🎨 Format Python code with psf/black

This commit is contained in:
ndem0
2024-02-09 11:25:00 +00:00
committed by Nicola Demo
parent 591aeeb02b
commit cbb43a5392
64 changed files with 1323 additions and 955 deletions

View File

@@ -3,7 +3,7 @@ from torch.nn.parameter import Parameter
class AdaptiveSquare(torch.nn.Module):
'''
"""
Implementation of soft exponential activation.
Shape:
- Input: (N, *) where * means, any number of additional
@@ -18,16 +18,16 @@ class AdaptiveSquare(torch.nn.Module):
>>> a1 = soft_exponential(256)
>>> x = torch.randn(256)
>>> x = a1(x)
'''
"""
def __init__(self, alpha=None):
'''
"""
Initialization.
INPUT:
- in_features: shape of the input
- aplha: trainable parameter
aplha is initialized with zero value by default
'''
"""
super(AdaptiveSquare, self).__init__()
self.scale = Parameter(torch.tensor(1.0))
@@ -37,8 +37,8 @@ class AdaptiveSquare(torch.nn.Module):
self.translate.requiresGrad = True # set requiresGrad to true!
def forward(self, x):
'''
"""
Forward pass of the function.
Applies the function to the input elementwise.
'''
return self.scale * (x + self.translate)**2
"""
return self.scale * (x + self.translate) ** 2