fix bug network
This commit is contained in:
committed by
Nicola Demo
parent
ee39b39805
commit
a9f14ac323
@@ -13,8 +13,7 @@ First of all we import the modules needed for the tutorial. Importing
|
|||||||
from scipy import io
|
from scipy import io
|
||||||
import torch
|
import torch
|
||||||
from pina.model import FNO, FeedForward # let's import some models
|
from pina.model import FNO, FeedForward # let's import some models
|
||||||
from pina import Condition
|
from pina import Condition, LabelTensor
|
||||||
from pina import LabelTensor
|
|
||||||
from pina.solvers import SupervisedSolver
|
from pina.solvers import SupervisedSolver
|
||||||
from pina.trainer import Trainer
|
from pina.trainer import Trainer
|
||||||
from pina.problem import AbstractProblem
|
from pina.problem import AbstractProblem
|
||||||
@@ -44,10 +43,10 @@ taken from the authors original reference.
|
|||||||
data = io.loadmat("Data_Darcy.mat")
|
data = io.loadmat("Data_Darcy.mat")
|
||||||
|
|
||||||
# extract data (we use only 100 data for train)
|
# extract data (we use only 100 data for train)
|
||||||
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)
|
k_train = LabelTensor(torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1), ['u0'])
|
||||||
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)
|
u_train = LabelTensor(torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1), ['u'])
|
||||||
k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)
|
k_test = LabelTensor(torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1), ['u0'])
|
||||||
u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)
|
u_test= LabelTensor(torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1), ['u'])
|
||||||
x = torch.tensor(data['x'], dtype=torch.float)[0]
|
x = torch.tensor(data['x'], dtype=torch.float)[0]
|
||||||
y = torch.tensor(data['y'], dtype=torch.float)[0]
|
y = torch.tensor(data['y'], dtype=torch.float)[0]
|
||||||
|
|
||||||
@@ -74,10 +73,10 @@ inheriting from ``AbstractProblem``.
|
|||||||
.. code:: ipython3
|
.. code:: ipython3
|
||||||
|
|
||||||
class NeuralOperatorSolver(AbstractProblem):
|
class NeuralOperatorSolver(AbstractProblem):
|
||||||
input_variables = ['u_0']
|
input_variables = k_train.labels
|
||||||
output_variables = ['u']
|
output_variables = u_train.labels
|
||||||
conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables),
|
conditions = {'data' : Condition(input_points=k_train,
|
||||||
output_points=LabelTensor(u_train, output_variables))}
|
output_points=u_train)}
|
||||||
|
|
||||||
# make problem
|
# make problem
|
||||||
problem = NeuralOperatorSolver()
|
problem = NeuralOperatorSolver()
|
||||||
@@ -114,7 +113,7 @@ training using supervised learning.
|
|||||||
|
|
||||||
.. parsed-literal::
|
.. parsed-literal::
|
||||||
|
|
||||||
Epoch 9: : 100it [00:00, 383.36it/s, v_num=36, mean_loss=0.108]
|
Epoch 9: : 100it [00:00, 357.28it/s, v_num=1, mean_loss=0.108]
|
||||||
|
|
||||||
.. parsed-literal::
|
.. parsed-literal::
|
||||||
|
|
||||||
@@ -123,7 +122,7 @@ training using supervised learning.
|
|||||||
|
|
||||||
.. parsed-literal::
|
.. parsed-literal::
|
||||||
|
|
||||||
Epoch 9: : 100it [00:00, 380.57it/s, v_num=36, mean_loss=0.108]
|
Epoch 9: : 100it [00:00, 354.81it/s, v_num=1, mean_loss=0.108]
|
||||||
|
|
||||||
|
|
||||||
The final loss is pretty high… We can calculate the error by importing
|
The final loss is pretty high… We can calculate the error by importing
|
||||||
@@ -137,10 +136,10 @@ The final loss is pretty high… We can calculate the error by importing
|
|||||||
metric_err = LpLoss(relative=True)
|
metric_err = LpLoss(relative=True)
|
||||||
|
|
||||||
|
|
||||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
err = float(metric_err(u_train.squeeze(-1), solver.neural_net(k_train).squeeze(-1)).mean())*100
|
||||||
print(f'Final error training {err:.2f}%')
|
print(f'Final error training {err:.2f}%')
|
||||||
|
|
||||||
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
|
err = float(metric_err(u_test.squeeze(-1), solver.neural_net(k_test).squeeze(-1)).mean())*100
|
||||||
print(f'Final error testing {err:.2f}%')
|
print(f'Final error testing {err:.2f}%')
|
||||||
|
|
||||||
|
|
||||||
@@ -163,10 +162,10 @@ operator this approach is better suited, as we shall see.
|
|||||||
projecting_net = torch.nn.Linear(24, 1)
|
projecting_net = torch.nn.Linear(24, 1)
|
||||||
model = FNO(lifting_net=lifting_net,
|
model = FNO(lifting_net=lifting_net,
|
||||||
projecting_net=projecting_net,
|
projecting_net=projecting_net,
|
||||||
n_modes=16,
|
n_modes=8,
|
||||||
dimensions=2,
|
dimensions=2,
|
||||||
inner_size=24,
|
inner_size=24,
|
||||||
padding=11)
|
padding=8)
|
||||||
|
|
||||||
|
|
||||||
# make solver
|
# make solver
|
||||||
@@ -188,7 +187,7 @@ operator this approach is better suited, as we shall see.
|
|||||||
|
|
||||||
.. parsed-literal::
|
.. parsed-literal::
|
||||||
|
|
||||||
Epoch 9: : 100it [00:04, 22.13it/s, v_num=37, mean_loss=0.000952]
|
Epoch 0: : 0it [00:00, ?it/s]Epoch 9: : 100it [00:02, 47.76it/s, v_num=4, mean_loss=0.00106]
|
||||||
|
|
||||||
.. parsed-literal::
|
.. parsed-literal::
|
||||||
|
|
||||||
@@ -197,7 +196,7 @@ operator this approach is better suited, as we shall see.
|
|||||||
|
|
||||||
.. parsed-literal::
|
.. parsed-literal::
|
||||||
|
|
||||||
Epoch 9: : 100it [00:04, 22.07it/s, v_num=37, mean_loss=0.000952]
|
Epoch 9: : 100it [00:02, 47.65it/s, v_num=4, mean_loss=0.00106]
|
||||||
|
|
||||||
|
|
||||||
We can clearly see that the final loss is lower. Let’s see in testing..
|
We can clearly see that the final loss is lower. Let’s see in testing..
|
||||||
@@ -207,17 +206,17 @@ training, when many data samples are used.
|
|||||||
|
|
||||||
.. code:: ipython3
|
.. code:: ipython3
|
||||||
|
|
||||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
err = float(metric_err(u_train.squeeze(-1), solver.neural_net(k_train).squeeze(-1)).mean())*100
|
||||||
print(f'Final error training {err:.2f}%')
|
print(f'Final error training {err:.2f}%')
|
||||||
|
|
||||||
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
|
err = float(metric_err(u_test.squeeze(-1), solver.neural_net(k_test).squeeze(-1)).mean())*100
|
||||||
print(f'Final error testing {err:.2f}%')
|
print(f'Final error testing {err:.2f}%')
|
||||||
|
|
||||||
|
|
||||||
.. parsed-literal::
|
.. parsed-literal::
|
||||||
|
|
||||||
Final error training 4.45%
|
Final error training 4.83%
|
||||||
Final error testing 4.91%
|
Final error testing 5.16%
|
||||||
|
|
||||||
|
|
||||||
As we can see the loss is way lower!
|
As we can see the loss is way lower!
|
||||||
|
|||||||
@@ -2,6 +2,8 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from ..utils import check_consistency
|
from ..utils import check_consistency
|
||||||
from .layers.fourier import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
from .layers.fourier import FourierBlock1D, FourierBlock2D, FourierBlock3D
|
||||||
|
from pina import LabelTensor
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
|
||||||
class FNO(torch.nn.Module):
|
class FNO(torch.nn.Module):
|
||||||
@@ -69,7 +71,7 @@ class FNO(torch.nn.Module):
|
|||||||
elif dimensions == 3:
|
elif dimensions == 3:
|
||||||
fourier_layer = FourierBlock3D
|
fourier_layer = FourierBlock3D
|
||||||
else:
|
else:
|
||||||
NotImplementedError('FNO implemented only for 1D/2D/3D data.')
|
raise NotImplementedError('FNO implemented only for 1D/2D/3D data.')
|
||||||
|
|
||||||
# Here we build the FNO by stacking Fourier Blocks
|
# Here we build the FNO by stacking Fourier Blocks
|
||||||
|
|
||||||
@@ -137,6 +139,9 @@ class FNO(torch.nn.Module):
|
|||||||
:return: The output tensor obtained from the FNO.
|
:return: The output tensor obtained from the FNO.
|
||||||
:rtype: torch.Tensor
|
:rtype: torch.Tensor
|
||||||
"""
|
"""
|
||||||
|
if isinstance(x, LabelTensor): #TODO remove when Network is fixed
|
||||||
|
warnings.warn('LabelTensor passed as input is not allowed, casting LabelTensor to Torch.Tensor')
|
||||||
|
x = x.as_subclass(torch.Tensor)
|
||||||
|
|
||||||
# lifting the input in higher dimensional space
|
# lifting the input in higher dimensional space
|
||||||
x = self._lifting_net(x)
|
x = self._lifting_net(x)
|
||||||
|
|||||||
@@ -56,6 +56,9 @@ class Network(torch.nn.Module):
|
|||||||
:param torch.Tensor x: Input of the network.
|
:param torch.Tensor x: Input of the network.
|
||||||
:return torch.Tensor: Output of the network.
|
:return torch.Tensor: Output of the network.
|
||||||
"""
|
"""
|
||||||
|
# only labeltensors as input
|
||||||
|
assert isinstance(x, LabelTensor), "Expected LabelTensor as input to the model."
|
||||||
|
|
||||||
# extract torch.Tensor from corresponding label
|
# extract torch.Tensor from corresponding label
|
||||||
# in case `input_variables = []` all points are used
|
# in case `input_variables = []` all points are used
|
||||||
if self._input_variables:
|
if self._input_variables:
|
||||||
@@ -65,22 +68,20 @@ class Network(torch.nn.Module):
|
|||||||
for feature in self._extra_features:
|
for feature in self._extra_features:
|
||||||
x = x.append(feature(x))
|
x = x.append(feature(x))
|
||||||
|
|
||||||
# convert LabelTensor to torch.Tensor
|
# perform forward pass + converting to LabelTensor
|
||||||
x = x.as_subclass(torch.Tensor)
|
|
||||||
|
|
||||||
# perform forward pass (using torch.Tensor) + converting to LabelTensor
|
|
||||||
output = self._model(x).as_subclass(LabelTensor)
|
output = self._model(x).as_subclass(LabelTensor)
|
||||||
|
|
||||||
# set the labels for LabelTensor
|
# set the labels for LabelTensor
|
||||||
output.labels = self._output_variables
|
output.labels = self._output_variables
|
||||||
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
# TODO to remove in next releases (only used in GAROM solver)
|
||||||
def forward_map(self, x):
|
def forward_map(self, x):
|
||||||
"""
|
"""
|
||||||
Forward method for Network class when the input is
|
Forward method for Network class when the input is
|
||||||
a tuple. This class implements the standard forward method,
|
a tuple. This class is simply a forward with the input casted as a
|
||||||
and it adds the possibility to pass extra features.
|
tuple or list :class`torch.Tensor`.
|
||||||
All the PINA models ``forward`` s are overriden
|
All the PINA models ``forward`` s are overriden
|
||||||
by this class, to enable :class:`pina.label_tensor.LabelTensor` labels
|
by this class, to enable :class:`pina.label_tensor.LabelTensor` labels
|
||||||
extraction.
|
extraction.
|
||||||
|
|||||||
37
tests/test_model/test_network.py
Normal file
37
tests/test_model/test_network.py
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
import torch
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from pina.model.network import Network
|
||||||
|
from pina.model import FeedForward
|
||||||
|
from pina import LabelTensor
|
||||||
|
|
||||||
|
data = torch.rand((20, 3))
|
||||||
|
data_lt = LabelTensor(data, ['x', 'y', 'z'])
|
||||||
|
input_dim = 3
|
||||||
|
output_dim = 4
|
||||||
|
torchmodel = FeedForward(input_dim, output_dim)
|
||||||
|
extra_feat = []
|
||||||
|
|
||||||
|
|
||||||
|
def test_constructor():
|
||||||
|
Network(model=torchmodel,
|
||||||
|
input_variables=['x', 'y', 'z'],
|
||||||
|
output_variables=['a', 'b', 'c', 'd'],
|
||||||
|
extra_features=None)
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
net = Network(model=torchmodel,
|
||||||
|
input_variables=['x', 'y', 'z'],
|
||||||
|
output_variables=['a', 'b', 'c', 'd'],
|
||||||
|
extra_features=None)
|
||||||
|
out = net.torchmodel(data)
|
||||||
|
out_lt = net(data_lt)
|
||||||
|
assert isinstance(out, torch.Tensor)
|
||||||
|
assert isinstance(out_lt, LabelTensor)
|
||||||
|
assert out.shape == (20, 4)
|
||||||
|
assert out_lt.shape == (20, 4)
|
||||||
|
assert torch.allclose(out_lt, out)
|
||||||
|
assert out_lt.labels == ['a', 'b', 'c', 'd']
|
||||||
|
|
||||||
|
with pytest.raises(AssertionError):
|
||||||
|
net(data)
|
||||||
62
tutorials/tutorial5/tutorial.ipynb
vendored
62
tutorials/tutorial5/tutorial.ipynb
vendored
@@ -19,7 +19,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 11,
|
"execution_count": 1,
|
||||||
"id": "5f2744dc",
|
"id": "5f2744dc",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@@ -28,8 +28,7 @@
|
|||||||
"from scipy import io\n",
|
"from scipy import io\n",
|
||||||
"import torch\n",
|
"import torch\n",
|
||||||
"from pina.model import FNO, FeedForward # let's import some models\n",
|
"from pina.model import FNO, FeedForward # let's import some models\n",
|
||||||
"from pina import Condition\n",
|
"from pina import Condition, LabelTensor\n",
|
||||||
"from pina import LabelTensor\n",
|
|
||||||
"from pina.solvers import SupervisedSolver\n",
|
"from pina.solvers import SupervisedSolver\n",
|
||||||
"from pina.trainer import Trainer\n",
|
"from pina.trainer import Trainer\n",
|
||||||
"from pina.problem import AbstractProblem\n",
|
"from pina.problem import AbstractProblem\n",
|
||||||
@@ -63,10 +62,10 @@
|
|||||||
"data = io.loadmat(\"Data_Darcy.mat\")\n",
|
"data = io.loadmat(\"Data_Darcy.mat\")\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# extract data (we use only 100 data for train)\n",
|
"# extract data (we use only 100 data for train)\n",
|
||||||
"k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)\n",
|
"k_train = LabelTensor(torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1), ['u0'])\n",
|
||||||
"u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)\n",
|
"u_train = LabelTensor(torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1), ['u'])\n",
|
||||||
"k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)\n",
|
"k_test = LabelTensor(torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1), ['u0'])\n",
|
||||||
"u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)\n",
|
"u_test= LabelTensor(torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1), ['u'])\n",
|
||||||
"x = torch.tensor(data['x'], dtype=torch.float)[0]\n",
|
"x = torch.tensor(data['x'], dtype=torch.float)[0]\n",
|
||||||
"y = torch.tensor(data['y'], dtype=torch.float)[0]"
|
"y = torch.tensor(data['y'], dtype=torch.float)[0]"
|
||||||
]
|
]
|
||||||
@@ -116,16 +115,16 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 14,
|
"execution_count": 17,
|
||||||
"id": "8b27d283",
|
"id": "8b27d283",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"class NeuralOperatorSolver(AbstractProblem):\n",
|
"class NeuralOperatorSolver(AbstractProblem):\n",
|
||||||
" input_variables = ['u_0']\n",
|
" input_variables = k_train.labels\n",
|
||||||
" output_variables = ['u']\n",
|
" output_variables = u_train.labels\n",
|
||||||
" conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables), \n",
|
" conditions = {'data' : Condition(input_points=k_train, \n",
|
||||||
" output_points=LabelTensor(u_train, output_variables))}\n",
|
" output_points=u_train)}\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# make problem\n",
|
"# make problem\n",
|
||||||
"problem = NeuralOperatorSolver()"
|
"problem = NeuralOperatorSolver()"
|
||||||
@@ -143,7 +142,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 15,
|
"execution_count": 18,
|
||||||
"id": "e34f18b0",
|
"id": "e34f18b0",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
@@ -161,7 +160,7 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Epoch 9: : 100it [00:00, 383.36it/s, v_num=36, mean_loss=0.108]"
|
"Epoch 9: : 100it [00:00, 357.28it/s, v_num=1, mean_loss=0.108]"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -175,7 +174,7 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Epoch 9: : 100it [00:00, 380.57it/s, v_num=36, mean_loss=0.108]\n"
|
"Epoch 9: : 100it [00:00, 354.81it/s, v_num=1, mean_loss=0.108]\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@@ -202,7 +201,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 16,
|
"execution_count": 19,
|
||||||
"id": "0e2a6aa4",
|
"id": "0e2a6aa4",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
@@ -222,10 +221,10 @@
|
|||||||
"metric_err = LpLoss(relative=True)\n",
|
"metric_err = LpLoss(relative=True)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100\n",
|
"err = float(metric_err(u_train.squeeze(-1), solver.neural_net(k_train).squeeze(-1)).mean())*100\n",
|
||||||
"print(f'Final error training {err:.2f}%')\n",
|
"print(f'Final error training {err:.2f}%')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100\n",
|
"err = float(metric_err(u_test.squeeze(-1), solver.neural_net(k_test).squeeze(-1)).mean())*100\n",
|
||||||
"print(f'Final error testing {err:.2f}%')"
|
"print(f'Final error testing {err:.2f}%')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -241,7 +240,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 17,
|
"execution_count": 24,
|
||||||
"id": "9af523a5",
|
"id": "9af523a5",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
@@ -259,7 +258,14 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Epoch 9: : 100it [00:04, 22.13it/s, v_num=37, mean_loss=0.000952]"
|
"Epoch 0: : 0it [00:00, ?it/s]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Epoch 9: : 100it [00:02, 47.76it/s, v_num=4, mean_loss=0.00106] "
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -273,7 +279,7 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Epoch 9: : 100it [00:04, 22.07it/s, v_num=37, mean_loss=0.000952]\n"
|
"Epoch 9: : 100it [00:02, 47.65it/s, v_num=4, mean_loss=0.00106]\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@@ -283,10 +289,10 @@
|
|||||||
"projecting_net = torch.nn.Linear(24, 1)\n",
|
"projecting_net = torch.nn.Linear(24, 1)\n",
|
||||||
"model = FNO(lifting_net=lifting_net,\n",
|
"model = FNO(lifting_net=lifting_net,\n",
|
||||||
" projecting_net=projecting_net,\n",
|
" projecting_net=projecting_net,\n",
|
||||||
" n_modes=16,\n",
|
" n_modes=8,\n",
|
||||||
" dimensions=2,\n",
|
" dimensions=2,\n",
|
||||||
" inner_size=24,\n",
|
" inner_size=24,\n",
|
||||||
" padding=11)\n",
|
" padding=8)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# make solver\n",
|
"# make solver\n",
|
||||||
@@ -307,7 +313,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 18,
|
"execution_count": 25,
|
||||||
"id": "58e2db89",
|
"id": "58e2db89",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
@@ -315,16 +321,16 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"Final error training 4.45%\n",
|
"Final error training 4.83%\n",
|
||||||
"Final error testing 4.91%\n"
|
"Final error testing 5.16%\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100\n",
|
"err = float(metric_err(u_train.squeeze(-1), solver.neural_net(k_train).squeeze(-1)).mean())*100\n",
|
||||||
"print(f'Final error training {err:.2f}%')\n",
|
"print(f'Final error training {err:.2f}%')\n",
|
||||||
"\n",
|
"\n",
|
||||||
"err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100\n",
|
"err = float(metric_err(u_test.squeeze(-1), solver.neural_net(k_test).squeeze(-1)).mean())*100\n",
|
||||||
"print(f'Final error testing {err:.2f}%')"
|
"print(f'Final error testing {err:.2f}%')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
|||||||
43
tutorials/tutorial5/tutorial.py
vendored
43
tutorials/tutorial5/tutorial.py
vendored
@@ -6,15 +6,14 @@
|
|||||||
# In this tutorial we are going to solve the Darcy flow problem in two dimensions, presented in [*Fourier Neural Operator for
|
# In this tutorial we are going to solve the Darcy flow problem in two dimensions, presented in [*Fourier Neural Operator for
|
||||||
# Parametric Partial Differential Equation*](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input output operations.
|
# Parametric Partial Differential Equation*](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input output operations.
|
||||||
|
|
||||||
# In[11]:
|
# In[1]:
|
||||||
|
|
||||||
|
|
||||||
# !pip install scipy # install scipy
|
# !pip install scipy # install scipy
|
||||||
from scipy import io
|
from scipy import io
|
||||||
import torch
|
import torch
|
||||||
from pina.model import FNO, FeedForward # let's import some models
|
from pina.model import FNO, FeedForward # let's import some models
|
||||||
from pina import Condition
|
from pina import Condition, LabelTensor
|
||||||
from pina import LabelTensor
|
|
||||||
from pina.solvers import SupervisedSolver
|
from pina.solvers import SupervisedSolver
|
||||||
from pina.trainer import Trainer
|
from pina.trainer import Trainer
|
||||||
from pina.problem import AbstractProblem
|
from pina.problem import AbstractProblem
|
||||||
@@ -39,10 +38,10 @@ import matplotlib.pyplot as plt
|
|||||||
data = io.loadmat("Data_Darcy.mat")
|
data = io.loadmat("Data_Darcy.mat")
|
||||||
|
|
||||||
# extract data (we use only 100 data for train)
|
# extract data (we use only 100 data for train)
|
||||||
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)
|
k_train = LabelTensor(torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1), ['u0'])
|
||||||
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)
|
u_train = LabelTensor(torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1), ['u'])
|
||||||
k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)
|
k_test = LabelTensor(torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1), ['u0'])
|
||||||
u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)
|
u_test= LabelTensor(torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1), ['u'])
|
||||||
x = torch.tensor(data['x'], dtype=torch.float)[0]
|
x = torch.tensor(data['x'], dtype=torch.float)[0]
|
||||||
y = torch.tensor(data['y'], dtype=torch.float)[0]
|
y = torch.tensor(data['y'], dtype=torch.float)[0]
|
||||||
|
|
||||||
@@ -63,14 +62,14 @@ plt.show()
|
|||||||
|
|
||||||
# We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`.
|
# We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`.
|
||||||
|
|
||||||
# In[14]:
|
# In[17]:
|
||||||
|
|
||||||
|
|
||||||
class NeuralOperatorSolver(AbstractProblem):
|
class NeuralOperatorSolver(AbstractProblem):
|
||||||
input_variables = ['u_0']
|
input_variables = k_train.labels
|
||||||
output_variables = ['u']
|
output_variables = u_train.labels
|
||||||
conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables),
|
conditions = {'data' : Condition(input_points=k_train,
|
||||||
output_points=LabelTensor(u_train, output_variables))}
|
output_points=u_train)}
|
||||||
|
|
||||||
# make problem
|
# make problem
|
||||||
problem = NeuralOperatorSolver()
|
problem = NeuralOperatorSolver()
|
||||||
@@ -80,7 +79,7 @@ problem = NeuralOperatorSolver()
|
|||||||
#
|
#
|
||||||
# We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning.
|
# We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning.
|
||||||
|
|
||||||
# In[15]:
|
# In[18]:
|
||||||
|
|
||||||
|
|
||||||
# make model
|
# make model
|
||||||
@@ -97,7 +96,7 @@ trainer.train()
|
|||||||
|
|
||||||
# The final loss is pretty high... We can calculate the error by importing `LpLoss`.
|
# The final loss is pretty high... We can calculate the error by importing `LpLoss`.
|
||||||
|
|
||||||
# In[16]:
|
# In[19]:
|
||||||
|
|
||||||
|
|
||||||
from pina.loss import LpLoss
|
from pina.loss import LpLoss
|
||||||
@@ -106,10 +105,10 @@ from pina.loss import LpLoss
|
|||||||
metric_err = LpLoss(relative=True)
|
metric_err = LpLoss(relative=True)
|
||||||
|
|
||||||
|
|
||||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
err = float(metric_err(u_train.squeeze(-1), solver.neural_net(k_train).squeeze(-1)).mean())*100
|
||||||
print(f'Final error training {err:.2f}%')
|
print(f'Final error training {err:.2f}%')
|
||||||
|
|
||||||
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
|
err = float(metric_err(u_test.squeeze(-1), solver.neural_net(k_test).squeeze(-1)).mean())*100
|
||||||
print(f'Final error testing {err:.2f}%')
|
print(f'Final error testing {err:.2f}%')
|
||||||
|
|
||||||
|
|
||||||
@@ -117,7 +116,7 @@ print(f'Final error testing {err:.2f}%')
|
|||||||
#
|
#
|
||||||
# We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see.
|
# We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see.
|
||||||
|
|
||||||
# In[17]:
|
# In[24]:
|
||||||
|
|
||||||
|
|
||||||
# make model
|
# make model
|
||||||
@@ -125,10 +124,10 @@ lifting_net = torch.nn.Linear(1, 24)
|
|||||||
projecting_net = torch.nn.Linear(24, 1)
|
projecting_net = torch.nn.Linear(24, 1)
|
||||||
model = FNO(lifting_net=lifting_net,
|
model = FNO(lifting_net=lifting_net,
|
||||||
projecting_net=projecting_net,
|
projecting_net=projecting_net,
|
||||||
n_modes=16,
|
n_modes=8,
|
||||||
dimensions=2,
|
dimensions=2,
|
||||||
inner_size=24,
|
inner_size=24,
|
||||||
padding=11)
|
padding=8)
|
||||||
|
|
||||||
|
|
||||||
# make solver
|
# make solver
|
||||||
@@ -141,13 +140,13 @@ trainer.train()
|
|||||||
|
|
||||||
# We can clearly see that the final loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training, when many data samples are used.
|
# We can clearly see that the final loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training, when many data samples are used.
|
||||||
|
|
||||||
# In[18]:
|
# In[25]:
|
||||||
|
|
||||||
|
|
||||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
err = float(metric_err(u_train.squeeze(-1), solver.neural_net(k_train).squeeze(-1)).mean())*100
|
||||||
print(f'Final error training {err:.2f}%')
|
print(f'Final error training {err:.2f}%')
|
||||||
|
|
||||||
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
|
err = float(metric_err(u_test.squeeze(-1), solver.neural_net(k_test).squeeze(-1)).mean())*100
|
||||||
print(f'Final error testing {err:.2f}%')
|
print(f'Final error testing {err:.2f}%')
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user