Update Condition notation & domains import in tutorials

This commit is contained in:
MatteoB30
2025-02-07 15:08:42 +01:00
committed by Nicola Demo
parent 195224794f
commit c6f1aafdec
18 changed files with 224 additions and 256 deletions

View File

@@ -43,7 +43,7 @@
"from pina.model.layers import PeriodicBoundaryEmbedding # The PBC module\n",
"from pina.solvers import PINN\n",
"from pina.trainer import Trainer\n",
"from pina.geometry import CartesianDomain\n",
"from pina.domain import CartesianDomain\n",
"from pina.equation import Equation"
]
},
@@ -77,7 +77,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -94,7 +94,7 @@
"\n",
" # here we write the problem conditions\n",
" conditions = {\n",
" 'D': Condition(location=spatial_domain,\n",
" 'phys_cond': Condition(domain=spatial_domain,\n",
" equation=Equation(Helmholtz_equation)),\n",
" }\n",
"\n",
@@ -106,7 +106,7 @@
"problem = Helmholtz()\n",
"\n",
"# let's discretise the domain\n",
"problem.discretise_domain(200, 'grid', locations=['D'])"
"problem.discretise_domain(200, 'grid', domains=['phys_cond'])"
]
},
{
@@ -293,7 +293,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "pina",
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
@@ -307,7 +307,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
"version": "3.12.3"
}
},
"nbformat": 4,

View File

@@ -63,7 +63,7 @@ from pina.equation import Equation
# and $f(x)=-6\pi^2\sin(3\pi x)\cos(\pi x)$ which give a solution that can be
# computed analytically $u(x) = \sin(\pi x)\cos(3\pi x)$.
# In[2]:
# In[ ]:
class Helmholtz(SpatialProblem):
@@ -79,7 +79,7 @@ class Helmholtz(SpatialProblem):
# here we write the problem conditions
conditions = {
'D': Condition(location=spatial_domain,
'phys_cond': Condition(domain=spatial_domain,
equation=Equation(Helmholtz_equation)),
}
@@ -91,7 +91,7 @@ class Helmholtz(SpatialProblem):
problem = Helmholtz()
# let's discretise the domain
problem.discretise_domain(200, 'grid', locations=['D'])
problem.discretise_domain(200, 'grid', domains=['phys_cond'])
# As usual, the Helmholtz problem is written in **PINA** code as a class.