fix bug network
This commit is contained in:
committed by
Nicola Demo
parent
ee39b39805
commit
a9f14ac323
43
tutorials/tutorial5/tutorial.py
vendored
43
tutorials/tutorial5/tutorial.py
vendored
@@ -6,15 +6,14 @@
|
||||
# In this tutorial we are going to solve the Darcy flow problem in two dimensions, presented in [*Fourier Neural Operator for
|
||||
# Parametric Partial Differential Equation*](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input output operations.
|
||||
|
||||
# In[11]:
|
||||
# In[1]:
|
||||
|
||||
|
||||
# !pip install scipy # install scipy
|
||||
from scipy import io
|
||||
import torch
|
||||
from pina.model import FNO, FeedForward # let's import some models
|
||||
from pina import Condition
|
||||
from pina import LabelTensor
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.problem import AbstractProblem
|
||||
@@ -39,10 +38,10 @@ import matplotlib.pyplot as plt
|
||||
data = io.loadmat("Data_Darcy.mat")
|
||||
|
||||
# extract data (we use only 100 data for train)
|
||||
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)
|
||||
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)
|
||||
k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)
|
||||
u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)
|
||||
k_train = LabelTensor(torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1), ['u0'])
|
||||
u_train = LabelTensor(torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1), ['u'])
|
||||
k_test = LabelTensor(torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1), ['u0'])
|
||||
u_test= LabelTensor(torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1), ['u'])
|
||||
x = torch.tensor(data['x'], dtype=torch.float)[0]
|
||||
y = torch.tensor(data['y'], dtype=torch.float)[0]
|
||||
|
||||
@@ -63,14 +62,14 @@ plt.show()
|
||||
|
||||
# We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`.
|
||||
|
||||
# In[14]:
|
||||
# In[17]:
|
||||
|
||||
|
||||
class NeuralOperatorSolver(AbstractProblem):
|
||||
input_variables = ['u_0']
|
||||
output_variables = ['u']
|
||||
conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables),
|
||||
output_points=LabelTensor(u_train, output_variables))}
|
||||
input_variables = k_train.labels
|
||||
output_variables = u_train.labels
|
||||
conditions = {'data' : Condition(input_points=k_train,
|
||||
output_points=u_train)}
|
||||
|
||||
# make problem
|
||||
problem = NeuralOperatorSolver()
|
||||
@@ -80,7 +79,7 @@ problem = NeuralOperatorSolver()
|
||||
#
|
||||
# We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning.
|
||||
|
||||
# In[15]:
|
||||
# In[18]:
|
||||
|
||||
|
||||
# make model
|
||||
@@ -97,7 +96,7 @@ trainer.train()
|
||||
|
||||
# The final loss is pretty high... We can calculate the error by importing `LpLoss`.
|
||||
|
||||
# In[16]:
|
||||
# In[19]:
|
||||
|
||||
|
||||
from pina.loss import LpLoss
|
||||
@@ -106,10 +105,10 @@ from pina.loss import LpLoss
|
||||
metric_err = LpLoss(relative=True)
|
||||
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.neural_net(k_train).squeeze(-1)).mean())*100
|
||||
print(f'Final error training {err:.2f}%')
|
||||
|
||||
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
|
||||
err = float(metric_err(u_test.squeeze(-1), solver.neural_net(k_test).squeeze(-1)).mean())*100
|
||||
print(f'Final error testing {err:.2f}%')
|
||||
|
||||
|
||||
@@ -117,7 +116,7 @@ print(f'Final error testing {err:.2f}%')
|
||||
#
|
||||
# We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see.
|
||||
|
||||
# In[17]:
|
||||
# In[24]:
|
||||
|
||||
|
||||
# make model
|
||||
@@ -125,10 +124,10 @@ lifting_net = torch.nn.Linear(1, 24)
|
||||
projecting_net = torch.nn.Linear(24, 1)
|
||||
model = FNO(lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
n_modes=16,
|
||||
n_modes=8,
|
||||
dimensions=2,
|
||||
inner_size=24,
|
||||
padding=11)
|
||||
padding=8)
|
||||
|
||||
|
||||
# make solver
|
||||
@@ -141,13 +140,13 @@ trainer.train()
|
||||
|
||||
# We can clearly see that the final loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training, when many data samples are used.
|
||||
|
||||
# In[18]:
|
||||
# In[25]:
|
||||
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.neural_net(k_train).squeeze(-1)).mean())*100
|
||||
print(f'Final error training {err:.2f}%')
|
||||
|
||||
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
|
||||
err = float(metric_err(u_test.squeeze(-1), solver.neural_net(k_test).squeeze(-1)).mean())*100
|
||||
print(f'Final error testing {err:.2f}%')
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user