Implement Dataset, Dataloader and DataModule class and fix SupervisedSolver
This commit is contained in:
committed by
Nicola Demo
parent
b9753c34b2
commit
c9304fb9bb
@@ -3,10 +3,11 @@ from sympy.strategies.branch import condition
|
||||
from . import LabelTensor
|
||||
from .utils import check_consistency, merge_tensors
|
||||
|
||||
|
||||
class Collector:
|
||||
def __init__(self, problem):
|
||||
# creating a hook between collector and problem
|
||||
self.problem = problem
|
||||
self.problem = problem
|
||||
|
||||
# this variable is used to store the data in the form:
|
||||
# {'[condition_name]' :
|
||||
@@ -14,17 +15,17 @@ class Collector:
|
||||
# '[equation/output_points/conditional_variables]': Tensor}
|
||||
# }
|
||||
# those variables are used for the dataloading
|
||||
self._data_collections = {name : {} for name in self.problem.conditions}
|
||||
self._data_collections = {name: {} for name in self.problem.conditions}
|
||||
|
||||
# variables used to check that all conditions are sampled
|
||||
self._is_conditions_ready = {
|
||||
name : False for name in self.problem.conditions}
|
||||
name: False for name in self.problem.conditions}
|
||||
self.full = False
|
||||
|
||||
|
||||
@property
|
||||
def full(self):
|
||||
return all(self._is_conditions_ready.values())
|
||||
|
||||
|
||||
@full.setter
|
||||
def full(self, value):
|
||||
check_consistency(value, bool)
|
||||
@@ -37,7 +38,7 @@ class Collector:
|
||||
@property
|
||||
def problem(self):
|
||||
return self._problem
|
||||
|
||||
|
||||
@problem.setter
|
||||
def problem(self, value):
|
||||
self._problem = value
|
||||
@@ -76,14 +77,14 @@ class Collector:
|
||||
|
||||
# get the samples
|
||||
samples = [
|
||||
condition.domain.sample(n=n, mode=mode, variables=variables)
|
||||
] + already_sampled
|
||||
condition.domain.sample(n=n, mode=mode, variables=variables)
|
||||
] + already_sampled
|
||||
pts = merge_tensors(samples)
|
||||
if (
|
||||
set(pts.labels).issubset(sorted(self.problem.input_variables))
|
||||
):
|
||||
set(pts.labels).issubset(sorted(self.problem.input_variables))
|
||||
):
|
||||
pts = pts.sort_labels()
|
||||
if sorted(pts.labels)==sorted(self.problem.input_variables):
|
||||
if sorted(pts.labels) == sorted(self.problem.input_variables):
|
||||
self._is_conditions_ready[loc] = True
|
||||
values = [pts, condition.equation]
|
||||
self.data_collections[loc] = dict(zip(keys, values))
|
||||
@@ -97,7 +98,7 @@ class Collector:
|
||||
:param new_points_dict: Dictonary of input points (condition_name: LabelTensor)
|
||||
:raises RuntimeError: if at least one condition is not already sampled
|
||||
"""
|
||||
for k,v in new_points_dict.items():
|
||||
for k, v in new_points_dict.items():
|
||||
if not self._is_conditions_ready[k]:
|
||||
raise RuntimeError('Cannot add points on a non sampled condition')
|
||||
self.data_collections[k]['input_points'] = self.data_collections[k]['input_points'].vstack(v)
|
||||
self.data_collections[k]['input_points'] = self.data_collections[k]['input_points'].vstack(v)
|
||||
|
||||
Reference in New Issue
Block a user