full compatibility with torch models

* Network class added
* adding tests for Network class
This commit is contained in:
Dario Coscia
2022-11-08 12:11:58 +01:00
committed by GitHub
parent a92a764844
commit bb1efe44bc
3 changed files with 189 additions and 0 deletions

View File

@@ -2,8 +2,10 @@ __all__ = [
'FeedForward',
'MultiFeedForward'
'DeepONet',
'Network'
]
from .feed_forward import FeedForward
from .multi_feed_forward import MultiFeedForward
from .deeponet import DeepONet
from .network import Network

104
pina/model/network.py Normal file
View File

@@ -0,0 +1,104 @@
import torch
from pina.label_tensor import LabelTensor
class Network(torch.nn.Module):
"""The PINA implementation of any neural network.
:param torch.nn.Module model: the torch model of the network.
:param list(str) input_variables: the list containing the labels
corresponding to the input components of the model.
:param list(str) output_variables: the list containing the labels
corresponding to the components of the output computed by the model.
:param torch.nn.Module extra_features: the additional input
features to use as augmented input.
:Example:
>>> class SimpleNet(nn.Module):
>>> def __init__(self):
>>> super().__init__()
>>> self.layers = nn.Sequential(
>>> nn.Linear(3, 20),
>>> nn.Tanh(),
>>> nn.Linear(20, 1)
>>> )
>>> def forward(self, x):
>>> return self.layers(x)
>>> net = SimpleNet()
>>> input_variables = ['x', 'y']
>>> output_variables =['u']
>>> model_feat = Network(net, input_variables, output_variables)
Network(
(extra_features): Sequential()
(model): Sequential(
(0): Linear(in_features=2, out_features=20, bias=True)
(1): Tanh()
(2): Linear(in_features=20, out_features=1, bias=True)
)
)
"""
def __init__(self, model, input_variables,
output_variables, extra_features=None):
super().__init__()
if extra_features is None:
extra_features = []
self._extra_features = torch.nn.Sequential(*extra_features)
self._model = model
self._input_variables = input_variables
self._output_variables = output_variables
# check model and input/output
self._check_consistency()
def _check_consistency(self):
"""Checking the consistency of model with input and output variables
:raises ValueError: Error in constructing the PINA network
"""
try:
tmp = torch.rand((10, len(self._input_variables)))
tmp = LabelTensor(tmp, self._input_variables)
tmp = self.forward(tmp) # trying a forward pass
tmp = LabelTensor(tmp, self._output_variables)
except:
raise ValueError('Error in constructing the PINA network.'
' Check compatibility of input/output'
' variables shape with the torch model'
' or check the correctness of the torch'
' model itself.')
def forward(self, x):
"""Forward method for Network class
:param torch.tensor x: input of the network
:return torch.tensor: output of the network
"""
x = x.extract(self._input_variables)
for feature in self._extra_features:
x = x.append(feature(x))
output = self._model(x).as_subclass(LabelTensor)
output.labels = self._output_variables
return output
@property
def input_variables(self):
return self._input_variables
@property
def output_variables(self):
return self._output_variables
@property
def extra_features(self):
return self._extra_features
@property
def model(self):
return self._model

83
tests/test_network.py Normal file
View File

@@ -0,0 +1,83 @@
import torch
import torch.nn as nn
import pytest
from pina.model import Network
from pina import LabelTensor
class SimpleNet(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(2, 20),
nn.Tanh(),
nn.Linear(20, 1)
)
def forward(self, x):
return self.layers(x)
class SimpleNetExtraFeat(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(3, 20),
nn.Tanh(),
nn.Linear(20, 1)
)
def forward(self, x):
return self.layers(x)
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
t = (torch.sin(x.extract(['x'])*torch.pi) *
torch.sin(x.extract(['y'])*torch.pi))
return LabelTensor(t, ['sin(x)sin(y)'])
input_variables = ['x', 'y']
output_variables = ['u']
data = torch.rand((20, 2))
input_ = LabelTensor(data, input_variables)
def test_constructor():
net = SimpleNet()
pina_net = Network(model=net, input_variables=input_variables,
output_variables=output_variables)
def test_forward():
net = SimpleNet()
pina_net = Network(model=net, input_variables=input_variables,
output_variables=output_variables)
output_ = pina_net(input_)
assert output_.labels == output_variables
def test_constructor_extrafeat():
net = SimpleNetExtraFeat()
feat = [myFeature()]
pina_net = Network(model=net, input_variables=input_variables,
output_variables=output_variables, extra_features=feat)
def test_forward_extrafeat():
net = SimpleNetExtraFeat()
feat = [myFeature()]
pina_net = Network(model=net, input_variables=input_variables,
output_variables=output_variables, extra_features=feat)
output_ = pina_net(input_)
assert output_.labels == output_variables