modify tutorials for plotter compatibility
@@ -139,27 +139,27 @@ approximately 3 minutes.
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
/u/d/dcoscia/.local/lib/python3.9/site-packages/torch/cuda/__init__.py:546: UserWarning: Can't initialize NVML
|
||||
warnings.warn("Can't initialize NVML")
|
||||
/u/d/dcoscia/.local/lib/python3.9/site-packages/torch/cuda/__init__.py:651: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:109.)
|
||||
return torch._C._cuda_getDeviceCount() if nvml_count < 0 else nvml_count
|
||||
GPU available: False, used: False
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
Missing logger folder: /Users/dariocoscia/Desktop/PINA/tutorials/tutorial3/lightning_logs
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Training: 0it [00:00, ?it/s]
|
||||
|
||||
Epoch 999: : 1it [00:00, 62.13it/s, v_num=0, mean_loss=0.0268, D_loss=0.0397, t0_loss=0.121, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=1000` reached.
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 999: : 1it [00:00, 53.88it/s, v_num=0, mean_loss=0.0268, D_loss=0.0397, t0_loss=0.121, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000]
|
||||
|
||||
|
||||
Notice that the loss on the boundaries of the spatial domain is exactly
|
||||
zero, as expected! After the training is completed one can now plot some
|
||||
results using the ``Plotter`` class of **PINA**.
|
||||
@@ -170,15 +170,15 @@ results using the ``Plotter`` class of **PINA**.
|
||||
|
||||
# plotting at fixed time t = 0.0
|
||||
print('Plotting at t=0')
|
||||
plotter.plot(trainer, fixed_variables={'t': 0.0})
|
||||
plotter.plot(pinn, fixed_variables={'t': 0.0})
|
||||
|
||||
# plotting at fixed time t = 0.5
|
||||
print('Plotting at t=0.5')
|
||||
plotter.plot(trainer, fixed_variables={'t': 0.5})
|
||||
plotter.plot(pinn, fixed_variables={'t': 0.5})
|
||||
|
||||
# plotting at fixed time t = 1.
|
||||
print('Plotting at t=1')
|
||||
plotter.plot(trainer, fixed_variables={'t': 1.0})
|
||||
plotter.plot(pinn, fixed_variables={'t': 1.0})
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
@@ -260,17 +260,20 @@ Now let’s train with the same configuration as thre previous test
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Training: 0it [00:00, ?it/s]
|
||||
|
||||
Epoch 999: : 1it [00:00, 48.54it/s, v_num=1, mean_loss=1.48e-8, D_loss=8.89e-8, t0_loss=0.000, gamma1_loss=2.06e-15, gamma2_loss=0.000, gamma3_loss=2.1e-15, gamma4_loss=0.000]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=1000` reached.
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 999: : 1it [00:00, 43.25it/s, v_num=1, mean_loss=1.48e-8, D_loss=8.89e-8, t0_loss=0.000, gamma1_loss=2.06e-15, gamma2_loss=0.000, gamma3_loss=2.1e-15, gamma4_loss=0.000]
|
||||
|
||||
|
||||
We can clearly see that the loss is way lower now. Let’s plot the
|
||||
results
|
||||
|
||||
@@ -280,15 +283,15 @@ results
|
||||
|
||||
# plotting at fixed time t = 0.0
|
||||
print('Plotting at t=0')
|
||||
plotter.plot(trainer, fixed_variables={'t': 0.0})
|
||||
plotter.plot(pinn, fixed_variables={'t': 0.0})
|
||||
|
||||
# plotting at fixed time t = 0.5
|
||||
print('Plotting at t=0.5')
|
||||
plotter.plot(trainer, fixed_variables={'t': 0.5})
|
||||
plotter.plot(pinn, fixed_variables={'t': 0.5})
|
||||
|
||||
# plotting at fixed time t = 1.
|
||||
print('Plotting at t=1')
|
||||
plotter.plot(trainer, fixed_variables={'t': 1.0})
|
||||
plotter.plot(pinn, fixed_variables={'t': 1.0})
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
|
Before Width: | Height: | Size: 41 KiB After Width: | Height: | Size: 49 KiB |
|
Before Width: | Height: | Size: 39 KiB After Width: | Height: | Size: 53 KiB |
|
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 52 KiB |
|
Before Width: | Height: | Size: 38 KiB |
|
Before Width: | Height: | Size: 41 KiB |
|
Before Width: | Height: | Size: 38 KiB |
|
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 38 KiB |
|
Before Width: | Height: | Size: 34 KiB After Width: | Height: | Size: 52 KiB |
|
Before Width: | Height: | Size: 33 KiB After Width: | Height: | Size: 47 KiB |