partially fix documentation (#80)

This commit is contained in:
Anna Ivagnes
2023-04-18 10:49:01 +02:00
committed by GitHub
parent c536f8267f
commit da33aeae3a
11 changed files with 222 additions and 4 deletions

View File

@@ -1,13 +1,16 @@
"""Module for Multi FeedForward model"""
import torch
from .feed_forward import FeedForward
class MultiFeedForward(torch.nn.Module):
"""
:param dict dff_dict: dictionary of FeedForward networks.
"""
def __init__(self, dff_dict):
'''
'''
"""
"""
super().__init__()
if not isinstance(dff_dict, dict):

View File

@@ -1,10 +1,26 @@
""" Module for AbstractProblem class """
from abc import ABCMeta, abstractmethod
class AbstractProblem(metaclass=ABCMeta):
"""
The abstract `AbstractProblem` class. All the class defining a PINA Problem
should be inheritied from this class.
In the definition of a PINA problem, the fundamental elements are:
the output variables, the condition(s), and the domain(s) where the
conditions are applied.
"""
@property
def input_variables(self):
"""
The input variables of the AbstractProblem, whose type depends on the
type of domain (spatial, temporal, and parameter).
:return: the input variables of self
:rtype: list
"""
variables = []
if hasattr(self, 'spatial_variables'):
@@ -20,7 +36,13 @@ class AbstractProblem(metaclass=ABCMeta):
@property
def domain(self):
"""
The domain(s) where the conditions of the AbstractProblem are valid.
:return: the domain(s) of self
:rtype: list (if more than one domain are defined),
`Span` domain (of only one domain is defined)
"""
domains = [
getattr(self, f'{t}_domain')
for t in ['spatial', 'temporal', 'parameter']
@@ -46,9 +68,15 @@ class AbstractProblem(metaclass=ABCMeta):
@property
@abstractmethod
def output_variables(self):
"""
The output variables of the problem.
"""
pass
@property
@abstractmethod
def conditions(self):
"""
The conditions of the problem.
"""
pass

View File

@@ -1,9 +1,45 @@
"""Module for the ParametricProblem class"""
from abc import abstractmethod
from .abstract_problem import AbstractProblem
class ParametricProblem(AbstractProblem):
"""
The class for the definition of parametric problems, i.e., problems
with parameters among the input variables.
Here's an example of a spatial parametric ODE problem, i.e., a spatial
ODE problem with an additional parameter `alpha` as coefficient of the
derivative term.
:Example:
>>> from pina.problem import SpatialProblem, ParametricProblem
>>> from pina.operators import grad
>>> from pina import Condition, Span
>>> import torch
>>> class ParametricODE(SpatialProblem, ParametricProblem):
>>> output_variables = ['u']
>>> spatial_domain = Span({'x': [0, 1]})
>>> parameter_domain = Span({'alpha': {1, 10}})
>>> def ode_equation(input_, output_):
>>> u_x = grad(output_, input_, components=['u'], d=['x'])
>>> u = output_.extract(['u'])
>>> alpha = input_.extract(['alpha'])
>>> return alpha * u_x - u
>>> def initial_condition(input_, output_):
>>> value = 1.0
>>> u = output_.extract(['u'])
>>> return u - value
>>> conditions = {
>>> 'x0': Condition(Span({'x': 0, 'alpha':[1, 10]}), initial_condition),
>>> 'D': Condition(Span({'x': [0, 1], 'alpha':[1, 10]}), ode_equation)}
"""
@abstractmethod
def parameter_domain(self):

View File

@@ -1,14 +1,53 @@
"""Module for the SpatialProblem class"""
from abc import abstractmethod
from .abstract_problem import AbstractProblem
class SpatialProblem(AbstractProblem):
"""
The class for the definition of spatial problems, i.e., for problems
with spatial input variables.
Here's an example of a spatial 1-dimensional ODE problem.
:Example:
>>> from pina.problem import SpatialProblem
>>> from pina.operators import grad
>>> from pina import Condition, Span
>>> import torch
>>> class SimpleODE(SpatialProblem):
>>> output_variables = ['u']
>>> spatial_domain = Span({'x': [0, 1]})
>>> def ode_equation(input_, output_):
>>> u_x = grad(output_, input_, components=['u'], d=['x'])
>>> u = output_.extract(['u'])
>>> return u_x - u
>>> def initial_condition(input_, output_):
>>> value = 1.0
>>> u = output_.extract(['u'])
>>> return u - value
>>> conditions = {
>>> 'x0': Condition(Span({'x': 0.}), initial_condition),
>>> 'D': Condition(Span({'x': [0, 1]}), ode_equation)}
"""
@abstractmethod
def spatial_domain(self):
"""
The spatial domain of the problem.
"""
pass
@property
def spatial_variables(self):
"""
The spatial input variables of the problem.
"""
return self.spatial_domain.variables

View File

@@ -1,14 +1,62 @@
"""Module for the TimeDependentProblem class"""
from abc import abstractmethod
from .abstract_problem import AbstractProblem
class TimeDependentProblem(AbstractProblem):
"""
The class for the definition of time-dependent problems, i.e., for problems
depending on time.
Here's an example of a 1D wave problem.
:Example:
>>> from pina.problem import SpatialProblem, TimeDependentProblem
>>> from pina.operators import grad, nabla
>>> from pina import Condition, Span
>>> import torch
>>> class Wave(TimeDependentSpatialProblem):
>>> output_variables = ['u']
>>> spatial_domain = Span({'x': [0, 3]})
>>> temporal_domain = Span({'t': [0, 1]})
>>> def wave_equation(input_, output_):
>>> u_t = grad(output_, input_, components=['u'], d=['t'])
>>> u_tt = grad(u_t, input_, components=['dudt'], d=['t'])
>>> nabla_u = nabla(output_, input_, components=['u'], d=['x'])
>>> return nabla_u - u_tt
>>> def nil_dirichlet(input_, output_):
>>> value = 0.0
>>> return output_.extract(['u']) - value
>>> def initial_condition(input_, output_):
>>> u_expected = (-3*torch.sin(2*torch.pi*input_.extract(['x']))
>>> + 5*torch.sin(8/3*torch.pi*input_.extract(['x'])))
>>> u = output_.extract(['u'])
>>> return u - u_expected
>>> conditions = {
>>> 't0': Condition(Span({'x': [0, 3], 't':0}), initial_condition),
>>> 'gamma1': Condition(Span({'x':0, 't':[0, 1]}), nil_dirichlet),
>>> 'gamma2': Condition(Span({'x':3, 't':[0, 1]}), nil_dirichlet),
>>> 'D': Condition(Span({'x': [0, 3], 't':[0, 1]}), wave_equation)}
"""
@abstractmethod
def temporal_domain(self):
"""
The temporal domain of the problem.
"""
pass
@property
def temporal_variable(self):
"""
The time variable of the problem.
"""
return self.temporal_domain.variables