add linear weight update callback (#474)
This commit is contained in:
committed by
Nicola Demo
parent
4cb0987714
commit
bdad144461
@@ -3,8 +3,10 @@ __all__ = [
|
|||||||
"R3Refinement",
|
"R3Refinement",
|
||||||
"MetricTracker",
|
"MetricTracker",
|
||||||
"PINAProgressBar",
|
"PINAProgressBar",
|
||||||
|
"LinearWeightUpdate",
|
||||||
]
|
]
|
||||||
|
|
||||||
from .optimizer_callback import SwitchOptimizer
|
from .optimizer_callback import SwitchOptimizer
|
||||||
from .adaptive_refinement_callback import R3Refinement
|
from .adaptive_refinement_callback import R3Refinement
|
||||||
from .processing_callback import MetricTracker, PINAProgressBar
|
from .processing_callback import MetricTracker, PINAProgressBar
|
||||||
|
from .linear_weight_update_callback import LinearWeightUpdate
|
||||||
|
|||||||
85
pina/callback/linear_weight_update_callback.py
Normal file
85
pina/callback/linear_weight_update_callback.py
Normal file
@@ -0,0 +1,85 @@
|
|||||||
|
"""PINA Callbacks Implementations"""
|
||||||
|
|
||||||
|
import warnings
|
||||||
|
from lightning.pytorch.callbacks import Callback
|
||||||
|
from ..utils import check_consistency
|
||||||
|
from ..loss import ScalarWeighting
|
||||||
|
|
||||||
|
|
||||||
|
class LinearWeightUpdate(Callback):
|
||||||
|
"""
|
||||||
|
Callback to linearly adjust the weight of a condition from an
|
||||||
|
initial value to a target value over a specified number of epochs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, target_epoch, condition_name, initial_value, target_value
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Callback initialization.
|
||||||
|
|
||||||
|
:param int target_epoch: The epoch at which the weight of the condition
|
||||||
|
should reach the target value.
|
||||||
|
:param str condition_name: The name of the condition whose weight
|
||||||
|
should be adjusted.
|
||||||
|
:param float initial_value: The initial value of the weight.
|
||||||
|
:param float target_value: The target value of the weight.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.target_epoch = target_epoch
|
||||||
|
self.condition_name = condition_name
|
||||||
|
self.initial_value = initial_value
|
||||||
|
self.target_value = target_value
|
||||||
|
|
||||||
|
# Check consistency
|
||||||
|
check_consistency(self.target_epoch, int, subclass=False)
|
||||||
|
check_consistency(self.condition_name, str, subclass=False)
|
||||||
|
check_consistency(self.initial_value, (float, int), subclass=False)
|
||||||
|
check_consistency(self.target_value, (float, int), subclass=False)
|
||||||
|
|
||||||
|
def on_train_start(self, trainer, solver):
|
||||||
|
"""
|
||||||
|
Initialize the weight of the condition to the specified `initial_value`.
|
||||||
|
|
||||||
|
:param Trainer trainer: a pina:class:`Trainer` instance.
|
||||||
|
:param SolverInterface solver: a pina:class:`SolverInterface` instance.
|
||||||
|
"""
|
||||||
|
# Check that the target epoch is valid
|
||||||
|
if not 0 < self.target_epoch <= trainer.max_epochs:
|
||||||
|
raise ValueError(
|
||||||
|
"`target_epoch` must be greater than 0"
|
||||||
|
" and less than or equal to `max_epochs`."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check that the condition is a problem condition
|
||||||
|
if self.condition_name not in solver.problem.conditions:
|
||||||
|
raise ValueError(
|
||||||
|
f"`{self.condition_name}` must be a problem condition."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check that the initial value is not equal to the target value
|
||||||
|
if self.initial_value == self.target_value:
|
||||||
|
warnings.warn(
|
||||||
|
"`initial_value` is equal to `target_value`. "
|
||||||
|
"No effective adjustment will be performed.",
|
||||||
|
UserWarning,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check that the weighting schema is ScalarWeighting
|
||||||
|
if not isinstance(solver.weighting, ScalarWeighting):
|
||||||
|
raise ValueError("The weighting schema must be ScalarWeighting.")
|
||||||
|
|
||||||
|
# Initialize the weight of the condition
|
||||||
|
solver.weighting.weights[self.condition_name] = self.initial_value
|
||||||
|
|
||||||
|
def on_train_epoch_start(self, trainer, solver):
|
||||||
|
"""
|
||||||
|
Adjust at each epoch the weight of the condition.
|
||||||
|
|
||||||
|
:param Trainer trainer: a pina:class:`Trainer` instance.
|
||||||
|
:param SolverInterface solver: a pina:class:`SolverInterface` instance.
|
||||||
|
"""
|
||||||
|
if 0 < trainer.current_epoch <= self.target_epoch:
|
||||||
|
solver.weighting.weights[self.condition_name] += (
|
||||||
|
self.target_value - self.initial_value
|
||||||
|
) / (self.target_epoch - 1)
|
||||||
164
tests/test_callback/test_linear_weight_update_callback.py
Normal file
164
tests/test_callback/test_linear_weight_update_callback.py
Normal file
@@ -0,0 +1,164 @@
|
|||||||
|
import pytest
|
||||||
|
import math
|
||||||
|
from pina.solver import PINN
|
||||||
|
from pina.loss import ScalarWeighting
|
||||||
|
from pina.trainer import Trainer
|
||||||
|
from pina.model import FeedForward
|
||||||
|
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||||
|
from pina.callback import LinearWeightUpdate
|
||||||
|
|
||||||
|
|
||||||
|
# Define the problem
|
||||||
|
poisson_problem = Poisson()
|
||||||
|
poisson_problem.discretise_domain(50, "grid")
|
||||||
|
cond_name = list(poisson_problem.conditions.keys())[0]
|
||||||
|
|
||||||
|
# Define the model
|
||||||
|
model = FeedForward(
|
||||||
|
input_dimensions=len(poisson_problem.input_variables),
|
||||||
|
output_dimensions=len(poisson_problem.output_variables),
|
||||||
|
layers=[32, 32],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Define the weighting schema
|
||||||
|
weights_dict = {key: 1 for key in poisson_problem.conditions.keys()}
|
||||||
|
weighting = ScalarWeighting(weights=weights_dict)
|
||||||
|
|
||||||
|
# Define the solver
|
||||||
|
solver = PINN(problem=poisson_problem, model=model, weighting=weighting)
|
||||||
|
|
||||||
|
# Value used for testing
|
||||||
|
epochs = 10
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("initial_value", [1, 5.5])
|
||||||
|
@pytest.mark.parametrize("target_value", [10, 25.5])
|
||||||
|
def test_constructor(initial_value, target_value):
|
||||||
|
LinearWeightUpdate(
|
||||||
|
target_epoch=epochs,
|
||||||
|
condition_name=cond_name,
|
||||||
|
initial_value=initial_value,
|
||||||
|
target_value=target_value,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Target_epoch must be int
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
LinearWeightUpdate(
|
||||||
|
target_epoch=10.0,
|
||||||
|
condition_name=cond_name,
|
||||||
|
initial_value=0,
|
||||||
|
target_value=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Condition_name must be str
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
LinearWeightUpdate(
|
||||||
|
target_epoch=epochs,
|
||||||
|
condition_name=100,
|
||||||
|
initial_value=0,
|
||||||
|
target_value=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initial_value must be float or int
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
LinearWeightUpdate(
|
||||||
|
target_epoch=epochs,
|
||||||
|
condition_name=cond_name,
|
||||||
|
initial_value="0",
|
||||||
|
target_value=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Target_value must be float or int
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
LinearWeightUpdate(
|
||||||
|
target_epoch=epochs,
|
||||||
|
condition_name=cond_name,
|
||||||
|
initial_value=0,
|
||||||
|
target_value="1",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("initial_value, target_value", [(1, 10), (10, 1)])
|
||||||
|
def test_training(initial_value, target_value):
|
||||||
|
callback = LinearWeightUpdate(
|
||||||
|
target_epoch=epochs,
|
||||||
|
condition_name=cond_name,
|
||||||
|
initial_value=initial_value,
|
||||||
|
target_value=target_value,
|
||||||
|
)
|
||||||
|
trainer = Trainer(
|
||||||
|
solver=solver,
|
||||||
|
callbacks=[callback],
|
||||||
|
accelerator="cpu",
|
||||||
|
max_epochs=epochs,
|
||||||
|
)
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
# Check that the final weight value matches the target value
|
||||||
|
final_value = solver.weighting.weights[cond_name]
|
||||||
|
assert math.isclose(final_value, target_value)
|
||||||
|
|
||||||
|
# Target_epoch must be greater than 0
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
callback = LinearWeightUpdate(
|
||||||
|
target_epoch=0,
|
||||||
|
condition_name=cond_name,
|
||||||
|
initial_value=0,
|
||||||
|
target_value=1,
|
||||||
|
)
|
||||||
|
trainer = Trainer(
|
||||||
|
solver=solver,
|
||||||
|
callbacks=[callback],
|
||||||
|
accelerator="cpu",
|
||||||
|
max_epochs=5,
|
||||||
|
)
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
# Target_epoch must be less than or equal to max_epochs
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
callback = LinearWeightUpdate(
|
||||||
|
target_epoch=epochs,
|
||||||
|
condition_name=cond_name,
|
||||||
|
initial_value=0,
|
||||||
|
target_value=1,
|
||||||
|
)
|
||||||
|
trainer = Trainer(
|
||||||
|
solver=solver,
|
||||||
|
callbacks=[callback],
|
||||||
|
accelerator="cpu",
|
||||||
|
max_epochs=epochs - 1,
|
||||||
|
)
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
# Condition_name must be a problem condition
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
callback = LinearWeightUpdate(
|
||||||
|
target_epoch=epochs,
|
||||||
|
condition_name="not_a_condition",
|
||||||
|
initial_value=0,
|
||||||
|
target_value=1,
|
||||||
|
)
|
||||||
|
trainer = Trainer(
|
||||||
|
solver=solver,
|
||||||
|
callbacks=[callback],
|
||||||
|
accelerator="cpu",
|
||||||
|
max_epochs=epochs,
|
||||||
|
)
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
# Weighting schema must be ScalarWeighting
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
callback = LinearWeightUpdate(
|
||||||
|
target_epoch=epochs,
|
||||||
|
condition_name=cond_name,
|
||||||
|
initial_value=0,
|
||||||
|
target_value=1,
|
||||||
|
)
|
||||||
|
unweighted_solver = PINN(problem=poisson_problem, model=model)
|
||||||
|
trainer = Trainer(
|
||||||
|
solver=unweighted_solver,
|
||||||
|
callbacks=[callback],
|
||||||
|
accelerator="cpu",
|
||||||
|
max_epochs=epochs,
|
||||||
|
)
|
||||||
|
trainer.train()
|
||||||
Reference in New Issue
Block a user