🎨 Format Python code with psf/black

This commit is contained in:
ndem0
2024-02-09 11:25:00 +00:00
committed by Nicola Demo
parent 591aeeb02b
commit cbb43a5392
64 changed files with 1323 additions and 955 deletions

View File

@@ -1,9 +1,13 @@
""" Module for PINN """
import torch
try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError:
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import (
_LRScheduler as LRScheduler,
) # torch < 2.0
import sys
from torch.optim.lr_scheduler import ConstantLR
@@ -39,14 +43,11 @@ class PINN(SolverInterface):
extra_features=None,
loss=torch.nn.MSELoss(),
optimizer=torch.optim.Adam,
optimizer_kwargs={'lr': 0.001},
optimizer_kwargs={"lr": 0.001},
scheduler=ConstantLR,
scheduler_kwargs={
"factor": 1,
"total_iters": 0
},
scheduler_kwargs={"factor": 1, "total_iters": 0},
):
'''
"""
:param AbstractProblem problem: The formulation of the problem.
:param torch.nn.Module model: The neural network model to use.
:param torch.nn.Module loss: The loss function used as minimizer,
@@ -59,12 +60,14 @@ class PINN(SolverInterface):
:param torch.optim.LRScheduler scheduler: Learning
rate scheduler.
:param dict scheduler_kwargs: LR scheduler constructor keyword args.
'''
super().__init__(models=[model],
problem=problem,
optimizers=[optimizer],
optimizers_kwargs=[optimizer_kwargs],
extra_features=extra_features)
"""
super().__init__(
models=[model],
problem=problem,
optimizers=[optimizer],
optimizers_kwargs=[optimizer_kwargs],
extra_features=extra_features,
)
# check consistency
check_consistency(scheduler, LRScheduler, subclass=True)
@@ -105,15 +108,21 @@ class PINN(SolverInterface):
# to the parameters that the optimizer needs to optimize
if isinstance(self.problem, InverseProblem):
self.optimizers[0].add_param_group(
{'params': [self._params[var] for var in self.problem.unknown_variables]}
)
{
"params": [
self._params[var]
for var in self.problem.unknown_variables
]
}
)
return self.optimizers, [self.scheduler]
def _clamp_inverse_problem_params(self):
for v in self._params:
self._params[v].data.clamp_(
self.problem.unknown_parameter_domain.range_[v][0],
self.problem.unknown_parameter_domain.range_[v][1])
self.problem.unknown_parameter_domain.range_[v][0],
self.problem.unknown_parameter_domain.range_[v][1],
)
def _loss_data(self, input, output):
return self.loss(self.forward(input), output)
@@ -121,9 +130,15 @@ class PINN(SolverInterface):
def _loss_phys(self, samples, equation):
try:
residual = equation.residual(samples, self.forward(samples))
except TypeError: # this occurs when the function has three inputs, i.e. inverse problem
residual = equation.residual(samples, self.forward(samples), self._params)
return self.loss(torch.zeros_like(residual, requires_grad=True), residual)
except (
TypeError
): # this occurs when the function has three inputs, i.e. inverse problem
residual = equation.residual(
samples, self.forward(samples), self._params
)
return self.loss(
torch.zeros_like(residual, requires_grad=True), residual
)
def training_step(self, batch, batch_idx):
"""
@@ -140,23 +155,25 @@ class PINN(SolverInterface):
dataloader = self.trainer.train_dataloader
condition_losses = []
condition_idx = batch['condition']
condition_idx = batch["condition"]
for condition_id in range(condition_idx.min(), condition_idx.max()+1):
for condition_id in range(condition_idx.min(), condition_idx.max() + 1):
if sys.version_info >= (3, 8):
condition_name = dataloader.condition_names[condition_id]
else:
condition_name = dataloader.loaders.condition_names[condition_id]
condition_name = dataloader.loaders.condition_names[
condition_id
]
condition = self.problem.conditions[condition_name]
pts = batch['pts']
pts = batch["pts"]
if len(batch) == 2:
samples = pts[condition_idx == condition_id]
loss = self._loss_phys(samples, condition.equation)
elif len(batch) == 3:
samples = pts[condition_idx == condition_id]
ground_truth = batch['output'][condition_idx == condition_id]
ground_truth = batch["output"][condition_idx == condition_id]
loss = self._loss_data(samples, ground_truth)
else:
raise ValueError("Batch size not supported")
@@ -164,10 +181,16 @@ class PINN(SolverInterface):
# TODO for users this us hard to remember when creating a new solver, to fix in a smarter way
loss = loss.as_subclass(torch.Tensor)
# # add condition losses and accumulate logging for each epoch
# # add condition losses and accumulate logging for each epoch
condition_losses.append(loss * condition.data_weight)
self.log(condition_name + '_loss', float(loss),
prog_bar=True, logger=True, on_epoch=True, on_step=False)
self.log(
condition_name + "_loss",
float(loss),
prog_bar=True,
logger=True,
on_epoch=True,
on_step=False,
)
# clamp unknown parameters of the InverseProblem to their domain ranges (if needed)
if isinstance(self.problem, InverseProblem):
@@ -176,8 +199,14 @@ class PINN(SolverInterface):
# TODO Fix the bug, tot_loss is a label tensor without labels
# we need to pass it as a torch tensor to make everything work
total_loss = sum(condition_losses)
self.log('mean_loss', float(total_loss / len(condition_losses)),
prog_bar=True, logger=True, on_epoch=True, on_step=False)
self.log(
"mean_loss",
float(total_loss / len(condition_losses)),
prog_bar=True,
logger=True,
on_epoch=True,
on_step=False,
)
return total_loss