fix rendering part 2
This commit is contained in:
@@ -42,7 +42,8 @@ class PINN(PINNInterface, SingleSolverInterface):
|
||||
|
||||
**Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L.,
|
||||
Perdikaris, P., Wang, S., & Yang, L. (2021).
|
||||
Physics-informed machine learning. Nature Reviews Physics, 3, 422-440.
|
||||
*Physics-informed machine learning.*
|
||||
Nature Reviews Physics, 3, 422-440.
|
||||
DOI: `10.1038 <https://doi.org/10.1038/s42254-021-00314-5>`_.
|
||||
"""
|
||||
|
||||
@@ -60,15 +61,16 @@ class PINN(PINNInterface, SingleSolverInterface):
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param torch.optim.Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the Adam optimizer is used. Default is ``None``.
|
||||
:param torch.optim.LRScheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the constant learning rate scheduler is used.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the Mean Squared Error (MSE) loss is used.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
"""
|
||||
super().__init__(
|
||||
@@ -101,7 +103,7 @@ class PINN(PINNInterface, SingleSolverInterface):
|
||||
Optimizer configuration for the PINN solver.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple(list, list)
|
||||
:rtype: tuple[list[Optimizer], list[Scheduler]]
|
||||
"""
|
||||
# If the problem is an InverseProblem, add the unknown parameters
|
||||
# to the parameters to be optimized.
|
||||
|
||||
Reference in New Issue
Block a user