1ubwV`IS$o0y>p61 zD+qM(|9RnbITGVdg|c7Kk*-^vKAQH!n0|2bYh;8pvFc@%ky79ww~n+Mn;aDXE0c09c@mx+mUHQGQpA&aaY3KH9*KuPFK?OYg}j(}X<|wr zPKZs&@7*j*N=)syc77W~MG{-G%h5%g4b-ZCBUOjV&%dmO=Nb_EDDLLu!UCcX&i^;O z$`_wQZJh-oThS9dmYO!vgQ#Y|*r5}Ru*$KbRY}c*;y+S4eXJW!S;X~9ZWUrqCT+eI zREKw$E^m6CG6AzE|9x#f(}PUv&IZMiA?&!~XBK>{AKx_n`tW%(aW)W}Ux;YH&#xOA zb@tXGx})&)HuY(QS+nmz!z{$}jx-8=E62IrmmQCu8Hc}#OJGFoYQH`IO=n%gM1H>< z40oy+1WPIFtdz+p4jc~{T$=9#Gd=Z!WM@APYZL~qQ*Hvch)E`$F$J=pu7{eM4uk!L z%axDH?8I0;o4K500zthpl0q!C2v;!5R=V1TWe@kj9ToFlwc_;dLs~#^|h>E5e+5P_=gO@L*QE{O~TqdTy4TXpQlo<~*D-~6-iNfC{a1O!YW-YY+5$dFw(9?|o4}~exN(OK z4cWg#cs-u=BKN;S-lr{`#AH3h?&UYbh3#zSeU~LfUHqu9N1Bc-`ed6mGqDmrwj-uO z0@bi*`E<2-V+SlP{k$vO#<8(|YoejVI>NpjcvB{K^?xS8m@gqdSARbAmsLf<;JaMD448tP_a2>790hosMYtn&qES7{T7k z@R9@xUSh?m!QB#3i#1 z%CYsbZGdh{U01~Qd2qk3+jaZPCe+ZLb7`|4gB1ScEdGWu5PO#VYAlHgRjZ9&GL$Dr zcGl*0jHWB_(5l%a)@2hevrE&N$8W+ft<`NQ-gR(M7N+rWVMXmtG;Wd(tMG(kHNHb- z0qRXRR+&rY!LiX;PJo9JJn0=0W75z4 zyorNm@iYd`6RCJ`yCo5jX@H zatx~F79uSPqjqIPV2(J@I~j-r#fHYmHEx`U(MkH4Z8{0A4Zo+N-JwETDyDE- zpb`WsuhV?Yoq@|q3L+glY-skt_?W)|4Qh-ZH0L5PplHJLG z@1G+~Eko&a z9z0ot3KkySH0&5ytzW;z4_J8UN6*`TrxBbkq|0~X7}348+;d&C1W+)4=0>qF1zq$d zI*E=fDDiKWpo#AC=OOV|T}ZFTT?WZy^t;qo%rcbD@c+Q=PJLSQiHAa9hBhp3M%S?#utito%LtSUOG>GL2 zx4^}zkmlFLIOxr$v~~K?2M<)n8k;+-Vf1~(UUR@4obKeJ;IAjbSaIaMi9Zn{3gv>% z@Y14~5&m8tw<*|P{ymFp90aLcvh(`?u_K4F5W?2-5|l?@G%=E#0M63yB^utXAbU5k zO5K$eiL#!UATKHgOnwL@-$4%~ebkFMZpn-!bGDt1eLIEVLfP>~^H#V?HcC2~-3@W! zDusGi8o**aP92SrBQak_b6LcLKA9~I_h-!jt?L=LT8T+0=NDWI@FT$8hqSZH#bjuW z8CS7pN`)GdGc_&a2EcXN*w4~!6+}rUi3MDEU`kI*b5W^=lDt$gKgu>}J$j76b+ZR< zYItevXH0-Y>7}ipA6#gBw(^;K8VgFDqr%y@tis|YM7m*%hYl+8V@w`1@by+l9}j*L z)I?aqhVmad=O3#rg4kvz2yhYs-EU82x9MT>&t;teuuYrw%ivSYDz9pq!h z=9q8pK!n5WSm+ELYQ5}9VMq}I1I>e#NTd zMKG^_y1;aP64stu*l5W&LFrsKPdZ@(PF-yw#9Ukft5Y+Hmcbi97y96NykR>iJ@5Tp z>%9UQk{%rYdU`?CJCkkr+#-zkxhe+A)PXmTW8*QaF)%u}WipU80diNpZo1{{!-Xem zmt(D|5Jd$CFJBfF;w}{lv|=Ym3Nu!x3~Cp^r^zJc1sN6MnXYMfkm`V7d5+u@2P6=F zH=r+0PJq{OzSAf9$&s1%(u&vK0H_+BanlT604pJh-bCy^&|9iTep#YIG_Au8k^ja) zW@wFD$>R{`o%Oe`{$fz@c+I;LzdE3hEje66YZk6-=g5Bc`3p1o`BE8vOYlr%#xdva zIQZ+_oiXO7K-#Vr7rQ=?BMYvPoRORsP?}yEV3MaslWcP({g3M)+Pn9rty(k0lPs(5 zD9*vI|2@+y)a+fC@A6`1rtnpkXf+2;)%E=NERMvPkt3BaHCT@Mc zB1K10FLPnoU0)3H3W~Nc@%{t%3YmU@_7=qK$TOYv#GrJ)mnL4$1SnUxh%(t31h-iw z)%yX>pzpD~f1$n;oJlz!&xDS`t(q}x<;OL6cK@P#mHamR3^de{q~t;vj)N6nDnZn0 z3EVRRR1_knK;v2JS$<|(v}XK5b;olV%!ViD4A`fkJF?y*7}*x zEe4c2k>*PGeIA~~C4AcL#)Gi*S+;(u4Or#A{dH!24CFWd{kOh84TWw>ZM->up~vWB z?oWDt^zB^liH83u5wr8p*YQ@O$anpg50>h%UuAKWTHWME%Hoez)!rU}>J?+<(|RPB zbB?_o@M0IFHXZKX?4d@Yy+eX;i8vU{IwzyT+y|oT*N#%yY{5hjIUk?yH(0*f?W)H@ zi>i~GBJEh0U_fZww(&z7$OlQC;8xv-^>Xs*&n+Fm%q&$TTS|h&yqL+{`U)m8-m4w9Ch7u7{oj0P-GZKfdo$8G~qX%1Ug2) z@|ajW(28GW!ip?|ceaW@&TtuugGsL=^4O5m5!w`cXCagpp1A99X$4GDJKo!RP@@g2 z{Fem*Bv2JK{2sGe1H^j;wxNeOl^Nyrn`aloeqaLgEz%AgGiy=WyFLb%-%65?$B%;Z z@FHXDEpc>CI}X|RMQ=&LnFeka?&z( zLEQ8K`HiL(z^7w$*y1MO_0?Se+$efvy3p(Tc7+-Jz6Wpk7qKwnWWbbJdB}(K;M3o< z$WhbjbzYfoIIy_<=HX@@2357b5M1Ej1JV!uBtDu-SeH?I^)-7LsPdEP#9#b@Q5~F- zGCv3ENu1^MS6l(-kj`gmhj&f)A`ctAxd2%uCJui%Sy5c~xaoVj8h8-AbMF;_6_K7w z84p*l!0UhARI9@{c=P9M`!`7}Je|7F+*ePH41#xU%FnMs`Q7vuPAq`$k6P2<#8IHWt&(P0u>|^O&#Rmg!@(WLa$D;m5*+9i8geQS z;Z{gkyMEwb$oM2x$~ry)mFKw6o{Yo6!KlBUVb~OS2A$!E`)>s9&(1oY$ryki+VSQO z_zAGx;Wxg1Fb`3B&d-8Z@!*i`CX&_1haM?g$F5KJL&oX3>QEOF9MOJ%za)DLp8fnv zRs47!ND=g^l`Ef>5Y{%eOS;vYzRj0WFzRRCC2v})1wvtuBdzW7T`Rs zL^me%(C?T0&iu}vgI1>Pj_)SpV9MBhl#*@%h7?u&D`qQU%p$c%302mnL{W+X)AUfV}tU)#hA1>4I8vB&h>jZ}9ox^=F{>IoFtX(jxfD>-Stz zm;&ua3yClK>u@dRZy~)YC*rylOL>Hq0lnJezL1tU0j2NwY^qQfs7;FfEbUze-_vw~ zts-Mk`0MtGSpIp47%U$mWRfFA=k=iZW*Q{PD%zGg%77j`rN5j>8UnVOlQ$H@7vWyS z-lL#ucGO=$+=zT$3O<${d6CnssI-MbFll=TY`hbs?+CO5$LIE+FPLZ$NvTF^M4}7$ zXv)w0`8)uF6j8Tvt*byI?o1)ejfEIB@yN;pMnvjZxgYkL4SoAtzjyW&8Ny5yesn&V zg81v3W~cv=p!S{N&WFPu24A~*!YOLNN;%o@Sok2QTWC-?$}l7S`}=Lzqe<}ilhv?( z@&PC+T}r(3kPC@^Kbx2-vJX`Xjh5eqa4-{;lte8;fIt_f>nzRdU~tXDzR!Ui6<1k_ z*TJ1*AQIsBJWj9K{edHvZE{;8I^#y=gPXjJ_rw1W=uNsaquc+X zy56q{s*>qSr9_V*H@`U*3RW^SwnA@zzZZi7Q}K@;*Ytx}{3|w*PZ$&y72ac%*9&>F zsn_VVR^VhquEFtiYQ*i;z2TKM46(i0N?x*O(9n?XcDdRrxCQc2|Ew5;~&VYaL{&vNk5HxR2%_bTyt8v)Wm@r7tU{A^y&xY7UiK+ zt2p@Ym!`JxnBBki zKzwE96B{xGKOFwe&dgCGe75Q;!FdMoam-D0J~Obuy4Y@fVg!uN3VLfZkR#8ImL7Fw z403<097mnQjs&hT;eKc=0DfFDYxE=zoO4yOFXxSeq(*EFTNgEY{kOc}d`&kbhx27N zlutvvdda(a6*A<*G;`(+6(6!5KOvOTxCBLu>;E1S$WVLzj7-GRB=qt}W{EteK&lk1 zwaW2*usto{mM=H}Tf+%OEB~znjsFkF8^T*)JMro2RVfVGV}JC4Ux*4h{8C}nJhuQE z{(X->+sLB2VzKZq&&Pq-v{O+>&W`fV>v~PUU4{(0&LBf9H4=Y*P^O6`M-tZ4<1ty= z@cZ`r3xd(xkht%YRGvEkkCoW2y#ICRBb;HpJpv4f@8a#Zynjf*Qw0BV?AD;(S?y8! zb38N-`^uEx#)8Y(!eWl@K70)lk<@RT2X@&;8O)tMm@jf?4oKXEkF7L?oP|4}vCQK2 z)MOhZ2{n%r`RP#Et*@fWFUXKwWH%4(92II*D7HV2CBaa#)4{`6-B2etZTO*Q2HY4m zyTdydA=Ypwk^9mlTswC1;Scv==xMaLDHB43)=c*i1{M;OMwO_AUG0Hg{q>b7$34h@ zxo6;Ux(ULf&mXM_TZf?x(i_GaKIA^`CrSQZ5Pka)ck>@wgGTf57nk{Vpgfy!TmMNv z@R~dlQp1zrTyc@hqZuMt&j*a!Ix(UL(Py+gcX`nL1>Sk$v)>@>kn{X>ZXI}jOgqQe zy9#_fzsQs=h0&X6#;YDn%TP&by>sI}4wO$t>&D2nfiRnlf8pD7gETQgusNN=c z8vhsi!l)O18&q8K?LXN0P(w!gm)k0*}<5R5`0_dr4s>vr;3<@7-ZSggm1({;a*Zqyu zD1gBAm5xvZDKd4bnqLGFyO}MOMnosH^4Q&BJlrKTX6{u|y+rV=^X+NOS%Xlq2y0vW zZ6GOMnc^Egf_&9w=;ki&!*09|w)5Kz1XCZpFK6C@`Mm4K=|`AQmSj-W(Oc_4%XNvd z?b1559Q%FzwqY+g2gdF!vb8}_vykV7!#z&B|FZUC<_6er+UYtj;DK_eq3MR{6oC9f zM}P(ux*^^=QZY9M74wo*Wf|LWAgSknB8C!~5XZIfpG1&UTT~gl2`%z*Wy!LFnWUwFKEI_)lS!)ycF4CY$29*GK*Wt9Y@uu*41o z5;FbdBc&yY;Pp3aL!x~F zB*U@>ZflaE=oc?Obm;8C8?&=|f!J*racOf_%$NrGoUU=f%e07i=bha$EgAaf6Gl4n z{SZg?01tLsaZ7WgNpr!gz<9Vnq;Cc zU7vsk6p` zN%YUG7Q!UZ9wjQ*n2*3gQbfwbp)R1P{?*0aJq?@M3X<&<4CtBSQ^#QG2{@iz{qgeN z4=|ESlofQCglAiX(+vO3fsTS-k>M|Tl*T9GUT)n5&jap`6l`_C(5>q71j{|3Ob%Er z_G|!>K*8O4904N5_L5LrE0nCPbX)ZjfXRwaEFq8xOb!%ec?w66bD>u-nG`4D4{w!Y zN#6n5t(FW_zW~>^=(0z{@bHyB%>QN~72*_g@L6W0MCL^PaXO0``0z5^d#??Hu+S*( zvp5DO4njB8CISqvjgH1*DG1^bHMxiB2^X*IqKk2KE{?r zgwBklt*P2IXl1!eKXQ2Ie@{-%@HTbA756*lYRv-fjeyeE^oG?>< zTfv3~<-{DPd=B;W^BUFh;4{cTEokFGI29sbJN@E4W`H5WcU0%+HVjMrAy?Yz1f4p= zFfW09cueoB{kwG%_Dzr;Y7{~rK1h{pAEiWGH#RVDrg%_$=-0-^ zsYlJ2HsEJwIB9^37X6{4Q=TMHpzdOV?~SD$z*7|E{W`?og94E~eL4a*ZNKh({zig` zs5khdifqWRR6Jo|8iVi+Y&K>mNuaHz8!E(41nGh#TFfOf^b}vESii)8bQ;pCuRj@s zUUEJi!OCxtFk)m`kL!cYD{3cW&@9+kJay3)>49i*twQFdHOSFb$;IhokiTkd``qUp zIAMN)V|9xJ8Mf!9sN(oh?e+Nvah6Unxbu0*yJj3NoYUus!OlW%Y!O+Pz7P^s&2@NY zI0XuE_C(juD-f1f^0ex8AGB^_PKitnKwaDM0Fl%K5TdjDtvS2^qBomyto&UtZ@J-q zo_ZEu=UwQrZtVwMjXK87E8Eaw^gH^r#W1wk#w0sVcR-6=QK-tvKA`h|%o}lX8DhT* z-LQQ~0DP`#m}>qsB$bge>#B(0-k)RARV<8BiXMeH{pkV)ZJ*}0Pgp=M?asmLJ0SW9 zf9e@O23b9p=dtJRgby~kqaW`tL;nUonktJN@g0|EA|4z7q&WpMFae2PdRGakMTt7`E#puRlYCp@6L?))!ciXI4S|WbzE` zJr=#y{CNa&bA$A68uWtE`JScw3>$|%^Cq@DN&xicwpa0&aEeU zK=Dq1;X(lhDFv9TzGvA1?SeQ3*{u=Kz4zY8{tY>rl9@cv519kivogbdrZezqGDhWM zITJc%;h>KD*avd+`7Q%>6A+7$Q^H91LZ*4HrsGgA@SEjZ#ZeQX>2igRRyQLWag&(4 z*g=H~Q`f>&iR&Qjh}D$7Isr~+qr-oE+5%5)S}tu45+r_Nfz)VU5FEl*`XMk~i6AyR1etxI zg&xOA5Z4!zJd?tUi1Gs~gKImG?z?jr8!!f+1}xUNseS-v>X_07<1+YTgx+#%4M68f z4?eB7HPEbcj^C^oK`4aLbw_ap1Pd~Bh9lO%PO0Ag725YN(+()& z!Haoj^PuD(`7Hj*T*w)j5vGoALF+#}vBYN+4Dm+s`eX#iKF-r(rm_LY9^o679#6oX zvXl&g=`r}O{qpo86D_(?^&-3@?*LL*?l~k3u0mVp-J8~ytMITbIp-rM25~Ed@QAyw zKqlpL&MaFFB%^rRKCAI?AEvB7?N*zE?zw+@Jn}?v6k_w2?KsTQAWMTh*TcTG;eNL4 zwgB?Qa1?dEUVuVjxtN&4e2zS~>Hdo_4wpU%2;Dk557W#^r$!vf(Ek7c0RR6Kmxn(U z?i+^fos}KgiInPVWpuxl5s8$YQc@`jp=i?_d51=j;v$;{QiUY z^E~(a+}G7W-*)d+%OrSu{~6rk;3xI%li`}0G{o0^GhZjS07u2GT9s-nQ}vG#cVh#J@@DCKFU+82ri9fx zZVH?Hi(1O%DsVZ&$UA3>iq=5&qigf1DBMxICA(r2V-of0|9w*;V&%(U_FWezELE>_ zYTf$Kq49?|n30<(q~%t{&5uGPcv_exh?(^F3Q|>Et8kNz`B_^+D}1FW-zlf6!JcI> za^PAIe7PDyWFSza7 zX#XI@Zcldf_D336Og|NnwR(V+pIubXq=v5X%kjZF- z|EVAeOJzOhG(pD+_T0ag6Rbqvy5#2;@k!*I^XKooGzEkE9gc$q%;aZC(pGy1Zt~*m z_l4D(oTO;d%PKN|7(!?CP6c)pVEk0%qPCd;IYU~%7GDq{rtRM9Qp#1Ri?|lBZ@vkB zktO%-W+^yh6zcOdXAxb;n%QLMTHx4WTQ2iOicD(-kA}z1WBoq)s68ictxG+$7Qx4uM%BulCY+2`rEe= zyySW#8!y|4g%0xo!}o2tb;JG0)Nero;@AEwd>R^A6%IQU8X@Jo#|oYWs34-yqu0@PxIj9)nbnn(h~Yd;}S{c|W_!N4m5W4Ow-* z!9;+;I*8HWoCU&^O~0cg2pD+>1xpym(FG}L1OdvuQcbSmd3dh4cN zCO)gh!ex8axyzF%b5`O^y1J5cmwj^#|8h}pu2}rQrv`yM)h`-~YH@Y_N$G6;UTi)= z;n!W6)A5~;E>a?vzcL|G6ocT$#@w5uLXA)G&7qW;Tx0`1)Tfk{5om|!?>sA#eb_f+!}F-NN5 zc6R4Ot3#crcl)t6*FuKm+@kte9q)p<#Mt~p<2uM|zY_Q*!axp>bEOJWd(gAyK~(nY zX%q+RyL6Ou5j(oy;lSP1m<}lWO0IB_^l?s?lg7CSo)>U(%bbLDuVNiJG>QK5_#G){ z_z5_+#rA0(j%PfM z(y?d@L=EjxzSutC9OJAcx;l*DjYrh7Ja5G&$H%&uyd#8KRWDVY# zZ_F4B8N|gn&%IX_ir~U@j5S)L4_Xd?%Qeoo!gh3bbl}4!ob^u}n=|Jk2EQHODlo1h zX1Vp_rrk`WPW``u{v#7eYM@QtJ;q2J3vX=ytzHeQt@aW}4QCnQxvQdww*XMm&fnsEpJa3iB)&)c_ zRj)g7s{lHZ$Cy>q=(x+nzUFxPBFI4r0WU13 zLay?!dC~)h!F@#wC#LYJ>yCRmUJA4<{NFfoH8|E%YpTwx~m!#h&^ z%os^huX)T|9S5oOG}=(1*^l(E1!9$pT;#>^d8or+j`4>$kM7mg202b*!~GXQ?E~zI0YOUyYHl z(Spp+Hp&wBYfl5OHL;PrC-;3Tl-3aCV5eP~#@xhnH&>d5<}l9jnODct0I;|?B5!Z;e&9(^I8 zSc0%mdMrw!^EmNY^I-bgdORo_E&o8HLDJXpcy_q}ar-GO>grSn+X1S)saqu!`QD~o zi=pB_HG_QN(^PD}bd)eZ%!km^xpQxdd$2$8>Osx8HvGx$wn)+ACRSVOij6Odk)BP) z$$eq1_|z2|HWEbzZJuh{vmp;bCf;L=m2=?BKbL&&(*hjU@G``VQn7n_%lS$r7E(7Z zA*;krfu;tZg>OtF+9ypH^{&w2EW~j3garp7mj+L5nWLcV!01fjSRWX+ zX;JTMFXUX;ujX13B^?tk`_rT4iQs-&dF?%8c)0FdAkS8IvPzBBYTNc1=!G;+ZnZ1~ zHC3Sc>GN(>rX3XXPfme$r*p(rr5WrB{i5op+X=1q8u8YDt#J3amT{y*M=Y<2Un{rdP~2#tlPZda~X|2~KE?{98YeVam1jQ#K> zN)JQ|-f}Q{aTB%@-vg)at|DiQ%Hr?W)j}b`d#N{^i7@xhxK(oXyj|h$RGHK75M)GZz;scU1kFp~0fbvt~V44yG&U(cIJ(&eXANwd0+~$C80V zVY4I9wu+t8@#+Ud&^x!?s(d8P*1<*ib1~92>OSQUaghV*6V7=hCYB1a2h`ZdB{R(=?k zC0SaWoBJSfd#XwG*$DJ5G8{_GX~W>plJsQh76e~Ub~!6Df*4E55;p!3{G$KW`xDm+ zC8687kN%30%&=Wr>5*+XOuHi5$2JSIi*M9)B(|GT$K`EcF#0hiWT3HTA!GnCPx* zH1(}S+TAtl;+}~Tg^sECH`~fiB#>wh?eptRc)(fKxYT4T&Ry>J+<1eQz zY=omvtl>fiBjK3W>9G=9MW$Z7*T|(d!G7TPo!76aXv%qhd{-7XIUZ=RNA=EEC}{Nd zOqdA~izQ0nCjUAdkA(=_@M&e9r~_q-!+}FX4e%6yXR-OtG(3Z! zE}y*Lgg}e?!oPoTlE|)KS*~|EiCKc|*xFtuvX@ctQjuFX9E+@bnd_%f{m{8@CSwYX zFLx~N4bMf0M_KNn6;AO=Ty2x!z(HE~r?8$Dq`_IzLYym|nJ{pNSPf4JlVX9^R_D1X ztmZGW+rPqpyY}0Ch#ML~{;ScjD787<)_XrWG|ocolV$xDU-J=;J)cbqG-$~4__8yF zlZxoH?f%kjtfXOnH($%HX_S?@_TLvDgt|qiWbPv_!q7F;NF>_eHV`KE*LD(u3|l`L zMDh^f6DG;GdL}S@TO#^pZyyXZ7`NGpmmso0AtbP=5L3q^6T&!ZASXFER_MEgr37}y zE2Vu%o%7vY?aN5I46ZJ$pZSM3rvC(^pYLj`HJ5_+Q&XPwG8WSN z=Z0RwHXb4+<~63BTnP>)DsOllBiSUbDp#H|kCQV?CeKSoFnuG^nL0X))RYGNSb2wD z3D#zt%mWUtsR*AKd_NX^ogP2rirnyiK8pl{3YY$)2I z`GA67Qm0pc4^kkl&$ekN{rU%?OiG2@%PtJdJksc0$4XL^XP6b3`jB;b&-~R+PO?G3 z-ZA1}9avi&920s4Nr|Voii2|lgr?Kgeugs=F|8}N*uNA(tbU>Fi)lZi-6)$TYr65i z?PKeyp=yj4%k%c74&rCLwrW6*5b5<<-6P`Bf;ILg&6^my;WKvnhm(FG_?;zWlBLIR zJ-uN;L2QL{x5cevG;|4*uQ!HT}A(#6TtCzUz%HG<2vM zz4Z_#n{B7=30|YayeX-X$C;V*8=P1pV#Y#T-CvYu#LS?_|6}kW<7v$*_j$9k}nzoHE`>gEFB!E<1F zmA)}jdjf82*Ydm_n?=oapMyM&3y_SXpEZ)71W)Y8?%FpKh;rKbY0`m>1kEd}GxIKE zgH!0E9ZuY&wp-;}7S{|;s9EYdt?avhDlz2tm7b!FuLyD%J%gN{!PKq9pXE16;fMvIw!lik%a~$7HcPvMyUhHYPThpLf_gP0} zOB243x}#%`l0>X-*B*h5H2m_|VEJP!9m$*c&9_c9BeTG8RPiPacCSRNZ%{`e>1Nii zc5OA0>^VsL#HUe1GABSVS5*Kc@9b@FVe9f!8}5zk*mQiOW;gtxlnAb4Vq z++h!DhWq9><;JF^_?%(oB4sK}EZCht1n^H|Zb?KgZg2w0Omm{%{sLsvep!jW6>nUZ z@JTjFz5zC8&rEyU&|q*pF4{w7#Z%kl?;5Re-ji-I_oS76ZZiYuPNtYw5XUjq$7 zM_#JGH64X}_O9JYt=-Voy{dnuk%r_LKhwmn9vl|zZf&I3q09QU(#g6W{K{*|`li*3 z%@HE>LiGh$z8JD?EBOwsTbWkYwcMoK{pVh`11miBooW(0TaPT?r+l|%rZBPZU>z4P zKjGTwXA^#MB|mP%X%}v{LVj+3{nnHJAX3pV@vpZBMW(mKlU{R>yysofPcr+Err#o^ z^_-uiMs=K19sPsKvzi-HqlZxRNBf&pY&9M~ujY|Bl7zfE75DD21zbLSeDO_Y4kAn( zbuRa;A$LP5eg3U14Il6DS?3{O~+t5*ze2f?czui9$u6$C+q0!kK*8KjL8@ z8e}GyVn5Om(5|~I&B0GhU#ju(hEBoZ<4+Tf{xK}y^4xplQXPiFkBRHQt%6>@*8QJ5 z7on~oq7}BX&)4QkH3t6O2z}6++IwgSM?Ad~Z27o|;~V#T843MJ_i0uEAQQTkECwH!K6iuRUGH6pwr^0aAlF>));M(xU6!mSq^ z!I#noQO~YEeKsKS8gubNbUz$r|_Q*6u~rTG@sK!zuKC zf2@<>-h!sC)pYw0jAVU$Hg9TcE)HC*Ke)<@g#@`P9dAtS1@+tNYZ39|nAvsr&V`5T zh{lBD$J*y|yY19_My&jeKujl`@UI(I{myISB^CGa9__ z3!oqQA!_+P2T>_br`yH!gWs=3(0H;L3qn69S8?}Yr&)rZYLo!kuJQP7g?JYVob#$G zh3IfmkMZ-Zq~Kz`M393j4R8NB>I)TgLaejoKj*b0;PN`0)O@lB7cVI)3JBNYh;)ON z+xJ0?wx=9*ao{4?cO+aXm8L-E%AW!s%df}^jk2CH?1aPX?*8%By|^-05_l$ui{wV| zaw_gEN06(5x42I&d;@6g`d??U>Yl{jgE@sb>ZLxP??y#SNPv*hf2FvtW~AMp(Tk!K z^_R_ZRA^Ugch6|@liG0ltHORk^5a#2t^c-V49(TGj-Q=DgL!g+DTM-&9eM1VUb2#V z*Bjq{c3~u6pYQ%_nKF(_EeGa9bPlq`i1{FQ6b0rJH+7C?4#WJ#@pZh~jqv&Ed3<{F zG>YjCT?uD|NlKO7#_thqq+~OX*NLuP?B<=*;eOTxZRekB_EZd^HF5CEpS65s`|B8= z5v?9f-i+8CB{~Nl;cQ19wHn-Bs;^E7pdjT&#z>T36;|J0iY=^RBrO$*0ylkfktey& z=UqlQXya@Qg025>?AyAFjsa^)D%amTQqE)8rfN4D&%MH>K}|1<%15x#Ioy1Bgo=v^<4?Rp(Tvbza+@sumwpFGJn<6^D{^weU zynu^d!Y>)fA6wVBCB7;Ac^Wmd;G;;)Z!&AlISCTK{r0i5pI1Ccx@xL)un#f;A8zeQ zEbfFIZ{Q`1v`MJy>nDDZuf&E+<^qjxm`IbYzKTX=J2>>%wQn9>OPqfM zKkQmq#MNy67-MrG@*wp~=9MFj_}w1Ob!Jl^UVm0ipIw}QampO^V;cie@7tcj$jn5} zD|)t%J)TFwt!v`vohbO+;km45MuC&!9#Mzj1$bJO-(d4zMQlzuuQ4xM0-xp&)$|xD zhOIg-`HoE>Hf{B<_3jHWYZrI4c*{=i(!EMQsP$oVvH7n<$v2RpBRe1Qw;|@#9(fzH zQDi-q+Ia6{6GSF{4EER1aaAtfZB(3vq{zK@FZG^>B6T|Z!Xylyc z3l+%N-6NRNG71=i=RK7ERHXfsavsvyQdI7^}pcP%oIbCtX&?;F;G{lk|3d`edQ zRp`fk_9_M<`$G3e_ImWIP;J)f}h^Aj@}Wz$qj6Bz7I9_Y=cAaUH` z-TG&hu=9A95c8%EX&n4w?J1+^HjZHK^Wr8E8+kcC;Gn=2!!Gb?ustQ&v17bN%NKni9Fzw`J1i z@IPE%BgpZgX&&KsG9JcQj-oT=e3MNRJDC=JtQRU&jjm&rcxo{QYx zQD*wSc?JRWYnf4IGce5Q(EK(!ig;S7r;-~7d66R#m}@@`gVvA2WW5-Jx)@W`=N?x{o<>?DqK%Ns1?qfdsoj~X4}75lbpg$t5>H!cjRhK+!KR@w7( z;w%pR7{67(&PJMYgWfC3FQ7=k#(9%59h1B!7TTA);J^GSjIDMal?t-X)j4!rcC*+-mTl5OvC>G z0096043~F2)PEeuarVllNLF^zK4FaU4ebj3XZEPQ%-= ztH0*#m=XCQ`%6<^EMyg&IK;DC2;EauBCz@}A#>Y-!h?5~!M4Z0C|`sHJ(?EE62zjL+`UJ4;VRYunOuN)@y`|{wV;KDF;zL-5&W8DN=He3dQBmq=3(@~h2 zPXfocl1id`m=RN6M8c;!R55MP&QhrJd%`s*7@ zc6290PN&G-iIa^WwaE0k>>e+=<52kD^r|320%u~? z?_rqvJ(eSBJ_ycdsjLZuli+{H)2ty?3b6(>vl9JTkRDmUqi`=3h;70{@phBoQIpw= zPgn;LFMnDGX$Jc1=2zDjw_(ELXZqVGc$iVL|HY`+2h)ZI$2we@kedBDmw$Dg5FKvx zUBHbU>EF<|E{L3h$0(4BXJkUB60wJm$#Edl+}1OM$`&ZNC{%aCaSZyWQBZziANU`k z6mFURg&`@Qn-6+OV5uhi`t8aRNG048sP0_@;jy$%>q9)~VB6)FQ!GS)Yy~DiNgNzF z9pf=;Ba2Q^)NeOhOvCyAQX(X*DIj^gG{D`u9y&DeBGx1PXun6CyM)Uxc0V_;1u+tXx6Y{`KN9CNgRoAJZWPI?FYAJ&aQ(Q!3so>*9wLg?aQpF*Xo zHE{8@55Dsl3w7C3KWq{RFo+HRVfcmw)eGilzN=3HXYJ*h!dWg{{ zXjlj1^jibn^m|t=v>WsIJO*~^x97wo=(!U{R=LBCL25e^RpsX0K)61T+p~Kd1dOvx z-Aphj!J(^rqS>)8o=51 z=UUjwZP+JTsGcN7gqByQ$^O11$X#v2im8plf4;64j=Q07*FN114>P>KBn(~BX=EAZ&6Z@|JnkVyx(k%P3tg9EI5rf z?1z3*iM6dd5po$1#(pPLp+9En^*1lp&Y{1J}ks%CYw+;Y!|4$M0MQ)YsuvU2C!hDzDi| zjXwV%DN#CAF@y%*E-t_HulNv29zD?2)6-2aQ)3I&iNf>H+ z%W*5R3&d0tlnB#Q2sT>LF5_4Q_YAL7``g7)Y~n`kk30eNxW-^yzhV_Gc^I@Z*H*!c zo*=c+Y@b1D;onki; zjvm$Fzj}KOq%-z@wvMLfZJA8})erp0Re2?uR~!qfFHi3Z57~tFP9NOr0tMcVykNwp zPC#_3Z{nbEJv?nm{o3|}0bNyp-LGdLilU3wSg*V4$<_`N3v(yxu5hEp2L%J-mWvQ({2SW-hx28pSMWDc<{S{&&JZv_lC_K$r2~`xgw!z4TJYydR z21TvyHFjzmfmbE*^_+&YP>~zVk~zhW^!5y^tKS<0?M{*S%D`@DdeZ3dOJokFox?aV z*$d!`JGNIy;tw>i$8x-WJqdFHOOec_SP*CNJmJX4k1$FaE4c;2Nb#m?MpyDEScwG6 zA2*tX=+W{q!5fvpx1Id=9(_)Dt&8r={h-3D8drN-Jr#zgzMS^uWkydhb8%;{kAkPg zxkpD>dSLuyg2tfr3VaHVy#MG11}&B1XdF^_P;$>sl{`-0r$BkibjDp6#kv8=Pl2GdAOo zgCU{s|Cj|ngVp};^Sf7<;q8oP>3hO7C{Pb2*XfMG>~VMN;7}=~_1a!!orHzVp6PRT zeq_K&ofbVQNCEG|@-)S68q9XJiRAsqh^*T8o?Yf%g~)(FJ@R=foL|3EEbcoF+M#k< z6~KpvKA)A^#mj?y+jV$aHizNH+|236CJac(J`d0Nc@@^x%G349!w}hX7t^+x#Y7GY$lBK{`GX5()0HQv-X?6S<}G% za+rv;2{2!-W%I_K3mNBqFF5Yi4!%5^xa+O`l+TYyt5F&%+6^ghTbta%wOhTKHd$$l%VAV&F`87R31tc*;y4!5V_ zb>0tT_!1AgpY7ifaJ``XP@ATKT?8>lmvz&jY3OR^oO?yj%f~-9{^ed@fS1EZZ^X4v zgNmy_l(Fh82o+p3w^kj3B))~B=G1;zm%0}{Pv0N&1;>B}*J)UAXZP3G8iLy{pU02r z37|8!@xkX527q)>d3EF?4SE=;`wJts;Cbtv6aGJ`P#{I!A8>Y&-amuqAEuEYr1wIz zm)dSLcD1JWQgSNRn&NFw*itqRMtN|2%cy8e3CtJ}CXXMgWR>8o!6Np{GRCV+#R zG0clP4vdJs|Br$4EjD!8K};g+#|B(gQHr_?IOvQF7T&|ph`yv2KQUxn1_`8#3c? ze-+rUkelReZ_W94Q;_EhPj^+0&@_3QBKQ%?vqVnpNd~|5@7s=pq?Fw zpfZoD4SmybkTEIO#A(ih#BzJFm+>a-S!1SfJpTiR2Zpcg)2RhBtCX}R+63&geE#9m zsTmNmPeWPG>1=MlY!xl^(VlCC>6kWW)p^=Xq*?=O9PL5^E0n1aFGA4 zA^yuZF%&VH{ygRHJnVAsIO(W539ZjRMb@6cAndcGUmjQ-%rLKiX|mu(+>~s73Hx@S zx%R3owD2OM_RBZ$kNQELLs&!In*rI0zJBs^vlnKTx-*Yt62LjexSc?rgo*U3U~cwE~6XF$Yq) zH$Ws)_SK~X3f$4G$#4N8NMqjolRkn$_ce?6N)+)SR#U#}aOX8huHo1|zt#+^zV;^C z#9r8g(W&EoJPrAnsCQiXT!?8ifzR5J7g@jU&(=CBhR*WhA4O6G5lir$K8w0(FylLS z#7&PKRVSw3R<7)TfK}Ueo1}WUIv`l_-C!2NE1Rq4 zv3;k6bB69K#3vsG2dAJh?L94GfeHEfv%2@FFry4>qP^0ePfGSCuyYV#JO$r zg#zDo-;F)2--Ot->}EffbM}+F$0$x&X~9bBm5k`w?#tCilNzcvxItX%SN3Lz#N@ z1^v=YsJ=a6&BmM&@w^;U9sZ6%QdM<1tAP~g4$zM5_gDfb6H?b1YKD}!rrlpZE`Xe0 z+jX(i?C4^YoO_}F0toC!l@3;$&_8lq3d1u2h5ypck2H?Ksr^RT{2!K~?m~c3krIWz zHxY^IbbqY=Q67A?>o@g*H%%aEf@8UIooJyz$cx3!t=O^i4Hf5Rr}FO}%lNhRjooZ7((lfvB$o zezbZZ^_Xom=kp^GqDfEEEHDqL{ky;$Kv=L&l>!`S3$XrDRm z^61GF@Tp`~9QsHGcjLEt)n!T?@3tjyk%qfgbJg^ z!s!xP#W45DD7b}-3k~b>k9+n|0K=%bzqE504oo%ZIy%mS)*)g-bsz>+3q$Pg@lCkS z^gEJAYZSh(M01rpEdizJ;_UdpN#LE#(l4*(M2Z45FPi=&OsQ$V;=ypB&6InmiJ3JZ z|AAjYx^$Y(RXulR4-Z0jYu1?@n?kU8sDC?eW(Rbi#Ya({YoKC={oc&m-RQ*249RRJMbObskgoV=6R_OXWYkLDNAi@K)$z5$N zGmzMtA^*sO3iFABJ`6t=;i>nz&tA(cXuLsaFhrOUsVS+>I+jy`ntbikMm!l}elPYv zd(VrKX|LGvW;;+D6=da;-37@Hx~2S7S3pLXF&k zgi@&;s8UGPpLME+_Q_*1N}bH8rfJ?ULYe?1-}L&NKhtpd_K{Z}%yNi2@!0d<=zcV| z%V`^5NP_0zi%!qz-kmh^#93Nq6rxzVTRBfrff0oXQGYLjP%hi2fcMRC#$dZAF^nIj z6AGv1IA_3xa^^4NZ7jHqxhpaj6X96312%S05X}dvIX-lpfPl$ZeNoR1kY5}P?ma#Z zU%4?E6=)XP3a^(a+^2KiwpDRT5D`QIIr5mBCgGWTz`lUNUI?``*B-ASKtP%UV}KSn zG6*QE`DcfP{PdFr1IcBezi}}8YQ!ige%4SNU7_>tqci?b*@V#z)*ODGfL0Lt8117n z-3_!7j9XX>6?`w%Ma9UpLXrow6w|jUuu^<5<$0|KN-Jd1?TlX z3Ruc7!AO$P;b*5gknNkyE^#`C)M$t2|J=6(`INJ#U&s%G^Wcz-lJqLX{z-l|p)Z7v zt_iTY{a{3TdTG8}3^>?Z+2$h8Jp}lR_%^cBJh;}#wAfzZL4u*orbl>iP$?*-YBjzB z@4MDnPMjHr@)MyKCgUbRPCZ6ahWHPtIzkr3wism1>=y86S0&7Ko~k}G+6;Fe)D1NC ztwEtWD_5VgI8vZ6)|e?w!%kts3#S2Y6l!);;kF$MTdtiofKF4!C7S)j_e z12=YA$=CZ)fJyX9liMzNG-B8vx91{1;uH>Q6w6(Pf;dNtT=}d7AVVTX8iW3%T&~|r=0R@!!Unx+G;sZWz)HSx0fy3Z`2?^_ zVDvRr(0hppx|gTE+;V3{$BK`4$I-p%%*>F7tVB65rAZ_tWRHRE@WX>&WalAm_)DQf zbPrs!p_!gArNMy^EibD{E)*=_oz!iHK}WNW{M5Cdfkr;BjpQyqAj) znkYE<3b$I`J(>gdoK0PVi8y+Cb7EB-g9Wkj(?O$oI51dPoDEYQ2WPYRUf9CJ&!={C ziIg?STKby2t8Cok5ZNTt5%Y!&w*!)smcln7 zTWdV__M>f(fBalYFP{WDo?NLWPlymZ*U(V<4GXyOAK1yybPig{vnwLwV2v@|l>N;J zoO)&1$nU=fUNO8ET~h=RL#)`-C|3eRiGOvHvc-W+q*3)9zd?9>#wnuEj1hUKq)TYl zNF(({d!OMCy`XW9DJ}Q?+IX9Czs99ZhGBLi*qgt;Vz8_kyGvqxo&0^Ypzwi11g($X;%XT@7U_E(W8 zn`;jg(iJaoZW=sii8CryOh`XD=U57k1#ug;g?7oUgPYD957Cb!;Cb=t$!{+fC)uW@ho-cVjY$S;&LVquRvOtRZiJF zHxhM`mG*njfKG+#8Y_O;gi%LFlL9FM*j~n;_xia3>Thbdm6cW@gH6MIL3|X-eM^cG z=2*}^>Ne&Ft_ysd)n~(oCqdxLWBd0nd!Z)&)zU_d5b{?xv+a9LfP)9?3WL2n;OP2? z`%J1kkbgC;N~xYq&m(X3{M<&^74y)GXuxOOdG^F27?Xam`Tb%=da<5;$sL_gBQIN}W;+KO zmVKDpHXXoz>sY+sJlzYDxet6X#(^*Ojr?qrAfhxpj3}xg!Ae5R$HVMA=J!WZ9=liiiC`iq=D{NzKTMUN}(i0 zlBA`m$cUtbA{81WMUt!}JISVF%Q_r;k7IuRfcKa8d7kUO?x802OVW4Q2!qEjO(m`& zFbnWSGHvB0-ru*gg=?^qOaMz=O6ch9%grE>gg=Xxvgy; zrOjbhw~Ke8XBzY|k9&XbtRe?{6~EU_u#${oUu%c&Y~NFSW?zY*D$vr^1jit{&Up`EG833<)`?4z zX-3`0dC@Ru22vpS?$D2+Aw0Q#(|PvL5WG|){v0x0#H05!^q}4rFstT#*xy-;3+Kq?=qt8r4~J>APpHem@Igh-^VrNdltzx=gJG`O65GJ3LX4(%Cta(hI^aDlxh z_+%X;;mJ6;n3&RsUDoc60Vf(^KafvPahXNTfut_a^AvPjoVwn2iIpt4WHxPm(gSh* zeFy)#&Ewyd=$g7kP9m#!Zt-JgHTr0otvoX=5I-R};}X%1A|dNUl?^|!GfZSDfq5L< zZ|e1|V@J_jelpzq%OZYe)L;L8XANOG_H5?#f1}{uO_mkIJ8`ysl+(jOjflu@(h$4T zi%z=#>jW~3)T|Hh>?ME0C_nkCCI>fpS#{9o{A3o?2O@8B&-_8KV`99A79;Uk<+Aqp zHYIWwlDs$6D#3axvOZCv78-d95e^Bzz#Kqh{^8XNv*m?*)jAue8vLP;kBa zT8A|sNb3oknE8ua)j|8(8LFW|8!~s_HwMY1qgppA7m?jic)Qn`pzDt&GiLN=}lsZ)?rdS@6}ou=#6m<6^jt>nEU3}d3&)- zQ81NBodVT+^FC|T*onc*GlxZk`!FM=UC#A>45h;bn-1x7lHgr_R1fA(#J$>Wf=CwP zD{xV>f3Xnn)_MD+X!RkkvZwK#Y#&-2J()Ajg^7-Rz`pZ5({N=?{77P9Rer(!!(UhtXD z7F6*)en83TMM%K3?txc~HQGAH?0l~d2hPnd=Z?HtP!9s^kPk%$%bZbf}5U*v~aDk9G94z#-T3!Ibt^Xltq*c5cR zy7hQ7zBnJ=YBsfqpbei~j$h#;7r7DxZWVHnko!^wKc<*T^c!|lvFZstnJ86u31=im zY9Y3+*2Nf5k64=OoCVXRZod;_%w)iYTPAMbBJ??iyE!)2V$?Nv@$FPE4wosdjjo!- zo}2rEgnv&XMo^~OK)MD6DeP-!_cg(lV{=bc@GSl@jXQCjZiJ_1i!qNv3n-rs-b+_4 zfYti7SF$I%@y2slu;$VTGS@u4@X&o8n=%5#nsOH5@6;fBWmi6U;v5><21fDV@GD~% ztyIM1HYDiZsDa7QFw?^~U0~JQz-d6?B@gH9w|x522_{E%!@2jhIH{w_>Etzs&3o=` zNiv^-O~G1u`A@<`%gpL2+Y~QpoujRG*);`K6KCIYxqL(}%j6E98^fJkuYHL(W^wq0 zlc#@f8*0{DjyhiN0`sls<(ZT}@Zn?cGjA-#)AO9mJ@x}w6(UmFG(LvyPlLqMAC1Bw zEWG#i7%wRounB*z)rGY0!PJPKD>-6wk-ocV0tb?$^eyygi2H3MLU~dI>CHEqxPzF8 zj?j(YZ(j?NQ^rzi0bxt{Q92YP$1;z#vKwN!PtC$;y{*HQ4}#>8>9bJRr{k!_HOb!k z)kIkHvqfrHKit@_Z(A&$Muufvp?GF1Qi><`|F|qkMAnzcAMv6?sX=@*KgSqq9qqh@ z)9bOU89o-<-+)qGo~I5L93*3hXy-nQQE*5&+gG>tqIu}wnzvsW$jb%s35PhvqYQC6=2+%_VFs>C)%wFal7wWl zy>2ZOA}7yDVd!By%-S0Zxg8c^7JcD)`ph&ovngh6+tUpOnfcTx<8G+)1nOE;jll4$ z{yP=lF9;hi4Dv7HBpHs}GjZi3n0{rH)FM`kpL#l}ivA!QMdo*ZNKU@Go#(2z{J|5;1wdb)TD| zq#E$wF@_%0?NS?7NLfRQ4zS1Mu=5j(2F936JdF^&KXu#uWk3G&&3kUK_XkX8x0Nhk zS%9kh9+%#LQEdOySrIoi2bX>Yg_GM@iN^hshL``^k$rO@Y1pX&=VV%)-baifSGYCy zq!lyK`52~{(AWVs1tS&NM~2l4wq4J41o*m#&MhG2LKcEtZk{6bDg%rkHuvDcI?7 zoNVD6hw*i*y|J22i1@FvYE(m%jFm4hy*2N~ncF+ma>ggnxP@)oEx|ch1b@;i_nXF$ zYJJs@(IwD|1!6YZkK&boqWo9U1w3{7@nwxd6JC%1T=m};elodl+hBwt2O03$xNK0- ziOz_Nl&E71_;7uFw%+M+m|BbG742w1c0lr|Pwouz_G$CZJYXhK-<%SUbC+Yi^zu0- zg>kH3Q`^(>CLe>Q9o&n4LgdRyi=YAPIY^}LdOxhv1&`Cciss@pv=6QCX8ezrjQ?g( zzL3|1o_Bm_d6ig5@YP#~q*U9{anwC&D7X^u0tEI^uhb)Jb(@Cvz%(MGyz3HnuKe@n zvdW4u zt?F$BhXHWpDpk~SjzAOp#qPzI;q_ge1NJL?;^vG{tYYrK9k;4i{WESlVi-xCR7wyH`^|A!>FSfpZAwfaU z6W3dJ{tTdE-L2kd_0#BEwqYJKoS#6})C zOHN3uPvM-#oZ?bKC$t?oREosT6C9uZna!rU(&*cmzu=~KQXu4_k;)avha z=1nOmhm<#6;H$<4_AWcNxK=C**f@M>UxaC3P2;V*y$Fa4_*ij*his53e!<=_4hf4S z&*OvbsN3$68!fT`v+e#{*^kqZV7&Utf<_lku)8x+O~)bjZ6UrPA`d%*1s)2Sx4~`H zp5gkIOuUM|R^$>>hM^34Y=%}l9BR4_3an=$8n5Cd+%~VwQN(6=OD+X%mUZkw^Ngg( z@pQ-GEJpHh!+{7-r#^5~j&9b{Sb$hHklC6QxOL3_iOKcjO+ecR zPtzV8rIxs_$H@zNC$_N)!)v?!-Ip5t5(f{;bwNsr@?s?vr~^hxjBJr+EM$*Sg4Rv zu;C1TG7pBQ+GiP9`N-uRq8e0wI_^0dIu^bAh21oo>bH?jcutwv{9x|G_d~f1>#i~r zv%8gx74KG)hXuBR;yx=q!aq*q%_I+befMG-{mUpy?nT$Fmt`a}8ONKJGaH~{=U@~P zUW_YiN9D2@SG@n`r0?65c?_J-DQ=qj3x`h%drb5=N#wWmQTJ7?u=6;U`x=advpbIO z;(bQan!Ws(IUygm6WqIGC)C zv913+2aW7Vv7k~8GP=BVaP4k3vMEjeO<3w6)DKj(8#wnMy*B-ZVn`)M49>er9poi{ zHTjcLbn5WPseV-K-xx9~^EYHgPJ>^3!CTu;mi+Q>d_E*T0h`o2l%pfFuvzzT_=nXZ zRJeb}XViHhPy9R^ z2T}Ig=9=z30{LZ=W3Q*BiCl94?*;u%JiqQ04`374ByV=o_P&2NZ`T5>biC}X z#o0*UyH8c7qhnynjnGS9KY{1Wy_-gwe&Ou2WLC|J7hlTZZ#&Mqnl$|$d^sjJfDx`s zrcv&6Y_&XYr1qy1zYmNmIb?R=4a@0<^k+lZ7OPQow{sjpEPdKLBgYVQ)GYC-5<5wl z_dKaRHiZoz1*2qx`&YOf(?z8%piJP#yQv8}>ari&9Z6q97&p6&sHD=-Cd9&?Tv!Z= z0D*tH#j}w8`{Cn{fR$caK9#SPxYDEbw65DYH$j#J8O4T-A?msCPuX45pv7N26sbx< zcU`lw!_6_&UG})etI>dMZ94)M9EZU2#XG_I%qGH36)$-(FGD=GsPEj@(+}eKW|#Zb zB~)FSdr_F&f&+zI+57L#Vmw4yOK_$Od8QdXmCwb<`}X`xr-WokzR|SpbW<%_WIo4t zv6q0R<(B*6*8nUhmCM~dxkx(Y?&pA^4tRYFObLDQ4?eRN?iYuP5ak+U(y@<|u>IfepvkH*idUN_`FbNYoYNmEvBia+Aj9ee}Be(XIx|AvtiI7kj z7z&?8!QC=bU$OH4~L5jrJ@CvXj5k z2gbbG=%|kG&EYfohZl!y8aLSuA?W#U2m5o3#DIH-J>v`m*+AlRWVYAiq;pT2!qZX6 z25n+3J=B3#iEN+CBfLbSR(Po~ycb(59>?rtbuH*!`bM58OUSG`ZU~ zVzuo|>U4cNQtuzpcB@@R#x=cAt&nm!%1zJgtrH~q&;1{bGq3EugXfdST}`NPDY`nw z%1i?KKWk`Z7Jz%%{JL0*IB5^H|Ndb458UmJ7CpJcKn`h(K6|0QglFIW{K%*qLQa}z ziC*v+K7@Y`nJ*9^3AstD_vrADy|yN4Pww^Lw&a_OT*8bbUm@c8x#!HpK>fO2QNS3= zkCYfT*wElvr4-v}-wf`;*!TN#s&VMi;g-uqBS;A^xi9B44pkL}O^0QvpyyvUZCjW^ z(%SL}z0FL-IOmDOR*fMPoe^L!{?0`d1Yatdjk1s*H-pa!F^dqPXW_{u2ieJvxZ@t> zw;J#}ZSy=ms2(-{eGadzEk#@`{YSGp8+nt&PuUl72LRe;oV`mYGa4!t(FFRuXmg_W-G%9xUE(1wRIGLVr$3sr}57 zh&}#{wYZ;itUGZI*un}J6$F=|#uI|*I1Nl&Q zI`_guZ5h{lt0Mv;`_Z}1iyF157f0q7KHdtECeleVoF86pAYR8GFjtLDfTu|I+j^5> z>|%4>rGKUw7uO|}7a2^z?_tKoT+%Q;I$qaO+ggS)Yn8i$ce#ln?TJdkaxcR9BSfE3 zy72VQg~qqFBY3y{g7R>VAW>jY4to_$1!H$sd13f6oWAAX^GWIie;3CI*V$40?Xi3H zrLO}!S+ic6z8OYv`R2BT)IOw8eAl@Y{Dp~O?!NFAhq$s z4bdn0aQ@JK^Y?*9@M~}yIXFJcgCcHMG?yY%k7U=`suBy)Q8e3EZR`Ke}GQT0irHGBAHSTK@g5s`9jRSq&9 zo^mS2laoA}hx5kM3;3Ls;G5ajiInr^+XFW;5wFP(!Bp{isG0j4URIq&M{CWRZN98T z+NMig>O2*hfAyMrx6k7Kbg=lNcg>jov9OKf#1wApdfnC9AwnKKc23OsMn~`=$G1$r zRK#QtZ{B?PAC6HJbuaJ@;!5#qVNOq8Qt00Mo!^CqBVWB+qW?{x@=?EAT5cQuH19MD z+(gCFoUhoa$G>4}yVx9GI)esh$NG@)Y*4!HGnV+3;t*w@V|e=nrl%fEHjPM-*3pZR zISzdYYU=&c%E3pjZ;3GH5go;qp<1e^DksSgj%{46w_ z%$xr7o=cj%+o>cz(=i2`1`8EDP$v5>eB51dm5cls9Woqfv~q=Lv-LzI33?_AL7>uvyCj z1aMm4dV07St+P9pV`=rU;^_}eeA|xxh5PkJB3&?AyXJ>6bsn{A4TWy|k3xwjR?OFb z#Vd_+C-UpMq3&TrmCT{w)T@sZSu0*W@^F0L(FbkdO?@O$rP_^KHv-tdJB}i(B3$Uj zlP;tN?#kCvpd+$lwd5_Ce|V#8EN`%`7bb#9e8shENdLN$jTHtpxN0I0*q+yf%E)r} z93EEkVTKz0%a?&POzr=}YuygINA2*}D?>=^_`oKI83aWvna}4gA|f*^xoOoDJWAJa zh*!|S8#}n@Bh`c*;m*%IPc7j@sOXh~V^mn`r+120G~jYx!oafbEFN9IT-r+!BWwlNKAtz?9pQm;PZ0m7y<^`~Rcj*_@93`Qy`2 zQU4w(KFmwpTucnryxWm12%@r~9UZKZ#j%@8Au`!dt>U5J*?B)h#c$m(O#M8gW5+}y zuT1J*(P1Oqu~(Vq+9qKU7+dt`MKgZex*Ht+I*+@J*b<`IjbyvShf33%kieUN!f|2> z3Wa?3>UU;f`|1*W)CZBf98ny9o1IvFH$0PW(FUD?#Qpyi`ACxNb5)#v>~m9!Mh{LkK0L_9 z(SlmDS8hdi6X1SwV)#dzI`*AFVPj6Awromh( ze$OGT9%S8EZ9);F;qb8e>?=;OrK{XHFokokjKz)f$Dx^#Jn1+)ivV}FG1qsihzon7LO~G? zOCd={tz8O4w5Op}dTJV-yN#tRZ%)DWxwFI38&veQC8gS)sfUW-y7#*(=U~3Oom=W6 zJBfA5)3&4tlfBXGCR;)~k*o7k#_|3H*c425U1#Ma4+Z7lvR+^!@^0n7Z%}8Dwc)_i z5}`p1vga^N|69U#O)EQl<7w0zR7ekntmNd?vGlj=R{BNQ_@+VMDnus~eQjOYUzYW6 zZ~aXDhl@VCnIdWeWbo`ixBGHkkdKn75d2V$;MzGRNtmOkt ziiVp;{PUTK;A;QBlI09UhL zt|qjH*X`yFX2H{_M*a6<73q=Ad}DQ(oy=7vZL=Jm0 zVUF{`>0vbJuZ{_MPX&YE6>_d~9^(lS$2~dgAxdT+oUB{nGK^&cQzTW@Ob*}GquKRpHpPSP+Gg>B;nT%|! zPB4E@N8F{#XRaTlB{+2ci>xIb+5FjNPq|+eJiCM%H&1bqDZ8=ftTH_0qPbapMPVb% z#{DYYmpkFF3SI}zcDSkQ7J29nW9H?q*UXU>xRvw#O~*GuV&k#rFE`T+E)1@GJFdHk z1Fo0kd#xLhr{y6R`KtnccKbAfqbe|Xddof43|^8~FW%>wK*2xP)BtDOUPNv6kqd5M zCo6f6TX;^-A$(Dt|GpLlNfA4WSR03MenFL~D2jEqgeawFha5N(5bkn14N}x0J6APW?ek&JW`~M>-H`P|_i{DomV?sYp=$W}v*` z9wXh+dCVuyCz(c#pnPtuPGDsj(>o5lJm5S5t+*gB>wbE|*6ABiRNs$+xl8(GN1Cy- z=*g*EHYyw=t3AD0TEKJuMPT-B2BNrO@b?HyAMPC4dsgl20=$m6wOF0tCCf@$TT;7f z@TGZ|W!cvzpo-(hi-sQbw~U!As}{h4`Jrz1#Yw!MSE=#0rD8}?p^ARj0$Mg4E4dQG zOLiK!CGAt1#OF)%)_jk;@H(n8<7&|^vVY&^wvLD0Xpl?|esFpoxB0!t-TBJEyHlgn z;T$8OI;Ks>3KYQ6dM6Iz^ImBllJJZBhAV#~~ zvc9kg3E7#>ihdn%zWnfn!Bq*u-FYgd&377|b-VKGyT%ZceCw&c4iyiy;%2|*_CiD` z$~??;BQf3HJA7Eb2+=F~Ck@W_Vxppluw)ArfdH5Ic zb&5ISM&qcTeq}OMKZSo*V+G~nV#M6k@N$aE7$|(7>s_L{QTxq)ek8dDXPWIUKA&$# zvxm|;7M@wmH<&58%u#Sy++(AEa3!p!&Yn1T?l&GQ%P92xqvEi%s+p+?1JUC-_=<>6 z;PetW2Hz)~{&2q`U#{b4~;O_$u`)dt&Ubjuk=?5zr*5`$m z!YH1dZ+1L=Y!oB8deMHbI7xq=rb6weUg)I0?#X;eLli|7U%QJGV*QQpZEsQsa3r%} z+jZUnSbkJ)h}kPlWV_09*wvWCr(+;NBagL2tNS4*%=_Y{?l|-Bg`fq7pd$Jg)u(2)xGvbet#3_in@U!B8PdAh5y zBkRe~zIY$2a5nPwq^Z*RM0%2!#oE*&H;a+VIsiUGQq+kX36QB6%Qe<0J0gYmIO>gS7bV)Di%SEfGXbrsw7+?&GQ zM-yT0HEVk>ZH)i_bJIPzfAej~ckm6U^_aHwgJma62S;!^ME3l5m1d?H7q^LxlS0~Plk8> zu__3vszmITC_zH#r_OPwY3M}m&}iC0g}rduh9>=CoUAx9UQy3Mw1@Xwsi6;nZ}yzC z)tN?MpiU8g)dchd4(^RW4-Ro>7|=KUfNm&v2CEPqsd%q^p|VGSIDT>nT2W;p>dxyt z9VMsG^4~4$c*q#CG-l3!ViP77N8;{mK0Sl3QCTjXt?Z<;?(_SAQ-5U@RdOSWPhG52o`rzF%ORK56Ztz8>5&c9D=EnLO2 zir1W5!6>%>@%c12J_K7k7T;_$8schnOWi}e7e)`YKJ90lg?0Il_z!jzl%6e9^yA?t z2e#G^GVYy+?(QUScUp1sd3g6twp$bE{lvicO+t+Hj>t+rZ4xDKMX2s8H7yv7mnxCo zw*(^4(4@jXjnd+k(2$i*TwUok*UjjG!N$gIg>wUtcuZf$CHEOs*_5m|TR2FxuK|Z$ z_7Ef_#nMIdnoxD>^oijh7LuG6rlyqMhmk0`&d9+Y@QIbx2h`9JgRiTC&knW1ER5ax z+npBJ&Z8KO9Rk@zT1=+^Y2gWAeX9T-A#{RfE(vp2XrCHG@IWeVNMZRQ!7L$I`3hTGQ$TnWGa+F*%? z)ckAp%v#%{#Sv-!|N6(Fv2J3LdXa`~yc)at{s0w^1YeEDKbnVL@BJGwV`KQLC~JPQ zWf^t{8tB#sSA%!-!E*5qUb3K5m|OgXfpAQ@#+bWxqx9(Uyw!_y_}f57Te5iqEIy@2 zmUEiWcJ4sdY~&;|6u7Vc)uks@W5*)0Q3K(^%EQh{Ltv}vyL>~i1l@DdEblk)k(yH4 z)@I!$M1H84jkNB>ouk?BiqH07^jbsfvpFs@^7*m_^=>?b2rhidGR zn(mELuf&Eo<*Q{P^{}v7x_|5i6&k0^>&JR}(Z6-eI={R0C z_}4Wg@T_bVAtgagM<;v0|B!RB&G8>7bUYqf;&qS+e?gz}Xc!&(+x1R-9D_40{f4h; zKM=8~q^2!M#U&4$0h8~Yc+hu6CiMC^#>N{2W((Tj$+)tkCZz_pProwVyt4@In&~}# zh8>Vs{Zln?xE;zXu3z$UImugJ?=ZbLO`zI}{+xPEMI}{ia`Wp&1SG5er!mS-L@ua4 z$tsdR*>xmw zeEdoz?;t`QqlZNr8R0T7Xi04O3tJbSRhV3RXd)Fb zg<2!UTuqm?d%4sm?|o~8Y?9}j*MByUdZ8y;*2fjd)w<@M4`no@+m!#iOZ!*2U&s{c zRiq(3yk*Jj$7zVsdogFtz0&Z87GBy6K3qIQK7Y|+i4injZ-EAk9F;*A$N;|p{>c0AU)qPEP zVO!eZ4HgpJN}s#+;|NL%IuxR}&7+bg;;d2#GqJiyu?mc%V#~L(Mh? zts_atN(|Q>Y{Ro2YUl=k3PS$Vi1;bniifI$TlplWplAK8dh!Gn`&v|D3?B%RRFC~* zaXSWaOu5oGz%g}ega zDLKmlWN}44+YrS}+?*3teYbXFPCz(6Hs0D~`CqF5Mt$cL{d>AhBl&_|jgTx{AA`QS{ZfZr1COv|Mm+CGWL zaa1W5^%ng3a$chG>M(ezZ-1G+DMF3|O|FqlC)Twn|6S@TfJ4}lyNvV%dhY)?CEVAs{Dmsl~ zW^7ufksnYdKzTHXXenuq^V5kY2KsjYr&4l z0$=Anj70KPV`yXcZ~T@OmwoEWO!Sq*-$j&A@T=G(YtC~Xk%l2}PHT1|=G-;mMYmp@ zk!-j|4IPBVsmjOgfwk~r)8Qx=9YRwq{fFnj1V~KK+n+tj&8WUDGNxYMih;_SqkE43 zL<-+%O#I*y+!nnI0wQbq>1*VRVjk$*5{}WB=5=bnIveLIeZko-*(dx56sX%#b>mSGWf6{4s%DLy`Fxa%PYr z9&jxW@}ysQNqc~g3XkOt;XY}zh&Vl;xowb%SS!X(zMSGAcxPYVf2#qn`;Oiys%(Ss zLSb%91U(7*X4BJ}Hw~96?yVii7a*USekRb9mD~>IjdV6z%g;F{lcqjNBA|amp?I(p zhUy{f+bGOLn6b5#+nAkL#E%M@|D1td+mE__BSz9BUlZqgYyv|9+KqBYCeR$DG4|zJ z0a`ZyQvY*f0QQy~t{jcrByCQEhUM!3yj9F@^vcaaj9KOcc0(~x++ECth1BMEwrV-VB{ zwx9pFmDER;N$$KSO|0!WY+JZ{pc+2dDaT4nn7C4NC%gaQG822h=^CelL~4F49_U2& zP77nlAyGmeP-*G%q)ETDfuA9JJ*q4UdW4jJVfL*0--NZ^$Y-D5%ezEFs`ae$Swq`V z@U@4td5yD;4`)uLe=J5sTBD*F0}JVA&T}+rTgLj}=9ZrU-LP-6)!1^1gWRMGdfZt$ z4FBQ9gM0N`QFeH6Z=Y#5ZvJr1Zz-lDfqm`^|5j(vthm{;?_vRZY*K!=EijUeJXtws zQ+nXZJ^$D$q6;?_!wx?A*@J<8^V$bdlUQI9yt_lO1r8yPi|w-iq9i|hIH|Y`$1?Bl zs?(XkJm*ZkP2d7f$L?$xulxf4yb;>#B@9Hy{;83J`yv)23%?A!{s*V@N0U0I22dDu zHz)e(3X(po7>fkZlHPt=y@kKkVEg**W6^C(oMUN@c6W}k0u{sC=)kSjTpo! zQ$wk`b*$t_M}e5lffD!##itll^`T9Lm-pbi283{#o{3ESip{*r<*WTP#QT92z5g12 zSni85K9}bs>vrB&q2ry!5}E3#y4sGp#+MN)#f;?Dt#(SZ>un$9CvP-I~Jgvfm??!u^Ow;z$0#c|74f#J{g}8MOE3#T(*AF%#Xn{`?3JX(|lY zT)NCa$V)}ZPGbSW<6RdxR!T<>6tHcInCgVcalNFhxq2)l-;DWlw+si=l22`(g%tUL6{gzqF9nSa~K60Js0KK&}TYJW71 zu_H44bgQ&${q1q`Kf*(fh@I{Vk6%J(w|#)vSUuPbJf29NqQc2m>C*PU<0z@rG8=e1 z39&8eVtr@2aJjXj)Ky{$EvluqmU3k{J64hGA~}zSf{tUiyT`%${*7DH$9|M1M`THM z2$N6D@tG}|QsmVZ^#{yrc~9iJbE&({xZGAFNQ)N#^6+NC-$a|bbSTcD>?Gi01H)h|`nb-l9MkyBu z_BH=JTtU6EVHRQK+eeOHn!-VO>kA`K*vT%rT4Jq)`nER&Gg5KB~ z_v&LyD6h9p&3z|MlA`YEWE;*QMDokyJtbW@X(GKT%d-nPNBwTNTd(!K!?Bfg((8!$ zRqxFYq{h(O-uV7f%qVIte6pV8QE=HnQtNC)H}uVVY-RSB;*9Bf%P!h+xG}wOKRA(% zdXip|ELn+kht`;J`UyDhy(li1DM~W#FUMF~^&?ApTT9GNF0y)xtK7D57Az$Os+UR` ziCcvkSHi|RTzT{OaLSeec-~}8wVo6umwq`pmY2>#iD-`_MD zC)eSlURQN%EhEYMb$#}t=N!0c3JUvtI92>2S|4s$A>5@rtb zlNt57Jt`YUz;JJAx>=2dG;`WKlT%*v(Tel75`KMfGv9l|KD8fd3?s1%*3-~h{%dGg zK8N0i>?&KW8OUWrhhm}7fAA^Rzvfvz3hN=!y!i+o65YLcajKG$+;Kyl%jQWavC$md zMNh?--D4Ls{?5VTX|7QfwE>xfv>)Zln8@`9&vWXWXAmm$?9FANAIK^b(R=);6NgUT zW;XxW3r9jRWo>OktUNt!lET%Q4XO#iBNn0E_{+*>}@j~!6QY}7WLP{Wcq5neZYJJrdu2x7X7NBG`&@b?szxe z&V)7JyGKFnUDxAFigV}_GOsv(YZ@Oevm4z`DaF&vuZAxQ^`gb^Ykr<)Ev7i5t!M2P za9ARcEw-i+dFGC?b#^28PRo&Ml|@Br&^aMV?+$SMyrb5eLr=s{Hovv9Yr`Xln`t>~ zKFPo>;}NXMOw2Atm(-^=pwN82GRC?djW2ncIdkYpVz{t+%{@j^D(3stOR5)UW`W|m z=93W5)Nsqlo`ixc-Gg+$85F!=f4ky2gRD@mp^LYAAR=QoGkEncOoc1!f4^WN2b>Hv zR5o^?eE5v$gy%n8I7fZ-lYa`w7WzhW->oOp-tuEIRXtGacx(NGu^S4u4Zj}xx4|SY zD(`I559vfHhiM|32tg-n@bFcG&4S6j-0W}!C0y4;vl zkF#}t-Wy96p>k~BwLf<#;4-1_Vw7vZA<1L8nmlvh*PvQ5Os#R~GHC z;58MFch7S$e{M&n<({;yEWcq;;?H7utp{g5b4_2L`v=k7ol=w~Dwg8aW-73Q6sC-c z^Xjg7XWO}~6CYnJ?1vJoaZLe7e5##UmJr&aGtO1um}mv z?tYrOHeZ)Zk=?y*Q^+i2&(GX4i?eb8O$G7HWI$(5eI~INQHPc*{$r3MTN|`m)IZIl z_L}Swhu`CvIk8`RlXnkJZEc?V@VfzXi_e%Rg6HteSGpFQJfueSThHGpabm?G|A=*S z2YlYNbL@(kfJnV~-Ji3ZBuu!3yacOexoh}`oU9~&HOVmT*z+Kt74%QjqGH2s=Kb9ttS)KcCfs&)Ns%;taQG?7rW-y1o_VD$$KzIE zazHV1=j(ZhE$=A#@SL6GKlos9d_OJm^SUN&r?`sieB6=+<}Bn~{->24ZguE1r(_;t zW+zfgoQunBT;x&Nv&Djb3T8_0yRSnR1eREMl!Q89CG+IPU#&HM8wuS0V^@JHZfTzp zE?%;gO|Gm!Zyr5HcT35U6~uj!ex|jz1xJofZ2XpAf{Z0QL90WR;80r$P%z>pjk>9x zX*6vZSWY;%m!li~^cW$Vg_AkV0C%R8m>VYDp@z5QPerva|Qzd#|6p`TPOryw^F``#$e| z?+j*n*g8$Yd6mp%JC!xGDU=zW)a=LmEiu$j6uY2&{NTKORy)3U6*q84PT~@8Zeg)} z2a=@rUXVICfwE`cwh7;F23PE67Z0ZuNM)_^T~8haSJ1yx3-RONy%sF^k(-w2D&5K4 zXno)6N0lzjLjEm8ng0EcZ ze`a@=u<-RWOf09-cuI`N27>JmIy_<$3JL)!GBK zYa9;msDC5CU1{J5+awZ;x7n1(&q6$bsqeb{5`H;7e_OVNmoNmlgx2l=*==Y2#y+qYN~)8u6~^W;9CPom&aq+y`=)ycwo?;>19V&wU;kmBl9KTL z-hXg;9s4Zi`z*#1FPQT5ZzSCHYH?hCm9R- z`V^B$AKrWjKh*o69rn$fmUp?c;cKB$Hze5wSOq^`GU6z#4M*;1{lKoa8y)cYWaP+mSfCm$MJF|HmJ}O4nm^n@0PG^C`qi+KU z?0Rj{YFLSM(AkMLXM)3eI3wZN0uG5k-Fd5%iSR~sSKN@GAR_-olDg_2JaJ46kp5nd zN8>Jv_trL%nxZ~StK>=SDd0-U9jwEfQrE7?cn;F1(y}T|MM3G#gucMn6A+v=82Vtw zNrI!*?Slo@>wZ~#6*WAIoRhSfZFh1YdCdK+m`6XNpKe$_I^F|)>GPq1g92pw!%}U1 z)ieZ@TYaN8_d(au_Gp911oEHP^sCAC!E3MSfwuZClr!=)h4##Y@Nx30_cIbGc)dJ% zotjvl2yLUgFo<_E+pPQjdQdZ;8Y%RC8dq{v^wWCj$*kgIk)X^vaOgB1K4;SlF1{0Y zBJR?XFlrXF{EQ|HpQ@YSoSA@~xT>ex*(SJ6{L?z8L;_}z~pJz=H=80ylC!y{bOnhb-D`u)mwXULo$|Tk!28gWOSVG;0S&e zDTs#-6=BtS<2{dEBXA6|c~Ym_f{-8|`6?DVa>y+z!d!x%2r-?WGz?}VU1m&S#?*`? zZs2Lf?cx>ezN@?cM&|lE@9$K}ip;{<#;wmPz2*?tZE&qjk(026<{6*-JcqeC`UuVG zV)#n!P?YWIM#GVo3SPbmuo)ixnq@iw>OS|cN1Q6~mvjGagVau3h}z$J&SD%Na@e|! zshV&qPp`Hxp$WMHTB{Y5A_Umix0fGm1=DTo9Mz|$%I3iJ#)t@*gxB;FDnR;Hu3Y)hx-_aSGw^j&5=<^`bqLx3I78R z_c^(OU40PqxXj1pL_wlWp@9}}6GTI^_a59cgiyf)?y0vc@$}+igu>q}ypg#T^xJhF z9h^Nz!QNBYS)Dqh7&4Am*V-?s(K3?jtlEU7hLie4Q^sKsQ3#HHziie@w=J0VOWrUWu#}1*azD_*e zMTkf(ym|}cC3xz1xv)LrB)SvjxvUo^p~1FdE^SLq0%9_~UX3@QH}kxYL*!QCSfZx7 zH)#Q1WJ0|KUQ8e|?XMQitx~8haJ{X!=!EB`2Nz@{=CS$I(ZlNZDF~Hcn_0R$2Eo%| zHEdohkPcAWV5K<%-O`)gWi~Sqj^8ttqu2}Qg)Y(O5*tYVqZ2;+1n02l-=>r~5e`0tRSP#~S!a%_`DsuRnluval1sqX3X6Uv0 z!0=F&JY=FEoU7nojruUeIawZgx}{@)XfLsLGm=9A=5=CpW6%xY5-{7>h9Rnbp4Drt zgjwlv@Q<86eEjoYb-|TxX#UMxvW%u8-~5*18F@M}5IDSRN7Vqli<#weStfCyVzS1- zz8kJnWkYd?6XAAXduawsHQYXiTj+^Tp-al!`*9-+F;~&~%f!z?YGqQ2ev~zXS+Mw4 z&gN0Dg-CP%uKA6{@tqR7^z&euPL&sk>Bd;g?xN9zCHNY$Ua4ZICub%`lq~%EQPwGR zL9L)3{FC654^$q{Ow!?^6hB@VfQo+c>^^XtsGN)xz%P z?#_W8F0wlH>W12-?Icw5pBt}qFSMA?(kiJ@6T>qbV>G!sa6~#M!|l)nI0bgIeeRmV z#p?;T_}4z+#<$*1Eu9&dKjbjbrKchKABz6$k8Xy(&Hc(zel}vlB1fnBYY>7Z1IJ$R zjAPQbI7pG3kr+lDEE7LI1IexF$9>k%C+J%V?$jHCYn6}bj#4_Z(qvA{?py)!K#gEk z0~Vrp-u70Q3Jv+!J3Yr8H3kD-jcAYceVDSxSZuVg7w!kIbA&#r#B{ECRn)6l2$oie zhis)M$IBTtGboLy8L~Z_q&k9k<2w~g;)}qwec{&kOS~k;_S>CYhb4SG36tQ)cGNwV z_jzvFhh?@Lufha2lC{TS#B8k%JyY9X((YYCVAj6S%)ml8eO3}myio+tjC&@=IrS*} z8y$Q7^aL>as4y?E6MG}uj};ZslFJ{cmgT-~AS&5Po&it#pvB8OE%12}|7PoSmeod) zeAxQj9jZnot!>~Jy;%jvC$$Ccp~E<4<~kKHHi3h_GbQ7j3NTF*o6aIn!M>kiqpPpF zAbf3YAT^tUk*mTX4_cbBndf%0P2nYT=Hpl%L$`oxWoMD|pO&@3-t&zBs=5V}ctp3r{( z+kZ3J9~Z~=p{^a?da19EGELt*9ePm(s^$l|M;!aW8X13+W@Z|-rAM4Mc2A%?ZQJp)HSEN)f<5qi z9t|nrtv+_!wgX!n+f>|we#5rRO^oS7Cmi1ThPW%QA}`yky2yGIW6$58vigsc@Yfpi z-l-f%$M-egi0>@qN?O}R`RE=fJg@1=)*e9=m-I5@IZkr-*sM~g&<}LqaW!J)=OwHG zCuXmF?t$iBlf$WpvT)FTuaa}|9L{I3^i?plL+X7P-FCWm=(X(Up5o*p#}{a{GBPPx zDPGHrJ-dL_ULK2&dsxWnKf2a(@)I}`eW%-&uLg(iExIX{&=I3;#qCPtYlv&6dbwtr z1DcsMS*d0kvNOma^z7v|DDJ5LrsFXK@qhDvG~rZamyF`#h5wjHpiABKEz*FadUsbc zA9UeY+I!!hPW4zGf7WH~F^kBVXxpEUhM^UDT&-$EfE;IB4om4DL5bqI^NntO@DzMe zcjoRizK?AQ840O@#-ov7ful7t;%Hxbil=`_XmZum}xR7NI7pn!#JX)%7Aq zk8*>Fo{I#Q%+pGF_F>jhm(A0?6$)H|8!Z#&;Sv9lQO1o`ZW%k2iFE%LA3c)cXbP1~{Afhg_>~!SieOG>svvm|J^o$QHv( z%#^kkHc%SSEN`S>Oie}TgGx3q{9qt%w%VC1LgNVL+~KEjjGCk;Zx)U*8-q~D9wxeN zf@FU7?q1C+^(eHWlaa6QMi@!|mSi=KR8bj$0-Z1DV;{I^8CVNp&+r6E_A!W4&o2Fm znFCAoW||DGNuU2Zv&kEEu3S6uc{lNJAn9r~i(*rye-#(ji=sB4Vd`LA-3FMhHq zdse2vAAPP!vZN2cl~)?lKT(mSyGMoe%x6*Ek(KCaH;*c@VUepRrqHC*^;FVv7{;Bh z{AwmlLzMnygrvyk9W9fq9R0A@(+cYofG-5@4VdzLJljZR{dvmgH8-)+Nspf#IAmn5r_4a^2hl2oEX<+xm+-x^ zpKEx*ntW+;o$FesW~*11vaa6LjUQtgr~3B$qO}i z`;@gh+<$b=)jo%gEHgg1wO^KnDA%Uy(ucyx^ax;N&j^Go|CF_Q}%=Ei%aX^Fzd-lN~k2C?_dORoc* z-MHWTXGfj(KkRaAD*Jkto%DV6&-1)phv_HpOCKH^!^<5>_p~ymp^*i<?FL@O&6j4>CM+8F5Dz^yORwkD+j5tzO!k$s13!}+BW80>VW?qFRI_+bY#2N z;9`WpG-kZEXG+)3;LS_(XvZ>Uk|cd}MJ8|r*Q7YNn7!FZ+U0+}j_qv6RsBFFRZT_` zZz~$GbsIO~IWf>Jvor@mQ@6&kuk?iZJVuq7M!+w+WbUd%0iC4CTdQZ8n5VVQRO%eW zzK79W1M72Lw8WI_zO@^Y{naZXp3{gJf7Efie*k`V5B7%L>_nHx0i(@hZD`xE=5Mh& zgB!DkWbeLyq>_^!zcgsbxsPQ>Ue1jpD>crPW4&KAQ`*D}z?G&Dyl}RSdhS`v zU#BKPU&5Ep`gs;Me6M3a=+wYbs=N80%P^j7Ta<20ZN-Dm-N~sRN8pmwA$r4KhO8>N zIA$FeCoEpAsk!TU>Go7LeeoI<@nYH2HtExXcfYgw^ph8nQl%~Vc54d+%KY8$I&CIT z|E8SwSKmf9b-F0e_I08{ax3+W{y&t+poP{xXr8vI%Ml;{mK>1(;M) zcfesk>+S8EI`NF}+eh_?HPkv3Z4~#N#h$Bbv63`72>!TT-z$Nc{H%#Pp5s1%&NA7c zx0)U3p4@1@<7OZ99_qw+7ERz}`Lu#_ay`E7EA-p1R*e;TiNcYC1Bf@g$9X1W4&Ql` zZn&RW#FuK}urcl|IJ3q7{K7*;LJF0{2gRt!36(%@m+~%L-plO$eBU7IoVXbk+g5Og zl|Av~eJY};8k_2Nv>NU-hT#k+C}0YH{)v12{zHNk@djnCV~C)S@$=aUrad zi%3}sKaUYx#3emVyQ4K-$Ub5qFQ39nVtEHz_l}?m6>Kv@nVrl?&b-LGw zY%X&9N2Kn4^JOg0?~3y2=m4GG!&15Rxm-(YV4T-xB$I98&t*(RNoZ~nuch4pY zbWr~9W1K|cigg;zb6QdoH6pAzyzUtz@iQj9P1tFgH7r$GghO7rvj@@`Njhy&YoXCJ z=3hD3COTDNhVItMkDJ%`LbfHR@up$i3C~XWv8NjxR3g_#C0gM#6}j`e+!WRh70#*L zreNTj`^A#wAsn9P?S0>&rh;> zyepS9#mSGCvGb+w^N1j<7MyY;D3};Ci7s!1%xY7^n&~(g=TgpJ$eTdXGatXqrCRuO zeLQ!kjfqePbs9Zt>A|VH;uca{DR}%oN^$Y%IK*#Nh$VdxCcT^9^jMmYVf$3%05$aj ze$DqV46pSg%y%fTMsorT@yRp6MP1+#ew@sIq8~{rN7#;9Ou(R0Q|VzyJ@%fipLKTV zhA(XrcX9$ZY3jA$w0+isl}zc~mPbqR%Xp19(5x0Vq05|1zU%q@$ZgaxUx3WE>Rq`` zRgE0qlI1&#tq8V|FkoIAL160H0h4Xr_+}J6_QiG#T@{B7PpsFqSJrd!A8tp)5Ld0e z@-T)|Z|>IMn1YW_L>gxt61)%XPhupa1Kx3Y=ej}rX{_32-E$daZ7RNQY)4zz5Tj-FDlUHc zwd}oHlu+ebkC^7n!a8N+T~6vwY8b_9$f?O}{`xfBNp*Tc?FB9ox= z*|^1W^9bZ_9mwm~ZNX4So=qa_AXGKx-(_FP#YO*8!*^eXa9Q|j#ed^}z}0-)RWqvw z3Z|p1Wj7{3Kft|`wo`!2Q9?d#W9h~F8t2HiO)R7@^orRluX((a=6CR4=ZY`y-c_d4 z)*xmk{;JjOe*Ar~bnnkTVM5PR;LT;Ugi252LOvH-5-FFSoyfX|f}~BVpUWC?eE!f^ z?N4;XdC6%V-) z%h7(G;}@*Bku3FW6e;p*&r7%WL5-1Jb?=xM$yeytk`bgLdwuyt3W*%?RypwY*IgC@ zb0(?h8r3+^=C!;U-h*jc-I=)LR=i>lr!|^D0|vaPp3fF3njkQa~-7kr~{N zL#ci8=l;@>ic|VZ{b7}m=)adz);kLMH-C&(&-TF~vB#`6V*)l08_JX?=kTiADE8>< z6{P&=NPR%n0(;G4RrI%~p`bQY_os9NQQM*I4E`Skge zs5!h0`u({>un9FK(<@f*Xh@IhRjOShi;xfOGLerfLiNK%3rkQcgzi*#aa~OpVpJ3*lNr zm&t#8z3=Gwe}w8$z<4e%gnt(=i6}3%xp}`5Y`ph2ym?lHaoNQ#Q~z;XkggAE)#yg% zxGatNsc8%`ytv&&N+QRo820n=mxs_hjCu7BNQUWcS%6guZyNko&71 z`|TP!w$UxZ*E`sF!}1)OrS;{)xA#ImF4->2lZy0FnMFQXZNTj!v9qN*afXc2GtgH5Te2$i!OiF8Na-t$yEi@^Gu><%oKiYdk*fh%8KTD0d zjv(BXo3HN19604gCI0^Jpe>#$v;v0M{=h{*a~sb55?eW%f7 z@h#*UShDv|v>>WvUvWD_4GQH?nVtVHA5T=6`a&7UF*$We;70Ex;?yh(9m8kv=;dHe zs&@-)n|A!!Z_|as-X0YPT54i8%6w>_1Q#)z2<<-;+6j@kB6^Q?e#~W5&*`~dgww~h z%b2^?xxqZqE^}`usvBIIo&~LYtj>Fz5;g|HC_Cp+R6dLCpEd`nPt{;pwARufW(A@( zKlh!u)B=k0@a=oq>mFLHnf}>e30aS4n>BUTbMK8oJAd>TPJOmulek4k7A2US&2sDD z`SX@Zr{l3x$nfU_zhVM61 z1x&%2zQ;r1*#uStwyBZ|U87AXlr#F+8D{=Ml9#C`&HwjvBnf0Sg6T$taLz)+Ccss%K&cn+HE(Y8A7Mq-no1UT5?&|?}M_=B&3#F z1G3`QaO=v=BlFr7aM=E&OUZm zx>52QSEk`96h)J5PfvpGKbf#R-UoC4I7beXt;F-Qnr@WOBL4bqr2Spci&=}n0$KKM zoPQb@Ju6g;)j;~U-X8Oau6O-gaGZ~PWRz@=&lD#QT7#>8By?f-jYB_n-yTJA-rudy z9&wRmj?C+CbJ)nyf=9|plo0FU&L3g&2#(#vxs-Bkn27-f)qK=W9$I~&>v5G zwA-17Tu#xGEo!R5r7REXl>M`?Jeb3FfTtZjzh`Y%a+pX}y3=5wMlVLS9h`W|%CK`L z=|Ud6Qj8)2f;1uw*4!PW}!pn%#IVz*edDg`SkW6dC9L zQ32(8o$u;mC0L~Hmdz}XB*Mn$D}+p`NYv-RyXs^L7thwW-V~b!i+Jlk^1T<<@!c(7 zYZf8*U)0^>ZG+$(u9RhbH;A!bmh%l)8AuC#o}vR7$(2s0=)(e3q}$ud)Jl_{oM<}k zoq2r*dyOboqLGVG3N0*1=kG>ZL7gar>I-FY zj6}O_mwV>U6{J;_#j9^v#I5raTUcZ{iTTv~3(gw#7?kw9dXbHW1hU`rU^qcXGN@&y z^Va$JPjS^R!(*M;z2UN^IZF?`3$mRgn%2E(gU$7VpM@~iZmu^B|rD_^Xsir@2)_v2S8v7T$vTq21FTsrZ# zC3uIHGApsxa_>IqLqj-9t4A&y^uS)wIdYRY1^RO-YaREOP`lbFD;H=lWA@;pxDGVmvfw&OzU(oVXq>;JKPaX`I%u z3MyVo`y^Mb;+BkIO~%k1{4D9u$g)$Br}oG87~Pt}w_vG^VtZ;bX}VZ9C)J1l0RRC1 z{|uLBI2LRehQ0P)S&6KWk(El3>!GDc5!#_)r}C*JL_@f^o>U-x+`lj4`xzBR#DLt?UIe-{?p*!4Rf_Tyu^l0K&cJ1KpTXrY%k z4g*S|knx`xnEYa`(a`25$v-El`$D?$_LaJ7&D|=jcWC8=ssoku(TpkGw1^ z9>>!W#>S88bLiu>@46nb0N2N!=@!=fr0e15sq+yNh;QQMPYdpYm%43lsPZP_^!`&p zoNy1`?;e^zXgm$dmLjFf-g5ZmMI}Xc&SCD(Xo`l=KYU?+mU_J*7t^<6v`?>Ez@)K3 zzvWXw!V`6|FG!^v`^^7R#g3JuvUAq0jwbI1ssdnO={4_H4 zhm)NS4MVkbOY?tE`|;;+0(+%eHDY0y?&~N-9%Wt-tzrL;OJgO+_cwH6-=v`0eePDc zliBA{syXnItg~0;?}SayzFIB!0_P8;M#S8rKQ{BGp2jh-Kc z*F9T`^k^>%nEQxDK^er?xu4nVQi;Rd%(lllMxbk9H$#sd#a9KfLk&kO!Pshi`*>6u ziiQPc?&dDxeTYV|g^d7l78>eV_8fuw3H2kcHd#omXicOZFGJfYHjWpX5@gx`oX)8l zI(9sLW@%ti3o!%DP06(aWJ!WCV@YxlOkAnm*V<|DGQ1qzdX3CNmI*j)@`^8?RQJDJGA+^bs?w~c@z zyyfm;MjB{Oi{}G3&caPIdNH=K4|<*weH+&e!#LGj_+0%M&NLhp_;|JyTdySVxnnkr z*gKo0FI3jU{YDPE-4ABsR4By!E@?FxQ2@h+%d3dg)&pht^f}1rU70|eN;>o|nu&RH zGmxZmn>~hMe^6P_p-C;BM*AoJZk2f+lFGII!|2sn9QNM*;-}kR=xBYryC+5-E+KYd_M^9f(X#q2byS->wE#6D1 zgh%}=!Dr=}rh|^Pm>j%Va7%g&UQ+pXL9>%!kN4M;?&@vAu0m6Cvq3{EGBh2IZo#GrS@i9wr{f${> za`@ue_nCqWL`Jfz*MKTa7H2C8=%1FM_2M)oe)AyWckU`)r<;eHrBjELg}ZSyal<;@ zfe~2PQBT}ys=>~>-%k6(hjEG9AvRyT2CvnxzOR@60jteP?hc6yDCqKYSX3Uu-Ii<< z)yrcjnq5<;=EF_K(lq|i{0A_6&evmta}12MS}Cgc1aOMY(@LowwZ%4^$0PHh(NTA$ zNR)|iAGy3_d`6f^^dDuiVq+oVj%@rEeuMZSz5jvW`fga47)ETLks-ftIs6LZWG0(U z=at4}xkUx*`%_%!w`m`tdaPvE>y{MY~X(;%UkKviR1#=bNDZeM(c zU}-wbpRGKLr=MFb2E9gL;dnyE}Be=07<+VV0hBI8%9J< zTD+zmuNf#e9Y$tg$#6j84s$zrn>W!EuMb1Vd_3`_S3jQ5dn@NqS9(xrG|+X+M=16B z3oh?0g~#^=of}hh{7k#EJCluv6iKsXD#x)A4jz}nOXKa(e^O>wE!2ysn!nb6r7|G$ zA=u@5$|Qu^4a5rev?4r^@-Vc02|l#~-|KXkNT#GtLcPfV>@>_qsisZn9r!-N)4pE@fwHuNu*6q@4nme z`GsRnWbB#UzXXr>scFyLSdJDhK%VL{0 z&*BDq_0uADZgMM~C8gh?1yOu`#ndYlQuo;C;HhjHa-}y;tlKvMIb#PRrp8Skxn9om zaUX{;m$t;Atz+>1ckArnxgnU`?#sJx%uc-iq+DFKufTMBBt>%%9|_(y#bHEU#LLQm z>*F_$+7lr$QCq8UxNEVjyKe@UI9z(1{!oZVm#v7abO+L_ z{VIlTQnAt7`KP{WH53vWM|n5$kz75-u$iCBxLMrCD8JMSe|LKcnV5b^{4{c_{lH3^ zWA~N*y4HiWeZ8G`e3voP7Sbr}mkp2L(d~^|g=l?QQUBms9oq8OU3^vEhZ)n0Pl6sd zBJgWLu~QubiGK6rh-=^~k~ShVEO4d+$kN;uR7xQUGX}C6Mx!u~70-+1s=$vBzXHv! zD!flHSh!!&hicyd_u98K{N^s)u zs|#UnY9A9>EATE^Df|sPBT?qbR!ebh$Io}=pUQj&vCY=`0lk?*f@0z&6|%b^>Dk51 zd~FnKpI9qc`%l9}Ye9$7E=Ck%jw#VOSNNfWvo`7XBn}}yXzTVh5m@Il(RB3f#^Hj}+y_-2nRZ)4zoAw5@ zX(<1c>R={CdlLq({AMG*=8v;je~e)2hFKvvNZS3SA6buk?;;#>I{ zv#R0NGnet~R1fl`{Cmo$Cs7mDCcb899LJ_l)?Q^=O-yuN{FAMwkZVd+=3WUMnB*cI zH#h#o6eq5N&ee?qiX>X@aeC2Z41ss>sctjm||O6Ig%TV8BC~ zmy`$c28O55kWbO$I%{2vE3H}gp1QCQzMZdv|J%Vz)TmmmSC@;?9bN3^dW4NA2&U<) z+cA)QO1Zk!ff?)%$p0b9%|!UWkbNdr9E3%}O((pg0>X29$~FFW;lI+`QrsWvL0!Jk zc(Ql~U)>DZO&=O#`Qypf}B6er}t8G-U*> z)?#~Is>`4p!1Pt;Z$82pvy<6&k3o-5llgPfBD|YCf@*Jdqj&oB>)CD*LVs)Ie15DM z@m@9~8yTBmWBgjz{3{(fW7%=B-7}cA0KI^dJ2%U%TmE)07iy}l|6FGi3uoXgQx_@a| zQwS|d4OaY#Q5^nbmX(f*7-71y@^(`|>7S;nup6<+-pI5U51g=<4g-pbX+OkmFj zBpBXbJ;}^82G(zLS$p>}lQfBMl}^-l zDE^&YVxE`+-_J9tg|fmX^wP!=eDB%D=HXuKEWLL0<-K8e1~X_y2DD+;=$WMBwjLA?c$-bz zuOTXu{EcGv?I@QwpGlo*LT8WGR%&4`D4xq2@*5YSZ7^5jdWDgA2D?8qOCN;vb&|CH zLLD|1^KtWD8Aq4Oz83{5i&&^O-=q~kgQTXLMs;@^ahCog<@ttTSm(PMU1pes62~9D zIQ=1rw9=hWv0e~Wj-=sZfe4vz)V^=*NlD}Vj`xM(+LN;rs3^4_cT;+3~M(! z^37;B;G644W}kySp#SyXQE-0c4*iR0{21AReG2u_O(wkL-5r-Rw4JpO(QpoxVr3=Y znB5K=u<{eLoCkUL5-JcF_xy0GBpnYIbb_cQ6!L06XOPaCeiZjnbTuE3p!yQ+x5aHn zvU#eY^7yr3{JA%OowJvV80a2|Ogg%Nk9oRZj!E`H`DD^ox#kWmwX-U)Z_S1H$Yh-Y z7dKg3ty?~Js1CscpKWr#4uV^;=6&DANo+Ep_tBdq$@tQjC0(^Z`=Gcew| zPvL4b8(G_^{c8u?0Cvg_PxDs`5#fUkg^DumU>W<&bIF;RbdFTLV~7+W{Rw%Fn%l;q z#dE;Ex08iDiXODtE7XUBmUsv?|B$^vx2A*BF?9Ow`3`VzJCpMy zi9*bNDXLw0*^e-q!KF0aPN+r2vaGp7!>1MlQRS>DSg`%BS#S~}*YAa@3M;b{x8ML0 zr(S@&qx>|1r5U^yG_8DApN%6&ze*a1uW+W2?D^P`W;_u(&Glw(9JRlLj+u(hA}1m} zLnW^gVWYW8>gs*CpOD9rx{_zdwnGKghGTHytBu#9DUg9wxqX%_@}!{5(`as}1!-{% zvM+>~h`70_Wbn5ZXdHTZeVfg~3YQ63q{K8}Y16phv2JPNDN=BO)X9;BCkLFqMo{sx z=+5zjnMG){6FegFrXAgZ9wqBHjN`*2Md#Ob_2_2aacg{U8z#^Fdicb)63^F&e)^@i z@}J++IUR`Qm04fR;EasDjyPnLYl`nROa)q~E-W0@1W5~R=n*T(nn=_p|Ivv@ex zh6x)d+KrweJdV3<&Q-ujG}X1_Ph`mv3#+V>!h$}WJ2~PoP{T${3}0m4J+Xv=e;#X9 zHV(lxpdeo%w+i;B>qDNplp`(Vti+n+dUU-mmf~mZggN`>Y7JpJGD6O_7^en=N+STq9vMc%p>YemV6tu)Oa*BHn{PTxGeAU-1dXZo9G!y;0) zubJ|epGDW<^7|}tojCI-Cd!V#7+WMI;tTHc6DLd8Am4r(+}ac#P-B{qO}En+IogP~ zSpz3^i-!=Ob9y0>s~Zd{MAf;r83vPs4W+_UV6nP-k(5ti^`@u|+l~#QP4l+COyJy{u%|Z^%O;8A;%bDLXOOn>_DQIfqTUwl~$M_=u3Q;`M1k9^&+ZHQ~&+ zd0hWmvDg#Xg8WbP2F;;SOzXs7EZs1NS< zQ#r((H7B1djl=(rwkpSM8o0mbTQ2!iaYWW@^K2+5`LZehmY=pX84iA-EEzNl56vt0 z&-YMqCBrUExx5Vl2W4Z%&-G(t-KUmkziCkNW~iIBXh!R+%#zv|R^sTRD>1Fnilce2 z`n*`i;VS)HvTntbw!vjadh=RBJMd3-SYr&c1A9BSt@v8FVb=jWxdALS`MeSOJdU+B zNqQ+M9k?v$xlSh9J@XrnNVp zffUWPUc5mOB%9mIt>@OTlO6B(km!mw+&X>D@KnnZ)Yhu?@sCeK{g6(_9p431i68Jy z(P1HVA6m~bZs6+u5%F4s;(yPkp(2*`~2tqiCM5lJpIU(TMv7i1AFOi19<&>GN#8` zip-pos?;u|knItb$vaXOP}9FnAo4ylxzqn5V&~;%IEEKFR{F9NU)9ma@zG28m6o&+ zX|F_d9y@Dk99crykLkxMUxdhv^p(!Kz0KI>;a$`gCqN1eNU6eXGFq)VH}Qt|fygu| z`g8TcxJp7Yd|rkmS+utlcv8sX*P2d`(;G+||J`*XG6E#h%Ff3)wi>QBPV5PKC2 zvKJW)0>-c_>zwqQZ4Vk_ws3v_HI98J8Fn}OOyR;Ougb-7Mxq|}*?ZKj361GNtHY`m zkX}gt{-4Pja<$|^i6svU$uPCKd?2eA^Mn3Ivx>9mwhnYVZ!0C3ekG(f>=3?j_g*g*}(NC1VFsFTPXQIhKLk?6{t; z&@MpEINudH=*K~JM#V9vt%UOd%YEX%S_jRLsou?T=2If@-V?zBr^;#n*xAKV`d5{g}elsW&a|(sQtU z^67)s%6?5S?R>I5vmP`Ho9aKUWvEu~F?iuK56%SHsy$V8*gmDff9u^cuGo$&-ix8b zMAz>$vsVv3M(VMy6QGdl&F^1j7T2J$D^-m9VhbEH*7BEqpTtE+m6N@L&1m3F5tvz3 z3GdzCZPmWap*U#$^;P|J$c1mZJ;~4y70WtZL+u%CPSaewuDJ`()$I%(caB4ElbuKS zeI{ZOeXGDNz8w~g&X+>Ymf&c#)V_2HUP8SXJ=3}JZm@oHW3N*qCJqhp_%lu*f8CuA zIl=-&uWW;1ghw|hyi)1Db)A@Om>#1|wLnh9zr}XNYjhe-HBA}B$n-ty^>N>tF}E

-C`906f3x7F72coG3VyJz8sf)!Vl$!`$h!P9ny-G;fpfuHA7&Mx z-lIRI(-_Dutp_Ev{+0buphmFDY$WUQm z{uE?Z3w9{^)IuiwSadv}97*aav{|jahD=?#WpIK?j96tivW4X>B53Js<+Df{n5P(& zj%{l|pa+3hg5ZPl~v#?Q6k?B}qB&pgjdw-S9BPp7VKgVnm$(v76 z1RplxYNh6>uwF*;a@FYGt?D9V-ci9)L9h*Sy#}%A$5uFYk>gU|!_}mbd0fbavjxc! zN>oF0A+q zH>9+O?drgB>6dqeoCnc;`HFjY5i8mJORY?)Vgj|1W-k3#Sjlr6<5CuTI`Wg(-}ecd z!h|ZTm65yQq;)?(6jpG|#$#A>FB??&UOT-g0QjC8|*-KkBizX^#tM>`E2#_-_dIMW5UNj&2m zUHItQjX8E-{fcxN960~Heo@$oe~HzrdJimO@2=9cuZ+ED6s0J!o6W-FNL0!ZJqE(< zVZ)xLQHKo)&0dS!b1~v#kR~~{zo;wba5rk??B>H)IC_C=TcpmBdZbRe6gTM3Kw4?8R9dwH zEiJvb83OY0KL7v#|Njh^hhGhB7>3(hlS)HNM5R<#()~(NWR(_0(iciriAbcaO+rKn zMYMzlQM9!8?sVGwoYUT4f5H3yp6CAE&vk9s_0~gnZVWR2b%hN3bC8Ro-EUnwYH+qq zh1a340w3?)2;L%61eQ;^PxvefuwU(W64xbZQf2aU*QKHnjNA}&;nWyH(lt5D_}n3| zUJ0Der&VJ0<`+G*Y!RaEW$x;~F9lyzh2Hs}ZNZoSj<$`kHR5A$bdTVTzj!N))R??5Yo@-g z81A!UI+Jmw5EiQ0Vq???Zr#22X58qoJ@dJy`(!ot6srd6{7gsdY~X{bp9{E{W$hPO zB2Fypc2WMUpu?p2g!o#$Tu66OemqS7hmpu%6Sb_;q0%Mm*D zEbJz4FYMlMIi)LhL;dWHkt0W>$zBKJGiyf1P#?2iaGPN_=e`pV6G5)AxU<@g{$iHXE;`pL}9FcIOK&id`bow(l~%(FzHp)mW_&w%yw z;CAZ#O>tx*yF9hG=_a*e(WTV>D<2*6))g-^zO#^NOL>u-J)Q8pen%ZECSaa<;Wn2> z1Jo)vn#UYygYk|cru8XIM9BAfv5Hy=RP0Q)(-m3BKH=T1k2^XcL_X6$)s5n`?EFHn z#R3*p+YAGYhwxInL)42w#|OO+Tl)>@5G}d4v*TP1xK7=6h#%|6=EUls;odEHa*1|P zrJ9qxylLi?qAE!Q&PDle4O>YTmnvP7XZXmorjlzL3g#era_M2V9y3`9!9y~;^6;(h zV9@uaX=EJ3~J}KrXyeR5`HRGAOKD8fop|U%9&ziA` zey=o6unGd1xlXVDQ9%`TQ%NoyhLn~5`aY9Z$cz0KpSxI%Z&6NWHh~rRZ;$0M5xyD- zToyA?2MsdYk8<(z(D3!INW#(>GdcHn$kgs?F2p%6=1Aq_Lx`HfV^xs|yV@6uhY1D2 zV|G6&t^=ssWlejcB}mvrbsOrJ=lgKg{mV0M$Nin`#Lz%}>l+0Y!lf1;rIjvB zzA2~XYUfRZVs0$Mv7rY$xiidoO-gXA;QjN0KNOtp>RWYUa2RVhL=|)n*ML^cp8a~3 zhVMoD2i<3@5fm6|Tu_{j7rB26KK0JRx(oXwS)%l40zPwJG z(<7J@jS7Dc3U%o zas)Vt?ZV$K11%~v^K3XK1H9b}tSAO{YrcgVXjpgzPkx6f`Cfoh+d9;cK*je2F*jc;NNN| zlK?4Za!)ht*}L8WNS#RkrTlpSS4Z@YSXqja%jSk#a%OvQ>gbxK@>vS@Eh=1FavVoQ z>fuFs%MOUV@=8-VJOd8XsEjzf9z1w=PKoVL556oqu1Goc1uiBMmYShOc>IMIrs^!@ zn)+|;C&^qyP1&@1@+22=mehNHOSu=3-!<875)Ce%3tWrV1KAnM~9`>fi0Bo zdMs%a=1lZ2;lcCPhVo`+l9+rcoTY${tYGUY^}JU2zH6nPzukphy3gbc{^KIX{QIul zp;6#4gcb3J}P?fd9{avI;wH1jm+h-cc4bfn@H^FFQ*su1u)UjPIf0 zM627ESFidJO}M~2M@c5Lgvr}ens_KX~nV-nw8lD*&V$oE0T+GQ0T@+o+6Wt z@9Oc~MGi+_0XN8XgPE{IqQ2ljyq3lsRYzPTlCTeAC+Dt z({7jkKGYBQ1C5qRKmLNOT@zp$G=PA4F4uFe$!B{F zCXqQ({%G)=0{Qh^NG!mQneM=Oc$@ift^Tz^*x8m^#3@qoP4aN0C4-B+tgT>O`Jw^N>-M&KpXMff z4*Qwo`MAm23=02CXF9GvGWIU~QwbHAE$Vk;+%=$7HWc@db#o}IS83!-%7rpgY$$^H18_x$b8*-rg!6WSD+ZvpS3+va| zMMX^b>Z;hYi+EqMv^2Xg4RW6)>)UY&;;H`C;K|MfFqC!|_f~e|U*o@X9M-7_7e4Kw zQrm>u>+C{)ON(eZ^5H}}=t2bq;36ec5RVuz}ok$LkR=p+8N$w?X(cNk^0HHIW zW-tw6-N!=Ff_MBRF|f{gvt>FInO_R<4v7#;&CKoYo?S@ov-OW?%12^!=$}5(G1$l3 z8O)frfsyH{(>vORz)vsNC2tiW*LaK*k~pRz#hTMn`&$+nl7b}Bq@lL-@F3hZ znBP5csDjb-^L}MXHqsYpY?9~BPEI*|+PaWXiPEo>d8bK!(xKaGVsUpKo(JYHpKhK; z{sHv`k-O}~awA9nnbjP`)L&Va{-6LJH(_=74;A5(I$l198!$Qf^@+>;1orUGC7$%_ zhFDK?X1{_g(PJc?l@%I`-_fLFW&y&7Mst?b)6Kb3F zREVAqU&?2k=J@d&&&~&;gs(9Y(73m+;&JG>qA!5kj#&W3YhCE zRhxu#BTs2^@@{iAN|C|iJ8l&7G@pG|>KD;bcy%z{$;34C#_3 zI6B_iKHffnFZ~tH@h{oP{$jytgX~o#OsQy{QP~Jg-i#KRLvWq9A%ET zUqD8c>9B`1GdXCdEi<>BfwK+QB^jUTI3AwhdcBX8cm<}$owRO)`;IFHhbt$+dL#ajvXEmW5EiUO3>#k&k}EZ*?wulW^xVFYMhqhJ*JgUjJliaJ5U} zbL5Kzl{= zXfb~~_*7%A)*k`nwE77vH6;KJ0@|%(#igsukq; z8T#5|w|U4zvD3RHOcx=SW~cNck)4=-nO|X6Ktp)D{V`U`I1Hr?rRb*ZxI1rH(UjSV zHQ7lO-Bql_@i3dRj%pXWJoPxVjtCK_`WGfNw>pFk%WkXv%TLDcn@Pqb@skM)jmHTN zO^8kF_Ad>a1Itp8;Z0*U()CUtg0_DEIo~>XXWrAHdFfJIerfY=#n+9)%%@0>kDo)fqv^)Hv6AzqzS2%kA2K!Hg05b~~;`C;Nf4P1Ga@lt_ z%GA=Z#Cy>{*>way+DBH=KZ_GJIB7^r(O~Iu?5Wn7DU?&D-JIEE2<>Fq$AF0yL??Z? z(N3-l)&ELkXEzMsyw~lCy0H}Fg=yY_Gbi0x$&0t&1Xq>tk>ic8*G??+K)HW-aWLT~HzbOdKE(Fm z;;_xg<=caJ5bfQIXa)f7y29=jdDV4%XA=2H5) zAI$d_#bO;AG5@q(9CLNh+k1Dz8i8qCw&&3E4{Adn%aj*S7AtWVzSXp_+*jr@m!qrQSaP#G>)g6d_ zw)m8o&Z6*D&CLMwdK8GyEdHTL6O&Jr>Tz><@~SB75~E-koiPfb_L3E_%XNR1daM!o zH+H~#g>PGg=ZB`ZVG^ZSBCz-tJb}lYvy~5I`AD0&v1dnQ zFGSm;j0dZ_5Wwc;XB@{&%F6##9bN9BjBQm+yB$l>QkA6YpuoV9TAvj>TNua|{}pxW zD-OQh(*`v#!qH`D2UgP*)#w9J04}HKQPa^f+ij{lJ;nR5;i^e^z=#<#dx7gVa^O@Kf&PPn7 zlIKV;1yfut|{+`FLtaqt} z%kR$eA1+L5UP;(FCOf>-mN4^X_?6LpZo>aGc!T!tacG*P?y;$y$KiE(0%pej$kX2B zsa8@BYi^#9Mn?hSvchFzXl4rX0@ewWUt7^9@^Odxk2dfe8<9`-9f0!r-RYudhG6-L z`L@N&4%{BhdH3!w0|{?t>I(17;^Vht9=RWTLFp)BWI1vXll`%aTuw8%!r_^|?yMlm zu}V2;SIb3C)b&}*x=rDN!^2H-mMh5qH~p6~JNQVXF4rSxttI&BC$a8gYez`dz>(cN z4Df!7_1?0Ej+Ly>BX1VdkpDbc@laeZju<)}p0 zE;Fz)L-y^PC@NAW26wj(vXSU}`_B!DDi9mq{ncj^X7Tmq{;%Y94`!+M4`ts_pyOzGrhf;GNo*O1R@s3oM(?R;V5Pi1&d)|(*igJig`2_PEj^e!I)xr+*o^*)8;K5bKEXVF1~a~RIFOi^=|`PRowa7&Q46+ zqLR5+4D6EC zzhA#SqpS~^{ZF>rEpwDFd!cRS?jAHs{_C)_?!ydU-g<4pc}VTN!)aV6Oxz+r8M-y{ zlDMKn0>UH|mF9uo=DaEy@tEklm(NV{{jfrc*{u@8+DDX@s5zpgwo1lwm9 z-_{=N!CmVgWBJa4M9QT)V-4R7F7)qiDOmPQ@BHxJYw~{f6rlTjR!rD(--T;uwhbE(B45nLp=jAh+44Ksl&(^+$3SWK?sRT4 zQ=QU&uWSkLb|^d!N*D+Gjcijxw{gG@>wmeHRQwZbtlJ+S%^b2r|0g7 z1;{o&a2w26L1NF?Z*X90!AsV{M}?y+2(3EjkdzNISu(H|d2>~s*bl@9sjgunQJt*6 zPG_tn?p;12UWV;3Nk~h&QnP~CxBcA~=#&Plb?;Ozsr0~VaqhLGN++KFE@s)&AVu`c zo!hMl8?g{K_g}kHh3NaPp@)VE5pn8JoSbScSgsBU3jA8;sylJ@>eZdF3;v@T9l$|e z#_iHzrq$w?x5g9hB{5CA+!_Fn1A775Zdr8M-r zaG4hs$2$X+d+}RB#i!e15^~=|dF~cYV!kvy z;VKH^^SzO|?BBjN&F@>^wji0BRQ5Z53~D{6o*2GlCI>FaD6$C%5^L9dX*L5c5_~Q5 z?qEa<7QYGFWZI75mQABLeH8pQo3wzq$i9=3HNWBpW49_^K+m{TO~%TPUhITCuK4mM-|rv;``jb-j^VjB7_DnPy}lnSkI=|+`~wzH;W z4_-fS-!WO-g3`zjHx6H5A=f*)%2&q=kz-9(rSkI~*gcx(YOVDTKRr75E((@mnvc(0 z{Cq#8Kh;*%l=LHm*rwIpVIr?eHhKn1SAy@x)66-~c3e6&I~-cXM*ajbHy~J)CuyDdVZ0SQ4s8UvPb$QEkDq~z-y-qMBl=uN0@YXzYF@k~Ol;dj5@B6`j zB<91FGA{DyxY&a@*H(xfF3{%Y@5L78kI!|Neg44s9m=p%7v5ZVP+LrBLh$%8>%X_@ z@Za=iU(Q<UCFL9!hw=r_F@Dx0E+)%ubz(AHC#VJR;0_*`nLA_yJ5dL`2 z|Mlm77*R`(yeOPUjKcXD0Zj&6m0g^m$U-#tSD(RTE<|JgEE){(5c?)6`;deln3)d9 z&oZqfd3zOZ7lqHmr|NU3u?I8x^K@cx$IWG)>Ur488O==oOB0Q>HSWQI;SgT2Y%y|n z?c#`}>>}z1KXooF?3c;n>s>esHrQ z;fqalV)XhBgz|1a8T)oU6y{|tQlx|@~kxIE7| zs=2}?SNcsVPNobe4MLMPf9EGd$3$3|$q3qFx13`6Fo5LhuZ9~}b>oP2 zWdGr0VbYKg)vl3Qi<&iQLor{)iIks#cw@?XvRyB??98%9*$6}@tjQh1RxQ`$^-bg8 z_G;4;xjP5lq{rbIp7nSgMpJSZm|OP6=*E-zv+&M7%zcsV7b-&6>c2TTjJ4j5f+@^g zWT?L>UpKBBZey@yCX|cK$645_#y1iUX`|<{oJ=J8(vQn8 zR2cB8*4%6Pz8jyM9^I{<>qGHB$xV6xqtT-z^#k5h$BszCnkDj67EK z*ybTXp2gdm-dpxK`=_JYBOm6MJ$bWET+<>Hbab8XBu+reYnAoVhf4TW99OlqWh08a zT=}K6R*{tpiWPV3JD})4b6wGx0iDN2-VtBr$c0@OlvBmpv4_4@e$U`a(onOV<$eeQ z!T#JODx*~RWgk*;x9$gD;w#C4??s3>SNVM9NC8rI>{L&GD?}6>HDc`2Q4hs~nK}WQN zNe&w)VHbBgowKH6Vp54Xm(C4<0LoPAi~ty8O%iF*m$4Db23mLUYW5rsSC-B z(p)0ei~Jq`lsxWrL360aE8$Ty^7pe|kan8Fcaz)yRU1sh?BqbS%q=QL!dE(e(WT-3 zwW*4;kNR*%<%Y{XkxAqmZCmAVyc3J}evpSPvydQZ%q6x=gk|QTkEUof4jJ7Mr&;F1 zclSoowRwFo&YZSeSha$v*JKu+f7k~DW#;?DlZ7y9(;n?{o`Pi-Tlc1>DVQsUus(F3 zzyU?NH#;9I>G^a^;(Id{tUt;;Yfm-fZbC}SW#eWTYEIH5_H?6UUCFEtg`EufI{NRs zHH#POznk1eM&NR$C*kk_E7?A}tz1Ekfe?k%ai#uh?0KLtYL&a3d#c&#vXrkld`^i| zd%2&?D-Uv{`7UBV>=xxV7P5ESR-^=DHf@t*0i zdmCH8;o(#9nmz?TPLsOY6BLw9Zt7NfHwK^BzQ(6o)yU_SC{+;pgZmrY1ZVb+;BLB* zvA}y~;*&@jnfcO;qRq}NyQHcSY`xFWD!B+oS^4vo-*XX7$LH9g)kH5uVfFdRelYgG z44?Dq1^Y429;xyk{EX@udy@SRs!Ru*FMsDFI^ioTN~V$#cTQ(2r>qIee>YrOJ=O$U zH<^g0BL(X zRV{|uLBI2K$Shi$T=tQ4Uk6)7`${Z2+GvKzEfX-Fx_ zDj8`ZqLRH!ky4Q&B)ja9&BMcEJ@)4H@m$yWaIWi|bN}zVcynr4{kcMH%du&{n@7d$ zix5>7*>QMFPjpyY)xm%9e)I<04A@DGe$Y~9Bn;Wr1+V2rh^S6#Zo$nlNGX)1iH!Y* zLL6=Sms$m?qMTnx+6t4x|UXAY z>GMNs;~3ueO3rw29swc6g%uuM$QD}l=E1iaT#>U1Sn99CiB~U$8ZLIAYIW}$GC7Br zQL#ktawU8ccs9>=F_NS=176OFUAXa%vn*)yIMl+l*pExIkzu930kZ0J1WEFo^4c_w zU-h5XYmE#;Zfsm@F}V(OGqd##oHVRY&&FlYY4YAmxHYt6R}*kkQ`CWLN0R{oo6mBgqa#$mM%Vny_?llk{g(btq+&| z=U-zG9eDcl>3l9mH^+wi^mKrUTa>2rx*N_FX?z~yU6|xFx*PhY21)$kS!dF_;D7a^ zu(JIKmI9YJ#y2(K&2(1m-m^8(RFb*WKUxLhm@uk>Wg%8MU3YSd8^UQv{Q>>-QFO=4 z{|wMw!lirKOlOyKkQbU;Ej|7V$ptbD%qLRtc1(J?<9j!L3-=Xhcn!huziZu#ZhYjC zR7YRd`+8iOO8%B?*a!=IYo3NoW|DK-DtC^Pndl}z-xSu!LsHAbRWcOm@XHv{D!SW+ zDdFY1YSll8oSWUfr=bf163tD6!gQ!Dr3;PAR6yRz$NoEI4nJd9v-txXF{0Vgc}Oe+ zC!Qbbe_B3^k+ckv=P7MS3%(&)ltD-Qcgd(RYj*NIZSzg3P2)I`9HCe*O@p)as+fQ` z(^xBPb6YdG6W5dV%zYe-&{cTJ>!=A6`Frx{4U)=7+KPUdo>p8%0@x8{Pi?}0-ROdl zY9B%sD(u(!ixC-{N&_h~4kBdt_)lp)Ke@@Knc_A%4ReiJZXXH<`Lgkbxx|w$1V*fF zyS;leN%NBPe({wKoBG=iRU;XR+%bD;t$RPQEV=JeWcM(%hr85l=SIP@PtCLB&=``V zyslqNp8(q!>+R0f^GItM-gw)Ij{O2YnskRL6eow|IW0{?)Tvj?UXFu|#pphN^?Mo) zk5upZ{aQ;nN3UPLUs4Qr9?sn%?dyo&8HQb-SVf86J=2u7CsimJx#rC6#6k3HP4m=6 zX$T)Ni;a|_;gt#7kq8Y&a#iyq=fzMut~}@ymuGE+z^GZsQobx+4h)1m0 zE!KNOI2B=dqWoPig4D40=z}6;rZeYp*bjq8q4`>}Y#n~@i?o3oqdX7na zwP1CW{N4ebz+mh0o-yo+EMkq{$w6qhjDiIw#_rlH1{=eblBcNY3He*TMO72`QDcjt{NMzdz z>2e%nu>H3B+Er~n@->mOWGH?VZ8v0o(`9K8F=yeE>YjtzI~hUF8ZJ_C$uB&Ke-sCJ z3r23;>Br~t*$XlGxv;3*x6r>~0`guZN>BJR@clnA#wNp2>=c(`;#Qi3?dq3!tvraH z(50cTFM8q9FfppF#zp>K(>roph6Z!+zE6q0;^JgLPw|KI4 zl!IuQs^~NFkKmPHncBL7JS0E#uaE1j#gWn5**g;`c<$hQ@97>!V(Ya|?j7qKcwgGy zF!q)t4C?0BOiZWojw)*J#MuKLu8qvGTas~~Gy12?vnuS9H#$+d#6XsBowrFy9Ruke zxP4fNi%g8Bxor1r!#$%5TjZ8liTl9dgEmR}$~re@>xGqj9-sSnPlt;PG;0Vd=j5!s zAwSH@iMicUutiz9@>?~sjL8A3qYFK`10+%KJ{#)=^K-f#akzFqAMDC9J3)xHa$fQfj z6+0Bc**os8+x-rhav6Noq1OY7qg>55CtwN<2V;&_?2gxIeE(C5gdH`CxjsG&s|uq# z)YN|DM18w)VP8E`H${e~%4I=qUEORAGYv@{_xX!sw~|k()t(;p%a|)2Nw(J;MwYoZ z*I`CB@})FhC&#xIjM2l_RC)$cR9LJ{eNlz9G^1XV7ljD_<+{-Mb`n{A>FRG?8OYQ6 z;Ga))JJ1nGZg>idlI3S&E~B$G*syB6@4pxII2jaDo+!&q%sfwO{#d(&P=Tqc!$F<6 zd1JlX$ZZN#JY5bd{wc?o5t^L!E*fP2Ra&YF)S>=M=o^_QJrG>`B>cB?HBLU9w*9=q zoi__ElaAsW2(MICZhBA~q9w#aUfrJq#fFH76*H1+N^h@r6!pVFz#;k^4+~k}I?BPV zKZ>fqgF4@&R*|@uu20^5sK;ODt=+;KyP@8n|M(cXVYNBzeh+IJnmIxZ6NQGb^r&bg z_uv>Fhvc}IsWK7$JwCE`>c+86x15Roy$X&gEe>hfjASzMeb51+35blPyqux1l7|*{ zC$DW@OIq+)=c7^|%syoMkn^+H%-uC(QMrVr@_@#q!DSRtIcMI~EF-vi|Acn`DBk|L zaQ3Pk4Wb8wIO%B&MAkcCZ&*ni%#S+q8OhG!R$%0#nZkb9yfN_CI9-8)n3g-Wu1qBV z%CWWKD1>s4ZL-ApBrb#+zwSRi0c+8W6cGj*XaRqUB~z!6^ibJ=(P$bcnnK%B&(m?I z{etjBYAXy~b}by0>w!Rjl+B4ALGo6kslcm>in^(kl>E^~{5m{PEWEb}Ts4c^YC9(I zjKwlmq=Ja8;<|IDhty|xn^+h1^+4YLv^!5epWFtd@;n;U~S`%gg`9IsxO z@Db-v9?1*YeK>6>7<;#D4zYR`kI($-g0=94eV2E1A=$9khw~XD;VgBIj6B?rWPi<} z-$;<9$LJ>z12k7#C}u6$6i=}7M)!%SOzb1@RIy_PQu!` z^Z3_&RLIXQ`7MO5c)8+ZPl*6_vj5<9x31#@Fl8Cpz?{HFxcN`lYk7^KhI0Mugj)v; z+AYLqRyyjxTavR2eLsRa7!~=c4MT>^ zt4Q0aA$K2-A&3&w?)6hsF!!igzps&%$gmXfSfCG1qO8jo4)Kv{eYP)JySs4uq_QNr z#6*OnqDo)Na*>Qe$ulnu2Ju2D_JQvvPNMD{d|;X_xyi?^_~xrUS?$6|?w0P+{QHxFyTyluH#D^%$t%$_CUykl>-+lNJRFB` z@u}$~10JHP8sYTd>?-nc$LgaBcD2avJ-pyAIt@};T1U$$#qP~==JAGIxKhge`Wizc zjDP$H%JrB*w5`CHj?pAO91vF;udarETY+6>Ru72fuS=CrdmzJZEHWD~1j_QCBlPFe zq_^el@AxZHMDuaf=kF`t|G{0NWqmIr`EE}0j&<(_W#U27#lI_@-DeP4xSE>(7 zWjBz{J`)kBh!WA#A=7t^69~In)jAhgi$c?518=#iVYkEfm8n=K?u&;vU5jhL+0A+< zj`4M4=Y?LsuyG1L3oh}lb)`bHd2#mn%|0YHU!9zPNI}!n#HjU}OZa&3!P5J*da%FT zk^Ur+0*Aq5ZMw@pP_1_xJ#eRCtVms1Ct(uwgG~wZ|FUr8%VEJ23+u>``@ahnvTd+` z^ws{<@mg>wrpi7F9>Qkvuwkwn3`8Wt%t?)}0ekruI==DMpr?NAurTKc@(Y5BN2a*Q z&CK^KOY&1F<72VyHLJ%aft118(?i(FcV&Xg!b`SGG8~bS>48dgposgWK3Kjw|J;LT z8S{4?xmUeoB#$f`9^4+N0)N8I*i?g22piW>w&YKt>zIX;v^_uR*!kO+(RdK*r-ZI| zR}Depg?nL1QWL^fiR<~Vry_^KOtWZghQE|eQR-F-JYK3Wq?qv%#Zj8ppnD%)#?{_Y ze!@bAzc_PHGiLDKJM!FtV?zj$$r^f^%0CTEnGni-Af zAlT$BXkNxj0@tyHY3v=uQ?hg_n7-2W2luqQrSDn4fnbeAeNwZqf+eGQ3Ln^Bu+=9m7KPm2+=? zBay*aLd8dR@vz(9$FY4$^RX63HH3rW$TbQbs;102vu8$;-;r#yi-&^nXvX8```AfV zG5;aH5D9Xz?=ofejU^a0c%P3D=*Ci4)+tfFZVV=}e3hip;K;NsE6{ry2|Diec^fDg z-(_~oVs;M4PxhXzKiG;o4J+eD&M9PX@~E!eGKDPB_;4O=aT2@c{K*T#lQ?0y?^aId z2rR0z^)yb6BgcQCGWx?1I!u#{SD$D`s^ia6{%_r=5#stK95I0p;Z>gRV^;b`At{D6 zu>ncv&MxkM%}T6C4V2wXYQg(&+kX|s6b!F&mA~+<5a%-5uYXQ!!8!dKZbsr_#4%6% z>T%tAd=+h|&*kifx8z&XhsvW6U=*IXd1n$vB$GEFwih$^tQ9K8=-@Wh)_q#p028yY z6aGd65It`ZXPwXu_T-1&da4TuNK6%-c`Zo9)Le(#TDXWsK>1`lr2{?cIf?sfrm@LO z?oQK@S?HH_ha{%XAhw!?%_@MClt16e_I5W7=f;)gIZpACYwGDPR}PNg)8bP-&UXyt zp2jZaAp7-X;bLVR4Cs&xvx_+_4Sss5fP=Oi2yhDk6 z{m3}?=yu7U4xE*Adgz_aM~t11hhB5)L8e~Cniu-3Na8!rp@c7tWT&|^_4ob>^mVOF z3ZG{5XiF{XjgO(*&RFxv4+*l>mqqQN5Gx7cPLtbdG6z-fhE20QYlxTG8rj!3+Hrbf zMxv;Tg#;Yy=A}9?kmmPswX%6zNc|<(qxJkNo~C+IrPE;}G2xe-H}Gr0sTaF%Ds1E+ zHhY!D)l)wqM|j}v?5QCbnArQJJ?Mi{RX}VjZEb5_2Od(W4Dl>c4`V$ z9c###`}s4Kes##)VVK6TrUja-5|yG?=6c&Dt`g16RpgSd%qa!=8o0&kF#c*;Pco8X z4h;FWz|vu_=KD3nP(L(cN!`{0e>rtYtS&7?Y=ZBeGY|{9mY)#IJzr7SL0pr6irtnoo>8)`Qx8LGCSw*qD{hF9Gc|3DT>k&jhGj zc#qU7G$6u=uG{SaO!>3uYDHQ8mN@T66;2@`>%)xtSt@GwPe@fRVI6R{N7&d?5* zNEXs;v|{N_8Bcwji}7} zD{Q#67e{L?q<+d!Fyw)t3F$Sadp=4|VfO=>fgcA4k)-tQ?(~LEd>kI1OME6tG+BSiySs`I@6y{o3GO1q ziPpUB+1hE;J~N5l721b}2BrMaH&sYJ>k+CS(T8XAohtd^{ZJOWcKFn{WsF2izudh{ z$Jxj6IqQ5`hzaNCZq_Y@nC9JI`Q;KDp-&p6>irr3zj%-w<7+aOKpM_tg+y}uJot| z-{v>6|7Kf5wj63Gy5`!Bb3$_G1jmP<$?#^jd>aKHwuwGmbxM%L7%JUO8UF+2HD0yZ z=R}C`_S*-Jq-`g1|LK{3(H=mbt5}mGUoWOUZok#*JBwy-?j=8uaomfS;OZ-F#vPV# zV!Epr@tMA#ar-T1k`ZAb%YN$zEJGiBKeOUvYIMbsZW9i&BU94-s(&xUx-L{rU0(vr zuMn~KGGo}{_up1d?E>_aoTiJ=wi9lDc%5&vyH$v&JXJzeZ zm~~02ayvEy%WeE?To&k{GKueBET+L~GO|32FcZC#wWa;}E1fqYyq({^524XVUAg~E zBS%0^(sk7Wa`k_--n%#r`Eb=Uf71Ve{^R;^0s{we`^2c!A0;En|!H>o>C8*-aGnk;-R97`NyZmL#s&1*^RaeEB&FZ z>!e=h#6cXs2xo7u+Esn&J( zb9^uILRh2Cl9!;J=qP7V!$K%dpEcPYH{*)_W7o5bzp%9@Ng{{RgI^r4Rc>EpB`4zk zjJ}(SedQDTaR;!|NZD3EQDi>u!?NLI4Da=st4s3aFR3rjsbfM%9E0q z^0w5#f1rCy;O{cDYuv0ZYxxOFv9X@n1|f33OR0LXkAk-6CSuBc}g`A8>hdo;Z$iW2h2M02+RBC^^ntvMi4qdg3ph=MZ z&z8!!JR8Oq|L^na?v>C8t=utrtrqboM~$_<^ASlJeJNs*g&b>0_VRUV!k4{Gntk3< zq{XV;UWBW2}+!%?jZ~7Ohh+)4?%5 zI!u1t%@1c8fx_NZ`)h(E$OQQByR?kse*gdg|Njh^cRbZ!9L90&k(E(o%Z!o=#dC^i z_?4X^iL#nfQc00fXwlLlMUg~FWQ0-@viG{~wb!*bKYyLSzUTFQopV0#=XuYZ6gtLo zgpU5)AWkC>7EzIa~{cFavNeby4P}!Y$VhIn751m~)-3=wl?cRbClX%GXlWS`P6S*Gm z_^^i2jf{HB%MtR6I5x{lr6$$kux%!zf4&`MT5HTLR!-u2TnPX9!~am88qY{`Swi9E z{800%4)EFSuh_g}9FMc?&&kG6NZN_4FDU`jSRwIJPF!aW?~S`YnC~3KE}QKF7ai)c zSM$Oh)3ZI;b~cP7z@Cmz)1Hai?^ww6wT;%-739e4>$i1h>cvT1mALPok32-2|4-xB zBkbg+yv^PHtQ4a6>5=;Gf2COQW9yceY|{|ExTt4Z+7)9BZs~`^%neJG-a6#H zsCR8$Q-gEH5pJh8*5mE&CuT{f3-IWQr^M#*aa{V&$)tzb!_UgUe^n#ArPvXwARwGzXi%c>(EkM>)I<5#aYlGHi;cd-3 z8xd|=Ag%j|LfkX2dO2&ek~hpLI=ZF2M0rZPBZ{jBp|h_ZMJv={X!n_W${T)zTV>?W zNGlCWll<%GG&(@4+(jfmUfb(8E1X6bbBLdu-i@@ zSlqjYBwOh7)Vshlk zk=MHtJ$g|cnSbN$A}gtVl-1kH@f}CAzy6S^V<1^ebMgKDe)z2&_Yv=!0I8?H;&B~^ zMB{&3%ncU6`^#)NYTF1rSDWvTkC=iDrLZfFlZosx2#esm%T6p5yGEW3&O+nK`D;(| z1c^{;SGs=wZ_ta_j_%VEA-;F+4x~#+5GMO7>qYqz)QdvH_y!NL_TbR|Ti6HP)&xPz ztRCDx{Z~>;gNeAtKmVyCz`#M{V~ze*?I`K08M~@C0czdtGDgP$dWHAARen7T$k!CU z4U{JNUk~_F-?boF+uM{$y#r3|Jig-{3~-)3aBg0^0g2R^2|qDT;&QgECQY&f=hN7I zjqZ0Mr{C%U4J<$coIB4~hsV$(X z@Yj!<&%5xilvmm!st1Mv!P3LcoaA0!rlFKoCk7fby*wos5IH**3<*Bcy8cjz4u1_~ zw{J0CVaiM_&pZwvrwEY+wf%d#bK3D#ukP@_JQ_5cM6Shl|HG*-LmlmBlt}sQA17yQ znMu-3r$f%7x!Ab#vKU=y3M;lA5K&87ORm}&k6fRqMN0g&CC5Lbu>5<(-s>b2@oe;M z_CLo=c%_$oH?yxKxBN<n` z6WO9&{3LXzH<4WCy?@+gJ``bcZXW}UY146&bxw3WWp(bbC^he|p2 z+$#iUFwY;enkh`WDN60A8%5S`p$FH`S7OXzgTS++Ttr3r=}#A%CUiPRh;EZ(CQbk9 z#`4?;p+K=Mz1i4}r`{9BM`OAmEtp%!bH5M2lwEk)s>`73a z8FccNheWC+I_Y_jV(VUMj+FQg+$z7b=fCI)G^%^9_v2$DdO5r<>vae5F*L)RNwORD z1`aeeWZ}F>^hA!%Jlx&i)c2jpz|u9Fq*CKaNO><=3twH%14$i|#lwC0oS1(hsI(6S zn|tW$iR|QuzI3$ftvcNP-qjK`!9{p{q+RyD6Clcc3KC993`|fTS~L$<;OUN;)t=Lx zaEM5ElhRp3+?b|%uDuf{YB>)p76~)CtSchI?Nx_;BxWymKD`GMWnjY;l)rM=}d3Fq-@K-E0A%j+Lkn%ahCUKd-9r zOhR}d#A9_rFAQSzEy@(%plC+WtcJNBCkGR!R9=iPb0X{0{iF$~ys9jCRm4G_6{=Co z3Tkk;?%U#o0tYErI{m^;aRyDiC7=2lhVgnZr*P7kjXc~gwA1tU5BNPWWiTW}N!lB3 zm8#foZ1#H6PYlZOdvGz?$ApHjyA_j9|E$M;zN=j6uFZ&2*9f{m5hM#$rauSd=Wsxd zy}-+95L%BuH-#9BlgYb&ckB7P5wKRNC6B!tR?!I>7xv7cSN)WxiwHZBj@7OH%TB|> z?EZh|Swf^mq!~6Clr!yWMS=K!$L-rkMS!>bz%qQ_{krfRLpG@ za`n4giKf||N2N}5qVT~{YxD3H+#a?v4IJ(S(?s|7QPpZlt+G&x8XrMpd*J4u8&{EG zC$si;uMUW9G-+V&|RL9ak(nvEi_F`rGw%d}Me>*Drm7nczS56^AA;G}g;u&bRzs{m4VN zbsVJd`I^e2%cDr-GPJ1pRtv*xp)`3P3h|`rT0UDh1(_S?p6%JkOCBDegt8(6P0_}>DYh%F7Lm!RFhaz;953~n-a9~Qg!A}Xf# zjOK~&h-YK~3wHjL~+J}FZFBImE zF%uEWD0^$kJm%%~D=Mtp!F?vK_KGGO@fEpf5_Xk^+~x|etrZx7-TbE8DGI_Qsf}ki zBfb;KI_;F`T{GxtRJ!^8ClxX#o+4Iv>9`a=z{!Kk349oG*&Vm`x5 zy|cCgY~iaFj&r6>6uOEezB4ActEs%SAW3&1kw*<_ z$o!s7FR@@Is%1acHtNU{cE4)x7q56oRBT8K{dhZCrPDX|o*#zHt+ZF>wtVEk(7(Zo z)P8(R9SD8EISgLAM`!LIUI3@^&DhVIdU3SNeYN3~2w94Gns0xRhJnM9n+u<^5Qk91 zxX=7cc&GaD((QzP%>7+?v0#p!thCl$`gN`y_iTA~#N>^@dAuf`LHOjFe>lIcB4Dh;|AG6-VK=@dY8Lg}iJndRC`L&fe_36}&tKp+4 zTA0fvcNhag+<7AH-|J^ z6>-9}IC))JbQI5mUPn4|*J77i&~?5a#n_{#u}}M69q!h>{2FA^jO!~6b|$|aML;2S zPPMZKn*|DvME;?oTymkdM5Yr|m$lj?wGWwF*X5>YGLah&4xf{=E8uiNf~NI>4r}kw z%iH2>pwJ#KWy#TraHqhD=8O@9`WuC8Tb+)N8gFKkc1RI@u4nGMFSa2>chUytDB>jbMJW3>!V%EIW}6~bo=t=Y9yy~u{qP1@9EEhAkQ_zq(*UBZSKz? z;_+H_-C!tbbJ$+iBG)2Og!idLE%M9 zxcPmT-Ia=R)XrDB_)Yf0v0~zk%<>%gcRl}l(L{*cKTbPnl01wXT9UV|BpCR1M{8eG zLNm%|i%oCo4MA($`FXV|J2RPBFbPpp)F69| zk`At2Gl%a3XJVS8Tad^QNN^Dyfcm}(H0$n%OAm_1ruJP zvvGEu@75F&d31Y~BfF6DwW>6~>le}&;yzGF2^6n87q`$`uu>rKOWH^|bZ>;Ws}+x8 zU9gL51#K8-+cjbizvm_;Q-TNG0u~|ZQ!aJ;Q4gMSN%~cI3X{;X(hV;gCb1@|Gvfd& z8=>iVWNi3O#R?hvp4}DPgfjkCjKyUfLFHKn!^=6my6(7xY?KI5KOX7u^Vcj=i(=Jt z*L7it?(ytmEe&42W@p#Pbl|AauKz05PeNJULG|C0dc4+tq*HA-imUE^LX4kF(D`r2 z)26sV#CzPDRv%^|t{Vi`#x8r0fd7q)=jg0NSI0~KVh9^?+&!*4l`)T^=jXq%KHwzn zYg_vyL^;TNN+a{v&rD=Hb8mpm7CN5E-cP@h!hlVbSIw030BWOsEIX^0IZ<#((6+D} z+54Rz+({UPmjy+dl3a&o>)ldD9YY8>uyxDoz5%%36E}RW*bb)A&z4n6%;d<1=EssM zvP5LVs|Q+k%w+R_Ef;1anh|01SL~@uFMNN-mM{2r!!uC-`$m@qxQ0dUz45pkX<@Q< zy@$uqcaDcL7)3))TNn;MoWcxy_P-|QG1P3!Q#z<1O%AC3`Z^}K{J#$lx_p-F0dsVT z|Lp2{Bz{P@KX{1&+ub3e(`MCp6xei6YmyE=-5*QUlMIv{lG*UzKr3=hWh(^tG@@@E zbCj4lD`5|dSdw+BLYXXu!NJoDhX8#?->ZMYwXmx9j58Holyxp4{A@Jn^Du}R7{|=br0uD$^RQ*EbP@k8 zM)JajCxh1aL)`b(qaZsfk~IJJY^WMX_!YO3F}V)(o%T4A@61U)6cohq5*Fh1ekAlz z(I6Og_af`K7*M$Lncp{W5CQHY$suKbA+2*RvmWX?&SdDCMW5R zAKGA@-xKI=#YZM_%|^ex9iywGU9b_ex#jNs!D;V03R+$3a2?JhB^D)5cE@BUjML#P9+^NIKBv5*x- zB-ahYcc0{z%v>sB{!TCt&raZT_se&tY0dC)H*(@$JpteKn~pzxzw8+%s}9?5n@5}3 z-x@2W4m56+jx5*WB-R>b_MXNfWaOZ{M@|G6q1#z5u0G!m|BEZnoK&8`z$X4h*X4f0 zLoO;?tZ75E=Sa{~4JJ~oFE013U>4>+2Ub|U=|-7&mAHpyD|%vMr~NeQVb*YGZZ4dO z1ilMCePY?;%ACJB9hT)GkA5rf(%ia&Ozpem@9)$JTH3d`Pq#*)(KDSqw)QVp6`Xxt z7fHpDuVHgL|AdKDU;LciLM0xGuxd9hm4S9rvXNI(9%MRBztVynQ)Owt0+|c0kM1DOu5N3F}J7^TMQ< z$WeE8a}Ty2Gc)gdkksI02LieFe@`E8$HCVjC%+jnpxykuAlpcR_?0DGWb};Ugs9#rFRO8+ z$Ij@sDNLfNSS3kqR|g`hP8o(|QxO`lr!zk7sv^6R#7Yud-$YNv2(Kcg*H# zXym_VntDLPDxag;id!r2ao>>L^A$Ak4xZPda`u67?}n(x0XA~+YijHJ2h08ZX!;?~ zDh@Kadslz%pC8DW{B%0wJu^Abm?!gDbqtE`iyIv_3lOumeNF`yOW4zE$(#FHfJ_Nl zH2=CWhOBUn`hy~Kh;dNi^Yr#sxJpgaqr&5Z@GwyOu2Xd@2ZjI*QL2>asv7Z zUH;tG^$1S(Uj6#vEHpb*-;8oA6RWXfy87qkh>TyvIa56wSzG{hTY10PwwO^xsNIiBgctUck zATc^97d9l?gxIUw+A88FP!UaInyKnS>vf$qMZY9Sp>%JyYiS9-7i?4#Jt{(27`I+$ zmdX?5O^1~>Ec<@$=ZB&v?okoGV%v~m_BcMYvutD49mTy1dU>|Xe)=hvyZu!u6S*HI zB7E0Uh!nG~6}+dI0jXrGX_1a$n6t`pzj9?KJENuSk6CuYvsEt9{n!G;b*i{32D@5=r{@0k>xPM8F&@jj8&2REljpEl{w zVM98_Mrz#%zJ+Ph#|{nPr|9}q&pYSgEAAv0yiDE2*Za#6(S;+$dtc~Ik7HqMS4&0s z0uJwpZ^-6d#N_s8oBUstV2bON{m>j2*+28)%vMD~vOn9sh;>IBG)rnDIqRqKGB@(+ zp8wX65nKUnsS|ChvW90Ltstoqd09M-Q+P0E$5rMtf-Sk%uFM!vaVqWzB|WAHTCZyI ze%qGg$G@21p%?+uFr@gr<$M=>IfLoXJpKC>C#|ghzmj>WAXtCPiQ4K`ij{TX?tOmE*y1jbm`N^pc@7#Bu9T?TR6MCF3 zLXOa{NEJMuL`JUGbot{vC^reZxXo38J8$?hrv(oQr^xCt*t$@-QK>s`OA~TS>uQ76 zaS*wJ+3~pK3GCvNyw*ycfaepo?}^9TaClq6`m4NDq?;J9QxF4nC39B!uxax>BFbf{ol=hE_>XJd!gw05xgFW6W*UNf{?^Q>zkc@NX@xw zZxu6-p-JP`)*NPXkNZwU(|syR`oror2bbf}b*Ycid<>MBN#%dxVk0kdYK~gx^q>g? zz(-aRlKmsLe%Z&IYDNCq-5Z47`W zT79o>fF{4IjA~pz-t~M@9{N6w%*0Hrn`2U|uT3HP zsgE(cR3%mvZOk7!If{muN1M3mX^>cT=HbufKFQmhEtX=#M50PT%)q21)uEh9OM?K}b(_79cdI^~l5 zr^QYvR4P+%{3^$$)cR&ic)GE4SEWn3WFALy1X&0+T40x}@PbCruKIoW$JP`$3~# zYAan+i-fr+n*yh6mpPzu->8*`+zd8+`mCRW2z}e)rZv?HmNymWrG({(Lvub;$;v9! zWE69_+RnpB?2PwAu{m@|S1z2mN+E%t1V1)0HDaJ6yzfIL6;gt4OxBwXqt2QZwhBXN z`JG;*-X%@ch32f?1;KRim{@f%zA$CuBUtGq%7 z5HE0Mo+8r&g~gtp*wvGeH3=@irCSHzQRl!>`z4&i15bhL^Dx!+{id*g9>;(47K)k; zB1HB~8=J*Ep6q$eq1w+v?zq*LC)D+Uz3*&5dl3^UP+z+ANvRnI`Svar@$FE(vG}&{ z+$ef0w^5U4EAZnAyL$BRMfCB>ulZTlf=I#3S$VP(*nQ9|d~+8I`5yoP|Nj(McQ_SZ zAHTNjEiDFrc=P zT{Vh*D~PYm&N>QigL#97gU;M0xYCgW9@vm!>F-qzzTjfez0T5OM>h^G71i67RKDhj0(-V}&!M)D?Ln-|X z*tJ<*rd9!$W(jBHMphtJ`b-F^h5+}{ZvVLCwhgYvpVEir8eze!;0;enEmVm;z2f@g z8wBUdEw(vN14}_u$cq?+mJtSly>-=Yj64R_8>2=Oum8cq)|V(Y zIW|<5cCu%oiUBR2v}2Wt#KHQ`jmu2;M&SDPg4kd}Gpw4Z7j+JeLc(=Te01*;98T#nd8J$1{$D{yTGMpk;~r?}*UUHW4#0bkQzkD$*WvqF zqF;;;J)*39^V9d(g4E?-?xOZX!0FK37V~WvntdrEU0=sR)_iZd=)!Lh?lROU&!$0_ zW)=zQCuvbmP6MB=J1tsHUg$J-=>fJ&Hd7u?r{HZ^TjtRyLF83g)jhz)j!tN(FXamJ zAvxWmJM>!%;PQataE+b=H7eXRPgS3R=W)k!4F{xAmzviATi!IB(~P-!rHKI@P4Vqb zeqIX-1EU`g93;Y#&*$xu?MQ$%{^zQ6cpW4z8o8|Su0kR1^ipyn2DR)@uEtJKAY7*C zdb=3~RNQx&b5-ck&9BEJCsdeF10VZ^3lbP~)MwK%DwPv$pQC?qn0h{&)8r||3N930 z`)NT*nHyc{d3)Q2rw0Z&6G|oR(S;g9)xmXo#F4e-@K&h-_NVn3EE#S< z0x?yrrbZrpp1ERrRHPTYpE!MLN+*GPgpgw38#*)<@G!`_lnK2zFjdH*=SD`1M-(p| zUI0S2l-w7+d9c&fqRH(b!j>5BNdle;$yv_{_I~Jqpnb`m&xKi$Lb}yl?9UCzlG7EVPh4X7h~v} zyZRw}MPz6C=^TWNubZxy(V}(C5BpU7BHU8^Ph6*C2)JZ3>C*P?L0O%})0$dFG^X^- zOFLi#OjFq3x*-gzO))rE?2->+yKPU(oH~KiqA#^yViscUH9t1m_rm2muR95~4WQd1 zSHxRGhU>PCqx~;8!05tkPt@5#(4XR9&Z*diKCX!y&+Mr8Fy3&^Q?G*55Z;PT))8=0 z8DQf^2c}F-$!ok6_^_s-J{egC19I6NKQ)+9$3r64 zYNG-&D3W0w$G0HokL8+r!an5lUCU{tVH(QMvDt68FGABxHX|iIMkLXwbD3<|2P2xb zyxsn+=yOy=iOeJm+UC{1B(#4CYBi2<8~p8nF=6k;>f(7wPF$&xkd#C<2Gh=^4ZMhH zJ^$kH`AzUib+$YriGyQqe+jP($4xtPW1Tbe)_%J3&5C#U6E02g0~4C;St_r zP&1=tL(e=8qw6Ct+CS2xV9v}Ti+BGZ_$ABY&3*ESWt$Y*p1BN%Q*Vvo-pm7z>tbg_ zQW_A1*+$Z92H~9FFP&H8s}PKhIwwulY4QD}^8a#}P!akQi_PzW#81xG#u6D&*zb!s zN;lWRf^YBk6n+-+Jn!sFc}asP-=~|nEE_MsN9$IjnPv{Q!!Ig_4FGkQ1h?sxPshHzJU9^`Dj>}*W4BF@`QT;3DLB!>TEeRAH zFe7z51Lg6Ahro{K1AK*yXOzFaMtglMm<17E%gqHklVAKhDL zVXNePOPazqn9L{0-k0P=jJRxK2lo^l*>vzb@~aM(WmY8bT1|lDao_JAQFyr09X;1z zyarA0RReCWj6($L{FM*llIVi1i0-z}638}UvX)2J0C#${%#RnU+pC9zfN9f|Or){|0=K zBuQ3r0IZth>HD+jkoL=&)<8W5)F{T|c<=En9JRQyOp)#br(ACt=jJYGF|ecg**^yY zdlm|q0z53z9?EsfnF9P-jF;p@6O3QsBBU@;ApY;((XpEXXmDX%Mr~jUH2Lc^+!--Q zBBm7M>&}GERd2T6KSISt?a`&8+w@dsF*gVW6M$JDC9N+WgEU%7R35z;10Tk*^o6!b zaLSt{&7T{G=3aTj{r)8&y%taKBw&zvcst>XClTftHCw`y7*VBEm$Urj66nV5rZu2Z zXb2O$eBn18YPl8^5oNgw1#R{J-D_b-pKru$%V-KB6=k}`EQ?_nUis~J!fqd8q$`t} zdA|qmvClx^<`(o0=IZg5>;hl%361@9n^1f0v-)TT85*BC9@mlj2Qy#%;JLyWc#(T9 z-nFJdqnxPDhh%7>ayIq5L3#lo%UUSQ)O1B>vf5{HGTk{|v z76T=-DiTzWiS2ox>Ic~b58U9x4yvvsuEp3*gF(UkH5Dy3bPPp}bJvf6ZL{h^rF

4Azat5gpcs`Ao%z`U*ao91ZE}Q`GmE>z9Yvr<;^e( zc3ts~_&$Qt#yy2E6dQ5N<5A1sZ#_8pyOnAs+6HIh~oFp zMaxKR)!IMslZSXTyj!sGT}K3OrM#48D1mA_x1qW86g(A~HU4=pkoKm*4*R-kbV>)j z;gw(`FaQ1AI@$XNE*zpRw_gw8xO=8gWByN^EIrKWZOTN_Kh`K82&u$gIaPC`w0W#& z_P)QbjgDN%?7qPHco0!NP8gh@#Kk?oY?D(c#NdohShs&Dg6WKT)J; z=PZ0|3R)5(S|V>spd%5ln6YIVNe_GPIoUCgP2Q@^-2df)ztVfVmJ5x`SUy}UI9-a{ z$Ri~- zGIcz9tnTd`mSmnuQ$I+Op3&^NN7Mma-FD{{_xBde+hIiPv_x)XczI$9Ocx(~l}iVi z;!o5gA^BbvhFFQSMYD~;KsC1WymBkNJOJ;Sn&!j_KJwZ(SzZ3(#NTVxR_^vF z^qD#roOK4kBmHQjTGI@^hty2TeV~wEoQf^4B_}ZDb1)TsWKRZ=lD8zpKo)yI@$Q9;-3 zSuFD&N#2`VS9W*9LOEAD;v|hzV$SESf8C4tZ3z^^XRHR^ujP*IIqI;m0(`KA8~WbTfEH7X?1U$g<9Nh5B@pV4@p zE9y+9>=2aNLpNp_jv>ih{zo+3D%5PQrxd5ApfTv7PUNc$3=lujbM4~F?S}S2|t)5(+_>D1e@mL;y0(d z@Zj#dDZ)R79{;~#zc0`cqYpwZU9`N@{ahtsMPHC`ZSu-&P0K|=u3)HU$pW}4S|wAz zbz)rq7^}?a5(R{B;E=TD-Rlw*l47!YDLZ2kmtQyUR^lDPjU=H)xt%>wH-30D z_jv>I9D{tb!YIUAD$nwF5{2m8<=((?k)C{VAH1?&hmM>(sLhyvfQkm4C_dLC?bvW= znB36ZK+>{LWLyqnB9`J;6f8QLP?_*3B;Yj7M_5m$yg4!mf#aM19Wka5F4xULBApa+ z%Csr}eMuXR{W=?%(~(Egid7F z;SEGxX5XsxbaRK3>CHV zG(DvVx8b5rGWez8Mf4|FBU#d>O@xmi3ujV<>0Ma%_E94LjqH zbf1q-z;o-1oXF`lWdA2?|D=RP2n&Z(?U{KAmyGs=prtT5ysKLyj;{=J&x)7^Xu8_K z@L=B;KSm-Wd!(9u9Tgu17}EGNIY{u;@x<7l#gJDz+q6Zc53;+--#vmk_#%CHMSBO$ zH${r-j(S(Y`Q7-jQ|l_LZHYj>GQNitQokRUC{BK51*$ zf<2F1+?x1$;h23crWSMuW_BE%%bJ<3T!h#WIltY-N~Pu328T0OX)gD6DlGI=C%kx-AJ zA8eQC$iq|I<_*3jm>FqxuchT9>z07}OF5%x_+tI{`a%aX_BmFk+BYGAXZMN^O*fV< z)VArQYKRS`^aYb_^lRULR~RvY$0<1u`Lz3RxTKm_xjKU%t_Jg}-{?rR>!I~QYx6-p z=eT$L$}A#Pg=Pj6i;+@ia6HnJiZf4k%1L(RqER~Fn5I%I4$9qGW*VUWMEGK*IMK1)zo=l|4@^B-}gbhOC=$@zcr9vcf-{i{w zdC=f-RqJ<|F?il#u@*l34-d?zZ{_}fKE>y?++}Hmk$8a4-ecUvnXAV487=3oDSCcD zXlxnY3%tigUzQ^!e*e>-cYi|5{bI=f|5wr_`950|A^PDpjM22JAaDvqUNpk!AT6!A{M;)vn(H9BIaBlsTx0096043~#L7km_j?UB8AW|WX< zSUKNFnpRX)R)d5}Dp5wfm6S>}6ctiNiAY(=-XnYOy?!=XuRq~_&b{|}&R(6O>gjz# zB;iF_e@lBSG;}^k-@Nn-I)nC30eNxIRu;eY=THRLRTNg@xAY_0p8c=+?Rnrs;4$Ba z6KIM59@lz^j&yIH*yw(Sg5(9Go%}5HZP_JXb|w4T{oRdBf*Yn-`$E&1d4;Ve`m zQQiRRks%e^wPElrzCZEoMFThmsUB7pEP%RY``X#9Lr`Q&E|GMifRo-jq(XQRG>PR5 zE*!~FFK$-5k(dTPtxkzVt8o~8(ire(nLyoE`elvSA<)EE9&fr{1EVcVC7eV{97{l^mBP}87 zn)|hV=g|F8akH%t1yg-gwvw*>`1EPyQd3k7daZnS3$Rm@mtW0jd30z=(_f3?d%Vi#v~|;a_uFgDycI|c1e ztwYg)^{AlhdROQ^3oe&Gz8w6W7-F9@IM*XhnB{tR-!$hTL3!T&X^|5Uls461;{F9H z8;6a>V#`pF))#Iw7{cpH>IT<>zwnGWa=bBa24~FNRP7SE$$xUu#d4niAS%DoZz{}1 zqU?V2nrictxnBhjgN3SKI}y6H?aCZ3|8|O2{!34!f|Y;lZyUoKCHiOqZ#E*9q<>Ut zrWndDwz|*7df;-VJ#^A36GrjfQKo;Wh#uYF>E*5(oV`OC+CD|W5z7ai|H)Dj)3t4~ z8wUn)AjS6UAGT5a6M6Z1VrU6>EP}HB>uJTc=*BIvW zRWa|SCRsdIxeoSY5R^(+(~zPiFQtQXmH!Tcb+4XCXhH>c^IJ((%ZZV?(LY|~0xz-q zYn8Feu?F{yr7{X51Ig!5=o_MCAxwskUvX@vA!n@b=_avNVUPE2;WTO*vT;a8tA=_K z7dgBBYt8M!R(1PWg*P?0Rh?!XA;d{4cUYN}hE##qBqT+(Ee!=!`?fJ!OyFkj`S6`L zN}&OY{*y=$z7{YV zl?}S0Hr4Zf?U+x!r!=xiMGBp329N(?A+6>gh^B8JM6Ro_zY?S;1&?o}emFjht&MLI z>>|a;Ov@e>gQY%*35~fHSu{cTNW~MD_g#2U;@agASq`;I)4e5mOhoD1o`ZXxsmO?^ zbHUK}c4%4AdK~QQLCz+&;zOqW&`9A(v`Q|*pgNa-NN5*guu;_TZx0Lu^WCQ;>d@MK z|K8x^25d|=44h1AM@WQ4f`-5lovFp18U(`zLplwo@MmbxBQ=30Se}mIs8(u+ zX!wQY0KW!=QkyJwIkJ)AONs@zuTNqy`l;Uy2P$$YdUu#`dANk^rm_*!pih?bO%IEk)4<0LnBWU*Kej^dQ2&5)&LF2)RgUEM@qi*EBX zaq)GvP?t;zf3!3XdyPb|>D{vk(oy^Mz$^=2Gv~Cr-u}hZkc{E@xdjxkp4)q8k%i2t z`@dDMonx;gdHp}m(~zpQ>u2x19YO1B|0%a~bR_Q&dvn>lYABj~m!#J3 zg=~mSL`TLbUW&Y*ydl{MwcHDwp-BVS?)+Q%@lqow>8GFAVg(s0yR#ZR`jMj;8O|j= ziH$OvJndJfacZ+uJkRiV95A)AXqZfcgmhDM8Yrlgrx&!oF@awlQfYhKN6;9kH@Pjf z4({>>L9L36MEE|TOQ8J4oWjX&`Y&DROr9~Y%&Esky5Dw^GPRfryhkPIH3@MII{Rnp z>wlrlf1$^KhWuImt`xL~g}iB2ySASx2M?KcGIfs4Ahb?*C5ycu@pm#^e~wWRIi1hv zv~Aj<9Kz*&Er5|Y|5VTpTbl$!PAp5f{R{*%?W=a&9>B_rlU^64s=*L>_>)T_6>vjjb{-g@>*(AhLRnHDn{ z&l<)nNv3Fq`%?&(qWb-hsvE~M*J5L8MaUTsYJV&1F6?}>?N7rNAyQkvD5AEJf)nZ`o35<-9+V_%uG>70jtP(g zw@;M!(Ic4X&(oH)_=#_M-caFoeAqcF`! zVggFMU$Xv#+tzu{C0;HPY+rf&b0iN@iSib(3#~?8Zd9mi$Q(S~P95!kz(~?ZK5KAP z52AKI^^Za$cEb0<{!?pM8HRTay=JuOK%b4cZeVa0!X(`pIxUv5x*WE6D!T#WKluVn z{YJpwcV195e+9z4|HTEY{~d?Mbp3^-e*8H!RB+mI0jsB+f?62b!CHCk;q{H(P%3(o z8`HN6mC3&m_IU+x^*a%*Y`un@-P$snwvOS^UVq2)95iI9zGrQuj{+s0F1_TTD*Vu4 zoA{z7PMAkG4cSF=5fv4Qth~<)usvO$tv*6cl&pe&2#Yfj@pQ?K$0ulrMf=9JwS%=N zrY)X#R;4C~xP0%vyEu*c@_-h#h(2sKF7DoHR*9Pf7ii)HILOG%@|9?*3bcwm+PVGk zPiP*pwAuJ+6c_vhbl=UE!Q0C4(wWc%TC7n7o}1_bTUt=Sja0PSTFi5CNH7(JiNzD08wa)oTE`KuIknWpl6ru4wM zOe~Y*Mm-$!?id)p<0En-Nr@af^#}>%-eGiM3^KyDKUAB=h~Kx@27kNPps}j+pdyF|_);)VtXhL|yGz!gk6!BKDl7svB?+Kn@BM$P9*+S~L$t@WJ(cO#d``dlD zv>+x6-Ilql~fZJT)t>Us*S?#%zvXNeC80l-+xWsEEheUMgzfb$}n}U zRZKv39@+jAYxaA%$>mFx1GS8^*x+5iKx4;EqVIFRU~wCR48uq=}Y% zz~|O8JvDgK|54#nTt7-j;(pyv8^Hy|-j>MGe%uIJa*z<{2eaVDl1*Cgc_TgWx_D_$)q4_k`t}NjVx!2noj8=XDH*a#n~tgNOGjCQchd76lc-79oZ{j# ziQB^hMiNiPQGK$-<#u%=Zf8&3Rf%IFtp$a3{#4Zn9ZR8lOxF)bOKmrIz9vxdGP$== zS3x2vlj(`UB-$FYKQ{HPfv&ge*fr1fT(gV{FETI?J=>=Z#yvS`cviFI^n4OM6-)J9 z{3A$eeOmK$fr><(pi1j)>VwedB!&|C4J2DLhq=sg4F3+Bj(yp&i2l3dQDrK_xSP~> z|Ga4>Ub96?q%J~c1Er~20u-XL1?R$aL$(s>D=wl(XqsrA8x z`MLnT3_tmNSVMn4h?%%cx_CJ{x8sL4jb-RE6H(nH!jtoM3ZY7Nds(y@NyetYqZMyg zk>%=^BGOTZc&q%|YX7NQ!k~mEoLIQMWJ&V~Fq&6zD)ken{Bj zK^~&|e#$T7>m+RNq*5!b&!;}+l~CF`jjxyJ(n7z~BZ_&7dX$rvh?CX@GK2N7ydT*=-Cp=VmRhilSc8>$aTdxvTL2g97=lY{VGAS_T%P+ zcDR;$Wph92M2s=#^G{rJFpf%mY@uBUk6pii%^Um!&rdHurMNL{JJjJN`kaPDYuak z_)nC1=-eDqOp9eAi~ita=0xe{BSZL^R~%g9m5bBGGE3=OJ24f%?S1m4f7l>6KhNeN zN=|vPIh{odZi{;V(YB=}cQ5~7R$ZKdwy*NpkaxUf>PN--j@|8;)7IEyvbOI^Vjqbi4%S` zoy|U%s7Qstqtvq%|L}fUw5M~R1{Vq_{_g(G5MxzOU|DE`p4Q}J*KPEq&>_3ZPjMEb z17r33hN;PA>#Z85J^6S??@bj~s*t{#$+_G_< zKet6~P1bY$FzZ_T!gCR_zM~Argn}eDeGTagGcdJe(_K{HB4WF-p*xI+aMqmBlib2f z{Qk|AD`fT}+qG;Wo+};W5To?*HbB>RJk{-8D*~zq&sflmAzM2WFWKf1rgDMLo4Xhf z&I@Y>XB1=lxA10L?sr11h*2mGVJAaf+iYy=XR*KPbdAF6 zRK%IifzaGdOquR}q9>&g+M5uEJJIbOOj2wwM|hg+N{5NI@fy`ZcQ{45*e z&Kb3%i`vwNi<6$n&L-Y>@#(}^dgNfcEd|NiuDyyp17J^Y+-WJDhK}&D7qKSkIF$eI zweQ1ekWbHb^J*rM8xRqE>)15p`71He+KMYwp|e{JHxP4qt2C>lmC&N9qP*QV3de8f zR6Al?kQ4dF=h~YR>>dj_^381$j?&T>o$oFqL(e-&t&E0jZuew-`I?6K(jMdrC@zAw zW30bP-zeJD^;#y+j37iKQSy-18fY&D<{ej~z--gvWOM%p;xDVkF!_E6X3C2#${f_> z%kHhoD}DnY-o}1e{-qeEZ4{n3w2Y0;j@zEsIWj@|bR`SOZ^a0{(09n|W?-&Zl0S!U@7!|NV~;AfM_I;Ko} z;pzr*;w!U;N6|9mRPtn_JFDTKHh22Pd3wTHE&L>IVF6^nx!2y>a%`@;lFj;Y06RNB z8Vu|jLcqSj{CBJLL}YwRN65232xR?vmM3%xNq5iGiiWQsU`lMmX7x@4Tz2Sm$Ppqk z!Vl~_%Nrs4ZArMPm5Y!Be;ccJ6l6V48UJ@}6&4XkikPLRkzcd@wEw!d-8$mI*qzKu zZs}@#UEJ9Ntp{q}%TBx`gY`c5&|4`&BYrvGd|MBgI6w5UyvRWL&ED%YmXo-fctH7A zRVTO#h3%b9>T&y8DplV5HQ<^;%O?RL!frO)XnuAPi>LQmUDx9#ALd7*jVD=2)`?9; zEebX8<4C&fU_Xmw8iPGb%^bw*MnUegx=zf$Q?+`3f`z!u>)FUZJ zGOYhf5pr0UgYUuxU7U=8|+Jw7mkT#+&A$+Nrwpz@bqL zZt^pDQ%*w+2H8ad%&16i1Vhc<%?-F$H>iRDcF(Cwl&jk z5eL?cgP-iPBDjSQv^ z7+TJPHn4h&&Z$B)?hac1Dm)9HT~wu!+1U_$oU3>ttshjsq?**33gMPwy`?0*9gFWj zDc7#e!ADiPX0MSf@u0i<`q|fdWRxjiU0k6iK21lb^ztSVn5cOu!IYC2>D2Lm^J~IQ zJw4rRX3Y>$KQVDHXb8%C-4*6f72_GZOzqWVCeoZ{=S8F zwi%2ufmufHDcBTQ7pflDhg+9)lBQ3#AbMDl^IdKWTHdl*?I;i-tPHYhD{ak?a{SJ~ ze3Sy$yNm<54jW1L*{7fX6t3cMSViKLB^9x*mERX!Q-vtYl#F}b4JcNZ+vRwp1@2GB z9#Vg$CBpkvhGSOd@#n_?9YT8r*Jp;&er0qZP=+Sz!1}t2Vao`&0Q-L%oac0h(WeQt`&INpb_R_Zeoo6|oF$6M>2AhpHjV^S1DA6C-hWa1nHK%eZCU zblHU$+B>2Uzc*mwXD6vP`xCTx`QU3FfqwhG#XSwfcUo$(iL~@3vIAT)2{cAsDYWN&g0HRuJf%M_uzD{@g@%clk=PXSp(%QWY zxrG+tr4pCGx-OzHjcW&G_4z5L$ z>~zQVKDfg(?Y#U9l8uBHI1diMckCKtTJRcpj>tZLbcvC4{`Yi`ihBb}NP>LwD>0IytlrY_`a%dCoM5dJ zL%8vEpS~#7dcUnNjGZu9f#vjqRh;oG>eN}i3WAET@GYP!iDkX-iVS>sHNzX-FK!5;+|&Lu8+QoGN^M*Z>n9qyFmk7rne^#BKh zs?juhbJ;J-onj*Wn%zR*kJrHa^lIC)nGTHe32);5K7#2eFUIIyr3m%DAw7STjm&Q9 zzsS+@565{}RCL=1pz~5?MtDy%Om=bdA0f5aVb_~tY}W@?rObfOSyf276UFmIv=p-opqjYE0ey1 z`@=t8nU@n-?ri&VvvnNx`~7K}Iho0ew&FHIPA?~@i4sw zGWx5#lAaBtAx`DsRkIN&_5b!9>R3X+Qsl{S!#+@sT=;EPJA_9mG7a1FX-P&Q>U>yh zG4P4VEwWJXFLX!W!=25@$-lsKzAGKlL7n9>>mGF@=0Hn{`U3t30096043}p(7Hk-X z?Y$LIh$6IwWL*y-l|)ez$|#W$NmR6lRI&-2ww;Nb2Wy6DmuN*J)H48j`meB*KLUM99V=1yS|9E zNjnZGDj)b`oB^qhANjLf6F5t+%P^I_iagpK(QUL0gp1uhGfHC)@8UPj(O6bt+IsAs z{`)RyDD|^1r>yY)u{p`zNFgRWHv#SX1uZ0c{OLw8>Q>b*^ zbQ7q22kj1TWg>C(wF6=Q<>FDKBpb&n11SmP)13KDM;Hy2=x%7YVf*a)MD0U7WN@ne zT&`CcjGQC}hxzG9*)PR1Y57THr%R8_zFooG@PGPeN+#i{VE&w&qYhz>-VD>{1xd?I zJKcM-T}YOG`?kN4jdYlbCP+v~5}%8*dxs0Vu>Dz`nWua@+K+q;eALs2<9Bx*Q7dSL z?~bEMTDl#mQcYX_5X($*+l!wDR|pW=jRo%ycdVdX);%UXhm*|S@pkNRU?e*ZT;f!^ zQ;&5^A-0kCsi+C!T#PxzPhOSo88C9|glC9~nMwdFX}jw;GbKd<$5+Kn6Wwaeh6>OM zsnvkwUSSaV+mE-QS4Eq@_o78iKea%n74yN$S10urpwwp_=C^4Q*RFC3eATIeCXKj_ z^T;4xFnPBRy7b^pob}~ZwjP*8jc%K7>BfbK3v_gw8ekle@JKCm6mmgFb(D{d!109~ zTYM-jp|}J#*4<_$^4mh4wv9Jo&*m9Bk=%_WiBrij(S?Z!sy!G9$?3*B4}D*~-E-i1 z9-fr!y$aUfc_qJvX^0d()7InnsF43B{PfB6G=9W5hvll!5d+-^C$+`KVBnKf9CYj- z`kB)u8aFbNfYxa{+v);*NXj$&l$8Wto`51gfk9+;DsPVp>H(c)(517qOK>^Kzj*b~ zIHGoXc_up+Az|o_p@G)`Y>!5|zK+eoKS}=7f2$2B4V_e`D3)TK@+Qr{y3Hth?cR7Y zeH@#zHI6(uzLU^&#yqZ%szu9lrG(qItJpH4Ixgul35EABa(9o?5#?#qzEIjKsLv-I z<2>DgE2QP+7VS}_^=I!<@(SRi`L8O_SokB+>zHmU|R-y9SuX z3Da0s%%RwIZxgR|J3`u?BsrVaAiFH5_x_(Q^qEwo^!RKehd8T^iu^lqW2G`$ZE_mk zj+3s6*M$kQX>|Os%M!}NDqLCFaxiI;Ut7>`HO5IA0=QZf zb_o-MKPd+;9a%?a+}6!eD!U;n_VCh++FuyFk%#?tjp#mWQ5Ere62Y^P^Fofp$g2|Z zJk7m=K&M4f(S|k@f4Ojf)H@Tths0IJJtncbqfATIT8tzw?>i#W05m(_bGF_6m{#x~dQk>PN!pcml zezvO>(6EqlrL7X`)E4-Q{_y0{SwL#Qac+u5503Es=9g_9LbBZ5j6v>k7zmX1*M~2H zb|hFt;(RX(N3N9`*NkI+SDxp&TxKGi;qQE$y8@E8Cp<2)4dCu~MNz4tYNXFTd2_QY z8|p_`lfAQw@J{a0N=xe^zKBu0>!W93@P(V@vo{S9eR3mmhjud<3p36X&$1J0p2I~y z^J)xiw26;*q$k|Nn-zqXIw8&}S!E)XiYCF-)RRKvP_fqeel4DnIFXmz>0U6CbN*)p zSh;7>>C3^QcDDghtA3URo@=>%K#x!5?<8acb6R#%X24^-80|DpM=WHR&n^tJk*Aff z)6-=-@SWkJzorfsiN4>mahA6SPXFZoas^gG%Pr2HGBbnbvS)PG2|UDx_EWXCRu@Q! z@Z5i*tmOLEcLN6t>4^&GhX%^8F(mz2x__;Ojl35B8upZtgTy7t%QRo=hUWapzo4#J zC_R0*Nk-PnsDH~~cVB=j? z(gGtN)9CjxG~~aI=MT98O7LK5Zc9Cj9!&YViUjiAumiQ*Y?_p~$ zsoo7?cW+1PJ$~|ydBf%yGYZo5u6HH&F%piTYpQw2CCTpPCEvUGU0D2(*&+Hl6E)*? zq7S>ep(OahYw~a_*jmh_GY2VH(oyT96XhghLovzKxPWMVv{O!u42Q5+Tm{fc<+Xl!7xi^x85JGjSEcD3@{k zaEberLSKo2a)$i$OO4R0O;gv=?m?PD$>-T`!w|Z7E96RaEhxJK+YQJZeA?N9e}nTW2{ zUQ|ZEa9~*K!&Xn9x0zh4=y>zv+sg!Avg7L~+i2e|blJ;0s`m?%pPbcEy9#JX!)U&P z$>mPioQjpH%9uma5v31uhKtzlc`t&7V+v6bk**C}SKuwR}1C@*uUS99S3dRJNEaDdx$&x{)esCYM^#g{y&v%^Kh{|zwJW#BuZ2gZu=@S z5cd~9&%M}O29k0ub$PxU+8yrpO^H+3c5|}sML;Re%ow+-uiclo$mU;GFXu4*o9Y*| zy&oIQm?KMhTX1J-aLL1>7Nu4yR4tVSJhfBH>RB$roL3!Zy3qvmrW?E~)^hx_cScFd zOeai!EZBMm*TTrMR>SM?8h83RS50=dAf`5fb$qHE?=RcktT@*T^HsOr3s$n^0ruFQ z=vn)h!prxEEtb*c_c1b(mzOBGBnWn_y;T-pcPomsk`w*mr5eMHD6U*jxw^Jbj^W%w zj}q7BFy!obv!SMCm&(z937`sY_ zN+|YWROcIgBFzYn+#IDWwvdz0X`DSs+Ab$U!;68-22la$@%ps*k z%tcq1i#SI;*}3QbCZhRH!FW!Yml#shGkTM|@W!5oTU;R#dv>odo$sgM<=L!H7faT9 zN8T>A?r}f3+SQ|`?N{L9n%6g3)rII!g#{TF$!Hr+V~lt*iKJ2U1pymTBE`id-v5W0 zlq&o!{VT^tMg&v~_yzgMCzB27SDsX2U&;2+xXDzUFl1Nyy^x3avjX8-+b0lZDdc`x zsRx_23O+{YYDYoXfgS!z-0|%@ml-d|(+Ik-C?{6z4E0vB}X@m4;||W)3qat#Kaf z=0KHndZMU*Lw>(uEoOF;Z8-_dMBZ%H_h>)|>V73s5^pCX_U5DF6YB=y~*Z*9I?5=f7M#I&haWwHEk)VH;k^;`>z%&?lC`;=O)l6;?n#* zm7S2Sv?Atu zfO+f$17S1r4!4Rb0F}kR$7O3Tt{LZRRx?yV{!HGVZ0A)N$T#*J?=M0}lfB~mm~|w7 zBU{JcF=kR{^QbCgtv_O2l61DD&R}!-fq~DDbFqJGCu2#?1V(oWJ)52E#^j+g_W_@2 zXgpyq${im^q`cse?~OjR8C=}*{^vTfyf^VtI$I~^=x=4nY?^~w{OTo|7h8#cu)1q< ze-~N{hl=(VXCvp^uZ3-aefam^Oc!;$0dbF%BZO+l5c%nw>i6?Jq~9*XY&x2ga9rSs z+3CVSw0S8MPi}6qXLog#%WDR*E@?!`dA1e$mktetB~Rd9>iu_a7x>7g`1J0!&E4R7 zQT-tI8ZBuOY1vQuCt$dBYA)hUhm zuP5zZSK{j|R&Z1Q_Una-78DqbCk0~;Zp*^7yKR?YGP<*=@csy#vMyiSbCj7}xOGDF z=+cd+&icFwD(pua$`;4CDqutZSNAGYH`v-I6?|7RvDIEz zl|i})RbRJqg|1Yi)KEb!C8rvtv!HtRKHmL?@C!F|d@l}LZ*7AUB_ib=kv zdyCQ&2tU}QzUn#yEp5LShS{YE71(>8g|-{=)z99{Nl!!9@2}UJnF^eBaPHsvi;msvQOsJL&4Rl_wjT zaCdW3j)Cw$I9i<^JX<`3HnIKhO)vDIYKhP3bM_KGT@pW2O3zEy2c6fv?be9aVbpmV6X>|HAkYhz1 zk%w-~LZq0zRMpXT9@)PGlWZ;ep>Z;_^Q7=NrvFuPW&T(IML(z|l6@YjuXxPa)5zAq0hgHf(pK zAuBbsr$hAGu*-*ET%VJI(p;a>GllH^4JxE#cDiUo#KJOMD zkxK(0Z+^beZdtpZ<+dY?yhRW`$ziQ0I*PYZllC17Lr6J&E%oLXZW2VD%Iu)+z~b<1 zsr|=FG^JX+sCTZxsYKRO-uH{J;f6@o+0H5~xOTT5K01NIoj*gD>1yz(DZJmPvk5GW znHqko6?k^$L^~g45G$_-O?&d`NzEnQ1BZ>8u&q??+oK&55NBWJyE8EZ-G!^SN(9)6 zpRlGolgBLhj3ssjNzbDuyP)gM(n#BnaK@yhauN&L2maZnyVJi%!+51EBBwcYiJ3eqdx+pgUy1k-Xx_0D3s8z_?`otjK64hmf zZKH?|8_T@?g@!P7W*u_($VcX5>wpvF})|#fYF1Fxai-$ z>@OxjnssIp4=r<(Zyw+66x}G;VtGQ$AbJAoZ-|?;YFkj+bV%c5K?S;xOj*x*QrEaZwAeMc6IH8!s{F(1@m^Bn>!~da_6tA3=DEs%50y1VHEJkiJU657`rRzJ;@}x<|{<_p=6j))#d~URuETXBT5{?HQQa zIo4e)-$}R+uCs9A9ffwtr4tY3dU0#pXVdMnN+f~Z&GI|{O85EwKIe(!j5tqm2--`s%E!AehVnk+#$Zg6> zF0_y6D#5E0?gdL}4l=Z4Ps)j4I?5DU2gN$}{cM6!$ry??xyTiMimR6x-G4Ch5JrpXT8)7zux-zu9P37D zp}Hz8J>m_UDDK7fpQ?qbn1+;beqv1^6QNPD*zuHukJ!lu-RTvp!LatP$MyG0A#w5y z!=52d5-a$-{K2Ma5Iz?=4%amgl(k@s6Y0aghjkNY%KNeFRr`J`tvMVwJ(_tvmxZ`p z3lf(xpTWrQwB2%BsqhZBa7cf?o-|fd3-7M=OqP%6{nP3n2x=k-6%V$Uhis@{^gK@O%piz0BSZd!e^)kJ~k)mnU`b3CjSCD1{8h z)$Mp@?c_CjV-ZUi#P*%P(~LX*>gmb9rx6uFV=de{=CG`Y6kK_=b1DMO)RX` z2Cs-enFXU4_32l_PL$5|Fsr?t$K*HBiQO3$aFyZTM!Q;!(pw6mt`*a`*IPDgIXi-O z-i8|*=d!VMJm6YlCqHS z-d9vazHK=;Q^HD~?NfL=#>Gsu_7^(rW@?2FmsCmk@*pxTo%r{TR)Dp{_WZ!-e^5$0 z*)g$x4k94|DNQ$;V6|&gGY%fVq=OCa3MzWg4ihX>(}Rv9$NE) zNB;^anH*$~6Th8%bqi=@6d7amE1{IMG^`p>3A-oU_U2vXu+qMidO@QCYBA0o8~67^ z`Sv5P@DKGk*g4a4a-~y{x0+cOE2=nqNOh6ErEYdzGPuvBO3k_6mtk# z>s#Zmg&Il|xJbl@j(TyCE$W>|MVOZ0B$}Z4Mr09g@!1dFEmvbtCR@7f-BD;M1lQGk zr$UQ8JS@0pjoW^#Q?s{j1miA~)WiyYG8t7BM|sCf>|@-8-rSwWr?-Jyf9;!s!q-6y z;e~9R-Y>DD|7rkCYTt5sswR;v_xNI(E-fi2-*mMoqzIGO%u~guCvkcvMt<|xF_`XH z%E?-!K<+m8l?#G2WW&STr}w!r6Vn2FAIo4~^6OYO^|a9t{KV2mxNXN_U3J62u8NKv zDw^81DWU^%(I%SDqk}Y_|ot<2JW1U@|%1M}#fBALw6v3z5Dxk}&4_b3Nug*W~ z1*?72mRU(QBD$#mFV&*}7p4x<&!2CHmAL^wS2QCr{I+?v@;g1*d1A$}P-P1L&eXj6 zTg6CjCfLYEOw1ypA#UmBjX4PG&HPw?UJDiBbMov! zoY&r6O+(bJ&)UBMyQza8`cX6+C{!o*4dhvPr^;u<%(tEx+b5G)zd|EOC?!_@Q>r^MWQxdmV`Z>Ma##h zMlk6jrmfE^Lawbh{-n{EkFY)Ar5;La{%Yd#hC zPG)A(9x5h#znGakD;jHjzrPv@^Vfeq(xbxc)8@TlKf5ts(WBV9myX1p)p?-#YZ{Y( zT*@WgyK#%R{MmZnAvDe`dTyc)qU?+GZ>=U~a(yP#&?!@xXvdDC^ z{We9E6zv_2xOQg|4(W574hk*8V(ikVolZ#@-tT3laBUE2M`yjmGHA%9W<@<|>wX+g z63rels)d@blg3w#F;q{~+_Men!)ftj%_;c{$o$FDcuuGa2YUm>_r*|Q85YjQV?K`^ zM*}@W8iO@oeP&( z!egd~=QwF-N!Ng4O0e-K)F0b6+ZC~ZN&d{kMU{-i=jGLr@|_Dvf115?RHqUAlYFB-3PjcAaykHJ=akG+LtWK^UfqoGK6-XzM0gi1n5N+l^RGFmDnWmF;&8HLJ-5+RbE zS@s_1nCBdOfBu5^davvG-Ov4OF$fqbJ<3itWi+>}Vw=PFpATjqo}Yw4vo>S@PflW< zB381f$xG^)_aip6cL1k{%d0=r(B)LzV%^;ceY@PP%MDAQmQ_1!EHVe>?G{`ANcKSK z&eX}HtGiKA{!(c5no&H}-f+xw|8G!3s#BLgW};JUh1n}FDtx=E9WDzB5~1_Ag_^`# z@$ty>7z@!VI8Fah7P?T5mCKa$FL+i#{-NjU!r)2-Q*L;&rO}X{ImqOD-;B7MDwM0H zH2koYb3W`@jD;3tT`=f{`^H#p+qMaGUhNN3)TjgR%%#99ySlMy_rf{(S~@~qW6vmL z2ov1~^P>lq=MhMsseX2L0nU3r$_9s2Bl>b}>H4^N?tLnM(hIfbl{@+yP8Je(T1B5-K33lge+ z&Mr5`aaOq~;jtT&(zhD0J@Nf?tD+wpZ=K=U_Ny7>rFN6~(RzgNrUXz7ILQ2| ze>-Qk%z>9S$IX*A1(xx*E;;e+WV_5wB|g7N+)|M{P06Z)t=V1Gks~ampEaHPWlJHF zo}~pHHSdL&eCmSZsR2CNZq>{2h=#rD!XICV(U5qjsx9Y76C-4oOcyKOZVq=uDrPTMrxbLS?PG}I`R zgc`(2oaK4cGL4+)l!JROh(`P8Da8w*BrexN5Y8^3gey7)4UJHxQ6(-#Er6~Iz z@x_xxkeD@O2vo4r;i2usIP^ImmL<rJkcA2jTx>_8d_Z(*HRrL|?oe%+6LR&d?F;9UjrCJ2wXD zR~IO14TD%!{Di+rXa?TAkrm1JhtRTK-B z9M>vQ_cTrhzcHu&4zVR3UG}?(N4||;A?!wnj?9zwdz8jO#mXFuOLdUS{c-@R< zbQ`~c{n1Re`?D3~v&)zFsy~NdeQeN%zle%WzcO5&cM6mC_qUq7FA5Ng`psLzwX2Y` z=gz=wl?en24yXzpVkapV>^^M@?1Ak^Z+8#YJct?G{Q9=%AFex%wz%h02w$97t)z83 z_OOrk8aj`l>$^AzDS;i{Q1j_@v!D z2KEDT$r2_MlK0@^?>l45h;zBB-)inIa99MSKToD&`@H+{5JnfAZtkERdQ%4X;0xEj zna|;O%hQg_!F`xWJwi81G%QKD+G7%Q1c5Z_C3uQc$p@aJvSn1^Zc1K_@g#A*^ znRo~j`X9f*6;5psnAe^#Q>a3J^g9(9?Gl{3WxB|*uLeQi3L3uJS7MU??aJUY0}#6U z@Vmg{4y-kB*zxWY6XE#8m*SI;HN``eUTzvP6}|mw;SB5*j52T3sKyRvhltY7RycO} zm}m!3@sX5!t3m4kNH-dn3NId*tW=ocCk8LWac%g2ys zX0>~t#5gYhR*iP|slxVzS z{<#-#kDkAA#J>Y)%Z2t?sqvDHyFybA^zo8`&$kx^#D1eWCZl&>I}Phrem?KLzYoPN zT5cSnLgawZXkW9?FI+#=U?Z+o4G(6fo}>;p5f>l0oEOSNX1wo2EeuWIij`uxQ5`S2 zUsf<3mc~J}V^sI*9h}1D1UCgWnKHbOBaDXOCR{mHKOE-Sk3I@!54Zfo{)}GVEh{^* zZ6N;jD{l@WeEiF*U*6NmI`7ym<~jnMm4RWQGMq%aSU%k2D;@N=MniiK|HbV5e)jqZ zR$^mcE3G+{zm#KTJdO^QdE8dkzx`WlDG zjX7*o4KaEfGJ;-*bsK|RmB<51+um&Pd0czabWneA6!(Vjg=MO)A{jR?DbSwx2SwyjrIB(Ra{o5?f!8aYS`- zFcc)EiOa^qn1j+kVOjg>*Q$-f2z{YoCV!MdWKJp{Qj2Uy`*y#tZqiG=qGt5x=!H4F zvUs;mgq@2BUM!p~m~ViwHrC3norc0w%G3I1-8eC#_WVN{8`*h_aKF^-!$SVuW2^x! z(0;6%cQKHGHKl8=JrQLh|9kfiqkD7km7AnZSuZ2}R<}xr_?Wo$gw=S$jFDBkMc)qb9cgL;M=j1?E1z~(-=)C(V~ zLCx(v7A4G1PMPzB9-C=Imt9&!)@u=BHSf@-TSCL5zoN2&fpoa3Z|e6OoQH?Aj!#HD z16w}5JA8dU4&oD?O6k0_h|er=x!k})M(Q?3-OL+@-o4jXzb`98u8I)n=BMrWl9+MF z^%@fy+iN~l(AuH#Bu3!wo^NP!H8qK05hhnpX1m;ZIRK-d>(V^E2XLkOPF!@15ZSG) z`>{w_jF=r zb#vJZa&*aWQxeY1-e`n+y7bGZ-Bi?RY?ax_#YUVx^`*Z*rb2`-KGSnO4SP}ymTSpU z$nw?nDn7d<59k-{NB9KvyeV>LN0#188sGJKn+RzXwGoW;p+dOFJkFM^A>?kQmJx@8c=#xC@oX(zIjgR<*X7|?Wmq+s#(7yintwu`dsMyPrD$Fz$htF{hq^#T0_4>r=ek*vYH4VKWx;eW1}2o^Yzs z(b?=~XvM|A6G**TX4Z~=T@~R_6E2ea`^TAeSLXaGiyOB)gAH@xR&TsLT z`=L`{=BoObg%tf~6_64(g55cD{Lwn4Sk2Y>tFW4naM{cA_hkr?CeB>r zRKpptKhb$}#GRj%R#ryjL~#<)JrfQq@|OCeB1AK}rx5nXYaK(DeAc@ExqkAIr9HsK z;n|yAgBYrSVewEmUZ(bF|9rtoZVVc0?wVk6NhT4`U~SxqpHbID7E@ z+6#Y6nFd%$oYWoL#YXZb*9J$H7a;OpptEsDCq_0=1T<$lp#8Z@jH7G>M%)S?Ou3p- z$S0h&Mz$7y2l*8Wf3gq_-@|#9VFU1eS;tywwUM~mMZ}4gv5-*rZ9H`g6VSb9RNa4e z4H2rM7rMP(^8K;Vjmj-lET6X&){UyeRb?)&VMZQ~?S5DqwM&5b#GOv1@X~Q)>`_y^ z#t+C?EM~2LI}M4Qs%`X>GNdre$s^e_7oYPu6!vp4aAQ7e#J`b3ie5X5-}u~$oRx1b zD;%al`MzY0=;SDtHSh_qeZx-T>$W&--_;63pV2V;**V-1`uSIps~gRf8~2X{vXjvV z7KQIOcfz$$3=&j*pBg=j?6{rpfH8b%?Qj#1W8HJX&^uh#l z3VJW?>YPrsL#&T^?hxxJZa%ztBxg%ER6faWp8nbg=kv4yS2hYVqY)f+{%vU zHjcr6wfdycF$MDek*@A>*)DkH@VX6__F+);at1jSi8n*3T9>ZZ0Rzc)#DUa`-nNX+3e8jojn&_4?yIj}At41ncezDEg=?Da)2ahn7)zCwCBLvZvn6 z$c`aXd-d@Wi7LEIGite@#zwg67$@DHHbT$kL}s2MANk@a$;0kM#l*mlYxXR3B!-LF zi{D@+>08FVnw5HxqNg4I&)@@0Um;_n?a-4e#`;V4 z*{S2bSo}4ZcwUzd|J~MBe@2?{b>hKA#ZTYR`{T1v(FZ}&!#ZR6{`LTFB;3Df<}!@z z7&gWC9Bn~#eS$y&w8GcDwHM+4WR8?pEn>~HhZ_Ta)6hM$;!^uZ z8g9iL@v6H;AqtBf1}A-4361B$t)jp&Y@MW?&`@B)>Pu4ox`-9zLwVd0_RJv^Y2Rag z6}+@xSYjRPMW$f2dV=k$Q8j{V1pZ!9T*RH7ku8EY42X3e*nM$V7d|SUui{l_KvH<; zw$I#!_%&jZRujZPe_NV(`}KYtk9sVbOausEWzYj z*@M@YcrChF<9UQa9guM~3gx4m!>C+$)-mQ0W}kXZ{tUIafu--n`6tha+<07ol7oXWF44^;tv$>X^0MX4b zS^G6$6r3ySvzV)gG1}J3zA24D0>73I-R~QPkA0S(pGX@l9SlV-=5mtLr?*SJ+QUay zB#lL;==_AoWEd}rj>ubn&>_TuAbz~~F6}_RI zd1YUQ5bMJyA*NA>trV`W>6AKrAS+q_6JsT-FXRg7+m2w_wRpwIa(S|F=%8zS!xFDE z9IexYCc*q&;hHF-KtdnX@?34~Mzz@+^+Nd`tg;AK2tE531yLm?bJO`)yS4s!QmqL2 zy}FVrF2sb|#*&+4M;_L-pSeW;GX;(Q;DxWk;za$>UT%w-T-dMIIJZ5Xjx%wwdat?X zp_3{u-ZNhhwn4M$>PuAoan$~isxpGj4cD6lp0knB)B;-xN*A`6da_lUFQ8nX#ggw( zCv1%8n+F{@NsHYBnwCZj*lj#k-u$q%Pb06l2bE6YNYlw&+ax9oC-eIJe=yMQx3GW1 zt|hMt%dR*lKZqA>PWq3(&BA+%WuKb|7vXXV5e{|KkQIrMGs^+h4Mgf!KAN$=NobuS4^N(c) z0SmXZ-jiOORQ-O&+JcU1YqOB!57&`qlu-lRo6$P_?pgY+cFb;#r+D^3%O1a7Z@H#wO}NOZi*=bb%)nf1J{4&xPF zhbR4QKZY8VqH>qzC7o^Vd)~Mv#DQlG@@fL&dP19XaLh&`7du}@RFcO-_i`(K3odh=4bb~ z2(D5rcgM zYPN)h^wI>2SwFB7-9mfc&GJ0NUtxLTneL4-oNGJr zp{RA5^*S%fxzViX&@hfawHbD_{9&96ygg8{e*t2<0^hz}%E$VE&wCygwxItF`*_kZ zR`MlI@(5j4fFy8iKe3-b4^DXc((~fdKZAA4y3G3#p_1jKY`u(VK72v9YcImn3A3I# z_un`v)5{&)%S%l5{I~!3UokSn;5AsIx5Rf9S(>xTa`F?3Paf>yC)+76oy9j!K|XtW zgObosj8A9jQj3OBktr8n<9oBoH=8wL5z>mH%Q&09O+hwVK#hEy%nAd)fIZQ zE7f#(OY-^u^_oI;>*|20BXubKXrr%S)QfoQqg$sRZH1f3Ry^%-*sjM4JAd} z4Tg3ug5hv7th>4$S$-pTg;ltS+M%6qd)Vqx^G#d+s7@zz{s}fGxGciMCfYT5*AmxS zo6QX8hViJQBW2H83fWze=u$8|> zldF%pWZjO5>gT1awpJtd%auAiR|YB`ywYtG*g#IqG%j$YR3qDH$}>f~1@|6>1=gJx zA|EcTc=_pTFS6gq#%|EA!~Ba)jGZd%#Q5gXa1u8JlPQngGA*sB?)jmYE6+hT6dGT2 zTe@#2{jlZPDSdc!Pf=6Ev>Tqs_)^1r1~I<CN>+!)au?YM?LpU06##$zx|0rb7*{i zNn7=3J*Yc(PiSykF=Q^G^LWiLDE<2to_KPQ&7!yCmHn$B7Q@$&GVmGu zHnup*9vH&{-^u6P8Iy?LYuBOgFbcsmt(tq*zY$k{efDtx6V7^GI-7F(Fg7yoDsiMAMC> zyXFwm4Am_Upm3{hfTOc{)$Bq%`_+)K(P?ZmcS&UXtFckwWmEbo6qmfFUmO=V0Lt)z~GT7Vj)^ zm86jL26@+`22)5Fspc%Q>P95<1l9c?9nPv=3mzGzm^yH#TIT!^raD?A?MDZ3Ij~f4 z)fH~SqV6dao;Qeq;miXo4;I2nic+u;TmesI2R@#|ZAgt^cj6jsfz$CD`M3CHpt-_A zV>|mW{s#a6|Njh^XE+vI9L7B!dkd*hDXWyww(b+cnket!qsF!|u>Rm55RXOCdSKV-h^4!v==8yAFfqK1Y$ z@Pz4~#D~UOnAv;^IeV@KiG_w0mj;@#y)Q00K1!T)C7;?CI?qTZN*rTUO(5!ZS z;U8RBJ>lK$GKsA4^*>IWTtp>YAzi{36)@}NBT$#hmD-d2yd>{VtZW~o0jFHTNF zu~H-DVBrw1Fuk^xlAVWvl6_lt$2_K+u_k(<0oi{`Ho zUPlzzrLsJ7m`UJfh#VzmztCkL)|1 z4)pe*%i1u)Ah`NeQLp9vrdtBrT{Ij9i|WzBvWZp3({#* z*z>#Qk=u_#Jesvip-oNV=v5K5P1Ee;VO^H`Ti;9!2G6}a<2r)3RqC@FOUJ=&J6iF1 zz5=xjeHU7sbFl| z3MUV3esjw%xR&>95+3TpSCddqVl$3}KL=|2IR3&U?Dj zS34xXx+dv99S6^c7PktPYPfoL?T?z~A`@1wK4a?`NWP9L_pjXy{bsATWQ}*j;cEHd>HQ$gm!k3CW|w zP*C^8oy#*&d|qlA)5=Y(zACJVSKma^9ZUJx@^g_;cC=^*nMEj1t)6H?2g(<?Is?gkf?CmP__+gLp0ueUU~PZiK%m+zRUyc0jV2$I+4fk z`SJbwQN%v}dP64kAJo!cDNBy@;g;C+Dy{UDJUQ@+OMjY~$UOd+B)4r0b-v%*95r&l zcHG2xk(9$^X(~B|ryUH6ZK1_pZ8$GGYbJb#LafR)Ma?3Hu~BM!$VtyNB!DsaU1W1L zB2Qkja|`SSUx`?*qI(x)n_qARbk#xAGsD6ERXt`^owg2eHNi72(fexZWpQ%W ziNtk!>OA+Ez;@|}dQzsD@Zg>*)*hdQtE09AkM#nsUSWQ9S*ad1NA?af7k0qz_UXh^ z9aOSN6&ApSMR>>W&gQVn6;%}eIqu2w0PU>+;4cmHB!XhO!sg~J!eCqbbp zb$zhpBcEhK+~OEB(PF%&aocSQxya?pgU{H(pCa5f&~AF|*|U29m*QJXZF@M#4$~8VR|z-6tNYv4 zuG=Lzbv8%K+hQJ)Ler}6V=C~qQqH%{ZUCis6Rw3`VIt3OZtoXp$;DP9~XIm)CV*@m_vzHN`|8{Fc^PWSPXU;Dy7hZ8^we zHA?@+Wj11}6UP7JYvMOhNl6L6{s*GcYM30(R86y$3(lIodU+L-g`m!B% z!(clY?>wb53^|GdTYqFZ_N}*|pZBE!;{~4H{Ou@^&DGmoJ%OY`?O%a?D>=e(%gtnY z0cjBjEQ6~XvBq%ZwYw5KDS13oz;mktMaKgN9+-DSGjdJb6@3m8a{Wn_d&C5e2Q!`e zv2_rSOem}D*G@p-7pqx%cqjIKKgG9eLnpQ!V&st&5g@O6ch-5Fpd;K^?rWp!4E9zq zirmp^gjK9o-p$Tzo|Y34Ow+T)LiE`yV_o5?Fz}`_=0l&-defhFS5ObDU&q zaXTNgc|R=dqz}K=p~1d2!cP4=h4^x)E%W`Jz`_0Fd+o)$a0dU3xGqykfs8_z!gM!` z=3QLU&ov@n?yQD5Qv<})ZWu|Z(%>8x8s~AT7fo+-E)8prgT0>Da8e-`KVyD<6nja7 zN81ypXZG`WR~LEy^v`jeH>Z`dRdnH^R~0WShXgr&NB4}!<0|<2#MFO`$py!*D8;V$ z7ihYbSuCBIfRU|NvuqODksp)cXuD++o~kE4D2FtlE;aVl`7SPU+jTg_`uzfwcG*@I z_cN0IY`2=yUwQayKt<^NHmJ4=u1Y3j;QDMMX^>Wm2fzFxXSgQteaU8xQ++j}&mT$I zG&qBHtEL;q7QJBbR~T{GHiU|j%Zeh0n91-f3(pR@Y*g$x9-rCp6M~InTOK?e0d4i` zP}<2cIBoEvyxui}|5Rdzye}4FX+uXp)4K(n-RtKaZ9v0Z^uuGTB`Xp7Ac)JgG!Hv0 zlHxXtP2kJGVo^262z+JLj+r^nmJoa=7r5o>QSnIJ9isqonBS%&;XLf(iAbSi4z8y8@ z*+_$Vm#*}f)dsSvBxb3JfkG6_zj^a3(cs<|(KPPHPvn0Z(9JtLArLLwSZvKe&S>&9 z&DbwtoxPo(F<%!>^Q{UhEgwb76eV*ox(aHa+3RlGbVHj(yEm122=Bz>X;sguM1|9Q zr|Z%b!knV>cis5|GrxhG47;l^tfU*AT+xZWUqXNS^mHKo5UbCh8>}Qg<7aZV{0NT5 zf7OZKxSs42SJ2)R)Qr=gA{|B@d(a*+_9gg5FIK%b_9-x`hr`q<7LCSM+{?E(I?&$$ z!6cIco)ePf$>3_kGXu=zrR}D*X;Y(^KX`lpz4YG*R)`bad3On1>LDrWgDda8b4q#M zxduAYLHDKldhlRs&8Ed@7IM%!glqNdS$Ky_iE5kkkN~3(jv-b;M4kJ0+m<6m$k#sB z@AhB_0dm)Zs8x()Lx)<`B*YW-=@5A})WW61nfvx2Vfe$c7EqtawdA+59=k zS8>JAAM%yBx1scAEhP^DzKt>2YXyj=JC$D0E=C+*r)c|!uoAv|bbo$z0aEZ{QFeze zH%YSlS+Hvp1F1;-F|3gD2Mh;mlcfR}$m9D#Tz0knI4wj1rfX{vna1m9pxFbb-;rPV zmpMtq`PNe1l{vv}zuA@|-2(hN{Z?fB_cYRe)TeEJ@DJWBNzLB_hjIB*@atAFDtU8B zK0w4d54_AL*Y6k|hPcIqf3Q~>m|W+$4aqoeXyltTM`oinV}B*j%X;{_NZiZKU?O#l zCKj{Vvk0$jzZc6$AxE55MpU=5kq2YNv0=OuIN-u;Ucn$k4#?|bR=*u2<73Z_sV4jw zzRyBSUEykT1>tO=5-=Gl{W1K^Ph$LvHLBU>;d{+gR57ap38nG}W-Uk1>G8a%R&5^1 zHJ{tMh5x|Q;mnbMHFPAh9J5x5>xE6X2g}Uva-^L)(fm@a2_}smmzZK``0z{RwAR}Z z1QqD ze1z%DpAT$5CZYAy;4t4dI=1L-KPKohjNMUz%Zbh%kY}{p8uhFNZOW(X65IrdRDsmI z#D`&wlqeK`uA0LdACa0rnYE}BUH90kC<9l#{%XaQ4uWMmrA4h%n7r9=|D^_ZB}#%O z6#b0HAY;j;5c7eRSe-LsP5Ms90`t9xY3?2HSc*5=ad{aGH%GT`d%VKA{7aJMwS$n4 za$n?aqLSQ?G16wodr&~56yI&GLZDtpL@sA7COksoC8ZkR=e*`ZOh`XUT$LTTmB(?J z{iuYvNf!LJE}ltR--3_>6|?mAc{FDCKM~iQ2iM`us7A|fWV@(kI9wMeQnV(v$>16+ z@i0cU%w<5$KIXzhA%Ez8xaRTV$#_pTc<=?lJ+%t3Kyc=uVhKV)q2e#R8 z5*Z7o+pI@tP`=OBF7+)lF@xVdMV>tD%rXr+(MH3OY=^&#ODj3{&tme5VL3(~#He3l z9L4Eg4PFkOYOn>mbZ{5Vp!Md?h1!H3^o%6sxd;uzkZ*RhQv-g&P zeTm4?(o$>W9L8GC{uhBUBe=jO?Q!`v9d{gWFZ2lgg+o$Wp`-(a80ma95#njY#_6r* z%n_Avh;1bwHUHw;#7@aDt3l-J)jzZL8^z_uLcU+Vi}>y{OfL|aXzC_74-LWrR9bTWvz>83vge|T1REiLc_=S*gXF_)V^|anH24Xz2>N-Oh6ZQ1(c`C zoZ=;C?k}n=t{TDo;As% zdTQK-U*WJcF>SzczN3{ao1}=5FOy#XXEt)S|5gi4a~Q6zB~8Dgl2>}7m$!$BLexzD zo%_6^w=4SAiW``#k#yb4Cb4D^>B<{OX9@=ysy(}H3-dG*ikjwXop^|q@q?v%X+or- zesHF5p#Y&n~pG5nD(JJ za?V|06<~S5w&BIPMO^HaRQ6Gw!?g=ve$+el<40kPvc&f> z#GQ>gLV}i2-tc(O?F)@4nq>dFI%)v=F6P;q*1Tlbvn*TI7nvw?WuI2NNhO|!$NOsp z>0o8>$KYQ!l4rX^=2KcNSop)E{>J1XBHS)lXj+J#s6_fQ(@?f69bc$NZ0UXVc&@ki zPS>~g6<^J#R#3T#YTu#5g?B5FEH^H@CnyKszU9zV7O=0%$GrYuHPkGC z((v`JOWnSE18`$y842K=$1#Sr7Z?X8ktaI0eP?wo_832(4xivAis3H~?A%rkK8@`P zd82(;W6>IvR3b=zJBCxc=BBWq7=6YmdKjzhji!y`dr`D7F?6+}9fJF{jGeyL!Bc68 zrL$O&9D2o46e&Flh6WK|j_Zqco`-N%ilso~G8*oM zy@}a83I7Q3e_X1}$%vn_YI=( z(hH8ZYvXvbbU}$xIRm2K+n@1LR`h(>md3VnzUSDXR8Au*aZWejv@h?)f5+k?d}PJQ zo8Vf>Q>KluvFh~C*`JK^CaRl>WdOWYCWqf;Mnj}?567}fH%|I8T=0H04V}JsEQ4x2 z@NTH9YCg(Nsy>8_3QJ7DYNKm?Q2Gi-dlg934CW%Adh<}^)Jkp!9oYOQXcR%(E(t@l zDwKb8(+@JDqv-nXs9h`TQUl7?v2%0qix(?zzuS$MKUJRoP#Qs4?hBr?77XME@35lP z@f1i2D)K$roP_L%AoqhOhETr4$KOJB7-zQ-`Pz&D6o35Fd84xoLitX7{e4WtV_3m` zZ)y!1EhpBjyY}Cl5Uxi zJ$@rXq*S(i*YmfTxc5Qyc7`&-8}<=j}`7GOnc$^`d;#;+D>HBb~;N&H{igAjs=^Q``ixv(ok-&lJlwuM^A8a zk^&!jD(6jBQo*|ARTlpwK8Cc{D4+$wKK^{S`^1Qv=U?ufpP7i(c z&a5K6FO;shujq|ae}`<@iqGxVcswHl48$lxNoM_%4zNpA*A#V6z;Q8(vzem}KLv(k za;Yo(W1jzaoSlw1ZH@Lo<|Vjj9&PsbqL9~9#*(k+GZ2@qeTIXr6$u@Qw%sy=IOy&a zaa*e!T2ieGuv=j77uwR(!(i zv};hJ4l}w6RtH6fz?9#|_I+=|N@nW$iWEwc?FRR+4~KCPx3aUbOlkv|4)SwzKb-_F zd5MbEITRB2^}%5A*ceJ#d$XM%RY9(4ZMdoCD4L)g>B-7R7EcHX?YlFH{d8;XZ|iu7 zo1^yG@56%Rb5o*L`q)40Ih1kVEn*Dc9>(urdB{xeNoH67d^8F*b?==0dznbe_q@!( z`F!+W`;gkXZbc6%%*`^tGteKpdvD?lg``$~(dxKZiHJiZ{)g;l&>$z4+jC+TYjb?6 zUkCTXj3;HJUU&o=bDOVH|EzGs9Y3?HC5_-NO(w70d*Iun=ao6jNj&rF3QO-~fpPTd zf49OJiJUo4oMtc`zvs8hEpA-l$vs<2OubvMjmt~1DJ~y(HYIq=ZCXpLU(DUkTrWyu zh2w9E(x@bM?k20cG&hmv6VQJX#zD3$#_i$#OeN8VcWidr7r;;U%iV3NOvI@o^7p_B zSHE&U=&QTB3BfY#iPz_waP8K}wzp;6K0&qU;b)Kui1jplJo}XK>Nv;(_QJSnuA^+NQg9}|A&Rt>Fp zTQ8Q$*5LiS+8oyDK{)cgxm>?A4&^7twR==D@G}G_+RJLO$|Rz2%yxdIcgBm8wK>Vm zv6h0Jhw0!6E+|HZFbUy*){wseT@A{<#|h`2E~3dS^H9vUPB>-eWri`2 zV!hv#1mCVXtUX+*Hs4)MOhB4%<+B=(P-9zSu3Q@Kia&BX4UI9W!k3H%H*+;X;~0}KphV;pZNq>LqH zIQ>~29KW5Hb(>@&tQ&e*VztL{qMl1eT9}T~jw2Qu%DZ4xX81*^t{SF%pFO*!DTG-g zvHIo;|0de0m z0Mk_-V;bx~`o1NstH>MSy?@^((2=(ODg6K|m1M>{#pEY0!DtWf>wUB~JmbobD0?=I ziWjcRV*9%BMlLgN|L+Far=uriVE|huq!s^0%wq2EwJ7xrCL*Jy^mk)+IwC(^ycDS2 ziKEQJazSAuIGJ4K!7dC|J3KH}uwrz8cn?W17Q`u6%r z!3cD+^zWMFkHh>n)%h)ZEw-;8JKIq-2|q?}NpYtJl$dIH87N5*6=&v0wfy|V&n5Y! zcXJO|vot<^C{2I`$3WWq@Q>4z4zXJMtM9h&v|jq`P`p#-{0%9{ugRk5mtnTHb?(Z=T6-F^CueR zKR;ylU&Da9xoM40J&ud1?dd%?hf+;m6+1c#WQ9`S8z>E8(?SdVTjf#E^l$R7TV2Kn z^qbvmX+u~(XV%^W{b0!t6_>DPB&ST~kE_i6g2znoms^cgpCyb0}>SJ|j$gEuX*Bc_K&@JaeCIDWW2!AFthY6=x#PZjX9+ z`ZAFXGLyn8t8|3Bc)yunX$1wWcSrX!i>^IgNX&O*D;>dHmZfgf~rVk&^u%?#S1H z-_tm`{Cqd=2}UjJ^p@j|V9HB5eRgu7kUR5&?J5>4#iO&2w8G!ld%I>vFM8z0KM3ouamT%$$#8H2yAakE?;8%gL)E@5Z1Nb*81> zQkc}}N`zc*Swdv=FmFla9O`!XEpICAgm`AkpV|XG*!5WGtR`z6v@(Z{c2n^XrU-}b zuk7>KJzvt@{EM2fa9BMVtF8b8xjEwE`vaB%yjjzChvBfhHX~^Z6OsHA@pkXkCa?`Q zDppD`5|@lSM-5w-Ve@Ot4x+e#zWcMoCix@qGf^>7JxW2VKaX6n7ZY);H5HC^WFn#I z(mxLdu@I>;^XB2?0cGS#AGF~x?9y3qiA^ZZ?o|l+sp!?=XfV>nh+57IqJ#X(J zD0dmj7w=ETcejkE%q$Uzuo1W>@iYqV{Ws=Wb4D=I`0_r__eD(6W%SF3%t1fTH`KU` zo_ySs7j)jJe7+hiaBrnRc(!QI@q@ zpcqf6#lN z^5BwWC%Q);ylCZYLaK52d%v+d7{BH2e)nks=@EC>xD{71krdw0JwQi@?tq1d8!H*C z<`FK?&cg#0oxF1#Gq|WaZ&K(u0I<7fA8Dr{ti1JRM`yZ_F#YUz<8@{dUUK+Wt<40y zPPtm{aGwVIi~9$xz7HU>&2HA>YYiNN`Al6!s0nxO2ZdT;1~SxgY=6`eJ((~!Sj;hJ zAP6RyFg?vhjt%=M z=C4lRU4hTtDNcH_V)BH=Yu74rd|vIj+SrK-@4N5CcC5fnyGiZQ(ilF9xTx70uKydU z-jeEHBal+$H<7lQ$Nu^<>GpSwq$B%vlb3xqSSUxXOsS88USyee@7OHPio4yFD(!<+ z)>zhWQ(+P&r*m}JYZ$8geO#7gM9IYU?vR}DIWT(mlvj1kqEPQxhLFSp=rUB`F5Q6a z`RN4ut82IlIpT1A`yJtaoVZY*eq}BhaiN}CL5gcQ zn0AMAgVYE#4%Q5|HrL~f>9Wi4s}j(K;V{08(-&pDXLhLnSfsKn7RY%%qEUjL^QTEjenYjUFG(T4mG$t(Qi+(t@wvf&D1 z?bL=D25E@}qpj9s1qO1D)G7Fe)03*NV`V~1H9!NS!^#&LQk*lcNbSFX)qz5ayL=a( zMN{dURsBI+WITWUB0G85we{cGE2U_gXq0Y}%EH*ND=XvsNeIR>ovC&H1D5FtZ3pQE z`0R`vJ7l1 zQsQ5w6g2*Yb;{YFhgvoeEz`r!r|!0+FelrENsF4iew4dp7CnUvL4&f2#|4RF`KLQ# zx?rO#`<+5*L;hV!F8QmCp#M$n@t~w0_ifl! zraL=vWbty4r^_I`W-|6~&YwkQR$ETpiGCzLFC4kB)&SRVp|iOI8_5;hz&~#_>ag?O z?JswfC*bDS$g9}2nLO1VtuWb3NWziu)r$FDsaHK|{0eRa4Lq_FV|Oc5IfG z&=o7%1Z`ZeC!dRZ>^63ybG|(2*^vdPPhQ)TTS|dZRIu1L?NKOC6g_e}NkKkujJvP} zJ5h7IX%#lZP2|58iX=;L5W&~h?iRQE;c)F#MulV^jyR{zt?4zwe~+zU(ZM#T^=h0n z5*-7NDu)Wc@&Xb*x5-|oD}+O)djHqQe=u0OfkCj4g1}Do2Z6>LN$joEI??C_khZga zoI;%Bi*YO$m-Y1eT$$m_E=fjcCkt2e>Cf01=oXyS^clu4TJ{^njKS`9XhwGA0zQtY z-w+5}#>^$j;7BEU5*vDhT5o+$CU*)iwkt6b89Pb$d!}WG{kr)z?|3f+^ok=I1g0Q= zP0z=8{}7JI){N}iGJx9r;}J0-EogYtI_d2|OPV$^uvN!)LZq8bEM&_JYG;k=#g@h) zLtSZnXG1j z(Gl4z3(dAS7>G6Rt>Zqj`4}(>S&lH7#NJbfMLcVUafhnAGiEm}`Sxa2Ry2GNg{5h2 zXI`+A3*wF+mGp;TbHUnH?&v%+{v}%9KQxGEN4K4B`dkfJ{vmgAii%h=Gl~@?F_A12 zi%NP%8e*C8(42iehb_g*{ym~wL+ci0+UVZ(eyAF8(>%ma!otjocla@orvAjVp~fz> zJ1iPan6iAc-cqKKuNu=F+!9A zKfeaKu|vK1N?|jKG!P+|dWHX9D(;8lcfCcbM}p*CdgRT6RExM1YyNp&ZJpx+=2dhu z7C~8ksNL0DkAa@9E9#B(BzM_o-@Z+482;zVuDe@=1P^cRJJPw4FtF(-$W8X3Bjv{L zH}%Q5zjE>nUd8SVfa##W%q^3n*;#-kjjv4z6n7b4@=-!QdS`8W}kc z$A=y#xtj+-3g) zBjvzz9R^zpy742zl5ZT&w&61OwQ0$oxoocphB;*Kdf=`gT7jOb=uy{jG4k6`>FY%W zUSi^@9`a$G`;#{E51Ra>A~f|aW}H>D#H=IG`Jf3sd3v|x+clkLxEPvmNC=}MYF>vo zmGG{hZ97BL1^sS_ALi#C9IU{09)o&CDt7Wq=PP~MiDG2>v;uHi2ZH z#Xla_bqF}K_0NpnBBC-~$|W8zf=7dXUrS&y;)P16QW)p)0zVXV8*yW({_RNN8nW!4zxdrb zh2Y!2y2sS{NNu3aP0o=PWCqflIiX&IC};YlPb&Rb?($NN-%*Nc4TU52g6!mNv|-+I z&oYW{d2~_9cKyFj?2;QgAd_;(dR4dsd1HT!InTF(dO(@`Yf%e&g{}?;b+kjhc4C@O zuoatYFVc+iHlm|_W>;l>C#np-vfJeiqbmPd&2#BVI5IAn_*!lAymcYpdYwqDxWpAfSM%jC-f`c36vpz`ao@hC-olz*Vy^99^b3#^n+ z7bg3~ZiuV|tiVa_Z6Vt`7V<-(to@=51#2$#IoUr`p`f`lMgMv{XbibmIBH@Lne*Rm z(XMfnwm*8%7&s3W{X7Hi%~V9s#`2ieD@M|gd%^pqa1Ue|r8Lu~=m};2t4F6stHED6 za^>;GeiSAbvRqW0!V8J57w@u8qo%oIAoAn@R&Y!t*s%jE0}~&=jnWdTuooFm(TX$< z!L64WXCP~nnElPX9~|ay3Tx+o;M-2`rVnXZSQ|V(|LeyrLO*hZgrA+p3l&O4!{%w2 z%?!~NBrt` z4$KZPlBDpdvbjfH=#F}?bno!``fy48QQH~NJqzuObX9x~0Y)@7x+ zh!f-U7tE(t;PY9)JC%U~88gS?+g^?Ei=yST=V2xbcMtBWZ|=bNMxFY7Y64_;Zq394 z+08_JYOO}1vkMw?K8x?FQy?B&C4c_Y9A0%_x7&2H2L>!Boucbou<-R|l#eboaX{2@I|2A&+YKAZAa$Nh$M(K8&HP90G;tB>z?`SF!fUSG@KMD%mZxeo*Y{vTM|e^7&(6j3%sNy``e!~ zXDD}r;qkFy#qRigyow;5>)w9jBp z_3ON3S}wYz)zTi)_n`7h6#cEV-w@bW{5tY+8_bT1wU0C{Vs-O~!|BtKWMPZDoxyM& zgsMZVR8Fp8&g*2;Qq~NF?^Vp28*-BoU9YypqIw+J9r0Iz?+=pdvp)qY3?NQvSmsty zF$CEIdEPp(l7ZpcYd@SRh@hL})N}1Yq-p3wSMF9E8QFN^zldg>sBYq^|JDn`*WdLo zy4QiC`J^^mtOsJA1~-DKx^N=0=LJ_`D?Uo!KH1vSfdCQOJdKETFSqe2xD+;o=)5=g zKQXl6qTZ;4&5br_@cOiF-YZ3(X^E5_vTDZM(#g_~d#CZH@8w%gSy7VMPNTji@)r|T zzJG!r(2(u%ae>`bjkuLxX^?fe3ol=7^zY|rg&*}9HTJtSM7M`MHT20k{}@;M(4J)= zDy%Hm#auK5nq%FOJd(D!m9Afu4u#v;G$=5Ipc*j9!SB2tARnnG@Pf+Ir``m7ekt`|7aB z^er7ol$i-Gdzy(~`AL(%lv}{RxM-Vjb`VXs`{1quz>eJ+{7Q;2~KJqst5TQHS3z%BaUZhM-es>7!#lfzy-U=#45Dka|>#=X1dzo*L;H{B7-l zZEed)a|06zeUU+%DBXZW(GkXdSEtYzty+09s~arNm2^Y3zfjsQ{Z3dY2b0X7L|RH0 zAaTd~g+SvpEY6pVFrJymID@`y=(@jfjYo7#FR+qv?m8=}z;YBAsty``nZ_v9!FNT= zouKTXi7)B+4Nab32ak)*qw{K5PMkIc6dw7hs(17xv^>?kYlw;*{hor7?d2G{YUt5W z+7CJua5;refz`HLLrss0c{{C6JJ^FBrrxeHHfo~hWZzfz zb^xb79RE+XybMQzYt9}@T}EQ``5W0*93)bYk7iMxg2eQW>=`hSn6TgJ! z5PjOf96p@(6;^KEhM~Cavj&l$ibD8&hJs8Q_>gVr!d>ioO zjhrNd_$&h7ZW^SS=Od9l-uF8VJ0W2z9@&>oOoHE73zcert$LwN1iq6j67I29B(A zlY!`?Lqj|1NSBcetCK-3HvAQT&{!)*GW!HQqt?C3?Y=Jn}rel)N+r<$OP?hpDV&tnQFp1Whge)~(P9yVasy z#zQYCXcW$!w2a=y#mMQ{8+rEOdVbuiG7ytq0&@X>o6^ZX{FvOJN~6_+kMQK@i){o~ z@CUx7wQ)3j9pt)s@DJ`?DUxvb)Po(RU+v-?dLb5@5H$Ix6}3_9_f+gUu(Pj`^T*9; zB&cnADEy-b^^%W+kL_!OOI=vnPUTLt4D-D`Tp&q!wwZ_WxVK_Si?QH>-wYg^T+YPo z7a~T_Ol;I1u7JHG>AYkd1EGsg`Dc_|huK6McW0G$JYi*i=XkFfk58V{sqkLI{pUH=*QUw zbM?_a9&&ED_Rg5$7%so)bq-xvf!>&6$muKncpIl@dF>o6QL{A}9D2_~Xjc!U^W0c} zcTnJYO%Go3rgoQe_~mYx(5LLY-JFKN+XDx7uIHzsvaNC(-!v>$bF5ys3?RSAcgci8 z!FSskgYuhAi0>RO;NSNfiXIOp>uF|?nz_qHPhXm-d46hr7EVX@pZYj0=0r=%4jNYk zj53o{u}%IGe(N4eD!lFE5)gKwm&`|{;X$Zfo8FB{2n-9~N;jLtM=kSDtac3ZA#bYmV7t6_S;2P^B3%}W*VjGM=h0lQw(~UT8l&Pq zG1C$=xAL#&+!#rM3zvAm*D&6dC`3FD;2_7XcL@HMNKY=#Q`_F?>_BnOCap@Izv#PV zFnF_e20lAfgsBrbNWeiVUEAq7EQG%$CC_V7*ZVw}{w*s>?_P`M*+@@v2UYjHmoJ03 zb{F%+kpY~Uy?N-OUl;6ty6@_UWFe)8@;&xv7a-nM<-|u?29g%7be%Puj;z|qz0fsm z1CLiqx<@WIxxmgAFU8q_dz%9@ySW)jmsb>B_nB!7uZ8h7@%@F7r;YxzSqkhvTP5&# zcHpwEnDG-^Zqnp0yz*YJ8`Lb_FXPym$oa(Ben~C~ayz^Hq2R7AI7k#xr#PmfsxXiG z()B5%Umv@3G@%#C-0=y`)#9{aK$er-J6yc6rZ^Kvm}WoQuYG&#?;X8LjL%x}XbjS1WyDX96j(29uDrXehD zQ~36!o5Fi+5Yv@XgW8{{h)0^XxZEHcd1v;f)$VmIggeq56Ss*I9?d4|&VP&~zhm5k zJ97+-iB}J_xc|jznG89pyaoIZ009604A+N0mTw!!ac=9j_eu(tlm;dBq@VApC`m#p zAu5EFQ7Wq^`1MG zO(5F5K_akw8eJ?IjpI~SVlR?+RI0WYE#{if%d|=n5Fi@Vmd;EjUtRAgm&t=p>WJE* z{aFy!oaB{b8o~{C=iqdkKF~#ZHMC+Dp^;a;@;}pY)SIXH-b^aN(m?CzPTpZWd&jRE z6qN-F%O4fz=``G$)QQ>eS&FSU1xv!4>+maqVM|5KBtjlMO}fG>PqOVT!h(-i;NkCQ z*Iyr=MXm9{4DtaSb9C&RCxqW3b)}RTe^n<{}kBn9FsZdKq1Yt7p&XX zagk8%#*-2!%AxUMr;oa83u4)@=E{~HoZa!naQ)$N807o*8XX-(v`d@(A`c&F*`S|1 z^`QrC7po2whtA>t*~H>G?_Q|4=|5)NL?Ka%rC$cb`N;}j;r5OtNphipC0W3WpD3l= zZ@c)U0|!~6tu!yEqVLGx!#>KbxEADDb!GvK%Q{bF#o8c{ zO4+_=`8OEN>NIxcO<>ZSlPx5yNzHdxAACUu_-b)jk9i>KpElrINqQ6XIrD*@z6M%)_mI zb+9_~qavY?X0?|&i$f-8`rB)Xk`lZjlC zQ&_unp&enDjwtK3{DvU6yxcdhaY)ynIvnc0gt;f)>)B3G$-Fv`ON;jm>>lyUEuE}E zd!tla>(v$*SumJ6*iWG*X&~=N&K!IU&Mfb^zXHmF?TyRnoMh^of>r00cAQm}3pvwD zC4oQB{!|X>#!b|k*!ovM@3e4(4ZBh#27b`m$lCe7Q!O0Mvo>`cmRL&VmxKza6Au)e)i(0qIf<+$`ErD}@Ok^P3J}|~`nqf_tmMpAVYHhTrd9}c(ToYN)YdkR#d z!2MZxO;r)vwpF~z4qC*=CN_C4pD9pNcSP&}9T5`YUw``1F&EMk$2-@6LxpQ|7%mBs zTwgf`p~TfWzQdQTt;I|%o=4EOpOz+m6(KG;{B0QV3JQzZ~c#fF{ldxre!PRCcSvhb6t~{+KRA}zx*4m=TU24$n*B-7@Vs5fzlC+2LZMtmJe`Eb9Jag$#l5Ib_xcDB>dfM^I^h|?n_y9hsrKzZ-jUsA6 z(r#lPh3urNoTCJVyARSIyYu6O0A-gd&eiMaxbPd&?7R{x*<^kuz# z!EvZ$8njV|Hj|83EQ#GxmGD03&rsYpi#6*z%GY0*f@9j~y6Y?y(tXKPSfHj9T2${2 z9_=Rd{{5UHojD5gzw4d1zbL`?*~s*7f?UK?_@@8mM|0S@)5jz*xDQq~3g42|YB6Ne zEA>&R8uyxWMRnO0KpoO+Hr!SS)106%7v~|wnO?e^L+i)1koG06xOOOOby%D3Y{9}> z`O}k6=1}wKKkd)CE$Hy~etkWP2Fru>ETdbxVBdH*;f#s`SqV&4v5V`(g<2o2{2TN5 z_4G8I)*?to|1IQ3J)FayEA@I#C%8%J&UDt}OAUxpxzl)2wE@(?=YpPlyKwcl&DAZj zqnMBC`&rw_Ks?F=J-to{63s>dne5&w1gNP9UQp=)XQ1A2$ejVq>MDPnIW_`EF})iB zSH=+Ge%pNic0Q8LOO@X_(}mN|vwGUYCc*0b=^|xc7i?-hgzPsnk_u|#+c!}> zs@4_>BEJ&XSMrjd@SM!n4H0XGK#8zf+^-ZYUdnY_T+;?evxIJ%_A(B~S4r`^453b+ zYt44|705giNQsr{Lb;O@GgE0M9{#U|_i_6;p7S54*!W5kTLTT7lX&lI+_F)<6SCt=P3v4J z#OjTBaYh3N*|TfY97VGR!j^&}QVnycmi&-!zBqu6^-SkA+`F;SGD6r|c>?Uw8D$hP zMiQhGYpFXij-H^Cc1qM~Om1{OH{i`m1pGgLy62jUecJj9CbnJ3eIt3#RJQ{23@(+{ zN6VnG@gtM67Y$`)>&#MhmhtYruVmiGNtjWGq91dvfRX3U+XGKq5S3PBHnoeH6jlFE zYr6*xeg@?X=BJs6jYeXX$jyFeGu>HpoBuZk8FuN-7L1|JJap(xA}h&LKU;dVnT?42 z^DAg~n1=D%j!vOV%_xqquirh^f}_cX%y-UDLE8HDmdny}c*Mxber^wi=cZ!>6 zAJH=5w{O8G(}e!)fLZJ^I-8puQUIpU1;XMt#^Crsby$~o0un9SBS$kP&|m449XLA; zT6lJ}(#t;7QDv4H$_2?nOkwHNu@?ODl36(vZ9J55NQ!*sm#P00-3}*f!^rwa zd5GiJXyHj20H$yiCT(HH{9m8#-BN`grQ!a zR|h9Yu_4d>cLaM8zR6TK7yN94d47eb(rQ(wetQ2NL>m zUhRHHziK!B{b4@6J+u${+dn=V_g@A_w31QvyZ}i{iwspg-j33)!mgXU#mPIhU6!eT z7|DxYE4MDhcfq`r>DM=l1;nizzqEGkEONFfWpd?CfEo~TprDsZI(J?5Iovt{t_>Nl zb3J&8>Q8&8^ZyONS0wGUR$m$P_Qd|%y_Z59ZgFbVEBpc9v`>wxZXvic*`X`ji?J8y zY4V=)_$(Ld8p*r_cWIWzPr2QQ`Jza3jiG_u{q3eB+l`d0M6brh95mSRb+CK?h0|7j zDef^EOs5SJl`CsdzLwSTufaGD3v(U+EV_-n`t4fq>}kzv*HGrPPfp{=+&q&$+XNIp zicc90t$^L@ssG)t1$ZA+_r%n@dDX#t(!VTC!NKmo?PkAASN$7(L@SV;6zay)c08JZ zpNHw#-rYk`jvsFl{a6o$luH*P=bP~Oz>kqFQVeAJ$GVs}twOw??EW#NHIDq3J7oh} z`Y|BfNl#>I$Ki014LmJP2^J`(8c@~caw9d;Yp zcAUtnghBW99~7l7Y}7utMd`mTWWZO?xqA_3$8`VaaYdLs{t!7k%GQjRYRno=igS=V zJ-J(b)onVTS5)opFp-%L#Y_I{|ju)b5 zd;UPz_YT+`V;AhJu7JWQAo6Gv)F+T0UUpk5}R#V|=!wcZNdsiv@=rj%u7pi3kF_0?;@ADtT zvXXu2-wh~nOysTdw)>B}q{+MFo$b>P1qr!v|Ly+OZgnj(elxJP29clhQS|eSDu~;5l^z~{UTsu8%UOyKgmkaZM`*03H z{cYy?y$`zZ%afn=t`vo=YYLI8By;FA_dUU@QVp@wY5QtFOrz?0UDwvuwS>vxPh)mP zACe9lR|Ou*h3+$Y?l$EH+^5kNB`3#_)AaCxhi3<3gTD&|T_3@(QZAd5hgPs-R9Yxr zt__91nZt*-th)b%7)L6Fm9+YGowmD3A(Go1le7EBQ121paqJW~;X2XDOBZG!K_`dO zYQNN?XLN#(rDFnn+Z!J(xfg@l^zf?MtrCc{&W2{t7GbISv0Brv1Wr$tsKz6`Xy{GQ z|0pt!h6w(quysYq@b~RCY#T!3X(P+!8$+nE%E}U(;vhf5M3(A$TfjO|vB^Tc934GQ zGsDca(A)jJlVzq9wEo5b8P5tNR-Z4~-#mbt{pF?>QPn7ao6Mi;(z@yyQ&%ca6;9W0 z_dAr;iN4=2tS+uPE6Dt_OLcNHUgg?r_f55fqNr*3$#Du??|Qdb#Qck8u`^axCVYAI717y0Vid@E4avJS2`PcA!@0QDpn^38=|`gvFL+ zT(x9rKc=07?|0VMv9(NM?Bv}qXA*}HD(4enoY9HU+x>43L@dDcmV;||0w1x|Xi0mQ z!$G(?+ocQ>2B7zMHe>7e3Don&PsIyS2&=cd^;Y$IJn8-+V7xkKeN|x%@9!_eP)R>B zb)6uwy!gjHmh&ILQnEFEQxC$sj`d3?b%NEilisqrkH*{D1J@YmLG{5V*EMU~@e{4n zahWSAr;DyfzsH7BB+QIfcOsnU3_QK&u zhO=7-IV7ce6GiA-+w(|jWZqi`C=6G7T&@hw;ou9)yDdy3Xzb$ zGOo>ql0?kXYLP8|9N`bfl;UGVNwZ=CXHw@h3_W?;;4GAq#y&ifrxIba&-u=QJf!+ouvLUn1$q{~7A?Ol!XMUyykGgLWbnKMjWuxw z=ji(+eR+$}pjtU=TilOVyc})+DRhEG`QV|>zl_91bUpIw%=G zgNjsF+YjsbNv+cU;@$#A;_$X?>Um2Co|XtyD*v5?qloM6G}mRAE}K?FkBs2y`%Lkp zbxSbz;U3)kzXkj%T%X-z$UE=ugyFls{@4D5u9^pNPW9WC+FFs+h1WK@bVeYE$#iSO`zfp=`-Rt+;8n4bHCARaY$5no^ z#6NVX`0x@As@fFnzFCRH^PW(2u0|I}6Jzb8DX1&&rM*_~#inzw%cC;05oJAKQhr~U zxJx9zr-t-_H74``Q%x6cancMU_1H=O81rte0Y)-%&HCw_P9^f!aJ843PGCrE(dl`I zD3S4K5A=Q64Z4mqajwmS`RkISx9zJ@Y+&(0O>q`cW_FWGPg-y`_q9;B_&B->szQS2 zm`IGLk@}uhe>U}1=kUkWL#SEwe_^J~WH~iu;08B^lzjJK<8_|_?-l=NRi}7JRZt{@ zbT1Rx5fLw;yr~s-XGZJnW5?0?(8E;FhK82*PU>69LRc7Gy|^U2f)3F~uY2FsVb5_l zrTF%K+)Z&2`&K;$o{5JIl0pAq=jr%%sdF5SA(HKBtMA9jWjDzkXZXmB$YBXLjyn9O zA-usWp%f09ig`@`Dk1ogVr!>bj)|17xfg_rq2uEIm8#p1%R7Gk%;9YTPhotEhi(@{ zU9O4K_E)0$6JwuQWH+8(OhDcEELuc%v(P$fQJ5B;f3C3&^KLac>lmgHKyGjU7QjIU zBl)GH_ADUPMOkylu2tV?WIf-IR*61=ezhUbLFjQ;st@{4th(=_hujGYu}n`k_1;;D zNEW^jel}5Z+A_N%@isdVtkt=1S3rjs-GI?=VI13>RJn4Sb8&jskeR-{3v4lp8!RHH zpn1>3RrDScVMv&BI^JA>JwD-I_q?Y=Cu+j)*7|XX=Or5QKJUctB+ej#%`7BXKr&>0 zFE^=(6un|Hz)5;8c)ygZ>4ovm)DCgQ5y&nGd3>*BB9h#bp=o(d(7m11pMIbR2dL*& z3ePeU3Fd)*BW@uQU~T0QHTee@oTWsPse>>Mbrdao+=Z+|4?}8JJGpmlNGIo&9B2>b z>B>K^!uO8}r#5LZk)ZfD8|qIol9*eY%`J>a5Y#^&MagC&M<=u|SDc%}&(0yYTM2U* zj90Vozg>y)QlXhgr)fybC`q*N?#Ca6H17Ea%@BxaV5Evwtvc^%E(e7|hT;xY{?lB- z`qN=WJXB_K(x>dqMllL$bGvT$Drf=T-DQ36+$!+&XSQlGS%i(m$pp(E<=DM`;)b{>^yK&3LKBy0;*@{{BL9%9V@4C2gIG7Ke%6eUc+gVADNgHS3`oZ6KAeatr!8F>+ z-95y7La0zvYzR#^U+di{>xISHU9IN?gvd{eL9=U?y%2I#zJK*^H#Rh%AIkD-fOfUP zwCKwWIKN8%%I>`kX|IDLkG_uJov6aMjOib^eA`hou%`#rNe5L{+9im+w*liW>tehT z%~Y7=8-SNl=^Iu4dDQ)tcHtG9#0^1@yJx;OQyc%lU-p(U4(r5W%N>4RhCv?~o* zBiXm_Ufm2>drwFYY4kzW@rB|3Tq-#yK1WYjnS^4}@Y(#PRp&eRMl-B-HSE-aq5GfkK|m=P);lwd2pud!jlc<8ZzEy>Q)!Ik3ro zCVHKNC_nKvb$9bJCWdG7Z2PA0N&4LJrdB5MinTrap63QK!n9U)Yz+(9()mDcXY>rj z->vyOruq|4ic?R0vKzo_YCmUO8w0tR^rdg%>j3;R-9`5x!v$di)bt6wiPKi1cF*9mpUBt1qs_2PpSB-dU?ol8ZsgDI zYy*X*s6OkS3?Ztv!=KO#yQo_xI-4h8bYDDVkhTQrUmiMHDNN+uv76r~l%r7>aqDu4 z^&+0XHIbO&;v>{_)3yzdX3^z(O|dJy2rFU+(v8yfFmTmy8XFvg)PP`vKz2J+m5XI{ z_H5|CPscqY!tT&&*N7ar$WQOUgV+b{(^uP&@@qQ8W+R2P9H~pHo}`d(=Lg4FWhXJ! zbBx>J2`kau;Vh)^ft4`q`C2ZS+=@3h8~*Z@t@Z>%>t(HH4ft5>!=o5b1nuXteen8Ju|U5#fdY4(VoNz1@)G76{_d|wfAm|v z^2#9u3D)gu6XYeGJ2-yOcP*gV|DQ?lItFs-X_KKdcO~ZS;=&k~2GDn`;u2TuDDEe7 zP5As-#?HCSYqpoF;WE3Y!uKpMS*-T$&^g9Q%FHYx*10U=ms5o8-*0s6d*xN7ostJp zEvF|HU7aYsdT7@X&PkMW{kK!)6Eg`fxT*ZcpbBTDN>3bkOb2`Lr<}(QqC5?1%A`2T#MhO@#hvJ`QsVccuZ#k3?Ia~ERU^z z*GoCBB1Hyri<138D`6HoGG-~|TT3CZ-SN?gay>G#`C}^=dhu=y<_E;%wIX(TUoXV=d+}?#B@SMlJ>T;H&@l51TU$6i2?`bGS#g}AM(ctkuE^P0+ z)oxCzpD*582u*6;KX&y_s6TkcDm&DRRMYVvUJ(P3`l`{}baW6~8)8a|zg40$<@3Fi zhqF*~(NTW=h*vxj&@F6aJz6h@C4jZbjs_`z^clyKy{4V*6ey4RW>md9ohkkYHQm zyKZ(Cd6$^oAKg(R;;u2fe#})PxX^7O!LJG|&qN>kt>PkGYF7_mRvbs=PCd^TWo1Yo zp+tK)&w!hKy|w=19&o-Jkoh1vHI~@u%0%I)40w` z3?IfA#pJV)(?`8iWCpviP2q~r+YAP7GF+e18|jcW5QrR7AH=FYhGC8=6A@4QxO`D# z4B@+|-2tr2a350_ajv02A%ymNW~R8oqLx$Jvq*SmE>`7@V5<{B!N3WSNBZTM=z!~sOC z4rm^4?n5*EfyCo}e!_8B?#0(^A)*v^WZ(OdT70|d-sfx0K+kW9D_s_>#N91PWv^`? zia-9j))ilXdkxwt&R3hDxz*#T;5{ZX&9!>N^{OTWdVUO9v>idR9MS2EXD4Ip2P6g9 zsCdh>KXK1wHwH}ACx*J2$j-!}eUjJNi1>4dO=7%LNUJsKx~jxXzIBv%G|Y07#6E|h zAe&y;lnE*DY#qZApPo!XMISB?P3M-gRl@E;`QxVEb5O0LK8vnmU$w&x#QB&k9a#Q_J|I zP#B&${15IIgOVk8SAaf4ncetx0FPq=-n5-%z}VvTpMvRGoYXAJK6tPJ-~Vg2wD#a5 z#zNU<)nB>Ek4IbnuG`8&oR%{d6?Nt@rEL(qd2=3)$Pc+Gyy}LZP~BtgBa=`L+{yV& zk&QHe<>=R5-HE?wab8<71^2XEw=pL=9K$^0|E=zYDWj?RSq~d|o3DI*D0K;ng2NFh zdAx+0d|W1QY7FJ?Ql}0y4dBwbDNorgEX1X9hmYdZeiWH!a+F@_!72^sp&jY$WYYc~ zqq0MY9DO9%SaTp3I+1g_(oAC*o!zvi`+6S^=`fsz_w$pgsK3FNCo`dH=&JtGs|>nd zM0=x6*+}Zk=oM^<%N?t zanmc z*loi@?sGL=UcGk&+~cMdJz z{wJHVwjb#lOrJ8J@sNn&G+V`a& zPY>dTNT{jIo(i1e7*~7F$wZQJ*Ug++>cQYr)`eBwL$LPdtGZ#xLH6tm&)$O+tSqU{`!;^2<+A%hsN}LT= zlXlm`TkTI#@%e*|jBnvMj&3W9l8Is_zPcy5PBhTLY&az0b3F=<&m?&@uP-1Y>-`$Z z9u5+%ac7fP-5gk5%3}1{ieXw2P!Mw@|U+9;NVrpD@{dK!~@(UyOWq41RRU)pR2!)xn53MdO!Ks%Mf=+Kpj*tONj8SJ@>V0JKl8o0acU5< z-;!+HcCnF@rK9~FjeSs}NJ%ID>cPDiYlUAbGLxxzeJS-)PSRVrH`ptR0k1=CSHCLG zL$>Y7_l(nmWK%;H<53+Ir;<07@BTT0?OB6zS*7DJ_#cZ!l=@#}HjSreI98SGwan zEp%ckC2?+&vjQ#e8td;2lp`(WmnHjwIt<5NiF!L*gW`)z*Gyst(cdEC#rt6d_iq_= z9qjoBV{Hf3wN7PNN*BqAETn?CRxy`X_97!RwLgfv4x7TR=Z6~C;NHD}0hd4uuGvp4 z>p6&#&c0*w&$ly?(VGKZp`r^As9sX|s#k_Ldc4zHeh%Ta?St}I>1otgR(@FUpTNPk zijT~@8sHi=H+TVD#Kh+C=J3z##4Y&HvLT&~DCyk#qO+HYoVM#boV=6^6S`4Y=d%^R zb}Do^xlALw{Ry-pS;@0=X@k#n`|w31O)qSA92N(km~gI{hAl*hTuK*?R=K=*sKHJ` zbVfS^9aWH3|FK({6vkCGKMRfHK>CG(_9){lzmy#2~|6!^)(6gO$U zi9a|u`}nAeM+weccv)|7iG?Uucd`bm@)C!7y1euIIlTNjNFEyUl4zaFj$gyr2upvH zRp$!7;pDX(`B(WEuSt|xAiZGu>NR3GPeE(?Uw(o0HIU{RyCi1X2eAhSqrZl*ki)OM z`}0@)T2b0N587EkX(GEi<_oD+?(Ei{YfhNe!TMR?!Q z^J9-uH+BoM&S#}}VtAKvMUVR^LPdvNi2$@XMBXN7EgWmPzIGY+2ZbfS^U-10 zqt>q=yn$3Q1`kU-ork?p$ne=rI^>&_!W333k+fI!ufFcQfgfk=)vdmZ6YA4fH;kE! zFyr7q99l9C0mCbNR_|vJ856nAi@gWwEaAFNkt_OmHa~3Ep2qGyteln$d?cCSI(R*~ z4-L8**J2$1A>4MuJ@&;uoV+T(M(rmb3C_6uv3I!}LjJo&YzsTlG{SLC+jA1Z1CpvY zGluZ@N{;JI{dq`#)p;22AV@3%pM1Z3e-P`+DB=#9oJ4BNz>R?SoaDu}w=ZV3dRKHT zOj{@$MCIx`0*~bSz^fb@D6zK}ai=WA(ymW2W5*~dx(9`A1! zSn2Zyu_x7gzR*!=${u&Cwg8zMc!W|1N0Bt%aoFe%19h9ezwfVYfY$b-Q@@TflPmm6 zKNH$pF%cAU>rIg$vD>qysGy_|7lZDt9yT4v1FLOQGa0PpP`{?YUe*CTmA{>4;uVce zg1`90sq=WPz$v54%1VBAv(+Xh%;Byq@4}C!0_41z(Ydg)FUOqEd1P%Ffk(K)xnHC8 z`1$>kqP1uSI-Xis=`i@n20pGVC5J&|j~ICbrVXHkRWIYp2@%4fSRT^gD@`au^;rRv zfARdo%^x;nbZ8!DIeTO?0}cA^B+R`ZSDD4HCw3Jfv;O>W<;O0J47#5f;$kHa<8Pj| z)oX-<`+>UBEBz~bO42{NkeT$SMfQ87(@@T|>hLKF1qQ)`vdK{_B>2+Y>**98l5p}U)@`A`cjH7zjM1s6aoR9;sl1f-o*#nQm1uQ^mH%oVciL-YM=h+j zM3}K?tmKJiawy?l*(Z5*3%0BKFw=GXz-9GOG`RR2rFi6FkLl7(0--~%vZY46aukV| zSo^h~3z6f@>&|Ze+yhw^waXI8W%v>j-mAq{fhZFdMX~TkY}e>W(mdRNw=N2yS;Av* z$Hwau)e{I&FDwlbWg{G0-pZe>tAI&*vF#fp55ECvn&b$U{@n05)i{XD-LKBL?w-N@G)BI0 zXgj`_*wr08#!jTyxFu;%j^M~`C%b%CUeY1Jx|qu{0lHbGpMmQr>OGtNF9|b|DoRnS zzAzn&dRh&`7M&2;JkPkJ%tFfak81hU3lUwxe|t1UGx2g&P%r!VG+Nl0&(YrYBSHR( zTv#$caif>0@$=^*OXFg1qFW&bxBMuaj$kE}UVYOIRYK(R!`K}5<4f?b<$uMODM&>0 z?rLh?;UE@^CmYTNPQl*XRp5|%F2;DWoBn97=)~$$l9WloY`o*!4{Fu0u?qbNuK`G9 z9{H{}!$Rca#`KFm4Pw@s#-U3MTci2A7V!>3-jlseh?f4`t<1?x zF3#U|9(qK_d}x?r50fhKp#|~u*)L=HQI28zeg;1B@QiflE0gaV4SPO4XvM+HC+3P@ zQL(yOPr^sL5zjM}&ev|tf$W!tM`iY6MCq2a;$f2s3=e!$Z8)2YzuSs!{sc^7!v>bP zA1$IJ@>ztwi+&;6X#F|6b0(0Y|H89AViIpGt>5{`w!_T%ii^BKFBUpq`+o8ohmRub z7MeIWIov}#=yZ4(zJj`{?)8gkiq$*aUrK@bp06((E%-@qM|bCK(>6SG>V9iN?SdVT zZA1N$Ib3u6_i&r!Fy0+}_-;6C3WpNSJvjIC5J89T%^P>o;F>cv(|L!9Oxcv|wU!ki zFKl}vER3nxVPnDbPG=l!Yt|Q}>QV5gDztO&Obfm}(jp0=Bj|Z2N#!b3B{2uKMh#!8 z0Z|njy%5=eE?Ts=;Q@Z4-1^9*wz3~v);I~gPOrhn561t!@Z=zy#QxW(yP66KWmc(? z<&_<+?Gmn^&P<~Jmo(jF&=2llPpO6PL)f|TT2E%+FuHAuE{ZBMpqsGZr{vg){}g0( z-tL-)QDt_qlvz8({5SmPSWCgkMd{01?=RuCbx4h}{ty~6er#O!8%3)3gVm?B)JfHC z1NwjWR(dO0*|@yE8K*98NiQ!6giBz^eig%Ns4qK<7Okh^ZSpKFC3YO!)H_s54%A{Z z&0?Ef7AMJ(_ug&4jhUQsY2D1SG>P}-?KcvP^We~b$@g0DAiV5C;^pts;n1tu!&zB} zT5(08q<}@du`?GC9chM%(eJ&^2f0Y{Z9^vRqkTB0syCt6Ifflge`>~Q>|}4sb{XGy zUC`1Q`h5OrEa+fIUycBE0w zVgL%})edxyT11!|RkUu&!jqgogL}g`$*NCvhQ_~!5FInraHnI1r}u3wb#@gYuFNN9 zyi?>!gXJ;h;SH6rneI?J_kaPa!;i$j@k8io%sZY}GzedY>5Xp*#i-GGVzl-u1)ek3 z8nLCU#7E|f^?~h8_;z)8f01+_q|2}U+loa{rF|VJ6T>j?`4mz*(T__lg3h?YP7HJX zDYbF@WU?go$kRqT3g%rd7hNC0L#n)qL(^(<^2Vd~n#*)ZbDmPk{cjMzBX-9QKVv0w z>?M~QDjFfxM`>DeWFzOvttSdAd`lZLR!uMOgW#y`^B0dt5LfmyQXB(m+jQqYIpADdZMg5E!KzAU^IBPm|3eqAjn z{kbjNai!l>Mk#q4zfIx=v-=0%&wM0H9#+S$R>S4Cv2fy%KGa3-nC)@x1da8kjb~^B zzW-YaF&+C0_f}eUTvrG33br&kb;yze+PW&TpP8783+H<3O=I-BmzdV4e0;IZpIPNY zN5jW^776MLXsN5!yHQPnQkFHxSY{jU|^A~JU|G+(L7ULtzOd=+iUYKRku{Azsf^!cAuU*)^ zlvrkv_{tNwG+8$*3c z_0fy;1=QWKII9#s1&Y1YtY`=uSmPCT!s$ZUGEikP(bKetR} zCPNQ@=vVNHkic(Ox(?=Yl8fzoCdZg(z&BTy@TdF_q!yW#ceB#*SXH>>q;?-T9Im(D zV6VoZxm3%Biean@w$8eFpOuX2`nksrQqbtr8y|kU9mk( z&%-iZI9l zHKJ$;)M8dOmY`u) zV$nHc0Fj?eEpK_Sk_x`$d%319&}PeZHoM;ozaEFp%M;Vsbjqjg{(%X^S5yb)=nX?} z$Cs9qr@2Yy$l2I5X(6&E?8KyK5q-t)32lEzsi4n|`~2&XAR7Ir=)Q6*`IeY?C5}Ra zb%|Vn*;-z*SUio&GitY1l~dv4nEZRpVg&k<7MqN2 z7NgZcKQ;c64qre7Q|usrvqf$f4B| zaf)5Y{O`v>x=t6W17|GN{?0U`R^U308~4)3f~TvaPBF?#Ao!W76KnPRS;UCg8{bzb6w1_Qey z;A_*91N-3ae@4Hj(d1pe#dl#5>zNnSj>LC?$vHlyT(cX6!`~kt4`3s)~;wK@^_Y(O7i=e@}&F+tLFGN)L9Zk5ng#W2}#(XSVf^u|$Uw6nf z#-{XEPn5PJqu+&_VLXMhSg}AA#X9(Ldjty9vk`KsJS-Mn5Km)j)%M^dJ=|gORVEA= z+a)duY#f8_HmiM{!*j4o3iR2(IEyoCGRm~HHZ0WIi29|?K`L;w8?h51ABL4rWO=8d zEqgTUe(f^K7XQsy%?}{lV(IR#qx@ua^Y2?77KLE*j}~9e$iupvYcZ=_xX9ow8!d|3_GlFzc=Q8SGyqCXjLwBpaEuUj6H-E7NN^N z(`IXt!rAS={UnIGPajw8 z*(p4ToN75HXVnduJ#}*Sr)mvxlAh9{>RV{|uK0BNc2IhOL9FY$+itMUl~z z`z9o+chhP&uRBUR`=2}#d{2__A4#}cEW_^Ta;dh{Rp@YR+!2SP2el5AWcg-t&-J%8C|KuoGCHaY$(Jl&eXHgm zI+`Cho^2RJ(jyMR+nbuPeqL;Xt&x@J4+xS}?J-<@nvrqNtQY3lzbc5;5=Qrroy{NY zf&ZuD8_0_eZ1grR^j_(}k?`e+(LKGm>|kEMqR@?Bwtb$@B&P8#XWo$~ssi30*_^}I zbmPC@YwQnjuV6K^fjQHgN$7ag=o|O-!a2n2M$&qD;(7N(y9jG5_TKs~5b>iJlJnbr zBTsmOOY+7Wk*Qx$px!M%YupX)H-e6v%%&izu;un|uSTqvIc=Sj$W1g7F6if+VInX*j^4L_p2TC~`+lE(Y7}lG4(Ue((M0TFUuA(XY(49KdUh@at zQupp;`7n^FrRLz{UOku$WbnHmG>!zLFA7#i*-41^_!()YD)=&vC7m>kN0Qqqfvo9C z%&){omFxe*!0`FHT8C*AWJHd<{x2WHreQVGxyx|lVBLFrp%a?n=l6w|RN`{E=upee zd|YCk*9ZQl@K zR#R9b`+nzft}bvWDqJ-rli2Z~*5+_w8RXVT7h67{qK_|S#~wK*BCLJTnkA$a@?+wS zHFruPBxb9E zgFUmmAf2-%sn2R1agx!GSC(Id!}i@~3orU{&vhYs;RGLfXDV-$*U^Q4$5PH#tzjXb zOKi0y_Rhoc%K1Cr%KGu`0PTci-Y6CoY!7+({KnL(vuEl)3`6<4*0XyB*L1e>;$#uu?QP%ul5?JDR(U`&AG-9z2D-Me%3t!E6xC;X+E zU+XOT!W8;c^VX788df#am;Zvh);sOl`5u(2E92dCC%DW7$belF&g}W>T~Gak;L`FJ z7T=l>QkTK$7b;C&-;0ZJC}1Lv%HpbbO{jSI)-1I~I0vSUoUGK91vuOA=HJ?~48?C< z*%xP9@a688AL;EqU}c%Uu_cj0#ML65rY-)V-GAf8@Xy@Ds&(&{--3MPb#2k0b4@8? zy3IMIr|3G$Tz2#gVjw53^1tepUVwk7-mcJ~Iq+pCB_3s}huL|HyZ!bP5LDOzP(ZK0 zWy$PYiPQ_*HuR~n5c$Zv0&^Fd!KxN@U0;SmwwDfi6wFRSx%8?6ALAIz0)?hKm1ppM z_UK$sSJ(F^R)EX9ZtzsHq3aTKDO%deiI zElA3vc9p*>V<(yShaXptEn;|-=|NWfPkeNX>WfNQ0o#s^agi4Wki+zK!IyqV75}2Z zqrXRB$fG?YWKJPot+8Igtj)OTO50@kwi?gwQer$A=dq6PolD651Fismc5U^3yi3p2 zI>XFFrrp-t7P*(=@TnS}=jr`$O)nP;38+TPXl1?qy(uJ$#*`+t6u>5ju}AMfGxj^# zT-frHnW(keFtWUwgIVdTQWJk}!pLqT((UlJmg@2|B*&4 z_-P!KKi!V2bLls&Ry8B1>x1ZHj}jF8sw^5c6Cr_XjbB+9&mizb)lREbRZ#7Cy>U>M zhC)ln;_+EV@?z$`hJkMZgsu4ECF*D}Qm%A%mFdHGsZ(kHl4`)yXK?KGObgyb7U%8Z z>B7FuE*`!wGZ-~;_#zv(1PANS2OE5s(JC;vK3~2AQHIvrPZaYIt7n&uvYe}-z0e!3 zd8;2h8HPBP!%0pRnq2U7A48Fcja{TO73!rYD1W{!Kq58|S{XgqT&Ej$V6F#6^D%}> z#-c>i@?Kf+m2vD2zntIfJq!KMes7PRZHHuWea+n7Uy$1S{$lsFUYMNR$TCwXM(oaW zGTHakV81&1or4z!(d)zge0?n&34M6!#aG`EEGwkm;TUOyvH4l86=n(voJ%eU`!oTU z_VDyco*`&@9G=#^w}=*&tsfLG_W&P$9OUt7!lM8M?Z{7m;rL7Nd7fPd6uJww6|VLo ze8Fle*KrEXv%SJkQ;KkZN5*-3i7xP0ygDRivVy)#Qkl7?^H6Ly=Aab!K>k;#h=j2$ zN%XqRBdzln?~>};rmAzX(?hlNS^6Wy?F-yjk@5rQoH9G5R=UyE^J7_a|34h}NNUn1SSo4R19JBdQOD)%cAlMs_NIQ{o{ArkciFQ(Zt5g)_% zrNM=**nCtYY|5k(Vl^2(S~4Yw5Vdtn5}LwI@##Y)MH5KvJs`&{HG|uxD&sn0yoCMD zpF;~u66ERefkcyS`DhqA;%;zg3jIN`hB84ND7;YSe?4dha!#)r53H`l((Q-qADpK9 z#fi|x-hV6j)I!o%Q#zqfZMoLFzY8)YA=#AYLtqJQd*+`#3*MOsgA(y+yv&Szc*=s0 zl#870xVVjvh})(!u<%YH>{h=0tVRboCb;}9sbVCf-q|GJIs*xf58f<&wGW+RPmM1h z7bH*PB0hZ;>xZ9}C97gJGf8iclkKlrgyzw&fj4dsz)_8MM{ZyYFP`fcn16-9^K@7~c#x=v_U+Ol}&uNKflDU{`GAF}^}3!u`jYw|d7zVbk0pR6eqH4FV&5?w-N@=iwK-z|82*?*nZ85)w0z07!(%1_>JJUs1UMV~9s zDB##M-^DcI?YIOKm zI1K%NE^e3C*WtQKRz$MhAi5Kxlr7>}iCA2xb1@u`YG6lb7mZ71Fy zUW;b-jdEWe4dKhNoOm@|t> zrsMPLl560aC?PaR8N-%>w!`ad=23BC*KU!>LRenoE=3^~B?rd})v`LVL%%M#JGB~x z+25@zt~DZaF}-cIcL$CZvA^SEnZS|6gvV>g8HiYN_B!R*1=LZ>Jzhn$;$UEHA&rxl z+z%IK5V5a-+6a$SE54ZWX=5znN-l8uxRg1pN2_6?o*$_ z9+Z{+(QKG&#gUwgHwJ6glBtmYTo0Sl@XC;O^b6MlZc;7%PVuyW-ADMEYg{I-o#|Dj zTJ+%k&*~FTI)zEWOLw`XTeV1!OYL?qqQP^wmY$G03sH_c#lLDZ6)i6ROqganQP-Bf z(WQckB=1X56@M~=XrmP4MGqR(3LaN3DlFk%NFtw+cn`V`|Ht`hs1_4*24hKYo6vcu zY40BX7MwHT-HxtUbx=>_<8vDbKmZ({Kek6$*+2%gmDW;EwSntrE@PueCRmiN4Bfx=7!yy)g)7ff!Qs(#^m9}% z(!{G(FH>f5`vcLCJlO>|39g?m6mGKl`|6m-x92gK(60FB8--L?gxUBH{(zyc6Vsjp zoe1>)q7&sifpoJvhb&qh_L_fp;!_y|sgoR!-du~p^oexZgC)ckg;`~jZdlh{U(rgY z;7r%fkt4(~&rSmv1*cW6{*A0%K^1&xJx}dg2WIV`(o{Q?OLAvRSxbQIS zF!!c;OvrxxGBV3gL>B{hidFKG@sPSLb6=*RlA~H(Hq?stitC2_M(c@r$B`eePcxC& zy+#pSH+vzKSEuyfln}9F^0L@2HVk1R|9Y~NnV1|M;;^JH;V?^DyoDz{Km2b#4|StL zc17JoSG5u1{*~Q1yL&LD{cFdOxlxF?7G990`;CO}2fH=OE3lM1=-v1z9|Mp1v_(!g zV@NRtBsn zX7s~;8t^e^8mXe#IH%qJWTx&;+*5eU84=K)+^I#@#(kv_w_Dv#a zpSWC{>LOfsre?g}S_TzgH+Rn6{n+r~$8zM|JZ!e1-dh%ABHi5F9e&&Ce3E%vsr@zs z5xDp^Tp)E4rCKRlLU#_r-Sj8tkn05WEq6}#DK3E)vV-Er^cNZ@c2{n?GYbCfF2y~8 zeB}A520<;hER0@kPDyoRB0tzwJMnoG4k}yDg~@Rc!LInz|DYLn!4& zF#<$HDBhn*N0LN+-Eh0~IE84(_BH(1!bd{4&Hwz`$wq1)wx0=MVHA+<>R&U zS4rzO3Q0J9O)OP^9A}pu4os!~!CW+t)RXBRh{zonFx|#Z#(371E}K+iw^+a&lU6ab zN9{TO{++^+@K%fK5jBt$IThNFG771=F-_%dD>(8%vC6%#3@k@@-_35K!q4%0Tj`TB z{OuN+@sydys-LH~v|Og^WZJNTTe=y&GAf~;{-fuu@Wx9dhncKZ)QHQ}o7|gRszCa-nRSLi*pf)wh`F`VXo9U3qT|!&jVk zp4Vtag2(K-y5wrKJ=^xarsfZR=0;wLu4{))*)w)suMzyQZz^#OVkGBs3`4lz&Y(ZH zXK#sn3x=fEHHm5R5oVb{gVP(U;22BcT4^7~)V})S$xXs!-{G{OdPf?@g1iq|G|(`Y zeSAT1f{NiU?7a_+dU2&#q~=p@J>F#fdjduzA<=AMwU| z6yH3rd$uVR(S?V`*Clu3?Li~fU6=WZ!^!t$w8wS0!{BJiBu(cyr(O#uZwAs~`#qlV z*#uOzoZki;_rPzztB}SY2BQAtEk^pP*#3 z6QyQrjbIi!e^kbJskL<=e^E;BdO5x4GizOOztsrWle4l`pN4S!YDi_ySPjhTd%Yh< zFXLQ=_PTz#F5Lc{TdZ`O21S}VwX=bdc$;{1mJ8>?^~jonhmJ{jN!*TQAEn}YQ3R8V z?>GW-+I`+Ej$t6;A7gFCZ-lOuSQMXUCjxd!cG2(a;J&*!FX3(t7WL8|$Y|GsP2(%$ z$FLrx9SKeHqjMzxrWo#?^f{>fp1k}09Vc0B^xneGPKYp5PxG&=&BaNJJnNFs34~tD z&Pw~x35mGpAz4!l@~BG@bulp1zam;_OCH z*f;OAETaD7x0O?G zMYi8v>u2}HNMI7>(Uwol#8T_Z#*a}wa5n$xD9R>Gx@!)7=-obskez#_8TPV}V1=z! zr*xMf&U>+kzoZ{07R)(<#p&Fq_4TuwXa_#-^s)7A>A>oimnQ3zMldI%7UtB!K-fK# zUo$B(lQaxOZFR|m#OLV2+s++`DNp5zbQpyu-=131Jb>--)j2HH0%YrRBmc1ES!CyB zx;duH5*dRn52DRz7zwx$YWr&d?<3XB>Q_-=U#gjCc&-svqT}|5Q-@*Y^zzE=rUrz* z9#zqGlqK6ZxcsO5R*~DIYMDtMJ@8b1%{2Er1+zwD&rhbX5Q)(N4nfm@*dIPQoqMw$ z>c)yjH*QQIDCzxZhY~M&@@TD*>lG@h0#5uBddW%ba$@**qME9rSE?>QG_E3=wp%ISS`2+hHU2?<7;79+V}{_WQLJ7Zw51r_A%?jrq8db#J%Arb!&ldU1V6NDXAfI#}yWsIXkv-$Kh=gaYr- zdwO+9;Z1%m$ zF?{f@GJkdCH|#ZBs)q}P5I>t-y+OMPdi!Eu=X|b#ynR<12mLRW!!{>)wYNhnwsbO2 zYydaItQfAjG7tue=*t+fNhEv3G;?q_}PfhkTdayH){Q>AUdd5$KgGSh|dDL zan5VWnO;%lpy>&)x49o{uA4;esfL>puZOU<`Mn61{;ikcEPx&Hrt$g|VKu&A;ws*o1OS^_}R3!{)>HGfwaj*UwAt9jFIG zz)_Y*9~jBg>yl54UFH#$%^P#ZWE#5nGps|m_JPSfdPiN?GJ=8`B-%DJlf{JaPrNfs zB>2wT*{-jQq`j+W&jETbzkPHhg{QOxX~k6!k0mvr(QP+t?$t){+(=rit{Xzg?^QX4 z{8K2K&*axM|An0**`f!+TEJ_2N^Doq5+XTysv8CPiQBZtEtiH7*v8fbY6J5D<}PEQ0hAVWz9DZGU03Darsd;V(R`VG%a-Cbio^|3&RsotG!&c?sOYk zl!sf`^#>sA(84jCREyemQ9A`cF_2=ND^eY?^o?nzJ+IQ8z&WK)x7rUbqQNBM)PU?y z2&?$$2~;FwutxU?&4Y^ghtwg{RbzPL&5*04HH!GB4bC-mPE{P(Mf2j|B9pJ0^{;%a z#>n!9W*^mhcnj8q-%)FT%F6J<*3MQG-8A@Q=DvXFRh_QScFrM#Qa*l+uCL_dC)OzM z;Ui)y8{7vu2O#7RAf3mdVVz$Fp|2wQC`pK%t zSzI)nSY}VsP#lJ3s~XeR_HLw$re}e z2N33VNqX}88WQ4I`fE%4Kb)xe_lWDUEIIee|Do*0e~6b#FF1LB1P_jB>m*#AM9eGw zwSIJNs8>nsblg6L!`p0pZI3jd@AQL5PAk&n1@pFp-E`jjX*0F%5oZ^+k+Yu)wj?9s z>~6!|5iBIRI`GmD`rmw)93BkltcT0ijrVutO~Z8mt7C$z1jyp^t)ALqRJe_)UpKqN zL55T=bs3295tXx_d9A(bVQ)i;(mPATX7$u8iD))b+el`-KNm3TyuEpI zPa({+mn!=XH6zrklNz!=3zxXAN?&zY!q`f)PtTJ^^!%{&)^?bMsFlE@*%caSs?){q zJbN%MC4ZbfXap}9o=w}d&0!(u zA9R16pVkPA<;Bibi%t0EaC%oc11C}Zt7N1bR)Xip20bzk{zB%CJt}9oCXny1>ZE_O z7WG+1I<#*zNNMLhx_fdSz6Xbrs7rKCd(ED*m_3OI|AzJ*UkU-8D@n^QXwb1|P7tN@ zN7+pk#_0Mc=&q6M&bYOL2Frsz^|pLOY3%P?Htima>G(gi)ng!BFUK@&J`dq}n#F*| zO$k!6LpoLFPPlBS596j(V0o?N_iP?MviZuPa^I<0ls~Ol zb`ffVq9L!xyNlh3YCCDgZ9D+GcN^0F?yf;(cI=pNZXW`(le~KNG{AVOlTF}b9efJ} zms#R!;i#g!gV(wPhvx764j1c#j ze)q|?;U}v|_o*vwcbgkgL!JJwVlzA0B;&~cZ_PAbYWdgB?45-NUmT~fZa)Hcstf&m zvIIL721lnAHd0||SH|;zixk^$>|C&CA#X!jq_nPeVeXu^RPVh4oVjeBsKeNZ{{a91 z|Njh^XFL{e8;0$@NA`?D@g`9r=N%0d{v>ITl1j)5~+yH$jaW?dvEgC zJjUzm{q4T4-+7(Kv8uW6db?yR;`Jt%giJ;e|MOJ?SN#lpa?M`7^DIDRrt|CPEKN8Z z;`lYGfQr&b9PNFK!X)!!Y?vd*6k3)>|DFioCAooSIbKoYi06^EcV7AdYnyBDPG-Ht zTlw&unKys%KD-34;%%oMcub+oMpc%1f|+>nEOGOxk0GDR7LJkcR1XTK@9A4p zg2o|jA%9_(Z5%0W+d{|r>LKG7|Dop$7jfy9FC?;6fCR7hnn4?w=+fb>P%i|10O1G)(^S)jfz4VLi3SlR7;VTVSnn&OexFxQu<{wrn)JwJ$^x@W_ zp=V4F>fsW3zkJ?}mfUdPpBQb&L{?KbZQZ2HO=f3C|7>k$BLRIUZF~pUa5Hb$&hhR} zyl3Lxmv%{*%sa#God*NCGiF%Kbf6c%%7sf^AMlaCVG;lFm``F~NNvC~d1i9|X#F<% zwt0NtN~0*O(uZ@VvYfdc^SCWkDN%TK98K;w&uIuWLPJGyvR`ck-s3-}hMzA$gH61R zR+)`h3ttUr(9gpy+7z;}V-zpqBChp$&mc%-^2qnJ0Wh)h?|Ah?oE-hMKcT8_8l4gn z|5;qxNG{5}bjb-`!l;Dio}l=%8 zR`y-kKc&@GZZ(M3FTw#|*BD5phkeE6Qw8|Iv~zUoz!Kt>qvV2$Ct$29zEL`rk*uD) z7kqGH0O`m0M1=+m5yG^=OX#R1nK<;?x}rmrXdT%RE2z4R?ed2L1B)4nf~D~@rGxaO zXbTH(RU!+qb=#F`CdNLU2vW$XMUXL9_RAv6lk{3k@$e)mznLL8&(9U z)iT)b)|ZS^nt}B5P3BVn3J_7uv3yi?9J(HiG~9mq@VPRsoSN2*ABMk8PM=%GC$Zzo zQPx6)X=C)mGM#n|Ip}u(&RGGw^2Lv5okro)mc{+&j|d48d?q&?-VAmJO0h(FIo!>I zrE}$b@eR8q5*x}<*iWQB-{v97b`pW-7qXDu#isb1v9g* zd-zNviU-`fD*yH%^^gF4z8EQK3;z|fSzjSc-tqncG>$1=K?W=%8Da+Mbn>3^|il+%5>cw%Pqa!X|j6_M;RAq;M8$9m^$%+5w zCg;uWrXOCOM0m`J_@KTeyz`@Z5#uq4*!>P$Nx};5d1qWLXXYf2hV6O;Qv`?suh-Ae zpUmV+Qeg(KRX4tw&+4um%fk{br(J4pg2;UP+35#e5YyM9MhK4L?CV$|Tedks{B~ST zcQLAZcV`-2t%GLig}$#oiR#%l04=l#qz@QaPmpwWsPGelJU*z(&{tN&wuyn zxok2H&#S-FSqz4HZCpdtiA3DF_d8JS;6FTgC7q>ex(K0{ryAON=g^{;{+i_gGkFts z#Wy8u0NcY_o(y)d5>^JnJ-e8X)U^>~dfpy9F|FKN(>#TV0W&og>k(Ytvp~DUe*hZM z&{cD-17F5dbNkeR7{@IDtFM!E{mX3}7? zoviXHPb0OEFpY3bK%u4etE}k+%J0PKhJ9>8;VX4JMh|WhH%)HRP^FK zI^!AiBt%_P9^)VmzGD}QRPw+j&2s2?`1;+IdXpdhWC7cJZKsnMZX*l0fa|XX44BAtYuz|Iqr} z`L`u7Grw)Y$K>|noRMV|1&SQl@kp3#sa@pPjHKYjNxOiGDi)&Vm9;hNE;|YHe(JKX zvKf`9t0kpAO@X(g4_~?LqWUbCuy#4q;wWc16v8b|zYD2CuzsY6 z_=Df@kh?%5dT|zCuZ7dK^>?7J$D}z~hJw5cb<8fcLrc)w&mhV4W=5q~S?JTs|K%8CEZbDEGqNz|C_QU9C{qZ!iII zfA!d>#~6rG!RF)*_LF$}d7!jmQ!(gPp81--kS0TxY}2XoLd1AXD^*l~9^Rs+66c)h zh((EIe!^i|A|MsWB2&ade$Cbh4}~>hWZz7*;PLf$?yR5Xlr`8|3=6v%v|_J!*{8y@ zHIRu-Rj^88C(qwkTjbLHLF^oxLg-vJqP9P|NGnZ2z{7l2=jbLpmg81hHk`psTa=I9 z&si+1%U2ydT8@P`x~<adF^2^DMYrKTEk<47p*q)o07AbVpKb5j!5xnje_ z*ziCpUj5a$puy3PNE01us&yH1l17C2^>_$ZQSXft;`6v;DR1~Ky$!>KypF$uJCJ?- zwQa<+E*L-Q5{|a(!n;HU-6vrk`2Ki<`S7kL99nc(SW|7o%E2810&evX8cmnKT-^<} z)BlBTsT;&7Cu4HJ@Femk8D#quyYWiTBF!eD1&>|$=qj#DlVI2Ajd@jdxa4$Jv*t7f zB@d3czmbwAK53hdnS0FRWLC?=ZZjG((`cu*Nx2jKCBqgP&j#WBjaD=AV>Q^RMw{=i zv5`a060WP8)-a=F@$mN;6R8aHs+SKagI&lYS>Lv7T=H-=KEQ`+og|KN`c-5a~W{7`sxeC{^{=jNIoNw+}F>s~@tVn2-i={E41jo^CQ zRmXpC=V7u(%EeQ$8kr2Go4LempvlUAeGBV6e5bFdW?q&dRezOzj|8rOBdc$-zXua} zFvu75DvOE}e%<4ada0m$*EID$FC3n-zyCPwPR1XDK-p@~NhGL$-kp4M9v}Bz^gaB6 zim*(6mq`a^^4#KvNtIg<;zw)fOuU#$etnc0_fj$Beuo~TkLtmBM(c#l-Ba+R)}OTe zMFC4u{lZC+L0s0K<1KmEiD%L>JbsUvh~&13nEcdwn0n`WL@G{$;la7@ZJ~o0e*DGq zKwUm4Z%YjRm-Gv^{euzWA+yMpOXw)k_=l~_=WM^)LDrkI5?hH@jFQpP5Bzob~*Y2s81J zDg7kH%RpN5<~37P3i0gLi=c1c262AR!=OUNNzgru*}s2~fs8x5_*AX)z|}%;@B8L_ zM7A$)iG`yF&SyG59FUxYN87o*&WZ!L>^%MH!BRDH<|R^{-ml@)ooT0+KiElw%!$05 zAM~X5lDE+jLndPXxo+oF1tU4SN4S$qrWbermOQg?=O^xo-KU0F7|1Z~5uLe#ZX7-7 zKKqq{jf_d|W3(`wM9cBzM#e4<@_UVQCiOD~v723+d*?cEOucxh@E|S8NR-@Xdus{9 zG`zC<$<@%m=_cu1SstAv)7|JXM6;^a!Bte>9B=tNqui z9a)G3r?8zvFbiS*dugO4t_3L~t_L){r_jmk>1f2pN7|Qb@@8y$aJ*Mu%KhacM((ryoPE^jTx)A)g3Psj7HAx_cY&Q}UHZSCB5({O#>Z)2rAHm4QXD;8be zV?|Gz?4Nwgsb~Y6@m!(GhAJ5BFL9PkVIxhdwqflV`S3V$u2iug8vz`Fz7dp36jz8# zS9G^Sg}#M%d;WTFc*nfYx0#0UuT}h7Ya_M=h#O)%>!c|7pKrt7lu83 z#d0V`m}xw4l;=n@e9H}I-pkKJA+gIdH-g`2@hFd14`>9Szj_MX@fA9`N|NMY6HC>Vy$eWd_p~geV;};nd&GUVwd0l6g~*ni z0f?UB$lP|W7BsU)UQBZ9{3qSjoU@IVWP9p=w6RAi z&~pov{)gb&3upGr4#DUdXP%tuBJ!ky7Zzz6;U9-wmo##(@gP zx1FXScd?!(QK=h~8yI)J6)S|Nhq~a-@|<;FJhs}FJP(cBz0%27D4?kCUI}NN!l_WY zTirRGc*$SjoH5Bx#v*^`6lv(tPnYjA?oqt?TOPr0qz0sK|hOYUny^%s6^h07E%RHLF)S_+i;%<84 zCm=Gg=s%0|tXw9$Mfl0ZhXwBs8g}85=V>-^=_N45*6iNoI0S>9a*8HXH9B^P7T9Mm z!Rq$G+O&IIgzM&&l0zF;vBT#(r81a-bcYv*2=lTNqnzLqR}}m4dzkXIGlZ8IytGc} zk7gh~XaD!$Ra6%Oa)K<09s^M*eA6wo&ey(0fxL{tJfvo6SbpQZe;C^H&xw_@6=&W^ z*;h=^6XlKGoWbfe#4;komgPews!cT>+^HJCr@Oy>eeFiz@q9rqz=nsM{-*DGA}S9@ z4qVF_wWA>~mAA?#cQt^xH7}=P$|UcnEXQyt?@H zW&F>5-@a0>1$>iSQawB@Z874Cc_ryiI4 z=*5ZX*sWsEm=-*FSoCEj?I*&I>N^zG&*BS5-3f{LUVLJ4yZe2n8!UIU<3;T0iPA1T zd4)z1lF??tEP87eSB4Md=jSt%4ff0r+wU-ulQHkCHg9f+y`)K!_Du>R^FHnI4-p`D z3Y`1z-RQ<LfpY-2b}v6LJllcWKh@;jc2A+&HRgY#)&r0E=5l1)GCsPVP?GIh#;3W+7`e=KuUoR{ zN-rFO?xFww9bK8n+0Pi|+EIo{tE6BbZDw-sonfSOT0TrP z#Wudl|BZ#F3)23n|G=O!B4jn#1A+Htd9OCjL8sGRgO8a4wK>M8+tezNq9%JGDP{tG zsvnzaU2`yy^zfGnYZIcarh{VH%5gf;{j!5mGvbf>Obz(XB5YrZ=|rDAN%4}hKmW28 zDVrmAmZmR&#r({6iRV*Tzh&czYaHZhw05FZZw)vU&eK)|qZ@z4HW_! zGx`R6e56Yak?6*=>!S~U+*Km6QvEVEjxA^$ofoyCP9r5&@Zl`I7!fe{zmu!Ah*i%! zYxy%Q#P>xBr4JpjIk4lr-obvTo>PuB%x*-Nk=z5WL@E-#K9BN!NlVPVom~8`v6Dif zHpgtea%ikUitlgBJQA^kTuk_vjIT?=1$h+noI8-sQu zGAwfc4!C51{hPeNG;ce0jP*n@O--YfdE@G*p&_g$-?7`>vWOWouC?2aooF*XrWToA zh?xUk1ysruXkV}JEt$!ZnP7_&S$h`pIa9LreJ%}|+;r=inI{V|d-T4xktPqP<1I#& zXg_0!vVU$?Iu{o@a^&k|r;u<%mN)hc1^(HMx$_iSqA}a5EWDAG7*e!S?4Gnhh;pO( z$rLU5u|Z&)+0h1gOCSC?zNsJV6X`;p_opDVWLBlbx(4Othv6Hh$FO0E|CHc*@8@mN zeo`mPN`!k=T~CWu;+6O`eY*7|LU*{e-gan*!-H+h(HfO-Gf-<#db-X{{A%AG-K1jd zrsloSN(vk&vliGqXCW6}eDpuY9yAr%Q!RX0Nz0}r78UL?Y&ZIFd#}Vi(q%+4W=wk# z_re{!5QC~NEgN0lgOZyvQOhbZh?>@${sRq9~(_FmR zy5W6JOt5HX2GeZ9f7^m+h}@1O?Q#w(&ewX395h((eMM^YzYASZeCc5lT}(rY2LoO2 z9vOf?r|T`bEfttuN0g!eEyCNo(o^9L4;gq@ZQy3T2qw;t>U=y5BrqmZh%udwgmW-^ zi@hC!BYV0!CmRp39&%+m7DP+f?q1A^S?3F!1^Xe) zpe`6{%1O3mmF>G%wLTZ~?cdWcF_9tHU$ZyDn234qyK$;pCqAgl6+O=9BYpO}tPGM{ zVN={VZ=S$L8skL1y2`D4Z}6#pFUL8A6sfA-jbB1fXJOw7{}#OEC#hA8yySJ&$7)rF zZtyv#>2QB!C9gTIRoG=n67J{=dh?b|2r9m7{XsVq#gU)+g&t4CQ7v3$bUh!1*A%@f zmHKhfXMCU1S2~gzZLXTJcfH4&l=l|8EnwHkw#WNBS;>-5c00E}13B#YH2<4o3nW-{ zf_&GxLDc8S;9#g2;eS%)u>WN7V z{EPNBDjkHui__cLUyR_=h}M#a83pX@mpI&`oAKzTg!k;Oe{kLxTJjyDCkLQ~7?a-DD@zxdHrJW+yOZTjM^aMFp*q-k-sv zbI@uqt#ehTBWzvfg7I84kkztHySHN&1ua2d0>+#q$@kGkcBUSbRlkWz{9A>zeM#EE zFBwQAo5<_%+XVE!=w?~ovdfelUaSjwdmFJ!s{)_jOhoW|bR--<6E-yR15!OREOT#e(c8{_B z77|Ki>#Nf0@ENk&>CPGu^5k@!mAd-&K0icCGNt#epfL zr`C0vh;~8z)lbiRnRUqa``=N)wI1Bh`)`7yQ<0R|eDF$0YQsCb0?v@@v)EL6VPU{Y zkTgVcTgPS1BQ-KnVI+-<9R8g({O!WJfBbVOcu?4b6qk&D7HW+M`c9<}+cSsTEId43 z^R&cZd)~|bAzrdjnVEXiyBc?nKK&!T)_~JT_$~!D_dzABZMO*X5_YZ8GpV_cLPO-E zv&6b@i*9t2JGIVHZ;s90Nyu8lJ+Igs!Y8^A>lNgi)5J>rcg4=Jw(*e(6@^fPJUOy) zv+5)ESNz1{CdXU~eKQ<_DmP}xrXl{2;TcWRg_|e))4tHJqNVm+j;+lweAOZjI@?gu zO&1~Y<8&_!Y~D#}{rCf~!%chi0>?0ZHKh6Q<8_}Ly0QBjCp!ri(qOOaSzhp(2ofXuHWYRC~0g{WT^qtMjRET!@Y&n(WFH z@nR=eS=22P2J6w%9W%Rg^Ad6%?V6A1Xv2}n?FL8Idp;~g>{^({EZTncYBny?lB^@6 z<2LJe?*9M)0RR6Cmxm)2Y#fDMo3bTkgp8uhl2p!%5($wa$|%tgT9iJbtz@N=q{t{G zWfxHjW$*00w|luZpMT*u&UqeU6aTA>t3daD_~`76SHHqd++QlII`^YrfX!kUZpP7XFsc(ARi+qIc=`nqH!#Jpsmttcnb#M&cl3l%?hd3)$ z4hj{nCfPdnf9$+VaR0jFNu$gjG$s~)I3CuD7q8qu?JVRWiyvazwbSx3Qe1NW#0@r5 zbk~WNqrgGlg`L|l-Q5JI^jnIezE{7M&XJPH`#IR^GfkFe;N7rn6a65`wE%V&~q+0IqZZBdYVS$q@Rzv(`;J|Ca zczp&EWJXyn`i_<8p7*Dovt}YD-kDYVzcgXpQQ?;D3uBlH-}8-8S(NZTD@&Eh?8LCr z)OzjnGcaLz5?7wy4XW4qgouh?xGs|ZUDl!jXPyVCc?b2P)5gQc5dFmZTbRlaaz3&c8>9{4 zo}2foM4wKa$@=`^HTN(YT}Ugu6y%q09CnI_qRoKgt!KV0yLS}YM^U8_m!L@PCS4uzuD8J8g zGi@8kNY!?y1AnR5-eacn!F3Vwm-$P?jIyd%B4urayQyd`KBkv$Xo#bN`g_SOs797}Ycso7eyzlX4JB9fjcFLx z*rlIcI|;aZZ>t(vMs4p!wG@|9RM&@}NiVO2qVa=*xyutUZhkYz-d+svJRLLfK5i0z z!?*XW!vvyRhxne2_d}d-KfmGedO+=Y*>9C5+&0MgphcU<;0?dmy|tx?D=+h4f6{{! z4WAj}#|NRs!yLC^<&WEAIaAUYyU@NYXzsL3N3j3AWxh-cw3H2vu575ryR)OOYm|Di z`rJ>Yh^s0@c6(Mz{>Bb8eUmBu@p2X=>{CT^<$UDE-mkQUR63H6QQ0-^1W4UJR_!k3 z4!nxY`d1;;0n@43F`=4fxU+v$y;nDguj7%!<4jB>+Q>_d?j=ATf4bvxMxX{`YeHgO zdb?0Ryte)EuO7tA9CT__nnbYi)KY%u2;MMWzs{Q}M7R}Ier?TdLo8>{vH83y%>Mh? zXr|hZk$-mvYF*h$&7hr;lh7(+^|ozp+bIdcn=rK0Y{5$&^j)rez}k-LBCd7y+L<_J zE+lOl*bZOMr0|EVj6~n7DNRRV5Z!&Z>x_Gspv>*TAC)wO%7Hb)i^F-a_H%I+iyKFt z|9UkkH3?FD@RPOV&(&nvEP7x>WD%Ygt9I7V1&E7C;yE``gOL+#idWJTkQ*k~b2hRP z#qX|!HP?)z(o+6O?|3J+gq3VA(qkqElL9Hxb*o6rh~4vSS~;E>n2sJeFaxq%ryxMT z7j;^HRTdBQpui_6l+9`e-BSCXHA}FN{d*6Jexy%8zqwXn{4MR%g`-Ar5RbY6$_CKHhDo|7)RH7$Zg||1YH!UqwNOpT>r0)z3=bl~- zo;pQGT?`Ki4{gV#k&yQt<*dZ%`rm_v4Aofd7kX>d&PsNehnw0AbVJ5^UuF#VPjKEp z6mDQbgZf|gZTy9^;4;$JZ=B>NZX3R+1WnR#!TH#|romRsX=?j6TK@wlo$H%}>m2l| ztvIf3nMDx`SM}ojB96Xt@-}SaCdqf@M23SpVa9mh08v1$zmxeiEBTu zMu{#a+p7?r7>+v|1&K4Vq@Ud5B~NdL*FL&ihKuac{JeWQah=!xy=q4-&Pf`&eO&36 zDx1heV7i^RyxGqaqytXA9;ntL?u_yd=*sa$+~1Yrg`j-UHF@G0f8Yhx@G&ZCMA zp>%fQesX(FkOnW24`)3iV$MjES3fV;IL$`3@p6|5onj)FoWJmXG;RjBwWI8G2o3K~ z&(JPEk|clBf7q!}dhyXH;lhSrQ^*N*kT(|_fr^5q^;^|HIQmp0ZF_DjSeK6c_n@E? zA!BB`lTBSX>^c&?epeG3bh7{anPMRON(Vmu((cEm6J4GxR!um6>i)XHkK@n@3x1SV zG=kPctIAyc$B{nWtSRd@hznLrJ!828&^)p?zGdeCR`2hS9$hzvTXrw59$m#iWFL50 zt8?;`e+$PFt#}Dr=9C$wbvB>=wRH;5$^w|Q4DESR4Dpy0A-zn#pNdsaWq)*XS{%SRIp{DRJ zX|j1}R@*_L8eHPM*K$Lt$jGWa9G*xA`;~{mofb?a`2#hmQluO{$!UpE{m7GC0I`JvqM8qm^M@LMc5|*lm0^-sIbZvN<4r*4p;(EoukD*``gW zJs62ide7yndWE=Bf~B&saZL82=&aHhD&7c6_^kZDj`NgG?1^qr7*lJV3g;lIEwZ6M zsTDlY2fySdSD_*9h$>%n8=-LAa|RLQQXw`c*~=Axg3YzJJcUW8N^cVS>oH#R4dfy^s! zbV$=&PrSRzYviS zq<`z36PKQVWAlj*y$TFODb>KP(4Rt5sikYzt!E-G!!hq$A~uqT4o?fZbJviN&El;? zn1aBSbj`r#GO&J*%|BN=0e_ni)klr|_M~ zA-_!L*r^x{HIUkKc?0R3T=t_Uuki4#OrGp#`CzKI2$|8VK`{<)qgSr@RJChP{)Sd4 zyRo&d>dRoCFf!y@;r_iY+XI?NHBQ*m3jccdN83fx|wb7(Lws_FW3s04x%9m+c{mO%A;h44O+ zd1#)L+ppwVgq+EodW*NCaO{hG6!%~peG!=fnK>0myO6p&Bya>XhCT)Hvm>~7+W!f? zk&E0j8s}hKs6jx@_dvn;5)j_Bw^k}GP(Mb0dFy5=_62(SQANvfC1uB7pVmRRnwEUA z^=rfQou&U4H+5k8jBuvBWh>&0laBahbc1cj=qb6>Su7+A|Gg61u#yA5GAcV7@$6A< zxSz%(PLGw?yKQA8p1m&(d79~na~sIo;j>(g4v&(39mnkWDL1aDHMR;0`fe&$~YVe*-PoZRJr!_RsU zC+g1kdH(`TES`r9XmgP;{r>Jt&5R`ScWN@bhD~ zad`-wAJ$$ltD1w6aQJ=tgE}Z*5FTw>T?d)iyXw@LUO3o3G|?MuN6hmD!HuJpIGTKY zkdd;4S+1WY(Sh^u_lLU&X^^$leN?V;P&vF7$b?9K1oC#QxW6{%Q$*kvV$vmWu-t@xW``8Y%M1RWQL zCHu~$%wq>j@!5Z~J4r>^{^MO0Z3ymIf3x{h7dS-Na-W@F$sKiS@{B+q)TuR}FCHDh zqEz{h!S^i~j~x8a>zxf%Ri05%9vWU-@>!Y}jw4vOR79843p=>hE;2)Nc|&e-qD7ubV?_pQ44GR27tzqG|8v`G~{0gGzGZ z0)*3q_H~a-3*tixOY~G|a7+*#8(YbX_X$oy<<>l;Ydy=^7kd^^<`U}c;nD}wgNHs- zQ%A5)S()+BWDk@VTouYj_{dMDki>=(QF2fH``mBeAzZ5n6p=qKN+brNW1PdM;QM*b zb!$o$Wc@9d#!73EqlRX+!&Kx3oNxM5vdEcKzxIIk*P|0i zl_^YjDVxXil+lf&5`)F7Q&7G>K9Aw9hC< zko+TicU^or1M9VqIy)KiA)F$`vBi2APXzYG|DkY^5?Pn_3B4iI&wFVlcnu9JVb6~jWW9ug(MEqS!Y>v7t!PV~NpsjH+hQ&ObQzn`~KiqOt|J67Y z7_yJ2Pqcw2EGcr&xnB^?ysLV?ehoSB;xbP%WdOxgA@n)CU< zKq}7N*OxJ_T=|bLH)({511Fx!-(?gej+sV@X4HO6Sc>gabSXgR^_JPB?rI$T(LFI; zO-D^s&w-k#M!d69^DGybhH2N$o&=L+tY7=;Po7#2+PQ$jQ*SgfI2Kyxs z{}hic#WzXuF1idexzcraH|1ar9u-us`QtqRPK9k9*B_37{&HsiyXs$9h^)4M>^FuO z%?}a*WkZN4kV!i#%1_2u2Yc9wHGsS3g+{c zn(Z(4k3O$K*mMND`s@VUUvt`vJF*kaxNkZ?Z0N{k2&`?vBAN%|nC#wgPJ%v;7hhtZk% z`J(?#W)l8&R_sMkD_T_#G22fKp`@}?PwE35qsK)w9k&UQXq%sg&cA;`Z8JUT^zZ;K z1$Zj?3bkU}XW3HjXcqD==TwG*Ne-Imy7`TlYjCnaar=9&S#XPPHZ!Q62F3K)nDW~( zh%_Md#smxh&msrUK`04f%+e)#GqNy6ALyH=GZy3p3u_ zh`eEry=i>4uxx8^f1S06etRAJ-tswAt__Mb6lNiHT&<>2Arw+k>{7ZWa0WmAGHmR2 ztpL&%3i&kVaY)J_xSP2eugkTxlQ{r3 z70)S?pSm$iM_=1r8IP7Jh;5lV$se$jTrv}PaPjQ}i|6*dY?T%MYNH%+ms&@vj3_6x z_*OjU-A;`thavP>rR#30X+~pDv1POLSCpm>e59dJWBn-tmM76OeK06soS7L~K_2-j@P~%+W~s7=Jq^3@XI_%b+6tml~@y#~8GDP6lkcvEub*&h&dLe!Z%b zvqi$R3kA;dtM0xSg`|Uy+^vJ%@KQ?ET}oK-VT)rY6e@(tDHWXy#-qbPdqHdQ-*u#3 z_sS>6(iw=kc`V;KbA+2H=#YzcOrI$*d_iYH?iQFJ6ZWus_iKae3^Dhf|coDD1Owp@5>;}M6X}?^qN9)F2~oOXc)w< zdEVz8b?sntko|I7W)yE|v~<}geK=}0P&l(?6dU=1x7FH|BYWfFg4+Xh{BYi2;OH}t z3o$n{nSf<>;_fD< zdDIJ!7e#DfBW^#2M$f3n;XRi^pOgI}1_GyEC@~0-Rli%@_W3QMZa-hvX}MC^T~9xt zcB~UePw919)s175^y*zlJ6hmx*T3sv{7-QAw-}eM@cmL}+wbAK{ZP42|MEJc3wwn{ zsE*=nB*GzTXybqEfwMIxu%{Y1-(> z%6=L1O=`BbV(3U=Y@JLgZWoMZmVaU)BtLm$@%Df4SYVV7*xrXPwL0=wS9o~5SC!4? za6XI%rH0q6+?h=<|J{@76EHikD4BmvfY3~DS}ds4VIy10k7V0&B>ZkPJX>Fdn@3t= zm9LdzX*g^4#Dxl^CcA3K==4J0d5&_gVgTzgP)Xw-g5cf2@N&N@SjQA=={fcwJLf9% zYR5rL?Mr^}^+h$fJGVDBo~VSWxwDW(?J&ZbPD<^t;v(*sZA|oU&%0@Nqv zL}mTT;Ba>Orit?qPMJzXalRe~S8v;}wjG6pEL>YQe^CeTwloDV7eS&j9eD8QD@HP_ z@U@4^!$|mJuV}s~qd_zGY#P_mLeO~3I1k)z1N#o9kNH2xaW8i9aFiqyxmNPY%h|aG zs>LQ}UyRPauu86x+csOW~cqg3mhHY0f@v#DYG1s0Ngl3K6J!Ah>b6Py>$ z9fhT>ZSk?(ehet2<+HD6Br39E0R?8AsK4vFi(b$R!_LLYYV9SIv9DGPeX)jok=n94 zu;K@T(;^=hbBti@VqW#3z78}dePN9{$3|=kt?o?kS8Oi+J6>j2f?#u=uS>!U`0Y}2 zVb*L32S*atld5kaM9UoKlacdgl7y=!_N*IXg&b(Xy&NGnR z)9qEQkVcXk|t@|!L481*$ zYen7stMUgx%@vdxQ*6cuqefrOIeZi)0?$u%t+H&xk*r%MQ?{-61^0+g!}fY8a&#+3YJJ6+j>*!512fqxA8Mx6 zFobxMT#W_&9H?f9{T{e6fQ+J!Zu;*vWQS&%zrnRK@SGbdSG_xijL22)MH?sa=4qj*GsMDyvRzzV%2t?eauh158D3O@3_(nKW-T4cT6FKCrS6tr6Fu< z5tAJ|!b^OXX_~D6M$t{1-F$6-2Sm0AWw7*(VvXgkx%4wVcz*xij?FJwNWn?z2z_TE zvX%Y5M#imvaCZK6el)O_G#vH#lVfq&bJ+KT;6OKFg1+UN8*E& z?=*bnb)keloPp$x9XD@zOAxu}w+pu_D`ECT@&-9sf#VmJ0(R9glj~Ps^QkF}LD+BN zdFlQtG%6g;nsAtd^lmHJ)Secc);E+;5}QVEqz`%XmYHk_ak6>6G=|W)N9I>Kr{EoR zrZ~)xkz5T{*uR>MLgwBoMTBv-Ax^`a)}t_k(X9@8YnCR^K4@m6_qh*|mYdUp9#B@K z+o36DWCBiAA{q007vTBM!q|dKp0o{c?qC;TCWrc^3twssV{-55=-kzbIP0mF%s}nJ z^Yd}i@lkUy9#W3K_hA?xFEd=YUfhgAHis_H_DLMKboBhTc>w`PhkV=FfhBi**#jrMx5{ zt10wDaX*|~V0~;y7fMrp=!zWVB0+WKW=Y<>#5YoELU6tsT}6j>Xi>&d(h$}su%C&{ z*rzl!-|4~s00030{|uLhI~Hslh3&nG2+2%IDaxwzR4Ph|Bt#-2@s)-`gi1-v3T>3o zkc^bF_uhN&?d7%S=RbI^-}T(*+$X$kN3VcX2}D97;lPtf16r4__TV zPIPz%t&AeJUDYX+k%@SomDr=1(v5qzJ7>gfno%9Vt28=JLz2U`Zg~^RPIO8h_isKh z30>Gm(dN(*juzTP`C29-n)toD1Kps3$5n=*DM-sWkLfA(W6zz-GFqdhc$&B>lyZ`p zZ2a@%dfdi#z2fSJNSD{Gg7+hE=qi}C)y_tXL_L#o`6MEl-`l)knZRDIx9v}3 z_zCxLnqk>M<2y6$zyThzGOC{8TS7w;rLxB}x*14}&)D?NkFyX|sI1;~B@Yf$ ztqs2qw*VeS=>y9X_^|#ar)M!8annhA?Bm{oH$_2Pt1@O0>#*;NU;iwmE$%(?Q0T_T zn%0lOzI22;N4nRSlZJ??%ypc#Fh9HsYSQuF>qo-7)=u`c}gpKQ1Ss467+E*o95`rmP{K5 zMz3X14wmF4*-xSQV6*m)#5`=OlWJ<7?!aS>%A3q@x{*5U{r%U`N`!4O2_^yUc(>Ty z;}o-m3gvMxIlHxcXsEHSxXq&4Eg|gJE*hdII1nmmIe`l?EB-mdHTYBC<>8n`Lm2+s zC!`=#hDO%@`#ug`@M)VM>*U*^a+~4o{&(Y0^X1gA3+u##Jm;(TLRt_SuiKKqy@=;> z87uG3OoJn2qwh4$9@4BV*7Sju0TiGJDh)ZcA^(X_ zK0gsHJfRnLs~^oRygFXZv&eXI*Yb+sFoHM};^e;Y63i@Kv`FbkcDL%)olG4tS@&~a zOX>u8BV1!x<9ji*{kEWS06mdmKO0s)BS6eI_(nCq>xY)Wz1~n}KGNDU!9S+WM6jAx zv2j}mex9w;=Re+Z#eVb<5e)I z7XRvVtP;|OF_!8Nn8;48_kt~Jd>oQ_A)j%f3ZZ-!a=Z^|iA|`@K5B6rzOZNV#*9xu z{A;6Rl>r^8JRYIoa%%(;QxX5RiA-W3Q@Dxk$pTb2-fa9&dl{~pUpj*+EpW^E-g0ws z4z$NAB|KgZ!{tz#*n(9bUb)-lH5<^9Y2l>WgqP!Moa+VkEYCo!OyB9BfC5ot-Z5d_ zwTMG)7o=3ndSFkonjU=!2TO?m$N*0V+V7;McL-9UEUfc&_`(>boW=zrtr{_M?uVoNVbg4ToDfK#`h(Lz5$sDSi4!Szek}Xng@2>V>X>ee52Oo z!zUwf**&*1k!KY)r`Wq$a;(mBoAzY!BaaKGy2Nxt!Ue>q$K1g3Gyx$*1ec zijfg2X}0&_huj}s1%7;Zy_ob~f(Tj|ILpHAiW zS#AVGos=26`#D|dN6@L`sUs>=C_L6Y`sw>5N*)B| z=?hiDo8KU?PnnglUw^vVe7*S0v zV)d;45T@C8Owf$bt_4H=*If1g3>Nhg5+#$EFe^z(cnaFj#P-Rz z&!g+7ZV7dw6Pp%#jN23G$duVVK9iHP7(0~YXYR&I#DbX)FPXX+TBd!pO6CTi5b^_=DeTB`M-nr|s<& zR13S!8PjLS2C;c?pYx1h0}dNZG_!B~iwrZR({ZB$Bzt7ydfcrsY)w3xKK&yT2e0~B zIM0sbT)7YKhzXG436lcX#WEb{(oZkro`lu5xRT&73T`vI3w^8Zg<*2MCiCAme7mjt z_=EQ>ZV2BTZ#v6IG?h2rZdV&aLzYNpuHynaF3&kfJ{m$5r@Jf%A0M&vV(d_o?m_{t z!)6bi4$#SoD}7^`#`CYm>%Kkjg}>edYTe=rZpUT+YRKdx>Ju-#mL>YIM?%MOX_1YT zx!;mjlHerG-d*={c6XylOtzuHatItZGK2Ep4Pr-2w3}UOFG`kVX{Loo!S~6**_}g{ zi0#;)6ID=!^>+d<)5}+*1fXqYwyWZ-4uE6%J9?XW#e?;-^}f^}dWzB+;<2NsCiab6TZQ;>Ij&`z^Aq zZnr=p@uF{<^gJ5aJ=Ekqd(bYq?Tm9qFRnEj&c0EgC4pvJWTGO+;8vK~QJ^`A3(ocV zZ=JT01GkPQBX?g6K1VQ; zb3Zi*yTB-}yPRvz)Qy1ua@Me-@Ctq{{;qFjW+E~+x>=_)SMXJTBFSn~HuV3i&_60P zgEu$#SoAzzyIa;(ySgWpu;UKVWxkk!`_sPs1Bz@!q3qrc%HJUb#oo!@YS#zR^0$&! zCVb@Pua87MM}*8otw?V8UWqK)`G_3XadZ}z7|pNsTGof(mZoj}IDIkyNgG=Qn&^iT za%H+u`2N*LFFQIys(*wA_0*z(U+8|AM<0|Tia&c-(~~>!AhAJ=<|>#jE>9JXGXCUJR$ez5*6?0 z4@6${Tn16-dUor34IUSF9Px8!BVHAk2J-d~;W~}w<9YsmNbcW0JsmlO@1fVN_l{&? zELvN-dd+XFTZFX*GbS+Y68|IBk&o=XC{TIkSQqRhFC~?3Ermp%YMMlQIh=mBjwYMd zHgJi`;S;dhtxrBt_*x zBa(Ag+tuc4aMhUWM@)SI-cY%?hVwfxeSan8*Z~ou%kF)pG+_lkkA+-LJe|QI?%(ba z*?HiKt+n%IpddDov9Pmv2Ih7Vx_OLauuY{1eZJR(XPHb-?Oa&N?qaW*8)*v||0#U; zq9Hqpl->U+oJvc?qKl5Qoy!M9k9q{%(PpH!^a<}Np2mG6cIR6;G{i{c4_%%A5dKzu zfBGn499rvjmjpc*u*HR%96{58oDE8M=wsD&0W;gJ6t*uSzCJqZG3i8k03%KOift1~E&RZ+4pn+(=(OKjt)g$Bk0w4dv zQJs=6RmbPRVHQbeE87Qe!H|sBVm7jvNIVRlr@@Gkn`)+$g9`tL3Ik5dcpc?@DcHzE4u>gnP4wB+*hp4+)!N^m&QFgYTv16|Vj%e((IAWXqp)a30Xo>dE% zYJ9K4a(rj0&Oj>~p5%K!-AhB3E;tEg-=0C(>m6)~6AGlx@cSj(nHlK4YaT71hojs@u$K0s^yOhuR|1}hZzeWl=2 z%!yg%q#Q(#4F*^)QgEZ7c8PZ_KM>WyzO%j*nLGZ9ajtP9n#Qw>CV2!$8?EGS8+1Y} zNQXi2MjOI=X+{^eOyJRh?SB5Y+@!}qz5Q-K6(8>2b)1@9LZ{HaTG9@(;!LH#QZ-x$C?;a(>)>dzs(h!5g}jNfO67hzfWCbbM}9ZfV4dVZ zfIcHD*`_6Up){%sK`Wo%9kLyS%;&Iy(%A*X`N^-px4j<)!fI!@qxzAU;GPt+=K00( z-Q$9t6EM2D{?x#Ktzdd)!_x3=4lN>g=2scpu**HgRpVhV-b!e!uN0#tmP(!18*Wp; zkuoLtPka>m4NCPdlD3g8*Omj=Z;v9PQ@wj#Mh#vEZ8ksS_yncDeyFHu)PUnIy-`w5 zKbERmU)pb;geQ~X@I#IU?3h01v44b-)XH^toExGedyiMHs+de5)y4m0@vBt$9pG59 z2^_|Ej}q=v{F7MsT&p>xwi)4rC#NZk^Ptq09sE1qgtxmN*>QTYlbUlI{r{`(#PQhT zq7S(g1a0E-duhW$zJ>hwvsBlOk#^d>Tndr+IIX`&L3#-e!Zc#K1+--9JR5J~o)w(X z>pJHen+f~Oo5>|6i;#7AV=#Qa57t{>Emy^sA*t$VlK7`g%&UGg{Tauua34;mQ3ze3kvZ{lW|#2|7Q(qjC)XH{ycqlbnJC^`CU z6dy*Ph>hVk@m@$zO}AMbVI?l93nw+F1ju-vUCu74Ni>YTzM>;Qfn#8pca0)HSvin9 z6zV>S?XCKHa$b{|q(`957A9iWIBfNarwNxm&3C_8VIy<3|EW6i{zP(DP9{+B%;3dye`fFw?q!)kL-Fmxga~gBjzGa$p$|+PMk?CP_Psl)y8yrG+sPk9`mwE_PixVl9h0n0!;ap} za2S5yii@WZ~CFRcZ97G*r?YI7L7$Dn3j zvI6$?r3ptJDY(QEQ2F?0Kl}}Irxef5<7Z8sqn1E3KASkkvE8O4v{R<>T1N(<>G2j~ zH7w+akFuuP0SbobBnN8(#^9~IF7V;XA~vfZb*!47gbnrhx&_g8*sZWMOFdh}(z1r) z;CTV^mv?r9sY5dC;&puO^p-FbM)Od#rXO4Q&Zn%u$4;CNZME*p&p=;D{u7}c**K)C zSjrzsLjqVYX*(tJlCSnPhMJ8l*st19suIgXb~5sr53T((u}$Oe`TtBK=+`Bm+UFUt zRn2V9*)a{_o6g^yANC;q$j~cE>r#9-ljqdAHH^XdyqjqmOZXM|_|%^@U(nWA5nbHT zi3d&!`>FCvV12ZA&&9D$e2o`BWfj$J+3RLV;s8)#Mg*`^amhC-je zqSPWdZj{c>U{=MdA_99u*B(=ZEi&}w4shW=AiEHoXsqn33Z^UVzay>EEEO0Z* z)QzTYAltXfLdj#ze?sKft^6o}>bqB!m-r@Nt~A1SX_|vDu`~P~eOH2?d*|rH9HwCS z*VT4xt{*Rg_MBK^YJqEtjo9|e7O-sL@y{0;f@z)I`93NOsbd=cM3q`Vq48(A_Td#s zrx~35P}UDQ6_uD*!h9rmm1dc?v<^AmkFsc!yRpINYwplmo+cb-$yaplh0v+(I=5q| zVLVZL=?*UkN#m$8dg9#!pIbtsYJ&4Z2BEP_q5bb^~9?5w$`ER2P?_%9qY zIyMM4_w-Cgm3kwpsOJJaW?~ zICp_*&ag|Qr57*$yT@0VGz7=(hi@@{ZO239nD%=avse+@EAvyV4s3jnes|tj+ij5# z@9&hPB@U~8xmu5@u=f^xw0qM4q&8|tt$VIOc3$##5fA8x!oaeo1b-=bq+3eWIPN1+ zYO&ERyBr70g?9(;?8PIVFXk?aQ#hvOopkC>BOHA4&Dg%M67K8n0X0Spdt!PMY<4-zeU`O1fcG&QIE(NDdU+NRZAG$BNu~ig9+^+j8kM6r9&t zi7MXMjZi5c%@{1WNlI#P%w;Aa6187$&g#n~?w7PhDbx%g zd~0`x7>yt)QDMDpK0gC9L%#VQj|rIm-M?9Ug^O4oPH=vo(t!{g?Mm4T141& zHW86qp*p#TXo!~J?%<5~ih1lxUgrvF+ev9w-kgnd^hc#NNiM?aVWuKs6AUssD03V%(Q|Q{KI>AAD{Nn0_O49h+=m!5KhFZV^0M8Zk88!(4bw+=@1`S_1sprJaxWrE zw}!r5ZUfoy?95dYyJeX6$$cp<9Y*Z#<;z!J%aIWF4@*sE6?m=v-F@_JCsO2onfmT* z!oUUf+^(ctxEsh-rOAkr#B-g)D>hR|@#0l4wJk;Ui+|B2#uSv)c*p&kWg?sugHQQi zi?PpH_g&7|6w8r@sQ%s6o?S+OMz4o4AUh-s`&C-!n!(>I|#^Bn1$hj&nt@nnB#C{xc zTkY-zUBGLu!){b8ON^JRTQQTljw*+tupV>>7uL9GQ=s#$Eyvealw7dTPozCP3PsPw z|!B)))1l#WgT|wy6*odj-BQMs*_pRhINdQ3-O~Lt=4vX*G21gT>kUJ8@uA z)0$2w zy_KgPQx7(!?PEBZ-U87S7tYesPPkRxc^$0WgHJu>sbzONVfVc?$L-Aw##Y<%=yNO3 zrmwTnLc14YHp^Yg^0b7b=JrUW!aV-yof+WP>BS8VlWvPSc_Ke!>fiaO2O%z7pSqRi zAdFA2caOzgY~;3zvRo*D@U+%rF^?X!-uZ1Rw6;fK|EKZu_7)hYG9BBlyw7j5|q!UI=t@bfq+$hkZOiw%3+p=bBJ8QV zJA1GqANT9{-iRDu0N=`PcrH!i$DT7jb*Co4^}>JtWH3L`KjgpYv#^n9f1&D~zgPg; zZ~3pbzMx=B$oL68oesE!SwB1Vn~Kkc$4!4sRv~snM^To>B)pz_$~yvtuA&+rq&XCwJr)Yp?DKgyza z5*3F|^X@EU=z;FfEc>mt>q%viQ-Q$eMQn%>ZS%TJfr4hfQCSZ^d01;bwO+Ru(P3|X z%rLN#XE6$H@116mC|G|}+aDcgObp^zkLNYhA?C?z8jNm8MVL`f)=tc(wpQ5j|L z?InBf`T2i-ob#OLxu5I0D5-rfn~9B3#~wFVNlZb@;0JAtd?{F&?$e~Z)!+cz35^}h z-MA5=D;SbO#ZIlWmL+C1WUQLQhf+mPTG;wKtrA3tjn#f>kE|~EE6nx;p6>$Xp=yq9 zObd9z)Vp?$HiAE@(KzH+B|c_^F!UHUVD9$=iwkU$#G&HPqfusBqS3VZ-5~D(Dgx8T zV}tV0ohr|7ma>cte$%m&UMuKm5nWOaZiBp-QoMNZKRC@!^8CHPOlku<7fLF}AiQVQ zczZD?i3knb!l1@Uo}Nf86y>Zywq0M);oeT{`}gcxVa_uAGH%3sgv`MvQTa-^#uQpg z-l;H6G@z@ZpiBPM1f0vdKZ-F_;&uNf?XWaj!WMeVE776@ZwilHR9R#s!ql?l?B`=( zN|5?o{%r`qjl>#QHqC-2O-1(n`8o6jR}8*++KS7QnTrY<)5z04ACZ^GOPu8Q9Er=! zz~}pp?`D;0$&u|z4)U&p_|c?jHC(|)wzr9xN*5L(LrZMEWzP?MG}ZWSNykjuT0dB* z-4-GWJ^v<5f6)=?Xlm1o1Rm0PPPL(QmY%dnDtYL6FJXtqx&K--zroMP#?0G+j(jPS z85tArN85X=W3-kP82RunCH&4X8kDOK-lw4$6eQPVe3MDynd~L>C&M-(B{KjS5$lNb2LL}*EjkE{* z3}jarOX7A`;^N5(dNaupJT%M`IQ@r~Om1rUx@b{~ykmpE|0|h-OLd=TM^-!NwtuPV zcddc1#_^B5k@fI2SAMVF(un}ijFWqv7qP>;xc6!wJ!vW~IYY))p#QpMOneI!q)+~L zbM<;6_p-pzSgaB}?c8*|ulf<6?{cNMn1e_-T1!4|?1lEk#G@CtC-AsqohJ7x9pP6m zdscP62LrzS0~eKha6w&n?;Uz^a?P}#)%eyJ{wvxSdS(AC>RT__7wB~1pwBfn-Kg(y z`?i@+PNxH6(TP?XjzT0nMMi91z6NK6e9v|n^kM9Dh3zgC1|n=~bJkI71kW5#ub24K zioY2*&VJlXA&2?@X|C%VLvMk@nb~cl2%YtN_Vd~lY#$Y6aV~V>Kw0mB+1GWT=4Ko- zf7b?8zb^h4%k7|<86UY6&<%fvtH;|OOe5->n^VBA5-gT2_kI0MMJzqL@*4qK5*#6T zzHs;?j$S`T zPirxQYeKuM!kFukyc(wIwQp^a_K9>xJp4vb>y0-`O8Vum`IyPfLDHihb`$J}xs(HA-SI(?k z8H9?b-SargAWj*&wJgS0VmwtzV7E;_BIImE9~g|lGSBQoejPK}Zd9>eNO1wyqPzco z)+|AVT2j<%OFe$*48ALp=tYZtW2t)CKOA_`ZxtlQL_+hoiglDQkbc43%40baB;`Me zr!FG>NEM3FD{$#T)A_1FmCK!I*f?|aj%^cow=DgUJ5i5onunbPN9*t;b=#9311XYW z;v%u4N=G7@WYU=;dT?y(Ayv1=Y;XuZX0ai3#CD^>-TJL7;I;ZSDcjiu^|v~E7KMi4 zn)c~)md{I6G!Eis641qamy5VlTShKFtHOdsd&9s7D)gmHGH9%6 z2(RY--^-V#ab<&`w8f(-=staNH883QoC&AHo^%a?BP;h$+3pgoWKp`QytIT*pa1v1 z&8>)eTEAIiI|KQAu3C;~&ln6jj{z;8 zHu!h~x<-%Es#ti5*$zYLSNxfXGvj69enCsznW~O??O)6DnEpz)3v9%()U9y%`)_1K zmvyKeD8PEw@oy+$Bd2y9NNjKwBi}=v@-0p1$*G2G+$^_wh)P3EVg49Bu^7pU-(NvP z=M~-qa`tia;p;( zs!$`7rT6+r1spWCm|Sj~MhBOX%A@&uSY%cV1pD@4XlHC_F=ZJt^<6(-9=3Am0jEcI^N^hmLS`QV%Q?@QgNC| z5@K$dU@#4xFZ6T4=lr+fIj6qiNVN`U^;9pSV^#-;brvxo9IlbOwigbU=RS7G*hfP@y{;fD%Xxl#5(+=O*_(vnzYfA&btOc zo0_(@qqPzarN12IeP{?J$-Zv*QX38$m+o40nZVfQ*w1Ej%;Znetb0K1Z`_SH-|(Fz z!WtziGkYg-JSH+?rgj_!;wKs$`X-?jcPweW(og(h3pYKpNFf1=RTWD1bucSB%o`L@ zhLg(k1+fxUIC)cYG2qV-2ED&I^*&obAl;a|(WYrkW&8b?n7y8uGan9g>=ht)gBBE8 zy$evT_iKJgY7A9(#TAql+aaWRCi-s2GA?g4`n&5}J+hA_mKvz7fM=M?VEWx0-cZw1 zYj;smNquL1nxg}gQEbKE_x58;LwJbj#YMypt?a1ro`=NO8;h0xf+YA(hMTV72I5bS z=UnfYg`3JW=hezK{0V4OD+m)J<@3Cb+q`JW-Q0@w3YQ_!Gdvb&krpJL?-Q(EjgG)| z<_Jru3x(7gJPa&+yMQ}s3yMuqLwG@dRy{6r2(HfcM$1z5Fqf)+S@56-T^m20y{IoGl{gxb!Fs}ceE)Am_~$2Og|;A8!Q=yNY(M-M$0ZFW`@w8?#HGHR zgXkAbUb^4PK>SZ#=gO#*A zN(WN!2}f5**5QYeS#?Lf6bTP`W5UkDK&Iy`=I+XO;keXw%G2_%2pQ@l4&NZZ?XD2T;uDXyP1E8mMX3Az@C!HNf?Sq!NNM}IF zmY;UDDAC9lP3ZfFKUobj>*VOjpx@`sfyQf|@m-s8lzj?x5hr2{ua)C%-0aN>yB~}v_!Z@eLw|eIe+&+^0Xda{1iW3ZXK@260W%oSlMxsgsAwSRF=|LIq=G;%RQS?&o&Er$`Nx_>jJ#s);SQ6*@TdL zeWo|5G$c9i>Ey{ZPt5zBvbfcI0na*Id2-rU@TT*&y7=`Tgk;^g&3<2sj3y@RauTaX zvPWZHxI{HpxjLr)g|!1N-Ur*A{zC16oM!M9e$p48-t*FT7Q0J#+}!C=i@UlmW2?-4 z_(l_{G$lQa_wg#OlCggz8c$BqV?{X zwSywMrOm&81S^^$SSn;BaqdA{_V#NYsplgcB-jb=oO|V;^SO!1*lX5F*S}zn{JbIT z@F?8x1J~_4B*0*V~5KPCXu_MayB$)7W0hfMM9?fz<GQ81?=PQ(8m)Aeifb3by3D*@rO}fwTV&PsPb^`m zxT5!DJKi;nk-9@Zfo2CWFfwU)CQeyL@yR>++4| zk1O@!WB;oraW^)?lhE3#)4TS*H^;S>9hga^CdUDuvQ!+%jy9kA*nt>EdR0EIDa6-} zK0FlM0=kmm_3xwqp@|}+WcIKU`wfoRM`h5E@~B6r?nbxZeEkT&naL!kFOL846l5Tl zKb_M>xqm|b5p~|m^)o8ZZ!l)In!wL2{yRU`c+mg0N{RfFacq-P84uJhL!`TG$M`EY zqNV=Pzu{LE3_O_i(jQeI+kW1K_HrG9ZB@tUxo`1z@>@7dakl-~htuAQ``Tz1>m5cL*l+m$?? zFs3I@zK8@D7f+(N-t1xewSSQP#LRr|eg{T_T4vIdyYWFnIgoMbI8qT%@m*_}v*xtW3HUppu zj(%RkDM-r0{>#$aI*uzj0cJBM6!P-O4@Ir0dF)s{_F&i9A+U%oQ8;dlVzi{_b+>Xm z{~j(8u-v0oTs+bt{+(g{Zg-TjH# z!_a?LzfLe_09`B>ymp53kddvC>J{_!#8uOzf5JzOa0O(46LFh?U@lj&&Ve4xIz8I( zly(SyiC3R)d(eQ3p OZT`W-tj}w-wHC|iE#@*FQbh6=E_=LYA|l(?CGXK{$GSrO z;~fs^=r8v=b18|LIC3}CMj6i|W`2*(bBhKn-FwmePInp?jeO))m)8+Pm8lEUhx&16 z=JaM|8CG(5v}kyHBo~Pe4LsU)sR3Tw3^V7C4#FwS&5Z8|1G%uM-f1U1in2eKL~Axr zBH8qdeXz`L*w<11&G5D3K+0Fi&!ykcFnabLm-Gs6q_lKQ@ z91gg#(i%F2d*WexbYIjUuHI~_qp=GjZzzJU`xpt;G4{ms^558(tnxBe_7{Tp&Zj>+ zHwlJa%;9}~b?8;lGxoSX2ur1dzvgz&!@{nd@p^bAY$mz)ZEzgJrsf-0xov;LQ&Y(F zD*ZIP^1gI8L=-^n*tHtvxJEQ?UejCYRg8tJuonL1ASq=<2K;qnIP;S6Yv6%pw9yIs zJ?^2xt+jCGH-`ji@2ZS)c~^sbDc_PP8~;M<>Ba43lN~UieNfHqTmiw}D=Vh1yd-IN zd~lccEOecn&lE1#L7$;Z|L9u3scU6uy!0PK(D&K`zSK&HBEaUQ>=-OtZO7llR3j}> z=B18pHOzfpipwEJAKE7oY5%Uwg|7oP z`OOx0RC&pTibI?Hcq^c6mnp`YHU^PwwX7LS5u$TJBxc%q7{4g{v*|>qvGeqxfnV$d z6rB|M4!RHGN%nTRiHqv*jn6Dh3>r$eJzqgyQ$o{{X)P}5=7{a8 z{(|=*NnVbh+K_xlG$@=fu%kK@^5KUq9ziQSRRJCQExc~%Q{VQI@V%jM{MuR^65aX{^#DYxE1KP zt4d$~$4~T=d_K6{8Uobin*Vw85kAjaH!9N*JeLo?_moQo=as;KjQsmxia0;iQJe*> zI+NSt=0n)OX1iV~E4X0%Z~LyBYyRLJWZ6hzC4pb2DK1%)pt{YAH%_yVa5Y|acgu9# zC>Y$)cBKPy*(V*tYo;K0kj+d%wiEd|^hR_Vy+}0|il{hR1;bC5PNjv=5>I#i3!85= zf%jhQp2kg6V7Thnu<5^5I0!d4E$t}ApjdK`Rs0v+(AOT^cV+_TC`ys;Pe%|rOO*;5 z9!0$A_GiOu`^cK6G?S}Z|ZT)%C=2+w27j_YWLY^O;Ug-ux`pLx0f zk$?YdWBp4yV#%_@+51)>7zbJX+RZi)nS@ia*BK{pYk{XwsAtW$g0gEz1ZLqoTPZIf zG>C!OKN-$zyq=yq_iOm(TCOv2C3~G|#k%z;!qw&ap>W8YBD$W2DCy}{iY8JBw#odV zUi%62y)uC+GQ9}ff2P9r=s11}CnQT3^<%ZSV&8!X0rDSzqv-i9bfirA_{`;TIa0-K zkX-+M3G?ffbGFF$!Of|{aowwNoNnIA9s8>e78S?oo^KjQgS7w6Ey8t(&f#`f)siG} zT}EfGbF-3w>^2Fp*k-(8(HxIlA@y z+oLxX$DZRR&i{gRg<1MRCx2mRz@9=*Y^KGdjq8Y7{ox)N{$@-*E%c~x904PD!I^k| zW?~h0*;2z|0Alpb9#^+bfIp*XwLJJI=x^5T%YRmfUsOA*rNCU6|9E?AtHB~lecoR6 z-O`Hes+}IyflKhIV!mL|Fo?WVji^8SI-%{aug7dM1|3O19rfHf%=?p#4v8Hgt4Um} z4nv4pKJiKQ2pi#g%0OpA^Bu3u$Nn}NErKU#pI`maG4PCj-SecJnVji#ddlJ01RGVM zrrEEB7|<9mlej8C)DHE_M?MuNY^T>-C~RJZ7RzN0F*Zh04hV|W3J@A-!l$R(HBN+_WD+SAIku+!^vXA;32Cr#kk7#wld{I~D zp?Ad^*GUDw-M~X!x!R%`AI!i`cO`jBvH^RY#I1QIy5L{>sLa4&0OC9Lw^$a`g3Ba4 zKhJs)#uBpH7lNwbn;DW(=Ti&8K)aK>d8=UiWWy=bk`A!z`JZaC?!|G_=XWE!R*^cf zl0`c_f`Ogxh71ht*r&4^#-Gbi3NkCNtqfHl@1U!keZV-9cb~A9ZQe-Ss^!is9b5ZH z-7)>9<9BhZZZ`gQnT321%Z9NZYa<|_wpNL00~`9otUeJU+2 z3F!K4?K4ve1?juxc^O~eyVL$Avwb__oJ1X;Gq91CJJ-dtH#gz^DOc0X1PT!|;`dM9 zGzK*Zn<)@`G)Ch7VkTT)k2CB3r-$ADVd~q|GW968}NRQ3=;=Etb^%1ns zYi@x;Jeyvo>JlzpzxVLtSy7_;#8-1m^V)oGi+c6^AQy3WzDeDKE&N6DH9@`<%hjpI-q97sBr7jG&c897R;l2K&9EW!?vvl&)1t~mE5m^ zY1?Z?^Km-DblM^BdQCm3N$$?UX;YvU>>1Qtokj7pbL4AtF;1zyQ*7Z+gRbK6F3K7| zP9jz6OwllM7F2JKoEgEaXeayb&$Vb-^K1s*b)>kf;)RV&8KR#Qr97!E45BBctNfw%JX3J$vX`>mz)s$c2gbbZWhVkl^IT0|f1se{wg#K} z01n0!Za*m02ZcJT+_OPUWK}Fvfs?iuAM~ReVkS8V@4daFUAcWoH1oAEi5n=E0y}RvP(g>c!4JV)a(vk{Wznd{{*0}rjjg6Wc_y}1JstU?pM-uCAidrYr5wigVKX_D-lQ(9NK4MPh(y)R3}X93*)DCXX?Pa?u!>cx#i3i-(&~A0*xCM6 zW`o0Q>{&Bt>w*!r^>65m;)tQ1chE%H@C1&D%);yImG=VDb zE9T!KnlNzQ(e>@)C6sd=))lVhCI15e0RR6Cmv=lBTo`~|*WP=jVPsQAvhtp6m6Yt6 zJwlRDUnNo~g-9ilrE@D(j;pJm*0(&*se_j68 zc4HF~0{th=?Fg{WaZnq{Lxr9RZl4j*7zg<*BoQK81C4=sd(95~D1U{*Xh8oM>M=|_ z^>%Cr0`k{a22N9>ND?+KkC_aq+sL-RyiJdc2f0w3UnlsxTx(P7pg>|2uI!=dBv`Vs z3#bn7g=YlAs^7l-@UKpMwRx5XVLdKMobITCspt@DW4|h(b1F|L>R$nc&6smbfBpf* zU^4q{CIVb*RxVg^wsr2LP?U43%(n!d{zD3cHTCma_@cm+s1>;z1&~RmXAWO;VxJIsckU7E?iR5F%9?%Vt3XX zUZhl3&1|dQ3nkr7@m{vI;N)qSSX(>+k&mgVW60V8y@jY|IX2W^j-R6nUx(87ch>~f z{(-61lktblW03OaC*OS06fAp1a2Z_~g2bZ<^sYhEAlECPRA1i-ZaQ~;LfQWT8%I$> zYepw{{MX@_FFFq8{^yUxR8GORg^Ksyg)OiRsAV^QFaw1YsanPVMnLX+^f|I*KD2#{ zyOd0!6Lw-LJ*=!&z?NoOy7$is^Md_(FHH4fOne&U_jC1?Ie zi$PZpG`iiU>CvO;e18f9E+kMa7!iDcL3+}f*_o!ppn5h=MV+b&26j>d-YE>gH1C7| zw#6p^ub3TpI|mODx=F*w6*oYJb*c!<*?M?x;E{K1KTyb>=>KwK8w|_mq{E*IpeVC{ zQp58bpif2yX*9IRs5s|Qf#4?8aDS<&*=h5LR0{ChK z-RI{efrz+P>EFy1nD!Yax|`6TPt|LUe<@~xZ~pjaKUz9uqkqH7)4dG5VsCt0$iuj_dX%6A4uIZWQBngD4pSIr^a$O^yE+4XHKla zD>5s5ZzT~3mI`%Qi}hg3=}ymLUkJSZJBbG^YcT8{Vi3~02+SI9LKJnDVCk>zW{Bzl z5Q(o1zno!49ImDAttAbx-5@X1b8Q@m%8g+z&0}EvvnufcZ5O;75?xBSq(Ey~Co|6d zS%GWMr5{9^(;;gE{*;DV8nkWrUuK+hHKg|cG>b}|0X3Iiu6fTzAj_U?^}J1uuwMdC z+mhxX^!7c4^%_=mrKR<9%85z%)F4z$uqT4-ha?5>PZNLw>8li{dZ3S0;k>>T2C;Ca z-HT79MF)E4^}|wMn=NLY$D{lN}DTRXF!^_<4qld2=H#C?9r^sG{{$BbAtP} zz=iMEWAV&282S5nm|M6T%E{xcZ8K&7A1bW89JmQ;r%PYeFtMQJZ?)YP8#Qp|VQ=IG zw-vY`+17T1Z3|KdKU}1wn1XZUV#`t8#}IC3;j7N|ZCF|tuH_sPLMxy5>wE;TNPQmT zq?z#{1>$X-vEMjHfX%Ehy|sX0U|LbiH`_aaqHhGzoe3^v z=oNaeM0EkQ^Y|LPPf?*rBdIf7p0r5o^uoW&s1cxv5F9HKCxTIk@nB9XGtxER_}+0a z0q#8(>y1AMkom{X+$pgM`XW9QN7FXKGmb!AH=iupXS0sQ?UdVBC3kvjB(wbz#kB3y^R-S5S4P-g3`S-a#N#vh@hv^c2DX9+(m%}4gXCz@l3T>Rp2;!p<~*dZqW}5EQ#t$ zI-79Z`!6x~!W_heoNTPv=0Lu0OU#mbdf>~u)>jX%RYP>_f3_@-4*zxL^4cxSR`}#T z7)VHCMQ@xqhA%!^1L~y|b-hmmkYj+~TNN9Ha^}6J8vk)n*27~J#U@~JcR$~ZZ5*Dy z(xiHEp&QP1UGT+T8Uc^wAzxwYZn(->c06Ku0=l29Hep&XOWqTR>en~Y=13PD<#=4)puY;MhBM=DoKB$JJ4@MT3|8U!bij_w z9vNB*4W#-MHw6Mb*RHl@5&-{AutmSU9vl_<2j>In(Gy<@jzS#_Dueh*R#ht0qTD+m z!Pf$poh-Zk#)}}IqOHg1>KJh8T%&#YkP_(;41}el#$cJ@^yTJ8PW0+oLYT4XB%Cn% z))2}`f{A|@*OJ^O!2SjId!7(->+DQ-4AJ4OZ)F3K9M)RBE`^?}A8|c&TXJI+%V+W5(R4LG!`Xys!R@!%Je! zXPH`RL}qqjK6kAOVvhHKZP|dFesUdV$fu*Q|E)lAj%1Ij=q#`pdW?-Jk3u55 zW{_DcB~lNNZu8jgfMZ!~@5x@TLC5YS?Yc1@-txpAzvR>mw(5Sd+!UqYD}UXDQ-2eb z|HQN1@LmGx0On(tJeOf?OY!(};t0g`sqniYbxCPJ_dQZXL+H_{9E{ zcM9$*&juwA5kX$=9sH5mqx3 z&E-k(TJG(Bs@(+=ephVR1IbW_b46(L5eCG5DzBN9fetx_S4UOuQK4$b`c9VDwCG8g ze_blkk_224ibM+#sc$fYw}^b)9$Fn{DzBjJ9CbbpLXH}8Z*5v;S~ zM_N>PN~^S8x&j)tVq7yPD?uHsY3nYpg8Zj0t%n30{4tAFxizo?UnkaVyl(&eZD}_IJlzxeo=^oA z>U6bHUuR$}{|7&LPBSpr1W=-V$9`%ERPNDiNLb=P zrG0Y{{~sPi`tfY)y+bg)qwSrn(g!9s?yo7njf1n6oo<_WFDNWez7?&Qf}OWF^`dI$ zK>gdRnj|eeFe=j2F%1kt`>-%;>mCjQ%J(y!2ZfM`Shq9NQV)18@_#uOvIeF;X;sv% zN0B~R;Qp}I8f0XDo4Y(ofx_bRl|l~v@$%$MrTqf}G^uUf*1X&ITQi*VQhGsgv;wfNb8cq88;6zhPR4#QEE10({cc#D1jXP* zu~TpO5PNHT*$nL%2*^xoKY2g`>Xh2M4s?h2qVd^H;iEvA#$FFMBoE(dL%T)ck02tQ z6}0*DiU!^H7vsnc`UhLWq=TQ{WgxwhaZfIJ2-55BWmjww!B~~KBgttFUT;RQPQTg) zk=?A4VBP`fxbEH>McV-*U-Oz>+g3sL;s?E?A|ceDC@hCfCPxxsX>EDMWQb|{uBTis z7X8h@*;MNN1x4PEB3C*SASET~YvVx`{IK_750qU2ZVc|7xaAh$SR3!l4{X89D!mP# zOSH%#Er(>`HVmBZAHD9E9KPe9+8B-0Cg48UP<@3NgLhh9nm$w;uq2@Ox`k{DetU5_ z^Q_~c=#FI3?eCLt<<(coiI-G}bnY$Nymc$QH^KSz)vZG4p7`VTtqG`VHlV2f&<<)> zf=F>D6@Y&d`n@x72W-_knFU;zLEQfCYJDyNBBRqnGLMcy-qHO0Gk56`W-Ry9{$M?n z58*POwi01-!=~H*<0MG*h!9sPntw^yq|Wqxi~c$m zS>v)B{F9p?Ke^+WX45#BS>ygvpmo@J5nL7gkrLtl$_)LMTZe`j5mmYfPP8fWIwgpE z6mpHrmiKcuK-@%i{-N?TJT*S!A(7Gng?AU|O=U^&+~)U41_u*zq%h#o`HV#l+R9TG z+ps8a+F-T%G$T@WR!W$PpMaVmx_iZrEXd*IG2_+ihknBdzoPDpfw!c}585qCM20iP zGaezrr3`Z=op~0Ntu544+cpC%ALsA?490<+^OQi&3ONea3XaN9!lFQSDo^>fR>(TZ zOt4X%0hN8MTz~2^(4X@-lj_BWMv_bl>bPsbCIVxt7fL$xdPW|1It*&q2?QT19C&`$ z5Poul7g;4LsGqQ2fN!;~FLH7@5qaIEM4I>HNQJyIm0fBT%*$ir{-S;8PC%2KH+o?7 z9`%!yDLNz`aF31JYZy|MMWbHLvZ2f{g@=X#T*xI~oMqxuAH1`<%OLKU53`Mobg|b+ zkRxy~64^crD@W?`T~18`nR+P3k{pZThdY>z%eavQ7n^z5s}=Yp*2?_YpAvDLE9&T` zphSExn_f%Z7=_jr;}LmDB3MV)8~H18BkvAz*Ol5acrL85)>X9(D@$q}N|e3e8A|I` zmRkwe!Y8go*XQy6ka5V=Adkn6&4bl^(0(}CGVC+VinIF;L*=uJ z!Q7uGA!hqAc3gKA8VluHn%MDhvS>Jle|Zr;pKcIm#c#k-`?sCK(Oqz6D>}g3a|!-t zEm(`|EW^$Ic7m=J24ReIXbW6qU zAL!;Ks%SpzfGc|37&8|dWL-p;npRN`;;jiU&gNHxMs)i3gF}x#RxoEko-+w`S1{UU zzt(`N_M_t$a{}<*n|to%+5v&Lf2qC{T{xT{rcLUYO7OD_5}F+E1%oTxxR(A_kb7Q2 zerKr{232FZ|I=TCY5&MOYF~wsDdqwp$AI)w z+m=b7bN8^p!!xO#+qWJy0nJ7jV_Osp%3J%A{5f+4w$BfxU&4>V zZu1!an#v%kbP{8uZAai3#|n2DT7mfE6cLxy`@oMnvHf22AlSDi+dbl%0YXQw24=M% z+McTw`J^9mU*C7|B>NIfwby0}@lAr;XT4a4zFyE3I^iyVxbF|9Z80TbVhC47(jj^E zg9EpkA{+k(G%8fj(2Mb+`Z~$q89k#_nk`7SLQ_@F{rATtS}T3_>;q?UpFh|J<6 z&Nj%VI_Gt*au=@s7?o8!z@okpZm;11CKS-Lu>13QD};C2Z%cL6!_6;mO=!v|KvHvy z?~DQlksGw^=<&>gJS-3UMxQ|Wdf0*&`Z&5}Kvffe15w4HtytD(o zt9qfL+A}auF~8udxC?g*O9zg}i~|x6`$t1;00;N6o7;*+(40RbZ6_m$>g2*y0+gtb zsH5^v?En&Rwx1C345UHMMS8SN3e}*Z^?Q&%JQe2i^~;>zG=k(lGiSEP3Jeg*T{bq? z;0?84M9#<#@Q<*0cPufWheG4}tLF~)(0J`OMxGqK?XV7Ae$Wjn14Rk$>|=0VCR>dE z^#(j=re$6hIDl>qE7yXSWytmG<8)oZANFchu6Yp!5_xds{ZaNt&}S2F77kkhy$_)+ zdM+ctW*yquPu&Gt5t3Nfw>98*Syg9*Z6Dmf*Pr?-M;}c>u90I%1sMYp7aOJ66(vK(4!`IWgx5fH zppgH0{60K)?EB`<^$(h#Y$d-ip+g0V#@}47je*XqfQ9h~jOhC~P9ZRu2VIWMj9%mH zhd4*o`wkmLAj!T|pG4Y(QfsRx0ZND67p%LTj-Q3R8hf!;PfEm^Y#5cn$c5afx79){ z*5Tvp(x^cyN+h=X_>bZw7D)^H)@U{1;2V3o8(by;C41N@&m%`r+%J=J7mUY2_;F#h zA};|vTBLZ^N=INL?XiFwUlnkK`^w(hYlo*?qVhJoGr&)fPiJ~M2@U;sEnnZCfd_uF zr>UJ+K)960*XGn1gpj(`cJ&W?#0jnu`4>TWPf5yzW(C?} z^k3B{9`;obrT<3LJZ#>mc`#30hI2e!5>fmZRAqCECxwjy>CLh{JI~z$GjB^qBMk-6 z*%<$yZb^)2NF^4(Y_|wn{P~#yl6z3<_%vSi?K2(V9;}=z8;@t`$Z_J-%!qVd1D^*0RPXi2TT8mo?!)Z9gh<`NY!PJJNX<`S{=yX&l!%Fq(mgGTK1X^u24&Kt8Kd`ddC6T+X8A7VNAPb* znF=ttehmjLza*H&-eHi6)V_eH-z4~#nczbIZiCVN-^$EyW+7ha5n+3|4*o1*MI4?H zz?_~cLcB>3O$48AdPJf}B^^TAa+(zcOFq&n6? z`ZexmoupmZlVz!JzJJ*7I)<#TN9Yj${Xjj=4`k?TtoBuQ#~x_kZ#(cmiUWq6fac$Q z+klA+GjG}?L;Gzf??g52!pFj{7F%966uV93N20`m{;~6EC(_B#G1{xMuX^x+(N+`W zNp1yM_8#irnj3(BTl8fAuoq-r&LsAq-2}|vnIJ2*J>ahJa0@!ig6c%Se14=j1soT+ zE-5e3BASo0AHy1VU}V|fH%EU6E?xWk(=m7p+IMNG^=(%`a@CUi-UT*fbGqia@gkm1#2lXbdrnqLXgc6==^G{!l^Q#YVl$Df%juDc3xiR z#6=3^F(q=6RLhGZb<6GK>;A#c`6JJ0UCO``#irT`ZouAUriTr^(;!PPVwrr{NxaVA zlPEe4dB!p_=CH+qM3qQG?>_Cof+8Oy-y#)CSS7kK&|#62R(O1zHV%Sr7zqFKKIDhw zeY_J^2z`oZ{{1~@4AS?!*z55YZ`8RK5iN0{{U3{}h*pKNa5N z#*w{eR*A@{j8Y`>94ViMB(p+B(mNJY{vl~N%i8P~X0#_?zv_VepV> z(M_3$GzXz$c{K6m-g#WTyfgIWtS-k( z5F=`+3njS~7RT~L9~jp{Z|R`e0F|4(op)dye3ggo6$5{ywpSs_`rfZ}3pV0v{ceQD zvJj}3a&)k827f&*rU&)tP@GQLtNx@01=ibLlRtIC=AF2L-ncX>m?)4vp*tv#x z*3`m!a60$NR6Wi~zc{OE!^YVP{lKJTHBy~*VE^yvY8+UqU-~q31frWmFOKaU#`pRZ zO;ZXlp^jJnY6+s?kTxshVqPh-^jgx=##nHbmd5nfat!-Ohh{z%BD)wV^NMjy?8y1u z=gdt9kHM*3cYijbns?`XuW1XyuY6i_i_SsTW;yk`zNv&0_b(yG?OkZsTNk0L#>Tll zubHx^TA?f~Y^xX0kL`QE9cA*2LN#0`!*gR39@N`C+^0xI^IfT8Ppck$`6^eV>AIfW zF|cAptZ9M7Lz_KMMJDi1an@h;B4+hEksN^vgA{GcL}UO=?Aojb5#$ zMi1WeG)i4OIgW298D6_Q*ofJ?Q~hJ65>c`EV))mq5jJn1qy{mjusTxw&EcUY9BnyS zWDq4v6pZF`h9(5bYAZ=r@*OoYX*zJaK2wy4m|GOR-_-!Y=?X5d?>P|b$Ta=K(TSQr z={oI${KW4?R1W)L5B`ZMFOMsq#ZPBygllCVo*2otzHTT$MC(thcdHpt=F1q3d#pr0 z6rCEVHxeevz9Q%U9+`x5sL^^2x-?m-wMY5s*&3Lp7)=MJrD5ykFQ?OT8=;i{O*Ni6 z3Ppi|4D03|H0P?GVQVa4=stf?>oGxM{3K`3?Q{zCKb`$^{M{rXD-OL4ck0A=bVPD@ z7Y*Uz^X~k$Q>aTkt*}tfOAfMkXC>6JaW!iGxkTGIEHra>jrVd9KbdQk9|!Zn7qYpk3_)-=GaGHF6=Qxnz>Y&M-<%p*Cd(cbmc5_0B`MS9=AVbF*BC1NYtxYL`J z_aVLmkN?hR*A;P+*itpRykIppC$y+tUCm3JUn#2YvFw4h-AIrBzu(xJw*3jtjzjbY zQ_4Ab04!~oSTEh*Ia=9>rN`9rLi(C<{XlPAz~D6aP2FqH=gwkR zIJK*=djj7}oVa8L#L1Fp0Wo)^T9I(K&Q;?b7m;jiT#;$q2OSQH#({bY482U1y-Y^2 znIu-obcvHvy{Ta5|He_)T6{ebbEwwkr-pwNBlZ?+pYdeUq2}gplJh@45)`BH>B02{ zG<2_Ki8|NAt8fd0>+LXRqo@N)569qJ%v?8EDM6wS7RB)&?M0eZU9VX-6=ol`+kW>* zlR!=LaBc}{@*hp>NQVgpIXj+Y-DP*;uGo$HkIUQOC}!PK6)8#LzL>iu-!6udr^@qU zF#)pt4^Q;>6MTew-4@QO{6>s7KKb|gC?}DO3(CDKUX5QeFO-gn%;EBZg9ci8hi-i0I(tgo%eU@HY@HSht!6>!a?o5&nW?*)8FtdE5Ko_x&4_?KFo=7w!n8Rm+h1 z)UCqnlv?omSEg}H%n!um81(I{8Af&ED(SqcPL%N2F#SG^qS#R@<6jLAIVY(j+@>H( z#G@XT?fWo?3|r3DC1%{Dn)!7|K9`GZ<$tHT`ydVTHWW$Sr-R^kf&a~ms>Hx3tnBE1 z1~h~M{I~qMlDawrvTBV5vmbupbNl1nFB4lJD4|j{!b`_lkxz+ECps|u!ut$Q z0u8D!RDTSYP9gRD-65~1T`2oE^R2O<6@RoFDe_@s&^@2Jv9x3iTQa%WyVY38b6@8h zFUdke%3rSx^M0g6(Q3*zFu=iBx9P4c3+Z3a{h6qpgW162f+vy^B+I{LuwR-2Jv#kS z_Ct9xcJ!_6mGUK|K72*xlx{yN3{Rvy<(kGf=ifc=;z!|`8XlWE$VudE#Mi6HEFr1d z{%@IzBk+0Yy>Fj_7}=;MDzC>$BHgXjMk2vjGMp`GDv*ixdz}UNX-A6wb zJ`Vmn^h0I>ZRrorR;*e;X=Q|qidPjXPH~2v9;`<8`xF z1Ou+htCVf`kHF(jM%L+ocIf?z?|#BNh~dkb+VS@%PO+`?lbn|U@ z_+nmnN=h`&|LkH)GWq*E13D-yrk(zr|;N~#d9@;y!X|}l5lgk zpq%3aI3B(FdZafU9=36;-EK|bua9%Zl@4@zYx#v-<093krN1qx$P(t#%?XdDs3`RA z`BJ!Y0q(*2AtJZMN#Kg4J)%8RAl__6Y7GUWliT{rqibW;vmuW2Bd^7CE;b~k_ zExqLOs||VI#+O|n-56GMkQ%IMz%mU#8jpem$(gwHhA}Nb{HZadbCU7b`)zwjU0nV~txD#LXF5YWH`hWX5 zNKf{!^Q#TG$QoDM9sd*LB-Z19wy*M4B{DmIOS7$&i6f_af&I@}*i&i2C*D=z!25qr zuRGWnN)-%gxgtr-V{e-?^9S+MX#c4uCl;)(w<|pB?La_>4#%D0DmZw=?a7U1VZYPy z3(=>lkRP;e*DLK&jF@cBUUP09CHc9s1+VGo|0N$ZR=b1@k0$kfJJ5?T-6?}#S5!!@ zsH*Y_l`hPye{reGV&m|-4>9{9=D`l$;l%sDMV=BieOONWfYOcOjf#EakkKtl^wnNY zo^X%sv1iZYxwnSb@8nvXjtGJ6{Wh5A8ZAA)aR>s9sXmoSG*EWuoZCV##k2PdT$FN2 zVwp;Fn7G#i^Uqbrj;newX)Sd=zjqG5i)`l|&d;Lx)(yvm`3kI#o2&9(zGa*94ObXx^hh5o-IXaVzLn(e>U!axM>W<+l=O% zzfXeks*ZcVZ4Y?mT)S^yu7s>z^p1A|oJ6zfN@>o3ErpX4`!s*GKKh*X&ZVZ)nD$ z*k2S=?+%DZX0UsM`|vSh)`Pxg6eo{}oqinK2!BTAg|UqklvP_crWQ=%amXCm*uh2m zpJgYSMT}zW9h%LlxT!F?o3*Y27G*o6d*`8lE zi0!QNr>H#~Z4;wwqKIq$k~HH_VV?QRpv3RMmy&7 zSBykgkJy>er_sfGXyIWp3nh<3(r3Dv;65+>T=N4bDb=X$jyPA32P=|fek}ec29z|1 zS2av9Jz`C?W0i<|%C?W=w0wxkXjTYaVWQ4|$LfWofB4^^;G3p?Ldo z&O2=sY}%#E){`H@IGJu24;+Ekzzs2|F*DEZG=mRA_(|S!Z2dQfL zSpV0v3ZrUs9%ntMn4E~%$W=v$j@>3!j!+ZqBK}*oWj_V4EHC&Mo}a>_D?6Y67M;XE z?uEgvAtEI1UWU>U?>RK}?XaAo&0<+{`kzCG>JWH-j`O(9A|FXpgby{hq2xdNXHfu9 zK(D{nEEMEzy)m-74ZAj`QT1;y5qad9^jg*e1ezSE&vvk1H0DP$XrMVuouxgMB}Ru5($|F1aPysJo9Gr6f;9)YQ(raW zbQ$-r4DFw|;Wjz6GI|nUhFMN?kns%4A2tmtSFiV@QJBmb2r$k}-k(F(m&btq(2tdi$%L*~pk}yDsh9 z4mYEn`g%e#B>lpnRfc!uNO*9a*{2=d;5p=yaL+@T9NVcC8KpM|M${kf2T$wJFl*uO z7hQ+0)C)C5z7yEcc5;cV2?t42EbP=<=cOz`t4 zjOhP!Xu4MjsakzLo=PS-9`AApH5DSS`8DR=FJ)s%rL^VGrhd>ZFbh99K?;nE`FuRnQm+hJlg>f8-|8SF&?NcWZVGlS%3UF$4e&~< zpie#@#j5T(LH@dV_#4*D-Hz{uXpwOTpL`93S6F*DzTqSa64lMI8+nQS4(`ASD;9D& zmCxxM6d|Dky)t7#3#f36&D^=jFA;q$f)#J3VemOtqmQ=^d}|qeRbk~Yusa^1+0IK0 zBjQqOYs&HLmFC#Up_FnNanKO!(Yf0zWOINakTS_yXliv$KaGwqch_{$WXS zYM)a-tw!qmtv^j(RBkGO-eDEXKH3d$hGd<)U{f?m2axj@vB^+opvc zq{;9dQ~1`7PXUGhE{QdR=^C)ie#K(G7HXHe4>NG^<;<4(f@+A8m;XyxUJe1r>7M*2 zENn0eh*ZqtBdos7&m?X)b#Cbs;Ur&;1LtOY*x=Yxv`lZj92Nc+ zl={lW9em2Q;;U&tB6i;54p`)M^`Yn!_CHG?BsN^6W<7@r>7SQt#>UVy^3^W#YbUOY zI9j-U5YM z=^;Ge=P(E_2NT|tUc>m`4W*JL8VY2rDU!a|G7n94J58G<7d_%kiRpuNtr&0qI#+*@ zid{o?4CP;Z9+8 z1LJU`C+Y6ovdAf^uSO5M@Dq)r@qfdW=MeEe{#~N$G=_CNw#dAz#ob}=wMpjFc(OB< zI{TynYpvaTnQIv^$a&DQ;%5td{(4egZeU^aO}AymSH>VQc|h@FSu0FeKm8f;ehfC6 z_TMjQPe5ED*vO}H3rYJCw!tN+9X~$VsODdy<650T5kGY8(*QId<-|HG72w-9ir92{J8p%&So7|q z2+^#!6OF5`Mb!KEHnlOlTc>t5)rsX^er zDoNh7DwK8w9w`~0gGs~6Q1OF{`RiD<(A=A#H~9Vj&aI=6Tdl<*eYpY3GmQMpWn82< zppCvlg`0Hg{dfC@Bpar_r0DP92(Hac-oZ0oBAl0gJ<5!e+;a&R@Yvmfw~xB1z4lY6 zDLyxIbNwikmgdzBpX!BKU4d%+nZ+G)|8F1X$QZo)epWp)onGkG>0|$n4w^zd?Tn-ven|>AH)aOIbOck1^Q6oqu~AEeg{grO}G{=^NVK2nq2&W}!tYT24run;0%#>9T80CsMTUk80hj1=UX`+F>gPp-%kX z<})Ttq*C^Z1ny;HBX73&@=ku@RaXD5^a>}@&E?$Euib%TxwAV07X3Btag)4SISs5# zH{+zK#r+uH5O+aAfKaFB=#kS^5Lb7t52W{@->)(%ebL|JZ>UitN*1{Q8;(}kp^7_cqw)~`Ou%t<6RL}IDe5C`@q0!Avf{tS0ZFSR3k35;-%bvt%4Rut5M_iLcW83gjX8mKE<*&*mc1Vv34nXb=gv_g@q8TkMV6 zbIK-LML~8PK1`b{nd0(f?LGSqKIEg=pk)uTL~li)= z{^l6-uROEZRFU2`Uoi~ppK;?|N5?=Ftv<`#RElh8tM}>wZFuwVhFz#nC(b%AIngG* z=p|Wbb=IoKT(Z^v$13BvwN*VWri%rt%nV0`Ef*2L7)W&tn?e6L|G`=Bad`eW^5XN4 zS`=(J8=3jvJXYO}xo~sQ>-#oO`8X}_!KWh0%;<|PP|n_V^;r!InY$!JQw6r#6%ZKqQ|>1Eq-;s<>x*md=1x03sfRs+Br7! z`7|IET&K+z`66OputEf_5oIPDe4;16LP=dEuili8*p0o9cj#f@cwn}^U2q;Mj0r?rHE&=A0Nq=4Wl&BRwqqw-EPgpOQ4`x;qm;BFe&r zilv78yJ+YR^s0HL%EGinUsR=G2Yz-;4aU0&6Pss=HpZJ|iSL&)Ey0OhxYoZncKaqd za<#Y1P~M4~TpN3RJ65+D!48sj5AgrW3p$^`j!@R zEv*6DmK?vADK>{&*_VSdTR4d@r@At68N&4!o%Z(@xoo!|PnhXT4iXoq*1W}i0rZPQ z6mdBk-0V~{+GD3N@;;>Ifd>n;is-U?+C6yd`}Jq;Q7&?K!-#WX#xTP74*pYrJ_VIO zRqtiAb;zEesPVzKf<*IyP(%Z3aW8rw2S_EqM!=ik;_TC%7*{#o|9tl>lJ!akk}t6! zlk}XK*3*vLb!v*!oWoG!xAAylFpR^UNS#ij0r`E%b0R_$s{4=b5K zgL|2F_MaX!%qB8&g{k#mMqzu0KI>{h;w z#YwUP2DAR^bC8T%&i-Hiq(JFp^1F>HoMgr8y|$);Qp7pWm6G7iL3j&4Fy(xUG5Wz- zZ)E#0b`_`cuYbwFQqxaS5o)zy>jjH1zxNw$y^6Ng&BDa^VYA573w_`U;2HRA+<|IA zrPJ#j1xaPunqjSYQL-f~>tys~4dxW=KOb7;jXDMSuKRkN~9hff*J#yT+ z9?weVS~d@I5W6p{ipQ5o5Z1!Vh9qe=<|hZf+sJYg>trpa)kkh}B6GRq@`^45t%3)K?OSZECi`(4$afttnDuA5OWOIlZ8nfr2B4qUR{3^ zYIk&dNF^=1P7E{X{)?(_D%xG|AQ4if8kW9*?r7xs(ak(i8I^d&Q0%BLrjn18&-=?z1cY%RQ9 z>U7~VPD$*!nDT8H&(Lv$$!y1qN#+$H8y@1Q(ML~^&OxN?7oi&;if~cj?icRQY=|B> z^oV|X7EJ~Ej5GRdsFc)ks}*n%T&-X8t#S;NH&SmEZ5n|9?XWC0t_aQ{(s}zDIuR*% zDfT9_W6^h~lb!X;VQXSETR-&=G~F?SME)`Su&(-LkwK5QbNiqib5fkkfI2YJra`5&)$3QJ-*)` zaISNm>wV92Klf|ZRk}*rNfbNQs9(6#fgnR;K1q!Z2$pqJJ+fGYTit`S*9{ABY@{J& zp{hh&jZ#gS>%*6qO1e%lL+HsUSl3!2PM93ueQrNqjY<9Y2VX>u;-QAf#dA6hNPNff z=(WKw-1pUbnc>Mz8X7nM5cL{@B)@HmK~WxtjfWU)Q~L0YHasM33orSeBs?whp%(id zE7;qyPJ-4=Qzb}s5TW;(13l#@Fz%8lc`}NEIQ>=W3*$6|uckekG?(~sAJ|Aj8-wu2lADRkL8iEWx4G}HMV zI3On+e^Qu{q>2>G4P6x^l3PD(D!O&ydee?$w7>btwHlSAUzV&yfvs4>FQ*;6AJ`;;m-nj&`sZ~X_i~%^M zH2r$;yBDV>OP@b zFQQ(r!9?XvFOIOCzB=5TiCrUx!j#t&IHOQz)66sj(>RwG>XyAYan)7l!V?;zddJ^= z#;y}bOfze;I|T_R%o7YCr~eW(S(#RkSM#AoGt2e&{co__icF?9+TMQ zQ>C2p3Z9i(TQe61QW z?>=)=)(_#E(qe=0xmna`d=hr1zO%56Mo{HN4R*iC%#<+h0Fzwu@RlSRQt^l0GJanT zp6AHjA!7ZQF2853-_1y5PVTKnaTlbw$ya-^H-UDCU8)`zJvkk;qTHdtPxdfeE>okQ zfKs&lSx(V4aE#D;=teS=nqSg^0e$`0n~+g@e)}SL_TMzLyfB0Ft?SQaXI7!<#n9 zKL6*D)CuYLCqx}Z1<8SY|8A4@T`nmDcx=auMD`K@a!GO zzu{-c8ANBG(V~zlzSw~CvTVOE7jTpQUtI~b)OUEtx`o;Kvy%_5qw>4=E}?zh*+1)9 zOJO<7b3~@24#DmWj1CFo*c@=&;pXWzl-pl6+jO-PpLASpRJG<|C9`Myrl%`V?$KJ? zHrELWpHXh+(KVRNQ!#=E+xrbqUA&6;FPlBA1l+~O#U5>oV zy$3}chag8XEMutrSk;O=b5}D1tlkT{MvVd_?qv0`3WpIKI5N5~PWm?_LwWL*zYgMH zfzjb>-*||2|6S*9)>_0IZ2bPXdJ1=*8gHV%+y}#v#~H(GgU|>&9v>1=53>}S*M1E1 z&|H;otz{P^ywMw9(R`l5Ok(IJ8_xx7Za?QEJ3fw-r`y>51q6szoq^X%cqc+MK0Vk< z%}0CFfXN#pGx+e+$3m3KOMxMwoX(rHSkX;7{`*GPdF(%^pruY2LbIov> z<1ic)oy3vdLjKEx^Jo-Hh`P!)h>aP}oFTIP&}k1zsv4QVF}c07p{>+?Fsgm>H=-G` zyiN1$97{OzMZfKSUKix|DSTU6?FIY2Q}&$_bR?<4B(K+e0$*+JeSC6p0)ND~S)Us! zkW*}aPnj<-fxT%w^^R6OzNS`;oG1vy=^N9*XlR1c)4I$5O^+hN+($)>G6~((t8~dv zTOjjS#4AB)6{~A|mv{2e5yfc@-Sc|=XuSF(`XFB_HQzQQ)=G^bs^xW(J^vJ5`ra7U zvFL_)gwNaH{v|3`{!2A~)s9-1saeH6yu>|FH%@T86{a2R(MOXeVB(q>{79Oaj5q6C z@wOVrX(ge;DZNnG&S)!#f2SpHxodn+JYgosk13C`*VB^ug8k*uT)9ws$iw(Vcm=#x z>s)T=^n#07U-pXGKjhkG(uWxqQ0EjhcE6U9>>Iyp7Tz`tX5pdl<~O=Q|KF9RZ*;t5 zXGvV|HwRNId))vP4#K!=j!u16;8y!@ zQSq@!tZD1I+3uM}waP}8!)<&7F*}y&ggUXD;Np&ZFwy=!4bm0*2;*Rv(P4$6g} zU(EQ{1Nx!av2J77amZGh(T|>#ox1mBFqxj%wFGlU$24M?wrfCFpc^*y79S|u)ktK{ zSZ}IS3k8+<3O=PgBuTQIF&1h^tZ`sg_J)ll?@`cZBY`FO7QeN#UO$bacYh6CW-LU$ zj&1*}H}(ID(q}HlPGQ!TxfEzQwC;ICi4 z5-7d^kB}a-Gmm=khRr5RQlFXZdCE@Hrk8>2$vdnk8S+t5KX&1}+zhrK@Qe}r%19Dj zMAWUrW}*FR)8$Gg7UFAn(b!^k5sS|9=67Z$(PQe}cGV;g9s|AncjzY3f9zc~V_6rH zu9`m^u`b5Ch9~<}ReJD?P4=r@&lG&}bY115yAV8FtJ~l|2;v^`@m$3`>H^+y`vni+ zaQ7m=WoiS`xAA4&yR?R#7dqGsK3C%FwSct0N>J()?T|cL^74RY7{IX;xwz=E+~@nYhPyDI>zy&>XWVO=pfV$<9azh zY#|+kCX74cOQ3V{&#u7UK2+*)x-Zl=fbdO=IZbAxZ;$Krj=LMl&pSoa`TNH)>6x!2 z8(IVhGr_!uN5dG^PI+f8#!a*f<1`O2)nK-+rtNy*41#Ihwx%EG2B&uAxgT45@K`fi zG0vkNFMjQP(_%aUDV40%2aUYMQjIx_mS+)1g;V&y*Ditk)E~zYst4?X>8r~$0)*sU z>igN1s;`yd(UUy=NB1WRkKAFgd3h0JxAke{~gsQg&|vEHQ% zR$sF%#%nhdaq(g9+=sQeucy0vi+&v#D z%u2K!R{quNwL_S;_OVJBUx>d*6YhocJ>KS}H!1Mn$CG~6bO5Tm z?#503oyOzHMCRhfW;n?w`wFJf5!E*_}f%_JDF}hU&y(4LOlHw)CV_U!v|0HMhgGYdpJW zvoJz2+_J%pmR#){3p-QSg_NZSz9F;4zzg;Rg1Nt;%9gygb2mM4?p{tft2mBA$3NH8 z82aFI>4&=LG}Su}hKBw$5+>%KVvhI(S74{==Kok~29Xj$xp^zT2WRf|ZPzg$g5Vb6 zYSU^8Tu)VTx;-7lmb?P`X+=7c5*TBXXh(rTlu77AuMV*1xcQVB(UXWgKb2VF0VHVO z*Kohz10v+8z(WpHRQV1l4nce@pf*r+5QA}=llcOD zFn74S?dh@KQ1J>Iysth9r3sm)Ou;FnC25Bk2=J29*qZe9pZhT7QRR{1SPmOnFJHRn zRWRQ#WQq_ZmMR(MRoBYT!>wx5Ymo*D6*2y&2D;x8?}Pqrd3i|(jH zL?<4dHH;?Ls}P!cS}jJKg2y+{NzUEKhxEm`QW?``EZEm<^lhO8Q z|7+BKu$^Y7PC`EZt~igaluv=ZDD2tD?K!9)RtJfQiH`8GCFFNO$vIxEw ztvHXtA-pRaRIs@{j84b?U!TrU^Pn^CZ6b9andjI4O)*#lHoba&Xy+&fRW^LFi)136 zbM+5StBv9L+UTE-`eCqFc{A>DUjk>nbSs||m2YZeQAI!7VM2e}WI9SiBdR#IJ2k%gic`kV@P^ALUfI(yBn zd6dMdC@;%#5XVdBI{y2$fZ_0%wu5aPWSxqT`)JQHG&%edl7CDieGhS;aLmOW>H5h# z-{(!IQspMKDgtgBhk2k2JOG=1C6_0D!OYV68B9x{b{ zr+QfLrS^mST_QvDCrNVL&rt2}&LY^zDkpdD=!SWQbJK(NM#Mx|onZf!2g`TS`tw?% zBqrj0l@{A15Op?^vQUandFSk3GsCFLl`+r%%|@IopPV$PtAbN_K$MZ_9PFgTMpFbj zVEJlS{->gLn3fq$YWP#YQ|3cwNjC`B@VmRC{&A37{QRQu#6weSV6c>#HZNh zQIxK%JKP=2Pq?#p{}ofFAaA0$QA?u-eS^a;eQI>%rU%>hU779pQ0XOpq<;<{CjS^o zKjtC4$GaC54|QSZ&OdstRR0RvzCB^>u?T4=Hb1={4kB$toj!eW9EbU(SeoaCz#Wnu zHz8V!sAZaWxA(P!$8SyPtGYOOQKb3h=3p)OKWWTa&@{oJLeoDkje)qV7dh(^GJrGR zC34KZ)uRalX9JztNg#s+H`|LYXwE41Q`AS`%W|z>i^|E4ruq9}?|ZN#s$TaHS1VNB zF}*#K*@KdcHx5t+`oJrpFVK44~q}vY@@864h6STxD zL2pJjYYu?{-lr0&=jeraTLm?DlH`A?A$uQX2l_l0fI=(e5+IAh_ zrOw~o?l^a!MiF#M3mTd-hBQ?%?VD9G|3@|l;@9(thS?+ zPpv~vdK|LS|L%otZop@ivS81QaZK5AZd(YXB}K;#KQ#YtM1hd!w&cZD&{QW zd&VDMM%Ro$aBHqp(&2stSkm=)rt*>ru8rS@oW+Q9c-T3!ib<#m8ujHr8AAJoLmzLu z@R6C5TU}(?=8!Jml61&)4mtJPTeCcPNN@A~+6!B|@cNqd7rtU1^45p4em7+tzCv8@ z(-MXdp0TiE*4>N1=hrVtjQ_#9*yqPPxF(?0G;}fM(F7E8RGfcvag)Kq6iuHyV~|oe zew_5ufwh%v3s&nR!k&Sat#5dZwGXo7jk2r#_`tPJr}2 zk{gfa?*e6n@0{ed4y2^qo_uzz8ap4)Fupn0fYM(91J;&>_+7lEgEz7P+irIo_~wX{ z$8+J0URBGGw1I7d#UQGg4py9X$;HcQg}-rm^WeDHz<7Op5re-nr!qfv;a-rx@BZ(- zsQ*tNyC#`Q#AWeyyLm^@Wa2!I9Bx8P+=7g`naTB_Jr#zUl~`x~CPGxI5#OH-txKZj z3FphUooZ6lT%M z&pe#fWq$sQ6C}l4JG_by{D5L!m9r%08g#juzxE6dAR}ERH0A^=@v{$+vX{t(h2P&F zE{=Jy8|!wkT)zU*zo+X?MDh}$!egnnZ?#r}R~I^||Cwup zNw>6dE;cW?nY?>QLlk=A{#-5SgIQoxZ?(l=XpP-CvdTG(L(GN`gA`_9p=fNK9?$@{ zs&lulMz+9*cJ{Tb_$>6#-7=fn(uw`o3!GGbw_!Wa)n?8Amhsb^lKqdZ26P>&ZCrJo zsH|}3&vmOtlu?nW*sTThg^IfE`}_wC$3G<{D|R5_rCDdIG%dM5$*4e=L_>D*Nj$!9 zEKY*<6?Vt4%pzw|HEF$YFI1vw&gscWk>gUL0-6v1pzjUKzW~p67#%%hT4mG>iN&6c zZ_XBi^((WSZL26b@|&31bW9<=Siq2WvI0Uv@^9~N9mWOzsEJ#nj6}S?B|5LL62~3~ zy(y5J$M{pd@Em(;AFbzDDza|E-PRpN{XDo&b`7s|TmM-iDgIh3?I ziK{Wg#>Lb=$*%l&aCN=}qZ;~CDG!^G=pbptwp)Z$O{j`&+gArpYZ2q@V^l6{ez}l* zoSuB3d)~ONW(dc`E;mSLG{WfePp3=T?BtEw@h6?v`>}z=uu#=w6gv<4H*@?N#g%va z9_dqi^woiU^|V|H2J?K=4=HtGz~$b|Bl}MHhfja~S=x^89B#EgKF*=!Cu()Is!(dm z-2E}FANLrlJ_nc65+ByW19@s|FyDztqmwg; zorLK@m(2_!p{^h+7!T#7n)OTZ-AIw(f2LhK0j@r#h>r)UoU8pu_xHvq92DH{7CoxP zulqUW15X*q_|DAafU*W`mLKisWS_$Ic(#&(wWvaImIbXF4tx;q~4o` z|DiE0FTP$ZUAwo1(OZDzC>TfhNiJdjvzJRiEIBZH0cwr>cq+t|KcRhQ;bZ-og3`OLG zcd-*$?kbkJ?rDT-tYtbjmLr5ArBE%u4nyV1|J*5^xb-!Q`|iIUa7d{KU-(W#nu4!g ziS6ekw=d3C3iOE*rp-%D9AEme&ePDT<5N34HyKL3w5daa?U5+n{zh!n;s05m{TJc) zZoN?`rr=8SiSb?;335QKVb$^ADh8E{Essg{pp9eWDf`7NFeiB=R#~q>%+bC+=lTlT zqF7u!Pq$<5nEj5m$HNHmC>gJ-VJ4*&p_e{*4Zum!&&pYqn-o>l)v$bIBhK4pw&;gf zMPR_t#_BaD0;&XIo1C8 zUM(x>>rXgQZJm$J<#osA+wvgw<>F#~HZ3_5@t$F;h7d8#Js-A~xr)!PnL@6f=Oqve z<1DB8(R6b{VzTrygl(K2+#bk9>FF`1ks$_>q!aSVO=k#wUo<&$>i*%pNJiR4c4}|Q z-H@`4dk$)MlZsuuYjEKhZk8HT;P&G>e{l6Q7V3{o?qq7mlvK0lRBQ+8Eu7jX9T%}# zYWs#Dhgytt57xPMcSBrQE_eeqr!SajZ#kU4h`CO=Jq{;+!%SH~DN(N-JI;EFW-ZZ> zu|Jt5o;&D?n{A%8eFs0$WgLrAtDM7W2Ks-06S|<*#;oAYDMg0)yfe$s7GZzi$Oxx> zBjQ(7w(MTt3ia=Y*8h250RV z{|uLBJQZvhhaIx_9u1OJ)SHx$`ahJB5R!;eRuN@ZDwRkfZ7G#B(Uv`U}1jFi`f%7wywBx{H}P%Xa`v!BmMlxI!h(dC)j6`|}T$Wrr&a8fUn zvWH52{ku`(V5FB(Ax%!kFFehpj>9Rf`r)?5X^fsLZe#l11DdI&Pw z#Qko;iF}7KgnHY=U;H+Kh6a7xA*K;%xVzGN4$yG_qq3Clh8mnAXBrHcsaW3oT=S!J zJ1q1B3SGa`U=dbtaOkuvbe}>kJ=&VA9F&hkB~v>st4=$)1r+Gje+mKWRiB@5aP}o++Hy zlkwm1hll)#r5^RzQj7DU>5~cpZ?Gd>)Kg0RFSeMKJ=HRu!JOm)P0vjWm=dv*9&XFU z$L!x?wvX8eZIR~mkgEwnL&Yc9{uJWsT#i}I(<+o(PQ9V!O(Nct;f%2K0#a;0lv4Z0 z5t+Vk>dZ4?GGxrl&U{>ge0Fy+aEmI$U?*#s<&hzL$+mVd+uDlA9jE7YbmpMu{nKk* zU@Nlbp4a8~&ExL=W3hW%7a%_Kn|gubW`62;rHOn|6J)gtrdR z>=T(rNKSz43q}dTbb{@1;P+9Ox4HO?pXMWtM<1tUv(h2C_SDN;7=s$;_WJ<4J5pr~l7_>d^%xoH7=AmskODrGEE;lg$t* z`MLAMOb_bMxXS+F8-Ur3roq>4EM%RdIwS94K60BuWe*XOA(PjZxmeGPgWZUx({qgq zi%O;+^WR!T)f&E9CWy?7k1wONp z#=9AkZ}`VC$GXY%vr8p1Q@rQTmJGpXG$y>h^DkOEEyw#KDv>ki)3lqZ1~(`<5laPA z$h!QcY^Qr0!jAn|whZh7tFpsvR@NL|T$bctxLuF%ARnIa^ggIYj&e0CR>Fd^ytln& z9!n9=Jqqpf&^vSBvH96{*f7p%`>HUIVNHdj4zFHU*LkON@>{Z@}l!0o7XmbbnZR!`gO`8cVNHjKM5!d3yEpHfY>wh~0Y(U8^m z03D@@(R#;x>#&jAciO<9A9!!Wt-i{u3 zt``v`)%$JU=5McrDN8($v&}e;pFbM#y+nu{hjIQ>i7u2%o>$GZp29uv2ECsRs|YXm zdd`N%0Z6xtF#Z#7hET}&(-j*w5bn*c5x?dqaq->tZ2u2*y!QO{^Nj!v(?U^SY_n3K zc*rnez^w_7^Ev`Ktc6HGtC7$v_68X3AAJ$vGL9zh(?&s87a$$gLQ83xK&b8YO?MVM zkaNp1Om9CM(Rvb6NDrAtNxEx#;Y~Ui7|g_C97mArCcCwCj*6iG!yR`&S70;th4p*4 zA>zh?3x_^8Lw5_SwsCtmt~1qZnVp(}uE-5aNOK9qUb{~S74|{z*T(%e92D|3D}Q^5 z91k((NgXbbxB<*NnB`1+HaC&F0SOp8ml(81I_n7+fIjW6$7E=8-)|&SwL23Bu^YFkd zc6|6yxcyB&0>7e6#fgI`_2k^AFV`ZJ#mHofaS67B4rKgFtAmrEDwn_CFx(8DX0P^T zAgSuoD#lWi=#C2?x%)|oXft-i5j|0|V~b)I!-ssR2Ir`-)DMF0F{ZKlYa3?oj3!fR z77@QEJ=M>-1HL~;?e8;Eh}DKCEUVVe;>*@5(Yb3q=pE<3>B6{jKlx9K)qWjAv9FV9 z=!d^}6F@y(w(BqQ_EcS&+$Kd#WFXX~uGFo1leq0s`i17KSEuYECxnJ7vW40v6l5Dzu$_BRJB zptxFYxyYac)ki*9Xgd#}HcniRjSS&j=>@F>b{?WR+pgx|%17cN1pOH|Z6s&p6gh-mZeA(A#Wbq%8s=L#K2c4%e#8Z!c?<=fV48|M z>deMP#6oXA{5IN+kE8LHTBDrg;Rjh~9&=uzZQlH`bEpXwOm{m}^t<7^+bZVx4F(dd zIp@b=J&v&)D=Q zEltjFhcXdq<%D;UI|gCi(5HN1xeL~J92?5`={P^co$D?$2cB?G&;9}`JWNvD10AM7 zPdKvmREhwRUw2~ozsyvKEbB@r*)QQ)!tE!P#^VruAAj_bEeGL^6|`L2Qi6|ZX_f~C z^H8PgdJ2y?N!IfkU!Gz~LXoXM6`U4`Rqk9wQ)`%zMMi%mFo5ykmYkv|nmp|5r3 z!NI8t7<8v?3R*pdvZ0;l{tC7tD3)JK+qwtKK~b~`%~>#Pli&Drt{$u(w|(EsGz7VU z@Gl}Be<0n{X?W}WU+6Lpyfwa-ht|cRyr~_n*stRGV1Z!?B^Rl$s;+R7ktXvIjGym!{lRy>QOSMgm1vVlY}>i66B0Tn5+j_e zuy|1J1j~phx$b6V7XBTH0y_V}C%3aH*A<&D_wYk}3nT~?T2bkCGuSR!uqo9`( z9d;705&X6a)%R2D3j=DQ&nNpx$hQg!z7BrxS2$OgTYf`#=LF7X-F7;5m7VO%nl${q zW)52C^-n82?8PJVrp_D6g5>CE%0B&^3NSgZamtmP#HDo)rzut9BDG~VzNHKXWe*O>;q(c1p@S^O++^QHz*xy(R$ za68*{#5C^vI*He-c0$}J_Qt9;EX3!D(2yN{9#L9#i86IdP_J_8`p_|kC7M%}<=YNy zm)^QXb+H82O^-HpvA5#PwFc2;_GUbg`IxOK)Q7SXPPL80)99&8A`Yp=xI3`;B1fqg z$I1)6cWN+@+Gk>$Q}Tp}Yk>A<$J{>Lk{^_PrN5fkW%zR!d>vWwbKXD?&Lqgwmct)K zoX7Z!GtrD+^I>jK`TZ;V5WfCB#NwJwA@x1|(x#E!*znzFvHKtgsW^I*e#&SG>Gf_e z*!Hg?1;d+~nB70a9-|9BJE$=8(6uT*FoP?bwyA3CQ8D|c^X%G?Zg}tgqu*XyiSzfX z`R}t*h)}=$&xB3&Fi2_LsgpN@t0grG#rCX3<=Wg&H@gbN{jtq+O^=24CD;1k_cO3$ zFsTj68%GUKknldnX$;5Z7CXC_!sAAewpSe|@iU$(mXEE%!l&_nny5f>(W`>!W|KBy{u?%>_mTi4=u==ne_k5cQ<`8iN-n`c7eQp7}wntG8k)t z_mZjYg)jYx-1|U6?!qFT*N0ju$1S6Twdnqj_fq8Sg~OetMiRu@m2rv^v4ny4b36TY zJ8<-Xj!E#O2su)|_1d-~22vs09uVO>j<(*5Babas6aVtw{w~gGL|M(p^QiL>fr+JQ zlf)T_DO}aAwi?Ii2g|YGgF~sx#_u9%qFfJOf54kokKJvG+u}{Hygoe$+q&Qydm5$(IPuz1qtKtu*CINyoBFP zlkel065;vzOT~_75mS_*3-10j-1G2bS>D%&=)lh5opX)IZ2op`(20hswfi`0IqDIx z^Ze=DH5-U`NJ+}EDJJqPWLK%IX(PT$UJ@%?my8#thTC!gVL+b0R=j+=te`gT@d7lK z>?{TkG$XZuF2rI!kAG#OCzZrkc=>F$KV_~9NrCInin*{8vGYGvBPw`E!Mbeia`QGE z3Vb&_{-h6M68QlK#Lbo3WGtvTfCsHAQuwdLyZ3Z8s&X?(u%5Au-S{i*7vDnId6=P!H6yq>g4PTCq>T11=ZCq=##UeXx7 zOa9`KB{(jhOw!?JBchJG{BNx-h9-$}eiO(+)Mn{%HuqNY&_)n)um;CFcZE06SNQ14 zZ>YSMLS9&IC<*&gfGEw7S8g$-cv2_e{ikaZBcYn32Qpef=Qu{Mm+wPl0=rJ}-x&-> z?Am3NS&t*pJxV|1M&aNPbIq-z1nC#kbgduLLH$^!a>OGaVq6W!Yc@AyCiBCkw!I4& zQM&XZahZ=CH~jEA@x(MdTXzcZ4$tCAX~x-}pH!4=+Bp2UNs3&!{g@|fpc2+6B|Jpx zi}9JaE;w*64JP+}YGdA1BlAYlwVh?c#8xKsru^az7`A^aKReL?73H4cBW&F`mMEAv zt22pTJKe({q|`#q&Q#w0{S@lY-I-cg$qjFRH-|sat;5zhhwC?+D`8I3!cFu$;8dix z@b2gkvc2-Xey(C6v{~^a$HFP_P?Fgu)iWEC-&kzxO1gs+0IR1`_q?~4?Zi#1tF?$-4+hj__8QTEqg z!ujv~>=DV+~nF;vZJT1$j|Oh~}mq zc4iiGeV1&?HiJogzth0P5zz*|c*{#dQH8i-s%~m%*Mb_?(^sceS|Q*U%Iw250J^72 z!Sv!ZjGt%b43?B&dFF7i6}=0O;@dhb{#(NS@Yi*oCsvbsAA4`--NV3A_I~aCLZtME zB!lA$hd;P4{GL}y#PtL95|`vJ!&0g3^|w2D@SHoOhLybUm}6OJRnAD5{DsC@#QN|q zEG+lxHFl!zmsUu-K8v(=jeQ1G7LsY?y;C^z8y++9Ff2dpz-kV4q0g~&r0vptc)5*+ z?=LGavGjC-vSB**&h07~F+Kk+YfB-qTi^fPoLY-x4IvM0uhEeoxRL2&AS1bv$A0`z zc{#Fg^!j-0|AIW51ZTIcGq~2bC5G6IAwrHm{2+V+lEaESUKUiL@AK>3J2SaRh3aIq z--dD+3@e(fYOX`ZDUdc3$a;jy!)PE5_XqIp8sC)J5k5r z4xK&xL^s?s++05oFJJbVEqnIkTTarL?x}9Ti0%Rz>+ z-yXa0dITorxl)6Fhp;O``NY2RmA;J$j4@p4f_eS)?I0Zn(q++UY;DLyawgyHN|ul$ z@vJs#7ga<^OD2=BhyWuQ&bb)N*x!zS>%`^Q@`cI3@ybVcf*8nU+Vqyx%OiN$(!N7# zn>dO5Fwx0Nokn5T7Gv=tZjvZ&`s1t76smvgllysNa6OT1RPlWjQJE^0txs0=q3CYl zL75IvuAiO%($jk>6Jjzq;l z)8v3bxI|q2svIdsT*FUUtk&lue>f-aub1CKtOLW=MR_n1U*DvW@RDx)_ddt&2j3_X zAJ-PHEv?70x~y$_?I6^cO3L8;-c2=Plq zezLZ(f)^KYy>qTtyLb*NI~+}{SGQo7Z}ndGmrGz7kyFn+$xoijYU~Ud=|V|BmhxdW zRuX9}JF+PQ5IH$B*ra@bi&4HG!eV+)oTzoMigfd584!9LQ(# zm{0M};b(t%c2ML5{HBwOPJd)2e%=l`gXilIt0KTA-Is@0SNcgQC1JuMRO?^LQwekof#9Cy`cR_#FM{9}4JIt9*PoiI8=ovtd9v%)N`7vyItE@~5JIYgh8q zUdkG71G8Gxz7940s^1CA6cLldPnd{&p}oJQ*KY`)9QSiiD}rCX=7`ezDFh3>2)d}- ziokzcw+Br3Lq>LAY;)(z|8$$<{-e~x{-Q-1?|$<_Ih2Bk}D(VSAVujowo@b)@}@Cuf{RYJ$#|yRs}q|RA_#W8_;YK zJu%l_3CUfj3U2jM!4&C!^6H9T)LlB9z;}#7#*W|Z7~~&AIW4sMwQ)BT?hmmA#|e`= zN|M@X!<7hYTQ%`2Y#QI^Mui&krATI_|2un=L5!~nq^2;>LC41XxQ)&X((av#tz@3Y z_RCp;YWMO`6w~EeWFbaEl2jP1MgO67U*yMevIM)4BbO(`R``BA?%uXj-(Vm$XyjGZ zf{4Pea^J6Tk@zL1CMEG!96YF#!PCV?u2#GYnLpJJ%1y`UrML6gQeN7?XGFu6^)_r8 zrA*{#xdo-Cmzgm4XMWDi;3ZPZdV8kpXRxZui1TH73)cC$Tv!s#$DDtNs2gd4YP%~% zwwVe6Gj6)S{UG|v4y_A&GXtYFySF$UD2LS*hm!-RI$=^X#vbap0CQvZ-JE?=#IB^- z?n>YUyr==^l|^_+)Z|+!_2y}qFt4UbQdaUu(szsM%l`QDHi^ZpG!N>(%RNnRk3-z~ z)2YMCOoZ+JgE?MFKh z5UPGFGiMeYs)IlF&i7(7GatieqKMOEG{0ShXeNwe4D|TO|8}gol&@FjGe#1Jq{O(@A2M4 z^>8h6Khe|6MV#1$lq}s#@GeMWlYLw>CLZkN2*{-&BJOXSIB;00ISt>uWnk+O7zp$ zj`NT8BVfdo&5@6fh)qUR}4HFVhILHE%NV;2{dLA$?1l~Y?_3nz3RkLMlFH{M^iWsPhmnvQ^+{K0Xy3ML|r{CMUEYq-eaT1K^pUP zFBbn-3x+W5eQK{0up>}fz>JrRSk510U@e(}DXX-^4TUyXsk(M-+_T~tnm)QZ8iHhJ zJZg3}b>k+*dw)P6Gl_Ahs9y2sAeGq~re-FcIAa>ib^QAXxVmb%NA);})ou-KWwRcX zbx;>;wR#~F_xo^FS246-`uELQ{DGS5fwl3gvY_8VPCntDg@Bhr^qq4wh$k?16;3U{ zOqHde^utR1=fU=T!A2}*>>jwnHw9-;XRhTWIymxquOC~<<*%;D+B{eq2i2d$yw#9} zEIF2IKr;{BgR$BPzo((P+cr$Ob^^J?{bT5NX0ly}*S>vK8)m&sb)}^9G3qGU7;Pd> zUdnitS#V1c<@M*b_Y}=SL2lGBB7>FGp57xLiFxF065Gl?#!Z_3o(mQ|R)Yg)F79U- zUPZcwxL-agq>#o3H7R%JYw_YC^YZY6R-9aT|IVz7nOqqbsN&bm#XBx7!4$?q6piii zIiE9y?1iqh+>|y*W^rxo?-;}hA;B*p^;0mDyS~d%xDFJKnatH!#!>iKedE>g0&I-B zS!BpN0tfp{!-WgQ*k1i7C4YMZU`SmGJ4T1AfnK4ToCFc&DLG}3NrUk{>xoN_Gf-2! zl{{+Sg`j=wRS)!vk?oc;mv~RqB1+w=>2+EzbU4);w+wb;D(IZU-P_f8mvn(L#3M-3 zS3fZypP#~~WhVY#qD{E7ckhTXl?uh^wlq1beyrEx+%&>TMc^Zi_Acx7kI7rocOs*fVeDo6Bz*pvd}<%?_fwFv!>BMf2UT$uvsv5 zbbmZVbv+q97TTc5@MA>nAO~UP^w)pc)qw&X3uX&%e)8;oy8X|OG>qo*WacR>;(q`D z0RR6CmxntQZX1AY$KJ|_?2%-pvYrWR+baM1&-fY|5ylP>3ihA>+#)2ghCq z$6m*=MZWVNJlFL;?{nXGOWxdIIAH>QOv?SjFH@uIf=wqE)ELq0nd?q#=Df)4t3-%M z>K>?2mOPB38iL1>`?8`u^}xQdQ+OnL7@RAX_wvT3!F;95jSaI1GbRis9bH=>l&BDS z$E6#r)a)<6c{vKAMzI$?ukJwUzo+MQO~laGS7r{}r?+6!0aV}0-x#W10}h*#63-GUE{Aq58a-PV0zXk&)0lZ0rp=P)%?o-#T5Y!e?{!9${Ne}4T+}K|=2ATQ_?H>YvvMardccTy zKT9rn z^2XQUKkWjJYvpW6nw>c`=kWpvyk>9+%~*gwCpMR9$4$s|psR8>-Gn^MW$U-1y)bZT zFRa{g8t&cSUUm!Kg8_k@rh`xpr0ZX8eOA8}@-y})47Z33@k{1XB(1P#d4~S!#$1OX)BBd` zGfj_*wQ65g>`p*y%RR09vQ@ypGMcobVMk?6c%COZQ_%fh_Apy_8ZLS}&T<#E!6S66 z>1Ip=Sk=YFIyqGX!FA^W-{lRcS~bbgT$+UbzW$f^rfo>QdVwbPHF7%+!`|!Z$TZr=X=7$gZL`ez!n`AWdu=frAP?jILH?n`{CX`P9sa%{8c* zyrQRsTZ2bq750A^%4MvlW zbJv*l0dJW@XF=u$Xz)^SBRgRvH{s@;b8ZCw=Y!ko5!wLJ*;h>Fnlm7uu4Pl!#f_%w zO$Qp!^nzvC-wq@4Tm+A^r6b8RAkzKStSGh%n(Nh4E|LF1xoK?zKY;|CF{|xK>_gzH z8*gOxY#jKs_R9}`5kN4)S7rP5H2kyfX6Xo-2GQGm!+q0TpnBU8SFwnP2YyM4b?eG3Ej*|Sm3g%VD>zMng(<=wcC#97B<*UNS{86o}yrf&Z-g060eWi=VQsh3rrdzS#34aE(t>Fo<^r z1}fX~mX;R)hoAL+=)D8PJA;GzIsK5I7po#(JpdQ#l~0T5Z$iVjN*<-l;^?sZ!MB=I z`>?K0gQ;AmM6-&CeRbz3(Bap-URTXZpj|1yk3dhiit3@VTR4h$Dl_QUCoYvr@+nt-~PLu7HywSXy~7)f%&L@N|txyz?yd! zMnCUBOR(3VtUC#MJR$?jzRf|~&ZS*-@p14N>L>E{QzK3ju@Fk=fMglUNB7jW!0u~) zhqUM_sC5zSlXGw|cv5!i=gnX6!g#E${P`}pKSqrPOUq!scPq=+W(Ab~YxCmMnt&>M zuVSnRBWepyRp{Yvgwh|-@2s-`=v~{xfVvsLc7>%>_;o`^0Xu(UCj&C=p>ou%UWQ9H zC%&#%GoqEh7qW?U^oU;;R3W?>Mwpp&!X2jI*m{vYGsOlhPQLezvBMy1C$o)gGFN9@ zO|9{IJjmJvqd#$S0v=p^aBCr+1WD|fu3aYyAn&FBEBC)XcymT`>|!Sc;!7UpiRWNO zf<>QwL5&@$o)B=U^P)%Pv5)Dl%d#Mc-RR+$brbNo^G4C4GdqfrnFBrceejyFJa@yH z0F7UjdvEHnApXZa+ah};km1vc{a(S2&Zqjso&7Qm^zs+}EgqSLg|9K)s@L{_>j5L~ zMCSpVsfLn4wr;q>yvRXE=C_Bq&IR_$EufII_?sEdg=D@ZT{Z4)2D@-0t{+dg;E4gt z%cF{a;nqT}SlFWppztaAVb*>OadOA%<<;*)#Gb&%fkaUxHdIq}sK|iuPNdg25>}wA zJ2i)rau4?YCfCp9bc1xz@>`}{O6338T?`XA0wbjcdX4)>(7QV?bW>$Uy=+uWEtHutH>IVlLCRB^n;l1{Af)j*uJ`9UxDl{% z(u5gU`5lX4c#VVkXSdDW6^KB3)TH%4=1q`RXcUcWn}^e`HJAy3HL$Ta6WaDYfb3^` zK_wSE;m;>wOhV2o5 zYG)oaQ5{8l3G(tIf+Tp$D*kAFkrG)?U%OpOvkA$WM0rbYR@9xPGcC|I0p`_9GeN@p z@TV%2^UN*-!buaW8K!z+j8VHurluEWyx2Vcoxz|$^Foz2(`uNTJ!$0psu8+b7P_RY z$@3>ZRS0CCgdW#J<(<)0V7wfk>F2fvm`6M=4gEd9*D-CZ)wTqbdq-?Hb^Zqw^^cZl z=Eq=gTwJJ%2@AgeJ`7dV^@4?Kp2eZfI>cK{ak4IopyayCL*B>x;cTYU7kj#OKu^yU z+OaLb3Cdf6>joT%b@f7Nv~@3}N6>L&^r}H3h#Kqvb`IuEODh%cU_o2Qx!E^_1Mv~R z&6qE&LDBscTYUd8jHSPm`aL)bR_^)dgsmoF;5X;IFy}JFzl(BKUB-iT-qF#nA{^Y+ zs<0|NMfU86;U^;KdLf%zr_ot_9;9B&1}DH>@sTUn*yQz_I<-I@T434OsK8S8_{ODcu8?@J_ zKe>=OWKc+}(`U8`5o4!V&Cf1?neBS3xWyj$`B}er_8148mtad@91g}Rhvr#>NuVbj z{KKqE4COV5s5GQeqA-fbxKkqs;Mee|Wlx3%eb|?$P8+KQlz&0|SVIzQey6i@cE*AW z-2P3&vJT@XRHOeK{|CEfD-jtLBw!ug*Yt5_K%p+lyp)tcEpwS5QRL2GT2QgSUg=y68`)b4|RlSpxr^a=>SgBqQQ z6?iz~Wwf0=1v~uWCv67l(U2E~gOpJtq`z2__-IXnqlAFbsPS3o^cHkfcf>+Mvh(+X zN_r%7NEfytvJ5vD)ht&3V?f>`ik7@VwCLQjjBRddJ2V=tm7N}&fMyeV+>GW9408$! z>tCQplAQYz{LUL-o_jZH_A4&}8=KZq+&E0hzA;d9*nq!3P3hyZXTa$E6!uCT*{^35 zckS&DVKK1cnRp)yvgTH6pt*%XVTj7IkeV8Kl+L=%db1<8x1P~Udy_yXHJ)P|z=Avn zaeAV6_ke*p6Qzt#K&hg#q+cOh>h0$!Rs=z4)(N-v*J(6wuV z^MpPPhp&G@J*@TIKMD$@HO?)QkTMGAv!mJazw;s6%#!y*z8j!|ouHBb#g9@-Q4LiG zJ<^JaedKy>MDoG)yWCki^w^I;X+qx`n|VH zIMG&9;7%P^FPNLyuMaMjLn_psVeFtrERAP_UN0^I)yLYN&CD5Ccs!b=K=!Q3l^f=m z9&WU#)namxwgU05H#v|!nIF>)M&Se0=;gBdTT7Km2unAL^14riKb*G?lk<d>_=*5Tu`|ngo+tRz4#-{+XXv`hzYNy7nxB+H*WiwG zw=YHb4w#RH@f-8w;QXBgBaMb7@C|A0`kuN5Ra>Tx?%s#suO7btuVWK%K5UL}w;Eu2 zqUhvjw&O_6q$@P#85eT5fTX*_tKby7HcTf(fnp1z%*VfwKsRxP{zL*3nk2k4CnV3q z{R7u_b;fPD`%8p@&yf|q8}2VWUC;;obqrtMm*e1{WTW$c`Sj=lU53U*`D$>gbg=)K z-2(cBxl>`^H$iUH@K-0rG(0^Xd%~N{HwSUw;^3ZDVCEa~%3taMY{e(nS=xCJXQ+BxtMtgfS325an*qIB9A)P8(`p}O!kl1MU z_mL#Qkz5Lq#Eccl{SzkJJD@ka zJLE?qJIav?{Oid@p3C6%5AW_Vm_J+&@qa%8jz;0%!}swZnQjqU$Bw>kty z9iaw({R6-@R(^kl+~Y1^{c3Oh><110!{l~reWwN*q(5_$*Ft~=tp}u^ z=CkjBJ@c94kD~rS(*n;lM;rlev-$gE-=#sGo18gD*$XhN%%Sl)O9XkGxt?tq+6y-f zw}O2f41@0pyD;0X3j@e^kyd2M2bTKx%>`dT0?XQ^F7Jd>02*s z{Rm3%+N^~7&uJO1Z^j|)0ms(t$$#)`YIw;~WFCx$=n8wz?!#1kT)rXSG|Zv$quFv@ zU~;NUJpLH@AEAp8^+!cfr~;d{sueA|ym?$PK6DR;UF7s#pJI?ox~J#U&_-}|YxDA9 zeg$v()eTSG>;+7KK;x$IIxv&2>e4OlfHVfrZ2oNnVyyU-)T0@Zong^Y!k<3)P#H2R ztW1G)t|+``v+IUbDvI1YH^xD=%_puGcEGyoL6H8NeMsqkXj|-mR3={4R+ob0YKJt;QXg=e2#S^n4C7 z>9%^G=yZUZ$os9}TpCmmuR|FvzXJ7p_?Gw&7-Ux)(~PyCMsvj@#xy^=fV1qFZ+ZeA zShcLzx^?#9?0iM1x(zL&z|0ZH-L^p4%8j+Tkr$~H9t|&jIS$?f9mAyDE!gU%=eT!s z9(FJXimIo(fkKEw{eOP@(7Mv^G@1^TXw*Q(COaJuvxG&6cwwnT!rlI zmZ-Q0US!lQ%TB;F0!wMhHZhX|O@0)Lnk%A0tv$;P#PC5d$okUnRXyZaX;$B~2vkxjvM`M&nDqvhYPxj9O1rlxXBA6x4gG|r4Rx#2d zeE#OdxPP4%2}Xy-+*aX2&U@mjG}lO=Fy*AFZb^-#5(F5Hi>Z*iO?p;~)Fk|7#T6JT z5y8bw~*mfEcP~Ek*vS-=^zom)QbGAbe81qEBN_7#8>Aiz9$^3{uZ*#>tavz2g zuYSt=c?glGv)deMnn2(tyW(APsjn{g5(V?NyJvtNhb-%6PR&T^oVT=9x8ECXPz?)f^BjeI{+uAuj{ zbckPZ^W_`O-@vj;u*@;VLU5{NJhIz_yJ6*T-LK6ps~RH*Bt{kbN5GdEXO9 z?ydOOmETs6Ps2a`>4!2m>tVb4(Gg(@EKssDh`)@%LCiqU#hX`q0ZL2W_R^DJsfAQT zhZRLwm$W((9S+j}73EYvTmzviduKRH*8q$4jgD2pAn~8iI!`>q!DXjQ;ituFVf*-Q zaLD-;(5N*o3tDIg5FXoln97PMKGrt3dYrMuI_%DyXO5QYJ-Y^P&5VU+uCgOmkMyz!&MT00M?6v!vkCqsjweoqw*bzis>Q%`4Suz{q|Usj zL7Ysx+Rcd^NaoTxS8s)jp`yh+& z(SAYpX)T}&SoqWqx9eTSKlQJG?60p=Gb3tR zs5pTA;8 z8yG)1yQ^KGZLrL~P3{@iWB1g9Tt>hyK*d07e;oSZ(4WMCU85x3Ljrl6Q@ z$j6%gCn~)T9~&6*)-=ifc&J<4jIW0?i2+jCVQa8KD~}V*9EaV1YZB@TlR)$0j0@${ zR=}s{WP4gupmoi;f=0(B;9;6Ajt*M^Y|?3+4?8n(O z6_;q=1NBFpx9|>2@bR04D(xpM7zh?6cPO)=xL(WtxG1C+7#(cN)}Uy<^b%ni}z3co5V7f$Tj^@AktQ zSkUdkca`EqJm8!U`9l~O(UYDK&);?wDBMLi%+GWgCRFY#MJgSD@b}_pPbvoirM0Z4 zKcGji3Rau`<0boRheCtfc?_EI(ZD>2&K=pV= zrdh=_oD%HEjlEif{@0goJn5iC>yeCi4?@^c*=~B|@4xFX6)dXE&_j(X-{v2lK2M2` zTr|l{{WS?qG1j%8$nVOKVh}WZN(7DnC|K)?oCLzfHry}WDR`WazEQ(S06Y%oG@()n z`e~PO(%SvteIqHIgeQR6ymv^P+XQUxGF4p5Ccqu)R992NCXg(*+}v*Kj|2dz+*mc%AN%Qns5ECd*n zk3BG1;*SjLWx~6qqsMGS*WZlTF&Vt?{gW= z_9YSt1le*d*qJ3z3$}`YlrIVq$k9)!Knylv~8a5=&PjAAa#*BW^ zln8xD6h&sIrE>?vS<%1fSq`yzEWBW3Ay_t-!&}(^StH3w$fmzAl+VD5e%NxA*ZrP_ z6CIcQ!~6che%_T4y}KmnuRc?srP>S?7s5pPho*sr;n(Be+Q-p}U7u*?b{6C{miFb6 z?FLYA@p$yxa3B}0eizw=UbwFObBUyw0kiHy#LshNpD(r=HCfvLH;RDYn)0{{U3{|uLhBNbd2#;=``?2M8^N)lQqJ%^%2QA#8u^+i-dc4d1pik+|DZ@oobp2r1I_w=AN;`QAzC>vJ7Q z7(cUSPf#n?EGjdkwoXCmw*jB~4QBGbi8$xj&EsL|sbnX+CEWeBS@c5-h0L?ke*Zr7 z3kf-c=k@kd5$|X*qs`O-`?H1RJ59PF*Y=@I@n{WBYN^_)nJ^Rk^ey+P&cm39C_Tbp zHIDd;l~Nl72EgWRc-L}f0U2)3-N0XkA@;?D)JO_hc=Nf?Zp#2V>@HvBS*h1|!o&SUs_0QBxs%~88+|DX=pNrHh zo3%3UrX$jRDwycip~NgU1qGAnCk#r~ZqsnwRpupI$45#YOqKilcf7ZC61yX}ty65uF{R`v_+QK*Mw*uuw=?uYBuAp?Ynur9==DK#O;s+$ zBbt+AelidaF|#w5LpaD!m&d`r>~+{xxFGPdhJhSWNDsNv*o@bH?8E=vXClmsmktN~ zoW)vOqciIb#}O)q!riG9qEx(!mF;p9g2wxve#>Mdton*kZS6zoxB0wh#FmMal@<<| zn+lM?Pl|6QvRm+j>Eg3sp#q#^|8}88Z2`wFD%~E6?MI8(HGM(Qk$>2_CjKN7$-F9J zo0ZH)`~^P#XInmt&s#El?{F~@icPgya}Oh-E|SR%?;dz9mzD~D8ipumN{X)OW^yCb ztDJIu06S+bU*>QPpdd{nVChspimt@=yjT5+ZYjg1=LYS_{C=urO++u^&U})6bD$O5 zcSyS0?d!x&zr2=ck43bcaCKqRYDBYViP8S90fd+5a2Ezm27lx6xB~{qFVH_WlGJR{`Ps8uPNZrO^PBN98v3=*^ zGCYe;F}Uz;EqSyUv$>>zgYK`l{>la5*vM zT`Ss9zd@|fcq0u;L)ohae5i2pPu32pT!cl}tCSNmeHblKj->e1V2t1I^_SFk((*4& zw%(k8hf-NfMga}18bTYg94REKTzTE%!5R!nG&|DT@?m$x>`XHo9o@o1@48eg5Td%8 z+lZBoJnXCH!6puo&_^%mUt$^N|JStnL$?%?YnOk_{po_8lVRN^y- z=$=@gUUUlvupP~s#C9?3Pbw-a^PKcAAACba$cD}bRv#vzZ|5(5HK_?9)lmXv6*YLA ze4KA^cmg`R!pt6A+eyqj`QN8Gw88z2?FoyvC6o|_jKnu9_wnu2kU_(!k7skg>ll_)Bq}wI)?stSItTNCPP~0Mqv-mWLJr+A){t2zM)ZzbtgC-j z50k-^{CjQ`5)tMZASbh$NGeGr*l$}xu9tjwbwC|1$lF+RY1crsn4THSIgL}%e|K2+ z&>>uD_Pnut5SfOxcm7=IK?B?Ou+hbOgjRP-&t2go!M`tRnx17QA7pM#I8TkEjWhUT zu+Jp4bJcR}@;J$ax@S$QD+4J|bhy2FZUD67kHg7lI>snh|LBy=;1iyINfjH$W4_#8 zy%Y-3vb(0VIna?;qT>{;Tnp|4 z6`BQ)hoHWIGmZ^>#6R1t?!ZYJj;glYp`=aYBqI5PZ+76J?0zYq$x7@fXQtIPkKoN) z7H(Q|1wzMn>GWP4$JU33Lf4v5NK?@R9iim`Xu4Cirdb(D_%-S4?-~2BRpP*S|7l60 zXp!?+b6X#z**0amubx2p;fB_??-y~^d(1G?W;L0Y;OFPnOTpK7v4UGq&LXPqoF~0- zJ?UF-=^dc4h{hcQhmOuxg7wAE6r;F)eEQhU*rPd&?@Vn$#SJZByCk+{qeCUM)7D;f zjOQiuBO+#LStE%4mO$^F>cffGuO#kD&p`T0QqXbxIoJhWtFITJl@CL z`zBJ5?AcPaIdBZ(m=A!fmY2cAM9sCBG_QciI#RBZK-wHrGPfy;IS@m5#Jk z=GWZz(Gan=siCrO0BxQ?4@VY$M#9Bgk!r&>+Az+0;-T0}3wLo-^goO%@m3d;|MoEt{2lDy{qeZBCKe!F@2 zU>yQp$3JT>>4Jmugi`195bl3n^UqIt0%;{>oP4|Mp?gGr%v3uc-Cm#PZl9UNXR6$` zXctCu=u}Ta-<1(C9%HC>xjm1m8}!Z~=}NHasGQm~NX79VrH%b{_0aCzv6yMiN_Ls* z{@ZQ5!XuCQx3?uWk@xxA51DNk!GcA<%y~Hm@^`r3Z8nq&-NRHZo72@O_)koAhN}%O ze+*5BoBCl@))!mRMIn6|#p?0z@}N?c>&_@nA+_P!W~mouArKi_P_(8OCD;AMLRWk} zKr(BOf(tjvuH3JnEkcExJkL(muT=cYoA9pC8bXZOlDzkUWfWg^{=vPr4P^$(k4{~n zqe1T5nRJyt{QTrd>D#i7+!SqisLuWamN8x<0RzJ*P-RbMUaUi5N_()$f6F-XU@=|C zITwZ0X_kNMDsesQNx;@W{TM2@-!&sX2Ct3hdgAp5P?1Zz^_M14wny)Th;}D59=_a9 z{3(RdUFHR&1UT99>N+Cu7|yHFLPgkPg=k3+T#`I1t;ml2cOs=k0DxW9EY5YyPP&9N+r$ z=c9uY*yHnq)BRE_nB#9mT^FFjPx@d6o-mQ@&CLNqvTZOP=*vn-rel8nEz8D(%Lpm; z5y-IDAc5hguW#BmqxYj_>8YdLcsX&w@g%D#xytfEMc%U$&x)rCS$k+Gqf5>5v@|0# z$Hn&LmEYiCoHP$SPJ;`_v{}-v0UV%OiM6Q}U~K1*g1AvV@?(z4GGsE4&${W z5N0@H>|HsDEhE2X)QzT4WhQ)nBUOkPGia;4iJwKnHO1M;p+Q7!yA?KQGlGBhZyu}G zbs*N{#3y?eQSv+3@9MI&5K*q>_K7;wi)4}_t;VsQl-&%G{9ZK=x93iA$24p4bKgfx zAD=py)IPKQU_T9AiR}8nmzS`&EudaGj)~;3y-n_$W+o5A?F)qt)T89XyL7$$8kB!7 zj;6azB1(4D;(GuUohK~qf2{At?68)rPSPmYCzqb&E!2Qw^kUtm1TOONO`wph9xJ(< zuyA1K>^OphW=@Pgr{YaVzbgMRb~52AGkg6R1M$9lHT77_0LFAbZLSKRhOPI5ea2U5 zQ0NxFdt`DD4OY|7_nc)U@5befEDWY`)K>9cBriOqgJae+1yHA?-_># zXG5W_*-Mz2IY67?DWvDv%i|m4 zs^F0}rWJi=9Di;;J-^O^hwO;h$6UO^CF!}Pi5I#nyt3BW_Cv7=oW@TbPd3d$%s5hQ z=tT`&OFOGxT$sRdTjlbUv}N2;{o}QIg^ythDfdTvDo}BMbI*>dC2TfJK5co9lUx_O z-z?@uMKlZR?@UuJQYx%)&-wELo;1eA++EcJ!-15SdTW;9;3(y|zP%X|{uVOAmn%^n zUv57py^55HGB<4E&4cBU#Avg!VVD&DD&5FE0FT0!^i7H7DDHh76dpB!qQ~0z_MMnU z2}HIQj`5Q$kHEV!E9dC1SM=OmUJC10gL4;-w?p%kslJh3Au3}(FB~~miTj@wHx(K6 zf_0bw?!yk_aGe^Ij?d|Y;uT)4-1HScvy?F4&FRA*x%;~&OL`Ff#qG9%a1BoP95oA( z{f*r4*>TtUF;J}6@70ZEBaW5dy6y?m&~@3nv}bt%Z#`4lf_RFtuXSIc^Vm2v*6SX* z&(eWRCAL!AViuAV!+Nuuu^C^lx3QLQmLO9VF>!|XMsaZ>exb{qmDEK>ApHY%h0hm_ z1-h&8$@xF6riNzRa_-T!P#T1{v1C+p#mal@sy%yVSA>fZ;#POHm`NEUb$7zQDJ0$C znF?Rm2TSjSrx6nK@DgG&d&k30-W2mMz8Rc>x%PdYZ5JltU@gCeORf)JLuQv?01T*;B8*2Qv0AwXAt7Fl$daW3r;t zOxGxXR>}kqS^f*2 zgP+E;GtuhpV7xhJajf#p6S z?wmnKB)csorwLid&Xoo^{J?e31zPm41!$DzaGjDG1pid({=@6?5iWBo@7a!aJWt6w zXgVzoNTyn~3NBjr!=P{N*R~)!_BOcR3|q<3J)#>;ON#jk?cj^tUn_lvpVwdvO6WrV z>$2GIIipZp8e4bFz5~hoPZiVbc!-D1laI~}g2Znr<)YJ3b)FN^5yll8Rx$W4l*+h`}m z>QN}d_jikaHKIDA1Nsh5V{Y|9!+V>@z-gMHqTJF6#>cyy-V4!TpUT=;JyU~R`M=jf zp0g6_)_e$D&sYpV^?f=2rx6BHz4V)Z69*j&!*vF!9<$&IJU=0!wu5Xt z*n5B`EJRM;b7;t(96({vglS^`}oo(`f|K{%>Y`VI4vN!8gxDsnv3ly6YxvFJa;@_2j< zpKk8pJUh=wj*7Y`B*YCs*2ZFIN`g4i8olw~S*uQnL^afp@KbSsv&=|@m4O)4Cb1ST zGLu)K;`)5`ukp&MS}=wY1L_5epfxWA;9-qwYOJpOLE zHH_pb@BM4_r&x&7u}{COw5qX9dF_8vABJHYW#ygsn2mgGxLM2rJ}#{{aJ?9l3!$R=Cc}^#v)@y5vmcF@!{7ce zDn|B5p!S80R8TBF3qDVshTE5i{NJ4fN%rpg#PDC$csbd5a_m4U#@#=poVRSm<80Ts zq@yKBREgP}akCOZv&Jpl*?lOk*<+y>Hii6~T)QKE2k=Ivq)9EI1CLs_DGV?T;A56) zxL+Bt~y^)UVbnkebVY0HqL5mfuj znA_E%3ckiv{VZ4v#`n;uSWl!+vl#{nyM;H$c?VAlq z$A{PYi@k;Up512VU-b(yq1l!y;vGlo<%8p zem72SD2-ijSOU9e42HtKHE0WGRHDE8hoAdL&(CWNW3$i~_jBn?BzC(--3z%X>|!Ac zCG0aO{h1-AC0LK?gFmtqA1}g`F4UsTb;<6i{GcBTAL#rQ319%>` zKI=o>dZMvojWX|w{sN8jYmH~A`22fL{8e`o8kP&$lJ0+p!1wPLOs=w#zM@X*&2xkJ z!Z|5fI{63vT>iJ56FO1+aa!=T^J4U89t5U}t|EctXh%*G0= zOY;}d5wXMLt6MEXa&nJ9cVQq-^AksfPcB0s$9(O@qA|RekG$(?FoM1LK9p~-7jf&P zlE#&|c_h_;So`!`C;T`+jO1LK$4`xpcM4xdAX((Y_kPs?Hg>-ixIN84f|@4J=H*jy z=nO~76VYkBTF_i2Xr@3mNw%wB@Zce3yeHSMp>#w0h6-20bP5iV(1WiGyI`qs=a|Cj zMQnB35_u?b66X(Zpti90BD`4Zsk81VLiSH_a6O_y*?g73A^$EoJ>^<>@bo*vUVJ{& zo-~019YG2*SN624H=1;xjzL)J(&yf{3?%>e#j~qJ`jPH5opEBDD0x)Q%5Aj29b6jz zk~`N^@x-izc>pD5(XgKzE5G5q9|@=n>DFXLF!2oBgc&P?+5v+MgkV{6!{ol{4V6QFQ2!M_(jL${wkbbB7krD>l8#hPL9Xh&qW zuMqiqxZ}aEXCtUOYid_ewVDh+^rQF8Pl3l%IO(-k6~4&Ur99kFi-*e{1|1SZxVLA! z+v|M`5Z4}M7GY=vmGQ0H_*MooDY;N_Nn#mx@crfby9ZBu3zGV4S8{#WQ@iYa45ZBd zrIA`c1F@d+wR5qZKziE%*Y6_($e$jam2h1~P?k8Lvj&TY1uMJ3r>HNu_E7;?JoY#=A8mlmj>|5LXGW24wpZYBa6d}MQoK6O zF5vp| z5&D}1{_%IvFfLW0muS%m4u_G8EaE*Vx^k-$T8(mR*M?P2ftk!LOxCKo9x#6d*eII5;!e2 zY7DVtc#eRM0W4+ zJNaGRn7jNfuA`cct}~JQ{j#g^W4THE>q81jh#7G$IW0=!!!qUS$0wl2%x}Ht^fW5= zZn>LrateEV*GgJn6e6ZN=et=9S9qE0 zA+vAFTjPaDN@xbh%LL&OX5~mM*Y;3+pL4+l^F zw%h=kq&=D*8n(b?;99B06eC%~l=<%vy$>Z0kTchP!YtQO;gFf4ZcJUNH|=BItu_Tx``cKxP<0h~Z+`E0;N}*LR0?l1TKg8~ zR7B#XH9IhC{xG7%hK|6dL^h>#8s47WdG_|pF8DjM9{iR^Me~M2#j{Gw(0(wkA!gBq zPk*`&c-N%k*`vbUbK>Jj{VTmgor#VEBW*2Nxg&TjA!1RPy99cD`T>tuz1VBa)#ptnKiIc2142u|@;30l_{AM3s zRKqcolA1!(hkfO5ZMZWg(Gfbzn?yr}KHH_&+<`5K@3c|we9;4~MfNMpt~BKI%**Mb zplUqzNnvEa&;xPY`lx=MnP?qb3c7NMg73Fv5}wjF;*jrpiu^NrvM|VFVg6j044UPu zb|#L&refhY_j?*b*TI)e!^up(?jHPhp<@822S#VseP2b}aMJAN_BouWGq@n?UyHw+ z=>F!s<0pyx(A5l#*9sDkjlr<-NNYEeoX#AgyS zh~j3M5VzZmgt%PG$#$Pd-^$>Kno0+D-QxW{u%idxvM8*lB`Oj4?yC1@;TlZsK6pHR zJPkVhhQ3X+ojB4H<2-96L})5>8>3#$;6=;Hi8SFEga*0%9JDMzV**qBx5g2?m=(#1 zb{POezV4YE%W3Q=u{$vv+=liI%kRJT@ezBf_wt|gL2MNI?@YoM9^#oSC)hu=01XK) z**6MRV4J0**jHC$WG-iGo5&E>T`8S^WwC(l$gQzFejQl;PrXW2dKs*>Y-*(kX^04A zOKp8_7d|3GJ46K@kFoumL0x#BbinN{ zyx`qT(=X0Q%-_U+kE%|Gp_ljeD-wTUE|seMLwW$3l1%YGTNiO$uWrRUYYc@hvF8mp z(-Qr9<5-IPIFvnZB^DQsW3-1uYKKA#;iD_# zdFad#UIopz#Z)%oq(fBDi*0}KA6x3tlzW0CK25CKEq(~b8=h;5y(>n=E;_aNtyKK@ z=1)DQ#zS~+<_)G9wm|&*fXnpsG$w4=W#5T+q9&}@^`rDS3_N|0YFw*0@k((FT;$+PfI+CJzzH-}!cU(6~RGcf;<(>W3?MCgP>7_Xk{!p8L95AeAY zvJVR#%S2|O@!^O3=k6A~?5AkbGL38yUBe(A$w9P+c24C+1$ELLBZnolNf1y-q zkz6CP8e7{##cJT@Uy~broQACX-g5MY0TtH*-ffbNZo+N9%zHauF_YB)vg%CY8nI=d zGDP;+G~SDR5Mx}N#DTVRBUj4?@Hw%jQn!_YQln>)Qek6w>$vy7J^#k>)j7X1P_GRf z4yAtU?<|6@(Nl`)83h-9?R%&DtRLMGlta~jXbGL*e3rBLB=$YI+Fg`4hSVWP4X+_3 z^2ncG`_LFIQCaP4`w>_J|2wZgJ;-^9D}zH<1qE6Wc-ci+^6nV6spe0aUYWr>?M{G@?>w;z;uE3EYe?zP3S^oh%ka zs$HmCB*f?P4_3oV~|)Z-E%jq3(d~nL4O^1 z$-))obrx3z$U#GeQ_T5Q5OCQw?Pg3xOMULX%(wv*7M|cy*X+YC*RZ_EU+wstR^-1s zZ2*s5dQ*(g(-PSf=jPzuwQwaW#W5wFpiSWYqqLWql%;i@8RP24YYsm>8qGEsI;DIf zUMz&BlBwNgojCdJIa47hFpe=f+7{Z(c`U7)H|?BaBaB?Pa(+mTfqEctz*%<{YK%cO zKL|Zx8;?I!mfnPO(q+45s|86Lr>#L(Xa_D9PRzV|H-MCl$M)%0cVp{G?(qWN0&thk zUD;za2_KfGUlQ+UP>`d2naM|hygqL8jGmW*hWwyt-@6r%UVU_1dJs8-DzuX2)6_>lPnZDIfl3IqT zayDrtwmPU^6L8zAla4mGj-iA5+CdYOGSI-gj@-8#de3!w7PSh>VBwztvy0qHZfG8U z{c7AHe|nAA*UE~L9mn7#|DdMXY7Cp&%Y~hkD3JCfXByW0;%9M_gSFxSL^d4oi0bDh zf#_M8lb|6A?mxGji>g8!kJRn;&#KWLlTw(@GKy9&)>rwL=J0Z*U8~5V8>Z^5)^W2l zSk=>ZGeRu()N z8Cc`9EXUdUB?Pm2=24>hz>}S@ZIQnVfiAVF`6}~Byd|=mvtN|hdF4D;6aEI5?Qx~n ze)Bl<@Kolx#2y@r?YN!vnTaf@bE|oRh_<+gCY?l59X`Gm|o|sBipd1+pW2g z7yeG*P>xB`?Ajd{w+FO19i4=c%*}H*O(rlU<*z^DoQo&AJA3W_O(E@cNt*JP9{2`$ z|JB@;kA$r9lQuRKSVl8)w6YCiu$)irNnQsIiEMmyPhc2Av(=L--jlGcA5v`O7y-)( zm*I7>jSyFg$!e)t#PdLU<^5B&_`12eBsQ)KbSm}jKbPu2bPi@UjL%_X#hDMrES2yT zJsxprPY)vf>Wf>LRzd5! z#yu@7Vv2L&ulc22=Oq;qJAGzzGMe$QO~cs6DH}`=qK1vzMaj;{Z~x@xM$!Fa-Q(%+ z<}FkPXn;jSGBx$ zuLkt|R#AejW4M{;ce?4KAhF>baG&yC#T1`m#oLqxC}bttt;9{^T6(ugma`B!no-W6 zOw$H-&5*bQon1)IRAumbxQwIw%eqpi%@BIWp=~sA=^j;n(5^0|hb~U@U2m^zzGmpi}G3XqlrcCn~BhL*7?{TmB)9gdh`^tle5peU| zUNndOQRc?`JUYN-zZxzzvW&}r+_xkfvy;bL1HUI->BaAemGj9bzCuxDqo$*LKWy#> zjF0~49K1D!(oe+<7qvQ2W5-e5!o^8e%)#wPUyq5GVvV7fC$V~I zm%}DMZZZ|{YSzSP0JEFzX=WT=0F4_Qh1Rd>dG7&^KUNH+af-3XbsGbTji|rYP?wJO z>5|OK2nHf8w@!GRC*3Sc8krTIEk0=J-0i$||%2y0+fhM@E$bPoPf%Wmkw z#J9{Hp%Mb5LFLB2St3lXccpo0xL0B&ygJEl3l&>Ji)m90x^VDC^j(_C0jxB$?9CJE z#D=%p9(wU(5K?y#F?~!+vUh3yO5JpcB?9qcOs=!el8xQl@`x2km$)Dwtd{hzn|t+xA;`L!Hw8 zL7TY{x@8x=DXkMwb!^@rziSG{B^QO-ZTN`OSd=Ht3>8ynRTU0wtHh}oIpO;ZYq^pB z(phwU6FO98^~86yW2KyUM0ietmMc5ynI12p40Wk$7;=!Tid*glr`CF>gt7+H*G?>P zZcyp2D}}*q*!2aE27Es!^~d1dZ%om|-cfCChBecOSE$u`a&=Dc)SGp4&{4PgyFYyh z=QE+Lk^2{K54!9wsF?ye@h{p-yz?iN2JR`BRD{M*I zF@_KFPqm-iAHce7f9FdciruWe@ zvNI7&Rpm#1jxOSu<=OK++xlQ7Yx`6{fMu<(gx=0s{|6b`PR8Q8Ip8_+Q$u&>IF7yM zx*V^;Ot?Bze7zc{Ab;Oj^m#Tb;d1S@Q&gWulg?PA+s-NQ#mmP!RsRK@gFDl_=n{T7 zPG$c}q2kS>icMcd3Si3|c7R>07msPBcZ=N{#Hj95waEBp1c!E6wK?=4QBA~B>-z*Y z@8K90yVZ}3b;-}7A2fsEwOp(`&jP|1qf#?p)Z?y#fSUS&F4R4~#ZzBYyVg^k^%blZ z;d}2GlXYw{==@v4ttYy{t+eed|1KKBNBPY4HIk0#Z?^5%lTjezyUj$RvLCgag{voT6rc;s_dC# z>elcGyV8+dS5*lWHMdJ2(T}EMCzfMc*h$@835PW823%u&WpsG`0_2M&k|^1YIC?sr z*0;SI^YW=C@209Tu{i0(EZvWz@+r=WjJ#yGb+dxiLk4oh)hS6&b_rP_0xLf8Q<$4h z?7P$=NUZ!i>W^<|K&+q9S^fi5FvNt6`nk{(Mc%~ilU~iZuKnDsb#e~jKD;EnQGk5W z^qnIp8Zn1a7f^O_v`;fiZJhGwlfSRFoF}J{`xGPs~iYU3G}F z9B0V|L?%W-sjQdih=l*TZJq{mPJ0 z4|Jp>X;P!Q@gmaT_x0!Pc)(%vwN!T=!i^DDH@oYhl2W8I$~j;JPZ&b~G;rh9=ay zM!H^b(4V^I8ZZv)f$8&Gc61}$3#ZSPcv?priI6BWg*@?4z{)`wNQJp ztwu_B3Z6mlTt*-9lEU$+aErPwWPPmIlq~TQ^A#FNA0z3>+^Ku=_DVFwqpsNbMl?N9 z+WfL&Pi-1*Z~bk*FM^5igcmLJZtuX6rb2aC@ zXW;7VwI~+0eRbf?(`MlEQ@$!r9lOYUO|0hY8x^Xtdsue zj6(Xb`SR*=Ct|MWf6=U-!m9T6GMc(I-5j`iMN6&)D<}UxmD$?_34H>3DX%<^P&d)L|{IwAR)3B;*NreRkp(9>a*=L&xHnYEtewF`Dhp! zAMdlyqZ{^qmCa|IiV^fzOdx1&$H^)+TWZ;_^?RQ$%0nA?2zAVnznpIj3NcAldM%aM z8WplvzrGHi%XQlXdE4RMZhi9;a~GytbatK-%8f@)}GEkQ1t$xi?1o za4^tKEMtEMG_>}Z1b-{Xt2@*j`NbwkabKh}-IWc7^M8BqdN<;(HNAHdza-K8`hC5o z@I1DB?BnHd?Zv0&;GnF*Z0P$u`nRaMfR&P0B9`#nT1w`iGxa@fd^VI@Z7~luopo%zJm3EFicS zHze#uNOfy`u!QY5$Te2K$Z=mruD8Vj8tMR2!$eQi9cCrc(FsAjhqK@iuAlKfIR}SM z@0N9Gox-MMhn%mcxX6fASfSbP89YDRbCa=_lRUW=FPYUb1GUpR!aH4NaZy11lYiS^ zl!{*__pIs2Ot`VshCc%ciZxtP6e_}-uv0!Ak^SHVL#W}wVHER+Ufc4r4mrkkpPC2mS$%y!RunlqH4l)9q?Kt4UyHn#%AsE?} z#+W)8Qr)X5sqEt`i8#SLQmr+vf{D;vrA)Sw#O*Nh>71T%@^ zX*hWCo_)B?M>sMVXm79Yfo!Cg!baOsyy6cPKIA1uE*keR>7N@xNQEiGr3Yg$lab63 z;vdBs5wAG)r=@7%IdjKGrU9FZx0`O?Dnc|{3Y>-&n_v{?dP0w(6JndlE}7+3IK1@z zwIgW|y~^fq&3`sS)pYNNDt%6(H*?3I;V>1Yj2SB)p<@vLG~hUI){BXAtu#`?-D^FQ z(Sc^73SYe4_%kdi=sdxt#kS_-KBHFU-Do9 ziA~Bfw50j5S-93cIwBi-Sn(}WFV^u%?=;ofOkTeBrk7iqfSg-*N!*!il&GsE&+FfY zQuuA!KT|b0R{DqQ!wo8QFQ=IJ1+3!ysGGUmgAQm~+7#M-WguT3AIdg3#7z|3L;@;i z)^g#_UD}@EC@l0^uwJ^ph7;?*kf^b7&^8V}T~VZfhcWC*hTH(IOHTU6mDXV!?dcN* z@eD-c#}V3oUbctDtr#Lnj@PoB#_@7WKhEm&BH!urzZZI@c`cw}~)Qdu5;)D}~WIIFPf z>Uh#W-5FdzGnAUAvbg4FvpgHt@bKUF@xt(TVe;3wuj6K&2pN9nL$_{28MLOWikFS4 z$lSi}jmG+B95NggXV0HNMWyR!)eH*86kk^HQ05WWAL!^Ew}SFp79%FvYdds4l&DqL zLqd~@Hdu5O<(ZTKDYG%S2EE^H;5veftAlyj_r*w|xH4OdF}R}LS*3d zJF&kK8%RxDDeGtYF+966ep@xV4J9IVSlOsfGhmV=9p zryAFGi{MJqs~LoaRHh%^Jc00Qzn8iuuw4ZEEqy?eA&JvZz?7WO&FrZ79eDE@2X_N1a{2x zM>@=PLgt}+E>p`q;?JJXmgW#9D;bAt&3=DJ_xYM{G0n^P$G#|JmpY6dot&qZQf$PO zcOc+jd=6~3c~af&|6=Y{4s!*=0^a_ld0XzxPdt13j;xcM!?oLT@yf?}NY#PE)w-MK z@OImqSXHeh90?;^HiqZo`whGDbJa}5eP_@ipVbje7-#iZFO=Xs-oLkcISBpdum7Z- z9K&wQD~sCNRahu1j1n(s#F?6R`-?A*qg{MJS;MIdJ|#?PhJqcqrcGbD=+^Vo z9Azfw12jXLCPc{?=irl9-zE@mJCxHe+<}fG{YI0DQl!OYk#ghqU%X(kpU`?(k4-$M zhJr#nus3b_{iB;@_;8jgnZhMbCVq4)%AcObaW{JVsi8VJRSA@Mx=_(+dO0Syo1VC) zow=7)U4yiR3A_LNmr!)dVP%G^8q9}#Dt~WofkW!c0;j=Ba5ID$c?NV~w}Q{*ad(6VDO?9qoUYERKWj*yB$Z7x_t__}k=ttW`MU>6;(C*6X9cl)Za; zfS3F@s1jVS+KQRg?>jfFPU4%8ve(Re9wKhWbbmCn5AKNx$x>+)V_OHg!#P;;4chGbunt$*oq8V`3K9h#eco2(Ca_5^ z8Rb;|H+JyHPyWTEvfrn$}c(ZRhh=&bEkn*8WCv?1CKU3MQ%5W1FQhF&?{OZ>{;zXLI6zxH8YM>l2LJ&7 z{|uLhKNf5lg>AA&Mj2U^RVtL0^JG<$(U6dgrb20wBnqL-s0bC6vOXc3tSEbLUVHCN zeEx#_cdv8KCG|*zv08HqBYljy=il&>exC`Q*Md_B3ih6xZ=Qfr!s#%Lp&rD({Ast= zRgL4PSHx}8N6;$b{mE`=0Hure>fMG!(bsKQF>~0} zaJd(W(^l`YMTYRSE5G}Z5+ixYqIP43MSukCp-TG@B}q!puQ)Bq&0^)4uvsKcI}(YU zX1{bjB!u+M^v}291hwpo%Uep3dhS)lXVnG>dTulG{VGO;Z$4YGdAS0KLm71TGc73p zPcWZ%A`{WR^XeW~=t;f3Zn1&xKUkQ_1RES|N9Yre98alv6lCA((luZv+xoY$7in~% zlcSv8UW1^aCrg^sJ58`LYF)JiHz3bLSE)+&XRenFmm@QFqVe5FL3O&83if zaR}Uu*{M0#dNB7>_nD305;h*JrT7KTfJ$IgHrb*JY^65>S?3p!VqN{8AP+C8R@&J6BLsc6plV@C0<&wM1L)Gn3uEw@*$k7r@->RaKg90n+oPq+5Kb$oTon zVtaW3Vm?4#rsXW)pJ$8)cPb}Q5V`)#cV+=6Kl=J?J4sDWl5Li>VnuLOy}2Sqn91ne z_U+p&r*J=j&heFX1y;VNTxj$dhPr#V$&axqP@Q{C9TZUp9;5Ql5xjM9)fs&}DmaPM zx15{H@+c5Wzjo#1ISQIL#cndCpM~%V*?y_qHryo1uPx2`v034g|J#Tv+>SUQclP@# z^pD7H33yb1&G8-VM`$Q``d&H5{J=k$J3TwrL(f9$+H~i0>^RAmJq0Ow8Pi}2uhVW< zZNt7DdrTtZ#fa~4e1zZMLg)@0U^&iNjfqLAs)`&6%nyZx)!eAUW_v+#_Q_4eKjQ0Y zD%m;IW~&E1t7=4%<@Zs#?p`Q=dX<{Hjf!;A9dwA%sfDsW36k2rg500!@gYT(NdIm) zf1kez;q))mGDa#9@FA>Cx3&$UrJZlnl$Jntrn3afu#>5*>jmu-i;y%pLs&y6u<)1D z%}|_&+)5K0*J!JRvfgP6LF#GPCJPvZYw!^Zdc*mdXB~LRWgPrdYZ~7rDd}ySSxL)9 z>L)zqqj9F|9_0nhf+39Au>LY_SU@) z+;!hbwKIAHIWsw~$S^q#{`>!pzGIq4pzLFlyGcDThSsTyo1I8cEj+$C{tv3Oiwj2S zJ8)Crrmy7nCTy;wEL2VR;NH1b5s8sm$Vx{@Qa`Uiz>>B2d5;m;(U_~43R021W9{DG zxI>>zFE&g^5h|n@4+hFX5JbPEe7{7ir{T^49Ay zy`yQ#na6wyAIldtr3@-5#rVTd7sSbl|DQwFu%^))e44_ThC_A zEo1iJqhAw=J;-^Qp1%5;mSma^(P8%-5>AU>O}pKXQ`xT~XjAKP(D1;6qL68{T0K5p zc6S~Og5NHj-LnYl&QQNyoDw8D+OLb}`T8Ged*z${T0v&1u^Lr;7lNPOn9LpHAuBT9 z6nqE%LG*T58js{0x{Lx(XDjRcnU6}Dm~9*C!zJl zPPKk^UH>ajeP=k*h!?UsPU+4Auv`hT5fAM}-0u7_EjxNr5f!+xn2LtzbxrJ0-&X^7 zqveYG>-v#fcsz0T*8m<~3-~*$IRXVXgS4Xs>?A0)EKg;t0I`ZptLnZZLrhgqyI+mXSMj!RD~l`iNplYd!)83v92kbb3J6E|DIn&b5-DrN;Iz4ryn zXS0waPPhD{H&U>m#HriM!%770e}}xuU?aQi%-ai9IX<>l`dDLY zAyWJ8{@Uo%llzh6QbD*7Ib|CDCin3IemEVB|GkxyFwl3MV;5e;%V@_v5n}Y@ikm~m zKu9sp@7Ef)Ph=tG;w-%4d*@KOP?dk&z6v4AY)J#}2JtN-J~uyL4ol`7zp8f@<3vc7 z4pnm%x_|5BPVbsTfL>5sdVD9=>Qj%02X?^#Kbme$Orx*9cl7Dyb|ep%{EBNI#D0;D zKY8UV(JFC3@si&P_#-oVU+ER1mX1g}MYbbi!`(wImP@dCu&Yd%hLcG6y=o}?L`UeN zjyf}o%s^cd3$!k)>R_+2*_X%z9s$XCssqrkk)@&|VmSxCf3Ix!*WO7qM*5xpZ>17JlPTId@!H z!nbF366H_JK|LSS5xvj=F7Hg$cI8Th9gF9{!1_IHlgm}tnMTh{f^e4@E2(ab?D-x! z2Zcd-zL4rMy3i;{2jv2h0RSz+zL zOP$aaw&+`XnFtrTf`?h_dNIg1d^3rQi);{F4EO7AM*WxFGTv(QxN!WY!lS7Pn4A(@ zV;-3SWz+VX0&hA|>PV}+f@HQK3&_&Su(c?7|$b9zIdTUQWTa&FAuKzEd!Bz($yxoxwg`=5}B5J@3QJ^;q>aMtBS}cJe4(4n9*EwR37&mIOg&~R;kGJ@&4_bRM`BQUc*vi4<|hj8sIG?kpo1|~Qe<$rtsuY zD`ZBNKWoZT6YZ@BNB0i15vL6i{mPFzF{gdo`8)jvqGcPe7;%P;@T=chi+n&qty;>B zFEKs1HLqp+{V6p$=HlB_pE>}OEO|3A9}2cU;G+$asKj;Ed$hVb%}BY^5PgL^AD1$( z7G5@5ME5<~B(IBoaQIKcW9&H%NgC8`k96q8jdYHF?OQGAt2v^v`{&Yno}3tu|2T&^ zvEefjJ9^L~nR3&oZ4O!fOT!g)9OQafPVPC?OtAZ#kBF|$Bm36gx(v4|Z1b6V)Vs_? zI+QJXqRL9~t1;IgwWJWc+c{pBTd@%4Zvw3H-CGD#X>y&U)jZT+^4??k!A2SrMPmxR z7f_coxfHCufpB(jdhTpd3R98M$Lht*X-gGfi4h^Q_fpf8d&{tIK0@Zxi$Y}A z`H89v^&pQ{=H>jyI;7`Ef1P&aC32Cv6?Fl#P*gubqioR(u|r(9_GWj%RfSDI^Y;u= zOfFpGIMjfwiIN*_>p6{2b$_S$d?_-L&a{<$YlKFp>~)Ur3cPad4soPy$9DevF+l=j za41+=JsHVJvU_L}P%s6bQd+s4%OiL>98_6MI8xDY)yL3~|MZz=q7>$kbma5J@Ph@Q$~0N_91$j$&uek| z$}J#MP1#twXATE`l?%nCG~*TPyT%xQ%F!qC zzll(j`Vj^eYpFprcZ6S9rCC7Y!|(JAo7Oqet0RVgfu8i5*cVilP?4+t96njv^yJsw zs8i!9gD4(1dw)B=1)`4)&sJP6#KrG9g|f z;OrAPs~?|&ieIS?dG8*8_QbU;-xHO1{eI-%tI=^JJA66s8p}ww|9B8InAwewhuIC^ zGBJ@R9PO(-q+^*>ye|`LNjYO{@}j{Mv$(#}`o{%uiEl%|QNIUk;P$tc9;y z{_07(ulRZFErnWq5s7+>D(-?47*22Wi@QIKJN=fY=54CsGntihfOiAQ9u?=Z-BXSb zso(qOFW17BF|SNnwj00Yl}xQtDfpyje*AP8E3uuvk)feJjjI(PBeF^jf*kIJnR>AwU!{5uXmAN{Y@2j?HGyF-oxeYm%7jm8;^Z_I|9Eq;^%*xdWAwoiE?Y0P8|as`76n3{=~Zq2W(>A3GYwApXg?H z!DLS2@@*~1VPpxh94c+!AGAThaJ$S{0WIP68JKD(oTNoWe_MdV!P>xx6|x_x`JNx?AxJn_-6=6(MdmljG5H2{!}w5W-0g$) zNU(ESSS?zMLhor^Npvx5CZnCC?0WuFCJPt}H>s zqdfcByB2|am=4;XxUfU1ee2lUC}l9C{D9k9b9XL zztXs(%AqcBb4&6&$PS~c{(>Q$`yBXW<&R7KsK(I)L&_0vdvMd5LEI3FXqmA(RVyt{ zVhg_AVcs$cQw5`hH(D&DxcY|SuB>_Z8pQWpIhTqZXQM{Xb2;Ij@}qs**YDC=Tl0>M z-6Sk}9K{#TG7)7yPyGv;z3>*7y7RJwk$}!}jpfxW+*NjR{rE&nP-y<=!`pb!TkN-K zZfb+kcXKtxUyC5C7oN^p^rK$j2XpxP9Il#q*na+614hm*iucb@5s~MnHW}9C_)_!z zXNLJA4i~GomhPh_c8f)JqettpJM6p;V@n)7$MqJp1Q)SU*U*Hkd<-{LypFp`O(HvU z)6w9PMnvAKR!Y)jB913R921=XAj{cM#i^wQbK=LG9cB99|F7cg+}<_}CjZ^&oX0_; z_TP#aKQ@Y?44KKZ54lL@eM6>ev+RUPlI3-;aWNhRTQ469?!kjL@BR&EhVigMla*$b zo`j}p>9Lg$!}=7H@aI-e;_+v1`KJDUF#UWw)~+-GH=1;%UqNlin)UU!6zIl%S6$~D z=ctIv8@;V8FBk~Tlb%Ul;Vs1EO=Eh@x^K0cFS-~~F_GMfj?FuyDNrlYC|2p>B;u}W z2Q1z#fhtd0BF%Xef?9b2ft-9~DK@yIgl+-JJL+D!QMibKP0p2~z#)hy&2lg#Pr!9B z=C}9jF|-A|l^W+9N2EMyq42kWR(UGnqi7epLyp{E`n?9v%kMYcW#%NSKRK@cK2eRO z+GyYHQKLxY(dH_fnu1m{^_<A?XY}bvB zI&u-SAB6U>5d{ks`Gya#(~;xWL%zM|Hjq^-QH?=`9y}hGaC}ZZjCvuPWZx$n$dpKv zA+uLEzWaAvTRz{0ZB03iiJ7Ii*KpjWw)PL)D9Jp}TC<_;>21yOYz{#QulPAs`tT>A z;@jZdKS&nW+3&UP!b+v5ke5R>PHa5c`@(by#}*E2hTNZn;d1P?_d)#_eCafMOLZ2a zmkuiTRMC^xIC0IZ5e0a+R$F!8;uN;bIuA*fPJ@^J5R*EsQ$8aG#a16Wc?-s_LEQ3|bi4Ilj1~7?)4_eGmfg&Pt;m|EXa&G64s^8~+ zSaWH8jSQQ@_sz1V)(jNb=*RsmZr~@pmhS4-?KL>Yps3kUnThWG^BxhgefUW0_$Pe2 z4s)-+1enEg6K@(9#bM292;8J-ynEV=de4^)FV}f@%>w!gq74Dl;eq`$cQ6tCt{r2kA9i2#CF5}v6b!Jcr?DUqh^0UEVtf2`0?EOfAOZ? zzHi%)FFRwmdp{V){vF;AHXHDg!^wRnask!ww-&sz)npM8b&4+|^~8u{4Q-~g*8tue z+i3fhEFoS=*J4U#5l*uwbsv9T1+Ud`nN>qNTuga+l_NRHyqzhyqSp}Y9?w=7@()92 zmLtXTs<3VKV^%0b0(d)j8|^yX2F3OZvPBTmbQMOEw8FMSX zsLIz>U;2m0OBb4V+jgSup93|WK0P@;uk^HCor&0_MgATr+DHs4MC+|or=hIY^L0V1 z5t_FY< zdG54CT&lsho+N`vwDg~2ZO6)DY?p1~5-R+YWA0dvpxH@6-G8_T5g+`sE!i5eSJPeG zC7X&E-I29Z(l5o_-7N{9Cl+A0nesloZxM?7e^@@{Yr^F2eKGC3lRycT{#d~I}#zU|ZR{9t8izXS!#H8Zm1c_o;-DG+{6w!^(P7=7 zPb_kf{5c7aHE+5>KSp9K9B}rT)i{g?cKWbg;33WPC;Ms8gO2(V?*H~o;`sY>I`{Ta zu;0SYIdrXkecxT1U7D##NpX+z*o6(GR89N{caZ=|yYx0a;0Zg)`uJKbLz0y||D#LC znL@#>ND1k>baoONRCGW@ma(^ZjzAe8Tt6v9M;qxxob9akzLO_ z8}8og#Xcw2?NKsg$d|Kzb@12}!irgh<|wncz3SrDU{;SG?;U2Oin=gEG0*U*S;48C zIJLZW4t1{BRxNa@3etQ`tW&jHvC%Cjtl zj{a|zf}bq$Gv;{YCd@$`-bzedUF=7PSHo~!-Zc7tr1Skttwu`DA$9JgX;{Z{aujK{ zA!zn$;D?)nGW!kTJyQyOt1X9+I#Y>IKn#6Mpz z!%!iPjojBHJS|#sRB>#?PJqL+EW=k1h>%_J@j+cH8(Ox@x&2FW45+@SMjodafD*Tq z?=|9WFz+UrE*Vk-joBKqT!eDix+Cr*@puLDbEG4LgMN^UDk;;7;w|RG(|fHoRcOEq=pq(XV{M3B~Tz{rj-jL}#FQaX(lfb_q<@u+0BxdSM6MJ02oR0OfZf+v*ziAe8@;bV6qe9C)vW z+f-p8_gr#iP(l}Ab^i1OM=e1jA-`rRLKyktsFW!@MxotxQO$R13098lUrXE`hZGK8 zz3&gWQ5pN6(qUW|h*ZTq)<`G>TeCX*BJ~*vd(akR+}H^Wp@z2VMI30AMnc_yXBl*; zW3A(P`hj{>%u52)5+AQZVo1BE;Gk!??aFh4EmB*!5GgW9EZc8 zi1!y0_gV_URPgJRk`x{K`56~P)k%STuQ_?R`%s{Sim0{J3vCb@+%cXOlLK4t(#p(Y zM!;r6-)zZ`2}N=Ae)9S@4r~uci;R=`kqL)5zXw$}s90Y1gq%HaWWM(A=GP&J^5l!C zL$t^=(rsBVg%O?9OOg$8KZI5(3_rBeZh(yW+f;EnJS+>Iifu5j1aC^Yvixdz3w1A=wSg@hv!`gY%#9 zMkz;jX%MrTsFrl%EM(LZr^-&#qpPl?ooq5w@bc@QVoEhi6uRQTs^D7&M*hc)>a2#K z!cstYa&8Nlez_IvyDfoSp7~N`*$i}BCn-p|4nvEl-Wls-6i9-&!bu`Gg6B~d|KC&_ zu+|+hKk=FjH-sfj#O(*+hVp(*Ut1AS>?v>v80^3=O;uqJdm>nU{@|QLBtm9Tz`vHB zaWKb3d~@faK~Apb$x&?ez;1L2>(Mh0_m$*~IWNzFYLJ%fncXg^~|2DmGAI)#yIz#8}6zFCkSEsXf? zyo_FgnI}PAs*XHJ?f6Nt2sh z7hcSt2|Xux>jw}xQPr@_Z?Y2|V(q%f9wWt$a7Mu#&R%2CpMUmQM>7*LKJvohanu^f z($XR(uSt;1?t8jP!Gcl-{(ie|vkI?5ieLSp<3#TsIzLr18HKywf2(sqecYzc=BAG2PsP;|MIp2JZf~J&a_WnMT7eP@`muO4rjhl1RhxUU^dw8+y?p zA$6jA4w{QH=G86MVf?ZC-8T1j*hqa45Pi^Z^ugiU&Y>gl(bikA;13_#H?bO2*kMM? z;V}bc(e2=_YV_XW++Vmn)}wD3%Yq!_w;~>{E+24R<=l6rNw8T-pvxPjLq0d$E)727 zL}3eSH?@-|q0qRLH9?#b>CWP{wLVd!DwW`D{LTc_3nbkhU0(o0PyQGV32yZ6`0pzQ z8KbbWHgZibs2@#o3=n#CE8#eJv_tzW&?HU&)vhpuz9)Ioh3 z1a)Q}LX=5EEshKVD1m3Ehw|C$~j`K6U?h2dlaS@q}lw@1LQ!tZhW+pkCzuaXP&YaEQ%0 zQ`gFlI_~5fIWsH)<^ncCC3*lnQ%;ukJRO2v&;5H+cPHS;n-u+G^#w2x=E7-w9*2Im zvkxaP?|PN{Zvn*A`* zdA|qeXh)pgTl&FPi*HnCkPdaR7B`OQF`+ko_H4r#QACmSk!Ch*7nV;87qpVPfY#yL z4<4}!c+Rx*lxuDX)ck#EbBi{>heP)1<<5CvkEBf&ir)r({QDsu#&Mv{KJ5Cyqz7iW z8k8|5B;fw^4d>4#jt+Lvp|*m3P|4C*CH&d~gXgH(GOLA7Q9x!$*>wH-l{7}g${G2<{x$?z%VB6p1=$}Dhv}?bZHod_!7qZqsK9b z`ewoDTAF%rRS>cfj2QwfZe!EbZ42C``)`hzt%BE|pXb_dE&$bO?W|WmlaNU%KU8pw z0)4%(RuK4KJ=jEJj=n2igV=U^y&FOcu-3b6nw>ZbNrblrZfCy8Qm*=TBroiWn+UwFLO5~RFdu`-gJ(!6L{&;e<(eoe{?c}t(p$i^J z4mFmp+Xlm`m;vi(I>eQ%w%U7^4F71XD^G^IKy&N-9f?n{-(ZCOtA@!6yL zDTYDt2+_FqAHx*X#`|U7y1WCiVH4i8r)khAKT~cP5exF>HHtO(NpMlNcq;0)1|_Q; z1f51cRHJl4u2(oB*5Fo}^j#A8d3mk*}1q{^NVMoF)q6l{|2S-z-NRENnmuKM8(yAb(9d z)rOG-$EqICo+OOJ>2Hs(v^Xq*Y=lKb8D8c3Y>kPA{cJB2@M}JT(;~xp;-T0Y>MSP^j&mY_xD_Z)!Nyo2KCz@ zCiEmWFPsFswN8ysL+gQ$kE$E%B80lVU4qh{aia@mXB90h2w<$PfqKqhkXNO2PUP`2dZ-%*Dd|m;XzW}xAXbq(Am^`fy;*olp)xNM!!W6{+nIT zb{r2A&W#iBcM|p}#RH%4*Mbol)*QZf!yVIDnZfBUSQZJTq_FCQ-_?Og%!&jA+kyDE z^`eM*sX@=qyazJcRLGf&Bycij`JnZV03r%Z{{2r_P~g18{)sg_v{DhBN{kDkF*V&g z%#8r3PXT8>(GH=eLe9Ih($n`k`lg?T1=Cdd=eAQJHnG8Ms%5Vb@CH%o_agIvbR*Vmt~!uAItdZAm? zh?z%D6!kKo{ERovi=jZHf=qFtrE}nLL6q`W$}Sug z523}X&4O3arcaD-C&X+^8YnOmfmuPiwtY* zw!FU<=+O-PoUHa71yS%)WjH<2YZTf>yo(2`$k4|%w66VXABMGggi`z$fwp!EogQUC z^&;e*C0;x{v`rAt&EAHyp}!(-7P?uFDAV+XUvI>q-mHHsRsBd8!IF zGVI7w|9Z1Qgd-cx;WHO0P&`c}TMKn9I4pL>edO;n_c*PAxV_n!h#rC)(wC3(4fl>x8L3W zx&!I9kG<+{av?<%lkjE93CIodbnqUdMHeJ}zpH#EgZBBTi3_}G)o~w; zb@^5x&N98(ik=h2%AX!iWa+pXD(E(A545GL56@{J5l>fyh!BLrKd$l7}1i=&F8z?L^xbmvE)>-13qRa%K9a7 zAaV9pdwLcnYW?STw#jM=m@yjZ6UW$*4yVkesE_POC?RgkowplKiDJ@R49Z~&ud}%k zOpDGQzJKloHxaZn6zLqj7U8Hj&v*9Abm;7mt(*i0J5tCI_3gD;fZM;Y-3=)e=yUos zS@SCe`mxqpnKwBBw5qeWt!^y>?ue)i2b~DYUe?I_v@{O-72k<8PY2+L)r@vl)gV+< zJ`Lz*EQZ-1eZ0Q8EpSgeUY-5o0pE01BcGoegCo-#Z(d{`Em zQKsIrUfUJ8HE{lg{eul)R8%uqOIU(Z4}-W@`3H5mZp{Z5*5E%+H@-c)J_yL)Z~gOW z4(>~q7WlRv?2m|%^E@6KFh=zSBh0Y@C@ou-pQaH?s@SKcnGT^qaXv%OQ|yTBKrbaw zG7FhRzat#DU3e>KNZ>7=hgGU4R_~n|(P@2npAxbR8o^?(Cjyor=4HrQcMm6uciqc=>k*z#Irp%>%ir=9O3w33M5jc zwc|TTaD(M<)VDqY*gCh>nq9-g(JC!77MU@aG)iALsi=WcnGJv6L@baDILAl&df?D& zOTK)QPI&Q>P!O$40^b2Y<2NfJD1#*B89{>wITaxp%}Nr4$5O<_g2b-DXA9Rrin4P_IIabU5|i%pPP4(1uFY zSApD6A7(v`2=_m*_suC&qxFmwTKso5^hf%R`07#{B%cp{GqU*)%sZ)MS`Iv^hP?_u zGk(CKy+&z|H;Zt)I-lxZ)G-urtv!(?4h!aq;|ax#r6|u(~E3_K*$>_s<`y9+R1cuQ6fNt(%7smgXVN4Lmg( zjw>e@ORvLG(u^2)1S5K4`st^=S37VV?)LoM{t*hA<=N*er(iX6MzAZ840`hE&k3=c zU^8t`_q3M;x?Fj6>R~Ks=CUeqn`0sI%8fTw7d9a6KmH@PSO-CqfpmnwVh9xJ_2ilJ zHsGVe5own*d!X(;a%w1l1EQ}sl`)Kx;cj_V_wSNDcx+P>C1p?zY=!rYX>-Wnq*TM< z6fzF{7PV8eZ)V_BMo=YLp$*tmO-4xvJi4{JS6d=Rgs|z1Ti2%NL4L21X+Ccb21I%o zrVc!FIFo3qPb^^L_Qr-{~HnfiHtcKHL@{fz0eLc`p9Lh{^NJHL>=3s7xqpEoR1`W4v|~ z<=-jM$YNM|`rQst;3F2@&tybXhpyK2{ygx3x=ez|CuY>1S|Y@|O^uY{+6rYc5m;X_ zN4%TZg(|sqW+AyQSX?^c;uA@M_PAxs6+Gub?A@m?u0r}?hJG9u-6R7dh~cbf&@c{^qv; z?;%i`Paz#F^7%;W1Jk@I7;8Em z_IY^;NaxGTF}erF%L!VK?<|9jYN8t(` z>*aRzWBfd5PrfNqKphX10i?>-JUkdBJOA}irbJ1Do8tM#m9Qd5aWC6`08$(&yh%K( zFjTUXnjbd@AvH%G9z9%!sXRe=hB<{oGc<0|P5D~B#MYS&R9!G)sPeIZ>e++ulZqGd^kn)ubC zKX1=N^(*PM$2X_I;9mh>r{y4oXzDi&*N?&mn;Vg&xeps&4Ga<-od^59=LGfa7)(rw z6xuyl2lLaVaapHEfajEl*=N-a$Z)3~=+IsQ9tl-t2IGVK2PM=5Ms>rR%k(n*{wr{I zsZ!%)>v0rfD0R}|_W&d_DavW_0-?9lBz9)zxE%0Gd#_*eb$}UM_|-n4k@q zTdc72AZO%Z*SM7fn>5nt(Lrw8UXCN|eUo7b2m+fvVnc31@6zfk|mSO5t=b zBrkV{Z7R^J;WR>PlRmbOsIY zx$#a2u`7q2qEDbhZLCaT;}&G_)l~kbX~2$5i3YM0kMU3wG1gP37!A=DCc8RQ1Q;%M zQk^;Qg_LJrg*#4U_|-UN)yBF4Ro=E@6rD_{#)7tgTK*plR7bUkY_7qjugR8YGlzkF z>$vCJQ~l8Nma0)QegkX_T;Ax&??K90x##64_nOCOv5NxFp-^vZZ3j6CPX~qV;4|bD>i#;P$Q*svw|PVM4-925g4#N z0~LOGvZe=Kl)L3%c;fR4XlARO-#F3=3-cCMH)<)+>ntipU*bH}SGb2p^WwmdS^fMX zh6c?%636N(k>H0H6IV?s1ImaQ4gchdK}F@P&uVhdT|t*A(>Gwp^QDpRqjiv|=@X8MYzO#Q zGTE@P4$D)6Cy0wIXgrDQ@qFYCjF>9)HcOI$chAEIr@@5`#TYm%fW><-w*t_?#qu-M;l8nGPJ_7cDZa!_#9|Iy!mA@eF5|r_)G_^gi$;p-FQH` z7Ho_NvyXiCV7U3=V38stN@p>Q5PFRTi)ic)s-i-{c?hq0tN7$sY^7$gTAt*!frMda&5Zq{aR!W6g@t;OZQNs=%Iw@ zPFZ&JTJhuSJ)RMGs?a8e-Dv`!$?*cpN(zKscsE#DI12)4bo6IO4)TZT+r1WlYV`W% z$kiu)Oh`oL;aEiT3gl)h@3E@vN% z{q%Z(IL3fW)V0HXWfQv7Qr8OYaPU6>0096043~E}6uW@a!zs?`$dCqgz@Av(DEaU%LaAF)j zOli9_0~E51BLJ0^bfiu$Lt*s<&V7_Vuy|?$r;f2zPy2VHFzyrgvyK6r`jzqDJ~bvN zx+?v7yC<+kvei-5?cqeP0c7wN-((e; z!(`lQRtK$4aIZi8+2HCTRK(k8P0u)psDx&k$BlmQ#zcz-y9kpfVT&#NV>B!XR#?Z= zny^yVEGXKRl|f2zy7yxQ|UCcyH`;9WrWzMoEU2nrR)b@{cB{ z^3!2(xWLtqv6`^vYbkGfSdZJ1)O<1bQJiYGNcrMFisiZdB5E?6r21IAac@jL8h`LH zPfZkI)L)8W{fq%Ut1dg$-U`G?rAD26!Ae4AM%NVF>%!TSMZ?K|24Jb}^MVoC4A*(q z+S6Ox@H@8X+u0}zX$@Rw>nT`?4Fko?Lj${!RaO2V@W(88OA~4LmbXCkw|sHN;5@jS z!v>yT83%1b&i0#jBO={>949w6;vz4{-|&-6{7tZVP-w195-ki~I0^iNu~+i?rm$H& zvDn%+cWM!or!+k_qh5q`+g!JA5+pHoy>Xs~Gw=~%ybq8b$6Q_E2uo=x(&9GdZ@AL} z*(2TtxzQ97aC259=%^UEbEw2;?0hW(zh1MNyv$CPO+LJ~9z2ATa@%XTbPC>8+L@=; zw<7PqE4Pgp{}2&jFeNWD49f=2I>}lFwzKN0(RoL(-p`qP%%U6S9v@fjJ6nlcwpH|J z>sFGaPLsHJ0T$Arek_PyQvj&+$#nfn86nH2mT)dTA4v zJA0UL$vSo5S2rD|m+y8(?ifM|(ce5sr;sgzMhR~(Pa$Mc#D#g7iSJ*C`JB!c;{1F6 zizq=E@-fa-`R^SDuAPqR6MA2V+E5vRb7y*CrtVub@_IS(^rox5YMI4lhn0c9N|`v> z8oJqBxCz`Gx2c@|wO|Uo-4M669}nM#@AS2z;)BoW=gQ0Jh^!JkQ{==#%BdHQ?95=` zH)YStW={$c7U!?YP925pWK&A@T5&?HxeB@E zgz(pEr!1yn2iunkzhw)!VLFZ297!@!ldWsMIEC2j7dDwS)nMd$rMZC(9TzJDBsv?q z(5@t)IJ>hBuI&56rasreJxR4ic$S?ck8sHv>5ib9MPo(3Z#VX8Xk^oBCct}}ZGzS^ zg{@KSK~;X`SSj>!X53~7uTus%Zx)J?LiwXHJM@R3o9Q98F|h(NMNu>@kyh;Wc-k8{ z&BVuBHqWwe)?vNIvV%LvsZvLa)`2H=?xoS%h{C`xk-`PY@ZVQ~K93O&EWQ4p}_#}yqn17KqezTK~mx3;t_ZAjma%z3m;I2Q=337mu z@FWDk-s5MTuSde3%>3CrR&qv}E_$(=hV84wZVl7r34Q%ba`S8lHgjt0WL;q+&KI)j z`iT>u(70stb7%;v_-0k4zw|Eqg&CS{UC1t$QQzu2i`|34vH$e)(7`3>c2|Loyp8=( zy5~9*^8(zrGB0)Fq3z{OCyvdcQS^}S*alwmexmk)a4(mkkc z*d(oPK8GrO@2qQ64PfWYo9szoLa}x4P*_zvOw8pE78^;CfW|Aw=Y~Fm@%X38F8V0U zV!3nNUNyowO2oPR*(^GR)jp3F<%2dXA}N>u3(NQv_iuRFfn%eNU$#8yh5OfU)Kx6q z@Eqf0oIW&+@o$kiRyB2aXkcST30Q6W|ipeUm1K%tpiH=4<4QE=z`T#x!t;w zl^7Mvc3Lh(MT&iS-XH%yAc)62f-#7lMx}O-?yMjss#Gtg!Z>1H90)F&n1Ty_U-km1AoThz;)-j0g3+%$wCJ>Vl;j8*Z* zx6x>@{+e5@zVzQelxqZP=rtq!via##VnvASY|V?+pMdzcutv|yekePLDM<~Lqfl&e zoU5<~B9H&Bf3loHcsA>Wq@x|F%QT}z`6r;1kt!)|+XX|)3Z+&IV?d11E(%Izzv1?oT1^f8M=Wxq*ue7Pgq5 zbDf8G@vpNQ@BZO*MwYngLc>zNT526QLPwR|Y0fJK0}!mt zee7TrBK~k)DWgmP(`XwaIrcm^wf#XE(C{Aq4ODOd2g{fQb$&}{{aC#u&E5DQ*tlX~yHXoXT zT<9Es&F{^mr|HCzj@!~C;@7p!ADsqq@a-Mz2HP@}-BlibKG=l^sYP-$6J9d2ka<^g z!z7Ye{^OKy8AiBQ)YbYJoyN!4^ z3(Y}zN6->W$m5pT0JX@tZY9gsj%2|v>0A967#k1B zQ_E!`t2bKZD@SvXUb{uLnD}^{FkYxJ9;6V~@T+3#$`VAKr(98jbq=*B3+LuUYapEE z`Yhda94MyzzE!rwAERM+&kELpsvbgL9#adai5IsD{&JE}hkQPNN*_h-+izbRlDiPP zR_Y0%&B92igYQ@6JZz15lN7d7F(25j)^}$JsvTUtMj`yf!SYKF=dS^zSnZ3bw5x;l z!(x>RyH@O2nP=~@eHw9*x#H}WJ#HYMUjVmQMLdn5;y!5v2<=P)m_433Or=RnRObQ?#$!s)6$>mO5M0u@FsFW zhlQ+6y>!E>rWNOUN7B~xRpSH?mtiR@FOiGc=6z;sE>7FqY=`17zFxJ^cs|;NJ2EX( z?uROoXEtsoc7uV(E9ds@+B}2Rv3f^W{SYD^mjX>fPE;Txj2wAjREn=E%`z_i?Xb`} zWg_#l1kbb8XM@?QaKFniL5|Xin}_OE1N>|u8k{jsYxSx63Z}Ei9kUg~DDz0%GxLF)SWxpjKP8W%TQef8Dtr!~ zO`eIKQT~l{zS15e`x)5upYKTV(FO>cE&Fmno|VKz$5ftmrorcuf&Z2m8S-v*sY>la z8vJHL-v+NygSLy6BU7i|iD4+dsk zcz)sMw9lY~DF^we=h}C&b{0b7Cc6EF-MD-+eD#>jBo0)>{yikjO}f~!v-Y)*W5L3G z<@B*hcvu*qE360S{(e@pI6IG>rdv%Mi)gqfV7BF690MV;XK!lC^g=vblPv6Q3h`>W10gK@)+&+*d&Os*c9c8|=%Xd=87O^PvS5xIV^bsK`) zUwy9TAB6LZsN{RRy|~++F+~j@#Ka%5kAA`R`0Bm2?n3)CR%{n8u`&J&(d`#AgXlf}W-2fHAnD~@k@$aG^pvuBBK z3hYd5e1Fd2u(e{hT;@Oc$^G8P@o^TFk3=?p=59xTes+yi^f)Zvv3rX})M9|wrGJPv zf#=e!yj7x;@DgxVQQ6dqEIxO>1ZO5X|4TVv;>1QW4CO88R}6{6#h1e8WE*i#^xnYh zh)%Gy#4=e#))2nyw@rh(GVf2J$jWohsF{0xqbf4i4HVJn;n`uJc4d2f7lJ{X8edYHd2V1;CzK<6n2E;YM0y_x7m9n)}Y zra}+ouI%Ztyf}ffGX{~phE;HtksX`Q;30FzlINH2W+BIeMZNjGhGFF2SJV2m3I5fkoLsi9$|& zb4c0x-xwaU)SgoNJpo#<){NcaR`RZ7ZSXnnRix=+K~6J!7gTSb=C+&31yxgQi~i|$ z==6M!d1}c{b|*X>xgWa3!|Ob&RoMsNWOCK@Vp=<-qEB78^Jxebd_T_^hKpnt1rM+iY15Ejp3OsOw6_*_F%~Ck3U1!Z zTw8DYmGBdvt9zJR6^(9N(<{-aVD8NBN z>}E?xHuXVaqrKk4o_~n?C3!!6DL1qCTE+UX&wY$MiOW;>Ww_t>L;ihL&@LAi z@>ybBjuFy^HFBwA?CUBZ99CM9l{$xTf4>Kf4T9uAQmLOvEgg+_%e2cqxry#Z&aPc= zDde^}dzVj3H+Jj`Dl|%FA>&Du18Y-zv0rU5OhmmJska5@$JO`=??)|7A^SpDTJ>?Y z$_}DFG&!j7UMF_x5BW_>SKyo0O26n&N(sl3t+)|!4yfb+zLY!0uq`Q{#;m1I3 z;W4W+6!j>{QGJ>rDfjz3&xcZIWLA_&ZL0*8-?zi=dpEimK^GM4=aH~jt6})N8^1aP z^Rgtmutv8$dU?^(z9JO{7WdcUPLU_$?#U_)o{-!GReqe)6(=M|}CcNd(01jpkNrKybKwG4dPA@X(Ll@3S+7@fgc7b#5 zP58#=>_qmJx~kM>I$YDbRaj+akS5#jB+b$Yk6I6pb2)Q(A0SmRPnuC?Kjd|EbQDk4 z<-K(atA~!7b>$BhCUW>3C`ow(IL;w|q4`TEf=z+Jl}D5vR#_5@aCr*8SHzD-aU@^reOB1dfZ^mq$v{5T4lcc)52T zs&j8RJ25y(#+6I)674-mndXnPDfok^4uJ#bRc?Jv3pMF zIMxjC8Vwz6g}Std=G6cea?CU3&c*;LwxyOug>B^^dZw`wmPDMGGugA&whyC6Q<0wj zl!+^^=QkYQKZjK-*UqcjiI8_!@8>#;(DAkI*{)z}E0hm!|0%NM&AZb_%|;e!=r-GQ z(&yX?qW;`-758~zQt_rER7av2QnEIsf;OULf2e{qg~>x`>n`f1c(q~C-#uSjsu>4g zO}4QI&Y?)mR79t72I;n2xEb7IP>fYq$d_AM@7H(t3uVnXEM4zaeykc<%UWC&c_twE z&;F@ILO0em8Qt1^uLD`zIQiQv=Wy+tbjW(?YQ!3ITU%tX5nmquL#yX!p)!(`xyU+< zFnhfuCAp>gJ#i+C-EIcEw`-el{9wZFT%z%TLmlvbaqMQ~#hE297qi3tUO0tVLS~>3 zS8op3Na|9E_o`bTl5Cd#pVg12xwpn)oTAgR_MkEeyfZN%kRwD~_8S;|U(t#Q%a8Tn zeAB^~9(!fotyX-p2^URmonP{L_e=V$Q_vKgE4#Y92aS6Zr}qtZL)ZbAO>a-ZNzdw9 zL39fWW{d;At9(Mxg1BDk=V3^Me%TYK!34jEai!TG1`a%ZbI@^)LNubUA3gtY5Y~G& zVpmU#l8ImiGk4>Ekk|Kj2zU1S?Cm5rqQ|xK*719ENXD-CR!f$=$-vR(<5Lb2W;m(NEzU)X_A`UGy{JNM%x4=< z_a1C=q)D}tS?sPdzj^XO4+8Eo<~NMDqSraLl=oNs2 zAL#~F>EKnbSauS(v+DAN#8yPi?})p%t{VF9s~5g6dAE?E+}TM<5u&|?SJ=Ut4zCwo zgRkb7>iRN{DoO-CcdWu-cf0Mpzl4%SKeSgrSvb`2PA{oMNHB0Yz zROo42$sau0urK+R+5q?&9^SUMJMebTx7$^d<(QO>7z*+ogMYLA)Hd09tj-TS>Ul|& zsRvlT zYbR(XPKz8aE6JyP<0C@R3``xMRs}wug4cx@(~Pghc%JKjrt9hmntlXDx2m+^qPMoI zlk5yav;)l^ooPiwn5*aE>{X=3Q{Y^EMmv}z=v%d3kR1KQTwY!_h1diYuN`jnXcK13 zsialH+3jOp?8T+J@eFdzFlM6s{+c0``dSF?dQD*rvk_LaSA}2WC`2{5Q0ag{7xI6^ zDijG%qEW^!MQy3?VC|s?(#{Jw;Vtc&bYdJrY!{M5=}TUF@uXK-&m7v)TH zP3-r!KDZs-)u`9WK+$iuJ+pmlNn!}&?w4z6s6fPvhj9~_()#=(W=%V6+*7G<(pbp> zzuCu}KDp>BQ2$wJkdL>HYYS5Ew<45tG(RMcj)gx*)vcBK5nCt_<{vQ${$qhLlsz5D zpmjb{zreuUD8EFtSSiGg_uT6h8o;~G4Nbd`cEh9O3FE_39+hx^_@KV51`aECJ*+P7 zz?z^|ceeu_=vVcOn9QEXM#t&&aD`D!W&l}0roXHRWeH;9j$awgKe_=UE+!}JW@k}i zlDfl}(TD^w7D)^JA@mtG(7251QSfa%|K{N-P#rI)uQ}d^puCehM;*JtULci|Gckjy zJNtHLZDJ=6W3=8Rx#*Eb55{Y$ovmoQ=&4~G+=Fo2)6{IeHAMDHkl(xb-$)w}y%P0; zj{Z!ZWZ$8GhzwzIFXqUD$J5Ve`b}35YMJ;66{kK}@aXS+D)|@aRx~gc=|G<1{kA!U z<;47Va+A=r4m>ZGyk@_767hSkG%Vyc;a5P~`TZVq*qbHYntHqfh9=B-X|DzJ>K=8Z zsV?OgZ%%^Q;24r^{(7XXox+8kcI7t~=AilE{jI=tqJ;9@LXSnSAB}Ynq;@^)gi}Tc8NAeg+BR16c`B3Koa8af zXMBY7x`kKPntD9nH^Zx6$kEho64xW*o2qoDajiH0me^8XUaW8% zv?v=yyY1$8?s9Bo*w*O1;6O9Pgt?8YUZ+9eyVR{SqXSs@%8~o&+c?&VtFm9aOGkzd zM`()mJSghg6ZOmcvGVTnYOau##8=d#hnZG~gFlcypfHA%BTt)R<#>r=$oqD1PeE+~ za~6H~!L=*n{*feJlBccRSm!T5-kCQ(Ej`Cd1l`-beg4Zs==RUEhr*YGgh2@@%ccgQH!o=zs2a@`rjoPFB)-JI}I_{oA?x z9d%a|hU%hTs3{$(&)Fhdcd`(5WlvJmeZXx8DIN8R#` z8-k@9Q5AV}yU8z6vS&Tdnq<2wY~RDb@4uOTJlL&SbEl*o99BEFRgeC`W8F&?Q_L|? zH}hAQmCj;LJ;TDaM}#c*klpu-jfR7J=n<=}sdyOc+D~DrhsqNzq3-$$ROi<|4v((I zN~YEQnU+Dc*=9S+JmMp(yN!e0CYbnWq5Plo<4){7cJ0;IZC!}(FSAgJDh2KA-Qk%;7R;!mM~=htm3U(G_afvcD4Z{L z9fg~64hN4{7uv3Ks$Rdb#FH_`-bKuI7~hPl_KgxI%%%Ux#!}h z@3@JD2p7|D9ro_T7Ka`A#bwK@jhNsZ>ZcJ?BySriUB&r|HM|4@OC9__8)n2dvfV<*951!3r zLTUB-izE7-;8SS*?qttSdJMvc^lWkw{P@cDz_WQU9NOe^s;~{Js&1|;zD;1Yo7QbeiByzmh^Tmu zL?NT0q>`qVR0ts{(IP@$g%CnUsU$_Il(zPsx4P|do45Vz_ZOVkIiJsYKhK+XZp}{7 zBa_%`Z00ocWf&!i#m8tN6NuZPdsqBd12*ov(61agi<0-Yx_cBFaj54;nB~ttSo*8$ z6j17s_;ANekmD?*XF8~@?X@^usH$T7y9d1C)rdX4fG<`XFRb{?M#N*X;`4UyBJ_#$ z%@avfybt?)!si+daT!@_vuY&CJptP#zXN%&<4^kL|7s97%+`~-JI%QK?oC{OVh&De zUG#NlrI4<&jS`vb2I0n~Wh~%Ufx{IWmUf^UN9OOBzhdSmA@u3f6K|>D&UcwQrp7=F zVlH)NHsT`B)V3LyDXa}2IvF!iflcv)GdsRb;t1oYr}4xp($5@D$#t1U(ytAdyGIx( zIcs1TxN-rzOQTM1x-Ci!dyIt&)^$Nu%J7cKJ1W+SsQvf)Gz0F=+O&}12Ke7*RKG4} zA<^n}>}+geM8Hlu?BDHHTo3G%X$a*d@pG#i)_tXrDdzi42ZCrYVTo0~lh_5$hNQnD zQnS#$w?>U#HG~MOtsS4}R9JkeFQ7z<5H%m^98LLlJj}KKCCFccd)zlIHrLF;Z=)Z3 ziB&fUZ~3-_>Q?OVjhr>u%t?Iod^ctf)#H?l!@QsDG){Q*ik$Ttg=48=Sijc*4xRJf zVqV+~?_c(tWb%jcAM3DO#fKqmo;QBRSJ#fW$3J{Hp*4$3^Hq6Iv^(%D_v^#=Iz!+N z-odiu-uWjv>2=H0`#se^N{OxwIV?I{&+_3FZHc8*~)&8V-{o|m}0c^?&0 zX~*_0e3YG$A3@nB8t&KMiv{so)Ah756x|hzJ8Ct8(RwSZ652G}C!WVWjibRxuebh% zu>fg&{q$1Uw`#N|eBH;!Gl7M-*4!4X{3O{W{(W}f7+$Ck-!efR(OyXM?RX|s*aPEwx!->NG)M~iGfwr|a=%dn9_x_&#XGGq zoe|!>@)sv5k&{0CY6lfgYD+OZxh=Tk+Neoqs_<(Xpap6qL{umxy>~vfKO59{EakGPTq$r>WPDy^36`CoLsNvo)SrrtCCEi{?>+t#DuVUt_-%$IPp0Uv13fayh z=T{0!kb(^#Ee_Mi5xAzHeoM$G-f=wnY4J1!3<16)ETUsaWVZcWTZ_WYaPdT4ms`s-40MTneEidoQ0PJGnZum6QL9j9k@|Qg-ce##gsRb zh-^-#cDpgKp{`EQw1$OH#I7fNT>ck2O1l`V^gG*|Hv`gPGu2H1_iQZr)90@mlc|Y~zNtoZ9 zqx%?oy|hGPyb2)ABXy70YZ^aY!@75A^&uiNva#()F4{G-e{+VnVX?a8n$IdKzUVPH zZ~kqDA{2pxO&Tf3qTMhchTrEx8Q+w4ujj~(R@Sr`7N@p3P&U4Jzvb94zG&oP-vMzRy5 zo$i5yd>Z7p-w&QkDcyLxspQ+KYh5sR@XIf8mm>FJ1UBXzJdW>7`JG3@RIftQuf`TQ z)VK2R-Ts5oNr{(*DPp7}hGHbzGJ-QrvHMwRRWN6|!!P}ahKg_T_ist+y|R_A@`#yq~!=Yv|EM2T_yhO^nOZBXgi`!wiUHzK$wUwgJMAtp$u zz1_DSg*R(BmFpI8>hrItorz-PYuV-0$lL93YVa*>{LVtu{@MooTO~n~!wi&tWcuJE zyH~2*tp^I-qF-yCG7!CT@jCm{P8@S-Qr1}20*x3imU0VGGI4>E5pUX#9W;@+3%lwt z@kQa*xA1xJ_Vl0rt3^XXHluz?p#^o<65d7T@{qw@!HpKLTVV7yW8a(UF?hZd(0;SF z4^5H%3Kmv1wvA`wXmUsp=)8 z%`pC(p!mvf1bPyOd6XV3VeO>bu6CK_|G+kK!R*W+PHS%cx%hqydCy~dD^Y}*TnhU! zs=cci{%79z{PMhuoWgBttCgGZg%9!$zC(EPePjB|9gA?gQdDK_+kwlGgDx7?Q&7m? z`$O`BAQ6`1P&+0;MX*U_-dU?S*u03alV9jYEyK>xzlx3zw>~@{!vLD){N3K|C7Hiqx0{vv!Za=}IB;;@s1ym-h$p3 zMrQlU9pohyZyVbsZnBa3!TTk4;q2trT740};UCybO&2`-m4hsux-cSprUNlIWGIJy z{-QO;yE^k^B^0H?H@`QZhojY~*ki^txO-MWOoE2&&h^>*=Y+}W3}GvUox;S*DuPR{ zuo6c%xaM4|>B9Dq`dIs>4v3$O(pJyt1E(G5b8p*T@I81?|59lRqI1+PBQ9nV_SwP{k+p>D!iGruk`;CAam{s;rtHkh;$`) zjC|i1teMz64^&Lz{yJGt)l5F(&3xeP;L~xGKKi)Cti?>kdzl$6qWr|sKQ7N#pc}k< zE#tTKN)n~JnFD66?GQNe%KYnckJF!ADO)tqf#P{*;o+tdn0SSs49Fjc@yJVVndS+^ zmWvL@)(8^XTc;GhVxXeg_2Drt(`f}%JJN%|~t|S*s zVoR|~j}XKNk6LP~`4|rwyQ6hGv9J#Um;9vDq&kpyqG7LU`(KEEcy355Yy?##=lzt= zceHQwI90-E!qv|YHrB>V5*fAhcl6W=P$@Pujd^{Ler(D-c<2w_1Se96A!XlALo(8}XN=;`QU&T7hC=BIPL~65_^6PFq}d z9(mXRY2Bk=g4!#fqHQqNuznc)(jFe3s$)14wQt{_aw_7z*shVN#&;GHJ@*_WfU!0*s`Qc1rF;g!tCCcB;YoCKj z1>+Ci1o^WgZPkfQZ#HDQm>@;IWCfFxf}>l2H!_}BZue}70H zWSAb6KaJreLe|HGPiy-Qg!F*6OIYs4W)`CPdAmkK;wU`ZQa;J+ zu@lyKj@i!_h7ppLVE^Lc1j+>Y9^^?OEzuis6=d~?ZDZ4NJup$jKlT{YhC+n8)!*_PW&=R@|3>D?p6=JAKXjPj@FB&4J z>3c<($c|Rsv^*A0GH?1;^`ERNDUy72cr9-q@^{%zv?p)GK`7^(< z!a3qse_jVflKV3ai`wAlz-!O_;xASWD>-Z*T1A2>(yEq}F}S%H{P(V?7VJL4CmxK_ zP{480t83#5q9?D+mtoV2shRK(cZTL+Gj8g7TcifpKJQuK#y5b?SB5Y97gu0-xXa+E zQxB%TXw7XmUFJ)#a@%w&2N8a$yCw9>EO@D9qyBbt*na72-TP7zqQRe$xx=ObbyDS4 zx4!hD$nHj;#1l3$Kn2?bOZH{&X^3a_ z*|#eMD30~FwWlfFZ7zilem^UBEj`&ls-7KVYUv9=ZcvOvPFo@ z>YhNk!|mXAm=E(f(S#I9$wqhYc{GeEjc|+iLSn1xQRlp7n7A1>U&!Gj`_Jwba5AIf zrufyISn4P&)XQT^n>+E}+-CJ#Gc-&n7Sb={nXx_J$(R{QP!4Ma$$zvldMowD!2EE8V_mDbT*Mk*jCC){K ziISvq%c-gGE8c1X@_e_vM_Yqw8@;-Z4vl5?}M$Bjnr^#O((Y+s-o)sQ{CR zxA!STg_hc@6*T~tbFwqZ%l;B#ao~@pc{fH}t7`2XhvBCCGM-Y}fkx3Xiy^6hNbmF9 z>eMubDjT;AD;q{pxpQ&t{Lhu-%PnGk_T(t6zu9zrNUDO(sLjdl^Nl!~W_2fTnH%bX z>s%H(JF&s2>V^}~Jbp6qW3eHn;mvb&cp*od0%8R1L8Ye?$vPwdoRlL+r|Psq#Z#BQ1I@sX7| zm&3rOrg#u4+QSHFIyez!YwF_buHN7(VkgkDBjqN z=36$>Fk5MHL0fSioW0zStGWi!>#;H;D7_PB-A?sZjx1o*C{yvRo&*V{F%&L%CPIZd zGH3g(IV><636CxJp%Si5FU~FdXT<&pe}2;(IC}3+zPvLR>(#7^sv8FJ)9%68Yc4Lb zElaVvH=7O>!J|Q=gOo_uY)5uY9*qY#3082_#-su!p(mkG48frg+ zM_H%b?XLWV(Sd4B$ub%?C=XSvR_(&<7Imd0;c7UPDO<o8yk+QIV)`>+Ycoc-mx0Q^Vh!T%>CP-=o-ve z)l=cBnM8^M)Ky%@l}1f6uY?;BGqG4T7tT*u9BEXuXl zS?sL<(@MwG|E#F+U5w0@%Hkz-lSh4X1-wLan`WV_`z*RnoN&yc&OoEYpj5n!LY{@~ z|NQ1k4dk87&73!lU{C0qD|@f-61ygGa?HCP3|mgMicOOUHR3Q@7cWYpj8qm59HC*f zdL`Ssk^!85SLS7|BSUzCol2E94@3LhYg#17AWp8K%_KY;N3W@eSKz)faCnRhrfb%q ze?jxmpe2RO*-cEAu58DfYuyhfHg&)?CMKa$XBMeX4lDhg?}x?I>-}r2Td?J%J#+IQ zAL+{3tW@FE1AXPdl~1BaVHD4H_vh<&=(altKD^z9cW<4)rM)hNv(N5>Z=eYY^O0jHk}ad)F#?eEi%ZM)z%QJokc)h#Sdx zB_Ha+=kW@TuVWj?)yg8{g5GJkYCbO6FP4p(YsqT1(>_R?ZB~n%smIf8%<|XX_d#VO z?{l9$E4eM0*)QkZ4q8n38y62Ik}0w6`tEKD`CfE2xNC1e@GWHF{=!RC#EjW>7lm&d(aTzu+y$ZQ_AYj?inUDRYi zLg9`>b$|#___s?>TZ)Q%cb!-^%iYJLGW(6GiyVY;c7*pv*evXeZ8P^AWFwMV6!v%e z>5z1w+`IIWlZ)qGkHoz4@%vJBSZH}IX4HAFRIi_CJC!N2MTCqvA7@PuD94l$lafbO3G#$F;a>FtX~G*=*DiHnH1_%kegTAcJD?4!d!I(pKJ?khz}5$5!Qm0?+Zcy{?e@#X`g_$C=FP3iA| zWBC(H)#M6D_T0_rw4mdDo94HGKmBMQa~CQw;vum-lG`=PCeh2;pZ{;L8Xk95wrIR- z!Jrs#?)%sdNKT$#a4hJ-alK;|0=6tfFZHQiqRSe>`diTGjGPn+-f%l9TX_PH^d5?Z z4>w~vi?e1!ZYi$uu^*8XXvYd+mkG(--{{=4HF_OS1I`IaM(%nqO_EB6+|o8r<3XBq z_OwYWUS#ld#^_{&aVg^Mz2$RKC}%vkhBLtROHw4jtOL(~CKaa}GH~&utHw|e4>8v; zh|@maj+s@P51YmclJ=3ntJUAQ$(9T2QuKDWBDHg(&_}Trtr{AMx;zsIi%Kc_Ry_o7 zbJb+)za2>D9yAk8?}C<&ks-U*82tF9)pk9o!EsB0xrirI*k3?$^T{YgrtOt~sAaJ<<`icVgq(8E4J^%q%lo0++V3M!8swKx=j9<$&Xo>5w{x*3KR?!A?+>1O9XMX8 zKL&9No9p61{KS1{gxp@=G3Y+J(ev^cFR^@O6-(PjI)yKtmDYxYQ1QFz>^EWy+TY6nY@BDj_-6wH&u|pQf8tG{M6v zV+~iw08V}OcHbk|1GUvNl*;|BD0MWR<61qA(c?v@Q*4$!Pdldd%?lb9??}}nqy|@X zQxC+BFcbQVlRn9vxws#DRd6Yw8=nIGSNJ_%ewWkQPC~Q1glhUIf*f2+40qg__un%D zNpUrYZBF&L-N&bAm5o)t#rFNl)kx}K`p^0-6{YNPNs1Na2#DaiDR*)e zF)4qmXk0ppz6R}m4M&Y;knR5_7Ey?ZtcJ-LJ-r|(Gnu#=?AH4mn zupHk_sej5GKApXS*33Nto5w zR%0Oj(W>?SQNrX9yT8PoY!&7k|FWWN3~{DPp`7wU-D5(L3r`zx#fKlJgUIHFobM-v&->&Mv>@j zvhYJX7n?)fBx_bzV~eNR%!Pa*a^7+{jLWqR63ssn%=>5vDf19YSoZQQHqs2X@nJOg zP#$N#ZpFW=?S=7gc*%OxQ?oClmc3NM$Vpae45_wlG%@~G9Hd5lw%A2Qe^Nj9Uamrz ze3KGr-r4~@@4Xk(zSbkMSe5_Zf!g4!ESS_6z#g)LS zcmeg7xRJK`=EetYxGy3q@kwP~o}RzXQ9?z9IxA1f>KZW7QzEC7naTdu zfjqYrN}zgw%@>7|8B~3DYrEzkLJFL%8owsC!o^^sP~%?&7;U#oSd7_7kuq29w-Zy4 zr3s`Mvayh}Ur+vy=g&e{#;dtVDNZt17M6THya8@@K?f$6{-PskQyEGdF*B0tsTMj4 zan0H2h7W8cj`@D)sk%YLRi!4mcC8{Ek5g(EKU0Y0?irIFdKoO~+H-l!{;@RKCSj}C zhzLgXNvgpFSoGyp_F47Ae`#Qky%#IVzvDd1pwGZ!T==IXSbDs%e`^Sm`i5WIHEOP)7PoWklQM<`qe_Rq(XRA?b-QR5LIUSN#9<~^R5ei zStmfAxR^Yy*f|S1??jeW<8%0Vdy{TM)@owvDR}oRWeN*syHh3CNfLGC74*Gphfro) z*YD{{$MxckrcaEi_!3?&&bn=xi`EAB$BTxsGV8f>%=K>Q%O6Z1`@=z|leJ=s1Lv{x z2*XQHycX|`%WpW$w1YkJJei2?0t;K^mchLPxNl=t%(|D0oY^3z(Z{`(6nHOn8>-6^ zA!q&TN|Cd0zdjip%GZp|x{aGseJc@rUDGVXwH+r;o(PTjln0Y=-&w!Bdc+kxo8{zP zOaAD5FHljMLG<;(EADA^*eMuj6Ma4l>S|o~n7(n6l=FeX#Cr}oe;;xV8@D0UU!hc7 zXbCfie?1&O!$VS!-P0RrY(>YBXc@l@eo`cQ?I?wXkAyt!VfLzSN6*@ut%i#YkYN|x z%4s=`Pfo}3CgS_?H2UM-acUbJHOCs&kG4YNL~x~vT0eLguTDxPt8|SAoJCBO_%Qsepol9eTY)$OKajrzu^95~qQ*Bq7KT1db#!^bFO4Jcr+kK=j^Q;Yu6ATMdOR>>vEU-a<=eJ&417>nQ7@L>BNw3 z!wR|aDy%YfbC|jzMp#_`=!?fsfvMXg@Z~ZW{|5j7|Njh^XFL~N7>4bcJ)%TLgNj5} z={}JXl~I%uLPSKAGD?y18j*z35K5>-M3Kz0x5(b(Z|}|P>-lufd4Bi(T$fZrusk1q z4|YfT5b8i0a&L-l=M(w{=v%vU71L1>{%#eQGrua}=s4JS-=ZD$J0Bdh=cs~$Y8;I~ zcrz69yN>eEtUz$}y#B2b4w7k>9ldm94*R5CDl>d%(UfUKwZ)d3 z%kEihu%f9>QQt^z@pRcfC~OAf-w!8LlqZpDuq{ngpPQUxaNqs?)C8=w1IrhiY7nbr zB4eBUJENofUw5tcNfED{*`*gJ&r`P^us|l6X=|ic*V0YfrX?dnRMO`2sfp;9(c!0&ZouC1#(ZL zrKU$I_~#77n2RDV`m`c0BUJd*kq)Hf2%5yM6oM^d6Ell#2duB#s2XU#;^)Z79mjiXf32L;%SbyCR41a!Lnh~SwaZldp>1~1ZBAC0 z6mX26O_QF%D*x#@e&-)({O{e@Z~Je+_wgI`pQ#O~vP1|3j|KmNPgw+5T6#XUAEuHl4y7Zq1o2{dK124c4_!B6sC{z4TGi5>dZ zJM7bp^o#M;5)$FqtRmlfYMz>OxfOlcEJK<{>xSuLRW{`^KvN&6f^C2uVf%8 zJeIAT?K6n#-dZ9QI*6`WJ(0kiT3AJV7FuzbL#Ttb?9jhy1S~G+tQ=p!%F5nC=I0XR zO2!VwY$q||E^1aHn7oEFKC_`Kt-WBO$YrhubCRKrf4a?YE~4Nl->ZebdBkqkV~?;9 zB6fXKn&#yTuz6%~=9I)HqLuaV$>)2c(B{3Jqi}H&a;4kSUTyD&VQX8SSxggH9aSk! z#uRv%>Ap(s>BQIIy>$k{bi~zB%RXu^4WW8%_w6iy18zNN<++s5jVe~}n3bV^IB@2a zXW5Q`VMy>vWFZGJ79Xr+VcJSeHWz;5QweNRmin|RNQd$+*nX6MWw>P85P znT&LNZU;}J%Mgb`Ipm)eTyawThxh*k78ofagxl$bN=xGsVh+qIQz_RXCe51p&etpy zWLN*-{m4ct;H`jFy~MH7P5VWhFu;3Q6bOTfw71bE%YN z19_Ffzog5?M)Y+BX7^@vp=;^lpx#Uyp53hqeSUih+#+AQ3R3#1t9vYbUqa``= z*EWL|yoh!&voxV1#(Pi5DlJaoL5~RK{!}j%rvy58K3K&zzud&rA>8EKtH$KqfppaE z-zacga}Etn^fb~vlQ?uzbu3JPg~&eZT0Oh(4^j&hcj>Ti{_I6 z;s3NIbo}uozRjq7RIO(vo^OAZo>QJi?R3tjPm&De^y$Qie+%XKn|kv5hlvh1()Ue3pZ?v4wEaC$+>+qA!+Q{}-kL?PzSe-D>GA8U$Ek?- zU8SUQuR=6AJD=Y~--%Im{gi!1bD(z#H&=7wCV}cv7kh7GL{0l3F86|foKBDPgb$aLf zS-43Hw;Zi)gV9u?xN=e#Du$1x(}=I4e@V=nWm5wTy%@aN*eaPXv!wn9F3crQsUK}6wpvX`&rwYyMdn+P-r)(@%+;5&cXwlV!L;R#{uD4# zv$pE!)I+$8_lUM7Cvn?;EF?az4Wa%O{&L21I5qV0d-pH}xw68!AwAQWCK`t#Gdd6v zeZ}j`J4WKellXRob`hc5%Jz+JUq-A9zu3P!?XYQ)2vaa>#pCBK67RVS@K&Yn#`T4E z2rYlu9eDg7PN+z9E!-J^O-zI*3(G9_8^@K$)z@HB)|mNg<0urndr#edzlc7EtEr+| zg5*qF-tc3^LFiB%_td!YlK>i?;oz(p2&gH{F1-7Wf#8*ZX8D^a>CR@YscwKP?XG?u z$|xAd4)rRRuoAOu^DN!<{&$s^`XY0go={X`gvFjP6Uz&MYL-g#X!JZAYGn|OU4+@O z+^Pjk`=wt62+x5@Y^$klP#5g8Jfrsi*M@NJLQ$_<)rh~8xyGZtf`+R+{o~EWFshiQ z3*%izDGlRAJ8>@3e$4lswN4XaUKQDd{CS0E-*?2U?xi9l4<&Zgyq&v?(c z+fV1xt5Rfa{XqX(n4Sy@%~gss)*{=O$2V!D3hc3_x)T!JC`*Iy6|FuveEDOZw3D4w zFw8ichmK%D<5_5Q?nWXMY6v$)ZW7S?*;MUT8Op*WRKw2qAn(M$uE1BFFg3ctFuQRD z-=%cp?e7kOL96wli3YKO%oE4w z@jLGQH+|nV@ChVx%S&t{_BS`P_5Tnd`hEIFs%11JVw6ha+T|X+OOfo9j^ZFbJN<4N z1utNutE0`a{27FvcJe$yx0y&)2_0?Uxr{1zYL`?o0pe(r7nN^0f&;YCJK~xr!G2-P z^!MW)JRDI@q`lgSQYT6CJHx$@@iL)adDITUt{2p{sx(CN(~Ncda|W_o-N0`+y8(IP zv`-TU`mpuGE{PjKL%28`+acpUf=7C}lwK`fVkN}k7jQYjn`wbTe;u{P(K-~>hMY*WXu_eEGbhaCM9Anl4QJb< zYsixi3OQ|Bg@y%#FH_z>@JW?3vMiB{bY57zkz=xgLC-w{1?FwoYkp-<`T_&79ogd9 z61jmeUN!t&Qqh7dk!Mn_MKh5uu{Tb+2^)y-lW6fP>+hDjC6j&Lp$o>TvsF%JRK#kR z*Y%TJy;ztW-+0ig5m}bZIjt)-I2pw(*~ak?Hg^wbI=U7jV%L}Rg{5=g9n7LOP#T8J zO2oT3J{q!3`uXgJt34RKeL(uA`CnkMWy_75)MSj-pW97v22z`@KC#y6hxus#_z|BK zEKc8-&Dq02*tBY6PTt7^Wh%8bbg5?s^Rv2E~W;CB|{Tii+C zM_-L^$7sH)Br%hTB9Q~wnB@sT{&%t}^AYO?zS z-+>KQ6Bxc?A^RWaKhP!LxJ_lgnJfg0Eb=s#;o_5^`F{C4bluMLTeI#%P^0m|*md66 ze{cTC;TJq)!~1ZvCtWjGvYKd<%x(jdc~o@jgHEul)lDfX%;QYmNlvxCMw~^ZV_DlG zj@WL`CpKkB+Hmx`ziJy|=>#hkttxSHVpd##rWt1s6sw>7mXNxy%dT|)FZ7ecbyDv)5xZS`!n(a@@guUvuz7S6+5Ge6 zxX=bq>W7Cd4ksZY^yI$HXB!ZzP~6oJzRqa|uP-O7wWIl+WWlE+)Wk7UNTv8sH$Gf& zy}pTd9=Z7qTS8Vl;FZ>gpW+OJI^Tkca)FA_?0xx1S&Ww0HJMh+aCJe!ZBQd_s0o{0 zN7kqZ^6=r0(gV>4?a(f;{2kfSibpzqbH(ix%$^=Uc;&xYR9YH`nQGPHeD9~81l=J# zRy(;C{@*;jQ{}{H%tXi{>}VvE);k?lsOvG97wEdw+F6f@SmO?_3N-E&j=us4f~(6Gi() zGhzv+m~0<}&b&jNaEN*|M+;sC{LSjrT>$S+JCPxd9&}WgEM5c*NFrt>Q@_ zkClnlIL@7?Z7K+yfz{8r%4_#)!SCj>qTfbKK3RS<^0``t{Mon4j=TTj3%AE%8m~Su zD&%=b#&^NLqV#UlJudR}5cM?<`C;(;NlORq=Oa%$Qw}i?agwuY4!wyd%3$1jyD@;e z2Xn$lOz%GHLv27a{rMFta)-{?Fe_~sbqR0YRbF5xys;ObZY~&s-Rw_VF3xeNvF2_8 zV*trRYO`7qQ^UC^HcUkx zhhHeUAwRu!i#_*$^*3-&y2*#R%ETLrr#DVA77$5g$ z(wtlo$jT&3Mie6(%y+PnyqJAvVyzvR73FocrS3)B4+bf^YyaTZGm~iWqy_okQ{x#- zTCl8l?b_X$EuVTo!0_hSI@*S z5RZd)-)nU%5&lVjDR;exg?XOy`!2H(!@d`XluLvOuOZ9+GyFuQBMuV*Au9Y2pA zQ<}o_qq~{ZxjD$0^ip=Nm0EhPKLH#_O~fb;5} zjRPB(py*Nce4-{BW}SyN{IspYWuBp&zK0WF50&<*&g_6#Nr6c3d?y&+rmnVs8%KhD zPhLS>7gm3;YN+2Ff>Os&wcp`NKWE^vZC{0MyUy==h9F9Dw@Em z+lnO}pCEZuS0^p`cNSH5uKi9^nZViKFGUWc8JlTkEqX--$%3SgS)qG1!qf$V_~)`9 zJl*q>E~X#HssA~B(rf}vXcL8ZD>tE1Jf`CDej2^Mk8l+#wIL{L>EMls4p9B4Xs+)x zg<;ig7J~IHP?}Eua3X3JR)Gh#UelFBjPrsO(l^z9Tw3SZ zXj9P*dZWFV9oTTnYsWtr{grl!-kpcDqcaDtoovUatf3?e&2Geq8rr0{4}-@R()}TG zsK4Fea!8{AC-}s_7`gPL^jI5Xq`)kMJ$^lx5fCFzUu!M|nFqTG$Yv^k^Ekp zc@Y^_(HfPSKN03LCYHeEiQTMA3~zgyaNqHj>+1`XaEfvqrCo z8J&&}xLsr7Z4s`6F|}A}J;yS9{SCt#Jd1F{ooe}{=rRJ7%wC@FqbGZ5M;7{awBnyp zkhbTpL}a(}gwE=%plnmh^FHA*9Pr7ec-^0bAWK1?`^jds2aV(%^PnLXJPrxY-DPkv z*Pd&0Zo}EYs}-j4gV^UATcNX|MPA2-#%YfX zVA|FEVL8hLvReAK+_h^#*@n-4Z+`YcPnyMIj(HVEw@i*HZDJty`?gr$%il^)T{-Es zm4TNCG!9%8xy(Wo*j`6{{L+o0)QQ-%^*)r?5@S+QIRh_lmBE4UW4PbBLqGfrFB#{% zGF)4}1edov4;Tvbk*ENX-se!Fn%1q!k{5 zU(@>7+Atgz_on6F8VdI;hnAh=Bu%9HwwPlBrX}3fv1tr!{Db9M>XT3y&E3se+>hrc z-y6KRB1AsEa=)FE&QB;kbbETf?jB zykx7sQQ2+tMO?2oU_aB{i8Rwk^AA)vkdyW2jVj)9km#JBBZt?0=k?ELY^#rGNtc@M z@9jBERb;*3h9N9z)h3>pSj6_H`K;_a>50rz(qh3Fi<&cL>B z95)BMii0tWGc}1C4imH_%-Cx~y?-qf?h785_bbLt^^E+R~2a%JgMBP@((qun0UkkNRd&#}!6#9U8qPnU~ZE!jztsWq}&~yNbicAb*Q4?A)6FyfL|FnQvz;fR*d5peR3wBYZdNl zZ2#bLy#Z9GHN>RG$MCBl`7uYD5aHUrOU7o`7_Pp(ySOwo4k_*Cd^VYOgq&e}zvRbH z2H&oP&t=p>ZMdMvOFjdJEg^B40|N-T9;_-!+XTt4`b^iCIf<3g@3&lsreMpt(eO!e zD-JsvX-hS=BTQB7YHi3EYHq%I=AYAv_<|1K|W;;rP!O8(yFs9w-dcHhu+oWqs@RU?&rY7#c8u)1nQM~uv- zy{w*pg#^P#I?i1i$eQHmqR?$ChL)x+#ygS5=S6`b~1F88WxN5DC)Hy*b1 z1dSh$TvlKpn%>lXteo7WDuF3q{n-$nDSBw=uXCXsWkozPG8da1Mz*~^-;O5n>`zPY zDUfsP38t1FMReLlA2yK%*yYQmF3L-;vJNVU^N!vr>R#-N(D#i#V7TfuFq?bzUwi! z5X(g9Q(2UCiZ_vORy%&nA7v-4&n+#d(%6Y@3a_*5TsI0dxy%ydnMily75TiJDah-G z#uSE8kX7LOf`yukY%7Xry|ugmD%10SCHC;H?;XL3rie~Z2i|(A$32dno6ps}kQ&45 z_`AORfwLI8RCtJWwE?GTG<$v=jGGn2tRff_9tyD6Glq`sN}Wk8z0lr{T4gqq`OjCVhFBBk!e*~2Y@WU<-Z`e_&g z`Mj%{R`zl^*5pH_pedcvP9zMN1_~q&lyv-VQU!UV3LCzY| z6(2g#YL}Qg=UNNXuC@Kw?5mN-ma~-jBp-4YD)c1Va-l2Qkl@KW1G?4VwO?a{uuQq^ zov~#RvdJBM?Lr+`N0z8|jUwE#+Su_uorZ{<`pE9=J&RGJyA^%TBRK9qRrM`>0q;NY zhMf41n#38q%%AQlhG9vHQkB#Q&L-<$kY`=@{qH3SEvZVf(kY9u} zGj>bv%e>@PwB-Ih%|fI)Te;FPb{OBh#+wAxXo*Dxb<(WFIKCVV)l8=1CcNg_|1rL4 zg9qKey5z7GxTM$_$m+0?J(856%7^tBW#O#V2HXp=0?$KgFX9)_)JR2eHt7T9>xY#3kcZE%2r-Y5jX0|Tm zhCTe)8!-i`nf_ffX*?vsP-)8_s(Ms#`BW-Ltzy&OTV`>r!o=~{7`up9KPFw@da1@Q z;qlq@Gt@b&SblURI{Y64QDFE@cgH^kGehZ2o(E`&hi)S&y+lR4A92$b>a5^@00030 z{}h;aJQe;I#;_=bYE`e$Jstd{*SzT!ueI?%M`O60ys$OD!V09oI#YLK$!PNQAxcpO7PT z1Z5k_(r!zTs0wQRtWr68)Q-ryS}uZ3{tUwF5TsDa?fnV@QnUGvM3EL%7u`c1efnaOwYQ zlWEUR*k)u6cWvv1Q(P`Re*HWin_b^_FCY#2zeJ-eDx2Z^IB>MubRI6Mqc5!@hVbV? z+nZvC9;CCMd*m+KhTz;&QeR@`q2Az|_AV<2${Xd^>G#bbW1ss%$=?|`nZ4Z&f|04ZVA^uZPE#k8-U&+iHAQ`2VomUOefZM;}X+>uN@B-F}QP&ITvR> z)|LCrnl8U9>5Z)5zrjEbtx+?7svaD|Q9Zk5Maa^b4V2Gf-AF4?l>KAHMZQTnm)vdO zCc^C-hpi8n;nA3Wq1rJTMpE0oLIY<|6?yz`@ggf}SC@KzVf_fC8UtSbIw?Y|%e;=Q zcus?!F>Cs8?g*StIGFeqcA_@ziIh-!Gd_>oc?+zfkTlir=k=Vph%Nu3M$~f=lKw0u z)cX}1NhuKop&8MGvG2IMz90k>%@06G=9dyQj!Wp9CWcWWX-|G_`#4`SPx-d@}oW5Oq%Nh3@&-vcU zCI|}?kGf>y2LNWjy5NPa$0O;3sD%BWsyrI$-B~|A#;)g&5NA zyX;^vlT``FcGM(ygR@kMDSaOUZ`P+=mQ)lWspkR>1^%^R_0!fJN#`pee9%N|4|5d~ zo#$dryE5Qn7v)Zo&qe^-LAyqyF_14lv)-CLU@X#e%G)PUy7RM=Q}Ob=esSCqGx!hh z_s;gk&M}d%T7r?Bnp3zTkQJ#cFpSmDvsYY9nnuP$XKR613lJ@lyLdsY41u)YT*93F zP@rU+nH5ao%ioN=m3i}UyJlwS71s{tugr1kEAqkLVkmN=NsRdYb4}Z?CP8X8pV`O0 zp%0&{x3*t$U?Mu}t2WKH4nXAQb^9AX1<4L7RQv~MaJtBT>&dYxfU&e^_Z&aDVJhpf z6jTiv``Dc_rcIc?ZXM^)!a@YjOK-ArPKGV#fLLc`1%|D}${S3lV94^ObN8O*`Xq7L zD1Gh3*KgEa?x%+l@S`}gcf1J_WVb|1e*0N_)nVLcRkBZecBE;<=Z;5~MlUunA`*wuRmS2wq}+;& zRO!M?*IUqM+;!sYl`c@3Z-3if%s`WO!IfUVF38ynUg(Lh#I*bedBr3Kg2~=(mVN(pe*@rx~;E{`mTTt$lExE^k9A^9*R3yU0$hbtjob~w{ zOkT}=@A+pDHaz23aQXgcXu)_Jy*=~N~h!SpT%8C z5_}|tQo-L4(G7=_d)rp!OA{{M7V)MZMaX5%2%}RM!4p{bZQQH@RMAMCGx6+XTS`Jl z_(pc}$z|f}3X@gDBIjon*)xf3AJ3YH`)V+>o<@SzGQkwT@>NHVt(E^c{pkg9NP!t zIlZS4CUB7LYaBC4)p~9&_$D7SC$lU)N1kBoCgb(om%DK8!=!Ye!Z^-SSKnfP!atK3Xs3pjEQ;93Pl2axw{ZjY!*;4Gmmq@nx-m&|FG-umaUXy)3E-w?_tBH zamXBSyOgfbgMMCJ>z3oqog8^suVW+qvZ1+;x<(LY zY7}#5L4=g@S0=Yrbzp-eeXByx2*hYbYv!W+@hGFyvqzvF#_D-`kK>n6)~NWs@dh`M zN$RV`b$+7y!|@k0GZR@+a3^h6Lzr++9oQpZOozng6E=gMEJS=EPA>TBFq|_Qc029p zKvsp0+~^n!iOg5gTp2V8@BGb)y+4FVO}VyZ^^ID%Cn|jMaOuXbJ!0?WC8yEkVZ)^4 z#7eFgd*9g3U4gs(os$KrbhMHy79%b*;CMYyloBIB!h(+ZR)iKqaMz-f2Z|k|nFjbNb7ZLZp1GG@&524~KJf z>Nm7ap}#7lv~#Hx{o1x(9fzjyDPYw4ZCf{Lp5zNPP({eQB?~>>9xhTufl91D3I>i>Y7th>Y;{>q-09AUKS-wp3X zx#h`EqQ@wtHfQtA5MCq72P;CC_xT-=kjtf+A%PzzvaM4 zC6xVE_x`?Khp~_Qx3qo!jobW6=Pjf2ka>*3vc+=*(N=;KNwzNdjitpjr;WhM^5>#H z8x86u4%z)`|4=#9Gue<&AzY?f)aLkUh(-&4PPsgSU#|LfqU_VSbfhyoE_nv5(rRHF zH&=mrKSa8Bt{30CvR<4Bo<`Oil|Q#Nr|~we@UIF}FU|>Y`P?nf$M-+M23GIHiLZuo z(fbw=k}Ff4FgDVS)ssTgCA~{9l20)#Y3{}Ok!QvKP7070l(6EI=Y7zt^YT?p7zNo{ zvyOeY5DER!kjGO{jaMH&7^<&r1nZ;Fw5qGDB;j9+S>vx1wCufaP#0ALdaT5=h+EU> z8d);hBGHZ=o@2ktmU(@fgR-3~Xb5Mv5v9rtji8y`Ptt$V0Y#qV;BDHu=zkp2JX~G} z%ITFlQ*I6TUVBe3CA<>3zFzSk%?4mH(2|xPCr$SAi9}DlZiY7>`^3P5VL0#_#qN63 zhpRK2=AQ8Kk^iJ!b>3cULcm_T>D8@25S_C^x^?v+VyERCt=pE|XsLW8jz zE(~G+DP>QI@iyFvFh00hzXfupKNO5O=vdI7q^RhP;pK{7YotxuLD%wH6Ufe<)t_N^FqW#`dqTh{$AW{F<9MZ!%BL1({8j&&0*`~ zvD>35?Bq*p%}q}H#K7*Ol@`$>cr=)}Rx_7MM$YO5U16}2^yc8J67xkk6aHJ$TQmz} z`L_j5`}AO_W{lrwf`_;V?Mrnn?T6Q}Sb)bLd2;_!Y390Re~!34xzS|%JmQ;8N57n{ zMV;nUO3*n@(#RZQ&wh!O*k8z0+}|rrUId9>{&#y0PcI*dvV2{Q$WQyvP5Gyzn`&SG zCbk`q=GCbiyO~MriNki{f(%rIM&@|kTSA7{9`2tegGd+UMR!sy3=2049DUgfmHLOr z?naw~9)#&v`GE;mPoBas;!IZ&k7o}!p<$GyrGg^^c+yR#l>c*wB>yGo4DM+FCHyby%V?|JGFZEUqPa=ElcN1Qx&wFdl(-zXn1F= ze&X-DMaXb}uk{G$A!*~Sv0Ah;{F@M$G0pFWRZsM-&mNPw+g(+cKPp8eVzfHiT+8rO z-R-wR>I~Z7vwemxg;XC}aff!L5~4lH0e0g;ByUkxv}0fznw`J*K2wq;%?^_|lFd&H zyPuB>o$5!{%5M72m|5JX6~_j!l|hAvNF4e;hrT{mhk=eK*&aOY;i zf$M?;xb}EX>H3*&)QOxf3mX0h-jD}({-rNscbRBszT_NE&_vDaKaAp`Q+r|Gw<$cj zF1^`@WePtJwSQm_tjD5W_UV1&z4$>F+xNh82BMD)e58}d!N^ncZl#UjaH+OnoJJv1 zi*vi9+{H+Mk!7}OumD+VFwKw@?7~GTj%K?pz~zylVwHb4w)&OH4}|iNoPrzAiUmgT zeO}Ktu6Php3GN1BYedM&#qg&OuGK&;En(>8-A3#Vt_d>9Vj;X4>+Q=T(h#4ppw%qb zjC+zU+jja-L))?`h5D@nC*y&Q~Jxd9Cy&hthkTDCxceM5EcpAO7^xsc){GL6Sy&#d8E*9656 zeHPaaG@{IA=UjcyB>eVnQOX~$hmf(J6VtNZ?`BW+!=Ev*Rkww;IJOm^_Uf2_USAIn zHrZp|^HbXDthehs(O63%JEx8IeUR2KbG>SyW2rX3PJEs@-W z!sJ6`jVUNmC|^Yadq5GV9##BGC0FVbE^)AM6D9EqA5*Oo zaFlUhI6GK~?5EdtS}NrT-9*w|aS~Vi-`YD~~Ly;UD z!^b%{hW!m4hK=o`Fg*2q!0RQ2+&Xc&@z8SJ@07fCkNC+!-Y>j-d`hiiAfA6@eouT`XXztEV(L_A7UZ}ub4{EyUCjS(o?NsR63DMQuqfVB#?%;Z|yV~fa} zJ$RxMQfboCjVLYFVqM;041HA(JFYc>cfwzvx#$!@Cm}p?=O+q@qDwGBKlXxh*U^(A zS%-j;oKp%fc?m5$N42NE7heYqe?2r|CM&CXE@x>ola%K>6HXkdLAj0N6%n3pxN9)% zJhWKIw?kEzc5AQ@{;TBONX97qoQ(*VgAnoCEEh&SO2^iO88w~MQ55V{TT}OF5^~?) zP}&VE5$1j3Nl(xm0!KSNj+S$i4L8^*UjX72TKb7ZoE+`X!4pRWyLJ zC;OWzm9Q%B;pq$;gy$}8uCA~;C;JxU^mgk{`tzHaV)7V{&5n_SwFEB(fIZ#QZA0Z8i227L%%v^dcv*26`2KA^&PrxErugUn1~)exh6%zLfR2vp)G{wK60IL{8iYVDYb$JS zIP@gt^AxVI9sdxYFoye!+TYLkv|)w++C#cxeTZ8)_xbP78Qi6Y?lk;4g7foZ2cr3B zp%qJ+Xj@YPYn9EnE?gBRf%o@wol4;#d$m3WwkFV_aQUfYt>+wUE>GL*J?@0*Iy&{0 zDLWa^i;3Lza0*<{P1LR(>jMw{bl60jFgf1Ays^r&1}~bFv_j0AQEASz(%ptiv-xYB>}hb7UX+pL8NrgqkyF}+ebDa8R@r3PfQpQQ z6sKhl4zf|7O}6Et?ql_0%xE#D@zVF-iex{d#JY#{o9 zmdS4I1rV|_V8kU&!RWy6VvVDfco-O6YsugyIrTEL_Gg#y+oE3C%vqMSC5Z{N=&%qg z+Re3FN2{^jHpcABstnxR`K~7YRTs(*?T$D5C`g923sKz3JU- zJoU&~8RJ9Yh(McO<$#ab6b|SIRnJI{Lsc|oySc>-?uggUbFb(}-(6+DHMcp*ohv7} zxLAsjN&7x;&_04wOe@Ju79FyWBOcl$v>-9aY|lCKNjN3{`P`X1g?Eo7ceaznPm^G7>)mcXT8YXR z5nn=W*@%T+ewo;6_$^LD1kimXIQeR^|w!Z1`lgsO%dm`S2k&076C^Kk9EP_28v z244>LRC!#aL#imSNZFB-$R@|Gd0V@LQ`fV`__~IXu21vlvE(P3W)49yNj>;}{`^!) z-8g2O?RBNdBAWfC_i4YXz(HANmD;s z-PrW!Pk{f_5@H^pSD%}mv^fQR6Jw{4!+%s|DLF&9^7|HNCI1|P9hB(re^ZERw2S9q z#Xfi?Sfn439YDYx7p2PYq4f6MbQ?LI-dPx4! zT*r1~W>@gCEA-<4b4?WULJRm!Hqm;Do52!lw32&Z61?tWpSEXyaZ0Qi<9UZ&BbpTJJ|LxwCumJwB zO&$gH!#Jj<8anrcO1vkA7#c>EXz+Nlr}&-#5pv3o-1~@?qzLRRjBBOiJ&AT8zvfU= zZhz?Cl@4?@zVPd~MI|yzQP$!tOysTfxx)^_-SFYR8M*PS1j)A22s_YL4`F44*FvJL zcrEp;_iQbN>{C^G9(d{>tY6lM*<9&EL5}4GAL|KNxcn9mU+jXC;_wCOBV$;|-z&a# zrW2YTGo_k|%{caygFV`y8V7DCsY@&7Vn;}V>8|%VxYB!TNiw|yeO}_bZ3L!$iruXCtzI3Yy{Ywm^8B-SVEa%gw!tX%sOh2zbM~g4OXvuT5!E!R!9iCFoA@a@E?!*ab#HbaT2s+&4t8yb(e`{FxspP{ zlb=1!%N;@5sOh7}`t>MKleLOuG=gCf;>)+V%!hL(tcmLKWC|T?^Yq#fF*u>9;Ie>f ziy9$j<|zoUp7@cj*NggdL9Uwv#7Jn^o3y)46mrfuIPgs<6H#QnOt&xlhnnU~3b8WH z=ryRhK(nHdL~7@zXLf?b$)cQ7gQXe^{{}d?-!5XEdS$oSDIStwX?(Ypbr=ty+&Wly zo{p-T{ko+u8^Ct+kicX+9U{R`vIt8b29(aUfBUf9H}PL7>>j;{3zz$4^|BH~>X(Gl zHWAX1uk`H6C03#u_(K2f<^iyh`l(}y{Ya|yT1j!{Aj$%K(xtLYB-7*JyHck?95ddb zeb9akW4k$vGJThQ+=Hf(#XNuyYp%=Ach4h>WkKBY<2cU6%mj#?8N&Yn0096043~#L z7F+;@?VV(kA}bA&jEK(7Xs9G2MTk%;sZSyq6-sH4WK=3?XsE2n-ZOj8H@x;9ukG_6 z+~2+D-19sdjZY5cJ8mV-Sn&-|6eBN&-&rWI4?$CbWv>`}D>!espXU>z;(2j?-1jst z@?gBYYDqnsbn}Fb{ zs@$5}jmS##I~}U}4~NfAj2x?;g~JWKxHsIj@ZRtJobmi9G*+a`(lsU_n&g%0q(=q! zct4Dx^r2IndCSPFCKn1j_Okd zLI-~>K{U=RZu)*65>6CG#PRb zi6g^$jga;@X}m3qjkrJFXd~@4hgasulRSj~p^>M|Qp~j#Va=f}lawCV-{Z~rVlV?9 zxdLmY{(NM#IGC(eW+C=Z`TGr|X=sehwlWLohB32txFO#(EE#5h@AqLLy@m%LekvJ2 z-c7kMW2prk9tdJy45A{Tw(oSuzi9~O*7Lf>H{sXqeNhh4^RV2$V$r(L1^#D;_Rq6# zBonp~a!0CuVUFuo$gjpp+*)Jva-&WgEQ?CJDw7s4JY%7=x2p&jH>Fbt0`t+vt@+ij zwiUPNiRcM_HvV&#eAFhWEAronXNvB9n10f9B3t#@h= z+0un;?h=vu7pMrQc(@MAl|cXZw#mlCQsivj_}z?wf~ko6YRn7&khkT*wcP*s$Yl1E zW4_Y}&IJff%1F|%yqxc|NwfpDL?`9_x&>IqE*nvbhLCgZ^lmok6}$|NyD<2u0p46E z4YE$slXy$dba`Vo@-iW8jY`>YPh{J_MzI9!k4 z-sTZSO+6T`*7lFi6(n9(#_Rizw<0c0_2}XrI&yEX8GZP22Y4F4t}Q23P%+$eEH-Q! zqO}}W^in+#{ZA<3Q*kw(PH3~sy=a8M4xb_8{3V=vsj8Yc(gnlM3)i3J(2y{`$;U3F z9mdbR`mR*1A+BC@inHS-SaH2#wvCgWFk7cTQDx^PfzFa#Q#w638M}dBl5Y`C_w+>f zwlAVj!J}(zCl@g}=V!d%ZXWTD=j4w!{liU7xBB^q!$|MBdu1(Y#l1Zn4EEazk|XvR z4IinTM9A2T=b=G6F6Q*`nw;h%x27|P3y*P<&{tQw3bu7ZFfXl6*`^-UA925x66r~G z@oORRge4S5+6R~IU?Kzkk3D>K=ApL!zD>PVH*)*p-!9HKVqNW{^M_6k<63V8bDB{P ze(PV&u$rAfu(sHxvoA;CudrZ0N>>BB)6(jZ6?}x>?Ws%oeMWL{{T)}1rassSs|3Y2 z^g=d9kwv|lfh=pj(_x!lgq6>Pah60sw$72B_EpHPO<{Oily>yBwF+#Q-3sj5$xPuH{AIbOC9fZ z*i|SHoap2ch+rkAHaE)llr4d-rJ&w$cnm*dwD`K|now&>X-GKQjl!S28%M&rFjFZa zv`ZixL2)4!4=abDwRg|mhu`P$ls(*|qk0ln&lv)mHqaBEZ%SvFc*Y^t+$VeBrwB=| z>Sha`qrl3ZF7!<3IF@(W*O;znBAKBjr}*B|6SEtEt+q_jFghJ$q!!9Vd=GHV%hQPv z&Wx*x>~qujwqrQgG_3)2r5WluL5t{CbiH7^tp}NYbtS2h_3+YpI_dPI4SjLj+N+fq ziNGJ<(eu;Oh0JT`T6ESe`u6Pb2UE_^7Y4p9#+9grC~|1e*`R%UYvR_ zIfy-{Y^~Y;VKi9#^8{1c5&Q7wxjimah>8dpXLl^Xdb?02F|Wkp!`rQ&P5N+2-p&1o zIt_<=CIggjbfKVFWb~DC2}$y=E6$M=pwZ; zZRtofn;doMLq8ftyTcP^8A$o*u2YpYT`2l=gGWiM5r;HetU}gu5X&#?PUOV=!SWvN zyheDY~ zhuLl)z*tPV$av}?o^l_xH%e>*)mozZ)=&c+4A~ytib;geuEtjfGlmes-m*6%iG%QO zzT`F;-;eK2%5|yo3osa^dr)gx2(u&4pYl8z2b<^`$LQ*6j5JycyK2%C#!4)qWojIV7UUPErxam(pD%|UIC+dLskB4b zIB`*K!_;mXwzB3vO5!R(_zPzn?i(y*T~WOE?>pM@ zjg`2tsLO^8jDXjIi}S8H4NLwnQ+R8r$a!e$d+|68GHc|@DNXI@@UTy2|1*ITUw(X~ z3G_i&gRT3Gj2PLWkShN}A_>7)w=3RRnMAgujhp}kk zaiv352o$05c|}n1`_q1`O zeaGn`4np_a?4g11FpSxyLSE!9Bd0^OM|e#qE;YH?WhTs_X6rhIfBIC!JlQ7GxG;@@ zpkC9xh6-Ij;{twXBpqKq+>Fm1@hYE$ zDj*#de=24BGOk5ar?b$Fwd1`0qte$xMBCyzgSvzB4G^<-Mu>^xjUzJ6{gqa#)mZBLD>+M(FI2g=k)UCaOMkAB(9Ijb}xXLgccj*IHY~IPFcQnj>dY?MY-v`?@roZW$ z2H@pwdp$*E0S}MqGnnboe&CXhZvlYFRV>2|Qy~ zulgm|fuyIZP2sF5(5q=aH~M1`w_-0_k6fL_{Eg%>74;b`JP8Uo%f&zhhkofqADjS9 z)^hE&5dpG8fJ<;`M;kV#TXhzNPT+XO4yl`x%tVx8SDXHkj_kf<)>f4n4n=uA34wd; zBg*S8uK%ErlrH}+b^u33-GmrA7SZ}&?-!8^Ramcc zMBrL26^|^-vZ?jU2#b$yJL=nsojUL5=8`JWmp*b*c6<(!T0V1G2Y89x8@{g5g-PV6 zmqfD!un;AoR+bI2^h9w(aQ&QQKeqP>A683dAWzJjcJr_1S5&v)#&ARvWYuIAu1Iqe z-Hpd2Sg&Q{U{<|CNa-LRuyUvdjjrx-H1A04`g)8k7_1kUpTZU?hre4_=*WfA@+T?z z{A4FrZp6*rYW!OXdhOs@j&GrU_aEQ;2m7aJ^!`(dkAWksatqZkt4@siobw+^rOJzRz6cnKS+Lu25nn4Oxpt0)SlJCucbP7F^OwoCdA!|7O==V?1b2|hvb)JRjCjvYOK~(n?a0)Y z(^HFRXgcQk_xV4lB|m5Slps!w6lPd{Q5!I=((;V*lZSY%xTxfOo5%Qu|6IFn|@=gT=%SLB&U1Sf@HAlzM9l{by{fHa)I@X02FW-vTR%;kiQoGOR$KlTq-+iyk6?s$%e#`xF%1$0=fB5g5m@ZN3xhS4RZ2`X|#hQDWiXzGK{YLh}pZv!Z zobXR=YXUA+}8Ut+bCTjNPlbKi!>p=PfUANx_B1k`if`R2+; z;woOGIe%=yIi4F12iuY`+om#S*51{P!GlS>;g8Y6bQv z3Pu$6_}#d*jK$GNZ)Uw#{GQk)y~g(!c&rBdZ2bGN7?X9rNOA_%!IkWxRnr(xIHy&a zO-IaKdN?mX8^`-AB}2V8`H27a_AQ|d4-{UrlRo zI_t5`9{;M4vpLdzVOJN7!_Tje|H44FMS5!9Eo#SoIa>!cY7J`51>c@eUqVfx)OIm> z0ivJuGUVTmNrd=W9?KG8BDSyg=3W2HNcM`S@1#l$qCYRm{%#Bd@rnAS)|EE{{>g>X zK>b!kg;bnTjpie=J+_I1vV}NNbBq!=JOJmCZ`sX@ofy$pbiBk;i^E^)+HGp4P<2>m zAab6L+|vIL#&AP`{JocwY8_RNxl+5*-$yI3>1Xh0!lModj5(j*6z~^<8p}tjS9w$K z^TgIqA^qqG7V|ssot>EO%S;Vb8G+I+&s25GK1lHQHro&OB7-e#yXo~ZIA=Z4p0udL zf@hqIq^Mox1Ok;SqQ32b+Z;`Irs#gIz-t@?&IS-V!?gpuSAd}ounewmww zsg3zgy3t+u9NAOp-NrzE){hj@DHNcqzQX&sbq>z`X{plWYk=6v=H-{nLwNI*ZOu)g zUTm2o8r6CenC*^F@-}QlSaNRJBd$rTo!9&CuUI8~FX}Pu;u?k5U!I1Pi~%I6eCHvL z5$#sI=KZ4mi(?*Sg6&iM=1z>B)%lqpHi5oiy}HGFjX1Sw%iF()7BO+g%cSud1;2-% zo_U|ui-UW3!>!a8v7tjFf=i#B$an_r*rcgVMaBHn8lu(!}?<5ESkUg%hn@#Fay(y8B}vR!U0l4-ePk z4A-*l*3^FpDl<(VOXeia+A+n0SNaiB%zlXL$SibcyGA?)8zB=!SJ}nHNI2(%ib{1W zVP<1AxVU>B@3)Dvvnz>`hvlJL-oKjygRf%p9AysoJh{1<#bulg44DSYD7R#9<*IL9 zw<&j_aT380v%Jrrd%&nPTE4rf4kb0>k8EZparH!2g>U{pi28s3RWa0sOoJ3f&6U+1 zx_DQ6F}NQ0s3JecA1&jG&WrOaTPAU2?T@yis3FV`uHkHPaJ{48c)gyZ62aa)K2TO6R<38Pg-FZ z$DZ$NRG!PqlYYPNY0DgI$phwFd_ppH2&D@g8qtb{&6Ie6?`Shr90m?#-=tyILyrAd z!!qb7nspuF-SFJMn3WaVgR!I=%VxT4^LQP*cV0rWI%!LMcEYnMV%wEF&kr%;`n1laNeX_e<4>q3G z*U(L4Cj@0lmv^xeyEf^VgkQDL?tT8(r@tFH3h8`YrDNEZ+p{^glM0*7mNvP*gScXJ zJI4LQ6edHwvR`V_5yG!=Z^gI<^vt%^y)7Nky?&|blPxn*4LX02KD`}b!D;nHT8-e* zEY{j?%|N`&zeZ9@g~_!6o1!%eoOrbf0|pAz&Rbe%ia!oXp^BfeXFC-#%=LzfVuz^k8dY zWc96@LTH@%@OHtz0eb~5rJnHp3BQLP75y(MIC6ApGQ&cM6rKEiDfP)1m^yQJeDImX zyDviODoF*%6OH)8Q#=kA=SSKD4=LzBX3-TYq( zj33lI&o>i%L|%5T$Mxt6ZXEnAd`F=ZSC!9(*vD0@^5OpATlPJm2rIGB+m55Lf-`>f zcoVLOxtN~uW+2x;zk0BwMNj04yghVx^*~Yi$44LPIGh#lx&=)yp|>rm%6yeimh9fy zT#KaPVEQAS4nl>`HK7l!J@Zg;+4H4DpMut@omDf&y=d7S{`El448rd+ApgENk^DJZ z$EWxmx?Gttmru^()4ge#R%R+5i8O#N?*{^v4;cI9V957)QjN0XDPWkVqvNB!jgHm@U-HZ+~v zt%LAcQ2)$q+5mww2^4|YZcrq6J%ls3$^FR7Kf`lZxmMtWOMSXJzWm$>Q<`Q8;Lw;fu>@D$2rw_wZp}PM${zLuk8#~H!=*Z3|Lwez} zBaj*|k2^cn3AvK&(<3ZASI>3%p|Xh(Jh>>8J8BHQ=bUXFfdT5F2y;7KNC78j8TKI$SiQ$+*b$Aj<r=CCcF71~aEvtLS;gtL(c{`-pqwO03;L9Cbm%xj2ODLp%G+6=q5 zJ2pu!O@QsYI%)YxN5TTlcIQ0%hm@PA@=U}BfwSM4@_(-*FHGWF=Yv|n5XbB{LW{wb zIJ-RC&~Ds^QA*ru&Tp}~Zb&a1M~dF9P&YXmBEF8dUc5aBX|D`{hA1v_(b~G z?Y(DYE1^lmJvftG}qIl#!K|(U68z%E(Hx_dL!qvyYke zdcQxPp8LM9>-XC$raw<890cQC7(ZeNn@p)$_2{Ec+5rG>=j;Ugo3Miwu)2(FS<|B5{dpj^e~kioM!> zKTg)cwIeN#UzCQ@HP`l8SoY!bm0w@J)%QX)-b`7}b`+04Bv3>Y=dgS3o%)k64CM3b z*@y#!^|-Nn$*Aso6SKk9RZU)ZA%5G5ZTgyt3I-+6{*x<4*g&e64Vk_xKzMM_PP4Y z7HD^&Ca_?vkFOHpmDuQ1*oV%s`1xPdQB)ZQ-um9z298I?bF&_c=+A#ROgqa!Qg^7O z|1PD%vm&6!aeN&7A-u(%0{;*^V-R~rmw~){Z8g88dtqD|B+BbKkByv9 z4z{1C;$OVf*1nP+n3g5|HaIwsFvIg@$9BmQ6?TqWe|%n}?bE==?*?-ylJawTnbQwR zZ~qqpwru29rcg$mei77EIxG*W6d=aad0K8`D@u<%3*7W}3b$9eCgh|J!2Zp~Jx7M; z!E+-;{K?L4NO=baMjF%6()>|zYVr^6w$Sif3AvF??5ck1NqT}7z+3)Y|Snm+fB#IV-gp&BFy*luz1{`SD>ar*rO%kTG*9W#B<-7`w-%I=1@%b|^qN>p@< zip#uYpTP}b^|4Ra+c3HOLPAG>0#Ua!A`GPdAy>}7*h_s5=K~7#i$4z`(=s&jt)40w zncQHvoX1Q`pZY{apDBY&oavMG2kv7#Bkk0)LoHD5I=rZ>Ifkr$zN5R{nMm}{4EquV z3ijHXWsI|o!!>bQD^*{d)F_Kf-KlSf*-UPL-Ru)6C375Hhx4TJ-ErI$nh>o& zKZ2+78#e|wj-ymDV7=RuUf3t4p8cr6K}O4#BqkqMfXUmSfaT&0&cqr=gxwP%717-e z3EsmnlfN$;rV;|(#Y{o9W*0ak{_ItJ3r>YOV&o?*jO%^8G zb&b>uwE0QwjAoYRyE^EPcnD^@w!-ndWA2(Rv(DIyE52>)>dgAUhe8cph;5a5sW(buQfypklq+7Ix`F z0_4<uhqBF;h3hSUP@skam+XA zdJzIdiq9i2AZ-wzy|u*es>%}$$%ef}(Jk=XH^V7{A$(@IQD~*ni4AtcKXO!RaJ%QR z^1iK8xIZiNf`vAThxJbymD~l$6V7N`#oT@be~WO_3$Df5dTV38ZSC;9z%;!{qzOB{ zk8{|nQsCua@x4NL2F9Fv?U~Y2MDv57brU-$$y(1G6f8B0UAt&{t2ik5S0a$6=2nDu zsRSb}zYaj;j`6wX_mJMkyzuaM8ydo6r3YTDCd`!*^>@a`aVAQx{(Dy+8V`(W8u%0; zIfK9FR@N*mPvut36%FB=-}0ncX&*;PRWNSj0hjDfnE*5Oqq$ya1;#UVUGFJVCiQ(P}Zq;Gz|J~27cCZ6AVy6N{ zjHXeS`_`?XeF0~iPuCXQr9jDQj6>LP0=){Zf!~*=vAalpTGE7(G+engtTQ}`x5IbR zJ&Sw5^vf^Z$z=hN_N)hEG<&f{!NX_JvDkJVdgYWB%wz4I-YC_41!^AFiaCv$;L!LV(-k z>f1r9NK#gn*^pu$TCIt!*O`@^4q1|9T}Q!o8k4lgso#iAtr1dE5+ik2PiAQNPC(Rh z{>pHFI}E=zn!KmhHy$%(VC{BWon)_RAXxO$dQ=R&1x@Yf<2zi7sLCa|F? zQ`l&r3jTi%f6W}F;j;GpgIPZzVp>NFvtG#yzOz~t|FO`;r)7a{scWrmL1Udhs`23qd zDhw74CvC#$5cK!>m$*ZkRB3k9MX&r%Yl`jmYf8P)NGg=<{jq@CH0D5s+-4+bpT7i` zdT2^Bcf^|ul5Pg?g7mdL(CgS2buYaQevvi$t-&*hA8viB-P#M)iq$t9R`~GZRu<9cWQ|ZSe=5X7%oEtpOyeygT;*RiL(7cb>Kj1Ew}F}ZW>2y@{00QkAAJE!Ys_^(*w+Fyyo% zN^MG5$al`4sZ8Qs2s$@V-z7PPmsH)Ihc~Sz_s$L!x3R9|jOlE<;(Q|XYzNXPMqMze zGl;Y}J`TChYB_@|J-Cg_kb8>%FP6^6tm2XGM$=oVw1v|wByU@|xf!JlYeI9?R>f5u5c_rC-0-I`0W+I){q;7~K%!=a-nJ_T`=tvtTlmW}V}-`W$lvBSlA3&iWVg`MTcx~pc%r$x;`aR&zC7fmG+NjO{X_Dlh7$u&`BePm z<-KwA-yLX`-^@e=EK36)k1d1mG=1wg!%o~_-61BOREvNe4^Dr7&q}(JV`%%2^uX!M zc1{WBe(2`vY*gGJMtZId|CZXJK>Xw-&q>TrgS)V_Z~Feq+zfN<+5>sWhwIE~w3Xa9 z8%R6hCCW%*+>Cx^&WVtxg{=No`^TaEPOr55v;w)kPUAydYZueqtgrr2pxyWh@kg_xW&7tlXtSZ`p4utRD%*7O$Gadxw}LBFRHs zufDNnjcr5b)JE{jTF&G6j5OG3n3 z8Og%tBH17RCU8x(Ag;rl2GihyYJJHi!dsEQ%j0@5Ws#V-E7izp%V-9|6OG`2P3doFsw4z5iE!5iA|P{gGqm1y=fMFa_IsVQI5CG^6WoTs7b-DR zp2zlh6${}_Q)RzeH37L7BqZTPF`OT8$H#Nhpk}0Tz2#IJa)xu-uXEHu=gfubSetIB zuCqyqX79lbuBYjDf=1BnFC4^O(FWfG&T|d5|Koa4sEl*sIin zzuWU%OxRh-;WvM?{Mrg(@nh7KH-8W|XYzvg99)LzCHnk1MLu#N&N}t^$Odxbk&J2> z;~>6V=%y(2wc!qhxg@iB73of@yv8q|hoQ@k{|p{BVdJ21+1k_<&Qfq)U4NkpLUBjj z@0f^@P|EGtA>%BiqCxg5MsF^yjH)e!kVZU#^~TKL@bFs?OnOAwlg=@rwH+oDm9lqYErYf zVIbubGv#ds5j#bxEwwOk6CuF zP_97;)IMT%pYMd=@T4@u7H+b*Y#eU9)DL@~z3yMGkKjS^MxS#@%_x>~vzMpRR`N#n z*>}|vxGKn+ZWp8C$^l;IYO^LB`24ZjD1?SKBsFM`P3-E1+-_`4({KMn$ZB$U@*xd`KmkOdSH8i{lIcWSJtqmM~e=nZB z#7N}q6$`X>l%PeJUn%P0JQ}1ftg&K{AiY;xSR5H?a4o%Q(Rk)2{#1TvS!JAZ%xWyTzwmNlkcVk(cc>XR<2r*9Iv)5R^MF<8}AAAkcU+G z-%yy$bZ>!9$JP%|b%((nM5Vlp7)PSnfALeotfXkKWEZE|BAgFBmOC#=1^@Y}`?;Jo z@Lr6PPSj;49J7ZUw%HCqm_6a%^HZaE)|GNLU0#}0H039X@hK8EN7-Yki*q>f`>R$; z%owg31&l}1d5C~%@j3I9X{Z_aUXkfpMneI&;5yG$M76NxU)j=%PvrARm&Yg&@wCQm zsh%`^r?!=!W*!3rlYDU3&Q7e`F?H**Lp|DdY96sEoB+qk^4fsseTZ{-%cS&%om_Ey zsY&mi!gTert_yD?)OEgvW_+b!{(!Ted~X+gzA;G}$qzuAuUT5{I5VO2-Y4n;3WV&? zv~p!%O$1NL2kf+)#fVf&-m8sm$QTIa3Z?ymna+TnUtTw|cqVvdAACiyv(vzj!WNYL z8VWV0N)g8td7^!85^N`r-qAeVia|M#fK^9*Ww(78a6He6Rtb5z} z|2#-~XQxibFQqP*SY{@Y8GDL9qF@a1`M|?|WC3|(eYIR=@p_Y^9 zz{l|={Cv$fQu(0@><(WeXHT;ea~JhB_TE$YZ`XglvRi*a%rh=?qM#SIxkC?#l&{Ql zVyo8AiVB=u)3f) zfRxL0IlkSuh7@f7^pQ1X2-^$9rcGA(R!Q>{(-lPt67xdWWcE@%TIG4#bIoh8HTpta zqA3k`kCeKLIn^S&R_LJkVNqh{&M#4#K8?NCSjww}yCD!|Tem@whNIyFvHR;diCg4u z8%kI!zH-$BzTMAAZZ!*)u5+nEQA~_n`^P@)EZHHw-nI(q%3@x%X|2#&Jau%H5G#4! zKzYY!!cPQS*FN_MnFiyAf5G2Z`cE!$xZ68JhzMDSb?HRc!61o!Z-3|%#wyDM)IEhr z`Xy2Gg&j>8Iq~Q}^)utx)$TSQH?)ehtd-Y4{&@uTd%Vbf#uhv`-XH<090}@)bdf9= zfx8gB`jO~L{w5u}CZI711%`alFVa8p_Tf)afsh(x9{cAmVk1EEyz2A$b*O0M(i1;i z)`wo6#{$_a9_5zevyD@Gr5^_Aq4bp=eBVFP9VNs??zLp=3~P*Gt~onrbjKKs1lDRy zUugidvWaz^`$`{2<}t}G6ha`jBkZ|MH!M@@BC^NoQKq@|z5j+@=$m=|M~|Jt;3tI| z)xZW!W~gT-PSc?!Vt#3eKz2T#?Jmg+73!j{SKbl`j2E@JcG z=>xS&l4P9URZC%otLLhM8fP0HLr(v6h_GQRwhKF$AJU*B_FGQV!Fnn#-2FN!{jCeX zN*VY5jcG)~tpw#gK}%@R>NTD4EW-Rj0Sk+pi!eQFd8A2Sf@DG5+Qx|j+Mb!UI<#PRRg44w=IHj#i%g7x;W@*K?%3Mxjt1J0QXlw{=6;BVD)=Ls;`Wg4BAwj}gLUF(1 zS_4jtRGrRbDpZ5%)@E|8c<8i{C^I~U<-{L1g}095Ljt!^Q42dMSN;7>w0#c8o(^zH zNcX|go5}psgKE4v=#yn=#6Y$mwJFuJ7=iCzQnavo63xacDbrK(7r_-kF|*T}B^#76(p_Dj({DG)r&zgv>ZXg8H-!dpeQW+u}x8nqj<}9NhAL3};W}o)YHiMq0*}!WS+~ayt(pjE_)!Ud4&TGT{N2Xsik7**p!T0(-5piSWMb1ILRC3 zTX*Yw6v&H%O`NXz3S@W3WYjMn22y?Ce&2$4D{7|OnH>|WpdIlsBWOPr39PE#+&1}$ zuZu8fTiuFP9f=-s8B!!_a?kE3cGKAZl_!T)wjQi}d}pbN`OshxZ8*@xMU3RvYv=5r z!?%uDuBFvon9)m)wE4?IvL80zw`b%cT<%6c+S6O1TFmxZ`#*jXrj?$fWXeMdmwowJ z9?}rMUZIh4tP#(p@3S&}okD3+0Po}HJy>h@IFx^7@2(o&F5rDb!Ize8cZzfdka}cv zNpM#!E>~5ihfhr+ufswyX~zV*e)nckTNufzX}@CG-XW~pzsAL4upM?RmzJ)tc&DcE z=``odW7w%V#-IAC4?E7t_zjjb6LE#a5aW|#WICtR>Tbvf2uTOkJyM>=tVu@1+?NRm z);WIt#=}kaH%~-cHx*+?$kw~vF~u;6>`(RyAA@A&@a-mV0TR65(_=w<2=Dg2v;366 zM&_T{7erc(;`c{$>7Po>{ba0A z-`8}4MLC}QIUw&g(}SptmZ_HV2CU!pY`CUSm{|IkUHO+XgF_T6S%%SW4A&jxJ)YZ* zKSAF{y_;Fd0lU+pua#H!+}cEN7Z}NHr=t3Mx|QIvaB^0DL4)UnO0a}<6;8zco;cFj zgo~a53-otO`0np->JZIOg3sMwYpFj8Mo-VQ>T4^Wefg>|>rp|{ANES@%cWXmTJFzD z%bCMu@){<(qc}O0D9QF(zXc(yUPVeCAA`rkH?tE%Vx%~+&edXp4sKbSrcz1;RNUU` z_0P!?F6EFB7MC$()r(g?)?&*8U!9oG{N$r^ zbmQm!-4H8G=*oOPh8IRGMRv_Y_?&vSTOfNJ5r@*hE^MYCb3|~@T>}onJ>wXoF)@kT zy+0HES?D;v-ucGcJM~!V&XzE@?85CIl%4z73h?2?*+k7W3Kabf7YAtd_(<)W3dJ@ zmLSVp4j;IGW)=q1+tvy?<|4G9$>q~iAKYhp)m>ZGjt)y{8>Y??sM+50WiH?&S>kJS zcV@SNl6kLg9TOutcEieIWLT8AWPD=waT|tSVU(7VM*_CpKX`s{p&3#h)pv7OO@X7d z@uhfdH`;1S^;t^V;M4YXbEZKZUT^2!*=9YD6ARAl zO5~e1S|?iB{dZA+-@~J89&gS)WFrM3db%<<=`f4&6I145BW6}pz&_Iv#9fWzCQYAgc^T7`8{t8_gnZz zEBv?!1(Z|{#c5nfFKJ%Z{R_35@*W|i2H`uTsFxo6L#1H4kTKH)DoWGY${ptLKL7v# z|Njh^cOVpO9LMdEb+(Km@|s0SqWqpxDJ!F*l1&LkBq1cDqDW*Wi4u~L$jHnlXK#1T zIQz~x>+t&j`Qur?&-e4Sne;8NGm=70MX$c4o|HhR0^@udVrbD@ixUAK9A;m)`H6*9tzReROHr^>GI*Crvb^*xIUaS-w?x1M;6 zZNNMGlQAI=2(YgFfTPN~3%X*Gjk)v&;p)8*=f)R!NKQGA->z!|p?uGZJbDUTEAKqF zoK6P!i7?t@PPB+Q?Lev4b0UzAFtNVv>4hrs=d~m^2IR)88FXE43C1sI&i_@IhVO#T zH