DeepOnet implementation, LabelTensor modification
* Implementing standard DeepOnet (trunk/branch net) * Implementing multiple reduction/ average techniques * Small change LabelTensor __getitem__ for handling list
This commit is contained in:
committed by
Nicola Demo
parent
15ecaacb7c
commit
b029f18c49
@@ -3,29 +3,53 @@ import torch
|
||||
|
||||
from pina import LabelTensor
|
||||
from pina.model import DeepONet
|
||||
from pina.model import FeedForward as FFN
|
||||
from pina.model import FeedForward
|
||||
|
||||
data = torch.rand((20, 3))
|
||||
input_vars = ['a', 'b', 'c']
|
||||
output_vars = ['d']
|
||||
input_ = LabelTensor(data, input_vars)
|
||||
|
||||
# TODO
|
||||
|
||||
# def test_constructor():
|
||||
# branch = FFN(input_variables=['a', 'c'], output_variables=20)
|
||||
# trunk = FFN(input_variables=['b'], output_variables=20)
|
||||
# onet = DeepONet(nets=[trunk, branch], output_variables=output_vars)
|
||||
def test_constructor():
|
||||
branch_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensons=2, output_dimensions=10)
|
||||
DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
|
||||
# def test_constructor_fails_when_invalid_inner_layer_size():
|
||||
# branch = FFN(input_variables=['a', 'c'], output_variables=20)
|
||||
# trunk = FFN(input_variables=['b'], output_variables=19)
|
||||
# with pytest.raises(ValueError):
|
||||
# DeepONet(nets=[trunk, branch], output_variables=output_vars)
|
||||
|
||||
# def test_forward():
|
||||
# branch = FFN(input_variables=['a', 'c'], output_variables=10)
|
||||
# trunk = FFN(input_variables=['b'], output_variables=10)
|
||||
# onet = DeepONet(nets=[trunk, branch], output_variables=output_vars)
|
||||
# output_ = onet(input_)
|
||||
# assert output_.labels == output_vars
|
||||
def test_constructor_fails_when_invalid_inner_layer_size():
|
||||
branch_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensons=2, output_dimensions=8)
|
||||
with pytest.raises(ValueError):
|
||||
DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
|
||||
def test_forward_extract_str():
|
||||
branch_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensons=2, output_dimensions=10)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=['a'],
|
||||
input_indeces_trunk_net=['b', 'c'],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
model(input_)
|
||||
|
||||
def test_forward_extract_int():
|
||||
branch_net = FeedForward(input_dimensons=1, output_dimensions=10)
|
||||
trunk_net = FeedForward(input_dimensons=2, output_dimensions=10)
|
||||
model = DeepONet(branch_net=branch_net,
|
||||
trunk_net=trunk_net,
|
||||
input_indeces_branch_net=[0],
|
||||
input_indeces_trunk_net=[1, 2],
|
||||
reduction='+',
|
||||
aggregator='*')
|
||||
model(data)
|
||||
|
||||
Reference in New Issue
Block a user