add b-spline surface

This commit is contained in:
GiovanniCanali
2025-10-06 15:50:14 +02:00
parent 71ce8c55f6
commit df4ea64c74
7 changed files with 425 additions and 30 deletions

View File

@@ -95,6 +95,7 @@ Models
MultiFeedForward <model/multi_feed_forward.rst>
ResidualFeedForward <model/residual_feed_forward.rst>
Spline <model/spline.rst>
SplineSurface <model/spline_surface.rst>
DeepONet <model/deeponet.rst>
MIONet <model/mionet.rst>
KernelNeuralOperator <model/kernel_neural_operator.rst>

View File

@@ -0,0 +1,7 @@
Spline Surface
================
.. currentmodule:: pina.model.spline_surface
.. autoclass:: SplineSurface
:members:
:show-inheritance:

View File

@@ -26,6 +26,7 @@ from .kernel_neural_operator import KernelNeuralOperator
from .average_neural_operator import AveragingNeuralOperator
from .low_rank_neural_operator import LowRankNeuralOperator
from .spline import Spline
from .spline_surface import SplineSurface
from .graph_neural_operator import GraphNeuralOperator
from .pirate_network import PirateNet
from .equivariant_graph_neural_operator import EquivariantGraphNeuralOperator

View File

@@ -1,8 +1,8 @@
"""Module for the B-Spline model class."""
import torch
import warnings
from ..utils import check_positive_integer
import torch
from ..utils import check_positive_integer, check_consistency
class Spline(torch.nn.Module):
@@ -75,6 +75,10 @@ class Spline(torch.nn.Module):
If None, they are initialized as learnable parameters with an
initial value of zero. Default is None.
:raises AssertionError: If ``order`` is not a positive integer.
:raises ValueError: If ``knots`` is neither a torch.Tensor nor a
dictionary, when provided.
:raises ValueError: If ``control_points`` is not a torch.Tensor,
when provided.
:raises ValueError: If both ``knots`` and ``control_points`` are None.
:raises ValueError: If ``knots`` is not one-dimensional.
:raises ValueError: If ``control_points`` is not one-dimensional.
@@ -87,6 +91,8 @@ class Spline(torch.nn.Module):
# Check consistency
check_positive_integer(value=order, strict=True)
check_consistency(knots, (type(None), torch.Tensor, dict))
check_consistency(control_points, (type(None), torch.Tensor))
# Raise error if neither knots nor control points are provided
if knots is None and control_points is None:
@@ -229,10 +235,10 @@ class Spline(torch.nn.Module):
:rtype: torch.Tensor
"""
return torch.einsum(
"bi, i -> b",
self.basis(x.as_subclass(torch.Tensor)).squeeze(1),
"...bi, i -> ...b",
self.basis(x.as_subclass(torch.Tensor)).squeeze(-1),
self.control_points,
).reshape(-1, 1)
)
@property
def control_points(self):
@@ -254,7 +260,6 @@ class Spline(torch.nn.Module):
initial value. Default is None.
:raises ValueError: If there are not enough knots to define the control
points, due to the relation: #knots = order + #control_points.
:raises ValueError: If control_points is not a torch.Tensor.
"""
# If control points are not provided, initialize them
if control_points is None:
@@ -270,13 +275,6 @@ class Spline(torch.nn.Module):
# Initialize control points to zero
control_points = torch.zeros(len(self.knots) - self.order)
# Check validity of control points
elif not isinstance(control_points, torch.Tensor):
raise ValueError(
"control_points must be a torch.Tensor,"
f" got {type(control_points)}"
)
# Set control points
self._control_points = torch.nn.Parameter(
control_points, requires_grad=True
@@ -308,18 +306,10 @@ class Spline(torch.nn.Module):
last control points. In this case, the number of knots is inferred
and the ``"n"`` key is ignored.
:type value: torch.Tensor | dict
:raises ValueError: If value is not a torch.Tensor or a dictionary.
:raises ValueError: If a dictionary is provided but does not contain
the required keys.
:raises ValueError: If the mode specified in the dictionary is invalid.
"""
# Check validity of knots
if not isinstance(value, (torch.Tensor, dict)):
raise ValueError(
"Knots must be a torch.Tensor or a dictionary,"
f" got {type(value)}."
)
# If a dictionary is provided, initialize knots accordingly
if isinstance(value, dict):

View File

@@ -0,0 +1,212 @@
"""Module for the bivariate B-Spline surface model class."""
import torch
from .spline import Spline
from ..utils import check_consistency
class SplineSurface(torch.nn.Module):
r"""
The bivariate B-Spline surface model class.
A bivariate B-spline surface is a parametric surface defined as the tensor
product of two univariate B-spline curves:
.. math::
S(x, y) = \sum_{i,j=1}^{n_x, n_y} B_{i,k}(x) B_{j,s}(y) C_{i,j},
\quad x \in [x_1, x_m], y \in [y_1, y_l]
where:
- :math:`C_{i,j} \in \mathbb{R}^2` are the control points. These fixed
points influence the shape of the surface but are not generally
interpolated, except at the boundaries under certain knot multiplicities.
- :math:`B_{i,k}(x)` and :math:`B_{j,s}(y)` are the B-spline basis functions
defined over two orthogonal directions, with orders :math:`k` and
:math:`s`, respectively.
- :math:`X = \{ x_1, x_2, \dots, x_m \}` and
:math:`Y = \{ y_1, y_2, \dots, y_l \}` are the non-decreasing knot
vectors along the two directions.
"""
def __init__(self, orders, knots_u=None, knots_v=None, control_points=None):
"""
Initialization of the :class:`SplineSurface` class.
:param list[int] orders: The orders of the spline along each parametric
direction. Each order defines the degree of the corresponding basis
as ``degree = order - 1``.
:param knots_u: The knots of the spline along the first direction.
For details on valid formats and initialization modes, see the
:class:`Spline` class. Default is None.
:type knots_u: torch.Tensor | dict
:param knots_v: The knots of the spline along the second direction.
For details on valid formats and initialization modes, see the
:class:`Spline` class. Default is None.
:type knots_v: torch.Tensor | dict
:param torch.Tensor control_points: The control points defining the
surface geometry. It must be a two-dimensional tensor of shape
``[len(knots_u) - orders[0], len(knots_v) - orders[1]]``.
If None, they are initialized as learnable parameters with zero
values. Default is None.
:raises ValueError: If ``orders`` is not a list of integers.
:raises ValueError: If ``knots_u`` is neither a torch.Tensor nor a
dictionary, when provided.
:raises ValueError: If ``knots_v`` is neither a torch.Tensor nor a
dictionary, when provided.
:raises ValueError: If ``control_points`` is not a torch.Tensor,
when provided.
:raises ValueError: If ``orders`` is not a list of two elements.
:raises ValueError: If ``knots_u``, ``knots_v``, and ``control_points``
are all None.
"""
super().__init__()
# Check consistency
check_consistency(orders, int)
check_consistency(control_points, (type(None), torch.Tensor))
check_consistency(knots_u, (type(None), torch.Tensor, dict))
check_consistency(knots_v, (type(None), torch.Tensor, dict))
# Check orders is a list of two elements
if len(orders) != 2:
raise ValueError("orders must be a list of two elements.")
# Raise error if neither knots nor control points are provided
if (knots_u is None or knots_v is None) and control_points is None:
raise ValueError(
"control_points cannot be None if knots_u or knots_v is None."
)
# Initialize knots_u if not provided
if knots_u is None and control_points is not None:
knots_u = {
"n": control_points.shape[0] + orders[0],
"min": 0,
"max": 1,
"mode": "auto",
}
# Initialize knots_v if not provided
if knots_v is None and control_points is not None:
knots_v = {
"n": control_points.shape[1] + orders[1],
"min": 0,
"max": 1,
"mode": "auto",
}
# Create two univariate b-splines
self.spline_u = Spline(order=orders[0], knots=knots_u)
self.spline_v = Spline(order=orders[1], knots=knots_v)
self.control_points = control_points
# Delete unneeded parameters
delattr(self.spline_u, "_control_points")
delattr(self.spline_v, "_control_points")
def forward(self, x):
"""
Forward pass for the :class:`SplineSurface` model.
:param x: The input tensor.
:type x: torch.Tensor | LabelTensor
:return: The output tensor.
:rtype: torch.Tensor
"""
return torch.einsum(
"...bi, ...bj, ij -> ...b",
self.spline_u.basis(x.as_subclass(torch.Tensor)[..., 0]),
self.spline_v.basis(x.as_subclass(torch.Tensor)[..., 1]),
self.control_points,
).unsqueeze(-1)
@property
def knots(self):
"""
The knots of the univariate splines defining the spline surface.
:return: The knots.
:rtype: tuple(torch.Tensor, torch.Tensor)
"""
return self.spline_u.knots, self.spline_v.knots
@knots.setter
def knots(self, value):
"""
Set the knots of the spline surface.
:param value: A tuple (knots_u, knots_v) containing the knots for both
parametric directions.
:type value: tuple(torch.Tensor | dict, torch.Tensor | dict)
:raises ValueError: If value is not a tuple of two elements.
"""
# Check value is a tuple of two elements
if not (isinstance(value, tuple) and len(value) == 2):
raise ValueError("Knots must be a tuple of two elements.")
knots_u, knots_v = value
self.spline_u.knots = knots_u
self.spline_v.knots = knots_v
@property
def control_points(self):
"""
The control points of the spline.
:return: The control points.
:rtype: torch.Tensor
"""
return self._control_points
@control_points.setter
def control_points(self, control_points):
"""
Set the control points of the spline surface.
:param torch.Tensor control_points: The bidimensional control points
tensor, where each dimension refers to a direction in the parameter
space. If None, control points are initialized to learnable
parameters with zero initial value. Default is None.
:raises ValueError: If in any direction there are not enough knots to
define the control points, due to the relation:
#knots = order + #control_points.
:raises ValueError: If ``control_points`` is not of the correct shape.
"""
# Save correct shape of control points
__valid_shape = (
len(self.spline_u.knots) - self.spline_u.order,
len(self.spline_v.knots) - self.spline_v.order,
)
# If control points are not provided, initialize them
if control_points is None:
# Check that there are enough knots to define control points
if (
len(self.spline_u.knots) < self.spline_u.order + 1
or len(self.spline_v.knots) < self.spline_v.order + 1
):
raise ValueError(
f"Not enough knots to define control points. Got "
f"{len(self.spline_u.knots)} knots along u and "
f"{len(self.spline_v.knots)} knots along v, but need at "
f"least {self.spline_u.order + 1} and "
f"{self.spline_v.order + 1}, respectively."
)
# Initialize control points to zero
control_points = torch.zeros(__valid_shape)
# Check control points
if control_points.shape != __valid_shape:
raise ValueError(
"control_points must be of the correct shape. ",
f"Expected {__valid_shape}, got {control_points.shape}.",
)
# Register control points as a learnable parameter
self._control_points = torch.nn.Parameter(
control_points, requires_grad=True
)

View File

@@ -1,6 +1,5 @@
import torch
import pytest
import numpy as np
from scipy.interpolate import BSpline
from pina.model import Spline
from pina import LabelTensor
@@ -12,7 +11,10 @@ n_ctrl_pts = torch.randint(order, order + 5, (1,)).item()
n_knots = order + n_ctrl_pts
# Input tensor
pts = LabelTensor(torch.linspace(0, 1, 100).reshape(-1, 1), ["x"])
points = [
LabelTensor(torch.rand(100, 1), ["x"]),
LabelTensor(torch.rand(2, 100, 1), ["x"]),
]
# Function to compare with scipy implementation
@@ -26,15 +28,15 @@ def check_scipy_spline(model, x, output_):
)
# Compare outputs
np.testing.assert_allclose(
output_.squeeze().detach().numpy(),
scipy_spline(x).flatten(),
torch.allclose(
output_,
torch.tensor(scipy_spline(x), dtype=output_.dtype),
atol=1e-5,
rtol=1e-5,
)
# Define all possible combinations of valid arguments for the Spline class
# Define all possible combinations of valid arguments for Spline class
valid_args = [
{
"order": order,
@@ -144,14 +146,15 @@ def test_constructor(args):
@pytest.mark.parametrize("args", valid_args)
def test_forward(args):
@pytest.mark.parametrize("pts", points)
def test_forward(args, pts):
# Define the model
model = Spline(**args)
# Evaluate the model
output_ = model(pts)
assert output_.shape == (pts.shape[0], 1)
assert output_.shape == pts.shape
# Compare with scipy implementation only for interpolant knots (mode: auto)
if isinstance(args["knots"], dict) and args["knots"]["mode"] == "auto":
@@ -159,7 +162,8 @@ def test_forward(args):
@pytest.mark.parametrize("args", valid_args)
def test_backward(args):
@pytest.mark.parametrize("pts", points)
def test_backward(args, pts):
# Define the model
model = Spline(**args)

View File

@@ -0,0 +1,180 @@
import torch
import random
import pytest
from pina.model import SplineSurface
from pina import LabelTensor
# Utility quantities for testing
orders = [random.randint(1, 8) for _ in range(2)]
n_ctrl_pts = random.randint(max(orders), max(orders) + 5)
n_knots = [orders[i] + n_ctrl_pts for i in range(2)]
# Input tensor
points = [
LabelTensor(torch.rand(100, 2), ["x", "y"]),
LabelTensor(torch.rand(2, 100, 2), ["x", "y"]),
]
@pytest.mark.parametrize(
"knots_u",
[
torch.rand(n_knots[0]),
{"n": n_knots[0], "min": 0, "max": 1, "mode": "auto"},
{"n": n_knots[0], "min": 0, "max": 1, "mode": "uniform"},
None,
],
)
@pytest.mark.parametrize(
"knots_v",
[
torch.rand(n_knots[1]),
{"n": n_knots[1], "min": 0, "max": 1, "mode": "auto"},
{"n": n_knots[1], "min": 0, "max": 1, "mode": "uniform"},
None,
],
)
@pytest.mark.parametrize(
"control_points", [torch.rand(n_ctrl_pts, n_ctrl_pts), None]
)
def test_constructor(knots_u, knots_v, control_points):
# Skip if knots_u, knots_v, and control_points are all None
if (knots_u is None or knots_v is None) and control_points is None:
return
SplineSurface(
orders=orders,
knots_u=knots_u,
knots_v=knots_v,
control_points=control_points,
)
# Should fail if orders is not list of two elements
with pytest.raises(ValueError):
SplineSurface(
orders=[orders[0]],
knots_u=knots_u,
knots_v=knots_v,
control_points=control_points,
)
# Should fail if both knots and control_points are None
with pytest.raises(ValueError):
SplineSurface(
orders=orders,
knots_u=None,
knots_v=None,
control_points=None,
)
# Should fail if control_points is not a torch.Tensor when provided
with pytest.raises(ValueError):
SplineSurface(
orders=orders,
knots_u=knots_u,
knots_v=knots_v,
control_points=[[0.0] * n_ctrl_pts] * n_ctrl_pts,
)
# Should fail if control_points is not of the correct shape when provided
# It assumes that at least one among knots_u and knots_v is not None
if knots_u is not None or knots_v is not None:
with pytest.raises(ValueError):
SplineSurface(
orders=orders,
knots_u=knots_u,
knots_v=knots_v,
control_points=torch.rand(n_ctrl_pts + 1, n_ctrl_pts + 1),
)
# Should fail if there are not enough knots_u to define the control points
with pytest.raises(ValueError):
SplineSurface(
orders=orders,
knots_u=torch.linspace(0, 1, orders[0]),
knots_v=knots_v,
control_points=None,
)
# Should fail if there are not enough knots_v to define the control points
with pytest.raises(ValueError):
SplineSurface(
orders=orders,
knots_u=knots_u,
knots_v=torch.linspace(0, 1, orders[1]),
control_points=None,
)
@pytest.mark.parametrize(
"knots_u",
[
torch.rand(n_knots[0]),
{"n": n_knots[0], "min": 0, "max": 1, "mode": "auto"},
{"n": n_knots[0], "min": 0, "max": 1, "mode": "uniform"},
],
)
@pytest.mark.parametrize(
"knots_v",
[
torch.rand(n_knots[1]),
{"n": n_knots[1], "min": 0, "max": 1, "mode": "auto"},
{"n": n_knots[1], "min": 0, "max": 1, "mode": "uniform"},
],
)
@pytest.mark.parametrize(
"control_points", [torch.rand(n_ctrl_pts, n_ctrl_pts), None]
)
@pytest.mark.parametrize("pts", points)
def test_forward(knots_u, knots_v, control_points, pts):
# Define the model
model = SplineSurface(
orders=orders,
knots_u=knots_u,
knots_v=knots_v,
control_points=control_points,
)
# Evaluate the model
output_ = model(pts)
assert output_.shape == (*pts.shape[:-1], 1)
@pytest.mark.parametrize(
"knots_u",
[
torch.rand(n_knots[0]),
{"n": n_knots[0], "min": 0, "max": 1, "mode": "auto"},
{"n": n_knots[0], "min": 0, "max": 1, "mode": "uniform"},
],
)
@pytest.mark.parametrize(
"knots_v",
[
torch.rand(n_knots[1]),
{"n": n_knots[1], "min": 0, "max": 1, "mode": "auto"},
{"n": n_knots[1], "min": 0, "max": 1, "mode": "uniform"},
],
)
@pytest.mark.parametrize(
"control_points", [torch.rand(n_ctrl_pts, n_ctrl_pts), None]
)
@pytest.mark.parametrize("pts", points)
def test_backward(knots_u, knots_v, control_points, pts):
# Define the model
model = SplineSurface(
orders=orders,
knots_u=knots_u,
knots_v=knots_v,
control_points=control_points,
)
# Evaluate the model
output_ = model(pts)
loss = torch.mean(output_)
loss.backward()
assert model.control_points.grad.shape == model.control_points.shape