Fix rendering LT
This commit is contained in:
@@ -33,10 +33,10 @@ class LabelTensor(torch.Tensor):
|
||||
@property
|
||||
def tensor(self):
|
||||
"""
|
||||
Give the tensor part of the :class:`~pina.label_tensor.LabelTensor`
|
||||
Returns the tensor part of the :class:`~pina.label_tensor.LabelTensor`
|
||||
object.
|
||||
|
||||
:return: tensor part of the :class:`~pina.label_tensor.LabelTensor`.
|
||||
:return: Tensor part of the :class:`~pina.label_tensor.LabelTensor`.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
|
||||
@@ -44,10 +44,15 @@ class LabelTensor(torch.Tensor):
|
||||
|
||||
def __init__(self, x, labels):
|
||||
"""
|
||||
Construct a :class:`~pina.label_tensor.LabelTensor` by passing a dict of
|
||||
the labels and a :class:`torch.Tensor`. Internally, the initialization
|
||||
method will store check the compatibility of the labels with the tensor
|
||||
shape.
|
||||
Initialize the :class:`~pina.label_tensor.LabelTensor` instance, by
|
||||
checking the consistency of the labels and the tensor. Specifically, the
|
||||
labels must match the following conditions:
|
||||
|
||||
- At each dimension, the number of labels must match the size of the \
|
||||
dimension.
|
||||
- At each dimension, the labels must be unique.
|
||||
|
||||
The labels can be passed in the following formats:
|
||||
|
||||
:Example:
|
||||
>>> from pina import LabelTensor
|
||||
@@ -57,11 +62,18 @@ class LabelTensor(torch.Tensor):
|
||||
>>> tensor = LabelTensor(
|
||||
>>> torch.rand((2000, 3)),
|
||||
... ["a", "b", "c"])
|
||||
|
||||
The keys of the dictionary are the dimension indices, and the values are
|
||||
dictionaries containing the labels and the name of the dimension. If
|
||||
the labels are passed as a list, these are assigned to the last
|
||||
dimension.
|
||||
|
||||
:param torch.Tensor x: The tensor to be casted as a
|
||||
:class:`~pina.label_tensor.LabelTensor`.
|
||||
:param labels: Labels to assign to the tensor.
|
||||
:type labels: str | list[str] | dict
|
||||
:raises ValueError: If the labels are not consistent with the tensor.
|
||||
"""
|
||||
# Avoid unused argument warning. x is not used in the constructor
|
||||
# of the parent class.
|
||||
# pylint: disable=unused-argument
|
||||
super().__init__()
|
||||
if labels is not None:
|
||||
self.labels = labels
|
||||
@@ -71,7 +83,7 @@ class LabelTensor(torch.Tensor):
|
||||
@property
|
||||
def full_labels(self):
|
||||
"""
|
||||
Gives the full labels of the tensor, even for the dimensions that are
|
||||
Returns the full labels of the tensor, even for the dimensions that are
|
||||
not labeled.
|
||||
|
||||
:return: The full labels of the tensor
|
||||
@@ -89,7 +101,7 @@ class LabelTensor(torch.Tensor):
|
||||
@property
|
||||
def stored_labels(self):
|
||||
"""
|
||||
Gives the labels stored inside the instance.
|
||||
Returns the labels stored inside the instance.
|
||||
|
||||
:return: The labels stored inside the instance.
|
||||
:rtype: dict
|
||||
@@ -99,7 +111,7 @@ class LabelTensor(torch.Tensor):
|
||||
@property
|
||||
def labels(self):
|
||||
"""
|
||||
Give the labels of the last dimension of the instance.
|
||||
Returns the labels of the last dimension of the instance.
|
||||
|
||||
:return: labels of last dimension
|
||||
:rtype: list
|
||||
@@ -111,8 +123,9 @@ class LabelTensor(torch.Tensor):
|
||||
@labels.setter
|
||||
def labels(self, labels):
|
||||
"""
|
||||
Set the parameter ``_labels`` by checking the type of the input labels
|
||||
and handling it accordingly. The following types are accepted:
|
||||
Set labels stored insider the instance by checking the type of the
|
||||
input labels and handling it accordingly. The following types are
|
||||
accepted:
|
||||
|
||||
- **list**: The list of labels is assigned to the last dimension.
|
||||
- **dict**: The dictionary of labels is assigned to the tensor.
|
||||
@@ -134,7 +147,7 @@ class LabelTensor(torch.Tensor):
|
||||
else:
|
||||
raise ValueError("labels must be list, dict or string.")
|
||||
|
||||
def _init_labels_from_dict(self, labels: dict):
|
||||
def _init_labels_from_dict(self, labels):
|
||||
"""
|
||||
Store the internal label representation according to the values
|
||||
passed as input.
|
||||
@@ -146,7 +159,7 @@ class LabelTensor(torch.Tensor):
|
||||
|
||||
tensor_shape = self.shape
|
||||
|
||||
def validate_dof(dof_list, dim_size: int):
|
||||
def validate_dof(dof_list, dim_size):
|
||||
"""Validate the 'dof' list for uniqueness and size."""
|
||||
if len(dof_list) != len(set(dof_list)):
|
||||
raise ValueError("dof must be unique")
|
||||
@@ -187,7 +200,7 @@ class LabelTensor(torch.Tensor):
|
||||
|
||||
def _init_labels_from_list(self, labels):
|
||||
"""
|
||||
Given a ``list`` of dof, this method update the internal label
|
||||
Given a list of dof, this method update the internal label
|
||||
representation by assigning the dof to the last dimension.
|
||||
|
||||
:param labels: The label(s) to update.
|
||||
@@ -203,17 +216,25 @@ class LabelTensor(torch.Tensor):
|
||||
def extract(self, labels_to_extract):
|
||||
"""
|
||||
Extract the subset of the original tensor by returning all the positions
|
||||
corresponding to the passed ``label_to_extract``.
|
||||
corresponding to the passed ``label_to_extract``. If ``label_to_extract``
|
||||
is a dictionary, the keys are the dimension names and the values are the
|
||||
labels to extract. If a single label or a list of labels is passed, the
|
||||
last dimension is considered.
|
||||
|
||||
:param labels_to_extract: The label(s) to extract. If a single label or
|
||||
a list of labels is passed, the last dimension is considered.
|
||||
If a dictionary is passed, the keys are the dimension names and the
|
||||
values are the labels to extract.
|
||||
:Example:
|
||||
>>> from pina import LabelTensor
|
||||
>>> labels = {1: {'dof': ["a", "b", "c"], 'name': 'space'}}
|
||||
>>> tensor = LabelTensor(torch.rand((2000, 3)), labels)
|
||||
>>> tensor.extract("a")
|
||||
>>> tensor.extract(["a", "b"])
|
||||
>>> tensor.extract({"space": ["a", "b"]})
|
||||
|
||||
:param labels_to_extract: The label(s) to extract.
|
||||
:type labels_to_extract: str | list[str] | tuple[str] | dict
|
||||
:return: The extracted tensor with the updated labels.
|
||||
:rtype: LabelTensor
|
||||
|
||||
:raises TypeError: Labels are not ``str``, ``list of str`` or ``dict``
|
||||
:raises TypeError: Labels are not ``str``, ``list[str]`` or ``dict``
|
||||
properly setted.
|
||||
:raises ValueError: Label to extract is not in the labels ``list``.
|
||||
"""
|
||||
@@ -298,13 +319,13 @@ class LabelTensor(torch.Tensor):
|
||||
|
||||
:param list[LabelTensor] tensors:
|
||||
:class:`~pina.label_tensor.LabelTensor` instances to concatenate
|
||||
:param int dim: dimensions on which you want to perform the operation
|
||||
:param int dim: Dimensions on which you want to perform the operation
|
||||
(default is 0)
|
||||
:return: A new :class:`LabelTensor' instance obtained by concatenating
|
||||
the input instances, with the updated labels.
|
||||
:return: A new :class:`LabelTensor` instance obtained by concatenating
|
||||
the input instances.
|
||||
|
||||
:rtype: LabelTensor
|
||||
:raises ValueError: either number dof or dimensions names differ
|
||||
:raises ValueError: either number dof or dimensions names differ.
|
||||
"""
|
||||
|
||||
if not tensors:
|
||||
@@ -353,7 +374,7 @@ class LabelTensor(torch.Tensor):
|
||||
:param list[LabelTensor] tensors: A list of tensors to stack.
|
||||
All tensors must have the same shape.
|
||||
:return: A new :class:`~pina.label_tensor.LabelTensor` instance obtained
|
||||
by stacking the input tensors, with the updated labels.
|
||||
by stacking the input tensors.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
@@ -389,7 +410,7 @@ class LabelTensor(torch.Tensor):
|
||||
Give the ``dtype`` of the tensor. For more details, see
|
||||
:meth:`torch.dtype`.
|
||||
|
||||
:return: dtype of the tensor
|
||||
:return: The data type of the tensor.
|
||||
:rtype: torch.dtype
|
||||
"""
|
||||
|
||||
@@ -427,19 +448,19 @@ class LabelTensor(torch.Tensor):
|
||||
def append(self, tensor, mode="std"):
|
||||
"""
|
||||
Appends a given tensor to the current tensor along the last dimension.
|
||||
|
||||
This method supports two types of appending operations:
|
||||
1. **Standard append** ("std"): Concatenates the input tensor with the
|
||||
|
||||
1. **Standard append** ("std"): Concatenates the input tensor with the \
|
||||
current tensor along the last dimension.
|
||||
2. **Cross append** ("cross"): Creates a cross-product of the current
|
||||
tensor and the input tensor by repeating them in a cross-product
|
||||
fashion, then concatenates the result along the last dimension.
|
||||
2. **Cross append** ("cross"): Creates a cross-product of the current \
|
||||
tensor and the input tensor.
|
||||
|
||||
:param tensor: The tensor to append to the current tensor.
|
||||
:type tensor: LabelTensor
|
||||
:param mode: The append mode to use. Defaults to "std".
|
||||
:param mode: The append mode to use. Defaults to ``st``.
|
||||
:type mode: str, optional
|
||||
:return: A new `LabelTensor` obtained by appending the input tensor.
|
||||
:return: A new :class:`LabelTensor` instance obtained by appending the
|
||||
input tensor.
|
||||
:rtype: LabelTensor
|
||||
|
||||
:raises ValueError: If the mode is not "std" or "cross".
|
||||
@@ -468,7 +489,7 @@ class LabelTensor(torch.Tensor):
|
||||
raise ValueError('mode must be either "std" or "cross"')
|
||||
|
||||
@staticmethod
|
||||
def vstack(label_tensors):
|
||||
def vstack(tensors):
|
||||
"""
|
||||
Stack tensors vertically. For more details, see :meth:`torch.vstack`.
|
||||
|
||||
@@ -480,7 +501,7 @@ class LabelTensor(torch.Tensor):
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
return LabelTensor.cat(label_tensors, dim=0)
|
||||
return LabelTensor.cat(tensors, dim=0)
|
||||
|
||||
# This method is used to update labels
|
||||
def _update_single_label(
|
||||
@@ -592,11 +613,11 @@ class LabelTensor(torch.Tensor):
|
||||
|
||||
def sort_labels(self, dim=None):
|
||||
"""
|
||||
Sort the labels along the specified dimension and apply the same sorting
|
||||
to the :class:`torch.Tensor` part of the instance.
|
||||
Sort the labels along the specified dimension and apply. It applies the
|
||||
same sorting to the tensor part of the instance.
|
||||
|
||||
:param int dim: The dimension along which to sort the labels.
|
||||
If ``None``, the last dimension (``ndim - 1``) is used.
|
||||
If ``None``, the last dimension is used.
|
||||
:return: A new tensor with sorted labels along the specified dimension.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user