batch_enhancement (#51)

This commit is contained in:
Dario Coscia
2022-12-12 11:09:20 +01:00
committed by GitHub
parent d70f5e730a
commit dbd78c9cf3
4 changed files with 236 additions and 59 deletions

View File

@@ -1,10 +1,12 @@
"""Utils module"""
from functools import reduce
import torch
from torch.utils.data import DataLoader, default_collate, ConcatDataset
from .label_tensor import LabelTensor
def number_parameters(model, aggregate=True, only_trainable=True): #TODO: check
def number_parameters(model, aggregate=True, only_trainable=True): # TODO: check
"""
Return the number of parameters of a given `model`.
@@ -43,5 +45,67 @@ def merge_two_tensors(tensor1, tensor2):
tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
tensor2 = LabelTensor(tensor2.repeat_interleave(n1, dim=0),
labels=tensor2.labels)
labels=tensor2.labels)
return tensor1.append(tensor2)
class PinaDataset():
def __init__(self, pinn) -> None:
self.pinn = pinn
@property
def dataloader(self):
return self._create_dataloader()
@property
def dataset(self):
return [self.SampleDataset(key, val)
for key, val in self.input_pts.items()]
def _create_dataloader(self):
"""Private method for creating dataloader
:return: dataloader
:rtype: torch.utils.data.DataLoader
"""
if self.pinn.batch_size is None:
return {key: [{key: val}] for key, val in self.pinn.input_pts.items()}
def custom_collate(batch):
# extracting pts labels
_, pts = list(batch[0].items())[0]
labels = pts.labels
# calling default torch collate
collate_res = default_collate(batch)
# save collate result in dict
res = {}
for key, val in collate_res.items():
val.labels = labels
res[key] = val
return res
# creating dataset, list of dataset for each location
datasets = [self.SampleDataset(key, val)
for key, val in self.pinn.input_pts.items()]
# creating dataloader
dataloaders = [DataLoader(dataset=dat,
batch_size=self.pinn.batch_size,
collate_fn=custom_collate)
for dat in datasets]
return dict(zip(self.pinn.input_pts.keys(), dataloaders))
class SampleDataset(torch.utils.data.Dataset):
def __init__(self, location, tensor):
self._tensor = tensor
self._location = location
self._len = len(tensor)
def __getitem__(self, index):
tensor = self._tensor.select(0, index)
return {self._location: tensor}
def __len__(self):
return self._len