🎨 Format Python code with psf/black

This commit is contained in:
ndem0
2024-02-09 11:25:00 +00:00
committed by Nicola Demo
parent 591aeeb02b
commit cbb43a5392
64 changed files with 1323 additions and 955 deletions

View File

@@ -1,10 +1,14 @@
""" Module for SupervisedSolver """
import torch
import sys
try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError:
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import (
_LRScheduler as LRScheduler,
) # torch < 2.0
from torch.optim.lr_scheduler import ConstantLR
@@ -18,7 +22,7 @@ from torch.nn.modules.loss import _Loss
class SupervisedSolver(SolverInterface):
"""
SupervisedSolver solver class. This class implements a SupervisedSolver,
using a user specified ``model`` to solve a specific ``problem``.
using a user specified ``model`` to solve a specific ``problem``.
"""
def __init__(
@@ -28,14 +32,11 @@ class SupervisedSolver(SolverInterface):
extra_features=None,
loss=torch.nn.MSELoss(),
optimizer=torch.optim.Adam,
optimizer_kwargs={'lr': 0.001},
optimizer_kwargs={"lr": 0.001},
scheduler=ConstantLR,
scheduler_kwargs={
"factor": 1,
"total_iters": 0
},
scheduler_kwargs={"factor": 1, "total_iters": 0},
):
'''
"""
:param AbstractProblem problem: The formualation of the problem.
:param torch.nn.Module model: The neural network model to use.
:param torch.nn.Module loss: The loss function used as minimizer,
@@ -49,12 +50,14 @@ class SupervisedSolver(SolverInterface):
:param torch.optim.LRScheduler scheduler: Learning
rate scheduler.
:param dict scheduler_kwargs: LR scheduler constructor keyword args.
'''
super().__init__(models=[model],
problem=problem,
optimizers=[optimizer],
optimizers_kwargs=[optimizer_kwargs],
extra_features=extra_features)
"""
super().__init__(
models=[model],
problem=problem,
optimizers=[optimizer],
optimizers_kwargs=[optimizer_kwargs],
extra_features=extra_features,
)
# check consistency
check_consistency(scheduler, LRScheduler, subclass=True)
@@ -69,7 +72,7 @@ class SupervisedSolver(SolverInterface):
def forward(self, x):
"""Forward pass implementation for the solver.
:param torch.Tensor x: Input tensor.
:param torch.Tensor x: Input tensor.
:return: Solver solution.
:rtype: torch.Tensor
"""
@@ -95,32 +98,39 @@ class SupervisedSolver(SolverInterface):
"""
dataloader = self.trainer.train_dataloader
condition_idx = batch['condition']
condition_idx = batch["condition"]
for condition_id in range(condition_idx.min(), condition_idx.max()+1):
for condition_id in range(condition_idx.min(), condition_idx.max() + 1):
if sys.version_info >= (3, 8):
condition_name = dataloader.condition_names[condition_id]
else:
condition_name = dataloader.loaders.condition_names[condition_id]
condition_name = dataloader.loaders.condition_names[
condition_id
]
condition = self.problem.conditions[condition_name]
pts = batch['pts']
out = batch['output']
pts = batch["pts"]
out = batch["output"]
if condition_name not in self.problem.conditions:
raise RuntimeError('Something wrong happened.')
raise RuntimeError("Something wrong happened.")
# for data driven mode
if not hasattr(condition, 'output_points'):
raise NotImplementedError('Supervised solver works only in data-driven mode.')
if not hasattr(condition, "output_points"):
raise NotImplementedError(
"Supervised solver works only in data-driven mode."
)
output_pts = out[condition_idx == condition_id]
input_pts = pts[condition_idx == condition_id]
loss = self.loss(self.forward(input_pts), output_pts) * condition.data_weight
loss = (
self.loss(self.forward(input_pts), output_pts)
* condition.data_weight
)
loss = loss.as_subclass(torch.Tensor)
self.log('mean_loss', float(loss), prog_bar=True, logger=True)
self.log("mean_loss", float(loss), prog_bar=True, logger=True)
return loss
@property