fnn update, pinn torch models, tests update. (#88)
* fnn update, remove labeltensors * allow custom torch models * updating tests --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Dario Coscia <dariocoscia@dhcp-031.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
c8fb7715c4
commit
be11110bb2
31
tests/test_model/test_deeponet.py
Normal file
31
tests/test_model/test_deeponet.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from pina import LabelTensor
|
||||
from pina.model import DeepONet
|
||||
from pina.model import FeedForward as FFN
|
||||
|
||||
data = torch.rand((20, 3))
|
||||
input_vars = ['a', 'b', 'c']
|
||||
output_vars = ['d']
|
||||
input_ = LabelTensor(data, input_vars)
|
||||
|
||||
# TODO
|
||||
|
||||
# def test_constructor():
|
||||
# branch = FFN(input_variables=['a', 'c'], output_variables=20)
|
||||
# trunk = FFN(input_variables=['b'], output_variables=20)
|
||||
# onet = DeepONet(nets=[trunk, branch], output_variables=output_vars)
|
||||
|
||||
# def test_constructor_fails_when_invalid_inner_layer_size():
|
||||
# branch = FFN(input_variables=['a', 'c'], output_variables=20)
|
||||
# trunk = FFN(input_variables=['b'], output_variables=19)
|
||||
# with pytest.raises(ValueError):
|
||||
# DeepONet(nets=[trunk, branch], output_variables=output_vars)
|
||||
|
||||
# def test_forward():
|
||||
# branch = FFN(input_variables=['a', 'c'], output_variables=10)
|
||||
# trunk = FFN(input_variables=['b'], output_variables=10)
|
||||
# onet = DeepONet(nets=[trunk, branch], output_variables=output_vars)
|
||||
# output_ = onet(input_)
|
||||
# assert output_.labels == output_vars
|
||||
Reference in New Issue
Block a user