🎨 Format Python code with psf/black
This commit is contained in:
@@ -3,7 +3,7 @@ from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveCos(torch.nn.Module):
|
||||
'''
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
@@ -18,26 +18,28 @@ class AdaptiveCos(torch.nn.Module):
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=None):
|
||||
'''
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
'''
|
||||
"""
|
||||
super(AdaptiveCos, self).__init__()
|
||||
#self.in_features = in_features
|
||||
# self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
if alpha == None:
|
||||
self.alpha = Parameter(
|
||||
torch.tensor(1.0)) # create a tensor out of alpha
|
||||
torch.tensor(1.0)
|
||||
) # create a tensor out of alpha
|
||||
else:
|
||||
self.alpha = Parameter(
|
||||
torch.tensor(alpha)) # create a tensor out of alpha
|
||||
torch.tensor(alpha)
|
||||
) # create a tensor out of alpha
|
||||
self.alpha.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.scale = Parameter(torch.tensor(1.0))
|
||||
@@ -47,8 +49,8 @@ class AdaptiveCos(torch.nn.Module):
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
'''
|
||||
"""
|
||||
return self.scale * (torch.cos(self.alpha * x + self.translate))
|
||||
|
||||
@@ -3,7 +3,7 @@ from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveExp(torch.nn.Module):
|
||||
'''
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
@@ -18,36 +18,36 @@ class AdaptiveExp(torch.nn.Module):
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
'''
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
'''
|
||||
"""
|
||||
super(AdaptiveExp, self).__init__()
|
||||
|
||||
self.scale = Parameter(
|
||||
torch.normal(torch.tensor(1.0),
|
||||
torch.tensor(0.1))) # create a tensor out of alpha
|
||||
torch.normal(torch.tensor(1.0), torch.tensor(0.1))
|
||||
) # create a tensor out of alpha
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.alpha = Parameter(
|
||||
torch.normal(torch.tensor(1.0),
|
||||
torch.tensor(0.1))) # create a tensor out of alpha
|
||||
torch.normal(torch.tensor(1.0), torch.tensor(0.1))
|
||||
) # create a tensor out of alpha
|
||||
self.alpha.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.translate = Parameter(
|
||||
torch.normal(torch.tensor(0.0),
|
||||
torch.tensor(0.1))) # create a tensor out of alpha
|
||||
torch.normal(torch.tensor(0.0), torch.tensor(0.1))
|
||||
) # create a tensor out of alpha
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
'''
|
||||
"""
|
||||
return self.scale * (x + self.translate)
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
""" Implementation of adaptive linear layer. """
|
||||
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveLinear(torch.nn.Module):
|
||||
'''
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
@@ -19,16 +20,16 @@ class AdaptiveLinear(torch.nn.Module):
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
'''
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
'''
|
||||
"""
|
||||
super(AdaptiveLinear, self).__init__()
|
||||
|
||||
self.scale = Parameter(torch.tensor(1.0))
|
||||
@@ -38,8 +39,8 @@ class AdaptiveLinear(torch.nn.Module):
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
'''
|
||||
"""
|
||||
return self.scale * (x + self.translate)
|
||||
|
||||
@@ -3,7 +3,7 @@ from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveReLU(torch.nn.Module, Parameter):
|
||||
'''
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
@@ -18,16 +18,16 @@ class AdaptiveReLU(torch.nn.Module, Parameter):
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
'''
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
'''
|
||||
"""
|
||||
super(AdaptiveReLU, self).__init__()
|
||||
|
||||
self.scale = Parameter(torch.rand(1))
|
||||
@@ -37,9 +37,9 @@ class AdaptiveReLU(torch.nn.Module, Parameter):
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
'''
|
||||
#x += self.translate
|
||||
"""
|
||||
# x += self.translate
|
||||
return torch.relu(x + self.translate) * self.scale
|
||||
|
||||
@@ -3,7 +3,7 @@ from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveSin(torch.nn.Module):
|
||||
'''
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
@@ -18,35 +18,37 @@ class AdaptiveSin(torch.nn.Module):
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=None):
|
||||
'''
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
'''
|
||||
"""
|
||||
super(AdaptiveSin, self).__init__()
|
||||
|
||||
# initialize alpha
|
||||
self.alpha = Parameter(
|
||||
torch.normal(torch.tensor(1.0),
|
||||
torch.tensor(0.1))) # create a tensor out of alpha
|
||||
torch.normal(torch.tensor(1.0), torch.tensor(0.1))
|
||||
) # create a tensor out of alpha
|
||||
self.alpha.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.scale = Parameter(
|
||||
torch.normal(torch.tensor(1.0), torch.tensor(0.1)))
|
||||
torch.normal(torch.tensor(1.0), torch.tensor(0.1))
|
||||
)
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.translate = Parameter(
|
||||
torch.normal(torch.tensor(0.0), torch.tensor(0.1)))
|
||||
torch.normal(torch.tensor(0.0), torch.tensor(0.1))
|
||||
)
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
'''
|
||||
"""
|
||||
return self.scale * (torch.sin(self.alpha * x + self.translate))
|
||||
|
||||
@@ -3,7 +3,7 @@ from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveSoftplus(torch.nn.Module):
|
||||
'''
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
@@ -18,16 +18,16 @@ class AdaptiveSoftplus(torch.nn.Module):
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
'''
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
'''
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.soft = torch.nn.Softplus()
|
||||
@@ -36,9 +36,9 @@ class AdaptiveSoftplus(torch.nn.Module):
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
'''
|
||||
#x += self.translate
|
||||
"""
|
||||
# x += self.translate
|
||||
return self.soft(x) * self.scale
|
||||
|
||||
@@ -3,7 +3,7 @@ from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveSquare(torch.nn.Module):
|
||||
'''
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
@@ -18,16 +18,16 @@ class AdaptiveSquare(torch.nn.Module):
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=None):
|
||||
'''
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
'''
|
||||
"""
|
||||
super(AdaptiveSquare, self).__init__()
|
||||
|
||||
self.scale = Parameter(torch.tensor(1.0))
|
||||
@@ -37,8 +37,8 @@ class AdaptiveSquare(torch.nn.Module):
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
'''
|
||||
return self.scale * (x + self.translate)**2
|
||||
"""
|
||||
return self.scale * (x + self.translate) ** 2
|
||||
|
||||
@@ -3,7 +3,7 @@ from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveTanh(torch.nn.Module):
|
||||
'''
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
@@ -18,26 +18,28 @@ class AdaptiveTanh(torch.nn.Module):
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=None):
|
||||
'''
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
'''
|
||||
"""
|
||||
super(AdaptiveTanh, self).__init__()
|
||||
#self.in_features = in_features
|
||||
# self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
if alpha == None:
|
||||
self.alpha = Parameter(
|
||||
torch.tensor(1.0)) # create a tensor out of alpha
|
||||
torch.tensor(1.0)
|
||||
) # create a tensor out of alpha
|
||||
else:
|
||||
self.alpha = Parameter(
|
||||
torch.tensor(alpha)) # create a tensor out of alpha
|
||||
torch.tensor(alpha)
|
||||
) # create a tensor out of alpha
|
||||
|
||||
self.alpha.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
@@ -48,11 +50,13 @@ class AdaptiveTanh(torch.nn.Module):
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
'''
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
'''
|
||||
"""
|
||||
x += self.translate
|
||||
return self.scale * (torch.exp(self.alpha * x) - torch.exp(
|
||||
-self.alpha * x)) / (torch.exp(self.alpha * x) +
|
||||
torch.exp(-self.alpha * x))
|
||||
return (
|
||||
self.scale
|
||||
* (torch.exp(self.alpha * x) - torch.exp(-self.alpha * x))
|
||||
/ (torch.exp(self.alpha * x) + torch.exp(-self.alpha * x))
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user