Renaming
* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
This commit is contained in:
committed by
Nicola Demo
parent
810d215ca0
commit
df673cad4e
10
pina/callback/__init__.py
Normal file
10
pina/callback/__init__.py
Normal file
@@ -0,0 +1,10 @@
|
||||
__all__ = [
|
||||
"SwitchOptimizer",
|
||||
"R3Refinement",
|
||||
"MetricTracker",
|
||||
"PINAProgressBar",
|
||||
]
|
||||
|
||||
from .optimizer_callback import SwitchOptimizer
|
||||
from .adaptive_refinment_callback import R3Refinement
|
||||
from .processing_callback import MetricTracker, PINAProgressBar
|
||||
174
pina/callback/adaptive_refinment_callback.py
Normal file
174
pina/callback/adaptive_refinment_callback.py
Normal file
@@ -0,0 +1,174 @@
|
||||
"""PINA Callbacks Implementations"""
|
||||
|
||||
import torch
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
from ..label_tensor import LabelTensor
|
||||
from ..utils import check_consistency
|
||||
|
||||
|
||||
class R3Refinement(Callback):
|
||||
|
||||
def __init__(self, sample_every):
|
||||
"""
|
||||
PINA Implementation of an R3 Refinement Callback.
|
||||
|
||||
This callback implements the R3 (Retain-Resample-Release) routine for
|
||||
sampling new points based on adaptive search.
|
||||
The algorithm incrementally accumulates collocation points in regions
|
||||
of high PDE residuals, and releases those
|
||||
with low residuals. Points are sampled uniformly in all regions
|
||||
where sampling is needed.
|
||||
|
||||
.. seealso::
|
||||
|
||||
Original Reference: Daw, Arka, et al. *Mitigating Propagation
|
||||
Failures in Physics-informed Neural Networks
|
||||
using Retain-Resample-Release (R3) Sampling. (2023)*.
|
||||
DOI: `10.48550/arXiv.2207.02338
|
||||
<https://doi.org/10.48550/arXiv.2207.02338>`_
|
||||
|
||||
:param int sample_every: Frequency for sampling.
|
||||
:raises ValueError: If `sample_every` is not an integer.
|
||||
|
||||
Example:
|
||||
>>> r3_callback = R3Refinement(sample_every=5)
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
# sample every
|
||||
check_consistency(sample_every, int)
|
||||
self._sample_every = sample_every
|
||||
self._const_pts = None
|
||||
|
||||
def _compute_residual(self, trainer):
|
||||
"""
|
||||
Computes the residuals for a PINN object.
|
||||
|
||||
:return: the total loss, and pointwise loss.
|
||||
:rtype: tuple
|
||||
"""
|
||||
|
||||
# extract the solver and device from trainer
|
||||
solver = trainer.solver
|
||||
device = trainer._accelerator_connector._accelerator_flag
|
||||
precision = trainer.precision
|
||||
if precision == "64-true":
|
||||
precision = torch.float64
|
||||
elif precision == "32-true":
|
||||
precision = torch.float32
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"Currently R3Refinement is only implemented "
|
||||
"for precision '32-true' and '64-true', set "
|
||||
"Trainer precision to match one of the "
|
||||
"available precisions."
|
||||
)
|
||||
|
||||
# compute residual
|
||||
res_loss = {}
|
||||
tot_loss = []
|
||||
for location in self._sampling_locations: #TODO fix for new collector
|
||||
condition = solver.problem.conditions[location]
|
||||
pts = solver.problem.input_pts[location]
|
||||
# send points to correct device
|
||||
pts = pts.to(device=device, dtype=precision)
|
||||
pts = pts.requires_grad_(True)
|
||||
pts.retain_grad()
|
||||
# PINN loss: equation evaluated only for sampling locations
|
||||
target = condition.equation.residual(pts, solver.forward(pts))
|
||||
res_loss[location] = torch.abs(target).as_subclass(torch.Tensor)
|
||||
tot_loss.append(torch.abs(target))
|
||||
|
||||
print(tot_loss)
|
||||
|
||||
return torch.vstack(tot_loss), res_loss
|
||||
|
||||
def _r3_routine(self, trainer):
|
||||
"""
|
||||
R3 refinement main routine.
|
||||
|
||||
:param Trainer trainer: PINA Trainer.
|
||||
"""
|
||||
# compute residual (all device possible)
|
||||
tot_loss, res_loss = self._compute_residual(trainer)
|
||||
tot_loss = tot_loss.as_subclass(torch.Tensor)
|
||||
|
||||
# !!!!!! From now everything is performed on CPU !!!!!!
|
||||
|
||||
# average loss
|
||||
avg = (tot_loss.mean()).to("cpu")
|
||||
old_pts = {} # points to be retained
|
||||
for location in self._sampling_locations:
|
||||
pts = trainer._model.problem.input_pts[location]
|
||||
labels = pts.labels
|
||||
pts = pts.cpu().detach().as_subclass(torch.Tensor)
|
||||
residuals = res_loss[location].cpu()
|
||||
mask = (residuals > avg).flatten()
|
||||
if any(mask): # append residuals greater than average
|
||||
pts = (pts[mask]).as_subclass(LabelTensor)
|
||||
pts.labels = labels
|
||||
old_pts[location] = pts
|
||||
numb_pts = self._const_pts[location] - len(old_pts[location])
|
||||
# sample new points
|
||||
trainer._model.problem.discretise_domain(
|
||||
numb_pts, "random", locations=[location]
|
||||
)
|
||||
|
||||
else: # if no res greater than average, samples all uniformly
|
||||
numb_pts = self._const_pts[location]
|
||||
# sample new points
|
||||
trainer._model.problem.discretise_domain(
|
||||
numb_pts, "random", locations=[location]
|
||||
)
|
||||
# adding previous population points
|
||||
trainer._model.problem.add_points(old_pts)
|
||||
|
||||
# update dataloader
|
||||
trainer._create_or_update_loader()
|
||||
|
||||
def on_train_start(self, trainer, _):
|
||||
"""
|
||||
Callback function called at the start of training.
|
||||
|
||||
This method extracts the locations for sampling from the problem
|
||||
conditions and calculates the total population.
|
||||
|
||||
:param trainer: The trainer object managing the training process.
|
||||
:type trainer: pytorch_lightning.Trainer
|
||||
:param _: Placeholder argument (not used).
|
||||
|
||||
:return: None
|
||||
:rtype: None
|
||||
"""
|
||||
# extract locations for sampling
|
||||
problem = trainer.solver.problem
|
||||
locations = []
|
||||
for condition_name in problem.conditions:
|
||||
condition = problem.conditions[condition_name]
|
||||
if hasattr(condition, "location"):
|
||||
locations.append(condition_name)
|
||||
self._sampling_locations = locations
|
||||
|
||||
# extract total population
|
||||
const_pts = {} # for each location, store the # of pts to keep constant
|
||||
for location in self._sampling_locations:
|
||||
pts = trainer._model.problem.input_pts[location]
|
||||
const_pts[location] = len(pts)
|
||||
self._const_pts = const_pts
|
||||
|
||||
def on_train_epoch_end(self, trainer, __):
|
||||
"""
|
||||
Callback function called at the end of each training epoch.
|
||||
|
||||
This method triggers the R3 routine for refinement if the current
|
||||
epoch is a multiple of `_sample_every`.
|
||||
|
||||
:param trainer: The trainer object managing the training process.
|
||||
:type trainer: pytorch_lightning.Trainer
|
||||
:param __: Placeholder argument (not used).
|
||||
|
||||
:return: None
|
||||
:rtype: None
|
||||
"""
|
||||
if trainer.current_epoch % self._sample_every == 0:
|
||||
self._r3_routine(trainer)
|
||||
65
pina/callback/optimizer_callback.py
Normal file
65
pina/callback/optimizer_callback.py
Normal file
@@ -0,0 +1,65 @@
|
||||
"""PINA Callbacks Implementations"""
|
||||
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
import torch
|
||||
from ..utils import check_consistency
|
||||
from pina.optim import TorchOptimizer
|
||||
|
||||
|
||||
class SwitchOptimizer(Callback):
|
||||
|
||||
def __init__(self, new_optimizers, epoch_switch):
|
||||
"""
|
||||
PINA Implementation of a Lightning Callback to switch optimizer during
|
||||
training.
|
||||
|
||||
This callback allows for switching between different optimizers during
|
||||
training, enabling the exploration of multiple optimization strategies
|
||||
without the need to stop training.
|
||||
|
||||
:param new_optimizers: The model optimizers to switch to. Can be a
|
||||
single :class:`torch.optim.Optimizer` or a list of them for multiple
|
||||
model solver.
|
||||
:type new_optimizers: pina.optim.TorchOptimizer | list
|
||||
:param epoch_switch: The epoch at which to switch to the new optimizer.
|
||||
:type epoch_switch: int
|
||||
|
||||
Example:
|
||||
>>> switch_callback = SwitchOptimizer(new_optimizers=optimizer,
|
||||
>>> epoch_switch=10)
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
if epoch_switch < 1:
|
||||
raise ValueError("epoch_switch must be greater than one.")
|
||||
|
||||
if not isinstance(new_optimizers, list):
|
||||
new_optimizers = [new_optimizers]
|
||||
|
||||
# check type consistency
|
||||
for optimizer in new_optimizers:
|
||||
check_consistency(optimizer, TorchOptimizer)
|
||||
check_consistency(epoch_switch, int)
|
||||
# save new optimizers
|
||||
self._new_optimizers = new_optimizers
|
||||
self._epoch_switch = epoch_switch
|
||||
|
||||
def on_train_epoch_start(self, trainer, __):
|
||||
"""
|
||||
Callback function to switch optimizer at the start of each training epoch.
|
||||
|
||||
:param trainer: The trainer object managing the training process.
|
||||
:type trainer: pytorch_lightning.Trainer
|
||||
:param _: Placeholder argument (not used).
|
||||
|
||||
:return: None
|
||||
:rtype: None
|
||||
"""
|
||||
if trainer.current_epoch == self._epoch_switch:
|
||||
optims = []
|
||||
|
||||
for idx, optim in enumerate(self._new_optimizers):
|
||||
optim.hook(trainer.solver.models[idx].parameters())
|
||||
optims.append(optim.instance)
|
||||
|
||||
trainer.optimizers = optims
|
||||
152
pina/callback/processing_callback.py
Normal file
152
pina/callback/processing_callback.py
Normal file
@@ -0,0 +1,152 @@
|
||||
"""PINA Callbacks Implementations"""
|
||||
|
||||
import torch
|
||||
import copy
|
||||
|
||||
from lightning.pytorch.callbacks import Callback, TQDMProgressBar
|
||||
from lightning.pytorch.callbacks.progress.progress_bar import (
|
||||
get_standard_metrics,
|
||||
)
|
||||
from pina.utils import check_consistency
|
||||
|
||||
|
||||
class MetricTracker(Callback):
|
||||
|
||||
def __init__(self, metrics_to_track=None):
|
||||
"""
|
||||
Lightning Callback for Metric Tracking.
|
||||
|
||||
Tracks specific metrics during the training process.
|
||||
|
||||
:ivar _collection: A list to store collected metrics after each epoch.
|
||||
|
||||
:param metrics_to_track: List of metrics to track. Defaults to train/val loss.
|
||||
:type metrics_to_track: list, optional
|
||||
"""
|
||||
super().__init__()
|
||||
self._collection = []
|
||||
# Default to tracking 'train_loss' and 'val_loss' if not specified
|
||||
self.metrics_to_track = metrics_to_track or ['train_loss', 'val_loss']
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
"""
|
||||
Collect and track metrics at the end of each training epoch.
|
||||
|
||||
:param trainer: The trainer object managing the training process.
|
||||
:type trainer: pytorch_lightning.Trainer
|
||||
:param pl_module: The model being trained (not used here).
|
||||
"""
|
||||
# Track metrics after the first epoch onwards
|
||||
if trainer.current_epoch > 0:
|
||||
# Append only the tracked metrics to avoid unnecessary data
|
||||
tracked_metrics = {
|
||||
k: v for k, v in trainer.logged_metrics.items()
|
||||
if k in self.metrics_to_track
|
||||
}
|
||||
self._collection.append(copy.deepcopy(tracked_metrics))
|
||||
|
||||
@property
|
||||
def metrics(self):
|
||||
"""
|
||||
Aggregate collected metrics over all epochs.
|
||||
|
||||
:return: A dictionary containing aggregated metric values.
|
||||
:rtype: dict
|
||||
"""
|
||||
if not self._collection:
|
||||
return {}
|
||||
|
||||
# Get intersection of keys across all collected dictionaries
|
||||
common_keys = set(self._collection[0]).intersection(*self._collection[1:])
|
||||
|
||||
# Stack the metric values for common keys and return
|
||||
return {
|
||||
k: torch.stack([dic[k] for dic in self._collection])
|
||||
for k in common_keys if k in self.metrics_to_track
|
||||
}
|
||||
|
||||
|
||||
|
||||
class PINAProgressBar(TQDMProgressBar):
|
||||
|
||||
BAR_FORMAT = "{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_noinv_fmt}{postfix}]"
|
||||
|
||||
def __init__(self, metrics="val", **kwargs):
|
||||
"""
|
||||
PINA Implementation of a Lightning Callback for enriching the progress
|
||||
bar.
|
||||
|
||||
This class provides functionality to display only relevant metrics
|
||||
during the training process.
|
||||
|
||||
:param metrics: Logged metrics to display during the training. It should
|
||||
be a subset of the conditions keys defined in
|
||||
:obj:`pina.condition.Condition`.
|
||||
:type metrics: str | list(str) | tuple(str)
|
||||
|
||||
:Keyword Arguments:
|
||||
The additional keyword arguments specify the progress bar
|
||||
and can be choosen from the `pytorch-lightning
|
||||
TQDMProgressBar API <https://lightning.ai/docs/pytorch/stable/_modules/lightning/pytorch/callback/progress/tqdm_progress.html#TQDMProgressBar>`_
|
||||
|
||||
Example:
|
||||
>>> pbar = PINAProgressBar(['mean'])
|
||||
>>> # ... Perform training ...
|
||||
>>> trainer = Trainer(solver, callback=[pbar])
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
# check consistency
|
||||
if not isinstance(metrics, (list, tuple)):
|
||||
metrics = [metrics]
|
||||
check_consistency(metrics, str)
|
||||
self._sorted_metrics = metrics
|
||||
|
||||
def get_metrics(self, trainer, pl_module):
|
||||
r"""Combines progress bar metrics collected from the trainer with
|
||||
standard metrics from get_standard_metrics.
|
||||
Implement this to override the items displayed in the progress bar.
|
||||
The progress bar metrics are sorted according to ``metrics``.
|
||||
|
||||
Here is an example of how to override the defaults:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def get_metrics(self, trainer, model):
|
||||
# don't show the version number
|
||||
items = super().get_metrics(trainer, model)
|
||||
items.pop("v_num", None)
|
||||
return items
|
||||
|
||||
:return: Dictionary with the items to be displayed in the progress bar.
|
||||
:rtype: tuple(dict)
|
||||
|
||||
"""
|
||||
standard_metrics = get_standard_metrics(trainer)
|
||||
pbar_metrics = trainer.progress_bar_metrics
|
||||
if pbar_metrics:
|
||||
pbar_metrics = {
|
||||
key: pbar_metrics[key] for key in self._sorted_metrics
|
||||
}
|
||||
return {**standard_metrics, **pbar_metrics}
|
||||
|
||||
def on_fit_start(self, trainer, pl_module):
|
||||
"""
|
||||
Check that the metrics defined in the initialization are available,
|
||||
i.e. are correctly logged.
|
||||
|
||||
:param trainer: The trainer object managing the training process.
|
||||
:type trainer: pytorch_lightning.Trainer
|
||||
:param pl_module: Placeholder argument.
|
||||
"""
|
||||
# Check if all keys in sort_keys are present in the dictionary
|
||||
for key in self._sorted_metrics:
|
||||
if (
|
||||
key not in trainer.solver.problem.conditions.keys()
|
||||
and key != "train" and key != "val"
|
||||
):
|
||||
raise KeyError(f"Key '{key}' is not present in the dictionary")
|
||||
# add the loss pedix
|
||||
self._sorted_metrics = [
|
||||
metric + "_loss" for metric in self._sorted_metrics
|
||||
]
|
||||
return super().on_fit_start(trainer, pl_module)
|
||||
Reference in New Issue
Block a user