Implement Dataset, Dataloader and DataModule class and fix SupervisedSolver
This commit is contained in:
committed by
Nicola Demo
parent
b9753c34b2
commit
c9304fb9bb
@@ -1,7 +1,20 @@
|
||||
"""
|
||||
Import data classes
|
||||
"""
|
||||
__all__ = [
|
||||
'PinaDataLoader',
|
||||
'SupervisedDataset',
|
||||
'SamplePointDataset',
|
||||
'UnsupervisedDataset',
|
||||
'Batch',
|
||||
'PinaDataModule',
|
||||
'BaseDataset'
|
||||
]
|
||||
|
||||
from .pina_dataloader import SamplePointLoader
|
||||
from .data_dataset import DataPointDataset
|
||||
from .pina_dataloader import PinaDataLoader
|
||||
from .supervised_dataset import SupervisedDataset
|
||||
from .sample_dataset import SamplePointDataset
|
||||
from .pina_batch import Batch
|
||||
from .unsupervised_dataset import UnsupervisedDataset
|
||||
from .pina_batch import Batch
|
||||
from .data_module import PinaDataModule
|
||||
from .base_dataset import BaseDataset
|
||||
|
||||
107
pina/data/base_dataset.py
Normal file
107
pina/data/base_dataset.py
Normal file
@@ -0,0 +1,107 @@
|
||||
"""
|
||||
Basic data module implementation
|
||||
"""
|
||||
from torch.utils.data import Dataset
|
||||
import torch
|
||||
from ..label_tensor import LabelTensor
|
||||
|
||||
|
||||
class BaseDataset(Dataset):
|
||||
"""
|
||||
BaseDataset class, which handle initialization and data retrieval
|
||||
:var condition_indices: List of indices
|
||||
:var device: torch.device
|
||||
:var condition_names: dict of condition index and corresponding name
|
||||
"""
|
||||
|
||||
def __new__(cls, problem, device):
|
||||
"""
|
||||
Ensure correct definition of __slots__ before initialization
|
||||
:param AbstractProblem problem: The formulation of the problem.
|
||||
:param torch.device device: The device on which the
|
||||
dataset will be loaded.
|
||||
"""
|
||||
if cls is BaseDataset:
|
||||
raise TypeError('BaseDataset cannot be instantiated directly. Use a subclass.')
|
||||
if not hasattr(cls, '__slots__'):
|
||||
raise TypeError('Something is wrong, __slots__ must be defined in subclasses.')
|
||||
return super().__new__(cls)
|
||||
|
||||
def __init__(self, problem, device):
|
||||
""""
|
||||
Initialize the object based on __slots__
|
||||
:param AbstractProblem problem: The formulation of the problem.
|
||||
:param torch.device device: The device on which the
|
||||
dataset will be loaded.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.condition_names = {}
|
||||
collector = problem.collector
|
||||
for slot in self.__slots__:
|
||||
setattr(self, slot, [])
|
||||
|
||||
idx = 0
|
||||
for name, data in collector.data_collections.items():
|
||||
keys = []
|
||||
for k, v in data.items():
|
||||
if isinstance(v, LabelTensor):
|
||||
keys.append(k)
|
||||
if sorted(self.__slots__) == sorted(keys):
|
||||
|
||||
for slot in self.__slots__:
|
||||
current_list = getattr(self, slot)
|
||||
current_list.append(data[slot])
|
||||
self.condition_names[idx] = name
|
||||
idx += 1
|
||||
|
||||
if len(getattr(self, self.__slots__[0])) > 0:
|
||||
input_list = getattr(self, self.__slots__[0])
|
||||
self.condition_indices = torch.cat(
|
||||
[
|
||||
torch.tensor([i] * len(input_list[i]), dtype=torch.uint8)
|
||||
for i in range(len(self.condition_names))
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
for slot in self.__slots__:
|
||||
current_attribute = getattr(self, slot)
|
||||
setattr(self, slot, LabelTensor.vstack(current_attribute))
|
||||
else:
|
||||
self.condition_indices = torch.tensor([], dtype=torch.uint8)
|
||||
for slot in self.__slots__:
|
||||
setattr(self, slot, torch.tensor([]))
|
||||
|
||||
self.device = device
|
||||
|
||||
def __len__(self):
|
||||
return len(getattr(self, self.__slots__[0]))
|
||||
|
||||
def __getattribute__(self, item):
|
||||
attribute = super().__getattribute__(item)
|
||||
if isinstance(attribute, LabelTensor) and attribute.dtype == torch.float32:
|
||||
attribute = attribute.to(device=self.device).requires_grad_()
|
||||
return attribute
|
||||
|
||||
def __getitem__(self, idx):
|
||||
if isinstance(idx, str):
|
||||
return getattr(self, idx).to(self.device)
|
||||
|
||||
if isinstance(idx, slice):
|
||||
to_return_list = []
|
||||
for i in self.__slots__:
|
||||
to_return_list.append(getattr(self, i)[[idx]].to(self.device))
|
||||
return to_return_list
|
||||
|
||||
if isinstance(idx, (tuple, list)):
|
||||
if (len(idx) == 2 and isinstance(idx[0], str)
|
||||
and isinstance(idx[1], (list, slice))):
|
||||
tensor = getattr(self, idx[0])
|
||||
return tensor[[idx[1]]].to(self.device)
|
||||
if all(isinstance(x, int) for x in idx):
|
||||
to_return_list = []
|
||||
for i in self.__slots__:
|
||||
to_return_list.append(getattr(self, i)[[idx]].to(self.device))
|
||||
return to_return_list
|
||||
|
||||
raise ValueError(f'Invalid index {idx}')
|
||||
@@ -1,41 +0,0 @@
|
||||
from torch.utils.data import Dataset
|
||||
import torch
|
||||
from ..label_tensor import LabelTensor
|
||||
|
||||
|
||||
class DataPointDataset(Dataset):
|
||||
|
||||
def __init__(self, problem, device) -> None:
|
||||
super().__init__()
|
||||
input_list = []
|
||||
output_list = []
|
||||
self.condition_names = []
|
||||
|
||||
for name, condition in problem.conditions.items():
|
||||
if hasattr(condition, "output_points"):
|
||||
input_list.append(problem.conditions[name].input_points)
|
||||
output_list.append(problem.conditions[name].output_points)
|
||||
self.condition_names.append(name)
|
||||
|
||||
self.input_pts = LabelTensor.stack(input_list)
|
||||
self.output_pts = LabelTensor.stack(output_list)
|
||||
|
||||
if self.input_pts != []:
|
||||
self.condition_indeces = torch.cat(
|
||||
[
|
||||
torch.tensor([i] * len(input_list[i]))
|
||||
for i in range(len(self.condition_names))
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
else: # if there are no data points
|
||||
self.condition_indeces = torch.tensor([])
|
||||
self.input_pts = torch.tensor([])
|
||||
self.output_pts = torch.tensor([])
|
||||
|
||||
self.input_pts = self.input_pts.to(device)
|
||||
self.output_pts = self.output_pts.to(device)
|
||||
self.condition_indeces = self.condition_indeces.to(device)
|
||||
|
||||
def __len__(self):
|
||||
return self.input_pts.shape[0]
|
||||
172
pina/data/data_module.py
Normal file
172
pina/data/data_module.py
Normal file
@@ -0,0 +1,172 @@
|
||||
"""
|
||||
This module provide basic data management functionalities
|
||||
"""
|
||||
|
||||
import math
|
||||
import torch
|
||||
from lightning import LightningDataModule
|
||||
from .sample_dataset import SamplePointDataset
|
||||
from .supervised_dataset import SupervisedDataset
|
||||
from .unsupervised_dataset import UnsupervisedDataset
|
||||
from .pina_dataloader import PinaDataLoader
|
||||
from .pina_subset import PinaSubset
|
||||
|
||||
|
||||
class PinaDataModule(LightningDataModule):
|
||||
"""
|
||||
This class extend LightningDataModule, allowing proper creation and
|
||||
management of different types of Datasets defined in PINA
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
problem,
|
||||
device,
|
||||
train_size=.7,
|
||||
test_size=.2,
|
||||
eval_size=.1,
|
||||
batch_size=None,
|
||||
shuffle=True,
|
||||
datasets = None):
|
||||
"""
|
||||
Initialize the object, creating dataset based on input problem
|
||||
:param AbstractProblem problem: PINA problem
|
||||
:param device: Device used for training and testing
|
||||
:param train_size: number/percentage of elements in train split
|
||||
:param test_size: number/percentage of elements in test split
|
||||
:param eval_size: number/percentage of elements in evaluation split
|
||||
:param batch_size: batch size used for training
|
||||
:param datasets: list of datasets objects
|
||||
"""
|
||||
super().__init__()
|
||||
dataset_classes = [SupervisedDataset, UnsupervisedDataset, SamplePointDataset]
|
||||
if datasets is None:
|
||||
self.datasets = [DatasetClass(problem, device) for DatasetClass in dataset_classes]
|
||||
else:
|
||||
self.datasets = datasets
|
||||
|
||||
self.split_length = []
|
||||
self.split_names = []
|
||||
if train_size > 0:
|
||||
self.split_names.append('train')
|
||||
self.split_length.append(train_size)
|
||||
if test_size > 0:
|
||||
self.split_length.append(test_size)
|
||||
self.split_names.append('test')
|
||||
if eval_size > 0:
|
||||
self.split_length.append(eval_size)
|
||||
self.split_names.append('eval')
|
||||
|
||||
self.batch_size = batch_size
|
||||
self.condition_names = None
|
||||
self.splits = {k: {} for k in self.split_names}
|
||||
self.shuffle = shuffle
|
||||
|
||||
def setup(self, stage=None):
|
||||
"""
|
||||
Perform the splitting of the dataset
|
||||
"""
|
||||
self.extract_conditions()
|
||||
if stage == 'fit' or stage is None:
|
||||
for dataset in self.datasets:
|
||||
if len(dataset) > 0:
|
||||
splits = self.dataset_split(dataset,
|
||||
self.split_length,
|
||||
shuffle=self.shuffle)
|
||||
for i in range(len(self.split_length)):
|
||||
self.splits[
|
||||
self.split_names[i]][dataset.data_type] = splits[i]
|
||||
elif stage == 'test':
|
||||
raise NotImplementedError("Testing pipeline not implemented yet")
|
||||
else:
|
||||
raise ValueError("stage must be either 'fit' or 'test'")
|
||||
|
||||
def extract_conditions(self):
|
||||
"""
|
||||
Extract conditions from dataset and update condition indices
|
||||
"""
|
||||
# Extract number of conditions
|
||||
n_conditions = 0
|
||||
for dataset in self.datasets:
|
||||
if n_conditions != 0:
|
||||
dataset.condition_names = {
|
||||
key + n_conditions: value
|
||||
for key, value in dataset.condition_names.items()
|
||||
}
|
||||
n_conditions += len(dataset.condition_names)
|
||||
|
||||
self.condition_names = {
|
||||
key: value
|
||||
for dataset in self.datasets
|
||||
for key, value in dataset.condition_names.items()
|
||||
}
|
||||
|
||||
|
||||
|
||||
def train_dataloader(self):
|
||||
"""
|
||||
Return the training dataloader for the dataset
|
||||
:return: data loader
|
||||
:rtype: PinaDataLoader
|
||||
"""
|
||||
return PinaDataLoader(self.splits['train'], self.batch_size,
|
||||
self.condition_names)
|
||||
|
||||
def test_dataloader(self):
|
||||
"""
|
||||
Return the testing dataloader for the dataset
|
||||
:return: data loader
|
||||
:rtype: PinaDataLoader
|
||||
"""
|
||||
return PinaDataLoader(self.splits['test'], self.batch_size,
|
||||
self.condition_names)
|
||||
|
||||
def eval_dataloader(self):
|
||||
"""
|
||||
Return the evaluation dataloader for the dataset
|
||||
:return: data loader
|
||||
:rtype: PinaDataLoader
|
||||
"""
|
||||
return PinaDataLoader(self.splits['eval'], self.batch_size,
|
||||
self.condition_names)
|
||||
|
||||
@staticmethod
|
||||
def dataset_split(dataset, lengths, seed=None, shuffle=True):
|
||||
"""
|
||||
Perform the splitting of the dataset
|
||||
:param dataset: dataset object we wanted to split
|
||||
:param lengths: lengths of elements in dataset
|
||||
:param seed: random seed
|
||||
:param shuffle: shuffle dataset
|
||||
:return: split dataset
|
||||
:rtype: PinaSubset
|
||||
"""
|
||||
if sum(lengths) - 1 < 1e-3:
|
||||
lengths = [
|
||||
int(math.floor(len(dataset) * length)) for length in lengths
|
||||
]
|
||||
|
||||
remainder = len(dataset) - sum(lengths)
|
||||
for i in range(remainder):
|
||||
lengths[i % len(lengths)] += 1
|
||||
elif sum(lengths) - 1 >= 1e-3:
|
||||
raise ValueError(f"Sum of lengths is {sum(lengths)} less than 1")
|
||||
|
||||
if sum(lengths) != len(dataset):
|
||||
raise ValueError("Sum of lengths is not equal to dataset length")
|
||||
|
||||
if shuffle:
|
||||
if seed is not None:
|
||||
generator = torch.Generator()
|
||||
generator.manual_seed(seed)
|
||||
indices = torch.randperm(sum(lengths), generator=generator).tolist()
|
||||
else:
|
||||
indices = torch.arange(sum(lengths)).tolist()
|
||||
else:
|
||||
indices = torch.arange(0, sum(lengths), 1, dtype=torch.uint8).tolist()
|
||||
offsets = [
|
||||
sum(lengths[:i]) if i > 0 else 0 for i in range(len(lengths))
|
||||
]
|
||||
return [
|
||||
PinaSubset(dataset, indices[offset:offset + length])
|
||||
for offset, length in zip(offsets, lengths)
|
||||
]
|
||||
@@ -1,36 +1,33 @@
|
||||
"""
|
||||
Batch management module
|
||||
"""
|
||||
from .pina_subset import PinaSubset
|
||||
|
||||
|
||||
class Batch:
|
||||
"""
|
||||
This class is used to create a dataset of sample points.
|
||||
"""
|
||||
def __init__(self, dataset_dict, idx_dict):
|
||||
|
||||
def __init__(self, type_, idx, *args, **kwargs) -> None:
|
||||
for k, v in dataset_dict.items():
|
||||
setattr(self, k, v)
|
||||
|
||||
for k, v in idx_dict.items():
|
||||
setattr(self, k + '_idx', v)
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
Returns the number of elements in the batch
|
||||
:return: number of elements in the batch
|
||||
:rtype: int
|
||||
"""
|
||||
if type_ == "sample":
|
||||
length = 0
|
||||
for dataset in dir(self):
|
||||
attribute = getattr(self, dataset)
|
||||
if isinstance(attribute, list):
|
||||
length += len(getattr(self, dataset))
|
||||
return length
|
||||
|
||||
if len(args) != 2:
|
||||
raise RuntimeError
|
||||
|
||||
input = args[0]
|
||||
conditions = args[1]
|
||||
|
||||
self.input = input[idx]
|
||||
self.condition = conditions[idx]
|
||||
|
||||
elif type_ == "data":
|
||||
|
||||
if len(args) != 3:
|
||||
raise RuntimeError
|
||||
|
||||
input = args[0]
|
||||
output = args[1]
|
||||
conditions = args[2]
|
||||
|
||||
self.input = input[idx]
|
||||
self.output = output[idx]
|
||||
self.condition = conditions[idx]
|
||||
|
||||
else:
|
||||
raise ValueError("Invalid number of arguments.")
|
||||
def __getattr__(self, item):
|
||||
if not item in dir(self):
|
||||
raise AttributeError(f'Batch instance has no attribute {item}')
|
||||
return PinaSubset(getattr(self, item).dataset,
|
||||
getattr(self, item).indices[self.coordinates_dict[item]])
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
import torch
|
||||
|
||||
from .sample_dataset import SamplePointDataset
|
||||
from .data_dataset import DataPointDataset
|
||||
"""
|
||||
This module is used to create an iterable object used during training
|
||||
"""
|
||||
import math
|
||||
from .pina_batch import Batch
|
||||
|
||||
|
||||
class SamplePointLoader:
|
||||
class PinaDataLoader:
|
||||
"""
|
||||
This class is used to create a dataloader to use during the training.
|
||||
|
||||
@@ -14,198 +14,54 @@ class SamplePointLoader:
|
||||
:vartype condition_names: list[str]
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, sample_dataset, data_dataset, batch_size=None, shuffle=True
|
||||
) -> None:
|
||||
def __init__(self, dataset_dict, batch_size, condition_names) -> None:
|
||||
"""
|
||||
Constructor.
|
||||
|
||||
:param SamplePointDataset sample_pts: The sample points dataset.
|
||||
:param int batch_size: The batch size. If ``None``, the batch size is
|
||||
set to the number of sample points. Default is ``None``.
|
||||
:param bool shuffle: If ``True``, the sample points are shuffled.
|
||||
Default is ``True``.
|
||||
Initialize local variables
|
||||
:param dataset_dict: Dictionary of datasets
|
||||
:type dataset_dict: dict
|
||||
:param batch_size: Size of the batch
|
||||
:type batch_size: int
|
||||
:param condition_names: Names of the conditions
|
||||
:type condition_names: list[str]
|
||||
"""
|
||||
if not isinstance(sample_dataset, SamplePointDataset):
|
||||
raise TypeError(
|
||||
f"Expected SamplePointDataset, got {type(sample_dataset)}"
|
||||
)
|
||||
if not isinstance(data_dataset, DataPointDataset):
|
||||
raise TypeError(
|
||||
f"Expected DataPointDataset, got {type(data_dataset)}"
|
||||
)
|
||||
self.condition_names = condition_names
|
||||
self.dataset_dict = dataset_dict
|
||||
self._init_batches(batch_size)
|
||||
|
||||
self.n_data_conditions = len(data_dataset.condition_names)
|
||||
self.n_phys_conditions = len(sample_dataset.condition_names)
|
||||
data_dataset.condition_indeces += self.n_phys_conditions
|
||||
|
||||
self._prepare_sample_dataset(sample_dataset, batch_size, shuffle)
|
||||
self._prepare_data_dataset(data_dataset, batch_size, shuffle)
|
||||
|
||||
self.condition_names = (
|
||||
sample_dataset.condition_names + data_dataset.condition_names
|
||||
)
|
||||
|
||||
self.batch_list = []
|
||||
for i in range(len(self.batch_sample_pts)):
|
||||
self.batch_list.append(("sample", i))
|
||||
|
||||
for i in range(len(self.batch_input_pts)):
|
||||
self.batch_list.append(("data", i))
|
||||
|
||||
if shuffle:
|
||||
self.random_idx = torch.randperm(len(self.batch_list))
|
||||
else:
|
||||
self.random_idx = torch.arange(len(self.batch_list))
|
||||
|
||||
self._prepare_batches()
|
||||
|
||||
def _prepare_data_dataset(self, dataset, batch_size, shuffle):
|
||||
def _init_batches(self, batch_size=None):
|
||||
"""
|
||||
Prepare the dataset for data points.
|
||||
|
||||
:param SamplePointDataset dataset: The dataset.
|
||||
:param int batch_size: The batch size.
|
||||
:param bool shuffle: If ``True``, the sample points are shuffled.
|
||||
"""
|
||||
self.sample_dataset = dataset
|
||||
|
||||
if len(dataset) == 0:
|
||||
self.batch_data_conditions = []
|
||||
self.batch_input_pts = []
|
||||
self.batch_output_pts = []
|
||||
return
|
||||
|
||||
if batch_size is None:
|
||||
batch_size = len(dataset)
|
||||
batch_num = len(dataset) // batch_size
|
||||
if len(dataset) % batch_size != 0:
|
||||
batch_num += 1
|
||||
|
||||
output_labels = dataset.output_pts.labels
|
||||
input_labels = dataset.input_pts.labels
|
||||
self.tensor_conditions = dataset.condition_indeces
|
||||
|
||||
if shuffle:
|
||||
idx = torch.randperm(dataset.input_pts.shape[0])
|
||||
self.input_pts = dataset.input_pts[idx]
|
||||
self.output_pts = dataset.output_pts[idx]
|
||||
self.tensor_conditions = dataset.condition_indeces[idx]
|
||||
|
||||
self.batch_input_pts = torch.tensor_split(dataset.input_pts, batch_num)
|
||||
self.batch_output_pts = torch.tensor_split(
|
||||
dataset.output_pts, batch_num
|
||||
)
|
||||
#print(input_labels)
|
||||
for i in range(len(self.batch_input_pts)):
|
||||
self.batch_input_pts[i].labels = input_labels
|
||||
self.batch_output_pts[i].labels = output_labels
|
||||
|
||||
self.batch_data_conditions = torch.tensor_split(
|
||||
self.tensor_conditions, batch_num
|
||||
)
|
||||
|
||||
def _prepare_sample_dataset(self, dataset, batch_size, shuffle):
|
||||
"""
|
||||
Prepare the dataset for sample points.
|
||||
|
||||
:param DataPointDataset dataset: The dataset.
|
||||
:param int batch_size: The batch size.
|
||||
:param bool shuffle: If ``True``, the sample points are shuffled.
|
||||
"""
|
||||
|
||||
self.sample_dataset = dataset
|
||||
if len(dataset) == 0:
|
||||
self.batch_sample_conditions = []
|
||||
self.batch_sample_pts = []
|
||||
return
|
||||
|
||||
if batch_size is None:
|
||||
batch_size = len(dataset)
|
||||
|
||||
batch_num = len(dataset) // batch_size
|
||||
if len(dataset) % batch_size != 0:
|
||||
batch_num += 1
|
||||
|
||||
self.tensor_pts = dataset.pts
|
||||
self.tensor_conditions = dataset.condition_indeces
|
||||
|
||||
# if shuffle:
|
||||
# idx = torch.randperm(self.tensor_pts.shape[0])
|
||||
# self.tensor_pts = self.tensor_pts[idx]
|
||||
# self.tensor_conditions = self.tensor_conditions[idx]
|
||||
|
||||
self.batch_sample_pts = torch.tensor_split(self.tensor_pts, batch_num)
|
||||
for i in range(len(self.batch_sample_pts)):
|
||||
self.batch_sample_pts[i].labels = dataset.pts.labels
|
||||
|
||||
self.batch_sample_conditions = torch.tensor_split(
|
||||
self.tensor_conditions, batch_num
|
||||
)
|
||||
|
||||
def _prepare_batches(self):
|
||||
"""
|
||||
Prepare the batches.
|
||||
Create batches according to the batch_size provided in input.
|
||||
"""
|
||||
self.batches = []
|
||||
for i in range(len(self.batch_list)):
|
||||
type_, idx_ = self.batch_list[i]
|
||||
|
||||
if type_ == "sample":
|
||||
batch = Batch(
|
||||
"sample", idx_,
|
||||
self.batch_sample_pts,
|
||||
self.batch_sample_conditions)
|
||||
n_elements = sum([len(v) for v in self.dataset_dict.values()])
|
||||
if batch_size is None:
|
||||
batch_size = n_elements
|
||||
indexes_dict = {}
|
||||
n_batches = int(math.ceil(n_elements / batch_size))
|
||||
for k, v in self.dataset_dict.items():
|
||||
if n_batches != 1:
|
||||
indexes_dict[k] = math.floor(len(v) / (n_batches - 1))
|
||||
else:
|
||||
batch = Batch(
|
||||
"data", idx_,
|
||||
self.batch_input_pts,
|
||||
self.batch_output_pts,
|
||||
self.batch_data_conditions)
|
||||
|
||||
self.batches.append(batch)
|
||||
indexes_dict[k] = len(v)
|
||||
for i in range(n_batches):
|
||||
temp_dict = {}
|
||||
for k, v in indexes_dict.items():
|
||||
if i != n_batches - 1:
|
||||
temp_dict[k] = slice(i * v, (i + 1) * v)
|
||||
else:
|
||||
temp_dict[k] = slice(i * v, len(self.dataset_dict[k]))
|
||||
self.batches.append(Batch(idx_dict=temp_dict, dataset_dict=self.dataset_dict))
|
||||
|
||||
def __iter__(self):
|
||||
"""
|
||||
Return an iterator over the points. Any element of the iterator is a
|
||||
dictionary with the following keys:
|
||||
- ``pts``: The input sample points. It is a LabelTensor with the
|
||||
shape ``(batch_size, input_dimension)``.
|
||||
- ``output``: The output sample points. This key is present only
|
||||
if data conditions are present. It is a LabelTensor with the
|
||||
shape ``(batch_size, output_dimension)``.
|
||||
- ``condition``: The integer condition indeces. It is a tensor
|
||||
with the shape ``(batch_size, )`` of type ``torch.int64`` and
|
||||
indicates for any ``pts`` the corresponding problem condition.
|
||||
|
||||
:return: An iterator over the points.
|
||||
:rtype: iter
|
||||
Makes dataloader object iterable
|
||||
"""
|
||||
# for i in self.random_idx:
|
||||
for i in self.random_idx:
|
||||
yield self.batches[i]
|
||||
|
||||
# for i in range(len(self.batch_list)):
|
||||
# type_, idx_ = self.batch_list[i]
|
||||
|
||||
# if type_ == "sample":
|
||||
# d = {
|
||||
# "pts": self.batch_sample_pts[idx_].requires_grad_(True),
|
||||
# "condition": self.batch_sample_conditions[idx_],
|
||||
# }
|
||||
# else:
|
||||
# d = {
|
||||
# "pts": self.batch_input_pts[idx_].requires_grad_(True),
|
||||
# "output": self.batch_output_pts[idx_],
|
||||
# "condition": self.batch_data_conditions[idx_],
|
||||
# }
|
||||
# yield d
|
||||
yield from self.batches
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
Return the number of batches.
|
||||
|
||||
:return: The number of batches.
|
||||
:rtype: int
|
||||
"""
|
||||
return len(self.batch_list)
|
||||
return len(self.batches)
|
||||
|
||||
21
pina/data/pina_subset.py
Normal file
21
pina/data/pina_subset.py
Normal file
@@ -0,0 +1,21 @@
|
||||
class PinaSubset:
|
||||
"""
|
||||
TODO
|
||||
"""
|
||||
__slots__ = ['dataset', 'indices']
|
||||
|
||||
def __init__(self, dataset, indices):
|
||||
"""
|
||||
TODO
|
||||
"""
|
||||
self.dataset = dataset
|
||||
self.indices = indices
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
TODO
|
||||
"""
|
||||
return len(self.indices)
|
||||
|
||||
def __getattr__(self, name):
|
||||
return self.dataset.__getattribute__(name)
|
||||
@@ -1,43 +1,12 @@
|
||||
from torch.utils.data import Dataset
|
||||
import torch
|
||||
"""
|
||||
Sample dataset module
|
||||
"""
|
||||
from .base_dataset import BaseDataset
|
||||
|
||||
from ..label_tensor import LabelTensor
|
||||
|
||||
|
||||
class SamplePointDataset(Dataset):
|
||||
class SamplePointDataset(BaseDataset):
|
||||
"""
|
||||
This class is used to create a dataset of sample points.
|
||||
This class extends the BaseDataset to handle physical datasets
|
||||
composed of only input points.
|
||||
"""
|
||||
|
||||
def __init__(self, problem, device) -> None:
|
||||
"""
|
||||
:param dict input_pts: The input points.
|
||||
"""
|
||||
super().__init__()
|
||||
pts_list = []
|
||||
self.condition_names = []
|
||||
|
||||
for name, condition in problem.conditions.items():
|
||||
if not hasattr(condition, "output_points"):
|
||||
pts_list.append(problem.input_pts[name])
|
||||
self.condition_names.append(name)
|
||||
|
||||
self.pts = LabelTensor.stack(pts_list)
|
||||
|
||||
if self.pts != []:
|
||||
self.condition_indeces = torch.cat(
|
||||
[
|
||||
torch.tensor([i] * len(pts_list[i]))
|
||||
for i in range(len(self.condition_names))
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
else: # if there are no sample points
|
||||
self.condition_indeces = torch.tensor([])
|
||||
self.pts = torch.tensor([])
|
||||
|
||||
self.pts = self.pts.to(device)
|
||||
self.condition_indeces = self.condition_indeces.to(device)
|
||||
|
||||
def __len__(self):
|
||||
return self.pts.shape[0]
|
||||
data_type = 'physics'
|
||||
__slots__ = ['input_points']
|
||||
|
||||
12
pina/data/supervised_dataset.py
Normal file
12
pina/data/supervised_dataset.py
Normal file
@@ -0,0 +1,12 @@
|
||||
"""
|
||||
Supervised dataset module
|
||||
"""
|
||||
from .base_dataset import BaseDataset
|
||||
|
||||
|
||||
class SupervisedDataset(BaseDataset):
|
||||
"""
|
||||
This class extends the BaseDataset to handle datasets that consist of input-output pairs.
|
||||
"""
|
||||
data_type = 'supervised'
|
||||
__slots__ = ['input_points', 'output_points']
|
||||
13
pina/data/unsupervised_dataset.py
Normal file
13
pina/data/unsupervised_dataset.py
Normal file
@@ -0,0 +1,13 @@
|
||||
"""
|
||||
Unsupervised dataset module
|
||||
"""
|
||||
from .base_dataset import BaseDataset
|
||||
|
||||
|
||||
class UnsupervisedDataset(BaseDataset):
|
||||
"""
|
||||
This class extend BaseDataset class to handle unsupervised dataset,
|
||||
composed of input points and, optionally, conditional variables
|
||||
"""
|
||||
data_type = 'unsupervised'
|
||||
__slots__ = ['input_points', 'conditional_variables']
|
||||
Reference in New Issue
Block a user