diff --git a/joss/paper.bib b/joss/paper.bib index d516519..2d12337 100644 --- a/joss/paper.bib +++ b/joss/paper.bib @@ -2,6 +2,7 @@ title={Deep learning: methods and applications}, author={Deng, Li and Yu, Dong and others}, journal={Foundations and trends{\textregistered} in signal processing}, + doi = {10.1561/9781601988157}, volume={7}, number={3--4}, pages={197--387}, @@ -30,7 +31,7 @@ volume = {378}, pages = {686-707}, year = {2019}, issn = {0021-9991}, -doi = {https://doi.org/10.1016/j.jcp.2018.10.045}, +doi = {10.1016/j.jcp.2018.10.045}, url = {https://www.sciencedirect.com/science/article/pii/S0021999118307125}, author = {M. Raissi and P. Perdikaris and G.E. Karniadakis}, keywords = {Data-driven scientific computing, Machine learning, Predictive modeling, Runge–Kutta methods, Nonlinear dynamics}, @@ -60,6 +61,7 @@ abstract = {We introduce physics-informed neural networks – neural networks th title={Neurodiffeq: A python package for solving differential equations with neural networks}, author={Chen, Feiyu and Sondak, David and Protopapas, Pavlos and Mattheakis, Marios and Liu, Shuheng and Agarwal, Devansh and Di Giovanni, Marco}, journal={Journal of Open Source Software}, + doi = {10.21105/joss.01931}, volume={5}, number={46}, pages={1931}, @@ -69,6 +71,7 @@ abstract = {We introduce physics-informed neural networks – neural networks th title={DeepXDE: A deep learning library for solving differential equations}, author={Lu, Lu and Meng, Xuhui and Mao, Zhiping and Karniadakis, George Em}, journal={SIAM Review}, + doi = {10.1137/19m1274067}, volume={63}, number={1}, pages={208--228}, @@ -91,6 +94,7 @@ abstract = {We introduce physics-informed neural networks – neural networks th title={NVIDIA SimNet™: An AI-accelerated multi-physics simulation framework}, author={Hennigh, Oliver and Narasimhan, Susheela and Nabian, Mohammad Amin and Subramaniam, Akshay and Tangsali, Kaustubh and Fang, Zhiwei and Rietmann, Max and Byeon, Wonmin and Choudhry, Sanjay}, booktitle={International Conference on Computational Science}, + doi = {10.1007/978-3-030-77977-1_36}, pages={447--461}, year={2021}, organization={Springer} @@ -99,6 +103,7 @@ abstract = {We introduce physics-informed neural networks – neural networks th title={Sciann: A keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks}, author={Haghighat, Ehsan and Juanes, Ruben}, journal={Computer Methods in Applied Mechanics and Engineering}, + doi = {10.1016/j.cma.2020.113552}, volume={373}, pages={113552}, year={2021}, @@ -124,7 +129,7 @@ volume = {360}, pages = {112789}, year = {2020}, issn = {0045-7825}, -doi = {https://doi.org/10.1016/j.cma.2019.112789}, +doi = {10.1016/j.cma.2019.112789}, url = {https://www.sciencedirect.com/science/article/pii/S0045782519306814}, author = {Zhiping Mao and Ameya D. Jagtap and George Em Karniadakis}, keywords = {Euler equations, Machine learning, Neural networks, Conservation laws, Riemann problem, Hidden fluid mechanics}, @@ -178,7 +183,7 @@ volume = {171}, pages = {108875}, year = {2022}, issn = {0888-3270}, -doi = {https://doi.org/10.1016/j.ymssp.2022.108875}, +doi = {10.1016/j.ymssp.2022.108875}, url = {https://www.sciencedirect.com/science/article/pii/S088832702200070X}, author = {Yigit A. Yucesan and Felipe A.C. Viana}, keywords = {hybrid physics-informed neural network, Applied machine learning, Wind turbine bearing fatigue, Uncertainty quantification},