add dataset and dataloader for sample points (#195)
* add dataset and dataloader for sample points * unittests
This commit is contained in:
@@ -44,9 +44,9 @@ class Poisson(SpatialProblem):
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_)
|
||||
# 'data': Condition(
|
||||
# input_points=in_,
|
||||
# output_points=out_)
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -44,9 +44,9 @@ class Poisson(SpatialProblem):
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_)
|
||||
# 'data': Condition(
|
||||
# input_points=in_,
|
||||
# output_points=out_)
|
||||
}
|
||||
|
||||
|
||||
|
||||
122
tests/test_dataset.py
Normal file
122
tests/test_dataset.py
Normal file
@@ -0,0 +1,122 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.dataset import SamplePointDataset, SamplePointLoader, DataPointDataset
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.equation import Equation
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.model import FeedForward
|
||||
from pina.operators import laplacian
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||
torch.sin(input_.extract(['y'])*torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
||||
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_),
|
||||
'data2': Condition(
|
||||
input_points=in2_,
|
||||
output_points=out2_)
|
||||
}
|
||||
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
poisson = Poisson()
|
||||
poisson.discretise_domain(10, 'grid', locations=boundaries)
|
||||
|
||||
def test_sample():
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
assert len(sample_dataset) == 140
|
||||
assert sample_dataset.pts.shape == (140, 2)
|
||||
assert sample_dataset.pts.labels == ['x', 'y']
|
||||
assert sample_dataset.condition_indeces.dtype == torch.int64
|
||||
assert sample_dataset.condition_indeces.max() == torch.tensor(4)
|
||||
assert sample_dataset.condition_indeces.min() == torch.tensor(0)
|
||||
|
||||
def test_data():
|
||||
dataset = DataPointDataset(poisson, device='cpu')
|
||||
assert len(dataset) == 61
|
||||
assert dataset.input_pts.shape == (61, 2)
|
||||
assert dataset.input_pts.labels == ['x', 'y']
|
||||
assert dataset.output_pts.shape == (61, 1 )
|
||||
assert dataset.output_pts.labels == ['u']
|
||||
assert dataset.condition_indeces.dtype == torch.int64
|
||||
assert dataset.condition_indeces.max() == torch.tensor(1)
|
||||
assert dataset.condition_indeces.min() == torch.tensor(0)
|
||||
|
||||
def test_loader():
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_dataset = DataPointDataset(poisson, device='cpu')
|
||||
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
||||
|
||||
for batch in loader:
|
||||
assert len(batch) in [2, 3]
|
||||
assert batch['pts'].shape[0] <= 10
|
||||
assert batch['pts'].requires_grad == True
|
||||
assert batch['pts'].labels == ['x', 'y']
|
||||
|
||||
loader2 = SamplePointLoader(sample_dataset, data_dataset, batch_size=None)
|
||||
assert len(list(loader2)) == 2
|
||||
|
||||
def test_loader2():
|
||||
poisson2 = Poisson()
|
||||
del poisson.conditions['data2']
|
||||
del poisson2.conditions['data']
|
||||
poisson2.discretise_domain(10, 'grid', locations=boundaries)
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_dataset = DataPointDataset(poisson, device='cpu')
|
||||
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
||||
|
||||
for batch in loader:
|
||||
assert len(batch) == 2 # only phys condtions
|
||||
assert batch['pts'].shape[0] <= 10
|
||||
assert batch['pts'].requires_grad == True
|
||||
assert batch['pts'].labels == ['x', 'y']
|
||||
|
||||
def test_loader3():
|
||||
poisson2 = Poisson()
|
||||
del poisson.conditions['gamma1']
|
||||
del poisson.conditions['gamma2']
|
||||
del poisson.conditions['gamma3']
|
||||
del poisson.conditions['gamma4']
|
||||
del poisson.conditions['D']
|
||||
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_dataset = DataPointDataset(poisson, device='cpu')
|
||||
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
||||
|
||||
for batch in loader:
|
||||
assert len(batch) == 2 # only phys condtions
|
||||
assert batch['pts'].shape[0] <= 10
|
||||
assert batch['pts'].requires_grad == True
|
||||
assert batch['pts'].labels == ['x', 'y']
|
||||
@@ -95,10 +95,14 @@ def test_getitem():
|
||||
def test_getitem2():
|
||||
tensor = LabelTensor(data, labels)
|
||||
tensor_view = tensor[:5]
|
||||
|
||||
assert tensor_view.labels == labels
|
||||
assert torch.allclose(tensor_view, data[:5])
|
||||
|
||||
idx = torch.randperm(tensor.shape[0])
|
||||
tensor_view = tensor[idx]
|
||||
assert tensor_view.labels == labels
|
||||
|
||||
|
||||
def test_slice():
|
||||
tensor = LabelTensor(data, labels)
|
||||
tensor_view = tensor[:5, :2]
|
||||
|
||||
@@ -134,7 +134,7 @@ def test_train_cpu():
|
||||
hidden_dimension=64)
|
||||
)
|
||||
|
||||
trainer = Trainer(solver=solver, max_epochs=4, accelerator='cpu')
|
||||
trainer = Trainer(solver=solver, max_epochs=4, accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
def test_sample():
|
||||
|
||||
@@ -22,6 +22,8 @@ def laplace_equation(input_, output_):
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
||||
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
@@ -45,7 +47,10 @@ class Poisson(SpatialProblem):
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_)
|
||||
output_points=out_),
|
||||
'data2': Condition(
|
||||
input_points=in2_,
|
||||
output_points=out2_)
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
@@ -92,7 +97,7 @@ def test_train_cpu():
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
trainer = Trainer(solver=pinn, max_epochs=1, accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
def test_train_restore():
|
||||
@@ -106,7 +111,7 @@ def test_train_restore():
|
||||
trainer.train()
|
||||
ntrainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu')
|
||||
t = ntrainer.train(
|
||||
ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
||||
ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=10.ckpt')
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
@@ -121,7 +126,7 @@ def test_train_load():
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
new_pinn = PINN.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt',
|
||||
problem = poisson_problem, model=model)
|
||||
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
||||
|
||||
Reference in New Issue
Block a user