Network handles forward for all solvers

This commit is contained in:
Dario Coscia
2023-11-09 15:16:57 +01:00
committed by Nicola Demo
parent 4844640727
commit c90301c204
5 changed files with 63 additions and 67 deletions

View File

@@ -32,7 +32,6 @@ class GAROM(SolverInterface):
problem,
generator,
discriminator,
extra_features=None,
loss=None,
optimizer_generator=torch.optim.Adam,
optimizer_generator_kwargs={'lr': 0.001},
@@ -58,13 +57,6 @@ class GAROM(SolverInterface):
for the generator.
:param torch.nn.Module discriminator: The neural network model to use
for the discriminator.
:param torch.nn.Module extra_features: The additional input
features to use as augmented input. It should either be a
list of torch.nn.Module, or a dictionary. If a list it is
passed the extra features are passed to both network. If a
dictionary is passed, the keys must be ``generator`` and
``discriminator`` and the values a list of torch.nn.Module
extra features for each.
:param torch.nn.Module loss: The loss function used as minimizer,
default ``None``. If ``loss`` is ``None`` the defualt
``PowerLoss(p=1)`` is used, as in the original paper.
@@ -97,15 +89,9 @@ class GAROM(SolverInterface):
parameters), and ``output_points``.
"""
if isinstance(extra_features, dict):
extra_features = [
extra_features['generator'], extra_features['discriminator']
]
super().__init__(
models=[generator, discriminator],
problem=problem,
extra_features=extra_features,
optimizers=[optimizer_generator, optimizer_discriminator],
optimizers_kwargs=[
optimizer_generator_kwargs, optimizer_discriminator_kwargs
@@ -200,7 +186,7 @@ class GAROM(SolverInterface):
# generator loss
r_loss = self._loss(snapshots, generated_snapshots)
d_fake = self.discriminator([generated_snapshots, parameters])
d_fake = self.discriminator.forward_map([generated_snapshots, parameters])
g_loss = self._loss(d_fake, generated_snapshots) + self.regularizer * r_loss
# backward step
@@ -220,8 +206,8 @@ class GAROM(SolverInterface):
generated_snapshots = self.generator(parameters)
# Discriminator pass
d_real = self.discriminator([snapshots, parameters])
d_fake = self.discriminator([generated_snapshots, parameters])
d_real = self.discriminator.forward_map([snapshots, parameters])
d_fake = self.discriminator.forward_map([generated_snapshots, parameters])
# evaluate loss
d_loss_real = self._loss(d_real, snapshots)