add linear weight update callback (#474)
This commit is contained in:
committed by
Nicola Demo
parent
4cb0987714
commit
bdad144461
164
tests/test_callback/test_linear_weight_update_callback.py
Normal file
164
tests/test_callback/test_linear_weight_update_callback.py
Normal file
@@ -0,0 +1,164 @@
|
||||
import pytest
|
||||
import math
|
||||
from pina.solver import PINN
|
||||
from pina.loss import ScalarWeighting
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||
from pina.callback import LinearWeightUpdate
|
||||
|
||||
|
||||
# Define the problem
|
||||
poisson_problem = Poisson()
|
||||
poisson_problem.discretise_domain(50, "grid")
|
||||
cond_name = list(poisson_problem.conditions.keys())[0]
|
||||
|
||||
# Define the model
|
||||
model = FeedForward(
|
||||
input_dimensions=len(poisson_problem.input_variables),
|
||||
output_dimensions=len(poisson_problem.output_variables),
|
||||
layers=[32, 32],
|
||||
)
|
||||
|
||||
# Define the weighting schema
|
||||
weights_dict = {key: 1 for key in poisson_problem.conditions.keys()}
|
||||
weighting = ScalarWeighting(weights=weights_dict)
|
||||
|
||||
# Define the solver
|
||||
solver = PINN(problem=poisson_problem, model=model, weighting=weighting)
|
||||
|
||||
# Value used for testing
|
||||
epochs = 10
|
||||
|
||||
|
||||
@pytest.mark.parametrize("initial_value", [1, 5.5])
|
||||
@pytest.mark.parametrize("target_value", [10, 25.5])
|
||||
def test_constructor(initial_value, target_value):
|
||||
LinearWeightUpdate(
|
||||
target_epoch=epochs,
|
||||
condition_name=cond_name,
|
||||
initial_value=initial_value,
|
||||
target_value=target_value,
|
||||
)
|
||||
|
||||
# Target_epoch must be int
|
||||
with pytest.raises(ValueError):
|
||||
LinearWeightUpdate(
|
||||
target_epoch=10.0,
|
||||
condition_name=cond_name,
|
||||
initial_value=0,
|
||||
target_value=1,
|
||||
)
|
||||
|
||||
# Condition_name must be str
|
||||
with pytest.raises(ValueError):
|
||||
LinearWeightUpdate(
|
||||
target_epoch=epochs,
|
||||
condition_name=100,
|
||||
initial_value=0,
|
||||
target_value=1,
|
||||
)
|
||||
|
||||
# Initial_value must be float or int
|
||||
with pytest.raises(ValueError):
|
||||
LinearWeightUpdate(
|
||||
target_epoch=epochs,
|
||||
condition_name=cond_name,
|
||||
initial_value="0",
|
||||
target_value=1,
|
||||
)
|
||||
|
||||
# Target_value must be float or int
|
||||
with pytest.raises(ValueError):
|
||||
LinearWeightUpdate(
|
||||
target_epoch=epochs,
|
||||
condition_name=cond_name,
|
||||
initial_value=0,
|
||||
target_value="1",
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("initial_value, target_value", [(1, 10), (10, 1)])
|
||||
def test_training(initial_value, target_value):
|
||||
callback = LinearWeightUpdate(
|
||||
target_epoch=epochs,
|
||||
condition_name=cond_name,
|
||||
initial_value=initial_value,
|
||||
target_value=target_value,
|
||||
)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
callbacks=[callback],
|
||||
accelerator="cpu",
|
||||
max_epochs=epochs,
|
||||
)
|
||||
trainer.train()
|
||||
|
||||
# Check that the final weight value matches the target value
|
||||
final_value = solver.weighting.weights[cond_name]
|
||||
assert math.isclose(final_value, target_value)
|
||||
|
||||
# Target_epoch must be greater than 0
|
||||
with pytest.raises(ValueError):
|
||||
callback = LinearWeightUpdate(
|
||||
target_epoch=0,
|
||||
condition_name=cond_name,
|
||||
initial_value=0,
|
||||
target_value=1,
|
||||
)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
callbacks=[callback],
|
||||
accelerator="cpu",
|
||||
max_epochs=5,
|
||||
)
|
||||
trainer.train()
|
||||
|
||||
# Target_epoch must be less than or equal to max_epochs
|
||||
with pytest.raises(ValueError):
|
||||
callback = LinearWeightUpdate(
|
||||
target_epoch=epochs,
|
||||
condition_name=cond_name,
|
||||
initial_value=0,
|
||||
target_value=1,
|
||||
)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
callbacks=[callback],
|
||||
accelerator="cpu",
|
||||
max_epochs=epochs - 1,
|
||||
)
|
||||
trainer.train()
|
||||
|
||||
# Condition_name must be a problem condition
|
||||
with pytest.raises(ValueError):
|
||||
callback = LinearWeightUpdate(
|
||||
target_epoch=epochs,
|
||||
condition_name="not_a_condition",
|
||||
initial_value=0,
|
||||
target_value=1,
|
||||
)
|
||||
trainer = Trainer(
|
||||
solver=solver,
|
||||
callbacks=[callback],
|
||||
accelerator="cpu",
|
||||
max_epochs=epochs,
|
||||
)
|
||||
trainer.train()
|
||||
|
||||
# Weighting schema must be ScalarWeighting
|
||||
with pytest.raises(ValueError):
|
||||
callback = LinearWeightUpdate(
|
||||
target_epoch=epochs,
|
||||
condition_name=cond_name,
|
||||
initial_value=0,
|
||||
target_value=1,
|
||||
)
|
||||
unweighted_solver = PINN(problem=poisson_problem, model=model)
|
||||
trainer = Trainer(
|
||||
solver=unweighted_solver,
|
||||
callbacks=[callback],
|
||||
accelerator="cpu",
|
||||
max_epochs=epochs,
|
||||
)
|
||||
trainer.train()
|
||||
Reference in New Issue
Block a user