🎨 Format Python code with psf/black
This commit is contained in:
@@ -17,38 +17,41 @@ class SamplePointDataset(Dataset):
|
||||
self.condition_names = []
|
||||
|
||||
for name, condition in problem.conditions.items():
|
||||
if not hasattr(condition, 'output_points'):
|
||||
if not hasattr(condition, "output_points"):
|
||||
pts_list.append(problem.input_pts[name])
|
||||
self.condition_names.append(name)
|
||||
|
||||
self.pts = LabelTensor.vstack(pts_list)
|
||||
|
||||
if self.pts != []:
|
||||
self.condition_indeces = torch.cat([
|
||||
torch.tensor([i]*len(pts_list[i]))
|
||||
for i in range(len(self.condition_names))
|
||||
], dim=0)
|
||||
else: # if there are no sample points
|
||||
self.condition_indeces = torch.cat(
|
||||
[
|
||||
torch.tensor([i] * len(pts_list[i]))
|
||||
for i in range(len(self.condition_names))
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
else: # if there are no sample points
|
||||
self.condition_indeces = torch.tensor([])
|
||||
self.pts = torch.tensor([])
|
||||
|
||||
self.pts = self.pts.to(device)
|
||||
self.condition_indeces = self.condition_indeces.to(device)
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return self.pts.shape[0]
|
||||
|
||||
|
||||
|
||||
class DataPointDataset(Dataset):
|
||||
|
||||
def __init__(self, problem, device) -> None:
|
||||
super().__init__()
|
||||
input_list = []
|
||||
output_list = []
|
||||
output_list = []
|
||||
self.condition_names = []
|
||||
|
||||
for name, condition in problem.conditions.items():
|
||||
if hasattr(condition, 'output_points'):
|
||||
if hasattr(condition, "output_points"):
|
||||
input_list.append(problem.conditions[name].input_points)
|
||||
output_list.append(problem.conditions[name].output_points)
|
||||
self.condition_names.append(name)
|
||||
@@ -57,11 +60,14 @@ class DataPointDataset(Dataset):
|
||||
self.output_pts = LabelTensor.vstack(output_list)
|
||||
|
||||
if self.input_pts != []:
|
||||
self.condition_indeces = torch.cat([
|
||||
torch.tensor([i]*len(input_list[i]))
|
||||
for i in range(len(self.condition_names))
|
||||
], dim=0)
|
||||
else: # if there are no data points
|
||||
self.condition_indeces = torch.cat(
|
||||
[
|
||||
torch.tensor([i] * len(input_list[i]))
|
||||
for i in range(len(self.condition_names))
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
else: # if there are no data points
|
||||
self.condition_indeces = torch.tensor([])
|
||||
self.input_pts = torch.tensor([])
|
||||
self.output_pts = torch.tensor([])
|
||||
@@ -83,7 +89,9 @@ class SamplePointLoader:
|
||||
:vartype condition_names: list[str]
|
||||
"""
|
||||
|
||||
def __init__(self, sample_dataset, data_dataset, batch_size=None, shuffle=True) -> None:
|
||||
def __init__(
|
||||
self, sample_dataset, data_dataset, batch_size=None, shuffle=True
|
||||
) -> None:
|
||||
"""
|
||||
Constructor.
|
||||
|
||||
@@ -94,9 +102,13 @@ class SamplePointLoader:
|
||||
Default is ``True``.
|
||||
"""
|
||||
if not isinstance(sample_dataset, SamplePointDataset):
|
||||
raise TypeError(f'Expected SamplePointDataset, got {type(sample_dataset)}')
|
||||
raise TypeError(
|
||||
f"Expected SamplePointDataset, got {type(sample_dataset)}"
|
||||
)
|
||||
if not isinstance(data_dataset, DataPointDataset):
|
||||
raise TypeError(f'Expected DataPointDataset, got {type(data_dataset)}')
|
||||
raise TypeError(
|
||||
f"Expected DataPointDataset, got {type(data_dataset)}"
|
||||
)
|
||||
|
||||
self.n_data_conditions = len(data_dataset.condition_names)
|
||||
self.n_phys_conditions = len(sample_dataset.condition_names)
|
||||
@@ -106,25 +118,21 @@ class SamplePointLoader:
|
||||
self._prepare_data_dataset(data_dataset, batch_size, shuffle)
|
||||
|
||||
self.condition_names = (
|
||||
sample_dataset.condition_names + data_dataset.condition_names)
|
||||
sample_dataset.condition_names + data_dataset.condition_names
|
||||
)
|
||||
|
||||
self.batch_list = []
|
||||
for i in range(len(self.batch_sample_pts)):
|
||||
self.batch_list.append(
|
||||
('sample', i)
|
||||
)
|
||||
self.batch_list.append(("sample", i))
|
||||
|
||||
for i in range(len(self.batch_input_pts)):
|
||||
self.batch_list.append(
|
||||
('data', i)
|
||||
)
|
||||
self.batch_list.append(("data", i))
|
||||
|
||||
if shuffle:
|
||||
self.random_idx = torch.randperm(len(self.batch_list))
|
||||
self.random_idx = torch.randperm(len(self.batch_list))
|
||||
else:
|
||||
self.random_idx = torch.arange(len(self.batch_list))
|
||||
|
||||
|
||||
def _prepare_data_dataset(self, dataset, batch_size, shuffle):
|
||||
"""
|
||||
Prepare the dataset for data points.
|
||||
@@ -157,17 +165,18 @@ class SamplePointLoader:
|
||||
self.output_pts = dataset.output_pts[idx]
|
||||
self.tensor_conditions = dataset.condition_indeces[idx]
|
||||
|
||||
self.batch_input_pts = torch.tensor_split(
|
||||
dataset.input_pts, batch_num)
|
||||
self.batch_input_pts = torch.tensor_split(dataset.input_pts, batch_num)
|
||||
self.batch_output_pts = torch.tensor_split(
|
||||
dataset.output_pts, batch_num)
|
||||
dataset.output_pts, batch_num
|
||||
)
|
||||
|
||||
for i in range(len(self.batch_input_pts)):
|
||||
self.batch_input_pts[i].labels = input_labels
|
||||
self.batch_output_pts[i].labels = output_labels
|
||||
|
||||
|
||||
self.batch_data_conditions = torch.tensor_split(
|
||||
self.tensor_conditions, batch_num)
|
||||
self.tensor_conditions, batch_num
|
||||
)
|
||||
|
||||
def _prepare_sample_dataset(self, dataset, batch_size, shuffle):
|
||||
"""
|
||||
@@ -190,7 +199,7 @@ class SamplePointLoader:
|
||||
batch_num = len(dataset) // batch_size
|
||||
if len(dataset) % batch_size != 0:
|
||||
batch_num += 1
|
||||
|
||||
|
||||
self.tensor_pts = dataset.pts
|
||||
self.tensor_conditions = dataset.condition_indeces
|
||||
|
||||
@@ -198,13 +207,14 @@ class SamplePointLoader:
|
||||
# idx = torch.randperm(self.tensor_pts.shape[0])
|
||||
# self.tensor_pts = self.tensor_pts[idx]
|
||||
# self.tensor_conditions = self.tensor_conditions[idx]
|
||||
|
||||
|
||||
self.batch_sample_pts = torch.tensor_split(self.tensor_pts, batch_num)
|
||||
for i in range(len(self.batch_sample_pts)):
|
||||
self.batch_sample_pts[i].labels = dataset.pts.labels
|
||||
|
||||
self.batch_sample_conditions = torch.tensor_split(
|
||||
self.tensor_conditions, batch_num)
|
||||
self.tensor_conditions, batch_num
|
||||
)
|
||||
|
||||
def __iter__(self):
|
||||
"""
|
||||
@@ -222,20 +232,20 @@ class SamplePointLoader:
|
||||
:return: An iterator over the points.
|
||||
:rtype: iter
|
||||
"""
|
||||
#for i in self.random_idx:
|
||||
# for i in self.random_idx:
|
||||
for i in range(len(self.batch_list)):
|
||||
type_, idx_ = self.batch_list[i]
|
||||
|
||||
if type_ == 'sample':
|
||||
if type_ == "sample":
|
||||
d = {
|
||||
'pts': self.batch_sample_pts[idx_].requires_grad_(True),
|
||||
'condition': self.batch_sample_conditions[idx_],
|
||||
"pts": self.batch_sample_pts[idx_].requires_grad_(True),
|
||||
"condition": self.batch_sample_conditions[idx_],
|
||||
}
|
||||
else:
|
||||
d = {
|
||||
'pts': self.batch_input_pts[idx_].requires_grad_(True),
|
||||
'output': self.batch_output_pts[idx_],
|
||||
'condition': self.batch_data_conditions[idx_],
|
||||
"pts": self.batch_input_pts[idx_].requires_grad_(True),
|
||||
"output": self.batch_output_pts[idx_],
|
||||
"condition": self.batch_data_conditions[idx_],
|
||||
}
|
||||
yield d
|
||||
|
||||
@@ -246,4 +256,4 @@ class SamplePointLoader:
|
||||
:return: The number of batches.
|
||||
:rtype: int
|
||||
"""
|
||||
return len(self.batch_list)
|
||||
return len(self.batch_list)
|
||||
|
||||
Reference in New Issue
Block a user