* fix doc loss + adding PowerLoss * adding loss tests folder --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
This commit is contained in:
committed by
Nicola Demo
parent
4850b0045d
commit
cc3332b519
@@ -40,6 +40,15 @@ Layers
|
||||
|
||||
ContinuousConv <convolution.rst>
|
||||
|
||||
Loss
|
||||
------
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 3
|
||||
|
||||
LpLoss <lploss.rst>
|
||||
PowerLoss <powerloss.rst>
|
||||
|
||||
Problem
|
||||
-------
|
||||
|
||||
|
||||
10
docs/source/_rst/lploss.rst
Normal file
10
docs/source/_rst/lploss.rst
Normal file
@@ -0,0 +1,10 @@
|
||||
LpLoss
|
||||
====
|
||||
.. currentmodule:: pina.loss
|
||||
|
||||
.. automodule:: pina.loss
|
||||
|
||||
.. autoclass:: LpLoss
|
||||
:members:
|
||||
:private-members:
|
||||
:show-inheritance:
|
||||
@@ -1,8 +1,8 @@
|
||||
PINN
|
||||
====
|
||||
.. currentmodule:: pina.pinn
|
||||
.. currentmodule:: pina.solvers.pinn
|
||||
|
||||
.. automodule:: pina.pinn
|
||||
.. automodule:: pina.solvers.pinn
|
||||
|
||||
.. autoclass:: PINN
|
||||
:members:
|
||||
|
||||
10
docs/source/_rst/powerloss.rst
Normal file
10
docs/source/_rst/powerloss.rst
Normal file
@@ -0,0 +1,10 @@
|
||||
PowerLoss
|
||||
=========
|
||||
.. currentmodule:: pina.loss
|
||||
|
||||
.. automodule:: pina.loss
|
||||
|
||||
.. autoclass:: PowerLoss
|
||||
:members:
|
||||
:private-members:
|
||||
:show-inheritance:
|
||||
90
pina/loss.py
90
pina/loss.py
@@ -1,4 +1,6 @@
|
||||
""" Module for EquationInterface class """
|
||||
""" Module for Loss class """
|
||||
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from torch.nn.modules.loss import _Loss
|
||||
import torch
|
||||
@@ -55,25 +57,25 @@ class LossInterface(_Loss, metaclass=ABCMeta):
|
||||
return ret
|
||||
|
||||
class LpLoss(LossInterface):
|
||||
"""
|
||||
r"""
|
||||
The Lp loss implementation class. Creates a criterion that measures
|
||||
the Lp error between each element in the input :math:`x` and
|
||||
target :math:`y`.
|
||||
|
||||
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can
|
||||
The unreduced (i.e. with :attr:`reduction` set to ``none``) loss can
|
||||
be described as:
|
||||
|
||||
.. math::
|
||||
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
||||
l_n = \left| x_n - y_n \right|^p,
|
||||
l_n = \left[\sum_{i=1}^{D} \left| x_n^i - y_n^i \right|^p \right],
|
||||
|
||||
If ``'relative'`` is set to true:
|
||||
|
||||
.. math::
|
||||
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
||||
l_n = \left[\frac{\left| x_n - y_n \right|^p}{\left|y_n \right|^p}\right]^{1/p},
|
||||
l_n = \frac{ [\sum_{i=1}^{D} | x_n^i - y_n^i|^p] }{[\sum_{i=1}^{D}|y_n^i|^p]},
|
||||
|
||||
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
|
||||
where :math:`N` is the batch size. If :attr:`reduction` is not ``none``
|
||||
(default ``'mean'``), then:
|
||||
|
||||
.. math::
|
||||
@@ -88,7 +90,7 @@ class LpLoss(LossInterface):
|
||||
|
||||
The sum operation still operates over all the elements, and divides by :math:`n`.
|
||||
|
||||
The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.
|
||||
The division by :math:`n` can be avoided if one sets :attr:`reduction` to ``sum``.
|
||||
"""
|
||||
|
||||
def __init__(self, p=2, reduction = 'mean', relative = False):
|
||||
@@ -125,3 +127,77 @@ class LpLoss(LossInterface):
|
||||
if self.relative:
|
||||
loss = loss / torch.linalg.norm(input, ord=self.p, dim=-1)
|
||||
return self._reduction(loss)
|
||||
|
||||
|
||||
|
||||
class PowerLoss(LossInterface):
|
||||
r"""
|
||||
The PowerLoss loss implementation class. Creates a criterion that measures
|
||||
the error between each element in the input :math:`x` and
|
||||
target :math:`y` powered to a specific integer.
|
||||
|
||||
The unreduced (i.e. with :attr:`reduction` set to ``none``) loss can
|
||||
be described as:
|
||||
|
||||
.. math::
|
||||
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
||||
l_n = \frac{1}{D}\left[\sum_{i=1}^{D} \left| x_n^i - y_n^i \right|^p \right],
|
||||
|
||||
If ``'relative'`` is set to true:
|
||||
|
||||
.. math::
|
||||
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
||||
l_n = \frac{ \sum_{i=1}^{D} | x_n^i - y_n^i|^p }{\sum_{i=1}^{D}|y_n^i|^p},
|
||||
|
||||
where :math:`N` is the batch size. If :attr:`reduction` is not ``none``
|
||||
(default ``'mean'``), then:
|
||||
|
||||
.. math::
|
||||
\ell(x, y) =
|
||||
\begin{cases}
|
||||
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
||||
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
||||
\end{cases}
|
||||
|
||||
:math:`x` and :math:`y` are tensors of arbitrary shapes with a total
|
||||
of :math:`n` elements each.
|
||||
|
||||
The sum operation still operates over all the elements, and divides by :math:`n`.
|
||||
|
||||
The division by :math:`n` can be avoided if one sets :attr:`reduction` to ``sum``.
|
||||
"""
|
||||
|
||||
def __init__(self, p=2, reduction = 'mean', relative = False):
|
||||
"""
|
||||
:param int p: Degree of Lp norm. It specifies the type of norm to
|
||||
be calculated. See :meth:`torch.linalg.norm` ```'ord'``` to
|
||||
see the possible degrees. Default 2 (euclidean norm).
|
||||
:param str reduction: Specifies the reduction to apply to the output:
|
||||
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction
|
||||
will be applied, ``'mean'``: the sum of the output will be divided
|
||||
by the number of elements in the output, ``'sum'``: the output will
|
||||
be summed. Note: :attr:`size_average` and :attr:`reduce` are in the
|
||||
process of being deprecated, and in the meantime, specifying either of
|
||||
those two args will override :attr:`reduction`. Default: ``'mean'``.
|
||||
:param bool relative: Specifies if relative error should be computed.
|
||||
"""
|
||||
super().__init__(reduction=reduction)
|
||||
|
||||
# check consistency
|
||||
check_consistency(p, (str,int,float))
|
||||
self.p = p
|
||||
check_consistency(relative, bool)
|
||||
self.relative = relative
|
||||
|
||||
def forward(self, input, target):
|
||||
"""Forward method for loss function.
|
||||
|
||||
:param torch.Tensor input: Input tensor from real data.
|
||||
:param torch.Tensor target: Model tensor output.
|
||||
:return: Loss evaluation.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
loss = torch.abs((input-target)).pow(self.p).mean(-1)
|
||||
if self.relative:
|
||||
loss = loss / torch.abs(input).pow(self.p).mean(-1)
|
||||
return self._reduction(loss)
|
||||
49
tests/test_loss/test_powerloss.py
Normal file
49
tests/test_loss/test_powerloss.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.loss import PowerLoss
|
||||
|
||||
input = torch.tensor([[3.], [1.], [-8.]])
|
||||
target = torch.tensor([[6.], [4.], [2.]])
|
||||
available_reductions = ['str', 'mean', 'none']
|
||||
|
||||
|
||||
def test_PowerLoss_constructor():
|
||||
# test reduction
|
||||
for reduction in available_reductions:
|
||||
PowerLoss(reduction=reduction)
|
||||
# test p
|
||||
for p in [float('inf'), -float('inf'), 1, 10, -8]:
|
||||
PowerLoss(p=p)
|
||||
|
||||
def test_PowerLoss_forward():
|
||||
# l2 loss
|
||||
loss = PowerLoss(p=2, reduction='mean')
|
||||
l2_loss = torch.mean((input-target).pow(2))
|
||||
assert loss(input, target) == l2_loss
|
||||
# l1 loss
|
||||
loss = PowerLoss(p=1, reduction='sum')
|
||||
l1_loss = torch.sum(torch.abs(input-target))
|
||||
assert loss(input, target) == l1_loss
|
||||
|
||||
def test_LpRelativeLoss_constructor():
|
||||
# test reduction
|
||||
for reduction in available_reductions:
|
||||
PowerLoss(reduction=reduction, relative=True)
|
||||
# test p
|
||||
for p in [float('inf'), -float('inf'), 1, 10, -8]:
|
||||
PowerLoss(p=p,relative=True)
|
||||
|
||||
def test_LpRelativeLoss_forward():
|
||||
# l2 relative loss
|
||||
loss = PowerLoss(p=2, reduction='mean',relative=True)
|
||||
l2_loss = (input-target).pow(2)/input.pow(2)
|
||||
assert loss(input, target) == torch.mean(l2_loss)
|
||||
# l1 relative loss
|
||||
loss = PowerLoss(p=1, reduction='sum',relative=True)
|
||||
l1_loss = torch.abs(input-target)/torch.abs(input)
|
||||
assert loss(input, target) == torch.sum(l1_loss)
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user