Implement Dataset, Dataloader and DataModule class and fix SupervisedSolver

This commit is contained in:
FilippoOlivo
2024-10-16 11:24:37 +02:00
committed by Nicola Demo
parent b9753c34b2
commit c9304fb9bb
30 changed files with 770 additions and 784 deletions

172
pina/data/data_module.py Normal file
View File

@@ -0,0 +1,172 @@
"""
This module provide basic data management functionalities
"""
import math
import torch
from lightning import LightningDataModule
from .sample_dataset import SamplePointDataset
from .supervised_dataset import SupervisedDataset
from .unsupervised_dataset import UnsupervisedDataset
from .pina_dataloader import PinaDataLoader
from .pina_subset import PinaSubset
class PinaDataModule(LightningDataModule):
"""
This class extend LightningDataModule, allowing proper creation and
management of different types of Datasets defined in PINA
"""
def __init__(self,
problem,
device,
train_size=.7,
test_size=.2,
eval_size=.1,
batch_size=None,
shuffle=True,
datasets = None):
"""
Initialize the object, creating dataset based on input problem
:param AbstractProblem problem: PINA problem
:param device: Device used for training and testing
:param train_size: number/percentage of elements in train split
:param test_size: number/percentage of elements in test split
:param eval_size: number/percentage of elements in evaluation split
:param batch_size: batch size used for training
:param datasets: list of datasets objects
"""
super().__init__()
dataset_classes = [SupervisedDataset, UnsupervisedDataset, SamplePointDataset]
if datasets is None:
self.datasets = [DatasetClass(problem, device) for DatasetClass in dataset_classes]
else:
self.datasets = datasets
self.split_length = []
self.split_names = []
if train_size > 0:
self.split_names.append('train')
self.split_length.append(train_size)
if test_size > 0:
self.split_length.append(test_size)
self.split_names.append('test')
if eval_size > 0:
self.split_length.append(eval_size)
self.split_names.append('eval')
self.batch_size = batch_size
self.condition_names = None
self.splits = {k: {} for k in self.split_names}
self.shuffle = shuffle
def setup(self, stage=None):
"""
Perform the splitting of the dataset
"""
self.extract_conditions()
if stage == 'fit' or stage is None:
for dataset in self.datasets:
if len(dataset) > 0:
splits = self.dataset_split(dataset,
self.split_length,
shuffle=self.shuffle)
for i in range(len(self.split_length)):
self.splits[
self.split_names[i]][dataset.data_type] = splits[i]
elif stage == 'test':
raise NotImplementedError("Testing pipeline not implemented yet")
else:
raise ValueError("stage must be either 'fit' or 'test'")
def extract_conditions(self):
"""
Extract conditions from dataset and update condition indices
"""
# Extract number of conditions
n_conditions = 0
for dataset in self.datasets:
if n_conditions != 0:
dataset.condition_names = {
key + n_conditions: value
for key, value in dataset.condition_names.items()
}
n_conditions += len(dataset.condition_names)
self.condition_names = {
key: value
for dataset in self.datasets
for key, value in dataset.condition_names.items()
}
def train_dataloader(self):
"""
Return the training dataloader for the dataset
:return: data loader
:rtype: PinaDataLoader
"""
return PinaDataLoader(self.splits['train'], self.batch_size,
self.condition_names)
def test_dataloader(self):
"""
Return the testing dataloader for the dataset
:return: data loader
:rtype: PinaDataLoader
"""
return PinaDataLoader(self.splits['test'], self.batch_size,
self.condition_names)
def eval_dataloader(self):
"""
Return the evaluation dataloader for the dataset
:return: data loader
:rtype: PinaDataLoader
"""
return PinaDataLoader(self.splits['eval'], self.batch_size,
self.condition_names)
@staticmethod
def dataset_split(dataset, lengths, seed=None, shuffle=True):
"""
Perform the splitting of the dataset
:param dataset: dataset object we wanted to split
:param lengths: lengths of elements in dataset
:param seed: random seed
:param shuffle: shuffle dataset
:return: split dataset
:rtype: PinaSubset
"""
if sum(lengths) - 1 < 1e-3:
lengths = [
int(math.floor(len(dataset) * length)) for length in lengths
]
remainder = len(dataset) - sum(lengths)
for i in range(remainder):
lengths[i % len(lengths)] += 1
elif sum(lengths) - 1 >= 1e-3:
raise ValueError(f"Sum of lengths is {sum(lengths)} less than 1")
if sum(lengths) != len(dataset):
raise ValueError("Sum of lengths is not equal to dataset length")
if shuffle:
if seed is not None:
generator = torch.Generator()
generator.manual_seed(seed)
indices = torch.randperm(sum(lengths), generator=generator).tolist()
else:
indices = torch.arange(sum(lengths)).tolist()
else:
indices = torch.arange(0, sum(lengths), 1, dtype=torch.uint8).tolist()
offsets = [
sum(lengths[:i]) if i > 0 else 0 for i in range(len(lengths))
]
return [
PinaSubset(dataset, indices[offset:offset + length])
for offset, length in zip(offsets, lengths)
]