Update tutorials (#463)

---------

Co-authored-by: Dario Coscia <93731561+dario-coscia@users.noreply.github.com>
This commit is contained in:
Matteo Bertocchi
2025-02-26 16:21:12 +01:00
committed by FilippoOlivo
parent 8b797d589a
commit bd9b49530a
30 changed files with 3057 additions and 1453 deletions

View File

@@ -9,7 +9,7 @@
# In this tutorial we are going to solve the Darcy flow problem in two dimensions, presented in [*Fourier Neural Operator for
# Parametric Partial Differential Equation*](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input-output operations.
# In[ ]:
# In[1]:
## routine needed to run the notebook on Google Colab
@@ -24,17 +24,19 @@ if IN_COLAB:
# get the data
get_ipython().system('wget https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial5/Data_Darcy.mat')
import torch
import matplotlib.pyplot as plt
import warnings
# !pip install scipy # install scipy
from scipy import io
import torch
from pina.model import FNO, FeedForward # let's import some models
from pina import Condition, LabelTensor
from pina.solvers import SupervisedSolver
from pina.solver import SupervisedSolver
from pina.trainer import Trainer
from pina.problem import AbstractProblem
import matplotlib.pyplot as plt
plt.style.use('tableau-colorblind10')
warnings.filterwarnings('ignore')
# ## Data Generation
@@ -74,33 +76,23 @@ y = torch.tensor(data['y'], dtype=torch.float)[0]
plt.subplot(1, 2, 1)
plt.title('permeability')
plt.imshow(k_train.squeeze(-1)[0])
plt.imshow(k_train.squeeze(-1).tensor[0])
plt.subplot(1, 2, 2)
plt.title('field solution')
plt.imshow(u_train.squeeze(-1)[0])
plt.show()
# We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`.
# In[4]:
u_train.labels[3]['dof']
# We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`.
# In[ ]:
class NeuralOperatorSolver(AbstractProblem):
input_variables = k_train.labels[3]['dof']
output_variables = u_train.labels[3]['dof']
domains = {
'pts': k_train
}
conditions = {'data' : Condition(domain='pts', #not among allowed pairs!!!
output_points=u_train)}
input_variables = k_train.full_labels[3]['dof']
output_variables = u_train.full_labels[3]['dof']
conditions = {'data' : Condition(input=k_train,
target=u_train)}
# make problem
problem = NeuralOperatorSolver()
@@ -109,7 +101,7 @@ problem = NeuralOperatorSolver()
#
# We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning.
# In[6]:
# In[5]:
# make model
@@ -120,14 +112,17 @@ model = FeedForward(input_dimensions=1, output_dimensions=1)
solver = SupervisedSolver(problem=problem, model=model)
# make the trainer and train
trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10)
trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10,
# We train on CPU and avoid model summary at the beginning of training (optional)
train_size=1.0,
val_size=0.0,
test_size=0.0)
trainer.train()
# The final loss is pretty high... We can calculate the error by importing `LpLoss`.
# In[7]:
# In[6]:
from pina.loss import LpLoss
@@ -135,7 +130,7 @@ from pina.loss import LpLoss
# make the metric
metric_err = LpLoss(relative=True)
model = solver.models[0]
model = solver.model
err = float(metric_err(u_train.squeeze(-1), model(k_train).squeeze(-1)).mean())*100
print(f'Final error training {err:.2f}%')
@@ -147,7 +142,7 @@ print(f'Final error testing {err:.2f}%')
#
# We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see.
# In[8]:
# In[7]:
# make model
@@ -165,16 +160,20 @@ model = FNO(lifting_net=lifting_net,
solver = SupervisedSolver(problem=problem, model=model)
# make the trainer and train
trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10) # we train on CPU and avoid model summary at beginning of training (optional)
trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, # We train on CPU and avoid model summary at the beginning of training (optional)
batch_size=10,
train_size=1.0,
val_size=0.0,
test_size=0.0)
trainer.train()
# We can clearly see that the final loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training, when many data samples are used.
# In[9]:
# In[8]:
model = solver.models[0]
model = solver.model
err = float(metric_err(u_train.squeeze(-1), model(k_train).squeeze(-1)).mean())*100
print(f'Final error training {err:.2f}%')