diff --git a/docs/source/tutorials/tutorial16/tutorial.html b/docs/source/tutorials/tutorial16/tutorial.html index 68a069a..268d456 100644 --- a/docs/source/tutorials/tutorial16/tutorial.html +++ b/docs/source/tutorials/tutorial16/tutorial.html @@ -7588,7 +7588,7 @@ a.anchor-link {
We can have two types of problems:
In data-driven modelling, we always have an input and a target. The model's objective is to reconstruct the target from the input. Examples include:
@@ -7655,7 +7655,7 @@ Let's start by building the first type, the data driven type.You can define as many conditions as needed, and the model will attempt to minimize all of them simultaneously! You can access the data in various ways:
problem.conditions['<condition name>'].input, problem.conditions['<condition name>'].output – Access the input and output data for the specified condition <condition name>.problem.conditions['<condition name>'].input, problem.conditions['<condition name>'].target – Access the input and output data for the specified condition <condition name>.problem.input_pts – Access the input points for all conditions.To ensure that the problem is ready, you can check if all domains have been discretized, meaning all conditions have input points available to pass to the model:
@@ -7843,7 +7843,7 @@ $$As you can see, we implemented the ode_equation function which given the model ouput and input returns the equation residual. These residuals are the ones minimized during PINN optimization (for more on PINN see the related tutorials).
How are the residuals computed? -Givem the output we perform differential operation using the operator modulus. It is pretty intuitive, each differential operator takes the following inputs:
+Given the output we perform differential operation using the operator modulus. It is pretty intuitive, each differential operator takes the following inputs:fast version of differential operators, where no che
Input points: {'bound_cond': LabelTensor([[0.]]), 'phys_cond': LabelTensor([[0.9545],
- [0.7729],
- [0.5458],
- [0.0035],
- [0.3591]])}
-Input points labels: {'x0': LabelTensor([[0.]]), 'D': LabelTensor([[0.9545],
- [0.7729],
- [0.5458],
- [0.0035],
- [0.3591]])}
+Input points: {'bound_cond': LabelTensor([[0.]]), 'phys_cond': LabelTensor([[0.3330],
+ [0.7564],
+ [0.9460],
+ [0.1158],
+ [0.4770]])}
+Input points labels: {'x0': LabelTensor([[0.]]), 'D': LabelTensor([[0.3330],
+ [0.7564],
+ [0.9460],
+ [0.1158],
+ [0.4770]])}
<matplotlib.legend.Legend at 0x7f7b4e5207f0>+
<matplotlib.legend.Legend at 0x7f39b002d4c0>
@@ -7681,7 +7681,7 @@ $$⚠️ Before starting:¶
We assume you are already familiar with the concepts covered in the Getting started with PINA tutorials. If not, we strongly recommend reviewing them before exploring this advanced topic.
Using default `ModelCheckpoint`. Consider installing `litmodels` package to enable `LitModelCheckpoint` for automatic upload to the Lightning model registry. +💡 Tip: For seamless cloud uploads and versioning, try installing [litmodels](https://pypi.org/project/litmodels/) to enable LitModelCheckpoint, which syncs automatically with the Lightning model registry.
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Test metric DataLoader 0
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
- test_loss_epoch 0.0004210061742924154
+ test_loss_epoch 0.0004070365976076573
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────