add b-spline surface
This commit is contained in:
@@ -1,6 +1,5 @@
|
||||
import torch
|
||||
import pytest
|
||||
import numpy as np
|
||||
from scipy.interpolate import BSpline
|
||||
from pina.model import Spline
|
||||
from pina import LabelTensor
|
||||
@@ -12,7 +11,10 @@ n_ctrl_pts = torch.randint(order, order + 5, (1,)).item()
|
||||
n_knots = order + n_ctrl_pts
|
||||
|
||||
# Input tensor
|
||||
pts = LabelTensor(torch.linspace(0, 1, 100).reshape(-1, 1), ["x"])
|
||||
points = [
|
||||
LabelTensor(torch.rand(100, 1), ["x"]),
|
||||
LabelTensor(torch.rand(2, 100, 1), ["x"]),
|
||||
]
|
||||
|
||||
|
||||
# Function to compare with scipy implementation
|
||||
@@ -26,15 +28,15 @@ def check_scipy_spline(model, x, output_):
|
||||
)
|
||||
|
||||
# Compare outputs
|
||||
np.testing.assert_allclose(
|
||||
output_.squeeze().detach().numpy(),
|
||||
scipy_spline(x).flatten(),
|
||||
torch.allclose(
|
||||
output_,
|
||||
torch.tensor(scipy_spline(x), dtype=output_.dtype),
|
||||
atol=1e-5,
|
||||
rtol=1e-5,
|
||||
)
|
||||
|
||||
|
||||
# Define all possible combinations of valid arguments for the Spline class
|
||||
# Define all possible combinations of valid arguments for Spline class
|
||||
valid_args = [
|
||||
{
|
||||
"order": order,
|
||||
@@ -144,14 +146,15 @@ def test_constructor(args):
|
||||
|
||||
|
||||
@pytest.mark.parametrize("args", valid_args)
|
||||
def test_forward(args):
|
||||
@pytest.mark.parametrize("pts", points)
|
||||
def test_forward(args, pts):
|
||||
|
||||
# Define the model
|
||||
model = Spline(**args)
|
||||
|
||||
# Evaluate the model
|
||||
output_ = model(pts)
|
||||
assert output_.shape == (pts.shape[0], 1)
|
||||
assert output_.shape == pts.shape
|
||||
|
||||
# Compare with scipy implementation only for interpolant knots (mode: auto)
|
||||
if isinstance(args["knots"], dict) and args["knots"]["mode"] == "auto":
|
||||
@@ -159,7 +162,8 @@ def test_forward(args):
|
||||
|
||||
|
||||
@pytest.mark.parametrize("args", valid_args)
|
||||
def test_backward(args):
|
||||
@pytest.mark.parametrize("pts", points)
|
||||
def test_backward(args, pts):
|
||||
|
||||
# Define the model
|
||||
model = Spline(**args)
|
||||
|
||||
180
tests/test_model/test_spline_surface.py
Normal file
180
tests/test_model/test_spline_surface.py
Normal file
@@ -0,0 +1,180 @@
|
||||
import torch
|
||||
import random
|
||||
import pytest
|
||||
from pina.model import SplineSurface
|
||||
from pina import LabelTensor
|
||||
|
||||
|
||||
# Utility quantities for testing
|
||||
orders = [random.randint(1, 8) for _ in range(2)]
|
||||
n_ctrl_pts = random.randint(max(orders), max(orders) + 5)
|
||||
n_knots = [orders[i] + n_ctrl_pts for i in range(2)]
|
||||
|
||||
# Input tensor
|
||||
points = [
|
||||
LabelTensor(torch.rand(100, 2), ["x", "y"]),
|
||||
LabelTensor(torch.rand(2, 100, 2), ["x", "y"]),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"knots_u",
|
||||
[
|
||||
torch.rand(n_knots[0]),
|
||||
{"n": n_knots[0], "min": 0, "max": 1, "mode": "auto"},
|
||||
{"n": n_knots[0], "min": 0, "max": 1, "mode": "uniform"},
|
||||
None,
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"knots_v",
|
||||
[
|
||||
torch.rand(n_knots[1]),
|
||||
{"n": n_knots[1], "min": 0, "max": 1, "mode": "auto"},
|
||||
{"n": n_knots[1], "min": 0, "max": 1, "mode": "uniform"},
|
||||
None,
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"control_points", [torch.rand(n_ctrl_pts, n_ctrl_pts), None]
|
||||
)
|
||||
def test_constructor(knots_u, knots_v, control_points):
|
||||
|
||||
# Skip if knots_u, knots_v, and control_points are all None
|
||||
if (knots_u is None or knots_v is None) and control_points is None:
|
||||
return
|
||||
|
||||
SplineSurface(
|
||||
orders=orders,
|
||||
knots_u=knots_u,
|
||||
knots_v=knots_v,
|
||||
control_points=control_points,
|
||||
)
|
||||
|
||||
# Should fail if orders is not list of two elements
|
||||
with pytest.raises(ValueError):
|
||||
SplineSurface(
|
||||
orders=[orders[0]],
|
||||
knots_u=knots_u,
|
||||
knots_v=knots_v,
|
||||
control_points=control_points,
|
||||
)
|
||||
|
||||
# Should fail if both knots and control_points are None
|
||||
with pytest.raises(ValueError):
|
||||
SplineSurface(
|
||||
orders=orders,
|
||||
knots_u=None,
|
||||
knots_v=None,
|
||||
control_points=None,
|
||||
)
|
||||
|
||||
# Should fail if control_points is not a torch.Tensor when provided
|
||||
with pytest.raises(ValueError):
|
||||
SplineSurface(
|
||||
orders=orders,
|
||||
knots_u=knots_u,
|
||||
knots_v=knots_v,
|
||||
control_points=[[0.0] * n_ctrl_pts] * n_ctrl_pts,
|
||||
)
|
||||
|
||||
# Should fail if control_points is not of the correct shape when provided
|
||||
# It assumes that at least one among knots_u and knots_v is not None
|
||||
if knots_u is not None or knots_v is not None:
|
||||
with pytest.raises(ValueError):
|
||||
SplineSurface(
|
||||
orders=orders,
|
||||
knots_u=knots_u,
|
||||
knots_v=knots_v,
|
||||
control_points=torch.rand(n_ctrl_pts + 1, n_ctrl_pts + 1),
|
||||
)
|
||||
|
||||
# Should fail if there are not enough knots_u to define the control points
|
||||
with pytest.raises(ValueError):
|
||||
SplineSurface(
|
||||
orders=orders,
|
||||
knots_u=torch.linspace(0, 1, orders[0]),
|
||||
knots_v=knots_v,
|
||||
control_points=None,
|
||||
)
|
||||
|
||||
# Should fail if there are not enough knots_v to define the control points
|
||||
with pytest.raises(ValueError):
|
||||
SplineSurface(
|
||||
orders=orders,
|
||||
knots_u=knots_u,
|
||||
knots_v=torch.linspace(0, 1, orders[1]),
|
||||
control_points=None,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"knots_u",
|
||||
[
|
||||
torch.rand(n_knots[0]),
|
||||
{"n": n_knots[0], "min": 0, "max": 1, "mode": "auto"},
|
||||
{"n": n_knots[0], "min": 0, "max": 1, "mode": "uniform"},
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"knots_v",
|
||||
[
|
||||
torch.rand(n_knots[1]),
|
||||
{"n": n_knots[1], "min": 0, "max": 1, "mode": "auto"},
|
||||
{"n": n_knots[1], "min": 0, "max": 1, "mode": "uniform"},
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"control_points", [torch.rand(n_ctrl_pts, n_ctrl_pts), None]
|
||||
)
|
||||
@pytest.mark.parametrize("pts", points)
|
||||
def test_forward(knots_u, knots_v, control_points, pts):
|
||||
|
||||
# Define the model
|
||||
model = SplineSurface(
|
||||
orders=orders,
|
||||
knots_u=knots_u,
|
||||
knots_v=knots_v,
|
||||
control_points=control_points,
|
||||
)
|
||||
|
||||
# Evaluate the model
|
||||
output_ = model(pts)
|
||||
assert output_.shape == (*pts.shape[:-1], 1)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"knots_u",
|
||||
[
|
||||
torch.rand(n_knots[0]),
|
||||
{"n": n_knots[0], "min": 0, "max": 1, "mode": "auto"},
|
||||
{"n": n_knots[0], "min": 0, "max": 1, "mode": "uniform"},
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"knots_v",
|
||||
[
|
||||
torch.rand(n_knots[1]),
|
||||
{"n": n_knots[1], "min": 0, "max": 1, "mode": "auto"},
|
||||
{"n": n_knots[1], "min": 0, "max": 1, "mode": "uniform"},
|
||||
],
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"control_points", [torch.rand(n_ctrl_pts, n_ctrl_pts), None]
|
||||
)
|
||||
@pytest.mark.parametrize("pts", points)
|
||||
def test_backward(knots_u, knots_v, control_points, pts):
|
||||
|
||||
# Define the model
|
||||
model = SplineSurface(
|
||||
orders=orders,
|
||||
knots_u=knots_u,
|
||||
knots_v=knots_v,
|
||||
control_points=control_points,
|
||||
)
|
||||
|
||||
# Evaluate the model
|
||||
output_ = model(pts)
|
||||
loss = torch.mean(output_)
|
||||
loss.backward()
|
||||
assert model.control_points.grad.shape == model.control_points.shape
|
||||
Reference in New Issue
Block a user