Simplify Graph class (#459)
* Simplifying Graph class and adjust tests --------- Co-authored-by: Dario Coscia <dariocos99@gmail.com>
This commit is contained in:
committed by
Nicola Demo
parent
4c3e305b09
commit
ab6ca78d85
548
pina/graph.py
548
pina/graph.py
@@ -1,319 +1,319 @@
|
||||
from logging import warning
|
||||
"""
|
||||
This module provides an interface to build torch_geometric.data.Data objects.
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
||||
from . import LabelTensor
|
||||
from torch_geometric.data import Data
|
||||
from torch_geometric.utils import to_undirected
|
||||
import inspect
|
||||
from . import LabelTensor
|
||||
from .utils import check_consistency, is_function
|
||||
|
||||
|
||||
class Graph:
|
||||
class Graph(Data):
|
||||
"""
|
||||
Class for the graph construction.
|
||||
A class to build torch_geometric.data.Data objects.
|
||||
"""
|
||||
|
||||
def __new__(
|
||||
cls,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
:param kwargs: Parameters to construct the Graph object.
|
||||
:return: A new instance of the Graph class.
|
||||
:rtype: Graph
|
||||
"""
|
||||
# create class instance
|
||||
instance = Data.__new__(cls)
|
||||
|
||||
# check the consistency of types defined in __init__, the others are not
|
||||
# checked (as in pyg Data object)
|
||||
instance._check_type_consistency(**kwargs)
|
||||
|
||||
return instance
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
x,
|
||||
pos,
|
||||
edge_index,
|
||||
x=None,
|
||||
edge_index=None,
|
||||
pos=None,
|
||||
edge_attr=None,
|
||||
build_edge_attr=False,
|
||||
undirected=False,
|
||||
custom_build_edge_attr=None,
|
||||
additional_params=None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Constructor for the Graph class. This object creates a list of PyTorch Geometric Data objects.
|
||||
Based on the input of x and pos there could be the following cases:
|
||||
1. 1 pos, 1 x: a single graph will be created
|
||||
2. N pos, 1 x: N graphs will be created with the same node features
|
||||
3. 1 pos, N x: N graphs will be created with the same nodes but different node features
|
||||
4. N pos, N x: N graphs will be created
|
||||
Initialize the Graph object.
|
||||
|
||||
:param x: Node features. Can be a single 2D tensor of shape [num_nodes, num_node_features],
|
||||
or a 3D tensor of shape [n_graphs, num_nodes, num_node_features]
|
||||
or a list of such 2D tensors of shape [num_nodes, num_node_features].
|
||||
:type x: torch.Tensor or list[torch.Tensor]
|
||||
:param pos: Node coordinates. Can be a single 2D tensor of shape [num_nodes, num_coordinates],
|
||||
or a 3D tensor of shape [n_graphs, num_nodes, num_coordinates]
|
||||
or a list of such 2D tensors of shape [num_nodes, num_coordinates].
|
||||
:type pos: torch.Tensor or list[torch.Tensor]
|
||||
:param edge_index: The edge index defining connections between nodes.
|
||||
It should be a 2D tensor of shape [2, num_edges]
|
||||
or a 3D tensor of shape [n_graphs, 2, num_edges]
|
||||
or a list of such 2D tensors of shape [2, num_edges].
|
||||
:type edge_index: torch.Tensor or list[torch.Tensor]
|
||||
:param edge_attr: Edge features. If provided, should have the shape [num_edges, num_edge_features]
|
||||
or be a list of such tensors for multiple graphs.
|
||||
:type edge_attr: torch.Tensor or list[torch.Tensor], optional
|
||||
:param build_edge_attr: Whether to compute edge attributes during initialization.
|
||||
:type build_edge_attr: bool, default=False
|
||||
:param undirected: If True, converts the graph(s) into an undirected graph by adding reciprocal edges.
|
||||
:type undirected: bool, default=False
|
||||
:param custom_build_edge_attr: A user-defined function to generate edge attributes dynamically.
|
||||
The function should take (x, pos, edge_index) as input and return a tensor
|
||||
of shape [num_edges, num_edge_features].
|
||||
:type custom_build_edge_attr: function or callable, optional
|
||||
:param additional_params: Dictionary containing extra attributes to be added to each Data object.
|
||||
Keys represent attribute names, and values should be tensors or lists of tensors.
|
||||
:type additional_params: dict, optional
|
||||
|
||||
Note: if x, pos, and edge_index are both lists or 3D tensors, then len(x) == len(pos) == len(edge_index).
|
||||
:param x: Optional tensor of node features (N, F) where F is the number
|
||||
of features per node.
|
||||
:type x: torch.Tensor, LabelTensor
|
||||
:param torch.Tensor edge_index: A tensor of shape (2, E) representing
|
||||
the indices of the graph's edges.
|
||||
:param pos: A tensor of shape (N, D) representing the positions of N
|
||||
points in D-dimensional space.
|
||||
:type pos: torch.Tensor | LabelTensor
|
||||
:param edge_attr: Optional tensor of edge_featured (E, F') where F' is
|
||||
the number of edge features
|
||||
:param bool undirected: Whether to make the graph undirected
|
||||
:param kwargs: Additional keyword arguments passed to the
|
||||
`torch_geometric.data.Data` class constructor. If the argument
|
||||
is a `torch.Tensor` or `LabelTensor`, it is included in the Data
|
||||
object as a graph parameter.
|
||||
"""
|
||||
# preprocessing
|
||||
self._preprocess_edge_index(edge_index, undirected)
|
||||
|
||||
self.data = []
|
||||
x, pos, edge_index = self._check_input_consistency(x, pos, edge_index)
|
||||
|
||||
# Check input dimension consistency and store the number of graphs
|
||||
data_len = self._check_len_consistency(x, pos)
|
||||
if inspect.isfunction(custom_build_edge_attr):
|
||||
self._build_edge_attr = custom_build_edge_attr
|
||||
|
||||
# Check consistency and initialize additional_parameters (if present)
|
||||
additional_params = self._check_additional_params(
|
||||
additional_params, data_len
|
||||
# calling init
|
||||
super().__init__(
|
||||
x=x, edge_index=edge_index, edge_attr=edge_attr, pos=pos, **kwargs
|
||||
)
|
||||
|
||||
# Make the graphs undirected
|
||||
if undirected:
|
||||
if isinstance(edge_index, list):
|
||||
edge_index = [to_undirected(e) for e in edge_index]
|
||||
else:
|
||||
edge_index = to_undirected(edge_index)
|
||||
|
||||
# Prepare internal lists to create a graph list (same positions but
|
||||
# different node features)
|
||||
if isinstance(x, list) and isinstance(pos, (torch.Tensor, LabelTensor)):
|
||||
# Replicate the positions, edge_index and edge_attr
|
||||
pos, edge_index = [pos] * data_len, [edge_index] * data_len
|
||||
# Prepare internal lists to create a list containing a single graph
|
||||
elif isinstance(x, (torch.Tensor, LabelTensor)) and isinstance(
|
||||
pos, (torch.Tensor, LabelTensor)
|
||||
):
|
||||
# Encapsulate the input tensors into lists
|
||||
x, pos, edge_index = [x], [pos], [edge_index]
|
||||
# Prepare internal lists to create a list of graphs (same node features
|
||||
# but different positions)
|
||||
elif isinstance(x, (torch.Tensor, LabelTensor)) and isinstance(
|
||||
pos, list
|
||||
):
|
||||
# Replicate the node features
|
||||
x = [x] * data_len
|
||||
elif not isinstance(x, list) and not isinstance(pos, list):
|
||||
raise TypeError("x and pos must be lists or tensors.")
|
||||
|
||||
# Build the edge attributes
|
||||
edge_attr = self._check_and_build_edge_attr(
|
||||
edge_attr, build_edge_attr, data_len, edge_index, pos, x
|
||||
)
|
||||
|
||||
# Perform the graph construction
|
||||
self._build_graph_list(x, pos, edge_index, edge_attr, additional_params)
|
||||
|
||||
def _build_graph_list(
|
||||
self, x, pos, edge_index, edge_attr, additional_params
|
||||
):
|
||||
for i, (x_, pos_, edge_index_) in enumerate(zip(x, pos, edge_index)):
|
||||
add_params_local = {k: v[i] for k, v in additional_params.items()}
|
||||
if edge_attr is not None:
|
||||
self.data.append(
|
||||
Data(
|
||||
x=x_,
|
||||
pos=pos_,
|
||||
edge_index=edge_index_,
|
||||
edge_attr=edge_attr[i],
|
||||
**add_params_local,
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.data.append(
|
||||
Data(
|
||||
x=x_,
|
||||
pos=pos_,
|
||||
edge_index=edge_index_,
|
||||
**add_params_local,
|
||||
)
|
||||
)
|
||||
def _check_type_consistency(self, **kwargs):
|
||||
# default types, specified in cls.__new__, by default they are Nont
|
||||
# if specified in **kwargs they get override
|
||||
x, pos, edge_index, edge_attr = None, None, None, None
|
||||
if "pos" in kwargs:
|
||||
pos = kwargs["pos"]
|
||||
self._check_pos_consistency(pos)
|
||||
if "edge_index" in kwargs:
|
||||
edge_index = kwargs["edge_index"]
|
||||
self._check_edge_index_consistency(edge_index)
|
||||
if "x" in kwargs:
|
||||
x = kwargs["x"]
|
||||
self._check_x_consistency(x, pos)
|
||||
if "edge_attr" in kwargs:
|
||||
edge_attr = kwargs["edge_attr"]
|
||||
self._check_edge_attr_consistency(edge_attr, edge_index)
|
||||
if "undirected" in kwargs:
|
||||
undirected = kwargs["undirected"]
|
||||
check_consistency(undirected, bool)
|
||||
|
||||
@staticmethod
|
||||
def _build_edge_attr(x, pos, edge_index):
|
||||
distance = torch.abs(
|
||||
pos[edge_index[0]] - pos[edge_index[1]]
|
||||
).as_subclass(torch.Tensor)
|
||||
return distance
|
||||
def _check_pos_consistency(pos):
|
||||
"""
|
||||
Check if the position tensor is consistent.
|
||||
:param torch.Tensor pos: The position tensor.
|
||||
"""
|
||||
if pos is not None:
|
||||
check_consistency(pos, (torch.Tensor, LabelTensor))
|
||||
if pos.ndim != 2:
|
||||
raise ValueError("pos must be a 2D tensor.")
|
||||
|
||||
@staticmethod
|
||||
def _check_len_consistency(x, pos):
|
||||
if isinstance(x, list) and isinstance(pos, list):
|
||||
if len(x) != len(pos):
|
||||
raise ValueError("x and pos must have the same length.")
|
||||
return max(len(x), len(pos))
|
||||
elif isinstance(x, list) and not isinstance(pos, list):
|
||||
return len(x)
|
||||
elif not isinstance(x, list) and isinstance(pos, list):
|
||||
return len(pos)
|
||||
else:
|
||||
return 1
|
||||
def _check_edge_index_consistency(edge_index):
|
||||
"""
|
||||
Check if the edge index is consistent.
|
||||
:param torch.Tensor edge_index: The edge index tensor.
|
||||
"""
|
||||
check_consistency(edge_index, (torch.Tensor, LabelTensor))
|
||||
if edge_index.ndim != 2:
|
||||
raise ValueError("edge_index must be a 2D tensor.")
|
||||
if edge_index.size(0) != 2:
|
||||
raise ValueError("edge_index must have shape [2, num_edges].")
|
||||
|
||||
@staticmethod
|
||||
def _check_input_consistency(x, pos, edge_index=None):
|
||||
# If x is a 3D tensor, we split it into a list of 2D tensors
|
||||
if isinstance(x, torch.Tensor) and x.ndim == 3:
|
||||
x = [x[i] for i in range(x.shape[0])]
|
||||
elif not (isinstance(x, list) and all(t.ndim == 2 for t in x)) and not (
|
||||
isinstance(x, torch.Tensor) and x.ndim == 2
|
||||
):
|
||||
raise TypeError(
|
||||
"x must be either a list of 2D tensors or a 2D "
|
||||
"tensor or a 3D tensor"
|
||||
)
|
||||
def _check_edge_attr_consistency(edge_attr, edge_index):
|
||||
"""
|
||||
Check if the edge attr is consistent.
|
||||
:param torch.Tensor edge_attr: The edge attribute tensor.
|
||||
|
||||
# If pos is a 3D tensor, we split it into a list of 2D tensors
|
||||
if isinstance(pos, torch.Tensor) and pos.ndim == 3:
|
||||
pos = [pos[i] for i in range(pos.shape[0])]
|
||||
elif not (
|
||||
isinstance(pos, list) and all(t.ndim == 2 for t in pos)
|
||||
) and not (isinstance(pos, torch.Tensor) and pos.ndim == 2):
|
||||
raise TypeError(
|
||||
"pos must be either a list of 2D tensors or a 2D "
|
||||
"tensor or a 3D tensor"
|
||||
)
|
||||
|
||||
# If edge_index is a 3D tensor, we split it into a list of 2D tensors
|
||||
if edge_index is not None:
|
||||
if isinstance(edge_index, torch.Tensor) and edge_index.ndim == 3:
|
||||
edge_index = [edge_index[i] for i in range(edge_index.shape[0])]
|
||||
elif not (
|
||||
isinstance(edge_index, list)
|
||||
and all(t.ndim == 2 for t in edge_index)
|
||||
) and not (
|
||||
isinstance(edge_index, torch.Tensor) and edge_index.ndim == 2
|
||||
):
|
||||
raise TypeError(
|
||||
"edge_index must be either a list of 2D tensors or a 2D "
|
||||
"tensor or a 3D tensor"
|
||||
)
|
||||
|
||||
return x, pos, edge_index
|
||||
|
||||
@staticmethod
|
||||
def _check_additional_params(additional_params, data_len):
|
||||
if additional_params is not None:
|
||||
if not isinstance(additional_params, dict):
|
||||
raise TypeError("additional_params must be a dictionary.")
|
||||
for param, val in additional_params.items():
|
||||
# Check if the values are tensors or lists of tensors
|
||||
if isinstance(val, torch.Tensor):
|
||||
# If the tensor is 3D, we split it into a list of 2D tensors
|
||||
# In this case there must be a additional parameter for each
|
||||
# node
|
||||
if val.ndim == 3:
|
||||
additional_params[param] = [
|
||||
val[i] for i in range(val.shape[0])
|
||||
]
|
||||
# If the tensor is 2D, we replicate it for each node
|
||||
elif val.ndim == 2:
|
||||
additional_params[param] = [val] * data_len
|
||||
# If the tensor is 1D, each graph has a scalar values as
|
||||
# additional parameter
|
||||
if val.ndim == 1:
|
||||
if len(val) == data_len:
|
||||
additional_params[param] = [
|
||||
val[i] for i in range(len(val))
|
||||
]
|
||||
else:
|
||||
additional_params[param] = [
|
||||
val for _ in range(data_len)
|
||||
]
|
||||
elif not isinstance(val, list):
|
||||
raise TypeError(
|
||||
"additional_params values must be tensors "
|
||||
"or lists of tensors."
|
||||
)
|
||||
else:
|
||||
additional_params = {}
|
||||
return additional_params
|
||||
|
||||
def _check_and_build_edge_attr(
|
||||
self, edge_attr, build_edge_attr, data_len, edge_index, pos, x
|
||||
):
|
||||
# Check if edge_attr is consistent with x and pos
|
||||
:param torch.Tensor edge_index: The edge index tensor.
|
||||
"""
|
||||
if edge_attr is not None:
|
||||
if build_edge_attr is True:
|
||||
warning(
|
||||
"edge_attr is not None. build_edge_attr will not be "
|
||||
"considered."
|
||||
check_consistency(edge_attr, (torch.Tensor, LabelTensor))
|
||||
if edge_attr.ndim != 2:
|
||||
raise ValueError("edge_attr must be a 2D tensor.")
|
||||
if edge_attr.size(0) != edge_index.size(1):
|
||||
raise ValueError(
|
||||
"edge_attr must have shape "
|
||||
"[num_edges, num_edge_features], expected "
|
||||
f"num_edges {edge_index.size(1)} "
|
||||
f"got {edge_attr.size(0)}."
|
||||
)
|
||||
if isinstance(edge_attr, list):
|
||||
if len(edge_attr) != data_len:
|
||||
raise TypeError(
|
||||
"edge_attr must have the same length as x " "and pos."
|
||||
)
|
||||
return [edge_attr] * data_len
|
||||
|
||||
if build_edge_attr:
|
||||
return [
|
||||
self._build_edge_attr(x_, pos_, edge_index_)
|
||||
for x_, pos_, edge_index_ in zip(x, pos, edge_index)
|
||||
]
|
||||
|
||||
|
||||
class RadiusGraph(Graph):
|
||||
def __init__(self, x, pos, r, **kwargs):
|
||||
x, pos, edge_index = Graph._check_input_consistency(x, pos)
|
||||
|
||||
if isinstance(pos, (torch.Tensor, LabelTensor)):
|
||||
edge_index = RadiusGraph._radius_graph(pos, r)
|
||||
else:
|
||||
edge_index = [RadiusGraph._radius_graph(p, r) for p in pos]
|
||||
|
||||
super().__init__(x=x, pos=pos, edge_index=edge_index, **kwargs)
|
||||
|
||||
@staticmethod
|
||||
def _radius_graph(points, r):
|
||||
def _check_x_consistency(x, pos=None):
|
||||
"""
|
||||
Implementation of the radius graph construction.
|
||||
:param points: The input points.
|
||||
:type points: torch.Tensor
|
||||
:param r: The radius.
|
||||
:type r: float
|
||||
:return: The edge index.
|
||||
Check if the input tensor x is consistent with the position tensor pos.
|
||||
:param torch.Tensor x: The input tensor.
|
||||
:param torch.Tensor pos: The position tensor.
|
||||
"""
|
||||
if x is not None:
|
||||
check_consistency(x, (torch.Tensor, LabelTensor))
|
||||
if x.ndim != 2:
|
||||
raise ValueError("x must be a 2D tensor.")
|
||||
if pos is not None:
|
||||
if x.size(0) != pos.size(0):
|
||||
raise ValueError("Inconsistent number of nodes.")
|
||||
if pos is not None:
|
||||
if x.size(0) != pos.size(0):
|
||||
raise ValueError("Inconsistent number of nodes.")
|
||||
|
||||
@staticmethod
|
||||
def _preprocess_edge_index(edge_index, undirected):
|
||||
"""
|
||||
Preprocess the edge index.
|
||||
:param torch.Tensor edge_index: The edge index.
|
||||
:param bool undirected: Whether the graph is undirected.
|
||||
:return: The preprocessed edge index.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
dist = torch.cdist(points, points, p=2)
|
||||
edge_index = torch.nonzero(dist <= r, as_tuple=False).t()
|
||||
if isinstance(edge_index, LabelTensor):
|
||||
edge_index = edge_index.tensor
|
||||
if undirected:
|
||||
edge_index = to_undirected(edge_index)
|
||||
return edge_index
|
||||
|
||||
|
||||
class KNNGraph(Graph):
|
||||
def __init__(self, x, pos, k, **kwargs):
|
||||
x, pos, edge_index = Graph._check_input_consistency(x, pos)
|
||||
if isinstance(pos, (torch.Tensor, LabelTensor)):
|
||||
edge_index = KNNGraph._knn_graph(pos, k)
|
||||
else:
|
||||
edge_index = [KNNGraph._knn_graph(p, k) for p in pos]
|
||||
super().__init__(x=x, pos=pos, edge_index=edge_index, **kwargs)
|
||||
class GraphBuilder:
|
||||
"""
|
||||
A class that allows the simple definition of Graph instances.
|
||||
"""
|
||||
|
||||
def __new__(
|
||||
cls,
|
||||
pos,
|
||||
edge_index,
|
||||
x=None,
|
||||
edge_attr=False,
|
||||
custom_edge_func=None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Creates a new instance of the Graph class.
|
||||
|
||||
:param pos: A tensor of shape (N, D) representing the positions of N
|
||||
points in D-dimensional space.
|
||||
:type pos: torch.Tensor | LabelTensor
|
||||
:param edge_index: A tensor of shape (2, E) representing the indices of
|
||||
the graph's edges.
|
||||
:type edge_index: torch.Tensor
|
||||
:param x: Optional tensor of node features (N, F) where F is the number
|
||||
of features per node.
|
||||
:type x: torch.Tensor, LabelTensor
|
||||
:param bool edge_attr: Optional edge attributes (E, F) where F is the
|
||||
number of features per edge.
|
||||
:param callable custom_edge_func: A custom function to compute edge
|
||||
attributes.
|
||||
:param kwargs: Additional keyword arguments passed to the Graph class
|
||||
constructor.
|
||||
:return: A Graph instance constructed using the provided information.
|
||||
:rtype: Graph
|
||||
"""
|
||||
edge_attr = cls._create_edge_attr(
|
||||
pos, edge_index, edge_attr, custom_edge_func or cls._build_edge_attr
|
||||
)
|
||||
return Graph(
|
||||
x=x,
|
||||
edge_index=edge_index,
|
||||
edge_attr=edge_attr,
|
||||
pos=pos,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _knn_graph(points, k):
|
||||
def _create_edge_attr(pos, edge_index, edge_attr, func):
|
||||
check_consistency(edge_attr, bool)
|
||||
if edge_attr:
|
||||
if is_function(func):
|
||||
return func(pos, edge_index)
|
||||
raise ValueError("custom_edge_func must be a function.")
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def _build_edge_attr(pos, edge_index):
|
||||
return (
|
||||
(pos[edge_index[0]] - pos[edge_index[1]])
|
||||
.abs()
|
||||
.as_subclass(torch.Tensor)
|
||||
)
|
||||
|
||||
|
||||
class RadiusGraph(GraphBuilder):
|
||||
"""
|
||||
A class to build a radius graph.
|
||||
"""
|
||||
|
||||
def __new__(cls, pos, radius, **kwargs):
|
||||
"""
|
||||
Implementation of the k-nearest neighbors graph construction.
|
||||
:param points: The input points.
|
||||
:type points: torch.Tensor
|
||||
:param k: The number of nearest neighbors.
|
||||
:type k: int
|
||||
:return: The edge index.
|
||||
:rtype: torch.Tensor
|
||||
Creates a new instance of the Graph class using a radius-based graph
|
||||
construction.
|
||||
|
||||
:param pos: A tensor of shape (N, D) representing the positions of N
|
||||
points in D-dimensional space.
|
||||
:type pos: torch.Tensor | LabelTensor
|
||||
:param float radius: The radius within which points are connected.
|
||||
:Keyword Arguments:
|
||||
The additional keyword arguments to be passed to GraphBuilder
|
||||
and Graph classes
|
||||
:return: Graph instance containg the information passed in input and
|
||||
the computed edge_index
|
||||
:rtype: Graph
|
||||
"""
|
||||
edge_index = cls.compute_radius_graph(pos, radius)
|
||||
return super().__new__(cls, pos=pos, edge_index=edge_index, **kwargs)
|
||||
|
||||
@staticmethod
|
||||
def compute_radius_graph(points, radius):
|
||||
"""
|
||||
Computes a radius-based graph for a given set of points.
|
||||
|
||||
:param points: A tensor of shape (N, D) representing the positions of
|
||||
N points in D-dimensional space.
|
||||
:type points: torch.Tensor | LabelTensor
|
||||
:param float radius: The number of nearest neighbors to find for each
|
||||
point.
|
||||
:rtype torch.Tensor: A tensor of shape (2, E), where E is the number of
|
||||
edges, representing the edge indices of the KNN graph.
|
||||
"""
|
||||
dist = torch.cdist(points, points, p=2)
|
||||
return (
|
||||
torch.nonzero(dist <= radius, as_tuple=False)
|
||||
.t()
|
||||
.as_subclass(torch.Tensor)
|
||||
)
|
||||
|
||||
|
||||
class KNNGraph(GraphBuilder):
|
||||
"""
|
||||
A class to build a KNN graph.
|
||||
"""
|
||||
|
||||
def __new__(cls, pos, neighbours, **kwargs):
|
||||
"""
|
||||
Creates a new instance of the Graph class using k-nearest neighbors
|
||||
to compute edge_index.
|
||||
|
||||
:param pos: A tensor of shape (N, D) representing the positions of N
|
||||
points in D-dimensional space.
|
||||
:type pos: torch.Tensor | LabelTensor
|
||||
:param int neighbours: The number of nearest neighbors to consider when
|
||||
building the graph.
|
||||
:Keyword Arguments:
|
||||
The additional keyword arguments to be passed to GraphBuilder
|
||||
and Graph classes
|
||||
|
||||
:return: Graph instance containg the information passed in input and
|
||||
the computed edge_index
|
||||
:rtype: Graph
|
||||
"""
|
||||
|
||||
edge_index = cls.compute_knn_graph(pos, neighbours)
|
||||
return super().__new__(cls, pos=pos, edge_index=edge_index, **kwargs)
|
||||
|
||||
@staticmethod
|
||||
def compute_knn_graph(points, k):
|
||||
"""
|
||||
Computes the edge_index based k-nearest neighbors graph algorithm
|
||||
|
||||
:param points: A tensor of shape (N, D) representing the positions of
|
||||
N points in D-dimensional space.
|
||||
:type points: torch.Tensor | LabelTensor
|
||||
:param int k: The number of nearest neighbors to find for each point.
|
||||
:rtype torch.Tensor: A tensor of shape (2, E), where E is the number of
|
||||
edges, representing the edge indices of the KNN graph.
|
||||
"""
|
||||
|
||||
dist = torch.cdist(points, points, p=2)
|
||||
knn_indices = torch.topk(dist, k=k + 1, largest=False).indices[:, 1:]
|
||||
row = torch.arange(points.size(0)).repeat_interleave(k)
|
||||
col = knn_indices.flatten()
|
||||
edge_index = torch.stack([row, col], dim=0)
|
||||
if isinstance(edge_index, LabelTensor):
|
||||
edge_index = edge_index.tensor
|
||||
return edge_index
|
||||
return torch.stack([row, col], dim=0).as_subclass(torch.Tensor)
|
||||
|
||||
@@ -15,12 +15,18 @@ def test_supervised_tensor_collector():
|
||||
class SupervisedProblem(AbstractProblem):
|
||||
output_variables = None
|
||||
conditions = {
|
||||
'data1': Condition(input_points=torch.rand((10, 2)),
|
||||
output_points=torch.rand((10, 2))),
|
||||
'data2': Condition(input_points=torch.rand((20, 2)),
|
||||
output_points=torch.rand((20, 2))),
|
||||
'data3': Condition(input_points=torch.rand((30, 2)),
|
||||
output_points=torch.rand((30, 2))),
|
||||
"data1": Condition(
|
||||
input_points=torch.rand((10, 2)),
|
||||
output_points=torch.rand((10, 2)),
|
||||
),
|
||||
"data2": Condition(
|
||||
input_points=torch.rand((20, 2)),
|
||||
output_points=torch.rand((20, 2)),
|
||||
),
|
||||
"data3": Condition(
|
||||
input_points=torch.rand((30, 2)),
|
||||
output_points=torch.rand((30, 2)),
|
||||
),
|
||||
}
|
||||
|
||||
problem = SupervisedProblem()
|
||||
@@ -31,65 +37,58 @@ def test_supervised_tensor_collector():
|
||||
|
||||
def test_pinn_collector():
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
force_term = torch.sin(input_.extract(["x"]) * torch.pi) * torch.sin(
|
||||
input_.extract(["y"]) * torch.pi
|
||||
)
|
||||
delta_u = laplacian(output_.extract(["u"]), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u'])
|
||||
in_ = LabelTensor(
|
||||
torch.tensor([[0.0, 1.0]], requires_grad=True), ["x", "y"]
|
||||
)
|
||||
out_ = LabelTensor(torch.tensor([[0.0]], requires_grad=True), ["u"])
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [0, 1], "y": [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 1
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 0
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 1,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 0,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=my_laplace),
|
||||
'data':
|
||||
Condition(input_points=in_, output_points=out_)
|
||||
"gamma1": Condition(
|
||||
domain=CartesianDomain({"x": [0, 1], "y": 1}),
|
||||
equation=FixedValue(0.0),
|
||||
),
|
||||
"gamma2": Condition(
|
||||
domain=CartesianDomain({"x": [0, 1], "y": 0}),
|
||||
equation=FixedValue(0.0),
|
||||
),
|
||||
"gamma3": Condition(
|
||||
domain=CartesianDomain({"x": 1, "y": [0, 1]}),
|
||||
equation=FixedValue(0.0),
|
||||
),
|
||||
"gamma4": Condition(
|
||||
domain=CartesianDomain({"x": 0, "y": [0, 1]}),
|
||||
equation=FixedValue(0.0),
|
||||
),
|
||||
"D": Condition(
|
||||
domain=CartesianDomain({"x": [0, 1], "y": [0, 1]}),
|
||||
equation=my_laplace,
|
||||
),
|
||||
"data": Condition(input_points=in_, output_points=out_),
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (
|
||||
2 * torch.pi ** 2)
|
||||
return -(
|
||||
torch.sin(pts.extract(["x"]) * torch.pi)
|
||||
* torch.sin(pts.extract(["y"]) * torch.pi)
|
||||
) / (2 * torch.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
problem.discretise_domain(10, 'grid', domains=boundaries)
|
||||
problem.discretise_domain(10, 'grid', domains='D')
|
||||
boundaries = ["gamma1", "gamma2", "gamma3", "gamma4"]
|
||||
problem.discretise_domain(10, "grid", domains=boundaries)
|
||||
problem.discretise_domain(10, "grid", domains="D")
|
||||
|
||||
collector = Collector(problem)
|
||||
collector.store_fixed_data()
|
||||
@@ -98,31 +97,34 @@ def test_pinn_collector():
|
||||
for k, v in problem.conditions.items():
|
||||
if isinstance(v, InputOutputPointsCondition):
|
||||
assert list(collector.data_collections[k].keys()) == [
|
||||
'input_points', 'output_points']
|
||||
"input_points",
|
||||
"output_points",
|
||||
]
|
||||
|
||||
for k, v in problem.conditions.items():
|
||||
if isinstance(v, DomainEquationCondition):
|
||||
assert list(collector.data_collections[k].keys()) == [
|
||||
'input_points', 'equation']
|
||||
"input_points",
|
||||
"equation",
|
||||
]
|
||||
|
||||
|
||||
def test_supervised_graph_collector():
|
||||
pos = torch.rand((100, 3))
|
||||
x = [torch.rand((100, 3)) for _ in range(10)]
|
||||
graph_list_1 = RadiusGraph(pos=pos, x=x, build_edge_attr=True, r=.4)
|
||||
graph_list_1 = [RadiusGraph(pos=pos, radius=0.4, x=x_) for x_ in x]
|
||||
out_1 = torch.rand((10, 100, 3))
|
||||
|
||||
pos = torch.rand((50, 3))
|
||||
x = [torch.rand((50, 3)) for _ in range(10)]
|
||||
graph_list_2 = RadiusGraph(pos=pos, x=x, build_edge_attr=True, r=.4)
|
||||
graph_list_2 = [RadiusGraph(pos=pos, radius=0.4, x=x_) for x_ in x]
|
||||
out_2 = torch.rand((10, 50, 3))
|
||||
|
||||
class SupervisedProblem(AbstractProblem):
|
||||
output_variables = None
|
||||
conditions = {
|
||||
'data1': Condition(input_points=graph_list_1,
|
||||
output_points=out_1),
|
||||
'data2': Condition(input_points=graph_list_2,
|
||||
output_points=out_2),
|
||||
"data1": Condition(input_points=graph_list_1, output_points=out_1),
|
||||
"data2": Condition(input_points=graph_list_2, output_points=out_2),
|
||||
}
|
||||
|
||||
problem = SupervisedProblem()
|
||||
|
||||
@@ -15,16 +15,15 @@ output_tensor = torch.rand((100, 2))
|
||||
|
||||
x = torch.rand((100, 50, 10))
|
||||
pos = torch.rand((100, 50, 2))
|
||||
input_graph = RadiusGraph(x, pos, r=.1, build_edge_attr=True)
|
||||
input_graph = [
|
||||
RadiusGraph(x=x_, pos=pos_, radius=0.2) for x_, pos_, in zip(x, pos)
|
||||
]
|
||||
output_graph = torch.rand((100, 50, 10))
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
[(input_tensor, output_tensor), (input_graph, output_graph)],
|
||||
)
|
||||
def test_constructor(input_, output_):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
@@ -33,22 +32,16 @@ def test_constructor(input_, output_):
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
[(input_tensor, output_tensor), (input_graph, output_graph)],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"train_size, val_size, test_size",
|
||||
[
|
||||
(.7, .2, .1),
|
||||
(.7, .3, 0)
|
||||
]
|
||||
"train_size, val_size, test_size", [(0.7, 0.2, 0.1), (0.7, 0.3, 0)]
|
||||
)
|
||||
def test_setup_train(input_, output_, train_size, val_size, test_size):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
dm = PinaDataModule(problem, train_size=train_size,
|
||||
val_size=val_size, test_size=test_size)
|
||||
dm = PinaDataModule(
|
||||
problem, train_size=train_size, val_size=val_size, test_size=test_size
|
||||
)
|
||||
dm.setup()
|
||||
assert hasattr(dm, "train_dataset")
|
||||
if isinstance(input_, torch.Tensor):
|
||||
@@ -71,23 +64,17 @@ def test_setup_train(input_, output_, train_size, val_size, test_size):
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
[(input_tensor, output_tensor), (input_graph, output_graph)],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"train_size, val_size, test_size",
|
||||
[
|
||||
(.7, .2, .1),
|
||||
(0., 0., 1.)
|
||||
]
|
||||
"train_size, val_size, test_size", [(0.7, 0.2, 0.1), (0.0, 0.0, 1.0)]
|
||||
)
|
||||
def test_setup_test(input_, output_, train_size, val_size, test_size):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
dm = PinaDataModule(problem, train_size=train_size,
|
||||
val_size=val_size, test_size=test_size)
|
||||
dm.setup(stage='test')
|
||||
dm = PinaDataModule(
|
||||
problem, train_size=train_size, val_size=val_size, test_size=test_size
|
||||
)
|
||||
dm.setup(stage="test")
|
||||
if train_size > 0:
|
||||
assert hasattr(dm, "train_dataset")
|
||||
assert dm.train_dataset is None
|
||||
@@ -109,16 +96,14 @@ def test_setup_test(input_, output_, train_size, val_size, test_size):
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
[(input_tensor, output_tensor), (input_graph, output_graph)],
|
||||
)
|
||||
def test_dummy_dataloader(input_, output_):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
|
||||
trainer = Trainer(solver, batch_size=None, train_size=.7,
|
||||
val_size=.3, test_size=0.)
|
||||
trainer = Trainer(
|
||||
solver, batch_size=None, train_size=0.7, val_size=0.3, test_size=0.0
|
||||
)
|
||||
dm = trainer.data_module
|
||||
dm.setup()
|
||||
dm.trainer = trainer
|
||||
@@ -128,11 +113,11 @@ def test_dummy_dataloader(input_, output_):
|
||||
data = next(dataloader)
|
||||
assert isinstance(data, list)
|
||||
assert isinstance(data[0], tuple)
|
||||
if isinstance(input_, RadiusGraph):
|
||||
assert isinstance(data[0][1]['input_points'], Batch)
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data[0][1]["input_points"], Batch)
|
||||
else:
|
||||
assert isinstance(data[0][1]['input_points'], torch.Tensor)
|
||||
assert isinstance(data[0][1]['output_points'], torch.Tensor)
|
||||
assert isinstance(data[0][1]["input_points"], torch.Tensor)
|
||||
assert isinstance(data[0][1]["output_points"], torch.Tensor)
|
||||
|
||||
dataloader = dm.val_dataloader()
|
||||
assert isinstance(dataloader, DummyDataloader)
|
||||
@@ -140,31 +125,29 @@ def test_dummy_dataloader(input_, output_):
|
||||
data = next(dataloader)
|
||||
assert isinstance(data, list)
|
||||
assert isinstance(data[0], tuple)
|
||||
if isinstance(input_, RadiusGraph):
|
||||
assert isinstance(data[0][1]['input_points'], Batch)
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data[0][1]["input_points"], Batch)
|
||||
else:
|
||||
assert isinstance(data[0][1]['input_points'], torch.Tensor)
|
||||
assert isinstance(data[0][1]['output_points'], torch.Tensor)
|
||||
assert isinstance(data[0][1]["input_points"], torch.Tensor)
|
||||
assert isinstance(data[0][1]["output_points"], torch.Tensor)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"automatic_batching",
|
||||
[
|
||||
True, False
|
||||
]
|
||||
[(input_tensor, output_tensor), (input_graph, output_graph)],
|
||||
)
|
||||
@pytest.mark.parametrize("automatic_batching", [True, False])
|
||||
def test_dataloader(input_, output_, automatic_batching):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
|
||||
trainer = Trainer(solver, batch_size=10, train_size=.7, val_size=.3,
|
||||
test_size=0., automatic_batching=automatic_batching)
|
||||
trainer = Trainer(
|
||||
solver,
|
||||
batch_size=10,
|
||||
train_size=0.7,
|
||||
val_size=0.3,
|
||||
test_size=0.0,
|
||||
automatic_batching=automatic_batching,
|
||||
)
|
||||
dm = trainer.data_module
|
||||
dm.setup()
|
||||
dm.trainer = trainer
|
||||
@@ -173,51 +156,53 @@ def test_dataloader(input_, output_, automatic_batching):
|
||||
assert len(dataloader) == 7
|
||||
data = next(iter(dataloader))
|
||||
assert isinstance(data, dict)
|
||||
if isinstance(input_, RadiusGraph):
|
||||
assert isinstance(data['data']['input_points'], Batch)
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data["data"]["input_points"], Batch)
|
||||
else:
|
||||
assert isinstance(data['data']['input_points'], torch.Tensor)
|
||||
assert isinstance(data['data']['output_points'], torch.Tensor)
|
||||
assert isinstance(data["data"]["input_points"], torch.Tensor)
|
||||
assert isinstance(data["data"]["output_points"], torch.Tensor)
|
||||
|
||||
dataloader = dm.val_dataloader()
|
||||
assert isinstance(dataloader, DataLoader)
|
||||
assert len(dataloader) == 3
|
||||
data = next(iter(dataloader))
|
||||
assert isinstance(data, dict)
|
||||
if isinstance(input_, RadiusGraph):
|
||||
assert isinstance(data['data']['input_points'], Batch)
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data["data"]["input_points"], Batch)
|
||||
else:
|
||||
assert isinstance(data['data']['input_points'], torch.Tensor)
|
||||
assert isinstance(data['data']['output_points'], torch.Tensor)
|
||||
assert isinstance(data["data"]["input_points"], torch.Tensor)
|
||||
assert isinstance(data["data"]["output_points"], torch.Tensor)
|
||||
|
||||
|
||||
from pina import LabelTensor
|
||||
|
||||
input_tensor = LabelTensor(torch.rand((100, 3)), ['u', 'v', 'w'])
|
||||
output_tensor = LabelTensor(torch.rand((100, 3)), ['u', 'v', 'w'])
|
||||
input_tensor = LabelTensor(torch.rand((100, 3)), ["u", "v", "w"])
|
||||
output_tensor = LabelTensor(torch.rand((100, 3)), ["u", "v", "w"])
|
||||
|
||||
x = LabelTensor(torch.rand((100, 50, 3)), ["u", "v", "w"])
|
||||
pos = LabelTensor(torch.rand((100, 50, 2)), ["x", "y"])
|
||||
input_graph = [
|
||||
RadiusGraph(x=x[i], pos=pos[i], radius=0.1) for i in range(len(x))
|
||||
]
|
||||
output_graph = LabelTensor(torch.rand((100, 50, 3)), ["u", "v", "w"])
|
||||
|
||||
x = LabelTensor(torch.rand((100, 50, 3)), ['u', 'v', 'w'])
|
||||
pos = LabelTensor(torch.rand((100, 50, 2)), ['x', 'y'])
|
||||
input_graph = RadiusGraph(x, pos, r=.1, build_edge_attr=True)
|
||||
output_graph = LabelTensor(torch.rand((100, 50, 3)), ['u', 'v', 'w'])
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"input_, output_",
|
||||
[
|
||||
(input_tensor, output_tensor),
|
||||
(input_graph, output_graph)
|
||||
]
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"automatic_batching",
|
||||
[
|
||||
True, False
|
||||
]
|
||||
[(input_tensor, output_tensor), (input_graph, output_graph)],
|
||||
)
|
||||
@pytest.mark.parametrize("automatic_batching", [True, False])
|
||||
def test_dataloader_labels(input_, output_, automatic_batching):
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
|
||||
trainer = Trainer(solver, batch_size=10, train_size=.7, val_size=.3,
|
||||
test_size=0., automatic_batching=automatic_batching)
|
||||
trainer = Trainer(
|
||||
solver,
|
||||
batch_size=10,
|
||||
train_size=0.7,
|
||||
val_size=0.3,
|
||||
test_size=0.0,
|
||||
automatic_batching=automatic_batching,
|
||||
)
|
||||
dm = trainer.data_module
|
||||
dm.setup()
|
||||
dm.trainer = trainer
|
||||
@@ -226,31 +211,30 @@ def test_dataloader_labels(input_, output_, automatic_batching):
|
||||
assert len(dataloader) == 7
|
||||
data = next(iter(dataloader))
|
||||
assert isinstance(data, dict)
|
||||
if isinstance(input_, RadiusGraph):
|
||||
assert isinstance(data['data']['input_points'], Batch)
|
||||
assert isinstance(data['data']['input_points'].x, LabelTensor)
|
||||
assert data['data']['input_points'].x.labels == ['u', 'v', 'w']
|
||||
assert data['data']['input_points'].pos.labels == ['x', 'y']
|
||||
else:
|
||||
assert isinstance(data['data']['input_points'], LabelTensor)
|
||||
assert data['data']['input_points'].labels == ['u', 'v', 'w']
|
||||
assert isinstance(data['data']['output_points'], LabelTensor)
|
||||
assert data['data']['output_points'].labels == ['u', 'v', 'w']
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data["data"]["input_points"], Batch)
|
||||
assert isinstance(data["data"]["input_points"].x, LabelTensor)
|
||||
assert data["data"]["input_points"].x.labels == ["u", "v", "w"]
|
||||
assert data["data"]["input_points"].pos.labels == ["x", "y"]
|
||||
else:
|
||||
assert isinstance(data["data"]["input_points"], LabelTensor)
|
||||
assert data["data"]["input_points"].labels == ["u", "v", "w"]
|
||||
assert isinstance(data["data"]["output_points"], LabelTensor)
|
||||
assert data["data"]["output_points"].labels == ["u", "v", "w"]
|
||||
|
||||
dataloader = dm.val_dataloader()
|
||||
assert isinstance(dataloader, DataLoader)
|
||||
assert len(dataloader) == 3
|
||||
data = next(iter(dataloader))
|
||||
assert isinstance(data, dict)
|
||||
if isinstance(input_, RadiusGraph):
|
||||
assert isinstance(data['data']['input_points'], Batch)
|
||||
assert isinstance(data['data']['input_points'].x, LabelTensor)
|
||||
assert data['data']['input_points'].x.labels == ['u', 'v', 'w']
|
||||
assert data['data']['input_points'].pos.labels == ['x', 'y']
|
||||
if isinstance(input_, list):
|
||||
assert isinstance(data["data"]["input_points"], Batch)
|
||||
assert isinstance(data["data"]["input_points"].x, LabelTensor)
|
||||
assert data["data"]["input_points"].x.labels == ["u", "v", "w"]
|
||||
assert data["data"]["input_points"].pos.labels == ["x", "y"]
|
||||
else:
|
||||
assert isinstance(data['data']['input_points'], torch.Tensor)
|
||||
assert isinstance(data['data']['input_points'], LabelTensor)
|
||||
assert data['data']['input_points'].labels == ['u', 'v', 'w']
|
||||
assert isinstance(data['data']['output_points'], torch.Tensor)
|
||||
assert data['data']['output_points'].labels == ['u', 'v', 'w']
|
||||
test_dataloader_labels(input_graph, output_graph, True)
|
||||
assert isinstance(data["data"]["input_points"], torch.Tensor)
|
||||
assert isinstance(data["data"]["input_points"], LabelTensor)
|
||||
assert data["data"]["input_points"].labels == ["u", "v", "w"]
|
||||
assert isinstance(data["data"]["output_points"], torch.Tensor)
|
||||
assert data["data"]["output_points"].labels == ["u", "v", "w"]
|
||||
|
||||
@@ -6,55 +6,58 @@ from torch_geometric.data import Data
|
||||
|
||||
x = torch.rand((100, 20, 10))
|
||||
pos = torch.rand((100, 20, 2))
|
||||
input_ = KNNGraph(x=x, pos=pos, k=3, build_edge_attr=True)
|
||||
input_ = [
|
||||
KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
|
||||
for x_, pos_ in zip(x, pos)
|
||||
]
|
||||
output_ = torch.rand((100, 20, 10))
|
||||
|
||||
x_2 = torch.rand((50, 20, 10))
|
||||
pos_2 = torch.rand((50, 20, 2))
|
||||
input_2_ = KNNGraph(x=x_2, pos=pos_2, k=3, build_edge_attr=True)
|
||||
input_2_ = [
|
||||
KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
|
||||
for x_, pos_ in zip(x_2, pos_2)
|
||||
]
|
||||
output_2_ = torch.rand((50, 20, 10))
|
||||
|
||||
|
||||
# Problem with a single condition
|
||||
conditions_dict_single = {
|
||||
'data': {
|
||||
'input_points': input_.data,
|
||||
'output_points': output_,
|
||||
"data": {
|
||||
"input_points": input_,
|
||||
"output_points": output_,
|
||||
}
|
||||
}
|
||||
max_conditions_lengths_single = {
|
||||
'data': 100
|
||||
}
|
||||
max_conditions_lengths_single = {"data": 100}
|
||||
|
||||
# Problem with multiple conditions
|
||||
conditions_dict_single_multi = {
|
||||
'data_1': {
|
||||
'input_points': input_.data,
|
||||
'output_points': output_,
|
||||
"data_1": {
|
||||
"input_points": input_,
|
||||
"output_points": output_,
|
||||
},
|
||||
"data_2": {
|
||||
"input_points": input_2_,
|
||||
"output_points": output_2_,
|
||||
},
|
||||
'data_2': {
|
||||
'input_points': input_2_.data,
|
||||
'output_points': output_2_,
|
||||
}
|
||||
}
|
||||
|
||||
max_conditions_lengths_multi = {
|
||||
'data_1': 100,
|
||||
'data_2': 50
|
||||
}
|
||||
max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"conditions_dict, max_conditions_lengths",
|
||||
[
|
||||
(conditions_dict_single, max_conditions_lengths_single),
|
||||
(conditions_dict_single_multi, max_conditions_lengths_multi)
|
||||
]
|
||||
(conditions_dict_single_multi, max_conditions_lengths_multi),
|
||||
],
|
||||
)
|
||||
def test_constructor(conditions_dict, max_conditions_lengths):
|
||||
dataset = PinaDatasetFactory(conditions_dict,
|
||||
max_conditions_lengths=max_conditions_lengths,
|
||||
automatic_batching=True)
|
||||
dataset = PinaDatasetFactory(
|
||||
conditions_dict,
|
||||
max_conditions_lengths=max_conditions_lengths,
|
||||
automatic_batching=True,
|
||||
)
|
||||
assert isinstance(dataset, PinaGraphDataset)
|
||||
assert len(dataset) == 100
|
||||
|
||||
@@ -63,39 +66,67 @@ def test_constructor(conditions_dict, max_conditions_lengths):
|
||||
"conditions_dict, max_conditions_lengths",
|
||||
[
|
||||
(conditions_dict_single, max_conditions_lengths_single),
|
||||
(conditions_dict_single_multi, max_conditions_lengths_multi)
|
||||
]
|
||||
(conditions_dict_single_multi, max_conditions_lengths_multi),
|
||||
],
|
||||
)
|
||||
def test_getitem(conditions_dict, max_conditions_lengths):
|
||||
dataset = PinaDatasetFactory(conditions_dict,
|
||||
max_conditions_lengths=max_conditions_lengths,
|
||||
automatic_batching=True)
|
||||
dataset = PinaDatasetFactory(
|
||||
conditions_dict,
|
||||
max_conditions_lengths=max_conditions_lengths,
|
||||
automatic_batching=True,
|
||||
)
|
||||
data = dataset[50]
|
||||
assert isinstance(data, dict)
|
||||
assert all([isinstance(d['input_points'], Data)
|
||||
for d in data.values()])
|
||||
assert all([isinstance(d['output_points'], torch.Tensor)
|
||||
for d in data.values()])
|
||||
assert all([d['input_points'].x.shape == torch.Size((20, 10))
|
||||
for d in data.values()])
|
||||
assert all([d['output_points'].shape == torch.Size((20, 10))
|
||||
for d in data.values()])
|
||||
assert all([d['input_points'].edge_index.shape ==
|
||||
torch.Size((2, 60)) for d in data.values()])
|
||||
assert all([d['input_points'].edge_attr.shape[0]
|
||||
== 60 for d in data.values()])
|
||||
assert all([isinstance(d["input_points"], Data) for d in data.values()])
|
||||
assert all(
|
||||
[isinstance(d["output_points"], torch.Tensor) for d in data.values()]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["input_points"].x.shape == torch.Size((20, 10))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["output_points"].shape == torch.Size((20, 10))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["input_points"].edge_index.shape == torch.Size((2, 60))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[d["input_points"].edge_attr.shape[0] == 60 for d in data.values()]
|
||||
)
|
||||
|
||||
data = dataset.fetch_from_idx_list([i for i in range(20)])
|
||||
assert isinstance(data, dict)
|
||||
assert all([isinstance(d['input_points'], Data)
|
||||
for d in data.values()])
|
||||
assert all([isinstance(d['output_points'], torch.Tensor)
|
||||
for d in data.values()])
|
||||
assert all([d['input_points'].x.shape == torch.Size((400, 10))
|
||||
for d in data.values()])
|
||||
assert all([d['output_points'].shape == torch.Size((400, 10))
|
||||
for d in data.values()])
|
||||
assert all([d['input_points'].edge_index.shape ==
|
||||
torch.Size((2, 1200)) for d in data.values()])
|
||||
assert all([d['input_points'].edge_attr.shape[0]
|
||||
== 1200 for d in data.values()])
|
||||
assert all([isinstance(d["input_points"], Data) for d in data.values()])
|
||||
assert all(
|
||||
[isinstance(d["output_points"], torch.Tensor) for d in data.values()]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["input_points"].x.shape == torch.Size((400, 10))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["output_points"].shape == torch.Size((400, 10))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
d["input_points"].edge_index.shape == torch.Size((2, 1200))
|
||||
for d in data.values()
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[d["input_points"].edge_attr.shape[0] == 1200 for d in data.values()]
|
||||
)
|
||||
|
||||
@@ -1,163 +1,346 @@
|
||||
import pytest
|
||||
import torch
|
||||
from pina.graph import RadiusGraph, KNNGraph
|
||||
from pina import LabelTensor
|
||||
from pina.graph import RadiusGraph, KNNGraph, Graph
|
||||
from torch_geometric.data import Data
|
||||
|
||||
|
||||
def build_edge_attr(pos, edge_index):
|
||||
return torch.cat([pos[edge_index[0]], pos[edge_index[1]]], dim=-1)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, pos",
|
||||
[
|
||||
([torch.rand(10, 2) for _ in range(3)],
|
||||
[torch.rand(10, 3) for _ in range(3)]),
|
||||
([torch.rand(10, 2) for _ in range(3)],
|
||||
[torch.rand(10, 3) for _ in range(3)]),
|
||||
(torch.rand(3, 10, 2), torch.rand(3, 10, 3)),
|
||||
(torch.rand(3, 10, 2), torch.rand(3, 10, 3)),
|
||||
]
|
||||
(torch.rand(10, 2), torch.rand(10, 3)),
|
||||
(
|
||||
LabelTensor(torch.rand(10, 2), ["u", "v"]),
|
||||
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_build_multiple_graph_multiple_val(x, pos):
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=False, r=.3)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3)
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
def test_build_graph(x, pos):
|
||||
edge_index = torch.tensor(
|
||||
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]],
|
||||
dtype=torch.int64,
|
||||
)
|
||||
graph = Graph(x=x, pos=pos, edge_index=edge_index)
|
||||
assert hasattr(graph, "x")
|
||||
assert hasattr(graph, "pos")
|
||||
assert hasattr(graph, "edge_index")
|
||||
assert torch.isclose(graph.x, x).all()
|
||||
if isinstance(x, LabelTensor):
|
||||
assert isinstance(graph.x, LabelTensor)
|
||||
assert graph.x.labels == x.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert torch.isclose(graph.pos, pos).all()
|
||||
if isinstance(pos, LabelTensor):
|
||||
assert isinstance(graph.pos, LabelTensor)
|
||||
assert graph.pos.labels == pos.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=True, k=3)
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
|
||||
|
||||
def test_build_single_graph_multiple_val():
|
||||
x = torch.rand(10, 2)
|
||||
pos = torch.rand(10, 3)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=False, r=.3)
|
||||
assert len(graph.data) == 1
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos).all() for d_ in data)
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3)
|
||||
data = graph.data
|
||||
assert len(graph.data) == 1
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos).all() for d_ in data)
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
|
||||
x = torch.rand(10, 2)
|
||||
pos = torch.rand(10, 3)
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=True, k=3)
|
||||
assert len(graph.data) == 1
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos).all() for d_ in data)
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=True, k=3)
|
||||
data = graph.data
|
||||
assert len(graph.data) == 1
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos).all() for d_ in data)
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
edge_index = torch.tensor(
|
||||
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]],
|
||||
dtype=torch.int64,
|
||||
)
|
||||
graph = Graph(x=x, edge_index=edge_index)
|
||||
assert hasattr(graph, "x")
|
||||
assert hasattr(graph, "pos")
|
||||
assert hasattr(graph, "edge_index")
|
||||
assert torch.isclose(graph.x, x).all()
|
||||
if isinstance(x, LabelTensor):
|
||||
assert isinstance(graph.x, LabelTensor)
|
||||
assert graph.x.labels == x.labels
|
||||
else:
|
||||
assert isinstance(graph.x, torch.Tensor)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"pos",
|
||||
"x, pos",
|
||||
[
|
||||
([torch.rand(10, 3) for _ in range(3)]),
|
||||
([torch.rand(10, 3) for _ in range(3)]),
|
||||
(torch.rand(3, 10, 3)),
|
||||
(torch.rand(3, 10, 3))
|
||||
]
|
||||
(torch.rand(10, 2), torch.rand(10, 3)),
|
||||
(
|
||||
LabelTensor(torch.rand(10, 2), ["u", "v"]),
|
||||
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_build_single_graph_single_val(pos):
|
||||
x = torch.rand(10, 2)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=False, r=.3)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3)
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
x = torch.rand(10, 2)
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=False, k=3)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=True, k=3)
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d.x, x).all() for d in data)
|
||||
assert all(torch.isclose(d_.pos, pos_).all() for d_, pos_ in zip(data, pos))
|
||||
assert all(len(d.edge_index) == 2 for d in data)
|
||||
assert all(d.edge_attr is not None for d in data)
|
||||
assert all([d.edge_index.shape[1] == d.edge_attr.shape[0]] for d in data)
|
||||
|
||||
|
||||
def test_additional_parameters_1():
|
||||
x = torch.rand(3, 10, 2)
|
||||
pos = torch.rand(3, 10, 2)
|
||||
additional_parameters = {'y': torch.ones(3)}
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3,
|
||||
additional_params=additional_parameters)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
assert all(hasattr(d, 'y') for d in data)
|
||||
assert all(d_.y == 1 for d_ in data)
|
||||
def test_build_radius_graph(x, pos):
|
||||
graph = RadiusGraph(x=x, pos=pos, radius=0.5)
|
||||
assert hasattr(graph, "x")
|
||||
assert hasattr(graph, "pos")
|
||||
assert hasattr(graph, "edge_index")
|
||||
assert torch.isclose(graph.x, x).all()
|
||||
if isinstance(x, LabelTensor):
|
||||
assert isinstance(graph.x, LabelTensor)
|
||||
assert graph.x.labels == x.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert torch.isclose(graph.pos, pos).all()
|
||||
if isinstance(pos, LabelTensor):
|
||||
assert isinstance(graph.pos, LabelTensor)
|
||||
assert graph.pos.labels == pos.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"additional_parameters",
|
||||
"x, pos",
|
||||
[
|
||||
({'y': torch.rand(3, 10, 1)}),
|
||||
({'y': [torch.rand(10, 1) for _ in range(3)]}),
|
||||
]
|
||||
(torch.rand(10, 2), torch.rand(10, 3)),
|
||||
(
|
||||
LabelTensor(torch.rand(10, 2), ["u", "v"]),
|
||||
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_additional_parameters_2(additional_parameters):
|
||||
x = torch.rand(3, 10, 2)
|
||||
pos = torch.rand(3, 10, 2)
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3,
|
||||
additional_params=additional_parameters)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
assert all(hasattr(d, 'y') for d in data)
|
||||
assert all(torch.isclose(d_.x, x_).all() for (d_, x_) in zip(data, x))
|
||||
def test_build_radius_graph_edge_attr(x, pos):
|
||||
graph = RadiusGraph(x=x, pos=pos, radius=0.5, edge_attr=True)
|
||||
assert hasattr(graph, "x")
|
||||
assert hasattr(graph, "pos")
|
||||
assert hasattr(graph, "edge_index")
|
||||
assert torch.isclose(graph.x, x).all()
|
||||
if isinstance(x, LabelTensor):
|
||||
assert isinstance(graph.x, LabelTensor)
|
||||
assert graph.x.labels == x.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert torch.isclose(graph.pos, pos).all()
|
||||
if isinstance(pos, LabelTensor):
|
||||
assert isinstance(graph.pos, LabelTensor)
|
||||
assert graph.pos.labels == pos.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert hasattr(graph, "edge_attr")
|
||||
assert isinstance(graph.edge_attr, torch.Tensor)
|
||||
assert graph.edge_attr.shape[-1] == 3
|
||||
assert graph.edge_attr.shape[0] == graph.edge_index.shape[1]
|
||||
|
||||
def test_custom_build_edge_attr_func():
|
||||
x = torch.rand(3, 10, 2)
|
||||
pos = torch.rand(3, 10, 2)
|
||||
|
||||
def build_edge_attr(x, pos, edge_index):
|
||||
return torch.cat([pos[edge_index[0]], pos[edge_index[1]]], dim=-1)
|
||||
@pytest.mark.parametrize(
|
||||
"x, pos",
|
||||
[
|
||||
(torch.rand(10, 2), torch.rand(10, 3)),
|
||||
(
|
||||
LabelTensor(torch.rand(10, 2), ["u", "v"]),
|
||||
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_build_radius_graph_custom_edge_attr(x, pos):
|
||||
graph = RadiusGraph(
|
||||
x=x,
|
||||
pos=pos,
|
||||
radius=0.5,
|
||||
edge_attr=True,
|
||||
custom_edge_func=build_edge_attr,
|
||||
)
|
||||
assert hasattr(graph, "x")
|
||||
assert hasattr(graph, "pos")
|
||||
assert hasattr(graph, "edge_index")
|
||||
assert torch.isclose(graph.x, x).all()
|
||||
if isinstance(x, LabelTensor):
|
||||
assert isinstance(graph.x, LabelTensor)
|
||||
assert graph.x.labels == x.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert torch.isclose(graph.pos, pos).all()
|
||||
if isinstance(pos, LabelTensor):
|
||||
assert isinstance(graph.pos, LabelTensor)
|
||||
assert graph.pos.labels == pos.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert hasattr(graph, "edge_attr")
|
||||
assert isinstance(graph.edge_attr, torch.Tensor)
|
||||
assert graph.edge_attr.shape[-1] == 6
|
||||
assert graph.edge_attr.shape[0] == graph.edge_index.shape[1]
|
||||
|
||||
graph = RadiusGraph(x=x, pos=pos, build_edge_attr=True, r=.3,
|
||||
custom_build_edge_attr=build_edge_attr)
|
||||
assert len(graph.data) == 3
|
||||
data = graph.data
|
||||
assert all(hasattr(d, 'edge_attr') for d in data)
|
||||
assert all(d.edge_attr.shape[1] == 4 for d in data)
|
||||
assert all(torch.isclose(d.edge_attr,
|
||||
build_edge_attr(d.x, d.pos, d.edge_index)).all()
|
||||
for d in data)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, pos",
|
||||
[
|
||||
(torch.rand(10, 2), torch.rand(10, 3)),
|
||||
(
|
||||
LabelTensor(torch.rand(10, 2), ["u", "v"]),
|
||||
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_build_knn_graph(x, pos):
|
||||
graph = KNNGraph(x=x, pos=pos, neighbours=2)
|
||||
assert hasattr(graph, "x")
|
||||
assert hasattr(graph, "pos")
|
||||
assert hasattr(graph, "edge_index")
|
||||
assert torch.isclose(graph.x, x).all()
|
||||
if isinstance(x, LabelTensor):
|
||||
assert isinstance(graph.x, LabelTensor)
|
||||
assert graph.x.labels == x.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert torch.isclose(graph.pos, pos).all()
|
||||
if isinstance(pos, LabelTensor):
|
||||
assert isinstance(graph.pos, LabelTensor)
|
||||
assert graph.pos.labels == pos.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert graph.edge_attr is None
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, pos",
|
||||
[
|
||||
(torch.rand(10, 2), torch.rand(10, 3)),
|
||||
(
|
||||
LabelTensor(torch.rand(10, 2), ["u", "v"]),
|
||||
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_build_knn_graph_edge_attr(x, pos):
|
||||
graph = KNNGraph(x=x, pos=pos, neighbours=2, edge_attr=True)
|
||||
assert hasattr(graph, "x")
|
||||
assert hasattr(graph, "pos")
|
||||
assert hasattr(graph, "edge_index")
|
||||
assert torch.isclose(graph.x, x).all()
|
||||
if isinstance(x, LabelTensor):
|
||||
assert isinstance(graph.x, LabelTensor)
|
||||
assert graph.x.labels == x.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert torch.isclose(graph.pos, pos).all()
|
||||
if isinstance(pos, LabelTensor):
|
||||
assert isinstance(graph.pos, LabelTensor)
|
||||
assert graph.pos.labels == pos.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert isinstance(graph.edge_attr, torch.Tensor)
|
||||
assert graph.edge_attr.shape[-1] == 3
|
||||
assert graph.edge_attr.shape[0] == graph.edge_index.shape[1]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, pos",
|
||||
[
|
||||
(torch.rand(10, 2), torch.rand(10, 3)),
|
||||
(
|
||||
LabelTensor(torch.rand(10, 2), ["u", "v"]),
|
||||
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_build_knn_graph_custom_edge_attr(x, pos):
|
||||
graph = KNNGraph(
|
||||
x=x,
|
||||
pos=pos,
|
||||
neighbours=2,
|
||||
edge_attr=True,
|
||||
custom_edge_func=build_edge_attr,
|
||||
)
|
||||
assert hasattr(graph, "x")
|
||||
assert hasattr(graph, "pos")
|
||||
assert hasattr(graph, "edge_index")
|
||||
assert torch.isclose(graph.x, x).all()
|
||||
if isinstance(x, LabelTensor):
|
||||
assert isinstance(graph.x, LabelTensor)
|
||||
assert graph.x.labels == x.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert torch.isclose(graph.pos, pos).all()
|
||||
if isinstance(pos, LabelTensor):
|
||||
assert isinstance(graph.pos, LabelTensor)
|
||||
assert graph.pos.labels == pos.labels
|
||||
else:
|
||||
assert isinstance(graph.pos, torch.Tensor)
|
||||
assert isinstance(graph.edge_attr, torch.Tensor)
|
||||
assert graph.edge_attr.shape[-1] == 6
|
||||
assert graph.edge_attr.shape[0] == graph.edge_index.shape[1]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, pos, y",
|
||||
[
|
||||
(torch.rand(10, 2), torch.rand(10, 3), torch.rand(10, 4)),
|
||||
(
|
||||
LabelTensor(torch.rand(10, 2), ["u", "v"]),
|
||||
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
|
||||
LabelTensor(torch.rand(10, 4), ["a", "b", "c", "d"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_additional_params(x, pos, y):
|
||||
edge_index = torch.tensor(
|
||||
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]],
|
||||
dtype=torch.int64,
|
||||
)
|
||||
graph = Graph(x=x, pos=pos, edge_index=edge_index, y=y)
|
||||
assert hasattr(graph, "y")
|
||||
assert torch.isclose(graph.y, y).all()
|
||||
if isinstance(y, LabelTensor):
|
||||
assert isinstance(graph.y, LabelTensor)
|
||||
assert graph.y.labels == y.labels
|
||||
else:
|
||||
assert isinstance(graph.y, torch.Tensor)
|
||||
assert torch.isclose(graph.y, y).all()
|
||||
if isinstance(y, LabelTensor):
|
||||
assert isinstance(graph.y, LabelTensor)
|
||||
assert graph.y.labels == y.labels
|
||||
else:
|
||||
assert isinstance(graph.y, torch.Tensor)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, pos, y",
|
||||
[
|
||||
(torch.rand(10, 2), torch.rand(10, 3), torch.rand(10, 4)),
|
||||
(
|
||||
LabelTensor(torch.rand(10, 2), ["u", "v"]),
|
||||
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
|
||||
LabelTensor(torch.rand(10, 4), ["a", "b", "c", "d"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_additional_params_radius_graph(x, pos, y):
|
||||
graph = RadiusGraph(x=x, pos=pos, radius=0.5, y=y)
|
||||
assert hasattr(graph, "y")
|
||||
assert torch.isclose(graph.y, y).all()
|
||||
if isinstance(y, LabelTensor):
|
||||
assert isinstance(graph.y, LabelTensor)
|
||||
assert graph.y.labels == y.labels
|
||||
else:
|
||||
assert isinstance(graph.y, torch.Tensor)
|
||||
assert torch.isclose(graph.y, y).all()
|
||||
if isinstance(y, LabelTensor):
|
||||
assert isinstance(graph.y, LabelTensor)
|
||||
assert graph.y.labels == y.labels
|
||||
else:
|
||||
assert isinstance(graph.y, torch.Tensor)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"x, pos, y",
|
||||
[
|
||||
(torch.rand(10, 2), torch.rand(10, 3), torch.rand(10, 4)),
|
||||
(
|
||||
LabelTensor(torch.rand(10, 2), ["u", "v"]),
|
||||
LabelTensor(torch.rand(10, 3), ["x", "y", "z"]),
|
||||
LabelTensor(torch.rand(10, 4), ["a", "b", "c", "d"]),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_additional_params_knn_graph(x, pos, y):
|
||||
graph = KNNGraph(x=x, pos=pos, neighbours=3, y=y)
|
||||
assert hasattr(graph, "y")
|
||||
assert torch.isclose(graph.y, y).all()
|
||||
if isinstance(y, LabelTensor):
|
||||
assert isinstance(graph.y, LabelTensor)
|
||||
assert graph.y.labels == y.labels
|
||||
else:
|
||||
assert isinstance(graph.y, torch.Tensor)
|
||||
assert torch.isclose(graph.y, y).all()
|
||||
if isinstance(y, LabelTensor):
|
||||
assert isinstance(graph.y, LabelTensor)
|
||||
assert graph.y.labels == y.labels
|
||||
else:
|
||||
assert isinstance(graph.y, torch.Tensor)
|
||||
|
||||
@@ -6,99 +6,90 @@ from torch_geometric.data import Batch
|
||||
|
||||
x = [torch.rand(100, 6) for _ in range(10)]
|
||||
pos = [torch.rand(100, 3) for _ in range(10)]
|
||||
graph = KNNGraph(x=x, pos=pos, build_edge_attr=True, k=6)
|
||||
input_ = Batch.from_data_list(graph.data)
|
||||
graph = [
|
||||
KNNGraph(x=x_, pos=pos_, neighbours=6, edge_attr=True)
|
||||
for x_, pos_ in zip(x, pos)
|
||||
]
|
||||
input_ = Batch.from_data_list(graph)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"shared_weights",
|
||||
[
|
||||
True,
|
||||
False
|
||||
]
|
||||
)
|
||||
@pytest.mark.parametrize("shared_weights", [True, False])
|
||||
def test_constructor(shared_weights):
|
||||
lifting_operator = torch.nn.Linear(6, 16)
|
||||
projection_operator = torch.nn.Linear(16, 3)
|
||||
GraphNeuralOperator(lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
internal_layers=[16, 16],
|
||||
shared_weights=shared_weights)
|
||||
GraphNeuralOperator(
|
||||
lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
internal_layers=[16, 16],
|
||||
shared_weights=shared_weights,
|
||||
)
|
||||
|
||||
GraphNeuralOperator(lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
inner_size=16,
|
||||
internal_n_layers=10,
|
||||
shared_weights=shared_weights)
|
||||
GraphNeuralOperator(
|
||||
lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
inner_size=16,
|
||||
internal_n_layers=10,
|
||||
shared_weights=shared_weights,
|
||||
)
|
||||
|
||||
int_func = torch.nn.Softplus
|
||||
ext_func = torch.nn.ReLU
|
||||
|
||||
GraphNeuralOperator(lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
internal_n_layers=10,
|
||||
shared_weights=shared_weights,
|
||||
internal_func=int_func,
|
||||
external_func=ext_func)
|
||||
GraphNeuralOperator(
|
||||
lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
internal_n_layers=10,
|
||||
shared_weights=shared_weights,
|
||||
internal_func=int_func,
|
||||
external_func=ext_func,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"shared_weights",
|
||||
[
|
||||
True,
|
||||
False
|
||||
]
|
||||
)
|
||||
@pytest.mark.parametrize("shared_weights", [True, False])
|
||||
def test_forward_1(shared_weights):
|
||||
lifting_operator = torch.nn.Linear(6, 16)
|
||||
projection_operator = torch.nn.Linear(16, 3)
|
||||
model = GraphNeuralOperator(lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
internal_layers=[16, 16],
|
||||
shared_weights=shared_weights)
|
||||
model = GraphNeuralOperator(
|
||||
lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
internal_layers=[16, 16],
|
||||
shared_weights=shared_weights,
|
||||
)
|
||||
output_ = model(input_)
|
||||
assert output_.shape == torch.Size([1000, 3])
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"shared_weights",
|
||||
[
|
||||
True,
|
||||
False
|
||||
]
|
||||
)
|
||||
@pytest.mark.parametrize("shared_weights", [True, False])
|
||||
def test_forward_2(shared_weights):
|
||||
lifting_operator = torch.nn.Linear(6, 16)
|
||||
projection_operator = torch.nn.Linear(16, 3)
|
||||
model = GraphNeuralOperator(lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
inner_size=32,
|
||||
internal_n_layers=2,
|
||||
shared_weights=shared_weights)
|
||||
model = GraphNeuralOperator(
|
||||
lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
inner_size=32,
|
||||
internal_n_layers=2,
|
||||
shared_weights=shared_weights,
|
||||
)
|
||||
output_ = model(input_)
|
||||
assert output_.shape == torch.Size([1000, 3])
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"shared_weights",
|
||||
[
|
||||
True,
|
||||
False
|
||||
]
|
||||
)
|
||||
@pytest.mark.parametrize("shared_weights", [True, False])
|
||||
def test_backward(shared_weights):
|
||||
lifting_operator = torch.nn.Linear(6, 16)
|
||||
projection_operator = torch.nn.Linear(16, 3)
|
||||
model = GraphNeuralOperator(lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
internal_layers=[16, 16],
|
||||
shared_weights=shared_weights)
|
||||
model = GraphNeuralOperator(
|
||||
lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
internal_layers=[16, 16],
|
||||
shared_weights=shared_weights,
|
||||
)
|
||||
input_.x.requires_grad = True
|
||||
output_ = model(input_)
|
||||
l = torch.mean(output_)
|
||||
@@ -106,22 +97,18 @@ def test_backward(shared_weights):
|
||||
assert input_.x.grad.shape == torch.Size([1000, 6])
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"shared_weights",
|
||||
[
|
||||
True,
|
||||
False
|
||||
]
|
||||
)
|
||||
@pytest.mark.parametrize("shared_weights", [True, False])
|
||||
def test_backward_2(shared_weights):
|
||||
lifting_operator = torch.nn.Linear(6, 16)
|
||||
projection_operator = torch.nn.Linear(16, 3)
|
||||
model = GraphNeuralOperator(lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
inner_size=32,
|
||||
internal_n_layers=2,
|
||||
shared_weights=shared_weights)
|
||||
model = GraphNeuralOperator(
|
||||
lifting_operator=lifting_operator,
|
||||
projection_operator=projection_operator,
|
||||
edge_features=3,
|
||||
inner_size=32,
|
||||
internal_n_layers=2,
|
||||
shared_weights=shared_weights,
|
||||
)
|
||||
input_.x.requires_grad = True
|
||||
output_ = model(input_)
|
||||
l = torch.mean(output_)
|
||||
|
||||
@@ -4,28 +4,31 @@ from pina.condition import InputOutputPointsCondition
|
||||
from pina.problem.zoo.supervised_problem import SupervisedProblem
|
||||
from pina.graph import RadiusGraph
|
||||
|
||||
|
||||
def test_constructor():
|
||||
input_ = torch.rand((100,10))
|
||||
output_ = torch.rand((100,10))
|
||||
input_ = torch.rand((100, 10))
|
||||
output_ = torch.rand((100, 10))
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
assert isinstance(problem, AbstractProblem)
|
||||
assert hasattr(problem, "conditions")
|
||||
assert isinstance(problem.conditions, dict)
|
||||
assert list(problem.conditions.keys()) == ['data']
|
||||
assert isinstance(problem.conditions['data'], InputOutputPointsCondition)
|
||||
assert list(problem.conditions.keys()) == ["data"]
|
||||
assert isinstance(problem.conditions["data"], InputOutputPointsCondition)
|
||||
|
||||
|
||||
def test_constructor_graph():
|
||||
x = torch.rand((20,100,10))
|
||||
pos = torch.rand((20,100,2))
|
||||
input_ = RadiusGraph(
|
||||
x=x, pos=pos, r=.2, build_edge_attr=True
|
||||
)
|
||||
output_ = torch.rand((100,10))
|
||||
x = torch.rand((20, 100, 10))
|
||||
pos = torch.rand((20, 100, 2))
|
||||
input_ = [
|
||||
RadiusGraph(x=x_, pos=pos_, radius=0.2, edge_attr=True)
|
||||
for x_, pos_ in zip(x, pos)
|
||||
]
|
||||
output_ = torch.rand((100, 10))
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
assert isinstance(problem, AbstractProblem)
|
||||
assert hasattr(problem, "conditions")
|
||||
assert isinstance(problem.conditions, dict)
|
||||
assert list(problem.conditions.keys()) == ['data']
|
||||
assert isinstance(problem.conditions['data'], InputOutputPointsCondition)
|
||||
assert isinstance(problem.conditions['data'].input_points, list)
|
||||
assert isinstance(problem.conditions['data'].output_points, torch.Tensor)
|
||||
assert list(problem.conditions.keys()) == ["data"]
|
||||
assert isinstance(problem.conditions["data"], InputOutputPointsCondition)
|
||||
assert isinstance(problem.conditions["data"].input_points, list)
|
||||
assert isinstance(problem.conditions["data"].output_points, torch.Tensor)
|
||||
|
||||
Reference in New Issue
Block a user