Adaptive Functions (#272)
* adaptive function improvement --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
This commit is contained in:
@@ -1,5 +0,0 @@
|
||||
from .adaptive_tanh import AdaptiveTanh
|
||||
from .adaptive_sin import AdaptiveSin
|
||||
from .adaptive_cos import AdaptiveCos
|
||||
from .adaptive_linear import AdaptiveLinear
|
||||
from .adaptive_square import AdaptiveSquare
|
||||
@@ -1,56 +0,0 @@
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveCos(torch.nn.Module):
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
dimensions
|
||||
- Output: (N, *), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- See related paper:
|
||||
https://arxiv.org/pdf/1602.01321.pdf
|
||||
Examples:
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=None):
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
"""
|
||||
super(AdaptiveCos, self).__init__()
|
||||
# self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
if alpha == None:
|
||||
self.alpha = Parameter(
|
||||
torch.tensor(1.0)
|
||||
) # create a tensor out of alpha
|
||||
else:
|
||||
self.alpha = Parameter(
|
||||
torch.tensor(alpha)
|
||||
) # create a tensor out of alpha
|
||||
self.alpha.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.scale = Parameter(torch.tensor(1.0))
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.translate = Parameter(torch.tensor(0.0))
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
"""
|
||||
return self.scale * (torch.cos(self.alpha * x + self.translate))
|
||||
@@ -1,53 +0,0 @@
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveExp(torch.nn.Module):
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
dimensions
|
||||
- Output: (N, *), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- See related paper:
|
||||
https://arxiv.org/pdf/1602.01321.pdf
|
||||
Examples:
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
"""
|
||||
super(AdaptiveExp, self).__init__()
|
||||
|
||||
self.scale = Parameter(
|
||||
torch.normal(torch.tensor(1.0), torch.tensor(0.1))
|
||||
) # create a tensor out of alpha
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.alpha = Parameter(
|
||||
torch.normal(torch.tensor(1.0), torch.tensor(0.1))
|
||||
) # create a tensor out of alpha
|
||||
self.alpha.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.translate = Parameter(
|
||||
torch.normal(torch.tensor(0.0), torch.tensor(0.1))
|
||||
) # create a tensor out of alpha
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
"""
|
||||
return self.scale * (x + self.translate)
|
||||
@@ -1,46 +0,0 @@
|
||||
""" Implementation of adaptive linear layer. """
|
||||
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveLinear(torch.nn.Module):
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
dimensions
|
||||
- Output: (N, *), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- See related paper:
|
||||
https://arxiv.org/pdf/1602.01321.pdf
|
||||
Examples:
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
"""
|
||||
super(AdaptiveLinear, self).__init__()
|
||||
|
||||
self.scale = Parameter(torch.tensor(1.0))
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.translate = Parameter(torch.tensor(0.0))
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
"""
|
||||
return self.scale * (x + self.translate)
|
||||
@@ -1,45 +0,0 @@
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveReLU(torch.nn.Module, Parameter):
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
dimensions
|
||||
- Output: (N, *), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- See related paper:
|
||||
https://arxiv.org/pdf/1602.01321.pdf
|
||||
Examples:
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
"""
|
||||
super(AdaptiveReLU, self).__init__()
|
||||
|
||||
self.scale = Parameter(torch.rand(1))
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.translate = Parameter(torch.rand(1))
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
"""
|
||||
# x += self.translate
|
||||
return torch.relu(x + self.translate) * self.scale
|
||||
@@ -1,54 +0,0 @@
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveSin(torch.nn.Module):
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
dimensions
|
||||
- Output: (N, *), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- See related paper:
|
||||
https://arxiv.org/pdf/1602.01321.pdf
|
||||
Examples:
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=None):
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
"""
|
||||
super(AdaptiveSin, self).__init__()
|
||||
|
||||
# initialize alpha
|
||||
self.alpha = Parameter(
|
||||
torch.normal(torch.tensor(1.0), torch.tensor(0.1))
|
||||
) # create a tensor out of alpha
|
||||
self.alpha.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.scale = Parameter(
|
||||
torch.normal(torch.tensor(1.0), torch.tensor(0.1))
|
||||
)
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.translate = Parameter(
|
||||
torch.normal(torch.tensor(0.0), torch.tensor(0.1))
|
||||
)
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
"""
|
||||
return self.scale * (torch.sin(self.alpha * x + self.translate))
|
||||
@@ -1,44 +0,0 @@
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveSoftplus(torch.nn.Module):
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
dimensions
|
||||
- Output: (N, *), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- See related paper:
|
||||
https://arxiv.org/pdf/1602.01321.pdf
|
||||
Examples:
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.soft = torch.nn.Softplus()
|
||||
|
||||
self.scale = Parameter(torch.rand(1))
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
"""
|
||||
# x += self.translate
|
||||
return self.soft(x) * self.scale
|
||||
@@ -1,44 +0,0 @@
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveSquare(torch.nn.Module):
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
dimensions
|
||||
- Output: (N, *), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- See related paper:
|
||||
https://arxiv.org/pdf/1602.01321.pdf
|
||||
Examples:
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=None):
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
"""
|
||||
super(AdaptiveSquare, self).__init__()
|
||||
|
||||
self.scale = Parameter(torch.tensor(1.0))
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.translate = Parameter(torch.tensor(0.0))
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
"""
|
||||
return self.scale * (x + self.translate) ** 2
|
||||
@@ -1,62 +0,0 @@
|
||||
import torch
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
|
||||
class AdaptiveTanh(torch.nn.Module):
|
||||
"""
|
||||
Implementation of soft exponential activation.
|
||||
Shape:
|
||||
- Input: (N, *) where * means, any number of additional
|
||||
dimensions
|
||||
- Output: (N, *), same shape as the input
|
||||
Parameters:
|
||||
- alpha - trainable parameter
|
||||
References:
|
||||
- See related paper:
|
||||
https://arxiv.org/pdf/1602.01321.pdf
|
||||
Examples:
|
||||
>>> a1 = soft_exponential(256)
|
||||
>>> x = torch.randn(256)
|
||||
>>> x = a1(x)
|
||||
"""
|
||||
|
||||
def __init__(self, alpha=None):
|
||||
"""
|
||||
Initialization.
|
||||
INPUT:
|
||||
- in_features: shape of the input
|
||||
- aplha: trainable parameter
|
||||
aplha is initialized with zero value by default
|
||||
"""
|
||||
super(AdaptiveTanh, self).__init__()
|
||||
# self.in_features = in_features
|
||||
|
||||
# initialize alpha
|
||||
if alpha == None:
|
||||
self.alpha = Parameter(
|
||||
torch.tensor(1.0)
|
||||
) # create a tensor out of alpha
|
||||
else:
|
||||
self.alpha = Parameter(
|
||||
torch.tensor(alpha)
|
||||
) # create a tensor out of alpha
|
||||
|
||||
self.alpha.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.scale = Parameter(torch.tensor(1.0))
|
||||
self.scale.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
self.translate = Parameter(torch.tensor(0.0))
|
||||
self.translate.requiresGrad = True # set requiresGrad to true!
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass of the function.
|
||||
Applies the function to the input elementwise.
|
||||
"""
|
||||
x += self.translate
|
||||
return (
|
||||
self.scale
|
||||
* (torch.exp(self.alpha * x) - torch.exp(-self.alpha * x))
|
||||
/ (torch.exp(self.alpha * x) + torch.exp(-self.alpha * x))
|
||||
)
|
||||
Reference in New Issue
Block a user