Refactor Graph class to support custom edge attribute logic
This commit is contained in:
committed by
Nicola Demo
parent
78b276d995
commit
bbdd5d4bf1
173
pina/graph.py
173
pina/graph.py
@@ -5,6 +5,7 @@ import torch
|
||||
from . import LabelTensor
|
||||
from torch_geometric.data import Data
|
||||
from torch_geometric.utils import to_undirected
|
||||
import inspect
|
||||
|
||||
|
||||
class Graph:
|
||||
@@ -12,14 +13,17 @@ class Graph:
|
||||
Class for the graph construction.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
x,
|
||||
pos,
|
||||
edge_index,
|
||||
edge_attr=None,
|
||||
build_edge_attr=False,
|
||||
undirected=False,
|
||||
additional_params=None):
|
||||
def __init__(
|
||||
self,
|
||||
x,
|
||||
pos,
|
||||
edge_index,
|
||||
edge_attr=None,
|
||||
build_edge_attr=False,
|
||||
undirected=False,
|
||||
custom_build_edge_attr=None,
|
||||
additional_params=None
|
||||
):
|
||||
"""
|
||||
Constructor for the Graph class.
|
||||
:param x: The node features.
|
||||
@@ -34,45 +38,23 @@ class Graph:
|
||||
:type build_edge_attr: bool
|
||||
:param undirected: Whether to build an undirected graph.
|
||||
:type undirected: bool
|
||||
:param custom_build_edge_attr: Custom function to build the edge
|
||||
attributes.
|
||||
:type custom_build_edge_attr: function
|
||||
:param additional_params: Additional parameters.
|
||||
:type additional_params: dict
|
||||
"""
|
||||
self.data = []
|
||||
x, pos, edge_index = Graph._check_input_consistency(x, pos, edge_index)
|
||||
x, pos, edge_index = self._check_input_consistency(x, pos, edge_index)
|
||||
|
||||
# Check input dimension consistency and store the number of graphs
|
||||
data_len = self._check_len_consistency(x, pos)
|
||||
if inspect.isfunction(custom_build_edge_attr):
|
||||
self._build_edge_attr = custom_build_edge_attr
|
||||
|
||||
# Initialize additional_parameters (if present)
|
||||
if additional_params is not None:
|
||||
if not isinstance(additional_params, dict):
|
||||
raise TypeError("additional_params must be a dictionary.")
|
||||
for param, val in additional_params.items():
|
||||
# Check if the values are tensors or lists of tensors
|
||||
if isinstance(val, torch.Tensor):
|
||||
# If the tensor is 3D, we split it into a list of 2D tensors
|
||||
# In this case there must be a additional parameter for each
|
||||
# node
|
||||
if val.ndim == 3:
|
||||
additional_params[param] = [val[i] for i in
|
||||
range(val.shape[0])]
|
||||
# If the tensor is 2D, we replicate it for each node
|
||||
elif val.ndim == 2:
|
||||
additional_params[param] = [val] * data_len
|
||||
# If the tensor is 1D, each graph has a scalar values as
|
||||
# additional parameter
|
||||
if val.ndim == 1:
|
||||
if len(val) == data_len:
|
||||
additional_params[param] = [val[i] for i in
|
||||
range(len(val))]
|
||||
else:
|
||||
additional_params[param] = [val for _ in
|
||||
range(data_len)]
|
||||
elif not isinstance(val, list):
|
||||
raise TypeError("additional_params values must be tensors "
|
||||
"or lists of tensors.")
|
||||
else:
|
||||
additional_params = {}
|
||||
# Check consistency and initialize additional_parameters (if present)
|
||||
additional_params = self._check_additional_params(additional_params,
|
||||
data_len)
|
||||
|
||||
# Make the graphs undirected
|
||||
if undirected:
|
||||
@@ -81,27 +63,17 @@ class Graph:
|
||||
else:
|
||||
edge_index = to_undirected(edge_index)
|
||||
|
||||
if build_edge_attr:
|
||||
if edge_attr is not None:
|
||||
warning("Edge attributes are provided, build_edge_attr is set "
|
||||
"to True. The provided edge attributes will be ignored.")
|
||||
edge_attr = self._build_edge_attr(pos, edge_index)
|
||||
|
||||
# Prepare internal lists to create a graph list (same positions but
|
||||
# different node features)
|
||||
if isinstance(x, list) and isinstance(pos,
|
||||
(torch.Tensor, LabelTensor)):
|
||||
# Replicate the positions, edge_index and edge_attr
|
||||
pos, edge_index = [pos] * data_len, [edge_index] * data_len
|
||||
if edge_attr is not None:
|
||||
edge_attr = [edge_attr] * data_len
|
||||
# Prepare internal lists to create a list containing a single graph
|
||||
elif isinstance(x, (torch.Tensor, LabelTensor)) and isinstance(pos, (
|
||||
torch.Tensor, LabelTensor)):
|
||||
# Encapsulate the input tensors into lists
|
||||
x, pos, edge_index = [x], [pos], [edge_index]
|
||||
if isinstance(edge_attr, torch.Tensor):
|
||||
edge_attr = [edge_attr]
|
||||
# Prepare internal lists to create a list of graphs (same node features
|
||||
# but different positions)
|
||||
elif (isinstance(x, (torch.Tensor, LabelTensor))
|
||||
@@ -111,6 +83,10 @@ class Graph:
|
||||
elif not isinstance(x, list) and not isinstance(pos, list):
|
||||
raise TypeError("x and pos must be lists or tensors.")
|
||||
|
||||
# Build the edge attributes
|
||||
edge_attr = self._check_and_build_edge_attr(edge_attr, build_edge_attr,
|
||||
data_len, edge_index, pos, x)
|
||||
|
||||
# Perform the graph construction
|
||||
self._build_graph_list(x, pos, edge_index, edge_attr, additional_params)
|
||||
|
||||
@@ -130,12 +106,8 @@ class Graph:
|
||||
**add_params_local))
|
||||
|
||||
@staticmethod
|
||||
def _build_edge_attr(pos, edge_index):
|
||||
if isinstance(pos, torch.Tensor):
|
||||
pos = [pos]
|
||||
edge_index = [edge_index]
|
||||
distance = [pos_[edge_index_[0]] - pos_[edge_index_[1]] ** 2 for
|
||||
pos_, edge_index_ in zip(pos, edge_index)]
|
||||
def _build_edge_attr(x, pos, edge_index):
|
||||
distance = torch.abs(pos[edge_index[0]] - pos[edge_index[1]])
|
||||
return distance
|
||||
|
||||
@staticmethod
|
||||
@@ -166,15 +138,65 @@ class Graph:
|
||||
edge_index = [edge_index[i] for i in range(edge_index.shape[0])]
|
||||
return x, pos, edge_index
|
||||
|
||||
@staticmethod
|
||||
def _check_additional_params(additional_params, data_len):
|
||||
if additional_params is not None:
|
||||
if not isinstance(additional_params, dict):
|
||||
raise TypeError("additional_params must be a dictionary.")
|
||||
for param, val in additional_params.items():
|
||||
# Check if the values are tensors or lists of tensors
|
||||
if isinstance(val, torch.Tensor):
|
||||
# If the tensor is 3D, we split it into a list of 2D tensors
|
||||
# In this case there must be a additional parameter for each
|
||||
# node
|
||||
if val.ndim == 3:
|
||||
additional_params[param] = [val[i] for i in
|
||||
range(val.shape[0])]
|
||||
# If the tensor is 2D, we replicate it for each node
|
||||
elif val.ndim == 2:
|
||||
additional_params[param] = [val] * data_len
|
||||
# If the tensor is 1D, each graph has a scalar values as
|
||||
# additional parameter
|
||||
if val.ndim == 1:
|
||||
if len(val) == data_len:
|
||||
additional_params[param] = [val[i] for i in
|
||||
range(len(val))]
|
||||
else:
|
||||
additional_params[param] = [val for _ in
|
||||
range(data_len)]
|
||||
elif not isinstance(val, list):
|
||||
raise TypeError("additional_params values must be tensors "
|
||||
"or lists of tensors.")
|
||||
else:
|
||||
additional_params = {}
|
||||
return additional_params
|
||||
|
||||
def _check_and_build_edge_attr(self, edge_attr, build_edge_attr, data_len,
|
||||
edge_index, pos, x):
|
||||
# Check if edge_attr is consistent with x and pos
|
||||
if edge_attr is not None:
|
||||
if build_edge_attr is True:
|
||||
warning("edge_attr is not None. build_edge_attr will not be "
|
||||
"considered.")
|
||||
if isinstance(edge_attr, list):
|
||||
if len(edge_attr) != data_len:
|
||||
raise ValueError("edge_attr must have the same length as x "
|
||||
"and pos.")
|
||||
return [edge_attr] * data_len
|
||||
|
||||
if build_edge_attr:
|
||||
return [self._build_edge_attr(x,pos_, edge_index_) for
|
||||
pos_, edge_index_ in zip(pos, edge_index)]
|
||||
|
||||
|
||||
class RadiusGraph(Graph):
|
||||
def __init__(self,
|
||||
x,
|
||||
pos,
|
||||
r,
|
||||
build_edge_attr=False,
|
||||
undirected=False,
|
||||
additional_params=None, ):
|
||||
def __init__(
|
||||
self,
|
||||
x,
|
||||
pos,
|
||||
r,
|
||||
**kwargs
|
||||
):
|
||||
x, pos, edge_index = Graph._check_input_consistency(x, pos)
|
||||
|
||||
if isinstance(pos, (torch.Tensor, LabelTensor)):
|
||||
@@ -183,9 +205,7 @@ class RadiusGraph(Graph):
|
||||
edge_index = [RadiusGraph._radius_graph(p, r) for p in pos]
|
||||
|
||||
super().__init__(x=x, pos=pos, edge_index=edge_index,
|
||||
build_edge_attr=build_edge_attr,
|
||||
undirected=undirected,
|
||||
additional_params=additional_params)
|
||||
**kwargs)
|
||||
|
||||
@staticmethod
|
||||
def _radius_graph(points, r):
|
||||
@@ -204,23 +224,20 @@ class RadiusGraph(Graph):
|
||||
|
||||
|
||||
class KNNGraph(Graph):
|
||||
def __init__(self,
|
||||
x,
|
||||
pos,
|
||||
k,
|
||||
build_edge_attr=False,
|
||||
undirected=False,
|
||||
additional_params=None,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
x,
|
||||
pos,
|
||||
k,
|
||||
**kwargs
|
||||
):
|
||||
x, pos, edge_index = Graph._check_input_consistency(x, pos)
|
||||
if isinstance(pos, (torch.Tensor, LabelTensor)):
|
||||
edge_index = KNNGraph._knn_graph(pos, k)
|
||||
else:
|
||||
edge_index = [KNNGraph._knn_graph(p, k) for p in pos]
|
||||
super().__init__(x=x, pos=pos, edge_index=edge_index,
|
||||
build_edge_attr=build_edge_attr,
|
||||
undirected=undirected,
|
||||
additional_params=additional_params)
|
||||
**kwargs)
|
||||
|
||||
@staticmethod
|
||||
def _knn_graph(points, k):
|
||||
@@ -240,6 +257,7 @@ class KNNGraph(Graph):
|
||||
edge_index = torch.stack([row, col], dim=0)
|
||||
return edge_index
|
||||
|
||||
|
||||
class TemporalGraph(Graph):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -259,7 +277,8 @@ class TemporalGraph(Graph):
|
||||
edge_index = [RadiusGraph._radius_graph(p, r) for p in pos]
|
||||
additional_params = {'t': t}
|
||||
self._check_time_consistency(pos, t)
|
||||
super().__init__(x=x, pos=pos, edge_index=edge_index, edge_attr=edge_attr,
|
||||
super().__init__(x=x, pos=pos, edge_index=edge_index,
|
||||
edge_attr=edge_attr,
|
||||
build_edge_attr=build_edge_attr,
|
||||
undirected=undirected,
|
||||
additional_params=additional_params)
|
||||
|
||||
Reference in New Issue
Block a user