Implement Dataset, Dataloader and DataModule class and fix SupervisedSolver
This commit is contained in:
committed by
Nicola Demo
parent
b9753c34b2
commit
c9304fb9bb
@@ -1,50 +1,27 @@
|
||||
import torch
|
||||
|
||||
from pina.problem import AbstractProblem
|
||||
import pytest
|
||||
from pina.problem import AbstractProblem, SpatialProblem
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.loss import LpLoss
|
||||
from pina.solvers import GraphSupervisedSolver
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.operators import laplacian
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.trainer import Trainer
|
||||
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['u_0', 'u_1'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
|
||||
|
||||
class NeuralOperatorProblem(AbstractProblem):
|
||||
input_variables = ['u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
domains = {
|
||||
'pts': LabelTensor(
|
||||
torch.rand(100, 2),
|
||||
labels={1: {'name': 'space', 'dof': ['u_0', 'u_1']}}
|
||||
)
|
||||
}
|
||||
|
||||
conditions = {
|
||||
'data' : Condition(
|
||||
domain='pts',
|
||||
output_points=LabelTensor(
|
||||
torch.rand(100, 1),
|
||||
labels={1: {'name': 'output', 'dof': ['u']}}
|
||||
)
|
||||
)
|
||||
'data': Condition(input_points=in_, output_points=out_),
|
||||
}
|
||||
|
||||
class NeuralOperatorProblemGraph(AbstractProblem):
|
||||
input_variables = ['x', 'y', 'u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
domains = {
|
||||
'pts': LabelTensor(
|
||||
torch.rand(100, 4),
|
||||
labels={1: {'name': 'space', 'dof': ['x', 'y', 'u_0', 'u_1']}}
|
||||
)
|
||||
}
|
||||
conditions = {
|
||||
'data' : Condition(
|
||||
domain='pts',
|
||||
output_points=LabelTensor(
|
||||
torch.rand(100, 1),
|
||||
labels={1: {'name': 'output', 'dof': ['u']}}
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
class myFeature(torch.nn.Module):
|
||||
"""
|
||||
@@ -61,117 +38,106 @@ class myFeature(torch.nn.Module):
|
||||
|
||||
|
||||
problem = NeuralOperatorProblem()
|
||||
problem_graph = NeuralOperatorProblemGraph()
|
||||
# make the problem + extra feats
|
||||
extra_feats = [myFeature()]
|
||||
model = FeedForward(len(problem.input_variables),
|
||||
len(problem.output_variables))
|
||||
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
|
||||
model_extra_feats = FeedForward(
|
||||
len(problem.input_variables) + 1,
|
||||
len(problem.output_variables))
|
||||
len(problem.input_variables) + 1, len(problem.output_variables))
|
||||
|
||||
|
||||
def test_constructor():
|
||||
SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
|
||||
# def test_constructor_extra_feats():
|
||||
# SupervisedSolver(problem=problem, model=model_extra_feats, extra_features=extra_feats)
|
||||
test_constructor()
|
||||
|
||||
'''
|
||||
class AutoSolver(SupervisedSolver):
|
||||
|
||||
def forward(self, input):
|
||||
from pina.graph import Graph
|
||||
print(Graph)
|
||||
print(input)
|
||||
if not isinstance(input, Graph):
|
||||
input = Graph.build('radius', nodes_coordinates=input, nodes_data=torch.rand(input.shape), radius=0.2)
|
||||
print(input)
|
||||
print(input.data.edge_index)
|
||||
print(input.data)
|
||||
g = self._model(input.data, edge_index=input.data.edge_index)
|
||||
g.labels = {1: {'name': 'output', 'dof': ['u']}}
|
||||
return g
|
||||
du_dt_new = LabelTensor(self.model(graph).reshape(-1,1), labels = ['du'])
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
return du_dt_new
|
||||
'''
|
||||
|
||||
class GraphModel(torch.nn.Module):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
from torch_geometric.nn import GCNConv, NNConv
|
||||
super().__init__()
|
||||
self.conv1 = GCNConv(in_channels, 16)
|
||||
self.conv2 = GCNConv(16, out_channels)
|
||||
my_laplace = Equation(laplace_equation)
|
||||
|
||||
def forward(self, data, edge_index):
|
||||
print(data)
|
||||
x = data.x
|
||||
print(x)
|
||||
x = self.conv1(x, edge_index)
|
||||
x = x.relu()
|
||||
x = self.conv2(x, edge_index)
|
||||
return x
|
||||
|
||||
def test_graph():
|
||||
solver = GraphSupervisedSolver(problem=problem_graph, model=GraphModel(2, 1), loss=LpLoss(),
|
||||
nodes_coordinates=['x', 'y'], nodes_data=['u_0', 'u_1'])
|
||||
trainer = Trainer(solver=solver, max_epochs=30, accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 1
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 0
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 1,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 0,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=my_laplace),
|
||||
'data':
|
||||
Condition(input_points=in_, output_points=out_)
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi ** 2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
|
||||
def test_wrong_constructor():
|
||||
poisson_problem = Poisson()
|
||||
with pytest.raises(ValueError):
|
||||
SupervisedSolver(problem=poisson_problem, model=model)
|
||||
|
||||
|
||||
def test_train_cpu():
|
||||
solver = SupervisedSolver(problem = problem, model=model, loss=LpLoss())
|
||||
trainer = Trainer(solver=solver, max_epochs=300, accelerator='cpu', batch_size=20)
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=200,
|
||||
accelerator='gpu',
|
||||
batch_size=5,
|
||||
train_size=1,
|
||||
test_size=0.,
|
||||
eval_size=0.)
|
||||
trainer.train()
|
||||
test_train_cpu()
|
||||
|
||||
|
||||
# def test_train_restore():
|
||||
# tmpdir = "tests/tmp_restore"
|
||||
# solver = SupervisedSolver(problem=problem,
|
||||
# model=model,
|
||||
# extra_features=None,
|
||||
# loss=LpLoss())
|
||||
# trainer = Trainer(solver=solver,
|
||||
# max_epochs=5,
|
||||
# accelerator='cpu',
|
||||
# default_root_dir=tmpdir)
|
||||
# trainer.train()
|
||||
# ntrainer = Trainer(solver=solver, max_epochs=15, accelerator='cpu')
|
||||
# t = ntrainer.train(
|
||||
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
||||
# import shutil
|
||||
# shutil.rmtree(tmpdir)
|
||||
def test_extra_features_constructor():
|
||||
SupervisedSolver(problem=problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
|
||||
|
||||
# def test_train_load():
|
||||
# tmpdir = "tests/tmp_load"
|
||||
# solver = SupervisedSolver(problem=problem,
|
||||
# model=model,
|
||||
# extra_features=None,
|
||||
# loss=LpLoss())
|
||||
# trainer = Trainer(solver=solver,
|
||||
# max_epochs=15,
|
||||
# accelerator='cpu',
|
||||
# default_root_dir=tmpdir)
|
||||
# trainer.train()
|
||||
# new_solver = SupervisedSolver.load_from_checkpoint(
|
||||
# f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
|
||||
# problem = problem, model=model)
|
||||
# test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
||||
# assert new_solver.forward(test_pts).shape == (20, 1)
|
||||
# assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
||||
# torch.testing.assert_close(
|
||||
# new_solver.forward(test_pts),
|
||||
# solver.forward(test_pts))
|
||||
# import shutil
|
||||
# shutil.rmtree(tmpdir)
|
||||
|
||||
# def test_train_extra_feats_cpu():
|
||||
# pinn = SupervisedSolver(problem=problem,
|
||||
# model=model_extra_feats,
|
||||
# extra_features=extra_feats)
|
||||
# trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
# trainer.train()
|
||||
test_graph()
|
||||
def test_extra_features_train_cpu():
|
||||
solver = SupervisedSolver(problem=problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=200,
|
||||
accelerator='gpu',
|
||||
batch_size=5)
|
||||
trainer.train()
|
||||
|
||||
Reference in New Issue
Block a user