Simplify Graph class (#459)

* Simplifying Graph class and adjust tests

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
Filippo Olivo
2025-03-03 09:30:44 +01:00
committed by Nicola Demo
parent 4c3e305b09
commit ab6ca78d85
7 changed files with 909 additions and 719 deletions

View File

@@ -15,12 +15,18 @@ def test_supervised_tensor_collector():
class SupervisedProblem(AbstractProblem):
output_variables = None
conditions = {
'data1': Condition(input_points=torch.rand((10, 2)),
output_points=torch.rand((10, 2))),
'data2': Condition(input_points=torch.rand((20, 2)),
output_points=torch.rand((20, 2))),
'data3': Condition(input_points=torch.rand((30, 2)),
output_points=torch.rand((30, 2))),
"data1": Condition(
input_points=torch.rand((10, 2)),
output_points=torch.rand((10, 2)),
),
"data2": Condition(
input_points=torch.rand((20, 2)),
output_points=torch.rand((20, 2)),
),
"data3": Condition(
input_points=torch.rand((30, 2)),
output_points=torch.rand((30, 2)),
),
}
problem = SupervisedProblem()
@@ -31,65 +37,58 @@ def test_supervised_tensor_collector():
def test_pinn_collector():
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
torch.sin(input_.extract(['y']) * torch.pi))
delta_u = laplacian(output_.extract(['u']), input_)
force_term = torch.sin(input_.extract(["x"]) * torch.pi) * torch.sin(
input_.extract(["y"]) * torch.pi
)
delta_u = laplacian(output_.extract(["u"]), input_)
return delta_u - force_term
my_laplace = Equation(laplace_equation)
in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y'])
out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u'])
in_ = LabelTensor(
torch.tensor([[0.0, 1.0]], requires_grad=True), ["x", "y"]
)
out_ = LabelTensor(torch.tensor([[0.0]], requires_grad=True), ["u"])
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
output_variables = ["u"]
spatial_domain = CartesianDomain({"x": [0, 1], "y": [0, 1]})
conditions = {
'gamma1':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': 1
}),
equation=FixedValue(0.0)),
'gamma2':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': 0
}),
equation=FixedValue(0.0)),
'gamma3':
Condition(domain=CartesianDomain({
'x': 1,
'y': [0, 1]
}),
equation=FixedValue(0.0)),
'gamma4':
Condition(domain=CartesianDomain({
'x': 0,
'y': [0, 1]
}),
equation=FixedValue(0.0)),
'D':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': [0, 1]
}),
equation=my_laplace),
'data':
Condition(input_points=in_, output_points=out_)
"gamma1": Condition(
domain=CartesianDomain({"x": [0, 1], "y": 1}),
equation=FixedValue(0.0),
),
"gamma2": Condition(
domain=CartesianDomain({"x": [0, 1], "y": 0}),
equation=FixedValue(0.0),
),
"gamma3": Condition(
domain=CartesianDomain({"x": 1, "y": [0, 1]}),
equation=FixedValue(0.0),
),
"gamma4": Condition(
domain=CartesianDomain({"x": 0, "y": [0, 1]}),
equation=FixedValue(0.0),
),
"D": Condition(
domain=CartesianDomain({"x": [0, 1], "y": [0, 1]}),
equation=my_laplace,
),
"data": Condition(input_points=in_, output_points=out_),
}
def poisson_sol(self, pts):
return -(torch.sin(pts.extract(['x']) * torch.pi) *
torch.sin(pts.extract(['y']) * torch.pi)) / (
2 * torch.pi ** 2)
return -(
torch.sin(pts.extract(["x"]) * torch.pi)
* torch.sin(pts.extract(["y"]) * torch.pi)
) / (2 * torch.pi**2)
truth_solution = poisson_sol
problem = Poisson()
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
problem.discretise_domain(10, 'grid', domains=boundaries)
problem.discretise_domain(10, 'grid', domains='D')
boundaries = ["gamma1", "gamma2", "gamma3", "gamma4"]
problem.discretise_domain(10, "grid", domains=boundaries)
problem.discretise_domain(10, "grid", domains="D")
collector = Collector(problem)
collector.store_fixed_data()
@@ -98,31 +97,34 @@ def test_pinn_collector():
for k, v in problem.conditions.items():
if isinstance(v, InputOutputPointsCondition):
assert list(collector.data_collections[k].keys()) == [
'input_points', 'output_points']
"input_points",
"output_points",
]
for k, v in problem.conditions.items():
if isinstance(v, DomainEquationCondition):
assert list(collector.data_collections[k].keys()) == [
'input_points', 'equation']
"input_points",
"equation",
]
def test_supervised_graph_collector():
pos = torch.rand((100, 3))
x = [torch.rand((100, 3)) for _ in range(10)]
graph_list_1 = RadiusGraph(pos=pos, x=x, build_edge_attr=True, r=.4)
graph_list_1 = [RadiusGraph(pos=pos, radius=0.4, x=x_) for x_ in x]
out_1 = torch.rand((10, 100, 3))
pos = torch.rand((50, 3))
x = [torch.rand((50, 3)) for _ in range(10)]
graph_list_2 = RadiusGraph(pos=pos, x=x, build_edge_attr=True, r=.4)
graph_list_2 = [RadiusGraph(pos=pos, radius=0.4, x=x_) for x_ in x]
out_2 = torch.rand((10, 50, 3))
class SupervisedProblem(AbstractProblem):
output_variables = None
conditions = {
'data1': Condition(input_points=graph_list_1,
output_points=out_1),
'data2': Condition(input_points=graph_list_2,
output_points=out_2),
"data1": Condition(input_points=graph_list_1, output_points=out_1),
"data2": Condition(input_points=graph_list_2, output_points=out_2),
}
problem = SupervisedProblem()