Update tutorials 1 through 12 to current version 0.2
This commit is contained in:
committed by
Nicola Demo
parent
8b797d589a
commit
d83ca3af6e
162
tutorials/tutorial3/tutorial.ipynb
vendored
162
tutorials/tutorial3/tutorial.ipynb
vendored
File diff suppressed because one or more lines are too long
34
tutorials/tutorial3/tutorial.py
vendored
34
tutorials/tutorial3/tutorial.py
vendored
@@ -24,13 +24,13 @@ if IN_COLAB:
|
||||
import torch
|
||||
|
||||
from pina.problem import SpatialProblem, TimeDependentProblem
|
||||
from pina.operators import laplacian, grad
|
||||
from pina.operator import laplacian, grad
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.solvers import PINN
|
||||
from pina.solver import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina import Condition, Plotter
|
||||
from pina import Condition
|
||||
|
||||
|
||||
# ## The problem definition
|
||||
@@ -138,19 +138,19 @@ trainer.train()
|
||||
# In[5]:
|
||||
|
||||
|
||||
plotter = Plotter()
|
||||
#plotter = Plotter()
|
||||
|
||||
# plotting at fixed time t = 0.0
|
||||
print('Plotting at t=0')
|
||||
plotter.plot(pinn, fixed_variables={'t': 0.0})
|
||||
#print('Plotting at t=0')
|
||||
#plotter.plot(pinn, fixed_variables={'t': 0.0})
|
||||
|
||||
# plotting at fixed time t = 0.5
|
||||
print('Plotting at t=0.5')
|
||||
plotter.plot(pinn, fixed_variables={'t': 0.5})
|
||||
#print('Plotting at t=0.5')
|
||||
#plotter.plot(pinn, fixed_variables={'t': 0.5})
|
||||
|
||||
# plotting at fixed time t = 1.
|
||||
print('Plotting at t=1')
|
||||
plotter.plot(pinn, fixed_variables={'t': 1.0})
|
||||
#print('Plotting at t=1')
|
||||
#plotter.plot(pinn, fixed_variables={'t': 1.0})
|
||||
|
||||
|
||||
# The results are not so great, and we can clearly see that as time progress the solution gets worse.... Can we do better?
|
||||
@@ -203,19 +203,19 @@ trainer.train()
|
||||
# In[8]:
|
||||
|
||||
|
||||
plotter = Plotter()
|
||||
#plotter = Plotter()
|
||||
|
||||
# plotting at fixed time t = 0.0
|
||||
print('Plotting at t=0')
|
||||
plotter.plot(pinn, fixed_variables={'t': 0.0})
|
||||
#print('Plotting at t=0')
|
||||
#plotter.plot(pinn, fixed_variables={'t': 0.0})
|
||||
|
||||
# plotting at fixed time t = 0.5
|
||||
print('Plotting at t=0.5')
|
||||
plotter.plot(pinn, fixed_variables={'t': 0.5})
|
||||
#print('Plotting at t=0.5')
|
||||
#plotter.plot(pinn, fixed_variables={'t': 0.5})
|
||||
|
||||
# plotting at fixed time t = 1.
|
||||
print('Plotting at t=1')
|
||||
plotter.plot(pinn, fixed_variables={'t': 1.0})
|
||||
#print('Plotting at t=1')
|
||||
#plotter.plot(pinn, fixed_variables={'t': 1.0})
|
||||
|
||||
|
||||
# We can see now that the results are way better! This is due to the fact that previously the network was not learning correctly the initial conditon, leading to a poor solution when time evolved. By imposing the initial condition the network is able to correctly solve the problem.
|
||||
|
||||
Reference in New Issue
Block a user