🎨 Format Python code with psf/black

This commit is contained in:
ndem0
2024-02-09 11:25:00 +00:00
committed by Nicola Demo
parent 591aeeb02b
commit cbb43a5392
64 changed files with 1323 additions and 955 deletions

View File

@@ -1,4 +1,5 @@
""" Condition module. """
from .label_tensor import LabelTensor
from .geometry import Location
from .equation.equation import Equation
@@ -51,7 +52,11 @@ class Condition:
"""
__slots__ = [
'input_points', 'output_points', 'location', 'equation', 'data_weight'
"input_points",
"output_points",
"location",
"equation",
"data_weight",
]
def _dictvalue_isinstance(self, dict_, key_, class_):
@@ -65,27 +70,28 @@ class Condition:
"""
Constructor for the `Condition` class.
"""
self.data_weight = kwargs.pop('data_weight', 1.0)
self.data_weight = kwargs.pop("data_weight", 1.0)
if len(args) != 0:
raise ValueError(
f'Condition takes only the following keyword arguments: {Condition.__slots__}.'
f"Condition takes only the following keyword arguments: {Condition.__slots__}."
)
if (sorted(kwargs.keys()) != sorted(['input_points', 'output_points'])
and sorted(kwargs.keys()) != sorted(['location', 'equation'])
and sorted(kwargs.keys()) != sorted(
['input_points', 'equation'])):
raise ValueError(f'Invalid keyword arguments {kwargs.keys()}.')
if (
sorted(kwargs.keys()) != sorted(["input_points", "output_points"])
and sorted(kwargs.keys()) != sorted(["location", "equation"])
and sorted(kwargs.keys()) != sorted(["input_points", "equation"])
):
raise ValueError(f"Invalid keyword arguments {kwargs.keys()}.")
if not self._dictvalue_isinstance(kwargs, 'input_points', LabelTensor):
raise TypeError('`input_points` must be a torch.Tensor.')
if not self._dictvalue_isinstance(kwargs, 'output_points', LabelTensor):
raise TypeError('`output_points` must be a torch.Tensor.')
if not self._dictvalue_isinstance(kwargs, 'location', Location):
raise TypeError('`location` must be a Location.')
if not self._dictvalue_isinstance(kwargs, 'equation', Equation):
raise TypeError('`equation` must be a Equation.')
if not self._dictvalue_isinstance(kwargs, "input_points", LabelTensor):
raise TypeError("`input_points` must be a torch.Tensor.")
if not self._dictvalue_isinstance(kwargs, "output_points", LabelTensor):
raise TypeError("`output_points` must be a torch.Tensor.")
if not self._dictvalue_isinstance(kwargs, "location", Location):
raise TypeError("`location` must be a Location.")
if not self._dictvalue_isinstance(kwargs, "equation", Equation):
raise TypeError("`equation` must be a Equation.")
for key, value in kwargs.items():
setattr(self, key, value)